WorldWideScience

Sample records for cancer progression model

  1. Cancer progression modeling using static sample data.

    Science.gov (United States)

    Sun, Yijun; Yao, Jin; Nowak, Norma J; Goodison, Steve

    2014-01-01

    As molecular profiling data continues to accumulate, the design of integrative computational analyses that can provide insights into the dynamic aspects of cancer progression becomes feasible. Here, we present a novel computational method for the construction of cancer progression models based on the analysis of static tumor samples. We demonstrate the reliability of the method with simulated data, and describe the application to breast cancer data. Our findings support a linear, branching model for breast cancer progression. An interactive model facilitates the identification of key molecular events in the advance of disease to malignancy.

  2. Modeling cancer progression via pathway dependencies.

    Directory of Open Access Journals (Sweden)

    Elena J Edelman

    2008-02-01

    Full Text Available Cancer is a heterogeneous disease often requiring a complexity of alterations to drive a normal cell to a malignancy and ultimately to a metastatic state. Certain genetic perturbations have been implicated for initiation and progression. However, to a great extent, underlying mechanisms often remain elusive. These genetic perturbations are most likely reflected by the altered expression of sets of genes or pathways, rather than individual genes, thus creating a need for models of deregulation of pathways to help provide an understanding of the mechanisms of tumorigenesis. We introduce an integrative hierarchical analysis of tumor progression that discovers which a priori defined pathways are relevant either throughout or in particular steps of progression. Pathway interaction networks are inferred for these relevant pathways over the steps in progression. This is followed by the refinement of the relevant pathways to those genes most differentially expressed in particular disease stages. The final analysis infers a gene interaction network for these refined pathways. We apply this approach to model progression in prostate cancer and melanoma, resulting in a deeper understanding of the mechanisms of tumorigenesis. Our analysis supports previous findings for the deregulation of several pathways involved in cell cycle control and proliferation in both cancer types. A novel finding of our analysis is a connection between ErbB4 and primary prostate cancer.

  3. Inferring tree causal models of cancer progression with probability raising.

    Directory of Open Access Journals (Sweden)

    Loes Olde Loohuis

    Full Text Available Existing techniques to reconstruct tree models of progression for accumulative processes, such as cancer, seek to estimate causation by combining correlation and a frequentist notion of temporal priority. In this paper, we define a novel theoretical framework called CAPRESE (CAncer PRogression Extraction with Single Edges to reconstruct such models based on the notion of probabilistic causation defined by Suppes. We consider a general reconstruction setting complicated by the presence of noise in the data due to biological variation, as well as experimental or measurement errors. To improve tolerance to noise we define and use a shrinkage-like estimator. We prove the correctness of our algorithm by showing asymptotic convergence to the correct tree under mild constraints on the level of noise. Moreover, on synthetic data, we show that our approach outperforms the state-of-the-art, that it is efficient even with a relatively small number of samples and that its performance quickly converges to its asymptote as the number of samples increases. For real cancer datasets obtained with different technologies, we highlight biologically significant differences in the progressions inferred with respect to other competing techniques and we also show how to validate conjectured biological relations with progression models.

  4. Establishing the colitis-associated cancer progression mouse models.

    Science.gov (United States)

    Zheng, Haiming; Lu, Zhanjun; Wang, Ruhua; Chen, Niwei; Zheng, Ping

    2016-12-01

    Inflammatory bowel disease (IBD) has been reported as an important inducer of colorectal cancer (CRC). The most malignant IBD-associated CRC type has been highlighted as colitis-associated cancer (CAC). However, lack of CAC cases and difficulties of the long follow-up research have challenged researchers in molecular mechanism probing. Here, we established pre-CAC mouse models (dextran sulfate sodium [DSS] group and azoxymethane [AOM] group) and CAC mouse model (DSS/AOM group) to mimic human CAC development through singly or combinational treatment with DSS and AOM followed by disease activity index analysis. We found that these CAC mice showed much more severe disease phenotype, including serious diarrhea, body weight loss, rectal prolapse and bleeding, bloody stool, tumor burden, and bad survival. By detecting expression patterns of several therapeutic targets-Apc, p53, Kras, and TNF-α-in these mouse models through western blot, histology analysis, qRT-PCR, and ELISA methods, we found that the oncogene Kras expression remained unchanged, while the tumor suppressors-Apc and p53 expression were both significantly downregulated with malignancy progression from pre-CAC to CAC, and TNF-α level was elevated the most in CAC mice blood which is of potential clinical use. These data indicated the successful establishment of CAC development mouse models, which mimics human CAC well both in disease phenotype and molecular level, and highlighted the promoting role of inflammation in CAC progression. This useful tool will facilitate the further study in CAC molecular mechanism.

  5. A stochastic model for identifying differential gene pair co-expression patterns in prostate cancer progression

    Directory of Open Access Journals (Sweden)

    Mao Yu

    2009-07-01

    Full Text Available Abstract Background The identification of gene differential co-expression patterns between cancer stages is a newly developing method to reveal the underlying molecular mechanisms of carcinogenesis. Most researches of this subject lack an algorithm useful for performing a statistical significance assessment involving cancer progression. Lacking this specific algorithm is apparently absent in identifying precise gene pairs correlating to cancer progression. Results In this investigation we studied gene pair co-expression change by using a stochastic process model for approximating the underlying dynamic procedure of the co-expression change during cancer progression. Also, we presented a novel analytical method named 'Stochastic process model for Identifying differentially co-expressed Gene pair' (SIG method. This method has been applied to two well known prostate cancer data sets: hormone sensitive versus hormone resistant, and healthy versus cancerous. From these data sets, 428,582 gene pairs and 303,992 gene pairs were identified respectively. Afterwards, we used two different current statistical methods to the same data sets, which were developed to identify gene pair differential co-expression and did not consider cancer progression in algorithm. We then compared these results from three different perspectives: progression analysis, gene pair identification effectiveness analysis, and pathway enrichment analysis. Statistical methods were used to quantify the quality and performance of these different perspectives. They included: Re-identification Scale (RS and Progression Score (PS in progression analysis, True Positive Rate (TPR in gene pair analysis, and Pathway Enrichment Score (PES in pathway analysis. Our results show small values of RS and large values of PS, TPR, and PES; thus, suggesting that gene pairs identified by the SIG method are highly correlated with cancer progression, and highly enriched in disease-specific pathways. From

  6. Multi-state relative survival modelling of colorectal cancer progression and mortality.

    Science.gov (United States)

    Gilard-Pioc, Séverine; Abrahamowicz, Michal; Mahboubi, Amel; Bouvier, Anne-Marie; Dejardin, Olivier; Huszti, Ella; Binquet, Christine; Quantin, Catherine

    2015-06-01

    Accurate identification of factors associated with progression of colorectal cancer remains a challenge. In particular, it is unclear which statistical methods are most suitable to separate the effects of putative prognostic factors on cancer progression vs cancer-specific and other cause mortality. To address these challenges, we analyzed 10 year follow-up data for patients who underwent curative surgery for colorectal cancer in 1985-2000. Separate analyses were performed in two French cancer registries. Results of three multivariable models were compared: Cox model with recurrence as a time-dependent variable, and two multi-state models, which separated prognostic factor effects on recurrence vs death, with or without recurrence. Conventional multi-state model analyzed all-cause mortality while new relative survival multi-state model focused on cancer-specific mortality. Among the 2517 and 2677 patients in the two registries, about 50% died without a recurrence, and 28% had a recurrence, of whom almost 90% died. In both multi-state models men had significantly increased risk of cancer recurrence in both registries (HR=0.79; 95% CI: 0.68-0.92 and HR=0.83; 95% CI: 0.71-0.96). However, the two multi-state models identified different prognostic factors for mortality without recurrence. In contrast to the conventional model, in the relative survival analyses gender had no independent association with cancer-specific mortality whereas patients diagnosed with stage III cancer had significantly higher risks in both registries (HR=1.67; 95% CI: 1.27-2.22 and HR=2.38; 95% CI: 1.29-3.27). In conclusion, relative survival multi-state model revealed that different factors may be associated with cancer recurrence vs cancer-specific mortality either after or without a recurrence.

  7. Cancer progression mediated by horizontal gene transfer in an in vivo model.

    Directory of Open Access Journals (Sweden)

    Catalina Trejo-Becerril

    Full Text Available It is known that cancer progresses by vertical gene transfer, but this paradigm ignores that DNA circulates in higher organisms and that it is biologically active upon its uptake by recipient cells. Here we confirm previous observations on the ability of cell-free DNA to induce in vitro cell transformation and tumorigenesis by treating NIH3T3 recipient murine cells with serum of colon cancer patients and supernatant of SW480 human cancer cells. Cell transformation and tumorigenesis of recipient cells did not occur if serum and supernatants were depleted of DNA. It is also demonstrated that horizontal cancer progression mediated by circulating DNA occurs via its uptake by recipient cells in an in vivo model where immunocompetent rats subjected to colon carcinogenesis with 1,2-dimethylhydrazine had increased rate of colonic tumors when injected in the dorsum with human SW480 colon carcinoma cells as a source of circulating oncogenic DNA, which could be offset by treating these animals with DNAse I and proteases. Though the contribution of biologically active molecules other than DNA for this phenomenon to occur cannot be ruled out, our results support the fact that cancer cells emit into the circulation biologically active DNA to foster tumor progression. Further exploration of the horizontal tumor progression phenomenon mediated by circulating DNA is clearly needed to determine whether its manipulation could have a role in cancer therapy.

  8. Cancer Progression Mediated by Horizontal Gene Transfer in an In Vivo Model

    Science.gov (United States)

    Trejo-Becerril, Catalina; Pérez-Cárdenas, Enrique; Taja-Chayeb, Lucía; Anker, Philippe; Herrera-Goepfert, Roberto; Medina-Velázquez, Luis A.; Hidalgo-Miranda, Alfredo; Pérez-Montiel, Delia; Chávez-Blanco, Alma; Cruz-Velázquez, Judith; Díaz-Chávez, José; Gaxiola, Miguel; Dueñas-González, Alfonso

    2012-01-01

    It is known that cancer progresses by vertical gene transfer, but this paradigm ignores that DNA circulates in higher organisms and that it is biologically active upon its uptake by recipient cells. Here we confirm previous observations on the ability of cell-free DNA to induce in vitro cell transformation and tumorigenesis by treating NIH3T3 recipient murine cells with serum of colon cancer patients and supernatant of SW480 human cancer cells. Cell transformation and tumorigenesis of recipient cells did not occur if serum and supernatants were depleted of DNA. It is also demonstrated that horizontal cancer progression mediated by circulating DNA occurs via its uptake by recipient cells in an in vivo model where immunocompetent rats subjected to colon carcinogenesis with 1,2-dimethylhydrazine had increased rate of colonic tumors when injected in the dorsum with human SW480 colon carcinoma cells as a source of circulating oncogenic DNA, which could be offset by treating these animals with DNAse I and proteases. Though the contribution of biologically active molecules other than DNA for this phenomenon to occur cannot be ruled out, our results support the fact that cancer cells emit into the circulation biologically active DNA to foster tumor progression. Further exploration of the horizontal tumor progression phenomenon mediated by circulating DNA is clearly needed to determine whether its manipulation could have a role in cancer therapy. PMID:23285175

  9. Estimating successive cancer risks in Lynch Syndrome families using a progressive three-state model.

    Science.gov (United States)

    Choi, Yun-Hee; Briollais, Laurent; Green, Jane; Parfrey, Patrick; Kopciuk, Karen

    2014-02-20

    Lynch Syndrome (LS) families harbor mutated mismatch repair genes,which predispose them to specific types of cancer. Because individuals within LS families can experience multiple cancers over their lifetime, we developed a progressive three-state model to estimate the disease risk from a healthy (state 0) to a first cancer (state 1) and then to a second cancer (state 2). Ascertainment correction of the likelihood was made to adjust for complex sampling designs with carrier probabilities for family members with missing genotype information estimated using their family's observed genotype and phenotype information in a one-step expectation-maximization algorithm. A sandwich variance estimator was employed to overcome possible model misspecification. The main objective of this paper is to estimate the disease risk (penetrance) for age at a second cancer after someone has experienced a first cancer that is also associated with a mutated gene. Simulation study results indicate that our approach generally provides unbiased risk estimates and low root mean squared errors across different family study designs, proportions of missing genotypes, and risk heterogeneities. An application to 12 large LS families from Newfoundland demonstrates that the risk for a second cancer was substantial and that the age at a first colorectal cancer significantly impacted the age at any LS subsequent cancer. This study provides new insights for developing more effective management of mutation carriers in LS families by providing more accurate multiple cancer risk estimates.

  10. Disease Progression/Clinical Outcome Model for Castration-Resistant Prostate Cancer in Patients Treated with Eribulin

    NARCIS (Netherlands)

    Van Hasselt, J. G C; Gupta, A.; Hussein, Z.; Beijnen, J. H.; Schellens, J. H M; Huitema, A. D R

    2015-01-01

    Frameworks that associate cancer dynamic disease progression models with parametric survival models for clinical outcome have recently been proposed to support decision making in early clinical development. Here we developed such a disease progression clinical outcome model for castration-resistant

  11. An Improved Syngeneic Orthotopic Murine Model of Human Breast Cancer Progression

    Science.gov (United States)

    Rashid, Omar M.; Nagahashi, Masayuki; Ramachandran, Suburamaniam; Dumur, Catherine; Schaum, Julia; Yamada, Akimitsu; Terracina, Krista P.; Milstien, Sheldon; Spiegel, Sarah; Takabe, Kazuaki

    2014-01-01

    Purpose Breast cancer drug development costs nearly $610 million and 37 months in preclinical mouse model trials with minimal success rates. Despite these inefficiencies, there are still no consensus breast cancer preclinical models. Methods Murine mammary adenocarcinoma 4T1-luc2 cells were implanted subcutaneous (SQ) or orthotopically percutaneous injection in the area of the nipple (OP), or surgically into the chest 2nd mammary fat pad under direct vision (ODV) in Balb/c immunocompetent mice. Tumor progression was followed by in vivo bioluminescence and direct measurements, pathology and survival determined, and tumor gene expression analyzed by genome-wide microarrays. Results ODV produced less variable sized tumors and was a reliable method of implantation. ODV implantation into the chest 2nd mammary pad rather than into the abdominal 4th mammary pad, the most common implantation site, better mimicked human breast cancer progression pattern, which correlated with bioluminescent tumor burden and survival. Compared to SQ, ODV produced tumors that differentially expressed genes whose interaction networks are of importance in cancer research. qPCR validation of 10 specific target genes of interest in ongoing clinical trials demonstrated significant differences in expression. Conclusions ODV implantation into the chest 2nd mammary pad provides the most reliable model that mimics human breast cancer compared from subcutaneous implantation that produces tumors with different genome expression profiles of clinical significance. Increased understanding of the limitations of the different preclinical models in use will help guide new investigations and may improve the efficiency of breast cancer drug development. PMID:25200444

  12. Progress towards understanding heterotypic interactions in multi-culture models of breast cancer.

    Science.gov (United States)

    Regier, Mary C; Alarid, Elaine T; Beebe, David J

    2016-06-13

    Microenvironments in primary tumors and metastases include multiple cell types whose dynamic and reciprocal interactions are central to progression of the disease. However, the literature involving breast cancer studied in vitro is dominated by cancer cells in mono-culture or co-cultured with one other cell type. For in vitro studies of breast cancer the inclusion of multiple cell types has led to models that are more representative of in vivo behaviors and functions as compared to more traditional monoculture. Here, we review foundational co-culture techniques and their adaptation to multi-culture (including three or more cell types). Additionally, while macroscale methods involving conditioned media, direct contact, and indirect interactions have been informative, we examined many advances that have been made more recently using microscale systems with increased control over cellular and structural complexity. Throughout this discussion we consider the benefits and limitations of current multi-culture methods and the significant results they have produced.

  13. In Vitro Co-Culture Models of Breast Cancer Metastatic Progression towards Bone

    Directory of Open Access Journals (Sweden)

    Chiara Arrigoni

    2016-08-01

    Full Text Available Advanced breast cancer frequently metastasizes to bone through a multistep process involving the detachment of cells from the primary tumor, their intravasation into the bloodstream, adhesion to the endothelium and extravasation into the bone, culminating with the establishment of a vicious cycle causing extensive bone lysis. In recent years, the crosstalk between tumor cells and secondary organs microenvironment is gaining much attention, being indicated as a crucial aspect in all metastatic steps. To investigate the complex interrelation between the tumor and the microenvironment, both in vitro and in vivo models have been exploited. In vitro models have some advantages over in vivo, mainly the possibility to thoroughly dissect in controlled conditions and with only human cells the cellular and molecular mechanisms underlying the metastatic progression. In this article we will review the main results deriving from in vitro co-culture models, describing mechanisms activated in the crosstalk between breast cancer and bone cells which drive the different metastatic steps.

  14. In Vitro Co-Culture Models of Breast Cancer Metastatic Progression towards Bone

    Science.gov (United States)

    Arrigoni, Chiara; Bersini, Simone; Gilardi, Mara; Moretti, Matteo

    2016-01-01

    Advanced breast cancer frequently metastasizes to bone through a multistep process involving the detachment of cells from the primary tumor, their intravasation into the bloodstream, adhesion to the endothelium and extravasation into the bone, culminating with the establishment of a vicious cycle causing extensive bone lysis. In recent years, the crosstalk between tumor cells and secondary organs microenvironment is gaining much attention, being indicated as a crucial aspect in all metastatic steps. To investigate the complex interrelation between the tumor and the microenvironment, both in vitro and in vivo models have been exploited. In vitro models have some advantages over in vivo, mainly the possibility to thoroughly dissect in controlled conditions and with only human cells the cellular and molecular mechanisms underlying the metastatic progression. In this article we will review the main results deriving from in vitro co-culture models, describing mechanisms activated in the crosstalk between breast cancer and bone cells which drive the different metastatic steps. PMID:27571063

  15. An imbalance in progenitor cell populations reflects tumour progression in breast cancer primary culture models.

    LENUS (Irish Health Repository)

    Donatello, Simona

    2011-01-01

    Many factors influence breast cancer progression, including the ability of progenitor cells to sustain or increase net tumour cell numbers. Our aim was to define whether alterations in putative progenitor populations could predict clinicopathological factors of prognostic importance for cancer progression.

  16. Cervical Cancer Screening | Cancer Trends Progress Report

    Science.gov (United States)

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  17. Ovarian Cancer Treatment | Cancer Trends Progress Report

    Science.gov (United States)

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  18. Arsenic | Cancer Trends Progress Report

    Science.gov (United States)

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  19. Nitrate | Cancer Trends Progress Report

    Science.gov (United States)

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  20. Preventing Breast Cancer: Making Progress

    Science.gov (United States)

    ... Navigation Bar Home Current Issue Past Issues Preventing Breast Cancer: Making Progress Past Issues / Fall 2006 Table of ... 000 women will have been diagnosed with invasive breast cancer, and nearly 41,000 women will die from ...

  1. Prevalence of Prostate Cancer Clinical States and Mortality in the United States: Estimates Using a Dynamic Progression Model.

    Directory of Open Access Journals (Sweden)

    Howard I Scher

    Full Text Available To identify patient populations most in need of treatment across the prostate cancer disease continuum, we developed a novel dynamic transition model based on risk of disease progression and mortality.We modeled the flow of patient populations through eight prostate cancer clinical states (PCCS that are characterized by the status of the primary tumor, presence of metastases, prior and current treatment, and testosterone levels. Simulations used published US incidence rates for each year from 1990. Progression and mortality rates were derived from published clinical trials, meta-analyses, and observational studies. Model outputs included the incidence, prevalence, and mortality for each PCCS. The impact of novel treatments was modeled in three distinct scenarios: metastatic castration-resistant prostate cancer (mCRPC, non-metastatic CRPC (nmCRPC, or both.The model estimated the prevalence of prostate cancer as 2,219,280 in the US in 2009 and 3,072,480 in 2020, and incidence of mCRPC as 36,100 and 42,970, respectively. All-cause mortality in prostate cancer was estimated at 168,290 in 2009 and 219,360 in 2020, with 20.5% and 19.5% of these deaths, respectively, occurring in men with mCRPC. The majority (86% of incidence flow into mCRPC states was from the nmCRPC clinical state. In the scenario with novel interventions for nmCRPC states, the progression to mCRPC is reduced, thus decreasing mCRPC incidence by 12% in 2020, with a sustained decline in mCRPC mortality. A limitation of the model is that it does not estimate prostate cancer-specific mortality.The model informs clinical trial design for prostate cancer by quantifying outcomes in PCCS, and demonstrates the impact of an effective therapy applied in an earlier clinical state of nmCRPC on the incidence of mCRPC morbidity and subsequent mortality.

  2. Targeting ECM Disrupts Cancer Progression.

    Science.gov (United States)

    Venning, Freja A; Wullkopf, Lena; Erler, Janine T

    2015-01-01

    Metastatic complications are responsible for more than 90% of cancer-related deaths. The progression from an isolated tumor to disseminated metastatic disease is a multistep process, with each step involving intricate cross talk between the cancer cells and their non-cellular surroundings, the extracellular matrix (ECM). Many ECM proteins are significantly deregulated during the progression of cancer, causing both biochemical and biomechanical changes that together promote the metastatic cascade. In this review, the influence of several ECM proteins on these multiple steps of cancer spread is summarized. In addition, we highlight the promising (pre-)clinical data showing benefits of targeting these ECM macromolecules to prevent cancer progression.

  3. Targeting ECM Disrupts Cancer Progression

    Science.gov (United States)

    Venning, Freja A.; Wullkopf, Lena; Erler, Janine T.

    2015-01-01

    Metastatic complications are responsible for more than 90% of cancer-related deaths. The progression from an isolated tumor to disseminated metastatic disease is a multistep process, with each step involving intricate cross talk between the cancer cells and their non-cellular surroundings, the extracellular matrix (ECM). Many ECM proteins are significantly deregulated during the progression of cancer, causing both biochemical and biomechanical changes that together promote the metastatic cascade. In this review, the influence of several ECM proteins on these multiple steps of cancer spread is summarized. In addition, we highlight the promising (pre-)clinical data showing benefits of targeting these ECM macromolecules to prevent cancer progression. PMID:26539408

  4. Modeling invasive breast cancer: growth factors propel progression of HER2-positive premalignant lesions.

    Science.gov (United States)

    Pradeep, C-R; Zeisel, A; Köstler, W J; Lauriola, M; Jacob-Hirsch, J; Haibe-Kains, B; Amariglio, N; Ben-Chetrit, N; Emde, A; Solomonov, I; Neufeld, G; Piccart, M; Sagi, I; Sotiriou, C; Rechavi, G; Domany, E; Desmedt, C; Yarden, Y

    2012-08-01

    The HER2/neu oncogene encodes a receptor-like tyrosine kinase whose overexpression in breast cancer predicts poor prognosis and resistance to conventional therapies. However, the mechanisms underlying aggressiveness of HER2 (human epidermal growth factor receptor 2)-overexpressing tumors remain incompletely understood. Because it assists epidermal growth factor (EGF) and neuregulin receptors, we overexpressed HER2 in MCF10A mammary cells and applied growth factors. HER2-overexpressing cells grown in extracellular matrix formed filled spheroids, which protruded outgrowths upon growth factor stimulation. Our transcriptome analyses imply a two-hit model for invasive growth: HER2-induced proliferation and evasion from anoikis generate filled structures, which are morphologically and transcriptionally analogous to preinvasive patients' lesions. In the second hit, EGF escalates signaling and transcriptional responses leading to invasive growth. Consistent with clinical relevance, a gene expression signature based on the HER2/EGF-activated transcriptional program can predict poorer prognosis of a subgroup of HER2-overexpressing patients. In conclusion, the integration of a three-dimensional cellular model and clinical data attributes progression of HER2-overexpressing lesions to EGF-like growth factors acting in the context of the tumor's microenvironment.

  5. A growth model for primary cancer (II). New rules, progress curves and morphology transitions

    Science.gov (United States)

    Jr, S. C. Ferreira; Martins, M. L.; Vilela, M. J.

    1999-10-01

    In the present paper we extend the analysis of another model recently proposed to simulate the growth of carcinoma “in situ”, which includes cell proliferation, motility and death, as well as chemotactic interactions among cells. The tumour patterns generated by two distinct growth rules are characterised by its gyration radius, surface roughness, total number of cancer cells, and number of cells on tumour periphery. Our results indicate that very distinct morphological patterns follow Gompertz growth curves and their gyration radii increase linearly in time and scale, in the asymptotic limit, as a square root of the total number of tumour cells. In contrast, these distinct tumour patterns exhibit different scaling laws for their surfaces. Thus, some biological features of malignant behaviour seem to influence particularly the structure of the tumour border, while its gyration radius and progress curve are described by more robust functions. Finally, for both rules used, morphology transitions as well as a transient behaviour up to the onset of the phase of rapid growth in the Gompertz curves are observed.

  6. Targeting ECM Disrupts Cancer Progression

    OpenAIRE

    Venning, Freja A; Wullkopf, Lena; Janine T. Erler

    2015-01-01

    Metastatic complications are responsible for more than 90% of cancer-related deaths. The progression from an isolated tumor to disseminated metastatic disease is a multistep process, with each step involving intricate cross talk between the cancer cells and their non-cellular surroundings, the extracellular matrix (ECM). Many ECM proteins are significantly deregulated during the progression of cancer, causing both biochemical and biomechanical changes that together promote the metastatic casc...

  7. How does early detection by screening affect disease progression?: Modeling estimated benefits in prostate cancer screening

    NARCIS (Netherlands)

    E.M. Wever (Elisabeth); G. Draisma (Gerrit); E.A.M. Heijnsdijk (Eveline); H.J. de Koning (Harry)

    2011-01-01

    textabstractBackground. Simulation models are essential tools for estimating benefits of cancer screening programs. Such models include a screening-effect model that represents how early detection by screening followed by treatment affects disease-specific survival. Two commonly used screening-effec

  8. Key signalling nodes in mammary gland development and cancer. Mitogen-activated protein kinase signalling in experimental models of breast cancer progression and in mammary gland development.

    Science.gov (United States)

    Whyte, Jacqueline; Bergin, Orla; Bianchi, Alessandro; McNally, Sara; Martin, Finian

    2009-01-01

    Seven classes of mitogen-activated protein kinase (MAPK) intracellular signalling cascades exist, four of which are implicated in breast disease and function in mammary epithelial cells. These are the extracellular regulated kinase (ERK)1/2 pathway, the ERK5 pathway, the p38 pathway and the c-Jun N-terminal kinase (JNK) pathway. In some forms of human breast cancer and in many experimental models of breast cancer progression, signalling through the ERK1/2 pathway, in particular, has been implicated as being important. We review the influence of ERK1/2 activity on the organised three-dimensional association of mammary epithelial cells, and in models of breast cancer cell invasion. We assess the importance of epidermal growth factor receptor family signalling through ERK1/2 in models of breast cancer progression and the influence of ERK1/2 on its substrate, the oestrogen receptor, in this context. In parallel, we consider the importance of these MAPK-centred signalling cascades during the cycle of mammary gland development. Although less extensively studied, we highlight the instances of signalling through the p38, JNK and ERK5 pathways involved in breast cancer progression and mammary gland development.

  9. Casodex treatment induces hypoxia-related gene expression in the LNCaP prostate cancer progression model

    Directory of Open Access Journals (Sweden)

    Gopalakrishnan Velliyur K

    2005-03-01

    Full Text Available Abstract Background The changes in gene expression profile as prostate cancer progresses from an androgen-dependent disease to an androgen-independent disease are still largely unknown. Methods We examined the gene expression profile in the LNCaP prostate cancer progression model during chronic treatment with Casodex using cDNA microarrays consisting of 2305 randomly chosen genes. Results Our studies revealed a representative collection of genes whose expression was differentially regulated in LNCaP cells upon treatment with Casodex. A set of 15 genes were shown to be highly expressed in Casodex-treated LNCaP cells compared to the reference sample. This set of highly expressed genes represents a signature collection unique to prostate cancer since their expression was significantly greater than that of the collective pool of ten cancer cell lines of the reference sample. The highly expressed signature collection included the hypoxia-related genes membrane metallo-endopeptidase (MME, cyclin G2, and Bcl2/adenovirus E1B 19 kDa (BNIP3. Given the roles of these genes in angiogenesis, cell cycle regulation, and apoptosis, we further analyzed their expression and concluded that these genes may be involved in the molecular changes that lead to androgen-independence in prostate cancer. Conclusion Our data indicate that one of the mechanisms of Casodex action in prostate cancer cells is induction of hypoxic gene expression.

  10. An imbalance in progenitor cell populations reflects tumour progression in breast cancer primary culture models

    LENUS (Irish Health Repository)

    Donatello, Simona

    2011-04-26

    Abstract Background Many factors influence breast cancer progression, including the ability of progenitor cells to sustain or increase net tumour cell numbers. Our aim was to define whether alterations in putative progenitor populations could predict clinicopathological factors of prognostic importance for cancer progression. Methods Primary cultures were established from human breast tumour and adjacent non-tumour tissue. Putative progenitor cell populations were isolated based on co-expression or concomitant absence of the epithelial and myoepithelial markers EPCAM and CALLA respectively. Results Significant reductions in cellular senescence were observed in tumour versus non-tumour cultures, accompanied by a stepwise increase in proliferation:senescence ratios. A novel correlation between tumour aggressiveness and an imbalance of putative progenitor subpopulations was also observed. Specifically, an increased double-negative (DN) to double-positive (DP) ratio distinguished aggressive tumours of high grade, estrogen receptor-negativity or HER2-positivity. The DN:DP ratio was also higher in malignant MDA-MB-231 cells relative to non-tumourogenic MCF-10A cells. Ultrastructural analysis of the DN subpopulation in an invasive tumour culture revealed enrichment in lipofuscin bodies, markers of ageing or senescent cells. Conclusions Our results suggest that an imbalance in tumour progenitor subpopulations imbalances the functional relationship between proliferation and senescence, creating a microenvironment favouring tumour progression.

  11. Targeting ECM Disrupts Cancer Progression

    DEFF Research Database (Denmark)

    Venning, Freja A; Wullkopf, Lena; Erler, Janine T

    2015-01-01

    Metastatic complications are responsible for more than 90% of cancer-related deaths. The progression from an isolated tumor to disseminated metastatic disease is a multistep process, with each step involving intricate cross talk between the cancer cells and their non-cellular surroundings, the ex...

  12. Ovine pulmonary adenocarcinoma as an animal model of progressive lung cancer and the impact of nutritional selenium supply.

    Science.gov (United States)

    Humann-Ziehank, Esther; Wolf, Petra; Renko, Kostja; Schomburg, Lutz; Ludwig Bruegmann, Michael; Andreae, Arnim; Brauer, Carsten; Ganter, Martin

    2011-01-01

    Jaagsiekte sheep retrovirus (JSRV) is known to induce ovine pulmonary adenocarcinoma (OPA). Several studies have suggested an influence of selenium (Se) status on cancer progression. Thus, combining OPA with a defined Se supply might serve as a suitable animal model to study the impact of Se on lung cancer progression. 16 naturally JSRV-infected sheep were divided into 2 treatment groups receiving (a) CT) was performed repeatedly and evaluated using a CT-OPA-score system. Liver biopsies were taken three-monthly, blood samples were collected biweekly to study treatment effects on Se concentrations and glutathione peroxidase (GPx) activity. Cell pellets from bronchoalveolar lavage fluid (BALF) were tested for JSRV by PCR to approve the infection. To date, four animals of the ongoing study have been euthanised. Autopsy and histopathology were performed and correlated to CT analysis. JSRV was detected in BALF cell pellets. Progression of lung tumours was monitored successfully by repeated CT examinations, enabling the detection of even small nodules or increased lung density. Histopathology revealed bronchioloalveolar adenocarcinoma in lung areas suspicious to be OPA from CT evaluation. Score-based analysis of CT images for quantifying tumour progression proved as a valuable tool. Se concentration and GPx activity increased in liver and serum of group b and verified the efficiency of different feeding regime. In conclusion, OPA along with CT, autopsy/histopathology, trace element and enzyme activity analysis provide a suitable large animal model to examine the impact of Se supply on lung tumourigenesis.

  13. Progress in breast cancer: overview.

    Science.gov (United States)

    Arteaga, Carlos L

    2013-12-01

    This edition of CCR Focus titled Research in Breast Cancer: Frontiers in Genomics, Biology, and Clinical Investigation reviews six topics that cover areas of translational research of high impact in breast cancer. These topics represent areas of breast cancer research where significant progress has occurred but also where very important challenges remain. The papers in this CCR Focus section are contributed by experts in the respective areas of investigation. Herein, key aspects of these contributions and the research directions they propose are reviewed.

  14. Epigenetic modifications, chromatin distribution and TP53 transcription in a model of breast cancer progression.

    Science.gov (United States)

    Santos, Gilson C; da Silva, Ana P A; Feldman, Lucas; Ventura, Grasiella M; Vassetzky, Yegor; de Moura Gallo, Claudia V

    2015-04-01

    In the present paper we aimed to characterize epigenetic aspects and analyze TP53 transcription in the 21 T series, composed of breast cell lines: non-cancerous H16N2; Atypical Ductal Hyperplasia 21PT; Ductal Carcinoma in situ 21NT and Invasive Metastatic Carcinoma 21MT1. We detected a global genomic hypomethylation in 21NT and 21MT1. The histone modification markers analysis showed an important global decrease of the active chromatin mark H4Ac in 21MT1 relative to the other cell lines while the repressive mark H3K9Me3 were not significantly altered. The mRNA levels of DNA methylation and histone modification key enzymes are consistent with the observed genomic hypomethylation and histone hypoacetylation. The expression of DNMT3A/B increased at the initial stages of oncogenesis and the expression of DNMT1 and HAT1 decreased at the advanced stages of breast cancer. Using a confocal immunofluorescent assay, we observed that H4Ac was mostly located at the periphery and the repressive mark H3K9Me3, at the center of 21NT and 21MT1 cells nuclei. TP53 P1 promoter was found to be in an open chromatin state, with a relatively high enrichment of H4Ac and similar TP53 transcription levels in all 21 T cell lines. In conclusion, we observed epigenetic alterations (global genome hypomethylation, global hypoacetylation and accumulation of pericentric heterochromatin) in metastatic breast cancer cells of the 21 T series. These alterations may act at later stages of breast cancer progression and may not affect TP53 transcription at the P1 promoter.

  15. Gabapentin, an Analgesic Used Against Cancer-Associated Neuropathic Pain: Effects on Prostate Cancer Progression in an In Vivo Rat Model.

    Science.gov (United States)

    Bugan, Ilknur; Karagoz, Zeynep; Altun, Seyhan; Djamgoz, Mustafa B A

    2016-03-01

    A major problem associated with clinical management of cancer is controlling the accompanying pain, and various analgesics are in common use for this purpose. Recent evidence suggests that some of the targets of analgesics, such as ion channels and receptors, may also be involved in the cancer process, thereby raising the possibility that such use of some analgesics may impact upon cancer itself. The main aim of this study was to determine whether gabapentin, a common adjuvant analgesic in current use against cancer-associated neuropathic pain, would affect tumour development and progression in vivo. The Dunning rat model of prostate cancer was used. Strongly metastatic Mat-LyLu cells were implanted subcutaneously into syngeneic Copenhagen rats which were then treated every other day with 4.6-16.8 μg/kg gabapentin by gavage. Primary tumourigenesis was monitored daily. Lung metastases were counted and measured after killing the rats 21 days later. Gabapentin had no effect on primary tumourigenesis but produced dose-dependent effects on lung metastasis. Whilst 4.6 μg/kg had no effect, 9.1 μg/kg gabapentin decreased the number of lung metastases significantly by 64%. In contrast, 16.8 μg/kg gabapentin promoted metastasis significantly by 112% and showed a strong tendency to shorten mean survival time. It is concluded that gabapentin prescribed to cancer patients against pain could impact upon the cancer process itself.

  16. Joint modelling of longitudinal and multi-state processes: application to clinical progressions in prostate cancer.

    Science.gov (United States)

    Ferrer, Loïc; Rondeau, Virginie; Dignam, James; Pickles, Tom; Jacqmin-Gadda, Hélène; Proust-Lima, Cécile

    2016-09-30

    Joint modelling of longitudinal and survival data is increasingly used in clinical trials on cancer. In prostate cancer for example, these models permit to account for the link between longitudinal measures of prostate-specific antigen (PSA) and time of clinical recurrence when studying the risk of relapse. In practice, multiple types of relapse may occur successively. Distinguishing these transitions between health states would allow to evaluate, for example, how PSA trajectory and classical covariates impact the risk of dying after a distant recurrence post-radiotherapy, or to predict the risk of one specific type of clinical recurrence post-radiotherapy, from the PSA history. In this context, we present a joint model for a longitudinal process and a multi-state process, which is divided into two sub-models: a linear mixed sub-model for longitudinal data and a multi-state sub-model with proportional hazards for transition times, both linked by a function of shared random effects. Parameters of this joint multi-state model are estimated within the maximum likelihood framework using an EM algorithm coupled with a quasi-Newton algorithm in case of slow convergence. It is implemented under R, by combining and extending mstate and JM packages. The estimation program is validated by simulations and applied on pooled data from two cohorts of men with localized prostate cancer. Thanks to the classical covariates available at baseline and the repeated PSA measurements, we are able to assess the biomarker's trajectory, define the risks of transitions between health states and quantify the impact of the PSA dynamics on each transition intensity. Copyright © 2016 John Wiley & Sons, Ltd.

  17. v-Ha-ras oncogene insertion: A model for tumor progression of human small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Mabry, M.; Nakagawa, Toshitaro; Nelkin, B.D.; McDowell, E.; Gesell, M.; Eggleston, J.C.; Casero, R.A. Jr.; Baylin, S.B.

    1988-09-01

    Small cell lung cancer (SCLC) manifests a range of phenotypes in culture that may be important in understanding its relationship to non-SCLCs and to tumor progression events in patients. Most SCLC-derived cell lines, termed classic SCLC lines, have properties similar to SCLC tumors in patients. To delineate further the relationships between these phenotypes and the molecular events involved, the authors inserted the v-Ha-ras gene in SCLC cell lines with (biochemical variant) and without (classic) an amplified c-myc gene. These two SCLC subtypes had markedly different phenotypic responses to similar levels of expression of v-Ha-ras RNA. No biochemical or morphologic changes were observed in classic SCLC cells. In contrast, in biochemical variant SCLC cells, v-Ha-ras expression induced features typical of large cell undifferentiated lung carcinoma. Expression of v-Ha-ras in biochemical variant SCLC cells directly demonstrates that important transitions can occur between phenotypes of human lung cancer cells and that these may play a critical role in tumor progression events in patients. The finding provide a model system to study molecular events involved in tumor progression steps within a series of related tumor types.

  18. A progressive processing method for breast cancer detection via UWB based on an MRI-derived model

    Science.gov (United States)

    Xiao, Xia; Song, Hang; Wang, Zong-Jie; Wang, Liang

    2014-07-01

    Ultra-wideband (UWB) microwave imaging is a promising method for breast cancer detection based on the large contrast of electric parameters between the malignant tumor and its surrounded normal breast organisms. In the case of multiple tumors being present, the conventional imaging approaches may be ineffective to detect all the tumors clearly. In this paper, a progressive processing method is proposed for detecting more than one tumor. The method is divided into three stages: primary detection, refocusing and image optimization. To test the feasibility of the approach, a numerical breast model is developed based on the realistic magnetic resonance image (MRI). Two tumors are assumed embedded in different positions. Successful detection of a 3.6 mm-diameter tumor at a depth of 42 mm is achieved. The correct information of both tumors is shown in the reconstructed image, suggesting that the progressive processing method is promising for multi-tumor detection.

  19. Mucin (Muc expression during pancreatic cancer progression in spontaneous mouse model: potential implications for diagnosis and therapy

    Directory of Open Access Journals (Sweden)

    Rachagani Satyanarayana

    2012-10-01

    Full Text Available Abstract Background Pancreatic cancer (PC is a lethal malignancy primarily driven by activated Kras mutations and characterized by the deregulation of several genes including mucins. Previous studies on mucins have identified their significant role in both benign and malignant human diseases including PC progression and metastasis. However, the initiation of MUC expression during PC remains unknown because of lack of early stage tumor tissues from PC patients. Methods In the present study, we have evaluated stage specific expression patterns of mucins during mouse PC progression in (KrasG12D;Pdx1-Cre (KC murine PC model from pancreatic intraepithelial neoplasia (PanIN to pancreatic ductal adenocarcinoma (PDAC by immunohistochemistry and quantitative real-time PCR. Results In agreement with previous studies on human PC, we observed a progressive increase in the expression of mucins particularly Muc1, Muc4 and Muc5AC in the pancreas of KC (as early as PanIN I mice with advancement of PanIN lesions and PDAC both at mRNA and protein levels. Additionally, mucin expression correlated with the increased expression of inflammatory cytokines IFN-γ (p CXCL1 (p CXCL2 (p  Conclusions Our study reinforces the potential utility of the KC murine model for determining the functional role of mucins in PC pathogenesis by crossing KC mice with corresponding mucin knockout mice and evaluating mucin based diagnostic and therapeutic approaches for lethal PC.

  20. Catalog of genetic progression of human cancers: breast cancer.

    Science.gov (United States)

    Desmedt, Christine; Yates, Lucy; Kulka, Janina

    2016-03-01

    With the rapid development of next-generation sequencing, deeper insights are being gained into the molecular evolution that underlies the development and clinical progression of breast cancer. It is apparent that during evolution, breast cancers acquire thousands of mutations including single base pair substitutions, insertions, deletions, copy number aberrations, and structural rearrangements. As a consequence, at the whole genome level, no two cancers are identical and few cancers even share the same complement of "driver" mutations. Indeed, two samples from the same cancer may also exhibit extensive differences due to constant remodeling of the genome over time. In this review, we summarize recent studies that extend our understanding of the genomic basis of cancer progression. Key biological insights include the following: subclonal diversification begins early in cancer evolution, being detectable even in in situ lesions; geographical stratification of subclonal structure is frequent in primary tumors and can include therapeutically targetable alterations; multiple distant metastases typically arise from a common metastatic ancestor following a "metastatic cascade" model; systemic therapy can unmask preexisting resistant subclones or influence further treatment sensitivity and disease progression. We conclude the review by describing novel approaches such as the analysis of circulating DNA and patient-derived xenografts that promise to further our understanding of the genomic changes occurring during cancer evolution and guide treatment decision making.

  1. Efficacy of dietary antioxidants combined with a chemotherapeutic agent on human colon cancer progression in a fluorescent orthotopic mouse model.

    Science.gov (United States)

    Ma, Huaiyu; Das, Tapas; Pereira, Suzette; Yang, Zhijian; Zhao, Ming; Mukerji, Pradip; Hoffman, Robert M

    2009-07-01

    We report here the efficacy of dietary antioxidants in combination with chemotherapy on tumor growth in the orthotopic COLO-205-green fluorescent protein (GFP) human colon cancer mouse model. The orthotopically-transplanted nude mice used for the study were randomly divided into 5 groups (A-E) after surgical orthotopic implantation (SOI) of tumor tissue. The following diets were given: Diet A, modified AIN-93M mature rodent diet with 4% fish oil; Diet B, modified AIN-93M which contains added antioxidants vitamin A, vitamin E, and selenium at levels present in the standard AIN-93M diet; Diet C, Diet A without added antioxidants vitamin A, vitamin E, or selenium; Diet D, Diet A with 5 times the amount of added antioxidants vitamin A, vitamin E, and selenium present in Diet B. Cisplatin, 7 mg/kg, was administered intraperitoneally on day 16 after SOI. Throughout the course of treatment, noninvasive whole-body imaging, based on the GFP expression of the tumor, permitted visualization of tumor progression. At sacrifice, the mean tumor weights showed significant statistical differences in all of the treated groups compared to the negative control (no cisplatin treatment) (p cisplatin efficacy by high-dose antioxidants in combination with fish oil for colon cancer progression and suggests the design of clinical trials for this regimen.

  2. Consumption of lycopene inhibits the growth and progression of colon cancer in a mouse xenograft model

    Science.gov (United States)

    A previous study indicated that lycopene could significantly inhibit the proliferation of human colon cancer cells in vitro. However, the in vivo anticancer effects of lycopene against colon cancer have not been demonstrated yet. Therefore, this study investigated whether consumption of lycopene cou...

  3. Multiscale cancer modeling.

    Science.gov (United States)

    Deisboeck, Thomas S; Wang, Zhihui; Macklin, Paul; Cristini, Vittorio

    2011-08-15

    Simulating cancer behavior across multiple biological scales in space and time, i.e., multiscale cancer modeling, is increasingly being recognized as a powerful tool to refine hypotheses, focus experiments, and enable more accurate predictions. A growing number of examples illustrate the value of this approach in providing quantitative insights in the initiation, progression, and treatment of cancer. In this review, we introduce the most recent and important multiscale cancer modeling works that have successfully established a mechanistic link between different biological scales. Biophysical, biochemical, and biomechanical factors are considered in these models. We also discuss innovative, cutting-edge modeling methods that are moving predictive multiscale cancer modeling toward clinical application. Furthermore, because the development of multiscale cancer models requires a new level of collaboration among scientists from a variety of fields such as biology, medicine, physics, mathematics, engineering, and computer science, an innovative Web-based infrastructure is needed to support this growing community.

  4. Alcohol Consumption | Cancer Trends Progress Report

    Science.gov (United States)

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  5. HPV Immunization | Cancer Trends Progress Report

    Science.gov (United States)

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  6. Identification of novel targets in prostate cancer progression

    NARCIS (Netherlands)

    Ghotra, Veerander Paul Singh

    2013-01-01

    We have developed novel fluorescence bio-imaging based automated models to screen for novel candidate targets involved in prostate cancer metastasis. Utilizing these models and adopting a functional genomics based approach; we identified SYK as a novel regulator of prostate cancer progression. We al

  7. Formal modeling and analysis of the hexosamine biosynthetic pathway: role of O-linked N-acetylglucosamine transferase in oncogenesis and cancer progression

    Directory of Open Access Journals (Sweden)

    Muhammad Tariq Saeed

    2016-09-01

    Full Text Available The alteration of glucose metabolism, through increased uptake of glucose and glutamine addiction, is essential to cancer cell growth and invasion. Increased flux of glucose through the Hexosamine Biosynthetic Pathway (HBP drives increased cellular O-GlcNAcylation (hyper-O-GlcNAcylation and contributes to cancer progression by regulating key oncogenes. However, the association between hyper-O-GlcNAcylation and activation of these oncogenes remains poorly characterized. Here, we implement a qualitative modeling framework to analyze the role of the Biological Regulatory Network in HBP activation and its potential effects on key oncogenes. Experimental observations are encoded in a temporal language format and model checking is applied to infer the model parameters and qualitative model construction. Using this model, we discover step-wise genetic alterations that promote cancer development and invasion due to an increase in glycolytic flux, and reveal critical trajectories involved in cancer progression. We compute delay constraints to reveal important associations between the production and degradation rates of proteins. O-linked N-acetylglucosamine transferase (OGT, an enzyme used for addition of O-GlcNAc during O-GlcNAcylation, is identified as a key regulator to promote oncogenesis in a feedback mechanism through the stabilization of c-Myc. Silencing of the OGT and c-Myc loop decreases glycolytic flux and leads to programmed cell death. Results of network analyses also identify a significant cycle that highlights the role of p53-Mdm2 circuit oscillations in cancer recovery and homeostasis. Together, our findings suggest that the OGT and c-Myc feedback loop is critical in tumor progression, and targeting these mediators may provide a mechanism-based therapeutic approach to regulate hyper-O-GlcNAcylation in human cancer.

  8. Financial Burden of Cancer Care | Cancer Trends Progress Report

    Science.gov (United States)

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  9. Regulation of macrophage inhibitory factor (MIF) by epidermal growth factor receptor (EGFR) in the MCF10AT model of breast cancer progression.

    Science.gov (United States)

    Lim, Simin; Choong, Lee-Yee; Kuan, Chong Poh; Yunhao, Chen; Lim, Yoon-Pin

    2009-08-01

    Genetic aberration of EGFR is one of the major molecular characteristics of breast cancer. However, the molecular changes associated with EGFR signaling during different stages of breast cancer development have not been studied. In this study, complementary two-dimensional-DIGE and iTRAQ technologies were used to profile the expression level of proteins in 4 isogenic cell lines in the MCF10AT model of breast cancer progression following a time course of EGF stimulation. A total of 80 proteins (67 from iTRAQ, 15 from DIGE, 2 common in both) were identified to be up- or down-regulated by EGF treatment. Following EGF stimulation, the expression level of MIF, a cytokine that has been implicated in many human cancers, was decreased in MCF10A1 normal breast mammary epithelial cells, increased in MCF10AT1k preneoplastic and MCF10CA1h low grade breast cancer cells, but showed no obvious difference in the MCF10CA1a high grade cancer cells. The increase in MIF expression level following EGF treatment could also be observed in A431 cervical cancer cells. EGF-induced increases of MIF expression levels in CA1h breast cancer cells were abrogated when MEK, but not PIK3CA, was knocked down. In addition, silencing of MIF diminished the proliferation of EGF-stimulated CA1h cells when compared to control cells. Taken together, our data suggested an EGFR --> MEK --> MIF proliferative pathway that has never been reported previously and that this pathway "evolves" during disease progression as modeled by the MCF10AT system. Revelation of the novel relationship between MIF and EGF may contribute to an integrated understanding of the roles of these oncogenic factors during breast cancer development.

  10. Effects of Surgery and Chemotherapy on Metastatic Progression of Prostate Cancer: Evidence from the Natural History of the Disease Reconstructed through Mathematical Modeling

    Directory of Open Access Journals (Sweden)

    Leonid Hanin

    2011-09-01

    Full Text Available This article brings mathematical modeling to bear on the reconstruction of the natural history of prostate cancer and assessment of the effects of treatment on metastatic progression. We present a comprehensive, entirely mechanistic mathematical model of cancer progression accounting for primary tumor latency, shedding of metastases, their dormancy and growth at secondary sites. Parameters of the model were estimated from the following data collected from 12 prostate cancer patients: (1 age and volume of the primary tumor at presentation; and (2 volumes of detectable bone metastases surveyed at a later time. This allowed us to estimate, for each patient, the age at cancer onset and inception of the first metastasis, the expected metastasis latency time and the rates of growth of the primary tumor and metastases before and after the start of treatment. We found that for all patients: (1 inception of the first metastasis occurred when the primary tumor was undetectable; (2 inception of all or most of the surveyed metastases occurred before the start of treatment; (3 the rate of metastasis shedding is essentially constant in time regardless of the size of the primary tumor and so it is only marginally affected by treatment; and most importantly, (4 surgery, chemotherapy and possibly radiation bring about a dramatic increase (by dozens or hundred times for most patients in the average rate of growth of metastases. Our analysis supports the notion of metastasis dormancy and the existence of prostate cancer stem cells. The model is applicable to all metastatic solid cancers, and our conclusions agree well with the results of a similar analysis based on a simpler model applied to a case of metastatic breast cancer.

  11. Effects of Surgery and Chemotherapy on Metastatic Progression of Prostate Cancer: Evidence from the Natural History of the Disease Reconstructed through Mathematical Modeling.

    Science.gov (United States)

    Hanin, Leonid; Zaider, Marco

    2011-09-20

    This article brings mathematical modeling to bear on the reconstruction of the natural history of prostate cancer and assessment of the effects of treatment on metastatic progression. We present a comprehensive, entirely mechanistic mathematical model of cancer progression accounting for primary tumor latency, shedding of metastases, their dormancy and growth at secondary sites. Parameters of the model were estimated from the following data collected from 12 prostate cancer patients: (1) age and volume of the primary tumor at presentation; and (2) volumes of detectable bone metastases surveyed at a later time. This allowed us to estimate, for each patient, the age at cancer onset and inception of the first metastasis, the expected metastasis latency time and the rates of growth of the primary tumor and metastases before and after the start of treatment. We found that for all patients: (1) inception of the first metastasis occurred when the primary tumor was undetectable; (2) inception of all or most of the surveyed metastases occurred before the start of treatment; (3) the rate of metastasis shedding is essentially constant in time regardless of the size of the primary tumor and so it is only marginally affected by treatment; and most importantly, (4) surgery, chemotherapy and possibly radiation bring about a dramatic increase (by dozens or hundred times for most patients) in the average rate of growth of metastases. Our analysis supports the notion of metastasis dormancy and the existence of prostate cancer stem cells. The model is applicable to all metastatic solid cancers, and our conclusions agree well with the results of a similar analysis based on a simpler model applied to a case of metastatic breast cancer.

  12. Association of Immunosuppression with DR6 Expression during the Development and Progression of Spontaneous Ovarian Cancer in Laying Hen Model.

    Science.gov (United States)

    McNeal, Sa'Rah; Bitterman, Pincas; Bahr, Janice M; Edassery, Seby L; Abramowicz, Jacques S; Basu, Sanjib; Barua, Animesh

    2016-01-01

    Ovarian cancer (OVCA) mainly disseminates in the peritoneal cavity. Immune functions are important to prevent OVCA progression and recurrence. The mechanism of immunosuppression, a hallmark of tumor progression, is not well understood. The goal of this study was to determine the immune system's responses and its suppression during OVCA development and progression in hens. Frequencies of CD8+ T cells and IgY-containing cells and expression of immunosuppressors including IRG1 and DR6 in OVCA at early and late stages in hens were examined. Frequencies of stromal but not the intratumoral CD+8 T cells and IgY-containing cells increased significantly (P < 0.01) during OVCA development and progression. Tumor progression was associated with increased expression of IRG1 and DR6 and decreased infiltration of immune cells into the tumor. Frequency of stromal but not intratumoral immune cells increases during OVCA development and progression. Tumor-induced IRG1 and DR6 may prevent immune cells from invading the tumor.

  13. Roles of caloric restriction, ketogenic diet and intermittent fasting during initiation, progression and metastasis of cancer in animal models: a systematic review and meta-analysis.

    Directory of Open Access Journals (Sweden)

    Mengmeng Lv

    Full Text Available The role of dietary restriction regimens such as caloric restriction, ketogenic diet and intermittent fasting in development of cancers has been detected via abundant preclinical experiments. However, the conclusions are controversial. We aim to review the relevant animal studies systematically and provide assistance for further clinical studies.Literatures on associations between dietary restriction and cancer published in PubMed in recent twenty years were comprehensively searched. Animal model, tumor type, feeding regimen, study length, sample size, major outcome, conclusion, quality assessment score and the interferential step of cancer were extracted from each eligible study. We analyzed the tumor incidence rates from 21 studies about caloric restriction.Fifty-nine studies were involved in our system review. The involved studies explored roles of dietary restriction during initiation, progression and metastasis of cancer. About 90.9% of the relevant studies showed that caloric restriction plays an anti-cancer role, with the pooled OR (95%CI of 0.20 (0.12, 0.34 relative to controls. Ketogenic diet was also positively associated with cancer, which was indicated by eight of the nine studies. However, 37.5% of the related studies obtained a negative conclusion that intermittent fasting was not significantly preventive against cancer.Caloric restriction and ketogenic diet are effective against cancer in animal experiments while the role of intermittent fasting is doubtful and still needs exploration. More clinical experiments are needed and more suitable patterns for humans should be investigated.

  14. Bedtime misalignment and progression of breast cancer

    Science.gov (United States)

    Hahm, Bong-Jin; Jo, Booil; Dhabhar, Firdaus S.; Palesh, Oxana; Aldridge-Gerry, Arianna; Bajestan, Sepideh N.; Neri, Eric; Nouriani, Bita; Spiegel, David; Zeitzer, Jamie M.

    2016-01-01

    Disruption of circadian rhythms, which frequently occurs during night shift work, may be associated with cancer progression. The effect of chronotype (preference for behaviors such as sleep, work, or exercise to occur at particular times of day, with an associated difference in circadian physiology) and alignment of bedtime (preferred vs. habitual), however, have not yet been studied in the context of cancer progression in women with breast cancer. Chronotype and alignment of actual bedtime with preferred chronotype were examined using the Morningness–Eveningness Scale (MEQ) and sleep-wake log among 85 women with metastatic breast cancer. Their association with disease-free interval (DFI) was retrospectively examined using the Cox proportional hazards model. Median DFI was 81.9 months for women with aligned bedtimes (“going to bed at preferred bedtime”) (n=72), and 46.9 months for women with misaligned bedtimes (“going to bed later or earlier than the preferred bedtime”) (n=13) (log rank p=0.001). In a multivariate Cox proportional hazard model, after controlling for other significant predictors of DFI, including chronotype (morning type/longer DFI; HR=0.539, 95% CI=0.320–0.906, p=0.021), estrogen receptor (ER) status at initial diagnosis (negative/shorter DFI; HR=2.169, 95% CI=1.124–4.187, p=0.028) and level of natural-killer cell count (lower levels/shorter DFI; HR=1.641, 95% CI=1.000–2.695, p=0.050), misaligned bedtimes was associated with shorter DFI, compared to aligned bedtimes (HR=3.180, 95% CI=1.327–7.616, p=0.018). Our data indicate that a misalignment of bedtime on a daily basis, an indication of circadian disruption, is associated with more rapid breast cancer progression as measured by DFI. Considering the limitations of small sample size and study design, a prospective study with a larger sample is necessary to explore their causal relationship and underlying mechanisms. PMID:24156520

  15. Analysis of the effects of exposure to acute hypoxia on oxidative lesions and tumour progression in a transgenic mouse breast cancer model

    Directory of Open Access Journals (Sweden)

    Lunt Sarah

    2008-05-01

    Full Text Available Abstract Background Tumour hypoxia is known to be a poor prognostic indicator, predictive of increased risk of metastatic disease and reduced survival. Genomic instability has been proposed as one of the potential mechanisms for hypoxic tumour progression. Both of these features are commonly found in many cancer types, but their relationship and association with tumour progression has not been examined in the same model. Methods To address this issue, we determined the effects of 6 week in vivo acute hypoxic exposure on the levels of mutagenic lipid peroxidation product, malondialdehyde, and 8-oxo-7,8-dihydro-2'-deoxyguanosine DNA (8-oxo-dG lesions in the transgenic polyomavirus middle T (PyMT breast cancer mouse model. Results We observed significantly increased plasma lipid peroxidation and 8-oxo-dG lesion levels in the hypoxia-exposed mice. Consumption of malondialdehyde also induced a significant increase in the PyMT tumour DNA lesion levels, however, these increases did not translate into enhanced tumour progression. We further showed that the in vivo exposure to acute hypoxia induced accumulation of F4/80 positive tumour-associated macrophages (TAMs, demonstrating a relationship between hypoxia and macrophages in an experimental model. Conclusion These data suggest that although exposure to acute hypoxia causes an increase in 8-oxo-dG lesions and TAMs in the PyMT tumours, these increases do not translate into significant changes in tumour progression at the primary or metastatic levels in this strong viral oncogene-driven breast cancer model.

  16. Sarcosine Up-Regulates Expression of Genes Involved in Cell Cycle Progression of Metastatic Models of Prostate Cancer

    Science.gov (United States)

    Heger, Zbynek; Merlos Rodrigo, Miguel Angel; Michalek, Petr; Polanska, Hana; Masarik, Michal; Vit, Vitezslav; Plevova, Mariana; Pacik, Dalibor; Eckschlager, Tomas; Stiborova, Marie

    2016-01-01

    The effects of sarcosine on the processes driving prostate cancer (PCa) development remain still unclear. Herein, we show that a supplementation of metastatic PCa cells (androgen independent PC-3 and androgen dependent LNCaP) with sarcosine stimulates cells proliferation in vitro. Similar stimulatory effects were observed also in PCa murine xenografts, in which sarcosine treatment induced a tumor growth and significantly reduced weight of treated mice (p < 0.05). Determination of sarcosine metabolism-related amino acids and enzymes within tumor mass revealed significantly increased glycine, serine and sarcosine concentrations after treatment accompanied with the increased amount of sarcosine dehydrogenase. In both tumor types, dimethylglycine and glycine-N-methyltransferase were affected slightly, only. To identify the effects of sarcosine treatment on the expression of genes involved in any aspect of cancer development, we further investigated expression profiles of excised tumors using cDNA electrochemical microarray followed by validation using the semi-quantitative PCR. We found 25 differentially expressed genes in PC-3, 32 in LNCaP tumors and 18 overlapping genes. Bioinformatical processing revealed strong sarcosine-related induction of genes involved particularly in a cell cycle progression. Our exploratory study demonstrates that sarcosine stimulates PCa metastatic cells irrespectively of androgen dependence. Overall, the obtained data provides valuable information towards understanding the role of sarcosine in PCa progression and adds another piece of puzzle into a picture of sarcosine oncometabolic potential. PMID:27824899

  17. Eicosanoid profiling in an orthotopic model of lung cancer progression by mass spectrometry demonstrates selective production of leukotrienes by inflammatory cells of the microenvironment.

    Directory of Open Access Journals (Sweden)

    Joanna M Poczobutt

    Full Text Available Eicosanoids are bioactive lipid mediators derived from arachidonic acid(1 (AA, which is released by cytosolic phospholipase A2 (cPLA2. AA is metabolized through three major pathways, cyclooxygenase (COX, lipoxygenase (LO and cytochrome P450, to produce a family of eicosanoids, which individually have been shown to have pro- or anti-tumorigenic activities in cancer. However, cancer progression likely depends on complex changes in multiple eicosanoids produced by cancer cells and by tumor microenvironment and a systematic examination of the spectrum of eicosanoids in cancer has not been performed. We used liquid chromatography coupled with tandem mass spectrometry (LC/MS/MS to quantitate eicosanoids produced during lung tumor progression in an orthotopic immunocompetent mouse model of lung cancer, in which Lewis lung carcinoma (LLC cells are injected into lungs of syngeneic mice. The presence of tumor increased products of both the cyclooxygenase and the lipoxygenase pathways in a time-dependent fashion. Comparing tumors grown in cPLA2 knockout vs wild-type mice, we demonstrated that prostaglandins (PGE2, PGD2 and PGF2a were produced by both cancer cells and the tumor microenvironment (TME, but leukotriene (LTB4, LTC4, LTD4, LTE4 production required cPLA2 expression in the TME. Using flow cytometry, we recovered tumor-associated neutrophils and 2 types of tumor-associated macrophages from tumor-bearing lungs and we defined their distinct eicosanoid profiles by LC/MS/MS. The combination of flow cytometry and LC/MS/MS unravels the complexity of eicosanoid production in lung cancer and provides a rationale to develop therapeutic strategies that target select cell populations to inhibit specific classes of eicosanoids.

  18. Eicosanoid profiling in an orthotopic model of lung cancer progression by mass spectrometry demonstrates selective production of leukotrienes by inflammatory cells of the microenvironment.

    Science.gov (United States)

    Poczobutt, Joanna M; Gijon, Miguel; Amin, Jay; Hanson, Dwight; Li, Howard; Walker, Deandra; Weiser-Evans, Mary; Lu, Xian; Murphy, Robert C; Nemenoff, Raphael A

    2013-01-01

    Eicosanoids are bioactive lipid mediators derived from arachidonic acid(1) (AA), which is released by cytosolic phospholipase A2 (cPLA2). AA is metabolized through three major pathways, cyclooxygenase (COX), lipoxygenase (LO) and cytochrome P450, to produce a family of eicosanoids, which individually have been shown to have pro- or anti-tumorigenic activities in cancer. However, cancer progression likely depends on complex changes in multiple eicosanoids produced by cancer cells and by tumor microenvironment and a systematic examination of the spectrum of eicosanoids in cancer has not been performed. We used liquid chromatography coupled with tandem mass spectrometry (LC/MS/MS) to quantitate eicosanoids produced during lung tumor progression in an orthotopic immunocompetent mouse model of lung cancer, in which Lewis lung carcinoma (LLC) cells are injected into lungs of syngeneic mice. The presence of tumor increased products of both the cyclooxygenase and the lipoxygenase pathways in a time-dependent fashion. Comparing tumors grown in cPLA2 knockout vs wild-type mice, we demonstrated that prostaglandins (PGE2, PGD2 and PGF2a) were produced by both cancer cells and the tumor microenvironment (TME), but leukotriene (LTB4, LTC4, LTD4, LTE4) production required cPLA2 expression in the TME. Using flow cytometry, we recovered tumor-associated neutrophils and 2 types of tumor-associated macrophages from tumor-bearing lungs and we defined their distinct eicosanoid profiles by LC/MS/MS. The combination of flow cytometry and LC/MS/MS unravels the complexity of eicosanoid production in lung cancer and provides a rationale to develop therapeutic strategies that target select cell populations to inhibit specific classes of eicosanoids.

  19. Antioxidants accelerate lung cancer progression in mice.

    Science.gov (United States)

    Sayin, Volkan I; Ibrahim, Mohamed X; Larsson, Erik; Nilsson, Jonas A; Lindahl, Per; Bergo, Martin O

    2014-01-29

    Antioxidants are widely used to protect cells from damage induced by reactive oxygen species (ROS). The concept that antioxidants can help fight cancer is deeply rooted in the general population, promoted by the food supplement industry, and supported by some scientific studies. However, clinical trials have reported inconsistent results. We show that supplementing the diet with the antioxidants N-acetylcysteine (NAC) and vitamin E markedly increases tumor progression and reduces survival in mouse models of B-RAF- and K-RAS-induced lung cancer. RNA sequencing revealed that NAC and vitamin E, which are structurally unrelated, produce highly coordinated changes in tumor transcriptome profiles, dominated by reduced expression of endogenous antioxidant genes. NAC and vitamin E increase tumor cell proliferation by reducing ROS, DNA damage, and p53 expression in mouse and human lung tumor cells. Inactivation of p53 increases tumor growth to a similar degree as antioxidants and abolishes the antioxidant effect. Thus, antioxidants accelerate tumor growth by disrupting the ROS-p53 axis. Because somatic mutations in p53 occur late in tumor progression, antioxidants may accelerate the growth of early tumors or precancerous lesions in high-risk populations such as smokers and patients with chronic obstructive pulmonary disease who receive NAC to relieve mucus production.

  20. Ultrasound-guided direct delivery of 3-bromopyruvate blocks tumor progression in an orthotopic mouse model of human pancreatic cancer.

    Science.gov (United States)

    Ota, Shinichi; Geschwind, Jean-Francois H; Buijs, Manon; Wijlemans, Joost W; Kwak, Byung Kook; Ganapathy-Kanniappan, Shanmugasundaram

    2013-06-01

    Studies in animal models of cancer have demonstrated that targeting tumor metabolism can be an effective anticancer strategy. Previously, we showed that inhibition of glucose metabolism by the pyruvate analog, 3-bromopyruvate (3-BrPA), induces anticancer effects both in vitro and in vivo. We have also documented that intratumoral delivery of 3-BrPA affects tumor growth in a subcutaneous tumor model of human liver cancer. However, the efficacy of such an approach in a clinically relevant orthotopic tumor model has not been reported. Here, we investigated the feasibility of ultrasound (US) image-guided delivery of 3-BrPA in an orthotopic mouse model of human pancreatic cancer and evaluated its therapeutic efficacy. In vitro, treatment of Panc-1 cells with 3-BrPA resulted in a dose-dependent decrease in cell viability. The loss of viability correlated with a dose-dependent decrease in the intracellular ATP level and lactate production confirming that disruption of energy metabolism underlies these 3-BrPA-mediated effects. In vivo, US-guided delivery of 3-BrPA was feasible and effective as demonstrated by a marked decrease in tumor size on imaging. Further, the antitumor effect was confirmed by (1) a decrease in the proliferative potential by Ki-67 immunohistochemical staining and (2) the induction of apoptosis by terminal deoxynucleotidyl transferase-mediated deoxyuridine 5-triphospate nick end labeling staining. We therefore demonstrate the technical feasibility of US-guided intratumoral injection of 3-BrPA in a mouse model of human pancreatic cancer as well as its therapeutic efficacy. Our data suggest that this new therapeutic approach consisting of a direct intratumoral injection of antiglycolytic agents may represent an exciting opportunity to treat patients with pancreas cancer.

  1. Motesanib diphosphate in progressive differentiated thyroid cancer

    DEFF Research Database (Denmark)

    Sherman, Steven I; Wirth, Lori J; Droz, Jean-Pierre

    2008-01-01

    BACKGROUND: The expression of vascular endothelial growth factor (VEGF) is characteristic of differentiated thyroid cancer and is associated with aggressive tumor behavior and a poor clinical outcome. Motesanib diphosphate (AMG 706) is a novel oral inhibitor of VEGF receptors, platelet......-derived growth-factor receptor, and KIT. METHODS: In an open-label, single-group, phase 2 study, we treated 93 patients who had progressive, locally advanced or metastatic, radioiodine-resistant differentiated thyroid cancer with 125 mg of motesanib diphosphate, administered orally once daily. The primary end...... or metastatic differentiated thyroid cancer that is progressive. (ClinicalTrials.gov number, NCT00121628.)...

  2. Muscarinic receptor signaling and colon cancer progression

    Institute of Scientific and Technical Information of China (English)

    Guofeng Xie; Jean-Pierre Raufman

    2016-01-01

    Due to the lack of effective treatments, advanced colorectal cancer (CRC) remains a leading cause of cancer death in the United States. Emerging evidence supports the observation that muscarinic receptor (MR) signaling plays a critical role in growth and progression of CRC. MR activation by acetylcholine and bile acids results in transactivation of epidermal growth factor receptors (EGFR) and post-EGFR signal transduction that enhances cell proliferation, migration, and invasion. Here, the authors review recent progress in understanding the molecular mechanisms underlying MR-mediated CRC progression and its therapeutic implications.

  3. A joint model for the dependence between clustered times to tumour progression and deaths: A meta-analysis of chemotherapy in head and neck cancer.

    Science.gov (United States)

    Rondeau, Virginie; Pignon, Jean-Pierre; Michiels, Stefan

    2015-12-01

    The observation of time to tumour progression (TTP) or progression-free survival (PFS) may be terminated by a terminal event. In this context, deaths may be due to tumour progression, and the time to the major failure event (death) may be correlated with the TTP. The usual assumption of independence between the TTP process and death, required by many commonly used statistical methods, can be violated. Furthermore, although the relationship between TTP and time to death is most relevant to the anti-cancer drug development or to evaluation of TTP as a surrogate endpoint, statistical models that try to describe the dependence structure between these two characteristics are not frequently used. We propose a joint frailty model for the analysis of two survival endpoints, TTP and time to death, or PFS and time to death, in the context of data clustering (e.g. at the centre or trial level). This approach allows us to simultaneously evaluate the prognostic effects of covariates on the two survival endpoints, while accounting both for the relationship between the outcomes and for data clustering. We show how a maximum penalized likelihood estimation can be applied to a nonparametric estimation of the continuous hazard functions in a general joint frailty model with right censoring and delayed entry. The model was motivated by a large meta-analysis of randomized trials for head and neck cancers (Meta-Analysis of Chemotherapy in Head and Neck Cancers), in which the efficacy of chemotherapy on TTP or PFS and overall survival was investigated, as adjunct to surgery or radiotherapy or both.

  4. Progress and controversies in developing cancer vaccines

    Directory of Open Access Journals (Sweden)

    Speiser Daniel E

    2005-04-01

    Full Text Available Abstract Immunotherapy has become a standard approach for cancer management, through the use of cytokines (eg: interleukin-2 and monoclonal antibodies. Cancer vaccines hold promise as another form of immunotherapy, and there has been substantial progress in identifying shared antigens recognized by T cells, in developing vaccine approaches that induce antigen-specific T cell responses in cancer patients, and in developing new technology for monitoring immune responses in various human tissue compartments. Dramatic clinical regressions of human solid tumors have occurred with some cancer vaccines, but the rate of those responses remains low. This article is part of a 2-part point:counterpoint series on peptide vaccines and adoptive therapy approaches for cancer. The current status of cancer vaccination, and associated challenges, are discussed. Emphasis is placed on the need to increase our knowledge of cancer immunobiology, as well as to improve monitoring of cellular immune function after vaccination. Progress in both areas will facilitate development of effective cancer vaccines, as well as of adoptive therapy. Effective cancer vaccines promise to be useful for treatment and prevention of cancer at low cost and with low morbidity.

  5. Inhibition of p38-MAPK signaling pathway attenuates breast cancer induced bone pain and disease progression in a murine model of cancer-induced bone pain

    Directory of Open Access Journals (Sweden)

    Vanderah Todd W

    2011-10-01

    Full Text Available Abstract Background Mechanisms driving cancer-induced bone pain are poorly understood. A central factor implicated to be a key player in the process of tumorigenesis, osteoclastogenesis and nociception is p38 MAPK. We determined the role of p38 MAPK in a mouse model of breast cancer induced bone pain in which mixed osteolytic and osteoblastic remodeling occurs. Results In cancer-treated mice, acute as well as chronic inhibition of p38 MAPK with SB203580 blocked flinching and guarding behaviors in a dose-dependent manner whereas no effect on thresholds to tactile stimuli was observed. Radiographic analyses of bones demonstrated that chronic inhibition of p38 MAPK reduced bone loss and incidence of spontaneous fracture in cancer-treated mice. Histological analysis of bones collected from mice treated with the p38 MAPK inhibitor showed complete absence of osteoblastic growth in the intramedullary space as well as significantly reduced tumor burden. Conclusions Blockade of non-evoked pain behaviors but not hypersensitivity suggests differences in the underlying mechanisms of specific components of the pain syndrome and a possibility to individualize aspects of pain management. While it is not known whether the role of p38 MAPK signaling can be expanded to other cancers, the data suggest a need for understanding molecular mechanisms and cellular events that initiate and maintain cancer-induced bone pain for effective management for both ongoing pain as well as breakthrough pain.

  6. Monitoring of Tumor Promotion and Progression in a Mouse Model of Inflammation-Induced Colon Cancer with Magnetic Resonance Colonography

    Directory of Open Access Journals (Sweden)

    Matthew R. Young

    2009-03-01

    Full Text Available Early detection of precancerous tissue has significantly improved survival of most cancers including colorectal cancer (CRC. Animal models designed to study the early stages of cancer are valuable for identifying molecular events and response indicators that correlate with the onset of disease. The goal of this work was to investigate magnetic resonance (MR colonography in a mouse model of CRC on a clinical MR imager. Mice treated with azoxymethane and dextran sulfate sodium were imaged by serial MR colonography (MRC from initiation to euthanasia. Magnetic resonance colonography was obtained with both T1- and T2-weighted images after administration of a Fluorinert enema to remove residual luminal signal and intravenous contrast to enhance the colon wall. Individual tumor volumes were calculated and validated ex vivo. The Fluorinert enema provided a clear differentiation of the lumen of the colon from the mucosal lining. Inflammation was detected 3 days after dextran sulfate sodium exposure and subsided during the next week. Tumors as small as 1.2 mm3 were detected and as early as 29 days after initiation. Individual tumor growths were followed over time, and tumor volumes were measured by MR imaging correlated with volumes measured ex vivo. The use of a Fluorinert enema during MRC in mice is critical for differentiating mural processes from intraluminal debris. Magnetic resonance colonography with Fluorinert enema and intravenous contrast enhancement will be useful in the study of the initial stages of colon cancer and will reduce the number of animals needed for preclinical trials of prevention or intervention.

  7. Interleukin-8 in breast cancer progression.

    Science.gov (United States)

    Todorović-Raković, Nataša; Milovanović, Jelena

    2013-10-01

    Interleukin-8 (IL-8) is a chemokine that has an autocrine and/or paracrine tumor-promoting role and significant potential as a prognostic and/or predictive cancer biomarker. In breast cancer, which is mostly determined by expression of estrogen receptor (ER) and human epidermal growth factor receptor 2 (HER2), IL-8 could play a specific role. IL-8 is highly expressed in ER- breast cancers, but it increases invasiveness and metastatic potential of both ER- and ER+ breast cancer cells. It is also highly expressed in HER2+ breast cancers. Because of the complex crosstalk between these receptors and IL-8, its role is mainly determined by delicate balance in their signaling pathways. Therefore, the main point of this review was to analyze the possible influence of IL-8 in breast cancer progression related to its interaction with ER and HER2 and the consequent therapeutic implications of these relations.

  8. Current progress in immunotherapy for pancreatic cancer.

    Science.gov (United States)

    Foley, Kelly; Kim, Victoria; Jaffee, Elizabeth; Zheng, Lei

    2016-10-10

    Pancreatic cancer remains one of the most lethal cancers with few treatment options. Immune-based strategies to treat pancreatic cancer, such as immune checkpoint inhibitors, therapeutic vaccines, and combination immunotherapies, are showing promise where other approaches have failed. Immune checkpoint inhibitors, including anti-CTLA4, anti-PD-1, and anti-PD-L1 antibodies, are effective as single agents in immune sensitive cancers like melanoma, but lack efficacy in immune insensitive cancers including pancreatic cancer. However, these inhibitors are showing clinical activity, even in traditionally non-immunogenic cancers, when combined with other interventions, including chemotherapy, radiation therapy, and therapeutic vaccines. Therapeutic vaccines given together with immune modulating agents are of particular interest because vaccines are the most efficient way to induce effective anti-tumor T cell responses, which is required for immunotherapies to be effective. In pancreatic cancer, early studies suggest that vaccines can induce T cells that have the potential to recognize and kill pancreatic cancer cells, but the tumor microenvironment inhibits effective T cell trafficking and function. While progress has been made in the development of immunotherapies for pancreatic cancer over the last several years, additional trials are needed to better understand the signals within the tumor microenvironment that are formidable barriers to T cell infiltration and function. Additionally, as more pancreatic specific antigens are identified, immunotherapies will continue to be refined to provide the most significant clinical benefit.

  9. Progress of photodynamic therapy in gastric cancer.

    Science.gov (United States)

    Mimura, S; Narahara, H; Otani, T; Okuda, S

    1999-01-01

    Progress of photodynamic therapy (PDT) in gastric cancer and the clinical outcome are described in this paper. (1) We included the whole lesion and a 5 mm margin in the field for irradiation. Marking by injection of India-ink showing the irradiation field was performed beforehand. (2) We established the standard light dose to be 90 J/cm(2) for an argon dye laser and 60 J/cm(2) for a pulse wave laser. (3) The size of cancerous lesion curable by PDT was expanded from 3 cm in diameter, i.e. 7 cm(2) in area to 4 cm in diameter, i.e. 13 cm(2) by employing a new excimer dye laser model, which could emit 4mJ/pulse with 80 Hz pulse frequency. (4) The depth of cancer invasion which could be treated by PDT was increased from about 4 mm, i.e. the superficial part of the submucosal layer (SM-1) to more than 10 mm in depth, i.e. the proper muscular layer. These improvements owe much to the pulse laser, the photodynamic action induced by which permits deeper penetration than that of a continuous wave laser. (5) We employed a side-viewing fiberscope for gastric PDT to irradiate the lesion from an angle of 90 degrees . (6) We designed a simple cut quartz fiber for photoradiation with a spiral spring thickened toward the end. (7) We developed an endoscopic device for photoradiation in PDT which achieves accurate and efficient irradiation. As a result of these improvements a higher cure rate was obtained even with a lower light dose of irradiation.

  10. Ablation of sensory neurons in a genetic model of pancreatic ductal adenocarcinoma slows initiation and progression of cancer.

    Science.gov (United States)

    Saloman, Jami L; Albers, Kathryn M; Li, Dongjun; Hartman, Douglas J; Crawford, Howard C; Muha, Emily A; Rhim, Andrew D; Davis, Brian M

    2016-03-15

    Pancreatic ductal adenocarcinoma (PDAC) is characterized by an exuberant inflammatory desmoplastic response. The PDAC microenvironment is complex, containing both pro- and antitumorigenic elements, and remains to be fully characterized. Here, we show that sensory neurons, an under-studied cohort of the pancreas tumor stroma, play a significant role in the initiation and progression of the early stages of PDAC. Using a well-established autochthonous model of PDAC (PKC), we show that inflammation and neuronal damage in the peripheral and central nervous system (CNS) occurs as early as the pancreatic intraepithelial neoplasia (PanIN) 2 stage. Also at the PanIN2 stage, pancreas acinar-derived cells frequently invade along sensory neurons into the spinal cord and migrate caudally to the lower thoracic and upper lumbar regions. Sensory neuron ablation by neonatal capsaicin injection prevented perineural invasion (PNI), astrocyte activation, and neuronal damage, suggesting that sensory neurons convey inflammatory signals from Kras-induced pancreatic neoplasia to the CNS. Neuron ablation in PKC mice also significantly delayed PanIN formation and ultimately prolonged survival compared with vehicle-treated controls (median survival, 7.8 vs. 4.5 mo; P = 0.001). These data establish a reciprocal signaling loop between the pancreas and nervous system, including the CNS, that supports inflammation associated with oncogenic Kras-induced neoplasia. Thus, pancreatic sensory neurons comprise an important stromal cell population that supports the initiation and progression of PDAC and may represent a potential target for prevention in high-risk populations.

  11. Differential expression proteomics of human colorectal cancer based on a syngeneic cellular model for the progression of adenoma to carcinoma.

    Science.gov (United States)

    Roth, Udo; Razawi, Hanieh; Hommer, Julia; Engelmann, Katja; Schwientek, Tilo; Müller, Stefan; Baldus, Stephan E; Patsos, Georgios; Corfield, Anthony P; Paraskeva, Christos; Hanisch, Franz-Georg

    2010-01-01

    This is the first differential expression proteomics study on a human syngeneic cellular in vitro progression model of the colorectal adenoma-to-carcinoma sequence, the anchorage-dependent non-tumorigenic adenoma derived cell line AA/C1 and the derived anchorage-independent and tumorigenic carcinoma cell line AA/C1/SB10C. The study is based on quantitative 2-DE and is complemented by Western blot validation. Excluding redundancies due to proteolysis and post-translational modified isoforms of over 2000 protein spots, 13 proteins were revealed as regulated with statistical variance being within the 95th confidence level and were identified by peptide mass fingerprinting in MALDI MS. Progression-associated proteins belong to the functional complexes of anaerobic glycolysis/gluconeogenesis, steroid biosynthesis, prostaglandin biosynthesis, the regulation and maintenance of the cytoskeleton, protein biosynthesis and degradation, the regulation of apoptosis or other functions. Partial but significant overlap was revealed with previous proteomics and transcriptomics studies in colorectal carcinoma. Among upregulated proteins we identified 3-HMG-CoA synthase, protein phosphatase 1, prostaglandin E synthase 2, villin 1, annexin A1, triosephosphate isomerase, phosphoserine aminotransferase 1, fumarylacetoacetate hydrolase and pyrroline-5-carboxylate reductase 1 (PYCR1), while glucose-regulated protein 78, cathepsin D, lamin A/C and quinolate phosphoribosyltransferase were downregulated.

  12. Caveolin-1 and prostate cancer progression.

    Science.gov (United States)

    Freeman, Michael R; Yang, Wei; Di Vizio, Dolores

    2012-01-01

    Caveolin-1 was identified in the 1990s as a marker of aggressive prostate cancer. The caveolin-1 protein localizes to vesicular structures called caveolae and has been shown to bind and regulate many signaling proteins involved in oncogenesis. Caveolin-1 also has lipid binding properties and mediates aspects of cholesterol and fatty acid metabolism and can elicit biological responses in a paracrine manner when secreted. Caveolin-1 is also present in the serum of prostate cancer patients and circulating levels correlate with extent of disease. Current evidence indicates that increased expression of caveolin-1 in prostate adenocarcinoma cells and commensurate downregulation of the protein in prostate stroma, mediate progression to the castration-resistant phase of prostate cancer through diverse pathways. This chapter summarizes the current state of our understanding of the cellular and physiologic mechanisms in which caveolin-1 participates in the evolution of prostate cancer cell phenotypes.

  13. Genetic progression and the waiting time to cancer.

    Directory of Open Access Journals (Sweden)

    Niko Beerenwinkel

    2007-11-01

    Full Text Available Cancer results from genetic alterations that disturb the normal cooperative behavior of cells. Recent high-throughput genomic studies of cancer cells have shown that the mutational landscape of cancer is complex and that individual cancers may evolve through mutations in as many as 20 different cancer-associated genes. We use data published by Sjöblom et al. (2006 to develop a new mathematical model for the somatic evolution of colorectal cancers. We employ the Wright-Fisher process for exploring the basic parameters of this evolutionary process and derive an analytical approximation for the expected waiting time to the cancer phenotype. Our results highlight the relative importance of selection over both the size of the cell population at risk and the mutation rate. The model predicts that the observed genetic diversity of cancer genomes can arise under a normal mutation rate if the average selective advantage per mutation is on the order of 1%. Increased mutation rates due to genetic instability would allow even smaller selective advantages during tumorigenesis. The complexity of cancer progression can be understood as the result of multiple sequential mutations, each of which has a relatively small but positive effect on net cell growth.

  14. Progress of Photodynamic Therapy in Gastric Cancer

    OpenAIRE

    Seishiro Mimura; Hiroyuki Narahara; Toru Otani; Shigeru Okuda

    1999-01-01

    Progress of photodynamic therapy (PDT) in gastric cancer and the clinical outcome are described in this paper. (1) We included the whole lesion and a 5 mm margin in the field for irradiation. Marking by injection of India-ink showing the irradiation field was performed beforehand. (2) We established the standard light dose to be 90 J/cm2 for an argon dye laser and 60 J/cm2 for a pulse wave laser. (3) The size of cancerous lesion curable by PDT was expanded from 3 cm in diameter, i.e. 7 cm2 in...

  15. Embryonic morphogen nodal promotes breast cancer growth and progression.

    Directory of Open Access Journals (Sweden)

    Daniela F Quail

    Full Text Available Breast cancers expressing human embryonic stem cell (hESC-associated genes are more likely to progress than well-differentiated cancers and are thus associated with poor patient prognosis. Elevated proliferation and evasion of growth control are similarly associated with disease progression, and are classical hallmarks of cancer. In the current study we demonstrate that the hESC-associated factor Nodal promotes breast cancer growth. Specifically, we show that Nodal is elevated in aggressive MDA-MB-231, MDA-MB-468 and Hs578t human breast cancer cell lines, compared to poorly aggressive MCF-7 and T47D breast cancer cell lines. Nodal knockdown in aggressive breast cancer cells via shRNA reduces tumour incidence and significantly blunts tumour growth at primary sites. In vitro, using Trypan Blue exclusion assays, Western blot analysis of phosphorylated histone H3 and cleaved caspase-9, and real time RT-PCR analysis of BAX and BCL2 gene expression, we demonstrate that Nodal promotes expansion of breast cancer cells, likely via a combinatorial mechanism involving increased proliferation and decreased apopotosis. In an experimental model of metastasis using beta-glucuronidase (GUSB-deficient NOD/SCID/mucopolysaccharidosis type VII (MPSVII mice, we show that although Nodal is not required for the formation of small (<100 cells micrometastases at secondary sites, it supports an elevated proliferation:apoptosis ratio (Ki67:TUNEL in micrometastatic lesions. Indeed, at longer time points (8 weeks, we determined that Nodal is necessary for the subsequent development of macrometastatic lesions. Our findings demonstrate that Nodal supports tumour growth at primary and secondary sites by increasing the ratio of proliferation:apoptosis in breast cancer cells. As Nodal expression is relatively limited to embryonic systems and cancer, this study establishes Nodal as a potential tumour-specific target for the treatment of breast cancer.

  16. Financial Burden of Cancer Care - Life After Cancer Summary Table | Cancer Trends Progress Report

    Science.gov (United States)

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  17. Dual-wavelength imaging of tumor progression by activatable and targeting near-infrared fluorescent probes in a bioluminescent breast cancer model.

    Directory of Open Access Journals (Sweden)

    Bang-Wen Xie

    Full Text Available Bioluminescence imaging (BLI has shown its appeal as a sensitive technique for in vivo whole body optical imaging. However, the development of injectable tumor-specific near-infrared fluorescent (NIRF probes makes fluorescence imaging (FLI a promising alternative to BLI in situations where BLI cannot be used or is unwanted (e.g., spontaneous transgenic tumor models, or syngeneic mice to study immune effects.In this study, we addressed the questions whether it is possible to detect tumor progression using FLI with appropriate sensitivity and how FLI correlates with BLI measurements. In addition, we explored the possibility to simultaneously detect multiple tumor characteristics by dual-wavelength FLI (~700 and ~800 nm in combination with spectral unmixing. Using a luciferase-expressing 4T1-luc2 mouse breast cancer model and combinations of activatable and targeting NIRF probes, we showed that the activatable NIRF probes (ProSense680 and MMPSense680 and the targeting NIRF probes (IRDye 800CW 2-DG and IRDye 800CW EGF were either activated by or bound to 4T1-luc2 cells. In vivo, we implanted 4T1-luc2 cells orthotopically in nude mice and were able to follow tumor progression longitudinally both by BLI and dual-wavelength FLI. We were able to reveal different probe signals within the tumor, which co-localized with immuno-staining. Moreover, we observed a linear correlation between the internal BLI signals and the FLI signals obtained from the NIRF probes. Finally, we could detect pulmonary metastases both by BLI and FLI and confirmed their presence histologically.Taken together, these data suggest that dual-wavelength FLI is a feasible approach to simultaneously detect different features of one tumor and to follow tumor progression with appropriate specificity and sensitivity. This study may open up new perspectives for the detection of tumors and metastases in various experimental models and could also have clinical applications, such as image

  18. Morphine Promotes Tumor Angiogenesis and Increases Breast Cancer Progression

    Directory of Open Access Journals (Sweden)

    Sabrina Bimonte

    2015-01-01

    Full Text Available Morphine is considered a highly potent analgesic agent used to relieve suffering of patients with cancer. Several in vitro and in vivo studies showed that morphine also modulates angiogenesis and regulates tumour cell growth. Unfortunately, the results obtained by these studies are still contradictory. In order to better dissect the role of morphine in cancer cell growth and angiogenesis we performed in vitro studies on ER-negative human breast carcinoma cells, MDA.MB231 and in vivo studies on heterotopic mouse model of human triple negative breast cancer, TNBC. We demonstrated that morphine in vitro enhanced the proliferation and inhibited the apoptosis of MDA.MB231 cells. In vivo studies performed on xenograft mouse model of TNBC revealed that tumours of mice treated with morphine were larger than those observed in other groups. Moreover, morphine was able to enhance the neoangiogenesis. Our data showed that morphine at clinical relevant doses promotes angiogenesis and increases breast cancer progression.

  19. SRC kinase regulation in progressively invasive cancer.

    Directory of Open Access Journals (Sweden)

    Weichen Xu

    Full Text Available Metastatic progression is a multistep process that involves tumor growth and survival, motility and invasion, and subsequent proliferation in an inappropriate environment. The Src protein tyrosine kinase has been implicated in many of the biochemical pathways that drive these behaviors. Although Src itself is only rarely mutated in human tumors, its aberrant activity has been noted in various cancers and suggested to serve as a barometer of metastatic potential. With these features in mind, we examined Src kinase regulation at the structural, enzymatic, and expression levels as a function of progressively invasive prostate cancer cell lines. Surprisingly, both total Src content and kinase activity decrease with increasing cell line aggressiveness, an observation that appears to be inconsistent with the well-documented role of Src in the signaling pathways that drive growth and invasion. However, we do observe a direct correlation between Src kinase specific activity (total Src kinase activity/total Src content and metastatic aggressiveness, possibly suggesting that in highly aggressive cell lines, key signaling enzymes are globally recruited to drive the cancerous phenotype. In addition, although the expected enhanced phosphorylation of Src at Tyr-416 (activation site is present in the most aggressive prostate cancer cell lines, unexpectedly high phosphorylation levels at the Tyr-527 inhibitory site are observed as well. The latter, rather than representative of inhibited enzyme, is more indicative of primed Src responsive to local phosphorylated binding partners.

  20. Cell Polarity Proteins in Breast Cancer Progression.

    Science.gov (United States)

    Rejon, Carlis; Al-Masri, Maia; McCaffrey, Luke

    2016-10-01

    Breast cancer, one of the leading causes of cancer related death in women worldwide, is a heterogeneous disease with diverse subtypes that have different properties and prognoses. The developing mammary gland is a highly proliferative and invasive tissue, and some of the developmental programs may be aberrantly activated to promote breast cancer progression. In the breast, luminal epithelial cells exhibit apical-basal polarity, and the failure to maintain this organizational structure, due to disruption of polarity complexes, is implicated in promoting hyperplasia and tumors. Therefore, understanding the mechanisms underlying loss of polarity will contribute to our knowledge of the early stages leading to the pathogenesis of the disease. In this review, we will discuss recent findings that support the idea that loss of apical-basal cell polarity is a crucial step in the acquisition of the malignant phenotype. Oncogene induced loss of tissue organization shares a conserved cellular mechanism with developmental process, we will further describe the role of the individual polarity complexes, the Par, Crumbs, and Scribble, to couple cell division orientation and cell growth. We will examine symmetric or asymmetric cell divisions in mammary stem cell and their contribution to the development of breast cancer subtypes and cancer stem cells. Finally, we will highlight some of the recent advances in our understanding of the molecular mechanisms by which changes in epithelial polarity programs promote invasion and metastasis through single cell and collective cell modes. J. Cell. Biochem. 117: 2215-2223, 2016. © 2016 Wiley Periodicals, Inc.

  1. Concomitant consumption of lycopene and fish oil inhibits tumor growth and progression in a mouse xenograft model of colon cancer

    Science.gov (United States)

    Our previous report showed that concomitant supplementation of lycopene and eicosa-pentaenoic acid synergistically inhibited the proliferation of human colon cancer HT-29 cells in vitro. To validate our findings, the present study investigated whether consumption of lycopene and fish oil would help ...

  2. Progress in Initiator Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Hrousis, C A; Christensen, J S

    2009-05-04

    There is great interest in applying magnetohydrodynamic (MHD) simulation techniques to the designs of electrical high explosive (HE) initiators, for the purpose of better understanding a design's sensitivities, optimizing its performance, and/or predicting its useful lifetime. Two MHD-capable LLNL codes, CALE and ALE3D, are being used to simulate the process of ohmic heating, vaporization, and plasma formation in the bridge of an initiator, be it an exploding bridgewire (EBW), exploding bridgefoil (EBF) or slapper type initiator. The initiation of the HE is simulated using Tarver Ignition & Growth reactive flow models. 1-D, 2-D and 3-D models have been constructed and studied. The models provide some intuitive explanation of the initiation process and are useful for evaluating the potential impact of identified aging mechanisms (such as the growth of intermetallic compounds or powder sintering). The end product of this work is a simulation capability for evaluating margin in proposed, modified or aged initiation system designs.

  3. Methodology for Characterizing Trends | Cancer Trends Progress Report

    Science.gov (United States)

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  4. Tobacco Company Marketing Expenditures | Cancer Trends Progress Report

    Science.gov (United States)

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  5. Diet, Physical Activity, and Weight | Cancer Trends Progress Report

    Science.gov (United States)

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  6. Sun-Protective Behavior | Cancer Trends Progress Report

    Science.gov (United States)

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  7. Pathologic progression of mammary carcinomas in a C3(1)/SV40 T/t-antigen transgenic rat model of human triple-negative and Her2-positive breast cancer.

    Science.gov (United States)

    Hoenerhoff, M J; Shibata, M A; Bode, A; Green, J E

    2011-04-01

    The C3(1) component of the rat prostate steroid binding protein has been used to target expression of the SV40 T/t-antigen to the mammary epithelium of mice resulting in pre-neoplastic lesions that progress to invasive and metastatic cancer with molecular features of human basal-type breast cancer. However, there are major differences in the histologic architecture of the stromal and epithelial elements between the mouse and human mammary glands. The rat mammary gland is more enriched with epithelial and stromal components than the mouse and more closely resembles the cellular composition of the human gland. Additionally, existing rat models of mammary cancer are typically estrogen receptor positive and hormone responsive, unlike most genetically engineered mouse mammary cancer models. In an attempt to develop a mammary cancer model that might more closely resemble the pathology of human breast cancer, we generated a novel C3(1)/SV40 T/t-antigen transgenic rat model that developed progressive mammary lesions leading to highly invasive adenocarcinomas. However, aggressive tumor development prevented the establishment of transgenic lines. Characterization of the tumors revealed that they were primarily estrogen receptor and progesterone receptor negative, and either her2/neu positive or negative, resembling human triple-negative or Her2 positive breast cancer. Tumors expressed the basal marker K14, as well as the luminal marker K18, and were negative for smooth muscle actin. The triple negative phenotype has not been previously reported in a rat mammary cancer model. Further development of a C3(1)SV40 T/t-antigen based model could establish valuable transgenic rat lines that develop basal-type mammary tumors.

  8. Mouse models of pancreatic cancer

    Institute of Scientific and Technical Information of China (English)

    Marta Herreros-Villanueva; Elizabeth Hijona; Angel Cosme; Luis Bujanda

    2012-01-01

    Pancreatic cancer is one of the most lethal of human malignancies ranking 4th among cancer-related death in the western world and in the United States,and potent therapeutic options are lacking.Although during the last few years there have been important advances in the understanding of the molecular events responsible for the development of pancreatic cancer,currently specific mechanisms of treatment resistance remain poorly understood and new effective systemic drugs need to be developed and probed.In vivo models to study pancreatic cancer and approach this issue remain limited and present different molecular features that must be considered in the studies depending on the purpose to fit special research themes.In the last few years,several genetically engineered mouse models of pancreatic exocrine neoplasia have been developed.These models mimic the disease as they reproduce genetic alterations implicated in the progression of pancreatic cancer.Genetic alterations such as activating mutations in KRas,or TGFb and/or inactivation of tumoral suppressors such as p53,INK4A/ARF BRCA2 and Smad4 are the most common drivers to pancreatic carcinogenesis and have been used to create transgenic mice.These mouse models have a spectrum of pathologic changes,from pancreatic intraepithelial neoplasia to lesions that progress histologically culminating in fully invasive and metastatic disease and represent the most useful preclinical model system.These models can characterize the cellular and molecular pathology of pancreatic neoplasia and cancer and constitute the best tool to investigate new therapeutic approaches,chemopreventive and/or anticancer treatments.Here,we review and update the current mouse models that reproduce different stages of human pancreatic ductal adenocarcinoma and will have clinical relevance in future pancreatic cancer developments.

  9. Nuclear morphometry, nucleomics and prostate cancer progression

    Institute of Scientific and Technical Information of China (English)

    Robert W Veltri; Christhunesa S Christudass; Sumit Isharwal

    2012-01-01

    Prostate cancer (PCa) results from a multistep process.This process includes initiation,which occurs through various aging events and multiple insults (such as chronic infection,inflammation and genetic instability through reactive oxygen species causing DNA double-strand breaks),followed by a multistep process of progression.These steps include several genetic and epigenetic alterations,as well as alterations to the chmmatin structure,which occur in response to the carcinogenic stress-related events that sustain proliferative signaling.Events such as evading growth suppressors,resisting cell death,enabling replicative immortality,inducing angiogenesis,and activating invasion and metastasis are readily observed.In addition,in conjunction with these critical drivers of caminogenesis,other factors related to the etiopathogenesis of PCa,involving energy metabolism and evasion of the immune surveillance system,appear to be involved.In addition,when cancer spread and metastasis occur,the 'tumor microenvironment' in the bone of PCa patients may provide a way to sustain dormancy or senescence and eventually establish a 'seed and soil' site where PCa proliferation and growth may occur over time.When PCa is initiated and progression ensues,significant alterations in nuclear size,shape and hetemchmmatin (DNA transcription) organization are found,and key nuclear transcriptional and structural proteins,as well as multiple nuclear bodies can lead to precancerous and malignant changes.These series of cellular and tissue-related malignancy-associated events can be quantified to assess disease progression and management.

  10. Global progress against cancer-challenges and oppor tunities

    Institute of Scientific and Technical Information of China (English)

    Frédéric Biemar; Margaret Foti

    2013-01-01

    The last ten years have seen remarkable progress in cancer research. However, despite significant breakthroughs in the understanding, prevention, and treatment of cancer, the disease continues to affect millions of people worldwide. Cancer’s complexity compounded with ifnancial, policy and regulatory roadblocks has slowed the rate of progress being made against cancer. In this paper, we review a few of the most recent breakthroughs that are fueling medical advances and bringing new hope for patients affected by this devastating disease. We also address the challenges facing us and the opportunities to accelerate future progress against cancer. The efforts of the American Association for Cancer Research (AACR) to address the cancer burden already extend beyond the borders of the United States of America. hTe AACR is committed to increasing its efforts to stem the tide of cancer worldwide by promoting innovative programs, strategies, and initiatives for cancer researchers and all those engaged in cancer-related biomedical sciences around the world.

  11. NOTCH pathway inactivation promotes bladder cancer progression.

    Science.gov (United States)

    Maraver, Antonio; Fernandez-Marcos, Pablo J; Cash, Timothy P; Mendez-Pertuz, Marinela; Dueñas, Marta; Maietta, Paolo; Martinelli, Paola; Muñoz-Martin, Maribel; Martínez-Fernández, Mónica; Cañamero, Marta; Roncador, Giovanna; Martinez-Torrecuadrada, Jorge L; Grivas, Dimitrios; de la Pompa, Jose Luis; Valencia, Alfonso; Paramio, Jesús M; Real, Francisco X; Serrano, Manuel

    2015-02-01

    NOTCH signaling suppresses tumor growth and proliferation in several types of stratified epithelia. Here, we show that missense mutations in NOTCH1 and NOTCH2 found in human bladder cancers result in loss of function. In murine models, genetic ablation of the NOTCH pathway accelerated bladder tumorigenesis and promoted the formation of squamous cell carcinomas, with areas of mesenchymal features. Using bladder cancer cells, we determined that the NOTCH pathway stabilizes the epithelial phenotype through its effector HES1 and, consequently, loss of NOTCH activity favors the process of epithelial-mesenchymal transition. Evaluation of human bladder cancer samples revealed that tumors with low levels of HES1 present mesenchymal features and are more aggressive. Together, our results indicate that NOTCH serves as a tumor suppressor in the bladder and that loss of this pathway promotes mesenchymal and invasive features.

  12. Dietary energy balance modulates ovarian cancer progression and metastasis.

    Science.gov (United States)

    Al-Wahab, Zaid; Tebbe, Calvin; Chhina, Jasdeep; Dar, Sajad A; Morris, Robert T; Ali-Fehmi, Rouba; Giri, Shailendra; Munkarah, Adnan R; Rattan, Ramandeep

    2014-08-15

    A high energy balance, or caloric excess, accounts as a tumor promoting factor, while a negative energy balance via caloric restriction, has been shown to delay cancer progression. The effect of energy balance on ovarian cancer progression was investigated in an isogeneic immunocompetent mouse model of epithelial ovarian cancer kept on a regimen of regular diet, high energy diet (HED) and calorie restricted diet (CRD), prior to inoculating the animals intraperitoneally with the mouse ovarian surface epithelial ID8 cancer cells. Tumor evaluation revealed that mice group on HED displayed the most extensive tumor formation with the highest tumor score at all organ sites (diaphragm, peritoneum, bowel, liver, kidney, spleen), accompanied with increased levels of insulin, leptin, insulin growth factor-1 (IGF-1), monocyte chemoattractant protein-1 (MCP-1), VEGF and interleukin 6 (IL-6). On the other hand, the mice group on CRD exhibited the least tumor burden associated with a significant reduction in levels of insulin, IGF-1, leptin, MCP-1, VEGF and IL-6. Immunohistochemistry analysis of tumors from HED mice showed higher activation of Akt and mTOR with decreased adenosine monophosphate activated kinase (AMPK) and SIRT1 activation, while tumors from the CRD group exhibited the reverse profile. In conclusion, ovarian cancer growth and metastasis occurred more aggressively under HED conditions and was significantly curtailed under CRD. The suggested mechanism involves modulated secretion of growth factors, cytokines and altered regulation of AMPK and SIRT1 that converges on mTOR inhibition. While the role of a high energy state in ovarian cancer has not been confirnmed in the literature, the current findings support investigating the potential impact of diet modulation as adjunct to other anticancer therapies and as possible individualized treatment strategy of epithelial ovarian cancer.

  13. Salivary Protein Profiles among HER2/neu-Receptor-Positive and -Negative Breast Cancer Patients: Support for Using Salivary Protein Profiles for Modeling Breast Cancer Progression

    Directory of Open Access Journals (Sweden)

    Charles F. Streckfus

    2012-01-01

    Full Text Available Purpose. The objective of this study was to compare the salivary protein profiles from individuals diagnosed with breast cancer that were either HER2/neu receptor positive or negative. Methods. Two pooled saliva specimens underwent proteomic analysis. One pooled specimen was from women diagnosed with stage IIa HER2/neu-receptor-positive breast cancer patients (n=10 and the other was from women diagnosed with stage IIa HER2/neu-receptor-negative cancer patients (n=10. The pooled samples were trypsinized and the peptides labeled with iTRAQ reagent. Specimens were analyzed using an LC-MS/MS mass spectrometer. Results. The results yielded approximately 71 differentially expressed proteins in the saliva specimens. There were 34 upregulated proteins and 37 downregulated proteins.

  14. Clonal selection for transcriptionally active viral oncogenes during progression to cancer.

    NARCIS (Netherlands)

    Tine, BA Van; Kappes, JC; Banerjee, NS; Knops, J; Lai, L; Steenbergen, R.D.M.; Meijer, C.J.L.M.; Snijders, P.J.F.; Chatis, P; Broker, TR; Moen, PTJr; Chow, L.T.

    2004-01-01

    Primary keratinocytes immortalized by human papillomaviruses (HPVs), along with HPV-induced cervical carcinoma cell lines, are excellent models for investigating neoplastic progression to cancer. By simultaneously visualizing viral DNA and nascent viral transcripts in interphase nuclei, we demonstra

  15. 肝癌动物模型的研究及进展%Research Progress in Animal Models of Liver Cancer

    Institute of Scientific and Technical Information of China (English)

    申凤鸽

    2011-01-01

    [Objective]To establish good animal models of liver cancer and serve treatment of liver cancer in humans. [Method J Several common animal models of liver cancer were introduced briefly. [ Result] The commonly used animal models include C57BL/6J mouse model of or-thotopic liver cancer induced with Hepal-6 cells,nude mouse model of liver cancer established with Hep_G2 cell lines,rat liver cancer model established through direct transplantation or direct injection,HU-PBL-SCID mice model,and other transplanted liver cancer models or genetic liver cancer models. [ Conclusion] Animal model is an important means and platform for experimental studies. To establish animal models of liver cancer is of important significance for studies on pathogenesis, diagnosis and treatment of liver cancer.%[目的]建立良好的肝癌动物模型,为人类治疗肝癌服务.[方法]简单介绍几种比较常见的肝癌动物模型.[结果]目前比较常用的动物模型有:Hepal-6细胞诱发C57BL /6J小鼠原位肝癌模型、采用Hep_G2细胞株建立裸鼠肝癌模型、直接移植法建立大鼠肝癌模型、直接注入法建立大鼠肝癌模型、免疫重建荷人高转移肝癌SCD鼠模型、其他移植性肝癌模型和基因性肝癌模型.[结论]动物模型是进行试验研究的重要手段和平台,建立肝癌动物模型对肝癌发生机制、诊断与治疗研究有很重要的意义.

  16. Research Progress of Exosomes in Lung Cancer Diagnosis and Treatment

    Directory of Open Access Journals (Sweden)

    Hongbo ZOU

    2016-11-01

    Full Text Available As the leading cause of morbidity and cancer related-death worldwide, lung cancer has a serious threat to human health. Exosomes are nanoscale lipid membrane vesicles derived from multivesicles, which containing active biomolecules including proteins, lipids, nucleic acids and etc. Exosomes play important roles in lung cancer initiation and progression by promoting the formation of tumor microenvironment, enhancing tumor invasive and metastasis capability, leading to immunosuppression and resistance to chemoradiotherapy, and also have the application value in early diagnosis and treatment. This review summarizes the research progress of exosomes in tumor initiation and progression, and its roles in diagnosis and treatment of lung cancer.

  17. The mathematics of cancer: integrating quantitative models.

    Science.gov (United States)

    Altrock, Philipp M; Liu, Lin L; Michor, Franziska

    2015-12-01

    Mathematical modelling approaches have become increasingly abundant in cancer research. The complexity of cancer is well suited to quantitative approaches as it provides challenges and opportunities for new developments. In turn, mathematical modelling contributes to cancer research by helping to elucidate mechanisms and by providing quantitative predictions that can be validated. The recent expansion of quantitative models addresses many questions regarding tumour initiation, progression and metastases as well as intra-tumour heterogeneity, treatment responses and resistance. Mathematical models can complement experimental and clinical studies, but also challenge current paradigms, redefine our understanding of mechanisms driving tumorigenesis and shape future research in cancer biology.

  18. Role of ADAMs in cancer formation and progression.

    LENUS (Irish Health Repository)

    Duffy, Michael J

    2012-02-01

    The ADAMs (a disintegrin and metalloproteinase) comprise a family of multidomain transmembrane and secreted proteins. One of their best-established roles is the release of biologically important ligands, such as tumor necrosis factor-alpha, epidermal growth factor, transforming growth factor-alpha, and amphiregulin. Because these ligands have been implicated in the formation and progression of tumors, it might be expected that the specific ADAMs involved in their release would also be involved in malignancy. Consistent with this hypothesis, emerging data from model systems suggest that ADAMs, such as ADAM-9, ADAM-12, ADAM-15, and ADAM-17, are causally involved in tumor formation\\/progression. In human cancer, specific ADAMs are up-regulated, with levels generally correlating with parameters of tumor progression and poor outcome. In preclinical models, selective ADAM inhibitors against ADAM-10 and ADAM-17 have been shown to synergize with existing therapies in decreasing tumor growth. The ADAMs are thus a new family of potential targets for the treatment of cancer, especially malignancies that are dependent on human epidermal growth factor receptor ligands or tumor necrosis factor-alpha.

  19. Targeting the extracellular matrix to disrupt cancer progression

    OpenAIRE

    Freja Albjerg Venning; Lena eWullkopf; Janine T. Erler

    2015-01-01

    Metastatic complications are responsible for more than 90% of cancer related deaths. The progression from an isolated tumor to disseminated metastatic disease is a multi-step process, with each step involving intricate cross-talk between the cancer cells and their non-cellular surroundings, the extracellular matrix (ECM). Many ECM proteins are significantly de-regulated during the progression of cancer, causing both biochemical and biomechanical changes that together promote the metastatic ca...

  20. Metabolomic Profiling of Prostate Cancer Progression During Active Surveillance

    Science.gov (United States)

    2012-10-01

    cancer or a history of transurethral resection of the prostate (TURP) for benign prostatic hypertrophy are excluded. Somewhat surprisingly...AD_________________ Award Number: W81XWH-11-1-0451 TITLE: Metabolomic Profiling of Prostate Cancer...29 September 2012 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Metabolomic Profiling of Prostate Cancer Progression During Active Surveillance 5b

  1. Can I lower the Risk of My Cancer Progressing or Coming Back?

    Science.gov (United States)

    ... No Longer Working Thyroid Cancer After Treatment Can I Lower the Risk of My Cancer Progressing or ... Treatment Living as a Thyroid Cancer Survivor Can I Lower the Risk of My Cancer Progressing or ...

  2. Dynamic Fluctuation of Circulating Tumor Cells during Cancer Progression

    Directory of Open Access Journals (Sweden)

    Mazen A. Juratli

    2014-01-01

    Full Text Available Circulating tumor cells (CTCs are a promising diagnostic and prognostic biomarker for metastatic tumors. We demonstrate that CTCs’ diagnostic value might be increased through real-time monitoring of CTC dynamics. Using preclinical animal models of breast cancer and melanoma and in vivo flow cytometry with photoacoustic and fluorescence detection schematics, we show that CTC count does not always correlate with the primary tumor size. Individual analysis elucidated many cases where the highest level of CTCs was detected before the primary tumor starts progressing. This phenomenon could be attributed to aggressive tumors developing from cancer stem cells. Furthermore, real-time continuous monitoring of CTCs reveals that they occur at highly variable rates in a detection point over a period of time (e.g., a range of 0–54 CTCs per 5 min. These same fluctuations in CTC numbers were observed in vivo in epithelial and non-epithelial metastatic tumors, in different stages of tumor progression, and in different vessels. These temporal CTC fluctuations can explain false negative results of a one-time snapshot test in humans. Indeed, we observed wide variations in the number of CTCs in subsequent blood samples taken from the same metastatic melanoma patient, with some samples being CTC-free. If these phenomena are confirmed in our ongoing in vivo clinical trials, this could support a personalized strategy of CTC monitoring for cancer patients.

  3. Dynamic Fluctuation of Circulating Tumor Cells during Cancer Progression

    Energy Technology Data Exchange (ETDEWEB)

    Juratli, Mazen A.; Sarimollaoglu, Mustafa; Nedosekin, Dmitry A. [Phillips Classic Laser and Nanomedicine Laboratories, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Melerzanov, Alexander V. [Moscow Institute of Physics and Technology (MIPT), Moscow Region, 141700 (Russian Federation); Zharov, Vladimir P. [Phillips Classic Laser and Nanomedicine Laboratories, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Moscow Institute of Physics and Technology (MIPT), Moscow Region, 141700 (Russian Federation); Galanzha, Ekaterina I., E-mail: egalanzha@uams.edu [Phillips Classic Laser and Nanomedicine Laboratories, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States)

    2014-01-15

    Circulating tumor cells (CTCs) are a promising diagnostic and prognostic biomarker for metastatic tumors. We demonstrate that CTCs’ diagnostic value might be increased through real-time monitoring of CTC dynamics. Using preclinical animal models of breast cancer and melanoma and in vivo flow cytometry with photoacoustic and fluorescence detection schematics, we show that CTC count does not always correlate with the primary tumor size. Individual analysis elucidated many cases where the highest level of CTCs was detected before the primary tumor starts progressing. This phenomenon could be attributed to aggressive tumors developing from cancer stem cells. Furthermore, real-time continuous monitoring of CTCs reveals that they occur at highly variable rates in a detection point over a period of time (e.g., a range of 0–54 CTCs per 5 min). These same fluctuations in CTC numbers were observed in vivo in epithelial and non-epithelial metastatic tumors, in different stages of tumor progression, and in different vessels. These temporal CTC fluctuations can explain false negative results of a one-time snapshot test in humans. Indeed, we observed wide variations in the number of CTCs in subsequent blood samples taken from the same metastatic melanoma patient, with some samples being CTC-free. If these phenomena are confirmed in our ongoing in vivo clinical trials, this could support a personalized strategy of CTC monitoring for cancer patients.

  4. CXCL5 Promotes Prostate Cancer Progression

    Directory of Open Access Journals (Sweden)

    Lesa A Begley

    2008-03-01

    Full Text Available CXCL5 is a proangiogenic CXC-type chemokine that is an inflammatory mediator and a powerful attractant for granulocytic immune cells. Unlike many other chemokines, CXCL5 is secreted by both immune (neutrophil, monocyte, and macrophage and nonimmune (epithelial, endothelial, and fibroblastic cell types. The current study was intended to determine which of these cell types express CXCL5 in normal and malignant human prostatic tissues, whether expression levels correlated with malignancy and whether CXCL5 stimulated biologic effects consistent with a benign or malignant prostate epithelial phenotype. The results of these studies show that CXCL5 protein expression levels are concordant with prostate tumor progression, are highly associated with inflammatory infiltrate, and are frequently detected in the lumens of both benign and malignant prostate glands. Exogenous administration of CXCL5 stimulates cellular proliferation and gene transcription in both nontransformed and transformed prostate epithelial cells and induces highly aggressive prostate cancer cells to invade through synthetic basement membrane in vitro. These findings suggest that the inflammatory mediator, CXCL5, may play multiple roles in the etiology of both benign and malignant proliferative diseases in the prostate.

  5. MMTV-PyMT and Derived Met-1 Mouse Mammary Tumor Cells as Models for Studying the Role of the Androgen Receptor in Triple-Negative Breast Cancer Progression.

    Science.gov (United States)

    Christenson, Jessica L; Butterfield, Kiel T; Spoelstra, Nicole S; Norris, John D; Josan, Jatinder S; Pollock, Julie A; McDonnell, Donald P; Katzenellenbogen, Benita S; Katzenellenbogen, John A; Richer, Jennifer K

    2017-04-01

    Triple-negative breast cancer (TNBC) has a faster rate of metastasis compared to other breast cancer subtypes, and no effective targeted therapies are currently FDA-approved. Recent data indicate that the androgen receptor (AR) promotes tumor survival and may serve as a potential therapeutic target in TNBC. Studies of AR in disease progression and the systemic effects of anti-androgens have been hindered by the lack of an AR-positive (AR+) immunocompetent preclinical model. In this study, we identified the transgenic MMTV-PyMT (mouse mammary tumor virus-polyoma middle tumor-antigen) mouse mammary gland carcinoma model of breast cancer and Met-1 cells derived from this model as tools to study the role of AR in breast cancer progression. AR protein expression was examined in late-stage primary tumors and lung metastases from MMTV-PyMT mice as well as in Met-1 cells by immunohistochemistry (IHC). Sensitivity of Met-1 cells to the AR agonist dihydrotestosterone (DHT) and anti-androgen therapy was examined using cell viability, migration/invasion, and anchorage-independent growth assays. Late-stage primary tumors and lung metastases from MMTV-PyMT mice and Met-1 cells expressed abundant nuclear AR protein, while negative for estrogen and progesterone receptors. Met-1 sensitivity to DHT and AR antagonists demonstrated a reliance on AR for survival, and AR antagonists inhibited invasion and anchorage-independent growth. These data suggest that the MMTV-PyMT model and Met-1 cells may serve as valuable tools for mechanistic studies of the role of AR in disease progression and how anti-androgens affect the tumor microenvironment.

  6. PACE Continuous Innovation Indicators-a novel tool to measure progress in cancer treatments.

    Science.gov (United States)

    Paddock, Silvia; Brum, Lauren; Sorrow, Kathleen; Thomas, Samuel; Spence, Susan; Maulbecker-Armstrong, Catharina; Goodman, Clifford; Peake, Michael; McVie, Gordon; Geipel, Gary; Li, Rose

    2015-01-01

    Concerns about rising health care costs and the often incremental nature of improvements in health outcomes continue to fuel intense debates about 'progress' and 'value' in cancer research. In times of tightening fiscal constraints, it is increasingly important for patients and their representatives to define what constitutes 'value' to them. It is clear that diverse stakeholders have different priorities. Harmonisation of values may be neither possible nor desirable. Stakeholders lack tools to visualise or otherwise express these differences and to track progress in cancer treatments based on variable sets of values. The Patient Access to Cancer care Excellence (PACE) Continuous Innovation Indicators are novel, scientifically rigorous progress trackers that employ a three-step process to quantify progress in cancer treatments: 1) mine the literature to determine the strength of the evidence supporting each treatment; 2) allow users to weight the analysis according to their priorities and values; and 3) calculate Evidence Scores (E-Scores), a novel measure to track progress, based on the strength of the evidence weighted by the assigned value. We herein introduce a novel, flexible value model, show how the values from the model can be used to weight the evidence from the scientific literature to obtain E-Scores, and illustrate how assigning different values to new treatments influences the E-Scores. The Indicators allow users to learn how differing values lead to differing assessments of progress in cancer research and to check whether current incentives for innovation are aligned with their value model. By comparing E-Scores generated by this tool, users are able to visualise the relative pace of innovation across areas of cancer research and how stepwise innovation can contribute to substantial progress against cancer over time. Learning from experience and mapping current unmet needs will help to support a broad audience of stakeholders in their efforts to

  7. Depth-resolved nanoscale nuclear architecture mapping for early prediction of cancer progression

    Science.gov (United States)

    Uttam, Shikhar; Pham, Hoa V.; LaFace, Justin; Hartman, Douglas J.; Liu, Yang

    2016-03-01

    Effective management of patients who are at risk of developing invasive cancer is a primary challenge in early cancer detection. Techniques that can help establish clear-cut protocols for successful triaging of at-risk patients have the potential of providing critical help in improving patient care while simultaneously reducing patient cost. We have developed such a technique for early prediction of cancer progression that uses unstained tissue sections to provide depth-resolved nanoscale nuclear architecture mapping (nanoNAM) of heterogeneity in optical density alterations manifested in precancerous lesions during cancer progression. We present nanoNAM and its application to predicting cancer progression in a well-established mouse model of spontaneous carcinogenesis: ApcMin/+ mice.

  8. Targeting the extracellular matrix to disrupt cancer progression

    Directory of Open Access Journals (Sweden)

    Freja Albjerg Venning

    2015-10-01

    Full Text Available Metastatic complications are responsible for more than 90% of cancer related deaths. The progression from an isolated tumor to disseminated metastatic disease is a multi-step process, with each step involving intricate cross-talk between the cancer cells and their non-cellular surroundings, the extracellular matrix (ECM. Many ECM proteins are significantly de-regulated during the progression of cancer, causing both biochemical and biomechanical changes that together promote the metastatic cascade. In this review, the influence of several ECM proteins on these multiple steps of cancer spread is summarized. In addition, we highlight the promising (pre-clinical data showing benefits of targeting these ECM macromolecules to prevent cancer progression.

  9. MicroRNAs to Pathways in Prostate Cancer Progression

    Science.gov (United States)

    2015-12-01

    progression to dysplasia. Associated with this inhibition of progression was a block in the expansion of cells expressing basal cell markers and a...apical polarity, form a continuous layer of cells over- lying the basal cells, and express the cytokeratin CK8. This architec- tural organization is lost...Lindstrot A, Ochsenfahrt J, Fuchs K, Wernert N (2013) Epigenetics-related genes in prostate cancer: expression profile in pros- tate cancer tissues

  10. Lymphangiogenesis:A new player in cancer progression

    Institute of Scientific and Technical Information of China (English)

    Masayuki; Nagahashi; Subramaniam; Ramachandran; Omar; M; Rashid; Kazuaki; Takabe

    2010-01-01

    Lymph node metastasis is the hallmark of colon cancer progression,and is considered one of the most important prognostic factors.Recently,there has been growing evidence that tumor lymphangiogenesis(formation of new lymphatic vessels) plays an important role in this process.Here,we review the latest f indings of the role of lymphangiogenesis in colorectal cancer progression,and discuss its clinical application as a biomarker and target for new therapy.Understanding the molecular pathways that regulate lymph...

  11. FGF Signaling in Prostate Cancer Progression

    Institute of Scientific and Technical Information of China (English)

    Nora M. NAVONE

    2009-01-01

    @@ Objective: prostate cancer is the second leading cause of cancer death in men in the United States. Localized prostate cancer can be cured by andro-gen ablation, but when the disease escapes the confines of the gland, the prospects for cure decrease drastically and the disease becomes "castrate resistant.

  12. Progress in Systems Biological Modeling of Cancer%癌症的系统生物学模型研究进展

    Institute of Scientific and Technical Information of China (English)

    周建平

    2014-01-01

    Systems biology is a biology-based inter-disciplinary field which focuses on complex interactions within biological systems. Systems biological study can integrate multi-dimensional data describing the target biological system at different levels, and establish mathematical models of the system to study the characteristic behaviors of the system by virtual simulation, interference and forecasts. As complex biological systems, cancers have been extensively studied in systems biology. Systems biology models of cancers,including statistics-based models,signaling and metabolic bio-chemical models and tissue-level models,are valuable supplement to traditional animal models in cancer research. In this review, some valuable mathematical modeling efforts made in cancer systems biology were overviewed.%系统生物学研究采用的是系统性的研究方法,即获取并整合目标系统不同层次的生物学信息,构建适用于该生物系统的数学模型,对该系统的特征性行为进行系统性研究。癌症是一种复杂的生物系统,已成为系统生物学研究的热点领域。癌症的系统生物学模型是对传统的癌症动物模型的补充,主要包括:统计推断模型、生化网络模型、以及组织水平模型等。本文综述了这些系统模型方法在癌症研究中的应用情况及其取得的重要研究成果。

  13. How changes in extracellular matrix mechanics and gene expression variability might combine to drive cancer progression.

    Directory of Open Access Journals (Sweden)

    Justin Werfel

    Full Text Available Changes in extracellular matrix (ECM structure or mechanics can actively drive cancer progression; however, the underlying mechanism remains unknown. Here we explore whether this process could be mediated by changes in cell shape that lead to increases in genetic noise, given that both factors have been independently shown to alter gene expression and induce cell fate switching. We do this using a computer simulation model that explores the impact of physical changes in the tissue microenvironment under conditions in which physical deformation of cells increases gene expression variability among genetically identical cells. The model reveals that cancerous tissue growth can be driven by physical changes in the microenvironment: when increases in cell shape variability due to growth-dependent increases in cell packing density enhance gene expression variation, heterogeneous autonomous growth and further structural disorganization can result, thereby driving cancer progression via positive feedback. The model parameters that led to this prediction are consistent with experimental measurements of mammary tissues that spontaneously undergo cancer progression in transgenic C3(1-SV40Tag female mice, which exhibit enhanced stiffness of mammary ducts, as well as progressive increases in variability of cell-cell relations and associated cell shape changes. These results demonstrate the potential for physical changes in the tissue microenvironment (e.g., altered ECM mechanics to induce a cancerous phenotype or accelerate cancer progression in a clonal population through local changes in cell geometry and increased phenotypic variability, even in the absence of gene mutation.

  14. Liver cancer stem cell markers: Progression and therapeutic implications

    Science.gov (United States)

    Sun, Jing-Hui; Luo, Qing; Liu, Ling-Ling; Song, Guan-Bin

    2016-01-01

    Cancer stem cells (CSCs) are a small subpopulation in cancer, have been proposed to be cancer-initiating cells, and have been shown to be responsible for chemotherapy resistance and cancer recurrence. The identification of CSC subpopulations inside a tumor presents a new understanding of cancer development because it implies that tumors can only be eradicated by targeting CSCs. Although advances in liver cancer detection and treatment have increased the possibility of curing the disease at early stages, unfortunately, most patients will relapse and succumb to their disease. Strategies aimed at efficiently targeting liver CSCs are becoming important for monitoring the progress of liver cancer therapy and for evaluating new therapeutic approaches. Herein, we provide a critical discussion of biological markers described in the literature regarding liver cancer stem cells and the potential of these markers to serve as therapeutic targets. PMID:27053846

  15. STAT3 activation in monocytes accelerates liver cancer progression

    Directory of Open Access Journals (Sweden)

    Wu Wen-Yong

    2011-12-01

    Full Text Available Abstract Background Signal transducer and activator of transcription 3 (STAT3 is an important transcription factor ubiquitously expressed in different cell types. STAT3 plays an essential role in cell survival, proliferation, and differentiation. Aberrantly hyper-activated STAT3 signaling in cancer cells and in the tumor microenvironment has been detected in a wide variety of human cancers and is considered an important factor for cancer initiation, development, and progression. However, the role of STAT3 activation in monocytes in the development of HCC has not been well understood. Methods Immunohistochemical analysis of phosphorylated STAT3 was performed on tissue microarray from HCC patients. Using a co-culture system in vivo, HCC cell growth was determined by the MTT assay. In vivo experiments were conducted with mice given diethylinitrosamine (DEN, which induces HCC was used to investigate the role of STAT3 expression in monocytes on tumor growth. Real-time PCR was used to determine the expression of cell proliferation and cell arrest associated genes in the tumor and nontumor tissue from liver. Results Phosphorylated STAT3 was found in human hepatocellular carcinoma tissue samples and was expressed in tumor cells and also in monocytes. Phosphorylated STAT3 expression in monocyte was significantly correlated to advanced clinical stage of HCC and a poor prognosis. Using a co-culture system in vivo, monocytes promoted HCC cell growth via the IL-6/STAT3 signaling pathway. The STAT3 inhibitor, NSC 74859, significantly suppressed tumor growth in vivo in mice with diethylinitrosamine (DEN-induced HCC. In this animal model, blockade of STAT3 with NSC 74859 induced tumor cell apoptosis, while inhibiting both tumor cells and monocytes proliferation. Furthermore, NSC 74859 treatment suppressed cancer associated inflammation in DEN-induce HCC. Conclusion Our data suggest constitutively activated STAT3 monocytes promote liver tumorigenesis in clinical

  16. Ovarian cancer immunotherapy: opportunities, progresses and challenges

    Directory of Open Access Journals (Sweden)

    Stevens Richard

    2010-02-01

    Full Text Available Abstract Due to the low survival rates from invasive ovarian cancer, new effective treatment modalities are urgently needed. Compelling evidence indicates that the immune response against ovarian cancer may play an important role in controlling this disease. We herein summarize multiple immune-based strategies that have been proposed and tested for potential therapeutic benefit against advanced stage ovarian cancer. We will examine the evidence for the premise that an effective therapeutic vaccine against ovarian cancer is useful not only for inducing remission of the disease but also for preventing disease relapse. We will also highlight the questions and challenges in the development of ovarian cancer vaccines, and critically discuss the limitations of some of the existing immunotherapeutic strategies. Finally, we will summarize our own experience on the use of patient-specific tumor-derived heat shock protein-peptide complex for the treatment of advanced ovarian cancer.

  17. Role of glutathione in cancer progression and chemoresistance.

    Science.gov (United States)

    Traverso, Nicola; Ricciarelli, Roberta; Nitti, Mariapaola; Marengo, Barbara; Furfaro, Anna Lisa; Pronzato, Maria Adelaide; Marinari, Umberto Maria; Domenicotti, Cinzia

    2013-01-01

    Glutathione (GSH) plays an important role in a multitude of cellular processes, including cell differentiation, proliferation, and apoptosis, and disturbances in GSH homeostasis are involved in the etiology and progression of many human diseases including cancer. While GSH deficiency, or a decrease in the GSH/glutathione disulphide (GSSG) ratio, leads to an increased susceptibility to oxidative stress implicated in the progression of cancer, elevated GSH levels increase the antioxidant capacity and the resistance to oxidative stress as observed in many cancer cells. The present review highlights the role of GSH and related cytoprotective effects in the susceptibility to carcinogenesis and in the sensitivity of tumors to the cytotoxic effects of anticancer agents.

  18. AR Alternative Splicing and Prostate Cancer Progression

    Science.gov (United States)

    2012-07-01

    established from a transplantable primary CWR22 tumor. Clin Cancer Res 2008;14:6062–72. 24. Dehm SM, Tindall DJ. Ligand-independent androgen receptor...diverse tissues including heart, muscle, uterus , prostate, lung, and breast, with no apparent expression in brain. However, these RT-PCR experi- ments...tumorigenic human prostate cancer cell line established from a transplantable primary CWR22 tumor. Clin Cancer Res 2008; 14: 6062 - 6072. 42 Gregory CW

  19. Diazepam use and progression of breast cancer.

    Science.gov (United States)

    Kleinerman, R A; Brinton, L A; Hoover, R; Fraumeni, J F

    1984-03-01

    The relationship between diazepam and breast cancer was evaluated using data from a case-control study of breast cancer, in which 1075 cases and 1146 controls who were participants in a breast cancer screening program were interviewed. Diazepam use was negatively associated with extent of disease and lymph node involvement, and this effect seemed greatest for long-term users of diazepam. It is not certain to what extent these data reflect an ascertainment bias, an association with the reasons for which the drug was prescribed, or chance. Whatever the explanation, the findings do not support a previous contention that diazepam promotes or accelerates breast cancer growth.

  20. Apigenin blocks IKKα activation and suppresses prostate cancer progression.

    Science.gov (United States)

    Shukla, Sanjeev; Kanwal, Rajnee; Shankar, Eswar; Datt, Manish; Chance, Mark R; Fu, Pingfu; MacLennan, Gregory T; Gupta, Sanjay

    2015-10-13

    IKKα has been implicated as a key regulator of oncogenesis and driver of the metastatic process; therefore is regarded as a promising therapeutic target in anticancer drug development. In spite of the progress made in the development of IKK inhibitors, no potent IKKα inhibitor(s) have been identified. Our multistep approach of molecular modeling and direct binding has led to the identification of plant flavone apigenin as a specific IKKα inhibitor. Here we report apigenin, in micro molar range, inhibits IKKα kinase activity, demonstrates anti-proliferative and anti-invasive activities in functional cell based assays and exhibits anticancer efficacy in experimental tumor model. We found that apigenin directly binds with IKKα, attenuates IKKα kinase activity and suppresses NF-ĸB/p65 activation in human prostate cancer PC-3 and 22Rv1 cells much more effectively than IKK inhibitor, PS1145. We also showed that apigenin caused cell cycle arrest similar to knockdown of IKKα in prostate cancer cells. Studies in xenograft mouse model indicate that apigenin feeding suppresses tumor growth, lowers proliferation and enhances apoptosis. These effects correlated with inhibition of p-IKKα, NF-ĸB/p65, proliferating cell nuclear antigen and increase in cleaved caspase 3 expression in a dose-dependent manner. Overall, our results suggest that inhibition of cell proliferation, invasiveness and decrease in tumor growth by apigenin are mediated by its ability to suppress IKKα and downstream targets affecting NF-ĸB signaling pathways.

  1. Gene Expression Analysis of Breast Cancer Progression

    Science.gov (United States)

    2005-07-01

    Giri D, Chen B, Gerald W Molecular Diagnosis of Breast Cancer Therapeutic Biomarkers Using Oligonucleotide Arrays Abstract presentation USCAP 2005. 5...Bone Metastasis. Submitted Lal P, Donaton M, Girl D, Chen B, Gerald W Molecular Diagnosis of Breast Cancer Therapeutic Biomarkers Using Oligonucleotide

  2. Histone Demethylase RBP2 Is Critical for Breast Cancer Progression and Metastasis

    Directory of Open Access Journals (Sweden)

    Jian Cao

    2014-03-01

    Full Text Available Metastasis is a major clinical challenge for cancer treatment. Emerging evidence suggests that aberrant epigenetic modifications contribute significantly to tumor formation and progression. However, the drivers and roles of such epigenetic changes in tumor metastasis are still poorly understood. Using bioinformatic analysis of human breast cancer gene-expression data sets, we identified histone demethylase RBP2 as a putative mediator of metastatic progression. By using both human breast cancer cells and genetically engineered mice, we demonstrated that RBP2 is critical for breast cancer metastasis to the lung in multiple in vivo models. Mechanistically, RBP2 promotes metastasis as a pleiotropic positive regulator of many metastasis genes, including TNC. In addition, RBP2 loss suppresses tumor formation in MMTV-neu transgenic mice. These results suggest that therapeutic targeting of RBP2 is a potential strategy for inhibition of tumor progression and metastasis.

  3. CD4+ and CD8+ T cells have opposing roles in breast cancer progression and outcome

    Science.gov (United States)

    Zhang, Qunyuan; Ye, Jian; Wang, Fang; Zhang, Yanping; Hunborg, Pamela; Varvares, Mark A.; Hoft, Daniel F.; Hsueh, Eddy C.; Peng, Guangyong

    2015-01-01

    The Cancer Immunoediting concept has provided critical insights suggesting dual functions of immune system during the cancer initiation and development. However, the dynamics and roles of CD4+ and CD8+ T cells in the pathogenesis of breast cancer remain unclear. Here we utilized two murine breast cancer models (4T1 and E0771) and demonstrated that both CD4+ and CD8+ T cells were increased and involved in immune responses, but with distinct dynamic trends in breast cancer development. In addition to cell number increases, CD4+ T cells changed their dominant subsets from Th1 in the early stages to Treg and Th17 cells in the late stages of the cancer progression. We also analyzed CD4+ and CD8+ T cell infiltration in primary breast cancer tissues from cancer patients. We observed that CD8+ T cells are the key effector cell population mediating effective anti-tumor immunity resulting in better clinical outcomes. In contrast, intra-tumoral CD4+ T cells have negative prognostic effects on breast cancer patient outcomes. These studies indicate that CD4+ and CD8+ T cells have opposing roles in breast cancer progression and outcomes, which provides new insights relevant for the development of effective cancer immunotherapeutic approaches. PMID:25968569

  4. Progress in Personalizing Chemotherapy for Bladder Cancer

    Directory of Open Access Journals (Sweden)

    James S. Chang

    2012-01-01

    Full Text Available Platinum-based chemotherapy is commonly used for the treatment of locally advanced and metastatic bladder cancer. However, there are currently no methods to predict chemotherapy response in this disease setting. A better understanding of the biology of bladder cancer has led to developments of molecular biomarkers that may help guide clinical decision making. These biomarkers, while promising, have not yet been validated in prospective trials and are not ready for clinical applications. As alkylating agents, platinum drugs kill cancer cells mainly through induction of DNA damage. A microdosing approach is currently being tested to determine if chemoresistance can be identified by measuring platinum-induced DNA damage using highly sensitive accelerator mass spectrometry technology. The hope is that these emerging strategies will help pave the road towards personalized therapy in advanced bladder cancer.

  5. SPANXB2 and Prostate Cancer Progression

    Science.gov (United States)

    2014-12-01

    Overall Project Summary   We fully completed our specific Aim i and ii , and partially completed the aim iii . In aim i...vivo. iii ) Test the association of SPANX-B2 expression with biochemical recurrence (PSA), lymph node metastasis, prostate cancer specific death and...3173. 16. Zheng Y, Basel D, Chow SO, et al,. (2014) Targeting IL-6 and RANKL signaling inhibits prostate cancer growth in bone. Clin Exp Metastasis

  6. A tissue biomarker panel predicting systemic progression after PSA recurrence post-definitive prostate cancer therapy.

    Directory of Open Access Journals (Sweden)

    Tohru Nakagawa

    Full Text Available BACKGROUND: Many men develop a rising PSA after initial therapy for prostate cancer. While some of these men will develop a local or metastatic recurrence that warrants further therapy, others will have no evidence of disease progression. We hypothesized that an expression biomarker panel can predict which men with a rising PSA would benefit from further therapy. METHODOLOGY/PRINCIPAL FINDINGS: A case-control design was used to test the association of gene expression with outcome. Systemic (SYS progression cases were men post-prostatectomy who developed systemic progression within 5 years after PSA recurrence. PSA progression controls were matched men post-prostatectomy with PSA recurrence but no evidence of clinical progression within 5 years. Using expression arrays optimized for paraffin-embedded tissue RNA, 1021 cancer-related genes were evaluated-including 570 genes implicated in prostate cancer progression. Genes from 8 previously reported marker panels were included. A systemic progression model containing 17 genes was developed. This model generated an AUC of 0.88 (95% CI: 0.84-0.92. Similar AUCs were generated using 3 previously reported panels. In secondary analyses, the model predicted the endpoints of prostate cancer death (in SYS cases and systemic progression beyond 5 years (in PSA controls with hazard ratios 2.5 and 4.7, respectively (log-rank p-values of 0.0007 and 0.0005. Genes mapped to 8q24 were significantly enriched in the model. CONCLUSIONS/SIGNIFICANCE: Specific gene expression patterns are significantly associated with systemic progression after PSA recurrence. The measurement of gene expression pattern may be useful for determining which men may benefit from additional therapy after PSA recurrence.

  7. Induction of erythropoiesis by hypoxia-inducible factor prolyl hydroxylase inhibitors without promotion of tumor initiation, progression, or metastasis in a VEGF-sensitive model of spontaneous breast cancer

    Directory of Open Access Journals (Sweden)

    Seeley TW

    2017-03-01

    Full Text Available Todd W Seeley, Mark D Sternlicht, Stephen J Klaus, Thomas B Neff, David Y Liu Therapeutics R&D, FibroGen, Inc., San Francisco, CA, USA Abstract: The effects of pharmacological hypoxia-inducible factor (HIF stabilization were investigated in the MMTV-Neundl-YD5 (NeuYD mouse model of breast cancer. This study first confirmed the sensitivity of this model to increased vascular endothelial growth factor (VEGF, using bigenic NeuYD;MMTV-VEGF-25 mice. Tumor initiation was dramatically accelerated in bigenic animals. Bigenic tumors were also more aggressive, with shortened doubling times and increased lung metastasis as compared to NeuYD controls. In separate studies, NeuYD mice were treated three times weekly from 7 weeks of age until study end with two different HIF prolyl hydroxylase inhibitors (HIF-PHIs, FG-4497 or roxadustat (FG-4592. In NeuYD mice, HIF-PHI treatments elevated erythropoiesis markers, but no differences were detected in tumor onset or the phenotypes of established tumors. Keywords: cancer progression, erythropoiesis, hypoxia-inducible factor, hypoxia-inducible factor prolyl hydroxylase inhibitors, vascular endothelial growth factor, MMTV-Neu breast cancer model

  8. Transcriptional network of androgen receptor in prostate cancer progression.

    Science.gov (United States)

    Takayama, Ken-ichi; Inoue, Satoshi

    2013-08-01

    The androgen receptor belongs to the nuclear receptor superfamily and functions as a ligand-dependent transcription factor. It binds to the androgen responsive element and recruits coregulatory factors to modulate gene transcription. In addition, the androgen receptor interacts with other transcription factors, such as forkhead box A1, and other oncogenic signaling pathway molecules that bind deoxyribonucleic acid and regulate transcription. Androgen receptor signaling plays an important role in the development of prostate cancer. Prostate cancer cells proliferate in an androgen-dependent manner, and androgen receptor blockade is effective in prostate cancer therapy. However, patients often progress to castration-resistant prostate cancer with elevated androgen receptor expression and hypersensitivity to androgen. Recently, comprehensive analysis tools, such as complementary DNA microarray, chromatin immunoprecipitation-on-chip and chromatin immunoprecipitation-sequence, have described the androgen-mediated diverse transcriptional program and gene networks in prostate cancer. Furthermore, functional and clinical studies have shown that some of the androgen receptor-regulated genes could be prognostic markers and potential therapeutic targets for the treatment of prostate cancer, particularly castration-resistant prostate cancer. Thus, identifying androgen receptor downstream signaling events and investigating the regulation of androgen receptor activity is critical for understanding the mechanism of carcinogenesis and progression to castration-resistant prostate cancer.

  9. Somatic LKB1 mutations promote cervical cancer progression.

    Directory of Open Access Journals (Sweden)

    Shana N Wingo

    Full Text Available Human Papilloma Virus (HPV is the etiologic agent for cervical cancer. Yet, infection with HPV is not sufficient to cause cervical cancer, because most infected women develop transient epithelial dysplasias that spontaneously regress. Progression to invasive cancer has been attributed to diverse host factors such as immune or hormonal status, as no recurrent genetic alterations have been identified in cervical cancers. Thus, the pressing question as to the biological basis of cervical cancer progression has remained unresolved, hampering the development of novel therapies and prognostic tests. Here we show that at least 20% of cervical cancers harbor somatically-acquired mutations in the LKB1 tumor suppressor. Approximately one-half of tumors with mutations harbored single nucleotide substitutions or microdeletions identifiable by exon sequencing, while the other half harbored larger monoallelic or biallelic deletions detectable by multiplex ligation probe amplification (MLPA. Biallelic mutations were identified in most cervical cancer cell lines; HeLa, the first human cell line, harbors a homozygous 25 kb deletion that occurred in vivo. LKB1 inactivation in primary tumors was associated with accelerated disease progression. Median survival was only 13 months for patients with LKB1-deficient tumors, but >100 months for patients with LKB1-wild type tumors (P = 0.015, log rank test; hazard ratio = 0.25, 95% CI = 0.083 to 0.77. LKB1 is thus a major cervical tumor suppressor, demonstrating that acquired genetic alterations drive progression of HPV-induced dysplasias to invasive, lethal cancers. Furthermore, LKB1 status can be exploited clinically to predict disease recurrence.

  10. Dissecting Biology of Solid Tumour: The Microenvironment and Cancer Progression

    OpenAIRE

    2013-01-01

    Focus on cancer therapy is experiencing a major paradigm shift from ways of attacking tumor cells to a strategy for specifically targeting the tumor microenvironment (TME). This approach requires a comprehensive understanding of roles of each component of the tumor environment. A description of the tumor microenvironment and its impact on tumor progression is presented here. Available studies indicate that both tumor/epithelial and stroma characteristics play important roles in cancer progres...

  11. Activation of PPARγ in myeloid cells promotes lung cancer progression and metastasis.

    Directory of Open Access Journals (Sweden)

    Howard Li

    Full Text Available Activation of peroxisome proliferator-activated receptor-γ (PPARγ inhibits growth of cancer cells including non-small cell lung cancer (NSCLC. Clinically, use of thiazolidinediones, which are pharmacological activators of PPARγ is associated with a lower risk of developing lung cancer. However, the role of this pathway in lung cancer metastasis has not been examined well. The systemic effect of pioglitazone was examined in two models of lung cancer metastasis in immune-competent mice. In an orthotopic model, murine lung cancer cells implanted into the lungs of syngeneic mice metastasized to the liver and brain. As a second model, cancer cells injected subcutaneously metastasized to the lung. In both models systemic administration of pioglitazone increased the rate of metastasis. Examination of tissues from the orthotopic model demonstrated increased numbers of arginase I-positive macrophages in tumors from pioglitazone-treated animals. In co-culture experiments of cancer cells with bone marrow-derived macrophages, pioglitazone promoted arginase I expression in macrophages and this was dependent on the expression of PPARγ in the macrophages. To assess the contribution of PPARγ in macrophages to cancer progression, experiments were performed in bone marrow-transplanted animals receiving bone marrow from Lys-M-Cre+/PPARγ(flox/flox mice, in which PPARγ is deleted specifically in myeloid cells (PPARγ-Mac(neg, or control PPARγ(flox/flox mice. In both models, mice receiving PPARγ-Mac(neg bone marrow had a marked decrease in secondary tumors which was not significantly altered by treatment with pioglitazone. This was associated with decreased numbers of arginase I-positive cells in the lung. These data support a model in which activation of PPARγ may have opposing effects on tumor progression, with anti-tumorigenic effects on cancer cells, but pro-tumorigenic effects on cells of the microenvironment, specifically myeloid cells.

  12. Milk and the risk and progression of cancer.

    Science.gov (United States)

    Rock, Cheryl L

    2011-01-01

    Observational evidence suggests that nutritional factors contribute to a substantial proportion of cancer cases, and milk contains numerous bioactive substances that could affect risk and progression of cancer. Cancer results from multiple genetic and epigenetic events over time, so demonstrating a specific effect of nutrients or other bioactive food components in human cancer is challenging. Epidemiological evidence consistently suggests that milk intake is protective against colorectal cancer. Calcium supplements have been shown to reduce risk for recurrence of adenomatous polyps. Calcium supplementation has not been observed to reduce risk for colon cancer, although long latency and baseline calcium intake affect interpretation of these results. High calcium intake from both food and supplements is associated with increased risk for advanced or fatal prostate cancer. Results from epidemiological studies examining the relationship between intake of dairy foods and breast or ovarian cancer risk are not consistent. Animal studies have suggested that galactose may be toxic to ovarian cells, but results from epidemiological studies that have examined ovarian cancer risk and milk and/or lactose intakes are mixed. Dietary guidelines for cancer prevention encourage meeting recommended levels of calcium intake primarily through food choices rather than supplements, and choosing low-fat or nonfat dairy foods.

  13. A superstatistical model of metastasis and cancer survival

    CERN Document Server

    Chen, L Leon

    2007-01-01

    We introduce a superstatistical model for the progression statistics of malignant cancer cells. The metastatic cascade is modeled as a complex nonequilibrium system with several macroscopic pathways and inverse-chi-square distributed parameters of the underlying Poisson processes. The predictions of the model are in excellent agreement with observed survival time probability distributions of breast cancer patients.

  14. Tissue Transglutaminase (TG2)-Induced Inflammation in Initiation, Progression, and Pathogenesis of Pancreatic Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Mehta, Kapil, E-mail: kmehta@mdanderson.org; Han, Amy [Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030 (United States); Graduate School of Biomedical Sciences, The University of Texas Health Science Center, Houston, TX 77030 (United States)

    2011-02-25

    Pancreatic cancer (PC) is among the deadliest cancers, with a median survival of six months. It is generally believed that infiltrating PC arises through the progression of early grade pancreatic intraepithelial lesions (PanINs). In one model of the disease, the K-ras mutation is an early molecular event during progression of pancreatic cancer; it is followed by the accumulation of additional genetic abnormalities. This model has been supported by animal studies in which activated K-ras and p53 mutations produced metastatic pancreatic ductal adenocarcinoma in mice. According to this model, oncogenic K-ras induces PanIN formation but fails to promote the invasive stage. However, when these mice are subjected to caerulein treatment, which induces a chronic pancreatitis-like state and inflammatory response, PanINs rapidly progress to invasive carcinoma. These results are consistent with epidemiologic studies showing that patients with chronic pancreatitis have a much higher risk of developing PC. In line with these observations, recent studies have revealed elevated expression of the pro-inflammatory protein tissue transglutaminase (TG2) in early PanINs, and its expression increases even more as the disease progresses. In this review we discuss the implications of increased TG2 expression in initiation, progression, and pathogenesis of pancreatic cancer.

  15. The physics of cancer: The role of epigenetics and chromosome conformation in cancer progression

    Science.gov (United States)

    Naimark, Oleg B.; Nikitiuk, Aleksandr S.; Baudement, Marie-Odile; Forné, Thierry; Lesne, Annick

    2016-08-01

    Cancer progression is generally described in terms of accumulated genetic alterations and ensuing changes in cell properties. However, intermediary modifications are involved in the establishment of cancer cell phenotypes, at different levels of nuclear organization: DNA damages and their structural consequences, epigenetic modifications and their impact on chromatin architecture, changes in chromosome 3D organization. We review some of these alterations with a focus on their physical aspects. The challenge is to understand the multiscale interplay between generic physical mechanisms and specific biological factors in cancer cells. We argue that such an interdisciplinary perspective offers a novel viewpoint on cancer progression, early diagnosis and possibly therapeutic targets.

  16. Differential action of glycoprotein hormones: significance in cancer progression.

    Science.gov (United States)

    Govindaraj, Vijayakumar; Arya, Swathy V; Rao, A J

    2014-02-01

    Growth of multicellular organisms depends on maintenance of proper balance between proliferation and differentiation. Any disturbance in this balance in animal cells can lead to cancer. Experimental evidence is provided to conclude with special reference to the action of follicle-stimulating hormone (FSH) on Sertoli cells, and luteinizing hormone (LH) on Leydig cells that these hormones exert a differential action on their target cells, i.e., stimulate proliferation when the cells are in an undifferentiated state which is the situation with cancer cells and promote only functional parameters when the cell are fully differentiated. Hormones and growth factors play a key role in cell proliferation, differentiation, and apoptosis. There is a growing body of evidence that various tumors express some hormones at high levels as well as their cognate receptors indicating the possibility of a role in progression of cancer. Hormones such as LH, FSH, and thyroid-stimulating hormone have been reported to stimulate cell proliferation and act as tumor promoter in a variety of hormone-dependent cancers including gonads, lung, thyroid, uterus, breast, prostate, etc. This review summarizes evidence to conclude that these hormones are produced by some cancer tissues to promote their own growth. Also an attempt is made to explain the significance of the differential action of hormones in progression of cancer with special reference to prostate cancer.

  17. Genome evolution during progression to breast cancer

    KAUST Repository

    Newburger, D. E.

    2013-04-08

    Cancer evolution involves cycles of genomic damage, epigenetic deregulation, and increased cellular proliferation that eventually culminate in the carcinoma phenotype. Early neoplasias, which are often found concurrently with carcinomas and are histologically distinguishable from normal breast tissue, are less advanced in phenotype than carcinomas and are thought to represent precursor stages. To elucidate their role in cancer evolution we performed comparative whole-genome sequencing of early neoplasias, matched normal tissue, and carcinomas from six patients, for a total of 31 samples. By using somatic mutations as lineage markers we built trees that relate the tissue samples within each patient. On the basis of these lineage trees we inferred the order, timing, and rates of genomic events. In four out of six cases, an early neoplasia and the carcinoma share a mutated common ancestor with recurring aneuploidies, and in all six cases evolution accelerated in the carcinoma lineage. Transition spectra of somatic mutations are stable and consistent across cases, suggesting that accumulation of somatic mutations is a result of increased ancestral cell division rather than specific mutational mechanisms. In contrast to highly advanced tumors that are the focus of much of the current cancer genome sequencing, neither the early neoplasia genomes nor the carcinomas are enriched with potentially functional somatic point mutations. Aneuploidies that occur in common ancestors of neoplastic and tumor cells are the earliest events that affect a large number of genes and may predispose breast tissue to eventual development of invasive carcinoma.

  18. Integrin-mediated function of Rab GTPases in cancer progression

    Directory of Open Access Journals (Sweden)

    Alahari Suresh K

    2010-12-01

    Full Text Available Abstract The RAS (rat sarcoma superfamily of small GTPases is broadly subdivided into five groups: Ras, Rho, Rab, Ran, and Arf. Rab family proteins are important in regulating signal transduction and cellular processes such as differentiation, proliferation, vesicle transport, nuclear assembly, and cytoskeleton formation. However, some Rab proteins have been reported to be necessary for the adhesion and migration of cancer cells. Although Ras and Rho family members have been strongly implicated in cancer progression, knowledge of Rabs action in this regard is limited. Some reports have also linked Rab GTPases with cancer cell migration and invasiveness. This review discusses the implications of the involvement of Rabs in malignant transformation and cancer therapy through integrin-mediated signaling events, with particular emphasis on breast cancer.

  19. Epithelial-mesenchymal transition in breast cancer progression and metastasis

    Institute of Scientific and Technical Information of China (English)

    Yifan Wang; Binhua P. Zhou

    2011-01-01

    Breast cancer is the most common cancer in women,and approximately 90% of breast cancer deaths are caused by local invasion and distant metastasis of tumor cells.Epithelial-mesenchymal transition (EMT) is a vital process for large-scale cell movement during morphogenesis at the time of embryonic development.Tumor cells usurp this developmental program to execute the multi-step process of tumorigenesis and metastasis.Several transcription factors and signals are involved in these events.In this review,we summarize recent advances in breast cancer researches that have provided new insights in the molecular mechanisms underlying EMT regulation during breast cancer progression and metastasis.We especially focus on the molecular pathways that control EMT.

  20. Long Non-coding RNAs In Cancer Progression

    Directory of Open Access Journals (Sweden)

    Keiko eTano

    2012-10-01

    Full Text Available Recent large-scale transcriptome analyses have revealed that transcription is spread throughout the mammalian genomes, yielding large numbers of transcripts, including long non-coding (lnc RNAs with little or no protein-coding capacity. Dozens of lncRNAs have been identified as biologically significant. In many cases, lncRNAs act as key molecules in the regulation of processes such as chromatin remodeling, transcription and post-transcriptional processing. Several lncRNAs (e.g., MALAT1, HOTAIR and ANRIL are associated with human diseases, including cancer. Those lncRNAs associated with cancer are often aberrantly expressed. Although the underlying molecular mechanisms by which lncRNAs regulate cancer development are unclear, recent studies have revealed that such aberrant expression of lncRNAs affects the progression of cancers. In this review, we highlight recent findings regarding the roles of lncRNAs in cancer biology.

  1. Endocrine fibroblast growth factor FGF19 promotes prostate cancer progression.

    Science.gov (United States)

    Feng, Shu; Dakhova, Olga; Creighton, Chad J; Ittmann, Michael

    2013-04-15

    Prostate cancer is the most common visceral malignancy and the second leading cause of cancer deaths in US men. There is broad evidence that fibroblast growth factor (FGF) receptors are important in prostate cancer initiation and progression, but the contribution of particular FGFs in this disease is not fully understood. The FGF family members FGF19, FGF21, and FGF23 comprise a distinct subfamily that circulate in serum and act in an endocrine manner. These endocrine FGFs require α-Klotho (KL) and/or β-Klotho (KLB), two related single-pass transmembrane proteins restricted in their tissue distribution, to act as coreceptors along with classic FGF receptors (FGFR) to mediate potent biologic activity. Here we show that FGF19 is expressed in primary and metastatic prostate cancer tissues, where it functions as an autocrine growth factor. Exogenous FGF19 promoted the growth, invasion, adhesion, and colony formation of prostate cancer cells at low ligand concentrations. FGF19 silencing in prostate cancer cells expressing autocrine FGF19 decreased invasion and proliferation in vitro and tumor growth in vivo. Consistent with these observations, KL and/or KLB were expressed in prostate cancer cells in vitro and in vivo, raising the possibility that additional endocrine FGFs may also exert biologic effects in prostate cancer. Our findings support the concept that therapies targeting FGFR signaling may have efficacy in prostate cancer and highlight FGF19 as a relevant endocrine FGF in this setting.

  2. Dynamics of cancer progression and suppression: A novel evolutionary game theory based approach.

    Science.gov (United States)

    Banerjee, Jeet; Ranjan, Tanvi; Layek, Ritwik Kumar

    2015-01-01

    In this paper, a novel mathematical approach is proposed for the dynamics of progression and suppression of cancer. We define mutant cell density, ρ(μ) (μ × ρ), as a primary factor in cancer dynamics, and use logistic growth model and replicator equation for defining the dynamics of total cell density (ρ) and mutant fraction (μ), respectively. Furthermore, in the proposed model, we introduce an analytical expression for a control parameter D (drug), to suppress the proliferation of mutants with extra fitness level σ. Lastly, we present a comparison of the proposed model with some existing models of tumour growth.

  3. Understanding and Targeting Tumor Microenvironment in Prostate Cancer to Inhibit Tumor Progression and Castration Resistance

    Science.gov (United States)

    2015-10-01

    as being possible MDSCs. The definition of MDSC requires these cells being immunosuppressive in a standard T cell proliferation assay. Therefore...circulation as the cancer progresses. The MDSCs display potent immunosuppressive activity to limit T cell proliferation. Importantly, depletion of...dependent increase of infiltrating and circulating granulocytic MDSCs in the mouse model. These MDSCs display potent immunosuppressive activity

  4. Molecular therapy of colorectal cancer: progress and future directions.

    Science.gov (United States)

    Weng, Wenhao; Feng, Junlan; Qin, Huanlong; Ma, Yanlei

    2015-02-01

    Colorectal cancer (CRC) remains one of the most common types of cancer and leading causes of cancer death worldwide. Although the introduction of cytotoxic drugs such as oxaliplatin, irinotecan and fluorouracil has improved the treatment of advanced CRC, the individual response to chemoradiotherapy varies tremendously from one patient to another. However, recent progress in CRC molecular therapies may provide new insight into the treatment of this disease. Currently, components of the EGFR, VEGF, Wnt and NF-kB pathways are the most important targets for CRC therapy. This review chronicles the development of molecular CRC therapies over the past few decades. We also provide an update on the current progress of research concerning the molecular pathways leading to CRC and discuss the possible implications for CRC therapy.

  5. Epigenetic reduction of DNA repair in progression togastrointestinal cancer

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Deficiencies in DNA repair due to inherited germ-linemutations in DNA repair genes cause increased risk ofgastrointestinal (GI) cancer. In sporadic GI cancers,mutations in DNA repair genes are relatively rare.However, epigenetic alterations that reduce expressionof DNA repair genes are frequent in sporadic GI cancers.These epigenetic reductions are also found in fielddefects that give rise to cancers. Reduced DNA repairlikely allows excessive DNA damages to accumulatein somatic cells. Then either inaccurate translesionsynthesis past the un-repaired DNA damages or errorproneDNA repair can cause mutations. ErroneousDNA repair can also cause epigenetic alterations (i.e. ,epimutations, transmitted through multiple replicationcycles). Some of these mutations and epimutations maycause progression to cancer. Thus, deficient or absentDNA repair is likely an important underlying cause ofcancer. Whole genome sequencing of GI cancers showthat between thousands to hundreds of thousands ofmutations occur in these cancers. Epimutations thatreduce DNA repair gene expression and occur early inprogression to GI cancers are a likely source of this highgenomic instability. Cancer cells deficient in DNA repairare more vulnerable than normal cells to inactivation byDNA damaging agents. Thus, some of the most clinicallyeffective chemotherapeutic agents in cancer treatmentare DNA damaging agents, and their effectivenessoften depends on deficient DNA repair in cancer cells.Recently, at least 18 DNA repair proteins, each activein one of six DNA repair pathways, were found to besubject to epigenetic reduction of expression in GIcancers. Different DNA repair pathways repair differenttypes of DNA damage. Evaluation of which DNA repairpathway(s) are deficient in particular types of GI cancerand/or particular patients may prove useful in guidingchoice of therapeutic agents in cancer therapy.

  6. Clonal expansion and linear genome evolution through breast cancer progression from pre-invasive stages to asynchronous metastasis

    DEFF Research Database (Denmark)

    Krøigård, Anne Bruun; Larsen, Martin Jakob; Lænkholm, Anne Vibeke

    step. Our data, contrary to the proposed model of early dissemination of metastatic cells and parallel progression of primary tumors and metastases, provide evidence of linear progression of breast cancer with relatively late dissemination from the primary tumor. The genomic discordance between......Evolution of the breast cancer genome from pre-invasive stages to asynchronous metastasis is complex and mostly unexplored, but highly demanded as it may provide novel markers for and mechanistic insights in cancer progression. The increasing use of personalized therapy of breast cancer...... necessitates knowledge of the degree of genomic concordance between different steps of malignant progression as primary tumors often are used as surrogates of systemic disease. Based on exome sequencing we performed copy number profiling and point mutation detection on successive steps of breast cancer...

  7. Clonal expansion and linear genome evolution through breast cancer progression from pre-invasive stages to asynchronous metastasis

    DEFF Research Database (Denmark)

    Krøigård, Anne Bruun; Larsen, Martin Jakob; Lænkholm, Anne Vibeke

    2015-01-01

    step. Our data, contrary to the proposed model of early dissemination of metastatic cells and parallel progression of primary tumors and metastases, provide evidence of linear progression of breast cancer with relatively late dissemination from the primary tumor. The genomic discordance between......Evolution of the breast cancer genome from pre-invasive stages to asynchronous metastasis is complex and mostly unexplored, but highly demanded as it may provide novel markers for and mechanistic insights in cancer progression. The increasing use of personalized therapy of breast cancer...... necessitates knowledge of the degree of genomic concordance between different steps of malignant progression as primary tumors often are used as surrogates of systemic disease. Based on exome sequencing we performed copy number profiling and point mutation detection on successive steps of breast cancer...

  8. Progress in animal models for predicting the results of clinical trials of cancer drugs%预测肿瘤药物临床试验效果的动物模型新进展

    Institute of Scientific and Technical Information of China (English)

    余飞; 丁慧

    2015-01-01

    基于人体试验的实际应用及伦理方面的考虑,合适的动物模型对于肿瘤药物研发至关重要。制药公司和研究机构在肿瘤治疗新药的开发过程中消耗大量资源,最佳动物体内模型的选择可以改进或缩短研发进程。在技术复杂性方面,肿瘤遗传工程小鼠模型( GEMM)已逐步完善,并且GEMM能够准确重建人类肿瘤的同源发生,为加快肿瘤药物的开发提供机遇。本文主要综合比较预测肿瘤药物临床试验效果的不同类型动物模型,探讨其优劣,并对体内模型的评估方法及与临床转化等进行简述,为肿瘤药物临床前试验提供参考。%Due to practical and ethical concerns associated with human experiments, animal models have been essential in cancer research.Vast resources are expended during the development of new cancer therapeutics, and selection of optimal in vivo models should improve this process.Genetically engineered mouse models ( GEMM) of cancer have progressively improved in technical sophistication and, accurately recapitulating the human cognate condition, have provided opportunities to accelerate the development of cancer drugs.In this article we consider the different types of animal models used for predicting the results of clinical trials of cancer drugs, and discuss the strengths and weaknesses of each in this regard.In addition, the methods of predicting in vivo models and clinical translation are discussed.

  9. Progression and metastasis of lung cancer.

    Science.gov (United States)

    Popper, Helmut H

    2016-03-01

    Metastasis in lung cancer is a multifaceted process. In this review, we will dissect the process in several isolated steps such as angiogenesis, hypoxia, circulation, and establishment of a metastatic focus. In reality, several of these processes overlap and occur even simultaneously, but such a presentation would be unreadable. Metastasis requires cell migration toward higher oxygen tension, which is based on changing the structure of the cell (epithelial-mesenchymal transition), orientation within the stroma and stroma interaction, and communication with the immune system to avoid attack. Once in the blood stream, cells have to survive trapping by the coagulation system, to survive shear stress in small blood vessels, and to find the right location for extravasation. Once outside in the metastatic locus, tumor cells have to learn the communication with the "foreign" stroma cells to establish vascular supply and again express molecules, which induce immune tolerance.

  10. 前列腺癌体内实验模型的研究进展%Research progress of in vivo animal models of prostate cancer

    Institute of Scientific and Technical Information of China (English)

    聂迪森; 秦卫军; 温伟红; 赵宁宁; 师长宏

    2015-01-01

    Prostate cancer is one of the most common malignant tumors in men and related studies have achieved great breakthrough in recent years.But because of the lack of effective in vivo animal models, the process to translate basic research into clinical application has been severely hampered.Patient derived prostate tumor xenograft ( PDPTX) model is an ideal animal model in which freshly isolated tumor tissues from patients were inoculated into immunodeficient mice.This model can duplicate the heterogeneity of primary tumor in a better way and keep the tumor complexity at molecular, genetic and pathological levels.Particularly, the PDPTX model, in which the isolated tumor tissue is inoculated under the renal capsule, is even better, because it solves the clrawbacks of traditional subcutaneous inoculation model.In traditional mod-els, the success rate is low, it’s not easy for lower grade tumor to form xenograft, and it’s not easy to reconstruct metasta-sis, etc.PDPTX provides a more ideal in vivo model for prostate cancer studies.It has irreplaceable advantages, especially in target therapy, new drug screening and individualized tumor treatment.%前列腺癌是男性最为常见的恶性肿瘤之一。近年来有关前列腺癌的相关研究取得了较大突破,但由于缺少有效的体内实验模型,导致研究成果向临床应用的转化受到严重阻碍。人源性前列腺癌移植( patient de-rived prostate tumor xenograft,PDPTX)模型是将患者新鲜的肿瘤组织移植于免疫缺陷小鼠而建立的体内模型,该模型能较好地复制原发肿瘤的异质性,保持肿瘤在分子学、基因学和病理学的复杂性。特别是采用肾包膜移植建立PDPTX模型的方法较好地解决了传统皮下移植建模成功率低、低级别肿瘤成瘤难、无法实现移植瘤转移等缺点,为前列腺癌研究提供了更为理想的体内模型。尤其是在靶向治疗、新型药物筛选、个体化治疗等方面具有不可取代的优势。

  11. A Stochastic Model for Cancer Stem Cell Origin in Metastatic Colon Cancer

    Science.gov (United States)

    Odoux, Christine; Fohrer, Helene; Hoppo, Toshitaka; Guzik, Lynda; Stolz, Donna Beer; Lewis, Dale W.; Gollin, Susanne M.; Gamblin, T. Clark; Geller, David A.; Lagasse, Eric

    2008-01-01

    Human cancers have been found to include transformed stem cells that may drive cancer progression to metastasis. Here we report that metastatic colon cancer contains clonally derived tumor cells with all of the critical properties expected of stem cells, including self-renewal and to the ability to differentiate into mature colon cells. Additionally, when injected into mice, these cells initiated tumors that closely resemble human cancer. Karyotype analyses of parental and clonally-derived tumor cells expressed many consistent (clonal), along with unique chromosomal aberrations, suggesting the presence of chromosomal instability in the cancer stem cells. Thus, this new model for cancer origin and metastatic progression includes features of both the hierarchical model for cancerous stem cells and the stochastic model, driven by the observation of chromosomal instability. PMID:18757407

  12. Role of Transcriptional Corepressor CtBP1 in Prostate Cancer Progression

    Directory of Open Access Journals (Sweden)

    Rui Wang

    2012-10-01

    Full Text Available Transcriptional repressors and corepressors play a critical role in cellular homeostasis and are frequently altered in cancer. C-terminal binding protein 1 (CtBP1, a transcriptional corepressor that regulates the expression of tumor suppressors and genes involved in cell death, is known to play a role in multiple cancers. In this study, we observed the overexpression and mislocalization of CtBP1 in metastatic prostate cancer and demonstrated the functional significance of CtBP1 in prostate cancer progression. Transient and stable knockdown of CtBP1 in prostate cancer cells inhibited their proliferation and invasion. Expression profiling studies of prostate cancer cell lines revealed that multiple tumor suppressor genes are repressed by CtBP1. Furthermore, our studies indicate a role for CtBP1 in conferring radiation resistance to prostate cancer cell lines. In vivo studies using chicken chorioallantoic membrane assay, xenograft studies, and murine metastasis models suggested a role for CtBP1 in prostate tumor growth and metastasis. Taken together, our studies demonstrated that dysregulated expression of CtBP1 plays an important role in prostate cancer progression and may serve as a viable therapeutic target.

  13. Hypoxia in models of lung cancer

    DEFF Research Database (Denmark)

    Graves, Edward E; Vilalta, Marta; Cecic, Ivana K

    2010-01-01

    PURPOSE: To efficiently translate experimental methods from bench to bedside, it is imperative that laboratory models of cancer mimic human disease as closely as possible. In this study, we sought to compare patterns of hypoxia in several standard and emerging mouse models of lung cancer...... to establish the appropriateness of each for evaluating the role of oxygen in lung cancer progression and therapeutic response. EXPERIMENTAL DESIGN: Subcutaneous and orthotopic human A549 lung carcinomas growing in nude mice as well as spontaneous K-ras or Myc-induced lung tumors grown in situ......H2AX foci in vitro and in vivo. Finally, our findings were compared with oxygen electrode measurements of human lung cancers. RESULTS: Minimal fluoroazomycin arabinoside and pimonidazole accumulation was seen in tumors growing within the lungs, whereas subcutaneous tumors showed substantial trapping...

  14. Autonomic nerve development contributes to prostate cancer progression.

    Science.gov (United States)

    Bauman, John; McVary, Kevin

    2013-11-01

    In a significant translational study, Magnon et al. investigated the role that the autonomic nervous system plays in the development and spread of prostate cancer in both mice and human models. The study shows different roles for both branches of the autonomic nervous system, with the sympathetic system promoting early stages of tumorigenesis, and the parasympathetic system promoting cancer dissemination. This information could lead to important new foundations for treatment, therapies and management of prostate cancer.

  15. Dual role of GRK5 in cancer development and progression.

    Science.gov (United States)

    Gambardella, J; Franco, A; Giudice, C Del; Fiordelisi, A; Cipolletta, E; Ciccarelli, M; Trimarco, B; Iaccarino, G; Sorriento, D

    2016-05-01

    GRK5 is a multifunctional protein that is able to move within the cell in response to various stimuli to regulate key intracellular signaling from receptor activation, on plasmamembrane, to gene transcription, in the nucleus. Thus, GRK5 is involved in the development and progression of several pathological conditions including cancer. Several reports underline the involvement of GRK5 in the regulation of tumor growth even if they appear controversial. Indeed, depending on its subcellular localization and on the type of cancer, GRK5 is able to both inhibit cancer progression, through the desensitization of GPCR and non GPCR-receptors (TSH, PGE2R, PDGFR), and induce tumor growth, acting on non-receptor substrates (p53, AUKA and NPM1). All these findings suggest that targeting GRK5 could be an useful anti-cancer strategy, for specific tumor types. In this review, we will discuss the different effects of this kinase in the induction and progression of tumorigenesis, the molecular mechanisms by which GRK5 exerts its effects, and the potential therapeutic strategies to modulate them.

  16. The role of MT2-MMP in cancer progression

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Emiko [Department of Molecular Pathology, Graduate School of Medicine and Health Sciences, Osaka University, Suita, Osaka 565-0871 (Japan); Yana, Ikuo [Department of Molecular Pathology, Graduate School of Medicine and Health Sciences, Osaka University, Suita, Osaka 565-0871 (Japan); Takeda Pharmaceutical Co. Ltd., Japan Development Center, Osaka 540-8645 (Japan); Fujita, Chisato; Irifune, Aiko; Takeda, Maki; Madachi, Ayako; Mori, Seiji; Hamada, Yoshinosuke; Kawaguchi, Naomasa [Department of Molecular Pathology, Graduate School of Medicine and Health Sciences, Osaka University, Suita, Osaka 565-0871 (Japan); Matsuura, Nariaki, E-mail: Matsuura@sahs.med.osaka-u.ac.jp [Department of Molecular Pathology, Graduate School of Medicine and Health Sciences, Osaka University, Suita, Osaka 565-0871 (Japan)

    2010-03-05

    The role of MT2-MMP in cancer progression remains to be elucidated in spite of many reports on MT1-MMP. Using a human fibrosarcoma cell, HT1080 and a human gastric cancer cell, TMK-1, endogenous expression of MT1-MMP or MT2-MMP was suppressed by siRNA induction to examine the influence of cancer progression in vitro and in vivo. In HT1080 cells, positive both in MT1-MMP and MT2-MMP, the migration as well as the invasion was impaired by MT1-MMP or MT2-MMP suppression. Also cell proliferation in three dimensional (3D) condition was inhibited by MT1-MMP or MT2-MMP suppression and tumor growth in the nude mice transplanted with tumor cells were reduced either MT1-MMP or MT2-MMP suppression with a prolongation of survival time in vivo. MT2-MMP suppression induces more inhibitory effects on 3D proliferation and in vivo tumor growth than MT1-MMP. On the other hand, TMK-1 cells, negative in MT1-MMP and MMP-2 but positive in MT2-MMP, all the migratory, invasive, and 3D proliferative activities in TMK-1 are decreased only by MT2-MMP suppression. These results indicate MT2-MMP might be involved in the cancer progression more than or equal to MT1-MMP independently of MMP-2 and MT1-MMP.

  17. Gender Differences in Adipocyte Metabolism and Liver Cancer Progression.

    Science.gov (United States)

    Cheung, Otto K-W; Cheng, Alfred S-L

    2016-01-01

    Liver cancer is the third most common cancer type and the second leading cause of deaths in men. Large population studies have demonstrated remarkable gender disparities in the incidence and the cumulative risk of liver cancer. A number of emerging risk factors regarding metabolic alterations associated with obesity, diabetes and dyslipidemia have been ascribed to the progression of non-alcoholic fatty liver diseases (NAFLD) and ultimately liver cancer. The deregulation of fat metabolism derived from excessive insulin, glucose, and lipid promotes cancer-causing inflammatory signaling and oxidative stress, which eventually triggers the uncontrolled hepatocellular proliferation. This review presents the current standing on the gender differences in body fat compositions and their mechanistic linkage with the development of NAFLD-related liver cancer, with an emphasis on genetic, epigenetic and microRNA control. The potential roles of sex hormones in instructing adipocyte metabolic programs may help unravel the mechanisms underlying gender dimorphism in liver cancer and identify the metabolic targets for disease management.

  18. Gender Differences in Adipocyte Metabolism and Liver Cancer Progression

    Directory of Open Access Journals (Sweden)

    Otto Ka-Wing Cheung

    2016-09-01

    Full Text Available Liver cancer is the third most common cancer type and the second leading cause of deaths in men. Large population studies have demonstrated remarkable gender disparities in the incidence and the cumulative risk of liver cancer. A number of emerging risk factors regarding metabolic alterations associated with obesity, diabetes and dyslipidemia have been ascribed to the progression of non-alcoholic fatty liver diseases (NAFLD and ultimately liver cancer. The deregulation of fat metabolism derived from excessive insulin, glucose and lipid promotes cancer-causing inflammatory signaling and oxidative stress, which eventually triggers the uncontrolled hepatocellular proliferation. This review presents the current standing on the gender differences in body fat compositions and their mechanistic linkage with the development of NAFLD-related liver cancer, with an emphasis on genetic, epigenetic and microRNA control. The potential roles of sex hormones in instructing adipocyte metabolic programs may help unravel the mechanisms underlying gender dimorphism in liver cancer and identify the metabolic targets for disease management.

  19. Daxx regulates mitotic progression and prostate cancer predisposition.

    Science.gov (United States)

    Kwan, Pak Shing; Lau, Chi Chiu; Chiu, Yung Tuen; Man, Cornelia; Liu, Ji; Tang, Kai Dun; Wong, Yong Chuan; Ling, Ming-Tat

    2013-04-01

    Mitotic progression of mammalian cells is tightly regulated by the E3 ubiquitin ligase anaphase promoting complex (APC)/C. Deregulation of APC/C is frequently observed in cancer cells and is suggested to contribute to chromosome instability and cancer predisposition. In this study, we identified Daxx as a novel APC/C inhibitor frequently overexpressed in prostate cancer. Daxx interacts with the APC/C coactivators Cdc20 and Cdh1 in vivo, with the binding of Cdc20 dependent on the consensus destruction boxes near the N-terminal of the Daxx protein. Ectopic expression of Daxx, but not the D-box deleted mutant (DaxxΔD-box), inhibited the degradation of APC/Cdc20 and APC/Cdh1 substrates, leading to a transient delay in mitotic progression. Daxx is frequently upregulated in prostate cancer tissues; the expression level positively correlated with the Gleason score and disease metastasis (P = 0.027 and 0.032, respectively). Furthermore, ectopic expression of Daxx in a non-malignant prostate epithelial cell line induced polyploidy under mitotic stress. Our data suggest that Daxx may function as a novel APC/C inhibitor, which promotes chromosome instability during prostate cancer development.

  20. Surgical treatment for progressive prostate cancer: A clinical case

    Directory of Open Access Journals (Sweden)

    E. I. Veliev

    2014-01-01

    Full Text Available In spite of its existing standards, the treatment of patients with progressive prostate cancer (PC remains a matter of debate. Ensuring that the patients have good quality of life is also relevant. The paper describes a clinical case of a patient with progressive PC after hormone therapy, brachytherapy, salvage prostatectomy, enucleation of the testicular parenchyma, and salvage lymphadenectomy. A phallic prosthesis and an artificial urinary sphincter have been implanted to improve quality of life. The results of preoperative examination and the technological features of surgical interventions are given.

  1. Progress in Cancer Diagnosis With Ultrasound

    Science.gov (United States)

    2007-11-02

    models or methods so far are: Wold Decomposition [3], Generalised Spectrum [4], Shot-noise, alpha-stable distributions [5] and “K” and Nakagami ...Forsberg, C. W. Piccoli, and B. B. Goldberg “Classification of ultrasonic B mode images of breast masses using Nakagami distribution” Accepted for

  2. Triptolide downregulates Rac1 and the JAK/STAT3 pathway and inhibits colitis-related colon cancer progression

    DEFF Research Database (Denmark)

    Wang, Zhipeng; Jin, Haifeng; Xu, Ruodan

    2009-01-01

    Triptolide, a diterpenoid triepoxide from the traditional Chinese medicinal herb Tripterygium wilfordii Hook. f., is a potential treatment for autoimmune diseases as well a possible anti-tumor agent. It inhibits proliferation of colorectal cancer cells in vitro and in vivo. In this study, its...... ability to block progress of colitis to colon cancer, and its molecular mechanism of action are investigated. A mouse model for colitis-induced colorectal cancer was used to test the effect of triptolide on cancer progression. Treatment of mice with triptolide decreased the incidence of colon cancer...... formation, and increased survival rate. Moreover, triptolide decreased the incidence of tumors in nude mice inoculated with cultured colon cancer cells dose-dependently. In vitro, triptolide inhibited the proliferation, migration and colony formation of colon cancer cells. Secretion of IL6 and levels of JAK...

  3. Progressive Damage Modeling of Notched Composites

    Science.gov (United States)

    Aitharaju, Venkat; Aashat, Satvir; Kia, Hamid; Satyanarayana, Arunkumar; Bogert, Philip

    2016-01-01

    There is an increased interest in using non-crimp fabric reinforced composites for primary and secondary structural weight savings in high performance automobile applications. However, one of the main challenges in implementing these composites is the lack of understanding of damage progression under a wide variety of loading conditions for general configurations. Towards that end, researchers at GM and NASA are developing new damage models to predict accurately the progressive failure of these composites. In this investigation, the developed progressive failure analysis model was applied to study damage progression in center-notched and open-hole tension specimens for various laminate schemes. The results of a detailed study with respect to the effect of element size on the analysis outcome are presented.

  4. Engineered Swine Models of Cancer

    Directory of Open Access Journals (Sweden)

    Adrienne L. Watson

    2016-05-01

    Full Text Available Over the past decade, the technology to engineer genetically modified swine has seen many advancements, and because their physiology is remarkably similar to that of humans, swine models of cancer may be extremely valuable for preclinical safety studies as well as toxicity testing of pharmaceuticals prior to the start of human clinical trials. Hence, the benefits of using swine as a large animal model in cancer research and the potential applications and future opportunities of utilizing pigs in cancer modeling are immense. In this review, we discuss how pigs have been and can be used as a biomedical models for cancer research, with an emphasis on current technologies. We have focused on applications of precision genetics that can provide models that mimic human cancer predisposition syndromes. In particular, we describe the advantages of targeted gene-editing using custom endonucleases, specifically TALENs and CRISPRs, and transposon systems, to make novel pig models of cancer with broad preclinical applications.

  5. ADAM15 Is Functionally Associated with the Metastatic Progression of Human Bladder Cancer.

    Directory of Open Access Journals (Sweden)

    Guadalupe Lorenzatti Hiles

    Full Text Available ADAM15 is a member of a family of catalytically active disintegrin membrane metalloproteinases that function as molecular signaling switches, shed membrane bound growth factors and/or cleave and inactivate cell adhesion molecules. Aberrant metalloproteinase function of ADAM15 may contribute to tumor progression through the release of growth factors or disruption of cell adhesion. In this study, we utilized human bladder cancer tissues and cell lines to evaluate the expression and function of ADAM15 in the progression of human bladder cancer. Examination of genome and transcriptome databases revealed that ADAM15 ranked in the top 5% of amplified genes and its mRNA was significantly overexpressed in invasive and metastatic bladder cancer compared to noninvasive disease. Immunostaining of a bladder tumor tissue array designed to evaluate disease progression revealed increased ADAM15 immunoreactivity associated with increasing cancer stage and exhibited significantly stronger staining in metastatic samples. About half of the invasive tumors and the majority of the metastatic cases exhibited high ADAM15 staining index, while all low grade and noninvasive cases exhibited negative or low staining. The knockdown of ADAM15 mRNA expression significantly inhibited bladder tumor cell migration and reduced the invasive capacity of bladder tumor cells through MatrigelTM and monolayers of vascular endothelium. The knockdown of ADAM15 in a human xenograft model of bladder cancer inhibited tumor growth by 45% compared to controls. Structural modeling of the catalytic domain led to the design of a novel ADAM15-specific sulfonamide inhibitor that demonstrated bioactivity and significantly reduced the viability of bladder cancer cells in vitro and in human bladder cancer xenografts. Taken together, the results revealed an undescribed role of ADAM15 in the invasion of human bladder cancer and suggested that the ADAM15 catalytic domain may represent a viable

  6. Does Lactation Mitigate Triple Negative/Basal Breast Cancer Progression

    Science.gov (United States)

    2013-11-01

    Progression. March 6, 2012, Postdoctoral Seminar Series, University of Colorado Denver. 3. Tanya D. Russell. Pregnancy and Involution Promote...are DCIS, and standard treatment typically involves surgery and radiation. A better understanding of the role of the myoepithelium in early stage...Aurora, CO, USA 80045. 2 School of Medicine, Department of Pediatrics , B119, Bldg 406, Room 105 3University of Colorado Cancer Center, Bldg 500

  7. Mouse models for cancer research

    Institute of Scientific and Technical Information of China (English)

    Wei Zhang; Lynette Moore; Ping Ji

    2011-01-01

    Mouse models of cancer enable researchers to leamn about tumor biology in complicated and dynamic physiological systems. Since the development of gene targeting in mice, cancer biologists have been among the most frequent users of transgenic mouse models, which have dramatically increased knowledge about how cancers form and grow. The Chinese Joumnal of Cancer will publish a series of papers reporting the use of mouse models in studying genetic events in cancer cases. This editorial is an overview of the development and applications of mouse models of cancer and directs the reader to upcoming papers describing the use of these models to be published in coming issues, beginning with three articles in the current issue.

  8. Oct-4 is associated with gastric cancer progression and prognosis

    Directory of Open Access Journals (Sweden)

    Jiang WL

    2016-01-01

    Full Text Available Wen-Li Jiang,1 Peng-Fei Zhang,2 Guo-Feng Li,1 Jian-Hua Dong,1 Xue-Song Wang,1 Yuan-Yu Wang3 1Department of Surgery, Juxian People’s Hospital, 2Department of Surgery, Rizhao People’s Hospital of Traditional Chinese Medicine, Rizhao, 3Department of Gastrointestinal Surgery, Zhejiang Provincial People’s Hospital, Hangzhou, People’s Republic of China Aim: To investigate the clinical significance of Oct-4 in the development and progression of gastric cancer.Methods: Immunohistochemistry was used to analyze Oct-4 expression in 412 gastric cancer cases. Oct-4 protein levels were upregulated in gastric cancer tissues compared with adjacent noncancerous tissues.Results: Positive expression of Oct-4 correlated with age, depth of invasion, Lauren classification, lymph node metastasis, distant metastasis, and TNM stage. In stages I, II, and III, the 5-year survival rate of patients with high expression of Oct-4 was significantly lower than that in patients with low expression of Oct-4. In stage IV, Oct-4 expression did not correlate with the 5-year survival rate. Furthermore, multivariate analysis suggested that the depth of invasion, lymph node metastasis, distant metastasis, TNM stage, and upregulation of Oct-4 were independent prognostic factors of gastric cancer.Conclusion: Oct-4 protein is a useful marker in predicting tumor progression and prognosis. Keywords: gastric carcinoma, invasion, metastasis, survival rate

  9. The ghrelin axis--does it have an appetite for cancer progression?

    Science.gov (United States)

    Chopin, Lisa K; Seim, Inge; Walpole, Carina M; Herington, Adrian C

    2012-12-01

    Ghrelin, the endogenous ligand for the GH secretagogue receptor (GHSR), is a peptide hormone with diverse physiological roles. Ghrelin regulates GH release, appetite and feeding, gut motility, and energy balance and also has roles in the cardiovascular, immune, and reproductive systems. Ghrelin and the GHSR are expressed in a wide range of normal and tumor tissues, and a fluorescein-labeled, truncated form of ghrelin is showing promise as a biomarker for prostate cancer. Plasma ghrelin levels are generally inversely related to body mass index and are unlikely to be useful as a biomarker for cancer, but may be useful as a marker for cancer cachexia. Some single nucleotide polymorphisms in the ghrelin and GHSR genes have shown associations with cancer risk; however, larger studies are required. Ghrelin regulates processes associated with cancer, including cell proliferation, apoptosis, cell migration, cell invasion, inflammation, and angiogenesis; however, the role of ghrelin in cancer is currently unclear. Ghrelin has predominantly antiinflammatory effects and may play a role in protecting against cancer-related inflammation. Ghrelin and its analogs show promise as treatments for cancer-related cachexia. Further studies using in vivo models are required to determine whether ghrelin has a role in cancer progression.

  10. Cancer Metabolism: A Modeling Perspective

    DEFF Research Database (Denmark)

    Ghaffari, Pouyan; Mardinoglu, Adil; Nielsen, Jens

    2015-01-01

    requires both the advancement of experimental technologies for more comprehensive measurement of omics as well as the advancement of robust computational methods for accurate analysis of the generated data. Here, we review cancer-associated reprogramming of metabolism and highlight the capability of genome...... suggest that utilization of amino acids and lipids contributes significantly to cancer cell metabolism. Also recent progresses in our understanding of carcinogenesis have revealed that cancer is a complex disease and cannot be understood through simple investigation of genetic mutations of cancerous cells....... Cancer cells present in complex tumor tissues communicate with the surrounding microenvironment and develop traits which promote their growth, survival, and metastasis. Decoding the full scope and targeting dysregulated metabolic pathways that support neoplastic transformations and their preservation...

  11. Progress With Nonhuman Animal Models of Addiction.

    Science.gov (United States)

    Crabbe, John C

    2016-09-01

    Nonhuman animals have been major contributors to the science of the genetics of addiction. Given the explosion of interest in genetics, it is fair to ask, are we making reasonable progress toward our goals with animal models? I will argue that our goals are changing and that overall progress has been steady and seems likely to continue apace. Genetics tools have developed almost incredibly rapidly, enabling both more reductionist and more synthetic or integrative approaches. I believe that these approaches to making progress have been unbalanced in biomedical science, favoring reductionism, particularly in animal genetics. I argue that substantial, novel progress is also likely to come in the other direction, toward synthesis and abstraction. Another area in which future progress with genetic animal models seems poised to contribute more is the reconciliation of human and animal phenotypes, or consilience. The inherent power of the genetic animal models could be more profitably exploited. In the end, animal research has continued to provide novel insights about how genes influence individual differences in addiction risk and consequences. The rules of the genetics game are changing so fast that it is hard to remember how comparatively little we knew even a generation ago. Rather than worry about whether we have been wasting time and resources asking the questions we have been, we should look to the future and see if we can come up with some new ones. The valuable findings from the past will endure, and the sidetracks will be forgotten.

  12. Kinetics Modeling of Cancer Immunology.

    Science.gov (United States)

    1986-05-09

    CANCER IMMUNOLOGY -1 DTICS ELECTED SEP 9 8 UNITED STATES NAVAL ACADEMY ANNAPOLIS, MARYLAND V ,1986 %,e docment ha le approved for public A." I and sale...1986 4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED KINETICS MODELING OF CANCER IMMUNOLOGY Final: 1985/1986 6. PERFORMING ORG. REPORT...137 (1986) "Kinetics Modeling of Cancer Immunology " A Trident Scholar Project Report by Midn I/C Scott Helmers, Class of 1986 United States Naval

  13. Entropy, complexity, and Markov diagrams for random walk cancer models.

    Science.gov (United States)

    Newton, Paul K; Mason, Jeremy; Hurt, Brian; Bethel, Kelly; Bazhenova, Lyudmila; Nieva, Jorge; Kuhn, Peter

    2014-12-19

    The notion of entropy is used to compare the complexity associated with 12 common cancers based on metastatic tumor distribution autopsy data. We characterize power-law distributions, entropy, and Kullback-Liebler divergence associated with each primary cancer as compared with data for all cancer types aggregated. We then correlate entropy values with other measures of complexity associated with Markov chain dynamical systems models of progression. The Markov transition matrix associated with each cancer is associated with a directed graph model where nodes are anatomical locations where a metastatic tumor could develop, and edge weightings are transition probabilities of progression from site to site. The steady-state distribution corresponds to the autopsy data distribution. Entropy correlates well with the overall complexity of the reduced directed graph structure for each cancer and with a measure of systemic interconnectedness of the graph, called graph conductance. The models suggest that grouping cancers according to their entropy values, with skin, breast, kidney, and lung cancers being prototypical high entropy cancers, stomach, uterine, pancreatic and ovarian being mid-level entropy cancers, and colorectal, cervical, bladder, and prostate cancers being prototypical low entropy cancers, provides a potentially useful framework for viewing metastatic cancer in terms of predictability, complexity, and metastatic potential.

  14. Entropy, complexity, and Markov diagrams for random walk cancer models

    Science.gov (United States)

    Newton, Paul K.; Mason, Jeremy; Hurt, Brian; Bethel, Kelly; Bazhenova, Lyudmila; Nieva, Jorge; Kuhn, Peter

    2014-12-01

    The notion of entropy is used to compare the complexity associated with 12 common cancers based on metastatic tumor distribution autopsy data. We characterize power-law distributions, entropy, and Kullback-Liebler divergence associated with each primary cancer as compared with data for all cancer types aggregated. We then correlate entropy values with other measures of complexity associated with Markov chain dynamical systems models of progression. The Markov transition matrix associated with each cancer is associated with a directed graph model where nodes are anatomical locations where a metastatic tumor could develop, and edge weightings are transition probabilities of progression from site to site. The steady-state distribution corresponds to the autopsy data distribution. Entropy correlates well with the overall complexity of the reduced directed graph structure for each cancer and with a measure of systemic interconnectedness of the graph, called graph conductance. The models suggest that grouping cancers according to their entropy values, with skin, breast, kidney, and lung cancers being prototypical high entropy cancers, stomach, uterine, pancreatic and ovarian being mid-level entropy cancers, and colorectal, cervical, bladder, and prostate cancers being prototypical low entropy cancers, provides a potentially useful framework for viewing metastatic cancer in terms of predictability, complexity, and metastatic potential.

  15. Progress in adjuvant chemotherapy for breast cancer: an overview.

    Science.gov (United States)

    Anampa, Jesus; Makower, Della; Sparano, Joseph A

    2015-01-01

    Breast cancer is the most common cause of cancer and cancer death worldwide. Although most patients present with localized breast cancer and may be rendered disease-free with local therapy, distant recurrence is common and is the primary cause of death from the disease. Adjuvant systemic therapies are effective in reducing the risk of distant and local recurrence, including endocrine therapy, anti-HER2 therapy, and chemotherapy, even in patients at low risk of recurrence. The widespread use of adjuvant systemic therapy has contributed to reduced breast cancer mortality rates. Adjuvant cytotoxic chemotherapy regimens have evolved from single alkylating agents to polychemotherapy regimens incorporating anthracyclines and/or taxanes. This review summarizes key milestones in the evolution of adjuvant systemic therapy in general, and adjuvant chemotherapy in particular. Although adjuvant treatments are routinely guided by predictive factors for endocrine therapy (hormone receptor expression) and anti-HER2 therapy (HER2 overexpression), predicting benefit from chemotherapy has been more challenging. Randomized studies are now in progress utilizing multiparameter gene expression assays that may more accurately select patients most likely to benefit from adjuvant chemotherapy.

  16. Tumor-derived exosomes and their role in cancer progression

    Science.gov (United States)

    Whiteside, Theresa L

    2017-01-01

    Tumor cells actively produce, release and utilize exosomes to promote tumor growth. Mechanisms through which tumor-derived exosomes subserve the tumor are under intense investigation. These exosomes are information carriers, conveying molecular and genetic messages from tumor cells to normal or other abnormal cells residing at close or distant sites. Tumor-derived exosomes are found in all body fluids. Upon the contact with target cells, they alter phenotypic and functional attributes of recipients, reprogramming them into active contributors to angiogenesis, thrombosis, metastasis and immunosuppression. Exosomes produced by tumors carry cargos that in part mimic contents of parent cells and are of potential interest as non-invasive biomarkers of cancer. Their role in inhibiting the host antitumor responses and in mediating drug resistance is important for cancer therapy. Tumor-derived exosomes may interfere with cancer immunotherapy, but they also could serve as adjuvants and antigenic components of antitumor vaccines. Their biological roles in cancer development or progression as well as cancer therapy suggest that tumor-derived exosomes are critical components of oncogenic transformation. PMID:27117662

  17. Tumor-Derived Exosomes and Their Role in Cancer Progression.

    Science.gov (United States)

    Whiteside, Theresa L

    2016-01-01

    Tumor cells actively produce, release, and utilize exosomes to promote tumor growth. Mechanisms through which tumor-derived exosomes subserve the tumor are under intense investigation. These exosomes are information carriers, conveying molecular and genetic messages from tumor cells to normal or other abnormal cells residing at close or distant sites. Tumor-derived exosomes are found in all body fluids. Upon contact with target cells, they alter phenotypic and functional attributes of recipients, reprogramming them into active contributors to angiogenesis, thrombosis, metastasis, and immunosuppression. Exosomes produced by tumors carry cargos that in part mimic contents of parent cells and are of potential interest as noninvasive biomarkers of cancer. Their role in inhibiting the host antitumor responses and in mediating drug resistance is important for cancer therapy. Tumor-derived exosomes may interfere with cancer immunotherapy, but they also could serve as adjuvants and antigenic components of antitumor vaccines. Their biological roles in cancer development or progression as well as cancer therapy suggest that tumor-derived exosomes are critical components of oncogenic transformation.

  18. Potential Biomarker of L type Amino Acid Transporter 1 in Breast Cancer Progression

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Zhongxing; Cho, Heidi T.; Williams, Larry; Zhu, Aizhi; Liang, Ke; Huang, Ke; Wu, Hui; Jiang, Chunsu; Hong, Samuel; Crowe, Ronald; Goodman, Mark M.; Shim, Hyunsuk [Emory Univ. School of Medicine, Atlanta (United States)

    2011-06-15

    L type amino acid transporter 1 (LAT1) is essential for the transport of large neutral amino acids. However, its role in breast cancer growth remains largely unknown. The purpose of the study is to investigate whether LAT1 is a potential biomarker for the diagnosis and treatment of breast cancer. LAT1 mRNA and protein levels in breast cancer cell lines and tissues were analyzed. In addition, the effects of targeting LAT1 for the inhibition of breast cancer cell tumorigenesis were assessed with soft agar assay. The imaging of xenograft with 1 amino 3 [{sup 18F}]fluorocyclo butane 1 carboxylic acid ([{sup 18F}]FACBC) PET was assessed for its diagnostic biomarker potential. Normal breast tissue or low malignant cell lines expressed low levels of LAT1 mRNA and protein, while highly malignant cancer cell lines and high grade breast cancer tissue expressed high levels of LAT1. In addition, higher expression levels of LAT1 in breast cancer tissues were consistent with advanced stage breast cancer. Furtermore, the blockade of LAT1 with its inhibitor, 2 amino bicyclo[2.2.1]heptane 2 carboxylic acid (BCH), or the knockdown of LAT1 with siRNA, inhibited proliferation and tumorigenesis of breast cancer cells. A leucine analog, [{sup 18F}]FACBC, has been demonstrated to be an excellent PET tracer for the non invasive imaging og malignant breast cancer using an orthotopic animal model. The overexpression of LAT1 is required for the progression of breast cancer. LAT1 represents a potential biomarker for therapy and diagnosis of breast cancer. [{sup 18F}]FACBC that correlates with LAT1 function is a potential PET tracer for malignant breast tumor imaging.

  19. The role of S100 genes in breast cancer progression.

    LENUS (Irish Health Repository)

    McKiernan, Eadaoin

    2011-06-01

    The S100 gene family encode low molecular weight proteins implicated in cancer progression. In this study, we analyzed the expression of four S100 genes in one cohort of patients with breast cancer and 16 S100 genes in a second cohort. In both cohorts, the expression of S100A8 and S1009 mRNA level was elevated in high-grade compared to low-grade tumors and in estrogen receptor-negative compared to estrogen receptor-positive tumors. None of the S100 transcripts investigated were significantly associated with the presence of lymph node metastasis. Notably, multiple S100 genes, including S100A1, S100A2, S100A4, S100A6, S100A8, S100A9, S100A10, S100A11, and S100A14 were upregulated in basal-type breast cancers compared to non-basal types. Using Spearman\\'s correlation analysis, several S100 transcripts correlated significantly with each other, the strongest correlation has been found between S100A8 and S100A9 (r = 0.889, P < 0.001, n = 295). Of the 16 S100 transcripts investigated, only S100A11 and S100A14 were significantly associated with patient outcome. Indeed, these two transcripts predicted outcome in the cohort of patients that did not receive systemic adjuvant therapy. Based on our findings, we conclude that the different S100 genes play varying roles in breast cancer progression. Specific S100 genes are potential targets for the treatment of basal-type breast cancers.

  20. The role of S100 genes in breast cancer progression.

    LENUS (Irish Health Repository)

    McKiernan, Eadaoin

    2012-02-01

    The S100 gene family encode low molecular weight proteins implicated in cancer progression. In this study, we analyzed the expression of four S100 genes in one cohort of patients with breast cancer and 16 S100 genes in a second cohort. In both cohorts, the expression of S100A8 and S1009 mRNA level was elevated in high-grade compared to low-grade tumors and in estrogen receptor-negative compared to estrogen receptor-positive tumors. None of the S100 transcripts investigated were significantly associated with the presence of lymph node metastasis. Notably, multiple S100 genes, including S100A1, S100A2, S100A4, S100A6, S100A8, S100A9, S100A10, S100A11, and S100A14 were upregulated in basal-type breast cancers compared to non-basal types. Using Spearman\\'s correlation analysis, several S100 transcripts correlated significantly with each other, the strongest correlation has been found between S100A8 and S100A9 (r = 0.889, P < 0.001, n = 295). Of the 16 S100 transcripts investigated, only S100A11 and S100A14 were significantly associated with patient outcome. Indeed, these two transcripts predicted outcome in the cohort of patients that did not receive systemic adjuvant therapy. Based on our findings, we conclude that the different S100 genes play varying roles in breast cancer progression. Specific S100 genes are potential targets for the treatment of basal-type breast cancers.

  1. Cyr61 promotes breast tumorigenesis and cancer progression

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Miaw-Sheue; Bogart, Daphne F.; Castaneda, Jessica M.; Li, Patricia; Lupu, Ruth

    2002-01-16

    Cyr61, a member of the CCN family of genes, is an angiogenic factor. We have shown that it is overexpressed in invasive and metastatic human breast cancer cells and tissues. Here, we investigated whether Cyr61 is necessary and/or sufficient to bypass the ''normal'' estrogen (E2) requirements for breast cancer cell growth. Our results demonstrate that under E2-depleted condition, Cyr61 is sufficient to induce MCF-7 cells grow in the absence of E2. MCF-7 cells transfected with Cyr61 (MCF-7/Cyr61) became E2-independent but still E2-responsive. On the other hand, MCF-7/vector cells remain E2-dependent. MCF-7/Cyr61 cells acquire an antiestrogen-resistant phenotype, one of the most common clinical occurrences during breast cancer progression. MCF-7/Cyr61 cells are anchorage-independent and capable of forming Matrigel outgrowth patterns in the absence of E2. ERa expression in MCF-7/Cyr61 cells is decreased although still functional. Additionally, MCF-7/Cyr61 cells are tumorigenic in ovariectomized athymic nude mice. The tumors resemble human invasive carcinomas with increased vascularization and overexpression of vascular endothelial growth factor (VEGF). Our results demonstrate that Cyr61 is a tumor-promoting factor and a key regulator of breast cancer progression. This study provides evidence that Cyr61 is sufficient to induce E2-independence and anti-E2 resistance, and to promote invasiveness in vitro, and to induce tumorigenesis in vivo, all of which are characteristics of an aggressive breast cancer phenotype.

  2. Decreased expression of SOX17 is associated with tumor progression and poor prognosis in breast cancer.

    Science.gov (United States)

    Fu, De-Yuan; Tan, Hao-Sheng; Wei, Jin-Li; Zhu, Chang-Ren; Jiang, Ji-Xin; Zhu, Yu-Xiang; Cai, Feng-Lin; Chong, Mei-Hong; Ren, Chuan-Li

    2015-09-01

    The SOX17 (SRY-related HMG-box) transcription factor is involved in a variety of biological processes and is related to the tumorigenesis and progression of multiple tumors. However, the clinical application of SOX17 for breast cancer prognosis is currently limited. The aim of this study was to investigate the clinicopathologic and prognostic significance of SOX17 expression in human breast cancer. qPCR and western blot assays were performed to measure the expression of SOX17 in breast cancer cell lines and 30 matched pairs of breast cancer and corresponding noncancerous tissues. A SOX17 overexpression cell model was used to examine changes in cell growth in vitro. Immunohistochemical analyses were performed to retrospectively examine the prognostic impact of SOX17 expression in 187 additional breast cancer patients. Our results showed that SOX17 expression was decreased at both the messenger RNA (mRNA) and protein levels in the breast cancer cell lines and tissues, and that SOX17 overexpression could strongly suppress cell growth in vitro. Furthermore, the lack of SOX17 protein expression was strongly correlated with higher tumor grade (P = 0.002), lymph node metastasis (P breast cancer. Our findings indicate that SOX17 expression is a useful prognostic biomarker for breast cancer.

  3. Ovarian cancer: progress and continuing controversies in management.

    Science.gov (United States)

    Moss, Charlotte; Kaye, Stan B

    2002-09-01

    Ovarian cancer is the most lethal of the gynaecological cancers, affecting approximately 1 in 75 women in the developed world. In most cases (>75%), the disease is disseminated beyond the ovary at diagnosis. For patients with stage III-IV disease, many clinicians agree that standard treatment should comprise six cycles of paclitaxel-carboplatin. Randomised trials over the past 10 years have indicated the superiority of paclitaxel-based treatment and that carboplatin is equivalent to cisplatin, but better tolerated. A recent trial has suggested that docetaxel may be a better option than paclitaxel, with reduced neurotoxicity and comparable efficacy. Overall treatment results remain unsatisfactory, since the median survival for these patients is 2-3 years. Future progress may be made by addressing the following issues: Would sequential regimes be more effective? Intriguing results from two large randomised trials (ICON-3 and GOG-132) indicate that single agent platinum might well be incorporated into such regimes. Additionally, a range of other agents could be tested as part of first-line regimes, having demonstrated activity in relapsed patients; these include topotecan, gemcitabine and liposomal doxorubicin. Newer agents, such as cell signalling inhibitors have shown potential as single agents, but may be particularly effective in combination with current drugs. Real progress can be expected when a better understanding is achieved of the mechanisms underlying clinical drug resistance in ovarian cancer, and a close laboratory-clinical interaction is crucial.

  4. Investigate the Role of Obesity in Ovarian Cancer Initiation and Progression

    Science.gov (United States)

    2016-05-01

    TERMS Obesity, Ovarian Cancer, ovarian stem cells, inflammation, adipose tissue 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18...transformed ovarian epithelial cells in obese animals. The goal is to identify genes and pathways that lead to ovarian cancer initiation and...progression. We also aim to identify secreted factors from adipose tissue that promote ovarian cancer initiation and progression in obesity

  5. Tumoral stem cell reprogramming as a driver of cancer: Theory, biological models, implications in cancer therapy.

    Science.gov (United States)

    Vicente-Dueñas, Carolina; Hauer, Julia; Ruiz-Roca, Lucía; Ingenhag, Deborah; Rodríguez-Meira, Alba; Auer, Franziska; Borkhardt, Arndt; Sánchez-García, Isidro

    2015-06-01

    Cancer is a clonal malignant disease originated in a single cell and characterized by the accumulation of partially differentiated cells that are phenotypically reminiscent of normal stages of differentiation. According to current models, therapeutic strategies that block oncogene activity are likely to selectively target tumor cells. However, recent evidences have revealed that cancer stem cells could arise through a tumor stem cell reprogramming mechanism, suggesting that genetic lesions that initiate the cancer process might be dispensable for tumor progression and maintenance. This review addresses the impact of these results toward a better understanding of cancer development and proposes new approaches to treat cancer in the future.

  6. Recent progress on countercurrent chromatography modeling

    OpenAIRE

    Wang, Fengkang; Ito, Yoichiro; Wei, Yun

    2014-01-01

    As countercurrent chromatography is becoming an established method in chromatography for many kinds of products, it is becoming increasingly important to model the process and to be able to predict the peaks for a given process. The CCC industries are looking for rapid methods to analyze the processes of countercurrent chromatography and select suitable solvent system. In this paper, recent progress is reviewed in the development and demonstration of several types of models of countercurrent ...

  7. Research Progress of Lung Cancer with Leptomeningeal Metastasis

    Directory of Open Access Journals (Sweden)

    Chunhua MA

    2014-09-01

    Full Text Available Leptomeningeal metastases is one of the most serious complications of lung cancer, the patients with poor prognosis. Leptomeningeal metastasis in patients with lack specificity of clinical manifestations. The main clinical performance are the damage of cerebral symptoms, cranial nerve and spinal nerve. The diagnosis primarily based on the history of tumor, clinical symptoms, enhance magnetic resnance image (MRI scan and cerebrospinal fluid cytology. In recent years, new ways of detecting clinically, significantly increase the rate of early detection of leptomeningeal metastases. The effect of comprehensive treatments are still sad. The paper make a review of research progress in pathologic physiology, clinical manifestations, diagnosis methods and treatments of lung cancer with leptomeningeal metastases.

  8. Towards Laser Driven Hadron Cancer Radiotherapy: A Review of Progress

    CERN Document Server

    Ledingham, K W D; Shikazono, N; Ma, C-M

    2014-01-01

    It has been known for about sixty years that proton and heavy ion therapy is a very powerful radiation procedure for treating tumours. It has an innate ability to irradiate tumours with greater doses and spatial selectivity compared with electron and photon therapy and hence is a tissue sparing procedure. For more than twenty years powerful lasers have generated high energy beams of protons and heavy ions and hence it has been frequently speculated that lasers could be used as an alternative to RF accelerators to produce the particle beams necessary for cancer therapy. The present paper reviews the progress made towards laser driven hadron cancer therapy and what has still to be accomplished to realise its inherent enormous potential.

  9. Towards Laser Driven Hadron Cancer Radiotherapy: A Review of Progress

    Directory of Open Access Journals (Sweden)

    Ken W. D. Ledingham

    2014-09-01

    Full Text Available It has been known for about sixty years that proton and heavy ion therapy is a very powerful radiation procedure for treating tumors. It has an innate ability to irradiate tumors with greater doses and spatial selectivity compared with electron and photon therapy and, hence, is a tissue sparing procedure. For more than twenty years, powerful lasers have generated high energy beams of protons and heavy ions and it has, therefore, frequently been speculated that lasers could be used as an alternative to radiofrequency (RF accelerators to produce the particle beams necessary for cancer therapy. The present paper reviews the progress made towards laser driven hadron cancer therapy and what has still to be accomplished to realize its inherent enormous potential.

  10. Tumor-derived exosomes in oncogenic reprogramming and cancer progression.

    Science.gov (United States)

    Saleem, Sarmad N; Abdel-Mageed, Asim B

    2015-01-01

    In multicellular organisms, effective communication between cells is a crucial part of cellular and tissue homeostasis. This communication mainly involves direct cell-cell contact as well as the secretion of molecules that bind to receptors at the recipient cells. However, a more recently characterized mode of intercellular communication-the release of membrane vesicles known as exosomes-has been the subject of increasing interest and intensive research over the past decade. Following the discovery of the exosome-mediated immune activation, the pathophysiological roles of exosomes have been recognized in different diseases, including cancer. In this review, we describe the biogenesis and main physical characteristics that define exosomes as a specific population of secreted vesicles, with a special focus on their role in oncogenic transformation and cancer progression.

  11. Prolonged time to progression with fulvestrant for metastatic breast cancer.

    Science.gov (United States)

    Mello, Celso A L; Chinen, Ludmilla T D; da Silva, Samantha Cabral Severino; do Nascimento Matias, Carolina; Benevides, Carlos Frederico; Gimenes, Daniel Luiz; Fanelli, Marcello F

    2011-06-01

    Although the incidence of breast cancer has been declining in recent years, the disease is still one of the leading causes of cancer deaths in women. Recently, breast cancer has been treated with innovative approaches that use hormone-sensitive therapies. This is because in at least one-third of breast cancers, estrogens mediated via the estrogen receptor pathway act as endocrine growth factors. Fulvestrant has been studied as both first- and second-line therapy for locally advanced and metastatic breast cancer, but few studies have shown its effect as third-line therapy alone. To observe the disease time to progression (TTP) obtained with fulvestrant when used on metastatic breast cancer as first-, second-, and also third-line therapy. We also aimed to correlate the TTP obtained with fulvestrant with hormone receptor, HER2 expression, and metastatic site. This was a cohort study that retrospectively examined medical records of 73 postmenopausal women with advanced breast cancer who were treated with fulvestrant (250 mg/month i.m. injection) and followed at the Department of Medical Oncology at Hospital do Cancer A. C. Camargo in São Paulo, Brazil from August 2003 to December 2006. The median TTP with fulvestrant was about 11 months. When used as the first-line therapy, TTP was about 13 months; when used as second-line, TTP was about 6 months; and when used as third-line, it was about 12 months. No statistically significant difference was observed regarding the therapy line. In patients with positive ER tumors, TTP was 11 months. No significant difference in TTP was observed in negative ER tumors (TTP = 10 months). In patients with positive PgR tumors, TTP was 13 months and for negative PgR, TTP was 6 months (P = 0.008). According to the HER2 status, the TTP was 5 months for HER2+ and 10 months for HER2-. Our findings indicate that fulvestrant is an effective alternative for treatment of metastatic breast cancer.

  12. Recent progress in target therapy in colorectal cancer.

    Science.gov (United States)

    Pasetto, Lara Maria; Bortolami, Alberto; Falci, Cristina; Sinigaglia, Giulietta; Monfardini, Silvio

    2006-01-01

    Monoclonal antibodies are a new class of agents targeting at specific receptors on cancer cells. In addition to having direct cellular effects, antibodies can cany substances, such as radioactive isotopes, toxins and antineoplastic agents, to the targeted cells. Two of them, cetuximab (Erbitux) and bevacizumab (Avastin), seem to have acquired a significant role in the management of patients with radically resected and advanced colorectal carcinoma. Cetuximab plus irinotecan has been approved as second-line therapy in irinotecan-resistant colorectal cancer patients; bevacizumab plus 5FU/LV has resulted in higher response and longer survival than 5FU/LV alone in first line metastatic colorectal cancer; its combination with oxaliplatin has recently doubled results. The superior therapeutic efficacy of these molecular targeting agents over traditional chemotherapy has been shown by the survival benefit achieved by patients with advanced or recurrent cancers. Although the precise molecular mechanism by which these agents produce or enhance an antitumour effect, alone or in combination with anticancer drugs, is unknown, the specific inhibition of target genes critically involved in tumour progression and metastasis is clear. Further studies to determine which patient groups and anticancer drugs are more appropriate for combination therapy with these agents are needed. All the most important data obtained through recent studies are discussed, emphasizing their mechanisms of action, safety profiles and clinical applications.

  13. Excessive collagen turnover products are released during colorectal cancer progression and elevated in serum from metastatic colorectal cancer patients

    DEFF Research Database (Denmark)

    Kehlet, Stephanie Nina; Sanz-Pamplona, R.; Pedersen, Susanne Brix

    2016-01-01

    During cancer progression, the homeostasis of the extracellular matrix becomes imbalanced with an excessive collagen remodeling by matrix metalloproteinases. As a consequence, small protein fragments of degraded collagens are released into the circulation. We have investigated the potential...... of protein fragments of collagen type I, III and IV as novel biomarkers for colorectal cancer. Specific fragments of degraded type I, III and IV collagen (C1M, C3M, C4M) and type III collagen formation (Pro-C3) were assessed in serum from colorectal cancer patients, subjects with adenomas and matched healthy...... biomarkers were able to differentiate stage IV metastatic patients from all other stages. Combination of all markers with age and gender in a logistic regression model discriminated between metastatic and non-metastatic patients with an AUROC of 0.80. The data suggest that the levels of these collagen...

  14. Spontaneous cancer-stromal cell fusion as a mechanism of prostate cancer androgen-independent progression.

    Directory of Open Access Journals (Sweden)

    Ruoxiang Wang

    Full Text Available We have previously shown that human prostate cancer cells are capable of acquiring malignant attributes through interaction with stromal cells in the tumor microenvironment, while the interacting stromal cells can also become affected with both phenotypic and genotypic alterations. This study used a co-culture model to investigate the mechanism underlying the co-evolution of cancer and stromal cells. Red fluorescent androgen-dependent LNCaP prostate cancer cells were cultured with a matched pair of normal and cancer-associated prostate myofibroblast cells to simulate cancer-stromal interaction, and cellular changes in the co-culture were documented by tracking the red fluorescence. We found frequent spontaneous fusions between cancer and stromal cells throughout the co-culture. In colony formation assays assessing the fate of the hybrid cells, most of the cancer-stromal fusion hybrids remained growth-arrested and eventually perished. However, some of the hybrids survived to form colonies from the co-culture with cancer-associated stromal cells. These derivative clones showed genomic alterations together with androgen-independent phenotype. The results from this study reveal that prostate cancer cells are fusogenic, and cancer-stromal interaction can lead to spontaneous fusion between the two cell types. While a cancer-stromal fusion strategy may allow the stromal compartment to annihilate invading cancer cells, certain cancer-stromal hybrids with increased survival capability may escape annihilation to form a derivative cancer cell population with an altered genotype and increased malignancy. Cancer-stromal fusion thus lays a foundation for an incessant co-evolution between cancer and the cancer-associated stromal cells in the tumor microenvironment.

  15. Cancer-associated-fibroblasts and tumour cells: a diabolic liaison driving cancer progression.

    Science.gov (United States)

    Cirri, Paolo; Chiarugi, Paola

    2012-06-01

    Several recent papers have now provided compelling experimental evidence that the progression of tumours towards a malignant phenotype does not depend exclusively on the cell-autonomous properties of cancer cells themselves but is also deeply influenced by tumour stroma reactivity, thereby undergoing a strict environmental control. Tumour microenvironmental elements include structural components such as the extracellular matrix or hypoxia as well as stromal cells, either resident cells or recruited from circulating precursors, as macrophages and other inflammatory cells, endothelial cells and cancer-associated fibroblasts (CAFs). All these elements synergistically play a specific role in cancer progression. This review summarizes our current knowledge on the role of CAFs in tumour progression, with a particular focus on the biunivocal interplay between CAFs and cancer cells leading to the activation of the epithelial-mesenchymal transition programme and the achievement of stem cell traits, as well as to the metabolic reprogramming of both stromal and cancer cells. Recent advances on the role of CAFs in the preparation of metastatic niche, as well as the controversial origin of CAFs, are discussed in light of the new emerging therapeutic implications of targeting CAFs.

  16. HABP2 is a novel regulator of hyaluronan-mediated human lung cancer progression

    Directory of Open Access Journals (Sweden)

    Tamara eMirzapoiazova

    2015-07-01

    Full Text Available Background: Lung cancer is a devastating disease with limited treatment options. Many lung cancers have changes in their microenvironment including upregulation of the extracellular matrix glycosaminoglycan, hyaluronan (HA, which we have previously demonstrated can regulate the activity of the extracellular serine protease, Hyaluronan Binding Protein 2 (HABP2. This study examined the functional role of HABP2 on HA-mediated human lung cancer dynamics.Methods: Immunohistochemical analysis was performed on lung cancer patient samples using anti-HABP2 antibody. Stable control, shRNA and HABP2 overexpressing human lung adenocarcinoma cells were evaluated using immunoblot analysis, migration, extravasation and urokinase plasminogen activator (uPA activation assays with or without high molecular weight HA (HMW-HA or low molecular weight HA (LMW-HA. In human lung cancer xenograft models, primary tumor growth rates and lung metastasis were analyzed using consecutive tumor volume measurements and nestin immunoreactivity in nude mouse lungs.Results: We provide evidence that HABP2 is an important regulator of lung cancer progression. HABP2 expression was increased in several subtypes of patient non-small cell lung cancer samples. Further, HABP2 overexpression increased LMW-HA-induced uPA activation, migration and extravasation in human lung adenocarcinoma cells. In vivo, overexpression of HABP2 in human lung adenocarcinoma cells increased primary tumor growth rates in nude mice by ~2 fold and lung metastasis by ~10 fold compared to vector control cells (n=5 per condition.Conclusions: Our data suggests a possible direct effect of HABP2 on uPA activation and lung cancer progression. Our observations suggest that exploration of HABP2 in non-small cell lung carcinoma merits further study both as a diagnostic and therapeutic option.

  17. Preclinical fluorescent mouse models of pancreatic cancer

    Science.gov (United States)

    Bouvet, Michael; Hoffman, Robert M.

    2007-02-01

    Here we describe our cumulative experience with the development and preclinical application of several highly fluorescent, clinically-relevant, metastatic orthotopic mouse models of pancreatic cancer. These models utilize the human pancreatic cancer cell lines which have been genetically engineered to selectively express high levels of the bioluminescent green fluorescent (GFP) or red fluorescent protein (RFP). Fluorescent tumors are established subcutaneously in nude mice, and tumor fragments are then surgically transplanted onto the pancreas. Locoregional tumor growth and distant metastasis of these orthotopic implants occurs spontaneously and rapidly throughout the abdomen in a manner consistent with clinical human disease. Highly specific, high-resolution, real-time visualization of tumor growth and metastasis may be achieved in vivo without the need for contrast agents, invasive techniques, or expensive imaging equipment. We have shown a high correlation between florescent optical imaging and magnetic resonance imaging in these models. Alternatively, transplantation of RFP-expressing tumor fragments onto the pancreas of GFP-expressing transgenic mice may be used to facilitate visualization of tumor-host interaction between the pancreatic tumor fragments and host-derived stroma and vasculature. Such in vivo models have enabled us to serially visualize and acquire images of the progression of pancreatic cancer in the live animal, and to demonstrate the real-time antitumor and antimetastatic effects of several novel therapeutic strategies on pancreatic malignancy. These fluorescent models are therefore powerful and reliable tools with which to investigate human pancreatic cancer and therapeutic strategies directed against it.

  18. Cervical Cancer Risk Prediction Models

    Science.gov (United States)

    Developing statistical models that estimate the probability of developing cervical cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.

  19. Breast Cancer Risk Prediction Models

    Science.gov (United States)

    Developing statistical models that estimate the probability of developing breast cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.

  20. Liver Cancer Risk Prediction Models

    Science.gov (United States)

    Developing statistical models that estimate the probability of developing liver cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.

  1. Ovarian Cancer Risk Prediction Models

    Science.gov (United States)

    Developing statistical models that estimate the probability of developing ovarian cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.

  2. Prostate Cancer Risk Prediction Models

    Science.gov (United States)

    Developing statistical models that estimate the probability of developing prostate cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.

  3. Pancreatic Cancer Risk Prediction Models

    Science.gov (United States)

    Developing statistical models that estimate the probability of developing pancreatic cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.

  4. Colorectal Cancer Risk Prediction Models

    Science.gov (United States)

    Developing statistical models that estimate the probability of developing colorectal cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.

  5. Bladder Cancer Risk Prediction Models

    Science.gov (United States)

    Developing statistical models that estimate the probability of developing bladder cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.

  6. Esophageal Cancer Risk Prediction Models

    Science.gov (United States)

    Developing statistical models that estimate the probability of developing esophageal cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.

  7. Lung Cancer Risk Prediction Models

    Science.gov (United States)

    Developing statistical models that estimate the probability of developing lung cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.

  8. Testicular Cancer Risk Prediction Models

    Science.gov (United States)

    Developing statistical models that estimate the probability of testicular cervical cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.

  9. Netrin-1 up-regulation in inflammatory bowel diseases is required for colorectal cancer progression.

    Science.gov (United States)

    Paradisi, Andrea; Maisse, Carine; Coissieux, Marie-May; Gadot, Nicolas; Lépinasse, Florian; Delloye-Bourgeois, Céline; Delcros, Jean-Guy; Svrcek, Magali; Neufert, Clemens; Fléjou, Jean-François; Scoazec, Jean-Yves; Mehlen, Patrick

    2009-10-06

    Chronic inflammation and cancer are intimately associated. This is particularly true for inflammatory bowel diseases (IBD), such as ulcerative colitis and Crohn's disease, which show a major increased risk for colorectal cancer. While the understanding of the molecular pathogenesis of IBD has recently improved, the mechanisms that link these chronic inflammatory states to colorectal cancer development are in large part unknown. One of these mechanisms is NF-kappaB pathway activation which in turn may contribute to tumor formation by providing anti-apoptotic survival signals to the epithelial cells. Based on the observation that netrin-1, the anti-apoptotic ligand for the dependence receptors DCC and UNC5H is up-regulated in colonic crypts in response to NF-kappaB, we show here that colorectal cancers from inflammatory bowel diseases patients have selected up-regulation of netrin-1. Moreover, we demonstrate that this inflammation-driven netrin-1 up-regulation is causal for colorectal cancer development as interference with netrin-1 autocrine loop in a mouse model for ulcerative colitis-associated colorectal cancer, while showing no effect on inflammation, inhibits colorectal cancer progression.

  10. Expression and functional role of orphan receptor GPR158 in prostate cancer growth and progression.

    Directory of Open Access Journals (Sweden)

    Nitin Patel

    Full Text Available Prostate cancer (PCa is the second-leading cause of cancer-related mortality, after lung cancer, in men from developed countries. In its early stages, primary tumor growth is dependent on androgens, thus generally can be controlled by androgen deprivation therapy (ADT. Eventually however, the disease progresses to castration-resistant prostate cancer (CRPC, a lethal form in need of more effective treatments. G-protein coupled receptors (GPCRs comprise a large clan of cell surface proteins that have been implicated as therapeutic targets in PCa growth and progression. The findings reported here provide intriguing evidence of a role for the newly characterized glutamate family member GPR158 in PCa growth and progression. We found that GPR158 promotes PCa cell proliferation independent of androgen receptor (AR functionality and that this requires its localization in the nucleus of the cell. This suggests that GPR158 acts by mechanisms different from other GPCRs. GPR158 expression is stimulated by androgens and GPR158 stimulates AR expression, implying a potential to sensitize tumors to low androgen conditions during ADT via a positive feedback loop. Further, we found GPR158 expression correlates with a neuroendocrine (NE differentiation phenotype and promotes anchorage-independent colony formation implying a role for GPR158 in therapeutic progression and tumor formation. GPR158 expression was increased at the invading front of prostate tumors that formed in the genetically defined conditional Pten knockout mouse model, and co-localized with elevated AR expression in the cell nucleus. Kaplan-Meier analysis on a dataset from the Memorial Sloan Kettering cancer genome portal showed that increased GPR158 expression in tumors is associated with lower disease-free survival. Our findings strongly suggest that pharmaceuticals targeting GPR158 activities could represent a novel and innovative approach to the prevention and management of CRPC.

  11. Chemokines in Cancer Development and Progression and Their Potential as Targeting Molecules for Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Naofumi Mukaida

    2014-01-01

    Full Text Available Chemokines were initially identified as bioactive substances, which control the trafficking of inflammatory cells including granulocytes and monocytes/macrophages. Moreover, chemokines have profound impacts on other types of cells associated with inflammatory responses, such as endothelial cells and fibroblasts. These observations would implicate chemokines as master regulators in various inflammatory responses. Subsequent studies have further revealed that chemokines can regulate the movement of a wide variety of immune cells including lymphocytes, natural killer cells, and dendritic cells in both physiological and pathological conditions. These features endow chemokines with crucial roles in immune responses. Furthermore, increasing evidence points to the vital effects of several chemokines on the proliferative and invasive properties of cancer cells. It is widely acknowledged that cancer develops and progresses to invade and metastasize in continuous interaction with noncancerous cells present in cancer tissues, such as macrophages, lymphocytes, fibroblasts, and endothelial cells. The capacity of chemokines to regulate both cancerous and noncancerous cells highlights their crucial roles in cancer development and progression. Here, we will discuss the roles of chemokines in carcinogenesis and the possibility of chemokine targeting therapy for the treatment of cancer.

  12. Asporin is a stromally expressed marker associated with prostate cancer progression

    Science.gov (United States)

    Rochette, Annie; Boufaied, Nadia; Scarlata, Eleonora; Hamel, Lucie; Brimo, Fadi; Whitaker, Hayley C; Ramos-Montoya, Antonio; Neal, David E; Dragomir, Alice; Aprikian, Armen; Chevalier, Simone; Thomson, Axel A

    2017-01-01

    Background: Prostate cancer shows considerable heterogeneity in disease progression and we propose that markers expressed in tumour stroma may be reliable predictors of aggressive tumour subtypes. Methods: We have used Kaplan–Meier, univariate and multivariate analysis to correlate the expression of Asporin (ASPN) mRNA and protein with prostate cancer progression in independent cohorts. We used immunohistochemistry and H scoring to document stromal localisation of ASPN in a tissue microarray and mouse prostate cancer model, and correlated expression with reactive stroma, defined using Masson Trichrome staining. We used cell cultures of primary prostate cancer fibroblasts treated with serum-free conditioned media from prostate cancer cell lines to examine regulation of ASPN mRNA in tumour stromal cells. Results: We observed increased expression of ASPN mRNA in a data set derived from benign vs tumour microdissected tissue, and a correlation with biochemical recurrence using Kaplan–Meier and Cox proportional hazard analysis. ASPN protein localised to tumour stroma and elevated expression of ASPN was correlated with decreased time to biochemical recurrence, in a cohort of 326 patients with a median follow up of 9.6 years. Univariate and multivariate analysis demonstrated that ASPN was correlated with progression, as were Gleason score, and clinical stage. Additionally, ASPN expression correlated with the presence of reactive stroma, suggesting that it may be a stromal marker expressed in response to the presence of tumour cells and particularly with aggressive tumour subtypes. We observed expression of ASPN in the stroma of tumours induced by p53 inhibition in a mouse model of prostate cancer, and correlation with neuroendocrine marker expression. Finally, we demonstrated that ASPN transcript expression in normal and cancer fibroblasts was regulated by conditioned media derived from the PC3, but not LNCaP, prostate cancer cell lines. Conclusions: Our results

  13. THE ROLE OF MITOCHONDRIA IN THE DEVELOPMENT AND PROGRESSION OF LUNG CANCER

    Directory of Open Access Journals (Sweden)

    Emily R Roberts

    2013-03-01

    Mitochondrial dysfunction in cancer has expanded to include defects in mitochondrial genomics and biogenesis, apoptotic signaling and mitochondrial dynamics. This review will focus on the role of mitochondria and their influence on cancer initiation, progression and treatment in the lung.

  14. Weight and Physical Activity - Prevention Summary Table | Cancer Trends Progress Report

    Science.gov (United States)

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  15. Spontaneous initiation, promotion and progression of colorectal cancer in the novel A/J Min/+ mouse.

    Science.gov (United States)

    Sødring, Marianne; Gunnes, Gjermund; Paulsen, Jan Erik

    2016-04-15

    The C57BL/6J multiple intestinal neoplasia (Min/+) mouse is a widely used murine model for familial adenomatous polyposis, a hereditary form of human colorectal cancer. However, it is a questionable model partly because the vast majority of tumors arise in the small intestine, and partly because the fraction of tumors that progress to invasive carcinomas is minuscule. A/J mice are typically more susceptible to carcinogen-induced colorectal cancer than C57BL/6J mice. To investigate whether the novel Min/+ mouse on the A/J genetic background could be a better model for colorectal cancer, we examined the spontaneous intestinal tumorigenesis in 81 A/J Min/+ mice ranging in age from 4 to 60 weeks. The A/J Min/+ mouse exhibited a dramatic increase in number of colonic lesions when compared to what has been reported for the conventional Min/+ mouse; however, an increase in small intestinal lesions did not occur. In addition, this novel mouse model displayed a continual development of colonic lesions highlighted by the transition from early lesions (flat ACF) to tumors over time. In mice older than 40 weeks, 13 colonic (95% CI: 8.7-16.3) and 21 small intestinal (95% CI: 18.6-24.3) tumors were recorded. Notably, a considerable proportion of those lesions progressed to carcinomas in both the colon (21%) and small intestine (51%). These findings more closely reflect aspects of human colorectal carcinogenesis. In conclusion, the novel A/J Min/+ mouse may be a relevant model for initiation, promotion and progression of colorectal cancer.

  16. Progress in systemic chemotherapy of primary breast cancer: an overview.

    Science.gov (United States)

    Hortobagyi, G N

    2001-01-01

    Substantial progress has been made in the multidisciplinary management of primary breast cancer during the last 30 years. Adjuvant chemotherapy has been shown to significantly reduce the annual risk of cancer recurrence and mortality, and these effects persist even 15 years after diagnosis. Combination chemotherapy is superior to single-agent therapy and anthracycline-containing regimens. Those that combine an anthracycline with 5-fluorouracil and cyclophosphamide are more effective than regimens without an anthracycline. Six cycles of a single regimen appear to provide optimal benefit. Dose reductions below the standard range are associated with inferior results. Dose increases that require growth factor or hematopoietic stem cell support are under investigation; at this time, the existing results provide no compelling reason to use this strategy outside a clinical trial. Regimens using fixed crossover designs with two non-cross-resistant regimens are being evaluated. The addition of a taxane to anthracycline-containing regimens is currently under intense scrutiny, and preliminary analysis of the first three clinical trials has shown encouraging, albeit not compelling, results. For patients with estrogen receptor-positive breast cancer, the sequential administration of chemotherapy and 5 years of tamoxifen therapy provides additive benefits. No compelling evidence exists to combine ovarian ablation with chemotherapy. Most side effects and toxic effects are self-limited, although premature menopause requires monitoring and preventive interventions to preserve bone mineral density. The small risk of acute leukemia is of concern, and additional research to develop safer regimens is clearly indicated. The overall effect of optimal local/regional treatment combined with an anthracycline-containing adjuvant chemotherapy and a taxane (and, for patients with estrogen receptor-positive tumors, 5 years of tamoxifen therapy) is a greater than 50% reduction in annual risks of

  17. Plac8 Links Oncogenic Mutations to Regulation of Autophagy and Is Critical to Pancreatic Cancer Progression

    Directory of Open Access Journals (Sweden)

    Conan Kinsey

    2014-05-01

    Full Text Available Mutations in p53 and RAS potently cooperate in oncogenic transformation, and correspondingly, these genetic alterations frequently coexist in pancreatic ductal adenocarcinoma (PDA and other human cancers. Previously, we identified a set of genes synergistically activated by combined RAS and p53 mutations as frequent downstream mediators of tumorigenesis. Here, we show that the synergistically activated gene Plac8 is critical for pancreatic cancer growth. Silencing of Plac8 in cell lines suppresses tumor formation by blocking autophagy, a process essential for maintaining metabolic homeostasis in PDA, and genetic inactivation in an engineered mouse model inhibits PDA progression. We show that Plac8 is a critical regulator of the autophagic machinery, localizing to the lysosomal compartment and facilitating lysosome-autophagosome fusion. Plac8 thus provides a mechanistic link between primary oncogenic mutations and the induction of autophagy, a central mechanism of metabolic reprogramming, during PDA progression.

  18. Pathologic progression of mammary carcinomas in a C3(1)/SV40 T/t-antigen transgenic rat model of human triple-negative and Her2-positive breast cancer

    OpenAIRE

    Hoenerhoff, M J; Shibata, M. A.; Bode, A.; Green, J. E.

    2010-01-01

    The C3(1) component of the rat prostate steroid binding protein has been used to target expression of the SV40 T/t-antigen to the mammary epithelium of mice resulting in pre-neoplastic lesions that progress to invasive and metastatic cancer with molecular features of human basal-type breast cancer. However, there are major differences in the histologic architecture of the stromal and epithelial elements between the mouse and human mammary glands. The rat mammary gland is more enriched with ep...

  19. Changes in microRNA (miRNA) expression during pancreatic cancer development and progression in a genetically engineered KrasG12D;Pdx1-Cre mouse (KC) model

    Science.gov (United States)

    Rachagani, Satyanarayana; Dey, Parama; Pai, Priya; Smith, Lynette M.; Mo, Yin-Yuan; Batra, Surinder K.

    2015-01-01

    Differential expression of microRNAs (miRNAs) has been demonstrated in various cancers, including pancreatic cancer (PC). Due to the lack of tissue samples from early-stages of PC, the stage-specific alteration of miRNAs during PC initiation and progression is largely unknown. In this study, we investigated the global miRNA expression profile and their processing machinery during PC progression using the KrasG12D;Pdx1-Cre (KC) mouse model. At 25 weeks, the miRNA microarray analysis revealed significant downregulation of miR-150, miR-494, miR-138, miR-148a, miR-216a, and miR-217 and upregulation of miR-146b, miR-205, miR-31, miR-192, and miR-21 in KC mice compared to controls. Further, expression of miRNA biosynthetic machinery including Dicer, Exportin-5, TRKRA, and TARBP2 were downregulated, while DGCR8 and Ago2 were upregulated in KC mice. In addition, from 10 to 50 weeks of age, stage-specific expression profiling of miRNA in KC mice revealed downregulation of miR-216, miR-217, miR-100, miR-345, miR-141, miR-483-3p, miR-26b, miR-150, miR-195, Let-7b and Let-96 and upregulation of miR-21, miR-205, miR-146b, miR-34c, miR-1273, miR-223 and miR-195 compared to control mice. Interestingly, the differential expression of miRNA in mice also corroborated with the miRNA expression in human PC cell lines and tissue samples; ectopic expression of Let-7b in CD18/HPAF and Capan1 cells resulted in downregulation of KRAS and MSST1 expression. Overall, the present study aids an understanding of miRNA expression patterns during PC pathogenesis and helps to facilitate the identification of promising and novel early diagnostic/prognostic markers and therapeutic targets. PMID:26516699

  20. Mouse Models of Gastric Cancer

    Directory of Open Access Journals (Sweden)

    Timothy C. Wang

    2013-01-01

    Full Text Available Animal models have greatly enriched our understanding of the molecular mechanisms of numerous types of cancers. Gastric cancer is one of the most common cancers worldwide, with a poor prognosis and high incidence of drug-resistance. However, most inbred strains of mice have proven resistant to gastric carcinogenesis. To establish useful models which mimic human gastric cancer phenotypes, investigators have utilized animals infected with Helicobacter species and treated with carcinogens. In addition, by exploiting genetic engineering, a variety of transgenic and knockout mouse models of gastric cancer have emerged, such as INS-GAS mice and TFF1 knockout mice. Investigators have used the combination of carcinogens and gene alteration to accelerate gastric cancer development, but rarely do mouse models show an aggressive and metastatic gastric cancer phenotype that could be relevant to preclinical studies, which may require more specific targeting of gastric progenitor cells. Here, we review current gastric carcinogenesis mouse models and provide our future perspectives on this field.

  1. Imaging in Colorectal Cancer: Progress and Challenges for the Clinicians

    Directory of Open Access Journals (Sweden)

    Eric Van Cutsem

    2016-08-01

    Full Text Available The use of imaging in colorectal cancer (CRC has significantly evolved over the last twenty years, establishing important roles in surveillance, diagnosis, staging, treatment selection and follow up. The range of modalities has broadened with the development of novel tracer and contrast agents, and the fusion of technologies such as positron emission tomography (PET and computed tomography (CT. Traditionally, the most widely used modality for assessing treatment response in metastasised colon and rectal tumours is CT, combined with use of the RECIST guidelines. However, a growing body of evidence suggests that tumour size does not always adequately correlate with clinical outcomes. Magnetic resonance imaging (MRI is a more versatile technique and dynamic contrast-enhanced (DCE-MRI and diffusion-weighted (DW-MRI may be used to evaluate biological and functional effects of treatment. Integrated fluorodeoxyglucose (FDG-PET/CT combines metabolic and anatomical imaging to improve sensitivity and specificity of tumour detection, and a number of studies have demonstrated improved diagnostic accuracy of this modality in a variety of tumour types, including CRC. These developments have enabled the progression of treatment strategies in rectal cancer and improved the detection of hepatic metastatic disease, yet are not without their limitations. These include technical, economical and logistical challenges, along with a lack of robust evidence for standardisation and formal guidance. In order to successfully apply these novel imaging techniques and utilise their benefit to provide truly personalised cancer care, advances need to be clinically realised in a routine and robust manner.

  2. Current status and progress in gastric cancer with liver metastasis

    Institute of Scientific and Technical Information of China (English)

    LIU Jing; CHEN Lin

    2011-01-01

    Objective This review discusses the current status and progress in studies on gastric cancer with liver metastasis (GCLM), involving the routes, subtypes, and prognosis of GCLM; the genes and molecules associated with metastasis;the feasibility and value of each imaging modality; and current treatment options.Data sources The data used in this review were mainly from Medline and PubMed published in English from 2005 to August 2010. The search terms were "gastric cancer" and "liver metastasis".Study selection Articles regarding the characteristics, diagnostic modalities, and vadous therapeutic options of GCLM were selected.Results The prognosis of GCLM is influenced by the clinicopathological characteristics of primary tumors, as well as the presence of liver metastases. Improved understanding of related genes and molecules will lead to the development of methods of early detection and targeted therapies. For the diagnosis of GCLM, each imaging modality has its relative benefits. There remains no consensus regarding therapeutic options.Conclusions Early detection and characterization of liver metastases is crucial for the prognosis of gastric cancer patients. Multidisciplinary team discussions are required to design optimal treatment strategies, which should be based on the clinicopathological characteristics of each patient.

  3. Desmoglein 3: A Help or a Hindrance in Cancer Progression?

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Louise [Queen Mary University of London, Barts and the London School of Medicine and Dentistry, Center for Clinical and Diagnostic Oral Sciences, Institute of Dentistry, Blizard Building, London E1 2AT (United Kingdom); Department of Cellular and Molecular Physiology, University of Liverpool, Institute of Translational Medicine, Liverpool L69 3BX (United Kingdom); Wan, Hong, E-mail: h.wan@qmul.ac.uk [Queen Mary University of London, Barts and the London School of Medicine and Dentistry, Center for Clinical and Diagnostic Oral Sciences, Institute of Dentistry, Blizard Building, London E1 2AT (United Kingdom)

    2015-01-26

    Desmoglein 3 is one of seven desmosomal cadherins that mediate cell-cell adhesion in desmosomes. Desmosomes are the intercellular junctional complexes that anchor the intermediate filaments of adjacent cells and confer strong cell adhesion thus are essential in the maintenance of tissue architecture and structural integrity. Like adherens junctions, desmosomes function as tumour suppressors and are down regulated in the process of epithelial-mesenchymal transition and in tumour cell invasion and metastasis. However, recently several studies have shown that various desmosomal components, including desmoglein 3, are up-regulated in cancer with increased levels of expression correlating with the clinical stage of malignancy, implicating their potentiality to serve as a diagnostic and prognostic marker. Furthermore, in vitro studies have demonstrated that overexpression of desmoglein 3 in cancer cell lines activates several signal pathways that have an impact on cell morphology, adhesion and locomotion. These additional signalling roles of desmoglein 3 may not be associated to its adhesive function in desmosomes but rather function outside of the junctions, acting as a key regulator in the control of actin based cellular processes. This review will discuss recent advances which support the role of desmoglein 3 in cancer progression.

  4. Tumor-derived exosomes in cancer progression and treatment failure.

    Science.gov (United States)

    Yu, Shaorong; Cao, Haixia; Shen, Bo; Feng, Jifeng

    2015-11-10

    Exosomes have diameter within the range of 30-100 nm and spherical to cup-shaped nanoparticles with specific surface molecular characteristics, such as CD9 and CD63. These vesicles are present in nearly all human body fluids, including blood plasma/serum, saliva, breast milk, cerebrospinal fluid, urine, semen, and particularly enriched in tumor microenvironment. Exosomes contain multiple proteins, DNA, mRNA, miRNA, long non-coding RNA, and even genetic materials of viruses/prions. These materials are biochemically and functionally distinct and can be transferred to a recipient cell where they regulate protein expression and signaling pathways. Recently, exosomes are demonstrated to have a close relationship with tumor development and metastasis. Exosomes influence therapeutic effect in cancer patients. In this review, we describe the biogenesis, composition, and function of exosomes. The mechanism on how tumor-derived exosomes contribute to cancer progression and clinical treatment failure is also described, with special focus on their potential applications in cancer therapy.

  5. Recent progress on the Random Conductance Model

    CERN Document Server

    Biskup, Marek

    2011-01-01

    Recent progress on the understanding of the Random Conductance Model is reviewed and commented. A particular emphasis is on the results on the scaling limit of the random walk among random conductances for almost every realization of the environment, observations on the behavior of the effective resistance as well as the scaling limit of certain models of gradient fields with non-convex interactions. The text is an expanded version of the lecture notes for a course delivered at the 2011 Cornell Summer School on Probability.

  6. Progression of Diabetic Capillary Occlusion: A Model.

    Directory of Open Access Journals (Sweden)

    Xiao Fu

    2016-06-01

    Full Text Available An explanatory computational model is developed of the contiguous areas of retinal capillary loss which play a large role in diabetic maculapathy and diabetic retinal neovascularization. Strictly random leukocyte mediated capillary occlusion cannot explain the occurrence of large contiguous areas of retinal ischemia. Therefore occlusion of an individual capillary must increase the probability of occlusion of surrounding capillaries. A retinal perifoveal vascular sector as well as a peripheral retinal capillary network and a deleted hexagonal capillary network are modelled using Compucell3D. The perifoveal modelling produces a pattern of spreading capillary loss with associated macular edema. In the peripheral network, spreading ischemia results from the progressive loss of the ladder capillaries which connect peripheral arterioles and venules. System blood flow was elevated in the macular model before a later reduction in flow in cases with progression of capillary occlusions. Simulations differing only in initial vascular network structures but with identical dynamics for oxygen, growth factors and vascular occlusions, replicate key clinical observations of ischemia and macular edema in the posterior pole and ischemia in the retinal periphery. The simulation results also seem consistent with quantitative data on macular blood flow and qualitative data on venous oxygenation. One computational model applied to distinct capillary networks in different retinal regions yielded results comparable to clinical observations in those regions.

  7. Alcohol consumption and prostate cancer incidence and progression: A Mendelian randomisation study.

    Science.gov (United States)

    Brunner, Clair; Davies, Neil M; Martin, Richard M; Eeles, Rosalind; Easton, Doug; Kote-Jarai, Zsofia; Al Olama, Ali Amin; Benlloch, Sara; Muir, Kenneth; Giles, Graham; Wiklund, Fredrik; Gronberg, Henrik; Haiman, Christopher A; Schleutker, Johanna; Nordestgaard, Børge G; Travis, Ruth C; Neal, David; Donovan, Jenny; Hamdy, Freddie C; Pashayan, Nora; Khaw, Kay-Tee; Stanford, Janet L; Blot, William J; Thibodeau, Stephen; Maier, Christiane; Kibel, Adam S; Cybulski, Cezary; Cannon-Albright, Lisa; Brenner, Hermann; Park, Jong; Kaneva, Radka; Batra, Jyotsna; Teixeira, Manuel R; Pandha, Hardev; Zuccolo, Luisa

    2017-01-01

    Prostate cancer is the most common cancer in men in developed countries, and is a target for risk reduction strategies. The effects of alcohol consumption on prostate cancer incidence and survival remain unclear, potentially due to methodological limitations of observational studies. In this study, we investigated the associations of genetic variants in alcohol-metabolising genes with prostate cancer incidence and survival. We analysed data from 23,868 men with prostate cancer and 23,051 controls from 25 studies within the international PRACTICAL Consortium. Study-specific associations of 68 single nucleotide polymorphisms (SNPs) in 8 alcohol-metabolising genes (Alcohol Dehydrogenases (ADHs) and Aldehyde Dehydrogenases (ALDHs)) with prostate cancer diagnosis and prostate cancer-specific mortality, by grade, were assessed using logistic and Cox regression models, respectively. The data across the 25 studies were meta-analysed using fixed-effect and random-effects models. We found little evidence that variants in alcohol metabolising genes were associated with prostate cancer diagnosis. Four variants in two genes exceeded the multiple testing threshold for associations with prostate cancer mortality in fixed-effect meta-analyses. SNPs within ALDH1A2 associated with prostate cancer mortality were rs1441817 (fixed effects hazard ratio, HRfixed  = 0.78; 95% confidence interval (95%CI):0.66,0.91; p values = 0.002); rs12910509, HRfixed  = 0.76; 95%CI:0.64,0.91; p values = 0.003); and rs8041922 (HRfixed  = 0.76; 95%CI:0.64,0.91; p values = 0.002). These SNPs were in linkage disequilibrium with each other. In ALDH1B1, rs10973794 (HRfixed  = 1.43; 95%CI:1.14,1.79; p values = 0.002) was associated with prostate cancer mortality in men with low-grade prostate cancer. These results suggest that alcohol consumption is unlikely to affect prostate cancer incidence, but it may influence disease progression.

  8. Metabotropic glutamate receptor-1 contributes to progression in triple negative breast cancer.

    Directory of Open Access Journals (Sweden)

    Malathi Banda

    Full Text Available TNBC is an aggressive breast cancer subtype that does not express hormone receptors (estrogen and progesterone receptors, ER and PR or amplified human epidermal growth factor receptor type 2 (HER2, and there currently exist no targeted therapies effective against it. Consequently, finding new molecular targets in triple negative breast cancer (TNBC is critical to improving patient outcomes. Previously, we have detected the expression of metabotropic glutamate receptor-1 (gene: GRM1; protein: mGluR1 in TNBC and observed that targeting glutamatergic signaling inhibits TNBC growth both in vitro and in vivo. In this study, we explored how mGluR1 contributes to TNBC progression, using the isogenic MCF10 progression series, which models breast carcinogenesis from nontransformed epithelium to malignant basal-like breast cancer. We observed that mGluR1 is expressed in human breast cancer and that in MCF10A cells, which model nontransformed mammary epithelium, but not in MCF10AT1 cells, which model atypical ductal hyperplasia, mGluR1 overexpression results in increased proliferation, anchorage-independent growth, and invasiveness. In contrast, mGluR1 knockdown results in a decrease in these activities in malignant MCF10CA1d cells. Similarly, pharmacologic inhibition of glutamatergic signaling in MCF10CA1d cells results in a decrease in proliferation and anchorage-independent growth. Finally, transduction of MCF10AT1 cells, which express c-Ha-ras, using a lentiviral construct expressing GRM1 results in transformation to carcinoma in 90% of resultant xenografts. We conclude that mGluR1 cooperates with other factors in hyperplastic mammary epithelium to contribute to TNBC progression and therefore propose that glutamatergic signaling represents a promising new molecular target for TNBC therapy.

  9. Interaction of tumor cells with the immune system: implications for dendritic cell therapy and cancer progression.

    Science.gov (United States)

    Imhof, Marianne; Karas, Irene; Gomez, Ivan; Eger, Andreas; Imhof, Martin

    2013-01-01

    There is a continuous demand for preclinical modeling of the interaction of dendritic cells with the immune system and cancer cells. Recent progress in gene expression profiling with nucleic acid microarrays, in silico modeling and in vivo cell and animal approaches for non-clinical proof of safety and efficacy of these immunotherapies is summarized. Immunoinformatic approaches look promising to unfold this potential, although still unstable and difficult to interpret. Animal models have progressed a great deal in recent years, finally narrowing the gap from bench to bedside. However, translation to the clinic should be done with precaution. The most significant results concerning clinical benefit might come from detailed immunologic investigations made during well designed clinical trials of dendritic-cell-based therapies, which in general prove safe.

  10. The Multifunctional Protein Kinase C-ε in Cancer Development and Progression

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Kirti; Basu, Alakananda, E-mail: alakananda.basu@unthsc.edu [Department of Molecular and Medical Genetics, University of North Texas Health Science Center, Institute for Cancer Research, and Focused on Resources for her Health Education and Research, Fort Worth, TX 76107 (United States)

    2014-04-10

    The protein kinase C (PKC) family proteins are important signal transducers and have long been the focus of cancer research. PKCε, a member of this family, is overexpressed in most solid tumors and plays critical roles in different processes that lead to cancer development. Studies using cell lines and animal models demonstrated the transforming potential of PKCε. While earlier research established the survival functions of PKCε, recent studies revealed its role in cell migration, invasion and cancer metastasis. PKCε has also been implicated in epithelial to mesenchymal transition (EMT), which may be the underlying mechanism by which it contributes to cell motility. In addition, PKCε affects cell-extracellular matrix (ECM) interactions by direct regulation of the cytoskeletal elements. Recent studies have also linked PKCε signaling to cancer stem cell functioning. This review focuses on the role of PKCε in different processes that lead to cancer development and progression. We also discussed current literatures on the pursuit of PKCε as a target for cancer therapy.

  11. Secreted CLIC3 drives cancer progression through its glutathione-dependent oxidoreductase activity

    Science.gov (United States)

    Hernandez-Fernaud, Juan R.; Ruengeler, Elena; Casazza, Andrea; Neilson, Lisa J.; Pulleine, Ellie; Santi, Alice; Ismail, Shehab; Lilla, Sergio; Dhayade, Sandeep; MacPherson, Iain R.; McNeish, Iain; Ennis, Darren; Ali, Hala; Kugeratski, Fernanda G.; Al Khamici, Heba; van den Biggelaar, Maartje; van den Berghe, Peter V.E.; Cloix, Catherine; McDonald, Laura; Millan, David; Hoyle, Aoisha; Kuchnio, Anna; Carmeliet, Peter; Valenzuela, Stella M.; Blyth, Karen; Yin, Huabing; Mazzone, Massimiliano; Norman, Jim C.; Zanivan, Sara

    2017-01-01

    The secretome of cancer and stromal cells generates a microenvironment that contributes to tumour cell invasion and angiogenesis. Here we compare the secretome of human mammary normal and cancer-associated fibroblasts (CAFs). We discover that the chloride intracellular channel protein 3 (CLIC3) is an abundant component of the CAF secretome. Secreted CLIC3 promotes invasive behaviour of endothelial cells to drive angiogenesis and increases invasiveness of cancer cells both in vivo and in 3D cell culture models, and this requires active transglutaminase-2 (TGM2). CLIC3 acts as a glutathione-dependent oxidoreductase that reduces TGM2 and regulates TGM2 binding to its cofactors. Finally, CLIC3 is also secreted by cancer cells, is abundant in the stromal and tumour compartments of aggressive ovarian cancers and its levels correlate with poor clinical outcome. This work reveals a previously undescribed invasive mechanism whereby the secretion of a glutathione-dependent oxidoreductase drives angiogenesis and cancer progression by promoting TGM2-dependent invasion. PMID:28198360

  12. Micronutrients attenuate progression of prostate cancer by elevating the endogenous inhibitor of angiogenesis, Platelet Factor-4

    Directory of Open Access Journals (Sweden)

    Fleshner Neil E

    2010-06-01

    Full Text Available Abstract Background Longstanding evidence implicates an inadequate diet as a key factor in the onset and progression of prostate cancer. The purpose herein was to discover, validate and characterize functional biomarkers of dietary supplementation capable of suppressing the course of prostate cancer in vivo. Methods The Lady transgenic mouse model that spontaneously develops prostate cancer received a diet supplemented with a micronutrient cocktail of vitamin E, selenium and lycopene ad libitum. A proteomic analysis was conducted to screen for serum biomarkers of this dietary supplementation. Candidate peptides were validated and identified by sequencing and analyzed for their presence within the prostates of all mice by immunohistochemistry. Results Dietary supplementation with the combined micronutrients significantly induced the expression of the megakaryocyte-specific inhibitor of angiogenesis, platelet factor-4 (P = 0.0025. This observation was made predominantly in mice lacking tumors and any manifestations associated with progressive disease beyond 37 weeks of life, at which time no survivors remained in the control group (P Conclusion We present unprecedented data whereby these combined micronutrients effectively promotes tumor dormancy in early prostate cancer, following initiation mutations that may drive the angiogenesis-dependent response of the tumor, by inducing platelet factor-4 expression and concentrating it at the tumor endothelium through enhanced platelet binding.

  13. Small Cell Lung Cancer: Will Recent Progress Lead to Improved Outcomes?

    Science.gov (United States)

    Pietanza, M. Catherine; Byers, Lauren Averett; Minna, John D.; Rudin, Charles M.

    2015-01-01

    Small cell lung cancer (SCLC) is an aggressive neuroendocrine malignancy with a unique natural history characterized by a short doubling time, high growth fraction, and early development of widespread metastases. Although a chemotherapy- and radiation-sensitive disease, SCLC typically recurs rapidly after primary treatment, with only 6% of patients surviving five years from diagnosis. This disease has been notable for the absence of major improvements in its treatment: nearly four decades after the introduction of a platinum-etoposide doublet, therapeutic options have remained virtually unchanged, with correspondingly little improvement in survival rates. Here, we summarize specific barriers and challenges inherent to SCLC research and care that have limited progress in novel therapeutic development to date. We discuss recent progress in basic and translational research, especially in the development of mouse models, which will provide insights into the patterns of metastasis and resistance in SCLC. Opportunities in clinical research aimed at exploiting SCLC biology are reviewed, with an emphasis on ongoing trials. SCLC has been described as a recalcitrant cancer, for which there is an urgent need for accelerated progress. The NCI convened a panel of laboratory and clinical investigators interested in SCLC with a goal of defining consensus recommendations to accelerate progress in the treatment of SCLC, which we summarize here. PMID:25979931

  14. In situ quantification of genomic instability in breast cancer progression

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz de Solorzano, Carlos; Chin, Koei; Gray, Joe W.; Lockett, Stephen J.

    2003-05-15

    Genomic instability is a hallmark of breast and other solid cancers. Presumably caused by critical telomere reduction, GI is responsible for providing the genetic diversity required in the multi-step progression of the disease. We have used multicolor fluorescence in situ hybridization and 3D image analysis to quantify genomic instability cell-by-cell in thick, intact tissue sections of normal breast epithelium, preneoplastic lesions (usual ductal hyperplasia), ductal carcinona is situ or invasive carcinoma of the breast. Our in situ-cell by cell-analysis of genomic instability shows an important increase of genomic instability in the transition from hyperplasia to in situ carcinoma, followed by a reduction of instability in invasive carcinoma. This pattern suggests that the transition from hyperplasia to in situ carcinoma corresponds to telomere crisis and invasive carcinoma is a consequence of telomerase reactivation afertelomere crisis.

  15. Alcohol consumption and prostate cancer incidence and progression: A Mendelian randomisation study

    Science.gov (United States)

    Brunner, Clair; Davies, Neil M.; Martin, Richard M.; Eeles, Rosalind; Easton, Doug; Kote‐Jarai, Zsofia; Al Olama, Ali Amin; Benlloch, Sara; Muir, Kenneth; Giles, Graham; Wiklund, Fredrik; Gronberg, Henrik; Haiman, Christopher A.; Schleutker, Johanna; Nordestgaard, Børge G.; Travis, Ruth C.; Neal, David; Donovan, Jenny; Hamdy, Freddie C.; Pashayan, Nora; Khaw, Kay‐Tee; Stanford, Janet L.; Blot, William J.; Thibodeau, Stephen; Maier, Christiane; Kibel, Adam S.; Cybulski, Cezary; Cannon‐Albright, Lisa; Brenner, Hermann; Park, Jong; Kaneva, Radka; Batra, Jyotsna; Teixeira, Manuel R.; Pandha, Hardev

    2016-01-01

    Prostate cancer is the most common cancer in men in developed countries, and is a target for risk reduction strategies. The effects of alcohol consumption on prostate cancer incidence and survival remain unclear, potentially due to methodological limitations of observational studies. In this study, we investigated the associations of genetic variants in alcohol‐metabolising genes with prostate cancer incidence and survival. We analysed data from 23,868 men with prostate cancer and 23,051 controls from 25 studies within the international PRACTICAL Consortium. Study‐specific associations of 68 single nucleotide polymorphisms (SNPs) in 8 alcohol‐metabolising genes (Alcohol Dehydrogenases (ADHs) and Aldehyde Dehydrogenases (ALDHs)) with prostate cancer diagnosis and prostate cancer‐specific mortality, by grade, were assessed using logistic and Cox regression models, respectively. The data across the 25 studies were meta‐analysed using fixed‐effect and random‐effects models. We found little evidence that variants in alcohol metabolising genes were associated with prostate cancer diagnosis. Four variants in two genes exceeded the multiple testing threshold for associations with prostate cancer mortality in fixed‐effect meta‐analyses. SNPs within ALDH1A2 associated with prostate cancer mortality were rs1441817 (fixed effects hazard ratio, HRfixed = 0.78; 95% confidence interval (95%CI):0.66,0.91; p values = 0.002); rs12910509, HRfixed = 0.76; 95%CI:0.64,0.91; p values = 0.003); and rs8041922 (HRfixed = 0.76; 95%CI:0.64,0.91; p values = 0.002). These SNPs were in linkage disequilibrium with each other. In ALDH1B1, rs10973794 (HRfixed = 1.43; 95%CI:1.14,1.79; p values = 0.002) was associated with prostate cancer mortality in men with low‐grade prostate cancer. These results suggest that alcohol consumption is unlikely to affect prostate cancer incidence, but it may influence disease progression. PMID:27643404

  16. Progress in Modeling and Simulation of Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Turner, John A [ORNL

    2016-01-01

    Modeling and simulation of batteries, in conjunction with theory and experiment, are important research tools that offer opportunities for advancement of technologies that are critical to electric motors. The development of data from the application of these tools can provide the basis for managerial and technical decision-making. Together, these will continue to transform batteries for electric vehicles. This collection of nine papers presents the modeling and simulation of batteries and the continuing contribution being made to this impressive progress, including topics that cover: * Thermal behavior and characteristics * Battery management system design and analysis * Moderately high-fidelity 3D capabilities * Optimization Techniques and Durability As electric vehicles continue to gain interest from manufacturers and consumers alike, improvements in economy and affordability, as well as adoption of alternative fuel sources to meet government mandates are driving battery research and development. Progress in modeling and simulation will continue to contribute to battery improvements that deliver increased power, energy storage, and durability to further enhance the appeal of electric vehicles.

  17. [Progress in the early detection of cervix cancer from the viewpoint of the Saarland cancer register].

    Science.gov (United States)

    Brenner, H; Wiebelt, H; Ziegler, H

    1990-04-01

    The efficacy of the nationwide screening programme for cervical cancer in the Federal Republic of Germany, which has been in effect since 1971, has never been checked by means of controlled epidemiological studies. Therefore routinely collected mortality and morbidity data are up to now the only indicators of potential progress in early detection. Mortality statistics of cervical cancer are of restricted value due to lack of specificity regarding the cause of death on death certificates. Data of the population based cancer registry of Saarland are used to investigate trends in terms of age, stage and birth cohort-specific detection rates of cervical cancer and its preinvasive precursors. There was a substantial decrease in incidence rates of invasive cervical cancer, which was most pronounced for advanced tumour stages and young and middle-age groups and which is consistent with comparable results in other countries following the introduction of screening programmes. However, a selection effect of the screening programme suggested by a decrease in survival rates of women with invasive cervical cancer in the 1980ies, must also be taken into account.

  18. Establishing of the Transplanted Animal Models for Human Lung Cancer

    Institute of Scientific and Technical Information of China (English)

    Xingli Zhang; Jinchang Wu

    2009-01-01

    Lung cancer is the leading cause of cancer mortality worldwide.Even with the applications of excision,radiotherapy,chemotherapy,and gene therapy,the 5 year survival rate is only 15% in the USA.Clinically relevant laboratory animal models of the disease could greatly facilitate understanding of the pathogenesis of lung cancer,its progression,invasion and metastasis.Transplanted lung cancer models are of special interest and are widely used today.Such models are essential tools in accelerating development of new therapies for lung cancer.In this communication we will present a brief overview of the hosts,sites and pathways used to establish transplanted animal lung tumor models.

  19. Dipyridamole prevents triple-negative breast-cancer progression.

    Science.gov (United States)

    Spano, Daniela; Marshall, Jean-Claude; Marino, Natascia; De Martino, Daniela; Romano, Alessia; Scoppettuolo, Maria Nunzia; Bello, Anna Maria; Di Dato, Valeria; Navas, Luigi; De Vita, Gennaro; Medaglia, Chiara; Steeg, Patricia S; Zollo, Massimo

    2013-01-01

    Dipyridamole is a widely prescribed drug in ischemic disorders, and it is here investigated for potential clinical use as a new treatment for breast cancer. Xenograft mice bearing triple-negative breast cancer 4T1-Luc or MDA-MB-231T cells were generated. In these in vivo models, dipyridamole effects were investigated for primary tumor growth, metastasis formation, cell cycle, apoptosis, signaling pathways, immune cell infiltration, and serum inflammatory cytokines levels. Dipyridamole significantly reduced primary tumor growth and metastasis formation by intraperitoneal administration. Treatment with 15 mg/kg/day dipyridamole reduced mean primary tumor size by 67.5 % (p = 0.0433), while treatment with 30 mg/kg/day dipyridamole resulted in an almost a total reduction in primary tumors (p = 0.0182). Experimental metastasis assays show dipyridamole reduces metastasis formation by 47.5 % in the MDA-MB-231T xenograft model (p = 0.0122), and by 50.26 % in the 4T1-Luc xenograft model (p = 0.0292). In vivo dipyridamole decreased activated β-catenin by 38.64 % (p < 0.0001), phospho-ERK1/2 by 25.05 % (p = 0.0129), phospho-p65 by 67.82 % (p < 0.0001) and doubled the expression of IkBα (p = 0.0019), thus revealing significant effects on Wnt, ERK1/2-MAPK and NF-kB pathways in both animal models. Moreover dipyridamole significantly decreased the infiltration of tumor-associated macrophages and myeloid-derived suppressor cells in primary tumors (p < 0.005), and the inflammatory cytokines levels in the sera of the treated mice. We suggest that when used at appropriate doses and with the correct mode of administration, dipyridamole is a promising agent for breast-cancer treatment, thus also implying its potential use in other cancers that show those highly activated pathways.

  20. APRIL is overexpressed in cancer: link with tumor progression

    Directory of Open Access Journals (Sweden)

    Veyrune Jean-Luc

    2009-03-01

    Full Text Available Abstract Background BAFF and APRIL share two receptors – TACI and BCMA – and BAFF binds to a third receptor, BAFF-R. Increased expression of BAFF and APRIL is noted in hematological malignancies. BAFF and APRIL are essential for the survival of normal and malignant B lymphocytes, and altered expression of BAFF or APRIL or of their receptors (BCMA, TACI, or BAFF-R have been reported in various B-cell malignancies including B-cell non-Hodgkin's lymphoma, chronic lymphocytic leukemia, Hodgkin's lymphoma, multiple myeloma, and Waldenstrom's macroglobulinemia. Methods We compared the expression of BAFF, APRIL, TACI and BAFF-R gene expression in 40 human tumor types – brain, epithelial, lymphoid, germ cells – to that of their normal tissue counterparts using publicly available gene expression data, including the Oncomine Cancer Microarray database. Results We found significant overexpression of TACI in multiple myeloma and thyroid carcinoma and an association between TACI expression and prognosis in lymphoma. Furthermore, BAFF and APRIL are overexpressed in many cancers and we show that APRIL expression is associated with tumor progression. We also found overexpression of at least one proteoglycan with heparan sulfate chains (HS, which are coreceptors for APRIL and TACI, in tumors where APRIL is either overexpressed or is a prognostic factor. APRIL could induce survival or proliferation directly through HS proteoglycans. Conclusion Taken together, these data suggest that APRIL is a potential prognostic factor for a large array of malignancies.

  1. Research progress in the treatment of small cell lung cancer

    Science.gov (United States)

    Qiu, Yan-fang; Liu, Zhi-gang; Yang, Wen-juan; Zhao, Yu; Tang, Jiao; Tang, Wei-zhi; Jin, Yi; Li, Fang; Zhong, Rui; Wang, Hui

    2017-01-01

    Small cell lung cancer (SCLC) accounts for approximately 10-15% of all lung cancers. No significant improvement has been made for patients with SCLC in the past several decades. The main progresses were the thoracic radiation and prophylactic cranial irradiation (PCI) that improved the patient survival rate. For patients with limited disease and good performance status (PS), concurrent chemoradiotherapy (CCRT) followed by PCI should be considered. For extensive disease, the combination of etoposide and platinum-based chemotherapy remains the standard treatment and consolidative thoracic radiotherapy is beneficial for patients who have a significant respond to initial chemotherapy. However, the prognosis still remains poor. Recently, efforts have been focused on molecular targets and immunotherapy. But numerous molecular targets methods have failed to show a significant clinical benefit in patients with SCLC. It is anticipated that further development of research will depend on the on-going trials for molecular targeted therapy and immunotherapy which are promising and may improve the outcomes for SCLC in the next decade.

  2. Correlation of DNA Ploidy with Progression of Cervical Cancer

    Directory of Open Access Journals (Sweden)

    M. Singh

    2008-01-01

    Full Text Available The majority of squamous cell carcinomas of cervix are preceded by visible changes in the cervix, most often detected by cervical smear. As cervical cancer is preceded by long precancerous stages, identification of the high-risk population through detection of DNA ploidy may be of importance in effective management of this disease. Here we attempted to correlate aneuploid DNA patterns and their influence on biological behavior of flow-cytometry analysis of DNA ploidy which was carried out in cytologically diagnosed cases of mild (79, moderate (36, and severe (12 dysplasia, as well as “atypical squamous cells of unknown significance (ASCUS” (57 along with controls (69, in order to understand its importance in malignant progression of disease. Cytologically diagnosed dysplasias, which were employed for DNA ploidy studies, 39 mild, 28 moderate, and 11 severe dysplasia cases were found to be aneuploid. Out of the 69 control subjects, 6 cases showed aneuploidy pattern and the rest 63 subjects were diploid. An aneuploidy pattern was observed in 8 out of 57 cases of cytologically evaluated ASCUS. The results of the followup studies showed that aberrant DNA content reliably predicts the occurrence of squamous cell carcinoma in cervical smear. Flow cytometric analysis of DNA ploidy may provide a strategic diagnostic tool for early detection of carcinoma cervix. Therefore, it is a concept of an HPV screening with reflex cytology in combination with DNA flow cytometry to detect progressive lesions with the greatest possible sensitivity and specificity.

  3. Role of Proprotein Convertases in Prostate Cancer Progression

    Directory of Open Access Journals (Sweden)

    Frédéric Couture

    2012-11-01

    Full Text Available Better understanding of the distinct and redundant functions of the proprotein convertase (PC enzyme family within pathophysiological states has a great importance for potential therapeutic strategies. In this study, we investigated the functional redundancy of PCs in prostate cancer in the commonly used androgen-sensitive LNCaP and the androgen-independent DU145 human cell lines. Using a lentiviral-based shRNA delivery system, we examined in vitro and in vivo cell proliferation characteristics of knockdown cell lines for the endogenous PCs furin, PACE4, and PC7 in both cell lines. Of the three PCs, only PACE4 was essential to maintain a high-proliferative status, as determined in vitro using XTT proliferation assays and in vivo using tumor xenografts in nude mice. Furin knockdowns in both cell lines had no effects on cell proliferation or tumor xenograft growth. Paradoxically, PC7 knockdowns reduced in vitro cellular proliferation but had no effect in vivo. Because PCs act within secretion pathways, we showed that conditioned media derived from PACE4 knockdown cells had very poor cell growth-stimulating effects in vitro. Immunohistochemistry of PACE4 knockdown tumors revealed reduced Ki67 and higher p27KIP levels (proliferation and cell cycle arrest markers, respectively. Interestingly, we determined that the epidermal growth factor receptor signaling pathway was activated in PC7 knockdown tumors only, providing some explanations of the paradoxical effects of PC7 silencing in prostate cancer cell lines. We conclude that PACE4 has a distinct role in maintaining proliferation and tumor progression in prostate cancer and this positions PACE4 as a relevant therapeutic target for this disease.

  4. Effect of Proton Beam on Cancer Progressive and Metastatic Enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Y. H.; Nam, K. S.; Oh, Y. H.; Kim, M. K.; Kim, M. Y.; Jang, J. S. [Dongguk University, Seoul (Korea, Republic of)

    2008-04-15

    The purpose of this study was to investigate the effect of proton beam on enzymes for promotion/progression of carcinogenesis and metastasis of malignant tumor cells to clarify proton beam-specific biological effects. The changes of cancer chemopreventive enzymes in human colorectal adenocarcinoma HT-29 cells irradiated with proton beams were tested by measuring the activities of quinine reductase (QR), glutathione S-transferase (GST), and ornithine decarboxylase (ODC), glutathione (GSH) levels, and expression of cyclooxygenase-2 (COX-2). We also examined the effect of proton beam on the ODC activity and expression of COX-2 in human breast cancer cell. We then assessed the metastatic capabilities of HT-29 and MDA-MB-231 cells irradiated with proton beam by measuring the invasiveness of cells through Matrigel-coated membrane and 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced MMP activity in MDA-MB-231 and HT-29 cells. QR activity of irradiated HT-29 cells was slightly increased. Proton irradiation at dose of 32 Gy in HT-29 cells increased GST activity by 1.23-fold. In addition GSH levels in HT-29 cells was significantly increased 1.23- (p<0.05), 1.32- (p<0.01) and 1.34-fold (p<0.01) with the proton irradiation at doses of 8, 16 and 32 Gy, respectively. These results suggest that colon cancer chemopreventive activity was increased with the proton irradiation by increasing QR and GST activities and GSH levels and inhibiting ODC activity. Proton ion irradiation decreased the invasiveness of TPA-treated HT-29 cells and MDA-MB-231 cells through Matrigel-coated membrane. Proton ion irradiation pretreatment decreased TPA-induced MMP activity in MDA-MB-231 and HT-29 cells. Further studies are necessary to investigate if these findings could be translated to in vivo situations

  5. IL-17A-producing CD30(+) Vδ1 T cells drive inflammation-induced cancer progression.

    Science.gov (United States)

    Kimura, Yoshitaka; Nagai, Nao; Tsunekawa, Naoki; Sato-Matsushita, Marimo; Yoshimoto, Takayuki; Cua, Daniel J; Iwakura, Yoichiro; Yagita, Hideo; Okada, Futoshi; Tahara, Hideaki; Saiki, Ikuo; Irimura, Tatsuro; Hayakawa, Yoshihiro

    2016-09-01

    Although it has been suspected that inflammation is associated with increased tumor metastasis, the exact type of immune response required to initiate cancer progression and metastasis remains unknown. In this study, by using an in vivo tumor progression model in which low tumorigenic cancer cells acquire malignant metastatic phenotype after exposure to inflammation, we found that IL-17A is a critical cue for escalating cancer cell malignancy. We further demonstrated that the length of exposure to an inflammatory microenvironment could be associated with acquiring greater tumorigenicity and that IL-17A was critical for amplifying such local inflammation, as observed in the production of IL-1β and neutrophil infiltration following the cross-talk between cancer and host stromal cells. We further determined that γδT cells expressing Vδ1 semi-invariant TCR initiate cancer-promoting inflammation by producing IL-17A in an MyD88/IL-23-dependent manner. Finally, we identified CD30 as a key molecule in the inflammatory function of Vδ1T cells and the blockade of this pathway targeted this cancer immune-escalation process. Collectively, these results reveal the importance of IL-17A-producing CD30(+) Vδ1T cells in triggering inflammation and orchestrating a microenvironment leading to cancer progression.

  6. Emerging of fractal geometry on surface of human cervical epithelial cells during progression towards cancer

    Science.gov (United States)

    Dokukin, M. E.; Guz, N. V.; Woodworth, C.D.; Sokolov, I.

    2015-01-01

    Despite considerable advances in understanding the molecular nature of cancer, many biophysical aspects of malignant development are still unclear. Here we study physical alterations of the surface of human cervical epithelial cells during stepwise in vitro development of cancer (from normal to immortal (premalignant), to malignant). We use atomic force microscopy to demonstrate that development of cancer is associated with emergence of simple fractal geometry on the cell surface. Contrary to the previously expected correlation between cancer and fractals, we find that fractal geometry occurs only at a limited period of development when immortal cells become cancerous; further cancer progression demonstrates deviation from fractal. Because of the connection between fractal behaviour and chaos (or far from equilibrium behaviour), these results suggest that chaotic behaviour coincides with the cancer transformation of the immortalization stage of cancer development, whereas further cancer progression recovers determinism of processes responsible for cell surface formation. PMID:25844044

  7. Progress against laryngeal cancer in The Netherlands between 1989 and 2010

    NARCIS (Netherlands)

    van Dijk, Boukje A. C.; Karim-Kos, Henrike E.; Coebergh, Jan Willem; Marres, Henri A. M.; de Vries, Esther

    2014-01-01

    Cancer of the larynx is a frequently occurring head and neck cancer in The Netherlands. The main risk factors are smoking and excessive alcohol consumption. The aim of our study was to evaluate the progress against laryngeal cancer by studying trends in incidence, mortality and survival in The Nethe

  8. Aberrant expression of zinc transporter ZIP4 (SLC39A4) significantly contributes to human pancreatic cancer pathogenesis and progression.

    Science.gov (United States)

    Li, Min; Zhang, Yuqing; Liu, Zijuan; Bharadwaj, Uddalak; Wang, Hao; Wang, Xinwen; Zhang, Sheng; Liuzzi, Juan P; Chang, Shou-Mei; Cousins, Robert J; Fisher, William E; Brunicardi, F Charles; Logsdon, Craig D; Chen, Changyi; Yao, Qizhi

    2007-11-20

    Zinc is an essential trace element and catalytic/structural component used by many metalloenzymes and transcription factors. Recent studies indicate a possible correlation of zinc levels with the cancer risk; however, the exact role of zinc and zinc transporters in cancer progression is unknown. We have observed that a zinc transporter, ZIP4 (SLC39A4), was substantially overexpressed in 16 of 17 (94%) clinical pancreatic adenocarcinoma specimens compared with the surrounding normal tissues, and ZIP4 mRNA expression was significantly higher in human pancreatic cancer cells than human pancreatic ductal epithelium (HPDE) cells. This indicates that aberrant ZIP4 up-regulation may contribute to the pancreatic cancer pathogenesis and progression. We studied the effects of ZIP4 overexpression in pancreatic cancer cell proliferation in vitro and pancreatic cancer progression in vivo. We found that forced expression of ZIP4 increased intracellular zinc levels, increased cell proliferation by 2-fold in vitro, and significantly increased tumor volume by 13-fold in the nude mice model with s.c. xenograft compared with the control cells. In the orthotopic nude mice model, overexpression of ZIP4 not only increased the primary tumor weight (7.2-fold), it also increased the peritoneal dissemination and ascites incidence. Moreover, increased cell proliferation and higher zinc content were also observed in the tumor tissues that overexpressed ZIP4. These data reveal an important outcome of aberrant ZIP4 expression in contributing to pancreatic cancer pathogenesis and progression. It may suggest a therapeutic strategy whereby ZIP4 is targeted to control pancreatic cancer growth.

  9. The Role of nAChR and Calcium Signaling in Pancreatic Cancer Initiation and Progression

    Energy Technology Data Exchange (ETDEWEB)

    Schaal, Courtney [Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612 (United States); Padmanabhan, Jaya [Department of Molecular Medicine and USF Health Byrd Alzheimer’s Institute, University of South Florida, 4001 E. Fletcher Ave., Tampa, FL 33612 (United States); Chellappan, Srikumar, E-mail: Srikumar.Chellappan@moffitt.org [Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612 (United States)

    2015-07-31

    Pancreatic cancer shows a strong correlation with smoking and the current therapeutic strategies have been relatively ineffective in improving the survival of patients. Efforts have been made over the past many years to understand the molecular events that drive the initiation and progression of pancreatic cancer, especially in the context of smoking. It has become clear that components of tobacco smoke not only initiate these cancers, especially pancreatic ductal adenocarcinomas (PDACs) through their mutagenic properties, but can also promote the growth and metastasis of these tumors by stimulating cell proliferation, angiogenesis, invasion and epithelial-mesenchymal transition. Studies in cell culture systems, animal models and human samples have shown that nicotinic acetylcholine receptor (nAChR) activation enhances these tumor-promoting events by channeling signaling through multiple pathways. In this context, signaling through calcium channels appear to facilitate pancreatic cancer growth by itself or downstream of nAChRs. This review article highlights the role of nAChR downstream signaling events and calcium signaling in the growth, metastasis as well as drug resistance of pancreatic cancer.

  10. The reverse transcriptase encoded by LINE-1 retrotransposons in the genesis, progression and therapy of cancer

    Science.gov (United States)

    Sciamanna, Ilaria; De Luca, Chiara; Spadafora, Corrado

    2016-02-01

    In higher eukaryotic genomes, Long Interspersed Nuclear Element 1 (LINE-1) retrotransposons represent a large family of repeated genomic elements. They transpose using a reverse transcriptase (RT), which they encode as part of the ORF2p product. RT inhibition in cancer cells, either via RNA interference-dependent silencing of active LINE-1 elements, or using RT inhibitory drugs, reduces cancer cell proliferation, promotes their differentiation and antagonizes tumor progression in animal models. Indeed, the nonnucleoside RT inhibitor efavirenz has recently been tested in a phase II clinical trial with metastatic prostate cancer patients. An in-depth analysis of ORF2p in a mouse model of breast cancer showed ORF2p to be precociously expressed in precancerous lesions and highly abundant in advanced cancer stages, while being barely detectable in normal breast tissue, providing a rationale for the finding that RT-expressing tumours are therapeutically sensitive to RT inhibitors. We summarise mechanistic and gene profiling studies indicating that highly abundant LINE-1-derived RT can “sequester” RNA substrates for reverse transcription in tumor cells, entailing the formation of RNA:DNA hybrid molecules and impairing the overall production of regulatory miRNAs, with a global impact on the cell transcriptome. Based on these data, LINE-1-ORF2 encoded RT has a tumor-promoting potential that is exerted at an epigenetic level. We propose a model whereby LINE1-RT drives a previously unrecognized global regulatory process, the deregulation of which drives cell transformation and tumorigenesis and possibly implicated in cancer cell heterogeneity.

  11. Using the MCF10A/MCF10CA1a Breast Cancer Progression Cell Line Model to Investigate the Effect of Active, Mutant Forms of EGFR in Breast Cancer Development and Treatment Using Gefitinib.

    Directory of Open Access Journals (Sweden)

    Darrell C Bessette

    Full Text Available Basal-like and triple negative breast cancer (TNBC share common molecular features, poor prognosis and a propensity for metastasis to the brain. Amplification of epidermal growth factor receptor (EGFR occurs in ~50% of basal-like breast cancer, and mutations in the epidermal growth factor receptor (EGFR have been reported in up to ~ 10% of Asian TNBC patients. In non-small cell lung cancer several different mutations in the EGFR tyrosine kinase domain confer sensitivity to receptor tyrosine kinase inhibitors, but the tumourigenic potential of EGFR mutations in breast cells and their potential for targeted therapy is unknown.Constructs containing wild type, G719S or E746-A750 deletion mutant forms of EGFR were transfected into the MCF10A breast cells and their tumorigenic derivative, MCF10CA1a. The effects of EGFR over-expression and mutation on proliferation, migration, invasion, response to gefitinib, and tumour formation in vivo was investigated. Copy number analysis and whole exome sequencing of the MCF10A and MCF10CA1a cell lines were also performed.Mutant EGFR increased MCF10A and MCF10CA1a proliferation and MCF10A gefitinib sensitivity. The EGFR-E746-A750 deletion increased MCF10CA1a cell migration and invasion, and greatly increased MCF10CA1a xenograft tumour formation and growth. Compared to MCF10A cells, MCF10CA1a cells exhibited large regions of gain on chromosomes 3 and 9, deletion on chromosome 7, and mutations in many genes implicated in cancer.Mutant EGFR enhances the oncogenic properties of MCF10A cell line, and increases sensitivity to gefitinib. Although the addition of EGFR E746-A750 renders the MCF10CA1a cells more tumourigenic in vivo it is not accompanied by increased gefitinib sensitivity, perhaps due to additional mutations, including the PIK3CA H1047R mutation, that the MCF10CA1a cell line has acquired. Screening TNBC/basal-like breast cancer for EGFR mutations may prove useful for directing therapy but, as in non

  12. Pre-clinical Orthotopic Murine Model of Human Prostate Cancer.

    Science.gov (United States)

    Shahryari, Varahram; Nip, Hannah; Saini, Sharanjot; Dar, Altaf A; Yamamura, Soichiro; Mitsui, Yozo; Colden, Melissa; Bucay, Nathan; Tabatabai, Laura Z; Greene, Kirsten; Deng, Guoren; Tanaka, Yuichiro; Dahiya, Rajvir; Majid, Shahana

    2016-08-29

    To study the multifaceted biology of prostate cancer, pre-clinical in vivo models offer a range of options to uncover critical biological information about this disease. The human orthotopic prostate cancer xenograft mouse model provides a useful alternative approach for understanding the specific interactions between genetically and molecularly altered tumor cells, their organ microenvironment, and for evaluation of efficacy of therapeutic regimens. This is a well characterized model designed to study the molecular events of primary tumor development and it recapitulates the early events in the metastatic cascade prior to embolism and entry of tumor cells into the circulation. Thus it allows elucidation of molecular mechanisms underlying the initial phase of metastatic disease. In addition, this model can annotate drug targets of clinical relevance and is a valuable tool to study prostate cancer progression. In this manuscript we describe a detailed procedure to establish a human orthotopic prostate cancer xenograft mouse model.

  13. The Valuable Role of Measuring Serum Lipid Profile in Cancer Progression

    Directory of Open Access Journals (Sweden)

    Farahnaz Ghahremanfard

    2015-09-01

    Full Text Available Objective: Serum lipid levels are not only associated with etiology, but also with prognosis in cancer. To investigate this issue further, we aimed to evaluate the serum levels of lipids in association with the most important prognostic indicators in cancer patients at the start of chemotherapy. Methods: In a retrospective cross-sectional study, using existing medical records obtained from 2009–2014, the data of all incident cancer cases in Iranian patients referred to the Semnan oncology clinic for chemotherapy were analyzed. Data on demographics, cancer type, prognostic indicators (e.g. lymph node involvement, metastasis, and stage of disease, as well as the patient’s lipid profile were collected. We used multiple logistic regression models to show the relationship between prognosis indicators and lipid profile adjusting for age, gender, and type of cancer. Results: The data of 205 patients was gathered. We found a significant difference in the lipid profile between different types of cancers (breast, colon, gastric, and ovarian. With the exception of high-density lipoprotein levels in women, which were higher than in men, the means of other lipid profiles were similar between the genders. There was a significant association between higher levels of low-density lipoprotein (LDL >110mg/dL in the serum and metastasis (adjusted odds ratio=2.4, 95% CI 1.2–3.5. No significant association was reported between lipid profile and lymph nodes involvement and stage of the disease. Conclusion: Our study suggested a benefit of measuring serum levels of lipids for predicting cancer progression. Increased LDL levels can be considered a predictive factor for increasing the risk of metastasis.

  14. Radiation Promotes Colorectal Cancer Initiation and Progression by Inducing Senescence-Associated Inflammatory Responses

    Science.gov (United States)

    Kim, Sang Bum; Bozeman, Ronald; Kaisani, Aadil; Kim, Wanil; Zhang, Lu; Richardson, James A.; Wright, Woodring E.; Shay, Jerry W.

    2015-01-01

    Proton radiotherapy is becoming more common since protons induce more precise DNA damage at the tumor site with reduced side effects to adjacent normal tissues. However, the long-term biological effects of proton irradiation in cancer initiation compared to conventional photon irradiation are poorly characterized. In this study, using a human familial adenomatous polyposis syndrome susceptible mouse model, we show that whole body irradiation with protons are more effective in inducing senescence-associated inflammatory responses (SIR) which are involved in colon cancer initiation and progression. After proton irradiation, a subset of SIR genes (Troy, Sox17, Opg, Faim2, Lpo, Tlr2 and Ptges) and a gene known to be involved in invasiveness (Plat), along with the senescence associated gene (P19Arf) are markedly increased. Following these changes loss of Casein kinase Iα (CKIα) and induction of chronic DNA damage and TP53 mutations are increased compared to x-ray irradiation. Proton irradiation also increases the number of colonic polyps, carcinomas and invasive adenocarcinomas. Pretreatment with the non-steroidal anti-inflammatory drug, CDDO-EA, reduces proton irradiation associated SIR and tumorigenesis. Thus, exposure to proton irradiation elicits significant changes in colorectal cancer initiation and progression that can be mitigated using CDDO-EA. PMID:26477319

  15. Stromal response to Hedgehog signaling restrains pancreatic cancer progression.

    Science.gov (United States)

    Lee, John J; Perera, Rushika M; Wang, Huaijun; Wu, Dai-Chen; Liu, X Shawn; Han, Shiwei; Fitamant, Julien; Jones, Phillip D; Ghanta, Krishna S; Kawano, Sally; Nagle, Julia M; Deshpande, Vikram; Boucher, Yves; Kato, Tomoyo; Chen, James K; Willmann, Jürgen K; Bardeesy, Nabeel; Beachy, Philip A

    2014-07-29

    Pancreatic ductal adenocarcinoma (PDA) is the most lethal of common human malignancies, with no truly effective therapies for advanced disease. Preclinical studies have suggested a therapeutic benefit of targeting the Hedgehog (Hh) signaling pathway, which is activated throughout the course of PDA progression by expression of Hh ligands in the neoplastic epithelium and paracrine response in the stromal fibroblasts. Clinical trials to test this possibility, however, have yielded disappointing results. To further investigate the role of Hh signaling in the formation of PDA and its precursor lesion, pancreatic intraepithelial neoplasia (PanIN), we examined the effects of genetic or pharmacologic inhibition of Hh pathway activity in three distinct genetically engineered mouse models and found that Hh pathway inhibition accelerates rather than delays progression of oncogenic Kras-driven disease. Notably, pharmacologic inhibition of Hh pathway activity affected the balance between epithelial and stromal elements, suppressing stromal desmoplasia but also causing accelerated growth of the PanIN epithelium. In striking contrast, pathway activation using a small molecule agonist caused stromal hyperplasia and reduced epithelial proliferation. These results indicate that stromal response to Hh signaling is protective against PDA and that pharmacologic activation of pathway response can slow tumorigenesis. Our results provide evidence for a restraining role of stroma in PDA progression, suggesting an explanation for the failure of Hh inhibitors in clinical trials and pointing to the possibility of a novel type of therapeutic intervention.

  16. The fundamental role of mechanical properties in the progression of cancer disease and inflammation

    Science.gov (United States)

    Mierke, Claudia Tanja

    2014-07-01

    The role of mechanical properties in cancer disease and inflammation is still underinvestigated and even ignored in many oncological and immunological reviews. In particular, eight classical hallmarks of cancer have been proposed, but they still ignore the mechanics behind the processes that facilitate cancer progression. To define the malignant transformation of neoplasms and finally reveal the functional pathway that enables cancer cells to promote cancer progression, these classical hallmarks of cancer require the inclusion of specific mechanical properties of cancer cells and their microenvironment such as the extracellular matrix as well as embedded cells such as fibroblasts, macrophages or endothelial cells. Thus, this review will present current cancer research from a biophysical point of view and will therefore focus on novel physical aspects and biophysical methods to investigate the aggressiveness of cancer cells and the process of inflammation. As cancer or immune cells are embedded in a certain microenvironment such as the extracellular matrix, the mechanical properties of this microenvironment cannot be neglected, and alterations of the microenvironment may have an impact on the mechanical properties of the cancer or immune cells. Here, it is highlighted how biophysical approaches, both experimental and theoretical, have an impact on the classical hallmarks of cancer and inflammation. It is even pointed out how these biophysical approaches contribute to the understanding of the regulation of cancer disease and inflammatory responses after tissue injury through physical microenvironmental property sensing mechanisms. The recognized physical signals are transduced into biochemical signaling events that guide cellular responses, such as malignant tumor progression, after the transition of cancer cells from an epithelial to a mesenchymal phenotype or an inflammatory response due to tissue injury. Moreover, cell adaptation to mechanical alterations, in

  17. Intertwining of Activin A and TGFβ Signaling: Dual Roles in Cancer Progression and Cancer Cell Invasion

    Energy Technology Data Exchange (ETDEWEB)

    Loomans, Holli A. [Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Andl, Claudia D., E-mail: claudia.andl@vanderbilt.edu [Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Vanderbilt Digestive Disease Center, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Vanderbilt Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232 (United States)

    2014-12-30

    In recent years, a significant amount of research has examined the controversial role of activin A in cancer. Activin A, a member of the transforming growth factor β (TGFβ) superfamily, is best characterized for its function during embryogenesis in mesoderm cell fate differentiation and reproduction. During embryogenesis, TGFβ superfamily ligands, TGFβ, bone morphogenic proteins (BMPs) and activins, act as potent morphogens. Similar to TGFβs and BMPs, activin A is a protein that is highly systemically expressed during early embryogenesis; however, post-natal expression is overall reduced and remains under strict spatiotemporal regulation. Of importance, normal post-natal expression of activin A has been implicated in the migration and invasive properties of various immune cell types, as well as endometrial cells. Aberrant activin A signaling during development results in significant morphological defects and premature mortality. Interestingly, activin A has been found to have both oncogenic and tumor suppressor roles in cancer. Investigations into the role of activin A in prostate and breast cancer has demonstrated tumor suppressive effects, while in lung and head and neck squamous cell carcinoma, it has been consistently shown that activin A expression is correlated with increased proliferation, invasion and poor patient prognosis. Activin A signaling is highly context-dependent, which is demonstrated in studies of epithelial cell tumors and the microenvironment. This review discusses normal activin A signaling in comparison to TGFβ and highlights how its dysregulation contributes to cancer progression and cell invasion.

  18. The lack of predictors for rapid progression in prostate cancer patients receiving sipuleucel-T.

    Science.gov (United States)

    Ng, Laura; Heck, Wendy; Lavsa, Stacey; Crowther, David; Atkinson, Brad; Xiao, Lianchun; Araujo, John

    2013-05-06

    Sipuleucel-T is an immunotherapy indicated for the treatment of metastatic prostate cancer. It offers a new mechanism to treat prostate cancer without the side effects of hormone therapies and chemotherapies. In previous studies sipuleucel-T did not delay disease progression, but demonstrated an overall survival benefit compared to placebo. While clinical trials have evaluated the effects of sipuleucel-T on overall survival and progression, more studies are needed to evaluate its effectiveness and role in the management of prostate cancer. The objective of this study is to identify the incidence and possible predictors for disease progression in patients receiving sipuleucel-T. A retrospective review of patients who received sipuleucel-T between 1 September 2010 and 11 October 2011 was conducted (n = 36). Patients who changed therapy or died within 120 days were classified as experiencing rapid progression. Potential predictors of rapid progression were examined using logistic regression. Seven patients met criteria for rapid progression. Progression occurred in 72.2% of all patients. The median days to progression was 158. No significant predictors of rapid progression were identified. Currently no predictors have been found to be associated with rapid progression in prostate cancer patients on sipuleucel-T.

  19. The Lack of Predictors for Rapid Progression in Prostate Cancer Patients Receiving Sipuleucel-T

    Directory of Open Access Journals (Sweden)

    John Araujo

    2013-05-01

    Full Text Available Sipuleucel-T is an immunotherapy indicated for the treatment of metastatic prostate cancer. It offers a new mechanism to treat prostate cancer without the side effects of hormone therapies and chemotherapies. In previous studies sipuleucel-T did not delay disease progression, but demonstrated an overall survival benefit compared to placebo. While clinical trials have evaluated the effects of sipuleucel-T on overall survival and progression, more studies are needed to evaluate its effectiveness and role in the management of prostate cancer. The objective of this study is to identify the incidence and possible predictors for disease progression in patients receiving sipuleucel-T. A retrospective review of patients who received sipuleucel-T between 1 September 2010 and 11 October 2011 was conducted (n = 36. Patients who changed therapy or died within 120 days were classified as experiencing rapid progression. Potential predictors of rapid progression were examined using logistic regression. Seven patients met criteria for rapid progression. Progression occurred in 72.2% of all patients. The median days to progression was 158. No significant predictors of rapid progression were identified. Currently no predictors have been found to be associated with rapid progression in prostate cancer patients on sipuleucel-T.

  20. Clinical states model for biomarkers in bladder cancer.

    Science.gov (United States)

    Apolo, Andrea B; Milowsky, Matthew; Bajorin, Dean F

    2009-09-01

    Bladder cancer is a significant healthcare problem in the USA, with a high recurrence rate, the need for expensive continuous surveillance and limited treatment options for patients with advanced disease. Research has contributed to an understanding of the molecular pathways involved in the development and progression of bladder cancer, and that understanding has led to the discovery of potentially diagnostic, predictive and prognostic biomarkers. In this review, a clinical states model of bladder cancer is introduced and integrated into a paradigm for biomarker development. Biomarkers are systematically incorporated with predefined end points to aid in clinical management.

  1. Ocimum gratissimum retards breast cancer growth and progression and is a natural inhibitor of matrix metalloproteases.

    Science.gov (United States)

    Nangia-Makker, Pratima; Raz, Tirza; Tait, Larry; Shekhar, Malathy P V; Li, Hong; Balan, Vitaly; Makker, Hemanckur; Fridman, Rafael; Maddipati, Krishnarao; Raz, Avraham

    2013-05-01

    Ocimum genus (a.k.a holy basil or tulsi) is a dietary herb used for its multiple beneficial pharmacologic properties including anti-cancer activity. Here we show that crude extract of Ocimum gratissimum (OG) and its hydrophobic and hydrophilic fractions (HB and HL) differentially inhibit breast cancer cell chemotaxis and chemoinvasion in vitro and retard tumor growth and temporal progression of MCF10ADCIS.com xenografts, a model of human breast comedo-ductal carcinoma in situ (comedo-DCIS). OG-induced inhibition of tumor growth was associated with decreases in basement membrane disintegration, angiogenesis and MMP-2 and MMP-9 activities as confirmed by in situ gelatin zymography and cleavage of galectin-3. There was also decrease in MMP-2 and MMP-9 activities in the conditioned media of OG-treated MCF10AT1 and MCF10AT1-EIII8 premalignant human breast cancer cells as compared with control. The MMP-2 and MMP-9 inhibitory activities of OG were verified in vitro using gelatin, a synthetic fluorogenic peptide and recombinant galectin-3 as MMP substrates. Mice fed on OG-supplemented drinking water showed no adverse effects compared with control. These data suggest that OG is non-toxic and that the anti-cancer therapeutic activity of OG may in part be contributed by its MMP inhibitory activity.

  2. Prostatic and dietary omega-3 fatty acids and prostate cancer progression during active surveillance.

    Science.gov (United States)

    Moreel, Xavier; Allaire, Janie; Léger, Caroline; Caron, André; Labonté, Marie-Ève; Lamarche, Benoît; Julien, Pierre; Desmeules, Patrice; Têtu, Bernard; Fradet, Vincent

    2014-07-01

    The association between omega-3 (ω-3) fatty acids and prostate cancer has been widely studied. However, little is known about the impact of prostate tissue fatty acid content on prostate cancer progression. We hypothesized that compared with the estimated dietary ω-3 fatty acids intake and the ω-3 fatty acids levels measured in red blood cells (RBC), the prostate tissue ω-3 fatty acid content is more strongly related to prostate cancer progression. We present the initial observations from baseline data of a phase II clinical trial conducted in a cohort of 48 untreated men affected with low-risk prostate cancer, managed under active surveillance. These men underwent a first repeat biopsy session within 6 months after the initial diagnosis of low-risk prostate cancer, at which time 29% of the men had progressed from a Gleason score of 6 to a Gleason score of 7. At the first repeat biopsy session, fatty acid levels were assessed with a food-frequency questionnaire, and determined in the RBC and in the prostate tissue biopsy. We found that eicosapentaenoic acid (EPA) was associated with a reduced risk of prostate cancer progression when measured directly in the prostate tissue. Thus, this initial interim study analysis suggests that prostate tissue ω-3 fatty acids, especially EPA, may be protective against prostate cancer progression in men with low-risk prostate cancer.

  3. Human Cancer Models Initiative | Office of Cancer Genomics

    Science.gov (United States)

    The Human Cancer Models Initiative (HCMI) is an international consortium that is generating novel human tumor-derived culture models, which are annotated with genomic and clinical data. In an effort to advance cancer research and more fully understand how in vitro findings are related to clinical biology, HCMI-developed models and related data will be available as a community resource for cancer research.

  4. Prognostic value of a cell cycle progression score for men with prostate cancer.

    Science.gov (United States)

    Cuzick, Jack

    2014-01-01

    A new prognostic score called the cell cycle progression or CCP score has been evaluated for predicting outcome in men with prostate cancer. The score is based on 31 cell cycle progression genes and 15 housekeeper control genes. Results on 5 cohorts have been reported. In all cases the CCP score was strongly predictive of outcome both in univariate models and in multvariate models incorporating standard factors such as Gleason grade, PSA levels and extent of disease. Two cohorts evaluated patients managed by active surveillance where the outcome was death from prostate cancer, two cohorts examined patients treated by radical prostatectomy where biochemical recurrence was the primary endpoint, and one smaller cohort looked at patients treated with radiotherapy where again biochemical recurrence was used as the endpoint. In all cases a unit change in CCP score was associated with an approximate doubling of risk of an event. These data provide strong event to support use of the CCP score to help guide clinical management.

  5. MUC1 Regulates PDGFA Expression During Pancreatic Cancer Progression

    Science.gov (United States)

    Sahraei, Mahnaz; Roy, Lopamudra Das; Curry, Jennifer M; Teresa, Tinder L; Nath, Sritama; Besmer, Dahlia; Kidiyoor, Amritha; Dalia, Ritu; Gendler, Sandra J; Mukherjee, Pinku

    2012-01-01

    Pancreatic Ductal Adenocarcinoma (PDA) has one of the worst prognoses of all cancers. Mucin 1 (MUC1), a transmembrane mucin glycoprotein, is a key modulator of several signaling pathways that affect oncogenesis, motility, and metastasis. Its expression is known to be associated with poor prognosis in patients. However, the precise mechanism remains elusive. We report a novel association of MUC1 with Platelet-Derived Growth Factor-A (PDGFA). PDGFA is one of the many drivers of tumor growth, angiogenesis, and metastasis in PDA. Using mouse PDA models as well as human samples, we show clear evidence that MUC1 regulates the expression and secretion of PDGFA. This, in turn, influences proliferation and invasion of pancreatic cancer cells leading to higher tumor burden in vivo. In addition, we reveal that MUC1 over expressing cells are heavily dependent on PDGFA both for proliferation and invasion while MUC1-null cells are not. Moreover, PDGFA and MUC1 are critical for translocation of βcatenin to the nucleus for oncogenesis to ensue. Finally, we elucidate the underlying mechanism by which MUC1 regulates PDGFA expression and secretion in pancreatic cancer cells. We show that MUC1 associates with Hif1-α, a known transcription factor involved in controlling PDGFA expression. Furthermore, MUC1 facilitates Hif1-α translocation to the nucleus. In summary, we have demonstrated that MUC1-induced invasion and proliferation occurs via increased exogenous production of PDGFA. Thus, impeding MUC1 regulation of PDGFA signaling may be therapeutically beneficial for patients with PDA. PMID:22266848

  6. The Role of Mitochondria in Cancer Induction, Progression and Changes in Metabolism.

    Science.gov (United States)

    Rogalinska, Malgorzata

    2016-01-01

    Mitochondria play important roles as energetic centers. Mutations in mitochondrial DNA (mtDNA) were found in several diseases, including cancers. Studies on cytoplasmic hybrids (cybrids) confirm that directed mutation introduced into mtDNA could be a reason for cancer induction. Mitochondria could also be a factor linking cancer transformation and progression. The importance of mitochondria in cancer also confirms their involvement in the resistance to treatment. Resistance to treatment of cancer cells can frequently be a reason for glycolysis acceleration. It could be explained by cancer cells' high proliferation index and high energy request. The involvement of mitochondria in metabolic disturbances of several metabolic diseases, including cancers, was reported. These data confirm that cancer induction, as well as cancer progression, could have metabolic roots. The aberrant products observed in prostate cells involved in the Krebs cycle could promote cancer progression. These multiple relationships between alterations on a genetic level translated into disturbances in cellular metabolism and their potential relation with epigenetic control of gene expression make cancerogenesis more complicated and prognoses' success in studies on cancer etiology more distant in time.

  7. Nano-mechanical Phenotype as a Promising Biomarker to Evaluate Cancer Development, Progression, and Anti-cancer Drug Efficacy.

    Science.gov (United States)

    Park, Soyeun

    2016-06-01

    Since various bio-mechanical assays have been introduced for studying mechanical properties of biological samples, much progress has been made in cancer biology. It has been noted that enhanced mechanical deformability can be used as a marker for cancer diagnosis. The relation between mechanical compliances and the metastatic potential of cancer cells has been suggested to be a promising prognostic marker. Although it is yet to be conclusive about its clinical application due to the complexity in the tissue integrity, the nano-mechanical compliance of human cell samples has been evaluated by several groups as a promising marker in diagnosing cancer development and anticipating its progression. In this review, we address the mechanical properties of diverse cancer cells obtained by atomic force microscopy-based indentation experiments and reiterate prognostic relations between the nano-mechanical compliance and cancer progression. We also review the nano-mechanical responses of cancer cells to the anti-cancer drug treatment in order to interrogate a possible use of nano-mechanical compliance as a means to evaluate the effectiveness of anti-cancer drugs.

  8. Identification of C16orf74 as a marker of progression in primary non-muscle invasive bladder cancer.

    Directory of Open Access Journals (Sweden)

    Won Tae Kim

    Full Text Available PURPOSE: Methylation-induced silencing of PRSS3 has been shown to be significantly associated with invasive bladder cancer, and expression of the C16orf74 gene locus has been shown to correlate positively with PRSS3. The aim of the current study was to evaluate the relationship between C16orf74 expression level and progression in non-muscle invasive bladder cancer (NMIBC. MATERIALS AND METHODS: C16orf74 mRNA levels were examined by real-time reverse transcriptase polymerase chain reaction (RT-PCR analysis of 193 tumor specimens from patients with primary NMIBC. Expression data were analyzed in terms of clinical and experimental parameters. Kaplan-Meier curves and multivariate Cox regression models, respectively, were used to determine progression-free survival and to identify independent predictive parameters of progression. RESULTS: Analysis using Kaplan-Meier curves revealed prolonged progression-free survival of high-C16orf74-expressors as compared to low-expressors (p<0.001. Multivariate Cox regression analysis revealed that low C16orf74 mRNA expression levels are a significant risk factor for disease progression in patients with primary NMIBC (HR: 10.042, CI:2.699-37.360, p = 0.001. CONCLUSIONS: Decreased expression of C16orf74 correlates significantly with progression in primary NMIBC. C16orf74 expression level represents a potentially useful marker for predicting progression in primary NMIBC patients.

  9. Effects of clusterin over-expression on metastatic progression and therapy in breast cancer

    Directory of Open Access Journals (Sweden)

    Chatterjee Namita

    2010-03-01

    Full Text Available Abstract Background Clusterin is a secreted glycoprotein that is upregulated in a variety of cell lines in response to stress, and enhances cell survival. A second nuclear isoform of clusterin that is associated with cell death has also been identified. The aim of this study was to determine the role(s of the secretory isoform in breast tumor progression and metastasis. Methods To investigate the role of secretory clusterin in the biology of breast cancer tumor growth and resistance to therapy we have engineered an MCF-7 cell line (MCF-7CLU that over-expresses clusterin. We have measured the in vitro effects of clusterin over-expression on cell cycle, cell death, and sensitivity to TNFalpha and tamoxifen. Using an orthotopic model of breast cancer, we have also determined the effects of over-expression of clusterin on tumor growth and metastatic progression. Results In vitro, over-expression of secretory clusterin alters the cell cycle kinetics and decreases the rate of cell death, resulting in the enhancement of cell growth. Over-expression of secretory clusterin also blocks the TNFalpha-mediated induction of p21 and abrogates the cleavage of Bax to t-Bax, rendering the MCF-7CLU cells significantly more resistant to the cytokine than the parental cells. Orthotopic primary tumors derived from MCF-7CLU cells grow significantly more rapidly than tumors derived from parental MCF-7 cells and, unlike the parental cells, metastasize frequently to the lungs. Conclusions These data suggest that secretory clusterin, which is frequently up-regulated in breast cancers by common therapies, including anti-estrogens, may play a significant role in tumor growth, metastatic progression and subsequent drug resistance in surviving cells.

  10. Vegetable and fruit intake after diagnosis and risk of prostate cancer progression.

    Science.gov (United States)

    Richman, Erin L; Carroll, Peter R; Chan, June M

    2012-07-01

    Cruciferous vegetables, tomato sauce and legumes have been associated with reduced risk of incident advanced prostate cancer. In vitro and animal studies suggest these foods may inhibit progression of prostate cancer, but there are limited data in men. Therefore, we prospectively examined whether intake of total vegetables, and specifically cruciferous vegetables, tomato sauce and legumes, after diagnosis reduce risk of prostate cancer progression among 1,560 men diagnosed with non-metastatic prostate cancer and participating in the Cancer of the Prostate Strategic Urologic Research Endeavor, a United States prostate cancer registry. As a secondary analysis, we also examined other vegetable subgroups, total fruit and subgroups of fruits. The participants were diagnosed primarily at community-based clinics and followed from 2004 to 2009. We assessed vegetable and fruit intake via a semi-quantitative food frequency questionnaire, and ascertained prostate cancer outcomes via urologist report and medical records. We observed 134 events of progression (53 biochemical recurrences, 71 secondary treatments likely due to recurrence, 6 bone metastases and 4 prostate cancer deaths) during 3,171 person-years. Men in the fourth quartile of post-diagnostic cruciferous vegetable intake had a statistically significant 59% decreased risk of prostate cancer progression compared to men in the lowest quartile (hazard ratio (HR): 0.41; 95% confidence interval (CI): 0.22, 0.76; p-trend: 0.003). No other vegetable or fruit group was statistically significantly associated with risk of prostate cancer progression. In conclusion, cruciferous vegetable intake after diagnosis may reduce risk of prostate cancer progression.

  11. Progress towards a Venus reference cloud model

    Science.gov (United States)

    Wilson, Colin; Ignatiev, Nikolay; Marcq, Emmanuel

    Venus is completely enveloped by clouds. The main cloud layers stretch from altitudes of 48 - 75 km, with additional tenuous hazes found at altitudes 30 - 100 km. Clouds play a crucial role in governing atmospheric circulation, chemistry and climate on all planets, but particularly so on Venus due to the optical thickness of the atmosphere. The European Space Agency’s Venus Express (VEx) satellite has carried out a wealth of observations of Venus clouds since its arrival at Venus in April 2006. Many VEx observations are relevant to cloud science - from imagers and spectrometers to solar, stellar and radio occultation - each covering different altitude ranges, spectral ranges and atmospheric constituents. We have formed an International Team at the International Space Science Institute to bring together scientists from each of the relevant Venus Express investigation teams as well as from previous missions, as well as those developing computational and analytical models of clouds and hazes. The aims of the project are (1) to create self-consistent reference cloud/haze models which capture not only a mean cloud structure but also its main modes of variability; and (2) to bring together modelers and observers, to reach an understanding of clouds and hazes on Venus which matches all observables and is physically consistent. Our approach is to first to assemble an averaged cloud profile for low latitudes, showing how cloud number abundances and other observables vary as a function of altitude, consistent with all available observations. In a second step, we will expand this work to produce a reference cloud profile which varies with latitude and local solar time, as well as optical thickness of the cloud. We will present our status in progressing towards this goal. We acknowledge the support of the International Space Science Institute of Berne, Switzerland, in hosting our Team’s meetings.

  12. Human mammary microenvironment better regulates the biology of human breast cancer in humanized mouse model.

    Science.gov (United States)

    Zheng, Ming-Jie; Wang, Jue; Xu, Lu; Zha, Xiao-Ming; Zhao, Yi; Ling, Li-Jun; Wang, Shui

    2015-02-01

    During the past decades, many efforts have been made in mimicking the clinical progress of human cancer in mouse models. Previously, we developed a human breast tissue-derived (HB) mouse model. Theoretically, it may mimic the interactions between "species-specific" mammary microenvironment of human origin and human breast cancer cells. However, detailed evidences are absent. The present study (in vivo, cellular, and molecular experiments) was designed to explore the regulatory role of human mammary microenvironment in the progress of human breast cancer cells. Subcutaneous (SUB), mammary fat pad (MFP), and HB mouse models were developed for in vivo comparisons. Then, the orthotopic tumor masses from three different mouse models were collected for primary culture. Finally, the biology of primary cultured human breast cancer cells was compared by cellular and molecular experiments. Results of in vivo mouse models indicated that human breast cancer cells grew better in human mammary microenvironment. Cellular and molecular experiments confirmed that primary cultured human breast cancer cells from HB mouse model showed a better proliferative and anti-apoptotic biology than those from SUB to MFP mouse models. Meanwhile, primary cultured human breast cancer cells from HB mouse model also obtained the migratory and invasive biology for "species-specific" tissue metastasis to human tissues. Comprehensive analyses suggest that "species-specific" mammary microenvironment of human origin better regulates the biology of human breast cancer cells in our humanized mouse model of breast cancer, which is more consistent with the clinical progress of human breast cancer.

  13. FGF19 Contributes to Tumor Progression in Gastric Cancer by Promoting Migration and Invasion.

    Science.gov (United States)

    Wang, Shuang; Zhao, Daqi; Tian, Ruihua; Shi, Hailong; Chen, Xiangming; Liu, Wenzhi; Wei, Lin

    2016-01-01

    Gastric cancer is the fourth most common type of cancer and second leading cause of cancer-related death in the world. Since patients are often diagnosed at a late stage, very few effective therapies are left in the arsenal. FGF19, as a hormone, has been reported to promote tumor growth in various types of cancer; however, its function in gastric cancer remains unknown. In the current study, we showed that FGF19 is overexpressed in gastric cancer and is associated with depth of invasion, lymph node metastasis, and TNM stage. In addition, in vitro experiments demonstrated that FGF19 is able to enhance migration and invasion abilities of gastric cancer cells. Given its great potency in gastric cancer progression, FGF19 may be an effective target of treatment for advanced gastric cancer patients.

  14. Cancer statistics for African Americans, 2016: Progress and opportunities in reducing racial disparities.

    Science.gov (United States)

    DeSantis, Carol E; Siegel, Rebecca L; Sauer, Ann Goding; Miller, Kimberly D; Fedewa, Stacey A; Alcaraz, Kassandra I; Jemal, Ahmedin

    2016-07-01

    In this article, the American Cancer Society provides the estimated number of new cancer cases and deaths for blacks in the United States and the most recent data on cancer incidence, mortality, survival, screening, and risk factors for cancer. Incidence data are from the National Cancer Institute, the Centers for Disease Control and Prevention, and the North American Association of Central Cancer Registries, and mortality data are from the National Center for Health Statistics. Approximately 189,910 new cases of cancer and 69,410 cancer deaths will occur among blacks in 2016. Although blacks continue to have higher cancer death rates than whites, the disparity has narrowed for all cancers combined in men and women and for lung and prostate cancers in men. In contrast, the racial gap in death rates has widened for breast cancer in women and remained level for colorectal cancer in men. The reduction in overall cancer death rates since the early 1990s translates to the avoidance of more than 300,000 deaths among blacks. In men, incidence rates from 2003 to 2012 decreased for all cancers combined (by 2.0% per year) as well as for the top 3 cancer sites (prostate, lung, and colorectal). In women, overall rates during the corresponding time period remained unchanged, reflecting increasing trends in breast cancer combined with decreasing trends in lung and colorectal cancer rates. Five-year relative survival is lower for blacks than whites for most cancers at each stage of diagnosis. The extent to which these disparities reflect unequal access to health care versus other factors remains an active area of research. Progress in reducing cancer death rates could be accelerated by ensuring equitable access to prevention, early detection, and high-quality treatment. CA Cancer J Clin 2016;66:290-308. © 2016 American Cancer Society.

  15. Monoamine Oxidase A: A Novel Target for Progression and Metastasis of Prostate Cancer

    Science.gov (United States)

    2013-10-01

    Target for Progression and Metastasis of Prostate Cancer PRINCIPAL INVESTIGATOR: Jean C. Shih, Ph.D. CONTRATING ORGANIZATION...aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services

  16. Kidney cancer progression linked to shifts in tumor metabolism

    Science.gov (United States)

    Investigators in The Cancer Genome Atlas Research Network have uncovered a connection between how tumor cells use energy from metabolic processes and the aggressiveness of the most common form of kidney cancer, clear cell renal cell carcinoma.

  17. Progress through Collaboration - Office of Cancer Clinical Proteomics Research

    Science.gov (United States)

    The National Cancer Institute (NCI), through the Office of Cancer Clinical Proteomics Research (OCCPR), has signed two Memorandums of Understanding (MOUs) in the areas of sharing proteomics reagents and protocols and also in regulatory science.

  18. Exosomes as Novel microRNA-Delivery Vehicles to Modulate Prostate Cancer Progression

    Science.gov (United States)

    2015-10-01

    AWARD NUMBER: W81XWH-14-1-0548 TITLE: Exosomes as Novel microRNA-Delivery Vehicles to Modulate Prostate Cancer Progression PRINCIPAL...Sep 2015 4. TITLE AND SUBTITLE Exosomes as Novel microRNA-Delivery Vehicles to Modulate Prostate Cancer Progression 5a. CONTRACT NUMBER 5b. GRANT...they are produced, but can also signal intercellularly to other cells and tissues at distant sites via exosomal transport. We hypothesize that miRNAs

  19. The Lack of Predictors for Rapid Progression in Prostate Cancer Patients Receiving Sipuleucel-T

    OpenAIRE

    John Araujo; Lianchun Xiao; Brad Atkinson; David Crowther; Stacey Lavsa; Wendy Heck; Laura Ng

    2013-01-01

    Sipuleucel-T is an immunotherapy indicated for the treatment of metastatic prostate cancer. It offers a new mechanism to treat prostate cancer without the side effects of hormone therapies and chemotherapies. In previous studies sipuleucel-T did not delay disease progression, but demonstrated an overall survival benefit compared to placebo. While clinical trials have evaluated the effects of sipuleucel-T on overall survival and progression, more studies are needed to evaluate its effectivenes...

  20. Function of cancer cell-derived extracellular matrix in tumor progression

    Institute of Scientific and Technical Information of China (English)

    Gao-Feng Xiong; Ren Xu

    2016-01-01

    Extracellular matrix (ECM) is an essential component of the tumor microenvironment. Cancer development and progression are associated with increased ECM deposition and crosslink. The chemical and physical signals elicited from ECM are necessary for cancer cell proliferation and invasion. It is well recognized that stromal cells are a major source of ECM proteins. However, recent studies showed that cancer cells are also an active and important component in ECM remodeling. Cancer cells deposit a signiifcant amount of collagen, ifbronectin, and tenascin C (TNC). Recent studies demonstrate that these cancer cell-derived ECM proteins enhance cancer cell survival and promote cancer cell colonization at distant sites. ECM-related enzymes and chaperone proteins, such as prolyl-4-hydroxylase, lysyl-hydroxylase, lysyl oxidase, and heat shock protein 47, are also highly expressed in cancer cells. Inhibition of these enzymes signiifcantly reduces cancer growth, invasion, and metastasis. These factors suggest that the cancer cell-derived ECM is crucial for cancer progression and metastasis. Therefore, targeting these ECM proteins and ECM-related enzymes is a potential strategy for cancer treatment.

  1. Progress in diagnosis of breast cancer: Advances in radiology technology

    Directory of Open Access Journals (Sweden)

    J Mari Beth Linder

    2015-01-01

    Full Text Available Breast cancer is the leading cause of cancer in females between the ages of 15 and 54, and the second leading cause of cancer death in women in the United States. Diagnosis begins with detection by breast examination (clinical breast exam or breast self-exam or by radiologic studies, like mammography. Many advances in the diagnosis of breast cancer have taken place in recent years. This article will review the history of radiologic advances in the diagnosis of breast cancer. Use of technological advancements in digital breast tomosynthesis, magnetic resonance imaging, and ultrasound in breast cancer diagnosis will be presented. Advantages and disadvantages of these diagnostic interventions when compared to older, traditional X-ray films will be discussed. It is important for all nurses, including radiology and oncology nurses, to be well informed about these varied diagnostic modalities, and appreciate the fact that advances in radiologic imaging technologies can yield improved outcomes for breast cancer patients.

  2. New Anti-cancer Progress Scored in Vascular-targeting Treatment

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ A research team headed by YAN Xiyun at the CAS Institute of Biophysics (IBP) has scored encouraging progress in developing a vasculartargeting therapy against cancers.The cancer is the No.1 killer disease in today's world. Three conventional approaches have been developed by physicians to deal with it,namely, the surgical removal, chemotherapy and radiotherapy.

  3. Progress against cancer in the Netherlands since the late 1980s: an epidemiological evaluation.

    NARCIS (Netherlands)

    Karim-Kos, H.E.; Kiemeney, L.A.L.M.; Louwman, M.W.; Coebergh, J.W.W.; Vries, E. de

    2012-01-01

    Progress against cancer through prevention and treatment is often measured by survival statistics only instead of analyzing trends in incidence, survival and mortality simultaneously because of interactive influences. This study combines these parameters of major cancers to provide an overview of th

  4. Clinical progression of lobaplatin in combination chemotherapy for patients with recurrence or metastatic cancer

    Institute of Scientific and Technical Information of China (English)

    Yu Peng; Jiangkui Liu; Qiang Lin

    2014-01-01

    The-platinum-based-combination-chemotherapy-has-become-one-of-the-major-modalities-in-anti-cancer-treatment.-After-the-first-line-chemotherapy,-many-patients-need-further-chemotherapy-because-of-recurrence-or-metastasis.-Lobaplatin-is-one-of-the-third-generation-platinum-drugs,and-this-article-briefly-reviews-the-clinical-progression-of-lobaplatin-in-combination-chemotherapy-for-patients-with-recurrence-or-metastatic-cancer.

  5. Retrotransposon-Encoded Reverse Transcriptase in the Genesis, Progression and Cellular Plasticity of Human Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Sinibaldi-Vallebona, Paola; Matteucci, Claudia [Department of Experimental Medicine and Biochemical Sciences, University ‘Tor Vergata’, Rome (Italy); Spadafora, Corrado, E-mail: cspadaf@tin.it [Italian National Institute of Health (ISS), Rome (Italy)

    2011-03-07

    LINE-1 (Long Interspersed Nuclear Elements) and HERVs (Human Endogenous Retroviruses) are two families of autonomously replicating retrotransposons that together account for about 28% of the human genome. Genes harbored within LINE-1 and HERV retrotransposons, particularly those encoding the reverse transcriptase (RT) enzyme, are generally expressed at low levels in differentiated cells, but their expression is upregulated in transformed cells and embryonic tissues. Here we discuss a recently discovered RT-dependent mechanism that operates in tumorigenesis and reversibly modulates phenotypic and functional variations associated with tumor progression. Downregulation of active LINE-1 elements drastically reduces the tumorigenic potential of cancer cells, paralleled by reduced proliferation and increased differentiation. Pharmacological RT inhibitors (e.g., nevirapine and efavirenz) exert similar effects on tumorigenic cell lines, both in culture and in animal models. The HERV-K family play a distinct complementary role in stress-dependent transition of melanoma cells from an adherent, non-aggressive, to a non-adherent, highly malignant, growth phenotype. In synthesis, the retrotransposon-encoded RT is increasingly emerging as a key regulator of tumor progression and a promising target in a novel anti-cancer therapy.

  6. 癌症病人家庭照顾者心理行为干预模式研究进展%Research progress on psychological behavioral intervention model for family caregivers of cancer patients

    Institute of Scientific and Technical Information of China (English)

    胡彩平; 林毅; 李秋萍

    2012-01-01

    阐述了癌症病人家庭照顾者生理、心理及精神等方面的变化,癌症病人及其家庭照顾者的心理行为干预模式.提出以夫妻为中心的心理行为干预模式将是未来发展的方向,探讨并开发适合国情的癌症病人综合健康促进支持系统(CHESS),且与病人电子健康档案及适当的专业人员干预有机结合,将有利于满足以夫妻为中心的个体化干预模式.%It expounded the physiological, psychological and spiritual changes of the family caregivers, and psychological behavioral intervention model for cancer patients and their family caregivers. It put forward the psychological behavioral intervention model which took husband and wife as the center will be the future development direction, probe into and develop the cancer patient comprehensive health promotion support system (CHESS) for the cancer patients which is suitable for the development of the national conditions. And the organic union was carried out between the system, patients' electronic health records and appropriate professional intervention, which will be conducive to meet the individual intervention model which took husband and wife as the center.

  7. Update of research on the role of EZH2 in cancer progression

    Directory of Open Access Journals (Sweden)

    Shen L

    2013-04-01

    Full Text Available Liang Shen,1 Jing Cui,2 Shumei Liang,3 Yingxin Pang,1 Peishu Liu11Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 2Department of Oral and Maxillofacial Surgery, Jinan Stomatologic Hospital, 3Department of Obstetrics and Gynecology, Provincial Hospital Affiliated to Shandong University, Jinan, People’s Republic of ChinaAbstract: Accumulating evidence shows that enhancer of zeste homolog 2 (E2H2 is upregulated in a broad range of cancer types, such as breast cancer, prostate cancer, ovarian cancer, and colon cancer. Therefore, inhibiting EZH2 expression may be a promising strategy for anticancer therapy. This review focuses on the current understanding of the mechanisms underlying EZH2 regulation that are involved in cancer progression. Also, it introduces two EZH2 inhibitors that target EZH2 and could be potentially applied in the treatment of cancer in the future.Keywords: EZH2, PRC2, cancer

  8. [Progress of the micronucleus test in the field of molecular cancer epidemiology].

    Science.gov (United States)

    Xu, Huadong; Jia, Guang

    2015-01-01

    The micronucleus test (MNT) can be used to detect multiple genetic end points simultaneously, including chromosome aberration, mis-repaired DNA damage, apoptosis, parts of mutation and so on, which MNT has been an important part of the study of cancer epidemiology.Here, we reviewed the progress of MNT in the field of molecular cancer epidemiology in recent years, including early detection and diagnosis of cancer, evaluation of carcinogenic substances, genetic susceptibility biomarkers, micronutrient and cohort studies.

  9. A mathematical prognosis model for pancreatic cancer patients receiving immunotherapy.

    Science.gov (United States)

    Li, Xuefang; Xu, Jian-Xin

    2016-10-07

    Pancreatic cancer is one of the most deadly types of cancer since it typically spreads rapidly and can seldom be detected in its early stage. Pancreatic cancer therapy is thus a challenging task, and appropriate prognosis or assessment for pancreatic cancer therapy is of critical importance. In this work, based on available clinical data in Niu et al. (2013) we develop a mathematical prognosis model that can predict the overall survival of pancreatic cancer patients who receive immunotherapy. The mathematical model incorporates pancreatic cancer cells, pancreatic stellate cells, three major classes of immune effector cells CD8+ T cells, natural killer cells, helper T cells, and two major classes of cytokines interleukin-2 (IL-2) and interferon-γ (IFN-γ). The proposed model describes the dynamic interaction between tumor and immune cells. In order for the model to be able to generate appropriate prognostic results for disease progression, the distribution and stability properties of equilibria in the mathematical model are computed and analysed in absence of treatments. In addition, numerical simulations for disease progression with or without treatments are performed. It turns out that the median overall survival associated with CIK immunotherapy is prolonged from 7 to 13months compared with the survival without treatment, this is consistent with the clinical data observed in Niu et al. (2013). The validity of the proposed mathematical prognosis model is thus verified. Our study confirms that immunotherapy offers a better prognosis for pancreatic cancer patients. As a direct extension of this work, various new therapy methods that are under exploration and clinical trials could be assessed or evaluated using the newly developed mathematical prognosis model.

  10. Drosophila models for cancer research.

    Science.gov (United States)

    Vidal, Marcos; Cagan, Ross L

    2006-02-01

    Drosophila is a model system for cancer research. Investigation with fruit flies has facilitated a number of important recent discoveries in the field: the hippo signaling pathway, which coordinates cell proliferation and death to achieve normal tissue size; 'social' behaviors of cells, including cell competition and apoptosis-induced compensatory proliferation, that help ensure normal tissue size; and a growing understanding of how oncogenes and tumor suppressors cooperate to achieve tumor growth and metastasis in situ. In the future, Drosophila models can be extended beyond basic research in the search for human therapeutics.

  11. Neural Cell Adhesion Protein CNTN1 Promotes the Metastatic Progression of Prostate Cancer.

    Science.gov (United States)

    Yan, Judy; Ojo, Diane; Kapoor, Anil; Lin, Xiaozeng; Pinthus, Jehonathan H; Aziz, Tariq; Bismar, Tarek A; Wei, Fengxiang; Wong, Nicholas; De Melo, Jason; Cutz, Jean-Claude; Major, Pierre; Wood, Geoffrey; Peng, Hao; Tang, Damu

    2016-03-15

    Prostate cancer metastasis is the main cause of disease-related mortality. Elucidating the mechanisms underlying prostate cancer metastasis is critical for effective therapeutic intervention. In this study, we performed gene-expression profiling of prostate cancer stem-like cells (PCSC) derived from DU145 human prostate cancer cells to identify factors involved in metastatic progression. Our studies revealed contactin 1 (CNTN1), a neural cell adhesion protein, to be a prostate cancer-promoting factor. CNTN1 knockdown reduced PCSC-mediated tumor initiation, whereas CNTN1 overexpression enhanced prostate cancer cell invasion in vitro and promoted xenograft tumor formation and lung metastasis in vivo. In addition, CNTN1 overexpression in DU145 cells and corresponding xenograft tumors resulted in elevated AKT activation and reduced E-cadherin (CDH1) expression. CNTN1 expression was not readily detected in normal prostate glands, but was clearly evident on prostate cancer cells in primary tumors and lymph node and bone metastases. Tumors from 637 patients expressing CNTN1 were associated with prostate cancer progression and worse biochemical recurrence-free survival following radical prostatectomy (P prostate cancer progression and metastasis, prompting further investigation into the mechanisms that enable neural proteins to become aberrantly expressed in non-neural malignancies.

  12. [Research progression of translational medicine in gastric cancer].

    Science.gov (United States)

    Li, Maoran; Zhao, Gang; Zhu, Chunchao

    2014-02-01

    Gastric cancer is one of the most common malignant tumors which is a great threat to human health. In recent years, the reform of surgical mordalities and the optimization of radiation and chemotherapy is still far from reducing morbidity and mortality of gastric cancer. As a new research pattern, translational medicine has emerged in various clinical subjects, which leads to remarkable effects. In this paper, the definition and development of translational medicine, molecular markers and drug treatment of gastric cancer will be discussed and the feasibility of translational medicine in the treatment of gastric cancer will be explained. In our opinion, the intervention of translational medicine could change the current situation that scientific researches is severely disconnected with clinical practice and increase the detection rate of gastric cancer and the effective rate of adjuvant therapy after surgery to improve the prognosis of patients with gastric cancer.

  13. Gastric cancer progression associated with local humoral immune responses

    OpenAIRE

    Yolanda, López-Vidal; Sergio, Ponce-de-León; Hugo, Esquivel-Solís; Isabel, Amieva-Fernández Rosa; Rafael, Barreto-Zúñiga; Aldo, Torre-Delgadillo; Gonzalo, Castillo-Rojas

    2015-01-01

    Background Although the association between H. pylori and gastric cancer has been well described, the alterations studies are scarce in the humoral immune response in specific anatomical areas of stomach and during the stages of gastric cancer. The aim in this study was to determine the influence of humoral immune responses against H. pylori infection on gastric carcinoma. Methods We selected 16 gastric cancer cases and approximately one matched control per case at the National Institute of M...

  14. Spherical Cancer Models in Tumor Biology

    Directory of Open Access Journals (Sweden)

    Louis-Bastien Weiswald

    2015-01-01

    Full Text Available Three-dimensional (3D in vitro models have been used in cancer research as an intermediate model between in vitro cancer cell line cultures and in vivo tumor. Spherical cancer models represent major 3D in vitro models that have been described over the past 4 decades. These models have gained popularity in cancer stem cell research using tumorospheres. Thus, it is crucial to define and clarify the different spherical cancer models thus far described. Here, we focus on in vitro multicellular spheres used in cancer research. All these spherelike structures are characterized by their well-rounded shape, the presence of cancer cells, and their capacity to be maintained as free-floating cultures. We propose a rational classification of the four most commonly used spherical cancer models in cancer research based on culture methods for obtaining them and on subsequent differences in sphere biology: the multicellular tumor spheroid model, first described in the early 70s and obtained by culture of cancer cell lines under nonadherent conditions; tumorospheres, a model of cancer stem cell expansion established in a serum-free medium supplemented with growth factors; tissue-derived tumor spheres and organotypic multicellular spheroids, obtained by tumor tissue mechanical dissociation and cutting. In addition, we describe their applications to and interest in cancer research; in particular, we describe their contribution to chemoresistance, radioresistance, tumorigenicity, and invasion and migration studies. Although these models share a common 3D conformation, each displays its own intrinsic properties. Therefore, the most relevant spherical cancer model must be carefully selected, as a function of the study aim and cancer type.

  15. The regulation of skeletal muscle protein turnover during the progression of cancer cachexia in the Apc(Min/+ mouse.

    Directory of Open Access Journals (Sweden)

    James P White

    Full Text Available Muscle wasting that occurs with cancer cachexia is caused by an imbalance in the rates of muscle protein synthesis and degradation. The Apc(Min/+ mouse is a model of colorectal cancer that develops cachexia that is dependent on circulating IL-6. However, the IL-6 regulation of muscle protein turnover during the initiation and progression of cachexia in the Apc(Min/+ mouse is not known. Cachexia progression was studied in Apc(Min/+ mice that were either weight stable (WS or had initial (≤5%, intermediate (6-19%, or extreme (≥20% body weight loss. The initiation of cachexia reduced %MPS 19% and a further ∼50% with additional weight loss. Muscle IGF-1 mRNA expression and mTOR targets were suppressed with the progression of body weight loss, while muscle AMPK phosphorylation (Thr 172, AMPK activity, and raptor phosphorylation (Ser 792 were not increased with the initiation of weight loss, but were induced as cachexia progressed. ATP dependent protein degradation increased during the initiation and progression of cachexia. However, ATP independent protein degradation was not increased until cachexia had progressed beyond the initial phase. IL-6 receptor antibody administration prevented body weight loss and suppressed muscle protein degradation, without any effect on muscle %MPS or IGF-1 associated signaling. In summary, the %MPS reduction during the initiation of cachexia is associated with IGF-1/mTOR signaling repression, while muscle AMPK activation and activation of ATP independent protein degradation occur later in the progression of cachexia. IL-6 receptor antibody treatment blocked cachexia progression through the suppression of muscle protein degradation, while not rescuing the suppression of muscle protein synthesis. Attenuation of IL-6 signaling was effective in blocking the progression of cachexia, but not sufficient to reverse the process.

  16. The Multifaceted Roles of STAT3 Signaling in the Progression of Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, Jennifer L.; Thaper, Daksh; Zoubeidi, Amina, E-mail: azoubeidi@prostatecentre.com [The Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, 2660 Oak Street, Vancouver British Columbia, V6H 3Z6 (Canada)

    2014-04-09

    The signal transducer and activator of transcription (STAT)3 governs essential functions of epithelial and hematopoietic cells that are often dysregulated in cancer. While the role for STAT3 in promoting the progression of many solid and hematopoietic malignancies is well established, this review will focus on the importance of STAT3 in prostate cancer progression to the incurable metastatic castration-resistant prostate cancer (mCRPC). Indeed, STAT3 integrates different signaling pathways involved in the reactivation of androgen receptor pathway, stem like cells and the epithelial to mesenchymal transition that drive progression to mCRPC. As equally important, STAT3 regulates interactions between tumor cells and the microenvironment as well as immune cell activation. This makes it a major factor in facilitating prostate cancer escape from detection of the immune response, promoting an immunosuppressive environment that allows growth and metastasis. Based on the multifaceted nature of STAT3 signaling in the progression to mCRPC, the promise of STAT3 as a therapeutic target to prevent prostate cancer progression and the variety of STAT3 inhibitors used in cancer therapies is discussed.

  17. Hormonally up-regulated neu-associated kinase: A novel target for breast cancer progression.

    Science.gov (United States)

    Zambrano, Joelle N; Neely, Benjamin A; Yeh, Elizabeth S

    2017-02-09

    Hormonally up-regulated neu-associated Kinase (Hunk) is a protein kinase that was originally identified in the murine mammary gland and has been shown to be highly expressed in Human Epidermal Growth Factor Receptor 2 positive (HER2(+)/ErbB2(+)) breast cancer cell lines as well as MMTV-neu derived mammary tumor cell lines. However, the physiological role of Hunk has been largely elusive since its identification. Though Hunk is predicted to be a Serine/Threonine (Ser/Thr) protein kinase with homology to the SNF1/AMPK family of protein kinases, there are no known Hunk substrates that have been identified to date. Recent work demonstrates a role for Hunk in HER2(+)/ErbB2(+) breast cancer progression, including drug resistance to HER2/ErbB2 inhibitors, with Hunk potentially acting downstream of HER2/ErbB2 and the PI3K/Akt pathway. These studies have collectively shown that Hunk plays a vital role in promoting mammary tumorigenesis, as Hunk knockdown via shRNA in xenograft tumor models or crossing MMTV-neu or Pten-deficient genetically engineered mouse models into a Hunk knockout (Hunk-/-) background impairs mammary tumor growth in vivo. Because the majority of HER2(+)/ErbB2(+) breast cancer patients acquire drug resistance to HER2/ErbB2 inhibitors, the characterization of novel drug targets like Hunk that have the potential to simultaneously suppress tumorigenesis and potentially enhance efficacy of current therapeutics is an important facet of drug development. Therefore, work aimed at uncovering specific regulatory functions for Hunk that could contribute to this protein kinase's role in both tumorigenesis and drug resistance will be informative. This review focuses on what is currently known about this under-studied protein kinase, and how targeting Hunk may prove to be a potential therapeutic target for the treatment of breast cancer.

  18. Bioluminescence imaging of estrogen receptor activity during breast cancer progression.

    Science.gov (United States)

    Vantaggiato, Cristina; Dell'Omo, Giulia; Ramachandran, Balaji; Manni, Isabella; Radaelli, Enrico; Scanziani, Eugenio; Piaggio, Giulia; Maggi, Adriana; Ciana, Paolo

    2016-01-01

    Estrogen receptors (ER) are known to play an important regulatory role in mammary gland development as well as in its neoplastic transformation. Although several studies highlighted the contribution of ER signaling in the breast transformation, little is known about the dynamics of ER state of activity during carcinogenesis due to the lack of appropriate models for measuring the extent of receptor signaling in time, in the same animal. To this aim, we have developed a reporter mouse model for the non-invasive in vivo imaging of ER activity: the ERE-Luc reporter mouse. ERE-Luc is a transgenic mouse generated with a firefly luciferase (Luc) reporter gene driven by a minimal promoter containing an estrogen responsive element (ERE). This model allows to measure receptor signaling in longitudinal studies by bioluminescence imaging (BLI). Here, we have induced sporadic mammary cancers by treating systemically ERE-Luc reporter mice with DMBA (9,10-dimethyl 1,2-benzanthracene) and measured receptor signaling by in vivo imaging in individual animals from early stage until a clinically palpable tumor appeared in the mouse breast. We showed that DMBA administration induces an increase of bioluminescence in the whole abdominal area 6 h after treatment, the signal rapidly disappears. Several weeks later, strong bioluminescence is observed in the area corresponding to the mammary glands. In vivo and ex vivo imaging analysis demonstrated that this bioluminescent signal is localized in the breast area undergoing neoplastic transformation. We conclude that this non-invasive assay is a novel relevant tool to identify the activation of the ER signaling prior the morphological detection of the neoplastic transformation.

  19. Abiraterone acetate for patients with metastatic castration-resistant prostate cancer progressing after chemotherapy

    DEFF Research Database (Denmark)

    Sternberg, Cora N; Castellano, Daniel; Daugaard, Gedske

    2014-01-01

    BACKGROUND: In the final analysis of the phase 3 COU-AA-301 study, abiraterone acetate plus prednisone significantly prolonged overall survival compared with prednisone alone in patients with metastatic castration-resistant prostate cancer progressing after chemotherapy. Here, we present the final...... analysis of an early-access protocol trial that was initiated after completion of COU-AA-301 to enable worldwide preapproval access to abiraterone acetate in patients with metastatic castration-resistant prostate cancer progressing after chemotherapy. METHODS: We did a multicentre, open-label, early......-access protocol trial in 23 countries. We enrolled patients who had metastatic castration-resistant prostate cancer progressing after taxane chemotherapy. Participants received oral doses of abiraterone acetate (1000 mg daily) and prednisone (5 mg twice a day) in 28-day cycles until disease progression...

  20. Tight junctions: a barrier to the initiation and progression of breast cancer?

    LENUS (Irish Health Repository)

    Brennan, Kieran

    2010-01-01

    Breast cancer is a complex and heterogeneous disease that arises from epithelial cells lining the breast ducts and lobules. Correct adhesion between adjacent epithelial cells is important in determining the normal structure and function of epithelial tissues, and there is accumulating evidence that dysregulated cell-cell adhesion is associated with many cancers. This review will focus on one cell-cell adhesion complex, the tight junction (TJ), and summarize recent evidence that TJs may participate in breast cancer development or progression. We will first outline the protein composition of TJs and discuss the functions of the TJ complex. Secondly we will examine how alterations in these functions might facilitate breast cancer initiation or progression; by focussing on the regulatory influence of TJs on cell polarity, cell fate and cell migration. Finally we will outline how pharmacological targeting of TJ proteins may be useful in limiting breast cancer progression. Overall we hope to illustrate that the relationship between TJ alterations and breast cancer is a complex one; but that this area offers promise in uncovering fundamental mechanisms linked to breast cancer progression.

  1. Changes in intrinsic subtype of breast cancer during tumor progression in the same patient.

    Science.gov (United States)

    Kim, Chungyeul; Lee, Jungjoo; Lee, Wonyoung; Kim, Aeree

    2015-01-01

    Hormone receptor (HR), human epidermal growth factor receptor 2 (HER2) and Ki67 are important prognostic factors and key variables in classification of the intrinsic subtype, which is essential for choice of adjuvant therapy in breast cancer management. There has been earlier reports that instability of hormonal and HER2 status during progression of tumor. However, breast cancer treatment guidelines recently recommended using the intrinsic subtype that is determined by four immunohistochemical (IHC) assays, estrogen receptor (ER), progesterone receptor (PR), HER2 and Ki67. The purpose of study was to investigate whether the intrinsic subtype changes during the tumor progression from ductal carcinoma in situ (DCIS) to lymph node metastasis. The study included 90 patients with breast cancer in Korea University Guro Hospital, between 1992 and 2008. All individuals had DCIS, invasive carcinoma and lymph node metastasis lesion. IHC staining for ER, PR, HER2 and Ki67 as well as SISH assay for HER2 gene amplification was done with following standard method. Overall 25% of breast cancer changed their intrinsic phenotype during progression. Study demonstrated that a subset of breast cancers can change their intrinsic subtype during cancer progression. These changes have an impact on patient prognosis and management, because each breast cancer subtype has their own differently optimized treatment options according to St. Gallen and NCCN guideline.

  2. Chemoprevention in gastrointestinal physiology and disease. Targeting the progression of cancer with natural products: a focus on gastrointestinal cancer.

    Science.gov (United States)

    Khoogar, Roxane; Kim, Byung-Chang; Morris, Jay; Wargovich, Michael J

    2016-05-01

    The last decade has witnessed remarkable progress in the utilization of natural products for the prevention and treatment of human cancer. Many agents now in the pipeline for clinical trial testing have evolved from our understanding of how human nutritional patterns account for widespread differences in cancer risk. In this review, we have focused on many of these promising agents arguing that they may provide a new strategy for cancer control: natural products once thought to be only preventive in their mode of action now are being explored for efficacy in tandem with cancer therapeutics. Natural products may reduce off-target toxicity of therapeutics while making cancers more amenable to therapy. On the horizon is the use of certain natural products, in their own right, as mitigants of late-stage cancer, a new frontier for small-molecule natural product drug discovery.

  3. Meta-analysis of gene expression signatures defining the epithelial to mesenchymal transition during cancer progression.

    Directory of Open Access Journals (Sweden)

    Christian J Gröger

    Full Text Available The epithelial to mesenchymal transition (EMT represents a crucial event during cancer progression and dissemination. EMT is the conversion of carcinoma cells from an epithelial to a mesenchymal phenotype that associates with a higher cell motility as well as enhanced chemoresistance and cancer stemness. Notably, EMT has been increasingly recognized as an early event of metastasis. Numerous gene expression studies (GES have been conducted to obtain transcriptome signatures and marker genes to understand the regulatory mechanisms underlying EMT. Yet, no meta-analysis considering the multitude of GES of EMT has been performed to comprehensively elaborate the core genes in this process. Here we report the meta-analysis of 18 independent and published GES of EMT which focused on different cell types and treatment modalities. Computational analysis revealed clustering of GES according to the type of treatment rather than to cell type. GES of EMT induced via transforming growth factor-β and tumor necrosis factor-α treatment yielded uniformly defined clusters while GES of models with alternative EMT induction clustered in a more complex fashion. In addition, we identified those up- and downregulated genes which were shared between the multitude of GES. This core gene list includes well known EMT markers as well as novel genes so far not described in this process. Furthermore, several genes of the EMT-core gene list significantly correlated with impaired pathological complete response in breast cancer patients. In conclusion, this meta-analysis provides a comprehensive survey of available EMT expression signatures and shows fundamental insights into the mechanisms that are governing carcinoma progression.

  4. Clinical Cancer Advances 2017: Annual Report on Progress Against Cancer From the American Society of Clinical Oncology.

    Science.gov (United States)

    Burstein, Harold J; Krilov, Lada; Aragon-Ching, Jeanny B; Baxter, Nancy N; Chiorean, E Gabriela; Chow, Warren Allen; De Groot, John Frederick; Devine, Steven Michael; DuBois, Steven G; El-Deiry, Wafik S; Epstein, Andrew S; Heymach, John; Jones, Joshua Adam; Mayer, Deborah K; Miksad, Rebecca A; Pennell, Nathan A; Sabel, Michael S; Schilsky, Richard L; Schuchter, Lynn Mara; Tung, Nadine; Winkfield, Karen Marie; Wirth, Lori J; Dizon, Don S

    2017-02-01

    A MESSAGE FROM ASCO'S PRESIDENT I am pleased to present Clinical Cancer Advances 2017, which highlights the most promising advances in patient-oriented cancer research over the past year. The report gives us an opportunity to reflect on what an exciting time it is for cancer research and how swiftly our understanding of cancer has improved. One year ago, the White House announced the national Cancer Moonshot program to accelerate progress against cancer. This shared vision of progress has reinvigorated the research community, identified new areas of scientific collaboration, and raised our ambitions regarding what may be possible beyond the progress we have already made. When I entered the field 35 years ago, I could not have imagined where we would be today. We can now detect cancer earlier, target treatments more effectively, and manage adverse effects more effectively to enable patients to live better, more fulfilling lives. Today, two of three people with cancer live at least 5 years after diagnosis, up from roughly one of two in the 1970s. This progress has resulted from decades of incremental advances that have collectively expanded our understanding of the molecular underpinnings of cancer. There is no better current example of this than ASCO's 2017 Advance of the Year: Immunotherapy 2.0. Over the last year, there has been a wave of new successes with immunotherapy. Research has proven this approach can be effective against a wide range of hard-to-treat advanced cancers previously considered intractable. Researchers are now working to identify biologic markers that can help increase the effectiveness of treatment and determine who is most likely to benefit from immunotherapy. This knowledge will enable oncologists to make evidence-based decisions so as many patients as possible might benefit from this new type of treatment. Each successive advance builds on the previous hard work of generations of basic, translational, and clinical cancer researchers

  5. Expression of the Y-Encoded TSPY is Associated with Progression of Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Tatsuo Kido

    2010-09-01

    Full Text Available TSPY is a Y-encoded gene that is expressed in normal testicular germ cells and various cancer types including germ cell tumor, melanoma, hepatocellular carcinoma, and prostate cancer. Currently, the correlation between TSPY expression and oncogenic development has not been established, particularly in somatic cancers. To establish such correlation, we analyzed the expression of TSPY, in reference to its interactive oncoprotein, EEF1A, tumor biomarker, AMACR, and normal basal cell biomarker, p63, in 41 cases of clinical prostate cancers (CPCa, 17 cases of latent prostate cancers (LPCa, and 19 cases of non-cancerous prostate (control by immunohistochemistry. Our results show that TSPY was detected more frequently (78% in the clinical prostate cancer specimens than those of latent prostate cancer (47% and control (50%. In the latent cancer group, the levels of TSPY expression could be correlated with increasing Gleason grades. TSPY expression was detected in seven out of nine high-grade latent cancer samples (Gleason 7 and more. The expression of the TSPY binding partner EEF1A was detectable in all prostate specimens, but the levels were higher in cancer cells in clinical and latent prostate cancer specimens than normal prostatic cells. These observations suggest that expressions of TSPY and its binding partner EEF1A are associated with the development and progression of prostate cancer.

  6. Activin signal promotes cancer progression and is involved in cachexia in a subset of pancreatic cancer.

    Science.gov (United States)

    Togashi, Yosuke; Kogita, Akihiro; Sakamoto, Hiroki; Hayashi, Hidetoshi; Terashima, Masato; de Velasco, Marco A; Sakai, Kazuko; Fujita, Yoshihiko; Tomida, Shuta; Kitano, Masayuki; Okuno, Kiyotaka; Kudo, Masatoshi; Nishio, Kazuto

    2015-01-28

    We previously reported that activin produces a signal with a tumor suppressive role in pancreatic cancer (PC). Here, the association between plasma activin A and survival in patients with advanced PC was investigated. Contrary to our expectations, however, patients with high plasma activin A levels had a significantly shorter survival period than those with low levels (median survival, 314 days vs. 482 days, P = 0.034). The cellular growth of the MIA PaCa-2 cell line was greatly enhanced by activin A via non-SMAD pathways. The cellular growth and colony formation of an INHBA (beta subunit of inhibin)-overexpressed cell line were also enhanced. In a xenograft study, INHBA-overexpressed cells tended to result in a larger tumor volume, compared with a control. The bodyweights of mice inoculated with INHBA-overexpressed cells decreased dramatically, and these mice all died at an early stage, suggesting the occurrence of activin-induced cachexia. Our findings indicated that the activin signal can promote cancer progression in a subset of PC and might be involved in cachexia. The activin signal might be a novel target for the treatment of PC.

  7. Strategies and resources for coping with fear of disease progression in women with reproductive system cancer

    Directory of Open Access Journals (Sweden)

    Moskovchenko, Denis V.

    2016-06-01

    Full Text Available Fear of disease progression is one of the most common sources of psychological distress in patients suffering from chronic diseases. Fear of disease progression is a situationspecific and fully discernible (reportable emotion based on personal experience of a life-threatening disease. This article presents the results of a study of cancer patients’ coping behavior according to the levels of fear of disease progression experienced. The presence of pronounced fear of disease progression reflects a negative cognitive-affective response to one’s expectations for one’s own future; this response is related to a decrease in adaptive capacity. To determine the particular characteristics of coping strategies and coping resources in women with reproductive-system cancers according to the level of fear of disease progression. A total of 177 women with reproductive-system cancers were examined, among them 59 with breast cancer and 118 with gynecological cancers. Women with reproductive-system cancers have varying sets of coping strategies and coping resources according to their level of fear of disease progression. For each of the differentiated groups, specific characteristics of the strategies of coping with difficult life situations are described, along with cognitive self-regulation strategies specific to the illness and to coping resources. The women exhibiting moderate fear of disease progression significantly more often adhered to problem-oriented strategies of coping with difficult life situations and illness and had an internal locus of control regarding treatment. Patients with a low level of fear of disease progression tended to use strategies of positive reinterpretation of difficult life situations and illness; an external locus of control regarding treatment prevailed in this group. Patients found to have a dysfunctional level of fear of disease progression displayed significantly higher rates of using cognitive-regulation strategies

  8. Exosomes in tumor microenvironment influence cancer progression and metastasis.

    Science.gov (United States)

    Kahlert, Christoph; Kalluri, Raghu

    2013-04-01

    Exosomes are small membrane vesicles of endocytic origin with a size of 50-100 nm. They can contain microRNAs, mRNAs, DNA fragments, and proteins, which are shuttled from a donor cell to recipient cells. Many different cell types including immune cells, mesenchymal cells, and cancer cells release exosomes. There is emerging evidence that cancer-derived exosomes contribute to the recruitment and reprogramming of constituents associated with tumor environment. Here, we discuss different mechanisms associated with biogenesis, payload, and transport of exosomes. We highlight the functional relevance of exosomes in cancer, as related to tumor microenvironment, tumor immunology, angiogenesis, and metastasis. Exosomes may exert an immunosuppressive function as well as trigger an anti-tumor response by presenting tumor antigens to dendritic cells. Exosomes may serve as cancer biomarkers and aid in the treatment of cancer.

  9. PRL-3 activates mTORC1 in Cancer Progression.

    Science.gov (United States)

    Ye, Zu; Al-Aidaroos, Abdul Qader Omer; Park, Jung Eun; Yuen, Hiu Fung; Zhang, Shu Dong; Gupta, Abhishek; Lin, Youbin; Shen, Han-Ming; Zeng, Qi

    2015-11-24

    PRL-3, a metastasis-associated phosphatase, is known to exert its oncogenic functions through activation of PI3K/Akt, which is a key regulator of the rapamycin-sensitive mTOR complex 1 (mTORC1), but a coherent link between PRL-3 and activation of mTOR has not yet been formally demonstrated. We report a positive correlation between PRL-3 expression and mTOR phospho-activation in clinical tumour samples and mouse models of cancer and demonstrate that PRL-3 increased downstream signalling to the mTOR substrates, p70S6K and 4E-BP1, by increasing PI3K/Akt-mediated activation of Rheb-GTP via TSC2 suppression. We also show that PRL-3 increases mTOR translocation to lysosomes via increased mTOR binding affinity to Rag GTPases in an Akt-independent manner, demonstrating a previously undescribed mechanism of action for PRL-3. PRL-3 also enhanced matrix metalloproteinase-2 secretion and cellular invasiveness via activation of mTOR, attributes which were sensitive to rapamycin treatment. The downstream effects of PRL-3 were maintained even under conditions of environmental stress, suggesting that PRL-3 provides a strategic survival advantage to tumour cells via its effects on mTOR.

  10. Hmga2 functions as a competing endogenous RNA to promote lung cancer progression

    Science.gov (United States)

    Kumar, Madhu S.; Armenteros-Monterroso, Elena; East, Philip; Chakravorty, Probir; Matthews, Nik; Winslow, Monte M.; Downward, Julian

    2013-01-01

    Non-small cell lung cancer (NSCLC) is the most prevalent histological cancer subtype worldwide1. As the majority of patients present with invasive, metastatic disease2, it is vital to understand the basis for lung cancer progression. Hmga2 is highly expressed in metastatic lung adenocarcinoma where it contributes to cancer progression and metastasis3-6. Here we show that Hmga2 promotes lung cancer progression by operating as a competing endogenous RNA (ceRNA)7-11 for the let-7 microRNA (miRNA) family. Hmga2 can promote the transformation of lung cancer cells independent of protein-coding function but dependent upon the presence of let-7 sites; this occurs without changes in the levels of let-7 isoforms, suggesting that Hmga2 affects let-7 activity by altering miRNA targeting. These effects are further observed in vivo, where Hmga2 ceRNA activity drives lung cancer growth, invasion and dissemination. Integrated analysis of miRNA target prediction algorithms and metastatic lung cancer gene expression data reveals the TGF-β co-receptor Tgfbr312 as a putative target of Hmga2 ceRNA function. Tgfbr3 expression is regulated by the Hmga2 ceRNA via differential recruitment to Argonaute-2 (Ago2), and TGF-β signalling driven by Tgfbr3 is largely necessary for Hmga2 to promote lung cancer progression. Finally, analysis of NSCLC patient gene expression data reveals that HMGA2 and TGFBR3 are co-ordinately regulated in NSCLC patient material, a vital corollary to ceRNA function. Taken together, these results suggest that Hmga2 promotes lung carcinogenesis as both a protein-coding gene and a non-coding RNA; such dual-function regulation of gene expression networks reflects a novel means by which oncogenes promote disease progression. PMID:24305048

  11. NOP14 suppresses breast cancer progression by inhibiting NRIP1/Wnt/β-catenin pathway.

    Science.gov (United States)

    Lei, Jin-Ju; Peng, Rou-Jun; Kuang, Bo-Hua; Yuan, Zhong-Yu; Qin, Tao; Liu, Wen-Sheng; Guo, Yun-Miao; Han, Hui-Qiong; Lian, Yi-Fan; Deng, Cheng-Cheng; Zhang, Hao-Jiong; Chen, Li-Zhen; Feng, Qi-Sheng; Xu, Miao; Feng, Lin; Bei, Jin-Xin; Zeng, Yi-Xin

    2015-09-22

    NOP14, which is functionally conserved among eukaryotes, has been implicated in cancer development. Here, we show that NOP14 is poorly expressed in breast cancer cells and invasive breast cancer tissues. In vivo and in vitro studies indicated that NOP14 suppressed the tumorigenesis and metastasis of breast cancer cells. Further investigations revealed that NOP14 enhanced ERα expression and inhibited the Wnt/β-catenin pathway by up-regulating NRIP1 expression. Survival analysis indicated that low NOP14 expression was significantly associated with poor overall survival (P = 0.0006) and disease-free survival (P = 0.0007), suggesting that NOP14 is a potential prognostic factor in breast cancer. Taken together, our findings reveal that NOP14 may suppress breast cancer progression and provide new insights into the development of targeted therapeutic agents for breast cancer.

  12. HMGA1: a master regulator of tumor progression in triple-negative breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Sandeep N Shah

    Full Text Available Emerging evidence suggests that tumor cells metastasize by co-opting stem cell transcriptional networks, although the molecular underpinnings of this process are poorly understood. Here, we show for the first time that the high mobility group A1 (HMGA1 gene drives metastatic progression in triple negative breast cancer cells (MDA-MB-231, Hs578T by reprogramming cancer cells to a stem-like state. Silencing HMGA1 expression in invasive, aggressive breast cancer cells dramatically halts cell growth and results in striking morphologic changes from mesenchymal-like, spindle-shaped cells to cuboidal, epithelial-like cells. Mesenchymal genes (Vimentin, Snail are repressed, while E-cadherin is induced in the knock-down cells. Silencing HMGA1 also blocks oncogenic properties, including proliferation, migration, invasion, and orthotopic tumorigenesis. Metastatic progression following mammary implantation is almost completely abrogated in the HMGA1 knock-down cells. Moreover, silencing HMGA1 inhibits the stem cell property of three-dimensional mammosphere formation, including primary, secondary, and tertiary spheres. In addition, knock-down of HMGA1 depletes cancer initiator/cancer stem cells and prevents tumorigenesis at limiting dilutions. We also discovered an HMGA1 signature in triple negative breast cancer cells that is highly enriched in embryonic stem cells. Together, these findings indicate that HMGA1 is a master regulator of tumor progression in breast cancer by reprogramming cancer cells through stem cell transcriptional networks. Future studies are needed to determine how to target HMGA1 in therapy.

  13. Development of Pain Endpoint Models for Use in Prostate Cancer Clinical Trials and Drug Approval

    Science.gov (United States)

    2015-10-01

    Award Number: W81XWH-11-1-0639 TITLE: Development of Pain Endpoint Models for Use in Prostate Cancer Clinical Trials and Drug Approval PRINCIPAL...SEP 2014 – 29 SEP 2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER W81XWH-11-1-0639 Development of Pain Endpoint Models for Use in Prostate Cancer...standard methods for measuring pain palliation and pain progression in prostate cancer clinical trials that are feasible, methodologically rigorous, and

  14. Glucose Metabolism in the Progression of Prostate Cancer

    Science.gov (United States)

    Cutruzzolà, Francesca; Giardina, Giorgio; Marani, Marina; Macone, Alberto; Paiardini, Alessandro; Rinaldo, Serena; Paone, Alessio

    2017-01-01

    Prostate cancer is one of the most common types of cancer in western country males but the mechanisms involved in the transformation processes have not been clearly elucidated. Alteration in cellular metabolism in cancer cells is recognized as a hallmark of malignant transformation, although it is becoming clear that the biological features of metabolic reprogramming not only differ in different cancers, but also among different cells in a type of cancer. Normal prostate epithelial cells have a peculiar and very inefficient energy metabolism as they use glucose to synthesize citrate that is secreted as part of the seminal liquid. During the transformation process, prostate cancer cells modify their energy metabolism from inefficient to highly efficient, often taking advantage of the interaction with other cell types in the tumor microenvironment that are corrupted to produce and secrete metabolic intermediates used by cancer cells in catabolic and anabolic processes. We recapitulate the metabolic transformations occurring in the prostate from the normal cell to the metastasis, highlighting the role of the microenvironment and summarizing what is known on the molecular mechanisms involved in the process. PMID:28270771

  15. Identification of differentially expressed proteins during human urinary bladder cancer progression

    DEFF Research Database (Denmark)

    Memon, Ashfaque Ahmed; chang, Jong. w; Oh, Bong R.

    2005-01-01

    Comparative proteome analysis was performed between RT4 (grade-1) and T24 (grade-3) bladder cancer cell lines, in an attempt to identify differentially expressed proteins during bladder cancer progression. Among those relatively abundant proteins, seven spots changed more than two-fold reproducibly...... cancer cell line. Subsequent Western blotting analysis of human biopsy samples from bladder cancer patient revealed significant loss of IDPc and Prx-II in more advance tumor samples, in agreement with data on cell lines. These results suggest that loss of IDPc and Prx-II during tumor development may...

  16. The role of mitochondria in the development and progression of lung cancer

    Directory of Open Access Journals (Sweden)

    Emily R Roberts

    2013-03-01

    Full Text Available The influence of mitochondria in human health and disease is a rapidly expanding topic in the scientific literature due to their integral roles in cellular death and survival. Mitochondrial biology and alterations in function were first linked to cancer in the 1920s with the discovery of the Warburg effect. The utilization of aerobic glycolysis in ATP synthesis was the first of many observations of metabolic reprogramming in cancer. Mitochondrial dysfunction in cancer has expanded to include defects in mitochondrial genomics and biogenesis, apoptotic signaling and mitochondrial dynamics. This review will focus on the role of mitochondria and their influence on cancer initiation, progression and treatment in the lung.

  17. PI3K/AKT/mTOR: role in breast cancer progression, drug resistance, and treatment.

    Science.gov (United States)

    Guerrero-Zotano, Angel; Mayer, Ingrid A; Arteaga, Carlos L

    2016-12-01

    Anti-cancer cancer-targeted therapies are designed to exploit a particular vulnerability in the tumor, which in most cases results from its dependence on an oncogene and/or loss of a tumor suppressor. Mutations in the phosphoinositide 3-kinase (PI3K)/AKT/mTOR pathway are freqcuently found in breast cancers and associated with cellular transformation, tumorigenesis, cancer progression, and drug resistance. Several drugs targeting PI3K/ATK/mTOR are currently in clinical trials, mainly in combination with endocrine therapy and anti-HER2 therapy. These drugs are the focus of this review.

  18. Genomic and genetic alterations influence the progression of gastric cancer

    Institute of Scientific and Technical Information of China (English)

    Stefania Nobili; Lorenzo Bruno; Ida Landini; Cristina Napoli; Paolo Bechi; Francesco Tonelli; Carlos A Rubio; Enrico Mini; Gabriella Nesi

    2011-01-01

    Gastric cancer is one of the leading causes of cancerrelated deaths worldwide, although the incidence has gradually decreased in many Western countries. Twomain gastric cancer histotypes, intestinal and diffuse, are recognised. Although most of the described genetic alterations have been observed in both types, different genetic pathways have been hypothesized. Genetic and epigenetic events, including 1q loss of heterozygosity (LOH), microsatellite instability and hypermethylation, have mostly been reported in intestinal-type gastric carcinoma and its precursor lesions, whereas 17p LOH, mutation or loss of E-cadherin are more often implicated in the development of diffuse-type gastric cancer.

  19. CRISPR-Cas9: A Revolutionary Tool for Cancer Modelling

    Directory of Open Access Journals (Sweden)

    Raul Torres-Ruiz

    2015-09-01

    Full Text Available The cancer-modelling field is now experiencing a conversion with the recent emergence of the RNA-programmable CRISPR-Cas9 system, a flexible methodology to produce essentially any desired modification in the genome. Cancer is a multistep process that involves many genetic mutations and other genome rearrangements. Despite their importance, it is difficult to recapitulate the degree of genetic complexity found in patient tumors. The CRISPR-Cas9 system for genome editing has been proven as a robust technology that makes it possible to generate cellular and animal models that recapitulate those cooperative alterations rapidly and at low cost. In this review, we will discuss the innovative applications of the CRISPR-Cas9 system to generate new models, providing a new way to interrogate the development and progression of cancers.

  20. CRISPR-Cas9: A Revolutionary Tool for Cancer Modelling.

    Science.gov (United States)

    Torres-Ruiz, Raul; Rodriguez-Perales, Sandra

    2015-09-14

    The cancer-modelling field is now experiencing a conversion with the recent emergence of the RNA-programmable CRISPR-Cas9 system, a flexible methodology to produce essentially any desired modification in the genome. Cancer is a multistep process that involves many genetic mutations and other genome rearrangements. Despite their importance, it is difficult to recapitulate the degree of genetic complexity found in patient tumors. The CRISPR-Cas9 system for genome editing has been proven as a robust technology that makes it possible to generate cellular and animal models that recapitulate those cooperative alterations rapidly and at low cost. In this review, we will discuss the innovative applications of the CRISPR-Cas9 system to generate new models, providing a new way to interrogate the development and progression of cancers.

  1. Safety and chemopreventive effect of Polyphenon E in preventing early and metastatic progression of prostate cancer in TRAMP mice.

    Science.gov (United States)

    Kim, Seung Joon; Amankwah, Ernest; Connors, Shahnjayla; Park, Hyun Y; Rincon, Maria; Cornnell, Heather; Chornokur, Ganna; Hashim, Arig Ibrahim; Choi, Junsung; Tsai, Ya-Yu; Engelman, Robert W; Kumar, Nagi; Park, Jong Y

    2014-04-01

    Prostate cancer treatment is often accompanied by untoward side effects. Therefore, chemoprevention to reduce the risk and inhibit the progression of prostate cancer may be an effective approach to reducing disease burden. We investigated the safety and efficacy of Polyphenon E, a green tea extract, in reducing the progression of prostate cancer in transgenic adenocarcinoma of the mouse prostate (TRAMP) mice. A total of 119 male TRAMP and 119 C57BL/6J mice were treated orally with one of 3 doses of Polyphenon E (200, 500, and 1,000 mg/kg/day) in drinking water ad libitum replicating human achievable doses. Baseline assessments were performed before treatments. Safety and efficacy assessments during treatments were performed when mice were 12, 22, and 32 weeks old. The number and size of tumors in treated TRAMP mice were significantly decreased compared with untreated animals. In untreated 32 weeks old TRAMP mice, prostate carcinoma metastasis to distant sites was observed in 100% of mice (8/8), compared with 13% of mice (2/16) treated with high-dose Polyphenon E during the same period. Furthermore, Polyphenon E treatment significantly inhibited metastasis in TRAMP mice in a dose-dependent manner (P = 0.0003). Long-term (32 weeks) treatment with Polyphenon E was safe and well tolerated with no evidence of toxicity in C57BL/6J mice. Polyphenon E is an effective chemopreventive agent in preventing the progression of prostate cancer to metastasis in TRAMP mice. Polyphenon E showed no toxicity in these mouse models. Our findings provide additional evidence for the safety and chemopreventive effect of Polyphenon E in preventing metastatic progression of prostate cancer.

  2. Does Skeletal Muscle Mass Influence Breast Cancer? Evaluating Mammary Tumorigenesis and Progression in Genetically Hyper-Muscular Mice

    Science.gov (United States)

    2007-07-01

    preserve muscle in the end-stages of cancer, cancer cachexia . Up to 25% of breast cancer deaths may be attributed to muscle wasting from the complex... cachexia . 15. SUBJECT TERMS Breast cancer, skeletal muscle, myostatin, MPA, DMBA, Activin receptor, cachexia . 16. SECURITY CLASSIFICATION OF: 17...progress, we turned to another question relating skeletal muscle and cancer—pathological muscle wasting in cancer cachexia . (6) (7) (8) Cancer cachexia

  3. Loss of circadian clock gene expression is associated with tumor progression in breast cancer.

    Science.gov (United States)

    Cadenas, Cristina; van de Sandt, Leonie; Edlund, Karolina; Lohr, Miriam; Hellwig, Birte; Marchan, Rosemarie; Schmidt, Marcus; Rahnenführer, Jörg; Oster, Henrik; Hengstler, Jan G

    2014-01-01

    Several studies suggest a link between circadian rhythm disturbances and tumorigenesis. However, the association between circadian clock genes and prognosis in breast cancer has not been systematically studied. Therefore, we examined the expression of 17 clock components in tumors from 766 node-negative breast cancer patients that were untreated in both neoadjuvant and adjuvant settings. In addition, their association with metastasis-free survival (MFS) and correlation to clinicopathological parameters were investigated. Aiming to estimate functionality of the clockwork, we studied clock gene expression relationships by correlation analysis. Higher expression of several clock genes (e.g., CLOCK, PER1, PER2, PER3, CRY2, NPAS2 and RORC) was found to be associated with longer MFS in univariate Cox regression analyses (HR<1 and FDR-adjusted P < 0.05). Stratification according to molecular subtype revealed prognostic relevance for PER1, PER3, CRY2 and NFIL3 in the ER+/HER2- subgroup, CLOCK and NPAS2 in the ER-/HER2- subtype, and ARNTL2 in HER2+ breast cancer. In the multivariate Cox model, only PER3 (HR = 0.66; P = 0.016) and RORC (HR = 0.42; P = 0.003) were found to be associated with survival outcome independent of established clinicopathological parameters. Pairwise correlations between functionally-related clock genes (e.g., PER2-PER3 and CRY2-PER3) were stronger in ER+, HER2- and low-grade carcinomas; whereas, weaker correlation coefficients were observed in ER- and HER2+ tumors, high-grade tumors and tumors that progressed to metastatic disease. In conclusion, loss of clock genes is associated with worse prognosis in breast cancer. Coordinated co-expression of clock genes, indicative of a functional circadian clock, is maintained in ER+, HER2-, low grade and non-metastasizing tumors but is compromised in more aggressive carcinomas.

  4. The Role of Cytokines in Breast Cancer Development and Progression

    Science.gov (United States)

    Esquivel-Velázquez, Marcela; Ostoa-Saloma, Pedro; Palacios-Arreola, Margarita Isabel; Nava-Castro, Karen E.; Castro, Julieta Ivonne

    2015-01-01

    Cytokines are highly inducible, secretory proteins that mediate intercellular communication in the immune system. They are grouped into several protein families that are referred to as tumor necrosis factors, interleukins, interferons, and colony-stimulating factors. In recent years, it has become clear that some of these proteins as well as their receptors are produced in the organisms under physiological and pathological conditions. The exact initiation process of breast cancer is unknown, although several hypotheses have emerged. Inflammation has been proposed as an important player in tumor initiation, promotion, angiogenesis, and metastasis, all phenomena in which cytokines are prominent players. The data here suggest that cytokines play an important role in the regulation of both induction and protection in breast cancer. This knowledge could be fundamental for the proposal of new therapeutic approaches to particularly breast cancer and other cancer-related disorders. PMID:25068787

  5. Navigator-3, a modulator of cell migration, may act as a suppressor of breast cancer progression

    Science.gov (United States)

    Cohen-Dvashi, Hadas; Ben-Chetrit, Nir; Russell, Roslin; Carvalho, Silvia; Lauriola, Mattia; Nisani, Sophia; Mancini, Maicol; Nataraj, Nishanth; Kedmi, Merav; Roth, Lee; Köstler, Wolfgang; Zeisel, Amit; Yitzhaky, Assif; Zylberg, Jacques; Tarcic, Gabi; Eilam, Raya; Wigelman, Yoav; Will, Rainer; Lavi, Sara; Porat, Ziv; Wiemann, Stefan; Ricardo, Sara; Schmitt, Fernando; Caldas, Carlos; Yarden, Yosef

    2015-01-01

    Dissemination of primary tumor cells depends on migratory and invasive attributes. Here, we identify Navigator-3 (NAV3), a gene frequently mutated or deleted in human tumors, as a regulator of epithelial migration and invasion. Following induction by growth factors, NAV3 localizes to the plus ends of microtubules and enhances their polarized growth. Accordingly, NAV3 depletion trimmed microtubule growth, prolonged growth factor signaling, prevented apoptosis and enhanced random cell migration. Mathematical modeling suggested that NAV3-depleted cells acquire an advantage in terms of the way they explore their environment. In animal models, silencing NAV3 increased metastasis, whereas ectopic expression of the wild-type form, unlike expression of two, relatively unstable oncogenic mutants from human tumors, inhibited metastasis. Congruently, analyses of > 2,500 breast and lung cancer patients associated low NAV3 with shorter survival. We propose that NAV3 inhibits breast cancer progression by regulating microtubule dynamics, biasing directionally persistent rather than random migration, and inhibiting locomotion of initiated cells. PMID:25678558

  6. Clonal expansion and linear genome evolution through breast cancer progression from pre-invasive stages to asynchronous metastasis

    DEFF Research Database (Denmark)

    Krøigård, Anne Bruun; Larsen, Martin Jakob; Lænkholm, Anne Vibeke;

    2015-01-01

    Evolution of the breast cancer genome from pre-invasive stages to asynchronous metastasis is complex and mostly unexplored, but highly demanded as it may provide novel markers for and mechanistic insights in cancer progression. The increasing use of personalized therapy of breast cancer necessita......Evolution of the breast cancer genome from pre-invasive stages to asynchronous metastasis is complex and mostly unexplored, but highly demanded as it may provide novel markers for and mechanistic insights in cancer progression. The increasing use of personalized therapy of breast cancer...... progression from one breast cancer patient, including two different regions of Ductal Carcinoma In Situ (DCIS), primary tumor and an asynchronous metastasis. We identify a remarkable landscape of somatic mutations, retained throughout breast cancer progression and with new mutational events emerging at each...

  7. Molecular genetics of cancer and tumorigenesis: Drosophila models

    Institute of Scientific and Technical Information of China (English)

    Wu-Min Deng

    2011-01-01

    Why do some cells not respond to normal control of cell division and become tumorous? Which signals trigger some tumor cells to migrate and colonize other tissues? What genetic factors are responsible for tumorigenesis and cancer development? What environmental factors play a role in cancer formation and progression? In how many ways can our bodies prevent and restrict the growth of cancerous cells?How can we identify and deliver effective drugs to fight cancer? In the fight against cancer,which kills more people than any other disease,these and other questions have long interested researchers from a diverse range of fields.To answer these questions and to fight cancer more effectively,we must increase our understanding of basic cancer biology.Model organisms,including the fruit fly Drosophila melanogaster,have played instrumental roles in our understanding of this devastating disease and the search for effective cures.Drosophila and its highly effective,easy-touse,and ever-expanding genetic tools have contributed toand enriched our knowledge of cancer and tumor formation tremendously.

  8. [Biology of cancer cell-stroma interaction in carcinogenesis and cancer progression].

    Science.gov (United States)

    Fujita, S; Sugihara, H; Ito, R; Tsuchihashi, Y

    1984-03-01

    Cancer cells are dependent on physical and chemical supports of stroma no less than non-cancerous cells and tissues are. The role of stroma should, therefore, be important in genesis and progression of cancers growing in vivo. But this aspect underlying carcinogenesis and manifestation of human cancers has long been neglected or attracted less attention in the investigations of oncology. Focusing particular attention on parenchyma-stromal interaction in gastrointestinal mucosa, the authors have found that, quite unexpectedly, in normal gastric as well as intestinal mucosa of all the animal species so for studied, vascularity is always poorly developed in the generative cell zones. Cross-sectional area of vascular bed is markedly reduced in this zone. Application of Hagen-Poiseulle law revealed that the reduced total cross-sectional area, resulting in a rapid drop in hydrostatic pressure, creates here a situation particularly favorable for proliferating cell population. Since the transport of water soluble material together with tissue fluid through the capillary wall is driven by the hydrostatic pressure, the generative cell zones are found to be present at the site where the turnover of the material is the most active. Before the zone of the rapid pressure drop, there appears zone of relatively high intravascular hydrostatic pressure, where secretory function seems to be facilitated. This zone, as is well known, corresponds to glandular portion of the mucosa. After the zone of the rapid pressure drop (in surface of the mucosa), zone of a low intravascular hydrostatic pressure appears, where absorptive function is to be facilitated. Within such zones, in gastric mucosa surface epithelium and in intestinal mucosa absorptive villi cells are located. It is likely that architecture of gastrointestinal epithelium and vascular pattern in the stroma is closely correlated and that the former is determined, at least partly, by the latter. When human gastric mucosa shows

  9. Understanding the role of stromal fibroblasts in cancer progression

    OpenAIRE

    2012-01-01

    The major cellular components of tumor microenvironment, referred to as the cancer stroma, are composed of cancer-associated fibroblasts that support tumor epithelial growth, invasion and therapeutic resistance. Thus when we speak of developing therapies that address tumor heterogeneity it is not only a matter of different mutations within the tumor epithelia. While individual mutations in the stromal compartment are controversial, the heterogeneity in fibroblastic population in a single tumo...

  10. SPINK 1 Protein Expression and Prostate Cancer Progression

    Science.gov (United States)

    Flavin, Richard; Pettersson, Andreas; Hendrickson, Whitney K.; Fiorentino, Michelangelo; Finn, Stephen; Kunz, Lauren; Judson, Gregory L.; Lis, Rosina; Bailey, Dyane; Fiore, Christopher; Nuttall, Elizabeth; Martin, Neil E.; Stack, Edward; Penney, Kathryn L.; Rider, Jennifer R.; Sinnott, Jennifer; Sweeney, Christopher; Sesso, Howard D.; Fall, Katja; Giovannucci, Edward; Kantoff, Philip; Stampfer, Meir; Loda, Massimo; Mucci, Lorelei A.

    2014-01-01

    Purpose SPINK1 over-expression has been described in prostate cancer and is linked with poor prognosis in many cancers. The objective of this study was to characterize the association between SPINK1 over-expression and prostate cancer specific survival. Experimental Design The study included 879 participants in the US Physicians’ Health Study and Health Professionals Follow–Up Study, diagnosed with prostate cancer (1983 – 2004) and treated by radical prostatectomy. Protein tumor expression of SPINK1 was evaluated by immunohistochemistry on tumor tissue microarrays. Results 74/879 (8%) prostate cancer tumors were SPINK1 positive. Immunohistochemical data was available for PTEN, p-Akt, pS6, stathmin, androgen receptor (AR) and ERG (as a measure of the TMPRSS2:ERG translocation). Compared to SPINK1 negative tumors, SPINK1 positive tumors showed higher PTEN and stathmin expression, and lower expression of AR (p<0.01). SPINK1 over-expression was seen in 47 of 427 (11%) ERG negative samples and in 19 of 427 (4%) ERG positive cases (p=0.0003). We found no significant associations between SPINK1 status and Gleason grade or tumor stage. There was no association between SPINK1 expression and biochemical recurrence (p=0.56). Moreover, there was no association between SPINK1 expression and prostate cancer mortality (there were 75 lethal cases of prostate cancer during a mean of 13.5 years follow-up [HR 0.71 (95% confidence interval 0.29–1.76)]). Conclusions Our results suggest that SPINK1 protein expression may not be a predictor of recurrence or lethal prostate cancer amongst men treated by radical prostatectomy. SPINK1 and ERG protein expression do not appear to be entirely mutually exclusive, as some previous studies have suggested. PMID:24687926

  11. Immune Suppression and Inflammation in the Progression of Breast Cancer

    Science.gov (United States)

    2008-03-01

    Gabrilovich DI. Immature myeloid cells and cancer-associated immune suppression. Cancer Immunol Immunother 2002;51:293-8. 6. Serafini P, De Santo C...Immunol. Immunother. 51:293-298. 6. Serafini , P., C. De Santo, I. Marigo, S. Cingarlini, L. Dolcetti, G. Gallina, P. Zanovello, and V. Bronte. 2004...single mouse mammary tumor: heterogeneity in phenotypic stability. Invasion Metastasis 3:22-31. 17. Bronte, V., P. Serafini , E. Apolloni, and P

  12. Exosomes in Tumor Microenvironment Influence Cancer Progression and Metastasis

    OpenAIRE

    2013-01-01

    Exosomes are small membrane vesicles of endocytic origin with a size of 50 – 100 nm. They can contain microRNAs, mRNAs, DNA fragments and proteins, which are shuttled from a donar cell to recipient cells. Many different cell types including immune cells, mesenchymal cells and cancer cells release exosomes. There is emerging evidence that cancer-derived exosomes contribute to the recruitment and reprogramming of constituents associated with tumor environment. Here, we discuss different mechani...

  13. The progress of study on pathogenesis in ovarian cancer

    Institute of Scientific and Technical Information of China (English)

    JI Yu-bin; LI Hai-jiao; YU Lei; LIU Guang-da; PANG Lin-lin; YANG Hai-fan

    2008-01-01

    Ovarian cancer is one of the three malignant tumors in female reproductive system, the death rate locates in the first place of gynecological cancer. Most patients are already at the advanced stage when examine their bodies, five-year survival rate are only about 20 % to 30 %. So gynecological cancer has bedome one of tumor which the most waiting to be considered. It happens refer to the incidence of chromosomal abnormalities, cancer gene change. The inactivation of tumor suppressor gene, inhibitor of apoptosis and other genetic changes, the imbalance in the regulatory network due to the interaction of multiple genes and their product. Chromosomal abnormalities play an important role in the development of ovarian cancer, the chromosomes of common characteristic and non-random changes are 1,3, 5, 6, 7, 8, 11, 12, 15, 17, 18, 20, 22 etc. Cancer gene including K-ras, c-erb-B2/HER-2, D1 (CyclinD1), AIB1 etc. K-ras coded protein p21 is activated through point mutation, cause the enzyme activity deprivation of GMP, slowed down the speed of GTP degrdn into GMP, activate target molecule persistently, make cells proliferate persistently, then leading to cancer. HER-2 gene amplification result in the over expression of HER-2 protein, made cells over proliferate,Protein over expression convey the strong signal of proliferation, over activate the early transcription factor and certain gene in the nuclear, then promote the occurrence of cancer. Cyclin D1 promote cells enter from S to Gl phase, thus contribute to the proliferation of cell division, then canceration. AIB1 gene over express, will cause tumor cells immortalized. Tumor suppressor gene, such as BRCA1, p53, p73, p16 etc. The expression depl of BRCA1 protein in ovarian Cystadenocarcinoma prompt that the reduction of BRCA1 protein synthesis, resulting in apoptosis decreased, the cell proliferation disinhibit, then disorder and proliferate, thus leading to cancer, p53 mutation happened in about 30 percents to 80 percents

  14. Intrarectal vaccination with recombinant vaccinia virus expressing carcinoembronic antigen induces mucosal and systemic immunity and prevents progression of colorectal cancer.

    Science.gov (United States)

    Kim-Schulze, Seunghee; Kim, Hong Sung; Wainstein, Alberto; Kim, Dae Won; Yang, Wein Cui; Moroziewicz, Dorota; Mong, Phyllus Y; Bereta, Michal; Taback, Bret; Wang, Qin; Kaufman, Howard L

    2008-12-01

    The gastrointestinal mucosa contains an intact immune system that protects the host from pathogens and communicates with the systemic immune system. Absorptive epithelial cells in the mucosa give rise to malignant tumors although the interaction between tumor cells and the mucosal immune system is not well defined. The pathophysiology of colorectal cancer has been elucidated through studies of hereditary syndromes, such as familial adenomatous polyposis, a cancer predisposition syndrome caused by germline mutations in the adenomatous polyposis coli tumor suppressor gene. Patients with FAP develop adenomas and inevitably progress to invasive carcinomas by the age of 40. To better delineate the role of mucosal immunity in colorectal cancer, we evaluated the efficacy of intrarectal recombinant vaccinia virus expressing the human carcinoembryonic Ag (CEA) in a murine FAP model in which mice are predisposed to colorectal cancer and also express human CEA in the gut. Mucosal vaccination reduced the incidence of spontaneous adenomas and completely prevented progression to invasive carcinoma. The therapeutic effects were associated with induction of mucosal CEA-specific IgA Ab titers and CD8(+) CTLs. Mucosal vaccination was also associated with an increase in systemic CEA-specific IgG Ab titers, CD4(+) and CD8(+) T cell responses and resulted in growth inhibition of s.c. implanted CEA-expressing tumors suggesting communication between mucosal and systemic immune compartments. Thus, intrarectal vaccination induces mucosal and systemic antitumor immunity and prevents progression of spontaneous colorectal cancer. These results have implications for the prevention of colorectal cancer in high-risk individuals.

  15. Biomarkers to Distinguish Aggressive Cancers from Non-aggressive or Non-progressing Cancer — EDRN Public Portal

    Science.gov (United States)

    Distinguishing aggressive cancers from non-aggressive or non-progressing cancers is an issue of both clinical and public health importance particularly for those cancers with an available screening test. With respect to breast cancer, mammographic screening has been shown in randomized trials to reduce breast cancer mortality, but given the limitations of its sensitivity and specificity some breast cancers are missed by screening. These so called interval detected breast cancers diagnosed between regular screenings are known to have a more aggressive clinical profile. In addition, of those cancers detected by mammography some are indolent while others are more likely to recur despite treatment. The pilot study proposed herein is highly responsive to the EDRN supplement titled “Biomarkers to Distinguish Aggressive Cancers from Nonaggressive or Non-progressing Cancers” in that it addresses both of the research objectives related to these issues outlined in the notice for this supplement: Aim 1: To identify biomarkers in tumor tissue related to risk of interval detected vs. mammography screen detected breast cancer focusing on early stage invasive disease. We will compare gene expression profiles using the whole genome-cDNA-mediated Annealing, Selection, extension and Ligation (DASL) assay of 50 screen detected cancers to those of 50 interval detected cancers. Through this approach we will advance our understanding of the molecular characteristics of interval vs. screen detected breast cancers and discover novel biomarkers that distinguish between them. Aim 2: To identify biomarkers in tumor tissue related to risk of cancer recurrence among patients with screen detected early stage invasive breast cancer. Using the DASL assay we will compare gene expression profiles from screen detected early stage breast cancer that either recurred within five years or never recurred within five years. These two groups of patients will be matched on multiple factors including

  16. A comprehensive review on host genetic susceptibility to human papillomavirus infection and progression to cervical cancer

    Directory of Open Access Journals (Sweden)

    Koushik Chattopadhyay

    2011-01-01

    Full Text Available Cervical cancer is the second most common cancer in women worldwide. This is caused by oncogenic types of human papillomavirus (HPV infection. Although large numbers of young sexually active women get HPV-infected, only a small fraction develop cervical cancer. This points to different co-factors for regression of HPV infection or progression to cervical cancer. Host genetic factors play an important role in the outcome of such complex or multifactor diseases such as cervical cancer and are also known to regulate the rate of disease progression. The aim of this review is to compile the advances in the field of host genetics of cervical cancer. MEDLINE database was searched using the terms, ′HPV′, ′cervical′, ′CIN′, ′polymorphism(s′, ′cervical′ + FNx01the name of the geneFNx01 and ′HPV′ + FNx01the name of the geneFNx01. This review focuses on the major host genes reported to affect the progression to cervical cancer in HPV infected individuals.

  17. Induction of erythropoiesis by hypoxia-inducible factor prolyl hydroxylase inhibitors without promotion of tumor initiation, progression, or metastasis in a VEGF-sensitive model of spontaneous breast cancer

    Science.gov (United States)

    Seeley, Todd W; Sternlicht, Mark D; Klaus, Stephen J; Neff, Thomas B; Liu, David Y

    2017-01-01

    The effects of pharmacological hypoxia-inducible factor (HIF) stabilization were investigated in the MMTV-Neundl-YD5 (NeuYD) mouse model of breast cancer. This study first confirmed the sensitivity of this model to increased vascular endothelial growth factor (VEGF), using bigenic NeuYD;MMTV-VEGF-25 mice. Tumor initiation was dramatically accelerated in bigenic animals. Bigenic tumors were also more aggressive, with shortened doubling times and increased lung metastasis as compared to NeuYD controls. In separate studies, NeuYD mice were treated three times weekly from 7 weeks of age until study end with two different HIF prolyl hydroxylase inhibitors (HIF-PHIs), FG-4497 or roxadustat (FG-4592). In NeuYD mice, HIF-PHI treatments elevated erythropoiesis markers, but no differences were detected in tumor onset or the phenotypes of established tumors. PMID:28331872

  18. Clinical cancer advances 2011: Annual Report on Progress Against Cancer from the American Society of Clinical Oncology.

    Science.gov (United States)

    Vogelzang, Nicholas J; Benowitz, Steven I; Adams, Sylvia; Aghajanian, Carol; Chang, Susan Marina; Dreyer, Zoann Eckert; Janne, Pasi A; Ko, Andrew H; Masters, Greg A; Odenike, Olatoyosi; Patel, Jyoti D; Roth, Bruce J; Samlowski, Wolfram E; Seidman, Andrew D; Tap, William D; Temel, Jennifer S; Von Roenn, Jamie H; Kris, Mark G

    2012-01-01

    A message from ASCO'S President. It has been forty years since President Richard Nixon signed the National Cancer Act of 1971, which many view as the nation's declaration of the "War on Cancer." The bill has led to major investments in cancer research and significant increases in cancer survival. Today, two-thirds of patients survive at least five years after being diagnosed with cancer compared with just half of all diagnosed patients surviving five years after diagnosis in 1975. The research advances detailed in this year's Clinical Cancer Advances demonstrate that improvements in cancer screening, treatment, and prevention save and improve lives. But although much progress has been made, cancer remains one of the world's most serious health problems. In the United States, the disease is expected to become the nation's leading cause of death in the years ahead as our population ages. I believe we can accelerate the pace of progress, provided that everyone involved in cancer care works together to achieve this goal. It is this viewpoint that has shaped the theme for my presidential term: Collaborating to Conquer Cancer. In practice, this means that physicians and researchers must learn from every patient's experience, ensure greater collaboration between members of a patient's medical team, and involve more patients in the search for cures through clinical trials. Cancer advocates, insurers, and government agencies also have important roles to play. Today, we have an incredible opportunity to improve the quality of cancer care by drawing lessons from the real-world experiences of patients. The American Society of Clinical Oncology (ASCO) is taking the lead in this area, in part through innovative use of health information technology. In addition to our existing quality initiatives, ASCO is working with partners to develop a comprehensive rapid-learning system for cancer care. When complete, this system will provide physicians with personalized, real

  19. HOTTIP and HOXA13 are oncogenes associated with gastric cancer progression.

    Science.gov (United States)

    Chang, Shuai; Liu, Junsong; Guo, Shaochun; He, Shicai; Qiu, Guanglin; Lu, Jing; Wang, Jin; Fan, Lin; Zhao, Wei; Che, Xiangming

    2016-06-01

    A long non-coding RNA named HOTTIP (HOXA transcript at the distal tip) coordinates the activation of various 5' HOXA genes which encode master regulators of development through targeting the WDR5/MLL complex. HOTTIP acts as an oncogene in several types of cancers, whereas its biological function in gastric cancer has never been studied. In the present study, we investigated the role of HOTTIP in gastric cancer. We found that HOTTIP was upregulated in gastric cancer cell lines. Knockdown of HOTTIP in gastric cancer cells inhibited cell proliferation, migration and invasion. Moreover, downregulation of HOTTIP led to decreased expression of homeobox protein Hox-A13 (HOXA13) in gastric cancer cell lines. HOXA13 was involved in HOTTIP‑induced malignant phenotypes of gastric cancer cells. Our data showed that the levels of HOTTIP and HOXA13 were both markedly upregulated in gastric cancer tissues compared with their counterparts in non-tumorous tissues. Furthermore, the expression levels of HOTTIP and HOXA13 were both higher in gastric cancer which was poorly differentiated, at advanced TNM stages and exhibited lymph node-metastasis. Spearman analyses indicated that HOTTIP and HOXA13 had a highly positive correlation both in non-tumor mucosae and cancer lesions. Collectively, these findings suggest that HOTTIP and HOXA13 play important roles in gastric cancer progression and provide a new insight into therapeutic treatment for the disease.

  20. Cancer development, progression, and therapy: an epigenetic overview.

    Science.gov (United States)

    Sarkar, Sibaji; Horn, Garrick; Moulton, Kimberly; Oza, Anuja; Byler, Shannon; Kokolus, Shannon; Longacre, McKenna

    2013-10-21

    Carcinogenesis involves uncontrolled cell growth, which follows the activation of oncogenes and/or the deactivation of tumor suppression genes. Metastasis requires down-regulation of cell adhesion receptors necessary for tissue-specific, cell-cell attachment, as well as up-regulation of receptors that enhance cell motility. Epigenetic changes, including histone modifications, DNA methylation, and DNA hydroxymethylation, can modify these characteristics. Targets for these epigenetic changes include signaling pathways that regulate apoptosis and autophagy, as well as microRNA. We propose that predisposed normal cells convert to cancer progenitor cells that, after growing, undergo an epithelial-mesenchymal transition. This process, which is partially under epigenetic control, can create a metastatic form of both progenitor and full-fledged cancer cells, after which metastasis to a distant location may occur. Identification of epigenetic regulatory mechanisms has provided potential therapeutic avenues. In particular, epigenetic drugs appear to potentiate the action of traditional therapeutics, often by demethylating and re-expressing tumor suppressor genes to inhibit tumorigenesis. Epigenetic drugs may inhibit both the formation and growth of cancer progenitor cells, thus reducing the recurrence of cancer. Adopting epigenetic alteration as a new hallmark of cancer is a logical and necessary step that will further encourage the development of novel epigenetic biomarkers and therapeutics.

  1. Cancer Development, Progression, and Therapy: An Epigenetic Overview

    Directory of Open Access Journals (Sweden)

    McKenna Longacre

    2013-10-01

    Full Text Available Carcinogenesis involves uncontrolled cell growth, which follows the activation of oncogenes and/or the deactivation of tumor suppression genes. Metastasis requires down-regulation of cell adhesion receptors necessary for tissue-specific, cell–cell attachment, as well as up-regulation of receptors that enhance cell motility. Epigenetic changes, including histone modifications, DNA methylation, and DNA hydroxymethylation, can modify these characteristics. Targets for these epigenetic changes include signaling pathways that regulate apoptosis and autophagy, as well as microRNA. We propose that predisposed normal cells convert to cancer progenitor cells that, after growing, undergo an epithelial-mesenchymal transition. This process, which is partially under epigenetic control, can create a metastatic form of both progenitor and full-fledged cancer cells, after which metastasis to a distant location may occur. Identification of epigenetic regulatory mechanisms has provided potential therapeutic avenues. In particular, epigenetic drugs appear to potentiate the action of traditional therapeutics, often by demethylating and re-expressing tumor suppressor genes to inhibit tumorigenesis. Epigenetic drugs may inhibit both the formation and growth of cancer progenitor cells, thus reducing the recurrence of cancer. Adopting epigenetic alteration as a new hallmark of cancer is a logical and necessary step that will further encourage the development of novel epigenetic biomarkers and therapeutics.

  2. Impact of Sulfatase-2 on cancer progression and prognosis in patients with renal cell carcinoma.

    Science.gov (United States)

    Kumagai, Shin; Ishibashi, Kei; Kataoka, Masao; Oguro, Toshiki; Kiko, Yuichirou; Yanagida, Tomohiko; Aikawa, Ken; Kojima, Yoshiyuki

    2016-11-01

    Heparan sulfate-specific endosulfatase-2 (SULF-2) can modulate the signaling of heparan sulfate proteoglycan-binding proteins. The involvement of SULF-2 in cancer growth varies by cancer type. The roles of SULF-2 expression in the progression and prognosis of renal cell carcinomas (RCC) have not yet been fully clarified. In the present study, the expression levels of SULF-2 mRNA and protein in 49 clinical RCC samples were determined by RT-PCR and immunostaining. The existence of RCC with higher SULF-2 expression and lower SULF-2 expression compared to the adjacent normal kidney tissues was suggested. High SULF-2 expression was correlated with an early clinical stage and less invasive pathological factors. Low SULF-2 expression was correlated with an advanced stage and higher invasive factors. Three-year cancer-specific survival (CSS) for high SULF-2 RCC and low SULF-2 RCC were 100% and 71.4%, respectively (log-rank P = 0.0019), with a significantly shorter CSS observed in low SULF-2 RCC patients. The influence of SULF-2 expression level on Wnt/VEGF/FGF signaling, cell viability and invasive properties was examined in three RCC cell lines, Caki-2, ACHN and 786-O, using a SULF-2 suppression model involving siRNA or a SULF-2 overexpression model involving a plasmid vector. High SULF-2 expression enhanced Wnt signaling and Wnt-induced cell viability, but not cell invasion. In contrast, low levels of SULF-2 expression significantly enhanced both cell invasion and viability through the activation of VEGF/FGF pathways. RCC with lower SULF-2 expression might have a higher potential for cell invasion and proliferation, leading to a poorer prognosis via the activation of VEGF and/or FGF signaling.

  3. Catastrophic shifts and lethal thresholds in a propagating front model of unstable tumor progression

    Science.gov (United States)

    Amor, Daniel R.; Solé, Ricard V.

    2014-08-01

    Unstable dynamics characterizes the evolution of most solid tumors. Because of an increased failure of maintaining genome integrity, a cumulative increase in the levels of gene mutation and loss is observed. Previous work suggests that instability thresholds to cancer progression exist, defining phase transition phenomena separating tumor-winning scenarios from tumor extinction or coexistence phases. Here we present an integral equation approach to the quasispecies dynamics of unstable cancer. The model exhibits two main phases, characterized by either the success or failure of cancer tissue. Moreover, the model predicts that tumor failure can be due to either a reduced selective advantage over healthy cells or excessive instability. We also derive an approximate, analytical solution that predicts the front speed of aggressive tumor populations on the instability space.

  4. Catastrophic shifts and lethal thresholds in a propagating front model of unstable tumour progression

    CERN Document Server

    Amor, Daniel R

    2014-01-01

    Unstable dynamics characterizes the evolution of most solid tumors. Because of an increased failure of maintaining genome integrity, a cumulative increase in the levels of gene mutation and loss is observed. Previous work suggests that instability thresholds to cancer progression exist, defining phase transition phenomena separating tumor-winning scenarios from tumor extinction or coexistence phases. Here we present an integral equation approach to the quasispecies dynamics of unstable cancer. The model exhibits two main phases, characterized by either the success or failure of cancer tissue. Moreover, the model predicts that tumor failure can be due to either a reduced selective advantage over healthy cells or excessive instability. We also derive an approximate, analytical solution that predicts the front speed of aggressive tumor populations on the instability space.

  5. Molecular genetics and genomics progress in urothelial bladder cancer.

    Science.gov (United States)

    Netto, George J

    2013-11-01

    The clinical management of solid tumor patients has recently undergone a paradigm shift as the result of the accelerated advances in cancer genetics and genomics. Molecular diagnostics is now an integral part of routine clinical management in lung, colon, and breast cancer patients. In a disappointing contrast, molecular biomarkers remain largely excluded from current management algorithms of urologic malignancies. The need for new treatment alternatives and validated prognostic molecular biomarkers that can help clinicians identify patients in need of early aggressive management is pressing. Identifying robust predictive biomarkers that can stratify response to newly introduced targeted therapeutics is another crucially needed development. The following is a brief discussion of some promising candidate biomarkers that may soon become a part of clinical management of bladder cancers.

  6. Development of A Mouse Model of Menopausal Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Elizabeth R. Smith

    2014-02-01

    Full Text Available Despite significant understanding of the genetic mutations involved in ovarian epithelial cancer and advances in genomic approaches for expression and mutation profiling of tumor tissues, several key questions in ovarian cancer biology remain enigmatic: the mechanism for the well-established impact of reproductive factors on ovarian cancer risk remains obscure; questions of the cell of origin of ovarian cancer continue to be debated; and the precursor lesion, sequence, or events in progression remain to be defined. Suitable mouse models should complement the analysis of human tumor tissues and may provide clues to these questions currently perplexing ovarian cancer biology.A potentially useful model is the germ cell-deficient Wv (white spotting variant mutant mouse line, which may be used to study the impact of menopausal physiology on the increased risk of ovarian cancer. The Wv mice harbor a point mutation in c-Kit that reduces the receptor tyrosine kinase activity to about 1-5% (it is not a null mutation. Homozygous Wv mutant females have a reduced ovarian germ cell reservoir at birth and the follicles are rapidly depleted upon reaching reproductive maturity, but other biological phenotypes are minimal and the mice have a normal life span. The loss of ovarian function precipitates changes in hormonal and metabolic activity that model features of menopause in humans. As a consequence of follicle depletion, the Wv ovaries develop ovarian tubular adenomas, a benign epithelial tumor corresponding to surface epithelial invaginations and papillomatosis that mark human ovarian aging. Ongoing work will test the possibility of converting the benign epithelial tubular adenomas into neoplastic tumors by addition of an oncogenic mutation, such as of Tp53, to model the genotype and biology of serous ovarian cancer.Model based on the Wv mice may have the potential to gain biological and etiological insights into ovarian cancer development and prevention.

  7. miR-340 and ZEB1 negative feedback loop regulates TGF-β- mediated breast cancer progression

    Science.gov (United States)

    Xie, Ye-Gong; Wang, Jie; Mao, Jie-Fei; Zhang, Bin; Wang, Xin; Cao, Xu-Chen

    2016-01-01

    MicroRNAs act as key regulators in carcinogenesis and progression in various cancers. In present study, we explored the role of miR-340 in the breast cancer progression. Our results showed that overexpression of miR-340 inhibits breast cancer cell proliferation and invasion, whereas depletion of miR-340 promotes breast cancer progression. Molecularly, ZEB1 was identified as a target gene of miR-340 and miR-340 suppressed the expression of ZEB1 by directly binding to the 3′-UTR of ZEB1. Furthermore, ZEB1 transcriptionally suppresses miR-340 expression. The negative feedback loop regulated TGF-β-mediated breast cancer progression. In conclusion, our data suggested that miR-340 acted as a tumor suppressor in breast cancer progression. PMID:27036021

  8. Aberrant Splicing in Cancer: Mediators of Malignant Progression through an Imperfect Splice Program Shift.

    Science.gov (United States)

    Luz, Felipe Andrés Cordero; Brígido, Paula Cristina; Moraes, Alberto Silva; Silva, Marcelo José Barbosa

    2017-01-01

    Although the efforts to understand the genetic basis of cancer allowed advances in diagnosis and therapy, little is known about other molecular bases. Splicing is a key event in gene expression, controlling the excision of introns decoded inside genes and being responsible for 80% of the proteome amplification through events of alternative splicing. Growing data from the last decade point to deregulation of splicing events as crucial in carcinogenesis and tumor progression. Several alterations in splicing events were observed in cancer, caused by either missexpression of or detrimental mutations in some splicing factors, and appear to be critical in carcinogenesis and key events during tumor progression. Notwithstanding, it is difficult to determine whether it is a cause or consequence of cancer and/or tumorigenesis. Most reviews focus on the generated isoforms of deregulated splicing pattern, while others mainly summarize deregulated splicing factors observed in cancer. In this review, events associated with carcinogenesis and tumor progression mainly, and epithelial-to-mesenchymal transition, which is also implicated in alternative splicing regulation, will be progressively discussed in the light of a new perspective, suggesting that splicing deregulation mediates cell reprogramming in tumor progression by an imperfect shift of the splice program.

  9. Oncogenic Alternative Splicing Switches: Role in Cancer Progression and Prospects for Therapy

    OpenAIRE

    Serena Bonomi; Stefania Gallo; Morena Catillo; Daniela Pignataro; Giuseppe Biamonti; Claudia Ghigna

    2013-01-01

    Alterations in the abundance or activities of alternative splicing regulators generate alternatively spliced variants that contribute to multiple aspects of tumor establishment, progression and resistance to therapeutic treatments. Notably, many cancer-associated genes are regulated through alternative splicing suggesting a significant role of this post-transcriptional regulatory mechanism in the production of oncogenes and tumor suppressors. Thus, the study of alternative splicing in cancer ...

  10. CCR5 Expression Influences the Progression of Human Breast Cancer in a p53-dependent Manner

    OpenAIRE

    2003-01-01

    Chemokines are implicated in tumor pathogenesis, although it is unclear whether they affect human cancer progression positively or negatively. We found that activation of the chemokine receptor CCR5 regulates p53 transcriptional activity in breast cancer cells through pertussis toxin–, JAK2-, and p38 mitogen–activated protein kinase–dependent mechanisms. CCR5 blockade significantly enhanced proliferation of xenografts from tumor cells bearing wild-type p53, but did not affect proliferation...

  11. Cancer and birth defects surveillance system for communities around the Savannah River Site. Annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Dunbar, J.B.

    1994-05-01

    The US DOE funded this grant to the Medical University of South Carolina for a cancer and birth defects registry for an initial three year period which was completed as of April 29, 1994. While this Technical Progress Report is prepared principally to document the activities of year 03, it also summarizes the accomplishments of the first two years in order to put into perspective the energy and progress of the program over the entire three year funding cycle.

  12. The Role ERG and CXCR4 in Prostate Cancer Progression

    Science.gov (United States)

    2011-06-01

    microdomains of prostate cancer cells, and this transactivation contributes to the expansion of intraosseous metastatic deposits (18). CXCR4 has been shown...microdomains of PC cells, and this transactivation contributes to the expansion of intraosseous metastatic deposits [18]. CXCR4 has been shown to

  13. The Role of SF2 in Prostate Cancer Progression

    Science.gov (United States)

    2011-04-01

    individual glands . In addition, analysis of each tumor spot on a tissue microarray (published data, n~50) is rather costly and associations with...Arnold A. Absence of cyclin D1/PRAD1 point mutations in human breast cancers and parathyroid adenomas and identification of a new cyclin D1 gene

  14. Predicting Prostate Cancer Progression at Time of Diagnosis

    Science.gov (United States)

    2013-07-01

    School ofMedicine, Stanford; 5Department of Urology, Helen Diller Family Comprehensive Cancer Cen- ter, University of California at San Francisco, San...9. 30. Attard G, Clark J, Ambroisine L, Fisher G, Kovacs G, Flohr P, et al. Duplication of the fusion of TMPRSS2 to ERG sequence identifies fatal

  15. Role of Reactive Stroma in Prostate Cancer Progression

    Science.gov (United States)

    2008-02-01

    multiple myeloma cell growth in the bone marrow microenvironment. Clin Cancer Res 10: 7540–7546. Huss WJ, Barrios RJ, Foster BA, Greenberg NM. (2003... Alto , CA) and GFR Matrigel (Becton Dickinson). In all experiments, the final volume was 800 AL. The cell and matrix mixture was drawn into a 1 mL

  16. Does Lactation Mitigate Triple Negative/Basal Breast Cancer Progression?

    Science.gov (United States)

    2012-09-01

    Jennifer Richer (Department of Pathology) for critical manuscript review; Dr. Marileila Garcia (University of Colorado Cancer Center Cytogenetics Core...Res 2008, 68(18):7278-7282. 48. Sleeman KE, Kendrick H, Robertson D, Isacke CM, Ashworth A, Smalley MJ: Dissociation of estrogen receptor expression

  17. Prognosis Research Strategy (PROGRESS 3: prognostic model research.

    Directory of Open Access Journals (Sweden)

    Ewout W Steyerberg

    Full Text Available Prognostic models are abundant in the medical literature yet their use in practice seems limited. In this article, the third in the PROGRESS series, the authors review how such models are developed and validated, and then address how prognostic models are assessed for their impact on practice and patient outcomes, illustrating these ideas with examples.

  18. New models of neoplastic progression in Barrett's oesophagus

    NARCIS (Netherlands)

    Pavlov, Kirill; Maley, Carlo C.

    2010-01-01

    Research in Barrett's oesophagus, and neoplastic progression to OAC (oesophageal adenocarcinoma), is hobbled by the lack of good pre-clinical models that capture the evolutionary dynamics of Barrett's cell populations. Current models trade off tractability for realism. Computational models are perha

  19. Evaluation of bioluminescent imaging for noninvasive monitoring of colorectal cancer progression in the liver and its response to immunogene therapy

    Directory of Open Access Journals (Sweden)

    Gonzalez-Aparicio Manuela

    2009-01-01

    Full Text Available Abstract Background Bioluminescent imaging (BLI is based on the detection of light emitted by living cells expressing a luciferase gene. Stable transfection of luciferase in cancer cells and their inoculation into permissive animals allows the noninvasive monitorization of tumor progression inside internal organs. We have applied this technology for the development of a murine model of colorectal cancer involving the liver, with the aim of improving the pre-clinical evaluation of new anticancer therapies. Results A murine colon cancer cell line stably transfected with the luciferase gene (MC38Luc1 retains tumorigenicity in immunocompetent C57BL/6 animals. Intrahepatic inoculation of MC38Luc1 causes progressive liver infiltration that can be monitored by BLI. Compared with ultrasonography (US, BLI is more sensitive, but accurate estimation of tumor mass is impaired in advanced stages. We applied BLI to evaluate the efficacy of an immunogene therapy approach based on the liver-specific expression of the proinflammatory cytokine interleukin-12 (IL-12. Individualized quantification of light emission was able to determine the extent and duration of antitumor responses and to predict long-term disease-free survival. Conclusion We show that BLI is a rapid, convenient and safe technique for the individual monitorization of tumor progression in the liver. Evaluation of experimental treatments with complex mechanisms of action such as immunotherapy is possible using this technology.

  20. Research Progress of MicroRNA in Early Detection of Ovarian Cancer

    Institute of Scientific and Technical Information of China (English)

    Ze-Hua Wang; Cong-Jian Xu

    2015-01-01

    Objective: This review aimed to update the progress ofmicroRNA (miRNA) in early detection of ovarian cancer.We discussed the current clinical diagnosis methods and biomarkers of ovarian cancer, especially the methods of miRNA in early detection of ovarian cancer.Data Sources: We collected all relevant studies about miRNA and ovarian cancer in PubMed and CNKI from 1995 to 2015.Study Selection: We included all relevant studies concerning miRNA in early detection of ovarian cancer, and excluded the duplicated articles.Results: miRNAs play a key role in various biological processes of ovarian cancer, such as development, proliferation, differentiation, apoptosis and metastasis, and these phenomena appear in the early-stage.Therefore, miRNA can be used as a new biomarker for early diagnosis of ovarian cancer, intervention on miRNA expression of known target genes, and potential target genes can achieve the effect of early prevention.With the development ofnanoscience and technology, analysis methods ofmiRNA are also quickly developed, which may provide better characterization of early detection of ovarian cancer.Conclusions: In the near future, miRNA therapy could be a powerful tool for ovarian cancer prevention and treatment, and combining with the new analysis technology and new nanomaterials, point-of-care tests for miRNA with high throughput, high sensitivity, and strong specificity are developed to achieve the application of diagnostic kits in screening of early ovarian cancer.

  1. Maspin expression and its clinicopathological significance in tumorigenesis and progression of gastric cancer

    Institute of Scientific and Technical Information of China (English)

    Meng-Chun Wang; Yan-Min Yang; Xiao-Han Li; Fang Dong; Yan Li

    2004-01-01

    AIM: To investigate maspin expression in tumorigenesis and progression of gastric cancer and to explore its relevant molecular mechanisms.METHODS: Formalin-fixed and paraffin-embedded tissues from normal mucosa (n=182), dysplasia (n=69), cancer (n=113) of the stomach were studied for maspin expression by immunohistochemistry. Microvessel density (MVD) in gastric cancer was labeled using anti-CD34 antibody. Maspin expression was compared with clinical parameters and MVD of tumors. Caspase-3 expression was also detected in gastric carcinoma by immunohistochemistry. The relationship between Caspase-3 and maspin expression was concerned as well.RESULTS: The positive rates of maspin expression were 79.8%(145/182), 75.4%(52/69) and 50.4%(57/113) in normal mucosa, dysplasia and cancer of the stomach,respectively. Cancer less frequently expressed maspin than normal mucosa and dysplasia (P<0.05). Maspin expression showed a significantly negative association with invasive depth, metastasis, Lauren's and Nakamura's classification (P<0.05), but not with tumor size, Borrmann's classification,growth pattern or TNM staging (P>0.05). The positive rate of Caspase-3 was significantly lower in gastric cancer than in normal gastric mucosa (P<0.05,32.7% vs 50.4%). It was noteworthy that maspin expression was negatively correlated with MVD, but positively correlated with expression of Caspase-3 in gastric cancer (P<0.05).CONCLUSION: Down-regulated maspin expression is a late molecular event in gastric carcinogenesis. Reduced expression of maspin contributes to progression of gastric cancer probably by inhibiting cell adhesion, enhancing cell mobility,decreasing cell apoptosis and facilitating angiogenesis.Additionally altered expression of maspin underlies the molecular mechanism of differentiation of gastric cancer and supports the different histogenetic pathways of intestinal and diffuse gastric cancers. Maspin expression can be considered as an effective and objective

  2. Saffron Aqueous Extract Inhibits the Chemically-induced Gastric Cancer Progression in the Wistar Albino Rat

    Directory of Open Access Journals (Sweden)

    S. Zahra Bathaie

    2013-01-01

    Full Text Available Objective(s: Gastric cancer is the first and second leading cause of cancer related death in Iranian men and women, respectively. Gastric cancer management is based on the surgery, radiotherapy and chemotherapy. In the present study, for the first time, the beneficial effect of saffron (Crocus sativus L. aqueous extract (SAE on the 1-Methyl-3-nitro-1-nitrosoguanidine (MNNG-induced gastric cancer in rat was investigated. Materials and Methods: MNNG was used to induce gastric cancer and then, different concentrations of SAE were administered to rats. After sacrificing, the stomach tissue was investigated by both pathologist and flow cytometry, and several biochemical parameters was determined in the plasma (or serum and stomach of rats. Results: Pathologic data indicated the induction of cancer at different stages from hyperplasia to adenoma in rats; and the inhibition of cancer progression in the gastric tissue by SAE administration; so that, 20% of cancerous rats treated with higher doses of SAE was completely normal at the end of experiment and there was no rat with adenoma in the SAE treated groups. In addition, the results of the flow cytometry/ propidium iodide staining showed that the apoptosis/proliferation ratio was increased due to the SAE treatment of cancerous rats. Moreover, the significantly increased serum LDH and decreased plasma antioxidant activity due to cancer induction fell backwards after treatment of rats with SAE. But changes in the other parameters (Ca2+, tyrosine kinase activity and carcino-embryonic antigen were not significant. Conclusion: SAE inhibits the progression of gastric cancer in rats, in a dose dependent manner.

  3. Endogenizing technological progress: The MESEMET model

    NARCIS (Netherlands)

    P.A.G. van Bergeijk (Peter); G.H.A. van Hagen; R.A. de Mooij (Ruud); J. van Sinderen (Jarig)

    1997-01-01

    textabstractThis paper endogenizes technology and human capital formation in the MESEM model that was developed by van Sinderen (Economic Modelling, 1993, 13, 285-300). Tax allowances for private R&D expenditures and public expenditures on both education and R& D are effective instruments to stimula

  4. Laboratory animal models for esophageal cancer

    Directory of Open Access Journals (Sweden)

    Dhanya Venugopalan Nair

    2016-11-01

    Full Text Available The incidence of esophageal cancer is rapidly increasing especially in developing countries. The major risk factors include unhealthy lifestyle practices such as alcohol consumption, smoking, and chewing tobacco to name a few. Diagnosis at an advanced stage and poor prognosis make esophageal cancer one of the most lethal diseases. These factors have urged further research in understanding the pathophysiology of the disease. Animal models not only aid in understanding the molecular pathogenesis of esophageal cancer but also help in developing therapeutic interventions for the disease. This review throws light on the various recent laboratory animal models for esophageal cancer.

  5. TRPV6 alleles do not influence prostate cancer progression

    Directory of Open Access Journals (Sweden)

    Flockerzi Veit

    2009-10-01

    Full Text Available Abstract Background The transient receptor potential, subfamily V, member 6 (TRPV6 is a Ca2+ selective cation channel. Several studies have shown that TRPV6 transcripts are expressed in locally advanced prostatic adenocarcinoma, metastatic and androgen-insensitive prostatic lesions but are undetectable in healthy prostate tissue and benign prostatic hyperplasia. Two allelic variants of the human trpv6 gene have been identified which are transcribed into two independent mRNAs, TRPV6a and TRPV6b. We now asked, whether the trpv6a allele is correlated with the onset of prostate cancer, with the Gleason score and the tumour stage. Methods Genomic DNA of prostate cancer patients and control individuals was isolated from resections of prostatic adenocarcinomas and salivary fluid respectively. Genotyping of SNPs of the TRPV6 gene was performed by restriction length polymorphism or by sequencing analysis. RNA used for RT-PCR was isolated from prostate tissue. Data sets were analyzed by Chi-Square test. Results We first characterized in detail the five polymorphisms present in the protein coding exons of the trpv6 gene and show that these polymorphisms are coupled and are underlying the TRPV6a and the TRPV6b variants. Next we analysed the frequencies of the two TRPV6 alleles using genomic DNA from saliva samples of 169 healthy individuals. The homozygous TRPV6b genotype predominated with 86%, whereas no homozygous TRPV6a carriers could be identified. The International HapMap Project identified a similar frequency for an Utah based population whereas in an African population the a-genotype prevailed. The incidence of prostate cancer is several times higher in African populations than in non-African and we then investigated the TRPV6a/b frequencies in 141 samples of prostatic adenocarcinoma. The TRPV6b allele was found in 87% of the samples without correlation with Gleason score and tumour stage. Conclusion Our results show that the frequencies of trpv6

  6. The Potential Role of Nitric Oxide in Halting Cancer Progression Through Chemoprevention

    Science.gov (United States)

    Vahora, Huzefa; Khan, Munawwar Ali; Alalami, Usama; Hussain, Arif

    2016-01-01

    Nitric oxide (NO) in general plays a beneficial physiological role as a vasorelaxant and the role of NO is decided by its concentration present in physiological environments. NO either facilitates cancer-promoting characters or act as an anti-cancer agent. The dilemma in this regard still remains unanswered. This review summarizes the recent information on NO and its role in carcinogenesis and tumor progression, as well as dietary chemopreventive agents which have NO-modulating properties with safe cytotoxic profile. Understanding the molecular mechanisms and cross-talk modulating NO effect by these chemopreventive agents can allow us to develop better therapeutic strategies for cancer treatment. PMID:27051643

  7. Matrix Metalloproteinases: The Gene Expression Signatures of Head and Neck Cancer Progression

    Energy Technology Data Exchange (ETDEWEB)

    Iizuka, Shinji [Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037 (United States); Ishimaru, Naozumi; Kudo, Yasusei, E-mail: yasusei@tokushima-u.ac.jp [Department of Oral Molecular Pathology, Institute of Health Biosciences, The University of Tokushima Graduate School, 3-8-15 Kuramoto, Tokushima 770-8504 (Japan)

    2014-02-13

    Extracellular matrix degradation by matrix metalloproteinases (MMPs) plays a pivotal role in cancer progression by promoting motility, invasion and angiogenesis. Studies have shown that MMP expression is increased in head and neck squamous cell carcinomas (HNSCCs), one of the most common cancers in the world, and contributes to poor outcome. In this review, we examine the expression pattern of MMPs in HNSCC by microarray datasets and summarize the current knowledge of MMPs, specifically MMP-1, -3, -7 -10, -12, -13, 14 and -19, that are highly expressed in HNSCCs and involved cancer invasion and angiogenesis.

  8. Obesity and Cancer Progression: Is There a Role of Fatty Acid Metabolism?

    Directory of Open Access Journals (Sweden)

    Seher Balaban

    2015-01-01

    Full Text Available Currently, there is renewed interest in elucidating the metabolic characteristics of cancer and how these characteristics may be exploited as therapeutic targets. Much attention has centered on glucose, glutamine and de novo lipogenesis, yet the metabolism of fatty acids that arise from extracellular, as well as intracellular, stores as triacylglycerol has received much less attention. This review focuses on the key pathways of fatty acid metabolism, including uptake, esterification, lipolysis, and mitochondrial oxidation, and how the regulators of these pathways are altered in cancer. Additionally, we discuss the potential link that fatty acid metabolism may serve between obesity and changes in cancer progression.

  9. A Weibull multi-state model for the dependence of progression-free survival and overall survival.

    Science.gov (United States)

    Li, Yimei; Zhang, Qiang

    2015-07-30

    In oncology clinical trials, overall survival, time to progression, and progression-free survival are three commonly used endpoints. Empirical correlations among them have been published for different cancers, but statistical models describing the dependence structures are limited. Recently, Fleischer et al. proposed a statistical model that is mathematically tractable and shows some flexibility to describe the dependencies in a realistic way, based on the assumption of exponential distributions. This paper aims to extend their model to the more flexible Weibull distribution. We derived theoretical correlations among different survival outcomes, as well as the distribution of overall survival induced by the model. Model parameters were estimated by the maximum likelihood method and the goodness of fit was assessed by plotting estimated versus observed survival curves for overall survival. We applied the method to three cancer clinical trials. In the non-small-cell lung cancer trial, both the exponential and the Weibull models provided an adequate fit to the data, and the estimated correlations were very similar under both models. In the prostate cancer trial and the laryngeal cancer trial, the Weibull model exhibited advantages over the exponential model and yielded larger estimated correlations. Simulations suggested that the proposed Weibull model is robust for data generated from a range of distributions.

  10. Postmenopausal obesity promotes tumor angiogenesis and breast cancer progression in mice.

    Science.gov (United States)

    Gu, Jian-Wei; Young, Emily; Patterson, Sharla G; Makey, Kristina L; Wells, Jeremy; Huang, Min; Tucker, Kevan B; Miele, Lucio

    2011-05-15

    Obese postmenopausal women have a 50% higher risk of breast cancer than non-obese women. There is not an animal model that mimics postmenopausal obesity related to breast cancer progression. Using age-relevant C57BL/6 mice, this study determined whether postmenopausal obesity increases VEGF expression, tumor angiogenesis, and breast tumor growth. Ovariectomy (OVX) was performed in 12 sixty week-old female mice, then followed by a low-fat (5%, LF, n=6) or a high-fat (60%, HF, n=6) diet for 12 weeks. In the eighth week of the dietary program, 10(6) E0771 (mouse breast cancer) cells were injected in the left fourth mammary gland. Tumor size was monitored for 4 weeks. Body weights were monitored weekly. At the end of the experiment, blood samples, visceral fat and tumors were collected for measuring VEGF expression using ELISA and intratumoral microvessel density (IMD) using CD31 immunochemistry. Body weight was significantly increased in OVX/HF mice, compared to OVX/LF group (55.3±1.7 vs. 41.5±1.5 g; p < 0.01). There was a two-fold increase in the ratio of visceral fat/BW in OVX/HF mice, compared to those in OVX/LF group (0.062±0.005 vs. 0.032±0.003; p < 0.01). Postmenopausal obesity significantly increased breast tumor weight over the control (4.62±0.63 vs. 1.98±0.27 g; p < 0.01) and IMD (173±3.7 vs. 139±4.3 IM#/mm^2; p < 0.01). Tumor VEGF levels were higher in OVX/HF mice, compared to OVX/LF group (73.3±3.8 vs. 49.5±4.3 pg/mg protein; p < 0.01). Plasma VEGF levels (69±7.1 vs. 48±3.5 pg/ml) and visceral fat VEGF levels (424.4±39.5 vs. 208.5±22.4 pg/mg protein) were significantly increased in OVX/HF mice, compared to OVX/LF group, respectively (n=6; p < 0.01). Interestingly, adipose tissue primary culture showed that subcutaneous fat released more VEGF, compared to visceral fat (6.77±1.14 vs. 0.94±0.16 pg/mg tissue; n=6; p < 0.01). These findings support the hypothesis that postmenopausal obesity promotes tumor angiogenesis and breast cancer

  11. Recent progress in 8igenomic research of liver cancer

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Along the course of occurrence and development of liver cancer,the corresponding somatic cells accumulate some important genetic variations.These variations may be divided into two categories.For the genetic changes closely related to etiology of liver cancer,the well-known cases include insertion and integration of the hepatitis B virus(HBV) DNA after infection,and mutations at site 249 of the tumor suppressor gene p53 induced by exposure to aflatoxin B1.The secondary genetic changes include amplification and deletion of certain chromosome regions,mutations in p53 at the sites other than 249,as well as the mutational activation of the Wnt/β-catenin signal pathway.The tumor cells with these genetic variations may gradually become the dominant clones under evolutionary selection.Besides,identification of genetic susceptible against risk of liver malignancy is also an important aspect of research in this field.

  12. Recent progress in 8igenomic research of liver cancer

    Institute of Scientific and Technical Information of China (English)

    HAN ZeGuang

    2009-01-01

    Along the course of occurrence and development of liver cancer, the corresponding somatic cells ac-cumulate some important genetic variations. These variations may be divided into two categories. For the genetic changes closely related to etiology of liver cancer, the well-known cases include insertion and integration of the hepatitis B virus (HBV) DNA after infection, and mutations at site 249 of the tumor suppressor gene p53 induced by exposure to aflatoxin B1. The secondary genetic changes include amplification and deletion of certain chromosome regions, mutations in p53 at the sites other than 249, as well as the mutational activation of the Wnt/β-catenin signal pathway. The tumor cells with these genetic variations may gradually become the dominant clones under evolutionary selection. Besides, identification of genetic susceptible against risk of liver malignancy is also an important aspect of re-search in this field.

  13. Metastatic colorectal cancer-past, progress and future

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The clinical management of metastatic (stage Ⅳ)colorectal cancer (CRC) is a common challenge faced by surgeons and physicians. The last decade has seen exciting developments in the management of CRC, with significant improvements in prognosis for patients diagnosed with stage Ⅳ disease. Treatment options have expanded from 5-fluorouracil alone to a range of pharmaceutical and interventional therapies,improving survival, and providing a cure in selected cases. Enhanced understanding of the biologic pathways most important in colorectal carcinogenesis has led to a new generation of drugs showing promise in advanced disease. It is hoped that in the near future the treatment paradigm of metastatic CRC will be analogous to that of a chronic illness, rather than a rapidly terminal condition.This overview discusses the epidemiology of advanced CRC and currently available therapeutic options including medical, surgical, ablative and novel modalities in the management of metastatic colorectal cancer.

  14. Mouse models of anemia of cancer.

    Directory of Open Access Journals (Sweden)

    Airie Kim

    Full Text Available Anemia of cancer (AC may contribute to cancer-related fatigue and impair quality of life. Improved understanding of the pathogenesis of AC could facilitate better treatment, but animal models to study AC are lacking. We characterized four syngeneic C57BL/6 mouse cancers that cause AC. Mice with two different rapidly-growing metastatic lung cancers developed the characteristic findings of anemia of inflammation (AI, with dramatically different degrees of anemia. Mice with rapidly-growing metastatic melanoma also developed a severe anemia by 14 days, with hematologic and inflammatory parameters similar to AI. Mice with a slow-growing peritoneal ovarian cancer developed an iron-deficiency anemia, likely secondary to chronically impaired nutrition and bleeding into the peritoneal cavity. Of the four models, hepcidin mRNA levels were increased only in the milder lung cancer model. Unlike in our model of systemic inflammation induced by heat-killed Brucella abortus, ablation of hepcidin in the ovarian cancer and the milder lung cancer mouse models did not affect the severity of anemia. Hepcidin-independent mechanisms play an important role in these murine models of AC.

  15. The Role of Cytokines in Breast Cancer Development and Progression

    OpenAIRE

    Esquivel-Velázquez, Marcela; Ostoa-Saloma, Pedro; Palacios-Arreola, Margarita Isabel; Karen E. Nava-Castro; Castro, Julieta Ivonne; Morales-Montor, Jorge

    2015-01-01

    Cytokines are highly inducible, secretory proteins that mediate intercellular communication in the immune system. They are grouped into several protein families that are referred to as tumor necrosis factors, interleukins, interferons, and colony-stimulating factors. In recent years, it has become clear that some of these proteins as well as their receptors are produced in the organisms under physiological and pathological conditions. The exact initiation process of breast cancer is unknown, ...

  16. The Role of Central Metabolism in Prostrate Cancer Progression

    Science.gov (United States)

    2010-10-01

    6 Introduction Work from our laboratories and others suggests that the metabolites of dietary omega ~ 3 and ~6 polyunsaturated fatty acids ...tumorigenic ones. PCa cells also have elevated fatty acid synthase (FASN). FASN regulates the expression of a myriad of genes, including the PUFA ...efficacy of daily oral doses of purified fish oil omega ~3 fatty acid in prostate cancer patients scheduled to have a Radical Prostatectomy (RP). Through

  17. Androgen Metabolism in Progression to Androgen-Independent Prostate Cancer

    Science.gov (United States)

    2011-06-01

    Ellen Taplin*†, Judith Manola*, William K. Oh*†, Philip W. Kantoff*†, Glenn J. Bubley†‡, Matthew Smith†§, Diana Barb†‡, Christos Mantzoros†‡, Edward P...of prostatic cancer. J Urol 1972;108:936–8. 22. Yap TA, Carden CP, Attard G, de Bono JS. Tar- geting CYP17: established and novel approaches in

  18. Progress in Global Multicompartmental Modelling of DDT

    Science.gov (United States)

    Stemmler, I.; Lammel, G.

    2009-04-01

    Dichlorophenyltrichloroethane, DDT, and its major metabolite dichlorophenyldichloroethylene, DDE, are long-lived in the environment (persistent) and circulate since the 1950s. They accumulate along food chains, cause detrimental effects in marine and terrestrial wild life, and pose a hazard for human health. DDT was widely used as an insecticide in the past and is still in use in a number of tropical countries to combat vector borne diseases like malaria and typhus. It is a multicompartmental substance with only a small mass fraction residing in air. A global multicompartment chemistry transport model (MPI-MCTM; Semeena et al., 2006) is used to study the environmental distribution and fate of dichlorodiphenyltrichloroethane (DDT). For the first time a horizontally and vertically resolved global model was used to perform a long-term simulation of DDT and DDE. The model is based on general circulation models for the ocean (MPIOM; Marsland et al., 2003) and atmosphere (ECHAM5). In addition, an oceanic biogeochemistry model (HAMOCC5.1; Maier-Reimer et al., 2005 ) and a microphysical aerosol model (HAM; Stier et al., 2005 ) are included. Multicompartmental substances are cycling in atmosphere (3 phases), ocean (3 phases), top soil (3 phases), and vegetation surfaces. The model was run for 40 years forced with historical agricultural application data of 1950-1990. The model results show that the global environmental contamination started to decrease in air, soil and vegetation after the applications peaked in 1965-70. In some regions, however, the DDT mass had not yet reached a maximum in 1990 and was still accumulating mass until the end of the simulation. Modelled DDT and DDE concentrations in atmosphere, ocean and soil are evaluated by comparison with observational data. The evaluation of the model results indicate that degradation of DDE in air was underestimated. Also for DDT, the discrepancies between model results and observations are related to uncertainties of

  19. Altered Fibroblast Growth Factor Receptor 4 Stability Promotes Prostate Cancer Progression

    Directory of Open Access Journals (Sweden)

    Jianghua Wang

    2008-08-01

    Full Text Available Fibroblast growth factor receptor 4 (FGFR-4 is expressed at significant levels in almost all human prostate cancers, and expression of its ligands is ubiquitous. A common polymorphism of FGFR-4 in which arginine (Arg388 replaces glycine (Gly388 at amino acid 388 is associated with progression in human prostate cancer. We show that the FGFR-4 Arg388 polymorphism, which is present in most prostate cancer patients, results in increased receptor stability and sustained receptor activation. In patients bearing the FGFR-4 Gly388 variant, expression of Huntingtin-interacting protein 1 (HIP1, which occurs in more than half of human prostate cancers, also results in FGFR-4 stabilization. This is associated with enhanced proliferation and anchorage-independent growth in vitro. Our findings indicate that increased receptor stability and sustained FGFR-4 signaling occur in most human prostate cancers due to either the presence of a common genetic polymorphism or the expression of a protein that stabilizes FGFR-4. Both of these alterations are associated with clinical progression in patients with prostate cancer. Thus, FGFR-4 signaling and receptor turnover are important potential therapeutic targets in prostate cancer.

  20. Oncogenic Alternative Splicing Switches: Role in Cancer Progression and Prospects for Therapy

    Directory of Open Access Journals (Sweden)

    Serena Bonomi

    2013-01-01

    Full Text Available Alterations in the abundance or activities of alternative splicing regulators generate alternatively spliced variants that contribute to multiple aspects of tumor establishment, progression and resistance to therapeutic treatments. Notably, many cancer-associated genes are regulated through alternative splicing suggesting a significant role of this post-transcriptional regulatory mechanism in the production of oncogenes and tumor suppressors. Thus, the study of alternative splicing in cancer might provide a better understanding of the malignant transformation and identify novel pathways that are uniquely relevant to tumorigenesis. Understanding the molecular underpinnings of cancer-associated alternative splicing isoforms will not only help to explain many fundamental hallmarks of cancer, but will also offer unprecedented opportunities to improve the efficacy of anti-cancer treatments.

  1. Clinical Significance of HER-2 Splice Variants in Breast Cancer Progression and Drug Resistance

    Directory of Open Access Journals (Sweden)

    Claire Jackson

    2013-01-01

    Full Text Available Overexpression of human epidermal growth factor receptor (HER-2 occurs in 20–30% of breast cancers and confers survival and proliferative advantages on the tumour cells making HER-2 an ideal therapeutic target for drugs like Herceptin. Continued delineation of tumour biology has identified splice variants of HER-2, with contrasting roles in tumour cell biology. For example, the splice variant 16HER-2 (results from exon 16 skipping increases transformation of cancer cells and is associated with treatment resistance; conversely, Herstatin (results from intron 8 retention and p100 (results from intron 15 retention inhibit tumour cell proliferation. This review focuses on the potential clinical implications of the expression and coexistence of HER-2 splice variants in cancer cells in relation to breast cancer progression and drug resistance. “Individualised” strategies currently guide breast cancer management; in accordance, HER-2 splice variants may prove valuable as future prognostic and predictive factors, as well as potential therapeutic targets.

  2. Regulatory T Cells in the Tumor Microenvironment and Cancer Progression: Role and Therapeutic Targeting

    Science.gov (United States)

    Chaudhary, Belal; Elkord, Eyad

    2016-01-01

    Recent years have seen significant efforts in understanding and modulating the immune response in cancer. In this context, immunosuppressive cells, including regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs), have come under intense investigation for their proposed roles in suppressing tumor-specific immune responses and establishing an immunosuppressive tumor microenvironment, thus enabling tumor immune evasion. Additionally, recent evidence indicates that Tregs comprise diverse and heterogeneous subsets; phenotypically and functionally distinct subsets of tumor-infiltrating Tregs could contribute differently to cancer prognosis and clinical outcomes. Understanding Treg biology in the setting of cancer, and specifically the tumor microenvironment, is important for designing effective cancer therapies. In this review, we critically examine the role of Tregs in the tumor microenvironment and in cancer progression focusing on human studies. We also discuss the impact of current therapeutic modalities on Treg biology and the therapeutic opportunities for targeting Tregs to enhance anti-tumor immune responses and clinical benefits. PMID:27509527

  3. Animal models and therapeutic molecular targets of cancer: utility and limitations

    Directory of Open Access Journals (Sweden)

    Cekanova M

    2014-10-01

    Full Text Available Maria Cekanova, Kusum Rathore Department of Small Animal Clinical Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN, USA Abstract: Cancer is the term used to describe over 100 diseases that share several common hallmarks. Despite prevention, early detection, and novel therapies, cancer is still the second leading cause of death in the USA. Successful bench-to-bedside translation of basic scientific findings about cancer into therapeutic interventions for patients depends on the selection of appropriate animal experimental models. Cancer research uses animal and human cancer cell lines in vitro to study biochemical pathways in these cancer cells. In this review, we summarize the important animal models of cancer with focus on their advantages and limitations. Mouse cancer models are well known, and are frequently used for cancer research. Rodent models have revolutionized our ability to study gene and protein functions in vivo and to better understand their molecular pathways and mechanisms. Xenograft and chemically or genetically induced mouse cancers are the most commonly used rodent cancer models. Companion animals with spontaneous neoplasms are still an underexploited tool for making rapid advances in human and veterinary cancer therapies by testing new drugs and delivery systems that have shown promise in vitro and in vivo in mouse models. Companion animals have a relatively high incidence of cancers, with biological behavior, response to therapy, and response to cytotoxic agents similar to those in humans. Shorter overall lifespan and more rapid disease progression are factors contributing to the advantages of a companion animal model. In addition, the current focus is on discovering molecular targets for new therapeutic drugs to improve survival and quality of life in cancer patients. Keywords: mouse cancer model, companion animal cancer model, dogs, cats, molecular targets

  4. Expression of OATP family members in hormone-related cancers: potential markers of progression.

    Directory of Open Access Journals (Sweden)

    Heather Pressler

    Full Text Available The organic anion transporting polypeptide (OATP family of transporters has been implicated in prostate cancer disease progression probably by transporting hormones or drugs. In this study, we aimed to elucidate the expression, frequency, and relevance of OATPs as a biomarker in hormone-dependent cancers. We completed a study examining SLCO1B3, SLCO1B1 and SLCO2B1 mRNA expression in 381 primary, independent patient samples representing 21 cancers and normal tissues. From a separate cohort, protein expression of OATP1B3 was examined in prostate, colon, and bladder tissue. Based on expression frequency, SLCO2B1 was lower in liver cancer (P = 0.04 which also trended lower with decreasing differentiation (P = 0.004 and lower magnitude in pancreatic cancer (P = 0.05. SLCO2B1 also had a higher frequency in thyroid cancer (67% than normal (0% and expression increased with stage (P = 0.04. SLCO1B3 was expressed in 52% of cancerous prostate samples and increased SLCO1B3 expression trended with higher Gleason score (P = 0.03. SLCO1B3 expression was also higher in testicular cancer (P = 0.02. SLCO1B1 expression was lower in liver cancer (P = 0.04 which trended lower with liver cancer grade (P = 0.0004 and higher with colon cancer grade (P = 0.05. Protein expression of OATP1B3 was examined in normal and cancerous prostate, colon, and bladder tissue samples from an independent cohort. The results were similar to the transcription data, but showed distinct localization. OATPs correlate to differentiation in certain hormone-dependent cancers, thus may be useful as biomarkers for assessing clinical treatment and stage of disease.

  5. Tissue-engineered models of human tumors for cancer research

    Science.gov (United States)

    Villasante, Aranzazu; Vunjak-Novakovic, Gordana

    2015-01-01

    Introduction Drug toxicity often goes undetected until clinical trials, which are the most costly and dangerous phase of drug development. Both the cultures of human cells and animal studies have limitations that cannot be overcome by incremental improvements in drug-testing protocols. A new generation of bioengineered tumors is now emerging in response to these limitations, with potential to transform drug screening by providing predictive models of tumors within their tissue context, for studies of drug safety and efficacy. An area that could greatly benefit from these models is cancer research. Areas covered In this review, the authors first describe the engineered tumor systems, using Ewing's sarcoma as an example of human tumor that cannot be predictably studied in cell culture and animal models. Then, they discuss the importance of the tissue context for cancer progression and outline the biomimetic principles for engineering human tumors. Finally, they discuss the utility of bioengineered tumor models for cancer research and address the challenges in modeling human tumors for use in drug discovery and testing. Expert opinion While tissue models are just emerging as a new tool for cancer drug discovery, they are already demonstrating potential for recapitulating, in vitro, the native behavior of human tumors. Still, numerous challenges need to be addressed before we can have platforms with a predictive power appropriate for the pharmaceutical industry. Some of the key needs include the incorporation of the vascular compartment, immune system components, and mechanical signals that regulate tumor development and function. PMID:25662589

  6. Role of the immune system in pancreatic cancer progression and immune modulating treatment strategies.

    Science.gov (United States)

    Sideras, K; Braat, H; Kwekkeboom, J; van Eijck, C H; Peppelenbosch, M P; Sleijfer, S; Bruno, M

    2014-05-01

    Traditional chemotherapeutics have largely failed to date to produce significant improvements in pancreatic cancer survival. One of the reasons for the resilience of pancreatic cancer towards intensive treatment is that the cancer is capable of high jacking the immune system: during disease progression the immune system is converted from a system that attacks tumor cells into a support structure for the cancer, exerting trophic actions on the cancer cells. This turn-around of immune system action is achieved through mobilization and activation of regulatory T cells, myeloid derived suppressor cells, tumor-associated macrophages and fibroblasts, all of which suppress CD8 T cells and NK cells. This immune suppression occurs both through the expression of tolerance-inducing cell surface molecules, such as PD-L1, as well as through the production of "tolerogenic" cytokines, such as IL-10 and TGF-β. Based on the accumulating insight into the importance of the immune system for the outcome of pancreatic cancer patients multiple new immunotherapeutic approaches against pancreatic cancer are being currently tested in clinical trials. In this review we give an overview of both the immune escaping mechanisms of pancreatic cancer as well as the new immune related therapeutic strategies currently being tested in pancreatic cancer clinical trials.

  7. Defining progression in nonmuscle invasive bladder cancer: it is time for a new, standard definition

    NARCIS (Netherlands)

    Lamm, D.; Persad, R.; Brausi, M.; Buckley, R.; Witjes, J.A.; Palou, J.; Bohle, A.; Kamat, A.M.; Colombel, M.; Soloway, M.

    2014-01-01

    PURPOSE: Despite being one of the most important clinical outcomes in nonmuscle invasive bladder cancer, there is currently no standard definition of disease progression. Major clinical trials and meta-analyses have used varying definitions or have failed to define this end point altogether. A stand

  8. Cancer invasion and resistance: interconnected processes of disease progression and therapy failure.

    NARCIS (Netherlands)

    Alexander, S.; Friedl, P.H.A.

    2012-01-01

    Cancer progression and outcome depend upon two key functions executed by tumor cells: the growth and survival capability leading to resistance to therapy and the invasion into host tissues resulting in local and metastatic dissemination. Although both processes are widely studied separately, the und

  9. Proteomic biomarkers for overall and progression-free survival in ovarian cancer patients

    DEFF Research Database (Denmark)

    Høgdall, Estrid; Fung, Eric T; Christensen, Ib Jarle;

    2010-01-01

    To determine if the level of apolipoprotein A1, hepcidin, transferrin, inter-α trypsin IV internal fragment, transthyretin (TT), connective-tissue activating protein 3 (CTAP3), serum amyloid A1, β-2 microglobulin (B2M) might have impact on overall and progression-free survival for ovarian cancer ...

  10. Proteomic biomarkers for overall and progression-free survival in ovarian cancer patients

    DEFF Research Database (Denmark)

    Høgdall, Estrid; Fung, Eric T; Christensen, Ib Jarle;

    2010-01-01

    To determine if the level of apolipoprotein A1, hepcidin, transferrin, inter-a trypsin IV internal fragment, transthyretin (TT), connective-tissue activating protein 3 (CTAP3), serum amyloid A1, ß-2 microglobulin (B2M) might have impact on overall and progression-free survival for ovarian cancer ...

  11. Dual Roles of RNF2 in Melanoma Progression | Office of Cancer Genomics

    Science.gov (United States)

    Epigenetic regulators have emerged as critical factors governing the biology of cancer. Here, in the context of melanoma, we show that RNF2 is prognostic, exhibiting progression-correlated expression in human melanocytic neoplasms. Through a series of complementary gain-of-function and loss-of-function studies in mouse and human systems, we establish that RNF2 is oncogenic and prometastatic.

  12. Total RNA Sequencing Analysis of DCIS Progressing to Invasive Breast Cancer

    Science.gov (United States)

    2015-09-01

    AWARD NUMBER: W81XWH-14-1-0080 TITLE: Total RNA Sequencing Analysis of DCIS Progressing to Invasive Breast Cancer. PRINCIPAL INVESTIGATOR...extracts. All samples have undergone a comprehensive DNA methylome analysis using the Illumina 450K CpG arrays, with excellent call rates, the

  13. Research Progress in the Use of Drugs for Breast Cancer Targeted Therapy

    Institute of Scientific and Technical Information of China (English)

    Shun'e Yang; Bing Zhao

    2008-01-01

    In recent years,many significant advances have been made on molecular target therapy to aim directly at epidermal growth factor receptors and vascular endothelial growth factor in breast cancers.Clinical studies of such agents as trastuzumab,lapatinib,erlotinib and bevacituzumab have been widely conducted.This paper will review the recent research progress related to targeted therapy.

  14. Role of PSMA in Aberrant Cell Cycle Progression in Prostate Cancer

    Science.gov (United States)

    2009-11-01

    development and progression. While a high- fat diet has 10 been linked to prostate cancer the identity of other food products contributing to...m etastatic PCa. One of the critical ingredients of processed m eat is the high level of sodium from salt, food preservatives, and flavoring

  15. Flood Progression Modelling and Impact Analysis

    DEFF Research Database (Denmark)

    Mioc, Darka; Anton, François; Nickerson, B.

    People living in the lower valley of the St. John River, New Brunswick, Canada, frequently experience flooding when the river overflows its banks during spring ice melt and rain. To better prepare the population of New Brunswick for extreme flooding, we developed a new flood prediction model...

  16. Retrospective study of the effect of disease progression on patient reported outcomes in HER-2 negative metastatic breast cancer patients

    Directory of Open Access Journals (Sweden)

    Yu Elaine

    2011-06-01

    Full Text Available Abstract Background This retrospective study evaluated the impact of disease progression and of specific sites of metastasis on patient reported outcomes (PROs that assess symptom burden and health related quality of life (HRQoL in women with metastatic breast cancer (mBC. Methods HER-2 negative mBC patients (n = 102 were enrolled from 7 U.S. community oncology practices. Demographic, disease and treatment characteristics were abstracted from electronic medical records and linked to archived Patient Care Monitor (PCM assessments. The PCM is a self-report measure of symptom burden and HRQoL administered as part of routine care in participating practices. Linear mixed models were used to examine change in PCM scores over time. Results Mean age was 57 years, with 72% of patients Caucasian, and 25% African American. Median time from mBC diagnosis to first disease progression was 8.8 months. Metastasis to bone (60%, lung (28% and liver (26% predominated at initial metastatic diagnosis. Results showed that PCM items assessing fatigue, physical pain and trouble sleeping were sensitive to either general effects of disease progression or to effects associated with specific sites of metastasis. Progression of disease was also associated with modest but significant worsening of General Physical Symptoms, Treatment Side Effects, Acute Distress and Impaired Performance index scores. In addition, there were marked detrimental effects of liver metastasis on Treatment Side Effects, and of brain metastasis on Acute Distress. Conclusions Disease progression has a detrimental impact on cancer-related symptoms. Delaying disease progression may have a positive impact on patients' HRQoL.

  17. Nanochips of Tantalum Oxide Nanodots as artificial-microenvironments for monitoring Ovarian cancer progressiveness

    Science.gov (United States)

    Dhawan, Udesh; Wang, Ssu-Meng; Chu, Ying Hao; Huang, Guewha S.; Lin, Yan Ren; Hung, Yao Ching; Chen, Wen Liang

    2016-08-01

    Nanotopography modulates cell characteristics and cell behavior. Nanotopological cues can be exploited to investigate the in-vivo modulation of cell characteristics by the cellular microenvironment. However, the studies explaining the modulation of tumor cell characteristics and identifying the transition step in cancer progressiveness are scarce. Here, we engineered nanochips comprising of Tantalum oxide nanodot arrays of 10, 50, 100 and 200 nm as artificial microenvironments to study the modulation of cancer cell behavior. Clinical samples of different types of Ovarian cancer at different stages were obtained, primary cultures were established and then seeded on different nanochips. Immunofluorescence (IF) was performed to compare the morphologies and cell characteristics. Indices corresponding to cell characteristics were defined. A statistical comparison of the cell characteristics in response to the nanochips was performed. The cells displayed differential growth parameters. Morphology, Viability, focal adhesions, microfilament bundles and cell area were modulated by the nanochips which can be used as a measure to study the cancer progressiveness. The ease of fabrication of nanochips ensures mass-production. The ability of the nanochips to act as artificial microenvironments and modulate cell behavior may lead to further prospects in the markerless monitoring of the progressiveness and ultimately, improving the prognosis of Ovarian cancer.

  18. Copper and angiogenesis: unravelling a relationship key to cancer progression.

    Science.gov (United States)

    Finney, Lydia; Vogt, Stefan; Fukai, Tohru; Glesne, David

    2009-01-01

    1. Angiogenesis, the formation of new capillaries from existing vasculature, is a critical process in normal physiology as well as several physiopathologies. A desire to curb the supportive role angiogenesis plays in the development and metastasis of cancers has driven exploration into anti-angiogenic strategies as cancer therapeutics. Key to this, angiogenesis additionally displays an exquisite sensitivity to bioavailable copper. Depletion of copper has been shown to inhibit angiogenesis in a wide variety of cancer cell and xenograft systems. Several clinical trials using copper chelation as either an adjuvant or primary therapy have been conducted. Yet, the biological basis for the sensitivity of angiogenesis remains unclear. Numerous molecules important to angiogenesis regulation have been shown to be either directly or indirectly influenced by copper, yet a clear probative answer to the connection remains elusive. 2. Measurements of copper in biological systems have historically relied on techniques that, although demonstrably powerful, provide little or no information as to the spatial distribution of metals in a cellular context. Therefore, several new approaches have been developed to image copper in a biological context. One such approach relies on synchrotron-derived X-rays from third-generation synchrotrons and the technique of high resolution X-ray fluorescence microprobe (XFM) analysis. 3. Recent applications of XFM approaches to the role of copper in regulating angiogenesis have provided unique insight into the connection between copper and cellular behaviour. Using XFM, copper has been shown to be highly spatially regulated, as it is translocated from perinuclear areas of the cell towards the tips of extending filopodia and across the cell membrane into the extracellular space during angiogenic processes. Such findings may explain the heightened sensitivity of this cellular process to this transition metal and set a new paradigm for the kinds of

  19. Adjuvant Strategies for Resectable Pancreatic Cancer: Have We Made Progress?

    Directory of Open Access Journals (Sweden)

    Suzanne Russo

    2012-03-01

    Full Text Available Substantial controversy remains regarding the optimal adjuvant treatment for patients with resectable pancreatic adenocarcinoma. Despite improvements in radiation techniques, systemic therapies, and incorporation of targeted agents, the 5-year survival rates for early stage patients remains less than 25% and the optimal adjuvant treatment approach remains unclear. Here we summarize the data presented at the 2012 American Society of Clinical Oncology (ASCO Gastrointestinal Cancers Symposium regarding controversial issues surrounding the role, timing, and selection of patients for adjuvant chemoradiation strategies following curative resection for pancreatic adenocarcinoma. (Abstracts #301, #333, and #206.

  20. The sweet side of immune evasion: role of glycans in the mechanisms of cancer progression

    Directory of Open Access Journals (Sweden)

    Ana Flávia Fernandes Ribas Nardy

    2016-03-01

    Full Text Available Glycans are part of the essential components of a cell. These compounds play a fundamental role in several physiopathological processes including cell differentiation, adhesion, motility, signal transduction, host-pathogen interactions, tumor cell invasion and metastasis development. Glycans are also able to exert control over the changes in tumor immunogenecity, interfering with tumor editing events and leading to immune resistant cancer cells. The involvement of glycans in cancer progression are related to glycosylation alterations. Understanding such changes is, therefore, extremely useful to set the stage for their use as biomarkers, improving the diagnostics and therapeutic strategies. Herein, we discuss the basis of how modifications in glycosylation patterns may contribute to cancer genesis and progression as well as their importance in oncology field.

  1. Tobacco carcinogen NNK-induced lung cancer animal models and associated carcinogenic mechanisms.

    Science.gov (United States)

    Ge, Guang-Zhe; Xu, Tian-Rui; Chen, Ceshi

    2015-07-01

    Tobacco usage is a major risk factor in the development, progression, and outcomes for lung cancer. Of the carcinogens associated with lung cancer, tobacco-specific nitrosamines 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is among the most potent ones. The oncogenic mechanisms of NNK are not entirely understood, hindering the development of effective strategies for preventing and treating smoking-associated lung cancers. Here, we introduce the NNK-induced lung cancer animal models in different species and its potential mechanisms. Finally, we summarize several chemopreventive agents developed from these animal models.

  2. Integrated extracellular matrix signaling in mammary gland development and breast cancer progression.

    Science.gov (United States)

    Zhu, Jieqing; Xiong, Gaofeng; Trinkle, Christine; Xu, Ren

    2014-09-01

    Extracellular matrix (ECM), a major component of the cellular microenvironment, plays critical roles in normal tissue morphogenesis and disease progression. Binding of ECM to membrane receptor proteins, such as integrin, discoidin domain receptors, and dystroglycan, elicits biochemical and biomechanical signals that control cellular architecture and gene expression. These ECM signals cooperate with growth factors and hormones to regulate cell migration, differentiation, and transformation. ECM signaling is tightly regulated during normal mammary gland development. Deposition and alignment of fibrillar collagens direct migration and invasion of mammary epithelial cells during branching morphogenesis. Basement membrane proteins are required for polarized acinar morphogenesis and milk protein expression. Deregulation of ECM proteins in the long run is sufficient to promote breast cancer development and progression. Recent studies demonstrate that the integrated biophysical and biochemical signals from ECM and soluble factors are crucial for normal mammary gland development as well as breast cancer progression.

  3. SOME PROGRESS IN THE LATTICE BOLTMANN MODEL

    Institute of Scientific and Technical Information of China (English)

    FENG SHI-DE; TSUTAHARA MICHIHISA; JI ZHONG-ZHEN

    2001-01-01

    A lattice Boltzmann equation model has been developed by using the equilibrium distribution function of the Maxwell-Boltzmann-like form, which is third order in fluid velocity uα. The criteria of energy conservation between the macroscopic physical quantities and the microscopic particles are introduced into the model, thus the thermal hydrodynamic equations containing the effect of buoyancy force can be recovered in terms of the Taylor and ChapmanEnskog asymptotic expansion methods. The two-dimensional thermal convection phenomena in a square cavity and between two concentric cylinders have been calculated by implementing a heat flux boundary condition. Both numerical results are in good agreement with the conventional numerical results.

  4. Apoptotic cell signaling in cancer progression and therapy.

    Science.gov (United States)

    Plati, Jessica; Bucur, Octavian; Khosravi-Far, Roya

    2011-04-01

    Apoptosis is a tightly regulated cell suicide program that plays an essential role in the development and maintenance of tissue homeostasis by eliminating unnecessary or harmful cells. Impairment of this native defense mechanism promotes aberrant cellular proliferation and the accumulation of genetic defects, ultimately resulting in tumorigenesis, and frequently confers drug resistance to cancer cells. The regulation of apoptosis at several levels is essential to maintain the delicate balance between cellular survival and death signaling that is required to prevent disease. Complex networks of signaling pathways act to promote or inhibit apoptosis in response to various cues. Apoptosis can be triggered by signals from within the cell, such as genotoxic stress, or by extrinsic signals, such as the binding of ligands to cell surface death receptors. Various upstream signaling pathways can modulate apoptosis by converging on, and thereby altering the activity of, common central control points within the apoptotic signaling pathways, which involve the BCL-2 family proteins, inhibitor of apoptosis (IAP) proteins, and FLICE-inhibitory protein (c-FLIP). This review highlights the role of these fundamental regulators of apoptosis in the context of both normal apoptotic signaling mechanisms and dysregulated apoptotic pathways that can render cancer cells resistant to cell death. In addition, therapeutic strategies aimed at modulating the activity of BCL-2 family proteins, IAPs, and c-FLIP for the targeted induction of apoptosis are briefly discussed.

  5. Apoptotic cell signaling in cancer progression and therapy†

    Science.gov (United States)

    Plati, Jessica; Bucur, Octavian; Khosravi-Far, Roya

    2011-01-01

    Apoptosis is a tightly regulated cell suicide program that plays an essential role in the development and maintenance of tissue homeostasis by eliminating unnecessary or harmful cells. Impairment of this native defense mechanism promotes aberrant cellular proliferation and the accumulation of genetic defects, ultimately resulting in tumorigenesis, and frequently confers drug resistance to cancer cells. The regulation of apoptosis at several levels is essential to maintain the delicate balance between cellular survival and death signaling that is required to prevent disease. Complex networks of signaling pathways act to promote or inhibit apoptosis in response to various cues. Apoptosis can be triggered by signals from within the cell, such as genotoxic stress, or by extrinsic signals, such as the binding of ligands to cell surface death receptors. Various upstream signaling pathways can modulate apoptosis by converging on, and thereby altering the activity of, common central control points within the apoptotic signaling pathways, which involve the BCL-2 family proteins, inhibitor of apoptosis (IAP) proteins, and FLICE-inhibitory protein (c-FLIP). This review highlights the role of these fundamental regulators of apoptosis in the context of both normal apoptotic signaling mechanisms and dysregulated apoptotic pathways that can render cancer cells resistant to cell death. In addition, therapeutic strategies aimed at modulating the activity of BCL-2 family proteins, IAPs, and c-FLIP for the targeted induction of apoptosis are briefly discussed. PMID:21340093

  6. Genetically engineered mouse models of prostate cancer

    NARCIS (Netherlands)

    Nawijn, Martijn C.; Bergman, Andreas M.; van der Poel, Henk G.

    2008-01-01

    Objectives: Mouse models of prostate cancer are used to test the contribution of individual genes to the transformation process, evaluate the collaboration between multiple genetic lesions observed in a single tumour, and perform preclinical intervention studies in prostate cancer research. Methods:

  7. The wound inflammatory response exacerbates growth of pre-neoplastic cells and progression to cancer

    DEFF Research Database (Denmark)

    Antonio, Nicole; Bønnelykke-Behrndtz, Marie Louise; Ward, Laura Chloe;

    2015-01-01

    There is a long-standing association between wound healing and cancer, with cancer often described as a "wound that does not heal". However, little is known about how wounding, such as following surgery, biopsy collection or ulceration, might impact on cancer progression. Here, we use a translucent...

  8. A MULTISCALE, CELL-BASED FRAMEWORK FOR MODELING CANCER DEVELOPMENT

    Energy Technology Data Exchange (ETDEWEB)

    JIANG, YI [Los Alamos National Laboratory

    2007-01-16

    Cancer remains to be one of the leading causes of death due to diseases. We use a systems approach that combines mathematical modeling, numerical simulation, in vivo and in vitro experiments, to develop a predictive model that medical researchers can use to study and treat cancerous tumors. The multiscale, cell-based model includes intracellular regulations, cellular level dynamics and intercellular interactions, and extracellular level chemical dynamics. The intracellular level protein regulations and signaling pathways are described by Boolean networks. The cellular level growth and division dynamics, cellular adhesion and interaction with the extracellular matrix is described by a lattice Monte Carlo model (the Cellular Potts Model). The extracellular dynamics of the signaling molecules and metabolites are described by a system of reaction-diffusion equations. All three levels of the model are integrated through a hybrid parallel scheme into a high-performance simulation tool. The simulation results reproduce experimental data in both avasular tumors and tumor angiogenesis. By combining the model with experimental data to construct biologically accurate simulations of tumors and their vascular systems, this model will enable medical researchers to gain a deeper understanding of the cellular and molecular interactions associated with cancer progression and treatment.

  9. Dogs as a Model for Cancer.

    Science.gov (United States)

    Gardner, Heather L; Fenger, Joelle M; London, Cheryl A

    2016-01-01

    Spontaneous cancers in client-owned dogs closely recapitulate their human counterparts with respect to clinical presentation, histological features, molecular profiles, and response and resistance to therapy, as well as the evolution of drug-resistant metastases. In several instances the incorporation of dogs with cancer into the preclinical development path of cancer therapeutics has influenced outcome by helping to establish pharmacokinetic/pharmacodynamics relationships, dose/regimen, expected clinical toxicities, and ultimately the potential for biologic activity. As our understanding regarding the molecular drivers of canine cancers has improved, unique opportunities have emerged to leverage this spontaneous model to better guide cancer drug development so that therapies likely to fail are eliminated earlier and therapies with true potential are optimized prior to human studies. Both pets and people benefit from this approach, as it provides dogs with access to cutting-edge cancer treatments and helps to insure that people are given treatments more likely to succeed.

  10. Progress with palbociclib in breast cancer: latest evidence and clinical considerations.

    Science.gov (United States)

    Rocca, Andrea; Schirone, Alessio; Maltoni, Roberta; Bravaccini, Sara; Cecconetto, Lorenzo; Farolfi, Alberto; Bronte, Giuseppe; Andreis, Daniele

    2017-02-01

    Deregulation of the cell cycle is a hallmark of cancer, and research on cell cycle control has allowed identification of potential targets for anticancer treatment. Palbociclib is a selective inhibitor of the cyclin-dependent kinases 4 and 6 (CDK4/6), which are involved, with their coregulatory partners cyclin D, in the G1-S transition. Inhibition of this step halts cell cycle progression in cells in which the involved pathway, including the retinoblastoma protein (Rb) and the E2F family of transcription factors, is functioning, although having been deregulated. Among breast cancers, those with functioning cyclin D-CDK4/6-Rb-E2F are mainly hormone-receptor (HR) positive, with some HER2-positive and rare triple-negative cases. Deregulation results from genetic or otherwise occurring hyperactivation of molecules subtending cell cycle progression, or inactivation of cell cycle inhibitors. Based on results of randomized clinical trials, palbociclib was granted accelerated approval by the US Food and Drug Administration (FDA) for use in combination with letrozole as initial endocrine-based therapy for metastatic disease in postmenopausal women with HR-positive, HER2-negative breast cancer, and was approved for use in combination with fulvestrant in women with HR-positive, HER2-negative advanced breast cancer with disease progression following endocrine therapy. This review provides an update of the available knowledge on the cell cycle and its regulation, on the alterations in cyclin D-CDK4/6-Rb-E2F axis in breast cancer and their roles in endocrine resistance, on the preclinical activity of CDK4/6 inhibitors in breast cancer, both as monotherapy and as partners of combinatorial synergic treatments, and on the clinical development of palbociclib in breast cancer.

  11. The significance of dynamin 2 expression for prostate cancer progression, prognostication, and therapeutic targeting.

    Science.gov (United States)

    Xu, Bin; Teng, Liang Hong; Silva, Sabrina Daniela da; Bijian, Krikor; Al Bashir, Samir; Jie, Su; Dolph, Michael; Alaoui-Jamali, Moulay A; Bismar, Tarek A

    2014-02-01

    Dynamin 2 (Dyn2) is essential for intracellular vesicle formation and trafficking, cytokinesis, and receptor endocytosis. In this study, we investigated the implication of Dyn2 as a prognostic marker and therapeutic target for progressive prostate cancer (PCA). We evaluated Dyn2 protein expression by immunohistochemistry in two cohorts: men with localized PCA treated by retropubic radical prostatectomy (n = 226), and men with advanced/castrate-resistant PCA (CRPC) treated by transurethral resection of prostate (TURP) (n = 253). The role of Dyn2 in cell invasiveness was assessed by in vitro and in vivo experiments using androgen-responsive and refractory PCA preclinical models. Dyn2 expression was significantly increased across advanced stages of PCA compared to benign prostate tissue (P size and lymph node metastases in vivo. In isolated PCA cells, Dyn2 was found to regulate focal adhesion turnover, which is critical for cell migration; this mechanism requires full Dyn2 compared to mutants deficient in GTPase activity. In conclusion, Dyn2 overexpression is associated with neoplastic prostate epithelium and is associated with poor prognosis. Inhibition of Dyn2 prevents cell invasiveness in androgen-responsive and -refractory PCA models, supporting the potential benefit of Dyn2 to serve as a therapeutic target for advanced PCA.

  12. Suppressed miR-424 expression via upregulation of target gene Chk1 contributes to the progression of cervical cancer.

    Science.gov (United States)

    Xu, J; Li, Y; Wang, F; Wang, X; Cheng, B; Ye, F; Xie, X; Zhou, C; Lu, W

    2013-02-21

    MicroRNAs (miRNAs) act as important gene regulators in human genomes and their aberrant expression links to many malignancies. We previously identified a different characteristic miRNA expression profile in cervical cancer from that in cervical normal tissues, including the downregulated miR-424. However, the role and mechanism of miR-424 in cervical cancer still remain unknown. Here, we focused on identifying the tumor-suppressive function and clinical significance of miR-424 and exploring the mechanistic relevance by characterizing its target. We showed a significantly decreased expression of miR-424 in 147 cervical cancer tissues versus 74 cervical normal tissues by performing quantitative RT-PCR. In 147 cervical cancer tissue samples, low-level expression of miR-424 was positively correlated with poor tumor differentiation, advanced clinical stage, lymph node metastasis and other poor prognostic clinicopathological parameters. Further in vitro observations showed that enforced expression of miR-424 inhibited cell growth by both enhancing apoptosis and blocking G1/S transition, and suppressed cell migration and invasion in two human cervical cancer cell lines, SiHa and CaSki, implying that miR-424 functions as a tumor suppressor in the progression of cervical cancer. Interestingly, overexpression of miR-424 inhibited the expression of protein checkpoint kinase 1 (Chk1) and phosphorylated Chk1 (p-Chk1) at residues Ser345 and decreased the activity of luciferase-reporter containing the 3'-untranslated region (UTR) of Chk1 with predicted miR-424-binding site. Moreover, miR-424 expression levels were inversely correlated with Chk1 and p-Chk1 protein levels in both cervical cancer and normal tissues. Furthermore, RNAi-mediated knockdown of Chk1 decreased matrix metalloproteinase 9 expression and phenocopied the tumor suppressive effects of miR-424 in cell models. Taken together, our results identify a crucial tumor suppressive role of miR-424 in the progression of

  13. Cancer modelling in the NGS era - Part I: Emerging technology and initial modelling.

    Science.gov (United States)

    Rovigatti, Ugo

    2015-11-01

    It is today indisputable that great progresses have been made in our molecular understanding of cancer cells, but an effective implementation of such knowledge into dramatic cancer-cures is still belated and yet desperately needed. This review gives a snapshot at where we stand today in this search for cancer understanding and definitive treatments, how far we have progressed and what are the major obstacles we will have to overcome both technologically and for disease modelling. In the first part, promising 3rd/4th Generation Sequencing Technologies will be summarized (particularly IonTorrent and OxfordNanopore technologies). Cancer modelling will be then reviewed from its origin in XIX Century Germany to today's NGS applications for cancer understanding and therapeutic interventions. Developments after Molecular Biology revolution (1953) are discussed as successions of three phases. The first, PH1, labelled "Clonal Outgrowth" (from 1960s to mid 1980s) was characterized by discoveries in cytogenetics (Nowell, Rowley) and viral oncology (Dulbecco, Bishop, Varmus), which demonstrated clonality. Treatments were consequently dominated by a "cytotoxic eradication" strategy with chemotherapeutic agents. In PH2, (from the mid 1980s to our days) the description of cancer as "Gene Networks" led to targeted-gene-therapies (TGTs). TGTs are the focus of Section 3: in view of their apparent failing (Ephemeral Therapies), alternative strategies will be discussed in review part II (particularly cancer immunotherapy, CIT). Additional Pitfalls impinge on the concepts of tumour heterogeneity (inter/intra; ITH). The described pitfalls set the basis for a new phase, PH3, which is called "NGS Era" and will be also discussed with ten emerging cancer models in the Review 2nd part.

  14. Accessing key steps of human tumor progression in vivo by using an avian embryo model

    Science.gov (United States)

    Hagedorn, Martin; Javerzat, Sophie; Gilges, Delphine; Meyre, Aurélie; de Lafarge, Benjamin; Eichmann, Anne; Bikfalvi, Andreas

    2005-02-01

    Experimental in vivo tumor models are essential for comprehending the dynamic process of human cancer progression, identifying therapeutic targets, and evaluating antitumor drugs. However, current rodent models are limited by high costs, long experimental duration, variability, restricted accessibility to the tumor, and major ethical concerns. To avoid these shortcomings, we investigated whether tumor growth on the chick chorio-allantoic membrane after human glioblastoma cell grafting would replicate characteristics of the human disease. Avascular tumors consistently formed within 2 days, then progressed through vascular endothelial growth factor receptor 2-dependent angiogenesis, associated with hemorrhage, necrosis, and peritumoral edema. Blocking of vascular endothelial growth factor receptor 2 and platelet-derived growth factor receptor signaling pathways by using small-molecule receptor tyrosine kinase inhibitors abrogated tumor development. Gene regulation during the angiogenic switch was analyzed by oligonucleotide microarrays. Defined sample selection for gene profiling permitted identification of regulated genes whose functions are associated mainly with tumor vascularization and growth. Furthermore, expression of known tumor progression genes identified in the screen (IL-6 and cysteine-rich angiogenic inducer 61) as well as potential regulators (lumican and F-box-only 6) follow similar patterns in patient glioma. The model reliably simulates key features of human glioma growth in a few days and thus could considerably increase the speed and efficacy of research on human tumor progression and preclinical drug screening. angiogenesis | animal model alternatives | glioblastoma

  15. Hypoxia in Models of Lung Cancer: Implications for Targeted Therapeutics

    Science.gov (United States)

    Graves, Edward E.; Vilalta, Marta; Cecic, Ivana K.; Erler, Janine T.; Tran, Phuoc T.; Felsher, Dean; Sayles, Leanne; Sweet-Cordero, Alejandro; –Thu Le, Quynh; Giaccia, Amato J.

    2010-01-01

    Purpose In order to efficiently translate experimental methods from bench to bedside, it is imperative that laboratory models of cancer mimic human disease as closely as possible. In this study we sought to compare patterns of hypoxia in several standard and emerging mouse models of lung cancer in order to establish the appropriateness of each for evaluating the role of oxygen in lung cancer progression and therapeutic response. Experimental Design Subcutaneous and orthotopic human A549 lung carcinomas growing in nude mice as well as spontaneous K-ras or Myc-induced lung tumors grown in situ or subcutaneously were studied using fluorodeoxyglucose (FDG) and fluoroazomycin arabinoside (FAZA) positron emission tomography (PET), and post-mortem by immunohistochemical observation of the hypoxia marker pimonidazole. The response of these models to the hypoxia-activated cytotoxin PR-104 was also quantified by formation of γH2AX foci in vitro and in vivo. Finally, our findings were compared with oxygen electrode measurements of human lung cancers. Results Minimal FAZA and pimonidazole accumulation was seen in tumors growing within the lungs, while subcutaneous tumors showed substantial trapping of both hypoxia probes. These observations correlated with the response of these tumors to PR-104, and with the reduced incidence of hypoxia in human lung cancers relative to other solid tumor types. Conclusions These findings suggest that in situ models of lung cancer in mice may be more reflective of the human disease, and encourage judicious selection of preclinical tumor models for the study of hypoxia imaging and anti-hypoxic cell therapies. PMID:20858837

  16. Progress in studying scintillator proportionality: Phenomenological model

    Energy Technology Data Exchange (ETDEWEB)

    Bizarri, Gregory; Cherepy, Nerine; Choong, Woon-Seng; Hull, Giulia; Moses, William; Payne, Sephen; Singh, Jai; Valentine, John; Vasilev, Andrey; Williams, Richard

    2009-04-30

    We present a model to describe the origin of non-proportional dependence of scintillator light yield on the energy of an ionizing particle. The non-proportionality is discussed in terms of energy relaxation channels and their linear and non-linear dependences on the deposited energy. In this approach, the scintillation response is described as a function of the deposited energy deposition and the kinetic rates of each relaxation channel. This mathematical framework allows both a qualitative interpretation and a quantitative fitting representation of scintillation non-proportionality response as function of kinetic rates. This method was successfully applied to thallium doped sodium iodide measured with SLYNCI, a new facility using the Compton coincidence technique. Finally, attention is given to the physical meaning of the dominant relaxation channels, and to the potential causes responsible for the scintillation non-proportionality. We find that thallium doped sodium iodide behaves as if non-proportionality is due to competition between radiative recombinations and non-radiative Auger processes.

  17. RECENT PROGRESS IN NONLINEAR EDDY-VISCOSITY TURBULENCE MODELING

    Institute of Scientific and Technical Information of China (English)

    符松; 郭阳; 钱炜祺; 王辰

    2003-01-01

    This article presents recent progresses in turbulence modeling in the Unit for Turbulence Simulation in the Department of Engineering Mechanics at Tsinghua University. The main contents include: compact Non-Linear Eddy-Viscosity Model (NLEVM) based on the second-moment closure, near-wall low-Re non-linear eddy-viscosity model and curvature sensitive turbulence model.The models have been validated in a wide range of complex flow test cases and the calculated results show that the present models exhibited overall good performance.

  18. Research Progress of Nutrition Support for Patients with Lung Cancer 
During Chemotherapy

    Directory of Open Access Journals (Sweden)

    Yiqiao LUO

    2014-12-01

    Full Text Available Primary lung cancer is one of the most common malignancies. Nowadays, both its morbidity and mortality rank first, patients with lung cancer are often goes with some affiliating symptoms such as malnutrition and weight loss. The side effects of cytotoxicity during chemotherapy may lead to further deteriorate of the nutritional status and worsen the anti-tumor therapy’s efficacy and the patients’ quality of life. With the development of palliative treatment and the higher request of patients for quality of life, nutritional support will be an important adjunctive treatment to maintain a good nutritional status and enhance the patients’ immunity during chemotherapy. It will play an active role in improving tolerability of chemotherapy and prognosis for patients with lung cancer. Here is a review about research progress of nutrition support treatment during chemotherapy for the patients with lung cancer.

  19. [Research progress of nutrition support for patients with lung cancer during chemotherapy].

    Science.gov (United States)

    Luo, Yiqiao; Zhu, Jiang

    2014-12-01

    Primary lung cancer is one of the most common malignancies. Nowadays, both its morbidity and mortality rank first, patients with lung cancer are often goes with some affiliating symptoms such as malnutrition and weight loss. The side effects of cytotoxicity during chemotherapy may lead to further deteriorate of the nutritional status and worsen the anti-tumor therapy's efficacy and the patients' quality of life. With the development of palliative treatment and the higher request of patients for quality of life, nutritional support will be an important adjunctive treatment to maintain a good nutritional status and enhance the patients' immunity during chemotherapy. It will play an active role in improving tolerability of chemotherapy and prognosis for patients with lung cancer. Here is a review about research progress of nutrition support treatment during chemotherapy for the patients with lung cancer.

  20. Emerging role of cell polarity proteins in breast cancer progression and metastasis

    Directory of Open Access Journals (Sweden)

    Chatterjee SJ

    2014-01-01

    Full Text Available Sudipa June Chatterjee, Luke McCaffrey Rosalind and Morris Goodman Cancer Centre, Department of Oncology, McGill University, Montreal, QC, Canada Abstract: Breast cancer is a heterogeneous group of diseases that frequently exhibits loss of growth control, and disrupted tissue organization and differentiation. Several recent studies indicate that apical–basal polarity provides a tumor-suppressive function, and that disrupting polarity proteins affects many stages of breast cancer progression from initiation through metastasis. In this review we highlight some of the recent advances in our understanding of the molecular mechanisms by which loss of apical–basal polarity deregulates apoptosis, proliferation, and promotes invasion and metastasis in breast cancer. Keywords: apical, basal, oncogene, tumor suppressor, proliferation, apoptosis

  1. Specific changes in the expression of imprinted genes in prostate cancer-implications for cancer progression and epigenetic regulation

    Institute of Scientific and Technical Information of China (English)

    Teodora Ribarska; Klaus-Marius Bastian; Annemarie Koch; Wolfgang A Schulz

    2012-01-01

    Epigenetic dysregulation comprising DNA hypermethylation and hypomethylation,enhancer of zeste homologue 2 (EZH2)overexpression and altered patterns of histone modifications is associated with the progression of prostate cancer.DNA methylation,EZH2 and histone modifications also ensure the parental-specific monoallelic expression of at least 62 imprinted genes.Although it is therefore tempting to speculate that epigenetic dysregulation may extend to imprinted genes,expression changes in cancerous prostates are only well documented for insulin-like growth factor 2 (IGF2).A literature and database survey on imprinted genes in prostate cancer suggests that the expression of most imprinted genes remains unchanged despite global disturbances in epigenetic mechanisms.Instead,selective genetic and epigenetic changes appear to lead to the inactivation of a sub-network of imprinted genes,which might function in the prostate to limit cell growth induced viathe PI3K/Akt pathway,modulate androgen responses and regulate differentiation.Whereas dysregulation of IG F2 may constitute an early change in prostate carcinogenesis,inactivation of this imprinted gene network is rather associated with cancer progression.

  2. The biology of depression in cancer and the relationship between depression and cancer progression.

    Science.gov (United States)

    Sotelo, Jorge Luis; Musselman, Dominique; Nemeroff, Charles

    2014-02-01

    The prevalence of depressive symptoms in patients with cancer exceeds that observed in the general population and depression is associated with a poorer prognosis in cancer patients. The increased prevalence is not solely explained by the psychosocial stress associated with the diagnosis. Pro-inflammatory cytokines, which induce sickness behaviour with symptoms overlapping those of clinical depression, are validated biomarkers of increased inflammation in patients with cancer. A growing literature reveals that chronic inflammatory processes associated with stress may also underlie depression symptoms in general, and in patients with cancer in particular. Therapeutic modalities, which are frequently poorly tolerated, are used in the treatment of cancer. These interventions are associated with inflammatory reactions, which may help to explain their toxicity. There is evidence that antidepressants can effectively treat symptoms of depression in cancer patients though the database is meager. Novel agents with anti-inflammatory properties may be effective alternatives for patients with treatment-resistant depression who exhibit evidence of increased inflammation.

  3. Computational Modelling in Cancer: Methods and Applications

    Directory of Open Access Journals (Sweden)

    Konstantina Kourou

    2015-01-01

    Full Text Available Computational modelling of diseases is an emerging field, proven valuable for the diagnosis, prognosis and treatment of the disease. Cancer is one of the diseases where computational modelling provides enormous advancements, allowing the medical professionals to perform in silico experiments and gain insights prior to any in vivo procedure. In this paper, we review the most recent computational models that have been proposed for cancer. Well known databases used for computational modelling experiments, as well as, the various markup language representations are discussed. In addition, recent state of the art research studies related to tumour growth and angiogenesis modelling are presented.

  4. GSTT1 as a Prognosticator for Recurrence and Progression in Patients with Non-Muscle-Invasive Bladder Cancer

    Directory of Open Access Journals (Sweden)

    Yun-Sok Ha

    2010-01-01

    Full Text Available Although polymorphisms in glutathione S-transferase (GST have been associated with the risk of bladder cancer (BC, few reports provide information about the development of BC. The aim of the present study was to investigate the effect of homozygous glutathione S-transferase-μ (GSTM1 and glutathione S-transferase-&phis; (GSTT1 deletions as prognostic markers in non-muscle-invasive bladder cancer (NMIBC. A total of 241 patients with primary NMIBC were enrolled in this study. GSTM1 and GSTT1 polymorphisms were analyzed by multiplex polymerase chain reaction (PCR using blood genomic DNA. The results were compared with clinicopathological parameters. The prognostic significance of the GSTs was evaluated by Kaplan-Meier and multivariate Cox regression model. A statistically significant association between genotype and histopathological parameter was not observed. The patients with the GSTT1-positive genotype had significantly reduced recurrence- and progression-free survival than those with the GSTT1-null genotype (log-rank test, p < 0.05, respectively. Recurrenceand progressionfree survival were not related to the GSTM1 genotypes. In multivariate regression analysis, the GSTT1positive genotype was the independent predictor for recurrence [hazard ratio (HR, 1.631; p = 0.043] and progression (HR, 3.418; p = 0.006. These results suggested that the GSTT1 genotype could be a useful prognostic marker for recurrence and progression in NMIBC.

  5. Progressive IRP Models for Power Resources Including EPP

    Directory of Open Access Journals (Sweden)

    Yiping Zhu

    2017-01-01

    Full Text Available In the view of optimizing regional power supply and demand, the paper makes effective planning scheduling of supply and demand side resources including energy efficiency power plant (EPP, to achieve the target of benefit, cost, and environmental constraints. In order to highlight the characteristics of different supply and demand resources in economic, environmental, and carbon constraints, three planning models with progressive constraints are constructed. Results of three models by the same example show that the best solutions to different models are different. The planning model including EPP has obvious advantages considering pollutant and carbon emission constraints, which confirms the advantages of low cost and emissions of EPP. The construction of progressive IRP models for power resources considering EPP has a certain reference value for guiding the planning and layout of EPP within other power resources and achieving cost and environmental objectives.

  6. WNT5A modulates cell cycle progression and contributes to the chemoresistance in pancreatic cancer cells

    Institute of Scientific and Technical Information of China (English)

    Wei Wei; Hui-Hui Sun; Na Li; Hong-Yue Li; Xin Li; Qiang Li; Xiao-Hong Shen

    2014-01-01

    BACKGROUND: Although there are many studies on the mechanism of chemoresistance in cancers, studies on the relations between WNT5A and chemoresistance in pancreatic cancer are rare. The present study was to examine the role of WNT5A in the regulation of cell cycle progression and in chemoresistance in pancreatic cancer tissues and cell lines. METHODS: Fresh pancreatic cancer and paracarcinoma tissues were obtained from 32 patients. The expressions of WNT5A, AKT/p-AKT and Cyclin D1 were detected by immunohistochemistry, and the correlation between WNT5A expression and clinicopathological characteristics was analyzed. The relationship between WNT5A expression and gemcitabine resistance was studied in PANC-1 and MIAPaCa2 cell lines. The effect of WNT5A on the regulation of cell cycle and gemcitabine cytotoxicity were investigated. The associations among the expressions of p-AKT, Cyclin D1 and WNT5A were also analyzed in cell lines and the effect of WNT5A on restriction-point (R-point) progression was evaluated. RESULTS: WNT5A, p-AKT and Cyclin D1 were highly expressed in pancreatic cancer tissues, and the WNT5A expression was correlated with the TNM stages. In vitro, WNT5A expression was associated with gemcitabine chemoresistance. The percentage of cells was increased in G0/G1 phase and decreased in S phase after knockdown of WNT5A in PANC-1. WNT5A promoted Cyclin D1 expression through phosphorylation of AKT which consequently enhanced G1-S transition and gemcitabine resistance. Furthermore, WNT5A enhanced the cell cycle progression toward R-point through regulation of retinoblastoma protein (pRb) and pRb-E2F complex formation. CONCLUSIONS: WNT5A induced chemoresistance by regulation of G1-S transition in pancreatic cancer cells. WNT5A might serve as a predictor of gemcitabine response and as a potential target for tumor chemotherapy.

  7. FoxD3 deficiency promotes breast cancer progression by induction of epithelial–mesenchymal transition

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Tian-Li [Department of General Surgery, The People’s Hospital of Wuqing, Tianjin (China); Zhao, Hong-Meng [Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China); Breast Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China); Li, Yue [Department of Respiration, Affiliated Hospital of Medical College of Chinese People’s Armed Police Force, Tianjin (China); Chen, Ao-Xiang; Sun, Xuan [Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China); Breast Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China); Ge, Jie, E-mail: gejie198003@163.com [Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China); Breast Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China)

    2014-04-04

    Highlights: • FOXD3 is down-regulated in breast cancer tissues. • FOXD3 inhibits breast cancer cell proliferation and invasion. • FoxD3 deficiency induces epithelial–mesenchymal transition. - Abstract: The transcription factor forkhead box D3 (FOXD3) plays an important role in the development of neural crest and gastric cancer cells. However, the function and mechanisms of FOXD3 in the breast tumorigenesis and progression is still limited. Here, we report that FOXD3 is a tumor suppressor of breast cancer tumorigenicity and aggressiveness. We found that FOXD3 is down-regulated in breast cancer tissues. Patients with low FOXD3 expression have a poor outcome. Depletion of FOXD3 expression promotes breast cancer cell proliferation and invasion in vitro, whereas overexpression of FOXD3 inhibits breast cancer cell proliferation and invasion both in vitro and in vivo. In addition, depletion of FOXD3 is linked to epithelial–mesenchymal transition (EMT)-like phenotype. Our results indicate FOXD3 exhibits tumor suppressive activity and may be useful for breast therapy.

  8. Mapping cancer cell metabolism with 13 C flux analysis: Recent progress and future challenges

    Directory of Open Access Journals (Sweden)

    Casey Scott Duckwall

    2013-01-01

    Full Text Available The reprogramming of energy metabolism is emerging as an important molecular hallmark of cancer cells. Recent discoveries linking specific metabolic alterations to cancer development have strengthened the idea that altered metabolism is more than a side effect of malignant transformation, but may in fact be a functional driver of tumor growth and progression in some cancers. As a result, dysregulated metabolic pathways have become attractive targets for cancer therapeutics. This review highlights the application of 13 C metabolic flux analysis (MFA to map the flow of carbon through intracellular biochemical pathways of cancer cells. We summarize several recent applications of MFA that have identified novel biosynthetic pathways involved in cancer cell proliferation and shed light on the role of specific oncogenes in regulating these pathways. Through such studies, it has become apparent that the metabolic phenotypes of cancer cells are not as homogeneous as once thought, but instead depend strongly on the molecular alterations and environmental factors at play in each case.

  9. Overexpression of centromere protein H is significantly associated with breast cancer progression and overall patient survival

    Institute of Scientific and Technical Information of China (English)

    Wen-Ting Liao; Yan Feng; Men-Lin Li; Guang-Lin Liu; Man-Zhi Li; Mu-Sheng Zeng; Li-Bing Song

    2011-01-01

    Breast cancer is one of the leading causes of cancer death worldwide.This study aimed to analyze the expression of centromere protein H (CENP-H) in breast cancer and to correlate it with clinicopathologic data,including patient survival.Using reverse transcription-polymerase chain reaction and Westem blotting to detect the expression of CENP-H in normal mammary epithelial cells,immortalized mammary epithelial cell lines,and breast cancer cell lines,we observed that the mRNA and protein levels of CENP-H were higher in breast cancer cell lines and in immortalized mammary epithelial cells than in normal mammary epithelial cells.We next examined CENP-H expression in 307 paraffin-embedded archived samples of clinicopathologically characterized breast cancer using immunohistochemistry,and detected high CENP-H expression in 134 (43.6%) samples.Statistical analysis showed that CENP-H expression was related with clinical stage (P = 0.001),T classification (P = 0.032),N classification (P =0.018),and Ki-67 (P<0.001).Patients with high CENP-H expression had short overall survival.Multivariate analysis showed that CENP-H expression was an independent prognostic indicator for patient survival.Our results suggest that CENP-H protein is a valuable marker of breast cancer progression and prognosis.

  10. The associations between the environmental exposure to polychlorinated biphenyls (PCBs) and breast cancer risk and progression

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Polychlorinated biphenyls(PCBs) are chlorinated biphenyl compounds with wide applications in the industry.In spite of a ban on their production in the late 1970s,PCBs,as a group of POPs,are still persistent and widely spread in the environment,posing potential threats to human health.The role of PCBs as etiologic agents for breast cancer has been intensively explored in a variety of in vivo,animal and epidemiologic studies.Initial investigations indicated higher levels of PCBs in mammary tissues or sera corresponded to the occurrence of breast cancer,but later studies showed no positive association between PCB exposure and breast cancer development.More recent data suggested that the CYP1A1 m2 polymorphisms might add increased risk to the etiology of breast cancer in women with environmental exposure to PCBs.PCBs are implicated in advancing breast cancer progression,and our unpublished data reveals that PCBs activate the ROCK signaling to enhance breast cancer metastasis.Therefore,the correlation between PCB exposure and breast cancer risk warrants further careful investigations.

  11. Upregulation of CENP-H in tongue cancer correlates with poor prognosis and progression

    Directory of Open Access Journals (Sweden)

    Weng Gui-Xiang

    2009-06-01

    Full Text Available Abstract Background Centromere protein H (CENP-H is one of the fundamental components of the human active kinetochore. Recently, CENP-H was identified to be associated with tumorigenesis. This study was aimed to investigate the clinicopathologic significance of CENP-H in tongue cancer. Methods RT-PCR, real time RT-PCR and Western blot were used to examine the expression of CENP-H in tongue cancer cell lines and biopsies. CENP-H protein level in paraffin-embedded tongue cancer tissues were tested by immunohistochemical staining and undergone statistical analysis. CENP-H-knockdown stable cell line was established by infecting cells with a retroviral vector pSuper-retro-CENP-H-siRNA. The biological function of CENP-H was tested by MTT assay, colony formation assay, and Bromodeoxyuridine (BrdU incorporation assay. Results CENP-H expression was higher in tongue cancer cell lines and cancer tissues (T than that in normal cell and adjacent noncancerous tongue tissues (N, respectively. It was overexpressed in 55.95% (94/168 of the paraffin-embedded tongue cancer tissues, and there was a strong correlation between CENP-H expression and clinical stage, as well as T classification. CENP-H can predict the prognosis of tongue cancer patients especially those in early stage. Depletion of CENP-H can inhibit the proliferation of tongue cancer cells (Tca8113 and downregulate the expression of Survivin. Conclusion These findings suggested that CENP-H involves in the development and progression of tongue cancer. CENP-H might be a valuable prognostic indicator for tongue cancer patients within early stage.

  12. Influence of sex differences on the progression of cancer-induced bone pain

    DEFF Research Database (Denmark)

    Falk, Sarah; Uldall, Maria; Appel, Camilla

    2013-01-01

    on the progression of cancer-induced bone pain. Materials and Methods: 4T1-luc2 mammary cancer cells were introduced into the femoral cavity of female and male BALB/cJ mice. Bioluminescence tumor signal, pain-related behavior and bone degradation were monitored for 14 days. Results: Female mice demonstrated...... a significantly greater bioluminescence signal on day 2 compared to male mice and, in addition, a significant earlier onset of pain-related behavior was observed in the females. No sex difference was observed for bone degradation. Finally, a strong correlation between pain-related behavior and bone degradation...

  13. Weight loss reversed obesity-induced HGF/c-Met pathway and basal-like breast cancer progression

    Directory of Open Access Journals (Sweden)

    Sneha eSundaram

    2014-07-01

    Full Text Available Epidemiologic studies demonstrate that obesity is associated with an aggressive subtype of breast cancer called basal-like breast cancer (BBC. Using the C3(1-TAg murine model of BBC, we previously demonstrated that mice displayed an early onset of tumors when fed obesogenic diets in the adult window of susceptibility. Obesity was also shown to elevate mammary gland expression and activation of hepatocyte growth factor (HGF/c-Met compared to lean controls, a pro-tumorigenic pathway associated with BBC in patients. Epidemiologic studies estimate that weight loss could prevent a large proportion of BBC. We sought to investigate whether weight loss in adulthood prior to tumor onset would protect mice from accelerated tumorigenesis observed in obese mice. Using a life-long model of obesity, C3(1-TAg mice were weaned onto and maintained on an obesogenic high fat diet. Obese mice displayed significant elevations in tumor progression, but not latency or burden. Tumor progression was significantly reversed when obese mice were induced to lose weight by switching to a control low fat diet prior to tumor onset compared to mice maintained on obesogenic diet. It is likely that other factors regulated tumor progression, hence we investigated the HGF/c-Met pathway known to regulate tumorigenesis. Importantly, HGF/c-Met expression in normal mammary glands and c-Met in tumors was elevated with obesity and was significantly reversed with weight loss. Changes in tumor growth could not be explained by measures of HGF action including phospho-AKT or phospho-S6. Other mediators associated with oncogenesis such as hyperinsulinemia and a high leptin/adiponectin ratio were elevated by obesity and reduced with weight loss. In sum, weight loss significantly blunted the obesity-responsive pro-tumorigenic HGF/c-Met pathway and improved several metabolic risk factors associated with BBC, which together may have contributed to the dramatic reversal of obesity-driven tumor

  14. Contribution of endothelial precursors of adipose tissue to breast cancer: progression-link with fat graft for reconstructive surgery.

    Science.gov (United States)

    Bertolini, Francesco

    2013-05-01

    Obesity, an excess accumulation of adipose tissue occurring in mammalians when caloric intake exceeds energy expenditure, is associated with an increased frequency and progression of several types of neoplastic diseases including postmenopausal breast cancer. Recent studies have suggested that obesity-related disruption of the energy homeostasis results in inflammation and alterations of adipokine signalling that may foster cancer initiation and progression. Moreover, two populations of human white adipose tissue (WAT) progenitors cooperate in breast cancer angiogenesis, growth and metastatic progression. This raises the issue of lipotransfer in patients undergoing plastic or reconstructive surgery.

  15. BCAT1 expression associates with ovarian cancer progression: possible implications in altered disease metabolism.

    Science.gov (United States)

    Wang, Zhi-Qiang; Faddaoui, Adnen; Bachvarova, Magdalena; Plante, Marie; Gregoire, Jean; Renaud, Marie-Claude; Sebastianelli, Alexandra; Guillemette, Chantal; Gobeil, Stéphane; Macdonald, Elizabeth; Vanderhyden, Barbara; Bachvarov, Dimcho

    2015-10-13

    Previously, we have identified the branched chain amino-acid transaminase 1 (BCAT1) gene as notably hypomethylated in low-malignant potential (LMP) and high-grade (HG) serous epithelial ovarian tumors, compared to normal ovarian tissues. Here we show that BCAT1 is strongly overexpressed in both LMP and HG serous epithelial ovarian tumors, which probably correlates with its hypomethylated status. Knockdown of the BCAT1 expression in epithelial ovarian cancer (EOC) cells led to sharp decrease of cell proliferation, migration and invasion and inhibited cell cycle progression. BCAT1 silencing was associated with the suppression of numerous genes and pathways known previously to be implicated in ovarian tumorigenesis, and the induction of some tumor suppressor genes (TSGs). Moreover, BCAT1 suppression resulted in downregulation of numerous genes implicated in lipid production and protein synthesis, suggesting its important role in controlling EOC metabolism. Further metabolomic analyses were indicative for significant depletion of most amino acids and different phospho- and sphingolipids following BCAT1 knockdown. Finally, BCAT1 suppression led to significantly prolonged survival time in xenograft model of advanced peritoneal EOC. Taken together, our findings provide new insights about the functional role of BCAT1 in ovarian carcinogenesis and identify this transaminase as a novel EOC biomarker and putative EOC therapeutic target.

  16. Discovery of Novel Gene Elements Associated with Prostate Cancer Progression

    Science.gov (United States)

    2014-12-01

    control using the MACS algorithm52. We bypassed the model-building step of MACS (using the ‘–nomodel’ flag ) and specified a shift size equal to half...immortalized prostate epithelial cells) and PrSMC (prostate smooth muscle cells), which were obtained from Lonza (Basel, Switzerland ). Cell lines were

  17. Vitamin D Receptor Protein Expression in Tumor Tissue and Prostate Cancer Progression

    Science.gov (United States)

    Hendrickson, Whitney K.; Flavin, Richard; Kasperzyk, Julie L.; Fiorentino, Michelangelo; Fang, Fang; Lis, Rosina; Fiore, Christopher; Penney, Kathryn L.; Ma, Jing; Kantoff, Philip W.; Stampfer, Meir J.; Loda, Massimo; Mucci, Lorelei A.; Giovannucci, Edward

    2011-01-01

    Purpose Data suggest that circulating 25-hydroxyvitamin D [25(OH)D] interacts with the vitamin D receptor (VDR) to decrease proliferation and increase apoptosis for some malignancies, although evidence for prostate cancer is less clear. How VDR expression in tumor tissue may influence prostate cancer progression has not been evaluated in large studies. Patients and Methods We examined protein expression of VDR in tumor tissue among 841 patients with prostate cancer in relation to risk of lethal prostate cancer within two prospective cohorts, the Physicians' Health Study and Health Professionals Follow-Up Study. We also examined the association of VDR expression with prediagnostic circulating 25(OH)D and 1,25-dihydroxyvitamin D levels and with two VDR single nucleotide polymorphisms, FokI and BsmI. Results Men whose tumors had high VDR expression had significantly lower prostate-specific antigen (PSA) at diagnosis (P for trend < .001), lower Gleason score (P for trend < .001), and less advanced tumor stage (P for trend < .001) and were more likely to have tumors harboring the TMPRSS2:ERG fusion (P for trend = .009). Compared with the lowest quartile, men whose tumors had the highest VDR expression had significantly reduced risk of lethal prostate cancer (hazard ratio [HR], 0.17; 95% CI, 0.07 to 0.41). This association was only slightly attenuated after adjustment for Gleason score and PSA at diagnosis (HR, 0.33; 95% CI, 0.13 to 0.83) or, additionally, for tumor stage (HR, 0.37; 95% CI, 0.14 to 0.94). Neither prediagnostic plasma vitamin D levels nor VDR polymorphisms were associated with VDR expression. Conclusion High VDR expression in prostate tumors is associated with a reduced risk of lethal cancer, suggesting a role of the vitamin D pathway in prostate cancer progression. PMID:21537045

  18. Common genetic variants and risk for HPV persistence and progression to cervical cancer.

    Directory of Open Access Journals (Sweden)

    Sophia S Wang

    Full Text Available HPV infrequently persists and progresses to cervical cancer. We examined host genetic factors hypothesized to play a role in determining which subset of individuals infected with oncogenic human papillomavirus (HPV have persistent infection and further develop cervical pre-cancer/cancer compared to the majority of infected individuals who will clear infection.We evaluated 7140 tag single nucleotide polymorphisms (SNPs from 305 candidate genes hypothesized to be involved in DNA repair, viral infection and cell entry in 416 cervical intraepithelial neoplasia 3 (CIN3/cancer cases, 356 HPV persistent women (median: 25 months, and 425 random controls (RC from the 10,049 women Guanacaste Costa Rica Natural History study. We used logistic regression to compute odds ratios and p-trend for CIN3/cancer and HPV persistence in relation to SNP genotypes and haplotypes (adjusted for age. We obtained pathway and gene-level summary of associations by computing the adaptive combination of p-values. Genes/regions statistically significantly associated with CIN3/cancer included the viral infection and cell entry genes 2',5' oligoadenylate synthetase gene 3 (OAS3, sulfatase 1 (SULF1, and interferon gamma (IFNG; the DNA repair genes deoxyuridine triphosphate (DUT, dosage suppressor of mck 1 homolog (DMC1, and general transcription factor IIH, polypeptide 3 (GTF2H4; and the EVER1 and EVER2 genes (p<0.01. From each region, the single most significant SNPs associated with CIN3/cancer were OAS3 rs12302655, SULF1 rs4737999, IFNG rs11177074, DUT rs3784621, DMC1 rs5757133, GTF2H4 rs2894054, EVER1/EVER2 rs9893818 (p-trendsprogression to CIN3/cancer. We note that the associations observed were less than two-fold. We identified variations DNA repair and viral binding and cell entry genes associated with CIN3/cancer. Our results require

  19. Modeling the Aneuploidy Control of Cancer

    Directory of Open Access Journals (Sweden)

    Wang Zhong

    2010-07-01

    Full Text Available Abstract Background Aneuploidy has long been recognized to be associated with cancer. A growing body of evidence suggests that tumorigenesis, the formation of new tumors, can be attributed to some extent to errors occurring at the mitotic checkpoint, a major cell cycle control mechanism that acts to prevent chromosome missegregation. However, so far no statistical model has been available quantify the role aneuploidy plays in determining cancer. Methods We develop a statistical model for testing the association between aneuploidy loci and cancer risk in a genome-wide association study. The model incorporates quantitative genetic principles into a mixture-model framework in which various genetic effects, including additive, dominant, imprinting, and their interactions, are estimated by implementing the EM algorithm. Results Under the new model, a series of hypotheses tests are formulated to explain the pattern of the genetic control of cancer through aneuploid loci. Simulation studies were performed to investigate the statistical behavior of the model. Conclusions The model will provide a tool for estimating the effects of genetic loci on aneuploidy abnormality in genome-wide studies of cancer cells.

  20. Progress in wall turbulence 2 understanding and modelling

    CERN Document Server

    Jimenez, Javier; Marusic, Ivan

    2016-01-01

    This is the proceedings of the ERCOFTAC Workshop on Progress in Wall Turbulence: Understanding and Modelling, that was held in Lille, France from June 18 to 20, 2014. The workshop brought together world specialists of near wall turbulence and stimulated exchanges between them around up-to-date theories, experiments, simulations and numerical models. This book contains a coherent collection of recent results on near wall turbulence including theory, new experiments, DNS, and modeling with RANS, LES.The fact that both physical understanding and modeling by different approaches are addressed by the best specialists in a single workshop is original.

  1. The scaffold protein p140Cap limits ERBB2-mediated breast cancer progression interfering with Rac GTPase-controlled circuitries

    Science.gov (United States)

    Grasso, Silvia; Chapelle, Jennifer; Salemme, Vincenzo; Aramu, Simona; Russo, Isabella; Vitale, Nicoletta; Verdun di Cantogno, Ludovica; Dallaglio, Katiuscia; Castellano, Isabella; Amici, Augusto; Centonze, Giorgia; Sharma, Nanaocha; Lunardi, Serena; Cabodi, Sara; Cavallo, Federica; Lamolinara, Alessia; Stramucci, Lorenzo; Moiso, Enrico; Provero, Paolo; Albini, Adriana; Sapino, Anna; Staaf, Johan; Di Fiore, Pier Paolo; Bertalot, Giovanni; Pece, Salvatore; Tosoni, Daniela; Confalonieri, Stefano; Iezzi, Manuela; Di Stefano, Paola; Turco, Emilia; Defilippi, Paola

    2017-01-01

    The docking protein p140Cap negatively regulates tumour cell features. Its relevance on breast cancer patient survival, as well as its ability to counteract relevant cancer signalling pathways, are not fully understood. Here we report that in patients with ERBB2-amplified breast cancer, a p140Cap-positive status associates with a significantly lower probability of developing a distant event, and a clear difference in survival. p140Cap dampens ERBB2-positive tumour cell progression, impairing tumour onset and growth in the NeuT mouse model, and counteracting epithelial mesenchymal transition, resulting in decreased metastasis formation. One major mechanism is the ability of p140Cap to interfere with ERBB2-dependent activation of Rac GTPase-controlled circuitries. Our findings point to a specific role of p140Cap in curbing the aggressiveness of ERBB2-amplified breast cancers and suggest that, due to its ability to impinge on specific molecular pathways, p140Cap may represent a predictive biomarker of response to targeted anti-ERBB2 therapies. PMID:28300085

  2. Characterization of a Novel 12(S)-HETE Receptor and its Role in Prostate Cancer Progression

    Science.gov (United States)

    2008-01-01

    progression (5). This eicosanoid stimulates several steps of tumor invasion and motility by inducing alterations in the cancer cell cytoskeleton (6...which fall into group A (rhodopsin-like) sub-family. Based on this information, we hypothesize that eicosanoids (such as leukotrienes, prostaglandins...inhibition abilities that various eicosanoids of [3H]-12(S)- HETE binding to the membrane fraction of CHO cells transfected with pcDNA3.1/GPR31. The

  3. STAT5A/B Gene Locus Undergoes Amplification during Human Prostate Cancer Progression

    OpenAIRE

    Haddad, Bassem R.; Gu, Lei; Mirtti, Tuomas; Dagvadorj, Ayush; Vogiatzi, Paraskevi; Hoang, David T.; Bajaj, Renu; Leiby, Benjamin; Ellsworth, Elyse; Blackmon, Shauna; Ruiz, Christian; Curtis, Mark; Fortina, Paolo; Ertel, Adam; Liu, Chengbao

    2013-01-01

    The molecular mechanisms underlying progression of prostate cancer (PCa) to castrate-resistant (CR) and metastatic disease are poorly understood. Our previous mechanistic work shows that inhibition of transcription factor Stat5 by multiple alternative methods induces extensive rapid apoptotic death of Stat5-positive PCa cells in vitro and inhibits PCa xenograft tumor growth in nude mice. Furthermore, STAT5A/B induces invasive behavior of PCa cells in vitro and in vivo, suggesting involvement ...

  4. Genome scale metabolic modeling of cancer

    DEFF Research Database (Denmark)

    Nilsson, Avlant; Nielsen, Jens

    2016-01-01

    been used as scaffolds for analysis of high throughput data to allow mechanistic interpretation of changes in expression. Finally, GEMs allow quantitative flux predictions using flux balance analysis (FBA). Here we critically review the requirements for successful FBA simulations of cancer cells......Cancer cells reprogram metabolism to support rapid proliferation and survival. Energy metabolism is particularly important for growth and genes encoding enzymes involved in energy metabolism are frequently altered in cancer cells. A genome scale metabolic model (GEM) is a mathematical formalization...... of metabolism which allows simulation and hypotheses testing of metabolic strategies. It has successfully been applied to many microorganisms and is now used to study cancer metabolism. Generic models of human metabolism have been reconstructed based on the existence of metabolic genes in the human genome...

  5. Complex of MUC1, CIN85 and Cbl in Colon Cancer Progression and Metastasis

    Energy Technology Data Exchange (ETDEWEB)

    Cascio, Sandra, E-mail: sac131@pitt.edu [Department of Immunology, University of Pittsburgh School of Medicine, E1040 Biomedical Science Tower, Pittsburgh, PA 15261 (United States); Fondazione Ri.Med, via Bandiera, Palermo 90133 (Italy); Finn, Olivera J., E-mail: sac131@pitt.edu [Department of Immunology, University of Pittsburgh School of Medicine, E1040 Biomedical Science Tower, Pittsburgh, PA 15261 (United States)

    2015-02-10

    We previously reported that CIN85, an 85 KDa protein known to be involved in tumor cell migration and metastasis through its interaction with Cbl, associates with MUC1 in tumor cells. MUC1/CIN85 complex also regulates migration and invasion of tumor cells in vitro. Here, we examined specifically human colon carcinoma tissue microarrays (TMA) by immunohistochemistry for the expression of MUC1 and CIN85 and their potential role in cancer progression and metastasis. We detected a significant increase in expression of both MUC1 and CIN85 associated with advanced tumor stage and lymph node metastasis. We further investigated if Cbl could also be present in the MUC1/CIN85 complex. Co-immunoprecipitation assay showed that Cbl co-localized both with CIN85 and with MUC1 in a human colon cancer cell line. To begin to investigate the in vivo relevance of MUC1 overexpression and association with CIN85 and Cbl in cancer development and progression, we used human MUC1 transgenic mice that express MUC1 on the colonic epithelial cells, treated with azoxymethane to initiate and dextran sulfate sodium (AOM/DSS) to promote colorectal carcinogenesis. MUC1.Tg mice showed higher tumor incidence and decreased survival when compared with wild-type mice. Consistent with the in vitro data, the association of MUC1, CIN85 and Cbl was detected in colon tissues of AOM/DSS-treated MUC1 transgenic mice. MUC1/CIN85/Cbl complex appears to contribute to promotion and progression of colon cancer and thus increased expression of MUC1, CIN85 and Cbl in early stage colon cancer might be predictive of poor prognosis.

  6. Assessing the role of IL-35 in colorectal cancer progression and prognosis.

    Science.gov (United States)

    Zeng, Jin-Cheng; Zhang, Zhi; Li, Tian-Yu; Liang, Yan-Fang; Wang, Hong-Mei; Bao, Jing-Jing; Zhang, Jun-Ai; Wang, Wan-Dang; Xiang, Wen-Yu; Kong, Bin; Wang, Zhi-Yong; Wu, Bin-Hua; Chen, Xiao-Dong; He, Long; Zhang, Shu; Wang, Cong-Yi; Xu, Jun-Fa

    2013-01-01

    Despite the recent realization of Interleukin (IL)-35 in tumorigenesis, its exact impact on colorectal cancer (CRC) progression and prognosis, however, is yet to be elucidated clearly. We thus in the present report conducted comparative analysis of IL-35 levels between CRC patients and matched control subjects. IL-35 is highly expressed in all CRC tissues, which can be detected in vast majority of colorectal cancer cells. IL-35 levels in CRC lysates and serum samples are highly correlated to the severity of malignancy and the clinical stage of tumor. Particularly, a significant reduction for serum IL-35 was noted in patients after surgical resection, indicating that IL-35 promotes CRC progression associated with poor prognosis. Mechanistic study demonstrated a significant correlation between serum IL-35 levels and the number of peripheral regulatory T (Treg) cells in CRC patients, suggesting that IL-35 implicates in CRC pathogenesis probably by inducing Treg cells, while cancer cell-derived IL-35 may also recruit Treg cells into the tumor microenvironment in favor of tumor growth. Together, our data support that IL-35 could be a valuable biomarker for assessing CRC progression and prognosis in clinical settings.

  7. Mesenchymal Stem/Stromal Cells in Stromal Evolution and Cancer Progression

    Directory of Open Access Journals (Sweden)

    Francesca Cammarota

    2016-01-01

    Full Text Available The study of cancer biology has mainly focused on malignant epithelial cancer cells, although tumors also contain a stromal compartment, which is composed of stem cells, tumor-associated fibroblasts (TAFs, endothelial cells, immune cells, adipocytes, cytokines, and various types of macromolecules comprising the extracellular matrix (ECM. The tumor stroma develops gradually in response to the needs of epithelial cancer cells during malignant progression initiating from increased local vascular permeability and ending to remodeling of desmoplastic loosely vascularized stromal ECM. The constant bidirectional interaction of epithelial cancer cells with the surrounding microenvironment allows damaged stromal cell usage as a source of nutrients for cancer cells, maintains the stroma renewal thus resembling a wound that does not heal, and affects the characteristics of tumor mesenchymal stem/stromal cells (MSCs. Although MSCs have been shown to coordinate tumor cell growth, dormancy, migration, invasion, metastasis, and drug resistance, recently they have been successfully used in treatment of hematopoietic malignancies to enhance the effect of total body irradiation-hematopoietic stem cell transplantation therapy. Hence, targeting the stromal elements in combination with conventional chemotherapeutics and usage of MSCs to attenuate graft-versus-host disease may offer new strategies to overcome cancer treatment failure and relapse of the disease.

  8. Death receptor 5 expression is inversely correlated with prostate cancer progression

    Science.gov (United States)

    HERNANDEZ-CUETO, ANGELES; HERNANDEZ-CUETO, DANIEL; ANTONIO-ANDRES, GABRIELA; MENDOZA-MARIN, MARISELA; JIMENEZ-GUTIERREZ, CARLOS; SANDOVAL-MEJIA, ANA LILIA; MORA-CAMPOS, ROSARIO; GONZALEZ-BONILLA, CESAR; VEGA, MARIO I.; BONAVIDA, BENJAMIN; HUERTA-YEPEZ, SARA

    2014-01-01

    Prostate carcinoma (PCa) is one of the most common cancers in men. Prostate-specific antigen (PSA) has been widely used to predict the outcome of PCa and screening with PSA has resulted in a decline in mortality. However, PSA is not an optimal prognostic tool as its sensitivity may be too low to reduce morbidity and mortality. Consequently, there is a demand for additional robust biomarkers for prostate cancer. Death receptor 5 (DR5) has been implicated in the prognosis of several cancers and it has been previously shown that it is negatively regulated by Yin Yang 1 (YY1) in prostate cancer cell lines. The present study investigated the clinical significance of DR5 expression in a prostate cancer patient cohort and its correlation with YY1 expression. Immunohistochemical analysis of protein expression distribution was performed using tissue microarray constructs from 54 primary PCa and 39 prostatic intraepithelial neoplasia (PIN) specimens. DR5 expression was dramatically reduced as a function of higher tumor grade. By contrast, YY1 expression was elevated in PCa tumors as compared with that in PIN, and was increased with higher tumor grade. DR5 had an inverse correlation with YY1 expression. Bioinformatic analyses corroborated these data. The present findings suggested that DR5 and YY1 expression levels may serve as progression biomarkers for prostate cancer. PMID:25174820

  9. Clinical Trial Design for Testing the Stem Cell Model for the Prevention and Treatment of Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, Rishindra M., E-mail: reddyrm@med.umich.edu [Medical Center, University of Michigan, 1500 E. Medical Center Drive, 2120 Taubman Center, Ann Arbor, MI 48109 (United States); Kakarala, Madhuri; Wicha, Max S. [Comprehensive Cancer Center, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, MI 48109 (United States)

    2011-06-20

    The cancer stem cell model introduces new strategies for the prevention and treatment of cancers. In cancers that appear to follow the stem cell model, pathways such as Wnt, Notch and Hedgehog may be targeted with natural compounds such as curcumin or drugs to reduce the risk of initiation of new tumors. Disease progression of established tumors could also potentially be inhibited by targeting the tumorigenic stem cells alone, rather than aiming to reduce overall tumor size. These new approaches mandate a change in the design of clinical trials and biomarkers chosen for efficacy assessment for preventative, neoadjuvant, adjuvant, and palliative treatments. Cancer treatments could be evaluated by assessing stem cell markers before and after treatment. Targeted stem cell specific treatment of cancers may not result in “complete” or “partial” responses radiologically, as stem cell targeting may not reduce the tumor bulk, but eliminate further tumorigenic potential. These changes are discussed using breast, pancreatic, and lung cancer as examples.

  10. gems: An R Package for Simulating from Disease Progression Models

    Directory of Open Access Journals (Sweden)

    Nello Blaser

    2015-03-01

    Full Text Available Mathematical models of disease progression predict disease outcomes and are useful epidemiological tools for planners and evaluators of health interventions. The R package gems is a tool that simulates disease progression in patients and predicts the effect of different interventions on patient outcome. Disease progression is represented by a series of events (e.g., diagnosis, treatment and death, displayed in a directed acyclic graph. The vertices correspond to disease states and the directed edges represent events. The package gems allows simulations based on a generalized multistate model that can be described by a directed acyclic graph with continuous transition-specific hazard functions. The user can specify an arbitrary hazard function and its parameters. The model includes parameter uncertainty, does not need to be a Markov model, and may take the history of previous events into account. Applications are not limited to the medical field and extend to other areas where multistate simulation is of interest. We provide a technical explanation of the multistate models used by gems, explain the functions of gems and their arguments, and show a sample application.

  11. Toward an Ising model of cancer and beyond.

    Science.gov (United States)

    Torquato, Salvatore

    2011-02-01

    The holy grail of tumor modeling is to formulate theoretical and computational tools that can be utilized in the clinic to predict neoplastic progression and propose individualized optimal treatment strategies to control cancer growth. In order to develop such a predictive model, one must account for the numerous complex mechanisms involved in tumor growth. Here we review the research work that we have done toward the development of an 'Ising model' of cancer. The Ising model is an idealized statistical-mechanical model of ferromagnetism that is based on simple local-interaction rules, but nonetheless leads to basic insights and features of real magnets, such as phase transitions with a critical point. The review begins with a description of a minimalist four-dimensional (three dimensions in space and one in time) cellular automaton (CA) model of cancer in which cells transition between states (proliferative, hypoxic and necrotic) according to simple local rules and their present states, which can viewed as a stripped-down Ising model of cancer. This model is applied to study the growth of glioblastoma multiforme, the most malignant of brain cancers. This is followed by a discussion of the extension of the model to study the effect on the tumor dynamics and geometry of a mutated subpopulation. A discussion of how tumor growth is affected by chemotherapeutic treatment, including induced resistance, is then described. We then describe how to incorporate angiogenesis as well as the heterogeneous and confined environment in which a tumor grows in the CA model. The characterization of the level of organization of the invasive network around a solid tumor using spanning trees is subsequently discussed. Then, we describe open problems and future promising avenues for future research, including the need to develop better molecular-based models that incorporate the true heterogeneous environment over wide range of length and time scales (via imaging data), cell motility

  12. Chromosomal imbalance in the progression of high-risk non-muscle invasive bladder cancer

    Directory of Open Access Journals (Sweden)

    Ørntoft Torben

    2009-05-01

    Full Text Available Abstract Background Non-muscle invasive bladder neoplasms with invasion of the lamina propria (stage T1 or high grade of dysplasia are at "high risk" of progression to life-threatening cancer. However, the individual course is difficult to predict. Chromosomal instability (CI is associated with high tumor stage and grade, and possibly with the risk of progression. Methods To investigate the relationship between CI and subsequent disease progression, we performed a case-control-study of 125 patients with "high-risk" non-muscle invasive bladder neoplasms, 67 with later disease progression, and 58 with no progression. Selection criteria were conservative (non-radical resections and full prospective clinical follow-up (> 5 years. We investigated primary lesions in 59, and recurrent lesions in 66 cases. We used Affymetrix GeneChip® Mapping 10 K and 50 K SNP microarrays to evaluate genome wide chromosomal imbalance (loss-of-heterozygosity and DNA copy number changes in 48 representative tumors. DNA copy number changes of 15 key instability regions were further investigated using QPCR in 101 tumors (including 25 tumors also analysed on 50 K SNP microarrays. Results Chromosomal instability did not predict any higher risk of subsequent progression. Stage T1 and high-grade tumors had generally more unstable genomes than tumors of lower stage and grade (mostly non-primary tumors following a "high-risk" tumor. However, about 25% of the "high-risk" tumors had very few alterations. This was independent of subsequent progression. Recurrent lesions represent underlying field disease. A separate analysis of these lesions did neither reflect any difference in the risk of progression. Of specific chromosomal alterations, a possible association between loss of chromosome 8p11 and the risk of progression was found. However, the predictive value was limited by the heterogeneity of the changes. Conclusion Chromosomal instability (CI was associated with "high risk

  13. Bisphenol A and Hormone-Associated Cancers: Current Progress and Perspectives

    Science.gov (United States)

    Gao, Hui; Yang, Bao-Jun; Li, Nan; Feng, Li-Min; Shi, Xiao-Yu; Zhao, Wei-Hong; Liu, Si-Jin

    2015-01-01

    Abstract Bisphenol A (BPA), a carbon-based synthetic compound, exhibits hormone-like properties and is present ubiquitously in the environment and in human tissues due to its widespread use and biological accumulation. BPA can mimic estrogen to interact with estrogen receptors α and β, leading to changes in cell proliferation, apoptosis, or migration and thereby, contributing to cancer development and progression. At the genetic level, BPA has been shown to be involved in multiple oncogenic signaling pathways, such as the STAT3, MAPK, and PI3K/AKT pathways. Moreover, BPA may also interact with other steroid receptors (such as androgen receptor) and plays a role in prostate cancer development. This review summarizes the current literature regarding human exposure to BPA, the endocrine-disrupting effects of BPA, and the role of BPA in hormone-associated cancers of the breast, ovary, and prostate. PMID:25569640

  14. Analysis of breast cancer progression using principal component analysis and clustering

    Indian Academy of Sciences (India)

    G Alexe; G S Dalgin; S Ganesan; C DeLisi; G Bhanot

    2007-08-01

    We develop a new technique to analyse microarray data which uses a combination of principal components analysis and consensus ensemble -clustering to find robust clusters and gene markers in the data. We apply our method to a public microarray breast cancer dataset which has expression levels of genes in normal samples as well as in three pathological stages of disease; namely, atypical ductal hyperplasia or ADH, ductal carcinoma in situ or DCIS and invasive ductal carcinoma or IDC. Our method averages over clustering techniques and data perturbation to find stable, robust clusters and gene markers. We identify the clusters and their pathways with distinct subtypes of breast cancer (Luminal, Basal and Her2+). We confirm that the cancer phenotype develops early (in early hyperplasia or ADH stage) and find from our analysis that each subtype progresses from ADH to DCIS to IDC along its own specific pathway, as if each was a distinct disease.

  15. Novel roles of Skp2 E3 ligase in cellular senescence, cancer progression, and metastasis

    Institute of Scientific and Technical Information of China (English)

    Guocan Wang; Chia-Hsin Chan; Yuan Gao; Hui-Kuan Lin

    2012-01-01

    S-phase kinase-associated protein 2 (Skp2) belongs to the F-box protein family.It is a component of the SCF E3 ubiquitin ligase complex.Skp2 has been shown to regulate cellular proliferation by targeting several cell cycle-regulated proteins for ubiquitination and degradation,including cyclin-dependent kinase inhibitor p27.Skp2 has also been demonstrated to display an oncogenic function since its overexpression has been observed in many human cancers.This review discusses the recent discoveries on the novel roles of Skp2 in regulating cellular senescence,cancer progression,and metastasis,as well as the therapeutic potential of targeting Skp2 for human cancer treatment.

  16. High KRT8 expression promotes tumor progression and metastasis of gastric cancer.

    Science.gov (United States)

    Fang, Jian; Wang, Hao; Liu, Yun; Ding, Fangfang; Ni, Ying; Shao, Shihe

    2017-02-01

    Keratin8 (KRT8) is the major component of the intermediate filament cytoskeleton and predominantly expressed in simple epithelial tissues. Aberrant expression of KRT8 is associated with multiple tumor progression and metastasis. However, the role of KRT8 in gastric cancer (GC) remains unclear. In this study, KRT8 expression was investigated and it was found to be upregulated along with human GC progression and metastasis at both mRNA and protein levels in human gastric cancer tissues. In addition, KRT8 overexpression enhanced the proliferation and migration of human gastric cancer cells, whereas the knock-down of KRT8 by siRNA only inhibited migration of human gastric cancer cells. Integrinβ1-FAK-induced epithelial-mesenchymal-transition (EMT) only existed in the high KRT8 cells. Furthermore, KRT8 overexpression led to increase in p-smad2/3 levels and TGFβ dependent signaling events. KRT8 expression in GC was related to tumor clinical stage and worse survival. Kaplan-Meier analysis proved that KRT8 was associated with overall survival of patients with GC that patients with high KRT8 expression tend to have unfavorable outcome. Moreover, Cox's proportional hazards analysis showed that high KRT8 expression was a prognostic marker of poor outcome. These results provided that KRT8 expression may therefore be a biomarker or potential therapeutic target to identify patients with worse survival.

  17. Rrp1b, a new candidate susceptibility gene for breast cancer progression and metastasis.

    Directory of Open Access Journals (Sweden)

    Nigel P S Crawford

    2007-11-01

    Full Text Available A novel candidate metastasis modifier, ribosomal RNA processing 1 homolog B (Rrp1b, was identified through two independent approaches. First, yeast two-hybrid, immunoprecipitation, and functional assays demonstrated a physical and functional interaction between Rrp1b and the previous identified metastasis modifier Sipa1. In parallel, using mouse and human metastasis gene expression data it was observed that extracellular matrix (ECM genes are common components of metastasis predictive signatures, suggesting that ECM genes are either important markers or causal factors in metastasis. To investigate the relationship between ECM genes and poor prognosis in breast cancer, expression quantitative trait locus analysis of polyoma middle-T transgene-induced mammary tumor was performed. ECM gene expression was found to be consistently associated with Rrp1b expression. In vitro expression of Rrp1b significantly altered ECM gene expression, tumor growth, and dissemination in metastasis assays. Furthermore, a gene signature induced by ectopic expression of Rrp1b in tumor cells predicted survival in a human breast cancer gene expression dataset. Finally, constitutional polymorphism within RRP1B was found to be significantly associated with tumor progression in two independent breast cancer cohorts. These data suggest that RRP1B may be a novel susceptibility gene for breast cancer progression and metastasis.

  18. Nano-encapsulated chlorophyllin significantly delays progression of lung cancer both in in vitro and in vivo models through activation of mitochondrial signaling cascades and drug-DNA interaction.

    Science.gov (United States)

    Das, Jayeeta; Samadder, Asmita; Mondal, Jesmin; Abraham, Suresh K; Khuda-Bukhsh, Anisur Rahman

    2016-09-01

    Chlorophyllin (CHL), a sodium-copper-salt derived from chlorophyll, has been widely used as a food-dye, also reportedly having some anti-cancer effect. We tested if PLGA-loaded CHL (NCHL) could have additional protective abilities through its faster and targeted drug delivery in cancer cells. Physico-chemical characterization of NCHL was done through atomic-force microscopy and UV-spectroscopy. NCHL demonstrated greater ability of drug uptake and strong anti-cancer potentials in non-small cell lung cancer cells, A549, as revealed from data of% cell viability, generation of reactive-oxygen-species and expression of bax, bcl2, caspase3, p53 and cytochrome c proteins. Circular dichroic spectral data indicated strong binding of NCHL with calf-thymus-DNA, causing a conformational/structural change in DNA. Further, NCHL could cross the blood-brain-barrier in mice and showed greater efficacy in recovery process of tissue damage, reduction in chromosomal aberrations and% of micronuclei in co-mutagens (Sodiumarsenite+Benzo[a]Pyrene)-treated mice at a much reduced dose, indicating its use in therapeutic oncology.

  19. EGFR mutation positive stage IV non-small-cell lung cancer : Treatment beyond progression

    Directory of Open Access Journals (Sweden)

    Katrijn eVan Assche

    2014-12-01

    Full Text Available Non-small-cell lung cancer (NSCLC is the leading cause of death from cancer for both men en women. Chemotherapy is the mainstay of treatment in advanced disease, but is only marginally effective. In about 30% of patients with advanced NSCLC in East Asia and in 10-15% in Western countries, EGFR mutations are found. In this population, first-line treatment with the tyrosine kinase inhibitors (TKI erlotinib, gefitinib or afatinib is recommended. The treatment beyond progression is less well-defined. In this paper we present 3 patients, EGFR mutation positive, with local progression after an initial treatment with TKI. These patients were treated with local radiotherapy. TKI was temporarily stopped and restarted after radiotherapy. We give an overview of the literature and discuss the different treatment options in case of progression after TKI: TKI continuation with or without chemotherapy, TKI continuation with local therapy, alternative dosing or switch to next-generation TKI or combination therapy. There are different options for treatment beyond progression in EGFR mutation positive metastatic NSCLC, but the optimal strategy is still to be defined. Further research on this topic is ongoing.

  20. Overexpression of Long Non-Coding RNA TUG1 Promotes Colon Cancer Progression

    Science.gov (United States)

    Zhai, Hui-yuan; Sui, Ming-hua; Yu, Xiao; Qu, Zhen; Hu, Jin-chen; Sun, Hai-qing; Zheng, Hai-tao; Zhou, Kai; Jiang, Li-xin

    2016-01-01

    Background Colon cancer is one of the most prevalent and deadly cancers worldwide. It is still necessary to further define the mechanisms and explore therapeutic targets of colon cancer. Dysregulation of long noncoding RNAs (lncRNAs) has been shown to be correlated with diverse biological processes, including tumorigenesis. This study aimed to characterize the biological mechanism of taurine-upregulated gene 1 (TUG1) in colon cancer. Material/Methods qRT-PCR was used to analyze the expression level of TUG1 and p63 in 75 colon cancer tissues and the matched adjacent non-tumor tissue. In vitro, cultured colon cancer cell lines HCT-116 and LoVo were used as cell models. TUG1 and p63 were silenced via transferring siRNA into HCT-116 or LoVo. The effects of TUG1 were investigated by examining cell proliferation, apoptosis, and migration. Results Among the 75 colon cancer cases, the expression of TUG1 was significantly higher in colon cancer tissues compared with the matched adjacent non-tumor tissue, while p63 expression was lower in the tumor tissue. In HCT-116 and LoVo, the expression of TUG1 was significantly increased by p63 siRNA transfection. Furthermore, down-regulation of TUG1 by siRNA significantly inhibited the cell proliferation and promoted colon cancer cell apoptosis. In addition, inhibition of TUG1 expression significantly blocked the cell migration ability of colon cancer cells. Conclusions LncRNA TUG1 may serve as a potential oncogene for colon cancer. Overexpressed TUG1 may contribute to promoting cell proliferation and migration in colon cancer cells. PMID:27634385

  1. The pretreatment platelet and plasma fibrinogen level correlate with tumor progression and metastasis in patients with pancreatic cancer.

    Science.gov (United States)

    Wang, Haiyan; Gao, Jinbiao; Bai, Ming; Liu, Rui; Li, Hongli; Deng, Ting; Zhou, Likun; Han, Rubing; Ge, Shaohua; Huang, Dingzhi; Ba, Yi

    2014-01-01

    Cancer patients frequently present with activated coagulation pathways and thrombocytosis, which are potentially associated with tumor progression and prognosis. However, the prognostic value of abnormal plasma fibrinogen and platelet levels for the treatment of pancreatic cancer is unclear. The purpose of our study was to evaluate the prognostic value of plasma fibrinogen and platelet levels in pancreatic cancer, and to devise a prognostic model to identify the patients with greatest risk for a poor overall survival. One hundred and twenty-five patients diagnosed with pancreatic ductal adenocarcinoma in our hospital between May 2000 and June 2005 were included in this study. The plasma fibrinogen and platelet levels were examined before treatment and analyzed along with patient clinicopathological parameters and overall survival. The foundation of prognostic model was based on the risk factors according to the Cox proportional hazard model. The incidence of hyperfibrinogenemia and thrombocytosis was 24.8% (31/125) and 15.2% (19/125), respectively. The mean fibrinogen concentration differed significantly between the early (I/II) and late (III/IV) stage patients (3.19 ± 0.70 vs. 3.65 ± 0.90 g/l, p = 0.008). Patients with a higher concentration of plasma fibrinogen and platelets had a worse prognosis (p fibrinogen/platelet levels and distant organ metastasis (p fibrinogen levels correlated significantly with platelet levels (p = 0.000). Multivariate analysis revealed that pretreatment plasma fibrinogen levels (p = 0.027), tumor stage (p = 0.026) and distant metastasis (p = 0.027) were independent prognostic factors. The median survival time for the low-, intermediate-, and high-risk groups was 9.6 months (95% CI 6.2-13.0), 3.8 months (95% CI 2.3-5.3), and 2.3 months (95% CI 0.9-3.7), respectively (p = 0.000). Pretreatment plasma fibrinogen and platelet levels closely correlated with tumor progression, metastasis and overall

  2. MUC16 (CA125): tumor biomarker to cancer therapy, a work in progress.

    Science.gov (United States)

    Felder, Mildred; Kapur, Arvinder; Gonzalez-Bosquet, Jesus; Horibata, Sachi; Heintz, Joseph; Albrecht, Ralph; Fass, Lucas; Kaur, Justanjyot; Hu, Kevin; Shojaei, Hadi; Whelan, Rebecca J; Patankar, Manish S

    2014-05-29

    Over three decades have passed since the first report on the expression of CA125 by ovarian tumors. Since that time our understanding of ovarian cancer biology has changed significantly to the point that these tumors are now classified based on molecular phenotype and not purely on histological attributes. However, CA125 continues to be, with the recent exception of HE4, the only clinically reliable diagnostic marker for ovarian cancer. Many large-scale clinical trials have been conducted or are underway to determine potential use of serum CA125 levels as a screening modality or to distinguish between benign and malignant pelvic masses. CA125 is a peptide epitope of a 3-5 million Da mucin, MUC16. Here we provide an in-depth review of the literature to highlight the importance of CA125 as a prognostic and diagnostic marker for ovarian cancer. We focus on the increasing body of literature describing the biological role of MUC16 in the progression and metastasis of ovarian tumors. Finally, we consider previous and on-going efforts to develop therapeutic approaches to eradicate ovarian tumors by targeting MUC16. Even though CA125 is a crucial marker for ovarian cancer, the exact structural definition of this antigen continues to be elusive. The importance of MUC16/CA125 in the diagnosis, progression and therapy of ovarian cancer warrants the need for in-depth research on the biochemistry and biology of this mucin. A renewed focus on MUC16 is likely to culminate in novel and more efficient strategies for the detection and treatment of ovarian cancer.

  3. GRP78 as a regulator of liver steatosis and cancer progression mediated by loss of the tumor suppressor PTEN.

    Science.gov (United States)

    Chen, W-T; Zhu, G; Pfaffenbach, K; Kanel, G; Stiles, B; Lee, A S

    2014-10-16

    Glucose-regulated protein 78 (GRP78), a molecular chaperone widely elevated in human cancers, is critical for endoplasmic reticulum (ER) protein folding, stress signaling and PI3K/AKT activation. Genetic knockout models of GRP78 revealed that GRP78 maintains homeostasis of metabolic organs, including liver, pancreas and adipose tissues. Hepatocellular carcinoma (HCC) and cholangiocarcinoma (CC) are the most common liver cancers. There is a lack of effective therapeutics for HCC and CC, highlighting the need to further understand liver tumorigenic mechanisms. PTEN (phosphatase and tenson homolog deleted on chromosome 10), a tumor suppressor that antagonizes the PI3K/AKT pathway, is inactivated in a wide range of tumors, including 40-50% of human liver cancers. To elucidate the role of GRP78 in liver cancer, we created a mouse model with biallelic liver-specific deletion of Pten and Grp78 mediated by Albumin-Cre-recombinase (cP(f/f)78(f/f)). Interestingly, in contrast to PTEN, deletion of GRP78 was progressive but incomplete. At 3 months, cP(f/f)78(f/f) livers showed hepatomegaly, activation of lipogenic genes, exacerbated steatosis and liver injury, implying that GRP78 protects the liver against PTEN-null-mediated pathogenesis. Furthermore, in response to liver injury, we observed increased proliferation and expansion of bile duct and liver progenitor cells in cP(f/f)78(f/f) livers. Strikingly, bile duct cells in cP(f/f)78(f/f) livers maintained wild-type (WT) GRP78 level, whereas adjacent areas showed GRP78 reduction. Analysis of signaling pathways revealed selective JNK activation, β-catenin downregulation, along with PDGFRα upregulation, which was unique to cP(f/f)78(f/f) livers at 6 months. Development of both HCC and CC was accelerated and was evident in cP(f/f)78(f/f) livers at 8-9 months, coinciding with intense GRP78 expression in the cancer lesions, and GRP78 expression in adjacent normal areas reverted back to the WT level. In contrast, c78(f/f) livers

  4. Progressive APOBEC3B mRNA expression in distant breast cancer metastases

    Science.gov (United States)

    Dalm, Simone U.; de Weerd, Vanja; Moelans, Cathy B.; ter Hoeve, Natalie; van Diest, Paul J.; Martens, John W. M.; van Deurzen, Carolien H. M.

    2017-01-01

    Background APOBEC3B was recently identified as a gain-of-function enzymatic source of mutagenesis, which may offer novel therapeutic options with molecules that specifically target this enzyme. In primary breast cancer, APOBEC3B mRNA is deregulated in a substantial proportion of cases and its expression is associated with poor prognosis. However, its expression in breast cancer metastases, which are the main causes of breast cancer-related death, remained to be elucidated. Patients and methods RNA was isolated from 55 primary breast cancers and paired metastases, including regional lymph node (N = 20) and distant metastases (N = 35). APOBEC3B mRNA levels were measured by RT-qPCR. Expression levels of the primary tumors and corresponding metastases were compared, including subgroup analysis by estrogen receptor (ER/ESR1) status. Results Overall, APOBEC3B mRNA levels of distant metastases were significantly higher as compared to the corresponding primary breast tumor (P = 0.0015), an effect that was not seen for loco-regional lymph node metastases (P = 0.23). Subgroup analysis by ER-status showed that increased APOBEC3B levels in distant metastases were restricted to metastases arising from ER-positive primary breast cancers (P = 0.002). However, regarding ER-negative primary tumors, only loco-regional lymph node metastases showed increased APOBEC3B expression when compared to the corresponding primary tumor (P = 0.028). Conclusion APOBEC3B mRNA levels are significantly higher in breast cancer metastases as compared to the corresponding ER-positive primary tumors. This suggests a potential role for APOBEC3B in luminal breast cancer progression, and consequently, a promising role for anti-APOBEC3B therapies in advanced stages of this frequent form of breast cancer. PMID:28141868

  5. Breast cancer associated a2 isoform vacuolar ATPase immunomodulates neutrophils: potential role in tumor progression.

    Science.gov (United States)

    Ibrahim, Safaa A; Katara, Gajendra K; Kulshrestha, Arpita; Jaiswal, Mukesh K; Amin, Magdy A; Beaman, Kenneth D

    2015-10-20

    In invasive breast cancer, tumor associated neutrophils (TAN) represent a significant portion of the tumor mass and are associated with increased angiogenesis and metastasis. Identifying the regulatory factors that control TAN behavior will help in developing ideal immunotherapies. Vacuolar ATPases (V-ATPases), multi-subunit proton pumps, are highly expressed in metastatic breast cancer cells. A cleaved peptide from a2 isoform V-ATPase (a2NTD) has immunomodulatory role in tumor microenvironment. Here, we report for the first time the role of V-ATPase in neutrophils modulation. In invasive breast cancer cells, a2NTD was detected and a2V was highly expressed on the surface. Immunohistochemical analysis of invasive breast cancer tissues revealed that increased neutrophil recruitment and blood vessel density correlated with increased a2NTD levels. In order to determine the direct regulatory role of a2NTD on neutrophils, recombinant a2NTD was used for the treatment of neutrophils isolated from the peripheral blood of healthy volunteers. Neutrophils treated with a2NTD (a2Neuɸ) showed increased secretion of IL-1RA, IL-10, CCL-2 and IL-6 that are important mediators in cancer related inflammation. Moreover, a2Neuɸ exhibited an increased production of protumorigenic factors including IL-8, matrix metaloprotinase-9 and vascular endothelial growth factor. Further, functional characterization of a2Neuɸ revealed that a2Neuɸ derived products induce in vitro angiogenesis as well as increase the invasiveness of breast cancer cells. This study establishes the modulatory effect of breast cancer associated a2V on neutrophils, by the action of a2NTD, which has a positive impact on tumor progression, supporting that a2V can be a potential selective target for breast cancer therapy.

  6. A novel biomarker C6orf106 promotes the malignant progression of breast cancer.

    Science.gov (United States)

    Jiang, Guiyang; Zhang, Xiupeng; Zhang, Yong; Wang, Liang; Fan, Chuifeng; Xu, Hongtao; Miao, Yuan; Wang, Enhua

    2015-09-01

    C6orf106 (chromosome 6 open reading frame 106) is a recently discovered protein encoded by the 6th chromosome. Though many proteins encoded by chromosome 6 are reportedly related to cancer, schizophrenia, autoimmunity and many other diseases, the function of C6orf106 was not well demonstrated so far. As measured by immunohistochemical staining, C6orf106 was positive in normal breast duct myoepithelial cells (92.31 %, 72/78), but negative in normal breast duct glandular epithelial cells (3.85 %, 3/78). In breast ductal carcinoma in situ, C6orf106 showed weakly or moderately positive (77.97 %, 46/59), but it was significantly strongly positive in invasive ductal carcinoma (79.57 %, 148/186). The expression intensity of C6orf106 seemed increased significantly along with the malignancy of breast cancer (p breast cancer, respectively. Consistently, we found that the interference of C6orf106 was able to inhibit cell proliferation and invasion of two triple-negative breast cancer cell lines, MDA-MB-231 and BT-549, accompanied by the decrease of cyclin A2, cyclin B1, c-myc, and N-cadherin and the increase of E-cadherin. Collectively, these results indicate that C6orf106 may promote tumor progression in the invasive breast cancer, particularly in triple-negative breast cancer, and C6orf106 might serve as a novel therapeutic target of breast cancer, especially for triple-negative breast cancer.

  7. Differential Bone Loss in Mouse Models of Colon Cancer Cachexia

    Science.gov (United States)

    Bonetto, Andrea; Kays, Joshua K.; Parker, Valorie A.; Matthews, Ryan R.; Barreto, Rafael; Puppa, Melissa J.; Kang, Kyung S.; Carson, James A.; Guise, Theresa A.; Mohammad, Khalid S.; Robling, Alexander G.; Couch, Marion E.; Koniaris, Leonidas G.; Zimmers, Teresa A.

    2017-01-01

    Cachexia is a distinctive feature of colorectal cancer associated with body weight loss and progressive muscle wasting. Several mechanisms responsible for muscle and fat wasting have been identified, however it is not known whether the physiologic and molecular crosstalk between muscle and bone tissue may also contribute to the cachectic phenotype in cancer patients. The purpose of this study was to clarify whether tumor growth associates with bone loss using several experimental models of colorectal cancer cachexia, namely C26, HT-29, and ApcMin/+. The effects of cachexia on bone structure and strength were evaluated with dual energy X-ray absorptiometry (DXA), micro computed tomography (μCT), and three-point bending test. We found that all models showed tumor growth consistent with severe cachexia. While muscle wasting in C26 hosts was accompanied by moderate bone depletion, no loss of bone strength was observed. However, HT-29 tumor bearing mice showed bone abnormalities including significant reductions in whole-body bone mineral density (BMD), bone mineral content (BMC), femoral trabecular bone volume fraction (BV/TV), trabecular number (Tb.N), and trabecular thickness (Tb.Th), but no declines in strength. Similarly, cachexia in the ApcMin/+ mice was associated with significant decreases in BMD, BMC, BV/TV, Tb.N, and Tb.Th as well as decreased strength. Our data suggest that colorectal cancer is associated with muscle wasting and may be accompanied by bone loss dependent upon tumor type, burden, stage and duration of the disease. It is clear that preserving muscle mass promotes survival in cancer cachexia. Future studies will determine whether strategies aimed at preventing bone loss can also improve outcomes and survival in colorectal cancer cachexia. PMID:28123369

  8. A simple model of scientific progress - with examples

    CERN Document Server

    Scorzato, Luigi

    2016-01-01

    One of the main goals of scientific research is to provide a description of the empirical data which is as accurate and comprehensive as possible, while relying on as few and simple assumptions as possible. In this paper, I propose a definition of the notion of "few and simple assumptions" that is not affected by known problems. This leads to the introduction of a simple model of scientific progress that is based only on empirical accuracy and conciseness. An essential point in this task is the understanding of the role played by "measurability" in the formulation of a scientific theory. This is the key to prevent artificially concise formulations. The model is confronted here with many possible objections and with challenging cases of real progress. Although I cannot exclude that the model might have some limitations, it includes all the cases of genuine progress examined here, and no spurious one. In this model, I stress the role of the "state of the art", which is the collection of all the theories that ar...

  9. The progress and promise of zebrafish as a model to study mast cells.

    Science.gov (United States)

    Prykhozhij, Sergey V; Berman, Jason N

    2014-09-01

    Immunological and hematological research using the zebrafish (Danio rerio) has significantly advanced our understanding of blood lineage ontology, cellular functions and mechanisms, and provided opportunities for disease modeling. Mast cells are an immunological cell type involved in innate and adaptive immune systems, hypersensitivity reactions and cancer progression. The application of zebrafish to study mast cell biology exploits the developmental and imaging opportunities inherent in this model system to enable detailed genetic and molecular studies of this lineage outside of traditional mammalian models. In this review, we first place the importance of mast cell research in zebrafish into the context of comparative studies of mast cells in other fish species and highlight its advantages due to superior experimental tractability and direct visualization in transparent embryos. We discuss current and future tools for mast cell research in zebrafish and the notable results of using zebrafish for understanding mast cell fate determination and our development of a systemic mastocytosis model.

  10. Ganoderma lucidum Combined with the EGFR Tyrosine Kinase Inhibitor, Erlotinib Synergize to Reduce Inflammatory Breast Cancer Progression.

    Science.gov (United States)

    Suárez-Arroyo, Ivette J; Rios-Fuller, Tiffany J; Feliz-Mosquea, Yismeilin R; Lacourt-Ventura, Mercedes; Leal-Alviarez, Daniel J; Maldonado-Martinez, Gerónimo; Cubano, Luis A; Martínez-Montemayor, Michelle M

    2016-01-01

    The high incidence of resistance to Tyrosine Kinase Inhibitors (TKIs) targeted against EGFR and downstream pathways has increased the necessity to identify agents that may be combined with these therapies to provide a sustained response for breast cancer patients. Here, we investigate the therapeutic potential of Ganoderma lucidum extract (GLE) in breast cancer, focusing on the regulation of the EGFR signaling cascade when treated with the EGFR TKI, Erlotinib. SUM-149, or intrinsic Erlotinib resistant MDA-MB-231 cells, and a successfully developed Erlotinib resistant cell line, rSUM-149 were treated with increasing concentrations of Erlotinib, GLE, or their combination (Erlotinib/GLE) for 72h. Treatment effects were tested on cell viability, cell proliferation, cell migration and invasion. To determine tumor progression, severe combined immunodeficient mice were injected with SUM-149 cells and then treated with Erlotinib/GLE or Erlotinib for 13 weeks. We assessed the protein expression of ERK1/2 and AKT in in vitro and in vivo models. Our results show that GLE synergizes with Erlotinib to sensitize SUM-149 cells to drug treatment, and overcomes intrinsic and developed Erlotinib resistance. Also, Erlotinib/GLE decreases SUM-149 cell viability, proliferation, migration and invasion. GLE increases Erlotinib sensitivity by inactivating AKT and ERK signaling pathways in our models. We conclude that a combinatorial therapeutic approach may be the best way to increase prognosis in breast cancer patients with EGFR overexpressing tumors.

  11. Branching process models of cancer

    CERN Document Server

    Durrett, Richard

    2015-01-01

    This volume develops results on continuous time branching processes and applies them to study rate of tumor growth, extending classic work on the Luria-Delbruck distribution. As a consequence, the authors calculate the probability that mutations that confer resistance to treatment are present at detection and quantify the extent of tumor heterogeneity. As applications, the authors evaluate ovarian cancer screening strategies and give rigorous proofs for results of Heano and Michor concerning tumor metastasis. These notes should be accessible to students who are familiar with Poisson processes and continuous time. Richard Durrett is mathematics professor at Duke University, USA. He is the author of 8 books, over 200 journal articles, and has supervised more than 40 Ph.D. students. Most of his current research concerns the applications of probability to biology: ecology, genetics, and most recently cancer.

  12. [Apropos of the studies of Lewis, Nusslein-Volhard and Wieschaus, 1995 Nobel prize winners, on the genetic mechanisms of embryonic development of drosophila. A model for human cancer progression].

    Science.gov (United States)

    Cillo, C

    1996-07-01

    EB Lewis, C Nusslein-Volhard and E Wieschaus were the winners of the Nobel prize in 1995 for the discovery of genes controling the embryonic development in drosophila. Drosophila development is dependent on sequential activities of three types of genes: the maternal genes, the segmentation genes, and the homeotic genes which are responsible for the segment identity and finally for the building of the body. Mutations of these genes are spectacular because they affect the body structure formed from individual segments. Therefore, the molecular processes regulating the development of inferior organisms such as yeast or more complex as the vertebrates were elucidated by these three researchers. These early biological mechanisms regulate the cell life through interactions with neighbouring cells. We speculate that any alteration of these processes might be implicated in cancer. Understanding of these molecular mechanisms which control cell interactions in cancer constitutes a basis for definition of new prognostic markers and putatively novel therapeutic approaches.

  13. Progress on Analytical Modeling of Coherent Electron Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Wang, G.; Blaskiewicz, M.; Litvinenko, V.; Webb, S.

    2010-05-23

    We report recent progresses on analytical studies of Coherent Electron Cooling. The phase space electron beam distribution obtained from the 1D FEL amplifier is applied to an infinite electron plasma model and the electron density evolution inside the kicker is derived. We also investigate the velocity modulation in the modulator and obtain a closed form solution for the current density evolution for infinite homogeneous electron plasma.

  14. Model-theoretical foundation of action and progression

    Institute of Scientific and Technical Information of China (English)

    田启家; 史忠植

    1997-01-01

    Action is one of the most important concepts in computer science, and situation calculus is the standard formalism for representing and reasoning about actions and their effects. Situation calculus essentially could be presented in a logic framework. Based on the framework LR, such a logic framework is given. Minimal action theory is proposed and studied from the point of view of model theory. By theorems of mathematical logic, some results about the definability about the progression in minimal action theory are obtained.

  15. Leptin-Notch signaling axis is involved in pancreatic cancer progression.

    Science.gov (United States)

    Harbuzariu, Adriana; Rampoldi, Antonio; Daley-Brown, Danielle S; Candelaria, Pierre; Harmon, Tia L; Lipsey, Crystal C; Beech, Derrick J; Quarshie, Alexander; Ilies, Gabriela Oprea; Gonzalez-Perez, Ruben R

    2017-01-31

    Pancreatic cancer (PC) shows a high death rate. PC incidence and prognosis are affected by obesity, a pandemic characterized by high levels of leptin. Notch is upregulated by leptin in breast cancer. Thus, leptin and Notch crosstalk could influence PC progression. Here we investigated in PC cell lines (BxPC-3, MiaPaCa-2, Panc-1, AsPC-1), derived tumorspheres and xenografts whether a functional leptin-Notch axis affects PC progression and expansion of pancreatic cancer stem cells (PCSC). PC cells and tumorspheres were treated with leptin and inhibitors of Notch (gamma-secretase inhibitor, DAPT) and leptin (iron oxide nanoparticle-leptin peptide receptor antagonist 2, IONP-LPrA2). Leptin treatment increased cell cycle progression and proliferation, and the expression of Notch receptors, ligands and targeted molecules (Notch1-4, DLL4, JAG1, Survivin and Hey2), PCSC markers (CD24/CD44/ESA, ALDH, CD133, Oct-4), ABCB1 protein, as well as tumorsphere formation. Leptin-induced effects on PC and tumorspheres were decreased by IONP-LPrA2 and DAPT. PC cells secreted leptin and expressed the leptin receptor, OB-R, which indicates a leptin autocrine/paracrine signaling loop could also affect tumor progression. IONP-LPrA2 treatment delayed the onset of MiaPaCa-2 xenografts, and decreased tumor growth and the expression of proliferation and PCSC markers. Present data suggest that leptin-Notch axis is involved in PC. PC has no targeted therapy and is mainly treated with chemotherapy, whose efficiency could be decreased by leptin and Notch activities. Thus, the leptin-Notch axis could be a novel therapeutic target, particularly for obese PC patients.

  16. miR-410-3p suppresses breast cancer progression by targeting Snail.

    Science.gov (United States)

    Zhang, Ya-Feng; Yu, Yue; Song, Wang-Zhao; Zhang, Rui-Ming; Jin, Shan; Bai, Jun-Wen; Kang, Hong-Bin; Wang, Xin; Cao, Xu-Chen

    2016-07-01

    miR-410-3p acts as an oncogene or tumor-suppressor gene in various types of cancer. However, its role in breast cancer remains unknown. In the present study, expression of miR-410-3p in 30 breast cancer and paired adjacent normal tissues was detected by RT-qPCR. The expression of miR-410-3p was downregulated in 76.7% of the breast cancer samples. To further validate the expression of miR-410-3p in breast cancer, we analyzed miR-410-3p expression profiling data set from The Cancer Genome Atlas (TCGA) including 683 breast cancer and 87 normal breast tissues. We observed that the expression of miR-410-3p was downregulated in breast cancer tissues. Next, we investigated the influence of miR-410-3p on cell proliferation by transiently transfecting the miR-410-3p mimic or inhibitor, as well as their corresponding controls in the MDA-MB-231 and MCF7 cell lines. miR-410-3p overexpression reduced cell growth, colony formation and the number of EdU-positive cells in the MDA-MB-231 cells. In contrast, inhibition of miR-410-3p in the MCF7 cells resulted in a higher proliferation rate as assessed by MTT assay, plate colony formation and EdU assays. Furthermore, miR-410-3p inhibited epithelial-mesenchymal transition. In addition, Snail was found to be a direct target of miR-410-3p based on a luciferase assay. Overexpression of Snail was able to rescue the effect of miR-410-3p in breast cancer cells. Moreover, miR‑410-3p was inversely expressed with Snail in breast cancer samples. Our data provide new knowledge regarding the role of miR-410-3p in breast cancer progression.

  17. Roles of Matrix Metalloproteinases and Their Natural Inhibitors in Prostate Cancer Progression

    Directory of Open Access Journals (Sweden)

    Yixuan Gong

    2014-06-01

    Full Text Available Matrix metalloproteinases (MMPs, a group of zinc-dependent endopeptidases involved in the degradation of the extracellular matrix, play an important role in tissue remodeling associated with various physiological processes such as morphogenesis, angiogenesis, and tissue repair, as well as pathological processes including cirrhosis, arthritis and cancer. The MMPs are well established as mediators of tumor invasion and metastasis by breaking down connective tissue barriers. Although there has been a vast amount of literature on the role of MMPs in invasion, metastasis and angiogenesis of various cancers, the role of these endopeptidases in prostate cancer progression has not been systematically reviewed. This overview summarizes findings on the tissue and blood expression of MMPs, their function, regulation and prognostic implication in human prostate cancer, with a focus on MMP-2, -7, -9, MT1-MMP and tissue inhibitor of metalloproteinase 1 (TIMP-1. This review also summarizes the efficacy and failure of early-generation matrix metalloproteinase inhibitors (MMPIs in the treatment of metastatic prostate cancer and highlights the lessons and challenges for next generation MMPIs.

  18. Expression of Notch1 Correlates with Breast Cancer Progression and Prognosis.

    Science.gov (United States)

    Yuan, Xun; Zhang, Mingsheng; Wu, Hua; Xu, Hanxiao; Han, Na; Chu, Qian; Yu, Shiying; Chen, Yuan; Wu, Kongming

    2015-01-01

    Various studies have evaluated the significance of Notch1 expression in breast cancer, but the results have ever been disputed. By using 21 studies involving 3867 patients, this meta-analysis revealed that the expression of Notch1 was significantly higher in breast cancer than in normal tissues (OR=7.21; 95%CI, 4.7-11.07) and that higher Notch1 expression was associated with transition from ductal carcinoma in situ (DCIS) to invasive cancer (OR=3.75; 95% CI, 1.8-7.78). Higher Notch1 activity was observed in the basal subtype of breast cancer (OR=2.53; 95% CI, 1.18-5.43). Moreover, patients with Notch1 overexpression exhibited significantly worse overall and recurrence-free survival. Our meta-analysis suggests that Notch inhibitors may be useful in blocking the early progression of DCIS and that the outcomes of clinical trials for Notch1-targeting therapeutics could be improved by the molecular stratification of breast cancer patients.

  19. Expression of Notch1 Correlates with Breast Cancer Progression and Prognosis.

    Directory of Open Access Journals (Sweden)

    Xun Yuan

    Full Text Available Various studies have evaluated the significance of Notch1 expression in breast cancer, but the results have ever been disputed. By using 21 studies involving 3867 patients, this meta-analysis revealed that the expression of Notch1 was significantly higher in breast cancer than in normal tissues (OR=7.21; 95%CI, 4.7-11.07 and that higher Notch1 expression was associated with transition from ductal carcinoma in situ (DCIS to invasive cancer (OR=3.75; 95% CI, 1.8-7.78. Higher Notch1 activity was observed in the basal subtype of breast cancer (OR=2.53; 95% CI, 1.18-5.43. Moreover, patients with Notch1 overexpression exhibited significantly worse overall and recurrence-free survival. Our meta-analysis suggests that Notch inhibitors may be useful in blocking the early progression of DCIS and that the outcomes of clinical trials for Notch1-targeting therapeutics could be improved by the molecular stratification of breast cancer patients.

  20. Cancer genomics object model: an object model for multiple functional genomics data for cancer research.

    Science.gov (United States)

    Park, Yu Rang; Lee, Hye Won; Cho, Sung Bum; Kim, Ju Han

    2007-01-01

    The development of functional genomics including transcriptomics, proteomics and metabolomics allow us to monitor a large number of key cellular pathways simultaneously. Several technology-specific data models have been introduced for the representation of functional genomics experimental data, including the MicroArray Gene Expression-Object Model (MAGE-OM), the Proteomics Experiment Data Repository (PEDRo), and the Tissue MicroArray-Object Model (TMA-OM). Despite the increasing number of cancer studies using multiple functional genomics technologies, there is still no integrated data model for multiple functional genomics experimental and clinical data. We propose an object-oriented data model for cancer genomics research, Cancer Genomics Object Model (CaGe-OM). We reference four data models: Functional Genomic-Object Model, MAGE-OM, TMAOM and PEDRo. The clinical and histopathological information models are created by analyzing cancer management workflow and referencing the College of American Pathology Cancer Protocols and National Cancer Institute Common Data Elements. The CaGe-OM provides a comprehensive data model for integrated storage and analysis of clinical and multiple functional genomics data.

  1. Therapist and Patient Perceptions of Alliance and Progress in Psychological Therapy for Women Diagnosed with Gynecological Cancers

    Science.gov (United States)

    Manne, Sharon L.; Kashy, Deborah A.; Rubin, Stephen; Hernandez, Enrique; Bergman, Cynthia

    2012-01-01

    Objective: The goal was to understand both therapist and patient perspectives on alliance and session progress for women in treatment for gynecological cancer. We used a longitudinal version of the one-with-many design to partition variation in alliance and progress ratings into therapist, patient/dyad, and time-specific components. We also…

  2. Prognostic factors for progression-free and overall survival in advanced biliary tract cancer

    DEFF Research Database (Denmark)

    Bridgewater, J; Lopes, A; Wasan, H

    2016-01-01

    BACKGROUND: Biliary tract cancer is an uncommon cancer with a poor outcome. We assembled data from the National Cancer Research Institute (UK) ABC-02 study and 10 international studies to determine prognostic outcome characteristics for patients with advanced disease. METHODS: Multivariable...... associated with PFS and OS. ROC analysis suggested the models generated from the ABC-02 study had a limited prognostic value [6-month PFS: area under the curve (AUC) 62% (95% CI 57-68); 1-year OS: AUC 64% (95% CI 58-69)]. CONCLUSION: These data propose a set of prognostic criteria for outcome in advanced...

  3. Overexpression of TRPV3 Correlates with Tumor Progression in Non-Small Cell Lung Cancer.

    Science.gov (United States)

    Li, Xiaolei; Zhang, Qianhui; Fan, Kai; Li, Baiyan; Li, Huifeng; Qi, Hanping; Guo, Jing; Cao, Yonggang; Sun, Hongli

    2016-03-24

    (1) BACKGROUND: Transient receptor potential vanilloid 3 (TRPV3) is a member of the TRP channels family of Ca(2+)-permeant channels. The proteins of some TRP channels are highly expressed in cancer cells. This study aimed to assess the clinical significance and biological functions of TRPV3 in non-small cell lung cancer (NSCLC); (2) METHODS: Immunohistochemistry was used to detect the expression of TRPV3 in NSCLC tissues and adjacent noncancerous lung tissues. Western blot was used to detect the protein expressions of TRPV3, CaMKII, p-CaMKII, CyclinA, CyclinD, CyclinE1, CDK2, CDK4, and P27. Small interfering RNA was used to deplete TRPV3 expression. A laser scanning confocal microscope was used to measure intracellular calcium concentration ([Ca(2+)]i). Flow cytometry was used to analyze cell cycle; (3) RESULTS: TRPV3 was overexpressed in 65 of 96 (67.7%) human lung cancer cases and correlated with differentiation (p = 0.001) and TNM stage (p = 0.004). Importantly, TRPV3 expression was associated with short overall survival. In addition, blocking or knockdown of TRPV3 could inhibit lung cancer cell proliferation. Moreover, TRPV3 inhibition could decrease [Ca(2+)]i of lung cancer cells and arrest cell cycle at the G1/S boundary. Further results revealed that TRPV3 inhibition decreased expressions of p-CaMKII, CyclinA, CyclinD1, CyclinE, and increased P27 level; (4) CONCLUSIONS: Our findings demonstrate that TRPV3 was overexpressed in NSCLC and correlated with lung cancer progression. TRPV3 activation could promote proliferation of lung cancer cells. TRPV3 might serve as a potential companion drug target in NSCLC.

  4. Delineating an Epigenetic Continuum for Initiation, Transformation and Progression to Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Kang Mei; Stephen, Josena K. [Department of Otolaryngology/Head and Neck Surgery, Henry Ford Hospital, 1 Ford Place, 1D, Detroit, MI 48202 (United States); Raju, Usha [Department of Pathology, Henry Ford Hospital, Detroit, 1 Ford Place, 1D, Detroit, MI 48202 (United States); Worsham, Maria J., E-mail: mworsha1@hfhs.org [Department of Otolaryngology/Head and Neck Surgery, Henry Ford Hospital, 1 Ford Place, 1D, Detroit, MI 48202 (United States)

    2011-03-29

    Aberrant methylation of promoter CpG islands is a hallmark of human cancers and is an early event in carcinogenesis. We examined whether promoter hypermethylation contributes to the pathogenesis of benign breast lesions along a progression continuum to invasive breast cancer. The exploratory study cohort comprised 17 breast cancer patients with multiple benign and/or in situ lesions concurrently present with invasive carcinoma within a tumor biopsy. DNA from tumor tissue, normal breast epithelium when present, benign lesions (fibroadenoma, hyperplasia, papilloma, sclerosing adenosis, apocrine metaplasia, atypical lobular hyperplasia or atypical ductal hyperplasia), and in situ lesions of lobular carcinoma and ductal carcinoma were interrogated for promoter methylation status in 22 tumor suppressor genes using the multiplex ligation-dependent probe amplification assay (MS-MLPA). Methylation specific PCR was performed to confirm hypermethylation detected by MS-MLPA. Promoter methylation was detected in 11/22 tumor suppressor genes in 16/17 cases. Hypermethylation of RASSF1 was most frequent, present in 14/17 cases, followed by APC in 12/17, and GSTP1 in 9/17 cases with establishment of an epigenetic monocloncal progression continuum to invasive breast cancer. Hypermethylated promoter regions in normal breast epithelium, benign, and premalignant lesions within the same tumor biopsy implicate RASSF1, APC, GSTP1, TIMP3, CDKN2B, CDKN2A, ESR1, CDH13, RARB, CASP8, and TP73 as early events. DNA hypermethylation underlies the pathogenesis of step-wise transformation along a monoclonal continuum from normal to preneoplasia to invasive breast cancer.

  5. Role of interleukin-8 in the progression of estrogen receptor-negative breast cancer

    Institute of Scientific and Technical Information of China (English)

    YAO Chen; LIN Ying; YE Cai-sheng; BI Jiong; ZHU Yi-fan; WANG Shen-ming

    2007-01-01

    Background Estrogen receptor (ER) is a very important biomarker of breast cancer. ER deletion has been consistently associated with tumor progression, recurrence, metastasis and poor prognosis, but the biological mechanism is still unclear. ER negative breast cancer expresses high levels of interieukin-8 (IL-8). ER expression can downregulate IL-8 promotor activity. As a multifunctional cytokine, IL-8 has many important biological activities in tumor genesis and development. With the goal of investigating the role of IL-8 in ER-negative breast cancer progression, we applied RNA interference technology to specifically knockdown the IL-8 expression in ER-negative breast cancer cell line MDA-MB-231.Methods Interfering pRNA-IL-8 and the control was transfected into ER(-) MDA-MB-231. The proliferation, cell apotosis,and invasive ability were recorded in transfected, untransfected and negative transfected cells. These cells were injected into nude mice to assess tumorigenicity, proliferation, metastasis and microvessel density (MVD).Results In vitro, decreased expression of IL-8 was associated with reduced cell invasion (P<0.001), but had no effect on cell proliferation (P>0.05). In vivo, neutrophils infiltration was significantly inhibited in pRNA-IL-8 transfected cells compared with untransfected and negatively transfected cells (P=0.001, P<0.001). Less metastasis was found in transfected cells compared with negatively transfected cells (0% vs 80%, P=0.048). Nevertheless, we observed less MVD in transfected cells compared with control in nude mice (P<0.001).Conclusions IL-8 inhibits ER-negative breast cancer cell growth and promotes its metastasis in vivo, which may be correlated with neutrophils infiltration induced by IL-8.

  6. Modeling NSCLC Progression: Recent Advances and Opportunities Available

    OpenAIRE

    Suleiman, Ahmed Abbas; Nogova, Lucia; Fuhr, Uwe, 1960-

    2013-01-01

    Non-small cell lung cancer (NSCLC) is one of the leading causes of death around the world with an estimated 5-year relative survival rate of 16% at diagnosis. Development of drugs treating NSCLC is not easy, and the success rate for an anticancer treatment to pass through the whole clinical development process is as low as 5%. Modeling and simulation lend themselves as tools which can potentially streamline drug development. A critical component of the models developed is a description of how...

  7. Individual Difference Variables and the Effects of Progressive Muscle Relaxation and Analgesic Imagery Interventions on Cancer Pain

    OpenAIRE

    Kwekkeboom, Kristine L.; Wanta, Britt; Bumpus, Molly

    2008-01-01

    Clinicians in acute care settings are often called upon to manage cancer pain unrelieved by medications. Cognitive-behavioral strategies, such as relaxation and imagery, are recommended for cancer pain management; however, there appear to be individual differences in their effects. This pilot study examined variation in pain outcomes achieved with progressive muscle relaxation (PMR) and analgesic imagery interventions among hospitalized patients with cancer pain, and assessed the influence of...

  8. Role of Protein Synthesis Initiation Factors in Dietary Soy Isoflavone-Mediated Effects on Breast Cancer Progression

    Science.gov (United States)

    2012-03-01

    Manuscript s • Submitted to the Journal of Nutritional Biochemistry (Feb 21, 2012) “The soy isoflavone equol may increase cancer malignancy via upregulation...29] Ko KP, Park SK, Park B et al. Isoflavones from phytoestrogens and gastric cancer risk: a nested case-control study within the Korean...Dietary Soy Isoflavone-Mediated Effects on Breast Cancer Progression. PRINCIPAL INVESTIGATOR: Columba de la Parra Simental CONTRACTING

  9. Modelling Hydrological Consequences of Climate Change-Progress and Challenges

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The simulation of hydrological consequences of climate change has received increasing attention from the hydrology and land-surface modelling communities. There have been many studies of climate-change effects on hydrology and water resources which usually consist of three steps: (1) use of general circulation models (GCMs) to provide future global climate scenarios under the effect of increasing greenhouse gases,(2) use of downscaling techniques (both nested regional climate models, RCMs, and statistical methods)for "downscaling" the GCM output to the scales compatible with hydrological models, and (3) use of hydrologic models to simulate the effects of climate change on hydrological regimes at various scales.Great progress has been achieved in all three steps during the past few years, however, large uncertainties still exist in every stage of such study. This paper first reviews the present achievements in this field and then discusses the challenges for future studies of the hydrological impacts of climate change.

  10. DNA methylation changes in ovarian cancer are cumulative with disease progression and identify tumor stage

    Directory of Open Access Journals (Sweden)

    DeGeest Koen

    2008-09-01

    Full Text Available Abstract Background Hypermethylation of promoter CpG islands with associated loss of gene expression, and hypomethylation of CpG-rich repetitive elements that may destabilize the genome are common events in most, if not all, epithelial cancers. Methods The methylation of 6,502 CpG-rich sequences spanning the genome was analyzed in 137 ovarian samples (ten normal, 23 low malignant potential, 18 stage I, 16 stage II, 54 stage III, and 16 stage IV ranging from normal tissue through to stage IV cancer using a sequence-validated human CpG island microarray. The microarray contained 5' promoter-associated CpG islands as well as CpG-rich satellite and Alu repetitive elements. Results Results showed a progressive de-evolution of normal CpG methylation patterns with disease progression; 659 CpG islands showed significant loss or gain of methylation. Satellite and Alu sequences were primarily associated with loss of methylation, while promoter CpG islands composed the majority of sequences with gains in methylation. Since the majority of ovarian tumors are late stage when diagnosed, we tested whether DNA methylation profiles could differentiate between normal and low malignant potential (LMP compared to stage III ovarian samples. We developed a class predictor consisting of three CpG-rich sequences that was 100% sensitive and 89% specific when used to predict an independent set of normal and LMP samples versus stage III samples. Bisulfite sequencing confirmed the NKX-2-3 promoter CpG island was hypermethylated with disease progression. In addition, 5-aza-2'-deoxycytidine treatment of the ES2 and OVCAR ovarian cancer cell lines re-expressed NKX-2-3. Finally, we merged our CpG methylation results with previously published ovarian expression microarray data and identified correlated expression changes. Conclusion Our results show that changes in CpG methylation are cumulative with ovarian cancer progression in a sequence-type dependent manner, and that Cp

  11. Inhibition of Breast Cancer Progression by Blocking Heterocellular Contact Between Epithelial Cells and Fibroblasts

    Science.gov (United States)

    2013-04-01

    which cells in the mammary epithelium continuously interact with cells in the surrounding microenvironment. When the microenvironment receives signals...from cells in the mammary epithelium , it sends back cues that help to maintain normal mammary tissue functions. If these interactions are disturbed...targeting activity, Mol. Cancer Ther., 2004, 3(11), 1365–1373. 5 J. Debnath and J. S. Brugge, Modelling glandular epithelial cancers in three

  12. Intracellular location of BRCA2 protein expression and prostate cancer progression in the Swedish Watchful Waiting Cohort.

    Science.gov (United States)

    Thorgeirsson, Tryggvi; Jordahl, Kristina M; Flavin, Richard; Epstein, Mara Meyer; Fiorentino, Michelangelo; Andersson, Swen-Olof; Andren, Ove; Rider, Jennifer R; Mosquera, Juan Miguel; Ingoldsby, Helen; Fall, Katja; Tryggvadottir, Laufey; Mucci, Lorelei A

    2016-03-01

    Prostate cancer patients with inherited BRCA2 mutations have a survival disadvantage. However, it is unknown whether progression is associated with BRCA2 protein expression in diagnostic prostate cancer tissue, among men without inherited mutations. We conducted a nested case-control study within the Swedish Watchful Waiting cohort. The case group included all 71 patients who died from prostate cancer within 5 years from diagnosis and controls were all patients (n = 165) who lived at least 7 years after diagnosis. Tissue microarrays were stained using antibodies for C- and N-terminal domains of the BRCA2 protein. Location (nuclear, cytoplasmic and membranous) and magnitude (intensity and percentage) of expression were assessed. Logistic regression models produced odds ratios (OR) and 95% confidence intervals (CI) adjusted for age, year of diagnosis and Gleason score. Positive BRCA2 staining at the cell membrane was associated with reduced risk of death within 5 years (N-terminal: OR = 0.47, 95% CI = 0.21-1.04, P = 0.06; C-terminal: OR = 0.41, 95% CI = 0.18-0.91, P = 0.03) and low Gleason scores (P = 0.006). Positive cytoplasmic C-terminal staining was associated with higher Gleason scores and increased lethality (OR = 3.61, 95% CI = 1.61-8.07, P = 0.002). BRCA2 protein expression at the cell membrane and lack of C-terminal expression in the cytoplasm were associated with a reduced risk of rapidly fatal prostate cancer. BRCA2 protein expression in prostate cancer tissue may have independent prognostic value. The potential biological significance of BRCA2 expression at the cell membrane warrants further investigation.

  13. In vivo targeting of ADAM9 gene expression using lentivirus-delivered shRNA suppresses prostate cancer growth by regulating REG4 dependent cell cycle progression.

    Directory of Open Access Journals (Sweden)

    Che-Ming Liu

    Full Text Available Cancer cells respond to stress by activating a variety of survival signaling pathways. A disintegrin and metalloproteinase (ADAM 9 is upregulated during cancer progression and hormone therapy, functioning in part through an increase in reactive oxygen species. Here, we present in vitro and in vivo evidence that therapeutic targeting of ADAM9 gene expression by lentivirus-delivered small hairpin RNA (shRNA significantly inhibited proliferation of human prostate cancer cell lines and blocked tumor growth in a murine model of prostate cancer bone metastasis. Cell cycle studies confirmed an increase in the G1-phase and decrease in