WorldWideScience

Sample records for cancer progression model

  1. Interleukin-1 may link helplessness-hopelessness with cancer progression: A proposed model

    OpenAIRE

    Argaman, M; Gidron, Y; Ariad, S

    2005-01-01

    A model of the relations between psychological factors and cancer progression should include brain and systemic components and their link with critical cellular stages in cancer progression. We present a psychoneuroimmunological (PNI) model that links helplessness-hopelessness (HH) with cancer progression via interleukin-1β (IL-1β). IL-1β was elevated in the brain following exposure to inescapable shock, and HH was minimized by antagonizing cerebral IL-1β. Elevated cerebral IL-1β increased ca...

  2. Quo natas, Danio?—Recent Progress in Modeling Cancer in Zebrafish

    Directory of Open Access Journals (Sweden)

    Stefanie Kirchberger

    2017-08-01

    Full Text Available Over the last decade, zebrafish has proven to be a powerful model in cancer research. Zebrafish form tumors that histologically and genetically resemble human cancers. The live imaging and cost-effective compound screening possible with zebrafish especially complement classic mouse cancer models. Here, we report recent progress in the field, including genetically engineered zebrafish cancer models, xenotransplantation of human cancer cells into zebrafish, promising approaches toward live investigation of the tumor microenvironment, and identification of therapeutic strategies by performing compound screens on zebrafish cancer models. Given the recent advances in genome editing, personalized zebrafish cancer models are now a realistic possibility. In addition, ongoing automation will soon allow high-throughput compound screening using zebrafish cancer models to be part of preclinical precision medicine approaches.

  3. A stochastic model for identifying differential gene pair co-expression patterns in prostate cancer progression

    Directory of Open Access Journals (Sweden)

    Mao Yu

    2009-07-01

    Full Text Available Abstract Background The identification of gene differential co-expression patterns between cancer stages is a newly developing method to reveal the underlying molecular mechanisms of carcinogenesis. Most researches of this subject lack an algorithm useful for performing a statistical significance assessment involving cancer progression. Lacking this specific algorithm is apparently absent in identifying precise gene pairs correlating to cancer progression. Results In this investigation we studied gene pair co-expression change by using a stochastic process model for approximating the underlying dynamic procedure of the co-expression change during cancer progression. Also, we presented a novel analytical method named 'Stochastic process model for Identifying differentially co-expressed Gene pair' (SIG method. This method has been applied to two well known prostate cancer data sets: hormone sensitive versus hormone resistant, and healthy versus cancerous. From these data sets, 428,582 gene pairs and 303,992 gene pairs were identified respectively. Afterwards, we used two different current statistical methods to the same data sets, which were developed to identify gene pair differential co-expression and did not consider cancer progression in algorithm. We then compared these results from three different perspectives: progression analysis, gene pair identification effectiveness analysis, and pathway enrichment analysis. Statistical methods were used to quantify the quality and performance of these different perspectives. They included: Re-identification Scale (RS and Progression Score (PS in progression analysis, True Positive Rate (TPR in gene pair analysis, and Pathway Enrichment Score (PES in pathway analysis. Our results show small values of RS and large values of PS, TPR, and PES; thus, suggesting that gene pairs identified by the SIG method are highly correlated with cancer progression, and highly enriched in disease-specific pathways. From

  4. Interleukin-1 may link helplessness-hopelessness with cancer progression: a proposed model.

    Science.gov (United States)

    Argaman, Miriam; Gidron, Yori; Ariad, Shmuel

    2005-01-01

    A model of the relations between psychological factors and cancer progression should include brain and systemic components and their link with critical cellular stages in cancer progression. We present a psychoneuroimmunological (PNI) model that links helplessness-hopelessness (HH) with cancer progression via interleukin-1beta (IL-1beta). IL-1beta was elevated in the brain following exposure to inescapable shock, and HH was minimized by antagonizing cerebral IL-1beta. Elevated cerebral IL-1beta increased cancer metastasis in animals. Inescapable shock was associated with systemic elevations of IL-1beta and peripheral IL-1beta was associated with escape from apoptosis, angiogenesis, and metastasis. Involvement of the sympathetic nervous system and the hypothalamic-pituitary-adrenal axis are discussed. Future studies need to identify the role of additional factors in this PNI pathway.

  5. Dietary folate deficiency blocks prostate cancer progression in the TRAMP model.

    Science.gov (United States)

    Bistulfi, Gaia; Foster, Barbara A; Karasik, Ellen; Gillard, Bryan; Miecznikowski, Jeff; Dhiman, Vineet K; Smiraglia, Dominic J

    2011-11-01

    Dietary folate is essential in all tissues to maintain several metabolite pools and cellular proliferation. Prostate cells, due to specific metabolic characteristics, have increased folate demand to support proliferation and prevent genetic and epigenetic damage. Although several studies have found that dietary folate interventions can affect colon cancer biology in rodent models, its impact on prostate is unknown. The purpose of this study was to determine whether dietary folate manipulation, possibly being of primary importance for prostate epithelial cell metabolism, could significantly affect prostate cancer progression. Strikingly, mild dietary folate depletion arrested prostate cancer progression in 25 of 26 transgenic adenoma of the mouse prostate (TRAMP) mice, in which tumorigenesis is prostate-specific and characteristically aggressive. The significant effect on prostate cancer growth was characterized by size, grade, proliferation, and apoptosis analyses. Folate supplementation had a mild, nonsignificant, beneficial effect on grade. In addition, characterization of folate pools (correlated with serum), metabolite pools (polyamines and nucleotides), genetic and epigenetic damage, and expression of key biosynthetic enzymes in prostate tissue revealed interesting correlations with tumor progression. These findings indicate that prostate cancer is highly sensitive to folate manipulation and suggest that antifolates, paired with current therapeutic strategies, might significantly improve treatment of prostate cancer, the most commonly diagnosed cancer in American men.

  6. Metformin blocks progression of obesity-activated thyroid cancer in a mouse model.

    Science.gov (United States)

    Park, Jeongwon; Kim, Won Gu; Zhao, Li; Enomoto, Keisuke; Willingham, Mark; Cheng, Sheue-Yann

    2016-06-07

    Compelling epidemiologic evidence indicates that obesity is associated with a high risk of human malignancies, including thyroid cancer. We previously demonstrated that a high fat diet (HFD) effectively induces the obese phenotype in a mouse model of aggressive follicular thyroid cancer (ThrbPV/PVPten+/-mice). We showed that HFD promotes cancer progression through aberrant activation of the leptin-JAK2-STAT3 signaling pathway. HFD-promoted thyroid cancer progression allowed us to test other molecular targets for therapeutic opportunity for obesity-induced thyroid cancer. Metformin is a widely used drug to treat patients with type II diabetes. It has been shown to reduce incidences of neoplastic diseases and cancer mortality in type II diabetes patients. The present study aimed to test whether metformin could be a therapeutic for obesity-activated thyroid cancer. ThrbPV/PVPten+/-mice were fed HFD together with metformin or vehicle-only, as controls, for 20 weeks. While HFD-ThrbPV/PVPten+/-mice had shorter survival than LFD-treated mice, metformin had no effects on the survival of HFD-ThrbPV/PVPten+/-mice. Remarkably, metformin markedly decreased occurrence of capsular invasion and completely blocked vascular invasion and anaplasia in HFD-ThrbPV/PVPten+/-mice without affecting thyroid tumor growth. The impeded cancer progression was due to the inhibitory effect of metformin on STAT3-ERK-vimentin and fibronectin-integrin signaling to decrease tumor cell invasion and de-differentiation. The present studies provide additional molecular evidence to support the link between obesity and thyroid cancer risk. Importantly, our findings suggest that metformin could be used as an adjuvant in combination with antiproliferative modalities to improve the outcome of patients with obesity-activated thyroid cancer.

  7. Zebrafish as a model to assess cancer heterogeneity, progression and relapse

    Science.gov (United States)

    Blackburn, Jessica S.; Langenau, David M.

    2014-01-01

    Clonal evolution is the process by which genetic and epigenetic diversity is created within malignant tumor cells. This process culminates in a heterogeneous tumor, consisting of multiple subpopulations of cancer cells that often do not contain the same underlying mutations. Continuous selective pressure permits outgrowth of clones that harbor lesions that are capable of enhancing disease progression, including those that contribute to therapy resistance, metastasis and relapse. Clonal evolution and the resulting intratumoral heterogeneity pose a substantial challenge to biomarker identification, personalized cancer therapies and the discovery of underlying driver mutations in cancer. The purpose of this Review is to highlight the unique strengths of zebrafish cancer models in assessing the roles that intratumoral heterogeneity and clonal evolution play in cancer, including transgenesis, imaging technologies, high-throughput cell transplantation approaches and in vivo single-cell functional assays. PMID:24973745

  8. Changes in gene expression and cellular architecture in an ovarian cancer progression model.

    Directory of Open Access Journals (Sweden)

    Amy L Creekmore

    organization and regulation of important downstream signaling events that may be involved in cancer progression. Thus, our MOSE-derived cell model represents a unique model for in depth mechanistic studies of ovarian cancer progression.

  9. White Adipose Tissue Cells Are Recruited by Experimental Tumors and Promote Cancer Progression in Mouse Models

    Science.gov (United States)

    Zhang, Yan; Daquinag, Alexes; Traktuev, Dmitry O.; Amaya-Manzanares, Felipe; Simmons, Paul J.; March, Keith L.; Pasqualini, Renata; Arap, Wadih; Kolonin, Mikhail G.

    2010-01-01

    The connection between obesity and accelerated cancer progression has been established, but the mediating mechanisms are not well understood. We have shown that stromal cells from white adipose tissue (WAT) cooperate with the endothelium to promote blood vessel formation through the secretion of soluble trophic factors. Here, we hypothesize that WAT directly mediates cancer progression by serving as a source of cells that migrate to tumors and promote neovascularization. To test this hypothesis, we have evaluated the recruitment of WAT-derived cells by tumors and the effect of their engraftment on tumor growth by integrating a transgenic mouse strain engineered for expansion of traceable cells with established allograft and xenograft cancer models. Our studies show that entry of adipose stromal and endothelial cells into systemic circulation leads to their homing to and engraftment into tumor stroma and vasculature, respectively. We show that recruitment of adipose stromal cells by tumors is sufficient to promote tumor growth. Finally, we show that migration of stromal and vascular progenitor cells from WAT grafts to tumors is also associated with acceleration of cancer progression. These results provide a biological insight for the clinical association between obesity and cancer, thus outlining potential avenues for preventive and therapeutic strategies. PMID:19491274

  10. Joint modelling of longitudinal CEA tumour marker progression and survival data on breast cancer

    Science.gov (United States)

    Borges, Ana; Sousa, Inês; Castro, Luis

    2017-06-01

    This work proposes the use of Biostatistics methods to study breast cancer in patients of Braga's Hospital Senology Unit, located in Portugal. The primary motivation is to contribute to the understanding of the progression of breast cancer, within the Portuguese population, using a more complex statistical model assumptions than the traditional analysis that take into account a possible existence of a serial correlation structure within a same subject observations. We aim to infer which risk factors aect the survival of Braga's Hospital patients, diagnosed with breast tumour. Whilst analysing risk factors that aect a tumour markers used on the surveillance of disease progression the Carcinoembryonic antigen (CEA). As survival and longitudinal processes may be associated, it is important to model these two processes together. Hence, a joint modelling of these two processes to infer on the association of these was conducted. A data set of 540 patients, along with 50 variables, was collected from medical records of the Hospital. A joint model approach was used to analyse these data. Two dierent joint models were applied to the same data set, with dierent parameterizations which give dierent interpretations to model parameters. These were used by convenience as the ones implemented in R software. Results from the two models were compared. Results from joint models, showed that the longitudinal CEA values were signicantly associated with the survival probability of these patients. A comparison between parameter estimates obtained in this analysis and previous independent survival[4] and longitudinal analysis[5][6], lead us to conclude that independent analysis brings up bias parameter estimates. Hence, an assumption of association between the two processes in a joint model of breast cancer data is necessary. Results indicate that the longitudinal progression of CEA is signicantly associated with the probability of survival of these patients. Hence, an assumption of

  11. Disease Progression/Clinical Outcome Model for Castration-Resistant Prostate Cancer in Patients Treated with Eribulin

    NARCIS (Netherlands)

    Van Hasselt, J. G C; Gupta, A.; Hussein, Z.; Beijnen, J. H.; Schellens, J. H M; Huitema, A. D R

    2015-01-01

    Frameworks that associate cancer dynamic disease progression models with parametric survival models for clinical outcome have recently been proposed to support decision making in early clinical development. Here we developed such a disease progression clinical outcome model for castration-resistant

  12. An imbalance in progenitor cell populations reflects tumour progression in breast cancer primary culture models.

    LENUS (Irish Health Repository)

    Donatello, Simona

    2011-01-01

    Many factors influence breast cancer progression, including the ability of progenitor cells to sustain or increase net tumour cell numbers. Our aim was to define whether alterations in putative progenitor populations could predict clinicopathological factors of prognostic importance for cancer progression.

  13. Androgen receptor levels during progression of prostate cancer in the transgenic adenocarcinoma of mouse prostate model

    Directory of Open Access Journals (Sweden)

    Krisna Murti

    2010-02-01

    Full Text Available Aim To construct tissue microarrays (TMAs that consisted of prostate tumours from the transgenic adenocarcinoma of mouse prostate (TRAMP mice and non-transgenic murine prostates and to assess androgen receptor (AR levels during progression of prostate cancer in TRAMP mice by immunohistochemistry.Methods Haematoxylin and eosin (H&E sections from the ventral and dorso-lateral prostate lobes of non-transgenic, intact TRAMP and castrated TRAMP were used to demarcate regions of interest for TMAs construction. The samples on TMAs were used to evaluate AR expression using video image analysis (VIA.Results AR was expressed during cancer progression, but AR levels were reduced or absent in late stage disease. Furthermore, when AR levels were compared in tumours from intact and castrate animals, a significant increase in AR levels was observed following androgen ablation.Conclusion Similar to clinical prostate cancer, in the TRAMP model, prostate tumours evolve mechanisms to maintain AR expression and AR responsive gene pathways following castration to facilitate continued tumour growth. (Med J Indones 2010; 19:5-13Keywords : androgen ablation therapy, tissue microarrays, haematoxylin and eosin, video image analysis

  14. Ghrelin and cancer progression.

    Science.gov (United States)

    Lin, Tsung-Chieh; Hsiao, Michael

    2017-08-01

    Ghrelin is a small peptide with 28 amino acids, and has been characterized as the ligand of the growth hormone secretagogue receptor (GHSR). In addition to its original function in stimulating pituitary growth hormone release, ghrelin is multifunctional and plays a role in the regulation of energy balance, gastric acid release, appetite, insulin secretion, gastric motility and the turnover of gastric and intestinal mucosa. The discovery of ghrelin and GHSR expression beyond normal tissues suggests its role other than physiological function. Emerging evidences have revealed ghrelin's function in regulating several processes related to cancer progression, especially in metastasis and proliferation. We further show the relative GHRL and GHSR expression in pan-cancers from The Cancer Genome Atlas (TCGA), suggesting the potential pathological role of the axis in cancers. This review focuses on ghrelin's biological function in cancer progression, and reveals its clinical significance especially the impact on cancer patient outcome. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Selective expression of long non-coding RNAs in a breast cancer cell progression model.

    Science.gov (United States)

    Tracy, Kirsten M; Tye, Coralee E; Page, Natalie A; Fritz, Andrew J; Stein, Janet L; Lian, Jane B; Stein, Gary S

    2018-02-01

    Long non-coding RNAs (lncRNAs) are acknowledged as regulators of cancer biology and pathology. Our goal was to perform a stringent profiling of breast cancer cell lines that represent disease progression. We used the MCF-10 series, which includes the normal-like MCF-10A, HRAS-transformed MCF-10AT1 (pre-malignant), and MCF-10CA1a (malignant) cells, to perform transcriptome wide sequencing. From these data, we have identified 346 lncRNAs with dysregulated expression across the progression series. By comparing lncRNAs from these datasets to those from an additional set of cell lines that represent different disease stages and subtypes, MCF-7 (early stage, luminal), and MDA-MB-231 (late stage, basal), 61 lncRNAs that are associated with breast cancer progression were identified. Querying breast cancer patient data from The Cancer Genome Atlas, we selected a lncRNA, IGF-like family member 2 antisense RNA 1 (IGFL2-AS1), of potential clinical relevance for functional characterization. Among the 61 lncRNAs, IGFL2-AS1 was the most significantly decreased. Our results indicate that this lncRNA plays a role in downregulating its nearest neighbor, IGFL1, and affects migration of breast cancer cells. Furthermore, the lncRNAs we identified provide a valuable resource to mechanistically and clinically understand the contribution of lncRNAs in breast cancer progression. © 2017 Wiley Periodicals, Inc.

  16. Nitrate | Cancer Trends Progress Report

    Science.gov (United States)

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  17. Sunburn | Cancer Trends Progress Report

    Science.gov (United States)

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  18. Preventing Breast Cancer: Making Progress

    Science.gov (United States)

    ... Navigation Bar Home Current Issue Past Issues Preventing Breast Cancer: Making Progress Past Issues / Fall 2006 Table of ... 000 women will have been diagnosed with invasive breast cancer, and nearly 41,000 women will die from ...

  19. Prostate Cancer Treatment | Cancer Trends Progress Report

    Science.gov (United States)

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  20. Prostate Cancer Screening | Cancer Trends Progress Report

    Science.gov (United States)

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  1. Colorectal Cancer Treatment | Cancer Trends Progress Report

    Science.gov (United States)

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  2. Colorectal Cancer Screening | Cancer Trends Progress Report

    Science.gov (United States)

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  3. Bladder Cancer Treatment | Cancer Trends Progress Report

    Science.gov (United States)

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  4. Kidney Cancer Treatment | Cancer Trends Progress Report

    Science.gov (United States)

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  5. Cervical Cancer Screening | Cancer Trends Progress Report

    Science.gov (United States)

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  6. Targeting ECM Disrupts Cancer Progression

    DEFF Research Database (Denmark)

    Venning, Freja A; Wullkopf, Lena; Erler, Janine T

    2015-01-01

    , the extracellular matrix (ECM). Many ECM proteins are significantly deregulated during the progression of cancer, causing both biochemical and biomechanical changes that together promote the metastatic cascade. In this review, the influence of several ECM proteins on these multiple steps of cancer spread...... is summarized. In addition, we highlight the promising (pre-)clinical data showing benefits of targeting these ECM macromolecules to prevent cancer progression....

  7. An imbalance in progenitor cell populations reflects tumour progression in breast cancer primary culture models

    LENUS (Irish Health Repository)

    Donatello, Simona

    2011-04-26

    Abstract Background Many factors influence breast cancer progression, including the ability of progenitor cells to sustain or increase net tumour cell numbers. Our aim was to define whether alterations in putative progenitor populations could predict clinicopathological factors of prognostic importance for cancer progression. Methods Primary cultures were established from human breast tumour and adjacent non-tumour tissue. Putative progenitor cell populations were isolated based on co-expression or concomitant absence of the epithelial and myoepithelial markers EPCAM and CALLA respectively. Results Significant reductions in cellular senescence were observed in tumour versus non-tumour cultures, accompanied by a stepwise increase in proliferation:senescence ratios. A novel correlation between tumour aggressiveness and an imbalance of putative progenitor subpopulations was also observed. Specifically, an increased double-negative (DN) to double-positive (DP) ratio distinguished aggressive tumours of high grade, estrogen receptor-negativity or HER2-positivity. The DN:DP ratio was also higher in malignant MDA-MB-231 cells relative to non-tumourogenic MCF-10A cells. Ultrastructural analysis of the DN subpopulation in an invasive tumour culture revealed enrichment in lipofuscin bodies, markers of ageing or senescent cells. Conclusions Our results suggest that an imbalance in tumour progenitor subpopulations imbalances the functional relationship between proliferation and senescence, creating a microenvironment favouring tumour progression.

  8. Curcumin Based Drug Screening for Inhibitors of NF kappa B in a Cell Model of Prostate Cancer Progression

    Science.gov (United States)

    2008-02-01

    identify new and structurally diverse chemical analogs of the polyphenolic phytochemical Curcumin from the Indian herb Curcuma longa (family...AD_________________ Award Number: W81XWH-07-1-0081 TITLE: Curcumin Based Drug Screening for... Curcumin Based Drug Screening for Inhibitors of NF kappa B in a Cell Model of Prostate Cancer Progression 5b. GRANT NUMBER W81XWH-07-1-0081 5c

  9. Role of DNA Methylation in Altering Gene Expression During the Early Stages of Human Breast Cancer Progression in the MCF10AT Xenograft Model

    National Research Council Canada - National Science Library

    Christman, Judith

    2004-01-01

    ...) Collect microdissected tissue representative of each of the morphologically different stages of early breast cancer progression in the MCFlOAT model to obtain RNA and DNA for miroarray analysis...

  10. Biobehavioral Influences on Cancer Progression

    Science.gov (United States)

    Costanzo, Erin S.; Sood, Anil K.; Lutgendorf, Susan K.

    2010-01-01

    Synopsis This review focuses on the contributions of stress-related behavioral factors to cancer growth and metastasis and the biobehavioral mechanisms underlying these relationships. We describe behavioral factors that are important in modulation of the stress response and the pivotal role of neuroendocrine regulation in the downstream alteration of physiological pathways relevant to cancer control, including the cellular immune response, inflammation, and tumor angiogenesis, invasion, and cell-signaling pathways. Consequences for cancer progression and metastasis, as well as quality of life, are delineated. Finally, behavioral and pharmacological interventions for cancer patients with the potential to alter these biobehavioral pathways are discussed. PMID:21094927

  11. Dietary folate deficiency blocks prostate cancer progression in the TRAMP model

    OpenAIRE

    Bistulfi, Gaia; Foster, Barbara A; Karasik, Ellen; Gillard, Bryan; Miecznikowski, Jeff; Dhiman, Vineet K; Smiraglia, Dominic J

    2011-01-01

    Dietary folate is essential in all tissues to maintain several metabolite pools and cellular proliferation. Prostate cells, due to specific metabolic characteristics, have increased folate demand to support proliferation and prevent genetic and epigenetic damage. Although several studies found that dietary folate interventions can affect colon cancer biology in rodent models, impact on prostate is unknown. The purpose of this study was to determine if dietary folate manipulation, possibly bei...

  12. Morphine does not facilitate breast cancer progression in two preclinical mouse models for human invasive lobular and HER2⁺ breast cancer.

    Science.gov (United States)

    Doornebal, Chris W; Vrijland, Kim; Hau, Cheei-Sing; Coffelt, Seth B; Ciampricotti, Metamia; Jonkers, Jos; de Visser, Karin E; Hollmann, Markus W

    2015-08-01

    Morphine and other opioid analgesics are potent pain-relieving agents routinely used for pain management in patients with cancer. However, these drugs have recently been associated with a worse relapse-free survival in patients with surgical cancer, thus suggesting that morphine adversely affects cancer progression and relapse. In this study, we evaluated the impact of morphine on breast cancer progression, metastatic dissemination, and outgrowth of minimal residual disease. Using preclinical mouse models for metastatic invasive lobular and HER2 breast cancer, we show that analgesic doses of morphine do not affect mammary tumor growth, angiogenesis, and the composition of tumor-infiltrating immune cells. Our studies further demonstrate that morphine, administered in the presence or absence of surgery-induced tissue damage, neither facilitates de novo metastatic dissemination nor promotes outgrowth of minimal residual disease after surgery. Together, these findings indicate that opioid analgesics can be used safely for perioperative pain management in patients with cancer and emphasize that current standards of "good clinical practice" should be maintained.

  13. Early Prediction of Disease Progression in Small Cell Lung Cancer: Toward Model-Based Personalized Medicine in Oncology.

    Science.gov (United States)

    Buil-Bruna, Núria; Sahota, Tarjinder; López-Picazo, José-María; Moreno-Jiménez, Marta; Martín-Algarra, Salvador; Ribba, Benjamin; Trocóniz, Iñaki F

    2015-06-15

    Predictive biomarkers can play a key role in individualized disease monitoring. Unfortunately, the use of biomarkers in clinical settings has thus far been limited. We have previously shown that mechanism-based pharmacokinetic/pharmacodynamic modeling enables integration of nonvalidated biomarker data to provide predictive model-based biomarkers for response classification. The biomarker model we developed incorporates an underlying latent variable (disease) representing (unobserved) tumor size dynamics, which is assumed to drive biomarker production and to be influenced by exposure to treatment. Here, we show that by integrating CT scan data, the population model can be expanded to include patient outcome. Moreover, we show that in conjunction with routine medical monitoring data, the population model can support accurate individual predictions of outcome. Our combined model predicts that a change in disease of 29.2% (relative standard error 20%) between two consecutive CT scans (i.e., 6-8 weeks) gives a probability of disease progression of 50%. We apply this framework to an external dataset containing biomarker data from 22 small cell lung cancer patients (four patients progressing during follow-up). Using only data up until the end of treatment (a total of 137 lactate dehydrogenase and 77 neuron-specific enolase observations), the statistical framework prospectively identified 75% of the individuals as having a predictable outcome in follow-up visits. This included two of the four patients who eventually progressed. In all identified individuals, the model-predicted outcomes matched the observed outcomes. This framework allows at risk patients to be identified early and therapeutic intervention/monitoring to be adjusted individually, which may improve overall patient survival. ©2015 American Association for Cancer Research.

  14. v-Ha-ras oncogene insertion: A model for tumor progression of human small cell lung cancer

    International Nuclear Information System (INIS)

    Mabry, M.; Nakagawa, Toshitaro; Nelkin, B.D.; McDowell, E.; Gesell, M.; Eggleston, J.C.; Casero, R.A. Jr.; Baylin, S.B.

    1988-01-01

    Small cell lung cancer (SCLC) manifests a range of phenotypes in culture that may be important in understanding its relationship to non-SCLCs and to tumor progression events in patients. Most SCLC-derived cell lines, termed classic SCLC lines, have properties similar to SCLC tumors in patients. To delineate further the relationships between these phenotypes and the molecular events involved, the authors inserted the v-Ha-ras gene in SCLC cell lines with (biochemical variant) and without (classic) an amplified c-myc gene. These two SCLC subtypes had markedly different phenotypic responses to similar levels of expression of v-Ha-ras RNA. No biochemical or morphologic changes were observed in classic SCLC cells. In contrast, in biochemical variant SCLC cells, v-Ha-ras expression induced features typical of large cell undifferentiated lung carcinoma. Expression of v-Ha-ras in biochemical variant SCLC cells directly demonstrates that important transitions can occur between phenotypes of human lung cancer cells and that these may play a critical role in tumor progression events in patients. The finding provide a model system to study molecular events involved in tumor progression steps within a series of related tumor types

  15. A Simple Diet- and Chemical-Induced Murine NASH Model with Rapid Progression of Steatohepatitis, Fibrosis and Liver Cancer.

    Science.gov (United States)

    Tsuchida, Takuma; Lee, Youngmin A; Fujiwara, Naoto; Ybanez, Maria; Allen, Brittany; Martins, Sebastiao; Fiel, M Isabel; Goossens, Nicolas; Chou, Hsin-I; Hoshida, Yujin; Friedman, Scott L

    2018-03-20

    Although the majority of patients with nonalcoholic fatty liver disease (NAFLD) have only steatosis without progression, a sizable fraction develop non-alcoholic steatohepatitis (NASH), which can lead to cirrhosis and hepatocellular carcinoma (HCC). Many established diet-induced mouse models for NASH require 24-52 weeks, which makes testing for drug response costly and time consuming. We have sought to establish a murine NASH model with rapid progression of extensive fibrosis and HCC by using a western diet (WD), which is high-fat, high-fructose and high-cholesterol, combined with low dose weekly intraperitoneal carbon tetrachloride (CCl 4 ), which served as an accelerator. C57BL/6J mice were fed a normal chow diet (ND) ± CCl 4 or WD ± CCl 4 for 12 and 24 weeks. Addition of CCl 4 exacerbated histological features of NASH, fibrosis, and tumor development induced by WD, which resulted in stage 3 fibrosis at 12 weeks and HCC development at 24 weeks. Furthermore, whole liver transcriptomic analysis indicated that dysregulated molecular pathways in WD/CCl 4 mice and immunologic features were closely similar to those of human NASH. Our mouse NASH model exhibits rapid progression of advanced fibrosis and HCC, and mimics histological, immunological and transcriptomic features of human NASH, suggesting that it will be a useful experimental tool for preclinical drug testing. A carefully characterized model has been developed in mice that recapitulates the progressive stages of human fatty liver disease, from simple steatosis, to inflammation, fibrosis and cancer. The functional pathways of gene expression and immune abnormalities in this model closely resemble human disease. The ease and reproducibility of this model makes it ideal to study disease pathogenesis and test new treatments. Copyright © 2018 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  16. Lattice-based model of ductal carcinoma in situ suggests rules for breast cancer progression to an invasive state.

    Directory of Open Access Journals (Sweden)

    Eline Boghaert

    2014-12-01

    Full Text Available Ductal carcinoma in situ (DCIS is a heterogeneous group of non-invasive lesions of the breast that result from abnormal proliferation of mammary epithelial cells. Pathologists characterize DCIS by four tissue morphologies (micropapillary, cribriform, solid, and comedo, but the underlying mechanisms that distinguish the development and progression of these morphologies are not well understood. Here we explored the conditions leading to the emergence of the different morphologies of DCIS using a two-dimensional multi-cell lattice-based model that incorporates cell proliferation, apoptosis, necrosis, adhesion, and contractility. We found that the relative rates of cell proliferation and apoptosis governed which of the four morphologies emerged. High proliferation and low apoptosis favored the emergence of solid and comedo morphologies. In contrast, low proliferation and high apoptosis led to the micropapillary morphology, whereas high proliferation and high apoptosis led to the cribriform morphology. The natural progression between morphologies cannot be investigated in vivo since lesions are usually surgically removed upon detection; however, our model suggests probable transitions between these morphologies during breast cancer progression. Importantly, cribriform and comedo appear to be the ultimate morphologies of DCIS. Motivated by previous experimental studies demonstrating that tumor cells behave differently depending on where they are located within the mammary duct in vivo or in engineered tissues, we examined the effects of tissue geometry on the progression of DCIS. In agreement with our previous experimental work, we found that cells are more likely to invade from the end of ducts and that this preferential invasion is regulated by cell adhesion and contractility. This model provides additional insight into tumor cell behavior and allows the exploration of phenotypic transitions not easily monitored in vivo.

  17. Lattice-based model of ductal carcinoma in situ suggests rules for breast cancer progression to an invasive state.

    Science.gov (United States)

    Boghaert, Eline; Radisky, Derek C; Nelson, Celeste M

    2014-12-01

    Ductal carcinoma in situ (DCIS) is a heterogeneous group of non-invasive lesions of the breast that result from abnormal proliferation of mammary epithelial cells. Pathologists characterize DCIS by four tissue morphologies (micropapillary, cribriform, solid, and comedo), but the underlying mechanisms that distinguish the development and progression of these morphologies are not well understood. Here we explored the conditions leading to the emergence of the different morphologies of DCIS using a two-dimensional multi-cell lattice-based model that incorporates cell proliferation, apoptosis, necrosis, adhesion, and contractility. We found that the relative rates of cell proliferation and apoptosis governed which of the four morphologies emerged. High proliferation and low apoptosis favored the emergence of solid and comedo morphologies. In contrast, low proliferation and high apoptosis led to the micropapillary morphology, whereas high proliferation and high apoptosis led to the cribriform morphology. The natural progression between morphologies cannot be investigated in vivo since lesions are usually surgically removed upon detection; however, our model suggests probable transitions between these morphologies during breast cancer progression. Importantly, cribriform and comedo appear to be the ultimate morphologies of DCIS. Motivated by previous experimental studies demonstrating that tumor cells behave differently depending on where they are located within the mammary duct in vivo or in engineered tissues, we examined the effects of tissue geometry on the progression of DCIS. In agreement with our previous experimental work, we found that cells are more likely to invade from the end of ducts and that this preferential invasion is regulated by cell adhesion and contractility. This model provides additional insight into tumor cell behavior and allows the exploration of phenotypic transitions not easily monitored in vivo.

  18. Molecular biology of prostate cancer progression

    International Nuclear Information System (INIS)

    Thompson, Timothy C.; Sehgal, I.; Timme, T.L.; Rn, C.; Yang, G.; Park, S.H.

    1996-01-01

    Prostate cancer is now the most common form of cancer and the second leading cause of cancer deaths in American men (Boring C.C. et al, CA 44:7-26, 1994). As with other forms of cancer, prostate cancer is a multistep disease process that involves the acquisition of multiple genetic alternations (Armitage P and Doll K, Br J Cancer 8:1-12, 1954). For prostate cancer, alternations in specific dominantly acting oncogenes including ras and myc and tumor suppressor genes including p53 and Rb have been reported. However, a simple phenotype-genotype correlation for prostate cancer progression may not be readily accessible because prostate cancer demonstrates remarkable genetic heterogeneity. Recent clinical data indicate that this heterogeneity exists both among the multiple cancer foci as well as within individual cancer foci. Furthermore, based on chromosomal analysis, it has been suggested that metastases do not necessarily seed from the largest index cancer focus at the primary site. Such observations imply that abrupt changes in gene expression may trigger metastatic behavior in relatively small cohorts of malignant cells present at the local site. This pattern of progression may result from compromised function of specific 'control' genes which could affect the activity of multiple downstream genes involved in specific pathways of malignant progression. Such a mechanistic framework involving networks of gene expression could explain the acquisition of the complex metastatic phenotype. Using the mouse prostate reconstitution (MPR) model system (Thompson et al, Cell 56:917-930, 1989) we demonstrated that progression of experimental prostate cancer to metastasis was invariably associated with functional inactivation of p53 (Thompson el al, Oncogene 10:869-879, 1995). Southern blotting analyses revealed that metastases do not necessarily originate from the most abundant clone in the primary carcinoma. Furthermore, the role of p53 as a potential metastasis suppressor

  19. Consumption of lycopene inhibits the growth and progression of colon cancer in a mouse xenograft model

    Science.gov (United States)

    A previous study indicated that lycopene could significantly inhibit the proliferation of human colon cancer cells in vitro. However, the in vivo anticancer effects of lycopene against colon cancer have not been demonstrated yet. Therefore, this study investigated whether consumption of lycopene cou...

  20. p53 constrains progression to anaplastic thyroid carcinoma in a Braf-mutant mouse model of papillary thyroid cancer

    Science.gov (United States)

    McFadden, David G.; Vernon, Amanda; Santiago, Philip M.; Martinez-McFaline, Raul; Bhutkar, Arjun; Crowley, Denise M.; McMahon, Martin; Sadow, Peter M.; Jacks, Tyler

    2014-01-01

    Anaplastic thyroid carcinoma (ATC) has among the worst prognoses of any solid malignancy. The low incidence of the disease has in part precluded systematic clinical trials and tissue collection, and there has been little progress in developing effective therapies. v-raf murine sarcoma viral oncogene homolog B (BRAF) and tumor protein p53 (TP53) mutations cooccur in a high proportion of ATCs, particularly those associated with a precursor papillary thyroid carcinoma (PTC). To develop an adult-onset model of BRAF-mutant ATC, we generated a thyroid-specific CreER transgenic mouse. We used a Cre-regulated BrafV600E mouse and a conditional Trp53 allelic series to demonstrate that p53 constrains progression from PTC to ATC. Gene expression and immunohistochemical analyses of murine tumors identified the cardinal features of human ATC including loss of differentiation, local invasion, distant metastasis, and rapid lethality. We used small-animal ultrasound imaging to monitor autochthonous tumors and showed that treatment with the selective BRAF inhibitor PLX4720 improved survival but did not lead to tumor regression or suppress signaling through the MAPK pathway. The combination of PLX4720 and the mapk/Erk kinase (MEK) inhibitor PD0325901 more completely suppressed MAPK pathway activation in mouse and human ATC cell lines and improved the structural response and survival of ATC-bearing animals. This model expands the limited repertoire of autochthonous models of clinically aggressive thyroid cancer, and these data suggest that small-molecule MAPK pathway inhibitors hold clinical promise in the treatment of advanced thyroid carcinoma. PMID:24711431

  1. NCI Dictionary | Cancer Trends Progress Report

    Science.gov (United States)

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  2. Alcohol Consumption | Cancer Trends Progress Report

    Science.gov (United States)

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  3. Custom Report | Cancer Trends Progress Report

    Science.gov (United States)

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  4. Secondhand Smoke Exposure | Cancer Trends Progress Report

    Science.gov (United States)

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  5. Fat Consumption | Cancer Trends Progress Report

    Science.gov (United States)

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  6. Red Meat Consumption | Cancer Trends Progress Report

    Science.gov (United States)

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  7. Epigenetic Regulation in Prostate Cancer Progression.

    Science.gov (United States)

    Ruggero, Katia; Farran-Matas, Sonia; Martinez-Tebar, Adrian; Aytes, Alvaro

    2018-01-01

    An important number of newly identified molecular alterations in prostate cancer affect gene encoding master regulators of chromatin biology epigenetic regulation. This review will provide an updated view of the key epigenetic mechanisms underlying prostate cancer progression, therapy resistance, and potential actionable mechanisms and biomarkers. Key players in chromatin biology and epigenetic master regulators has been recently described to be crucially altered in metastatic CRPC and tumors that progress to AR independency. As such, epigenetic dysregulation represents a driving mechanism in the reprograming of prostate cancer cells as they lose AR-imposed identity. Chromatin integrity and accessibility for transcriptional regulation are key features altered in cancer progression, and particularly relevant in nuclear hormone receptor-driven tumors like prostate cancer. Understanding how chromatin remodeling dictates prostate development and how its deregulation contributes to prostate cancer onset and progression may improve risk stratification and treatment selection for prostate cancer patients.

  8. Formal modeling and analysis of the hexosamine biosynthetic pathway: role of O-linked N-acetylglucosamine transferase in oncogenesis and cancer progression

    Directory of Open Access Journals (Sweden)

    Muhammad Tariq Saeed

    2016-09-01

    Full Text Available The alteration of glucose metabolism, through increased uptake of glucose and glutamine addiction, is essential to cancer cell growth and invasion. Increased flux of glucose through the Hexosamine Biosynthetic Pathway (HBP drives increased cellular O-GlcNAcylation (hyper-O-GlcNAcylation and contributes to cancer progression by regulating key oncogenes. However, the association between hyper-O-GlcNAcylation and activation of these oncogenes remains poorly characterized. Here, we implement a qualitative modeling framework to analyze the role of the Biological Regulatory Network in HBP activation and its potential effects on key oncogenes. Experimental observations are encoded in a temporal language format and model checking is applied to infer the model parameters and qualitative model construction. Using this model, we discover step-wise genetic alterations that promote cancer development and invasion due to an increase in glycolytic flux, and reveal critical trajectories involved in cancer progression. We compute delay constraints to reveal important associations between the production and degradation rates of proteins. O-linked N-acetylglucosamine transferase (OGT, an enzyme used for addition of O-GlcNAc during O-GlcNAcylation, is identified as a key regulator to promote oncogenesis in a feedback mechanism through the stabilization of c-Myc. Silencing of the OGT and c-Myc loop decreases glycolytic flux and leads to programmed cell death. Results of network analyses also identify a significant cycle that highlights the role of p53-Mdm2 circuit oscillations in cancer recovery and homeostasis. Together, our findings suggest that the OGT and c-Myc feedback loop is critical in tumor progression, and targeting these mediators may provide a mechanism-based therapeutic approach to regulate hyper-O-GlcNAcylation in human cancer.

  9. Multiscale Cancer Modeling

    Science.gov (United States)

    Macklin, Paul; Cristini, Vittorio

    2013-01-01

    Simulating cancer behavior across multiple biological scales in space and time, i.e., multiscale cancer modeling, is increasingly being recognized as a powerful tool to refine hypotheses, focus experiments, and enable more accurate predictions. A growing number of examples illustrate the value of this approach in providing quantitative insight on the initiation, progression, and treatment of cancer. In this review, we introduce the most recent and important multiscale cancer modeling works that have successfully established a mechanistic link between different biological scales. Biophysical, biochemical, and biomechanical factors are considered in these models. We also discuss innovative, cutting-edge modeling methods that are moving predictive multiscale cancer modeling toward clinical application. Furthermore, because the development of multiscale cancer models requires a new level of collaboration among scientists from a variety of fields such as biology, medicine, physics, mathematics, engineering, and computer science, an innovative Web-based infrastructure is needed to support this growing community. PMID:21529163

  10. Financial Burden of Cancer Care | Cancer Trends Progress Report

    Science.gov (United States)

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  11. Roles of caloric restriction, ketogenic diet and intermittent fasting during initiation, progression and metastasis of cancer in animal models: a systematic review and meta-analysis.

    Science.gov (United States)

    Lv, Mengmeng; Zhu, Xingya; Wang, Hao; Wang, Feng; Guan, Wenxian

    2014-01-01

    The role of dietary restriction regimens such as caloric restriction, ketogenic diet and intermittent fasting in development of cancers has been detected via abundant preclinical experiments. However, the conclusions are controversial. We aim to review the relevant animal studies systematically and provide assistance for further clinical studies. Literatures on associations between dietary restriction and cancer published in PubMed in recent twenty years were comprehensively searched. Animal model, tumor type, feeding regimen, study length, sample size, major outcome, conclusion, quality assessment score and the interferential step of cancer were extracted from each eligible study. We analyzed the tumor incidence rates from 21 studies about caloric restriction. Fifty-nine studies were involved in our system review. The involved studies explored roles of dietary restriction during initiation, progression and metastasis of cancer. About 90.9% of the relevant studies showed that caloric restriction plays an anti-cancer role, with the pooled OR (95%CI) of 0.20 (0.12, 0.34) relative to controls. Ketogenic diet was also positively associated with cancer, which was indicated by eight of the nine studies. However, 37.5% of the related studies obtained a negative conclusion that intermittent fasting was not significantly preventive against cancer. Caloric restriction and ketogenic diet are effective against cancer in animal experiments while the role of intermittent fasting is doubtful and still needs exploration. More clinical experiments are needed and more suitable patterns for humans should be investigated.

  12. Roles of caloric restriction, ketogenic diet and intermittent fasting during initiation, progression and metastasis of cancer in animal models: a systematic review and meta-analysis.

    Directory of Open Access Journals (Sweden)

    Mengmeng Lv

    Full Text Available The role of dietary restriction regimens such as caloric restriction, ketogenic diet and intermittent fasting in development of cancers has been detected via abundant preclinical experiments. However, the conclusions are controversial. We aim to review the relevant animal studies systematically and provide assistance for further clinical studies.Literatures on associations between dietary restriction and cancer published in PubMed in recent twenty years were comprehensively searched. Animal model, tumor type, feeding regimen, study length, sample size, major outcome, conclusion, quality assessment score and the interferential step of cancer were extracted from each eligible study. We analyzed the tumor incidence rates from 21 studies about caloric restriction.Fifty-nine studies were involved in our system review. The involved studies explored roles of dietary restriction during initiation, progression and metastasis of cancer. About 90.9% of the relevant studies showed that caloric restriction plays an anti-cancer role, with the pooled OR (95%CI of 0.20 (0.12, 0.34 relative to controls. Ketogenic diet was also positively associated with cancer, which was indicated by eight of the nine studies. However, 37.5% of the related studies obtained a negative conclusion that intermittent fasting was not significantly preventive against cancer.Caloric restriction and ketogenic diet are effective against cancer in animal experiments while the role of intermittent fasting is doubtful and still needs exploration. More clinical experiments are needed and more suitable patterns for humans should be investigated.

  13. Genomic Instability Promoted by Overexpression of Mismatch Repair Factors in Yeast: A Model for Understanding Cancer Progression.

    Science.gov (United States)

    Chakraborty, Ujani; Dinh, Timothy A; Alani, Eric

    2018-04-13

    Mismatch repair (MMR) proteins act in spellchecker roles to excise misincorporation errors that occur during DNA replication. Curiously, large-scale analyses of a variety of cancers showed that increased expression of MMR proteins often correlated with tumor aggressiveness, metastasis, and early recurrence. To better understand these observations, we used the TCGA and GENT databases to analyze MMR protein expression in cancers. We found that the MMR genes MSH2 and MSH6 are overexpressed more frequently than MSH3 , and that MSH2 and MSH6 are often co-overexpressed as a result of copy number amplifications of these genes. These observations encouraged us to test the effects of upregulating MMR protein levels in baker's yeast, where we can sensitively monitor genome instability phenotypes associated with cancer initiation and progression. Msh6 overexpression (2 to 4-fold) almost completely disrupted mechanisms that prevent recombination between divergent DNA sequences by interacting with the DNA polymerase processivity clamp PCNA and by sequestering the Sgs1 helicase. Importantly, co-overexpression of Msh2 and Msh6 (∼8-fold) conferred, in a PCNA interaction dependent manner, several genome instability phenotypes including increased mutation rate, increased sensitivity to the DNA replication inhibitor hydroxyurea and the DNA damaging agents methyl methanesulfonate and 4-nitroquinoline N-oxide, and elevated loss of heterozygosity. Msh2 and Msh6 co-overexpression also altered the cell cycle distribution of exponentially growing cells, resulting in an increased fraction of unbudded cells, consistent with a larger percentage of cells in G1. These novel observations suggested that overexpression of MSH factors affected the integrity of the DNA replication fork, causing genome instability phenotypes that could be important for promoting cancer progression. Copyright © 2018, Genetics.

  14. Analysis of the effects of exposure to acute hypoxia on oxidative lesions and tumour progression in a transgenic mouse breast cancer model

    Directory of Open Access Journals (Sweden)

    Lunt Sarah

    2008-05-01

    Full Text Available Abstract Background Tumour hypoxia is known to be a poor prognostic indicator, predictive of increased risk of metastatic disease and reduced survival. Genomic instability has been proposed as one of the potential mechanisms for hypoxic tumour progression. Both of these features are commonly found in many cancer types, but their relationship and association with tumour progression has not been examined in the same model. Methods To address this issue, we determined the effects of 6 week in vivo acute hypoxic exposure on the levels of mutagenic lipid peroxidation product, malondialdehyde, and 8-oxo-7,8-dihydro-2'-deoxyguanosine DNA (8-oxo-dG lesions in the transgenic polyomavirus middle T (PyMT breast cancer mouse model. Results We observed significantly increased plasma lipid peroxidation and 8-oxo-dG lesion levels in the hypoxia-exposed mice. Consumption of malondialdehyde also induced a significant increase in the PyMT tumour DNA lesion levels, however, these increases did not translate into enhanced tumour progression. We further showed that the in vivo exposure to acute hypoxia induced accumulation of F4/80 positive tumour-associated macrophages (TAMs, demonstrating a relationship between hypoxia and macrophages in an experimental model. Conclusion These data suggest that although exposure to acute hypoxia causes an increase in 8-oxo-dG lesions and TAMs in the PyMT tumours, these increases do not translate into significant changes in tumour progression at the primary or metastatic levels in this strong viral oncogene-driven breast cancer model.

  15. Integrating evolutionary game theory into an agent-based model of ductal carcinoma in situ: Role of gap junctions in cancer progression.

    Science.gov (United States)

    Malekian, Negin; Habibi, Jafar; Zangooei, Mohammad Hossein; Aghakhani, Hojjat

    2016-11-01

    There are many cells with various phenotypic behaviors in cancer interacting with each other. For example, an apoptotic cell may induce apoptosis in adjacent cells. A living cell can also protect cells from undergoing apoptosis and necrosis. These survival and death signals are propagated through interaction pathways between adjacent cells called gap junctions. The function of these signals depends on the cellular context of the cell receiving them. For instance, a receiver cell experiencing a low level of oxygen may interpret a received survival signal as an apoptosis signal. In this study, we examine the effect of these signals on tumor growth. We make an evolutionary game theory component in order to model the signal propagation through gap junctions. The game payoffs are defined as a function of cellular context. Then, the game theory component is integrated into an agent-based model of tumor growth. After that, the integrated model is applied to ductal carcinoma in situ, a type of early stage breast cancer. Different scenarios are explored to observe the impact of the gap junction communication and parameters of the game theory component on cancer progression. We compare these scenarios by using the Wilcoxon signed-rank test. The Wilcoxon signed-rank test succeeds in proving a significant difference between the tumor growth of the model before and after considering the gap junction communication. The Wilcoxon signed-rank test also proves that the tumor growth significantly depends on the oxygen threshold of turning survival signals into apoptosis. In this study, the gap junction communication is modeled by using evolutionary game theory to illustrate its role at early stage cancers such as ductal carcinoma in situ. This work indicates that the gap junction communication and the oxygen threshold of turning survival signals into apoptosis can notably affect cancer progression. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Ultrasound-guided direct delivery of 3-bromopyruvate blocks tumor progression in an orthotopic mouse model of human pancreatic cancer.

    Science.gov (United States)

    Ota, Shinichi; Geschwind, Jean-Francois H; Buijs, Manon; Wijlemans, Joost W; Kwak, Byung Kook; Ganapathy-Kanniappan, Shanmugasundaram

    2013-06-01

    Studies in animal models of cancer have demonstrated that targeting tumor metabolism can be an effective anticancer strategy. Previously, we showed that inhibition of glucose metabolism by the pyruvate analog, 3-bromopyruvate (3-BrPA), induces anticancer effects both in vitro and in vivo. We have also documented that intratumoral delivery of 3-BrPA affects tumor growth in a subcutaneous tumor model of human liver cancer. However, the efficacy of such an approach in a clinically relevant orthotopic tumor model has not been reported. Here, we investigated the feasibility of ultrasound (US) image-guided delivery of 3-BrPA in an orthotopic mouse model of human pancreatic cancer and evaluated its therapeutic efficacy. In vitro, treatment of Panc-1 cells with 3-BrPA resulted in a dose-dependent decrease in cell viability. The loss of viability correlated with a dose-dependent decrease in the intracellular ATP level and lactate production confirming that disruption of energy metabolism underlies these 3-BrPA-mediated effects. In vivo, US-guided delivery of 3-BrPA was feasible and effective as demonstrated by a marked decrease in tumor size on imaging. Further, the antitumor effect was confirmed by (1) a decrease in the proliferative potential by Ki-67 immunohistochemical staining and (2) the induction of apoptosis by terminal deoxynucleotidyl transferase-mediated deoxyuridine 5-triphospate nick end labeling staining. We therefore demonstrate the technical feasibility of US-guided intratumoral injection of 3-BrPA in a mouse model of human pancreatic cancer as well as its therapeutic efficacy. Our data suggest that this new therapeutic approach consisting of a direct intratumoral injection of antiglycolytic agents may represent an exciting opportunity to treat patients with pancreas cancer.

  17. Modeling Progress in AI

    OpenAIRE

    Brundage, Miles

    2015-01-01

    Participants in recent discussions of AI-related issues ranging from intelligence explosion to technological unemployment have made diverse claims about the nature, pace, and drivers of progress in AI. However, these theories are rarely specified in enough detail to enable systematic evaluation of their assumptions or to extrapolate progress quantitatively, as is often done with some success in other technological domains. After reviewing relevant literatures and justifying the need for more ...

  18. Hyperglycemia, a Neglected Factor during Cancer Progression

    Directory of Open Access Journals (Sweden)

    Wanxing Duan

    2014-01-01

    Full Text Available Recent evidence from large cohort studies suggests that there exists a higher cancer incidence in people with type 2 diabetes (DM2. However, to date, the potential reasons for this association remain unclear. Hyperglycemia, the most important feature of diabetes, may be responsible for the excess glucose supply for these glucose-hungry cells, and it contributes to apoptosis resistance, oncogenesis, and tumor cell resistance to chemotherapy. Considering associations between diabetes and malignancies, the effect of hyperglycemia on cancer progression in cancer patients with abnormal blood glucose should not be neglected. In this paper, we describe the role that hyperglycemia plays in cancer progression and treatment and illustrate that hyperglycemia may contribute to a more malignant phenotype of cancer cells and lead to drug resistance. Therefore, controlling hyperglycemia may have important therapeutic implications in cancer patients.

  19. Recent Progress in Pancreatic Cancer

    Science.gov (United States)

    Wolfgang, Christopher L.; Herman, Joseph M.; Laheru, Daniel A.; Klein, Alison P.; Erdek, Michael A.; Fishman, Elliot K.; Hruban, Ralph H.

    2013-01-01

    Pancreatic cancer is currently one of the deadliest of the solid malignancies. However, surgery to resect neoplasms of the pancreas is safer and less invasive than ever, novel drug combinations have been shown to improve survival, advances in radiation therapy have resulted in less toxicity, and enormous strides have been made in our understanding of the fundamental genetics of pancreatic cancer. These advances provide hope but they also increase the complexity of caring for patients. It is clear that multidisciplinary care that provides comprehensive and coordinated evaluation and treatment is the most effective way to manage patients with pancreatic cancer. PMID:23856911

  20. Progress and controversies in developing cancer vaccines

    Directory of Open Access Journals (Sweden)

    Speiser Daniel E

    2005-04-01

    Full Text Available Abstract Immunotherapy has become a standard approach for cancer management, through the use of cytokines (eg: interleukin-2 and monoclonal antibodies. Cancer vaccines hold promise as another form of immunotherapy, and there has been substantial progress in identifying shared antigens recognized by T cells, in developing vaccine approaches that induce antigen-specific T cell responses in cancer patients, and in developing new technology for monitoring immune responses in various human tissue compartments. Dramatic clinical regressions of human solid tumors have occurred with some cancer vaccines, but the rate of those responses remains low. This article is part of a 2-part point:counterpoint series on peptide vaccines and adoptive therapy approaches for cancer. The current status of cancer vaccination, and associated challenges, are discussed. Emphasis is placed on the need to increase our knowledge of cancer immunobiology, as well as to improve monitoring of cellular immune function after vaccination. Progress in both areas will facilitate development of effective cancer vaccines, as well as of adoptive therapy. Effective cancer vaccines promise to be useful for treatment and prevention of cancer at low cost and with low morbidity.

  1. High-anxious individuals show increased chronic stress burden, decreased protective immunity, and increased cancer progression in a mouse model of squamous cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Firdaus S Dhabhar

    Full Text Available In spite of widespread anecdotal and scientific evidence much remains to be understood about the long-suspected connection between psychological factors and susceptibility to cancer. The skin is the most common site of cancer, accounting for nearly half of all cancers in the US, with approximately 2-3 million cases of non-melanoma cancers occurring each year worldwide. We hypothesized that a high-anxious, stress-prone behavioral phenotype would result in a higher chronic stress burden, lower protective-immunity, and increased progression of the immuno-responsive skin cancer, squamous cell carcinoma. SKH1 mice were phenotyped as high- or low-anxious at baseline, and subsequently exposed to ultraviolet-B light (1 minimal erythemal dose (MED, 3 times/week, 10-weeks. The significant strengths of this cancer model are that it uses a normal, immunocompetent, outbred strain, without surgery/injection of exogenous tumor cells/cell lines, and produces lesions that resemble human tumors. Tumors were counted weekly (primary outcome, and tissues collected during early and late phases of tumor development. Chemokine/cytokine gene-expression was quantified by PCR, tumor-infiltrating helper (Th, cytolytic (CTL, and regulatory (Treg T cells by immunohistochemistry, lymph node T and B cells by flow cytometry, adrenal and plasma corticosterone and tissue vascular-endothelial-growth-factor (VEGF by ELISA. High-anxious mice showed a higher tumor burden during all phases of tumor development. They also showed: higher corticosterone levels (indicating greater chronic stress burden, increased CCL22 expression and Treg infiltration (increased tumor-recruited immuno-suppression, lower CTACK/CCL27, IL-12, and IFN-γ gene-expression and lower numbers of tumor infiltrating Th and CTLs (suppressed protective immunity, and higher VEGF concentrations (increased tumor angiogenesis/invasion/metastasis. These results suggest that the deleterious effects of high trait anxiety

  2. Cancer nanomedicine: progress, challenges and opportunities.

    Science.gov (United States)

    Shi, Jinjun; Kantoff, Philip W; Wooster, Richard; Farokhzad, Omid C

    2017-01-01

    The intrinsic limits of conventional cancer therapies prompted the development and application of various nanotechnologies for more effective and safer cancer treatment, herein referred to as cancer nanomedicine. Considerable technological success has been achieved in this field, but the main obstacles to nanomedicine becoming a new paradigm in cancer therapy stem from the complexities and heterogeneity of tumour biology, an incomplete understanding of nano-bio interactions and the challenges regarding chemistry, manufacturing and controls required for clinical translation and commercialization. This Review highlights the progress, challenges and opportunities in cancer nanomedicine and discusses novel engineering approaches that capitalize on our growing understanding of tumour biology and nano-bio interactions to develop more effective nanotherapeutics for cancer patients.

  3. Progress in Rectal Cancer Treatment

    Science.gov (United States)

    Ceelen, Wim P.

    2012-01-01

    The dramatic improvement in local control of rectal cancer observed during the last decades is to be attributed to attention to surgical technique and to the introduction of neoadjuvant therapy regimens. Nevertheless, systemic relapse remains frequent and is currently insufficiently addressed. Intensification of neoadjuvant therapy by incorporating chemotherapy with or without targeted agents before the start of (chemo)radiation or during the waiting period to surgery may present an opportunity to improve overall survival. An increasing number of patients can nowadays undergo sphincter preserving surgery. In selected patients, local excision or even a “wait and see” approach may be feasible following active neoadjuvant therapy. Molecular and genetic biomarkers as well as innovative imaging techniques may in the future allow better selection of patients for this treatment option. Controversy persists concerning the selection of patients for adjuvant chemotherapy and/or targeted therapy after neoadjuvant regimens. The currently available evidence suggests that in complete pathological responders long-term outcome is excellent and adjuvant therapy may be omitted. The results of ongoing trials will help to establish the ideal tailored approach in resectable rectal cancer. PMID:22970381

  4. Progression inference for somatic mutations in cancer

    Directory of Open Access Journals (Sweden)

    Leif E. Peterson

    2017-04-01

    Full Text Available Computational methods were employed to determine progression inference of genomic alterations in commonly occurring cancers. Using cross-sectional TCGA data, we computed evolutionary trajectories involving selectivity relationships among pairs of gene-specific genomic alterations such as somatic mutations, deletions, amplifications, downregulation, and upregulation among the top 20 driver genes associated with each cancer. Results indicate that the majority of hierarchies involved TP53, PIK3CA, ERBB2, APC, KRAS, EGFR, IDH1, VHL, etc. Research into the order and accumulation of genomic alterations among cancer driver genes will ever-increase as the costs of nextgen sequencing subside, and personalized/precision medicine incorporates whole-genome scans into the diagnosis and treatment of cancer. Keywords: Oncology, Cancer research, Genetics, Computational biology

  5. Heparan Sulfate and Heparanase as Modulators of Breast Cancer Progression

    Directory of Open Access Journals (Sweden)

    Angélica M. Gomes

    2013-01-01

    Full Text Available Breast cancer is defined as a cancer originating in tissues of the breast, frequently in ducts and lobules. During the last 30 years, studies to understand the biology and to treat breast tumor improved patients’ survival rates. These studies have focused on genetic components involved in tumor progression and on tumor microenvironment. Heparan sulfate proteoglycans (HSPGs are involved in cell signaling, adhesion, extracellular matrix assembly, and growth factors storage. As a central molecule, HSPG regulates cell behavior and tumor progression. HS accompanied by its glycosaminoglycan counterparts regulates tissue homeostasis and cancer development. These molecules present opposite effects according to tumor type or cancer model. Studies in this area may contribute to unveil glycosaminoglycan activities on cell dynamics during breast cancer exploring these polysaccharides as antitumor agents. Heparanase is a potent tumor modulator due to its protumorigenic, proangiogenic, and prometastatic activities. Several lines of evidence indicate that heparanase is upregulated in all human sarcomas and carcinomas. Heparanase seems to be related to several aspects regulating the potential of breast cancer metastasis. Due to its multiple roles, heparanase is seen as a target in cancer treatment. We will describe recent findings on the function of HSPGs and heparanase in breast cancer behavior and progression.

  6. Scalar Potential Model progress

    Science.gov (United States)

    Hodge, John

    2007-04-01

    Because observations of galaxies and clusters have been found inconsistent with General Relativity (GR), the focus of effort in developing a Scalar Potential Model (SPM) has been on the examination of galaxies and clusters. The SPM has been found to be consistent with cluster cellular structure, the flow of IGM from spiral galaxies to elliptical galaxies, intergalactic redshift without an expanding universe, discrete redshift, rotation curve (RC) data without dark matter, asymmetric RCs, galaxy central mass, galaxy central velocity dispersion, and the Pioneer Anomaly. In addition, the SPM suggests a model of past expansion, past contraction, and current expansion of the universe. GR corresponds to the SPM in the limit in which a flat and static scalar potential field replaces the Sources and Sinks such as between clusters and on the solar system scale which is small relative to the distance to a Source. The papers may be viewed at http://web.infoave.net/˜scjh/ .

  7. Ultraviolet B irradiation induces expansion of intraepithelial tumor cells in a tissue model of early cancer progression.

    Science.gov (United States)

    Mudgil, Adarsh V; Segal, Nadav; Andriani, Frank; Wang, Youai; Fusenig, Norbert E; Garlick, Jonathan A

    2003-07-01

    Ultraviolet B irradiation is thought to enable skin cancer progression as clones of genetically damaged keratinocytes escape apoptosis and expand at the expense of adjacent normal cells. Mechanisms through which potentially malignant cells in human skin undergo clonal expansion, however, are not well understood. The goal of this study was to characterize the role of ultraviolet B irradiation on the intraepithelial expansion of early stage human tumor cells in organotypic skin cultures. To accomplish this, we have studied the effect of ultraviolet B irradiation on organotypic cultures that were fabricated by mixing normal human keratinocytes with beta-galactosidase-marked, intraepithelial tumor cells (HaCaT-ras, clone II-4), which bear mutations in both p53 alleles and harbor an activated H-ras oncogene. We found that when organotypic mixtures were exposed to an ultraviolet B dose of 50 mJ per cm2, intraepithelial tumor cells underwent a significant degree of proliferative expansion compared to nonirradiated cultures. To understand this response, organotypic cultures of nor-mal keratinocytes were exposed to ultraviolet B and showed a dose-dependent increase in numbers of sunburn cells and TUNEL-positive cells although their proliferation was suppressed. In contrast, neither the apoptotic nor the proliferative response of II-4 cells was altered by ultraviolet B in organotypic cultures. The differential response of these cell types suggested that II-4 cells were resistant to ultraviolet-B-induced alterations, which allowed these intraepithelial tumor cells to gain a selective growth and survival advantage relative to neighboring normal cells. These findings demonstrate that ultraviolet B exposure can induce the intraepithelial expansion of apoptosis-resistant, p53-mutant, and ras-activated keratinocytes, suggesting that this agent can act to promote the early stages of epithelial carcinogenesis.

  8. Two Opposing Effects (Yin and Yang) Determine Cancer Progression.

    Science.gov (United States)

    Huang, Shujun; Kurubanjerdjit, Nilubon; Xu, Wayne

    2017-01-01

    In this review, we introduce a new vision of cancer describing opposing effects that control progression. Cancer is a paradigm of opposing of "Yin" and "Yang," with Yin being the effect to promote cancer and Yang that to maintain the normal state. This Yin Yang hypothesis has been used to select Yin and Yang genes to develop multigene signatures for determining prognosis in lung and breast cancer. Most of the Yin genes are involved in cell survival, growth, and proliferation, whereas most Yang genes are involved in cell apoptosis. Furthermore, Yin and Yang pathways have been identified in breast cancer and compounds that can inhibit the Yin pathways or activate the Yang pathways have been examined, suggesting a new promising targeting therapy for cancer. We are building a Yin Yang model to represent the dynamic change of Yin and Yang genes and pathways.

  9. Cancer initiation and progression: an unsimplifiable complexity

    Directory of Open Access Journals (Sweden)

    Frezza Eldo E

    2006-10-01

    Full Text Available Abstract Background Cancer remains one of the most complex diseases affecting humans and, despite the impressive advances that have been made in molecular and cell biology, how cancer cells progress through carcinogenesis and acquire their metastatic ability is still widely debated. Conclusion There is no doubt that human carcinogenesis is a dynamic process that depends on a large number of variables and is regulated at multiple spatial and temporal scales. Viewing cancer as a system that is dynamically complex in time and space will, however, probably reveal more about its underlying behavioural characteristics. It is encouraging that mathematicians, biologists and clinicians continue to contribute together towards a common quantitative understanding of cancer complexity. This way of thinking may further help to clarify concepts, interpret new and old experimental data, indicate alternative experiments and categorize the acquired knowledge on the basis of the similarities and/or shared behaviours of very different tumours.

  10. Cancer progression: is inhibin alpha from Venus or Mars?

    Science.gov (United States)

    Ball, Emma M A; Mellor, Sally L; Risbridger, Gail P

    2004-10-01

    The inhibin field has been perplexed by the information that inhibin alpha is a tumour suppressor in mice yet is elevated in women with ovarian cancer. Furthermore, we have consistently observed a down-regulation or loss of inhibin alpha in prostate cancer patient samples and cell lines. However, our latest data have prompted us to re-evaluate the role of inhibin alpha in prostate and other cancers. Using the analogy of TGF-beta as a springboard for our hypothesis, we offer a unifying model whereby the previously conflicting observations in mice, men and women can be explained. We propose that initially inhibin alpha is tumour-suppressive and is expressed in benign and early-stage primary cancers. Tumour-suppressive inhibin alpha is then silenced as the tumour progresses but is reactivated as a pro-metastatic factor in advanced, aggressive cancers.

  11. Sepsis progression and outcome: a dynamical model

    Directory of Open Access Journals (Sweden)

    Gessler Damian DG

    2006-02-01

    Full Text Available Abstract Background Sepsis (bloodstream infection is the leading cause of death in non-surgical intensive care units. It is diagnosed in 750,000 US patients per annum, and has high mortality. Current understanding of sepsis is predominately observational and correlational, with only a partial and incomplete understanding of the physiological dynamics underlying the syndrome. There exists a need for dynamical models of sepsis progression, based upon basic physiologic principles, which could eventually guide hourly treatment decisions. Results We present an initial mathematical model of sepsis, based on metabolic rate theory that links basic vascular and immunological dynamics. The model includes the rate of vascular circulation, a surrogate for the metabolic rate that is mechanistically associated with disease progression. We use the mass-specific rate of blood circulation (SRBC, a correlate of the body mass index, to build a differential equation model of circulation, infection, organ damage, and recovery. This introduces a vascular component into an infectious disease model that describes the interaction between a pathogen and the adaptive immune system. Conclusion The model predicts that deviations from normal SRBC correlate with disease progression and adverse outcome. We compare the predictions with population mortality data from cardiovascular disease and cancer and show that deviations from normal SRBC correlate with higher mortality rates.

  12. Concomitant consumption of lycopene and fish oil inhibits tumor growth and progression in a mouse xenograft model of colon cancer

    Science.gov (United States)

    Our previous report showed that concomitant supplementation of lycopene and eicosa-pentaenoic acid synergistically inhibited the proliferation of human colon cancer HT-29 cells in vitro. To validate our findings, the present study investigated whether consumption of lycopene and fish oil would help ...

  13. Financial Burden of Cancer Care - Life After Cancer Summary Table | Cancer Trends Progress Report

    Science.gov (United States)

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  14. Progress in the surgery of rectal cancer

    Directory of Open Access Journals (Sweden)

    Rudolf Schiessel

    2018-01-01

    Full Text Available The treatment of rectal cancer has been improved a great deal within the last 20 years. Major progress has been made in the preoperative evaluation by introducing MRI- imaging as a basis for the further management. Neoadjuvant radiochemotherapy has been shown to be effective in downstaging of advanced tumours. The surgical technique has been improved in many respects.- Total mesorectal excision has reduced local recurrences, sphincter saving techniques such as low anterior resection and intersphincteric resection reduced the need for a permanent stoma to 10%-20%. Recently the introduction of minimal invasive techniques and the application of robotic systems have reduced the surgical trauma.

  15. Analysis of interventional therapy for progressing stage gastric cancer

    International Nuclear Information System (INIS)

    Zhu Mingde; Zhang Zijing; Ji Hongsheng; Ge Chenlin; Hao Gang; Wei Kongming; Yuan Yuhou; Zhao Xiuping

    2008-01-01

    Objective: To investigate the interventional therapy and its curative effect for progressing stage gastric cancer. Methods: two hundred and twelve patients with progressing stage gastric cancer were treated with arterial perfusion and arterial embolization. Gastric cardia cancer was treated through the left gastric artery and the left inferior phrenic artery or splenic artery. Cancers of lesser and greater gastric curvature was treated either through the left and right gastric arteries or common hepatic artery or through gastroduodenal artery, right gastroomental artery or splenic artery. Gastric antrum cancers were perfused through gastroduodenal artery or after the middle segmental embolization of right gastroomental artery. Results: One hundred and ninety three cases undergone interventional management were followed up. The CR + PR of gastric cardia cancer was 53.13%; gastric body cancer 44.44%; gastric antrum cancer 10%; recurrent cancer and remnant gastric cancer 0. There was no significant difference in outcome between gastric cardia cancer and gastric body cancer (P>0.05) but significant differences were shown both between gastric cardia cancer and gastric antrum cancer, and between gastric body cancer and gastric antrum cancer (P<0.05), with 1 year and 2 years survival rates of 81% and 56% respectively. Conclusion: The interventional therapeutic effect of progressing stage gastric cancers is different due to the different sites of the lesions in the gastric tissue. The curative effect of gastric cardia cancer and gastric body cancer is better than that of gastric antrum cancer, recurrent cancer and remnant gastric cancer. (authors)

  16. Patentability aspects of computational cancer models

    Science.gov (United States)

    Lishchuk, Iryna

    2017-07-01

    Multiscale cancer models, implemented in silico, simulate tumor progression at various spatial and temporal scales. Having the innovative substance and possessing the potential of being applied as decision support tools in clinical practice, patenting and obtaining patent rights in cancer models seems prima facie possible. What legal hurdles the cancer models need to overcome for being patented we inquire from this paper.

  17. Interleukin-30: A novel microenvironmental hallmark of prostate cancer progression.

    Science.gov (United States)

    Di Carlo, Emma

    2014-01-01

    Metastatic prostate cancer is a leading cause of cancer-related death in men worldwide. We have recently discovered that IL-30 shapes the microenvironment of prostate cancer and tumor-draining lymph nodes to favor tumor progression. IL-30 supports tumor growth in vitro, and IL-30 expression in prostate cancer patients is associated with high tumor grade and metastatic stage of disease. Thus, IL-30 may constitute a valuable target for modern therapeutic approaches to hamper prostate cancer progression.

  18. Studying skin tumourigenesis and progression in immunocompetent hairless SKH1-hr mice using chronic 7,12-dimethylbenz(a)anthracene topical applications to develop a useful experimental skin cancer model

    NARCIS (Netherlands)

    Thomas, Giju; Tuk, Bastiaan; Song, Ji-Ying; Truong, Hoa; Gerritsen, Hans C.; de Gruijl, Frank R.; Sterenborg, Henricus J. C. M.

    2017-01-01

    Previous studies have established that 7,12-dimethylbenz(a)anthracene (DMBA) can initiate skin tumourigenesis in conventional furred mouse models by acting on hair follicle stem cells. However, further cancer progression depends on repeated applications of tumour promoter agents. This study

  19. Targeting fibroblast growth factor receptor signaling inhibits prostate cancer progression.

    Science.gov (United States)

    Feng, Shu; Shao, Longjiang; Yu, Wendong; Gavine, Paul; Ittmann, Michael

    2012-07-15

    Extensive correlative studies in human prostate cancer as well as studies in vitro and in mouse models indicate that fibroblast growth factor receptor (FGFR) signaling plays an important role in prostate cancer progression. In this study, we used a probe compound for an FGFR inhibitor, which potently inhibits FGFR-1-3 and significantly inhibits FGFR-4. The purpose of this study is to determine whether targeting FGFR signaling from all four FGFRs will have in vitro activities consistent with inhibition of tumor progression and will inhibit tumor progression in vivo. Effects of AZ8010 on FGFR signaling and invasion were analyzed using immortalized normal prostate epithelial (PNT1a) cells and PNT1a overexpressing FGFR-1 or FGFR-4. The effect of AZ8010 on invasion and proliferation in vitro was also evaluated in prostate cancer cell lines. Finally, the impact of AZ8010 on tumor progression in vivo was evaluated using a VCaP xenograft model. AZ8010 completely inhibits FGFR-1 and significantly inhibits FGFR-4 signaling at 100 nmol/L, which is an achievable in vivo concentration. This results in marked inhibition of extracellular signal-regulated kinase (ERK) phosphorylation and invasion in PNT1a cells expressing FGFR-1 and FGFR-4 and all prostate cancer cell lines tested. Treatment in vivo completely inhibited VCaP tumor growth and significantly inhibited angiogenesis and proliferation and increased cell death in treated tumors. This was associated with marked inhibition of ERK phosphorylation in treated tumors. Targeting FGFR signaling is a promising new approach to treating aggressive prostate cancer.

  20. Morphine does not facilitate breast cancer progression in two preclinical mouse models for human invasive lobular and HER2⁺ breast cancer

    NARCIS (Netherlands)

    Doornebal, Chris W.; Vrijland, Kim; Hau, Cheei-Sing; Coffelt, Seth B.; Ciampricotti, Metamia; Jonkers, Jos; de Visser, Karin E.; Hollmann, Markus W.

    2015-01-01

    Morphine and other opioid analgesics are potent pain-relieving agents routinely used for pain management in patients with cancer. However, these drugs have recently been associated with a worse relapse-free survival in patients with surgical cancer, thus suggesting that morphine adversely affects

  1. A Role for TIMP-1 in Breast Cancer Progression

    National Research Council Canada - National Science Library

    Cardelli, James

    2004-01-01

    ... as compared to patients that survive. This suggests that this protein may have multiple functions that include both inhibition of cancer promoting proteinases and stimulation of cell-signaling pathways that promote cancer progression...

  2. Medicaid Coverage of Tobacco Dependency Treatments | Cancer Trends Progress Report

    Science.gov (United States)

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  3. UV Exposure and Sun Protective Practices | Cancer Trends Progress Report

    Science.gov (United States)

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  4. Sun-Protective Behavior | Cancer Trends Progress Report

    Science.gov (United States)

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  5. Alcohol consumption and prostate cancer incidence and progression

    DEFF Research Database (Denmark)

    Brunner, Clair; Davies, Neil M; Martin, Richard M

    2017-01-01

    Prostate cancer is the most common cancer in men in developed countries, and is a target for risk reduction strategies. The effects of alcohol consumption on prostate cancer incidence and survival remain unclear, potentially due to methodological limitations of observational studies. In this stud...... consumption is unlikely to affect prostate cancer incidence, but it may influence disease progression....

  6. A Small Molecule Polyamine Oxidase Inhibitor Blocks Androgen-Induced Oxidative Stress and Delays Prostate Cancer Progression in the TRAMP Mouse Model

    OpenAIRE

    Basu, Hirak S.; Thompson, Todd A.; Church, Dawn R.; Clower, Cynthia C.; Mehraein-Ghomi, Farideh; Amlong, Corey A.; Martin, Christopher T.; Woster, Patrick M.; Lindstrom, Mary J.; Wilding, George

    2009-01-01

    High levels of reactive oxygen species (ROS) present in human prostate epithelia are an important etiological factor in prostate cancer (CaP) occurrence, recurrence and progression. Androgen induces ROS production in the prostate by a yet unknown mechanism. Here, to the best of our knowledge, we report for the first time that androgen induces an overexpression of spermidine/spermine N1-acetyltransferase (SSAT), the rate-limiting enzyme in the polyamine oxidation pathway. As prostatic epitheli...

  7. Cancer progression by reprogrammed BCAA metabolism in myeloid leukaemia.

    Science.gov (United States)

    Hattori, Ayuna; Tsunoda, Makoto; Konuma, Takaaki; Kobayashi, Masayuki; Nagy, Tamas; Glushka, John; Tayyari, Fariba; McSkimming, Daniel; Kannan, Natarajan; Tojo, Arinobu; Edison, Arthur S; Ito, Takahiro

    2017-05-25

    Reprogrammed cellular metabolism is a common characteristic observed in various cancers. However, whether metabolic changes directly regulate cancer development and progression remains poorly understood. Here we show that BCAT1, a cytosolic aminotransferase for branched-chain amino acids (BCAAs), is aberrantly activated and functionally required for chronic myeloid leukaemia (CML) in humans and in mouse models of CML. BCAT1 is upregulated during progression of CML and promotes BCAA production in leukaemia cells by aminating the branched-chain keto acids. Blocking BCAT1 gene expression or enzymatic activity induces cellular differentiation and impairs the propagation of blast crisis CML both in vitro and in vivo. Stable-isotope tracer experiments combined with nuclear magnetic resonance-based metabolic analysis demonstrate the intracellular production of BCAAs by BCAT1. Direct supplementation with BCAAs ameliorates the defects caused by BCAT1 knockdown, indicating that BCAT1 exerts its oncogenic function through BCAA production in blast crisis CML cells. Importantly, BCAT1 expression not only is activated in human blast crisis CML and de novo acute myeloid leukaemia, but also predicts disease outcome in patients. As an upstream regulator of BCAT1 expression, we identified Musashi2 (MSI2), an oncogenic RNA binding protein that is required for blast crisis CML. MSI2 is physically associated with the BCAT1 transcript and positively regulates its protein expression in leukaemia. Taken together, this work reveals that altered BCAA metabolism activated through the MSI2-BCAT1 axis drives cancer progression in myeloid leukaemia.

  8. Genome-wide allelotyping of a new in vitro model system reveals early events in breast cancer progression.

    Science.gov (United States)

    Li, Zheng; Meng, Zhen Hang; Sayeed, Aejaz; Shalaby, Refaat; Ljung, Britt-Marie; Dairkee, Shanaz H

    2002-10-15

    Toward the goal of identifying early genetic losses, which mediate the release of human breast epithelium from replicative suppression leading to cellular immortalization, we have used a newly developed in vitro model system. This system consists of epithelial cultures derived from noncancerous breast tissue, treated with the chemical carcinogen N-ethyl-N-nitrosourea, and continuously passaged to yield cell populations culminating in the immortal phenotype. Genome-wide allelotyping of early passage N-ethyl-N-nitrosourea-exposed cell populations revealed aberrations at >10% (18 of 169) loci examined. Allelic losses encompassing chromosomes 6q24-6q27, implicating immortalization-associated candidate genes, hZAC and SEN6, occurred in two independently derived cell lines before the Hayflick limit. Additional LOH sites were present in one cell line at 3p11-3p26, 11p15, and 20p12-13. Allelic losses reported in this cell line preceded detectable levels of telomerase activity and the occurrence of p53-related aberrations. Information gained from the search for early immortalization-associated genetic deletions in cultured cells was applied in a novel approach toward the analysis of morphologically normal terminal ductal lobular units microdissected from 20 cases of ductal carcinoma in situ. Notably, clonal allelic losses at chromosome 3p24 and 6q24 were an early occurrence in adjoining terminal ductal lobular units of a proportion of primary tumors, which displayed loss of heterozygosity (3 of 11 and 3 of 6, respectively). The biological insights provided by the new model system reported here strongly suggest that early allelic losses delineated in immortalized cultures and validated in vivo could serve as surrogate endpoints to assist in the identification and intervention of high-risk benign breast tissue, which sustains the potential for continuous proliferation.

  9. Research Progress of Exosomes in Lung Cancer Diagnosis and Treatment

    Directory of Open Access Journals (Sweden)

    Hongbo ZOU

    2016-11-01

    Full Text Available As the leading cause of morbidity and cancer related-death worldwide, lung cancer has a serious threat to human health. Exosomes are nanoscale lipid membrane vesicles derived from multivesicles, which containing active biomolecules including proteins, lipids, nucleic acids and etc. Exosomes play important roles in lung cancer initiation and progression by promoting the formation of tumor microenvironment, enhancing tumor invasive and metastasis capability, leading to immunosuppression and resistance to chemoradiotherapy, and also have the application value in early diagnosis and treatment. This review summarizes the research progress of exosomes in tumor initiation and progression, and its roles in diagnosis and treatment of lung cancer.

  10. Role of ADAMs in cancer formation and progression.

    LENUS (Irish Health Repository)

    Duffy, Michael J

    2012-02-01

    The ADAMs (a disintegrin and metalloproteinase) comprise a family of multidomain transmembrane and secreted proteins. One of their best-established roles is the release of biologically important ligands, such as tumor necrosis factor-alpha, epidermal growth factor, transforming growth factor-alpha, and amphiregulin. Because these ligands have been implicated in the formation and progression of tumors, it might be expected that the specific ADAMs involved in their release would also be involved in malignancy. Consistent with this hypothesis, emerging data from model systems suggest that ADAMs, such as ADAM-9, ADAM-12, ADAM-15, and ADAM-17, are causally involved in tumor formation\\/progression. In human cancer, specific ADAMs are up-regulated, with levels generally correlating with parameters of tumor progression and poor outcome. In preclinical models, selective ADAM inhibitors against ADAM-10 and ADAM-17 have been shown to synergize with existing therapies in decreasing tumor growth. The ADAMs are thus a new family of potential targets for the treatment of cancer, especially malignancies that are dependent on human epidermal growth factor receptor ligands or tumor necrosis factor-alpha.

  11. A Small Molecule Polyamine Oxidase Inhibitor Blocks Androgen-Induced Oxidative Stress and Delays Prostate Cancer Progression in the TRAMP Mouse Model

    Science.gov (United States)

    Basu, Hirak S.; Thompson, Todd A.; Church, Dawn R.; Clower, Cynthia C.; Mehraein-Ghomi, Farideh; Amlong, Corey A.; Martin, Christopher T.; Woster, Patrick M.; Lindstrom, Mary J.; Wilding, George

    2009-01-01

    High levels of reactive oxygen species (ROS) present in human prostate epithelia are an important etiological factor in prostate cancer (CaP) occurrence, recurrence and progression. Androgen induces ROS production in the prostate by a yet unknown mechanism. Here, to the best of our knowledge, we report for the first time that androgen induces an overexpression of spermidine/spermine N1-acetyltransferase (SSAT), the rate-limiting enzyme in the polyamine oxidation pathway. As prostatic epithelia produce a large excess of polyamines, the androgen-induced polyamine oxidation that produces H2O2 could be a major reason for the high ROS levels in the prostate epithelia. A small molecule polyamine oxidase inhibitor N,N'-butanedienyl butanediamine (MDL 72,527 or CPC-200) effectively blocks androgen-induced ROS production in human CaP cells as well as significantly delays CaP progression and death in animals developing spontaneous CaP. These data demonstrate that polyamine oxidation is not only a major pathway for ROS production in prostate, but inhibiting this pathway also successfully delays prostate cancer progression. PMID:19773450

  12. CXCL5 Promotes Prostate Cancer Progression

    Directory of Open Access Journals (Sweden)

    Lesa A Begley

    2008-03-01

    Full Text Available CXCL5 is a proangiogenic CXC-type chemokine that is an inflammatory mediator and a powerful attractant for granulocytic immune cells. Unlike many other chemokines, CXCL5 is secreted by both immune (neutrophil, monocyte, and macrophage and nonimmune (epithelial, endothelial, and fibroblastic cell types. The current study was intended to determine which of these cell types express CXCL5 in normal and malignant human prostatic tissues, whether expression levels correlated with malignancy and whether CXCL5 stimulated biologic effects consistent with a benign or malignant prostate epithelial phenotype. The results of these studies show that CXCL5 protein expression levels are concordant with prostate tumor progression, are highly associated with inflammatory infiltrate, and are frequently detected in the lumens of both benign and malignant prostate glands. Exogenous administration of CXCL5 stimulates cellular proliferation and gene transcription in both nontransformed and transformed prostate epithelial cells and induces highly aggressive prostate cancer cells to invade through synthetic basement membrane in vitro. These findings suggest that the inflammatory mediator, CXCL5, may play multiple roles in the etiology of both benign and malignant proliferative diseases in the prostate.

  13. Triumph or tragedy: progress in cancer

    OpenAIRE

    ERENLER, Ayşe Şebnem; GEÇKİL, Hikmet

    2015-01-01

    Cancer is probably the number one research area among all human endeavors, receiving the largest portion of science funding in most countries. This is because cancer remains one of the oldest conundrums among all human maladies. Although we now have a greater understanding of the biological and molecular basis of cancer, its diagnosis and therapy still pose great challenges. In this review, our aim is not to establish a comprehensive understanding of cancer, which is essentially impossible, b...

  14. A small molecule polyamine oxidase inhibitor blocks androgen-induced oxidative stress and delays prostate cancer progression in the transgenic adenocarcinoma of the mouse prostate model.

    Science.gov (United States)

    Basu, Hirak S; Thompson, Todd A; Church, Dawn R; Clower, Cynthia C; Mehraein-Ghomi, Farideh; Amlong, Corey A; Martin, Christopher T; Woster, Patrick M; Lindstrom, Mary J; Wilding, George

    2009-10-01

    High levels of reactive oxygen species (ROS) present in human prostate epithelia are an important etiologic factor in prostate cancer (CaP) occurrence, recurrence, and progression. Androgen induces ROS production in the prostate by a yet unknown mechanism. Here, to the best of our knowledge, we report for the first time that androgen induces an overexpression of spermidine/spermine N1-acetyltransferase, the rate-limiting enzyme in the polyamine oxidation pathway. As prostatic epithelia produce a large excess of polyamines, the androgen-induced polyamine oxidation that produces H2O2 could be a major reason for the high ROS levels in the prostate epithelia. A small molecule polyamine oxidase inhibitor N,N'-butanedienyl butanediamine (MDL 72,527 or CPC-200) effectively blocks androgen-induced ROS production in human CaP cells, as well as significantly delays CaP progression and death in animals developing spontaneous CaP. These data show that polyamine oxidation is not only a major pathway for ROS production in prostate, but inhibiting this pathway also successfully delays CaP progression.

  15. Tumor heterogeneity and progression: conceptual foundations for modeling.

    Science.gov (United States)

    Greller, L D; Tobin, F L; Poste, G

    1996-01-01

    A conceptual foundation for modeling tumor progression, growth, and heterogeneity is presented. The purpose of such models is to aid understanding, test ideas, formulate experiments, and to model cancer 'in machina' to address the dynamic features of tumor cell heterogeneity, progression, and growth. The descriptive capabilities of such an approach provides a consistent language for qualitatively reasoning about tumor behavior. This approach provides a schema for building conceptual models that combine three key phenomenological driving elements: growth, progression, and genetic instability. The growth element encompasses processes contributing to changes in tumor bulk and is distinct from progression per se. The progression element subsumes a broad collection of processes underlying phenotypic progression. The genetics elements represents heritable changes which potentially affect tumor character and behavior. Models, conceptual and mathematical, can be built for different tumor situations by drawing upon the interaction of these three distinct driving elements. These models can be used as tools to explore a diversity of hypotheses concerning dynamic changes in cellular populations during tumor progression, including the generation of intratumor heterogeneity. Such models can also serve to guide experimentation and to gain insight into dynamic aspects of complex tumor behavior.

  16. Aberrant Chromatin Modification as a Mechanism of Prostate Cancer Progression

    National Research Council Canada - National Science Library

    Chen, Hongwu

    2004-01-01

    .... However, the underlying mechanism is still unclear. The purpose of this study is to test the hypothesis that aberrant chromatin modification plays a critical role in prostate cancer progression...

  17. Targeting the extracellular matrix to disrupt cancer progression

    Directory of Open Access Journals (Sweden)

    Freja Albjerg Venning

    2015-10-01

    Full Text Available Metastatic complications are responsible for more than 90% of cancer related deaths. The progression from an isolated tumor to disseminated metastatic disease is a multi-step process, with each step involving intricate cross-talk between the cancer cells and their non-cellular surroundings, the extracellular matrix (ECM. Many ECM proteins are significantly de-regulated during the progression of cancer, causing both biochemical and biomechanical changes that together promote the metastatic cascade. In this review, the influence of several ECM proteins on these multiple steps of cancer spread is summarized. In addition, we highlight the promising (pre-clinical data showing benefits of targeting these ECM macromolecules to prevent cancer progression.

  18. Celecoxib and GABA cooperatively prevent the progression of pancreatic cancer in vitro and in xenograft models of stress-free and stress-exposed mice.

    Directory of Open Access Journals (Sweden)

    Hussein A N Al-Wadei

    Full Text Available Pancreatic ductal adenocarcinoma (PDAC has a poor prognosis and is associated with high levels of psychological distress. We have shown that beta-adrenergic receptors (β-ARs, which are activated by stress neurotransmitters, regulate PDAC cells via cyclic AMP (cAMP-dependent signaling in vitro, that social stress promotes PDAC progression in mouse xenografts and that γ-aminobutyric acid (GABA inhibits these responses in vitro and in vivo. The targeted inhibition of stress-induced regulatory pathways may abolish the potentially negative impact of psychological stress on clinical outcomes. Our current data show that chronic exposure of PDAC cell lines Panc-1 (activating point mutations in K-ras and BXPC-3 (no mutations in K-ras in vitro to the stress neurotransmitter epinephrine at the concentration (15 nM previously measured in the serum of mice exposed to social stress significantly increased proliferation and migration. These responses were inhibited in a concentration-dependent manner by celecoxib. The effects of celecoxib alone and in combination with γ-aminobutyric acid (GABA on the progression of subcutaneous mouse xenografts from the cell line (BXPC-3 most responsive to epinephrine were then investigated in the presence and absence of social stress. Cancer-stimulating factors (VEGF & prostaglandin E(2 [PGE(2] and levels of cAMP were measured by immunoassays in blood and xenograft tissue. Phosphorylation of the signaling proteins ERK, CREB, Src, and AKT was assessed by ELISA assays and Western blotting. Expression of COX-2, 5-lipoxygenase, and p-5-LOX were determined by semi-quantitative Western blotting. Celecoxib alone significantly inhibited xenograft progression and decreased systemic and tumor VEGF, PGE2, and cAMP as well as phosphorylated signaling proteins in stress-exposed and stress-free mice. These responses were significantly enhanced by co-treatment with GABA. The celecoxib-induced downregulation of COX-2 protein and p-5-LOX

  19. Ovarian cancer immunotherapy: opportunities, progresses and challenges

    Directory of Open Access Journals (Sweden)

    Stevens Richard

    2010-02-01

    Full Text Available Abstract Due to the low survival rates from invasive ovarian cancer, new effective treatment modalities are urgently needed. Compelling evidence indicates that the immune response against ovarian cancer may play an important role in controlling this disease. We herein summarize multiple immune-based strategies that have been proposed and tested for potential therapeutic benefit against advanced stage ovarian cancer. We will examine the evidence for the premise that an effective therapeutic vaccine against ovarian cancer is useful not only for inducing remission of the disease but also for preventing disease relapse. We will also highlight the questions and challenges in the development of ovarian cancer vaccines, and critically discuss the limitations of some of the existing immunotherapeutic strategies. Finally, we will summarize our own experience on the use of patient-specific tumor-derived heat shock protein-peptide complex for the treatment of advanced ovarian cancer.

  20. Progress in cancer genetics: lessons from pancreatic cancer

    NARCIS (Netherlands)

    Goggins, M.; Kern, S. E.; Offerhaus, J. A.; Hruban, R. H.

    1999-01-01

    In the near future advances in the molecular basis of cancer are expected to facilitate cancer diagnosis, to rationalize treatment, to facilitate screening, and to identify individuals requiring cancer prevention strategies. The literature was reviewed concerning the genetic alterations that

  1. Serum Thyroglobulin Doubling Time in Progressive Thyroid Cancer

    NARCIS (Netherlands)

    Rossing, R.M.; Jentzen, W.; Nagarajah, J.; Bockisch, A.; Gorges, R.

    2016-01-01

    BACKGROUND: Tumor marker doubling time (DT) has been proposed as a prognostic marker for various types of cancer. The present study analyzed the DT of the thyroid-specific tumor marker thyroglobulin (Tg), focusing on patients with progressive differentiated thyroid cancer (DTC). METHODS: A total of

  2. Vitamin D, inflammation, and colorectal cancer progression

    NARCIS (Netherlands)

    Harten-Gerritsen, van Suzanne; Balvers, Michiel G.J.; Witkamp, Renger F.; Kampman, Ellen; Duijnhoven, van F.J.B.

    2015-01-01

    Survival from colorectal cancer is positively associated with vitamin D status. However, whether this association is causal remains unclear. Inflammatory processes may link vitamin D to colorectal cancer survival, and therefore investigating inflammatory markers as potential mediators may be a

  3. STAT3 activation in monocytes accelerates liver cancer progression

    International Nuclear Information System (INIS)

    Wu, Wen-Yong; Li, Jun; Wu, Zheng-Sheng; Zhang, Chang-Le; Meng, Xiang-Ling

    2011-01-01

    Signal transducer and activator of transcription 3 (STAT3) is an important transcription factor ubiquitously expressed in different cell types. STAT3 plays an essential role in cell survival, proliferation, and differentiation. Aberrantly hyper-activated STAT3 signaling in cancer cells and in the tumor microenvironment has been detected in a wide variety of human cancers and is considered an important factor for cancer initiation, development, and progression. However, the role of STAT3 activation in monocytes in the development of HCC has not been well understood. Immunohistochemical analysis of phosphorylated STAT3 was performed on tissue microarray from HCC patients. Using a co-culture system in vivo, HCC cell growth was determined by the MTT assay. In vivo experiments were conducted with mice given diethylinitrosamine (DEN), which induces HCC was used to investigate the role of STAT3 expression in monocytes on tumor growth. Real-time PCR was used to determine the expression of cell proliferation and cell arrest associated genes in the tumor and nontumor tissue from liver. Phosphorylated STAT3 was found in human hepatocellular carcinoma tissue samples and was expressed in tumor cells and also in monocytes. Phosphorylated STAT3 expression in monocyte was significantly correlated to advanced clinical stage of HCC and a poor prognosis. Using a co-culture system in vivo, monocytes promoted HCC cell growth via the IL-6/STAT3 signaling pathway. The STAT3 inhibitor, NSC 74859, significantly suppressed tumor growth in vivo in mice with diethylinitrosamine (DEN)-induced HCC. In this animal model, blockade of STAT3 with NSC 74859 induced tumor cell apoptosis, while inhibiting both tumor cells and monocytes proliferation. Furthermore, NSC 74859 treatment suppressed cancer associated inflammation in DEN-induce HCC. Our data suggest constitutively activated STAT3 monocytes promote liver tumorigenesis in clinical patients and animal experiments. Thus, STAT3 in tumor

  4. Progress in Gene Therapy for Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Kamran A.; Davis, Brian J. [Department of Radiation Oncology, Mayo Clinic, Rochester, MN (United States); Wilson, Torrence M. [Department of Urology, Mayo Clinic, Rochester, MN (United States); Wiseman, Gregory A. [Division of Nuclear Medicine, Mayo Clinic, Rochester, MN (United States); Federspiel, Mark J. [Department of Molecular Medicine, Mayo Clinic, Rochester, MN (United States); Morris, John C., E-mail: davis.brian@mayo.edu [Division of Endocrinology, Mayo Clinic, Rochester, MN (United States)

    2012-11-19

    Gene therapy has held promise to correct various disease processes. Prostate cancer represents the second leading cause of cancer death in American men. A number of clinical trials involving gene therapy for the treatment of prostate cancer have been reported. The ability to efficiently transduce tumors with effective levels of therapeutic genes has been identified as a fundamental barrier to effective cancer gene therapy. The approach utilizing gene therapy in prostate cancer patients at our institution attempts to address this deficiency. The sodium-iodide symporter (NIS) is responsible for the ability of the thyroid gland to transport and concentrate iodide. The characteristics of the NIS gene suggest that it could represent an ideal therapeutic gene for cancer therapy. Published results from Mayo Clinic researchers have indicated several important successes with the use of the NIS gene and prostate gene therapy. Studies have demonstrated that transfer of the human NIS gene into prostate cancer using adenovirus vectors in vitro and in vivo results in efficient uptake of radioactive iodine and significant tumor growth delay with prolongation of survival. Preclinical successes have culminated in the opening of a phase I trial for patients with advanced prostate disease which is currently accruing patients. Further study will reveal the clinical promise of NIS gene therapy in the treatment of prostate as well as other malignancies.

  5. Progress in Gene Therapy for Prostate Cancer

    International Nuclear Information System (INIS)

    Ahmed, Kamran A.; Davis, Brian J.; Wilson, Torrence M.; Wiseman, Gregory A.; Federspiel, Mark J.; Morris, John C.

    2012-01-01

    Gene therapy has held promise to correct various disease processes. Prostate cancer represents the second leading cause of cancer death in American men. A number of clinical trials involving gene therapy for the treatment of prostate cancer have been reported. The ability to efficiently transduce tumors with effective levels of therapeutic genes has been identified as a fundamental barrier to effective cancer gene therapy. The approach utilizing gene therapy in prostate cancer patients at our institution attempts to address this deficiency. The sodium-iodide symporter (NIS) is responsible for the ability of the thyroid gland to transport and concentrate iodide. The characteristics of the NIS gene suggest that it could represent an ideal therapeutic gene for cancer therapy. Published results from Mayo Clinic researchers have indicated several important successes with the use of the NIS gene and prostate gene therapy. Studies have demonstrated that transfer of the human NIS gene into prostate cancer using adenovirus vectors in vitro and in vivo results in efficient uptake of radioactive iodine and significant tumor growth delay with prolongation of survival. Preclinical successes have culminated in the opening of a phase I trial for patients with advanced prostate disease which is currently accruing patients. Further study will reveal the clinical promise of NIS gene therapy in the treatment of prostate as well as other malignancies.

  6. Metabolic cooperation between cancer and non-cancerous stromal cells is pivotal in cancer progression.

    Science.gov (United States)

    Lopes-Coelho, Filipa; Gouveia-Fernandes, Sofia; Serpa, Jacinta

    2018-02-01

    The way cancer cells adapt to microenvironment is crucial for the success of carcinogenesis, and metabolic fitness is essential for a cancer cell to survive and proliferate in a certain organ/tissue. The metabolic remodeling in a tumor niche is endured not only by cancer cells but also by non-cancerous cells that share the same microenvironment. For this reason, tumor cells and stromal cells constitute a complex network of signal and organic compound transfer that supports cellular viability and proliferation. The intensive dual-address cooperation of all components of a tumor sustains disease progression and metastasis. Herein, we will detail the role of cancer-associated fibroblasts, cancer-associated adipocytes, and inflammatory cells, mainly monocytes/macrophages (tumor-associated macrophages), in the remodeling and metabolic adaptation of tumors.

  7. Progress in Personalizing Chemotherapy for Bladder Cancer

    Directory of Open Access Journals (Sweden)

    James S. Chang

    2012-01-01

    Full Text Available Platinum-based chemotherapy is commonly used for the treatment of locally advanced and metastatic bladder cancer. However, there are currently no methods to predict chemotherapy response in this disease setting. A better understanding of the biology of bladder cancer has led to developments of molecular biomarkers that may help guide clinical decision making. These biomarkers, while promising, have not yet been validated in prospective trials and are not ready for clinical applications. As alkylating agents, platinum drugs kill cancer cells mainly through induction of DNA damage. A microdosing approach is currently being tested to determine if chemoresistance can be identified by measuring platinum-induced DNA damage using highly sensitive accelerator mass spectrometry technology. The hope is that these emerging strategies will help pave the road towards personalized therapy in advanced bladder cancer.

  8. Growth and progression of colorectal cancer

    International Nuclear Information System (INIS)

    Yamada, T.; Ushio, K.; Hirota, T.

    1988-01-01

    There is an increasing interest in the natural history of colorectal carcinoma, now that small polypoid lesions of the large intestine can be detected effectively by radiology and endoscopy. The problems of this histo- and morphogenesis of colorectal cancer have, however, remained unsettled because the observation of the sequential change of a lesion with time by follow-up radiology and/or endoscopy is impossible once its malignancy is proved. Clinically the retrospective review of radiographic findings in overlooked cases is the only means to evaluate the natural history of colorectal cancer. This paper attempts to estimate the growth rate of colorectal cancer, based on a retrospective review of radiographic findings of overlooked cases, and analyses of the radiographic features of small polypoid lesions which may develop into advanced cancers

  9. Progress in modeling and simulation.

    Science.gov (United States)

    Kindler, E

    1998-01-01

    For the modeling of systems, the computers are more and more used while the other "media" (including the human intellect) carrying the models are abandoned. For the modeling of knowledges, i.e. of more or less general concepts (possibly used to model systems composed of instances of such concepts), the object-oriented programming is nowadays widely used. For the modeling of processes existing and developing in the time, computer simulation is used, the results of which are often presented by means of animation (graphical pictures moving and changing in time). Unfortunately, the object-oriented programming tools are commonly not designed to be of a great use for simulation while the programming tools for simulation do not enable their users to apply the advantages of the object-oriented programming. Nevertheless, there are exclusions enabling to use general concepts represented at a computer, for constructing simulation models and for their easy modification. They are described in the present paper, together with true definitions of modeling, simulation and object-oriented programming (including cases that do not satisfy the definitions but are dangerous to introduce misunderstanding), an outline of their applications and of their further development. In relation to the fact that computing systems are being introduced to be control components into a large spectrum of (technological, social and biological) systems, the attention is oriented to models of systems containing modeling components.

  10. Mouse Models for Studying Oral Cancer: Impact in the Era of Cancer Immunotherapy.

    Science.gov (United States)

    Luo, J J; Young, C D; Zhou, H M; Wang, X J

    2018-04-01

    Model systems for oral cancer research have progressed from tumor epithelial cell cultures to in vivo systems that mimic oral cancer genetics, pathological characteristics, and tumor-stroma interactions of oral cancer patients. In the era of cancer immunotherapy, it is imperative to use model systems to test oral cancer prevention and therapeutic interventions in the presence of an immune system and to discover mechanisms of stromal contributions to oral cancer carcinogenesis. Here, we review in vivo mouse model systems commonly used for studying oral cancer and discuss the impact these models are having in advancing basic mechanisms, chemoprevention, and therapeutic intervention of oral cancer while highlighting recent discoveries concerning the role of immune cells in oral cancer. Improvements to in vivo model systems that highly recapitulate human oral cancer hold the key to identifying features of oral cancer initiation, progression, and invasion as well as molecular and cellular targets for prevention, therapeutic response, and immunotherapy development.

  11. Motesanib diphosphate in progressive differentiated thyroid cancer

    DEFF Research Database (Denmark)

    Sherman, Steven I; Wirth, Lori J; Droz, Jean-Pierre

    2008-01-01

    BACKGROUND: The expression of vascular endothelial growth factor (VEGF) is characteristic of differentiated thyroid cancer and is associated with aggressive tumor behavior and a poor clinical outcome. Motesanib diphosphate (AMG 706) is a novel oral inhibitor of VEGF receptors, platelet-derived gr...

  12. Histone Demethylase RBP2 Is Critical for Breast Cancer Progression and Metastasis

    Directory of Open Access Journals (Sweden)

    Jian Cao

    2014-03-01

    Full Text Available Metastasis is a major clinical challenge for cancer treatment. Emerging evidence suggests that aberrant epigenetic modifications contribute significantly to tumor formation and progression. However, the drivers and roles of such epigenetic changes in tumor metastasis are still poorly understood. Using bioinformatic analysis of human breast cancer gene-expression data sets, we identified histone demethylase RBP2 as a putative mediator of metastatic progression. By using both human breast cancer cells and genetically engineered mice, we demonstrated that RBP2 is critical for breast cancer metastasis to the lung in multiple in vivo models. Mechanistically, RBP2 promotes metastasis as a pleiotropic positive regulator of many metastasis genes, including TNC. In addition, RBP2 loss suppresses tumor formation in MMTV-neu transgenic mice. These results suggest that therapeutic targeting of RBP2 is a potential strategy for inhibition of tumor progression and metastasis.

  13. Genome evolution during progression to breast cancer

    KAUST Repository

    Newburger, D. E.

    2013-04-08

    Cancer evolution involves cycles of genomic damage, epigenetic deregulation, and increased cellular proliferation that eventually culminate in the carcinoma phenotype. Early neoplasias, which are often found concurrently with carcinomas and are histologically distinguishable from normal breast tissue, are less advanced in phenotype than carcinomas and are thought to represent precursor stages. To elucidate their role in cancer evolution we performed comparative whole-genome sequencing of early neoplasias, matched normal tissue, and carcinomas from six patients, for a total of 31 samples. By using somatic mutations as lineage markers we built trees that relate the tissue samples within each patient. On the basis of these lineage trees we inferred the order, timing, and rates of genomic events. In four out of six cases, an early neoplasia and the carcinoma share a mutated common ancestor with recurring aneuploidies, and in all six cases evolution accelerated in the carcinoma lineage. Transition spectra of somatic mutations are stable and consistent across cases, suggesting that accumulation of somatic mutations is a result of increased ancestral cell division rather than specific mutational mechanisms. In contrast to highly advanced tumors that are the focus of much of the current cancer genome sequencing, neither the early neoplasia genomes nor the carcinomas are enriched with potentially functional somatic point mutations. Aneuploidies that occur in common ancestors of neoplastic and tumor cells are the earliest events that affect a large number of genes and may predispose breast tissue to eventual development of invasive carcinoma.

  14. Genome evolution during progression to breast cancer

    KAUST Repository

    Newburger, D. E.; Kashef-Haghighi, D.; Weng, Z.; Salari, R.; Sweeney, R. T.; Brunner, A. L.; Zhu, S. X.; Guo, X.; Varma, S.; Troxell, M. L.; West, R. B.; Batzoglou, S.; Sidow, A.

    2013-01-01

    Cancer evolution involves cycles of genomic damage, epigenetic deregulation, and increased cellular proliferation that eventually culminate in the carcinoma phenotype. Early neoplasias, which are often found concurrently with carcinomas and are histologically distinguishable from normal breast tissue, are less advanced in phenotype than carcinomas and are thought to represent precursor stages. To elucidate their role in cancer evolution we performed comparative whole-genome sequencing of early neoplasias, matched normal tissue, and carcinomas from six patients, for a total of 31 samples. By using somatic mutations as lineage markers we built trees that relate the tissue samples within each patient. On the basis of these lineage trees we inferred the order, timing, and rates of genomic events. In four out of six cases, an early neoplasia and the carcinoma share a mutated common ancestor with recurring aneuploidies, and in all six cases evolution accelerated in the carcinoma lineage. Transition spectra of somatic mutations are stable and consistent across cases, suggesting that accumulation of somatic mutations is a result of increased ancestral cell division rather than specific mutational mechanisms. In contrast to highly advanced tumors that are the focus of much of the current cancer genome sequencing, neither the early neoplasia genomes nor the carcinomas are enriched with potentially functional somatic point mutations. Aneuploidies that occur in common ancestors of neoplastic and tumor cells are the earliest events that affect a large number of genes and may predispose breast tissue to eventual development of invasive carcinoma.

  15. Long-term exposure to hypoxia inhibits tumor progression of lung cancer in rats and mice

    International Nuclear Information System (INIS)

    Yu, Lunyin; Hales, Charles A

    2011-01-01

    Hypoxia has been identified as a major negative factor for tumor progression in clinical observations and in animal studies. However, the precise role of hypoxia in tumor progression has not been fully explained. In this study, we extensively investigated the effect of long-term exposure to hypoxia on tumor progression in vivo. Rats bearing transplanted tumors consisting of A549 human lung cancer cells (lung cancer tumor) were exposed to hypoxia for different durations and different levels of oxygen. The tumor growth and metastasis were evaluated. We also treated A549 lung cancer cells (A549 cells) with chronic hypoxia and then implanted the hypoxia-pretreated cancer cells into mice. The effect of exposure to hypoxia on metastasis of Lewis lung carcinoma in mice was also investigated. We found that long-term exposure to hypoxia a) significantly inhibited lung cancer tumor growth in xenograft and orthotopic models in rats, b) significantly reduced lymphatic metastasis of the lung cancer in rats and decreased lung metastasis of Lewis lung carcinoma in mice, c) reduced lung cancer cell proliferation and cell cycle progression in vitro, d) decreased growth of the tumors from hypoxia-pretreated A549 cells, e) decreased Na + -K + ATPase α1 expression in hypoxic lung cancer tumors, and f) increased expression of hypoxia inducible factors (HIF1α and HIF2α) but decreased microvessel density in the lung cancer tumors. In contrast to lung cancer, the growth of tumor from HCT116 human colon cancer cells (colon cancer tumor) was a) significantly enhanced in the same hypoxia conditions, accompanied by b) no significant change in expression of Na + -K + ATPase α1, c) increased HIF1α expression (no HIF2α was detected) and d) increased microvessel density in the tumor tissues. This study demonstrated that long-term exposure to hypoxia repressed tumor progression of the lung cancer from A549 cells and that decreased expression of Na + -K + ATPase was involved in hypoxic

  16. Roles of stromal microenvironment in colon cancer progression.

    Science.gov (United States)

    Taketo, Makoto Mark

    2012-05-01

    Although our understanding of epithelial cancer cells has advanced significantly, our understanding of the cancer microenvironment is still fragmentary. In contrast to our intuitive impression that our body always suppresses cancer growth, recent pieces of evidence show that cancer often exploits our body reactions to expand, invade local tissues and metastasize to distant organs. Accordingly, investigations of such body reactions in the tumour microenvironment should help us to design novel therapeutic strategies that can be combined with the traditional therapeutics targeted at the cancer cells themselves. In this article, I am going to review our recent efforts in search of novel therapeutic strategies against colon cancer using mouse models.

  17. Induction of erythropoiesis by hypoxia-inducible factor prolyl hydroxylase inhibitors without promotion of tumor initiation, progression, or metastasis in a VEGF-sensitive model of spontaneous breast cancer

    Directory of Open Access Journals (Sweden)

    Seeley TW

    2017-03-01

    Full Text Available Todd W Seeley, Mark D Sternlicht, Stephen J Klaus, Thomas B Neff, David Y Liu Therapeutics R&D, FibroGen, Inc., San Francisco, CA, USA Abstract: The effects of pharmacological hypoxia-inducible factor (HIF stabilization were investigated in the MMTV-Neundl-YD5 (NeuYD mouse model of breast cancer. This study first confirmed the sensitivity of this model to increased vascular endothelial growth factor (VEGF, using bigenic NeuYD;MMTV-VEGF-25 mice. Tumor initiation was dramatically accelerated in bigenic animals. Bigenic tumors were also more aggressive, with shortened doubling times and increased lung metastasis as compared to NeuYD controls. In separate studies, NeuYD mice were treated three times weekly from 7 weeks of age until study end with two different HIF prolyl hydroxylase inhibitors (HIF-PHIs, FG-4497 or roxadustat (FG-4592. In NeuYD mice, HIF-PHI treatments elevated erythropoiesis markers, but no differences were detected in tumor onset or the phenotypes of established tumors. Keywords: cancer progression, erythropoiesis, hypoxia-inducible factor, hypoxia-inducible factor prolyl hydroxylase inhibitors, vascular endothelial growth factor, MMTV-Neu breast cancer model

  18. On an orthotropic model for progressive degradation

    DEFF Research Database (Denmark)

    Hammer, Velaja B.; Pedersen, Pauli

    1999-01-01

    Progressive degradation in orthotropic materials is modelled from a smear-out point of view, and physical measurable quantities are used as the describing parameters. Evolution of stiffness and evolution of strength are kept uncoupled. For plane problems the stiffness evolution is modelled...

  19. Differential action of glycoprotein hormones: significance in cancer progression.

    Science.gov (United States)

    Govindaraj, Vijayakumar; Arya, Swathy V; Rao, A J

    2014-02-01

    Growth of multicellular organisms depends on maintenance of proper balance between proliferation and differentiation. Any disturbance in this balance in animal cells can lead to cancer. Experimental evidence is provided to conclude with special reference to the action of follicle-stimulating hormone (FSH) on Sertoli cells, and luteinizing hormone (LH) on Leydig cells that these hormones exert a differential action on their target cells, i.e., stimulate proliferation when the cells are in an undifferentiated state which is the situation with cancer cells and promote only functional parameters when the cell are fully differentiated. Hormones and growth factors play a key role in cell proliferation, differentiation, and apoptosis. There is a growing body of evidence that various tumors express some hormones at high levels as well as their cognate receptors indicating the possibility of a role in progression of cancer. Hormones such as LH, FSH, and thyroid-stimulating hormone have been reported to stimulate cell proliferation and act as tumor promoter in a variety of hormone-dependent cancers including gonads, lung, thyroid, uterus, breast, prostate, etc. This review summarizes evidence to conclude that these hormones are produced by some cancer tissues to promote their own growth. Also an attempt is made to explain the significance of the differential action of hormones in progression of cancer with special reference to prostate cancer.

  20. Stress and its molecular consequences in cancer progression

    Directory of Open Access Journals (Sweden)

    Magdalena Surman

    2017-06-01

    Full Text Available Stress, caused by psychological, physiological and physical factors has an adverse impact on human body homeostasis. There are two kind of stress: short-term and chronic. Cancer patients usually live under chronic stress, caused by diagnosis-related strong emotional experience and depression, resulting from various difficulties associated with disease progression and treatment. At the molecular level, stress factors induce production and secretion of stress-related hormones, such as catecholamines, glucocorticoids and dopamine (as a part of adaptational body response, which influence both normal and transformed cells through their specific receptors. The particular effects exerted by these molecules on cancer cells have been also observed in in vitro cultures and include changes in proliferation, apoptosis susceptibility and migration/invasion potential. As a result, it has been suggested that stress hormones may be responsible for progression of malignancy and thus accelerate the metastasis formation in cancer patients. However, the clinical data on correlation between stress and the patients survival, as well as the molecular analysis of stress hormone receptors expression and action in cancer cell, have not yet provided an unequivocal answer. For this reason, extensive studies, on molecular and clinical level are needed to fully determine stress impact on cancerprogression and on the effectiveness of anti-cancer treatment. Nowadays, it seems reasonable that the personalization of anti-cancer therapy should also focus on mental state of cancer patients, and provide them with psychological tools or techniques for stress management.

  1. Tissue Transglutaminase (TG2)-Induced Inflammation in Initiation, Progression, and Pathogenesis of Pancreatic Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Mehta, Kapil, E-mail: kmehta@mdanderson.org; Han, Amy [Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030 (United States); Graduate School of Biomedical Sciences, The University of Texas Health Science Center, Houston, TX 77030 (United States)

    2011-02-25

    Pancreatic cancer (PC) is among the deadliest cancers, with a median survival of six months. It is generally believed that infiltrating PC arises through the progression of early grade pancreatic intraepithelial lesions (PanINs). In one model of the disease, the K-ras mutation is an early molecular event during progression of pancreatic cancer; it is followed by the accumulation of additional genetic abnormalities. This model has been supported by animal studies in which activated K-ras and p53 mutations produced metastatic pancreatic ductal adenocarcinoma in mice. According to this model, oncogenic K-ras induces PanIN formation but fails to promote the invasive stage. However, when these mice are subjected to caerulein treatment, which induces a chronic pancreatitis-like state and inflammatory response, PanINs rapidly progress to invasive carcinoma. These results are consistent with epidemiologic studies showing that patients with chronic pancreatitis have a much higher risk of developing PC. In line with these observations, recent studies have revealed elevated expression of the pro-inflammatory protein tissue transglutaminase (TG2) in early PanINs, and its expression increases even more as the disease progresses. In this review we discuss the implications of increased TG2 expression in initiation, progression, and pathogenesis of pancreatic cancer.

  2. Stromal Androgen Receptor in Prostate Cancer Development and Progression

    Science.gov (United States)

    Leach, Damien A.; Buchanan, Grant

    2017-01-01

    Prostate cancer development and progression is the result of complex interactions between epithelia cells and fibroblasts/myofibroblasts, in a series of dynamic process amenable to regulation by hormones. Whilst androgen action through the androgen receptor (AR) is a well-established component of prostate cancer biology, it has been becoming increasingly apparent that changes in AR signalling in the surrounding stroma can dramatically influence tumour cell behavior. This is reflected in the consistent finding of a strong association between stromal AR expression and patient outcomes. In this review, we explore the relationship between AR signalling in fibroblasts/myofibroblasts and prostate cancer cells in the primary site, and detail the known functions, actions, and mechanisms of fibroblast AR signaling. We conclude with an evidence-based summary of how androgen action in stroma dramatically influences disease progression. PMID:28117763

  3. The physics of cancer: The role of epigenetics and chromosome conformation in cancer progression

    Energy Technology Data Exchange (ETDEWEB)

    Naimark, Oleg B.; Nikitiuk, Aleksandr S. [Institute of Continuous Media Mechanics UrB RAS, Perm, 614013 (Russian Federation); Baudement, Marie-Odile; Forné, Thierry [Institut de Génétique Moléculaire de Montpellier UMR 5535, CNRS, Université de Montpellier, 1919 route de Mende, Montpellier cedex 5, 34293 France (France); Lesne, Annick, E-mail: annick.lesne@igmm.cnrs.fr [Institut de Génétique Moléculaire de Montpellier UMR 5535, CNRS, Université de Montpellier, 1919 route de Mende, Montpellier cedex 5, 34293 France (France); Laboratoire de Physique Théorique de la Matière Condensée UMR 7600, CNRS, UPMC, Sorbonne Universités, 4 place Jussieu, Paris cedex 5, 75252 France (France)

    2016-08-02

    Cancer progression is generally described in terms of accumulated genetic alterations and ensuing changes in cell properties. However, intermediary modifications are involved in the establishment of cancer cell phenotypes, at different levels of nuclear organization: DNA damages and their structural consequences, epigenetic modifications and their impact on chromatin architecture, changes in chromosome 3D organization. We review some of these alterations with a focus on their physical aspects. The challenge is to understand the multiscale interplay between generic physical mechanisms and specific biological factors in cancer cells. We argue that such an interdisciplinary perspective offers a novel viewpoint on cancer progression, early diagnosis and possibly therapeutic targets.

  4. Targeted Cancer Therapy: Vital Oncogenes and a New Molecular Genetic Paradigm for Cancer Initiation Progression and Treatment

    Science.gov (United States)

    Willis, Rudolph E.

    2016-01-01

    It has been declared repeatedly that cancer is a result of molecular genetic abnormalities. However, there has been no working model describing the specific functional consequences of the deranged genomic processes that result in the initiation and propagation of the cancer process during carcinogenesis. We no longer need to question whether or not cancer arises as a result of a molecular genetic defect within the cancer cell. The legitimate questions are: how and why? This article reviews the preeminent data on cancer molecular genetics and subsequently proposes that the sentinel event in cancer initiation is the aberrant production of fused transcription activators with new molecular properties within normal tissue stem cells. This results in the production of vital oncogenes with dysfunctional gene activation transcription properties, which leads to dysfunctional gene regulation, the aberrant activation of transduction pathways, chromosomal breakage, activation of driver oncogenes, reactivation of stem cell transduction pathways and the activation of genes that result in the hallmarks of cancer. Furthermore, a novel holistic molecular genetic model of cancer initiation and progression is presented along with a new paradigm for the approach to personalized targeted cancer therapy, clinical monitoring and cancer diagnosis. PMID:27649156

  5. Cancer Metabolism: A Modeling Perspective

    DEFF Research Database (Denmark)

    Ghaffari, Pouyan; Mardinoglu, Adil; Nielsen, Jens

    2015-01-01

    suggest that utilization of amino acids and lipids contributes significantly to cancer cell metabolism. Also recent progresses in our understanding of carcinogenesis have revealed that cancer is a complex disease and cannot be understood through simple investigation of genetic mutations of cancerous cells...

  6. Recent progress and future direction of cancer epidemiological research in Japan.

    Science.gov (United States)

    Sobue, Tomotaka

    2015-06-01

    In 2006, the Cancer Control Act was approved and a Basic Plan, to Promote the Cancer Control Program at the national level, was developed in 2007. Cancer research is recognized as a fundamental component to provide evidence in cancer control program. Cancer epidemiology plays central role in connecting research and policy, since it directly deals with data from humans. Research for cancer epidemiology in Japan made substantial progress, in the field of descriptive studies, cohort studies, intervention studies and activities for summarizing evidences. In future, promoting high-quality large-scale intervention studies, individual-level linkage studies, simulation models and studies for elderly population will be of great importance, but at the same time research should be promoted in well-balanced fashion not placing too much emphasis on one particular research field. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Complexity of cancer protease biology: Cathepsin K expression and function in cancer progression

    NARCIS (Netherlands)

    Verbovšek, Urška; van Noorden, Cornelis J. F.; Lah, Tamara T.

    2015-01-01

    Proteases, including lysosomal cathepsins, are functionally involved in many processes in cancer progression from its initiation to invasion and metastatic spread. Only recently, cathepsin K (CatK), the cysteine protease originally reported as a collagenolytic protease produced by osteoclasts,

  8. Progress in modeling hypersonic turbulent boundary layers

    Science.gov (United States)

    Zeman, Otto

    1993-01-01

    A good knowledge of the turbulence structure, wall heat transfer, and friction in turbulent boundary layers (TBL) at high speeds is required for the design of hypersonic air breathing airplanes and reentry space vehicles. This work reports on recent progress in the modeling of high speed TBL flows. The specific research goal described here is the development of a second order closure model for zero pressure gradient TBL's for the range of Mach numbers up to hypersonic speeds with arbitrary wall cooling requirements.

  9. Association between Fusobacterium nucleatum and colorectal cancer: Progress and future directions

    Science.gov (United States)

    Zhang, Sheng; Cai, Sanjun; Ma, Yanlei

    2018-01-01

    The initiation and progression of colorectal cancer (CRC) involves genetic and epigenetic alterations influenced by dietary and environmental factors. Increasing evidence has linked the intestinal microbiota and colorectal cancer. More recently, Fusobacterium nucleatum (Fn), an opportunistic commensal anaerobe in the oral cavity, has been associated with CRC. Several research teams have reported an overabundance of Fn in human CRC and have elucidated the possible mechanisms by which Fn is involved in colorectal carcinogenesis in vitro and in mouse models. However, the mechanisms by which Fn promotes colorectal carcinogenesis remain unclear. To provide new perspectives for early diagnosis, the identification of high risk populations and treatment for colorectal cancer, this review will summarize the relative research progresses regarding the relationship between Fn and colorectal cancer. PMID:29760804

  10. The role of MT2-MMP in cancer progression

    International Nuclear Information System (INIS)

    Ito, Emiko; Yana, Ikuo; Fujita, Chisato; Irifune, Aiko; Takeda, Maki; Madachi, Ayako; Mori, Seiji; Hamada, Yoshinosuke; Kawaguchi, Naomasa; Matsuura, Nariaki

    2010-01-01

    The role of MT2-MMP in cancer progression remains to be elucidated in spite of many reports on MT1-MMP. Using a human fibrosarcoma cell, HT1080 and a human gastric cancer cell, TMK-1, endogenous expression of MT1-MMP or MT2-MMP was suppressed by siRNA induction to examine the influence of cancer progression in vitro and in vivo. In HT1080 cells, positive both in MT1-MMP and MT2-MMP, the migration as well as the invasion was impaired by MT1-MMP or MT2-MMP suppression. Also cell proliferation in three dimensional (3D) condition was inhibited by MT1-MMP or MT2-MMP suppression and tumor growth in the nude mice transplanted with tumor cells were reduced either MT1-MMP or MT2-MMP suppression with a prolongation of survival time in vivo. MT2-MMP suppression induces more inhibitory effects on 3D proliferation and in vivo tumor growth than MT1-MMP. On the other hand, TMK-1 cells, negative in MT1-MMP and MMP-2 but positive in MT2-MMP, all the migratory, invasive, and 3D proliferative activities in TMK-1 are decreased only by MT2-MMP suppression. These results indicate MT2-MMP might be involved in the cancer progression more than or equal to MT1-MMP independently of MMP-2 and MT1-MMP.

  11. Increased fear of progression in cancer patients with recurrence.

    Science.gov (United States)

    Shim, Eun-Jung; Shin, Yong-Wook; Oh, Do-Youn; Hahm, Bong-Jin

    2010-01-01

    This study investigated the fear of progression (FoP) in cancer patients and the discriminant ability of the Fear of Progression Questionnaire (FoP-Q) against the Hospital Anxiety and Depression Scale (HADS), while also examining relationships between FoP, satisfaction outcomes and supportive needs. The FoP-Q and HADS were administered to 112 cancer patients in Korea during June and July 2006. The FoP-Q totals and subscales, and the HADS scores were compared across three groups (patients with recurrence, patients with metastases and controls experiencing neither). Comparison of the FoP-Q total score to HADS anxiety (HADS-A) and depression (HADS-D) scores showed higher FoP in the recurrence group compared to the control group (P=.009). Subscale score comparisons revealed a heightened "affective reaction" (P=.003) to cancer progression and fear of "loss of autonomy" (P=.011) in recurrence patients. FoP-Q score showed a moderate association with HADS-A (r=.54, P=.000) and a significant association with treatment satisfaction (r=-.26, P=.007), medical staff and communication (r=-.31, P=.001), and supportive needs (r=.41, P=.000). The importance of providing supportive interventions tailored to the specific emotional concerns of cancer patients, assessed via appropriate, disease-specific instruments, and the need to pay special attention to the concerns of recurrence patients are suggested. Copyright 2010 Elsevier Inc. All rights reserved.

  12. Modeling bladder cancer in mice: opportunities and challenges

    Science.gov (United States)

    Kobayashi, Takashi; Owczarek, Tomasz B.; McKiernan, James M.; Abate-Shen, Cory

    2015-01-01

    The prognosis and treatment of bladder cancer have hardly improved in the last 20 years. Bladder cancer remains a debilitating and often fatal disease, and among the most costly cancers to treat. The generation of informative mouse models has the potential to improve our understanding of bladder cancer progression, as well as impact its diagnosis and treatment. However, relatively few mouse models of bladder cancer have been described and particularly few that develop invasive cancer phenotypes. This review focuses on opportunities for improving the landscape of mouse models of bladder cancer. PMID:25533675

  13. The tumor macroenvironment and systemic regulation of breast cancer progression.

    Science.gov (United States)

    Castaño, Zafira; Tracy, Kristin; McAllister, Sandra S

    2011-01-01

    Breast cancer is the most common malignancy among women worldwide and is the most common cause of death for women between 35 and 50 years of age. Women with breast cancer are at risk of developing metastases for their entire lifetime and, despite local and systemic therapies, approximately 30% of breast cancer patients will relapse (Jemal et al., 2010). Nearly all breast cancer related deaths are due to metastatic disease, even though metastasis is considered to be an inefficient process. In some cases, tumor cells disseminate from primary sites at an early stage, but remain indolent for protracted periods of time before becoming overt, life-threatening tumors. Little is known about the mechanisms that cause these indolent tumors to grow into malignant disease. Because of this gap in our understanding, we are unable to predict which breast cancer patients are likely to experience disease relapse or develop metastases years after treatment of their primary tumor. A better understanding of the mechanisms and signals involved in the exit of tumor cells from dormancy would not only allow for more accurate selection of patients that would benefit from systemic therapy, but could also lead to the development of more targeted therapies to inhibit the signals that promote disease progression. In this review, we address the systemic, or "macroenvironmental", contribution to tumor initiation and progression and what is known about how a pro-tumorigenic systemic environment is established.

  14. Surgical treatment for progressive prostate cancer: A clinical case

    Directory of Open Access Journals (Sweden)

    E. I. Veliev

    2014-01-01

    Full Text Available In spite of its existing standards, the treatment of patients with progressive prostate cancer (PC remains a matter of debate. Ensuring that the patients have good quality of life is also relevant. The paper describes a clinical case of a patient with progressive PC after hormone therapy, brachytherapy, salvage prostatectomy, enucleation of the testicular parenchyma, and salvage lymphadenectomy. A phallic prosthesis and an artificial urinary sphincter have been implanted to improve quality of life. The results of preoperative examination and the technological features of surgical interventions are given.

  15. Gender Differences in Adipocyte Metabolism and Liver Cancer Progression

    Directory of Open Access Journals (Sweden)

    Otto Ka-Wing Cheung

    2016-09-01

    Full Text Available Liver cancer is the third most common cancer type and the second leading cause of deaths in men. Large population studies have demonstrated remarkable gender disparities in the incidence and the cumulative risk of liver cancer. A number of emerging risk factors regarding metabolic alterations associated with obesity, diabetes and dyslipidemia have been ascribed to the progression of non-alcoholic fatty liver diseases (NAFLD and ultimately liver cancer. The deregulation of fat metabolism derived from excessive insulin, glucose and lipid promotes cancer-causing inflammatory signaling and oxidative stress, which eventually triggers the uncontrolled hepatocellular proliferation. This review presents the current standing on the gender differences in body fat compositions and their mechanistic linkage with the development of NAFLD-related liver cancer, with an emphasis on genetic, epigenetic and microRNA control. The potential roles of sex hormones in instructing adipocyte metabolic programs may help unravel the mechanisms underlying gender dimorphism in liver cancer and identify the metabolic targets for disease management.

  16. Estrogen receptor signaling in prostate cancer: Implications for carcinogenesis and tumor progression.

    Science.gov (United States)

    Bonkhoff, Helmut

    2018-01-01

    The androgen receptor (AR) is the classical target for prostate cancer prevention and treatment, but more recently estrogens and their receptors have also been implicated in prostate cancer development and tumor progression. Recent experimental and clinical data were reviewed to elucidate pathogenetic mechanisms how estrogens and their receptors may affect prostate carcinogenesis and tumor progression. The estrogen receptor beta (ERβ) is the most prevalent ER in the human prostate, while the estrogen receptor alpha (ERα) is restricted to basal cells of the prostatic epithelium and stromal cells. In high grade prostatic intraepithelial neoplasia (HGPIN), the ERα is up-regulated and most likely mediates carcinogenic effects of estradiol as demonstrated in animal models. The partial loss of the ERβ in HGPIN indicates that the ERβ acts as a tumor suppressor. The tumor promoting function of the TMPRSS2-ERG fusion, a major driver of prostate carcinogenesis, is triggered by the ERα and repressed by the ERβ. The ERβ is generally retained in hormone naïve and metastatic prostate cancer, but is partially lost in castration resistant disease. The progressive emergence of the ERα and ERα-regulated genes (eg, progesterone receptor (PR), PS2, TMPRSS2-ERG fusion, and NEAT1) during prostate cancer progression and hormone refractory disease suggests that these tumors can bypass the AR by using estrogens and progestins for their growth. In addition, nongenomic estrogen signaling pathways mediated by orphan receptors (eg, GPR30 and ERRα) has also been implicated in prostate cancer progression. Increasing evidences demonstrate that local estrogen signaling mechanisms are required for prostate carcinogenesis and tumor progression. Despite the recent progress in this research topic, the translation of the current information into potential therapeutic applications remains highly challenging and clearly warrants further investigation. © 2017 Wiley Periodicals, Inc.

  17. Androgen receptor variation affects prostate cancer progression and drug resistance.

    Science.gov (United States)

    McCrea, Edel; Sissung, Tristan M; Price, Douglas K; Chau, Cindy H; Figg, William D

    2016-12-01

    Significant therapeutic progress has been made in treating prostate cancer in recent years. Drugs such as enzalutamide, abiraterone, and cabazitaxel have expanded the treatment armamentarium, although it is not completely clear which of these drugs are the most-effective option for individual patients. Moreover, such advances have been tempered by the development of therapeutic resistance. The purpose of this review is to summarize the current literature pertaining to the biochemical effects of AR variants and their consequences on prostate cancer therapies at both the molecular level and in clinical treatment. We address how these AR splice variants and mutations affect tumor progression and therapeutic resistance and discuss potential novel therapeutic strategies under development. It is hoped that these therapies can be administered with increasing precision as tumor genotyping methods become more sophisticated, thereby lending clinicians a better understanding of the underlying biology of prostate tumors in individual patients. Published by Elsevier Ltd.

  18. Connective tissue growth factor (CTGF) and cancer progression.

    Science.gov (United States)

    Chu, Chia-Yu; Chang, Cheng-Chi; Prakash, Ekambaranellore; Kuo, Min-Liang

    2008-11-01

    Connective tissue growth factor (CTGF) is a member of the CCN family of secreted, matrix-associated proteins encoded by immediate early genes that play various roles in angiogenesis and tumor growth. CCN family proteins share uniform modular structure which mediates various cellular functions such as regulation of cell division, chemotaxis, apoptosis, adhesion, motility, angiogenesis, neoplastic transformation, and ion transport. Recently, CTGF expression has been shown to be associated with tumor development and progression. There is growing body of evidence that CTGF may regulate cancer cell migration, invasion, angiogenesis, and anoikis. In this review, we will highlight the influence of CTGF expression on the biological behavior and progression of various cancer cells, as well as its regulation on various types of protein signals and their mechanisms.

  19. Dietary fat and fiber interact to uniquely modify global histone post-translational epigenetic programming in a rat colon cancer progression model.

    Science.gov (United States)

    Triff, Karen; McLean, Mathew W; Callaway, Evelyn; Goldsby, Jennifer; Ivanov, Ivan; Chapkin, Robert S

    2018-04-16

    Dietary fermentable fiber generates short-chain fatty acids (SCFA), e.g., butyrate, in the colonic lumen which serves as a chemoprotective histone deacetylase inhibitor and/or as an acetylation substrate for histone acetylases. In addition, n-3 polyunsaturated fatty acids (n-3 PUFA) in fish oil can affect the chromatin landscape by acting as ligands for tumor suppressive nuclear receptors. In an effort to gain insight into the global dimension of post-translational modification of histones (including H3K4me3 and H3K9ac) and clarify the chemoprotective impact of dietary bioactive compounds on transcriptional control in a preclinical model of colon cancer, we generated high-resolution genome-wide RNA (RNA-Seq) and "chromatin-state" (H3K4me3-seq and H3K9ac-seq) maps for intestinal (epithelial colonocytes) crypts in rats treated with a colon carcinogen and fed diets containing bioactive (i) fish oil, (ii) fermentable fiber (a rich source of SCFA), (iii) a combination of fish oil plus pectin or (iv) control, devoid of fish oil or pectin. In general, poor correlation was observed between differentially transcribed (DE) and enriched genes (DERs) at multiple epigenetic levels. The combinatorial diet (fish oil + pectin) uniquely affected transcriptional profiles in the intestinal epithelium, e.g., upregulating lipid catabolism and beta-oxidation associated genes. These genes were linked to activated ligand-dependent nuclear receptors associated with n-3 PUFA and were also correlated with the mitochondrial L-carnitine shuttle and the inhibition of lipogenesis. These findings demonstrate that the chemoprotective fish oil + pectin combination diet uniquely induces global histone state modifications linked to the expression of chemoprotective genes. This article is protected by copyright. All rights reserved. © 2018 UICC.

  20. Mathematical Models of Breast and Ovarian Cancers

    Science.gov (United States)

    Botesteanu, Dana-Adriana; Lipkowitz, Stanley; Lee, Jung-Min; Levy, Doron

    2016-01-01

    Women constitute the majority of the aging United States (US) population, and this has substantial implications on cancer population patterns and management practices. Breast cancer is the most common women's malignancy, while ovarian cancer is the most fatal gynecological malignancy in the US. In this review we focus on these subsets of women's cancers, seen more commonly in postmenopausal and elderly women. In order to systematically investigate the complexity of cancer progression and response to treatment in breast and ovarian malignancies, we assert that integrated mathematical modeling frameworks viewed from a systems biology perspective are needed. Such integrated frameworks could offer innovative contributions to the clinical women's cancers community, since answers to clinical questions cannot always be reached with contemporary clinical and experimental tools. Here, we recapitulate clinically known data regarding the progression and treatment of the breast and ovarian cancers. We compare and contrast the two malignancies whenever possible, in order to emphasize areas where substantial contributions could be made by clinically inspired and validated mathematical modeling. We show how current paradigms in the mathematical oncology community focusing on the two malignancies do not make comprehensive use of, nor substantially reflect existing clinical data, and we highlight the modeling areas in most critical need of clinical data integration. We emphasize that the primary goal of any mathematical study of women's cancers should be to address clinically relevant questions. PMID:27259061

  1. The Receptor Tyrosine Kinase AXL in Cancer Progression

    Directory of Open Access Journals (Sweden)

    Erinn B. Rankin

    2016-11-01

    Full Text Available The AXL receptor tyrosine kinase (AXL has emerged as a promising therapeutic target for cancer therapy. Recent studies have revealed a central role of AXL signaling in tumor proliferation, survival, stem cell phenotype, metastasis, and resistance to cancer therapy. Moreover, AXL is expressed within cellular components of the tumor microenvironment where AXL signaling contributes to the immunosuppressive and protumorigenic phenotypes. A variety of AXL inhibitors have been developed and are efficacious in preclinical studies. These agents offer new opportunities for therapeutic intervention in the prevention and treatment of advanced disease. Here we review the literature that has illuminated the cellular and molecular mechanisms by which AXL signaling promotes tumor progression and we will discuss the therapeutic potential of AXL inhibition for cancer therapy.

  2. Involvement of COUP-TFs in Cancer Progression

    Energy Technology Data Exchange (ETDEWEB)

    Boudot, Antoine; Le Dily, François; Pakdel, Farzad, E-mail: farzad.pakdel@univ-rennes1.fr [Molecular and Cellular Interactions, UMR CNRS 6026, IFR 140 GFSA, University of Rennes 1, Rennes (France)

    2011-02-18

    The orphan receptors COUP-TFI and COUP-TFII are members of the nuclear receptor superfamily that play distinct and critical roles in vertebrate organogenesis, as demonstrated by loss-of-function COUP-TFI and/or COUP-TFII mutant mice. Although COUP-TFs are expressed in a wide range of tissues in adults, little is known about their functions at later stages of development or in organism homeostasis. COUP-TFs are expressed in cancer cell lines of various origins and increasing studies suggest they play roles in cell fate determination and, potentially, in cancer progression. Nevertheless, the exact roles of COUP-TFs in these processes remain unclear and even controversial. In this review, we report both in vitro and in vivo data describing known and suspected actions of COUP-TFs that suggest that these factors are involved in modification of the phenotype of cancer cells, notably of epithelial origin.

  3. Endogenous glutamine decrease is associated with pancreatic cancer progression.

    Science.gov (United States)

    Roux, Cecilia; Riganti, Chiara; Borgogno, Sammy Ferri; Curto, Roberta; Curcio, Claudia; Catanzaro, Valeria; Digilio, Giuseppe; Padovan, Sergio; Puccinelli, Maria Paola; Isabello, Monica; Aime, Silvio; Cappello, Paola; Novelli, Francesco

    2017-11-10

    Pancreatic ductal adenocarcinoma (PDAC) is becoming the second leading cause of cancer-related death in the Western world. The mortality is very high, which emphasizes the need to identify biomarkers for early detection. As glutamine metabolism alteration is a feature of PDAC, its in vivo evaluation may provide a useful tool for biomarker identification. Our aim was to identify a handy method to evaluate blood glutamine consumption in mouse models of PDAC. We quantified the in vitro glutamine uptake by Mass Spectrometry (MS) in tumor cell supernatants and showed that it was higher in PDAC compared to non-PDAC tumor and pancreatic control human cells. The increased glutamine uptake was paralleled by higher activity of most glutamine pathway-related enzymes supporting nucleotide and ATP production. Free glutamine blood levels were evaluated in orthotopic and spontaneous mouse models of PDAC and other pancreatic-related disorders by High-Performance Liquid Chromatography (HPLC) and/or MS. Notably we observed a reduction of blood glutamine as much as the tumor progressed from pancreatic intraepithelial lesions to invasive PDAC, but was not related to chronic pancreatitis-associated inflammation or diabetes. In parallel the increased levels of branched-chain amino acids (BCAA) were observed. By contrast blood glutamine levels were stable in non-tumor bearing mice. These findings demonstrated that glutamine uptake is measurable both in vitro and in vivo . The higher in vitro avidity of PDAC cells corresponded to a lower blood glutamine level as soon as the tumor mass grew. The reduction in circulating glutamine represents a novel tool exploitable to implement other diagnostic or prognostic PDAC biomarkers.

  4. KITENIN is associated with tumor progression in human gastric cancer.

    Science.gov (United States)

    Ryu, Ho-Seong; Park, Young-Lan; Park, Su-Jin; Lee, Ji-Hee; Cho, Sung-Bum; Lee, Wan-Sik; Chung, Ik-Joo; Kim, Kyung-Keun; Lee, Kyung-Hwa; Kweon, Sun-Seog; Joo, Young-Eun

    2010-09-01

    KAI1 COOH-terminal interacting tetraspanin (KITENIN) promotes tumor cell migration, invasion and metastasis in colon, bladder, head and neck cancer. The aims of current study were to evaluate whether KITENIN affects tumor cell behavior in human gastric cancer cell line and to document the expression of KITENIN in a well-defined series of gastric tumors, including complete long-term follow-up, with special reference to patient prognosis. To evaluate the impact of KITENIN knockdown on behavior of a human gastric cancer cell line, AGS, migration, invasion and proliferation assays using small-interfering RNA were performed. The expression of activator protein-1 (AP-1) target genes and AP-1 transcriptional activity were evaluated by reverse transcription-polymerase chain reaction (RT-PCR) and luciferase reporter assay. The expression of KITENIN and AP-1 target genes by RT-PCR and Western blotting or immunohistochemistry was also investigated in human gastric cancer tissues. The knockdown of KITENIN suppressed tumor cell migration, invasion and proliferation in AGS cells. The mRNA expression of matrix metalloproteinase-1 (MMP-1), MMP-3, cyclooxygenase-2 (COX-2), and CD44 was reduced by knockdown of KITENIN in AGS. AP-1 transcriptional activity was significantly decreased by knockdown of KITENIN in AGS cells. KITENIN expression was significantly increased in human cancer tissues at RNA and protein levels. Expression of MMP-1, MMP-3, COX-2 and CD44 were significantly increased in human gastric cancer tissues. Immunostaining of KITENIN was predominantly identified in the cytoplasm of cancer cells. Expression of KITENIN was significantly associated with tumor size, Lauren classification, depth of invasion, lymph node metastasis, tumor stage and poor survival. These results indicate that KITENIN plays an important role in human gastric cancer progression by AP-1 activation.

  5. Progression of Diabetic Capillary Occlusion: A Model.

    Directory of Open Access Journals (Sweden)

    Xiao Fu

    2016-06-01

    Full Text Available An explanatory computational model is developed of the contiguous areas of retinal capillary loss which play a large role in diabetic maculapathy and diabetic retinal neovascularization. Strictly random leukocyte mediated capillary occlusion cannot explain the occurrence of large contiguous areas of retinal ischemia. Therefore occlusion of an individual capillary must increase the probability of occlusion of surrounding capillaries. A retinal perifoveal vascular sector as well as a peripheral retinal capillary network and a deleted hexagonal capillary network are modelled using Compucell3D. The perifoveal modelling produces a pattern of spreading capillary loss with associated macular edema. In the peripheral network, spreading ischemia results from the progressive loss of the ladder capillaries which connect peripheral arterioles and venules. System blood flow was elevated in the macular model before a later reduction in flow in cases with progression of capillary occlusions. Simulations differing only in initial vascular network structures but with identical dynamics for oxygen, growth factors and vascular occlusions, replicate key clinical observations of ischemia and macular edema in the posterior pole and ischemia in the retinal periphery. The simulation results also seem consistent with quantitative data on macular blood flow and qualitative data on venous oxygenation. One computational model applied to distinct capillary networks in different retinal regions yielded results comparable to clinical observations in those regions.

  6. Gastric cancer-derived MSC-secreted PDGF-DD promotes gastric cancer progression.

    Science.gov (United States)

    Huang, Feng; Wang, Mei; Yang, Tingting; Cai, Jie; Zhang, Qiang; Sun, Zixuan; Wu, Xiaodan; Zhang, Xu; Zhu, Wei; Qian, Hui; Xu, Wenrong

    2014-11-01

    This study was designed to investigate the role of PDGF-DD secreted by gastric cancer-derived mesenchymal stem cells (GC-MSCs) in human gastric cancer progression. Gastric cancer cells were indirectly co-cultured with GC-MSCs in a transwell system. The growth and migration of gastric cancer cells were evaluated by cell colony formation assay and transwell migration assay, respectively. The production of PDGF-DD in GC-MSCs was determined by using Luminex and ELISA. Neutralization of PDGFR-β by su16f and siRNA interference of PDGF-DD in GC-MSCs was used to demonstrate the role of PDGF-DD produced by GC-MSCs in gastric cancer progression. GC-MSC conditioned medium promoted gastric cancer cell proliferation and migration in vitro and in vivo. Co-culture with GC-MSCs increased the phosphorylation of PDGFR-β in SGC-7901 cells. Neutralization of PDGFR-β by su16f blocked the promoting role of GC-MSC conditioned medium in gastric cancer cell proliferation and migration. Recombinant PDGF-DD duplicated the effects of GC-MSC conditioned medium on gastric cancer cells. Knockdown of PDGF-DD in GC-MSCs abolished its effects on gastric cancer cells in vitro and in vivo. PDGF-DD secreted by GC-MSCs is capable of promoting gastric cancer cell progression in vitro and in vivo. Targeting the PDGF-DD/PDGFR-β interaction between MSCs and gastric cancer cells may represent a novel strategy for gastric cancer therapy.

  7. Triptolide downregulates Rac1 and the JAK/STAT3 pathway and inhibits colitis-related colon cancer progression

    DEFF Research Database (Denmark)

    Wang, Zhipeng; Jin, Haifeng; Xu, Ruodan

    2009-01-01

    ability to block progress of colitis to colon cancer, and its molecular mechanism of action are investigated. A mouse model for colitis-induced colorectal cancer was used to test the effect of triptolide on cancer progression. Treatment of mice with triptolide decreased the incidence of colon cancer...... formation, and increased survival rate. Moreover, triptolide decreased the incidence of tumors in nude mice inoculated with cultured colon cancer cells dose-dependently. In vitro, triptolide inhibited the proliferation, migration and colony formation of colon cancer cells. Secretion of IL6 and levels of JAK....... This suggests that triptolide might be a candidate for prevention of colitis induced colon cancer because it reduces inflammation and prevents tumor formation and development....

  8. Tumor-Derived Exosomes and Their Role in Cancer Progression.

    Science.gov (United States)

    Whiteside, Theresa L

    2016-01-01

    Tumor cells actively produce, release, and utilize exosomes to promote tumor growth. Mechanisms through which tumor-derived exosomes subserve the tumor are under intense investigation. These exosomes are information carriers, conveying molecular and genetic messages from tumor cells to normal or other abnormal cells residing at close or distant sites. Tumor-derived exosomes are found in all body fluids. Upon contact with target cells, they alter phenotypic and functional attributes of recipients, reprogramming them into active contributors to angiogenesis, thrombosis, metastasis, and immunosuppression. Exosomes produced by tumors carry cargos that in part mimic contents of parent cells and are of potential interest as noninvasive biomarkers of cancer. Their role in inhibiting the host antitumor responses and in mediating drug resistance is important for cancer therapy. Tumor-derived exosomes may interfere with cancer immunotherapy, but they also could serve as adjuvants and antigenic components of antitumor vaccines. Their biological roles in cancer development or progression as well as cancer therapy suggest that tumor-derived exosomes are critical components of oncogenic transformation. © 2016 Elsevier Inc. All rights reserved.

  9. The role of S100 genes in breast cancer progression.

    LENUS (Irish Health Repository)

    McKiernan, Eadaoin

    2012-02-01

    The S100 gene family encode low molecular weight proteins implicated in cancer progression. In this study, we analyzed the expression of four S100 genes in one cohort of patients with breast cancer and 16 S100 genes in a second cohort. In both cohorts, the expression of S100A8 and S1009 mRNA level was elevated in high-grade compared to low-grade tumors and in estrogen receptor-negative compared to estrogen receptor-positive tumors. None of the S100 transcripts investigated were significantly associated with the presence of lymph node metastasis. Notably, multiple S100 genes, including S100A1, S100A2, S100A4, S100A6, S100A8, S100A9, S100A10, S100A11, and S100A14 were upregulated in basal-type breast cancers compared to non-basal types. Using Spearman\\'s correlation analysis, several S100 transcripts correlated significantly with each other, the strongest correlation has been found between S100A8 and S100A9 (r = 0.889, P < 0.001, n = 295). Of the 16 S100 transcripts investigated, only S100A11 and S100A14 were significantly associated with patient outcome. Indeed, these two transcripts predicted outcome in the cohort of patients that did not receive systemic adjuvant therapy. Based on our findings, we conclude that the different S100 genes play varying roles in breast cancer progression. Specific S100 genes are potential targets for the treatment of basal-type breast cancers.

  10. The role of S100 genes in breast cancer progression.

    LENUS (Irish Health Repository)

    McKiernan, Eadaoin

    2011-06-01

    The S100 gene family encode low molecular weight proteins implicated in cancer progression. In this study, we analyzed the expression of four S100 genes in one cohort of patients with breast cancer and 16 S100 genes in a second cohort. In both cohorts, the expression of S100A8 and S1009 mRNA level was elevated in high-grade compared to low-grade tumors and in estrogen receptor-negative compared to estrogen receptor-positive tumors. None of the S100 transcripts investigated were significantly associated with the presence of lymph node metastasis. Notably, multiple S100 genes, including S100A1, S100A2, S100A4, S100A6, S100A8, S100A9, S100A10, S100A11, and S100A14 were upregulated in basal-type breast cancers compared to non-basal types. Using Spearman\\'s correlation analysis, several S100 transcripts correlated significantly with each other, the strongest correlation has been found between S100A8 and S100A9 (r = 0.889, P < 0.001, n = 295). Of the 16 S100 transcripts investigated, only S100A11 and S100A14 were significantly associated with patient outcome. Indeed, these two transcripts predicted outcome in the cohort of patients that did not receive systemic adjuvant therapy. Based on our findings, we conclude that the different S100 genes play varying roles in breast cancer progression. Specific S100 genes are potential targets for the treatment of basal-type breast cancers.

  11. If you 'watch and wait', prostate cancer may progress dramatically

    International Nuclear Information System (INIS)

    Allison, R. R.; Schulsinger, A.; Vongtama, V.; Grant, P.; Shin, K. H.; Huben, R.

    1996-01-01

    Objective: Observation has been proposed as an option for localized prostate cancer. However, most series reporting on 'watch and wait include patients treated by TUR or hormones which may affect results. We retrospectively reviewed the natural history of truly untreated prostate cancer and report the outcome for these patients. Materials and Methods: From 1976 to 1992, 34 patients of median age 70 yrs (range 56-88) with biopsy proven localized adenocarcinoma of the prostate refused therapy. All had negative bone scan and none underwent TUR or hormone treatment. No patient was lost to follow-up (median 76 months). Failure patterns and survival were analyzed. Results: At diagnosis 27 patients had palpable nodules (T 2 ) of which 13 were well differentiated and 14 moderately differentiated. Seven had moderately differentiated T 3 lesions. Mild prostatitis was reported in 16 T 2 and 6 T 3 patients. Within 36 months, local progression requiring therapy occurred in all T 3 , all T 2 moderate and (5(13)) T 2 well differentiated patients. Systemic progression occurred in (6(7)) T 3 , (9(14)) T 2 (mod) and (3(13)) T 2 (well) patients. Overall 59% are alive, 26% succumbed to prostate carcinoma and 15% to other causes. Conclusion: Observation results in a high rate of local progression requiring intervention (77%) and excessive systemic disease development (52%) for patients with clinically palpable disease. Perhaps this strategy is viable for earlier stage lesions detected by PSA but it must be tested in a rigorous fashion before accepted

  12. Deregulation of MiR-34b/Sox2 Predicts Prostate Cancer Progression.

    Directory of Open Access Journals (Sweden)

    Irene Forno

    Full Text Available Most men diagnosed with prostate cancer will have an indolent and curable disease, whereas approximately 15% of these patients will rapidly progress to a castrate-resistant and metastatic stage with high morbidity and mortality. Therefore, the identification of molecular signature(s that detect men at risk of progressing disease remains a pressing and still unmet need for these patients. Here, we used an integrated discovery platform combining prostate cancer cell lines, a Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP model and clinically-annotated human tissue samples to identify loss of expression of microRNA-34b as consistently associated with prostate cancer relapse. Mechanistically, this was associated with epigenetics silencing of the MIR34B/C locus and increased DNA copy number loss, selectively in androgen-dependent prostate cancer. In turn, loss of miR-34b resulted in downstream deregulation and overexpression of the "stemness" marker, Sox2. These findings identify loss of miR-34b as a robust biomarker for prostate cancer progression in androgen-sensitive tumors, and anticipate a potential role of progenitor/stem cell signaling in this stage of disease.

  13. Deregulation of MiR-34b/Sox2 Predicts Prostate Cancer Progression.

    Science.gov (United States)

    Forno, Irene; Ferrero, Stefano; Russo, Maria Veronica; Gazzano, Giacomo; Giangiobbe, Sara; Montanari, Emanuele; Del Nero, Alberto; Rocco, Bernardo; Albo, Giancarlo; Languino, Lucia R; Altieri, Dario C; Vaira, Valentina; Bosari, Silvano

    2015-01-01

    Most men diagnosed with prostate cancer will have an indolent and curable disease, whereas approximately 15% of these patients will rapidly progress to a castrate-resistant and metastatic stage with high morbidity and mortality. Therefore, the identification of molecular signature(s) that detect men at risk of progressing disease remains a pressing and still unmet need for these patients. Here, we used an integrated discovery platform combining prostate cancer cell lines, a Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP) model and clinically-annotated human tissue samples to identify loss of expression of microRNA-34b as consistently associated with prostate cancer relapse. Mechanistically, this was associated with epigenetics silencing of the MIR34B/C locus and increased DNA copy number loss, selectively in androgen-dependent prostate cancer. In turn, loss of miR-34b resulted in downstream deregulation and overexpression of the "stemness" marker, Sox2. These findings identify loss of miR-34b as a robust biomarker for prostate cancer progression in androgen-sensitive tumors, and anticipate a potential role of progenitor/stem cell signaling in this stage of disease.

  14. Research Progress of Lung Cancer with Leptomeningeal Metastasis

    Directory of Open Access Journals (Sweden)

    Chunhua MA

    2014-09-01

    Full Text Available Leptomeningeal metastases is one of the most serious complications of lung cancer, the patients with poor prognosis. Leptomeningeal metastasis in patients with lack specificity of clinical manifestations. The main clinical performance are the damage of cerebral symptoms, cranial nerve and spinal nerve. The diagnosis primarily based on the history of tumor, clinical symptoms, enhance magnetic resnance image (MRI scan and cerebrospinal fluid cytology. In recent years, new ways of detecting clinically, significantly increase the rate of early detection of leptomeningeal metastases. The effect of comprehensive treatments are still sad. The paper make a review of research progress in pathologic physiology, clinical manifestations, diagnosis methods and treatments of lung cancer with leptomeningeal metastases.

  15. Bladder cancer exosomes contain EDIL-3/Del1 and facilitate cancer progression.

    Science.gov (United States)

    Beckham, Carla J; Olsen, Jayme; Yin, Peng-Nien; Wu, Chia-Hao; Ting, Huei-Ju; Hagen, Fred K; Scosyrev, Emelian; Messing, Edward M; Lee, Yi-Fen

    2014-08-01

    High grade bladder cancer is an extremely aggressive malignancy associated with high rates of morbidity and mortality. Understanding how exosomes may affect bladder cancer progression could reveal novel therapeutic targets. Exosomes derived from human bladder cancer cell lines and the urine of patients with high grade bladder cancer were assessed for the ability to promote cancer progression in standard assays. Exosomes purified from the high grade bladder cancer cell line TCC-SUP and the nonmalignant urothelial cell line SV-HUC were submitted for mass spectrometry analysis. EDIL-3 was identified and selected for further analysis. Western blot was done to determine EDIL-3 levels in urinary exosomes from patients with high grade bladder cancer. shRNA gene knockdown and recombinant EDIL-3 were applied to study EDIL-3 function. Exosomes isolated from high grade bladder cancer cells and the urine of patients with high grade bladder cancer promoted angiogenesis and migration of bladder cancer cells and endothelial cells. We silenced EDIL-3 expression and found that shEDIL-3 exosomes did not facilitate angiogenesis, and urothelial and endothelial cell migration. Moreover, exosomes purified from the urine of patients with high grade bladder cancer contained significantly higher EDIL-3 levels than exosomes from the urine of healthy controls. EDIL-3 activated epidermal growth factor receptor signaling while blockade of epidermal growth factor receptor signaling abrogated this EDIL-3 induced bladder cell migration. Exosomes derived from the urine of patients with bladder cancer contains bioactive molecules such as EDIL-3. Identifying these components and their associated oncogenic pathways could lead to novel therapeutic targets and treatment strategies. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  16. Progress in D-brane model building

    International Nuclear Information System (INIS)

    Marchesano, F.

    2007-01-01

    The state of the art in D-brane model building is briefly reviewed, focusing on recent achievements in the construction of D=4 N=1 type II string vacua with semi-realistic gauge sectors. Such progress relies on a better understanding of the spectrum of BPS D-branes, the effective field theory obtained from them and the explicit construction of vacua. We first consider D-branes in standard Calabi-Yau compactifications, and then the more involved case of compactifications with fluxes. We discuss how the non-trivial interplay between D-branes and fluxes modifies the previous model-building rules, as well as provides new possibilities to connect string theory to particle physics. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  17. Prognostic factors for progression-free and overall survival in advanced biliary tract cancer

    DEFF Research Database (Denmark)

    Bridgewater, J; Lopes, A; Wasan, H

    2016-01-01

    independently with outcome. This score was validated externally by receiver operating curve (ROC) analysis using the independent international dataset. RESULTS: A total of 410 patients were included from the ABC-02 study and 753 from the international dataset. An overall survival (OS) and progression......BACKGROUND: Biliary tract cancer is an uncommon cancer with a poor outcome. We assembled data from the National Cancer Research Institute (UK) ABC-02 study and 10 international studies to determine prognostic outcome characteristics for patients with advanced disease. METHODS: Multivariable...... biliary tract cancer derived from the ABC-02 study that are validated in an international dataset. Although these findings establish the benchmark for the prognostic evaluation of patients with ABC and confirm the value of longheld clinical observations, the ability of the model to correctly predict...

  18. Potential Biomarker of L type Amino Acid Transporter 1 in Breast Cancer Progression

    International Nuclear Information System (INIS)

    Liang, Zhongxing; Cho, Heidi T.; Williams, Larry; Zhu, Aizhi; Liang, Ke; Huang, Ke; Wu, Hui; Jiang, Chunsu; Hong, Samuel; Crowe, Ronald; Goodman, Mark M.; Shim, Hyunsuk

    2011-01-01

    L type amino acid transporter 1 (LAT1) is essential for the transport of large neutral amino acids. However, its role in breast cancer growth remains largely unknown. The purpose of the study is to investigate whether LAT1 is a potential biomarker for the diagnosis and treatment of breast cancer. LAT1 mRNA and protein levels in breast cancer cell lines and tissues were analyzed. In addition, the effects of targeting LAT1 for the inhibition of breast cancer cell tumorigenesis were assessed with soft agar assay. The imaging of xenograft with 1 amino 3 [ 18F ]fluorocyclo butane 1 carboxylic acid ([ 18F ]FACBC) PET was assessed for its diagnostic biomarker potential. Normal breast tissue or low malignant cell lines expressed low levels of LAT1 mRNA and protein, while highly malignant cancer cell lines and high grade breast cancer tissue expressed high levels of LAT1. In addition, higher expression levels of LAT1 in breast cancer tissues were consistent with advanced stage breast cancer. Furtermore, the blockade of LAT1 with its inhibitor, 2 amino bicyclo[2.2.1]heptane 2 carboxylic acid (BCH), or the knockdown of LAT1 with siRNA, inhibited proliferation and tumorigenesis of breast cancer cells. A leucine analog, [ 18F ]FACBC, has been demonstrated to be an excellent PET tracer for the non invasive imaging og malignant breast cancer using an orthotopic animal model. The overexpression of LAT1 is required for the progression of breast cancer. LAT1 represents a potential biomarker for therapy and diagnosis of breast cancer. [ 18F ]FACBC that correlates with LAT1 function is a potential PET tracer for malignant breast tumor imaging

  19. Combination Efficacy of Astragalus membranaceus and Curcuma wenyujin at Different Stages of Tumor Progression in an Imageable Orthotopic Nude Mouse Model of Metastatic Human Ovarian Cancer Expressing Red Fluorescent Protein.

    Science.gov (United States)

    Yin, Gang; Tang, Decai; Dai, Jianguo; Liu, Min; Wu, Mianhua; Sun, Y U; Yang, Zhijian; Hoffman, Robert M; Li, Lin; Zhang, Shuo; Guo, Xiuxia

    2015-06-01

    The present study determined the efficacy of extracts of Astragalus membranaceus (AM) and Curcuma wenyujin (CW), a traditional Chinese medicine herbal mixture, at different tumor stages of an orthotopic nude mouse model of human ovarian cancer expressing red fluorescent protein. The tumor-bearing mice were treated with cisplatinum (CDDP), AM, CW, or a combination of AM and CW in each of three tumor stages, using the same regimen. Group 1 received saline as negative control. Group 2 received CDDP i.p. as positive control with a dose of 2 mg/kg, every three days. Group 3 received AM daily via oral gavage, at a dose of 9120 mg/kg. Group 4 received CW daily via oral gavage, at a dose of 4560 mg/kg. Groups 5, 6 and 7 received combinations of AM and CW daily via oral gavage at low (AM, 2280 mg/kg; CW, 1140 mg/kg), medium (AM, 4560 mg/kg; CW 2280 mg/kg), and high (AM, 9120 mg/kg; CW, 4560 mg/kg) doses. The expression of angiogenesis- and apoptosis-related genes in the tumors were analyzed by immunohistochemistry for matrix metalloproteinase 2 (MMP-2), vascular endothelial growth factor (VEGF) fibroblast growth factor 2 (FGF-2), B-cell lymphoma 2 (Bcl-2) and cyclooxygenase 2 (Cox-2), and by polymerase chain reaction for MMP-2, FGF-2 and Bcl-2. CDDP, AM, and its combination with CW-induced significant growth inhibition of Stage I tumors. Strong efficacy of the combination of AM and CW at high dose was observed. Monotherapy with CDDP, AM, CW, and the combination treatments did not significantly inhibit Stage II and III tumors. The expression of MMP-2, VEGF, FGF-2, and Cox-2 was significantly reduced in Stage I tumors treated with AM, CW, and their combination, suggesting a possible role of these angiogenesis- and apoptosis-related genes in the observed efficacy of the agents tested. This study is the first report on the efficacy of anticancer agents at different stages of ovarian cancer in an orthotopic mouse model. As the tumor progressed, it became treatment

  20. Mouse models for gastric cancer: Matching models to biological questions

    Science.gov (United States)

    Poh, Ashleigh R; O'Donoghue, Robert J J

    2016-01-01

    Abstract Gastric cancer is the third leading cause of cancer‐related mortality worldwide. This is in part due to the asymptomatic nature of the disease, which often results in late‐stage diagnosis, at which point there are limited treatment options. Even when treated successfully, gastric cancer patients have a high risk of tumor recurrence and acquired drug resistance. It is vital to gain a better understanding of the molecular mechanisms underlying gastric cancer pathogenesis to facilitate the design of new‐targeted therapies that may improve patient survival. A number of chemically and genetically engineered mouse models of gastric cancer have provided significant insight into the contribution of genetic and environmental factors to disease onset and progression. This review outlines the strengths and limitations of current mouse models of gastric cancer and their relevance to the pre‐clinical development of new therapeutics. PMID:26809278

  1. Understanding and Targeting Tumor Microenvironment in Prostate Cancer to Inhibit Tumor Progression and Castration Resistance

    Science.gov (United States)

    2016-10-01

    cancer-secreted chemokine to attract Cxcr2-expressing MDSCs and, correspondingly, pharmacological inhibition of Cxcr2 impeded tumor progression...impact of pharmacological inhibition of Cxcl5 and Cxcr2 on MDSCs using the transwell migration assay 26 . First, anti-Cxcl5 neutralizing antibody...and MRI . (B) Generation of the CPPSML chimera model. (C) Fluorescence microscopy and H&E image of snap frozen prostate tumor from chimera showing that

  2. Investigate the Role of Obesity in Ovarian Cancer Initiation and Progression

    Science.gov (United States)

    2017-07-01

    cells and in transformed ovarian cells affected by obesity that lead to ovarian cancer initiation and progression. 15. SUBJECT TERMS Obesity, Ovarian...5 7. Participants & Other Collaborating Organizations...that lead to ovarian cancer initiation and progression. We also aim to identify secreted factors from adipose tissue that promote ovarian cancer

  3. Gynecologic Cancer Prevention and Control in the National Comprehensive Cancer Control Program: Progress, Current Activities, and Future Directions

    OpenAIRE

    Stewart, Sherri L.; Lakhani, Naheed; Brown, Phaeydra M.; Larkin, O. Ann; Moore, Angela R.; Hayes, Nikki S.

    2013-01-01

    Gynecologic cancer confers a large burden among women in the United States. Several evidence-based interventions are available to reduce the incidence, morbidity, and mortality from these cancers. The National Comprehensive Cancer Control Program (NCCCP) is uniquely positioned to implement these interventions in the US population. This review discusses progress and future directions for the NCCCP in preventing and controlling gynecologic cancer.

  4. Gynecologic cancer prevention and control in the National Comprehensive Cancer Control Program: progress, current activities, and future directions.

    Science.gov (United States)

    Stewart, Sherri L; Lakhani, Naheed; Brown, Phaeydra M; Larkin, O Ann; Moore, Angela R; Hayes, Nikki S

    2013-08-01

    Gynecologic cancer confers a large burden among women in the United States. Several evidence-based interventions are available to reduce the incidence, morbidity, and mortality from these cancers. The National Comprehensive Cancer Control Program (NCCCP) is uniquely positioned to implement these interventions in the US population. This review discusses progress and future directions for the NCCCP in preventing and controlling gynecologic cancer.

  5. If you 'watch and wait,' prostate cancer may progress dramatically

    International Nuclear Information System (INIS)

    Allison, Ron R.; Schulsinger, Alan; Vongtama, Vitune; Grant, Pat; Shin, Kyu H.; Huben, Robert

    1997-01-01

    Purpose: Observation has been proposed as an option for localized prostate cancer. However, most series reporting on 'watch and wait' include patients treated by TUR or hormones that may affect results. We retrospectively reviewed the natural history of truly untreated prostate cancer and report the outcome for these patients. Methods and Materials: From 1976 to 1992, 34 patients of median age 70 years (range 56-88) with biopsy proven localized adenocarcinoma of the prostate refused therapy. All had negative bone scan and none underwent TUR or hormone treatment. No patient was lost to follow-up (median 76 months). Failure patterns and survival were analyzed. Results: At diagnosis 27 patients had palpable nodules (T2), of which 13 were well differentiated and 14 moderately differentiated. Seven had moderately differentiated T3 lesions. Mild prostatitis including nocturia, hesistancy, and urgency were reported in 16 T2 and 6 T3 patients. Within 36 months, local progression requiring therapy occurred in all T3, all T2 moderate and 5 of 13 T2 well-differentiated patients. Systemic progression occurred in 6 of 7 T3, 9 of 14 T2 (mod), and 2 of 13 T2 (well) patients. Overall 59% are alive, 26% succumbed to prostate carcinoma and 15% to other causes. Conclusion: Observation results in a high rate of local progression requiring intervention (77%) and excessive systemic disease development (50%) for patients with clinically palpable disease. Perhaps this strategy is viable for earlier stage lesions detected by PSA but it must be tested in a rigorous fashion before accepted

  6. Recent progress in sorption mechanisms and models

    International Nuclear Information System (INIS)

    Fedoroff, M.; Lefevre, G.

    2005-01-01

    reactivity of the different faces. Finally, we know more about the sorption processes and are able to model them with a better agreement with the real sorption mechanisms. However, this progress concerns a few simple systems and a further task will be the application of this knowledge to more complex systems. (authors)

  7. Desmoglein 3: A Help or a Hindrance in Cancer Progression?

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Louise [Queen Mary University of London, Barts and the London School of Medicine and Dentistry, Center for Clinical and Diagnostic Oral Sciences, Institute of Dentistry, Blizard Building, London E1 2AT (United Kingdom); Department of Cellular and Molecular Physiology, University of Liverpool, Institute of Translational Medicine, Liverpool L69 3BX (United Kingdom); Wan, Hong, E-mail: h.wan@qmul.ac.uk [Queen Mary University of London, Barts and the London School of Medicine and Dentistry, Center for Clinical and Diagnostic Oral Sciences, Institute of Dentistry, Blizard Building, London E1 2AT (United Kingdom)

    2015-01-26

    Desmoglein 3 is one of seven desmosomal cadherins that mediate cell-cell adhesion in desmosomes. Desmosomes are the intercellular junctional complexes that anchor the intermediate filaments of adjacent cells and confer strong cell adhesion thus are essential in the maintenance of tissue architecture and structural integrity. Like adherens junctions, desmosomes function as tumour suppressors and are down regulated in the process of epithelial-mesenchymal transition and in tumour cell invasion and metastasis. However, recently several studies have shown that various desmosomal components, including desmoglein 3, are up-regulated in cancer with increased levels of expression correlating with the clinical stage of malignancy, implicating their potentiality to serve as a diagnostic and prognostic marker. Furthermore, in vitro studies have demonstrated that overexpression of desmoglein 3 in cancer cell lines activates several signal pathways that have an impact on cell morphology, adhesion and locomotion. These additional signalling roles of desmoglein 3 may not be associated to its adhesive function in desmosomes but rather function outside of the junctions, acting as a key regulator in the control of actin based cellular processes. This review will discuss recent advances which support the role of desmoglein 3 in cancer progression.

  8. Tumor-derived exosomes in cancer progression and treatment failure.

    Science.gov (United States)

    Yu, Shaorong; Cao, Haixia; Shen, Bo; Feng, Jifeng

    2015-11-10

    Exosomes have diameter within the range of 30-100 nm and spherical to cup-shaped nanoparticles with specific surface molecular characteristics, such as CD9 and CD63. These vesicles are present in nearly all human body fluids, including blood plasma/serum, saliva, breast milk, cerebrospinal fluid, urine, semen, and particularly enriched in tumor microenvironment. Exosomes contain multiple proteins, DNA, mRNA, miRNA, long non-coding RNA, and even genetic materials of viruses/prions. These materials are biochemically and functionally distinct and can be transferred to a recipient cell where they regulate protein expression and signaling pathways. Recently, exosomes are demonstrated to have a close relationship with tumor development and metastasis. Exosomes influence therapeutic effect in cancer patients. In this review, we describe the biogenesis, composition, and function of exosomes. The mechanism on how tumor-derived exosomes contribute to cancer progression and clinical treatment failure is also described, with special focus on their potential applications in cancer therapy.

  9. Tumor-derived exosomes in cancer progression and treatment failure

    Science.gov (United States)

    Shen, Bo; Feng, Jifeng

    2015-01-01

    Exosomes have diameter within the range of 30-100nm and spherical to cup-shaped nanoparticles with specific surface molecular characteristics, such as CD9 and CD63. These vesicles are present in nearly all human body fluids, including blood plasma/serum, saliva, breast milk, cerebrospinal fluid, urine, semen, and particularly enriched in tumor microenvironment. Exosomes contain multiple proteins, DNA, mRNA, miRNA, long non-coding RNA, and even genetic materials of viruses/prions. These materials are biochemically and functionally distinct and can be transferred to a recipient cell where they regulate protein expression and signaling pathways. Recently, exosomes are demonstrated to have a close relationship with tumor development and metastasis. Exosomes influence therapeutic effect in cancer patients. In this review, we describe the biogenesis, composition, and function of exosomes. The mechanism on how tumor-derived exosomes contribute to cancer progression and clinical treatment failure is also described, with special focus on their potential applications in cancer therapy. PMID:26452221

  10. Desmoglein 3: A Help or a Hindrance in Cancer Progression?

    International Nuclear Information System (INIS)

    Brown, Louise; Wan, Hong

    2015-01-01

    Desmoglein 3 is one of seven desmosomal cadherins that mediate cell-cell adhesion in desmosomes. Desmosomes are the intercellular junctional complexes that anchor the intermediate filaments of adjacent cells and confer strong cell adhesion thus are essential in the maintenance of tissue architecture and structural integrity. Like adherens junctions, desmosomes function as tumour suppressors and are down regulated in the process of epithelial-mesenchymal transition and in tumour cell invasion and metastasis. However, recently several studies have shown that various desmosomal components, including desmoglein 3, are up-regulated in cancer with increased levels of expression correlating with the clinical stage of malignancy, implicating their potentiality to serve as a diagnostic and prognostic marker. Furthermore, in vitro studies have demonstrated that overexpression of desmoglein 3 in cancer cell lines activates several signal pathways that have an impact on cell morphology, adhesion and locomotion. These additional signalling roles of desmoglein 3 may not be associated to its adhesive function in desmosomes but rather function outside of the junctions, acting as a key regulator in the control of actin based cellular processes. This review will discuss recent advances which support the role of desmoglein 3 in cancer progression

  11. Progression criteria for cancer antigen 15.3 and carcinoembryonic antigen in metastatic breast cancer compared by computer simulation of marker data

    DEFF Research Database (Denmark)

    Sölétormos, G; Hyltoft Petersen, P; Dombernowsky, P

    2000-01-01

    .3 and carcinoembryonic antigen concentrations were combined with representative values for background variations in a computer simulation model. Fifteen criteria for assessment of longitudinal tumor marker data were obtained from the literature and computerized. Altogether, 7200 different patients, each based on 50......BACKGROUND: We investigated the utility of computer simulation models for performance comparisons of different tumor marker assessment criteria to define progression or nonprogression of metastatic breast cancer. METHODS: Clinically relevant values for progressive cancer antigen 15...... of progression. CONCLUSIONS: The computer simulation model is a fast, effective, and inexpensive approach for comparing the diagnostic potential of assessment criteria during clinically relevant conditions of steady-state and progressive disease. The model systems can be used to generate tumor marker assessment...

  12. Expression and functional role of orphan receptor GPR158 in prostate cancer growth and progression.

    Directory of Open Access Journals (Sweden)

    Nitin Patel

    Full Text Available Prostate cancer (PCa is the second-leading cause of cancer-related mortality, after lung cancer, in men from developed countries. In its early stages, primary tumor growth is dependent on androgens, thus generally can be controlled by androgen deprivation therapy (ADT. Eventually however, the disease progresses to castration-resistant prostate cancer (CRPC, a lethal form in need of more effective treatments. G-protein coupled receptors (GPCRs comprise a large clan of cell surface proteins that have been implicated as therapeutic targets in PCa growth and progression. The findings reported here provide intriguing evidence of a role for the newly characterized glutamate family member GPR158 in PCa growth and progression. We found that GPR158 promotes PCa cell proliferation independent of androgen receptor (AR functionality and that this requires its localization in the nucleus of the cell. This suggests that GPR158 acts by mechanisms different from other GPCRs. GPR158 expression is stimulated by androgens and GPR158 stimulates AR expression, implying a potential to sensitize tumors to low androgen conditions during ADT via a positive feedback loop. Further, we found GPR158 expression correlates with a neuroendocrine (NE differentiation phenotype and promotes anchorage-independent colony formation implying a role for GPR158 in therapeutic progression and tumor formation. GPR158 expression was increased at the invading front of prostate tumors that formed in the genetically defined conditional Pten knockout mouse model, and co-localized with elevated AR expression in the cell nucleus. Kaplan-Meier analysis on a dataset from the Memorial Sloan Kettering cancer genome portal showed that increased GPR158 expression in tumors is associated with lower disease-free survival. Our findings strongly suggest that pharmaceuticals targeting GPR158 activities could represent a novel and innovative approach to the prevention and management of CRPC.

  13. Total RNA Sequencing Analysis of DCIS Progressing to Invasive Breast Cancer

    Science.gov (United States)

    2017-09-01

    AWARD NUMBER: W81XWH-14-1-0080 TITLE: Total RNA Sequencing Analysis of DCIS Progressing to Invasive Breast Cancer . PRINCIPAL INVESTIGATOR...TITLE AND SUBTITLE Total RNA Sequencing Analysis of DCIS Progressing to Invasive Breast Cancer . 5a. CONTRACT NUMBER 5b. GRANT NUMBER GRANT11489...institutional, NIH-funded study of genetic and epigenetic alterations of pre-invasive DCIS that did or did not progress to invasive breast cancer , with an

  14. Proposed Special Issue: Progress of cancer research in developing countries

    Directory of Open Access Journals (Sweden)

    T.S. Jong

    2016-10-01

    % growth in the same period, with two consecutive years of decline between 2012 and 2014. This steady upward trend of publication output from developing countries shows that researchers are becoming increasingly aware of the values of evidence-based research, without which would limit funding opportunities and restrict international collaborations, as well as partnerships.Advances in Modern Oncology Research is an Open Access journal aimed at increasing the accessibility of peer-reviewed information among researchers worldwide. The journal emphasizes on equal opportunity in scientific publishing, and is committed towards bridging the existing knowledge gap in cancer research between developed and developing countries. AMOR is keen to highlight the current challenges and opportunities of cancer research in developing countries, and the creation of a special issue dedicated to this subject is especially relevant and urgent to the broad community of cancer researchers because:(i It provides a much-needed platform to clinicians and researchers from developing countries to share important region-specific data, statistics, observations, and findings with the international community. This will not only improve the visibility of researchers from developing countries, but also enrich existing medical literature with updated information on the progress of cancer research in the developing world.(ii It gives clinicians, researchers, and policy makers from developed nations the opportunity to assess the existing and projected capability of developing countries in coping with the disease burden of cancer. Moreover, it is expected to equip stakeholders with key data and information to better manage vital resources, i.e. the allocation of funding and creation of knowledge transfer programs, moving forward.It takes collective efforts to address the escalating threat of cancer mortality and morbidity in the developing world. In order to introduce effective long-term solutions, it is

  15. Bmi-1 expression modulates non-small cell lung cancer progression

    Science.gov (United States)

    Xiong, Dan; Ye, Yunlin; Fu, Yujie; Wang, Jinglong; Kuang, Bohua; Wang, Hongbo; Wang, Xiumin; Zu, Lidong; Xiao, Gang; Hao, Mingang; Wang, Jianhua

    2015-01-01

    Previous studies indicate that the role of B lymphoma Mo-MLV insertion region 1 homolog (Bmi-1) is responsible for multiple cancer progression. However, Bmi-1 in controlling gene expression in non-small cell lung cancer (NSCLC) development is not well explored. Here we report that the Bmi-1 level is highly increased in primary NSCLC tissues compared to matched adjacent non-cancerous tissues and required for lung tumor growth in xenograft model. Furthermore, we also demonstrate that Bmi-1 level is lower in matched involved lymph node cancerous tissues than the respective primary NSCLC tissues. We find that Bmi-1 does not affect cell cycle and apoptosis in lung cancer cell lines as it does not affect the expression of p16/p19, Pten, AKT and P-AKT. Mechanistic analyses note that reduction of Bmi-1 expression inversely regulates invasion and metastasis of NSCLC cells in vitro and in vivo, followed by induction of epithelial-mesenchymal transition (EMT). Using genome microarray assays, we find that RNAi-mediated silence of Bmi-1 modulates some important molecular genetics or signaling pathways, potentially associated with NSCLC development. Taken together, our findings disclose for the first time that Bmi-1 level accumulates strongly in early stage and then declines in late stage, which is potentially important for NSCLC cell invasion and metastasis during progression. PMID:25880371

  16. Plac8 Links Oncogenic Mutations to Regulation of Autophagy and Is Critical to Pancreatic Cancer Progression

    Directory of Open Access Journals (Sweden)

    Conan Kinsey

    2014-05-01

    Full Text Available Mutations in p53 and RAS potently cooperate in oncogenic transformation, and correspondingly, these genetic alterations frequently coexist in pancreatic ductal adenocarcinoma (PDA and other human cancers. Previously, we identified a set of genes synergistically activated by combined RAS and p53 mutations as frequent downstream mediators of tumorigenesis. Here, we show that the synergistically activated gene Plac8 is critical for pancreatic cancer growth. Silencing of Plac8 in cell lines suppresses tumor formation by blocking autophagy, a process essential for maintaining metabolic homeostasis in PDA, and genetic inactivation in an engineered mouse model inhibits PDA progression. We show that Plac8 is a critical regulator of the autophagic machinery, localizing to the lysosomal compartment and facilitating lysosome-autophagosome fusion. Plac8 thus provides a mechanistic link between primary oncogenic mutations and the induction of autophagy, a central mechanism of metabolic reprogramming, during PDA progression.

  17. THE ROLE OF MITOCHONDRIA IN THE DEVELOPMENT AND PROGRESSION OF LUNG CANCER

    Directory of Open Access Journals (Sweden)

    Emily R Roberts

    2013-03-01

    Mitochondrial dysfunction in cancer has expanded to include defects in mitochondrial genomics and biogenesis, apoptotic signaling and mitochondrial dynamics. This review will focus on the role of mitochondria and their influence on cancer initiation, progression and treatment in the lung.

  18. BAF57 Modulation of Androgen Receptor Action and Prostate Cancer Progression

    National Research Council Canada - National Science Library

    Link, Kevin A

    2007-01-01

    Given the requirement of the androgen receptor (AR) activation pathway for prostate cancer growth and progression, it is necessary to identify alternative means of targeting this pathway for the treatment of prostate cancer...

  19. BAF57 Modulation of Androgen Receptor Action and Prostate Cancer Progression

    National Research Council Canada - National Science Library

    Link, Kevin A

    2006-01-01

    Given the requirement of the AR activation pathway for prostate cancer growth and progression, it is necessary to identify alternative means of targeting this pathway for the treatment of prostate cancer...

  20. UV Exposure and Sun-Protective Behavior - Prevention Summary Table | Cancer Trends Progress Report

    Science.gov (United States)

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  1. Smoke-free Workplace Rules and Laws | Cancer Trends Progress Report

    Science.gov (United States)

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  2. Stem Cell Plasticity and Niche Dynamics in Cancer Progression.

    Science.gov (United States)

    Picco, Noemi; Gatenby, Robert A; Anderson, Alexander R A

    2017-03-01

    Cancer stem cells (CSCs) have been hypothesized to initiate and drive tumor growth and recurrence due to their self-renewal ability. If correct, this hypothesis implies that successful therapy must focus primarily on eradication of this CSC fraction. However, recent evidence suggests stemness is niche dependent and may represent one of many phenotypic states that can be accessed by many cancer genotypes when presented with specific environmental cues. A better understanding of the relationship of stemness to niche-related phenotypic plasticity could lead to alternative treatment strategies. Here, we investigate the role of environmental context in the expression of stem-like cell properties through in-silico simulation of ductal carcinoma. We develop a two-dimensional hybrid discrete-continuum cellular automata model to describe the single-cell scale dynamics of multicellular tissue formation. Through a suite of simulations, we investigate interactions between a phenotypically heterogeneous cancer cell population and a dynamic environment. We generate homeostatic ductal structures that consist of a mixture of stem and differentiated cells governed by both intracellular and environmental dynamics. We demonstrate that a wide spectrum of tumor-like histologies can result from these structures by varying microenvironmental parameters. Niche driven phenotypic plasticity offers a simple first-principle explanation for the diverse ductal structures observed in histological sections from breast cancer. Conventional models of carcinogenesis largely focus on mutational events. We demonstrate that variations in the environmental niche can produce intraductal cancers independent of genetic changes in the resident cells. Therapies targeting the microenvironmental niche may offer an alternative cancer prevention strategy.

  3. Does colon cancer ever metastasize to bone first? a temporal analysis of colorectal cancer progression

    International Nuclear Information System (INIS)

    Roth, Eira S; Fetzer, David T; Barron, Bruce J; Joseph, Usha A; Gayed, Isis W; Wan, David Q

    2009-01-01

    It is well recognized that colorectal cancer does not frequently metastasize to bone. The aim of this retrospective study was to establish whether colorectal cancer ever bypasses other organs and metastasizes directly to bone and whether the presence of lung lesions is superior to liver as a better predictor of the likelihood and timing of bone metastasis. We performed a retrospective analysis on patients with a clinical diagnosis of colon cancer referred for staging using whole-body 18 F-FDG PET and CT or PET/CT. We combined PET and CT reports from 252 individuals with information concerning patient history, other imaging modalities, and treatments to analyze disease progression. No patient had isolated osseous metastasis at the time of diagnosis, and none developed isolated bone metastasis without other organ involvement during our survey period. It took significantly longer for colorectal cancer patients to develop metastasis to the lungs (23.3 months) or to bone (21.2 months) than to the liver (9.8 months). Conclusion: Metastasis only to bone without other organ involvement in colorectal cancer patients is extremely rare, perhaps more rare than we previously thought. Our findings suggest that resistant metastasis to the lungs predicts potential disease progression to bone in the colorectal cancer population better than liver metastasis does

  4. α2-adrenergic blockade mimics the enhancing effect of chronic stress on breast cancer progression

    Science.gov (United States)

    Lamkin, Donald M.; Sung, Ha Yeon; Yang, Gyu Sik; David, John M.; Ma, Jeffrey C.Y.; Cole, Steve W.; Sloan, Erica K.

    2014-01-01

    Experimental studies in preclinical mouse models of breast cancer have shown that chronic restraint stress can enhance disease progression by increasing catecholamine levels and subsequent signaling of β-adrenergic receptors. Catecholamines also signal α-adrenergic receptors, and greater α-adrenergic signaling has been shown to promote breast cancer in vitro and in vivo. However, antagonism of α-adrenergic receptors can result in elevated catecholamine levels, which may increase β-adrenergic signaling, because pre-synaptic α2-adrenergic receptors mediate an autoinhibition of sympathetic transmission. Given these findings, we examined the effect of α-adrenergic blockade on breast cancer progression under non-stress and stress conditions (chronic restraint) in an orthotopic mouse model with MDA-MB-231HM cells. Chronic restraint increased primary tumor growth and metastasis to distant tissues as expected, and non-selective α-adrenergic blockade by phentolamine significantly inhibited those effects. However, under non-stress conditions, phentolamine increased primary tumor size and distant metastasis. Sympatho-neural gene expression for catecholamine biosynthesis enzymes was elevated by phentolamine under non-stress conditions, and the non-selective β-blocker propranolol inhibited the effect of phentolamine on breast cancer progression. Selective α2-adrenergic blockade by efaroxan also increased primary tumor size and distant metastasis under non-stress conditions, but selective α1-adrenergic blockade by prazosin did not. These results are consistent with the hypothesis that α2-adrenergic signaling can act through an autoreceptor mechanism to inhibit sympathetic catecholamine release and, thus, modulate established effects of β-adrenergic signaling on tumor progression-relevant biology. PMID:25462899

  5. Progress towards Continental River Dynamics modeling

    Science.gov (United States)

    Yu, Cheng-Wei; Zheng, Xing; Liu, Frank; Maidment, Daivd; Hodges, Ben

    2017-04-01

    The high-resolution National Water Model (NWM), launched by U.S. National Oceanic and Atmospheric Administration (NOAA) in August 2016, has shown it is possible to provide real-time flow prediction in rivers and streams across the entire continental United States. The next step for continental-scale modeling is moving from reduced physics (e.g. Muskingum-Cunge) to full dynamic modeling with the Saint-Venant equations. The Simulation Program for River Networks (SPRNT) provides a computational approach for the Saint-Venant equations, but obtaining sufficient channel bathymetric data and hydraulic roughness is seen as a critical challenge. However, recent work has shown the Height Above Nearest Drainage (HAND) method can be applied with the National Elevation Dataset (NED) to provide automated estimation of effective channel bathymetry suitable for large-scale hydraulic simulations. The present work examines the use of SPRNT with the National Hydrography Dataset (NHD) and HAND-derived bathymetry for automated generation of rating curves that can be compared to existing data. The approach can, in theory, be applied to every stream reach in the NHD and thus provide flood guidance where none is available. To test this idea we generated 2000+ rating curves in two catchments in Texas and Alabama (USA). Field data from the USGS and flood records from an Austin, Texas flood in May 2015 were used as validation. Large-scale implementation of this idea requires addressing several critical difficulties associated with numerical instabilities, including ill-posed boundary conditions generated in automated model linkages and inconsistencies in the river geometry. A key to future progress is identifying efficient approaches to isolate numerical instability contributors in a large time-space varying solution. This research was supported in part by the National Science Foundation under grant number CCF-1331610.

  6. Control of Colon Cancer Progression by the Colon Microbiome

    Science.gov (United States)

    2015-08-01

    Award  Number:    W81XWH-­14-­1-­0235   TITLE:      Control of Colon Cancer Progression by the Colon Microbiome PRINCIPAL  INVESTIGATOR:    Frank  J... Microbiome Table  of  Contents   Page   1. Introduction………………………………………………………….4 2. Keywords…………………………………………………………….5 3. Accomplishments………..…………………………………………5

  7. A versatile mathematical work-flow to explore how Cancer Stem Cell fate influences tumor progression.

    Science.gov (United States)

    Fornari, Chiara; Balbo, Gianfranco; Halawani, Sami M; Ba-Rukab, Omar; Ahmad, Ab Rahman; Calogero, Raffaele A; Cordero, Francesca; Beccuti, Marco

    2015-01-01

    Nowadays multidisciplinary approaches combining mathematical models with experimental assays are becoming relevant for the study of biological systems. Indeed, in cancer research multidisciplinary approaches are successfully used to understand the crucial aspects implicated in tumor growth. In particular, the Cancer Stem Cell (CSC) biology represents an area particularly suited to be studied through multidisciplinary approaches, and modeling has significantly contributed to pinpoint the crucial aspects implicated in this theory. More generally, to acquire new insights on a biological system it is necessary to have an accurate description of the phenomenon, such that making accurate predictions on its future behaviors becomes more likely. In this context, the identification of the parameters influencing model dynamics can be advantageous to increase model accuracy and to provide hints in designing wet experiments. Different techniques, ranging from statistical methods to analytical studies, have been developed. Their applications depend on case-specific aspects, such as the availability and quality of experimental data, and the dimension of the parameter space. The study of a new model on the CSC-based tumor progression has been the motivation to design a new work-flow that helps to characterize possible system dynamics and to identify those parameters influencing such behaviors. In detail, we extended our recent model on CSC-dynamics creating a new system capable of describing tumor growth during the different stages of cancer progression. Indeed, tumor cells appear to progress through lineage stages like those of normal tissues, being their division auto-regulated by internal feedback mechanisms. These new features have introduced some non-linearities in the model, making it more difficult to be studied by solely analytical techniques. Our new work-flow, based on statistical methods, was used to identify the parameters which influence the tumor growth. The

  8. Influence of sex differences on the progression of cancer-induced bone pain

    DEFF Research Database (Denmark)

    Falk, Sarah; Uldall, Maria; Appel, Camilla

    2013-01-01

    Background: Pain caused by bone metastases has a severe impact on the quality of life for many patients with cancer. Good translational in vivo models are required to understand the molecular mechanism and develop better treatment. In the current study we evaluated the influence of sex differences...... on the progression of cancer-induced bone pain. Materials and Methods: 4T1-luc2 mammary cancer cells were introduced into the femoral cavity of female and male BALB/cJ mice. Bioluminescence tumor signal, pain-related behavior and bone degradation were monitored for 14 days. Results: Female mice demonstrated...... a significantly greater bioluminescence signal on day 2 compared to male mice and, in addition, a significant earlier onset of pain-related behavior was observed in the females. No sex difference was observed for bone degradation. Finally, a strong correlation between pain-related behavior and bone degradation...

  9. Calcium-Sensing Receptor Tumor Expression and Lethal Prostate Cancer Progression.

    Science.gov (United States)

    Ahearn, Thomas U; Tchrakian, Nairi; Wilson, Kathryn M; Lis, Rosina; Nuttall, Elizabeth; Sesso, Howard D; Loda, Massimo; Giovannucci, Edward; Mucci, Lorelei A; Finn, Stephen; Shui, Irene M

    2016-06-01

    Prostate cancer metastases preferentially target bone, and the calcium-sensing receptor (CaSR) may play a role in promoting this metastatic progression. We evaluated the association of prostate tumor CaSR expression with lethal prostate cancer. A validated CaSR immunohistochemistry assay was performed on tumor tissue microarrays. Vitamin D receptor (VDR) expression and phosphatase and tensin homolog tumor status were previously assessed in a subset of cases by immunohistochemistry. Cox proportional hazards models adjusting for age and body mass index at diagnosis, Gleason grade, and pathological tumor node metastasis stage were used to estimate hazard ratios (HR) and 95% confidence intervals (CI) for the association of CaSR expression with lethal prostate cancer. The investigation was conducted in the Health Professionals Follow-up Study and Physicians' Health Study. We studied 1241 incident prostate cancer cases diagnosed between 1983 and 2009. Participants were followed up or cancer-specific mortality or development of metastatic disease. On average, men were followed up 13.6 years, during which there were 83 lethal events. High CaSR expression was associated with lethal prostate cancer independent of clinical and pathological variables (HR 2.0; 95% CI 1.2-3.3). Additionally, there was evidence of effect modification by VDR expression; CaSR was associated with lethal progression among men with low tumor VDR expression (HR 3.2; 95% CI 1.4-7.3) but not in cases with high tumor VDR expression (HR 0.8; 95% CI 0.2-3.0). Tumor CaSR expression is associated with an increased risk of lethal prostate cancer, particularly in tumors with low VDR expression. These results support further investigating the mechanism linking CaSR with metastases.

  10. Correlation of DNA Ploidy with Progression of Cervical Cancer

    International Nuclear Information System (INIS)

    Singh, M.; Kalra, N.; Shukla, Y.; Mehrotra, S.; Singh, U.

    2008-01-01

    The majority of squamous cell carcinomas of cervix are preceded by visible changes in the cervix, most often detected by cervical smear. As cervical cancer is preceded by long precancerous stages, identification of the high-risk population through detection of DNA ploidy may be of importance in effective management of this disease. Here we attempted to correlate aneuploidy DNA patterns and their influence on biological behavior of flow-cytometry analysis of DNA ploidy which was carried out in cytologically diagnosed cases of mild (79), moderate (36), and severe (12) dysplasia, as well as “atypical squamous cells of unknown significance (ASCUS)” (57) along with controls (69), in order to understand its importance in malignant progression of disease. Cytologically diagnosed dysplasias, which were employed for DNA ploidy studies, 39 mild, 28 moderate, and 11 severe dysplasia cases were found to be aneuploidy. Out of the 69 control subjects, 6 cases showed aneuploidy pattern and the rest 63 subjects were diploid. An aneuploidy pattern was observed in 8 out of 57 cases of cytologically evaluated ASCUS. The results of the followup studies showed that aberrant DNA content reliably predicts the occurrence of squamous cell carcinoma in cervical smear. Flow cytometric analysis of DNA ploidy may provide a strategic diagnostic tool for early detection of carcinoma cervix. Therefore, it is a concept of an HPV screening with reflex cytology in combination with DNA flow cytometry to detect progressive lesions with the greatest possible sensitivity and specificity.

  11. APRIL is overexpressed in cancer: link with tumor progression

    International Nuclear Information System (INIS)

    Moreaux, Jérôme; Veyrune, Jean-Luc; De Vos, John; Klein, Bernard

    2009-01-01

    BAFF and APRIL share two receptors – TACI and BCMA – and BAFF binds to a third receptor, BAFF-R. Increased expression of BAFF and APRIL is noted in hematological malignancies. BAFF and APRIL are essential for the survival of normal and malignant B lymphocytes, and altered expression of BAFF or APRIL or of their receptors (BCMA, TACI, or BAFF-R) have been reported in various B-cell malignancies including B-cell non-Hodgkin's lymphoma, chronic lymphocytic leukemia, Hodgkin's lymphoma, multiple myeloma, and Waldenstrom's macroglobulinemia. We compared the expression of BAFF, APRIL, TACI and BAFF-R gene expression in 40 human tumor types – brain, epithelial, lymphoid, germ cells – to that of their normal tissue counterparts using publicly available gene expression data, including the Oncomine Cancer Microarray database. We found significant overexpression of TACI in multiple myeloma and thyroid carcinoma and an association between TACI expression and prognosis in lymphoma. Furthermore, BAFF and APRIL are overexpressed in many cancers and we show that APRIL expression is associated with tumor progression. We also found overexpression of at least one proteoglycan with heparan sulfate chains (HS), which are coreceptors for APRIL and TACI, in tumors where APRIL is either overexpressed or is a prognostic factor. APRIL could induce survival or proliferation directly through HS proteoglycans. Taken together, these data suggest that APRIL is a potential prognostic factor for a large array of malignancies

  12. Effect of Proton Beam on Cancer Progressive and Metastatic Enzymes

    International Nuclear Information System (INIS)

    Sohn, Y. H.; Nam, K. S.; Oh, Y. H.; Kim, M. K.; Kim, M. Y.; Jang, J. S.

    2008-04-01

    The purpose of this study was to investigate the effect of proton beam on enzymes for promotion/progression of carcinogenesis and metastasis of malignant tumor cells to clarify proton beam-specific biological effects. The changes of cancer chemopreventive enzymes in human colorectal adenocarcinoma HT-29 cells irradiated with proton beams were tested by measuring the activities of quinine reductase (QR), glutathione S-transferase (GST), and ornithine decarboxylase (ODC), glutathione (GSH) levels, and expression of cyclooxygenase-2 (COX-2). We also examined the effect of proton beam on the ODC activity and expression of COX-2 in human breast cancer cell. We then assessed the metastatic capabilities of HT-29 and MDA-MB-231 cells irradiated with proton beam by measuring the invasiveness of cells through Matrigel-coated membrane and 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced MMP activity in MDA-MB-231 and HT-29 cells. QR activity of irradiated HT-29 cells was slightly increased. Proton irradiation at dose of 32 Gy in HT-29 cells increased GST activity by 1.23-fold. In addition GSH levels in HT-29 cells was significantly increased 1.23- (p<0.05), 1.32- (p<0.01) and 1.34-fold (p<0.01) with the proton irradiation at doses of 8, 16 and 32 Gy, respectively. These results suggest that colon cancer chemopreventive activity was increased with the proton irradiation by increasing QR and GST activities and GSH levels and inhibiting ODC activity. Proton ion irradiation decreased the invasiveness of TPA-treated HT-29 cells and MDA-MB-231 cells through Matrigel-coated membrane. Proton ion irradiation pretreatment decreased TPA-induced MMP activity in MDA-MB-231 and HT-29 cells. Further studies are necessary to investigate if these findings could be translated to in vivo situations

  13. Syndecans as modulators and potential pharmacological targets in cancer progression

    Directory of Open Access Journals (Sweden)

    Despoina eBarbouri

    2014-02-01

    Full Text Available Extracellular matrix (ECM components form a dynamic network of key importance for cell function and properties. Key macromolecules in this interplay are syndecans (SDCs, a family of transmembrane heparan sulfate proteoglycans (HSPGs. Specifically, heparan sulfate (HS chains with their different sulfation pattern have the ability to interact with growth factors and their receptors in tumor microenvironment, promoting the activation of different signaling cascades that regulate tumor cell behavior. The affinity of HS chains with ligands is altered during malignant conditions because of the modification of chain sequence/sulfation pattern. Furthermore, matrix degradation enzymes derived from the tumor itself or the tumor microenvironment, like heparanase and matrix metalloproteinases (MMPs, ADAM as well as ADΑMTS are involved in the cleavage of SDCs ectodomain at the HS and protein core level, respectively. Such released soluble syndecans shed syndecans in the extracellular matrix interact in an autocrine or paracrine manner with the tumor or/and stromal cells. Shed syndecans, upon binding to several matrix effectors, such as growth factors, chemokines and cytokines, have the ability to act as competitive inhibitors for membrane PGs, and modulate the inflammatory microenvironment of cancer cells. It is notable that syndecans and their soluble counterparts may affect either the behavior of cancer cells and/or their microenvironment during cancer progression. The importance of these molecules has been highlighted since HSPGs have been proposed as prognostic markers of solid tumors and hematopoietic malignancies. Going a step further down the line, the multi-actions of syndecans in many levels make them appealing as potential pharmacological targets, either by targeting directly the tumor or indirectly the adjacent stroma.

  14. Tris-base buffer: a promising new inhibitor for cancer progression and metastasis.

    Science.gov (United States)

    Ibrahim-Hashim, Arig; Abrahams, Dominique; Enriquez-Navas, Pedro M; Luddy, Kim; Gatenby, Robert A; Gillies, Robert J

    2017-07-01

    Neutralizing tumor external acidity with oral buffers has proven effective for the prevention and inhibition of metastasis in several cancer mouse models. Solid tumors are highly acidic as a result of high glycolysis combined with an inadequate blood supply. Our prior work has shown that sodium bicarbonate, imidazole, and free-base (but not protonated) lysine are effective in reducing tumor progression and metastasis. However, a concern in translating these results to clinic has been the presence of counter ions and their potential undesirable side effects (e.g., hypernatremia). In this work, we investigate tris(hydroxymethyl)aminomethane, (THAM or Tris), a primary amine with no counter ion, for its effects on metastasis and progression in prostate and pancreatic cancer in vivo models using MRI and bioluminescence imaging. At an ad lib concentration of 200 mmol/L, Tris effectively inhibited metastasis in both models and furthermore led to a decrease in the expression of the major glucose transporter, GLUT-1. Our results also showed that Tris-base buffer (pH 8.4) had no overt toxicity to C3H mice even at higher doses (400 mmol/L). In conclusion, we have developed a novel therapeutic approach to manipulate tumor extracellular pH (pHe) that could be readily adapted to a clinical trial. © 2017 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  15. The E-cadherin/catenin complex: an important gatekeeper in breast cancer tumorigenesis and malignant progression

    International Nuclear Information System (INIS)

    Berx, Geert; Roy, Frans Van

    2001-01-01

    E-cadherin is a cell–cell adhesion protein fulfilling a prominent role in epithelial differentiation. Data from model systems suggest that E-cadherin is a potent invasion/tumor suppressor of breast cancer. Consistent with this role in breast cancer progression, partial or complete loss of E-cadherin expression has been found to correlate with poor prognosis in breast cancer patients. The E-cadherin gene (CDH1) is located on human chromosome 16q22.1, a region frequently affected with loss of heterozygosity in sporadic breast cancer. Invasive lobular breast carcinomas, which are typically completely E-cadherin-negative, often show inactivating mutations in combination with loss of heterozygosity of the wild-type CDH1 allele. Mutations were found at early noninvasive stages, thus associating E-cadherin mutations with loss of cell growth control and defining CDH1 as the tumor suppressor for the lobular breast cancer subtype. Ductal breast cancers in general show heterogeneous loss of E-cadherin expression, associated with epigenetic transcriptional downregulation. It is proposed that the microenvironment at the invasive front is transiently downregulating E-cadherin transcription. This can be associated with induction of nonepithelial cadherins

  16. The Multifunctional Protein Kinase C-ε in Cancer Development and Progression

    Science.gov (United States)

    Jain, Kirti; Basu, Alakananda

    2014-01-01

    The protein kinase C (PKC) family proteins are important signal transducers and have long been the focus of cancer research. PKCɛ, a member of this family, is overexpressed in most solid tumors and plays critical roles in different processes that lead to cancer development. Studies using cell lines and animal models demonstrated the transforming potential of PKCɛ. While earlier research established the survival functions of PKCɛ, recent studies revealed its role in cell migration, invasion and cancer metastasis. PKCɛ has also been implicated in epithelial to mesenchymal transition (EMT), which may be the underlying mechanism by which it contributes to cell motility. In addition, PKCɛ affects cell-extracellular matrix (ECM) interactions by direct regulation of the cytoskeletal elements. Recent studies have also linked PKCɛ signaling to cancer stem cell functioning. This review focuses on the role of PKCɛ in different processes that lead to cancer development and progression. We also discussed current literatures on the pursuit of PKCɛ as a target for cancer therapy. PMID:24727247

  17. The Multifunctional Protein Kinase C-ε in Cancer Development and Progression

    Directory of Open Access Journals (Sweden)

    Kirti Jain

    2014-04-01

    Full Text Available The protein kinase C (PKC family proteins are important signal transducers and have long been the focus of cancer research. PKCɛ, a member of this family, is overexpressed in most solid tumors and plays critical roles in different processes that lead to cancer development. Studies using cell lines and animal models demonstrated the transforming potential of PKCɛ. While earlier research established the survival functions of PKCɛ, recent studies revealed its role in cell migration, invasion and cancer metastasis. PKCɛ has also been implicated in epithelial to mesenchymal transition (EMT, which may be the underlying mechanism by which it contributes to cell motility. In addition, PKCɛ affects cell-extracellular matrix (ECM interactions by direct regulation of the cytoskeletal elements. Recent studies have also linked PKCɛ signaling to cancer stem cell functioning. This review focuses on the role of PKCɛ in different processes that lead to cancer development and progression. We also discussed current literatures on the pursuit of PKCɛ as a target for cancer therapy.

  18. The Multifunctional Protein Kinase C-ε in Cancer Development and Progression

    International Nuclear Information System (INIS)

    Jain, Kirti; Basu, Alakananda

    2014-01-01

    The protein kinase C (PKC) family proteins are important signal transducers and have long been the focus of cancer research. PKCε, a member of this family, is overexpressed in most solid tumors and plays critical roles in different processes that lead to cancer development. Studies using cell lines and animal models demonstrated the transforming potential of PKCε. While earlier research established the survival functions of PKCε, recent studies revealed its role in cell migration, invasion and cancer metastasis. PKCε has also been implicated in epithelial to mesenchymal transition (EMT), which may be the underlying mechanism by which it contributes to cell motility. In addition, PKCε affects cell-extracellular matrix (ECM) interactions by direct regulation of the cytoskeletal elements. Recent studies have also linked PKCε signaling to cancer stem cell functioning. This review focuses on the role of PKCε in different processes that lead to cancer development and progression. We also discussed current literatures on the pursuit of PKCε as a target for cancer therapy.

  19. The Multifunctional Protein Kinase C-ε in Cancer Development and Progression

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Kirti; Basu, Alakananda, E-mail: alakananda.basu@unthsc.edu [Department of Molecular and Medical Genetics, University of North Texas Health Science Center, Institute for Cancer Research, and Focused on Resources for her Health Education and Research, Fort Worth, TX 76107 (United States)

    2014-04-10

    The protein kinase C (PKC) family proteins are important signal transducers and have long been the focus of cancer research. PKCε, a member of this family, is overexpressed in most solid tumors and plays critical roles in different processes that lead to cancer development. Studies using cell lines and animal models demonstrated the transforming potential of PKCε. While earlier research established the survival functions of PKCε, recent studies revealed its role in cell migration, invasion and cancer metastasis. PKCε has also been implicated in epithelial to mesenchymal transition (EMT), which may be the underlying mechanism by which it contributes to cell motility. In addition, PKCε affects cell-extracellular matrix (ECM) interactions by direct regulation of the cytoskeletal elements. Recent studies have also linked PKCε signaling to cancer stem cell functioning. This review focuses on the role of PKCε in different processes that lead to cancer development and progression. We also discussed current literatures on the pursuit of PKCε as a target for cancer therapy.

  20. CD147/basigin promotes progression of malignant melanoma and other cancers.

    Science.gov (United States)

    Kanekura, Takuro; Chen, Xiang

    2010-03-01

    CD147/basigin, a transmembrane protein belonging to the immunoglobulin super family, was originally cloned as a carrier of Lewis X carbohydrate antigen. CD147 is strongly related to cancer progression; it is highly expressed by various cancer cells including malignant melanoma (MM) cells and it plays important roles in tumor invasiveness, metastasis, cellular proliferation, and in vascular endothelial growth factor (VEGF) production, tumor cell glycolysis, and multi-drug resistance (MDR). CD147 on cancer cells induces matrix metalloproteinase expression by neighboring fibroblasts, leading to tumor cell invasion. In a nude mouse model of pulmonary metastasis from MM, the metastatic potential of CD147-expressing MM cells injected into the tail vein is abolished by CD147 silencing. CD147 enhances cellular proliferation and VEGF production by MM cells; it promotes tumor cell glycolysis by facilitating lactate transport in combination with monocarboxylate transporters, resulting in tumor progression. CD147 is responsible for the MDR phenotype via P-glycoprotein expression. These findings strongly suggest CD147 as a possible therapeutic target for overcoming metastasis and MDR, major obstacles to the effective treatment of malignant cancers. 2009 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  1. Micronutrients attenuate progression of prostate cancer by elevating the endogenous inhibitor of angiogenesis, Platelet Factor-4

    Directory of Open Access Journals (Sweden)

    Fleshner Neil E

    2010-06-01

    Full Text Available Abstract Background Longstanding evidence implicates an inadequate diet as a key factor in the onset and progression of prostate cancer. The purpose herein was to discover, validate and characterize functional biomarkers of dietary supplementation capable of suppressing the course of prostate cancer in vivo. Methods The Lady transgenic mouse model that spontaneously develops prostate cancer received a diet supplemented with a micronutrient cocktail of vitamin E, selenium and lycopene ad libitum. A proteomic analysis was conducted to screen for serum biomarkers of this dietary supplementation. Candidate peptides were validated and identified by sequencing and analyzed for their presence within the prostates of all mice by immunohistochemistry. Results Dietary supplementation with the combined micronutrients significantly induced the expression of the megakaryocyte-specific inhibitor of angiogenesis, platelet factor-4 (P = 0.0025. This observation was made predominantly in mice lacking tumors and any manifestations associated with progressive disease beyond 37 weeks of life, at which time no survivors remained in the control group (P Conclusion We present unprecedented data whereby these combined micronutrients effectively promotes tumor dormancy in early prostate cancer, following initiation mutations that may drive the angiogenesis-dependent response of the tumor, by inducing platelet factor-4 expression and concentrating it at the tumor endothelium through enhanced platelet binding.

  2. Tristetraprolin: A novel target of diallyl disulfide that inhibits the progression of breast cancer.

    Science.gov (United States)

    Xiong, Ting; Liu, Xiao-Wang; Huang, Xue-Long; Xu, Xiong-Feng; Xie, Wei-Quan; Zhang, Su-Jun; Tu, Jian

    2018-05-01

    Diallyl disulfide (DADS), a volatile component of garlic oil, has various biological properties, including antioxidant, antiangiogenic and anticancer effects. The present study aimed to explore novel targets of DADS that may slow or stop the progression of breast cancer. First, xenograft tumor models were created by subcutaneously injecting MCF-7 and MDA-MB-231 breast cancer cells into nude mice. Subsequently, western blot analysis was performed to investigate the expression of tristetraprolin (TTP), urokinase-type plasminogen activator (uPA) and matrix metalloproteinase-9 (MMP-9) in the xenograft tumors, and cell cultures. Tablet cloning, Transwell and wound healing assays revealed that DADS treatment significantly inhibited the proliferation, invasion and migration of breast cancer cells. In addition, DADS treatment led to significant downregulation of uPA and MMP-9 protein expression, but significantly upregulated TTP expression in vivo and in vitro . Knocking down TTP expression using small interfering RNA reversed the aforementioned effects of DADS, which suggests TTP is a key target of DADS in inhibiting the progression of breast cancer.

  3. Models of crk adaptor proteins in cancer.

    Science.gov (United States)

    Bell, Emily S; Park, Morag

    2012-05-01

    The Crk family of adaptor proteins (CrkI, CrkII, and CrkL), originally discovered as the oncogene fusion product, v-Crk, of the CT10 chicken retrovirus, lacks catalytic activity but engages with multiple signaling pathways through their SH2 and SH3 domains. Crk proteins link upstream tyrosine kinase and integrin-dependent signals to downstream effectors, acting as adaptors in diverse signaling pathways and cellular processes. Crk proteins are now recognized to play a role in the malignancy of many human cancers, stimulating renewed interest in their mechanism of action in cancer progression. The contribution of Crk signaling to malignancy has been predominantly studied in fibroblasts and in hematopoietic models and more recently in epithelial models. A mechanistic understanding of Crk proteins in cancer progression in vivo is still poorly understood in part due to the highly pleiotropic nature of Crk signaling. Recent advances in the structural organization of Crk domains, new roles in kinase regulation, and increased knowledge of the mechanisms and frequency of Crk overexpression in human cancers have provided an incentive for further study in in vivo models. An understanding of the mechanisms through which Crk proteins act as oncogenic drivers could have important implications in therapeutic targeting.

  4. EZH2 in Cancer Progression and Potential Application in Cancer Therapy: A Friend or Foe?

    Directory of Open Access Journals (Sweden)

    Ke-Sin Yan

    2017-05-01

    Full Text Available Enhancer of zeste homolog 2 (EZH2, a histone methyltransferase, catalyzes tri-methylation of histone H3 at Lys 27 (H3K27me3 to regulate gene expression through epigenetic machinery. EZH2 functions as a double-facet molecule in regulation of gene expression via repression or activation mechanisms, depending on the different cellular contexts. EZH2 interacts with both histone and non-histone proteins to modulate diverse physiological functions including cancer progression and malignancy. In this review article, we focused on the updated information regarding microRNAs (miRNAs and long non coding RNAs (lncRNAs in regulation of EZH2, the oncogenic and tumor suppressive roles of EZH2 in cancer progression and malignancy, as well as current pre-clinical and clinical trials of EZH2 inhibitors.

  5. Entropy, complexity, and Markov diagrams for random walk cancer models.

    Science.gov (United States)

    Newton, Paul K; Mason, Jeremy; Hurt, Brian; Bethel, Kelly; Bazhenova, Lyudmila; Nieva, Jorge; Kuhn, Peter

    2014-12-19

    The notion of entropy is used to compare the complexity associated with 12 common cancers based on metastatic tumor distribution autopsy data. We characterize power-law distributions, entropy, and Kullback-Liebler divergence associated with each primary cancer as compared with data for all cancer types aggregated. We then correlate entropy values with other measures of complexity associated with Markov chain dynamical systems models of progression. The Markov transition matrix associated with each cancer is associated with a directed graph model where nodes are anatomical locations where a metastatic tumor could develop, and edge weightings are transition probabilities of progression from site to site. The steady-state distribution corresponds to the autopsy data distribution. Entropy correlates well with the overall complexity of the reduced directed graph structure for each cancer and with a measure of systemic interconnectedness of the graph, called graph conductance. The models suggest that grouping cancers according to their entropy values, with skin, breast, kidney, and lung cancers being prototypical high entropy cancers, stomach, uterine, pancreatic and ovarian being mid-level entropy cancers, and colorectal, cervical, bladder, and prostate cancers being prototypical low entropy cancers, provides a potentially useful framework for viewing metastatic cancer in terms of predictability, complexity, and metastatic potential.

  6. Prostate cancer progression and mortality: a review of diet and lifestyle factors.

    Science.gov (United States)

    Peisch, Sam F; Van Blarigan, Erin L; Chan, June M; Stampfer, Meir J; Kenfield, Stacey A

    2017-06-01

    To review and summarize evidence on the role of diet and lifestyle factors and prostate cancer progression, with a specific focus on habits after diagnosis and the risk of subsequent disease recurrence, progression, or death. Given the well-documented heterogeneity of prostate cancer and the long survivorship of the majority of diagnoses, our goal was to summarize and describe modifiable risk factors for clinically relevant prostate cancer. We focused where possible on epidemiologic studies of post-diagnostic habits and prostate cancer progression, defined as recurrence (e.g., PSA risk, secondary treatment), metastasis, or death. Where data were limited, we also describe evidence on risk factors and indicators of prostate cancer aggressiveness at diagnosis. A variety of dietary and lifestyle factors appear to affect prostate cancer progression. Several generally widely recommended lifestyle factors such as not smoking, maintaining a healthy body weight, and regular vigorous physical exercise also appear to affect prostate cancer progression. Several dietary factors, such as tomato sauce/lycopene, cruciferous vegetables, healthy sources of vegetable fats, and coffee, may also have a role in reducing risk of prostate cancer progression. Diet and lifestyle factors, in particular exercise and smoking cessation, may reduce the risk of prostate cancer progression and death. These promising findings warrant further investigation, as their overall impact might be large.

  7. Overexpression of Insulin-like Growth Factor-1 Receptor Is Associated With Penile Cancer Progression.

    Science.gov (United States)

    Ball, Mark W; Bezerra, Stephania M; Chaux, Alcides; Faraj, Sheila F; Gonzalez-Roibon, Nilda; Munari, Enrico; Sharma, Rajni; Bivalacqua, Trinity J; Netto, George J; Burnett, Arthur L

    2016-06-01

    To evaluate insulin-like growth factor-1 receptor (IGF1R) expression in penile cancer and its association with oncologic outcomes. Tissue microarrays were constructed from 53 patients treated at our institution. Expression of IGF1R was evaluated using a Her2-like scoring system. Overexpression was defined as 1+ or greater membranous staining. Association of IGF1R expression with pathologic features was assessed with comparative statistics, and association with local recurrence, progression to nodal or distance metastases, or death was assessed with Kaplan-Meier survival analysis and Cox proportional hazard regression models. Overall, IGF1R overexpression was seen in 33 (62%) cases. With a median follow-up of 27.8 months, IGF1R overexpression was associated with inferior progression-free survival (PFS) (P  =  .003). In a multivariable model controlling for grade, T stage, perineural invasion, and lymphovascular invasion, IGF1R expression was independently associated with disease progression (hazard ratio 2.3, 95% confidence interval 1.1-5.1, P  =  .03. Comparing patients without IGF1R overexpression to those with overexpression, 5-year PFS was 94.1% vs 45.8%. IGF1R overexpression was associated with inferior PFS in penile cancer. Drugs that target IGF1R and downstream messengers may have a therapeutic benefit in patients that exhibit IGF1R overexpression. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Exosomes as Novel microRNA-Delivery Vehicles to Modulate Prostate Cancer Progression

    Science.gov (United States)

    2015-10-01

    AWARD NUMBER: W81XWH-14-1-0548 TITLE: Exosomes as Novel microRNA-Delivery Vehicles to Modulate Prostate Cancer Progression PRINCIPAL...Sep 2015 4. TITLE AND SUBTITLE Exosomes as Novel microRNA-Delivery Vehicles to Modulate Prostate Cancer Progression 5a. CONTRACT NUMBER 5b. GRANT...In this exploratory award, we are investigating the functional significance of exosomal miRNAs in prostate cancer . We are characterizing the miRNA

  9. An Association of Unique microRNA Turnover Machinery with Prostate Cancer Progression

    Science.gov (United States)

    2017-10-01

    targeting of critical androgen receptor -604 coregulator interactions in prostate cancer . Nature communications 4, 1923, 605 doi:10.1038/ncomms2912 (2013...AWARD NUMBER: W81XWH-16-1-0474 TITLE: An Association of Unique microRNA Turnover Machinery with Prostate Cancer Progression PRINCIPAL INVESTIGATOR...14 Sep 2017 4. Title An Association of Unique microRNA Turnover Machinery with Prostate Cancer Progression 5a. CONTRACT NUMBER 5b. GRANT NUMBER

  10. Emergence of fractal geometry on the surface of human cervical epithelial cells during progression towards cancer

    International Nuclear Information System (INIS)

    Dokukin, M E; Sokolov, I; Guz, N V; Woodworth, C D

    2015-01-01

    Despite considerable advances in understanding the molecular nature of cancer, many biophysical aspects of malignant development are still unclear. Here we study physical alterations of the surface of human cervical epithelial cells during stepwise in vitro development of cancer (from normal to immortal (premalignant), to malignant). We use atomic force microscopy to demonstrate that development of cancer is associated with emergence of simple fractal geometry on the cell surface. Contrary to the previously expected correlation between cancer and fractals, we find that fractal geometry occurs only at a limited period of development when immortal cells become cancerous; further cancer progression demonstrates deviation from fractal. Because of the connection between fractal behaviour and chaos (or far from equilibrium behaviour), these results suggest that chaotic behaviour coincides with the cancer transformation of the immortalization stage of cancer development, whereas further cancer progression recovers determinism of processes responsible for cell surface formation. (paper)

  11. Progress of radiolabelled bombesin in diagnosis and treatment of prostate cancer

    International Nuclear Information System (INIS)

    Xing Yan; Zhao Jihua

    2010-01-01

    Studies show that high expression of bombesin exist in the face of many kind of tumors such as prostate cancer, so bombesin and its receptor can be used as target in radionuclide receptor imaging and targeted therapy of tumor, and become the focus of prostate cancer research. This article reviews the progress of radiolabelled bombesin in prostate cancer imaging and therapy. (authors)

  12. Oral administration of FAK inhibitor TAE226 inhibits the progression of peritoneal dissemination of colorectal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Hui-fang [Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kita-ku, Okayama 700-8558 (Japan); Takaoka, Munenori [Department of General Surgery, Kawasaki Medical School, 2-1-80 Nakasange, Kita-ku, Okayama 700-8505 (Japan); Bao, Xiao-hong [Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kita-ku, Okayama 700-8558 (Japan); Wang, Zhi-gang [College of Life Science, Inner Mongolia University, The Key Laboratory of Mammal Reproductive Biology and Biotechnology, Ministry of Education, Hohhot 010021 (China); Tomono, Yasuko [Division of Molecular and Cell Biology, Shigei Medical Research Institute, 2117 Yamada, Okayama 700-0202 (Japan); Sakurama, Kazufumi; Ohara, Toshiaki [Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kita-ku, Okayama 700-8558 (Japan); Fukazawa, Takuya; Yamatsuji, Tomoki [Department of General Surgery, Kawasaki Medical School, 2-1-80 Nakasange, Kita-ku, Okayama 700-8505 (Japan); Fujiwara, Toshiyoshi [Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kita-ku, Okayama 700-8558 (Japan); Naomoto, Yoshio, E-mail: ynaomoto@med.kawasaki-m.ac.jp [Department of General Surgery, Kawasaki Medical School, 2-1-80 Nakasange, Kita-ku, Okayama 700-8505 (Japan)

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer A novel FAK inhibitor TAE226 suppressed FAK activity in HCT116 colon cancer cells. Black-Right-Pointing-Pointer TAE226 suppressed proliferation and migration, with a modest effect on adhesion. Black-Right-Pointing-Pointer Silencing of FAK by siRNA made no obvious difference on cancer cell attachment. Black-Right-Pointing-Pointer TAE226 treatment suppressed the progression of peritoneal dissemination. Black-Right-Pointing-Pointer Oral administration of TAE226 prolonged the survival of tumor-bearing mice. -- Abstract: Peritoneal dissemination is one of the most terrible types of colorectal cancer progression. Focal adhesion kinase (FAK) plays a crucial role in the biological processes of cancer, such as cell attachment, migration, proliferation and survival, all of which are essential for the progression of peritoneal dissemination. Since we and other groups have reported that the inhibition of FAK activity exhibited a potent anticancer effect in several cancer models, we hypothesized that TAE226, a novel ATP-competitive tyrosine kinase inhibitor designed to target FAK, can prevent the occurrence and progression of peritoneal dissemination. In vitro, TAE226 greatly inhibited the proliferation and migration of HCT116 colon cancer cells, while their adhesion on the matrix surface was minimally inhibited when FAK activity and expression was suppressed by TAE226 and siRNA. In vivo, when HCT116 cells were intraperitoneally inoculated in mice, the cells could attach to the peritoneum and begin to grow within 24 h regardless of the pretreatment of cells with TAE226 or FAK-siRNA, suggesting that FAK is not essential, at least for the initial integrin-matrix contact. Interestingly, the treatment of mice before and after inoculation significantly suppressed cell attachment to the peritoneum. Furthermore, oral administration of TAE226 greatly reduced the size of disseminated tumors and prolonged survival in tumor-bearing mice. Taken

  13. Oral administration of FAK inhibitor TAE226 inhibits the progression of peritoneal dissemination of colorectal cancer

    International Nuclear Information System (INIS)

    Hao, Hui-fang; Takaoka, Munenori; Bao, Xiao-hong; Wang, Zhi-gang; Tomono, Yasuko; Sakurama, Kazufumi; Ohara, Toshiaki; Fukazawa, Takuya; Yamatsuji, Tomoki; Fujiwara, Toshiyoshi; Naomoto, Yoshio

    2012-01-01

    Highlights: ► A novel FAK inhibitor TAE226 suppressed FAK activity in HCT116 colon cancer cells. ► TAE226 suppressed proliferation and migration, with a modest effect on adhesion. ► Silencing of FAK by siRNA made no obvious difference on cancer cell attachment. ► TAE226 treatment suppressed the progression of peritoneal dissemination. ► Oral administration of TAE226 prolonged the survival of tumor-bearing mice. -- Abstract: Peritoneal dissemination is one of the most terrible types of colorectal cancer progression. Focal adhesion kinase (FAK) plays a crucial role in the biological processes of cancer, such as cell attachment, migration, proliferation and survival, all of which are essential for the progression of peritoneal dissemination. Since we and other groups have reported that the inhibition of FAK activity exhibited a potent anticancer effect in several cancer models, we hypothesized that TAE226, a novel ATP-competitive tyrosine kinase inhibitor designed to target FAK, can prevent the occurrence and progression of peritoneal dissemination. In vitro, TAE226 greatly inhibited the proliferation and migration of HCT116 colon cancer cells, while their adhesion on the matrix surface was minimally inhibited when FAK activity and expression was suppressed by TAE226 and siRNA. In vivo, when HCT116 cells were intraperitoneally inoculated in mice, the cells could attach to the peritoneum and begin to grow within 24 h regardless of the pretreatment of cells with TAE226 or FAK-siRNA, suggesting that FAK is not essential, at least for the initial integrin-matrix contact. Interestingly, the treatment of mice before and after inoculation significantly suppressed cell attachment to the peritoneum. Furthermore, oral administration of TAE226 greatly reduced the size of disseminated tumors and prolonged survival in tumor-bearing mice. Taken together, a possible strategy for inhibiting peritoneal dissemination by targeting FAK with TAE226 appears to be applicable

  14. The Role of nAChR and Calcium Signaling in Pancreatic Cancer Initiation and Progression

    Energy Technology Data Exchange (ETDEWEB)

    Schaal, Courtney [Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612 (United States); Padmanabhan, Jaya [Department of Molecular Medicine and USF Health Byrd Alzheimer’s Institute, University of South Florida, 4001 E. Fletcher Ave., Tampa, FL 33612 (United States); Chellappan, Srikumar, E-mail: Srikumar.Chellappan@moffitt.org [Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612 (United States)

    2015-07-31

    Pancreatic cancer shows a strong correlation with smoking and the current therapeutic strategies have been relatively ineffective in improving the survival of patients. Efforts have been made over the past many years to understand the molecular events that drive the initiation and progression of pancreatic cancer, especially in the context of smoking. It has become clear that components of tobacco smoke not only initiate these cancers, especially pancreatic ductal adenocarcinomas (PDACs) through their mutagenic properties, but can also promote the growth and metastasis of these tumors by stimulating cell proliferation, angiogenesis, invasion and epithelial-mesenchymal transition. Studies in cell culture systems, animal models and human samples have shown that nicotinic acetylcholine receptor (nAChR) activation enhances these tumor-promoting events by channeling signaling through multiple pathways. In this context, signaling through calcium channels appear to facilitate pancreatic cancer growth by itself or downstream of nAChRs. This review article highlights the role of nAChR downstream signaling events and calcium signaling in the growth, metastasis as well as drug resistance of pancreatic cancer.

  15. The Role of nAChR and Calcium Signaling in Pancreatic Cancer Initiation and Progression

    International Nuclear Information System (INIS)

    Schaal, Courtney; Padmanabhan, Jaya; Chellappan, Srikumar

    2015-01-01

    Pancreatic cancer shows a strong correlation with smoking and the current therapeutic strategies have been relatively ineffective in improving the survival of patients. Efforts have been made over the past many years to understand the molecular events that drive the initiation and progression of pancreatic cancer, especially in the context of smoking. It has become clear that components of tobacco smoke not only initiate these cancers, especially pancreatic ductal adenocarcinomas (PDACs) through their mutagenic properties, but can also promote the growth and metastasis of these tumors by stimulating cell proliferation, angiogenesis, invasion and epithelial-mesenchymal transition. Studies in cell culture systems, animal models and human samples have shown that nicotinic acetylcholine receptor (nAChR) activation enhances these tumor-promoting events by channeling signaling through multiple pathways. In this context, signaling through calcium channels appear to facilitate pancreatic cancer growth by itself or downstream of nAChRs. This review article highlights the role of nAChR downstream signaling events and calcium signaling in the growth, metastasis as well as drug resistance of pancreatic cancer

  16. The reverse transcriptase encoded by LINE-1 retrotransposons in the genesis, progression and therapy of cancer

    Directory of Open Access Journals (Sweden)

    Ilaria eSciamanna

    2016-02-01

    Full Text Available In higher eukaryotic genomes, Long Interspersed Nuclear Element 1 (LINE-1 retrotransposons represent a large family of repeated genomic elements. They transpose using a reverse transcriptase (RT, which they encode as part of the ORF2p product. RT inhibition in cancer cells, either via RNA interference-dependent silencing of active LINE-1 elements, or using RT inhibitory drugs, reduces cancer cell proliferation, promotes their differentiation and antagonizes tumor progression in animal models. Indeed, the nonnucleoside RT inhibitor efavirenz has recently been tested in a phase II clinical trial with metastatic prostate cancer patients. An in-depth analysis of ORF2p in a mouse model of breast cancer showed ORF2p to be precociously expressed in precancerous lesions and highly abundant in advanced cancer stages, while being barely detectable in normal breast tissue, providing a rationale for the finding that RT-expressing tumours are therapeutically sensitive to RT inhibitors. We summarise mechanistic and gene profiling studies indicating that highly abundant LINE-1-derived RT can sequester RNA substrates for reverse transcription in tumor cells, entailing the formation of RNA:DNA hybrid molecules and impairing the overall production of regulatory miRNAs, with a global impact on the cell transcriptome. Based on these data, LINE-1-ORF2 encoded RT has a tumor-promoting potential that is exerted at an epigenetic level. We propose a model whereby LINE1-RT drives a previously unrecognized global regulatory process, the deregulation of which drives cell transformation and tumorigenesis and possibly implicated in cancer cell heterogeneity.

  17. The reverse transcriptase encoded by LINE-1 retrotransposons in the genesis, progression and therapy of cancer

    Science.gov (United States)

    Sciamanna, Ilaria; De Luca, Chiara; Spadafora, Corrado

    2016-02-01

    In higher eukaryotic genomes, Long Interspersed Nuclear Element 1 (LINE-1) retrotransposons represent a large family of repeated genomic elements. They transpose using a reverse transcriptase (RT), which they encode as part of the ORF2p product. RT inhibition in cancer cells, either via RNA interference-dependent silencing of active LINE-1 elements, or using RT inhibitory drugs, reduces cancer cell proliferation, promotes their differentiation and antagonizes tumor progression in animal models. Indeed, the nonnucleoside RT inhibitor efavirenz has recently been tested in a phase II clinical trial with metastatic prostate cancer patients. An in-depth analysis of ORF2p in a mouse model of breast cancer showed ORF2p to be precociously expressed in precancerous lesions and highly abundant in advanced cancer stages, while being barely detectable in normal breast tissue, providing a rationale for the finding that RT-expressing tumours are therapeutically sensitive to RT inhibitors. We summarise mechanistic and gene profiling studies indicating that highly abundant LINE-1-derived RT can “sequester” RNA substrates for reverse transcription in tumor cells, entailing the formation of RNA:DNA hybrid molecules and impairing the overall production of regulatory miRNAs, with a global impact on the cell transcriptome. Based on these data, LINE-1-ORF2 encoded RT has a tumor-promoting potential that is exerted at an epigenetic level. We propose a model whereby LINE1-RT drives a previously unrecognized global regulatory process, the deregulation of which drives cell transformation and tumorigenesis and possibly implicated in cancer cell heterogeneity.

  18. Mathematical modeling of cancer metabolism.

    Science.gov (United States)

    Medina, Miguel Ángel

    2018-04-01

    Systemic approaches are needed and useful for the study of the very complex issue of cancer. Modeling has a central position in these systemic approaches. Metabolic reprogramming is nowadays acknowledged as an essential hallmark of cancer. Mathematical modeling could contribute to a better understanding of cancer metabolic reprogramming and to identify new potential ways of therapeutic intervention. Herein, I review several alternative approaches to metabolic modeling and their current and future impact in oncology. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Prostate Cancer Risk Prediction Models

    Science.gov (United States)

    Developing statistical models that estimate the probability of developing prostate cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.

  20. Colorectal Cancer Risk Prediction Models

    Science.gov (United States)

    Developing statistical models that estimate the probability of developing colorectal cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.

  1. Esophageal Cancer Risk Prediction Models

    Science.gov (United States)

    Developing statistical models that estimate the probability of developing esophageal cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.

  2. Bladder Cancer Risk Prediction Models

    Science.gov (United States)

    Developing statistical models that estimate the probability of developing bladder cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.

  3. Lung Cancer Risk Prediction Models

    Science.gov (United States)

    Developing statistical models that estimate the probability of developing lung cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.

  4. Breast Cancer Risk Prediction Models

    Science.gov (United States)

    Developing statistical models that estimate the probability of developing breast cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.

  5. Pancreatic Cancer Risk Prediction Models

    Science.gov (United States)

    Developing statistical models that estimate the probability of developing pancreatic cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.

  6. Ovarian Cancer Risk Prediction Models

    Science.gov (United States)

    Developing statistical models that estimate the probability of developing ovarian cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.

  7. Liver Cancer Risk Prediction Models

    Science.gov (United States)

    Developing statistical models that estimate the probability of developing liver cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.

  8. Testicular Cancer Risk Prediction Models

    Science.gov (United States)

    Developing statistical models that estimate the probability of testicular cervical cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.

  9. Cervical Cancer Risk Prediction Models

    Science.gov (United States)

    Developing statistical models that estimate the probability of developing cervical cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.

  10. Radiation promotes colorectal cancer initiation and progression by inducing senescence-associated inflammatory responses.

    Science.gov (United States)

    Kim, S B; Bozeman, R G; Kaisani, A; Kim, W; Zhang, L; Richardson, J A; Wright, W E; Shay, J W

    2016-06-30

    Proton radiotherapy is becoming more common as protons induce more precise DNA damage at the tumor site with reduced side effects to adjacent normal tissues. However, the long-term biological effects of proton irradiation in cancer initiation compared with conventional photon irradiation are poorly characterized. In this study, using a human familial adenomatous polyposis syndrome susceptible mouse model, we show that whole-body irradiation with protons are more effective in inducing senescence-associated inflammatory responses (SIRs), which are involved in colon cancer initiation and progression. After proton irradiation, a subset of SIR genes (Troy, Sox17, Opg, Faim2, Lpo, Tlr2 and Ptges) and a gene known to be involved in invasiveness (Plat), along with the senescence-associated gene (P19Arf), are markedly increased. Following these changes, loss of Casein kinase Iα and induction of chronic DNA damage and TP53 mutations are increased compared with X-ray irradiation. Proton irradiation also increases the number of colonic polyps, carcinomas and invasive adenocarcinomas. Pretreatment with the non-steroidal anti-inflammatory drug, 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid-ethyl amide (CDDO-EA), reduces proton irradiation-associated SIR and tumorigenesis. Thus exposure to proton irradiation elicits significant changes in colorectal cancer initiation and progression that can be mitigated using CDDO-EA.

  11. White adipose tissue IFN-γ expression and signalling along the progression of rodent cancer cachexia.

    Science.gov (United States)

    Yamashita, Alex Shimura; das Neves, Rodrigo Xavier; Rosa-Neto, José Cesar; Lira, Fábio Dos Santos; Batista, Miguel Luís; Alcantara, Paulo Sérgio; Otoch, José Pinhata; Seelaender, Marília

    2017-01-01

    Cachexia is associated with increased morbidity and mortality in cancer. The White adipose tissue (WAT) synthesizes and releases several pro-inflammatory cytokines that play a role in cancer cachexia-related systemic inflammation. IFN-γ is a pleiotropic cytokine that regulates several immune and metabolic functions. To assess whether IFN-γ signalling in different WAT pads is modified along cancer-cachexia progression, we evaluated IFN-γ receptors expression (IFNGR1 and IFNGR2) and IFN-γ protein expression in a rodent model of cachexia (7, 10, and 14days after tumour implantation). IFN-γ protein expression was heterogeneously modulated in WAT, with increases in the mesenteric pad and decreased levels in the retroperitoneal depot along cachexia progression. Ifngr1 was up-regulated 7days after tumour cell injection in mesenteric and epididymal WAT, but the retroperitoneal depot showed reduced Ifngr1 gene expression. Ifngr2 gene expression was increased 7 and 14days after tumour inoculation in mesenteric WAT. The results provide evidence that changes in IFN-γ expression and signalling may be perceived at stages preceding refractory cachexia, and therefore, might be employed as a means to assess the early stage of the syndrome. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Interstitial fluid flow in cancer: implications for disease progression and treatment

    International Nuclear Information System (INIS)

    Munson, Jennifer M; Shieh, Adrian C

    2014-01-01

    As cancer progresses, a dynamic microenvironment develops that creates and responds to cellular and biophysical cues. Increased intratumoral pressure and corresponding increases in interstitial flow from the tumor bulk to the healthy stroma is an observational hallmark of progressing cancers. Until recently, the role of interstitial flow was thought to be mostly passive in the transport and dissemination of cancer cells to metastatic sites. With research spanning the past decade, we have seen that interstitial flow has a promigratory effect on cancer cell invasion in multiple cancer types. This invasion is one mechanism by which cancers can resist therapeutics and recur, but the role of interstitial flow in cancer therapy is limited to the understanding of transport of therapeutics. Here we outline the current understanding of the role of interstitial flow in cancer and the tumor microenvironment through cancer progression and therapy. We also discuss the current role of fluid flow in the treatment of cancer, including drug transport and therapeutic strategies. By stating the current understanding of interstitial flow in cancer progression, we can begin exploring its role in therapeutic failure and treatment resistance

  13. Global Expression Profiling and Pathway Analysis of Mouse Mammary Tumor Reveals Strain and Stage Specific Dysregulated Pathways in Breast Cancer Progression.

    Science.gov (United States)

    Mei, Yan; Yang, Jun-Ping; Lang, Yan-Hong; Peng, Li-Xia; Yang, Ming-Ming; Liu, Qin; Meng, Dong-Fang; Zheng, Li-Sheng; Qiang, Yuan-Yuan; Xu, Liang; Li, Chang-Zhi; Wei, Wen-Wen; Niu, Ting; Peng, Xing-Si; Yang, Qin; Lin, Fen; Hu, Hao; Xu, Hong-Fa; Huang, Bi-Jun; Wang, Li-Jing; Qian, Chao-Nan

    2018-05-01

    It is believed that the alteration of tissue microenvironment would affect cancer initiation and progression. However, little is known in terms of the underlying molecular mechanisms that would affect the initiation and progression of breast cancer. In the present study, we use two murine mammary tumor models with different speeds of tumor initiation and progression for whole genome expression profiling to reveal the involved genes and signaling pathways. The pathways regulating PI3K-Akt signaling and Ras signaling were activated in Fvb mice and promoted tumor progression. Contrastingly, the pathways regulating apoptosis and cellular senescence were activated in Fvb.B6 mice and suppressed tumor progression. We identified distinct patterns of oncogenic pathways activation at different stages of breast cancer, and uncovered five oncogenic pathways that were activated in both human and mouse breast cancers. The genes and pathways discovered in our study would be useful information for other researchers and drug development.

  14. The Valuable Role of Measuring Serum Lipid Profile in Cancer Progression

    Directory of Open Access Journals (Sweden)

    Farahnaz Ghahremanfard

    2015-09-01

    Full Text Available Objective: Serum lipid levels are not only associated with etiology, but also with prognosis in cancer. To investigate this issue further, we aimed to evaluate the serum levels of lipids in association with the most important prognostic indicators in cancer patients at the start of chemotherapy. Methods: In a retrospective cross-sectional study, using existing medical records obtained from 2009–2014, the data of all incident cancer cases in Iranian patients referred to the Semnan oncology clinic for chemotherapy were analyzed. Data on demographics, cancer type, prognostic indicators (e.g. lymph node involvement, metastasis, and stage of disease, as well as the patient’s lipid profile were collected. We used multiple logistic regression models to show the relationship between prognosis indicators and lipid profile adjusting for age, gender, and type of cancer. Results: The data of 205 patients was gathered. We found a significant difference in the lipid profile between different types of cancers (breast, colon, gastric, and ovarian. With the exception of high-density lipoprotein levels in women, which were higher than in men, the means of other lipid profiles were similar between the genders. There was a significant association between higher levels of low-density lipoprotein (LDL >110mg/dL in the serum and metastasis (adjusted odds ratio=2.4, 95% CI 1.2–3.5. No significant association was reported between lipid profile and lymph nodes involvement and stage of the disease. Conclusion: Our study suggested a benefit of measuring serum levels of lipids for predicting cancer progression. Increased LDL levels can be considered a predictive factor for increasing the risk of metastasis.

  15. A seven-gene CpG-island methylation panel predicts breast cancer progression

    International Nuclear Information System (INIS)

    Li, Yan; Melnikov, Anatoliy A.; Levenson, Victor; Guerra, Emanuela; Simeone, Pasquale; Alberti, Saverio; Deng, Youping

    2015-01-01

    DNA methylation regulates gene expression, through the inhibition/activation of gene transcription of methylated/unmethylated genes. Hence, DNA methylation profiling can capture pivotal features of gene expression in cancer tissues from patients at the time of diagnosis. In this work, we analyzed a breast cancer case series, to identify DNA methylation determinants of metastatic versus non-metastatic tumors. CpG-island methylation was evaluated on a 56-gene cancer-specific biomarker microarray in metastatic versus non-metastatic breast cancers in a multi-institutional case series of 123 breast cancer patients. Global statistical modeling and unsupervised hierarchical clustering were applied to identify a multi-gene binary classifier with high sensitivity and specificity. Network analysis was utilized to quantify the connectivity of the identified genes. Seven genes (BRCA1, DAPK1, MSH2, CDKN2A, PGR, PRKCDBP, RANKL) were found informative for prognosis of metastatic diffusion and were used to calculate classifier accuracy versus the entire data-set. Individual-gene performances showed sensitivities of 63–79 %, 53–84 % specificities, positive predictive values of 59–83 % and negative predictive values of 63–80 %. When modelled together, these seven genes reached a sensitivity of 93 %, 100 % specificity, a positive predictive value of 100 % and a negative predictive value of 93 %, with high statistical power. Unsupervised hierarchical clustering independently confirmed these findings, in close agreement with the accuracy measurements. Network analyses indicated tight interrelationship between the identified genes, suggesting this to be a functionally-coordinated module, linked to breast cancer progression. Our findings identify CpG-island methylation profiles with deep impact on clinical outcome, paving the way for use as novel prognostic assays in clinical settings. The online version of this article (doi:10.1186/s12885-015-1412-9) contains supplementary

  16. Mouse Models of Gastric Cancer

    Science.gov (United States)

    Hayakawa, Yoku; Fox, James G.; Gonda, Tamas; Worthley, Daniel L.; Muthupalani, Sureshkumar; Wang, Timothy C.

    2013-01-01

    Animal models have greatly enriched our understanding of the molecular mechanisms of numerous types of cancers. Gastric cancer is one of the most common cancers worldwide, with a poor prognosis and high incidence of drug-resistance. However, most inbred strains of mice have proven resistant to gastric carcinogenesis. To establish useful models which mimic human gastric cancer phenotypes, investigators have utilized animals infected with Helicobacter species and treated with carcinogens. In addition, by exploiting genetic engineering, a variety of transgenic and knockout mouse models of gastric cancer have emerged, such as INS-GAS mice and TFF1 knockout mice. Investigators have used the combination of carcinogens and gene alteration to accelerate gastric cancer development, but rarely do mouse models show an aggressive and metastatic gastric cancer phenotype that could be relevant to preclinical studies, which may require more specific targeting of gastric progenitor cells. Here, we review current gastric carcinogenesis mouse models and provide our future perspectives on this field. PMID:24216700

  17. Genes Involved in Oxidation and Prostate Cancer Progression

    National Research Council Canada - National Science Library

    Platz, Elizabeth A

    2008-01-01

    .... Using incidence-density sampling, we selected 524 men matched on age, race, and pathological stage and grade who had not progressed by the date of the matched case's progression. Noncancer tissue...

  18. Current status and progress of pancreatic cancer in China.

    Science.gov (United States)

    Lin, Quan-Jun; Yang, Feng; Jin, Chen; Fu, De-Liang

    2015-07-14

    Cancer is currently one of the most important public health problems in the world. Pancreatic cancer is a fatal disease with poor prognosis. As in most other countries, the health burden of pancreatic cancer in China is increasing, with annual mortality rates almost equal to incidence rates. The increasing trend of pancreatic cancer incidence is more significant in the rural areas than in the urban areas. Annual diagnoses and deaths of pancreatic cancer in China are now beyond the number of cases in the United States. GLOBOCAN 2012 estimates that cases in China account for 19.45% (65727/337872) of all newly diagnosed pancreatic cancer and 19.27% (63662/330391) of all deaths from pancreatic cancer worldwide. The population's growing socioeconomic status contributes to the rapid increase of China's proportional contribution to global rates. Here, we present an overview of control programs for pancreatic cancer in China focusing on prevention, early diagnosis and treatment. In addition, we describe key epidemiological, demographic, and socioeconomic differences between China and developed countries. Facts including no nationwide screening program for pancreatic cancer, delay in early detection resulting in a late stage at presentation, lack of awareness of pancreatic cancer in the Chinese population, and low investment compared with other cancer types by government have led to backwardness in China's pancreatic cancer diagnosis and treatment. Finally, we suggest measures to improve health outcomes of pancreatic cancer patients in China.

  19. The fundamental role of mechanical properties in the progression of cancer disease and inflammation

    Science.gov (United States)

    Mierke, Claudia Tanja

    2014-07-01

    The role of mechanical properties in cancer disease and inflammation is still underinvestigated and even ignored in many oncological and immunological reviews. In particular, eight classical hallmarks of cancer have been proposed, but they still ignore the mechanics behind the processes that facilitate cancer progression. To define the malignant transformation of neoplasms and finally reveal the functional pathway that enables cancer cells to promote cancer progression, these classical hallmarks of cancer require the inclusion of specific mechanical properties of cancer cells and their microenvironment such as the extracellular matrix as well as embedded cells such as fibroblasts, macrophages or endothelial cells. Thus, this review will present current cancer research from a biophysical point of view and will therefore focus on novel physical aspects and biophysical methods to investigate the aggressiveness of cancer cells and the process of inflammation. As cancer or immune cells are embedded in a certain microenvironment such as the extracellular matrix, the mechanical properties of this microenvironment cannot be neglected, and alterations of the microenvironment may have an impact on the mechanical properties of the cancer or immune cells. Here, it is highlighted how biophysical approaches, both experimental and theoretical, have an impact on the classical hallmarks of cancer and inflammation. It is even pointed out how these biophysical approaches contribute to the understanding of the regulation of cancer disease and inflammatory responses after tissue injury through physical microenvironmental property sensing mechanisms. The recognized physical signals are transduced into biochemical signaling events that guide cellular responses, such as malignant tumor progression, after the transition of cancer cells from an epithelial to a mesenchymal phenotype or an inflammatory response due to tissue injury. Moreover, cell adaptation to mechanical alterations, in

  20. Kidney cancer progression linked to shifts in tumor metabolism

    Science.gov (United States)

    Investigators in The Cancer Genome Atlas Research Network have uncovered a connection between how tumor cells use energy from metabolic processes and the aggressiveness of the most common form of kidney cancer, clear cell renal cell carcinoma.

  1. Angiogenesis in prostate cancer : onset, progression and imaging

    NARCIS (Netherlands)

    Russo, G.; Mischi, M.; Scheepens, W.; Rosette, de la J.J.M.C.H.; Wijkstra, H.

    2012-01-01

    Today, angiogenesis is known to play a key role in cancer growth and development. Emerging cancer treatments are based on the suppression of angiogenesis, and modern imaging techniques investigate changes in the microvasculature that are caused by angiogenesis. As for other forms of cancers,

  2. Defining progression in nonmuscle invasive bladder cancer: it is time for a new, standard definition.

    Science.gov (United States)

    Lamm, Donald; Persad, Raj; Brausi, Maurizio; Buckley, Roger; Witjes, J Alfred; Palou, Joan; Böhle, Andreas; Kamat, Ashish M; Colombel, Marc; Soloway, Mark

    2014-01-01

    Despite being one of the most important clinical outcomes in nonmuscle invasive bladder cancer, there is currently no standard definition of disease progression. Major clinical trials and meta-analyses have used varying definitions or have failed to define this end point altogether. A standard definition of nonmuscle invasive bladder cancer progression as determined by reproducible and reliable procedures is needed. We examine current definitions of nonmuscle invasive bladder cancer progression, and propose a new definition that will be more clinically useful in determining patient prognosis and comparing treatment options. The IBCG (International Bladder Cancer Group) analyzed published clinical trials and meta-analyses that examined nonmuscle invasive bladder cancer progression as of December 2012. The limitations of the definitions of progression used in these trials were considered, as were additional parameters associated with the advancement of nonmuscle invasive bladder cancer. The most commonly used definition of nonmuscle invasive bladder cancer progression is an increase in stage from nonmuscle invasive to muscle invasive disease. Although this definition is clinically important, it fails to include other important parameters of advancing disease such as progression to lamina propria invasion and increase in grade. The IBCG proposes the definition of nonmuscle invasive bladder cancer progression as an increase in T stage from CIS or Ta to T1 (lamina propria invasion), development of T2 or greater or lymph node (N+) disease or distant metastasis (M1), or an increase in grade from low to high. Investigators should consider the use of this new definition to help standardize protocols and improve the reporting of progression. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  3. USP22 regulates oncogenic signaling pathways to drive lethal cancer progression.

    Science.gov (United States)

    Schrecengost, Randy S; Dean, Jeffry L; Goodwin, Jonathan F; Schiewer, Matthew J; Urban, Mark W; Stanek, Timothy J; Sussman, Robyn T; Hicks, Jessica L; Birbe, Ruth C; Draganova-Tacheva, Rossitza A; Visakorpi, Tapio; DeMarzo, Angelo M; McMahon, Steven B; Knudsen, Karen E

    2014-01-01

    Increasing evidence links deregulation of the ubiquitin-specific proteases 22 (USP22) deubitiquitylase to cancer development and progression in a select group of tumor types, but its specificity and underlying mechanisms of action are not well defined. Here we show that USP22 is a critical promoter of lethal tumor phenotypes that acts by modulating nuclear receptor and oncogenic signaling. In multiple xenograft models of human cancer, modeling of tumor-associated USP22 deregulation demonstrated that USP22 controls androgen receptor accumulation and signaling, and that it enhances expression of critical target genes coregulated by androgen receptor and MYC. USP22 not only reprogrammed androgen receptor function, but was sufficient to induce the transition to therapeutic resistance. Notably, in vivo depletion experiments revealed that USP22 is critical to maintain phenotypes associated with end-stage disease. This was a significant finding given clinical evidence that USP22 is highly deregulated in tumors, which have achieved therapeutic resistance. Taken together, our findings define USP22 as a critical effector of tumor progression, which drives lethal phenotypes, rationalizing this enzyme as an appealing therapeutic target to treat advanced disease.

  4. Ran GTPase promotes cancer progression via Met receptor-mediated downstream signaling

    Science.gov (United States)

    Yuen, Hiu-Fung; Chan, Ka-Kui; Platt-Higgins, Angela; Dakir, El-Habib; Matchett, Kyle B.; Haggag, Yusuf Ahmed; Jithesh, Puthen V.; Habib, Tanwir; Faheem, Ahmed; Dean, Fennell A.; Morgan, Richard; Rudland, Philip S.; El-Tanani, Mohamed

    2016-01-01

    It has been shown previously that cancer cells with an activated oncogenic pathway, including Met activation, require Ran for growth and survival. Here, we show that knockdown of Ran leads to a reduction of Met receptor expression in several breast and lung cancer cell lines. This, in turn suppressed HGF expression and the Met-mediated activation of the Akt pathway, as well as cell adhesion, migration, and invasion. In a cell line model where Met amplification has previously been shown to contribute to gefitinib resistance, Ran knockdown sensitized cells to gefitinib-mediated inhibition of Akt and ERK1/2 phosphorylation and consequently reduced cell proliferation. We further demonstrate that Met reduction-mediated by knockdown of Ran, occurs at the post-transcriptional level, probably via a matrix metalloproteinase. Moreover, the level of immunoreactive Ran and Met are positively associated in human breast cancer specimens, suggesting that a high level of Ran may be a pre-requisite for Met overexpression. Interestingly, a high level of immunoreactive Ran dictates the prognostic significance of Met, indicating that the co-overexpression of Met and Ran may be associated with cancer progression and could be used in combination as a prognostic indicator. PMID:27716616

  5. Effects of clusterin over-expression on metastatic progression and therapy in breast cancer

    International Nuclear Information System (INIS)

    Flanagan, Louise; Whyte, Lorna; Chatterjee, Namita; Tenniswood, Martin

    2010-01-01

    Clusterin is a secreted glycoprotein that is upregulated in a variety of cell lines in response to stress, and enhances cell survival. A second nuclear isoform of clusterin that is associated with cell death has also been identified. The aim of this study was to determine the role(s) of the secretory isoform in breast tumor progression and metastasis. To investigate the role of secretory clusterin in the biology of breast cancer tumor growth and resistance to therapy we have engineered an MCF-7 cell line (MCF-7CLU) that over-expresses clusterin. We have measured the in vitro effects of clusterin over-expression on cell cycle, cell death, and sensitivity to TNFalpha and tamoxifen. Using an orthotopic model of breast cancer, we have also determined the effects of over-expression of clusterin on tumor growth and metastatic progression. In vitro, over-expression of secretory clusterin alters the cell cycle kinetics and decreases the rate of cell death, resulting in the enhancement of cell growth. Over-expression of secretory clusterin also blocks the TNFalpha-mediated induction of p21 and abrogates the cleavage of Bax to t-Bax, rendering the MCF-7CLU cells significantly more resistant to the cytokine than the parental cells. Orthotopic primary tumors derived from MCF-7CLU cells grow significantly more rapidly than tumors derived from parental MCF-7 cells and, unlike the parental cells, metastasize frequently to the lungs. These data suggest that secretory clusterin, which is frequently up-regulated in breast cancers by common therapies, including anti-estrogens, may play a significant role in tumor growth, metastatic progression and subsequent drug resistance in surviving cells

  6. Effects of clusterin over-expression on metastatic progression and therapy in breast cancer

    Directory of Open Access Journals (Sweden)

    Chatterjee Namita

    2010-03-01

    Full Text Available Abstract Background Clusterin is a secreted glycoprotein that is upregulated in a variety of cell lines in response to stress, and enhances cell survival. A second nuclear isoform of clusterin that is associated with cell death has also been identified. The aim of this study was to determine the role(s of the secretory isoform in breast tumor progression and metastasis. Methods To investigate the role of secretory clusterin in the biology of breast cancer tumor growth and resistance to therapy we have engineered an MCF-7 cell line (MCF-7CLU that over-expresses clusterin. We have measured the in vitro effects of clusterin over-expression on cell cycle, cell death, and sensitivity to TNFalpha and tamoxifen. Using an orthotopic model of breast cancer, we have also determined the effects of over-expression of clusterin on tumor growth and metastatic progression. Results In vitro, over-expression of secretory clusterin alters the cell cycle kinetics and decreases the rate of cell death, resulting in the enhancement of cell growth. Over-expression of secretory clusterin also blocks the TNFalpha-mediated induction of p21 and abrogates the cleavage of Bax to t-Bax, rendering the MCF-7CLU cells significantly more resistant to the cytokine than the parental cells. Orthotopic primary tumors derived from MCF-7CLU cells grow significantly more rapidly than tumors derived from parental MCF-7 cells and, unlike the parental cells, metastasize frequently to the lungs. Conclusions These data suggest that secretory clusterin, which is frequently up-regulated in breast cancers by common therapies, including anti-estrogens, may play a significant role in tumor growth, metastatic progression and subsequent drug resistance in surviving cells.

  7. Modeling Human Cancers in Drosophila.

    Science.gov (United States)

    Sonoshita, M; Cagan, R L

    2017-01-01

    Cancer is a complex disease that affects multiple organs. Whole-body animal models provide important insights into oncology that can lead to clinical impact. Here, we review novel concepts that Drosophila studies have established for cancer biology, drug discovery, and patient therapy. Genetic studies using Drosophila have explored the roles of oncogenes and tumor-suppressor genes that when dysregulated promote cancer formation, making Drosophila a useful model to study multiple aspects of transformation. Not limited to mechanism analyses, Drosophila has recently been showing its value in facilitating drug development. Flies offer rapid, efficient platforms by which novel classes of drugs can be identified as candidate anticancer leads. Further, we discuss the use of Drosophila as a platform to develop therapies for individual patients by modeling the tumor's genetic complexity. Drosophila provides both a classical and a novel tool to identify new therapeutics, complementing other more traditional cancer tools. © 2017 Elsevier Inc. All rights reserved.

  8. Systemic Chemotherapy for Progression of Brain Metastases in Extensive-Stage Small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Nagla Abdel Karim

    2015-01-01

    Full Text Available Lung cancer is the most common cause of cancer related mortality in men and women. Approximately 15% of lung cancers are small cell type. Chemotherapy and radiation are the mainstay treatments. Currently, the standard chemotherapy regimen includes platinum/etoposide. For extensive small cell lung cancer, irinotecan and cisplatin have also been used. Patients with relapsed small cell lung cancer have a very poor prognosis, and the morbidity increases with brain metastases. Approximately 10%–14% of small cell lung cancer patients exhibit brain metastases at the time of diagnosis, which increases to 50%–80% as the disease progresses. Mean survival with brain metastases is reported to be less than six months, thus calling for improved regimens. Here we present a case series of patients treated with irinotecan for progressive brain metastases in small cell lung cancer, which serves as a reminder of the role of systemic chemotherapy in this setting.

  9. Exosomes derived from gastric cancer cells activate NF-κB pathway in macrophages to promote cancer progression.

    Science.gov (United States)

    Wu, Lijun; Zhang, Xu; Zhang, Bin; Shi, Hui; Yuan, Xiao; Sun, Yaoxiang; Pan, Zhaoji; Qian, Hui; Xu, Wenrong

    2016-09-01

    Exosomes are nano-sized membrane vesicles secreted by both normal and cancer cells. Emerging evidence indicates that cancer cells derived exosomes contribute to cancer progression through the modulation of tumor microenvironment. However, the effects of exosomes derived from gastric cancer cells on macrophages are not well understood. In this study, we investigated the biological role of gastric cancer cells derived exosomes in the activation of macrophages. We demonstrated that gastric cancer cells derived exosomes activated macrophages to express increased levels of proinflammatory factors, which in turn promoted tumor cell proliferation and migration. In addition, gastric cancer cells derived exosomes remarkably upregulated the phosphorylation of NF-κB in macrophages. Inhibiting the activation of NF-κB reversed the upregulation of proinflammatory factors in macrophages and blocked their promoting effects on gastric cancer cells. Moreover, we found that gastric cancer cells derived exosomes could also activate macrophages from human peripheral blood monocytes through the activation of NF-κB. In conclusion, our results suggest that gastric cancer cells derived exosomes stimulate the activation of NF-κB pathway in macrophages to promote cancer progression, which provides a potential therapeutic approach for gastric cancer by interfering with the interaction between exosomes and macrophages in tumor microenvironment.

  10. Cancer statistics for African Americans, 2016: Progress and opportunities in reducing racial disparities.

    Science.gov (United States)

    DeSantis, Carol E; Siegel, Rebecca L; Sauer, Ann Goding; Miller, Kimberly D; Fedewa, Stacey A; Alcaraz, Kassandra I; Jemal, Ahmedin

    2016-07-01

    In this article, the American Cancer Society provides the estimated number of new cancer cases and deaths for blacks in the United States and the most recent data on cancer incidence, mortality, survival, screening, and risk factors for cancer. Incidence data are from the National Cancer Institute, the Centers for Disease Control and Prevention, and the North American Association of Central Cancer Registries, and mortality data are from the National Center for Health Statistics. Approximately 189,910 new cases of cancer and 69,410 cancer deaths will occur among blacks in 2016. Although blacks continue to have higher cancer death rates than whites, the disparity has narrowed for all cancers combined in men and women and for lung and prostate cancers in men. In contrast, the racial gap in death rates has widened for breast cancer in women and remained level for colorectal cancer in men. The reduction in overall cancer death rates since the early 1990s translates to the avoidance of more than 300,000 deaths among blacks. In men, incidence rates from 2003 to 2012 decreased for all cancers combined (by 2.0% per year) as well as for the top 3 cancer sites (prostate, lung, and colorectal). In women, overall rates during the corresponding time period remained unchanged, reflecting increasing trends in breast cancer combined with decreasing trends in lung and colorectal cancer rates. Five-year relative survival is lower for blacks than whites for most cancers at each stage of diagnosis. The extent to which these disparities reflect unequal access to health care versus other factors remains an active area of research. Progress in reducing cancer death rates could be accelerated by ensuring equitable access to prevention, early detection, and high-quality treatment. CA Cancer J Clin 2016;66:290-308. © 2016 American Cancer Society. © 2016 American Cancer Society, Inc.

  11. Progress in diagnosis of breast cancer: Advances in radiology technology

    Directory of Open Access Journals (Sweden)

    J Mari Beth Linder

    2015-01-01

    Full Text Available Breast cancer is the leading cause of cancer in females between the ages of 15 and 54, and the second leading cause of cancer death in women in the United States. Diagnosis begins with detection by breast examination (clinical breast exam or breast self-exam or by radiologic studies, like mammography. Many advances in the diagnosis of breast cancer have taken place in recent years. This article will review the history of radiologic advances in the diagnosis of breast cancer. Use of technological advancements in digital breast tomosynthesis, magnetic resonance imaging, and ultrasound in breast cancer diagnosis will be presented. Advantages and disadvantages of these diagnostic interventions when compared to older, traditional X-ray films will be discussed. It is important for all nurses, including radiology and oncology nurses, to be well informed about these varied diagnostic modalities, and appreciate the fact that advances in radiologic imaging technologies can yield improved outcomes for breast cancer patients.

  12. Association Between Breast Cancer Disease Progression and Workplace Productivity in the United States.

    Science.gov (United States)

    Yin, Wesley; Horblyuk, Ruslan; Perkins, Julia Jane; Sison, Steve; Smith, Greg; Snider, Julia Thornton; Wu, Yanyu; Philipson, Tomas J

    2017-02-01

    Determine workplace productivity losses attributable to breast cancer progression. Longitudinal analysis linking 2005 to 2012 medical and pharmacy claims and workplace absence data in the US patients were commercially insured women aged 18 to 64 diagnosed with breast cancer. Productivity was measured as employment status and total quarterly workplace hours missed, and valued using average US wages. Six thousand four hundred and nine women were included. Breast cancer progression was associated with a lower probability of employment (hazard ratio [HR] = 0.65, P work was $24,166 for non-metastatic and $30,666 for metastatic patients. Thus, progression to metastatic disease is associated with an additional $6500 in lost work time (P < 0.05), or 14% of average US wages. Breast cancer progression leads to diminished likelihood of employment, increased workplace hours missed, and increased cost burden.

  13. Micronutrients attenuate progression of prostate cancer by elevating the endogenous inhibitor of angiogenesis, Platelet Factor-4

    International Nuclear Information System (INIS)

    Cervi, David; Pak, Brian; Venier, Natalie A; Sugar, Linda M; Nam, Robert K; Fleshner, Neil E; Klotz, Laurence H; Venkateswaran, Vasundara

    2010-01-01

    Longstanding evidence implicates an inadequate diet as a key factor in the onset and progression of prostate cancer. The purpose herein was to discover, validate and characterize functional biomarkers of dietary supplementation capable of suppressing the course of prostate cancer in vivo. The Lady transgenic mouse model that spontaneously develops prostate cancer received a diet supplemented with a micronutrient cocktail of vitamin E, selenium and lycopene ad libitum. A proteomic analysis was conducted to screen for serum biomarkers of this dietary supplementation. Candidate peptides were validated and identified by sequencing and analyzed for their presence within the prostates of all mice by immunohistochemistry. Dietary supplementation with the combined micronutrients significantly induced the expression of the megakaryocyte-specific inhibitor of angiogenesis, platelet factor-4 (P = 0.0025). This observation was made predominantly in mice lacking tumors and any manifestations associated with progressive disease beyond 37 weeks of life, at which time no survivors remained in the control group (P < 0.0001). While prostates of mice receiving standard chow were enlarged and burdened with poorly differentiated carcinoma, those of mice on the supplemented diet appeared normal. Immunohistochemical analysis revealed marked amplifications of both platelet binding and platelet factor-4 within the blood vessels of prostates from mice receiving micronutrients only. We present unprecedented data whereby these combined micronutrients effectively promotes tumor dormancy in early prostate cancer, following initiation mutations that may drive the angiogenesis-dependent response of the tumor, by inducing platelet factor-4 expression and concentrating it at the tumor endothelium through enhanced platelet binding

  14. Oxide behaviour modelling progress in COMETHE

    International Nuclear Information System (INIS)

    Vliet, J. van; Hoppe, N.

    1983-01-01

    An attempt has been made to develop a global model which simultaneously describes many important aspects of uranium oxide under irradiation. The individual models describing fuel structural changes, swelling and gas release, which were earlier separate from one another, are now part of a more realistic integral fuel model. Fission gas release depends now on an explicitely calculated open porosity, which is generated by fuel swelling; the latter is in turn connected to fission gas release. The paper describes the individual oxide models and how they are linked together. (author)

  15. Inhibition of Mammary Cancer Progression in Fetal Alcohol Exposed Rats by β-Endorphin Neurons.

    Science.gov (United States)

    Zhang, Changqing; Franklin, Tina; Sarkar, Dipak K

    2016-01-01

    Fetal alcohol exposure (FAE) increases the susceptibility to carcinogen-induced mammary cancer progression in rodent models. FAE also decreases β-endorphin (β-EP) level and causes hyperstress response, which leads to inhibition of immune function against cancer. Previous studies have shown that injection of nanosphere-attached dibutyryl cyclic adenosine monophosphate (dbcAMP) into the third ventricle increases the number of β-EP neurons in the hypothalamus. In this study, we assessed the therapeutic potential of stress regulation using methods to increase hypothalamic levels of β-EP, a neuropeptide that inhibits stress axis activity, in treatment of carcinogen-induced mammary cancer in fetal alcohol exposed rats. Fetal alcohol exposed and control Sprague Dawley rats were given a dose of N-Nitroso-N-methylurea (MNU) at postnatal day 50 to induce mammary cancer growth. Upon detection of mammary tumors, the animals were either transplanted with β-EP neurons or injected with dbcAMP-delivering nanospheres into the hypothalamus to increase β-EP peptide production. Spleen cytokines were detected using reverse transcription polymerase chain reaction assays. Metastasis study was done by injecting mammary cancer cells MADB106 into jugular vein of β-EP-activated or control fetal alcohol exposed animals. Both transplantation of β-EP neurons and injection of dbcAMP-delivering nanospheres inhibited MNU-induced mammary cancer growth in control rats, and reversed the effect of FAE on the susceptibility to mammary cancer. Similar to the previously reported immune-enhancing and stress-suppressive effects of β-EP transplantation, injection of dbcAMP-delivering nanospheres increased the levels of interferon-γ and granzyme B and decreased the levels of epinephrine and norepinephrine in fetal alcohol exposed rats. Mammary cancer cell metastasis study also showed that FAE increased incidence of lung tumor retention, while β-EP transplantation inhibited lung tumor growth in

  16. Microenvironmental Heterogeneity Parallels Breast Cancer Progression: A Histology-Genomic Integration Analysis.

    Directory of Open Access Journals (Sweden)

    Rachael Natrajan

    2016-02-01

    Full Text Available The intra-tumor diversity of cancer cells is under intense investigation; however, little is known about the heterogeneity of the tumor microenvironment that is key to cancer progression and evolution. We aimed to assess the degree of microenvironmental heterogeneity in breast cancer and correlate this with genomic and clinical parameters.We developed a quantitative measure of microenvironmental heterogeneity along three spatial dimensions (3-D in solid tumors, termed the tumor ecosystem diversity index (EDI, using fully automated histology image analysis coupled with statistical measures commonly used in ecology. This measure was compared with disease-specific survival, key mutations, genome-wide copy number, and expression profiling data in a retrospective study of 510 breast cancer patients as a test set and 516 breast cancer patients as an independent validation set. In high-grade (grade 3 breast cancers, we uncovered a striking link between high microenvironmental heterogeneity measured by EDI and a poor prognosis that cannot be explained by tumor size, genomics, or any other data types. However, this association was not observed in low-grade (grade 1 and 2 breast cancers. The prognostic value of EDI was superior to known prognostic factors and was enhanced with the addition of TP53 mutation status (multivariate analysis test set, p = 9 × 10-4, hazard ratio = 1.47, 95% CI 1.17-1.84; validation set, p = 0.0011, hazard ratio = 1.78, 95% CI 1.26-2.52. Integration with genome-wide profiling data identified losses of specific genes on 4p14 and 5q13 that were enriched in grade 3 tumors with high microenvironmental diversity that also substratified patients into poor prognostic groups. Limitations of this study include the number of cell types included in the model, that EDI has prognostic value only in grade 3 tumors, and that our spatial heterogeneity measure was dependent on spatial scale and tumor size.To our knowledge, this is the first

  17. EPCR promotes breast cancer progression by altering SPOCK1/testican 1-mediated 3D growth

    Directory of Open Access Journals (Sweden)

    Naiara Perurena

    2017-01-01

    Full Text Available Abstract Background Activated protein C/endothelial protein C receptor (APC/EPCR axis is physiologically involved in anticoagulant and cytoprotective activities in endothelial cells. Emerging evidence indicates that EPCR also plays a role in breast stemness and human tumorigenesis. Yet, its contribution to breast cancer progression and metastasis has not been elucidated. Methods Transcriptomic status of EPCR was examined in a cohort of 286 breast cancer patients. Cell growth kinetics was evaluated in control and EPCR and SPARC/osteonectin, Cwcv, and kazal-like domains proteoglycan (SPOCK1/testican 1 silenced breast cancer cells in 2D, 3D, and in co-culture conditions. Orthotopic tumor growth and lung and osseous metastases were evaluated in several human and murine xenograft breast cancer models. Tumor-stroma interactions were further studied in vivo by immunohistochemistry and flow cytometry. An EPCR-induced gene signature was identified by microarray analysis. Results Analysis of a cohort of breast cancer patients revealed an association of high EPCR levels with adverse clinical outcome. Interestingly, EPCR knockdown did not affect cell growth kinetics in 2D but significantly reduced cell growth in 3D cultures. Using several human and murine xenograft breast cancer models, we showed that EPCR silencing reduced primary tumor growth and secondary outgrowths at metastatic sites, including the skeleton and the lungs. Interestingly, these effects were independent of APC ligand stimulation in vitro and in vivo. Transcriptomic analysis of EPCR-silenced tumors unveiled an effect mediated by matricellular secreted proteoglycan SPOCK1/testican 1. Interestingly, SPOCK1 silencing suppressed in vitro 3D growth. Moreover, SPOCK1 ablation severely decreased orthotopic tumor growth and reduced bone metastatic osteolytic tumors. High SPOCK1 levels were also associated with poor clinical outcome in a subset breast cancer patients. Our results suggest that EPCR

  18. Progress in molecular-based management of differentiated thyroid cancer

    Science.gov (United States)

    Xing, Mingzhao; Haugen, Bryan R; Schlumberger, Martin

    2014-01-01

    Substantial developments have occurred in the past 5–10 years in clinical translational research of thyroid cancer. Diagnostic molecular markers, such as RET-PTC, RAS, and BRAFV600E mutations; galectin 3; and a new gene expression classifier, are outstanding examples that have improved diagnosis of thyroid nodules. BRAF mutation is a prognostic genetic marker that has improved risk stratification and hence tailored management of patients with thyroid cancer, including those with conventionally low risks. Novel molecular-targeted treatments hold great promise for radioiodine-refractory and surgically inoperable thyroid cancers as shown in clinical trials; such treatments are likely to become a component of the standard treatment regimen for patients with thyroid cancer in the near future. These novel molecular-based management strategies for thyroid nodules and thyroid cancer are the most exciting developments in this unprecedented era of molecular thyroid-cancer medicine. PMID:23668556

  19. MicroRNA-384 inhibits the progression of breast cancer by targeting ACVR1.

    Science.gov (United States)

    Wang, Yongxia; Zhang, Zheying; Wang, Jianqiang

    2018-04-20

    Breast cancer is the leading cause of cancer-related deaths in females worldwide. Triple-negative breast cancer (TNBC) accounts for 15% of all breast cancer cases and has a poorer prognosis than other subtypes. Moreover, the treatment for breast cancer, especially for TNBC, remains unsatisfactory. Therefore, novel therapies are urgently needed. Microribonucleic acids (miRNAs) are a class of biomarkers and therapeutic targets in many types of cancers. In the present study, the expression of miR-384 was explored in GSE58606 and in fresh breast cancer tissues by qPCR. The results showed that miR-384 was decreased in breast cancer, especially in TNBC. The results of MTT, colony formation, soft agar, Transwell migration, wound healing and the tumorigenesis assay demonstranted that overexpression of miR-384 inhibited the proliferation and migration of breast cancer in vitro and in vivo; knockdown of miR-384 enhanced the proliferation and migration of breast cancer. In addition, luciferase assay showed that Activin A receptor type 1 (ACVR1) was a direct target of miR-384 and is involved in the inhibitory effects of miR-384 on breast cancer progression. Furthermore, this study indicated that ACVR1 activated the Wnt/β-catenin signaling pathway in breast cancer. In conclusion, our findings revealed functional and mechanistic links between miR-384 and ACVR1 in the progression of breast cancer. miR-384 not only plays an important role in the progression of breast cancer, but has promise as a potential therapeutic target for breast cancer especially for TNBC.

  20. Progress in Global Multicompartmental Modelling of DDT

    Science.gov (United States)

    Stemmler, I.; Lammel, G.

    2009-04-01

    Dichlorophenyltrichloroethane, DDT, and its major metabolite dichlorophenyldichloroethylene, DDE, are long-lived in the environment (persistent) and circulate since the 1950s. They accumulate along food chains, cause detrimental effects in marine and terrestrial wild life, and pose a hazard for human health. DDT was widely used as an insecticide in the past and is still in use in a number of tropical countries to combat vector borne diseases like malaria and typhus. It is a multicompartmental substance with only a small mass fraction residing in air. A global multicompartment chemistry transport model (MPI-MCTM; Semeena et al., 2006) is used to study the environmental distribution and fate of dichlorodiphenyltrichloroethane (DDT). For the first time a horizontally and vertically resolved global model was used to perform a long-term simulation of DDT and DDE. The model is based on general circulation models for the ocean (MPIOM; Marsland et al., 2003) and atmosphere (ECHAM5). In addition, an oceanic biogeochemistry model (HAMOCC5.1; Maier-Reimer et al., 2005 ) and a microphysical aerosol model (HAM; Stier et al., 2005 ) are included. Multicompartmental substances are cycling in atmosphere (3 phases), ocean (3 phases), top soil (3 phases), and vegetation surfaces. The model was run for 40 years forced with historical agricultural application data of 1950-1990. The model results show that the global environmental contamination started to decrease in air, soil and vegetation after the applications peaked in 1965-70. In some regions, however, the DDT mass had not yet reached a maximum in 1990 and was still accumulating mass until the end of the simulation. Modelled DDT and DDE concentrations in atmosphere, ocean and soil are evaluated by comparison with observational data. The evaluation of the model results indicate that degradation of DDE in air was underestimated. Also for DDT, the discrepancies between model results and observations are related to uncertainties of

  1. The Hippo/YAP pathway interacts with EGFR signaling and HPV oncoproteins to regulate cervical cancer progression

    Science.gov (United States)

    He, Chunbo; Mao, Dagan; Hua, Guohua; Lv, Xiangmin; Chen, Xingcheng; Angeletti, Peter C; Dong, Jixin; Remmenga, Steven W; Rodabaugh, Kerry J; Zhou, Jin; Lambert, Paul F; Yang, Peixin; Davis, John S; Wang, Cheng

    2015-01-01

    The Hippo signaling pathway controls organ size and tumorigenesis through a kinase cascade that inactivates Yes-associated protein (YAP). Here, we show that YAP plays a central role in controlling the progression of cervical cancer. Our results suggest that YAP expression is associated with a poor prognosis for cervical cancer. TGF-α and amphiregulin (AREG), via EGFR, inhibit the Hippo signaling pathway and activate YAP to induce cervical cancer cell proliferation and migration. Activated YAP allows for up-regulation of TGF-α, AREG, and EGFR, forming a positive signaling loop to drive cervical cancer cell proliferation. HPV E6 protein, a major etiological molecule of cervical cancer, maintains high YAP protein levels in cervical cancer cells by preventing proteasome-dependent YAP degradation to drive cervical cancer cell proliferation. Results from human cervical cancer genomic databases and an accepted transgenic mouse model strongly support the clinical relevance of the discovered feed-forward signaling loop. Our study indicates that combined targeting of the Hippo and the ERBB signaling pathways represents a novel therapeutic strategy for prevention and treatment of cervical cancer. PMID:26417066

  2. Retrotransposon-Encoded Reverse Transcriptase in the Genesis, Progression and Cellular Plasticity of Human Cancer

    International Nuclear Information System (INIS)

    Sinibaldi-Vallebona, Paola; Matteucci, Claudia; Spadafora, Corrado

    2011-01-01

    LINE-1 (Long Interspersed Nuclear Elements) and HERVs (Human Endogenous Retroviruses) are two families of autonomously replicating retrotransposons that together account for about 28% of the human genome. Genes harbored within LINE-1 and HERV retrotransposons, particularly those encoding the reverse transcriptase (RT) enzyme, are generally expressed at low levels in differentiated cells, but their expression is upregulated in transformed cells and embryonic tissues. Here we discuss a recently discovered RT-dependent mechanism that operates in tumorigenesis and reversibly modulates phenotypic and functional variations associated with tumor progression. Downregulation of active LINE-1 elements drastically reduces the tumorigenic potential of cancer cells, paralleled by reduced proliferation and increased differentiation. Pharmacological RT inhibitors (e.g., nevirapine and efavirenz) exert similar effects on tumorigenic cell lines, both in culture and in animal models. The HERV-K family play a distinct complementary role in stress-dependent transition of melanoma cells from an adherent, non-aggressive, to a non-adherent, highly malignant, growth phenotype. In synthesis, the retrotransposon-encoded RT is increasingly emerging as a key regulator of tumor progression and a promising target in a novel anti-cancer therapy

  3. NCOA5 is correlated with progression and prognosis in luminal breast cancer

    International Nuclear Information System (INIS)

    Ye, Xiao-He; Huang, Du-Ping; Luo, Rong-Cheng

    2017-01-01

    Nuclear receptor coactivator 5 (NCOA5) is known to modulate ERα-mediated transcription and has been found to be involved in the progression of several malignancies. However, the potential correlation between NCOA5 and clinical outcome in patients with luminal breast cancer remains unknown. In the present study, we demonstrated that NCOA5 was significantly up-regulated in luminal breast cancer tissues compared with adjacent non-cancerous tissues both in validated cohort and TCGA cohort. Moreover, Kaplan-Meier analysis indicated that patients with high NOCA5 expression had significantly lower overall survival (P = 0.021). Cox regression analysis indicated that the high NOCA5 expression was independent high risk factor as well as old age (>60) and HER-2 expression (P = 0.039; P = 0.003; P = 0.005; respectively). This study provides new insights and evidences that NOCA5 over-expression was significantly correlated with progression and prognosis in luminal breast cancer. However, the precise cellular mechanisms for NOCA5 in luminal breast cancer need to be further explored. - Highlights: • NCOA5 is significantly over-expressed in human luminal breast cancer tissues. • NOCA5 was involved in the progression of luminal breast cancer. • NCOA5 can predict the progression of luminal breast cancer.

  4. Animal models for cancer and uses thereof

    NARCIS (Netherlands)

    Demaria, Marco; Campisi, Judith; van Deursen, Jan M.; Kirkland, James; Tchkonia, Tamara T.; Baker, Darren J.

    2017-01-01

    Non-human animal cancer models are provided herein for identifying and characterizing agents useful for therapy and prophylaxis of cancers, including agents useful for diminishing side effects related to cancer therapies and reducing metastatic disease.

  5. The Peierls model: Progress and limitations

    International Nuclear Information System (INIS)

    Schoeck, Gunther

    2005-01-01

    The basic features of the Peierls model are reviewed. The original model is based on the concept of balance of stresses in 1D and has serious limitations. These limitations can be overcome by a treatment as a variational problem on the energy level in 2D. The fundamental equations are given and applications to determine displacement profiles for dislocations and their dissociations are discussed. When the core misfit has a planar extension and the misfit energy in the glide plane - the γ-surface - is determined from ab initio methods, very reliable core configurations can be determined. For dislocations along close-packed lattice directions the misfit energy can be obtained by a summing procedure using Euler coordinates. When these dislocations are dissociated multiple equilibrium configurations with different splitting widths can exist, but the values of energy difference in between - the Peierls energy - are too small to be determined reliably, considering the simplifying assumptions of the model

  6. Stereotactic Body Radiation Therapy for Locally Progressive and Recurrent Pancreatic Cancer after Prior Radiation

    Directory of Open Access Journals (Sweden)

    Philip Sutera

    2018-03-01

    Full Text Available IntroductionPancreatic adenocarcinoma is an aggressive malignancy that has consistently demonstrated poor outcomes despite aggressive treatments. Despite multimodal treatment, local disease progression and local recurrence are common. Management of recurrent or progressive pancreatic carcinomas proves a further challenge. In patients previously treated with radiation therapy, stereotactic body radiation therapy (SBRT is a promising modality capable of delivering high dose to the tumor while limiting dose to critical structures. We aimed to determine the feasibility and tolerability of SBRT for recurrent or local pancreatic cancer in patients previously treated with external beam radiation therapy (EBRT.Materials and methodsPatients treated with EBRT who developed recurrent or local pancreatic ductal adenocarcinoma treated with SBRT reirradiation at our institution, from 2004 to 2014 were reviewed. Our primary endpoints included overall survival (OS, local control, regional control, and late grade 3+ radiation toxicity. Endpoints were analyzed with the Kaplan–Meier method. The association of these survival endpoints with risk factors was studied with univariate Cox proportional hazards models.ResultsWe identified 38 patients with recurrent/progressive pancreatic cancer treated with SBRT following prior radiation therapy. Prior radiation was delivered to a median dose of 50.4 Gy in 28 fractions. SBRT was delivered to a median dose of 24.5 Gy in 1–3 fractions. Surgical resection was performed on 55.3% of all patients. Within a median follow-up of 24.4 months (inter-quartile range, 14.9–32.7 months, the median OS from diagnosis for the entire cohort was 26.6 months (95% CI: 20.3–29.8 with 2-year OS of 53.0%. Median survival from SBRT was 9.7 months (95% CI, 5.5–13.8. The 2-year freedom from local progression and regional progression was 58 and 82%, respectively. For the entire cohort, 18.4 and 10.5% experienced late grade 2

  7. Castration Induced Neuroendocrine Mediated Progression of Prostate Cancer

    Science.gov (United States)

    2008-09-01

    independent prostate cancer. J Clin Oncol 22, 3323–3329. [115] Tiffany NM, Wersinger EM, Garzotto M, and Beer TM (2004). Imatinib mesylate and zoledronic...Inhibition of Akt pathways EC Nelson et al 335 Prostate Cancer and Prostatic Diseases addition, some Asian forms of fermented soy, such as miso, nattou and

  8. S4S8-RPA phosphorylation as an indicator of cancer progression in oral squamous cell carcinomas.

    Science.gov (United States)

    Rector, Jeff; Kapil, Sasha; Treude, Kelly J; Kumm, Phyllis; Glanzer, Jason G; Byrne, Brendan M; Liu, Shengqin; Smith, Lynette M; DiMaio, Dominick J; Giannini, Peter; Smith, Russell B; Oakley, Greg G

    2017-02-07

    Oral cancers are easily accessible compared to many other cancers. Nevertheless, oral cancer is often diagnosed late, resulting in a poor prognosis. Most oral cancers are squamous cell carcinomas that predominantly develop from cell hyperplasias and dysplasias. DNA damage is induced in these tissues directly or indirectly in response to oncogene-induced deregulation of cellular proliferation. Consequently, a DNA Damage response (DDR) and a cell cycle checkpoint is activated. As dysplasia transitions to cancer, proteins involved in DNA damage and checkpoint signaling are mutated or silenced decreasing cell death while increasing genomic instability and allowing continued tumor progression. Hyperphosphorylation of Replication Protein A (RPA), including phosphorylation of Ser4 and Ser8 of RPA2, is a well-known indicator of DNA damage and checkpoint activation. In this study, we utilize S4S8-RPA phosphorylation as a marker for cancer development and progression in oral squamous cell carcinomas (OSCC). S4S8-RPA phosphorylation was observed to be low in normal cells, high in dysplasias, moderate in early grade tumors, and low in late stage tumors, essentially supporting the model of the DDR as an early barrier to tumorigenesis in certain types of cancers. In contrast, overall RPA expression was not correlative to DDR activation or tumor progression. Utilizing S4S8-RPA phosphorylation to indicate competent DDR activation in the future may have clinical significance in OSCC treatment decisions, by predicting the susceptibility of cancer cells to first-line platinum-based therapies for locally advanced, metastatic and recurrent OSCC.

  9. Application of proteomics in the study of rodent models of cancer

    DEFF Research Database (Denmark)

    Terp, Mikkel Green; Ditzel, Henrik J

    2014-01-01

    The molecular and cellular mechanisms underlying the multistage processes of cancer progression and metastasis are complex and strictly depend on the interplay between tumor cells and surrounding tissues. Identification of protein aberrations in cancer pathophysiology requires a physiologically r......, and monitoring of cancer progression and treatment response. Central to such studies is the ability to ensure at an early stage that the identified proteins are of clinical relevance by examining relevant specimens from larger cohorts of cancer patients.......The molecular and cellular mechanisms underlying the multistage processes of cancer progression and metastasis are complex and strictly depend on the interplay between tumor cells and surrounding tissues. Identification of protein aberrations in cancer pathophysiology requires a physiologically...... relevant experimental model. The mouse offers such a model to identify protein changes associated with tumor initiation and progression, metastasis development, tumor/microenvironment interplay, and treatment responses. Furthermore, the mouse model offers the ability to collect samples at any stage...

  10. Research progress of hydroxychloroquine and autophagy inhibitors on cancer.

    Science.gov (United States)

    Shi, Ting-Ting; Yu, Xiao-Xu; Yan, Li-Jun; Xiao, Hong-Tao

    2017-02-01

    Hydroxychloroquine (HCQ), the analog of chloroquine, augments the effect of chemotherapies and radiotherapy on various tumors identified in the current clinical trials. Meanwhile, the toxicity of HCQ retinopathy raises concern worldwide. Thus, the potent autophagy inhibitors are urgently needed. A systematic review was related to 'hydroxychloroquine' or 'chloroquine' with 'clinical trials,' 'retinopathy' and 'new autophagy inhibitors.' This led to many cross-references involving HCQ, and these data have been incorporated into the following study. Many preclinical studies indicate that the combination of HCQ with chemotherapies or radiotherapies may enhance the effect of anticancer, providing base for launching cancer clinical trials involving HCQ. The new and more sensitive diagnostic techniques report a prevalence of HCQ retinopathy up to 7.5%. Lys05, SAR405, verteporfin, VATG-027, mefloquine and spautin-1 may be potent autophagy inhibitors. Additional mechanistic studies of HCQ in preclinical models are still required in order to answer these questions whether HCQ actually inhibits autophagy in non-selective tumors and whether the extent of inhibition would be sufficient to alter chemotherapy or radiotherapy sensitivity.

  11. Flood Progression Modelling and Impact Analysis

    DEFF Research Database (Denmark)

    Mioc, Darka; Anton, François; Nickerson, B.

    People living in the lower valley of the St. John River, New Brunswick, Canada, frequently experience flooding when the river overflows its banks during spring ice melt and rain. To better prepare the population of New Brunswick for extreme flooding, we developed a new flood prediction model...

  12. Pro-oncogene Pokemon promotes breast cancer progression by upregulating survivin expression

    OpenAIRE

    Zu, Xuyu; Ma, Jun; Liu, Hongxia; Liu, Feng; Tan, Chunyan; Yu, Lingling; Wang, Jue; Xie, Zhenhua; Cao, Deliang; Jiang, Yuyang

    2011-01-01

    Introduction Pokemon is an oncogenic transcription factor involved in cell growth, differentiation and oncogenesis, but little is known about its role in human breast cancer. In this study, we aimed to reveal the role of Pokemon in breast cancer progression and patient survival and to understand its underlying mechanisms. Methods Tissue microarray analysis of breast cancer tissues from patients with complete clinicopathological data and more than 20 years of follow-up were used to evaluate Po...

  13. Role of Diet Modulation and AMPK in Ovarian Cancer Progression and Outcome

    Science.gov (United States)

    2014-10-01

    and ovarian cancer. Recently some studies have suggested that low - fat dietary pattern may reduce the incidence of ovarian cancer. High energy and...energy metabolism using nature of diet (high vs low energy) focusing on AMPK as a central energy regulator in ovarian cancer progression using a...used in research (7.2% fat ; 61.6% carbohydrate ; 20.5% proteins). The nutritionally balanced HED consisted of 60% kilocalories from fat (35.7

  14. Cycling Towards Progress: Ribociclib, CDK 4/6 inhibitor for Breast Cancer.

    Science.gov (United States)

    Spring, Laura; Bardia, Aditya

    2018-04-23

    Ribociclib is an orally active, highly selective inhibitor of cyclin-dependent kinase (CDK) 4 and 6. It is the second CDK 4/6 inhibitor approved for hormone receptor-positive breast cancer. The addition of ribociclib to an aromatase inhibitor has resulted in marked improvements in progression-free survival for patients with metastatic breast cancer. Copyright ©2018, American Association for Cancer Research.

  15. Genomic analyses of breast cancer progression reveal distinct routes of metastasis emergence

    DEFF Research Database (Denmark)

    Krøigård, Anne Bruun; Larsen, Martin Jakob; Brasch-Andersen, Charlotte

    2017-01-01

    receptor (ER)-positive breast cancer. Our data provide support for both linear and parallel progression towards metastasis. We report for the first time evidence of metastasis-to-metastasis seeding in breast cancer. Our results point to three distinct routes of metastasis emergence. This may have profound...... clinical implications and provides substantial novel molecular insights into the timing and mutational evolution of breast cancer metastasis....

  16. Update of research on the role of EZH2 in cancer progression

    Directory of Open Access Journals (Sweden)

    Shen L

    2013-04-01

    Full Text Available Liang Shen,1 Jing Cui,2 Shumei Liang,3 Yingxin Pang,1 Peishu Liu11Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 2Department of Oral and Maxillofacial Surgery, Jinan Stomatologic Hospital, 3Department of Obstetrics and Gynecology, Provincial Hospital Affiliated to Shandong University, Jinan, People’s Republic of ChinaAbstract: Accumulating evidence shows that enhancer of zeste homolog 2 (E2H2 is upregulated in a broad range of cancer types, such as breast cancer, prostate cancer, ovarian cancer, and colon cancer. Therefore, inhibiting EZH2 expression may be a promising strategy for anticancer therapy. This review focuses on the current understanding of the mechanisms underlying EZH2 regulation that are involved in cancer progression. Also, it introduces two EZH2 inhibitors that target EZH2 and could be potentially applied in the treatment of cancer in the future.Keywords: EZH2, PRC2, cancer

  17. Antioxidant Activity during Tumor Progression: A Necessity for the Survival of Cancer Cells?

    Science.gov (United States)

    Hawk, Mark A; McCallister, Chelsea; Schafer, Zachary T

    2016-10-13

    Antioxidant defenses encompass a variety of distinct compounds and enzymes that are linked together through their capacity to neutralize and scavenge reactive oxygen species (ROS). While the relationship between ROS and tumorigenesis is clearly complex and context dependent, a number of recent studies have suggested that neutralizing ROS can facilitate tumor progression and metastasis in multiple cancer types through distinct mechanisms. These studies therefore infer that antioxidant activity may be necessary to support the viability and/or the invasive capacity of cancer cells during tumor progression and metastasis. Here, we discuss some of the accumulating evidence suggesting a role for antioxidant activity in facilitating tumor progression.

  18. Antioxidant Activity during Tumor Progression: A Necessity for the Survival of Cancer Cells?

    Directory of Open Access Journals (Sweden)

    Mark A. Hawk

    2016-10-01

    Full Text Available Antioxidant defenses encompass a variety of distinct compounds and enzymes that are linked together through their capacity to neutralize and scavenge reactive oxygen species (ROS. While the relationship between ROS and tumorigenesis is clearly complex and context dependent, a number of recent studies have suggested that neutralizing ROS can facilitate tumor progression and metastasis in multiple cancer types through distinct mechanisms. These studies therefore infer that antioxidant activity may be necessary to support the viability and/or the invasive capacity of cancer cells during tumor progression and metastasis. Here, we discuss some of the accumulating evidence suggesting a role for antioxidant activity in facilitating tumor progression.

  19. The Multifaceted Roles of STAT3 Signaling in the Progression of Prostate Cancer

    International Nuclear Information System (INIS)

    Bishop, Jennifer L.; Thaper, Daksh; Zoubeidi, Amina

    2014-01-01

    The signal transducer and activator of transcription (STAT)3 governs essential functions of epithelial and hematopoietic cells that are often dysregulated in cancer. While the role for STAT3 in promoting the progression of many solid and hematopoietic malignancies is well established, this review will focus on the importance of STAT3 in prostate cancer progression to the incurable metastatic castration-resistant prostate cancer (mCRPC). Indeed, STAT3 integrates different signaling pathways involved in the reactivation of androgen receptor pathway, stem like cells and the epithelial to mesenchymal transition that drive progression to mCRPC. As equally important, STAT3 regulates interactions between tumor cells and the microenvironment as well as immune cell activation. This makes it a major factor in facilitating prostate cancer escape from detection of the immune response, promoting an immunosuppressive environment that allows growth and metastasis. Based on the multifaceted nature of STAT3 signaling in the progression to mCRPC, the promise of STAT3 as a therapeutic target to prevent prostate cancer progression and the variety of STAT3 inhibitors used in cancer therapies is discussed

  20. Quantitative assessment of smoking-induced emphysema progression in longitudinal CT screening for lung cancer

    Science.gov (United States)

    Suzuki, H.; Mizuguchi, R.; Matsuhiro, M.; Kawata, Y.; Niki, N.; Nakano, Y.; Ohmatsu, H.; Kusumoto, M.; Tsuchida, T.; Eguchi, K.; Kaneko, M.; Moriyama, N.

    2015-03-01

    Computed tomography has been used for assessing structural abnormalities associated with emphysema. It is important to develop a robust CT based imaging biomarker that would allow quantification of emphysema progression in early stage. This paper presents effect of smoking on emphysema progression using annual changes of low attenuation volume (LAV) by each lung lobe acquired from low-dose CT images in longitudinal screening for lung cancer. The percentage of LAV (LAV%) was measured after applying CT value threshold method and small noise reduction. Progression of emphysema was assessed by statistical analysis of the annual changes represented by linear regression of LAV%. This method was applied to 215 participants in lung cancer CT screening for five years (18 nonsmokers, 85 past smokers, and 112 current smokers). The results showed that LAV% is useful to classify current smokers with rapid progression of emphysema (0.2%/year, pemphysema in CT screening for lung cancer.

  1. Meta-analysis of gene expression signatures defining the epithelial to mesenchymal transition during cancer progression.

    Directory of Open Access Journals (Sweden)

    Christian J Gröger

    Full Text Available The epithelial to mesenchymal transition (EMT represents a crucial event during cancer progression and dissemination. EMT is the conversion of carcinoma cells from an epithelial to a mesenchymal phenotype that associates with a higher cell motility as well as enhanced chemoresistance and cancer stemness. Notably, EMT has been increasingly recognized as an early event of metastasis. Numerous gene expression studies (GES have been conducted to obtain transcriptome signatures and marker genes to understand the regulatory mechanisms underlying EMT. Yet, no meta-analysis considering the multitude of GES of EMT has been performed to comprehensively elaborate the core genes in this process. Here we report the meta-analysis of 18 independent and published GES of EMT which focused on different cell types and treatment modalities. Computational analysis revealed clustering of GES according to the type of treatment rather than to cell type. GES of EMT induced via transforming growth factor-β and tumor necrosis factor-α treatment yielded uniformly defined clusters while GES of models with alternative EMT induction clustered in a more complex fashion. In addition, we identified those up- and downregulated genes which were shared between the multitude of GES. This core gene list includes well known EMT markers as well as novel genes so far not described in this process. Furthermore, several genes of the EMT-core gene list significantly correlated with impaired pathological complete response in breast cancer patients. In conclusion, this meta-analysis provides a comprehensive survey of available EMT expression signatures and shows fundamental insights into the mechanisms that are governing carcinoma progression.

  2. The regulation of skeletal muscle protein turnover during the progression of cancer cachexia in the Apc(Min/+ mouse.

    Directory of Open Access Journals (Sweden)

    James P White

    Full Text Available Muscle wasting that occurs with cancer cachexia is caused by an imbalance in the rates of muscle protein synthesis and degradation. The Apc(Min/+ mouse is a model of colorectal cancer that develops cachexia that is dependent on circulating IL-6. However, the IL-6 regulation of muscle protein turnover during the initiation and progression of cachexia in the Apc(Min/+ mouse is not known. Cachexia progression was studied in Apc(Min/+ mice that were either weight stable (WS or had initial (≤5%, intermediate (6-19%, or extreme (≥20% body weight loss. The initiation of cachexia reduced %MPS 19% and a further ∼50% with additional weight loss. Muscle IGF-1 mRNA expression and mTOR targets were suppressed with the progression of body weight loss, while muscle AMPK phosphorylation (Thr 172, AMPK activity, and raptor phosphorylation (Ser 792 were not increased with the initiation of weight loss, but were induced as cachexia progressed. ATP dependent protein degradation increased during the initiation and progression of cachexia. However, ATP independent protein degradation was not increased until cachexia had progressed beyond the initial phase. IL-6 receptor antibody administration prevented body weight loss and suppressed muscle protein degradation, without any effect on muscle %MPS or IGF-1 associated signaling. In summary, the %MPS reduction during the initiation of cachexia is associated with IGF-1/mTOR signaling repression, while muscle AMPK activation and activation of ATP independent protein degradation occur later in the progression of cachexia. IL-6 receptor antibody treatment blocked cachexia progression through the suppression of muscle protein degradation, while not rescuing the suppression of muscle protein synthesis. Attenuation of IL-6 signaling was effective in blocking the progression of cachexia, but not sufficient to reverse the process.

  3. The Regulation of Skeletal Muscle Protein Turnover during the Progression of Cancer Cachexia in the ApcMin/+ Mouse

    Science.gov (United States)

    White, James P.; Baynes, John W.; Welle, Stephen L.; Kostek, Matthew C.; Matesic, Lydia E.; Sato, Shuichi; Carson, James A.

    2011-01-01

    Muscle wasting that occurs with cancer cachexia is caused by an imbalance in the rates of muscle protein synthesis and degradation. The ApcMin/+ mouse is a model of colorectal cancer that develops cachexia that is dependent on circulating IL-6. However, the IL-6 regulation of muscle protein turnover during the initiation and progression of cachexia in the ApcMin/+ mouse is not known. Cachexia progression was studied in ApcMin/+ mice that were either weight stable (WS) or had initial (≤5%), intermediate (6–19%), or extreme (≥20%) body weight loss. The initiation of cachexia reduced %MPS 19% and a further ∼50% with additional weight loss. Muscle IGF-1 mRNA expression and mTOR targets were suppressed with the progression of body weight loss, while muscle AMPK phosphorylation (Thr 172), AMPK activity, and raptor phosphorylation (Ser 792) were not increased with the initiation of weight loss, but were induced as cachexia progressed. ATP dependent protein degradation increased during the initiation and progression of cachexia. However, ATP independent protein degradation was not increased until cachexia had progressed beyond the initial phase. IL-6 receptor antibody administration prevented body weight loss and suppressed muscle protein degradation, without any effect on muscle %MPS or IGF-1 associated signaling. In summary, the %MPS reduction during the initiation of cachexia is associated with IGF-1/mTOR signaling repression, while muscle AMPK activation and activation of ATP independent protein degradation occur later in the progression of cachexia. IL-6 receptor antibody treatment blocked cachexia progression through the suppression of muscle protein degradation, while not rescuing the suppression of muscle protein synthesis. Attenuation of IL-6 signaling was effective in blocking the progression of cachexia, but not sufficient to reverse the process. PMID:21949739

  4. Complex role for the immune system in initiation and progression of pancreatic cancer.

    Science.gov (United States)

    Inman, Kristin S; Francis, Amanda A; Murray, Nicole R

    2014-08-28

    The immune system plays a complex role in the development and progression of pancreatic cancer. Inflammation can promote the formation of premalignant lesions and accelerate pancreatic cancer development. Conversely, pancreatic cancer is characterized by an immunosuppressive environment, which is thought to promote tumor progression and invasion. Here we review the current literature describing the role of the immune response in the progressive development of pancreatic cancer, with a focus on the mechanisms that drive recruitment and activation of immune cells at the tumor site, and our current understanding of the function of the immune cell types at the tumor. Recent clinical and preclinical data are reviewed, detailing the involvement of the immune response in pancreatitis and pancreatic cancer, including the role of specific cytokines and implications for disease outcome. Acute pancreatitis is characterized by a predominantly innate immune response, while chronic pancreatitis elicits an immune response that involves both innate and adaptive immune cells, and often results in profound systemic immune-suppression. Pancreatic adenocarcinoma is characterized by marked immune dysfunction driven by immunosuppressive cell types, tumor-promoting immune cells, and defective or absent inflammatory cells. Recent studies reveal that immune cells interact with cancer stem cells and tumor stromal cells, and these interactions have an impact on development and progression of pancreatic ductal adenocarcinoma (PDAC). Finally, current PDAC therapies are reviewed and the potential for harnessing the actions of the immune response to assist in targeting pancreatic cancer using immunotherapy is discussed.

  5. Tight junctions: a barrier to the initiation and progression of breast cancer?

    LENUS (Irish Health Repository)

    Brennan, Kieran

    2010-01-01

    Breast cancer is a complex and heterogeneous disease that arises from epithelial cells lining the breast ducts and lobules. Correct adhesion between adjacent epithelial cells is important in determining the normal structure and function of epithelial tissues, and there is accumulating evidence that dysregulated cell-cell adhesion is associated with many cancers. This review will focus on one cell-cell adhesion complex, the tight junction (TJ), and summarize recent evidence that TJs may participate in breast cancer development or progression. We will first outline the protein composition of TJs and discuss the functions of the TJ complex. Secondly we will examine how alterations in these functions might facilitate breast cancer initiation or progression; by focussing on the regulatory influence of TJs on cell polarity, cell fate and cell migration. Finally we will outline how pharmacological targeting of TJ proteins may be useful in limiting breast cancer progression. Overall we hope to illustrate that the relationship between TJ alterations and breast cancer is a complex one; but that this area offers promise in uncovering fundamental mechanisms linked to breast cancer progression.

  6. The dual role of asporin in breast cancer progression

    Czech Academy of Sciences Publication Activity Database

    Šimková, A.; Kharaishvili, G.; Kořínková, G.; Oždian, T.; Suchankova-Kleplova, T.; Soukup, T.; Křupka, M.; Galandáková, A.; Džubák, P.; Janikova, M.; Navrátil, J.; Kahounová, Z.; Souček, Karel; Bouchal, J.

    2016-01-01

    Roč. 7, č. 32 (2016), s. 52045-52060 ISSN 1949-2553 Institutional support: RVO:68081707 Keywords : epithelial-mesenchymal transition * repeat protein family * prostate- cancer Subject RIV: BO - Biophysics Impact factor: 5.168, year: 2016

  7. Analysis of breast cancer progression using principal component ...

    Indian Academy of Sciences (India)

    PRAKASH KUMAR

    technology being aggressively pursued by researchers, ... public microarray breast cancer dataset which has expression levels of genes in normal samples as well as in three ..... suggests that treatment decisions may benefit by taking account ...

  8. Castration Induced Neuroendocrine Mediated Progression of Prostate Cancer

    National Research Council Canada - National Science Library

    Evans, Christopher P

    2006-01-01

    ... enhancer region, which is primarily stimulated by androgens. We have shown that gastrin-releasing peptide prostate cancer cells have their growth in soft agar inhibited by the specific Src inhibitor AZD0530...

  9. Fibroblast Growth Factor Receptor-4 and Prostate Cancer Progression

    Science.gov (United States)

    2007-10-01

    difference between the two FGFR-4 variants? Achondroplasia ( dwarfism ) is caused by a similar mutation in FGFR-3 (Gly380 to Arg380). Increased FGFR-3...US men, with approximately 230,000 new cases and 29,000 deaths in 2004 [1]. Prostate cancer deaths are a result of metastatic disease and treatment of...such metastatic disease is one of the major therapeutic challenges in prostate cancer treatment . Many studies have been focused on identification of

  10. Exosomes in Tumor Microenvironment Influence Cancer Progression and Metastasis

    OpenAIRE

    Kahlert, Christoph; Kalluri, Raghu

    2013-01-01

    Exosomes are small membrane vesicles of endocytic origin with a size of 50 – 100 nm. They can contain microRNAs, mRNAs, DNA fragments and proteins, which are shuttled from a donar cell to recipient cells. Many different cell types including immune cells, mesenchymal cells and cancer cells release exosomes. There is emerging evidence that cancer-derived exosomes contribute to the recruitment and reprogramming of constituents associated with tumor environment. Here, we discuss different mechani...

  11. Prognosis of muscle-invasive bladder cancer: difference between primary and progressive tumours and implications for therapy.

    NARCIS (Netherlands)

    Schrier, B.P.; Hollander, M.P.; Rhijn, B.W. van; Kiemeney, L.A.L.M.; Witjes, J.A.

    2004-01-01

    OBJECTIVE: To evaluate the difference in prognosis between progressive and primary muscle-invasive bladder cancer. MATERIALS AND METHODS: From 1986 to 2000, 74 patients with progressive muscle-invasive bladder cancer were identified. Eighty-nine patients with primary muscle-invasive bladder cancer

  12. Expression of the Y-Encoded TSPY is Associated with Progression of Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Tatsuo Kido

    2010-09-01

    Full Text Available TSPY is a Y-encoded gene that is expressed in normal testicular germ cells and various cancer types including germ cell tumor, melanoma, hepatocellular carcinoma, and prostate cancer. Currently, the correlation between TSPY expression and oncogenic development has not been established, particularly in somatic cancers. To establish such correlation, we analyzed the expression of TSPY, in reference to its interactive oncoprotein, EEF1A, tumor biomarker, AMACR, and normal basal cell biomarker, p63, in 41 cases of clinical prostate cancers (CPCa, 17 cases of latent prostate cancers (LPCa, and 19 cases of non-cancerous prostate (control by immunohistochemistry. Our results show that TSPY was detected more frequently (78% in the clinical prostate cancer specimens than those of latent prostate cancer (47% and control (50%. In the latent cancer group, the levels of TSPY expression could be correlated with increasing Gleason grades. TSPY expression was detected in seven out of nine high-grade latent cancer samples (Gleason 7 and more. The expression of the TSPY binding partner EEF1A was detectable in all prostate specimens, but the levels were higher in cancer cells in clinical and latent prostate cancer specimens than normal prostatic cells. These observations suggest that expressions of TSPY and its binding partner EEF1A are associated with the development and progression of prostate cancer.

  13. The Progress of T Cell Immunity Related to Prognosis in Gastric Cancer.

    Science.gov (United States)

    Wei, Ming; Shen, Duo; Mulmi Shrestha, Sachin; Liu, Juan; Zhang, Junyi; Yin, Ying

    2018-01-01

    Gastric cancer is the fifth most common malignancy all over the world, and the factors that can affect progress and prognosis of the gastric cancer patients are various, such as TNM stages, invasive depth, and lymph node metastasis ratio. T cell immunity is important component of human immunity system and immunity responding to tumor and dysfunction or imbalance of T cell immunity will lead to serious outcomes for body. T cell immunity includes many different types of cells, CD4+ T cell, CD8+ T cell, memory cell, and so on, and each of them has special function on antitumor response or tumor immune escape which is revealed in lung cancer, colorectal cancer, breast cancer, ovarian cancer, and so on. But its correlation with gastric cancer is not clear. Our review was preformed to explore the relationship between the progress and prognosis of gastric cancer (GC) and T cell immunity. According to recent researches, T cell immunity may have an important role in the progress and prognosis of GCs, but its function is affected by location, category, related molecule, and interaction between the cells, and some effects still are controversial. More researches are needed to clarify this correlation.

  14. The WSB1 gene is involved in pancreatic cancer progression.

    Directory of Open Access Journals (Sweden)

    Cendrine Archange

    Full Text Available BACKGROUND: Pancreatic cancer cells generate metastases because they can survive the stress imposed by the new environment of the host tissue. To mimic this process, pancreatic cancer cells which are not stressed in standard culture conditions are injected into nude mice. Because they develop xenografts, they should have developed adequate stress response. Characterizing that response might provide new strategies to interfere with pancreatic cancer metastasis. METHODOLOGY/PRINCIPAL FINDINGS: In the human pancreatic cancer cell lines Panc-1, Mia-PaCa2, Capan-1, Capan-2 and BxPC3, we used Affymetrix DNA microarrays to compare the expressions of 22.000 genes in vitro and in the corresponding xenografts. We identified 228 genes overexpressed in xenografts and characterized the implication of one of them, WSB1, in the control of apoptosis and cell proliferation. WSB1 generates 3 alternatively spliced transcripts encoding distinct protein isoforms. In xenografts and in human pancreatic tumors, global expression of WSB1 mRNA is modestly increased whereas isoform 3 is strongly overexpressed and isoforms 1 and 2 are down-regulated. Treating Mia-PaCa2 cells with stress-inducing agents induced similar changes. Whereas retrovirus-forced expression of WSB1 isoforms 1 and 2 promoted cell growth and sensitized the cells to gemcitabine- and doxorubicin-induced apoptosis, WSB1 isoform 3 expression reduced cell proliferation and enhanced resistance to apoptosis, showing that stress-induced modulation of WSB1 alternative splicing increases resistance to apoptosis of pancreatic cancer cells. CONCLUSIONS/SIGNIFICANCE: Data on WSB1 regulation support the hypothesis that activation of stress-response mechanisms helps cancer cells establishing metastases and suggest relevance to cancer development of other genes overexpressed in xenografts.

  15. [Fear of progression in parents of children with cancer: adaptation of the Fear of Progression Questionnaire and correlates].

    Science.gov (United States)

    Schepper, F; Abel, K; Herschbach, P; Christiansen, H; Mehnert, A; Martini, J

    2015-05-01

    Fear of Progression (FoP), the fear of further disease progression, is one of the most common psychological strains of chronically ill patients and can also be found in healthy partners of cancer patients. Parents of children with cancer are also at risk of developing distinct fears that may persist after medical treatment. This study aimed to assess FoP in parents of children with cancer and to investigate relationships between FoP in parents of children with cancer and disease- and treatment-related issues, the child's current medical condition and parents' quality of life. In this study 76 parents (51 mothers, 25 fathers) whose children were in inpatient treatment or follow-up care were surveyed. The short form of the FoP Questionnaire was adapted by rephrasing the items for the parental perspective (FoP-Q-SF/PR). The FoP-Q-SF/PR is a short questionnaire with adequate psychometric properties (e. g. Cronbach's α=0.90) and satisfying results in terms of construct validity. Significant correlations with FoP are found for the child's current medical condition (r=0.35), time since diagnosis (r=- 0.30), parents' capacity to cope with disease-related fears (r=- 0.45) and parents' quality of life (r=- 0.55). A cut-off value of 46 points is recommended. The FoP-Q-SF/PR offers a feasible and sensitive battery to assess disease-related fears. For clinicians, evaluation of individual results can provide insight into specific problem areas for parents of children with cancer. The questionnaire is thus well suited for use in psychosocial care of families within the field of paediatric oncology. © Georg Thieme Verlag KG Stuttgart · New York.

  16. Cancer Development, Progression, and Therapy: An Epigenetic Overview

    Science.gov (United States)

    Sarkar, Sibaji; Horn, Garrick; Moulton, Kimberly; Oza, Anuja; Byler, Shannon; Kokolus, Shannon; Longacre, McKenna

    2013-01-01

    Carcinogenesis involves uncontrolled cell growth, which follows the activation of oncogenes and/or the deactivation of tumor suppression genes. Metastasis requires down-regulation of cell adhesion receptors necessary for tissue-specific, cell–cell attachment, as well as up-regulation of receptors that enhance cell motility. Epigenetic changes, including histone modifications, DNA methylation, and DNA hydroxymethylation, can modify these characteristics. Targets for these epigenetic changes include signaling pathways that regulate apoptosis and autophagy, as well as microRNA. We propose that predisposed normal cells convert to cancer progenitor cells that, after growing, undergo an epithelial-mesenchymal transition. This process, which is partially under epigenetic control, can create a metastatic form of both progenitor and full-fledged cancer cells, after which metastasis to a distant location may occur. Identification of epigenetic regulatory mechanisms has provided potential therapeutic avenues. In particular, epigenetic drugs appear to potentiate the action of traditional therapeutics, often by demethylating and re-expressing tumor suppressor genes to inhibit tumorigenesis. Epigenetic drugs may inhibit both the formation and growth of cancer progenitor cells, thus reducing the recurrence of cancer. Adopting epigenetic alteration as a new hallmark of cancer is a logical and necessary step that will further encourage the development of novel epigenetic biomarkers and therapeutics. PMID:24152442

  17. Cancer Development, Progression, and Therapy: An Epigenetic Overview

    Directory of Open Access Journals (Sweden)

    McKenna Longacre

    2013-10-01

    Full Text Available Carcinogenesis involves uncontrolled cell growth, which follows the activation of oncogenes and/or the deactivation of tumor suppression genes. Metastasis requires down-regulation of cell adhesion receptors necessary for tissue-specific, cell–cell attachment, as well as up-regulation of receptors that enhance cell motility. Epigenetic changes, including histone modifications, DNA methylation, and DNA hydroxymethylation, can modify these characteristics. Targets for these epigenetic changes include signaling pathways that regulate apoptosis and autophagy, as well as microRNA. We propose that predisposed normal cells convert to cancer progenitor cells that, after growing, undergo an epithelial-mesenchymal transition. This process, which is partially under epigenetic control, can create a metastatic form of both progenitor and full-fledged cancer cells, after which metastasis to a distant location may occur. Identification of epigenetic regulatory mechanisms has provided potential therapeutic avenues. In particular, epigenetic drugs appear to potentiate the action of traditional therapeutics, often by demethylating and re-expressing tumor suppressor genes to inhibit tumorigenesis. Epigenetic drugs may inhibit both the formation and growth of cancer progenitor cells, thus reducing the recurrence of cancer. Adopting epigenetic alteration as a new hallmark of cancer is a logical and necessary step that will further encourage the development of novel epigenetic biomarkers and therapeutics.

  18. Autophagy regulated by miRNAs in colorectal cancer progression and resistance

    Directory of Open Access Journals (Sweden)

    Andrew Fesler

    2017-01-01

    Full Text Available The catabolic process of autophagy is an essential cellular function that allows for the breakdown and recycling of cellular macromolecules. In recent years, the impact of epigenetic regulation of autophagy by noncoding miRNAs has been recognized in human cancer. In colorectal cancer, autophagy plays critical roles in cancer progression as well as resistance to chemotherapy, and recent evidence demonstrates that miRNAs are directly involved in mediating these functions. In this review, we focus on the recent advancements in the field of miRNA regulation of autophagy in colorectal cancer.

  19. A joint frailty-copula model between tumour progression and death for meta-analysis.

    Science.gov (United States)

    Emura, Takeshi; Nakatochi, Masahiro; Murotani, Kenta; Rondeau, Virginie

    2017-12-01

    Dependent censoring often arises in biomedical studies when time to tumour progression (e.g., relapse of cancer) is censored by an informative terminal event (e.g., death). For meta-analysis combining existing studies, a joint survival model between tumour progression and death has been considered under semicompeting risks, which induces dependence through the study-specific frailty. Our paper here utilizes copulas to generalize the joint frailty model by introducing additional source of dependence arising from intra-subject association between tumour progression and death. The practical value of the new model is particularly evident for meta-analyses in which only a few covariates are consistently measured across studies and hence there exist residual dependence. The covariate effects are formulated through the Cox proportional hazards model, and the baseline hazards are nonparametrically modeled on a basis of splines. The estimator is then obtained by maximizing a penalized log-likelihood function. We also show that the present methodologies are easily modified for the competing risks or recurrent event data, and are generalized to accommodate left-truncation. Simulations are performed to examine the performance of the proposed estimator. The method is applied to a meta-analysis for assessing a recently suggested biomarker CXCL12 for survival in ovarian cancer patients. We implement our proposed methods in R joint.Cox package.

  20. Transforming Growth Factor-Beta and Oxidative Stress Interplay: Implications in Tumorigenesis and Cancer Progression

    Science.gov (United States)

    Krstić, Jelena; Trivanović, Drenka; Mojsilović, Slavko; Santibanez, Juan F.

    2015-01-01

    Transforming growth factor-beta (TGF-β) and oxidative stress/Reactive Oxygen Species (ROS) both have pivotal roles in health and disease. In this review we are analyzing the interplay between TGF-β and ROS in tumorigenesis and cancer progression. They have contradictory roles in cancer progression since both can have antitumor effects, through the induction of cell death, senescence and cell cycle arrest, and protumor effects by contributing to cancer cell spreading, proliferation, survival, and metastasis. TGF-β can control ROS production directly or by downregulating antioxidative systems. Meanwhile, ROS can influence TGF-β signaling and increase its expression as well as its activation from the latent complex. This way, both are building a strong interplay which can be taken as an advantage by cancer cells in order to increment their malignancy. In addition, both TGF-β and ROS are able to induce cell senescence, which in one way protects damaged cells from neoplastic transformation but also may collaborate in cancer progression. The mutual collaboration of TGF-β and ROS in tumorigenesis is highly complex, and, due to their differential roles in tumor progression, careful consideration should be taken when thinking of combinatorial targeting in cancer therapies. PMID:26078812

  1. Local Progression among Men with Conservatively Treated Localized Prostate Cancer: Results from the Transatlantic Prostate Group

    Science.gov (United States)

    Eastham, James A.; Kattan, Michael W.; Fearn, Paul; Fisher, Gabrielle; Berney, Daniel M.; Oliver, Tim; Foster, Christopher S.; Møller, Henrik; Reuter, Victor; Cuzick, Jack; Scardino, Peter

    2009-01-01

    Objectives Men with clinically detected localized prostate cancer treated without curative intent are at risk of complications from local tumor growth. We investigated rates of local progression and need for local therapy among such men. Methods Men diagnosed with prostate cancer during 1990–1996 were identified from cancer registries throughout the United Kingdom. Inclusion criteria were age ≤76 yr at diagnosis, PSA level ≤100 ng/ml, and, within 6 mo after diagnosis, no radiation therapy, radical prostatectomy, evidence of metastatic disease, or death. Local progression was defined as increase in clinical stage from T1/2 to T3/T4 disease, T3 to T4 disease, and/or need for transurethral resection of the prostate (TURP) to relieve symptoms >6 mo after cancer diagnosis. Results The study included 2333 men with median follow-up of 85 mo (range: 6–174). Diagnosis was by TURP in 1255 men (54%), needle biopsy in 1039 (45%), and unspecified in 39 (2%). Only 29% were treated with hormonal therapy within 6 mo of diagnosis. Local progression occurred in 335 men, including 212 undergoing TURP. Factors most predictive of local progression on multivariable analysis were PSA at diagnosis and Gleason score of the diagnostic tissue (detrimental), and early hormonal therapy (protective). We present a nomogram that predicts the likelihood of local progression within 120 mo after diagnosis. Conclusions Men with clinically detected localized prostate cancer managed without curative intent have an approximately 15% risk for local progression within 10 yr of diagnosis. Among those with progression, the need for treatment is common, even among men diagnosed by TURP. When counseling men who are candidates for management without curative intent, the likelihood of symptoms from local progression must be considered. PMID:17544572

  2. Induction of erythropoiesis by hypoxia-inducible factor prolyl hydroxylase inhibitors without promotion of tumor initiation, progression, or metastasis in a VEGF-sensitive model of spontaneous breast cancer

    Science.gov (United States)

    Seeley, Todd W; Sternlicht, Mark D; Klaus, Stephen J; Neff, Thomas B; Liu, David Y

    2017-01-01

    The effects of pharmacological hypoxia-inducible factor (HIF) stabilization were investigated in the MMTV-Neundl-YD5 (NeuYD) mouse model of breast cancer. This study first confirmed the sensitivity of this model to increased vascular endothelial growth factor (VEGF), using bigenic NeuYD;MMTV-VEGF-25 mice. Tumor initiation was dramatically accelerated in bigenic animals. Bigenic tumors were also more aggressive, with shortened doubling times and increased lung metastasis as compared to NeuYD controls. In separate studies, NeuYD mice were treated three times weekly from 7 weeks of age until study end with two different HIF prolyl hydroxylase inhibitors (HIF-PHIs), FG-4497 or roxadustat (FG-4592). In NeuYD mice, HIF-PHI treatments elevated erythropoiesis markers, but no differences were detected in tumor onset or the phenotypes of established tumors. PMID:28331872

  3. Host microenvironment in breast cancer development: Inflammatory cells, cytokines and chemokines in breast cancer progression: reciprocal tumor–microenvironment interactions

    International Nuclear Information System (INIS)

    Ben-Baruch, A

    2003-01-01

    A comprehensive overview of breast cancer development and progression suggests that the process is influenced by intrinsic properties of the tumor cells, as well as by microenvironmental factors. Indeed, in breast carcinoma, an intensive interplay exists between the tumor cells on one hand, and inflammatory cells/cytokines/chemokines on the other. The purpose of the present review is to outline the reciprocal interactions that exist between these different elements, and to shed light on their potential involvement in breast cancer development and progression

  4. Enhanced Heme Function and Mitochondrial Respiration Promote the Progression of Lung Cancer Cells

    Science.gov (United States)

    Alam, Md Maksudul; Shah, Ajit; Cao, Thai M.; Sullivan, Laura A.; Brekken, Rolf; Zhang, Li

    2013-01-01

    Lung cancer is the leading cause of cancer-related mortality, and about 85% of the cases are non-small-cell lung cancer (NSCLC). Importantly, recent advance in cancer research suggests that altering cancer cell bioenergetics can provide an effective way to target such advanced cancer cells that have acquired mutations in multiple cellular regulators. This study aims to identify bioenergetic alterations in lung cancer cells by directly measuring and comparing key metabolic activities in a pair of cell lines representing normal and NSCLC cells developed from the same patient. We found that the rates of oxygen consumption and heme biosynthesis were intensified in NSCLC cells. Additionally, the NSCLC cells exhibited substantially increased levels in an array of proteins promoting heme synthesis, uptake and function. These proteins include the rate-limiting heme biosynthetic enzyme ALAS, transporter proteins HRG1 and HCP1 that are involved in heme uptake, and various types of oxygen-utilizing hemoproteins such as cytoglobin and cytochromes. Several types of human tumor xenografts also displayed increased levels of such proteins. Furthermore, we found that lowering heme biosynthesis and uptake, like lowering mitochondrial respiration, effectively reduced oxygen consumption, cancer cell proliferation, migration and colony formation. In contrast, lowering heme degradation does not have an effect on lung cancer cells. These results show that increased heme flux and function are a key feature of NSCLC cells. Further, increased generation and supply of heme and oxygen-utilizing hemoproteins in cancer cells will lead to intensified oxygen consumption and cellular energy production by mitochondrial respiration, which would fuel cancer cell proliferation and progression. The results show that inhibiting heme and respiratory function can effectively arrest the progression of lung cancer cells. Hence, understanding heme function can positively impact on research in lung cancer

  5. Quantitative PET Imaging with Novel HER3 Targeted Peptides Selected by Phage Display to Predict Androgen Independent Prostate Cancer Progression

    Science.gov (United States)

    2017-08-01

    Independent Prostate Cancer Progression PRINCIPAL INVESTIGATOR: Benjamin Larimer, PhD CONTRACTING ORGANIZATION: Massachusetts General Hospital Boston...3. DATES COVERED 1 Aug 2016 – 31 July 2017 4. TITLE AND SUBTITLE Cancer Progression 5a. CONTRACT NUMBER Quantitative PET Imaging with Novel HER3...Targeted Peptides Selected by Phage Display to Predict Androgen-Independent Prostate Cancer Progression 5b. GRANT NUMBER W81XWH-16-1-0447 5c

  6. Exogenous fatty acid binding protein 4 promotes human prostate cancer cell progression.

    Science.gov (United States)

    Uehara, Hisanori; Takahashi, Tetsuyuki; Oha, Mina; Ogawa, Hirohisa; Izumi, Keisuke

    2014-12-01

    Epidemiologic studies have found that obesity is associated with malignant grade and mortality in prostate cancer. Several adipokines have been implicated as putative mediating factors between obesity and prostate cancer. Fatty acid binding protein 4 (FABP4), a member of the cytoplasmic fatty acid binding protein multigene family, was recently identified as a novel adipokine. Although FABP4 is released from adipocytes and mean circulating concentrations of FABP4 are linked with obesity, effects of exogenous FABP4 on prostate cancer progression are unclear. In this study, we examined the effects of exogenous FABP4 on human prostate cancer cell progression. FABP4 treatment promoted serum-induced prostate cancer cell invasion in vitro. Furthermore, oleic acid promoted prostate cancer cell invasion only if FABP4 was present in the medium. These promoting effects were reduced by FABP4 inhibitor, which inhibits FABP4 binding to fatty acids. Immunostaining for FABP4 showed that exogenous FABP4 was taken up into DU145 cells in three-dimensional culture. In mice, treatment with FABP4 inhibitor reduced the subcutaneous growth and lung metastasis of prostate cancer cells. Immunohistochemical analysis showed that the number of apoptotic cells, positive for cleaved caspase-3 and cleaved PARP, was increased in subcutaneous tumors of FABP4 inhibitor-treated mice, as compared with control mice. These results suggest that exogenous FABP4 might promote human prostate cancer cell progression by binding with fatty acids. Additionally, exogenous FABP4 activated the PI3K/Akt pathway, independently of binding to fatty acids. Thus, FABP4 might be a key molecule to understand the mechanisms underlying the obesity-prostate cancer progression link. © 2014 UICC.

  7. Genetic alterations in fatty acid transport and metabolism genes are associated with metastatic progression and poor prognosis of human cancers.

    Science.gov (United States)

    Nath, Aritro; Chan, Christina

    2016-01-04

    Reprogramming of cellular metabolism is a hallmark feature of cancer cells. While a distinct set of processes drive metastasis when compared to tumorigenesis, it is yet unclear if genetic alterations in metabolic pathways are associated with metastatic progression of human cancers. Here, we analyzed the mutation, copy number variation and gene expression patterns of a literature-derived model of metabolic genes associated with glycolysis (Warburg effect), fatty acid metabolism (lipogenesis, oxidation, lipolysis, esterification) and fatty acid uptake in >9000 primary or metastatic tumor samples from the multi-cancer TCGA datasets. Our association analysis revealed a uniform pattern of Warburg effect mutations influencing prognosis across all tumor types, while copy number alterations in the electron transport chain gene SCO2, fatty acid uptake (CAV1, CD36) and lipogenesis (PPARA, PPARD, MLXIPL) genes were enriched in metastatic tumors. Using gene expression profiles, we established a gene-signature (CAV1, CD36, MLXIPL, CPT1C, CYP2E1) that strongly associated with epithelial-mesenchymal program across multiple cancers. Moreover, stratification of samples based on the copy number or expression profiles of the genes identified in our analysis revealed a significant effect on patient survival rates, thus confirming prominent roles of fatty acid uptake and metabolism in metastatic progression and poor prognosis of human cancers.

  8. Clonal expansion and linear genome evolution through breast cancer progression from pre-invasive stages to asynchronous metastasis

    DEFF Research Database (Denmark)

    Krøigård, Anne Bruun; Larsen, Martin Jakob; Lænkholm, Anne Vibeke

    2015-01-01

    Evolution of the breast cancer genome from pre-invasive stages to asynchronous metastasis is complex and mostly unexplored, but highly demanded as it may provide novel markers for and mechanistic insights in cancer progression. The increasing use of personalized therapy of breast cancer necessita......Evolution of the breast cancer genome from pre-invasive stages to asynchronous metastasis is complex and mostly unexplored, but highly demanded as it may provide novel markers for and mechanistic insights in cancer progression. The increasing use of personalized therapy of breast cancer...... progression from one breast cancer patient, including two different regions of Ductal Carcinoma In Situ (DCIS), primary tumor and an asynchronous metastasis. We identify a remarkable landscape of somatic mutations, retained throughout breast cancer progression and with new mutational events emerging at each...

  9. The fundamental role of mechanical properties in the progression of cancer disease and inflammation

    International Nuclear Information System (INIS)

    Mierke, Claudia Tanja

    2014-01-01

    The role of mechanical properties in cancer disease and inflammation is still underinvestigated and even ignored in many oncological and immunological reviews. In particular, eight classical hallmarks of cancer have been proposed, but they still ignore the mechanics behind the processes that facilitate cancer progression. To define the malignant transformation of neoplasms and finally reveal the functional pathway that enables cancer cells to promote cancer progression, these classical hallmarks of cancer require the inclusion of specific mechanical properties of cancer cells and their microenvironment such as the extracellular matrix as well as embedded cells such as fibroblasts, macrophages or endothelial cells. Thus, this review will present current cancer research from a biophysical point of view and will therefore focus on novel physical aspects and biophysical methods to investigate the aggressiveness of cancer cells and the process of inflammation. As cancer or immune cells are embedded in a certain microenvironment such as the extracellular matrix, the mechanical properties of this microenvironment cannot be neglected, and alterations of the microenvironment may have an impact on the mechanical properties of the cancer or immune cells. Here, it is highlighted how biophysical approaches, both experimental and theoretical, have an impact on the classical hallmarks of cancer and inflammation. It is even pointed out how these biophysical approaches contribute to the understanding of the regulation of cancer disease and inflammatory responses after tissue injury through physical microenvironmental property sensing mechanisms. The recognized physical signals are transduced into biochemical signaling events that guide cellular responses, such as malignant tumor progression, after the transition of cancer cells from an epithelial to a mesenchymal phenotype or an inflammatory response due to tissue injury. Moreover, cell adaptation to mechanical alterations, in

  10. TRPV6 alleles do not influence prostate cancer progression

    International Nuclear Information System (INIS)

    Kessler, Thorsten; Wissenbach, Ulrich; Grobholz, Rainer; Flockerzi, Veit

    2009-01-01

    The transient receptor potential, subfamily V, member 6 (TRPV6) is a Ca 2+ selective cation channel. Several studies have shown that TRPV6 transcripts are expressed in locally advanced prostatic adenocarcinoma, metastatic and androgen-insensitive prostatic lesions but are undetectable in healthy prostate tissue and benign prostatic hyperplasia. Two allelic variants of the human trpv6 gene have been identified which are transcribed into two independent mRNAs, TRPV6a and TRPV6b. We now asked, whether the trpv6a allele is correlated with the onset of prostate cancer, with the Gleason score and the tumour stage. Genomic DNA of prostate cancer patients and control individuals was isolated from resections of prostatic adenocarcinomas and salivary fluid respectively. Genotyping of SNPs of the TRPV6 gene was performed by restriction length polymorphism or by sequencing analysis. RNA used for RT-PCR was isolated from prostate tissue. Data sets were analyzed by Chi-Square test. We first characterized in detail the five polymorphisms present in the protein coding exons of the trpv6 gene and show that these polymorphisms are coupled and are underlying the TRPV6a and the TRPV6b variants. Next we analysed the frequencies of the two TRPV6 alleles using genomic DNA from saliva samples of 169 healthy individuals. The homozygous TRPV6b genotype predominated with 86%, whereas no homozygous TRPV6a carriers could be identified. The International HapMap Project identified a similar frequency for an Utah based population whereas in an African population the a-genotype prevailed. The incidence of prostate cancer is several times higher in African populations than in non-African and we then investigated the TRPV6a/b frequencies in 141 samples of prostatic adenocarcinoma. The TRPV6b allele was found in 87% of the samples without correlation with Gleason score and tumour stage. Our results show that the frequencies of trpv6 alleles in healthy control individuals and prostate cancer patients

  11. TRPV6 alleles do not influence prostate cancer progression.

    Science.gov (United States)

    Kessler, Thorsten; Wissenbach, Ulrich; Grobholz, Rainer; Flockerzi, Veit

    2009-10-26

    The transient receptor potential, subfamily V, member 6 (TRPV6) is a Ca(2+) selective cation channel. Several studies have shown that TRPV6 transcripts are expressed in locally advanced prostatic adenocarcinoma, metastatic and androgen-insensitive prostatic lesions but are undetectable in healthy prostate tissue and benign prostatic hyperplasia. Two allelic variants of the human trpv6 gene have been identified which are transcribed into two independent mRNAs, TRPV6a and TRPV6b. We now asked, whether the trpv6a allele is correlated with the onset of prostate cancer, with the Gleason score and the tumour stage. Genomic DNA of prostate cancer patients and control individuals was isolated from resections of prostatic adenocarcinomas and salivary fluid respectively. Genotyping of SNPs of the TRPV6 gene was performed by restriction length polymorphism or by sequencing analysis. RNA used for RT-PCR was isolated from prostate tissue. Data sets were analyzed by Chi-Square test. We first characterized in detail the five polymorphisms present in the protein coding exons of the trpv6 gene and show that these polymorphisms are coupled and are underlying the TRPV6a and the TRPV6b variants. Next we analysed the frequencies of the two TRPV6 alleles using genomic DNA from saliva samples of 169 healthy individuals. The homozygous TRPV6b genotype predominated with 86%, whereas no homozygous TRPV6a carriers could be identified. The International HapMap Project identified a similar frequency for an Utah based population whereas in an African population the a-genotype prevailed. The incidence of prostate cancer is several times higher in African populations than in non-African and we then investigated the TRPV6a/b frequencies in 141 samples of prostatic adenocarcinoma. The TRPV6b allele was found in 87% of the samples without correlation with Gleason score and tumour stage. Our results show that the frequencies of trpv6 alleles in healthy control individuals and prostate cancer patients

  12. TRPV6 alleles do not influence prostate cancer progression

    Directory of Open Access Journals (Sweden)

    Flockerzi Veit

    2009-10-01

    Full Text Available Abstract Background The transient receptor potential, subfamily V, member 6 (TRPV6 is a Ca2+ selective cation channel. Several studies have shown that TRPV6 transcripts are expressed in locally advanced prostatic adenocarcinoma, metastatic and androgen-insensitive prostatic lesions but are undetectable in healthy prostate tissue and benign prostatic hyperplasia. Two allelic variants of the human trpv6 gene have been identified which are transcribed into two independent mRNAs, TRPV6a and TRPV6b. We now asked, whether the trpv6a allele is correlated with the onset of prostate cancer, with the Gleason score and the tumour stage. Methods Genomic DNA of prostate cancer patients and control individuals was isolated from resections of prostatic adenocarcinomas and salivary fluid respectively. Genotyping of SNPs of the TRPV6 gene was performed by restriction length polymorphism or by sequencing analysis. RNA used for RT-PCR was isolated from prostate tissue. Data sets were analyzed by Chi-Square test. Results We first characterized in detail the five polymorphisms present in the protein coding exons of the trpv6 gene and show that these polymorphisms are coupled and are underlying the TRPV6a and the TRPV6b variants. Next we analysed the frequencies of the two TRPV6 alleles using genomic DNA from saliva samples of 169 healthy individuals. The homozygous TRPV6b genotype predominated with 86%, whereas no homozygous TRPV6a carriers could be identified. The International HapMap Project identified a similar frequency for an Utah based population whereas in an African population the a-genotype prevailed. The incidence of prostate cancer is several times higher in African populations than in non-African and we then investigated the TRPV6a/b frequencies in 141 samples of prostatic adenocarcinoma. The TRPV6b allele was found in 87% of the samples without correlation with Gleason score and tumour stage. Conclusion Our results show that the frequencies of trpv6

  13. SOXs in human prostate cancer: implication as progression and prognosis factors

    International Nuclear Information System (INIS)

    Zhong, Wei-de; Chen, Xi-bin; Lin, Zhuo-yuan; Deng, Ye-han; Wu, Shu-lin; He, Hui-chan; Wu, Chin-lee; Qin, Guo-qiang; Dai, Qi-shan; Han, Zhao-dong; Chen, Shan-ming; Ling, Xiao-hui; Fu, Xin; Cai, Chao; Chen, Jia-hong

    2012-01-01

    SOX genes play an important role in a number of developmental processes. Potential roles of SOXs have been demonstrated in various neoplastic tissues as tumor suppressors or promoters depending on tumor status and types. The aim of this study was to investigate the involvement of SOXs in the progression and prognosis of human prostate cancer (PCa). The gene expression changes of SOXs in human PCa tissues compared with non-cancerous prostate tissues was detected using gene expression microarray, and confirmed by real-time quantitative reverse transcriptase-polymerase chain reaction (QRT-PCR) analysis and immunohositochemistry. The roles of these genes in castration resistance were investigated in LNCaP xenograft model of PCa. The microarray analysis identified three genes (SOX7, SOX9 and SOX10) of SOX family that were significantly dis-regulated in common among four PCa specimens. Consistent with the results of the microarray, differential mRNA and protein levels of three selected genes were found in PCa tissues by QRT-PCR analysis and immunohistochemistry. Additionally, we found that the immunohistochemical staining scores of SOX7 in PCa tissues with higher serum PSA level (P = 0.02) and metastasis (P = 0.03) were significantly lower than those with lower serum PSA level and without metastasis; the increased SOX9 protein expression was frequently found in PCa tissues with higher Gleason score (P = 0.02) and higher clinical stage (P < 0.0001); the down-regulation of SOX10 tend to be found in PCa tissues with higher serum PSA levels (P = 0.03) and advanced pathological stage (P = 0.01). Moreover, both univariate and multivariate analyses showed that the down-regulation of SOX7 and the up-regulation of SOX9 were independent predictors of shorter biochemical recurrence-free survival. Furthermore, we discovered that SOX7 was significantly down-regulated and SOX9 was significantly up-regulated during the progression to castration resistance. Our data offer the convince

  14. Activin pathway enhances colorectal cancer stem cell self-renew and tumor progression.

    Science.gov (United States)

    Liu, Rui; Wang, Jun-Hua; Xu, Chengxiong; Sun, Bo; Kang, Sa-Ouk

    2016-10-28

    Activin belongs to transforming growth factor (TGF)-β super family of growth and differentiation factors and activin pathway participated in broad range of cell process. Studies elaborated activin pathway maintain pluripotency in human stem cells and suggest that the function of activin/nodal signaling in self-renew would be conserved across embryonic and adult stem cells. In this study, we tried to determine the effect of activin signaling pathway in regulation of cancer stem cells as a potential target for cancer therapy in clinical trials. A population of colorectal cancer cells was selected by the treatment of activin A. This population of cell possessed stem cell character with sphere formation ability. We demonstrated activin pathway enhanced the colorectal cancer stem cells self-renew and contribute to colorectal cancer progression in vivo. Targeting activin pathway potentially provide effective strategy for colorectal cancer therapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Progressive IRP Models for Power Resources Including EPP

    Directory of Open Access Journals (Sweden)

    Yiping Zhu

    2017-01-01

    Full Text Available In the view of optimizing regional power supply and demand, the paper makes effective planning scheduling of supply and demand side resources including energy efficiency power plant (EPP, to achieve the target of benefit, cost, and environmental constraints. In order to highlight the characteristics of different supply and demand resources in economic, environmental, and carbon constraints, three planning models with progressive constraints are constructed. Results of three models by the same example show that the best solutions to different models are different. The planning model including EPP has obvious advantages considering pollutant and carbon emission constraints, which confirms the advantages of low cost and emissions of EPP. The construction of progressive IRP models for power resources considering EPP has a certain reference value for guiding the planning and layout of EPP within other power resources and achieving cost and environmental objectives.

  16. MicroRNAs to Pathways in Prostate Cancer Progression

    Science.gov (United States)

    2015-12-01

    Probasin-Cre) [38]. Analysis of resulting mice showed that deletion of Dgcr8 did not influence early epithelial hyperplasia , but severely disrupted further...dysplasia (Fig 3A). Hyperplasia was defined as tubules showing epithelial cell expansion often bridging across the lumen, whereby cells appeared... epithelial cells showed a defect in expansion of the basal epithelial , a failure to overcome Akt induced senescence, and an associated block in progression

  17. Lysine methyltransferase SMYD2 promotes triple negative breast cancer progression.

    Science.gov (United States)

    Li, Linda Xiaoyan; Zhou, Julie Xia; Calvet, James P; Godwin, Andrew K; Jensen, Roy A; Li, Xiaogang

    2018-02-27

    We identified SMYD2, a SMYD (SET and MYND domain) family protein with lysine methyltransferase activity, as a novel breast cancer oncogene. SMYD2 was expressed at significantly higher levels in breast cancer cell lines and in breast tumor tissues. Silencing of SMYD2 by RNAi in triple-negative breast cancer (TNBC) cell lines or inhibition of SMYD2 with its specific inhibitor, AZ505, significantly reduced tumor growth in vivo. SMYD2 executes this activity via methylation and activation of its novel non-histone substrates, including STAT3 and the p65 subunit of NF-κB, leading to increased TNBC cell proliferation and survival. There are cross-talk and synergistic effects among SMYD2, STAT3, and NF-κB in TNBC cells, in that STAT3 can contribute to the modification of NF-κB p65 subunit post-translationally by recruitment of SMYD2, whereas the p65 subunit of NF-κB can also contribute to the modification of STAT3 post-translationally by recruitment of SMYD2, leading to methylation and activation of STAT3 and p65 in these cells. The expression of SMYD2 can be upregulated by IL-6-STAT3 and TNFα-NF-κB signaling, which integrates epigenetic regulation to inflammation in TNBC development. In addition, we have identified a novel SMYD2 transcriptional target gene, PTPN13, which links SMYD2 to other known breast cancer associated signaling pathways, including ERK, mTOR, and Akt signaling via PTPN13 mediated phosphorylation.

  18. Cancer and birth defects surveillance system for communities around the Savannah River Site. Annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Dunbar, J.B.

    1994-05-01

    The US DOE funded this grant to the Medical University of South Carolina for a cancer and birth defects registry for an initial three year period which was completed as of April 29, 1994. While this Technical Progress Report is prepared principally to document the activities of year 03, it also summarizes the accomplishments of the first two years in order to put into perspective the energy and progress of the program over the entire three year funding cycle.

  19. Cancer and birth defects surveillance system for communities around the Savannah River Site. Annual progress report

    International Nuclear Information System (INIS)

    Dunbar, J.B.

    1994-05-01

    The US DOE funded this grant to the Medical University of South Carolina for a cancer and birth defects registry for an initial three year period which was completed as of April 29, 1994. While this Technical Progress Report is prepared principally to document the activities of year 03, it also summarizes the accomplishments of the first two years in order to put into perspective the energy and progress of the program over the entire three year funding cycle

  20. Human Cancer Models Initiative | Office of Cancer Genomics

    Science.gov (United States)

    The Human Cancer Models Initiative (HCMI) is an international consortium that is generating novel human tumor-derived culture models, which are annotated with genomic and clinical data. In an effort to advance cancer research and more fully understand how in vitro findings are related to clinical biology, HCMI-developed models and related data will be available as a community resource for cancer research.

  1. Does phosphorylation of cofilin affect the progression of human bladder cancer?

    International Nuclear Information System (INIS)

    Chung, Hong; Kim, Hong Sup; Kim, Bokyung; Jung, Seung-Hyo; Won, Kyung-Jong; Jiang, Xiaowen; Lee, Chang-Kwon; Lim, So Dug; Yang, Sang-Kuk; Song, Ki Hak

    2013-01-01

    We determined the differently expressed protein profiles and their functions in bladder cancer tissues with the aim of identifying possible target proteins and underlying molecular mechanisms for taking part in their progression. We examined the expression of proteins by proteomic analysis and western blot in normal urothelium, non-muscle-invasive bladder cancers (NMIBCs), and muscle-invasive bladder cancers (MIBCs). The function of cofilin was analyzed using T24 human bladder cancer cells. The expression levels of 12 proteins were altered between bladder cancers and normal bladder tissues. Of these proteins, 14-3-3σ was upregulated in both NMIBCs and MIBCs compared with controls. On the other hand, myosin regulatory light chain 2, galectin-1, lipid-binding AI, annexin V, transthyretin, CARD-inhibitor of NF-κB-activating ligand, and actin prepeptide were downregulated in cancer samples. Cofilin, an actin-depolymerizing factor, was prominent in both NMIBCs and MIBCs compared with normal bladder tissues. Furthermore, we confirmed that cofilin phosphorylation was more prominent in MIBCs than in NMIBCs using immunoblotting and immunohistochemcal analyses. Epidermal growth factor (EGF) increased the phosphorylation of cofilin and elevated the migration in T24 cells. Knockdown of cofilin expression with small interfering RNA attenuated the T24 cell migration in response to EGF. These results demonstrate that the increased expression and phosphorylation of cofilin might play a role in the occurrence and invasiveness of bladder cancer. We suspected that changes in cofilin expression may participate in the progression of the bladder cancer

  2. A Critical Review on the Effect of Docosahexaenoic Acid (DHA) on Cancer Cell Cycle Progression.

    Science.gov (United States)

    Newell, Marnie; Baker, Kristi; Postovit, Lynne M; Field, Catherine J

    2017-08-17

    Globally, there were 14.1 million new cancer diagnoses and 8.2 million cancer deaths in 2012. For many cancers, conventional therapies are limited in their successes and an improved understanding of disease progression is needed in conjunction with exploration of alternative therapies. The long chain polyunsaturated fatty acid, docosahexaenoic acid (DHA), has been shown to enhance many cellular responses that reduce cancer cell viability and decrease proliferation both in vitro and in vivo. A small number of studies suggest that DHA improves chemotherapy outcomes in cancer patients. It is readily incorporated into cancer cell membranes and, as a result there has been considerable research regarding cell membrane initiated events. For example, DHA has been shown to mediate the induction of apoptosis/reduction of proliferation in vitro and in vivo. However, there is limited research into the effect of DHA on cell cycle regulation in cancer cells and the mechanism(s) by which DHA acts are not fully understood. The purpose of the current review is to provide a critical examination of the literature investigating the ability of DHA to stall progression during different cell cycle phases in cancer cells, as well as the consequences that these changes may have on tumour growth, independently and in conjunction with chemotherapy.

  3. Cancer cell-secreted IGF2 instigates fibroblasts and bone marrow-derived vascular progenitor cells to promote cancer progression.

    Science.gov (United States)

    Xu, Wen Wen; Li, Bin; Guan, Xin Yuan; Chung, Sookja K; Wang, Yang; Yip, Yim Ling; Law, Simon Y K; Chan, Kin Tak; Lee, Nikki P Y; Chan, Kwok Wah; Xu, Li Yan; Li, En Min; Tsao, Sai Wah; He, Qing-Yu; Cheung, Annie L M

    2017-02-10

    Local interactions between cancer cells and stroma can produce systemic effects on distant organs to govern cancer progression. Here we show that IGF2 secreted by inhibitor of differentiation (Id1)-overexpressing oesophageal cancer cells instigates VEGFR1-positive bone marrow cells in the tumour macroenvironment to form pre-metastatic niches at distant sites by increasing VEGF secretion from cancer-associated fibroblasts. Cancer cells are then attracted to the metastatic site via the CXCL5/CXCR2 axis. Bone marrow cells transplanted from nude mice bearing Id1-overexpressing oesophageal tumours enhance tumour growth and metastasis in recipient mice, whereas systemic administration of VEGFR1 antibody abrogates these effects. Mechanistically, IGF2 regulates VEGF in fibroblasts via miR-29c in a p53-dependent manner. Analysis of patient serum samples showed that concurrent elevation of IGF2 and VEGF levels may serve as a prognostic biomarker for oesophageal cancer. These findings suggest that the Id1/IGF2/VEGF/VEGFR1 cascade plays a critical role in tumour-driven pathophysiological processes underlying cancer progression.

  4. Frequent Loss of Cystatin E/M Expression Implicated in the Progression of Prostate Cancer

    OpenAIRE

    Pulukuri, Sai Murali Krishna; Gorantla, Bharathi; Knost, James A.; Rao, Jasti S.

    2009-01-01

    Cystatin E/M (CST6) is a natural inhibitor of lysosomal cysteine proteases. Recent studies have shown that experimental manipulation of CST6 expression alters the metastatic behavior of human breast cancer cells. However, the association of CST6 with prostate cancer invasion and progression is remains unclear. Here, we show that CST6 is robustly expressed in normal human prostate epithelium while its expression is downregulated in metastatic prostate cell lines and prostate tumor tissues. Tre...

  5. Infiltrating T Cells Promote Bladder Cancer Progression via Increasing IL1→Androgen Receptor→HIF1α→VEGFa Signals.

    Science.gov (United States)

    Tao, Le; Qiu, Jianxin; Jiang, Ming; Song, Wenbin; Yeh, Shuyuan; Yu, Hong; Zang, Lijuan; Xia, Shujie; Chang, Chawnshang

    2016-08-01

    The tumor microenvironment impacts tumor progression and individual cells, including CD4(+) T cells, which have been detected in bladder cancer tissues. The detailed mechanism of how these T cells were recruited to the bladder cancer tumor and their impact on bladder cancer progression, however, remains unclear. Using a human clinical bladder cancer sample survey and in vitro coculture system, we found that bladder cancer has a greater capacity to recruit T cells than surrounding normal bladder tissues. The consequences of higher levels of recruited T cells in bladder cancer included increased bladder cancer metastasis. Mechanism dissection revealed that infiltrating T cells might function through secreting the cytokine IL1, which increases the recruitment of T cells to bladder cancer and enhances the bladder cancer androgen receptor (AR) signaling that results in increased bladder cancer cell invasion via upregulation of hypoxia-inducible factor-1α (HIF1α)/VEGFa expression. Interruption of the IL1→AR→HIF1α→VEGFa signals with inhibitors of HIF1α or VEGFa partially reversed the enhanced bladder cancer cell invasion. Finally, in vivo mouse models of xenografted bladder cancer T24 cells with CD4(+) T cells confirmed in vitro coculture studies and concluded that infiltrating CD4(+) T cells can promote bladder cancer metastasis via modulation of the IL1→AR→HIF1α→VEGFa signaling. Future clinical trials using small molecules to target this newly identified signaling pathway may facilitate the development of new therapeutic approaches to better suppress bladder cancer metastasis. Mol Cancer Ther; 15(8); 1943-51. ©2016 AACR. ©2016 American Association for Cancer Research.

  6. Progression of renal cell carcinoma is inhibited by genistein and radiation in an orthotopic model

    International Nuclear Information System (INIS)

    Hillman, Gilda G; Wang, Yu; Che, Mingxin; Raffoul, Julian J; Yudelev, Mark; Kucuk, Omer; Sarkar, Fazlul H

    2007-01-01

    We have previously reported the potentiation of radiotherapy by the soy isoflavone genistein for prostate cancer using prostate tumor cells in vitro and orthotopic prostate tumor models in vivo. However, when genistein was used as single therapy in animal models, it promoted metastasis to regional para-aortic lymph nodes. To clarify whether these intriguing adverse effects of genistein are intrinsic to the orthotopic prostate tumor model, or these results could also be recapitulated in another model, we used the orthotopic metastatic KCI-18 renal cell carcinoma (RCC) model established in our laboratory. The KCI-18 RCC cell line was generated from a patient with papillary renal cell carcinoma. Following orthotopic renal implantation of KCI-18 RCC cells and serial in vivo kidney passages in nude mice, we have established a reliable and predictable metastatic RCC tumor model. Mice bearing established kidney tumors were treated with genistein combined with kidney tumor irradiation. The effect of the therapy was assessed on the primary tumor and metastases to various organs. In this experimental model, the karyotype and histological characteristics of the human primary tumor are preserved. Tumor cells metastasize from the primary renal tumor to the lungs, liver and mesentery mimicking the progression of RCC in humans. Treatment of established kidney tumors with genistein demonstrated a tendency to stimulate the growth of the primary kidney tumor and increase the incidence of metastasis to the mesentery lining the bowel. In contrast, when given in conjunction with kidney tumor irradiation, genistein significantly inhibited the growth and progression of established kidney tumors. These findings confirm the potentiation of radiotherapy by genistein in the orthotopic RCC model as previously shown in orthotopic models of prostate cancer. Our studies in both RCC and prostate tumor models demonstrate that the combination of genistein with primary tumor irradiation is a more

  7. NFIX as a Master Regulator for Lung Cancer Progression

    Directory of Open Access Journals (Sweden)

    Nor I. A. Rahman

    2017-08-01

    Full Text Available About 40% of lung cancer cases globally are diagnosed at the advanced stage. Lung cancer has a high mortality and overall survival in stage I disease is only 70%. This study was aimed at finding a candidate of transcription regulator that initiates the mechanism for metastasis by integrating computational and functional studies. The genes involved in lung cancer were retrieved using in silico software. 10 kb promoter sequences upstream were scanned for the master regulator. Transient transfection of shRNA NFIXs were conducted against A549 and NCI-H1299 cell lines. qRT-PCR and functional assays for cell proliferation, migration and invasion were carried out to validate the involvement of NFIX in metastasis. Genome-wide gene expression microarray using a HumanHT-12v4.0 Expression BeadChip Kit was performed to identify differentially expressed genes and construct a new regulatory network. The in silico analysis identified NFIX as a master regulator and is strongly associated with 17 genes involved in the migration and invasion pathways including IL6ST, TIMP1 and ITGB1. Silencing of NFIX showed reduced expression of IL6ST, TIMP1 and ITGB1 as well as the cellular proliferation, migration and invasion processes. The data was integrated with the in silico analyses to find the differentially expressed genes. Microarray analysis showed that 18 genes were expressed differentially in both cell lines after statistical analyses integration between t-test, LIMMA and ANOVA with Benjamini-Hochberg adjustment at p-value < 0.05. A transcriptional regulatory network was created using all 18 genes, the existing regulated genes including the new genes PTCH1, NFAT5 and GGCX that were found highly associated with NFIX, the master regulator of metastasis. This study suggests that NFIX is a promising target for therapeutic intervention that is expected to inhibit metastatic recurrence and improve survival rate.

  8. UG311, An Oncofetal Marker Lost with Prostate Cancer Progression

    Science.gov (United States)

    2001-04-01

    resulted in neonatal lethality and further exacerbation of the dwarfism to about 30% of control size [28]. By contrast, the overexpression of GH or IGF-1...inhibitory as retinoic acid (RA) treatment initiates rapid degradation of IGFBP-2 and an increased synthesis of IGF-2 [127]. As RA promotes cell growth both...upregulation of IGFBP-2 mRNA in response to low dose androgen treatment in the LNCaP human prostate cancer cell line. It is not clear 19 whether this is

  9. Hypoxia and Prx1 in Malignant Progression of Prostate Cancer

    Science.gov (United States)

    2007-09-01

    promoter composition of human prx1 gene and identified EpRE elements and Nrf2 as critical regulatory component of its up- regulation in prostate cancer...nucleus as well as in the cytoplasm in the rat kidney (42). The presence of Prx1 in the nucleolus of hepatic parenchymal cells has also been shown in the...Gpx; KO, knock-out; JNK, c-Jun N-terminal kinase. THE JOURNAL OF BIOLOGICAL CHEMISTRY VOL. 282, NO. 30, pp. 22011–22022, July 27, 2007 © 2007 by The

  10. Clinical Cancer Advances 2018: Annual Report on Progress Against Cancer From the American Society of Clinical Oncology.

    Science.gov (United States)

    Heymach, John; Krilov, Lada; Alberg, Anthony; Baxter, Nancy; Chang, Susan Marina; Corcoran, Ryan; Dale, William; DeMichele, Angela; Magid Diefenbach, Catherine S; Dreicer, Robert; Epstein, Andrew S; Gillison, Maura L; Graham, David L; Jones, Joshua; Ko, Andrew H; Lopez, Ana Maria; Maki, Robert G; Rodriguez-Galindo, Carlos; Schilsky, Richard L; Sznol, Mario; Westin, Shannon Neville; Burstein, Harold

    2018-04-01

    A MESSAGE FROM ASCO'S PRESIDENT I remember when ASCO first conceived of publishing an annual report on the most transformative research occurring in cancer care. Thirteen reports later, the progress we have chronicled is remarkable, and this year is no different. The research featured in ASCO's Clinical Cancer Advances 2018 report underscores the impressive gains in our understanding of cancer and in our ability to tailor treatments to tumors' genetic makeup. The ASCO 2018 Advance of the Year, adoptive cell immunotherapy, allows clinicians to genetically reprogram patients' own immune cells to find and attack cancer cells throughout the body. Chimeric antigen receptor (CAR) T-cell therapy-a type of adoptive cell immunotherapy-has led to remarkable results in young patients with acute lymphoblastic leukemia (ALL) and in adults with lymphoma and multiple myeloma. Researchers are also exploring this approach in other types of cancer. This advance would not be possible without robust federal investment in cancer research. The first clinical trial of CAR T-cell therapy in children with ALL was funded, in part, by grants from the National Cancer Institute (NCI), and researchers at the NCI Center for Cancer Research were the first to report on possible CAR T-cell therapy for multiple myeloma. These discoveries follow decades of prior research on immunology and cancer biology, much of which was supported by federal dollars. In fact, many advances that are highlighted in the 2018 Clinical Cancer Advances report were made possible thanks to our nation's support for biomedical research. Funding from the US National Institutes of Health and the NCI helps researchers pursue critical patient care questions and addresses vital, unmet needs that private industry has little incentive to take on. Federally supported cancer research generates the biomedical innovations that fuel the development and availability of new and improved treatments for patients. We need sustained federal

  11. Deregulation of HOX B13 expression in urinary bladder cancer progression.

    Science.gov (United States)

    Marra, L; Cantile, M; Scognamiglio, G; Perdonà, S; La Mantia, E; Cerrone, M; Gigantino, V; Cillo, C; Caraglia, M; Pignata, S; Facchini, G; Botti, G; Chieffi, S; Chieffi, P; Franco, R

    2013-02-01

    Urinary bladder cancer is a common malignancy in industrialized countries. More than 90% of bladder cancer originates in the transitional cells. Bladder transitional cancer prognosis is, according to the most recent definition related to the level of tumor infiltration, characterized by two main phenotypes, Non Muscle Invasive Bladder Transitional Cancer (NMIBC) and Muscle Invasive Bladder Transitional Cancer (MIBC). The genetic profile and the clinical course of the two subtypes are completely different, however among NMIBC the prognosis is not completely predictable, since 20% of the cases experience a relapse, even in the form of MIBC. It has recently been reported that the chromosomal region 12q13-15, containing crucial cancer genes such as MDM2, CDK4, GLI and an entire cluster of HOX genes, is amplified in bladder cancer. HOX genes codify for transcriptionl factor, involved in embryonal development and cancer progression, with main nuclear expression. Particularly it was also described the strong involvement of HOX B13 in several tumors of urogenital system. In this study we have been investigated, by immunohistochemisty and quantitative Real Time PCR, the HOX B13 expression in bladder cancer evolution and progression, evaluating its ability to discriminate between NMIBC and MBCI phenotypes. Cytoplasmic HOX B13 delocalization significantly relates with muscle invasion (p 0.004). In addition in the series of NMIBC nuclear HOX B13 expression loss is significantly associated to shorter disease free survival (p-value=0.038) defining a potential prognostic role. Overexpression of HOX B13 in more aggressive phenotype is also demonstrate at gene level by quantitative RT-PCR. The de-regulation and delocalization of HOX B13 in urinary bladder cancer supports again the important role of HOX genes in tumor evolution and represents a starting point to establish an integrated analysis, in which HOX genes represent important prognostic and predictive markers for bladder

  12. Saffron Aqueous Extract Inhibits the Chemically-induced Gastric Cancer Progression in the Wistar Albino Rat

    Directory of Open Access Journals (Sweden)

    S. Zahra Bathaie

    2013-01-01

    Full Text Available Objective(s: Gastric cancer is the first and second leading cause of cancer related death in Iranian men and women, respectively. Gastric cancer management is based on the surgery, radiotherapy and chemotherapy. In the present study, for the first time, the beneficial effect of saffron (Crocus sativus L. aqueous extract (SAE on the 1-Methyl-3-nitro-1-nitrosoguanidine (MNNG-induced gastric cancer in rat was investigated. Materials and Methods: MNNG was used to induce gastric cancer and then, different concentrations of SAE were administered to rats. After sacrificing, the stomach tissue was investigated by both pathologist and flow cytometry, and several biochemical parameters was determined in the plasma (or serum and stomach of rats. Results: Pathologic data indicated the induction of cancer at different stages from hyperplasia to adenoma in rats; and the inhibition of cancer progression in the gastric tissue by SAE administration; so that, 20% of cancerous rats treated with higher doses of SAE was completely normal at the end of experiment and there was no rat with adenoma in the SAE treated groups. In addition, the results of the flow cytometry/ propidium iodide staining showed that the apoptosis/proliferation ratio was increased due to the SAE treatment of cancerous rats. Moreover, the significantly increased serum LDH and decreased plasma antioxidant activity due to cancer induction fell backwards after treatment of rats with SAE. But changes in the other parameters (Ca2+, tyrosine kinase activity and carcino-embryonic antigen were not significant. Conclusion: SAE inhibits the progression of gastric cancer in rats, in a dose dependent manner.

  13. Accessing key steps of human tumor progression in vivo by using an avian embryo model

    Science.gov (United States)

    Hagedorn, Martin; Javerzat, Sophie; Gilges, Delphine; Meyre, Aurélie; de Lafarge, Benjamin; Eichmann, Anne; Bikfalvi, Andreas

    2005-02-01

    Experimental in vivo tumor models are essential for comprehending the dynamic process of human cancer progression, identifying therapeutic targets, and evaluating antitumor drugs. However, current rodent models are limited by high costs, long experimental duration, variability, restricted accessibility to the tumor, and major ethical concerns. To avoid these shortcomings, we investigated whether tumor growth on the chick chorio-allantoic membrane after human glioblastoma cell grafting would replicate characteristics of the human disease. Avascular tumors consistently formed within 2 days, then progressed through vascular endothelial growth factor receptor 2-dependent angiogenesis, associated with hemorrhage, necrosis, and peritumoral edema. Blocking of vascular endothelial growth factor receptor 2 and platelet-derived growth factor receptor signaling pathways by using small-molecule receptor tyrosine kinase inhibitors abrogated tumor development. Gene regulation during the angiogenic switch was analyzed by oligonucleotide microarrays. Defined sample selection for gene profiling permitted identification of regulated genes whose functions are associated mainly with tumor vascularization and growth. Furthermore, expression of known tumor progression genes identified in the screen (IL-6 and cysteine-rich angiogenic inducer 61) as well as potential regulators (lumican and F-box-only 6) follow similar patterns in patient glioma. The model reliably simulates key features of human glioma growth in a few days and thus could considerably increase the speed and efficacy of research on human tumor progression and preclinical drug screening. angiogenesis | animal model alternatives | glioblastoma

  14. Progress in wall turbulence 2 understanding and modelling

    CERN Document Server

    Jimenez, Javier; Marusic, Ivan

    2016-01-01

    This is the proceedings of the ERCOFTAC Workshop on Progress in Wall Turbulence: Understanding and Modelling, that was held in Lille, France from June 18 to 20, 2014. The workshop brought together world specialists of near wall turbulence and stimulated exchanges between them around up-to-date theories, experiments, simulations and numerical models. This book contains a coherent collection of recent results on near wall turbulence including theory, new experiments, DNS, and modeling with RANS, LES.The fact that both physical understanding and modeling by different approaches are addressed by the best specialists in a single workshop is original.

  15. Oxidative stress: development and progression of breast cancer:review article

    Directory of Open Access Journals (Sweden)

    Arash Salmaninejad

    2017-04-01

    Full Text Available Breast cancer is the most commonly diagnosed cancer in women worldwide. Enormous advancement has been made over the last decades in understanding the biology of breast cancer. Nevertheless, the molecular mechanisms regulating progression, gaining of invasive and metastatic phenotypes, and therapeutic resistance are still not completely understood. Oxidative stress initiate by disbalance in redox status of body. In this case, increase of free radicals in body cause tissue damage. One of the significant species of free radicals is reactive oxygen species (ROS that produced by various metabolic pathways, comprising aerobic metabolism in the mitochondrial respiratory chain. They play a serious role in cellular physiology and pathophysiology likewise beginning and evolution of numerous types of cancers. ROS overproduction is deleterious to cells, and considered key-factors for the development of numerous diseases, such as cardiovascular disorders, neurodegenerative diseases, and cancer. Cancer cells are commonly submitted to upper ROS levels that further incite malignant phenotype through motivation to preserved proliferation, angiogenesis, death evasion, invasiveness, and metastasis. ROS impress various signaling pathways, comprising mitogenic pathways and growth factors, and also controls numerous cellular processes, containing cell proliferation, thus stimulates the undisciplined growth of cells which inspires the development of tumors and initiates the progression of carcinogenesis. The importance of ROS on breast cancer development and etiology is being increasingly clarified. Nevertheless, fewer consideration has been given to the progress of redox system-targeted strategies for breast cancer treatment. Augmented oxidative stress caused by reactive species can diminish the body’s antioxidant defense against angiogenesis and metastasis in cancer cells. These processes are core factors in the development of cancer. Bimolecular reactions cause

  16. Postmenopausal obesity promotes tumor angiogenesis and breast cancer progression in mice.

    Science.gov (United States)

    Gu, Jian-Wei; Young, Emily; Patterson, Sharla G; Makey, Kristina L; Wells, Jeremy; Huang, Min; Tucker, Kevan B; Miele, Lucio

    2011-05-15

    Obese postmenopausal women have a 50% higher risk of breast cancer than non-obese women. There is not an animal model that mimics postmenopausal obesity related to breast cancer progression. Using age-relevant C57BL/6 mice, this study determined whether postmenopausal obesity increases VEGF expression, tumor angiogenesis, and breast tumor growth. Ovariectomy (OVX) was performed in 12 sixty week-old female mice, then followed by a low-fat (5%, LF, n=6) or a high-fat (60%, HF, n=6) diet for 12 weeks. In the eighth week of the dietary program, 10(6) E0771 (mouse breast cancer) cells were injected in the left fourth mammary gland. Tumor size was monitored for 4 weeks. Body weights were monitored weekly. At the end of the experiment, blood samples, visceral fat and tumors were collected for measuring VEGF expression using ELISA and intratumoral microvessel density (IMD) using CD31 immunochemistry. Body weight was significantly increased in OVX/HF mice, compared to OVX/LF group (55.3±1.7 vs. 41.5±1.5 g; p < 0.01). There was a two-fold increase in the ratio of visceral fat/BW in OVX/HF mice, compared to those in OVX/LF group (0.062±0.005 vs. 0.032±0.003; p < 0.01). Postmenopausal obesity significantly increased breast tumor weight over the control (4.62±0.63 vs. 1.98±0.27 g; p < 0.01) and IMD (173±3.7 vs. 139±4.3 IM#/mm^2; p < 0.01). Tumor VEGF levels were higher in OVX/HF mice, compared to OVX/LF group (73.3±3.8 vs. 49.5±4.3 pg/mg protein; p < 0.01). Plasma VEGF levels (69±7.1 vs. 48±3.5 pg/ml) and visceral fat VEGF levels (424.4±39.5 vs. 208.5±22.4 pg/mg protein) were significantly increased in OVX/HF mice, compared to OVX/LF group, respectively (n=6; p < 0.01). Interestingly, adipose tissue primary culture showed that subcutaneous fat released more VEGF, compared to visceral fat (6.77±1.14 vs. 0.94±0.16 pg/mg tissue; n=6; p < 0.01). These findings support the hypothesis that postmenopausal obesity promotes tumor angiogenesis and breast cancer

  17. Obesity and Cancer Progression: Is There a Role of Fatty Acid Metabolism?

    Directory of Open Access Journals (Sweden)

    Seher Balaban

    2015-01-01

    Full Text Available Currently, there is renewed interest in elucidating the metabolic characteristics of cancer and how these characteristics may be exploited as therapeutic targets. Much attention has centered on glucose, glutamine and de novo lipogenesis, yet the metabolism of fatty acids that arise from extracellular, as well as intracellular, stores as triacylglycerol has received much less attention. This review focuses on the key pathways of fatty acid metabolism, including uptake, esterification, lipolysis, and mitochondrial oxidation, and how the regulators of these pathways are altered in cancer. Additionally, we discuss the potential link that fatty acid metabolism may serve between obesity and changes in cancer progression.

  18. Targeting epigenetics for the treatment of prostate cancer: recent progress and future directions.

    Science.gov (United States)

    Lin, Jianqing; Wang, Chenguang; Kelly, Wm Kevin

    2013-06-01

    Epigenetic aberrations contribute to prostate cancer carcinogenesis and disease progression. Efforts have been made to target DNA methyltransferase and histone deacetylases (HDACs) in prostate cancer and other solid tumors but have not had the success that was seen in the hematologic malignancies. Oral, less toxic, and more specific agents are being developed in solid tumors including prostate cancer. Combinations of epigenetic agents alone or with a targeted agent such as androgen receptor signaling inhibitors are promising approaches and will be discussed further. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Matrix Metalloproteinases: The Gene Expression Signatures of Head and Neck Cancer Progression

    Energy Technology Data Exchange (ETDEWEB)

    Iizuka, Shinji [Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037 (United States); Ishimaru, Naozumi; Kudo, Yasusei, E-mail: yasusei@tokushima-u.ac.jp [Department of Oral Molecular Pathology, Institute of Health Biosciences, The University of Tokushima Graduate School, 3-8-15 Kuramoto, Tokushima 770-8504 (Japan)

    2014-02-13

    Extracellular matrix degradation by matrix metalloproteinases (MMPs) plays a pivotal role in cancer progression by promoting motility, invasion and angiogenesis. Studies have shown that MMP expression is increased in head and neck squamous cell carcinomas (HNSCCs), one of the most common cancers in the world, and contributes to poor outcome. In this review, we examine the expression pattern of MMPs in HNSCC by microarray datasets and summarize the current knowledge of MMPs, specifically MMP-1, -3, -7 -10, -12, -13, 14 and -19, that are highly expressed in HNSCCs and involved cancer invasion and angiogenesis.

  20. Erbb2 up-regulation of ADAM12 expression accelerates skin cancer progression.

    Science.gov (United States)

    Rao, Velidi H; Vogel, Kristen; Yanagida, Jodi K; Marwaha, Nitin; Kandel, Amrit; Trempus, Carol; Repertinger, Susan K; Hansen, Laura A

    2015-10-01

    Solar ultraviolet (UV) radiation can cause severe damage to the skin and is the primary cause of most skin cancer. UV radiation causes DNA damage leading to mutations and also activates the Erbb2/HER2 receptor through indirect mechanisms involving reactive oxygen species. We hypothesized that Erbb2 activation accelerates the malignant progression of UV-induced skin cancer. Following the induction of benign squamous papillomas by UV exposure of v-ras(Ha) transgenic Tg.AC mice, mice were treated topically with the Erbb2 inhibitor AG825 and tumor progression monitored. AG825 treatment reduced tumor volume, increased tumor regression, and delayed the development of malignant squamous cell carcinoma (SCC). Progression to malignancy was associated with increased Erbb2 and ADAM12 (A Disintegin And Metalloproteinase 12) transcripts and protein, while inhibition of Erbb2 blocked the increase in ADAM12 message upon malignant progression. Similarly, human SCC and SCC cell lines had increased ADAM12 protein and transcripts when compared to normal controls. To determine whether Erbb2 up-regulation of ADAM12 contributed to malignant progression of skin cancer, Erbb2 expression was modulated in cultured SCC cells using forced over-expression or siRNA targeting, demonstrating up-regulation of ADAM12 by Erbb2. Furthermore, ADAM12 transfection or siRNA targeting revealed that ADAM12 increased both the migration and invasion of cutaneous SCC cells. Collectively, these results suggest Erbb2 up-regulation of ADAM12 as a novel mechanism contributing to the malignant progression of UV-induced skin cancer. Inhibition of Erbb2/HER2 reduced tumor burden, increased tumor regression, and delayed the progression of benign skin tumors to malignant SCC in UV-exposed mice. Inhibition of Erbb2 suppressed the increase in metalloproteinase ADAM12 expression in skin tumors, which in turn increased migration and tumor cell invasiveness. © 2014 Wiley Periodicals, Inc.

  1. Modelling breast cancer tumour growth for a stable disease population.

    Science.gov (United States)

    Isheden, Gabriel; Humphreys, Keith

    2017-01-01

    Statistical models of breast cancer tumour progression have been used to further our knowledge of the natural history of breast cancer, to evaluate mammography screening in terms of mortality, to estimate overdiagnosis, and to estimate the impact of lead-time bias when comparing survival times between screen detected cancers and cancers found outside of screening programs. Multi-state Markov models have been widely used, but several research groups have proposed other modelling frameworks based on specifying an underlying biological continuous tumour growth process. These continuous models offer some advantages over multi-state models and have been used, for example, to quantify screening sensitivity in terms of mammographic density, and to quantify the effect of body size covariates on tumour growth and time to symptomatic detection. As of yet, however, the continuous tumour growth models are not sufficiently developed and require extensive computing to obtain parameter estimates. In this article, we provide a detailed description of the underlying assumptions of the continuous tumour growth model, derive new theoretical results for the model, and show how these results may help the development of this modelling framework. In illustrating the approach, we develop a model for mammography screening sensitivity, using a sample of 1901 post-menopausal women diagnosed with invasive breast cancer.

  2. Clinical Significance of HER-2 Splice Variants in Breast Cancer Progression and Drug Resistance

    Directory of Open Access Journals (Sweden)

    Claire Jackson

    2013-01-01

    Full Text Available Overexpression of human epidermal growth factor receptor (HER-2 occurs in 20–30% of breast cancers and confers survival and proliferative advantages on the tumour cells making HER-2 an ideal therapeutic target for drugs like Herceptin. Continued delineation of tumour biology has identified splice variants of HER-2, with contrasting roles in tumour cell biology. For example, the splice variant 16HER-2 (results from exon 16 skipping increases transformation of cancer cells and is associated with treatment resistance; conversely, Herstatin (results from intron 8 retention and p100 (results from intron 15 retention inhibit tumour cell proliferation. This review focuses on the potential clinical implications of the expression and coexistence of HER-2 splice variants in cancer cells in relation to breast cancer progression and drug resistance. “Individualised” strategies currently guide breast cancer management; in accordance, HER-2 splice variants may prove valuable as future prognostic and predictive factors, as well as potential therapeutic targets.

  3. Pretreatment advanced lung cancer inflammation index (ALI) for predicting early progression in nivolumab-treated patients with advanced non-small cell lung cancer.

    Science.gov (United States)

    Shiroyama, Takayuki; Suzuki, Hidekazu; Tamiya, Motohiro; Tamiya, Akihiro; Tanaka, Ayako; Okamoto, Norio; Nakahama, Kenji; Taniguchi, Yoshihiko; Isa, Shun-Ichi; Inoue, Takako; Imamura, Fumio; Atagi, Shinji; Hirashima, Tomonori

    2018-01-01

    Programmed death-ligand 1 (PD-L1) expression status is inadequate for indicating nivolumab in patients with non-small cell lung cancer (NSCLC). Because the baseline advanced lung cancer inflammation index (ALI) is reportedly associated with patient outcomes, we investigated whether the pretreatment ALI is prognostic in NSCLC patients treated with nivolumab. We retrospectively reviewed the medical records of all patients treated with nivolumab for advanced NSCLC between December 2015 and May 2016 at three Japanese institutes. Multivariate logistic regression and Cox proportional hazards models were used to assess the impact of the pretreatment ALI (and other inflammation-related parameters) on progression-free survival (PFS) and early progression (i.e., within 8 weeks after starting nivolumab). A total of 201 patients were analyzed; their median age was 68 years (range, 27-87 years), 67% were men, and 24% had an Eastern Cooperative Oncology Group (ECOG) performance status of 2 or higher. An ECOG performance status ≥2, serum albumin ALI ALI ALI was found to be a significant independent predictor of early progression in patients with advanced NSCLC receiving nivolumab, and may help identify patients likely to benefit from continued nivolumab treatment in routine clinical practice. © 2017 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  4. Dual Roles of RNF2 in Melanoma Progression | Office of Cancer Genomics

    Science.gov (United States)

    Epigenetic regulators have emerged as critical factors governing the biology of cancer. Here, in the context of melanoma, we show that RNF2 is prognostic, exhibiting progression-correlated expression in human melanocytic neoplasms. Through a series of complementary gain-of-function and loss-of-function studies in mouse and human systems, we establish that RNF2 is oncogenic and prometastatic.

  5. Proteomic biomarkers for overall and progression-free survival in ovarian cancer patients

    DEFF Research Database (Denmark)

    Høgdall, Estrid; Fung, Eric T; Christensen, Ib Jarle

    2010-01-01

    To determine if the level of apolipoprotein A1, hepcidin, transferrin, inter-α trypsin IV internal fragment, transthyretin (TT), connective-tissue activating protein 3 (CTAP3), serum amyloid A1, β-2 microglobulin (B2M) might have impact on overall and progression-free survival for ovarian cancer...

  6. Proteomic biomarkers for overall and progression-free survival in ovarian cancer patients

    DEFF Research Database (Denmark)

    Høgdall, Estrid; Fung, Eric T; Christensen, Ib Jarle

    2010-01-01

    To determine if the level of apolipoprotein A1, hepcidin, transferrin, inter-a trypsin IV internal fragment, transthyretin (TT), connective-tissue activating protein 3 (CTAP3), serum amyloid A1, ß-2 microglobulin (B2M) might have impact on overall and progression-free survival for ovarian cancer...

  7. WAVE3 is a Biomarker for Breast Cancer Progression and Metastasis

    Science.gov (United States)

    2012-04-01

    insure reproducibility of the results. f) Repeat tasks a to e for the specimens with questionable results. Completed. See below Task 7: A BC TMA...miRs 570, 542, 103, 107 and 302, all of which have been found to be deregulated during cancer progression and metastasis [26,33,39–44], therefore

  8. Defining progression in nonmuscle invasive bladder cancer: it is time for a new, standard definition

    NARCIS (Netherlands)

    Lamm, D.; Persad, R.; Brausi, M.; Buckley, R.; Witjes, J.A.; Palou, J.; Bohle, A.; Kamat, A.M.; Colombel, M.; Soloway, M.

    2014-01-01

    PURPOSE: Despite being one of the most important clinical outcomes in nonmuscle invasive bladder cancer, there is currently no standard definition of disease progression. Major clinical trials and meta-analyses have used varying definitions or have failed to define this end point altogether. A

  9. Expression of OATP family members in hormone-related cancers: potential markers of progression.

    Directory of Open Access Journals (Sweden)

    Heather Pressler

    Full Text Available The organic anion transporting polypeptide (OATP family of transporters has been implicated in prostate cancer disease progression probably by transporting hormones or drugs. In this study, we aimed to elucidate the expression, frequency, and relevance of OATPs as a biomarker in hormone-dependent cancers. We completed a study examining SLCO1B3, SLCO1B1 and SLCO2B1 mRNA expression in 381 primary, independent patient samples representing 21 cancers and normal tissues. From a separate cohort, protein expression of OATP1B3 was examined in prostate, colon, and bladder tissue. Based on expression frequency, SLCO2B1 was lower in liver cancer (P = 0.04 which also trended lower with decreasing differentiation (P = 0.004 and lower magnitude in pancreatic cancer (P = 0.05. SLCO2B1 also had a higher frequency in thyroid cancer (67% than normal (0% and expression increased with stage (P = 0.04. SLCO1B3 was expressed in 52% of cancerous prostate samples and increased SLCO1B3 expression trended with higher Gleason score (P = 0.03. SLCO1B3 expression was also higher in testicular cancer (P = 0.02. SLCO1B1 expression was lower in liver cancer (P = 0.04 which trended lower with liver cancer grade (P = 0.0004 and higher with colon cancer grade (P = 0.05. Protein expression of OATP1B3 was examined in normal and cancerous prostate, colon, and bladder tissue samples from an independent cohort. The results were similar to the transcription data, but showed distinct localization. OATPs correlate to differentiation in certain hormone-dependent cancers, thus may be useful as biomarkers for assessing clinical treatment and stage of disease.

  10. Molecular Features of Subtype-Specific Progression from Ductal Carcinoma In Situ to Invasive Breast Cancer

    Directory of Open Access Journals (Sweden)

    Robert Lesurf

    2016-07-01

    Full Text Available Breast cancer consists of at least five main molecular “intrinsic” subtypes that are reflected in both pre-invasive and invasive disease. Although previous studies have suggested that many of the molecular features of invasive breast cancer are established early, it is unclear what mechanisms drive progression and whether the mechanisms of progression are dependent or independent of subtype. We have generated mRNA, miRNA, and DNA copy-number profiles from a total of 59 in situ lesions and 85 invasive tumors in order to comprehensively identify those genes, signaling pathways, processes, and cell types that are involved in breast cancer progression. Our work provides evidence that there are molecular features associated with disease progression that are unique to the intrinsic subtypes. We additionally establish subtype-specific signatures that are able to identify a small proportion of pre-invasive tumors with expression profiles that resemble invasive carcinoma, indicating a higher likelihood of future disease progression.

  11. Role of the immune system in pancreatic cancer progression and immune modulating treatment strategies.

    Science.gov (United States)

    Sideras, K; Braat, H; Kwekkeboom, J; van Eijck, C H; Peppelenbosch, M P; Sleijfer, S; Bruno, M

    2014-05-01

    Traditional chemotherapeutics have largely failed to date to produce significant improvements in pancreatic cancer survival. One of the reasons for the resilience of pancreatic cancer towards intensive treatment is that the cancer is capable of high jacking the immune system: during disease progression the immune system is converted from a system that attacks tumor cells into a support structure for the cancer, exerting trophic actions on the cancer cells. This turn-around of immune system action is achieved through mobilization and activation of regulatory T cells, myeloid derived suppressor cells, tumor-associated macrophages and fibroblasts, all of which suppress CD8 T cells and NK cells. This immune suppression occurs both through the expression of tolerance-inducing cell surface molecules, such as PD-L1, as well as through the production of "tolerogenic" cytokines, such as IL-10 and TGF-β. Based on the accumulating insight into the importance of the immune system for the outcome of pancreatic cancer patients multiple new immunotherapeutic approaches against pancreatic cancer are being currently tested in clinical trials. In this review we give an overview of both the immune escaping mechanisms of pancreatic cancer as well as the new immune related therapeutic strategies currently being tested in pancreatic cancer clinical trials. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. A Segmented Signal Progression Model for the Modern Streetcar System

    Directory of Open Access Journals (Sweden)

    Baojie Wang

    2015-01-01

    Full Text Available This paper is on the purpose of developing a segmented signal progression model for modern streetcar system. The new method is presented with the following features: (1 the control concept is based on the assumption of only one streetcar line operating along an arterial under a constant headway and no bandwidth demand for streetcar system signal progression; (2 the control unit is defined as a coordinated intersection group associated with several streetcar stations, and the control joints must be streetcar stations; (3 the objective function is built to ensure the two-way streetcar arrival times distributing within the available time of streetcar phase; (4 the available time of streetcar phase is determined by timing schemes, intersection structures, track locations, streetcar speeds, and vehicular accelerations; (5 the streetcar running speed is constant separately whether it is in upstream or downstream route; (6 the streetcar dwell time is preset according to historical data distribution or charging demand. The proposed method is experimentally examined in Hexi New City Streetcar Project in Nanjing, China. In the experimental results, the streetcar system operation and the progression impacts are shown to affect transit and vehicular traffic. The proposed model presents promising outcomes through the design of streetcar system segmented signal progression, in terms of ensuring high streetcar system efficiency and minimizing negative impacts on transit and vehicular traffic.

  13. Model-based setup assistant for progressive tools

    Science.gov (United States)

    Springer, Robert; Gräler, Manuel; Homberg, Werner; Henke, Christian; Trächtler, Ansgar

    2018-05-01

    In the field of production systems, globalization and technological progress lead to increasing requirements regarding part quality, delivery time and costs. Hence, today's production is challenged much more than a few years ago: it has to be very flexible and produce economically small batch sizes to satisfy consumer's demands and avoid unnecessary stock. Furthermore, a trend towards increasing functional integration continues to lead to an ongoing miniaturization of sheet metal components. In the industry of electric connectivity for example, the miniaturized connectors are manufactured by progressive tools, which are usually used for very large batches. These tools are installed in mechanical presses and then set up by a technician, who has to manually adjust a wide range of punch-bending operations. Disturbances like material thickness, temperatures, lubrication or tool wear complicate the setup procedure. In prospect of the increasing demand of production flexibility, this time-consuming process has to be handled more and more often. In this paper, a new approach for a model-based setup assistant is proposed as a solution, which is exemplarily applied in combination with a progressive tool. First, progressive tools, more specifically, their setup process is described and based on that, the challenges are pointed out. As a result, a systematic process to set up the machines is introduced. Following, the process is investigated with an FE-Analysis regarding the effects of the disturbances. In the next step, design of experiments is used to systematically develop a regression model of the system's behaviour. This model is integrated within an optimization in order to calculate optimal machine parameters and the following necessary adjustment of the progressive tool due to the disturbances. Finally, the assistant is tested in a production environment and the results are discussed.

  14. Immediate treatment with bicalutamide 150mg as adjuvant therapy significantly reduces the risk of PSA progression in early prostate cancer

    DEFF Research Database (Denmark)

    See, W; Iversen, P; Wirth, M

    2003-01-01

    To evaluate the effect of bicalutamide ('Casodex') 150mg (in addition to standard care), on the risk of prostate-specific antigen (PSA) progression, in patients with early prostate cancer.......To evaluate the effect of bicalutamide ('Casodex') 150mg (in addition to standard care), on the risk of prostate-specific antigen (PSA) progression, in patients with early prostate cancer....

  15. Tumour model with intrusive morphology, progressive phenotypical heterogeneity and memory

    Science.gov (United States)

    Atangana, Abdon; Alqahtani, Rubayyi T.

    2018-03-01

    The model of a tumour, taking into account invasive morphology, progressive phenotypical heterogeneity and also memory, is developed and analyzed in this paper. Three models are investigated: first we consider the model describing the proliferation concentrates in proximity of tumour boundaries, in which the oxygen levels are pronounced. Then we consider the model where the oxygen around the tumour is considered to be unchanged by the vascular system. Finally, we investigate the model of growth of tumours using the concept of non-local operators with the Mittag-Leffler kernel. We provide the numerical solution using the extended 3/8 Simpson method for the new trends of fractional integration for the proliferation concentrates in the proximity of the tumour model. Then we provide the exact solutions of the Gompertz model with three different fractional differentiations involving power law, exponential decay law and the Mittag-Leffler law.

  16. Identification of metastasis driver genes by massive parallel sequencing of successive steps of breast cancer progression

    DEFF Research Database (Denmark)

    Krøigård, Anne Bruun; Larsen, Martin Jakob; Lænkholm, Anne-Vibeke

    2018-01-01

    Cancer results from alterations at essential genomic sites and is characterized by uncontrolled cell proliferation, invasion and metastasis. Identification of driver genes of metastatic progression is essential, as metastases, not primary tumors, are fatal. To gain insight into the mutational......-synonymous to synonymous mutations, a surprisingly large number of cancer driver genes, ranging between 3 and 145, were estimated to confer a selective advantage in the studied primary tumors. We report a substantial amount of metastasis specific mutations and a number of novel putative metastasis driver genes. Most...... notable are the DCC, ABCA13, TIAM2, CREBBP, BCL6B and ZNF185 genes, mainly mutated exclusively in metastases and highly likely driver genes of metastatic progression. We find different genes and pathways to be affected at different steps of malignant progression. The Adherens junction pathway is affected...

  17. Abiraterone acetate for patients with metastatic castration-resistant prostate cancer progressing after chemotherapy

    DEFF Research Database (Denmark)

    Sternberg, Cora N; Castellano, Daniel; Daugaard, Gedske

    2014-01-01

    , development of sustained side-effects, or abiraterone acetate becoming available in the respective country. The primary outcome was the number of adverse events arising during study treatment and within 30 days of discontinuation. Efficacy measures (time to prostate-specific antigen [PSA] progression and time......BACKGROUND: In the final analysis of the phase 3 COU-AA-301 study, abiraterone acetate plus prednisone significantly prolonged overall survival compared with prednisone alone in patients with metastatic castration-resistant prostate cancer progressing after chemotherapy. Here, we present the final...... analysis of an early-access protocol trial that was initiated after completion of COU-AA-301 to enable worldwide preapproval access to abiraterone acetate in patients with metastatic castration-resistant prostate cancer progressing after chemotherapy. METHODS: We did a multicentre, open-label, early...

  18. The German cervical cancer screening model: development and validation of a decision-analytic model for cervical cancer screening in Germany.

    Science.gov (United States)

    Siebert, Uwe; Sroczynski, Gaby; Hillemanns, Peter; Engel, Jutta; Stabenow, Roland; Stegmaier, Christa; Voigt, Kerstin; Gibis, Bernhard; Hölzel, Dieter; Goldie, Sue J

    2006-04-01

    We sought to develop and validate a decision-analytic model for the natural history of cervical cancer for the German health care context and to apply it to cervical cancer screening. We developed a Markov model for the natural history of cervical cancer and cervical cancer screening in the German health care context. The model reflects current German practice standards for screening, diagnostic follow-up and treatment regarding cervical cancer and its precursors. Data for disease progression and cervical cancer survival were obtained from the literature and German cancer registries. Accuracy of Papanicolaou (Pap) testing was based on meta-analyses. We performed internal and external model validation using observed epidemiological data for unscreened women from different German cancer registries. The model predicts life expectancy, incidence of detected cervical cancer cases, lifetime cervical cancer risks and mortality. The model predicted a lifetime cervical cancer risk of 3.0% and a lifetime cervical cancer mortality of 1.0%, with a peak cancer incidence of 84/100,000 at age 51 years. These results were similar to observed data from German cancer registries, German literature data and results from other international models. Based on our model, annual Pap screening could prevent 98.7% of diagnosed cancer cases and 99.6% of deaths due to cervical cancer in women completely adherent to screening and compliant to treatment. Extending the screening interval from 1 year to 2, 3 or 5 years resulted in reduced screening effectiveness. This model provides a tool for evaluating the long-term effectiveness of different cervical cancer screening tests and strategies.

  19. Spherical Cancer Models in Tumor Biology

    Directory of Open Access Journals (Sweden)

    Louis-Bastien Weiswald

    2015-01-01

    Full Text Available Three-dimensional (3D in vitro models have been used in cancer research as an intermediate model between in vitro cancer cell line cultures and in vivo tumor. Spherical cancer models represent major 3D in vitro models that have been described over the past 4 decades. These models have gained popularity in cancer stem cell research using tumorospheres. Thus, it is crucial to define and clarify the different spherical cancer models thus far described. Here, we focus on in vitro multicellular spheres used in cancer research. All these spherelike structures are characterized by their well-rounded shape, the presence of cancer cells, and their capacity to be maintained as free-floating cultures. We propose a rational classification of the four most commonly used spherical cancer models in cancer research based on culture methods for obtaining them and on subsequent differences in sphere biology: the multicellular tumor spheroid model, first described in the early 70s and obtained by culture of cancer cell lines under nonadherent conditions; tumorospheres, a model of cancer stem cell expansion established in a serum-free medium supplemented with growth factors; tissue-derived tumor spheres and organotypic multicellular spheroids, obtained by tumor tissue mechanical dissociation and cutting. In addition, we describe their applications to and interest in cancer research; in particular, we describe their contribution to chemoresistance, radioresistance, tumorigenicity, and invasion and migration studies. Although these models share a common 3D conformation, each displays its own intrinsic properties. Therefore, the most relevant spherical cancer model must be carefully selected, as a function of the study aim and cancer type.

  20. Retrospective study of the effect of disease progression on patient reported outcomes in HER-2 negative metastatic breast cancer patients

    Directory of Open Access Journals (Sweden)

    Yu Elaine

    2011-06-01

    Full Text Available Abstract Background This retrospective study evaluated the impact of disease progression and of specific sites of metastasis on patient reported outcomes (PROs that assess symptom burden and health related quality of life (HRQoL in women with metastatic breast cancer (mBC. Methods HER-2 negative mBC patients (n = 102 were enrolled from 7 U.S. community oncology practices. Demographic, disease and treatment characteristics were abstracted from electronic medical records and linked to archived Patient Care Monitor (PCM assessments. The PCM is a self-report measure of symptom burden and HRQoL administered as part of routine care in participating practices. Linear mixed models were used to examine change in PCM scores over time. Results Mean age was 57 years, with 72% of patients Caucasian, and 25% African American. Median time from mBC diagnosis to first disease progression was 8.8 months. Metastasis to bone (60%, lung (28% and liver (26% predominated at initial metastatic diagnosis. Results showed that PCM items assessing fatigue, physical pain and trouble sleeping were sensitive to either general effects of disease progression or to effects associated with specific sites of metastasis. Progression of disease was also associated with modest but significant worsening of General Physical Symptoms, Treatment Side Effects, Acute Distress and Impaired Performance index scores. In addition, there were marked detrimental effects of liver metastasis on Treatment Side Effects, and of brain metastasis on Acute Distress. Conclusions Disease progression has a detrimental impact on cancer-related symptoms. Delaying disease progression may have a positive impact on patients' HRQoL.

  1. Coupled Immunological and Biomechanical Model of Emphysema Progression

    Directory of Open Access Journals (Sweden)

    Mario Ceresa

    2018-04-01

    Full Text Available Chronic Obstructive Pulmonary Disease (COPD is a disabling respiratory pathology, with a high prevalence and a significant economic and social cost. It is characterized by different clinical phenotypes with different risk profiles. Detecting the correct phenotype, especially for the emphysema subtype, and predicting the risk of major exacerbations are key elements in order to deliver more effective treatments. However, emphysema onset and progression are influenced by a complex interaction between the immune system and the mechanical properties of biological tissue. The former causes chronic inflammation and tissue remodeling. The latter influences the effective resistance or appropriate mechanical response of the lung tissue to repeated breathing cycles. In this work we present a multi-scale model of both aspects, coupling Finite Element (FE and Agent Based (AB techniques that we would like to use to predict the onset and progression of emphysema in patients. The AB part is based on existing biological models of inflammation and immunological response as a set of coupled non-linear differential equations. The FE part simulates the biomechanical effects of repeated strain on the biological tissue. We devise a strategy to couple the discrete biological model at the molecular /cellular level and the biomechanical finite element simulations at the tissue level. We tested our implementation on a public emphysema image database and found that it can indeed simulate the evolution of clinical image biomarkers during disease progression.

  2. Progress in integrated energy-economy-environment model system development

    International Nuclear Information System (INIS)

    Yasukawa, Shigeru; Mankin, Shuichi; Sato, Osamu; Tadokoro, Yoshihiro; Nakano, Yasuyuki; Nagano, Takao

    1987-11-01

    The Integrated Energy-Economy-Environment Model System has been developed for providing analytical tools for the system analysis and technology assessments in the field of nuclear research and development. This model system consists of the following four model groups. The first model block installs 5 models and can serve to analyze and generate long-term scenarios on economy-energy-environment evolution. The second model block installs 2 models and can serve to analyze the structural transition phenomena in energy-economy-environment interactions. The third model block installs 2 models and can handle power reactor installation strategy problem and long-term fuel cycle analysis. The fourth model block installs 5 models and codes and can treats cost-benefit-risk analysis and assessments. This report describes mainly the progress and the outlines of application of the model system in these years after the first report on the research and development of the model system (JAERI-M 84 - 139). (author)

  3. Possible Involvement of Insulin Resistance in the Progression of Cancer Cachexia in Mice.

    Science.gov (United States)

    Ohsawa, Masahiro; Murakami, Tomoyasu; Kume, Kazuhiko

    2016-01-01

    Malnutrition is a common problem among cancer patients, affecting up to 85% of patients with certain cancers. In severe cases, malnutrition can progress to cachexia, a specific form of malnutrition characterized by loss of lean body mass and muscle wasting. Although this muscle wasting might be a product of enhanced protein degradation, the precise mechanisms of cancer cachexia are not fully elucidated. Based on basic and clinical research, glucose intolerance and insulin resistance have been postulated to be associated with cancer cachexia. Since insulin in the skeletal muscle inhibits protein degradation and promotes protein synthesis, insulin resistance could be a possible cause of cancer cachexia. Therefore, we investigated the involvement of insulin resistance in the development of cancer cachexia in tumor-bearing mice. The signaling protein in the insulin cascade was attenuated in the skeletal muscle and hypothalamus from tumor-bearing mice. We identified Chrysanthemum morifolium RAMAT., known as Kikuka, as a peroxisome proliferator-activated receptor γ (PPARγ) ligand. Treatment with Kikuka attenuates the skeletal muscle changes in tumor-bearing mice. These results suggest that this natural PPARγ activator might be an attractive candidate for the treatment of cancer cachexia. In the symposium, we presented the PPARγ activator-induced improvement of cancer cachexia.

  4. MR Differentiation of Lung Cancer from Progressive Massive Fibrosis in Patients with Coal Worker's Pneumoconiosis

    International Nuclear Information System (INIS)

    Kim, Young Jin; Jung, Jung Im; Park, Seog Hee; Lim, Young; Koo, Jung Wan

    2010-01-01

    To analyze the potential of MR to distinguish lung cancer from progressive massive fibrosis (PMF) in patients with coal worker's pneumoconiosis. The study consisted of 9 patients with pathologically proven lung cancer and 26 PMFs in 17 patients. All the patients had radiologic evidence of pneumoconiosis. T1-weighted FLASH images were obtained before and 0.5, 1, 2, 3, 4, 5, 7.5, 10, 12.5, and 15 minutes after injection of Gd-DTPA. T2-weighted fast spin-echo images were obtained. The imaging findings were evaluated for enhancement time curve, contrast uptake equivalent (CE), and enhancement factor (EF). On T1WI, there was no significant signal intensity difference between lung cancer and PMF. On T2WI, all lung cancer showed high signal intensity, as opposed to all PMFs which showed low signal intensity except for one PMF. Only one PMF showed high signal intensity on T2WI. For the dynamic contrast study, lung cancer showed faster and slightly stronger enhancement than PMFs. For a delayed image, most of the lung cancers (78%) showed washout, as opposed to a plateau in most of PMFs (73%) (p=0.0153). However, no difference was detected between the EFmax of lung cancer and PMFs (p=0.349). MR is potentially a useful tool in distinguishing lung cancer from PMFs in patients with coal worker's pneumoconiosis

  5. Progressive Damage Modeling of Durable Bonded Joint Technology

    Science.gov (United States)

    Leone, Frank A.; Davila, Carlos G.; Lin, Shih-Yung; Smeltzer, Stan; Girolamo, Donato; Ghose, Sayata; Guzman, Juan C.; McCarville, Duglas A.

    2013-01-01

    The development of durable bonded joint technology for assembling composite structures for launch vehicles is being pursued for the U.S. Space Launch System. The present work is related to the development and application of progressive damage modeling techniques to bonded joint technology applicable to a wide range of sandwich structures for a Heavy Lift Launch Vehicle. The joint designs studied in this work include a conventional composite splice joint and a NASA-patented Durable Redundant Joint. Both designs involve a honeycomb sandwich with carbon/epoxy facesheets joined with adhesively bonded doublers. Progressive damage modeling allows for the prediction of the initiation and evolution of damage. For structures that include multiple materials, the number of potential failure mechanisms that must be considered increases the complexity of the analyses. Potential failure mechanisms include fiber fracture, matrix cracking, delamination, core crushing, adhesive failure, and their interactions. The joints were modeled using Abaqus parametric finite element models, in which damage was modeled with user-written subroutines. Each ply was meshed discretely, and layers of cohesive elements were used to account for delaminations and to model the adhesive layers. Good correlation with experimental results was achieved both in terms of load-displacement history and predicted failure mechanisms.

  6. Progression-free survival/time to progression as a potential surrogate for overall survival in HR+, HER2– metastatic breast cancer

    Directory of Open Access Journals (Sweden)

    Forsythe A

    2018-05-01

    Full Text Available Anna Forsythe,1 David Chandiwana,2 Janina Barth,3 Marroon Thabane,4 Johan Baeck,2 Gabriel Tremblay1 1Purple Squirrel Economics, New York, NY, 2Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA; 3Novartis Pharma GmbH, Nuremberg, Germany; 4Novartis Pharmaceuticals Incorporated, Dorval, QC, Canada Background: Several recent randomized controlled trials (RCTs in hormone receptor-positive (HR+, human epidermal growth factor receptor 2-negative (HER2– metastatic breast cancer (MBC have demonstrated significant improvements in progression-free survival (PFS; however, few have reported improvement in overall survival (OS. The surrogacy of PFS or time to progression (TTP for OS has not been formally investigated in HR+, HER2– MBC.Methods: A systematic literature review of RCTs in HR+, HER2– MBC was conducted to identify studies that reported both median PFS/TTP and OS. The correlation between PFS/TTP and OS was evaluated using Pearson’s product–moment correlation and Spearman’s rank correlation. Subgroup analyses were performed to explore possible reasons for heterogeneity. Errors-in-variables weighted least squares regression (LSR was used to model incremental OS months as a function of incremental PFS/TTP months. An exploratory analysis investigated the impact of three covariates (chemotherapy vs hormonal/targeted therapy, PFS vs TTP, and first-line therapy vs second-line therapy or greater on OS prediction. The lower 95% prediction band was used to determine the minimum incremental PFS/TTP months required to predict OS benefit (surrogate threshold effect [STE].Results: Forty studies were identified. There was a statistically significant correlation between median PFS/TTP and OS (Pearson =0.741, P=0.000; Spearman =0.650, P=0.000. These results proved consistent for chemotherapy and hormonal/targeted therapy. Univariate LSR analysis yielded an R2 of 0.354 with 1 incremental PFS/TTP month corresponding to 1.13 incremental OS months

  7. Simulation models in population breast cancer screening: A systematic review.

    Science.gov (United States)

    Koleva-Kolarova, Rositsa G; Zhan, Zhuozhao; Greuter, Marcel J W; Feenstra, Talitha L; De Bock, Geertruida H

    2015-08-01

    The aim of this review was to critically evaluate published simulation models for breast cancer screening of the general population and provide a direction for future modeling. A systematic literature search was performed to identify simulation models with more than one application. A framework for qualitative assessment which incorporated model type; input parameters; modeling approach, transparency of input data sources/assumptions, sensitivity analyses and risk of bias; validation, and outcomes was developed. Predicted mortality reduction (MR) and cost-effectiveness (CE) were compared to estimates from meta-analyses of randomized control trials (RCTs) and acceptability thresholds. Seven original simulation models were distinguished, all sharing common input parameters. The modeling approach was based on tumor progression (except one model) with internal and cross validation of the resulting models, but without any external validation. Differences in lead times for invasive or non-invasive tumors, and the option for cancers not to progress were not explicitly modeled. The models tended to overestimate the MR (11-24%) due to screening as compared to optimal RCTs 10% (95% CI - 2-21%) MR. Only recently, potential harms due to regular breast cancer screening were reported. Most scenarios resulted in acceptable cost-effectiveness estimates given current thresholds. The selected models have been repeatedly applied in various settings to inform decision making and the critical analysis revealed high risk of bias in their outcomes. Given the importance of the models, there is a need for externally validated models which use systematical evidence for input data to allow for more critical evaluation of breast cancer screening. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. HAART slows progression to anal cancer in HIV-infected MSM.

    Science.gov (United States)

    Duncan, Katrina C; Chan, Keith J; Chiu, Connie G; Montaner, Julio S G; Coldman, Andy J; Cescon, Angela; Au-Yeung, Christopher G; Wiseman, Sam M; Hogg, Robert S; Press, Natasha M

    2015-01-28

    Antiretrovirals do not prevent anal intraepithelial neoplasia. However, the influence of antiretrovirals in the natural history of invasive anal cancer is less clear. The objective is to investigate the impact of antiretrovirals in the time to the development of anal cancer in HIV-positive MSM. A retrospective analysis of cases of anal cancer in a cohort of HIV-positive MSM receiving antiretrovirals between 1988 and 2008. Time from first CD4 cell count or HIV RNA viral load test to anal cancer diagnosis was analysed using Cox regression and Kaplan-Meier curves. Anal cancer cases treated in the era prior to HAART (cancer cases (n = 37) were compared with a cohort of 1654 HIV-positive MSM on antiretrovirals. Antiretrovirals were started in the pre-HAART era by 70% of cancer cases, and median CD4 cell count nadir was 70 cells/μl (10-130). Time to development of anal cancer was shorter for cases treated during the pre-HAART era [adjusted hazard ratio (AHR) 3.04, 95% confidence interval (95% CI) 1.48-6.24, P = 0.002], with a CD4 cell count nadir less than 100 cells/μl (AHR 2.21, 95% CI 1.06-4.62, P = 0.035) and longer duration of CD4 cell count less than 100 cells/μl (AHR 1.33, 95% CI 1.11-1.58, P = 0.002). Results show that severe immunosuppression and starting therapy pre-HAART are associated with an increased risk of anal cancer. HIV-positive MSM initiating antiretrovirals during the HAART era (1996-2008) had a longer time to the development of anal cancer than those treated pre-HAART. Our results suggest that early use of HAART may delay progression to anal cancer.

  9. The wound inflammatory response exacerbates growth of pre-neoplastic cells and progression to cancer

    DEFF Research Database (Denmark)

    Antonio, Nicole; Bønnelykke-Behrndtz, Marie Louise; Ward, Laura Chloe

    2015-01-01

    There is a long-standing association between wound healing and cancer, with cancer often described as a "wound that does not heal". However, little is known about how wounding, such as following surgery, biopsy collection or ulceration, might impact on cancer progression. Here, we use a transluce...

  10. Inhibition of androgen receptor by decoy molecules delays progression to castration-recurrent prostate cancer.

    Directory of Open Access Journals (Sweden)

    Jae-Kyung Myung

    Full Text Available Androgen receptor (AR is a member of the steroid receptor family and a therapeutic target for all stages of prostate cancer. AR is activated by ligand binding within its C-terminus ligand-binding domain (LBD. Here we show that overexpression of the AR NTD to generate decoy molecules inhibited both the growth and progression of prostate cancer in castrated hosts. Specifically, it was shown that lentivirus delivery of decoys delayed hormonal progression in castrated hosts as indicated by increased doubling time of tumor volume, prolonged time to achieve pre-castrate levels of serum prostate-specific antigen (PSA and PSA nadir. These clinical parameters are indicative of delayed hormonal progression and improved therapeutic response and prognosis. Decoys reduced the expression of androgen-regulated genes that correlated with reduced in situ interaction of the AR with androgen response elements. Decoys did not reduce levels of AR protein or prevent nuclear localization of the AR. Nor did decoys interact directly with the AR. Thus decoys did not inhibit AR transactivation by a dominant negative mechanism. This work provides evidence that the AR NTD plays an important role in the hormonal progression of prostate cancer and supports the development of AR antagonists that target the AR NTD.

  11. TGF-β in pancreatic cancer initiation and progression: two sides of the same coin.

    Science.gov (United States)

    Shen, Wei; Tao, Guo-Qing; Zhang, Yu; Cai, Bing; Sun, Jian; Tian, Zhi-Qiang

    2017-01-01

    Pancreatic cancer is highly lethal malignant tumor with characterised rapid progression, invasiveness and resistance to radiochemotherapy. Transforming growth factor-β (TGF-β) signaling plays a dual role in both pro-tumorigenic and tumor suppressive of pancreatic cancer, depending on tumor stage and microenvironment. TGF-β signaling components alteration are common in pancreatic cancer, and its leading role in tumor formation and metastases has received increased attention. Many therapies have investigated to target TGF-β signaling in the preclinical and clinical setting. In this review, we highlight the dual roles of TGF-β and touch upon the perspectives on therapeutic target of TGF-β signaling in pancreatic cancer.

  12. Breast cancer pulmonary metastasis is increased in mice undertaking spontaneous physical training in the running wheel; a call for revising beneficial effects of exercise on cancer progression.

    Science.gov (United States)

    Smeda, Marta; Przyborowski, Kamil; Proniewski, Bartosz; Zakrzewska, Agnieszka; Kaczor, Dawid; Stojak, Marta; Buczek, Elzbieta; Nieckarz, Zenon; Zoladz, Jerzy A; Wietrzyk, Joanna; Chlopicki, Stefan

    2017-01-01

    It has been repeatedly shown that regular aerobic exercise exerts beneficial effects on incidence and progression of cancer. However, the data regarding effects of exercise on metastatic dissemination remain conflicting. Therefore, in the present study the possible preventive effects of voluntary wheel running on primary tumor growth and metastases formation in the model of spontaneous pulmonary metastasis were analyzed after orthotopic injection of 4T1 breast cancer cells into mammary fat pads of female Balb/C mice. This study identified that in the mice injected with 4T1 breast cancer cells and running on the wheels (4T1 ex) the volume and size of the primary tumor were not affected, but the number of secondary nodules formed in the lungs was significantly increased compared to their sedentary counterparts (4T1 sed). This effect was associated with decreased NO production in the isolated aorta of exercising mice (4T1 ex), suggesting deterioration of endothelial function that was associated with lower platelet count without their overactivation. This was evidenced by comparable selectin P, active GPIIb/IIIa expression, fibrinogen and vWF binding on the platelet surface. In conclusion, voluntary wheel running appeared to impair, rather than improve endothelial function, and to promote, but not decrease metastasis in the murine orthotopic model of metastatic breast cancer. These results call for revising the notion of the persistent beneficial effects of voluntary exercise on breast cancer progression, though further studies are needed to elucidate mechanisms involved in pro-metastatic effects of voluntary exercise.

  13. Validating a proxy for disease progression in metastatic cancer patients using prescribing and dispensing data.

    Science.gov (United States)

    Joshi, Vikram; Adelstein, Barbara-Ann; Schaffer, Andrea; Srasuebkul, Preeyaporn; Dobbins, Timothy; Pearson, Sallie-Anne

    2017-10-01

    Routine data collections are used increasingly to examine outcomes of real-world cancer drug use. These datasets lack clinical details about important endpoints such as disease progression. To validate a proxy for disease progression in metastatic cancer patients using prescribing and dispensing claims. We used data from a cohort study of patients undergoing chemotherapy who provided informed consent to the collection of cancer-treatment data from medical records and linkage to pharmaceutical claims. We derived proxy decision rules based on changes to drug treatment in prescription histories (n = 36 patients) and validated the proxy in prescribing data (n = 62 patients). We adapted the decision rules and validated the proxy in dispensing data (n = 109). Our gold standard was disease progression ascertained in patient medical records. Individual progression episodes were the unit of analysis for sensitivity and Positive Predictive Value (PPV) calculations and specificity and Negative Predictive Value (NPV) were calculated at the patient level. The sensitivity of our proxy in prescribing data was 74.3% (95% Confidence Interval (CI), 55.6-86.6%) and PPV 61.2% (95% CI, 45.0-75.3%); specificity and NPV were 87.8% (95% CI, 73.8-95.9%) and 100% (95% CI, 90.3-100%), respectively. In dispensing data, the sensitivity of our proxy was 64% (95% CI, 55.0-77.0%) and PPV 56.0% (95% CI, 43.0-69.0%); specificity and NPV were 81% (95% CI, 70.05-89.0%) and 91.0% (95% CI, 82.0-97.0%), respectively. Our proxy overestimated episodes of disease progression. The proxy's performance is likely to improve if the date of prescribing is used instead of date of dispensing in claims data and by incorporating medical service claims (such as imaging prior to drug changes) in the algorithm. Our proxy is not sufficiently robust for use in real world comparative effectiveness research for cancer medicines. © 2016 John Wiley & Sons Australia, Ltd.

  14. Evidence for widespread dysregulation of circadian clock progression in human cancer

    Directory of Open Access Journals (Sweden)

    Jarrod Shilts

    2018-01-01

    Full Text Available The ubiquitous daily rhythms in mammalian physiology are guided by progression of the circadian clock. In mice, systemic disruption of the clock can promote tumor growth. In vitro, multiple oncogenes can disrupt the clock. However, due to the difficulties of studying circadian rhythms in solid tissues in humans, whether the clock is disrupted within human tumors has remained unknown. We sought to determine the state of the circadian clock in human cancer using publicly available transcriptome data. We developed a method, called the clock correlation distance (CCD, to infer circadian clock progression in a group of samples based on the co-expression of 12 clock genes. Our method can be applied to modestly sized datasets in which samples are not labeled with time of day and coverage of the circadian cycle is incomplete. We used the method to define a signature of clock gene co-expression in healthy mouse organs, then validated the signature in healthy human tissues. By then comparing human tumor and non-tumor samples from twenty datasets of a range of cancer types, we discovered that clock gene co-expression in tumors is consistently perturbed. Subsequent analysis of data from clock gene knockouts in mice suggested that perturbed clock gene co-expression in human cancer is not caused solely by the inactivation of clock genes. Furthermore, focusing on lung cancer, we found that human lung tumors showed systematic changes in expression in a large set of genes previously inferred to be rhythmic in healthy lung. Our findings suggest that clock progression is dysregulated in many solid human cancers and that this dysregulation could have broad effects on circadian physiology within tumors. In addition, our approach opens the door to using publicly available data to infer circadian clock progression in a multitude of human phenotypes.

  15. Building a better model of cancer

    Directory of Open Access Journals (Sweden)

    DeGregori James

    2006-10-01

    Full Text Available Abstract The 2006 Cold Spring Harbor Laboratory meeting on the Mechanisms and Models of Cancer was held August 16–20. The meeting featured several hundred presentations of many short talks (mostly selected from the abstracts and posters, with the airing of a number of exciting new discoveries. We will focus this meeting review on models of cancer (primarily mouse models, highlighting recent advances in new mouse models that better recapitulate sporadic tumorigenesis, demonstrations of tumor addiction to tumor suppressor inactivation, new insight into senescence as a tumor barrier, improved understanding of the evolutionary paths of cancer development, and environmental/immunological influences on cancer.

  16. Characterization of the Chicken Ovarian Cancer Model

    National Research Council Canada - National Science Library

    Rodriguez, Gustavo

    2002-01-01

    .... Unlike other ovarian cancer models, which require experimental induction of ovarian tumors, chickens develop ovarian adenocarcinoma spontaneously, with an incidence ranging from 13 to 40 percent...

  17. Characterization of the Chicken Ovarian Cancer Model

    National Research Council Canada - National Science Library

    Rodriguez, Gustavo C

    2004-01-01

    .... Unlike other ovarian cancer models, which require experimental induction of ovarian tumors, chickens develop ovarian adenocarcinoma spontaneously, with an incidence ranging from 13 to 40 percent...

  18. Characterization of the Chicken Ovarian Cancer Model

    National Research Council Canada - National Science Library

    Rodriguez, Gustavo C

    2005-01-01

    .... Unlike other ovarian cancer models, which require experimental induction of ovarian tumors, chickens develop ovarian adenocarcinoma spontaneously, with an incidence ranging from 13 to 40 percent...

  19. Characterization of the Chicken Ovarian Cancer Model

    National Research Council Canada - National Science Library

    Rodriguez, Gustavo

    2003-01-01

    .... Unlike other ovarian cancer models, which require experimental induction of ovarian tumors, chickens develop ovarian adenocarcinoma spontaneously, with an incidence ranging from 13 to 40 percent...

  20. Characterization of the Chicken Ovarian Cancer Model

    National Research Council Canada - National Science Library

    Rodriquez, Gustavo

    2001-01-01

    .... Unlike other ovarian cancer models, which require experimental induction of ovarian tumors, chickens develop ovarian adenocarcinoma spontaneously, with an incidence ranging from 13 to 40 percent...

  1. Developing and Validating a Predictive Model for Stroke Progression

    Directory of Open Access Journals (Sweden)

    L.E. Craig

    2011-12-01

    Full Text Available Background: Progression is believed to be a common and important complication in acute stroke, and has been associated with increased mortality and morbidity. Reliable identification of predictors of early neurological deterioration could potentially benefit routine clinical care. The aim of this study was to identify predictors of early stroke progression using two independent patient cohorts. Methods: Two patient cohorts were used for this study – the first cohort formed the training data set, which included consecutive patients admitted to an urban teaching hospital between 2000 and 2002, and the second cohort formed the test data set, which included patients admitted to the same hospital between 2003 and 2004. A standard definition of stroke progression was used. The first cohort (n = 863 was used to develop the model. Variables that were statistically significant (p 0.1 in turn. The second cohort (n = 216 was used to test the performance of the model. The performance of the predictive model was assessed in terms of both calibration and discrimination. Multiple imputation methods were used for dealing with the missing values. Results: Variables shown to be significant predictors of stroke progression were conscious level, history of coronary heart disease, presence of hyperosmolarity, CT lesion, living alone on admission, Oxfordshire Community Stroke Project classification, presence of pyrexia and smoking status. The model appears to have reasonable discriminative properties [the median receiver-operating characteristic curve value was 0.72 (range 0.72–0.73] and to fit well with the observed data, which is indicated by the high goodness-of-fit p value [the median p value from the Hosmer-Lemeshow test was 0.90 (range 0.50–0.92]. Conclusion: The predictive model developed in this study contains variables that can be easily collected in practice therefore increasing its usability in clinical practice. Using this analysis approach, the

  2. Developing and validating a predictive model for stroke progression.

    Science.gov (United States)

    Craig, L E; Wu, O; Gilmour, H; Barber, M; Langhorne, P

    2011-01-01

    Progression is believed to be a common and important complication in acute stroke, and has been associated with increased mortality and morbidity. Reliable identification of predictors of early neurological deterioration could potentially benefit routine clinical care. The aim of this study was to identify predictors of early stroke progression using two independent patient cohorts. Two patient cohorts were used for this study - the first cohort formed the training data set, which included consecutive patients admitted to an urban teaching hospital between 2000 and 2002, and the second cohort formed the test data set, which included patients admitted to the same hospital between 2003 and 2004. A standard definition of stroke progression was used. The first cohort (n = 863) was used to develop the model. Variables that were statistically significant (p p > 0.1) in turn. The second cohort (n = 216) was used to test the performance of the model. The performance of the predictive model was assessed in terms of both calibration and discrimination. Multiple imputation methods were used for dealing with the missing values. Variables shown to be significant predictors of stroke progression were conscious level, history of coronary heart disease, presence of hyperosmolarity, CT lesion, living alone on admission, Oxfordshire Community Stroke Project classification, presence of pyrexia and smoking status. The model appears to have reasonable discriminative properties [the median receiver-operating characteristic curve value was 0.72 (range 0.72-0.73)] and to fit well with the observed data, which is indicated by the high goodness-of-fit p value [the median p value from the Hosmer-Lemeshow test was 0.90 (range 0.50-0.92)]. The predictive model developed in this study contains variables that can be easily collected in practice therefore increasing its usability in clinical practice. Using this analysis approach, the discrimination and calibration of the predictive model appear

  3. Developing and Validating a Predictive Model for Stroke Progression

    Science.gov (United States)

    Craig, L.E.; Wu, O.; Gilmour, H.; Barber, M.; Langhorne, P.

    2011-01-01

    Background Progression is believed to be a common and important complication in acute stroke, and has been associated with increased mortality and morbidity. Reliable identification of predictors of early neurological deterioration could potentially benefit routine clinical care. The aim of this study was to identify predictors of early stroke progression using two independent patient cohorts. Methods Two patient cohorts were used for this study – the first cohort formed the training data set, which included consecutive patients admitted to an urban teaching hospital between 2000 and 2002, and the second cohort formed the test data set, which included patients admitted to the same hospital between 2003 and 2004. A standard definition of stroke progression was used. The first cohort (n = 863) was used to develop the model. Variables that were statistically significant (p 0.1) in turn. The second cohort (n = 216) was used to test the performance of the model. The performance of the predictive model was assessed in terms of both calibration and discrimination. Multiple imputation methods were used for dealing with the missing values. Results Variables shown to be significant predictors of stroke progression were conscious level, history of coronary heart disease, presence of hyperosmolarity, CT lesion, living alone on admission, Oxfordshire Community Stroke Project classification, presence of pyrexia and smoking status. The model appears to have reasonable discriminative properties [the median receiver-operating characteristic curve value was 0.72 (range 0.72–0.73)] and to fit well with the observed data, which is indicated by the high goodness-of-fit p value [the median p value from the Hosmer-Lemeshow test was 0.90 (range 0.50–0.92)]. Conclusion The predictive model developed in this study contains variables that can be easily collected in practice therefore increasing its usability in clinical practice. Using this analysis approach, the discrimination and

  4. Progress towards localization in the attractive Hubbard model

    Science.gov (United States)

    Morong, W.; Xu, W.; Demarco, B.

    2017-04-01

    The interplay between fermionic superfluidity and disorder is a topic of long-standing interest that has recently come within reach of ultracold gas experiments. Outstanding questions include the fate of Cooper pairs in a localized superfluid and the effect of disorder on the superfluid transition temperature. We report progress on tackling this problem using a realization of the Hubbard model with attractive interactions. Our system consists of two spin states of fermionic potassium-40 trapped in a cubic optical lattice. Disorder is introduced using an optical speckle potential, and interactions are controlled via a Feshbach resonance. We study the binding and unbinding of Cooper pairs in this system using rf spectroscopy, changes in Tc by measuring the condensate fraction, and transport properties by observing the response to an applied impulse. We will discuss progress towards these measurements.

  5. Radiotherapy for local progression in patients with hormone-refractory prostate cancer

    International Nuclear Information System (INIS)

    Furuya, Yuzo; Akakura, Koichiro; Akimoto, Susumu; Ichikawa, Tomohiko; Ito, Haruo

    1999-01-01

    The aim of the present study was to investigate the effect of radiotherapy on the local progression of hormone-refractory prostate cancer. From 1986 to 1995, 38 patients were diagnosed with local progression without distant progression after hormonal therapy at Chiba University Hospital. Eleven cases were treated with irradiation for local progression. External beam irradiation was delivered to the prostate at a dose of 50-66.6 Gy. In patients treated with radiotherapy, the duration from initial treatment to local recurrence was 6-80 months (mean±SD: 33.9±22.9 months). The follow-up period after irradiation was 7-64 months (mean±SD: 25.4±18.8 months). Three and 5 year cause-specific survival rates from radiotherapy were 46.2 and 23.1%, respectively. Radiotherapy had a marked effect on symptoms associated with local progression and no patients suffered from the symptoms after the radiotherapy. Complications of radiotherapy were limited. In patients with hormone refractory local progression without distant progression, low morbidity, low mortality radiotherapy offers a variable therapy to other palliative treatments because radiotherapy is able to control local symptoms for a long period of time. (author)

  6. Molecular genetics of cancer and tumorigenesis: Drosophila models

    Institute of Scientific and Technical Information of China (English)

    Wu-Min Deng

    2011-01-01

    Why do some cells not respond to normal control of cell division and become tumorous? Which signals trigger some tumor cells to migrate and colonize other tissues? What genetic factors are responsible for tumorigenesis and cancer development? What environmental factors play a role in cancer formation and progression? In how many ways can our bodies prevent and restrict the growth of cancerous cells?How can we identify and deliver effective drugs to fight cancer? In the fight against cancer,which kills more people than any other disease,these and other questions have long interested researchers from a diverse range of fields.To answer these questions and to fight cancer more effectively,we must increase our understanding of basic cancer biology.Model organisms,including the fruit fly Drosophila melanogaster,have played instrumental roles in our understanding of this devastating disease and the search for effective cures.Drosophila and its highly effective,easy-touse,and ever-expanding genetic tools have contributed toand enriched our knowledge of cancer and tumor formation tremendously.

  7. Pro-oncogene Pokemon promotes breast cancer progression by upregulating survivin expression.

    Science.gov (United States)

    Zu, Xuyu; Ma, Jun; Liu, Hongxia; Liu, Feng; Tan, Chunyan; Yu, Lingling; Wang, Jue; Xie, Zhenhua; Cao, Deliang; Jiang, Yuyang

    2011-03-10

    Pokemon is an oncogenic transcription factor involved in cell growth, differentiation and oncogenesis, but little is known about its role in human breast cancer. In this study, we aimed to reveal the role of Pokemon in breast cancer progression and patient survival and to understand its underlying mechanisms. Tissue microarray analysis of breast cancer tissues from patients with complete clinicopathological data and more than 20 years of follow-up were used to evaluate Pokemon expression and its correlation with the progression and prognosis of the disease. DNA microarray analysis of MCF-7 cells that overexpress Pokemon was used to identify Pokemon target genes. Chromatin immunoprecipitation (ChIP) and site-directed mutagenesis were utilized to determine how Pokemon regulates survivin expression, a target gene. Pokemon was found to be overexpressed in 158 (86.8%) of 182 breast cancer tissues, and its expression was correlated with tumor size (P = 0.0148) and lymph node metastasis (P = 0.0014). Pokemon expression led to worse overall (n = 175, P = 0.01) and disease-related (n = 79, P = 0.0134) patient survival. DNA microarray analyses revealed that in MCF-7 breast cancer cells, Pokemon regulates the expression of at least 121 genes involved in several signaling and metabolic pathways, including anti-apoptotic survivin. In clinical specimens, Pokemon and survivin expression were highly correlated (n = 49, r = 0.6799, P Pokemon induces survivin expression by binding to the GT boxes in its promoter. Pokemon promotes breast cancer progression by upregulating survivin expression and thus may be a potential target for the treatment of this malignancy.

  8. Neural protein gamma-synuclein interacting with androgen receptor promotes human prostate cancer progression

    International Nuclear Information System (INIS)

    Chen, Junyi; Jiao, Li; Xu, Chuanliang; Yu, Yongwei; Zhang, Zhensheng; Chang, Zheng; Deng, Zhen; Sun, Yinghao

    2012-01-01

    Gamma-synuclein (SNCG) has previously been demonstrated to be significantly correlated with metastatic malignancies; however, in-depth investigation of SNCG in prostate cancer is still lacking. In the present study, we evaluated the role of SNCG in prostate cancer progression and explored the underlying mechanisms. First, alteration of SNCG expression in LNCaP cell line to test the ability of SNCG on cellular properties in vitro and vivo whenever exposing with androgen or not. Subsequently, the Dual-luciferase reporter assays were performed to evaluate whether the role of SNCG in LNCaP is through AR signaling. Last, the association between SNCG and prostate cancer progression was assessed immunohistochemically using a series of human prostate tissues. Silencing SNCG by siRNA in LNCaP cells contributes to the inhibition of cellular proliferation, the induction of cell-cycle arrest at the G1 phase, the suppression of cellular migration and invasion in vitro, as well as the decrease of tumor growth in vivo with the notable exception of castrated mice. Subsequently, mechanistic studies indicated that SNCG is a novel androgen receptor (AR) coactivator. It interacts with AR and promotes prostate cancer cellular growth and proliferation by activating AR transcription in an androgen-dependent manner. Finally, immunohistochemical analysis revealed that SNCG was almost undetectable in benign or androgen-independent tissues prostate lesions. The high expression of SNCG is correlated with peripheral and lymph node invasion. Our data suggest that SNCG may serve as a biomarker for predicting human prostate cancer progression and metastasis. It also may become as a novel target for biomedical therapy in advanced prostate cancer

  9. Breast Cancer Patients Have Greatly Benefited from the Progress in Molecular Oncology.

    Directory of Open Access Journals (Sweden)

    Bernd L Groner

    2016-09-01

    Full Text Available Cancer research has become a global enterprise, and the number of researchers, as well as the cost for their activities, has skyrocketed. The budget for the National Cancer Institute of the United States National Institutes of Health alone was US$5.2 billion in 2015. Since most of the research is funded by public money, it is perfectly legitimate to ask if these large expenses are worth it. In this brief commentary, we recapitulate some of the breakthroughs that mark the history of breast cancer research over the past decades and emphasize the resulting benefits for afflicted women. In 1971, only 40% of women diagnosed with breast cancer would live another 10 years. Today, nearly 80% of women reach that significant milestone in most developed countries. This dramatic change has afforded breast cancer patients many productive years and a better quality of life. Progress resulted largely from advances in the understanding of the molecular details of the disease and their translation into innovative, rationally designed therapies. These developments are founded on the revolution in molecular and cellular biology, an entirely new array of methods and technologies, the enthusiasm, optimism, and diligence of scientists and clinicians, and the considerable funding efforts from public and private sources. We were lucky to be able to spend our productive years in a period of scientific upheaval in which methods and concepts were revolutionized and that allowed us to contribute, within the global scientific community, to the progress in basic science and clinical practice.

  10. Breast Cancer Patients Have Greatly Benefited from the Progress in Molecular Oncology.

    Science.gov (United States)

    Groner, Bernd L; Hynes, Nancy E

    2016-09-01

    Cancer research has become a global enterprise, and the number of researchers, as well as the cost for their activities, has skyrocketed. The budget for the National Cancer Institute of the United States National Institutes of Health alone was US$5.2 billion in 2015. Since most of the research is funded by public money, it is perfectly legitimate to ask if these large expenses are worth it. In this brief commentary, we recapitulate some of the breakthroughs that mark the history of breast cancer research over the past decades and emphasize the resulting benefits for afflicted women. In 1971, only 40% of women diagnosed with breast cancer would live another 10 years. Today, nearly 80% of women reach that significant milestone in most developed countries. This dramatic change has afforded breast cancer patients many productive years and a better quality of life. Progress resulted largely from advances in the understanding of the molecular details of the disease and their translation into innovative, rationally designed therapies. These developments are founded on the revolution in molecular and cellular biology, an entirely new array of methods and technologies, the enthusiasm, optimism, and diligence of scientists and clinicians, and the considerable funding efforts from public and private sources. We were lucky to be able to spend our productive years in a period of scientific upheaval in which methods and concepts were revolutionized and that allowed us to contribute, within the global scientific community, to the progress in basic science and clinical practice.

  11. Adipocytes and Macrophages Interplay in the Orchestration of Tumor Microenvironment: New Implications in Cancer Progression

    Directory of Open Access Journals (Sweden)

    Luís Henrique Corrêa

    2017-09-01

    Full Text Available Inflammation has been known as one of the main keys to the establishment and progression of cancers. Chronic low-grade inflammation is also a strategic condition that underlies the causes and development of metabolic syndrome and obesity. Moreover, obesity has been largely related to poor prognosis of tumors by modulating tumor microenvironment with secretion of several inflammatory mediators by tumor-associated adipocytes (TAAs, which can modulate and recruit tumor-associated macrophages. Thus, the understanding of cellular and molecular mechanisms that underlay and link inflammation, obesity, and cancer is crucial to identify potential targets that interfere with this important route. Knowledge about the exact role of each component of the tumor microenvironment is not yet fully understood, but the new insights in literature highlight the essential role of adipocytes and macrophages interplay as key factor to determine the fate of cancer progression. In this review article, we focus on the functions of adipocytes and macrophages orchestrating cellular and molecular mechanisms that lead to inflammatory modulation in tumor microenvironment, which will be crucial to cancer establishment. We also emphasized the mechanisms by which the tumor promotes itself by recruiting and polarizing macrophages, discussing the role of adipocytes in this process. In addition, we discuss here the newest possible anticancer therapeutic treatments aiming to retard the development of the tumor based on what is known about cancer, adipocyte, and macrophage polarization.

  12. Cancer classification through filtering progressive transductive support vector machine based on gene expression data

    Science.gov (United States)

    Lu, Xinguo; Chen, Dan

    2017-08-01

    Traditional supervised classifiers neglect a large amount of data which not have sufficient follow-up information, only work with labeled data. Consequently, the small sample size limits the advancement of design appropriate classifier. In this paper, a transductive learning method which combined with the filtering strategy in transductive framework and progressive labeling strategy is addressed. The progressive labeling strategy does not need to consider the distribution of labeled samples to evaluate the distribution of unlabeled samples, can effective solve the problem of evaluate the proportion of positive and negative samples in work set. Our experiment result demonstrate that the proposed technique have great potential in cancer prediction based on gene expression.

  13. Heat shock protein 27 phosphorylation state is associated with cancer progression

    Directory of Open Access Journals (Sweden)

    Maria eKatsogiannou

    2014-10-01

    Full Text Available Understanding the mechanisms that control stress-induced survival is critical to explain how tumors frequently resist to treatment and to improve current anti-cancer therapies. Cancer cells are able to cope with stress and escape drug toxicity by regulating heat shock proteins (Hsps expression and function. Hsp27 (HSPB1, a member of the small Hsp family, represents one of the key players of many signaling pathways contributing to tumorigenicity, treatment resistance and apoptosis inhibition. Hsp27 is overexpressed in many types of cancer and its functions are regulated by post-translational modifications, such as phosphorylation. Protein phosphorylation is the most widespread signaling mechanism in eukaryotic cells, and it is involved in all fundamental cellular processes. Aberrant phosphorylation of Hsp27 has been associated with several diseases such as cancer but the molecular mechanisms by which it is implicated in cancer development and progression remain undefined. This review focuses on the role of phosphorylation in Hsp27 functions in cancer cells and its potential usefulness as therapeutic target in cancer.

  14. Curcumin inhibits bladder cancer progression via regulation of β-catenin expression.

    Science.gov (United States)

    Shi, Jing; Wang, Yunpeng; Jia, Zhuomin; Gao, Yu; Zhao, Chaofei; Yao, Yuanxin

    2017-07-01

    Bladder cancer has a considerable morbidity and mortality impact with particularly poor prognosis. Curcumin has been recently noticed as a polyphenolic compound separated from turmeric to regulate tumor progression. However, the precise molecular mechanism by which curcumin inhibits the invasion and metastasis of bladder cancer cells is not fully elucidated. In this study, we investigate the effect of curcumin on the bladder cancer as well as possible mechanisms of curcumin. The expression of β-catenin was detected by quantitative real-time polymerase chain reaction and immunohistochemical analysis in a series of bladder cancer tissues. In addition, bladder cancer cell lines T24 and 5637 cells were treated with different concentrations of curcumin. The cytotoxic effect of curcumin on cell proliferation of T24 and 5637 cells was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The migration and invasion capacity of T24 and 5637 cells were measured by transwell assay. The effects of curcumin on expression levels of β-catenin and epithelial-mesenchymal transition marker were determined by western blotting. The β-catenin expression was significantly upregulated in bladder cancer tissues when compared with corresponding peri-tumor tissues. Furthermore, curcumin inhibited the cell proliferation of T24 and 5637 cells, and curcumin reduced the migration and invasive ability of T24 and 5637 cells via regulating β-catenin expression and reversing epithelial-mesenchymal transition. Curcumin may be a new drug for bladder cancer.

  15. The associations between the environmental exposure to polychlorinated biphenyls (PCBs) and breast cancer risk and progression

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Polychlorinated biphenyls(PCBs) are chlorinated biphenyl compounds with wide applications in the industry.In spite of a ban on their production in the late 1970s,PCBs,as a group of POPs,are still persistent and widely spread in the environment,posing potential threats to human health.The role of PCBs as etiologic agents for breast cancer has been intensively explored in a variety of in vivo,animal and epidemiologic studies.Initial investigations indicated higher levels of PCBs in mammary tissues or sera corresponded to the occurrence of breast cancer,but later studies showed no positive association between PCB exposure and breast cancer development.More recent data suggested that the CYP1A1 m2 polymorphisms might add increased risk to the etiology of breast cancer in women with environmental exposure to PCBs.PCBs are implicated in advancing breast cancer progression,and our unpublished data reveals that PCBs activate the ROCK signaling to enhance breast cancer metastasis.Therefore,the correlation between PCB exposure and breast cancer risk warrants further careful investigations.

  16. FoxD3 deficiency promotes breast cancer progression by induction of epithelial–mesenchymal transition

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Tian-Li [Department of General Surgery, The People’s Hospital of Wuqing, Tianjin (China); Zhao, Hong-Meng [Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China); Breast Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China); Li, Yue [Department of Respiration, Affiliated Hospital of Medical College of Chinese People’s Armed Police Force, Tianjin (China); Chen, Ao-Xiang; Sun, Xuan [Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China); Breast Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China); Ge, Jie, E-mail: gejie198003@163.com [Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China); Breast Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China)

    2014-04-04

    Highlights: • FOXD3 is down-regulated in breast cancer tissues. • FOXD3 inhibits breast cancer cell proliferation and invasion. • FoxD3 deficiency induces epithelial–mesenchymal transition. - Abstract: The transcription factor forkhead box D3 (FOXD3) plays an important role in the development of neural crest and gastric cancer cells. However, the function and mechanisms of FOXD3 in the breast tumorigenesis and progression is still limited. Here, we report that FOXD3 is a tumor suppressor of breast cancer tumorigenicity and aggressiveness. We found that FOXD3 is down-regulated in breast cancer tissues. Patients with low FOXD3 expression have a poor outcome. Depletion of FOXD3 expression promotes breast cancer cell proliferation and invasion in vitro, whereas overexpression of FOXD3 inhibits breast cancer cell proliferation and invasion both in vitro and in vivo. In addition, depletion of FOXD3 is linked to epithelial–mesenchymal transition (EMT)-like phenotype. Our results indicate FOXD3 exhibits tumor suppressive activity and may be useful for breast therapy.

  17. Mapping cancer cell metabolism with 13 C flux analysis: Recent progress and future challenges

    Directory of Open Access Journals (Sweden)

    Casey Scott Duckwall

    2013-01-01

    Full Text Available The reprogramming of energy metabolism is emerging as an important molecular hallmark of cancer cells. Recent discoveries linking specific metabolic alterations to cancer development have strengthened the idea that altered metabolism is more than a side effect of malignant transformation, but may in fact be a functional driver of tumor growth and progression in some cancers. As a result, dysregulated metabolic pathways have become attractive targets for cancer therapeutics. This review highlights the application of 13 C metabolic flux analysis (MFA to map the flow of carbon through intracellular biochemical pathways of cancer cells. We summarize several recent applications of MFA that have identified novel biosynthetic pathways involved in cancer cell proliferation and shed light on the role of specific oncogenes in regulating these pathways. Through such studies, it has become apparent that the metabolic phenotypes of cancer cells are not as homogeneous as once thought, but instead depend strongly on the molecular alterations and environmental factors at play in each case.

  18. FoxD3 deficiency promotes breast cancer progression by induction of epithelial–mesenchymal transition

    International Nuclear Information System (INIS)

    Chu, Tian-Li; Zhao, Hong-Meng; Li, Yue; Chen, Ao-Xiang; Sun, Xuan; Ge, Jie

    2014-01-01

    Highlights: • FOXD3 is down-regulated in breast cancer tissues. • FOXD3 inhibits breast cancer cell proliferation and invasion. • FoxD3 deficiency induces epithelial–mesenchymal transition. - Abstract: The transcription factor forkhead box D3 (FOXD3) plays an important role in the development of neural crest and gastric cancer cells. However, the function and mechanisms of FOXD3 in the breast tumorigenesis and progression is still limited. Here, we report that FOXD3 is a tumor suppressor of breast cancer tumorigenicity and aggressiveness. We found that FOXD3 is down-regulated in breast cancer tissues. Patients with low FOXD3 expression have a poor outcome. Depletion of FOXD3 expression promotes breast cancer cell proliferation and invasion in vitro, whereas overexpression of FOXD3 inhibits breast cancer cell proliferation and invasion both in vitro and in vivo. In addition, depletion of FOXD3 is linked to epithelial–mesenchymal transition (EMT)-like phenotype. Our results indicate FOXD3 exhibits tumor suppressive activity and may be useful for breast therapy

  19. Enzalutamide treatment in patients with metastatic castration-resistant prostate cancer progressing after chemotherapy and abiraterone acetate

    DEFF Research Database (Denmark)

    Thomsen, Frederik Birkebaek; Røder, Martin Andreas; Rathenborg, Per

    2014-01-01

    OBJECTIVE: The aim of this study was to record prostate-specific antigen (PSA) response and overall survival (OS) for a group of metastatic castration-resistant prostate cancer (mCRPC) patients treated with enzalutamide following progression after abiraterone treatment in the post-chemotherapy se......OBJECTIVE: The aim of this study was to record prostate-specific antigen (PSA) response and overall survival (OS) for a group of metastatic castration-resistant prostate cancer (mCRPC) patients treated with enzalutamide following progression after abiraterone treatment in the post......-chemotherapy setting. MATERIAL AND METHODS: Twenty-four mCRPC patients with progression after abiraterone treatment following primary docetaxel therapy received enzalutamide 160 mg/day. The percentage PSA response was recorded following first line docetaxel, abiraterone and enzalutamide treatment. Fischer's exact test......, Mann-Whitney U test and linear regression model were used to test for differences in PSA response. RESULTS: All patients had a follow-up of at least 3 months. The median PSA response following 1 month of enzalutamide was -12% (range -56% to 76%), while the median best PSA response was -22% (-76% to 76...

  20. The Progress of T Cell Immunity Related to Prognosis in Gastric Cancer

    OpenAIRE

    Ming Wei; Duo Shen; Sachin Mulmi Shrestha; Juan Liu; Junyi Zhang; Ying Yin

    2018-01-01

    Gastric cancer is the fifth most common malignancy all over the world, and the factors that can affect progress and prognosis of the gastric cancer patients are various, such as TNM stages, invasive depth, and lymph node metastasis ratio. T cell immunity is important component of human immunity system and immunity responding to tumor and dysfunction or imbalance of T cell immunity will lead to serious outcomes for body. T cell immunity includes many different types of cells, CD4+ T cell, CD8+...

  1. Progressive strength training to prevent LYmphoedema in the first year after breast CAncer

    DEFF Research Database (Denmark)

    Ammitzbøll, Gunn; Lanng, Charlotte; Kroman, Niels

    2017-01-01

    BACKGROUND: Lymphoedema is a common late effect after breast cancer (BC) that has no effective cure once chronic. Accumulating evidence supports progressive strength training (PRT) as a safe exercise modality in relation to the onset and exacerbation of lymphoedema. In the 'preventive intervention...... against LYmphoedema after breast CAncer' (LYCA) feasibility study we examined the feasibility of a program of PRT in the first year after BC to inform a planned randomised controlled trial (RCT). MATERIAL AND METHODS: LYCA was a one-group prospective pilot trial inviting women operated with axillary lymph...

  2. Progress in tritium retention and release modeling for ceramic breeders

    International Nuclear Information System (INIS)

    Raffray, A.R.; Federici, G.; Billone, M.C.; Tanaka, S.

    1994-01-01

    Tritium behavior in ceramic breeder blankets is a key design issue for this class of blanket because of its impact on safety and fuel self-sufficiency. Over the past 10-15 years, substantial theoretical and experimental efforts have been dedicated world-wide to develop a better understanding of tritium transport in ceramic breeders. Models that are available today seem to cover reasonably well all the key physical transport and trapping mechanisms. They have allowed for reasonable interpretation and reproduction of experimental data and have helped in pointing out deficiencies in material property data base, in providing guidance for future experiments, and in analyzing blanket tritium behavior. This paper highlights the progress in tritium modeling over the last decade. Key tritium transport mechanisms are briefly described along with the more recent and sophisticated models developed to help understand them. Recent experimental data are highlighted and model calibration and validation discussed. Finally, example applications to blanket cases are shown as illustration of progress in the prediction of ceramic breeder blanket tritium inventory

  3. Dietary broccoli protects against fatty liver development but not against progression of liver cancer in mice pretreated with diethylnitrosamine

    Science.gov (United States)

    Chen, Yung-Ju; Myracle, Angela D.; Wallig, Matthew A.; Jeffery, Elizabeth H.

    2016-01-01

    Western-style high fat, high sugar diets are associated with non-alcoholic fatty liver disease (NAFLD) and increased liver cancer risk. Sulforaphane from broccoli may protect against these. Previously we initiated broccoli feeding to mice prior to exposure to the hepatocarcinogen diethylnitrosamine (DEN), and saw protection against NAFLD and liver cancer. Here we administered DEN to unweaned mice, initiating broccoli feeding two weeks later, to determine if broccoli protects against cancer progression. Specifically, male 15-day-old C57BL/6J mice were given DEN and placed on a Western or Western+10%Broccoli diet from the age of 4 weeks through 7 months. Dietary broccoli decreased hepatic triacylglycerols, NAFLD, liver damage and tumour necrosis factor by month 5 without changing body weight or relative liver weight, but did not slow carcinogenesis, seen in 100% of mice. We conclude that broccoli, a good source of sulforaphane, slows progression of hepatic lipidosis, but not tumourigenesis in this robust model. PMID:27672403

  4. Phenotypic heterogeneity in modeling cancer evolution.

    Directory of Open Access Journals (Sweden)

    Ali Mahdipour-Shirayeh

    Full Text Available The unwelcome evolution of malignancy during cancer progression emerges through a selection process in a complex heterogeneous population structure. In the present work, we investigate evolutionary dynamics in a phenotypically heterogeneous population of stem cells (SCs and their associated progenitors. The fate of a malignant mutation is determined not only by overall stem cell and non-stem cell growth rates but also differentiation and dedifferentiation rates. We investigate the effect of such a complex population structure on the evolution of malignant mutations. We derive exactly calculated results for the fixation probability of a mutant arising in each of the subpopulations. The exactly calculated results are in almost perfect agreement with the numerical simulations. Moreover, a condition for evolutionary advantage of a mutant cell versus the wild type population is given in the present study. We also show that microenvironment-induced plasticity in invading mutants leads to more aggressive mutants with higher fixation probability. Our model predicts that decreasing polarity between stem and non-stem cells' turnover would raise the survivability of non-plastic mutants; while it would suppress the development of malignancy for plastic mutants. The derived results are novel and general with potential applications in nature; we discuss our model in the context of colorectal/intestinal cancer (at the epithelium. However, the model clearly needs to be validated through appropriate experimental data. This novel mathematical framework can be applied more generally to a variety of problems concerning selection in heterogeneous populations, in other contexts such as population genetics, and ecology.

  5. FOXA1 promotes tumor progression in prostate cancer and represents a novel hallmark of castration-resistant prostate cancer.

    Science.gov (United States)

    Gerhardt, Josefine; Montani, Matteo; Wild, Peter; Beer, Marc; Huber, Fabian; Hermanns, Thomas; Müntener, Michael; Kristiansen, Glen

    2012-02-01

    Forkhead box protein A1 (FOXA1) modulates the transactivation of steroid hormone receptors and thus may influence tumor growth and hormone responsiveness in prostate cancer. We therefore investigated the correlation of FOXA1 expression with clinical parameters, prostate-specific antigen (PSA) relapse-free survival, and hormone receptor expression in a large cohort of prostate cancer patients at different disease stages. FOXA1 expression did not differ significantly between benign glands from the peripheral zone and primary peripheral zone prostate carcinomas. However, FOXA1 was overexpressed in metastases and particularly in castration-resistant cases, but was expressed at lower levels in both normal and neoplastic transitional zone tissues. FOXA1 levels correlated with higher pT stages and Gleason scores, as well as with androgen (AR) and estrogen receptor expression. Moreover, FOXA1 overexpression was associated with faster biochemical disease progression, which was pronounced in patients with low AR levels. Finally, siRNA-based knockdown of FOXA1 induced decreased cell proliferation and migration. Moreover, in vitro tumorigenicity was inducible by ARs only in the presence of FOXA1, substantiating a functional cooperation between FOXA1 and AR. In conclusion, FOXA1 expression is associated with tumor progression, dedifferentiation of prostate cancer cells, and poorer prognosis, as well as with cellular proliferation and migration and with AR signaling. These findings suggest FOXA1 overexpression as a novel mechanism inducing castration resistance in prostate cancer. Copyright © 2012 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  6. The Gαh-PLCδ1 signaling axis drives metastatic progression in triple-negative breast cancer.

    Science.gov (United States)

    Huang, Shang-Pen; Liu, Pei-Yao; Kuo, Chih-Jung; Chen, Chi-Long; Lee, Wei-Jiunn; Tsai, Yu-Hui; Lin, Yuan-Feng

    2017-06-02

    Distant metastasis of triple-negative breast cancer (TNBC) to other organs, e.g., the lungs, has been correlated with poor survival rates among breast cancer patients. Therefore, the identification of useful therapeutic targets to prevent metastasis or even inhibit tumor growth of TNBC is urgently needed. Gαh is a novel GTP-binding protein and known as an inactive form of calcium-dependent tissue transglutaminase. However, the functional consequences of transamidating and G-protein activities of tissue transglutaminase in promoting cancer metastasis are still controversial. Kaplan-Meier analyses were performed to estimate the prognostic values of Gαh and PLCδ1 by utilizing public databases and performing immunohistochemical staining experiments. Cell-based invasion assays and in vivo lung colony-forming and orthotropic lung metastasis models were established to evaluate the effectiveness of interrupting the protein-protein interaction (PPI) between Gαh and PLCδ1 in inhibiting the invasive ability and metastatic potential of TNBC cells. Here, we showed that the increased level of cytosolic, not extracellular, Gαh is a poor prognostic marker in breast cancer patients and correlates with the metastatic evolution of TNBC cells. Moreover, clinicopathological analyses revealed that the combined signature of high Gαh/PLCδ1 levels indicates worse prognosis in patients with breast cancer and correlates with lymph node metastasis of ER-negative breast cancer. Blocking the PPI of the Gαh/PLCδ1 complex by synthetically myristoylated PLCδ1 peptide corresponding to the Gαh-binding interface appeared to significantly suppress cellular invasiveness in vitro and inhibit lung metastatic colonies of TNBC cells in vivo. This study establishes Gαh/PLCδ1 as a poor prognostic factor for patients with estrogen receptor-negative breast cancers, including TNBCs, and provides therapeutic value by targeting the PPI of the Gαh/PLCδ1 complex to combat the metastatic progression

  7. The complex model of risk and progression of AMD estimation

    Directory of Open Access Journals (Sweden)

    V. S. Akopyan

    2012-01-01

    Full Text Available Purpose: to develop a method and a statistical model to estimate individual risk of AMD and the risk for progression to advanced AMD using clinical and genetic risk factors.Methods: A statistical risk assessment model was developed using stepwise binary logistic regression analysis. to estimate the population differences in the prevalence of allelic variants of genes and for the development of models adapted to the population of Moscow region genotyping and assessment of the influence of other risk factors was performed in two groups: patients with differ- ent stages of AMD (n = 74, and control group (n = 116. Genetic risk factors included in the study: polymorphisms in the complement system genes (C3 and CFH, genes at 10q26 locus (ARMS2 and HtRA1, polymorphism in the mitochondrial gene Mt-ND2. Clinical risk factors included in the study: age, gender, high body mass index, smoking history.Results: A comprehensive analysis of genetic and clinical risk factors for AMD in the study group was performed. Compiled statis- tical model assessment of individual risk of AMD, the sensitivity of the model — 66.7%, specificity — 78.5%, AUC = 0.76. Risk factors of late AMD, compiled a statistical model describing the probability of late AMD, the sensitivity of the model — 66.7%, specificity — 78.3%, AUC = 0.73. the developed system allows determining the most likely version of the current late AMD: dry or wet.Conclusion: the developed test system and the mathematical algorhythm for determining the risk of AMD, risk of progression to advanced AMD have fair diagnostic informative and promising for use in clinical practice.

  8. A model to predict progression in brain-injured patients.

    Science.gov (United States)

    Tommasino, N; Forteza, D; Godino, M; Mizraji, R; Alvarez, I

    2014-11-01

    The study of brain death (BD) epidemiology and the acute brain injury (ABI) progression profile is important to improve public health programs, organ procurement strategies, and intensive care unit (ICU) protocols. The purpose of this study was to analyze the ABI progression profile among patients admitted to ICUs with a Glasgow Coma Score (GCS) ≤8, as well as establishing a prediction model of probability of death and BD. This was a retrospective analysis of prospective data that included all brain-injured patients with GCS ≤8 admitted to a total of four public and private ICUs in Uruguay (N = 1447). The independent predictor factors of death and BD were studied using logistic regression analysis. A hierarchical model consisting of 2 nested logit regression models was then created. With these models, the probabilities of death, BD, and death by cardiorespiratory arrest were analyzed. In the first regression, we observed that as the GCS decreased and age increased, the probability of death rose. Each additional year of age increased the probability of death by 0.014. In the second model, however, BD risk decreased with each year of age. The presence of swelling, mass effect, and/or space-occupying lesion increased BD risk for the same given GCS. In the presence of injuries compatible with intracranial hypertension, age behaved as a protective factor that reduced the probability of BD. Based on the analysis of the local epidemiology, a model to predict the probability of death and BD can be developed. The organ potential donation of a country, region, or hospital can be predicted on the basis of this model, customizing it to each specific situation.

  9. A male patient with acromegaly and breast cancer: treating acromegaly to control tumor progression

    International Nuclear Information System (INIS)

    Leporati, Paola; Fonte, Rodolfo; Martinis, Luca de; Zambelli, Alberto; Magri, Flavia; Pavesi, Lorenzo; Rotondi, Mario; Chiovato, Luca

    2015-01-01

    Acromegaly is a rare disease associated with an increased risk of developing cancer. We report the case of a 72-year-old man who was diagnosed with acromegaly (IGF-1 770 ng/ml) and breast cancer. Four years before he suffered from a colon-rectal cancer. Pituitary surgery and octreotide-LAR treatment failed to control acromegaly. Normalization of IGF-1 (97 ng/ml) was obtained with pegvisomant therapy. Four years after breast cancer surgery, 2 pulmonary metastases were detected at chest CT. The patient was started on anastrozole, but, contrary to medical advice, he stopped pegvisomant treatment (IGF-I 453 ng/ml). Four months later, chest CT revealed an increase in size of the metastatic lesion of the left lung. The patient was shifted from anastrozole to tamoxifen and was restarted on pegvisomant, with normalization of serum IGF-1 levels (90 ng/ml). Four months later, a reduction in size of the metastatic lesion of the left lung was detected by CT. Subsequent CT scans throughout a 24-month follow-up showed a further reduction in size and then a stabilization of the metastasis. This is the first report of a male patient with acromegaly and breast cancer. The clinical course of breast cancer was closely related to the metabolic control of acromegaly. The rapid progression of metastatic lesion was temporally related to stopping pegvisomant treatment and paralleled a rise in serum IGF-1 levels. Normalization of IGF-1 after re-starting pegvisomant impressively reduced the progression of metastatic breast lesions. Control of acromegaly is mandatory in acromegalic patients with cancer. The online version of this article (doi:10.1186/s12885-015-1400-0) contains supplementary material, which is available to authorized users

  10. A new model of progressive pulmonary fibrosis in rats

    Energy Technology Data Exchange (ETDEWEB)

    Last, J.A.; Gelzleichter, T.R.; Pinkerton, K.E.; Walker, R.M.; Witschi, H. (Univ. of California, Davis (United States))

    1993-08-01

    Sprague-Dawley rats were exposed for 6 h daily to 0.8 ppm of ozone and 14.4 ppm of nitrogen dioxide. Approximately 7 to 10 wk after the initiation of exposure, animals began to demonstrate respiratory insufficiency and severe weight loss. About half of the rats died between Days 55 and 78 of exposure; no overt ill effects were observed in animals exposed to filtered air, to ozone alone, or to nitrogen dioxide. Biochemical findings in animals exposed to ozone and nitrogen dioxide included increased lung content of DNA, protein, collagen, and elastin, which was about 300% higher than the control values. The collagen-specific crosslink hydroxy-pyridinium, a biomarker for mature collagen in the lung, was decreased by about 40%. These results are consistent with extensive breakdown and remodeling of the lung parenchyma and its associated vasculature. Histopathologic evaluation showed severe fibrosis, alveolar collapse, honeycombing, macrophage and mast cell accumulation, vascular smooth muscle hypertrophy, and other indications of severe progressive interstitial pulmonary fibrosis and end-stage lung disease. This unique animal model of progressive pulmonary fibrosis resembles the final stages of human idiopathic pulmonary fibrosis and should facilitate studying underlying mechanisms and potential therapy of progressive pulmonary fibrosis.

  11. The neurotensin receptor-1 pathway contributes to human ductal breast cancer progression.

    Science.gov (United States)

    Dupouy, Sandra; Viardot-Foucault, Véronique; Alifano, Marco; Souazé, Frédérique; Plu-Bureau, Geneviève; Chaouat, Marc; Lavaur, Anne; Hugol, Danielle; Gespach, Christian; Gompel, Anne; Forgez, Patricia

    2009-01-01

    The neurotensin (NTS) and its specific high affinity G protein coupled receptor, the NT1 receptor (NTSR1), are considered to be a good candidate for one of the factors implicated in neoplastic progression. In breast cancer cells, functionally expressed NT1 receptor coordinates a series of transforming functions including cellular migration and invasion. we investigated the expression of NTS and NTSR1 in normal human breast tissue and in invasive ductal breast carcinomas (IDCs) by immunohistochemistry and RT-PCR. NTS is expressed and up-regulated by estrogen in normal epithelial breast cells. NTS is also found expressed in the ductal and invasive components of IDCs. The high expression of NTSR1 is associated with the SBR grade, the size of the tumor, and the number of metastatic lymph nodes. Furthermore, the NTSR1 high expression is an independent factor of prognosis associated with the death of patients. these data support the activation of neurotensinergic deleterious pathways in breast cancer progression.

  12. The role of miRNA regulation in cancer progression and drug resistance

    DEFF Research Database (Denmark)

    Joshi, Tejal

    RNAs in the context of cancer biology, drug resistance and disease progression. The first project described in Chapter 6 addresses the problem of tamoxifen resistance, an anti-estrogen drug that is generally highly effective in the treatment of ER-positive breast cancers. The underlying molecular mechanisms...... to the disease transformation. In summary, this thesis focuses on regulatory role of miRNAs in drug resistance and disease progression. The findings provide hints toward various biologically and perhaps therapeutically relevant gene regulatory events. This thesis demonstrates the right choice of data analysis...... for the acquired resistance to tamoxifen are not very well understood. Therefore, with the aid of miRNA and gene expression profiles for MCF7/S0.5 (tamoxifen sensitive) and three MCF7/S0.5 derived tamoxifen resistant cell lines, we obtained several miRNA-mediated regulatory events in the tamoxifen resistant cell...

  13. Deficient expression of DNA repair enzymes in early progression to sporadic colon cancer

    Science.gov (United States)

    2012-01-01

    Background Cancers often arise within an area of cells (e.g. an epithelial patch) that is predisposed to the development of cancer, i.e. a "field of cancerization" or "field defect." Sporadic colon cancer is characterized by an elevated mutation rate and genomic instability. If a field defect were deficient in DNA repair, DNA damages would tend to escape repair and give rise to carcinogenic mutations. Purpose To determine whether reduced expression of DNA repair proteins Pms2, Ercc1 and Xpf (pairing partner of Ercc1) are early steps in progression to colon cancer. Results Tissue biopsies were taken during colonoscopies of 77 patients at 4 different risk levels for colon cancer, including 19 patients who had never had colonic neoplasia (who served as controls). In addition, 158 tissue samples were taken from tissues near or within colon cancers removed by resection and 16 tissue samples were taken near tubulovillous adenomas (TVAs) removed by resection. 568 triplicate tissue sections (a total of 1,704 tissue sections) from these tissue samples were evaluated by immunohistochemistry for 4 DNA repair proteins. Substantially reduced protein expression of Pms2, Ercc1 and Xpf occurred in field defects of up to 10 cm longitudinally distant from colon cancers or TVAs and within colon cancers. Expression of another DNA repair protein, Ku86, was infrequently reduced in these areas. When Pms2, Ercc1 or Xpf were reduced in protein expression, then either one or both of the other two proteins most often had reduced protein expression as well. The mean inner colon circumferences, from 32 resections, of the ascending, transverse and descending/sigmoid areas were measured as 6.6 cm, 5.8 cm and 6.3 cm, respectively. When combined with other measurements in the literature, this indicates the approximate mean number of colonic crypts in humans is 10 million. Conclusions The substantial deficiencies in protein expression of DNA repair proteins Pms2, Ercc1 and Xpf in about 1 million

  14. Development of A Mouse Model of Menopausal Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Elizabeth R. Smith

    2014-02-01

    Full Text Available Despite significant understanding of the genetic mutations involved in ovarian epithelial cancer and advances in genomic approaches for expression and mutation profiling of tumor tissues, several key questions in ovarian cancer biology remain enigmatic: the mechanism for the well-established impact of reproductive factors on ovarian cancer risk remains obscure; questions of the cell of origin of ovarian cancer continue to be debated; and the precursor lesion, sequence, or events in progression remain to be defined. Suitable mouse models should complement the analysis of human tumor tissues and may provide clues to these questions currently perplexing ovarian cancer biology.A potentially useful model is the germ cell-deficient Wv (white spotting variant mutant mouse line, which may be used to study the impact of menopausal physiology on the increased risk of ovarian cancer. The Wv mice harbor a point mutation in c-Kit that reduces the receptor tyrosine kinase activity to about 1-5% (it is not a null mutation. Homozygous Wv mutant females have a reduced ovarian germ cell reservoir at birth and the follicles are rapidly depleted upon reaching reproductive maturity, but other biological phenotypes are minimal and the mice have a normal life span. The loss of ovarian function precipitates changes in hormonal and metabolic activity that model features of menopause in humans. As a consequence of follicle depletion, the Wv ovaries develop ovarian tubular adenomas, a benign epithelial tumor corresponding to surface epithelial invaginations and papillomatosis that mark human ovarian aging. Ongoing work will test the possibility of converting the benign epithelial tubular adenomas into neoplastic tumors by addition of an oncogenic mutation, such as of Tp53, to model the genotype and biology of serous ovarian cancer.Model based on the Wv mice may have the potential to gain biological and etiological insights into ovarian cancer development and prevention.

  15. Lysyl oxidase enzymatic function increases stiffness to drive colorectal cancer progression through FAK

    DEFF Research Database (Denmark)

    Baker, A-M; Bird, D; Lang, G

    2013-01-01

    The extracellular, matrix-modifying enzyme lysyl oxidase (LOX) has recently been linked to colorectal cancer (CRC) progression, in particular to the stages of invasion and metastasis. In this report, we use cell lines expressing a catalytically inactive mutant form of LOX to show that catalytic a...... for patients with metastatic CRC.Oncogene advance online publication, 28 May 2012; doi:10.1038/onc.2012.202....

  16. A MATHEMATICAL MODEL OF CHP 2000 TYPE PROGRESSIVE GEAR

    Directory of Open Access Journals (Sweden)

    Paweł Lonkwic

    2016-12-01

    Full Text Available The project of CHP2000 type progressive gear has been presented in the article. The offered solution from its construction point of view differs from the existing solutions due to the application of Belleville springs packets supporting the braking roller cam and achieving a flexible range of the gear loading. The standard concept of the gear loading within a mathematical and a geometrical model has been presented in the article. The proposed solution can be used in the friction lifts with the loading capacity from 8500 up to 20000 N.

  17. Chromosomal imbalance in the progression of high-risk non-muscle invasive bladder cancer

    International Nuclear Information System (INIS)

    Zieger, Karsten; Wiuf, Carsten; Jensen, Klaus Møller-Ernst; Ørntoft, Torben Falck; Dyrskjøt, Lars

    2009-01-01

    Non-muscle invasive bladder neoplasms with invasion of the lamina propria (stage T1) or high grade of dysplasia are at 'high risk' of progression to life-threatening cancer. However, the individual course is difficult to predict. Chromosomal instability (CI) is associated with high tumor stage and grade, and possibly with the risk of progression. To investigate the relationship between CI and subsequent disease progression, we performed a case-control-study of 125 patients with 'high-risk' non-muscle invasive bladder neoplasms, 67 with later disease progression, and 58 with no progression. Selection criteria were conservative (non-radical) resections and full prospective clinical follow-up (> 5 years). We investigated primary lesions in 59, and recurrent lesions in 66 cases. We used Affymetrix GeneChip ® Mapping 10 K and 50 K SNP microarrays to evaluate genome wide chromosomal imbalance (loss-of-heterozygosity and DNA copy number changes) in 48 representative tumors. DNA copy number changes of 15 key instability regions were further investigated using QPCR in 101 tumors (including 25 tumors also analysed on 50 K SNP microarrays). Chromosomal instability did not predict any higher risk of subsequent progression. Stage T1 and high-grade tumors had generally more unstable genomes than tumors of lower stage and grade (mostly non-primary tumors following a 'high-risk' tumor). However, about 25% of the 'high-risk' tumors had very few alterations. This was independent of subsequent progression. Recurrent lesions represent underlying field disease. A separate analysis of these lesions did neither reflect any difference in the risk of progression. Of specific chromosomal alterations, a possible association between loss of chromosome 8p11 and the risk of progression was found. However, the predictive value was limited by the heterogeneity of the changes. Chromosomal instability (CI) was associated with 'high risk' tumors

  18. PBX1 Genomic Pioneer Function Drives ERα Signaling Underlying Progression in Breast Cancer

    Science.gov (United States)

    Magnani, Luca; Ballantyne, Elizabeth B.; Zhang, Xiaoyang; Lupien, Mathieu

    2011-01-01

    Altered transcriptional programs are a hallmark of diseases, yet how these are established is still ill-defined. PBX1 is a TALE homeodomain protein involved in the development of different types of cancers. The estrogen receptor alpha (ERα) is central to the development of two-thirds of all breast cancers. Here we demonstrate that PBX1 acts as a pioneer factor and is essential for the ERα-mediated transcriptional response driving aggressive tumors in breast cancer. Indeed, PBX1 expression correlates with ERα in primary breast tumors, and breast cancer cells depleted of PBX1 no longer proliferate following estrogen stimulation. Profiling PBX1 recruitment and chromatin accessibility across the genome of breast cancer cells through ChIP-seq and FAIRE-seq reveals that PBX1 is loaded and promotes chromatin openness at specific genomic locations through its capacity to read specific epigenetic signatures. Accordingly, PBX1 guides ERα recruitment to a specific subset of sites. Expression profiling studies demonstrate that PBX1 controls over 70% of the estrogen response. More importantly, the PBX1-dependent transcriptional program is associated with poor-outcome in breast cancer patients. Correspondingly, PBX1 expression alone can discriminate a priori the outcome in ERα-positive breast cancer patients. These features are markedly different from the previously characterized ERα-associated pioneer factor FoxA1. Indeed, PBX1 is the only pioneer factor identified to date that discriminates outcome such as metastasis in ERα-positive breast cancer patients. Together our results reveal that PBX1 is a novel pioneer factor defining aggressive ERα-positive breast tumors, as it guides ERα genomic activity to unique genomic regions promoting a transcriptional program favorable to breast cancer progression. PMID:22125492

  19. Gradient Models in Molecular Biophysics: Progress, Challenges, Opportunities.

    Science.gov (United States)

    Bardhan, Jaydeep P

    2013-12-01

    In the interest of developing a bridge between researchers modeling materials and those modeling biological molecules, we survey recent progress in developing nonlocal-dielectric continuum models for studying the behavior of proteins and nucleic acids. As in other areas of science, continuum models are essential tools when atomistic simulations (e.g. molecular dynamics) are too expensive. Because biological molecules are essentially all nanoscale systems, the standard continuum model, involving local dielectric response, has basically always been dubious at best. The advanced continuum theories discussed here aim to remedy these shortcomings by adding features such as nonlocal dielectric response, and nonlinearities resulting from dielectric saturation. We begin by describing the central role of electrostatic interactions in biology at the molecular scale, and motivate the development of computationally tractable continuum models using applications in science and engineering. For context, we highlight some of the most important challenges that remain and survey the diverse theoretical formalisms for their treatment, highlighting the rigorous statistical mechanics that support the use and improvement of continuum models. We then address the development and implementation of nonlocal dielectric models, an approach pioneered by Dogonadze, Kornyshev, and their collaborators almost forty years ago. The simplest of these models is just a scalar form of gradient elasticity, and here we use ideas from gradient-based modeling to extend the electrostatic model to include additional length scales. The paper concludes with a discussion of open questions for model development, highlighting the many opportunities for the materials community to leverage its physical, mathematical, and computational expertise to help solve one of the most challenging questions in molecular biology and biophysics.

  20. Gradient Models in Molecular Biophysics: Progress, Challenges, Opportunities

    Science.gov (United States)

    Bardhan, Jaydeep P.

    2014-01-01

    In the interest of developing a bridge between researchers modeling materials and those modeling biological molecules, we survey recent progress in developing nonlocal-dielectric continuum models for studying the behavior of proteins and nucleic acids. As in other areas of science, continuum models are essential tools when atomistic simulations (e.g. molecular dynamics) are too expensive. Because biological molecules are essentially all nanoscale systems, the standard continuum model, involving local dielectric response, has basically always been dubious at best. The advanced continuum theories discussed here aim to remedy these shortcomings by adding features such as nonlocal dielectric response, and nonlinearities resulting from dielectric saturation. We begin by describing the central role of electrostatic interactions in biology at the molecular scale, and motivate the development of computationally tractable continuum models using applications in science and engineering. For context, we highlight some of the most important challenges that remain and survey the diverse theoretical formalisms for their treatment, highlighting the rigorous statistical mechanics that support the use and improvement of continuum models. We then address the development and implementation of nonlocal dielectric models, an approach pioneered by Dogonadze, Kornyshev, and their collaborators almost forty years ago. The simplest of these models is just a scalar form of gradient elasticity, and here we use ideas from gradient-based modeling to extend the electrostatic model to include additional length scales. The paper concludes with a discussion of open questions for model development, highlighting the many opportunities for the materials community to leverage its physical, mathematical, and computational expertise to help solve one of the most challenging questions in molecular biology and biophysics. PMID:25505358

  1. Gradient models in molecular biophysics: progress, challenges, opportunities

    Science.gov (United States)

    Bardhan, Jaydeep P.

    2013-12-01

    In the interest of developing a bridge between researchers modeling materials and those modeling biological molecules, we survey recent progress in developing nonlocal-dielectric continuum models for studying the behavior of proteins and nucleic acids. As in other areas of science, continuum models are essential tools when atomistic simulations (e.g., molecular dynamics) are too expensive. Because biological molecules are essentially all nanoscale systems, the standard continuum model, involving local dielectric response, has basically always been dubious at best. The advanced continuum theories discussed here aim to remedy these shortcomings by adding nonlocal dielectric response. We begin by describing the central role of electrostatic interactions in biology at the molecular scale, and motivate the development of computationally tractable continuum models using applications in science and engineering. For context, we highlight some of the most important challenges that remain, and survey the diverse theoretical formalisms for their treatment, highlighting the rigorous statistical mechanics that support the use and improvement of continuum models. We then address the development and implementation of nonlocal dielectric models, an approach pioneered by Dogonadze, Kornyshev, and their collaborators almost 40 years ago. The simplest of these models is just a scalar form of gradient elasticity, and here we use ideas from gradient-based modeling to extend the electrostatic model to include additional length scales. The review concludes with a discussion of open questions for model development, highlighting the many opportunities for the materials community to leverage its physical, mathematical, and computational expertise to help solve one of the most challenging questions in molecular biology and biophysics.

  2. Complex of MUC1, CIN85 and Cbl in Colon Cancer Progression and Metastasis

    International Nuclear Information System (INIS)

    Cascio, Sandra; Finn, Olivera J.

    2015-01-01

    We previously reported that CIN85, an 85 KDa protein known to be involved in tumor cell migration and metastasis through its interaction with Cbl, associates with MUC1 in tumor cells. MUC1/CIN85 complex also regulates migration and invasion of tumor cells in vitro. Here, we examined specifically human colon carcinoma tissue microarrays (TMA) by immunohistochemistry for the expression of MUC1 and CIN85 and their potential role in cancer progression and metastasis. We detected a significant increase in expression of both MUC1 and CIN85 associated with advanced tumor stage and lymph node metastasis. We further investigated if Cbl could also be present in the MUC1/CIN85 complex. Co-immunoprecipitation assay showed that Cbl co-localized both with CIN85 and with MUC1 in a human colon cancer cell line. To begin to investigate the in vivo relevance of MUC1 overexpression and association with CIN85 and Cbl in cancer development and progression, we used human MUC1 transgenic mice that express MUC1 on the colonic epithelial cells, treated with azoxymethane to initiate and dextran sulfate sodium (AOM/DSS) to promote colorectal carcinogenesis. MUC1.Tg mice showed higher tumor incidence and decreased survival when compared with wild-type mice. Consistent with the in vitro data, the association of MUC1, CIN85 and Cbl was detected in colon tissues of AOM/DSS-treated MUC1 transgenic mice. MUC1/CIN85/Cbl complex appears to contribute to promotion and progression of colon cancer and thus increased expression of MUC1, CIN85 and Cbl in early stage colon cancer might be predictive of poor prognosis

  3. Turning the tide against cancer through sustained medical innovation: the pathway to progress.

    Science.gov (United States)

    Abernethy, Amy; Abrahams, Edward; Barker, Anna; Buetow, Ken; Burkholder, Randy; Dalton, William S; Foti, Margaret; Frueh, Felix; Gaynor, Richard B; Kean, Marcia; Khan, Zeba; Lessor, Tracy; Lichtenfeld, J Leonard; Mendelsohn, John; van't Veer, Laura

    2014-03-01

    An ever-expanding understanding of the molecular basis of the more than 200 unique diseases collectively called cancer, combined with efforts to apply these insights to clinical care, is forming the foundation of an era of personalized medicine that promises to improve cancer treatment. At the same time, these extraordinary opportunities are occurring in an environment of intense pressure to contain rising healthcare costs. This environment presents a challenge to oncology research and clinical care, because both are becoming progressively more complex and expensive, and because the current tools to measure the cost and value of advances in care (e.g., comparative effectiveness research, cost-effectiveness analysis, and health technology assessments) are not optimized for an ecosystem moving toward personalized, patient-centered care. Reconciling this tension will be essential to maintaining progress in a cost-constrained environment, especially because emerging innovations in science (e.g., increasing identification of molecular biomarkers) and in clinical process (implementation of a learning healthcare system) hold potential to dramatically improve patient care, and may ultimately help address the burden of rising costs. For example, the rapid pace of innovation taking place within oncology calls for increased capability to integrate clinical research and care to enable continuous learning, so that lessons learned from each patient treated can inform clinical decision making for the next patient. Recognizing the need to define the policies required for sustained innovation in cancer research and care in an era of cost containment, the stakeholder community must engage in an ongoing dialogue and identify areas for collaboration. This article reflects and seeks to amplify the ongoing robust discussion and diverse perspectives brought to this issue by multiple stakeholders within the cancer community, and to consider how to frame the research and regulatory

  4. Complex of MUC1, CIN85 and Cbl in Colon Cancer Progression and Metastasis

    Energy Technology Data Exchange (ETDEWEB)

    Cascio, Sandra, E-mail: sac131@pitt.edu [Department of Immunology, University of Pittsburgh School of Medicine, E1040 Biomedical Science Tower, Pittsburgh, PA 15261 (United States); Fondazione Ri.Med, via Bandiera, Palermo 90133 (Italy); Finn, Olivera J., E-mail: sac131@pitt.edu [Department of Immunology, University of Pittsburgh School of Medicine, E1040 Biomedical Science Tower, Pittsburgh, PA 15261 (United States)

    2015-02-10

    We previously reported that CIN85, an 85 KDa protein known to be involved in tumor cell migration and metastasis through its interaction with Cbl, associates with MUC1 in tumor cells. MUC1/CIN85 complex also regulates migration and invasion of tumor cells in vitro. Here, we examined specifically human colon carcinoma tissue microarrays (TMA) by immunohistochemistry for the expression of MUC1 and CIN85 and their potential role in cancer progression and metastasis. We detected a significant increase in expression of both MUC1 and CIN85 associated with advanced tumor stage and lymph node metastasis. We further investigated if Cbl could also be present in the MUC1/CIN85 complex. Co-immunoprecipitation assay showed that Cbl co-localized both with CIN85 and with MUC1 in a human colon cancer cell line. To begin to investigate the in vivo relevance of MUC1 overexpression and association with CIN85 and Cbl in cancer development and progression, we used human MUC1 transgenic mice that express MUC1 on the colonic epithelial cells, treated with azoxymethane to initiate and dextran sulfate sodium (AOM/DSS) to promote colorectal carcinogenesis. MUC1.Tg mice showed higher tumor incidence and decreased survival when compared with wild-type mice. Consistent with the in vitro data, the association of MUC1, CIN85 and Cbl was detected in colon tissues of AOM/DSS-treated MUC1 transgenic mice. MUC1/CIN85/Cbl complex appears to contribute to promotion and progression of colon cancer and thus increased expression of MUC1, CIN85 and Cbl in early stage colon cancer might be predictive of poor prognosis.

  5. Ovarian function’s role during cancer cachexia progression in the female mouse

    Science.gov (United States)

    Hetzler, Kimbell L.; Hardee, Justin P.; LaVoie, Holly A.; Murphy, E. Angela

    2017-01-01

    Cachexia is a debilitating condition that occurs with chronic disease, including cancer; our research has shown that some regulation of cancer cachexia progression is affected by sex differences. The ApcMin/+ mouse is genetically predisposed to develop intestinal tumors; IL-6 signaling and hypogonadism are associated with cachexia severity in the male. This relationship in the female warrants further investigation, as we have shown that the ability of IL-6 to induce cachexia differs between the sexes. Since ovarian reproductive function relies on a complex system of endocrine signaling to affect whole body homeostasis, we examined the relationship between ovarian reproductive function and progression of cancer cachexia in the female ApcMin/+ mouse. Our study of ovarian reproductive function in female ApcMin/+ mice showed disease-related cessation of estrous cycling (acyclicity) in 38% of mice. Acyclicity, including morphological and functional losses and enhanced muscle inflammatory gene expression, was associated with severe cachexia. Interestingly, ovariectomy rescued body weight and muscle mass and function but increased muscle sensitivity to systemic IL-6 overexpression. In conclusion, our results provide evidence for a relationship between ovarian reproductive function and cachexia progression in female ApcMin/+ mice. PMID:28292759

  6. Ovarian function's role during cancer cachexia progression in the female mouse.

    Science.gov (United States)

    Hetzler, Kimbell L; Hardee, Justin P; LaVoie, Holly A; Murphy, E Angela; Carson, James A

    2017-05-01

    Cachexia is a debilitating condition that occurs with chronic disease, including cancer; our research has shown that some regulation of cancer cachexia progression is affected by sex differences. The Apc Min/+ mouse is genetically predisposed to develop intestinal tumors; IL-6 signaling and hypogonadism are associated with cachexia severity in the male. This relationship in the female warrants further investigation, as we have shown that the ability of IL-6 to induce cachexia differs between the sexes. Since ovarian reproductive function relies on a complex system of endocrine signaling to affect whole body homeostasis, we examined the relationship between ovarian reproductive function and progression of cancer cachexia in the female Apc Min/+ mouse. Our study of ovarian reproductive function in female Apc Min/+ mice showed disease-related cessation of estrous cycling (acyclicity) in 38% of mice. Acyclicity, including morphological and functional losses and enhanced muscle inflammatory gene expression, was associated with severe cachexia. Interestingly, ovariectomy rescued body weight and muscle mass and function but increased muscle sensitivity to systemic IL-6 overexpression. In conclusion, our results provide evidence for a relationship between ovarian reproductive function and cachexia progression in female Apc Min/+ mice. Copyright © 2017 the American Physiological Society.

  7. CHOLECYSTOKININ RECEPTOR ANTAGONIST HALTS PROGRESSION OF PANCREATIC CANCER PRECURSOR LESIONS AND FIBROSIS IN MICE

    Science.gov (United States)

    Smith, Jill P.; Cooper, Timothy K.; McGovern, Christopher O.; Gilius, Evan L.; Zhong, Qing; Liao, Jiangang; Molinolo, Alfredo A.; Gutkind, J. Silvio; Matters, Gail L.

    2014-01-01

    Objectives Exogenous administration of cholecystokinin (CCK) induces hypertrophy and hyperplasia of the pancreas with an increase in DNA content. We hypothesized that endogenous CCK is involved with the malignant progression of pancreatic intraepithelial neoplasia (PanIN) lesions and the fibrosis associated with pancreatic cancer. Methods The presence of CCK receptors in early PanIN lesions was examined by immunohistochemistry in mouse and human pancreas. Pdx1-Cre/LSL-KrasG12D transgenic mice were randomized to receive either untreated drinking water or water supplemented with a CCK-receptor antagonist (proglumide, 0.1mg/ml). Pancreas from mice were removed and examined histologically for number and grade of PanINs after 1, 2 or 4 months of antagonist therapy. Results Both CCK-A and CCK-B receptors were identified in early stage PanINs from mouse and human pancreas. The grade of PanIN lesions was reversed and progression to advanced lesions arrested in mice treated with proglumide compared to controls (p=0.004). Furthermore, pancreatic fibrosis was significantly reduced in antagonist-treated animals compared to vehicle (pitalic>0.001). Conclusions These findings demonstrate that endogenous CCK is in part responsible for the development and progression of pancreatic cancer. Use of CCK-receptor antagonists may have a role in cancer prophylaxis in high risk subjects, and may reduce fibrosis in the microenvironment. PMID:25058882

  8. The fragile X protein binds mRNAs involved in cancer progression and modulates metastasis formation.

    Science.gov (United States)

    Lucá, Rossella; Averna, Michele; Zalfa, Francesca; Vecchi, Manuela; Bianchi, Fabrizio; La Fata, Giorgio; Del Nonno, Franca; Nardacci, Roberta; Bianchi, Marco; Nuciforo, Paolo; Munck, Sebastian; Parrella, Paola; Moura, Rute; Signori, Emanuela; Alston, Robert; Kuchnio, Anna; Farace, Maria Giulia; Fazio, Vito Michele; Piacentini, Mauro; De Strooper, Bart; Achsel, Tilmann; Neri, Giovanni; Neven, Patrick; Evans, D Gareth; Carmeliet, Peter; Mazzone, Massimiliano; Bagni, Claudia

    2013-10-01

    The role of the fragile X mental retardation protein (FMRP) is well established in brain, where its absence leads to the fragile X syndrome (FXS). FMRP is almost ubiquitously expressed, suggesting that, in addition to its effects in brain, it may have fundamental roles in other organs. There is evidence that FMRP expression can be linked to cancer. FMR1 mRNA, encoding FMRP, is overexpressed in hepatocellular carcinoma cells. A decreased risk of cancer has been reported in patients with FXS while a patient-case with FXS showed an unusual decrease of tumour brain invasiveness. However, a role for FMRP in regulating cancer biology, if any, remains unknown. We show here that FMRP and FMR1 mRNA levels correlate with prognostic indicators of aggressive breast cancer, lung metastases probability and triple negative breast cancer (TNBC). We establish that FMRP overexpression in murine breast primary tumours enhances lung metastasis while its reduction has the opposite effect regulating cell spreading and invasion. FMRP binds mRNAs involved in epithelial mesenchymal transition (EMT) and invasion including E-cadherin and Vimentin mRNAs, hallmarks of EMT and cancer progression. © 2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO.

  9. The Fragile X Protein binds mRNAs involved in cancer progression and modulates metastasis formation

    Science.gov (United States)

    Lucá, Rossella; Averna, Michele; Zalfa, Francesca; Vecchi, Manuela; Bianchi, Fabrizio; Fata, Giorgio La; Del Nonno, Franca; Nardacci, Roberta; Bianchi, Marco; Nuciforo, Paolo; Munck, Sebastian; Parrella, Paola; Moura, Rute; Signori, Emanuela; Alston, Robert; Kuchnio, Anna; Farace, Maria Giulia; Fazio, Vito Michele; Piacentini, Mauro; De Strooper, Bart; Achsel, Tilmann; Neri, Giovanni; Neven, Patrick; Evans, D Gareth; Carmeliet, Peter; Mazzone, Massimiliano; Bagni, Claudia

    2013-01-01

    The role of the fragile X mental retardation protein (FMRP) is well established in brain, where its absence leads to the fragile X syndrome (FXS). FMRP is almost ubiquitously expressed, suggesting that, in addition to its effects in brain, it may have fundamental roles in other organs. There is evidence that FMRP expression can be linked to cancer. FMR1 mRNA, encoding FMRP, is overexpressed in hepatocellular carcinoma cells. A decreased risk of cancer has been reported in patients with FXS while a patient-case with FXS showed an unusual decrease of tumour brain invasiveness. However, a role for FMRP in regulating cancer biology, if any, remains unknown. We show here that FMRP and FMR1 mRNA levels correlate with prognostic indicators of aggressive breast cancer, lung metastases probability and triple negative breast cancer (TNBC). We establish that FMRP overexpression in murine breast primary tumours enhances lung metastasis while its reduction has the opposite effect regulating cell spreading and invasion. FMRP binds mRNAs involved in epithelial mesenchymal transition (EMT) and invasion including E-cadherin and Vimentin mRNAs, hallmarks of EMT and cancer progression. PMID:24092663

  10. Withaferin A and sulforaphane regulate breast cancer cell cycle progression through epigenetic mechanisms.

    Science.gov (United States)

    Royston, Kendra J; Paul, Bidisha; Nozell, Susan; Rajbhandari, Rajani; Tollefsbol, Trygve O

    2018-07-01

    Little is known about the effects of combinatorial dietary compounds on the regulation of epigenetic mechanisms involved in breast cancer prevention. The human diet consists of a multitude of components, and there is a need to elucidate how certain compounds interact in collaboration. Withaferin A (WA), found in the Indian winter cherry and documented as a DNA methyltransferase (DNMT) inhibitor, and sulforaphane (SFN), a well-known histone deacetylase (HDAC) inhibitor found in cruciferous vegetables, are two epigenetic modifying compounds that have only recently been studied in conjunction. The use of DNMT and HDAC inhibitors to reverse the malignant expression of certain genes in breast cancer has shown considerable promise. Previously, we found that SFN + WA synergistically promote breast cancer cell death. Herein, we determined that these compounds inhibit cell cycle progression from S to G2 phase in MDA-MB-231 and MCF-7 breast cancer. Furthermore, we demonstrate that this unique combination of epigenetic modifying compounds down-regulates the levels of Cyclin D1 and CDK4, and pRB; conversely, the levels of E2F mRNA and tumor suppressor p21 are increased independently of p53. We find these events coincide with an increase in unrestricted histone methylation. We propose SFN + WA-induced breast cancer cell death is attributed, in part, to epigenetic modifications that result in the modulated expression of key genes responsible for the regulation of cancer cell senescence. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. The Interactions between Insulin and Androgens in Progression to Castrate-Resistant Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Jennifer H. Gunter

    2012-01-01

    Full Text Available An association between the metabolic syndrome and reduced testosterone levels has been identified, and a specific inverse relationship between insulin and testosterone levels suggests that an important metabolic crosstalk exists between these two hormonal axes; however, the mechanisms by which insulin and androgens may be reciprocally regulated are not well described. Androgen-dependant gene pathways regulate the growth and maintenance of both normal and malignant prostate tissue, and androgen-deprivation therapy (ADT in patients exploits this dependence when used to treat recurrent and metastatic prostate cancer resulting in tumour regression. A major systemic side effect of ADT includes induction of key features of the metabolic syndrome and the consistent feature of hyperinsulinaemia. Recent studies have specifically identified a correlation between elevated insulin and high-grade PCa and more rapid progression to castrate resistant disease. This paper examines the relationship between insulin and androgens in the context of prostate cancer progression. Prostate cancer patients present a promising cohort for the exploration of insulin stabilising agents as adjunct treatments for hormone deprivation or enhancers of chemosensitivity for treatment of advanced prostate cancer.

  12. The Interactions between Insulin and Androgens in Progression to Castrate-Resistant Prostate Cancer

    Science.gov (United States)

    Gunter, Jennifer H.; Lubik, Amy A.; McKenzie, Ian; Pollak, Michael; Nelson, Colleen C.

    2012-01-01

    An association between the metabolic syndrome and reduced testosterone levels has been identified, and a specific inverse relationship between insulin and testosterone levels suggests that an important metabolic crosstalk exists between these two hormonal axes; however, the mechanisms by which insulin and androgens may be reciprocally regulated are not well described. Androgen-dependant gene pathways regulate the growth and maintenance of both normal and malignant prostate tissue, and androgen-deprivation therapy (ADT) in patients exploits this dependence when used to treat recurrent and metastatic prostate cancer resulting in tumour regression. A major systemic side effect of ADT includes induction of key features of the metabolic syndrome and the consistent feature of hyperinsulinaemia. Recent studies have specifically identified a correlation between elevated insulin and high-grade PCa and more rapid progression to castrate resistant disease. This paper examines the relationship between insulin and androgens in the context of prostate cancer progression. Prostate cancer patients present a promising cohort for the exploration of insulin stabilising agents as adjunct treatments for hormone deprivation or enhancers of chemosensitivity for treatment of advanced prostate cancer. PMID:22548055

  13. Identification of differentially expressed proteins during human urinary bladder cancer progression.

    Science.gov (United States)

    Memon, Ashfaque A; Chang, Jong W; Oh, Bong R; Yoo, Yung J

    2005-01-01

    Comparative proteome analysis was performed between RT4 (grade-1) and T24 (grade-3) bladder cancer cell lines, in an attempt to identify differentially expressed proteins during bladder cancer progression. Among those relatively abundant proteins, seven spots changed more than two-fold reproducibly and identified by peptide mass fingerprinting using mass spectrometry and database search. We found most extensive and reproducible down-regulation of NADP dependent isocitrate dehydrogenase cytoplasmic (IDPc) and peroxiredoxin-II (Prx-II), in poorly differentiated T24 compared to well-differentiated RT4 bladder cancer cell line. Subsequent Western blotting analysis of human biopsy samples from bladder cancer patient revealed significant loss of IDPc and Prx-II in more advance tumor samples, in agreement with data on cell lines. These results suggest that loss of IDPc and Prx-II during tumor development may involve in tumor progression and metastasis. However, additional investigations are needed on large number of human samples to further verify these findings.

  14. Possible roles of insulin, IGF-1 and IGFBPs in initiation and progression of colorectal cancer

    Science.gov (United States)

    Jiang, Bo; Zhang, Xin; Du, Li-Li; Wang, Yan; Liu, Dong-Bo; Han, Cun-Zhi; Jing, Jie-Xian; Zhao, Xian-Wen; Xu, Xiao-Qin

    2014-01-01

    AIM: To investigate the roles of serum insulin, insulin-like growth factor-1 (IGF-1), and insulin-like growth factor binding proteins (IGFBPs) in the initiation and progression of colorectal cancer. METHODS: We determined serum insulin, IGF-1 and IGFBPs levels in 615 colorectal cancer patients and 650 control healthy donors by enzyme-linked immunosorbent assay (ELISA). In the meantime, their body mass index (BMI) and waist-to-hip ratio (WHR) were measured. RESULTS: Serum levels of insulin and IGF-1 as well as IGF-1/IGFBP-3 ratio in pre-operation patients were significantly elevated, but the level of IGFBP-3 was significantly decreased compared with normal controls and post-operation patients (P 0.05) in the levels of insulin, IGF-1, IGFBP-1, IGFBP-3 and IGF-1/IGFBP-3 between the patients with and without hepatic as well as distal abdominal metastases. WHR and BMI of colon cancer patients were positively and significantly correlated with the levels of insulin and IGF-1/IGFBP-3. In contrast, WHR and BMI were negatively correlated with IGFBP-3 level. CONCLUSION: The elevation of insulin, IGF-1 as well as IGF-1/IGFBP-3 ratio and the reduction of IGFBP-3 may be related to the initiation of colorectal cancer, but they are not related to the progression and outcome of the disease. PMID:24587638

  15. Statin and rottlerin small-molecule inhibitors restrict colon cancer progression and metastasis via MACC1.

    Science.gov (United States)

    Juneja, Manisha; Kobelt, Dennis; Walther, Wolfgang; Voss, Cynthia; Smith, Janice; Specker, Edgar; Neuenschwander, Martin; Gohlke, Björn-Oliver; Dahlmann, Mathias; Radetzki, Silke; Preissner, Robert; von Kries, Jens Peter; Schlag, Peter Michael; Stein, Ulrike

    2017-06-01

    MACC1 (Metastasis Associated in Colon Cancer 1) is a key driver and prognostic biomarker for cancer progression and metastasis in a large variety of solid tumor types, particularly colorectal cancer (CRC). However, no MACC1 inhibitors have been identified yet. Therefore, we aimed to target MACC1 expression using a luciferase reporter-based high-throughput screening with the ChemBioNet library of more than 30,000 compounds. The small molecules lovastatin and rottlerin emerged as the most potent MACC1 transcriptional inhibitors. They remarkably inhibited MACC1 promoter activity and expression, resulting in reduced cell motility. Lovastatin impaired the binding of the transcription factors c-Jun and Sp1 to the MACC1 promoter, thereby inhibiting MACC1 transcription. Most importantly, in CRC-xenografted mice, lovastatin and rottlerin restricted MACC1 expression and liver metastasis. This is-to the best of our knowledge-the first identification of inhibitors restricting cancer progression and metastasis via the novel target MACC1. This drug repositioning might be of therapeutic value for CRC patients.

  16. Rrp1b, a new candidate susceptibility gene for breast cancer progression and metastasis.

    Directory of Open Access Journals (Sweden)

    Nigel P S Crawford

    2007-11-01

    Full Text Available A novel candidate metastasis modifier, ribosomal RNA processing 1 homolog B (Rrp1b, was identified through two independent approaches. First, yeast two-hybrid, immunoprecipitation, and functional assays demonstrated a physical and functional interaction between Rrp1b and the previous identified metastasis modifier Sipa1. In parallel, using mouse and human metastasis gene expression data it was observed that extracellular matrix (ECM genes are common components of metastasis predictive signatures, suggesting that ECM genes are either important markers or causal factors in metastasis. To investigate the relationship between ECM genes and poor prognosis in breast cancer, expression quantitative trait locus analysis of polyoma middle-T transgene-induced mammary tumor was performed. ECM gene expression was found to be consistently associated with Rrp1b expression. In vitro expression of Rrp1b significantly altered ECM gene expression, tumor growth, and dissemination in metastasis assays. Furthermore, a gene signature induced by ectopic expression of Rrp1b in tumor cells predicted survival in a human breast cancer gene expression dataset. Finally, constitutional polymorphism within RRP1B was found to be significantly associated with tumor progression in two independent breast cancer cohorts. These data suggest that RRP1B may be a novel susceptibility gene for breast cancer progression and metastasis.

  17. Bisphenol A and Hormone-Associated Cancers: Current Progress and Perspectives

    Science.gov (United States)

    Gao, Hui; Yang, Bao-Jun; Li, Nan; Feng, Li-Min; Shi, Xiao-Yu; Zhao, Wei-Hong; Liu, Si-Jin

    2015-01-01

    Abstract Bisphenol A (BPA), a carbon-based synthetic compound, exhibits hormone-like properties and is present ubiquitously in the environment and in human tissues due to its widespread use and biological accumulation. BPA can mimic estrogen to interact with estrogen receptors α and β, leading to changes in cell proliferation, apoptosis, or migration and thereby, contributing to cancer development and progression. At the genetic level, BPA has been shown to be involved in multiple oncogenic signaling pathways, such as the STAT3, MAPK, and PI3K/AKT pathways. Moreover, BPA may also interact with other steroid receptors (such as androgen receptor) and plays a role in prostate cancer development. This review summarizes the current literature regarding human exposure to BPA, the endocrine-disrupting effects of BPA, and the role of BPA in hormone-associated cancers of the breast, ovary, and prostate. PMID:25569640

  18. Radiographic progression with nonrising PSA in metastatic castration-resistant prostate cancer

    DEFF Research Database (Denmark)

    Bryce, A H; Alumkal, J J; Armstrong, A

    2017-01-01

    monitoring alone to determine disease status on therapy. This approach has not been adequately tested. METHODS: Chemotherapy-naive asymptomatic or mildly symptomatic men (n=872) with metastatic castration-resistant prostate cancer (mCRPC) who were treated with the androgen receptor inhibitor enzalutamide......BACKGROUND: Advanced prostate cancer is a phenotypically diverse disease that evolves through multiple clinical courses. PSA level is the most widely used parameter for disease monitoring, but it has well-recognized limitations. Unlike in clinical trials, in practice, clinicians may rely on PSA...... treated with enzalutamide. As restaging in advanced prostate cancer patients is often guided by increases in PSA levels, our results demonstrate that disease progression on enzalutamide can occur without rising PSA levels. Therefore, a disease monitoring strategy that includes imaging not entirely reliant...

  19. Targeting the androgen receptor pathway in castration-resistant prostate cancer: progresses and prospects

    Science.gov (United States)

    Ferraldeschi, R; Welti, J; Luo, J; Attard, G; de Bono, JS

    2015-01-01

    Androgen receptor (AR) signaling is a critical pathway for prostate cancer cells, and androgen-deprivation therapy (ADT) remains the principal treatment for patients with locally advanced and metastatic disease. However, over time, most tumors become resistant to ADT. The view of castration-resistant prostate cancer (CRPC) has changed dramatically in the last several years. Progress in understanding the disease biology and mechanisms of castration resistance led to significant advancements and to paradigm shift in the treatment. Accumulating evidence showed that prostate cancers develop adaptive mechanisms for maintaining AR signaling to allow for survival and further evolution. The aim of this review is to summarize molecular mechanisms of castration resistance and provide an update in the development of novel agents and strategies to more effectively target the AR signaling pathway. PMID:24837363

  20. N-heterocyclic carbene complexes of silver and gold as novel tools against breast cancer progression.

    Science.gov (United States)

    Saturnino, Carmela; Barone, Ines; Iacopetta, Domenico; Mariconda, Annaluisa; Sinicropi, Maria Stefania; Rosano, Camillo; Campana, Antonella; Catalano, Stefania; Longo, Pasquale; Andò, Sebastiano

    2016-12-01

    Metal carbenic complexes have received considerable attention in both the catalysis and biological fields for their potential applications in cancer and antimicrobial therapies. A small series of new silver and gold N-heterocyclic carbene complexes has been designed and synthesized. Among the tested complexes, one compound was particularly active in inhibiting anchorage-dependent and -independent breast cancer proliferation, and inducing cell apoptosis via a mitochondria-related process. The antitumor activity was associated to the transcriptional activation of the tumor suppressor gene p53 in an Sp1-dependent manner, as evidenced by biological and docking studies. Our results highlight the importance and the versatility of N-heterocyclic carbene complexes of gold and silver as useful tools against breast cancer progression.

  1. Bisphenol A and hormone-associated cancers: current progress and perspectives.

    Science.gov (United States)

    Gao, Hui; Yang, Bao-Jun; Li, Nan; Feng, Li-Min; Shi, Xiao-Yu; Zhao, Wei-Hong; Liu, Si-Jin

    2015-01-01

    Bisphenol A (BPA), a carbon-based synthetic compound, exhibits hormone-like properties and is present ubiquitously in the environment and in human tissues due to its widespread use and biological accumulation. BPA can mimic estrogen to interact with estrogen receptors α and β, leading to changes in cell proliferation, apoptosis, or migration and thereby, contributing to cancer development and progression. At the genetic level, BPA has been shown to be involved in multiple oncogenic signaling pathways, such as the STAT3, MAPK, and PI3K/AKT pathways. Moreover, BPA may also interact with other steroid receptors (such as androgen receptor) and plays a role in prostate cancer development. This review summarizes the current literature regarding human exposure to BPA, the endocrine-disrupting effects of BPA, and the role of BPA in hormone-associated cancers of the breast, ovary, and prostate.

  2. [KIM-1 and NGAL as potential biomarkers for the diagnosis and cancer progression].

    Science.gov (United States)

    Marchewka, Zofia; Tacik, Aneta; Piwowar, Agnieszka

    2016-04-18

    On the basis of scientific literature, there is growing evidence that KIM-1 and NGAL are interesting and promising biomarkers not only in acute and chronic inflammatory processes but also in oncogenesis. There are a number of studies which investigate their possible use in diagnosis, treatment and monitoring of therapy effectiveness. The results of recent research suggests that they may play an important role in standard oncology practice. Simultaneous measurement of KIM-1 and NGAL in urine can play a crucial role in carcinogenesis assessment and cancer progression. In the future, they can become rapid diagnostic indicators, which allow one to determine cancer subtype leading to biopsy replacement and therapy improvement. In the present work, beside biochemical characteristics of KIM-1 and NGAL, we will also discuss their role in the diagnosis and assessment of development of cancer.

  3. KIM-1 and NGAL as potential biomarkers for the diagnosis and cancer progression

    Directory of Open Access Journals (Sweden)

    Zofia Marchewka

    2016-04-01

    Full Text Available On the basis of scientific literature, there is growing evidence that KIM-1 and NGAL are interesting and promising biomarkers not only in acute and chronic inflammatory processes but also in oncogenesis. There are a number of studies which investigate their possible use in diagnosis, treatment and monitoring of therapy effectiveness. The results of recent research suggests that they may play an important role in standard oncology practice. Simultaneous measurement of KIM-1 and NGAL in urine can play a crucial role in carcinogenesis assessment and cancer progression. In the future, they can become rapid diagnostic indicators, which allow one to determine cancer subtype leading to biopsy replacement and therapy improvement. In the present work, beside biochemical characteristics of KIM-1 and NGAL, we will also discuss their role in the diagnosis and assessment of development of cancer.

  4. Fibrocytes: A Novel Stromal Cells to Regulate Resistance to Anti-Angiogenic Therapy and Cancer Progression.

    Science.gov (United States)

    Goto, Hisatsugu; Nishioka, Yasuhiko

    2017-12-29

    An adequate blood supply is essential for cancer cells to survive and grow; thus, the concept of inhibiting tumor angiogenesis has been applied to cancer therapy, and several drugs are already in clinical use. It has been shown that treatment with those anti-angiogenic drugs improved the response rate and prolonged the survival of patients with various types of cancer; however, it is also true that the effect was mostly limited. Currently, the disappointing clinical results are explained by the existence of intrinsic or acquired resistance to the therapy mediated by both tumor cells and stromal cells. This article reviews the mechanisms of resistance mediated by stromal cells such as endothelial cells, pericytes, fibroblasts and myeloid cells, with an emphasis on fibrocytes, which were recently identified as the cell type responsible for regulating acquired resistance to anti-angiogenic therapy. In addition, the other emerging role of fibrocytes as mediator-producing cells in tumor progression is discussed.

  5. Oestrogen receptor beta isoform expression in sporadic colorectal cancer, familial adenomatous polyposis and progressive stages of colorectal cancer.

    Science.gov (United States)

    Stevanato Filho, Paulo Roberto; Aguiar Júnior, Samuel; Begnami, Maria Dirlei; Kuasne, Hellen; Spencer, Ranyell Matheus; Nakagawa, Wilson Toshihiko; Bezerra, Tiago Santoro; Kupper, Bruna Catin; Takahashi, Renata Maymi; Barros Filho, Mateus; Rogatto, Silvia Regina; Lopes, Ademar

    2017-11-13

    Among the sex hormones, oestrogen may play a role in colorectal cancer, particularly in conjunction with oestrogen receptor-β (ERβ). The expression of ERβ isoform variants and their correlations with familial adenomatous polyposis (FAP) syndrome and sporadic colorectal carcinomas are poorly described. This study aimed to investigate the expression levels of the ERβ1, ERβ2, ERβ4 and ERβ5 isoform variants using quantitative RT-PCR (921 analyses) in FAP, normal mucosa, adenomatous polyps and sporadic colorectal carcinomas. Decreased expression of ERβ isoforms was identified in sporadic polyps and in sporadic colorectal cancer as well as in polyps from FAP syndrome patients compared with normal tissues (p colorectal carcinomas were compared to normal mucosa tissues. These findings suggest an association of the ERβ isoform variants in individuals affected by germline mutations of the APC gene. Progressively decreased expression of ERβ was found in polyps at early stages of low-grade dysplasia, followed by T1-T2 and T3-T4 tumours (p colorectal cancer, the loss of expression was an independent predictor of recurrence, and ERβ1 and ERβ5 expression levels were associated with better disease-free survival (p = 0.002). These findings may provide a better understanding of oestrogens and their potential preventive and therapeutic effects on sporadic colorectal cancer and cancers associated with FAP syndrome.

  6. A joint model of cancer incidence, metastasis, and mortality.

    Science.gov (United States)

    Tran, Qui; Kidwell, Kelley M; Tsodikov, Alex

    2017-09-04

    Many diseases, especially cancer, are not static, but rather can be summarized by a series of events or stages (e.g. diagnosis, remission, recurrence, metastasis, death). Most available methods to analyze multi-stage data ignore intermediate events and focus on the terminal event or consider (time to) multiple events as independent. Competing-risk or semi-competing-risk models are often deficient in describing the complex relationship between disease progression events which are driven by a shared progression stochastic process. A multi-stage model can only examine two stages at a time and thus fails to capture the effect of one stage on the time spent between other stages. Moreover, most models do not account for latent stages. We propose a semi-parametric joint model of diagnosis, latent metastasis, and cancer death and use nonparametric maximum likelihood to estimate covariate effects on the risks of intermediate events and death and the dependence between them. We illustrate the model with Monte Carlo simulations and analysis of real data on prostate cancer from the SEER database.

  7. Human breast cancer histoid: an in vitro 3-dimensional co-culture model that mimics breast cancer tissue.

    Science.gov (United States)

    Kaur, Pavinder; Ward, Brenda; Saha, Baisakhi; Young, Lillian; Groshen, Susan; Techy, Geza; Lu, Yani; Atkinson, Roscoe; Taylor, Clive R; Ingram, Marylou; Imam, S Ashraf

    2011-12-01

    Progress in our understanding of heterotypic cellular interaction in the tumor microenvironment, which is recognized to play major roles in cancer progression, has been hampered due to unavailability of an appropriate in vitro co-culture model. The aim of this study was to generate an in vitro 3-dimensional human breast cancer model, which consists of cancer cells and fibroblasts. Breast cancer cells (UACC-893) and fibroblasts at various densities were co-cultured in a rotating suspension culture system to establish co-culture parameters. Subsequently, UACC-893, BT.20, or MDA.MB.453 were co-cultured with fibroblasts for 9 days. Co-cultures resulted in the generation of breast cancer histoid (BCH) with cancer cells showing the invasion of fibroblast spheroids, which were visualized by immunohistochemical (IHC) staining of sections (4 µm thick) of BCH. A reproducible quantitative expression of C-erbB.2 was detected in UACC-893 cancer cells in BCH sections by IHC staining and the Automated Cellular Imaging System. BCH sections also consistently exhibited qualitative expression of pancytokeratins, p53, Ki-67, or E-cadherin in cancer cells and that of vimentin or GSTPi in fibroblasts, fibronectin in the basement membrane and collagen IV in the extracellular matrix. The expression of the protein analytes and cellular architecture of BCH were markedly similar to those of breast cancer tissue.

  8. Carcinoembryonic antigen promotes colorectal cancer progression by targeting adherens junction complexes

    Energy Technology Data Exchange (ETDEWEB)

    Bajenova, Olga, E-mail: o.bazhenova@spbu.ru [Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg 199034 (Russian Federation); Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg 199034 (Russian Federation); Department of Surgery and Biomedical Sciences, Creighton University, Omaha, NE 68178 (United States); Chaika, Nina [Department of Surgery and Biomedical Sciences, Creighton University, Omaha, NE 68178 (United States); Tolkunova, Elena; Davydov-Sinitsyn, Alexander [Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064 (Russian Federation); Gapon, Svetlana [Boston Children' s Hospital, Boston, MA 02115 (United States); Thomas, Peter [Department of Surgery and Biomedical Sciences, Creighton University, Omaha, NE 68178 (United States); O’Brien, Stephen [Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg 199034 (Russian Federation)

    2014-06-10

    Oncomarkers play important roles in the detection and management of human malignancies. Carcinoembryonic antigen (CEA, CEACAM5) and epithelial cadherin (E-cadherin) are considered as independent tumor markers in monitoring metastatic colorectal cancer. They are both expressed by cancer cells and can be detected in the blood serum. We investigated the effect of CEA production by MIP101 colorectal carcinoma cell lines on E-cadherin adherens junction (AJ) protein complexes. No direct interaction between E-cadherin and CEA was detected; however, the functional relationships between E-cadherin and its AJ partners: α-, β- and p120 catenins were impaired. We discovered a novel interaction between CEA and beta-catenin protein in the CEA producing cells. It is shown in the current study that CEA overexpression alters the splicing of p120 catenin and triggers the release of soluble E-cadherin. The influence of CEA production by colorectal cancer cells on the function of E-cadherin junction complexes may explain the link between the elevated levels of CEA and the increase in soluble E-cadherin during the progression of colorectal cancer. - Highlights: • Elevated level of CEA increases the release of soluble E-cadherin during the progression of colorectal cancer. • CEA over-expression alters the binding preferences between E-cadherin and its partners: α-, β- and p120 catenins in adherens junction complexes. • CEA produced by colorectal cancer cells interacts with beta-catenin protein. • CEA over-expression triggers the increase in nuclear beta-catenin. • CEA over-expression alters the splicing of p120 catenin protein.

  9. Carcinoembryonic antigen promotes colorectal cancer progression by targeting adherens junction complexes

    International Nuclear Information System (INIS)

    Bajenova, Olga; Chaika, Nina; Tolkunova, Elena; Davydov-Sinitsyn, Alexander; Gapon, Svetlana; Thomas, Peter; O’Brien, Stephen

    2014-01-01

    Oncomarkers play important roles in the detection and management of human malignancies. Carcinoembryonic antigen (CEA, CEACAM5) and epithelial cadherin (E-cadherin) are considered as independent tumor markers in monitoring metastatic colorectal cancer. They are both expressed by cancer cells and can be detected in the blood serum. We investigated the effect of CEA production by MIP101 colorectal carcinoma cell lines on E-cadherin adherens junction (AJ) protein complexes. No direct interaction between E-cadherin and CEA was detected; however, the functional relationships between E-cadherin and its AJ partners: α-, β- and p120 catenins were impaired. We discovered a novel interaction between CEA and beta-catenin protein in the CEA producing cells. It is shown in the current study that CEA overexpression alters the splicing of p120 catenin and triggers the release of soluble E-cadherin. The influence of CEA production by colorectal cancer cells on the function of E-cadherin junction complexes may explain the link between the elevated levels of CEA and the increase in soluble E-cadherin during the progression of colorectal cancer. - Highlights: • Elevated level of CEA increases the release of soluble E-cadherin during the progression of colorectal cancer. • CEA over-expression alters the binding preferences between E-cadherin and its partners: α-, β- and p120 catenins in adherens junction complexes. • CEA produced by colorectal cancer cells interacts with beta-catenin protein. • CEA over-expression triggers the increase in nuclear beta-catenin. • CEA over-expression alters the splicing of p120 catenin protein

  10. Biophysics of cancer progression and high-throughput mechanical characterization of biomaterials

    Science.gov (United States)

    Osborne, Lukas Dylan

    Cancer metastasis involves a series of events known as the metastatic cascade. In this complex progression, cancer cells detach from the primary tumor, invade the surrounding stromal space, transmigrate the vascular system, and establish secondary tumors at distal sites. Specific mechanical phenotypes are likely adopted to enable cells to successfully navigate the mechanical environments encountered during metastasis. To examine the role of cell mechanics in cancer progression, I employed force-consistent biophysical and biochemical assays to characterize the mechanistic links between stiffness, stiffness response and cell invasion during the epithelial to mesenchymal transition (EMT). EMT is an essential physiological process, whose abnormal reactivation has been implicated in the detachment of cancer cells from epithelial tissue and their subsequent invasion into stromal tissue. I demonstrate that epithelial-state cells respond to force by evoking a stiffening response, and that after EMT, mesenchymal-state cells have reduced stiffness but also lose the ability to increase their stiffness in response to force. Using loss and gain of function studies, two proteins are established as functional connections between attenuated stiffness and stiffness response and the increased invasion capacity acquired after EMT. To enable larger scale assays to more fully explore the connection between biomechanics and cancer, I discuss the development of an automated array high throughput (AHT) microscope. The AHT system is shown to implement passive microbead rheology to accurately characterize the mechanical properties of biomaterials. Compared to manually performed mechanical characterizations, the AHT system executes experiments in two orders of magnitude less time. Finally, I use the AHT microscope to study the effect of gain of function oncogenic molecules on cell stiffness. I find evidence that our assay can identify alterations in cell stiffness due to constitutive

  11. The role of microRNA-200 in progression of human colorectal and breast cancer.

    Directory of Open Access Journals (Sweden)

    Linda Bojmar

    Full Text Available The role of the epithelial-mesenchymal transition (EMT in cancer has been studied extensively in vitro, but involvement of the EMT in tumorigenesis in vivo is largely unknown. We investigated the potential of microRNAs as clinical markers and analyzed participation of the EMT-associated microRNA-200-ZEB-E-cadherin pathway in cancer progression. Expression of the microRNA-200 family was quantified by real-time RT-PCR analysis of fresh-frozen and microdissected formalin-fixed paraffin-embedded primary colorectal tumors, normal colon mucosa, and matched liver metastases. MicroRNA expression was validated by in situ hybridization and after in vitro culture of the malignant cells. To assess EMT as a predictive marker, factors considered relevant in colorectal cancer were investigated in 98 primary breast tumors from a treatment-randomized study. Associations between the studied EMT-markers were found in primary breast tumors and in colorectal liver metastases. MicroRNA-200 expression in epithelial cells was lower in malignant mucosa than in normal mucosa, and was also decreased in metastatic compared to non-metastatic colorectal cancer. Low microRNA-200 expression in colorectal liver metastases was associated with bad prognosis. In breast cancer, low levels of microRNA-200 were related to reduced survival and high expression of microRNA-200 was predictive of benefit from radiotheraphy. MicroRNA-200 was associated with ER positive status, and inversely correlated to HER2 and overactivation of the PI3K/AKT pathway, that was associated with high ZEB1 mRNA expression. Our findings suggest that the stability of microRNAs makes them suitable as clinical markers and that the EMT-related microRNA-200-ZEB-E-cadherin signaling pathway is connected to established clinical characteristics and can give useful prognostic and treatment-predictive information in progressive breast and colorectal cancers.

  12. In silico ADME-Tox modeling: progress and prospects.

    Science.gov (United States)

    Alqahtani, Saeed

    2017-11-01

    Although significant progress has been made in high-throughput screening of absorption, distribution, metabolism and excretion, and toxicity (ADME-Tox) properties in drug discovery and development, in silico ADME-Tox prediction continues to play an important role in facilitating the appropriate selection of candidate drugs by pharmaceutical companies prior to expensive clinical trials. Areas covered: This review provides an overview of the available in silico models that have been used to predict the ADME-Tox properties of compounds. It also provides a comprehensive overview and summarization of the latest modeling methods and algorithms available for the prediction of physicochemical characteristics, ADME properties, and drug toxicity issues. Expert opinion: The in silico models currently available have greatly contributed to the knowledge of screening approaches in the early stages of drug discovery and the development process. As the definitive goal of in silico molding is to predict the pharmacokinetics and disposition of compounds in vivo by assembling all kinetic processes within one global model, PBPK models can serve this purpose. However, much work remains to be done in this area to generate more data and input parameters to build more reliable and accurate prediction models.

  13. Laboratory animal models for esophageal cancer

    Directory of Open Access Journals (Sweden)

    Dhanya Venugopalan Nair

    2016-11-01

    Full Text Available The incidence of esophageal cancer is rapidly increasing especially in developing countries. The major risk factors include unhealthy lifestyle practices such as alcohol consumption, smoking, and chewing tobacco to name a few. Diagnosis at an advanced stage and poor prognosis make esophageal cancer one of the most lethal diseases. These factors have urged further research in understanding the pathophysiology of the disease. Animal models not only aid in understanding the molecular pathogenesis of esophageal cancer but also help in developing therapeutic interventions for the disease. This review throws light on the various recent laboratory animal models for esophageal cancer.

  14. Overexpression of Long Non-Coding RNA TUG1 Promotes Colon Cancer Progression.

    Science.gov (United States)

    Zhai, Hui-Yuan; Sui, Ming-Hua; Yu, Xiao; Qu, Zhen; Hu, Jin-Chen; Sun, Hai-Qing; Zheng, Hai-Tao; Zhou, Kai; Jiang, Li-Xin

    2016-09-16

    BACKGROUND Colon cancer is one of the most prevalent and deadly cancers worldwide. It is still necessary to further define the mechanisms and explore therapeutic targets of colon cancer. Dysregulation of long noncoding RNAs (lncRNAs) has been shown to be correlated with diverse biological processes, including tumorigenesis. This study aimed to characterize the biological mechanism of taurine-upregulated gene 1 (TUG1) in colon cancer. MATERIAL AND METHODS qRT-PCR was used to analyze the expression level of TUG1 and p63 in 75 colon cancer tissues and the matched adjacent non-tumor tissue. In vitro, cultured colon cancer cell lines HCT-116 and LoVo were used as cell models. TUG1 and p63 were silenced via transferring siRNA into HCT-116 or LoVo. The effects of TUG1 were investigated by examining cell proliferation, apoptosis, and migration. RESULTS Among the 75 colon cancer cases, the expression of TUG1 was significantly higher in colon cancer tissues compared with the matched adjacent non-tumor tissue, while p63 expression was lower in the tumor tissue. In HCT-116 and LoVo, the expression of TUG1 was significantly increased by p63 siRNA transfection. Furthermore, down-regulation of TUG1 by siRNA significantly inhibited the cell proliferation and promoted colon cancer cell apoptosis. In addition, inhibition of TUG1 expression significantly blocked the cell migration ability of colon cancer cells. CONCLUSIONS LncRNA TUG1 may serve as a potential oncogene for colon cancer. Overexpressed TUG1 may contribute to promoting cell proliferation and migration in colon cancer cells.

  15. Impact of loss-of-function mutations at the RNF43 locus on colorectal cancer development and progression.

    Science.gov (United States)

    Eto, Tsugio; Miyake, Keisuke; Nosho, Katsuhiko; Ohmuraya, Masaki; Imamura, Yu; Arima, Kota; Kanno, Shinichi; Fu, Lingfeng; Kiyozumi, Yuki; Izumi, Daisuke; Sugihara, Hidetaka; Hiyoshi, Yukiharu; Miyamoto, Yuji; Sawayama, Hiroshi; Iwatsuki, Masaaki; Baba, Yoshifumi; Yoshida, Naoya; Furukawa, Toru; Araki, Kimi; Baba, Hideo; Ishimoto, Takatsugu

    2018-05-13

    RNF43 mutations are frequently detected in colorectal cancer cells and lead to a loss of function of the ubiquitin E3 ligase. Here, we investigated the clinical significance of RNF43 mutations in a large Japanese cohort and the role of RNF43 at various stages of colorectal cancer development and progression. Mutation analysis of the RNF43 gene locus using pyrosequencing technology detected RNF43 hotspot mutations in 1 (0.88%) of 113 colorectal polyp cases and 30 (6.45%) of 465 colorectal cancer cases. Moreover, patients with colorectal cancer harboring mutated RNF43 experienced a higher recurrence rate than those harboring non-mutated RNF43. In addition, the growth of RNF43 wild-type colorectal cancer cell lines was significantly increased by RNF43 silencing. We generated Rnf43 knock-out mice in a C57BL/6N background using the CRISPR-Cas9 system. Although intestinal organoids from the Rnf43 knock-out mice did not show continuous growth compared with those from the wild-type mice in the absence of R-spondin, an azoxymethane (AOM)/dextran sodium sulfate (DSS) mouse model demonstrated that the tumors were markedly larger in the Rnf43 knock-out mice than in the wild-type mice. These findings provide evidence that Wnt signaling activation by RNF43 mutations during the tumorigenic stage enhances tumor growth and promotes a high recurrence rate in colorectal cancer patients. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  16. Esophageal Cancer: Insights from Mouse Models

    Directory of Open Access Journals (Sweden)

    Marie-Pier Tétreault

    2015-01-01

    Full Text Available Esophageal cancer is the eighth leading cause of cancer and the sixth most common cause of cancer-related death worldwide. Despite recent advances in the development of surgical techniques in combination with the use of radiotherapy and chemotherapy, the prognosis for esophageal cancer remains poor. The cellular and molecular mechanisms that drive the pathogenesis of esophageal cancer are still poorly understood. Hence, understanding these mechanisms is crucial to improving outcomes for patients with esophageal cancer. Mouse models constitute valuable tools for modeling human cancers and for the preclinical testing of therapeutic strategies in a manner not possible in human subjects. Mice are excellent models for studying human cancers because they are similar to humans at the physiological and molecular levels and because they have a shorter gestation time and life cycle. Moreover, a wide range of well-developed technologies for introducing genetic modifications into mice are currently available. In this review, we describe how different mouse models are used to study esophageal cancer.

  17. High frequency of tumor cells with nuclear Egr-1 protein expression in human bladder cancer is associated with disease progression

    International Nuclear Information System (INIS)

    Egerod, Frederikke Lihme; Bartels, Annette; Fristrup, Niels; Borre, Michael; Ørntoft, Torben F; Oleksiewicz, Martin B; Brünner, Nils; Dyrskjøt, Lars

    2009-01-01

    Egr-1 (early growth response-1 transcription factor) has been proposed to be involved in invasion and metastasis processes of human bladder cancer, but Egr-1 protein expression levels in human bladder cancer have not been investigated. In the present study we investigated the expression levels of Egr-1 protein in early stages of human bladder cancer and correlated it to later progression. Expression of Egr-1 protein in human bladder cancer was examined by immunohistochemistry, on a tissue microarray constructed from tumors from 289 patients with non-muscle invasive urothelial bladder cancer. The frequency of tumor cells with nuclear Egr-1 immunolabelling correlated to bladder cancer stage, grade and to later progression to muscle-invasive bladder cancer (T2-4). Stage T1 tumors exhibited significantly higher frequencies of tumor cells with nuclear Egr-1 immunolabelling than Ta tumors (P = 0.001). Furthermore, Kaplan-Meier survival analysis showed that a high frequency of tumor cells with nuclear Egr-1 immunolabelling was significantly associated with a higher risk of progression to stage T2-4 (log-rank test, P = 0.035). Tumor cells with nuclear Egr-1 immunolabelling were found to localize at the tumor front in some of the tumor biopsies. The results from this study support a potential involvement of Egr-1 in the progression from non-muscle invasive bladder cancers to muscle invasive bladder cancer

  18. Why Victory in the War on Cancer Remains Elusive: Biomedical Hypotheses and Mathematical Models

    Directory of Open Access Journals (Sweden)

    Leonid Hanin

    2011-01-01

    Full Text Available We discuss philosophical, methodological, and biomedical grounds for the traditional paradigm of cancer and some of its critical flaws. We also review some potentially fruitful approaches to understanding cancer and its treatment. This includes the new paradigm of cancer that was developed over the last 15 years by Michael Retsky, Michael Baum, Romano Demicheli, Isaac Gukas, William Hrushesky and their colleagues on the basis of earlier pioneering work of Bernard Fisher and Judah Folkman. Next, we highlight the unique and pivotal role of mathematical modeling in testing biomedical hypotheses about the natural history of cancer and the effects of its treatment, elaborate on model selection criteria, and mention some methodological pitfalls. Finally, we describe a specific mathematical model of cancer progression that supports all the main postulates of the new paradigm of cancer when applied to the natural history of a particular breast cancer patient and fit to the observables.

  19. Animal models and therapeutic molecular targets of cancer: utility and limitations

    Directory of Open Access Journals (Sweden)

    Cekanova M

    2014-10-01

    Full Text Available Maria Cekanova, Kusum Rathore Department of Small Animal Clinical Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN, USA Abstract: Cancer is the term used to describe over 100 diseases that share several common hallmarks. Despite prevention, early detection, and novel therapies, cancer is still the second leading cause of death in the USA. Successful bench-to-bedside translation of basic scientific findings about cancer into therapeutic interventions for patients depends on the selection of appropriate animal experimental models. Cancer research uses animal and human cancer cell lines in vitro to study biochemical pathways in these cancer cells. In this review, we summarize the important animal models of cancer with focus on their advantages and limitations. Mouse cancer models are well known, and are frequently used for cancer research. Rodent models have revolutionized our ability to study gene and protein functions in vivo and to better understand their molecular pathways and mechanisms. Xenograft and chemically or genetically induced mouse cancers are the most commonly used rodent cancer models. Companion animals with spontaneous neoplasms are still an underexploited tool for making rapid advances in human and veterinary cancer therapies by testing new drugs and delivery systems that have shown promise in vitro and in vivo in mouse models. Companion animals have a relatively high incidence of cancers, with biological behavior, response to therapy, and response to cytotoxic agents similar to those in humans. Shorter overall lifespan and more rapid disease progression are factors contributing to the advantages of a companion animal model. In addition, the current focus is on discovering molecular targets for new therapeutic drugs to improve survival and quality of life in cancer patients. Keywords: mouse cancer model, companion animal cancer model, dogs, cats, molecular targets

  20. Enhanced expression of melanoma progression markers in mouse model of sleep apnea

    Directory of Open Access Journals (Sweden)

    S. Perini

    2016-07-01

    Full Text Available Introduction: Obstructive sleep apnea has been associated with higher cancer incidence and mortality. Increased melanoma aggressivity was reported in obstructive sleep apnea patients. Mice exposed to intermittent hypoxia (IH mimicking sleep apnea show enhanced melanoma growth. Markers of melanoma progression have not been investigated in this model. Objective: The present study examined whether IH affects markers of melanoma tumor progression. Methods: Mice were exposed to isocapnic IH to a nadir of 8% oxygen fraction for 14 days. One million B16F10 melanoma cells were injected subcutaneously. Immunohistochemistry staining for Ki-67, PCNA, S100-beta, HMB-45, Melan-A, TGF-beta, Caspase-1, and HIF-1alpha were quantified using Photoshop. Results: Percentage of positive area stained was higher in IH than sham IH group for Caspase-1, Ki-67, PCNA, and Melan-A. The greater expression of several markers of tumor aggressiveness, including markers of ribosomal RNA transcription (Ki-67 and of DNA synthesis (PCNA, in mice exposed to isocapnic IH than in controls provide molecular evidence for a apnea–cancer relationship. Conclusions: These findings have potential repercussions in the understanding of differences in clinical course of tumors in obstructive sleep apnea patients. Further investigation is necessary to confirm mechanisms of these descriptive results. Keywords: Apnea, Melanoma, Biological markers

  1. Expression of Notch1 Correlates with Breast Cancer Progression and Prognosis.

    Directory of Open Access Journals (Sweden)

    Xun Yuan

    Full Text Available Various studies have evaluated the significance of Notch1 expression in breast cancer, but the results have ever been disputed. By using 21 studies involving 3867 patients, this meta-analysis revealed that the expression of Notch1 was significantly higher in breast cancer than in normal tissues (OR=7.21; 95%CI, 4.7-11.07 and that higher Notch1 expression was associated with transition from ductal carcinoma in situ (DCIS to invasive cancer (OR=3.75; 95% CI, 1.8-7.78. Higher Notch1 activity was observed in the basal subtype of breast cancer (OR=2.53; 95% CI, 1.18-5.43. Moreover, patients with Notch1 overexpression exhibited significantly worse overall and recurrence-free survival. Our meta-analysis suggests that Notch inhibitors may be useful in blocking the early progression of DCIS and that the outcomes of clinical trials for Notch1-targeting therapeutics could be improved by the molecular stratification of breast cancer patients.

  2. Biological Roles of Aberrantly Expressed Glycosphingolipids and Related Enzymes in Human Cancer Development and Progression

    Directory of Open Access Journals (Sweden)

    Dinghao Zhuo

    2018-05-01

    Full Text Available Glycosphingolipids (GSLs, which consist of a hydrophobic ceramide backbone and a hydrophilic carbohydrate residue, are an important type of glycolipid expressed in surface membranes of all animal cells. GSLs play essential roles in maintenance of plasma membrane stability, in regulation of numerous cellular processes (including adhesion, proliferation, apoptosis, and recognition, and in modulation of signal transduction pathways. GSLs have traditionally been classified as ganglio-series, lacto-series, or globo-series on the basis of their diverse types of oligosaccharide chains. Structures and functions of specific GSLs are also determined by their oligosaccharide chains. Different cells and tissues show differential expression of GSLs, and changes in structures of GSL glycan moieties occur during development of numerous types of human cancer. Association of GSLs and/or related enzymes with initiation and progression of cancer has been documented in 100s of studies, and many such GSLs are useful markers or targets for cancer diagnosis or therapy. In this review, we summarize (i recent studies on aberrant expression and distribution of GSLs in common human cancers (breast, lung, colorectal, melanoma, prostate, ovarian, leukemia, renal, bladder, gastric; (ii biological functions of specific GSLs in these cancers.

  3. Rapid Disease Progression With Delay in Treatment of Non-Small-Cell Lung Cancer

    International Nuclear Information System (INIS)

    Mohammed, Nasiruddin; Kestin, Larry Llyn; Grills, Inga Siiner; Battu, Madhu; Fitch, Dwight Lamar; Wong, Ching-yee Oliver; Margolis, Jeffrey Harold; Chmielewski, Gary William; Welsh, Robert James

    2011-01-01

    Purpose: To assess rate of disease progression from diagnosis to initiation of treatment for Stage I-IIIB non-small-cell lung cancer (NSCLC). Methods and Materials: Forty patients with NSCLC underwent at least two sets of computed tomography (CT) and 18-fluorodeoxyglucose positron emission tomography (PET) scans at various time intervals before treatment. Progression was defined as development of any new lymph node involvement, site of disease, or stage change. Results: Median time interval between first and second CT scans was 13.4 weeks, and between first and second PET scans was 9.0 weeks. Median initial primary maximum tumor dimension (MTD) was 3.5 cm (0.6-8.5 cm) with a median standardized uptake value (SUV) of 13.0 (1.7-38.5). The median MTD increased by a median of 1.0 cm (mean, 1.6 cm) between scans for a median relative MTD increase of 35% (mean, 59%). Nineteen patients (48%) progressed between scans. Rate of any progression was 13%, 31%, and 46% at 4, 8, and 16 weeks, respectively. Upstaging occurred in 3%, 13%, and 21% at these intervals. Distant metastasis became evident in 3%, 13%, and 13% after 4, 8, and 16 weeks, respectively. T and N stage were associated with progression, whereas histology, grade, sex, age, and maximum SUV were not. At 3 years, overall survival for Stage III patients with vs. without progression was 18% vs. 67%, p = 0.05. Conclusions: With NSCLC, treatment delay can lead to disease progression. Diagnosis, staging, and treatment initiation should be expedited. After 4-8 weeks of delay, complete restaging should be strongly considered.

  4. Breast cancer risks and risk prediction models.

    Science.gov (United States)

    Engel, Christoph; Fischer, Christine

    2015-02-01

    BRCA1/2 mutation carriers have a considerably increased risk to develop breast and ovarian cancer. The personalized clinical management of carriers and other at-risk individuals depends on precise knowledge of the cancer risks. In this report, we give an overview of the present literature on empirical cancer risks, and we describe risk prediction models that are currently used for individual risk assessment in clinical practice. Cancer risks show large variability between studies. Breast cancer risks are at 40-87% for BRCA1 mutation carriers and 18-88% for BRCA2 mutation carriers. For ovarian cancer, the risk estimates are in the range of 22-65% for BRCA1 and 10-35% for BRCA2. The contralateral breast cancer risk is high (10-year risk after first cancer 27% for BRCA1 and 19% for BRCA2). Risk prediction models have been proposed to provide more individualized risk prediction, using additional knowledge on family history, mode of inheritance of major genes, and other genetic and non-genetic risk factors. User-friendly software tools have been developed that serve as basis for decision-making in family counseling units. In conclusion, further assessment of cancer risks and model validation is needed, ideally based on prospective cohort studies. To obtain such data, clinical management of carriers and other at-risk individuals should always be accompanied by standardized scientific documentation.

  5. Oestrogen receptor beta isoform expression in sporadic colorectal cancer, familial adenomatous polyposis and progressive stages of colorectal cancer

    DEFF Research Database (Denmark)

    Stevanato Filho, Paulo Roberto; Aguiar Júnior, Samuel; Begnami, Maria Dirlei

    2017-01-01

    BACKGROUND: Among the sex hormones, oestrogen may play a role in colorectal cancer, particularly in conjunction with oestrogen receptor-β (ERβ). The expression of ERβ isoform variants and their correlations with familial adenomatous polyposis (FAP) syndrome and sporadic colorectal carcinomas...... was identified in sporadic polyps and in sporadic colorectal cancer as well as in polyps from FAP syndrome patients compared with normal tissues (p expression in polyps (p ..., no differences were observed when sporadic colorectal carcinomas were compared to normal mucosa tissues. These findings suggest an association of the ERβ isoform variants in individuals affected by germline mutations of the APC gene. Progressively decreased expression of ERβ was found in polyps at early stages...

  6. Progress and Overview on Neutronics Modelling Development in RTP

    International Nuclear Information System (INIS)

    Mohamad Hairie Rabir; Muhammad Rawi Mohamed Zin; Julia Abdul Karim

    2016-01-01

    Reactor calculation and simulation are significantly important to ensure safety and better utilization of a research reactor. The Malaysian PUSPATI TRIGA Reactor (RTP) achieved initial criticality on June 28, 1982. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes. Since early 90s, neutronics modelling were used as part of its routine in-core fuel management activities. The are several computer codes have been used in RTP since then, based on 1D neutron diffusion, 2D neutron diffusion and 3D Monte Carlo neutron transport method. This paper describes current progress and overview on neutronics modelling development in RTP. Several important parameters were analysed such as k_e_f_f, reactivity, neutron flux, power distribution, B_e_f_f, and fission product build-up for the latest core configuration. The developed core neutronics model was validated by means of comparison with experimental and measurement data. Along with the RTP core model, the calculation procedure also developed to establish better prediction capability of RTP behaviour. (author)

  7. Delineating an Epigenetic Continuum for Initiation, Transformation and Progression to Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Kang Mei; Stephen, Josena K. [Department of Otolaryngology/Head and Neck Surgery, Henry Ford Hospital, 1 Ford Place, 1D, Detroit, MI 48202 (United States); Raju, Usha [Department of Pathology, Henry Ford Hospital, Detroit, 1 Ford Place, 1D, Detroit, MI 48202 (United States); Worsham, Maria J., E-mail: mworsha1@hfhs.org [Department of Otolaryngology/Head and Neck Surgery, Henry Ford Hospital, 1 Ford Place, 1D, Detroit, MI 48202 (United States)

    2011-03-29

    Aberrant methylation of promoter CpG islands is a hallmark of human cancers and is an early event in carcinogenesis. We examined whether promoter hypermethylation contributes to the pathogenesis of benign breast lesions along a progression continuum to invasive breast cancer. The exploratory study cohort comprised 17 breast cancer patients with multiple benign and/or in situ lesions concurrently present with invasive carcinoma within a tumor biopsy. DNA from tumor tissue, normal breast epithelium when present, benign lesions (fibroadenoma, hyperplasia, papilloma, sclerosing adenosis, apocrine metaplasia, atypical lobular hyperplasia or atypical ductal hyperplasia), and in situ lesions of lobular carcinoma and ductal carcinoma were interrogated for promoter methylation status in 22 tumor suppressor genes using the multiplex ligation-dependent probe amplification assay (MS-MLPA). Methylation specific PCR was performed to confirm hypermethylation detected by MS-MLPA. Promoter methylation was detected in 11/22 tumor suppressor genes in 16/17 cases. Hypermethylation of RASSF1 was most frequent, present in 14/17 cases, followed by APC in 12/17, and GSTP1 in 9/17 cases with establishment of an epigenetic monocloncal progression continuum to invasive breast cancer. Hypermethylated promoter regions in normal breast epithelium, benign, and premalignant lesions within the same tumor biopsy implicate RASSF1, APC, GSTP1, TIMP3, CDKN2B, CDKN2A, ESR1, CDH13, RARB, CASP8, and TP73 as early events. DNA hypermethylation underlies the pathogenesis of step-wise transformation along a monoclonal continuum from normal to preneoplasia to invasive breast cancer.

  8. Delineating an Epigenetic Continuum for Initiation, Transformation and Progression to Breast Cancer

    International Nuclear Information System (INIS)

    Chen, Kang Mei; Stephen, Josena K.; Raju, Usha; Worsham, Maria J.

    2011-01-01

    Aberrant methylation of promoter CpG islands is a hallmark of human cancers and is an early event in carcinogenesis. We examined whether promoter hypermethylation contributes to the pathogenesis of benign breast lesions along a progression continuum to invasive breast cancer. The exploratory study cohort comprised 17 breast cancer patients with multiple benign and/or in situ lesions concurrently present with invasive carcinoma within a tumor biopsy. DNA from tumor tissue, normal breast epithelium when present, benign lesions (fibroadenoma, hyperplasia, papilloma, sclerosing adenosis, apocrine metaplasia, atypical lobular hyperplasia or atypical ductal hyperplasia), and in situ lesions of lobular carcinoma and ductal carcinoma were interrogated for promoter methylation status in 22 tumor suppressor genes using the multiplex ligation-dependent probe amplification assay (MS-MLPA). Methylation specific PCR was performed to confirm hypermethylation detected by MS-MLPA. Promoter methylation was detected in 11/22 tumor suppressor genes in 16/17 cases. Hypermethylation of RASSF1 was most frequent, present in 14/17 cases, followed by APC in 12/17, and GSTP1 in 9/17 cases with establishment of an epigenetic monocloncal progression continuum to invasive breast cancer. Hypermethylated promoter regions in normal breast epithelium, benign, and premalignant lesions within the same tumor biopsy implicate RASSF1, APC, GSTP1, TIMP3, CDKN2B, CDKN2A, ESR1, CDH13, RARB, CASP8, and TP73 as early events. DNA hypermethylation underlies the pathogenesis of step-wise transformation along a monoclonal continuum from normal to preneoplasia to invasive breast cancer

  9. Progressive massive fibrosis in patients with pneumoconiosis: utility of MRI in differentiating from lung cancer.

    Science.gov (United States)

    Ogihara, Yukihiro; Ashizawa, Kazuto; Hayashi, Hideyuki; Nagayasu, Takeshi; Hayashi, Tomayoshi; Honda, Sumihisa; Uetani, Masataka

    2018-01-01

    Background It is occasionally difficult to distinguish progressive massive fibrosis (PMF) from lung cancer on computed tomography (CT) in patients with pneumoconiosis. Purpose To evaluate the magnetic resonance imaging (MRI) features of PMF and to assess its ability to differentiate PMF from lung cancer. Material and Methods Between 2000 and 2014, 40 pulmonary lesions suspected to be lung cancer on the basis of CT in 28 patients with known pneumoconiosis were evaluated. Twenty-four of the 40 lesions were pathologically or clinically diagnosed as PMF. The signal pattern on T2-weighted (T2W) images, post-contrast enhancement pattern on T1-weighted (T1W) images, and the pattern of the time intensity curve (TIC) on contrast-enhanced dynamic studies were evaluated. All images were analyzed independently by two chest radiologists. Results All 24 PMF lesions showed low signal intensity (SI) on T2W images (sensitivity, 100%), while 15 of 16 lung cancer lesions showed intermediate or high SI on T2W images (specificity, 94%) when PMF was regarded as a positive result. Six of 17 PMF lesions showed a homogeneous enhancement pattern (sensitivity, 35%), and 4/9 lung cancer lesions showed an inhomogeneous or a ring-like enhancement pattern (specificity, 44%). Six of 16 PMF lesions showed a gradually increasing enhancement pattern (sensitivity, 38%), and 7/9 lung cancer lesions showed rapid enhancement pattern (specificity, 78%). Conclusion When differentiation between PMF and lung cancer in patients with pneumoconiosis is difficult on CT, an additional MRI study, particularly the T2W imaging sequence, may help differentiate between the two.

  10. Functional characterization of the transcription factor ZEB1 in epithelial to mesenchymal transition and cancer progression

    International Nuclear Information System (INIS)

    Sultan, A.

    2010-01-01

    Epithelial to mesenchymal transition (EMT) is implicated in the progression of primary tumours towards metastasis and is likely caused by a pathological activation of transcription factors regulating EMT in embryonic development. To analyse EMT-causing pathways in tumourigenesis, transcriptional targets of the E-cadherin repressor ZEB1 in invasive humancancer cells were identified. We show that ZEB1 repressed multiple key determinants of epithelial differentiation and cell-cell adhesion, including the cell polarity genes Crumbs3, HUGL2, PKP3 and Pals1-associated tight junction protein. ZEB1 associated with their endogenous promoters in vivo, and strongly repressed promoter activities in reporter assays. ZEB1 downregulation in undifferentiated cancer cells by RNA interference was sufficient to upregulate expression of these cell polarity genes on the RNA and protein level, to re-establish epithelial features and to impair cell motility in vitro. In human colorectal cancer, ZEB1 expression was limited to the tumour-host interface and was accompanied by loss of intercellular adhesion and tumour cell invasion. EMT-inducing transcriptional repressor ZEB1 promotes colorectal cancer cell metastasis and loss of cell polarity. Thereby, ZEB1 suppresses the expression of cell polarity factors, in particular of Lgl2, which was found to be reduced in colorectal and breast cancers. In invasive ductal and lobular breast cancer, upregulation of ZEB1 was stringently coupled to cancer cell dedifferentiation. The invasion potential of MDA-MB-231, a highly invasive breast cancer cell line, is shown to be under the control of ZEB1. Over-expression of ZEB1downregulates and relocalizes E-Cadherin in MCF7 breast cancer cells; moreover, ZEB1 overexpression results in reduced proliferation rate of these cells. Most importantly, we show that ZEB1 mediated downregulation of E-cadherin involves chromatin modifications. Markers of transcriptionally active chromatin Acetylated H3 and Acetylated

  11. Tumor-stroma metabolic relationship based on lactate shuttle can sustain prostate cancer progression

    International Nuclear Information System (INIS)

    Sanità, Patrizia; Capulli, Mattia; Teti, Anna; Galatioto, Giuseppe Paradiso; Vicentini, Carlo; Chiarugi, Paola; Bologna, Mauro; Angelucci, Adriano

    2014-01-01

    Cancer cell adopts peculiar metabolic strategies aimed to sustain the continuous proliferation in an environment characterized by relevant fluctuations in oxygen and nutrient levels. Monocarboxylate transporters MCT1 and MCT4 can drive such adaptation permitting the transport across plasma membrane of different monocarboxylic acids involved in energy metabolism. Role of MCTs in tumor-stroma metabolic relationship was investigated in vitro and in vivo using transformed prostate epithelial cells, carcinoma cell lines and normal fibroblasts. Moreover prostate tissues from carcinoma and benign hypertrophy cases were analyzed for individuating clinical-pathological implications of MCT1 and MCT4 expression. Transformed prostate epithelial (TPE) and prostate cancer (PCa) cells express both MCT1 and MCT4 and demonstrated variable dependence on aerobic glycolysis for maintaining their proliferative rate. In glucose-restriction the presence of L-lactate determined, after 24 h of treatment, in PCa cells the up-regulation of MCT1 and of cytochrome c oxidase subunit I (COX1), and reduced the activation of AMP-activated protein kinase respect to untreated cells. The blockade of MCT1 function, performed by si RNA silencing, determined an appreciable antiproliferative effect when L-lactate was utilized as energetic fuel. Accordingly L-lactate released by high glycolytic human diploid fibroblasts WI-38 sustained survival and growth of TPE and PCa cells in low glucose culture medium. In parallel, the treatment with conditioned medium from PCa cells was sufficient to induce glycolytic metabolism in WI-38 cells, with upregulation of HIF-1a and MCT4. Co-injection of PCa cells with high glycolytic WI-38 fibroblasts determined an impressive increase in tumor growth rate in a xenograft model that was abrogated by MCT1 silencing in PCa cells. The possible interplay based on L-lactate shuttle between tumor and stroma was confirmed also in human PCa tissue where we observed a positive

  12. Palliative radiotherapy for local progression of hormone refractory stage D2 prostate cancer

    International Nuclear Information System (INIS)

    Kawakami, Satoru; Kawai, Tsuneo; Yonese, Junji; Yamauchi, Tamio; Ishibashi, Keiichiro; Ueda, Tomohiro

    1993-01-01

    From 1970 to 1992, 10 patients with hormone refractory stage D2 adenocarcinoma of the prostate presenting themselves with urinary retention and/or gross hematuria were treated by palliative irradiation for local progression at Cancer Institute Hospital. External beam irradiation was delivered to the primary lesion at dose of 38 Gy to one patient and 30∼27 Gy to seven patients. Five of these patients in whom an urethral catheter had been indwelt were able to void without difficulty following the treatment. Of four patients with severe hematuria resulting from vesical tamponade, none had hematuria after the treatment. These effect lasted until patients' death or more than 11 months follow-up. In other 2 patients, irradiation had to be discontinued at dose less than 20 Gy because of deteriorated general conditions and no significant effect. Complications of the treatment were minimal. These results indicate that the optimal dose of local palliative irradiation is around 30 Gy. Irradiation is a good choice for palliation of locally progressive hormone refactory prostate cancer in view of its certain and long-lasting effect, low invasiveness and minimal complications. When to institute palliative irradiation is one of the most important question in order to secure a good quality of life of patients. From our experiences, it is our belief that if local progression is symptomatic, palliative irradiation should be initiated as soon as possible. (author)

  13. Palliative radiotherapy for local progression of hormone refractory stage D2 prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kawakami, Satoru; Kawai, Tsuneo; Yonese, Junji; Yamauchi, Tamio; Ishibashi, Keiichiro; Ueda, Tomohiro (Japanese Foundation for Cancer Research, Tokyo (Japan). Hospital)

    1993-09-01

    From 1970 to 1992, 10 patients with hormone refractory stage D2 adenocarcinoma of the prostate presenting themselves with urinary retention and/or gross hematuria were treated by palliative irradiation for local progression at Cancer Institute Hospital. External beam irradiation was delivered to the primary lesion at dose of 38 Gy to one patient and 30[approx]27 Gy to seven patients. Five of these patients in whom an urethral catheter had been indwelt were able to void without difficulty following the treatment. Of four patients with severe hematuria resulting from vesical tamponade, none had hematuria after the treatment. These effect lasted until patients' death or more than 11 months follow-up. In other 2 patients, irradiation had to be discontinued at dose less than 20 Gy because of deteriorated general conditions and no significant effect. Complications of the treatment were minimal. These results indicate that the optimal dose of local palliative irradiation is around 30 Gy. Irradiation is a good choice for palliation of locally progressive hormone refactory prostate cancer in view of its certain and long-lasting effect, low invasiveness and minimal complications. When to institute palliative irradiation is one of the most important question in order to secure a good quality of life of patients. From our experiences, it is our belief that if local progression is symptomatic, palliative irradiation should be initiated as soon as possible. (author).

  14. Models and correlations of the DEBRIS Late-Phase Melt Progression Model

    International Nuclear Information System (INIS)

    Schmidt, R.C.; Gasser, R.D.

    1997-09-01

    The DEBRIS Late Phase Melt Progression Model is an assembly of models, embodied in a computer code, which is designed to treat late-phase melt progression in dry rubble (or debris) regions that can form as a consequence of a severe core uncover accident in a commercial light water nuclear reactor. The approach is fully two-dimensional, and incorporates a porous medium modeling framework together with conservation and constitutive relationships to simulate the time-dependent evolution of such regions as various physical processes act upon the materials. The objective of the code is to accurately model these processes so that the late-phase melt progression that would occur in different hypothetical severe nuclear reactor accidents can be better understood and characterized. In this report the models and correlations incorporated and used within the current version of DEBRIS are described. These include the global conservation equations solved, heat transfer and fission heating models, melting and refreezing models (including material interactions), liquid and solid relocation models, gas flow and pressure field models, and the temperature and compositionally dependent material properties employed. The specific models described here have been used in the experiment design analysis of the Phebus FPT-4 debris-bed fission-product release experiment. An earlier DEBRIS code version was used to analyze the MP-1 and MP-2 late-phase melt progression experiments conducted at Sandia National Laboratories for the US Nuclear Regulatory Commission

  15. Role of body composition and metabolic profile in Barrett's oesophagus and progression to cancer.

    Science.gov (United States)

    Di Caro, Simona; Cheung, Wui Hang; Fini, Lucia; Keane, Margaret G; Theis, Belinda; Haidry, Rehan; Di Renzo, Laura; De Lorenzo, Antonino; Lovat, Laurence; Batterham, Rachel L; Banks, Matthew

    2016-03-01

    The aim of this study was to evaluate the risk for Barrett's oesophagus (BE) on the basis of body composition, metabolic pathways, adipokines and metabolic syndrome (MS), as well as their role in cancer progression. In patients with and without BE at gastroscopy, data on MS, BMI, waist/hip ratio for abdominal obesity (AO) and body fat percentage by bioimpedance were obtained. Fasting plasma glucose, insulin, HbA1c, lipid, serum adiponectin and leptin levels were measured. The homoeostasis model assessment (HOMA-IR) was used to estimate insulin resistance. Histological findings for BE were correlated with the above parameters. Risk factors for BE identified using univariate analysis were entered into a multivariate logistic regression analysis. A total of 250 patients and 224 controls (F/M: 189/285, mean age 58.08±15.51 years) were enroled. In the BE and control groups, 39.6 versus 31.3% were overweight, 32 versus 22.8% were obese, 75.6 versus 51.3% had AO, and 28.1 versus 18.9% were metabolically obese, respectively. AO [odds ratio (OR) 3.08], increased body fat percentage (OR 2.29), and higher BMI (overweight: OR 2.04; obese: OR 2.26) were significantly associated with BE. A positive trend was found in Normal Weight Obese Syndrome (OR 1.69). MS was associated with BE (overweight: OR 3.05; obese: OR 5.2; AO: OR 8.08). Insulin levels (P=0.05) and HOMA-IR (Pbody composition.

  16. Canadian Cancer Risk Management Model: evaluation of cancer control.

    Science.gov (United States)

    Evans, William K; Wolfson, Michael C; Flanagan, William M; Shin, Janey; Goffin, John; Miller, Anthony B; Asakawa, Keiko; Earle, Craig; Mittmann, Nicole; Fairclough, Lee; Oderkirk, Jillian; Finès, Philippe; Gribble, Stephen; Hoch, Jeffrey; Hicks, Chantal; Omariba, D Walter R; Ng, Edward

    2013-04-01

    The aim of this study was to develop a decision support tool to assess the potential benefits and costs of new healthcare interventions. The Canadian Partnership Against Cancer (CPAC) commissioned the development of a Cancer Risk Management Model (CRMM)--a computer microsimulation model that simulates individual lives one at a time, from birth to death, taking account of Canadian demographic and labor force characteristics, risk factor exposures, and health histories. Information from all the simulated lives is combined to produce aggregate measures of health outcomes for the population or for particular subpopulations. The CRMM can project the population health and economic impacts of cancer control programs in Canada and the impacts of major risk factors, cancer prevention, and screening programs and new cancer treatments on population health and costs to the healthcare system. It estimates both the direct costs of medical care, as well as lost earnings and impacts on tax revenues. The lung and colorectal modules are available through the CPAC Web site (www.cancerview.ca/cancerrriskmanagement) to registered users where structured scenarios can be explored for their projected impacts. Advanced users will be able to specify new scenarios or change existing modules by varying input parameters or by accessing open source code. Model development is now being extended to cervical and breast cancers.

  17. Therapist and Patient Perceptions of Alliance and Progress in Psychological Therapy for Women Diagnosed with Gynecological Cancers

    Science.gov (United States)

    Manne, Sharon L.; Kashy, Deborah A.; Rubin, Stephen; Hernandez, Enrique; Bergman, Cynthia

    2012-01-01

    Objective: The goal was to understand both therapist and patient perspectives on alliance and session progress for women in treatment for gynecological cancer. We used a longitudinal version of the one-with-many design to partition variation in alliance and progress ratings into therapist, patient/dyad, and time-specific components. We also…

  18. Hypothalamic Gene Transfer of BDNF Inhibits Breast Cancer Progression and Metastasis in Middle Age Obese Mice

    OpenAIRE

    Liu, Xianglan; McMurphy, Travis; Xiao, Run; Slater, Andrew; Huang, Wei; Cao, Lei

    2014-01-01

    Activation of the hypothalamus-adipocyte axis is associated with an antiobesity and anticancer phenotype in animal models of melanoma and colon cancer. Brain-derived neurotrophic factor (BDNF) is a key mediator in the hypothalamus leading to preferential sympathoneural activation of adipose tissue and the ensuing resistance to obesity and cancer. Here, we generated middle age obese mice by high fat diet feeding for a year and investigated the effects of hypothalamic gene transfer of BDNF on a...

  19. The Impact of Blue Light Cystoscopy with Hexaminolevulinate (HAL) on Progression of Bladder Cancer - A New Analysis

    NARCIS (Netherlands)

    Kamat, A.M.; Cookson, M.; Witjes, J.A.; Stenzl, A.; Grossman, H.B.

    2016-01-01

    Background: The International Bladder Cancer Group (IBCG) recently proposed a new definition of disease progression in non-muscle invasive bladder cancer (NMIBC), including change in T-stage, change to T2 or higher or change from low to high grade. Objective: To establish whether blue light

  20. 2D model for melt progression through rods and debris

    International Nuclear Information System (INIS)

    Fichot, F.

    2001-01-01

    During the degradation of a nuclear core in a severe accident scenario, the high temperatures reached lead to the melting of materials. The formation of liquid mixtures at various elevations is followed by the flow of molten materials through the core. Liquid mixture may flow under several configurations: axial relocation along the rods, horizontal motion over a plane surface such as the core support plate or a blockage of material, 2D relocation through a debris bed, etc.. The two-dimensional relocation of molten material through a porous debris bed, implemented for the simulation of late degradation phases, has opened a new way to the elaboration of the relocation model for the flow of liquid mixture along the rods. It is based on a volume averaging method, where wall friction and capillary effects are taken into account by introducing effective coefficients to characterize the solid matrix (rods, grids, debris, etc.). A local description of the liquid flow is necessary to derive the effective coefficients. Heat transfers are modelled in a similar way. The derivation of the conservation equations for the liquid mixture falling flow (momentum) in two directions (axial and radial-horizontal) and for the heat exchanges (energy) are the main points of this new model for simulating melt progression. In this presentation, the full model for the relocation and solidification of liquid materials through a rod bundle or a debris bed is described. It is implemented in the ICARE/CATHARE code, developed by IPSN in Cadarache. The main improvements and advantages of the new model are: A single formulation for liquid mixture relocation, in 2D, either through a rod bundle or a porous debris bed, Extensions to complex structures (grids, by-pass, etc..), The modeling of relocation of a liquid mixture over plane surfaces. (author)

  1. MUC1 enhances tumor progression and contributes toward immunosuppression in a mouse model of spontaneous pancreatic adenocarcinoma.

    Science.gov (United States)

    Tinder, Teresa L; Subramani, Durai B; Basu, Gargi D; Bradley, Judy M; Schettini, Jorge; Million, Arefayene; Skaar, Todd; Mukherjee, Pinku

    2008-09-01

    MUC1, a membrane tethered mucin glycoprotein, is overexpressed and aberrantly glycosylated in >80% of human ductal pancreatic adenocarcinoma. However, the role of MUC1 in pancreatic cancer has been elusive, partly due to the lack of an appropriate model. We report the characterization of a novel mouse model that expresses human MUC1 as a self molecule (PDA.MUC1 mice). Pancreatic tumors arise in an appropriate MUC1-tolerant background within an immune-competent host. Significant enhancement in the development of pancreatic intraepithelial preneoplastic lesions and progression to adenocarcinoma is observed in PDA.MUC1 mice, possibly due to increased proliferation. Tumors from PDA.MUC1 mice express higher levels of cyclooxygenase-2 and IDO compared with PDA mice lacking MUC1, especially during early stages of tumor development. The increased proinflammatory milieu correlates with an increased percentage of regulatory T cells and myeloid suppressor cells in the pancreatic tumor and tumor draining lymph nodes. Data shows that during pancreatic cancer progression, MUC1-mediated mechanisms enhance the onset and progression of the disease, which in turn regulate the immune responses. Thus, the mouse model is ideally suited for testing novel chemopreventive and therapeutic strategies against pancreatic cancer.

  2. MUC1 enhances tumor progression and contributes towards immunosuppression in a mouse model of spontaneous pancreatic adenocarcinoma

    Science.gov (United States)

    Tinder, Teresa L.; Subramani, Durai B.; Basu, Gargi D.; Bradley, Judy M.; Schettini, Jorge; Million, Arefayene; Skaar, Todd

    2008-01-01

    MUC1, a membrane tethered mucin glycoprotein, is overexpressed and aberrantly glycosylated in >80% of human ductal pancreatic adenocarcinoma. However, the role of MUC1 in pancreatic cancer has been elusive, partly due to the lack of an appropriate model. We report the characterization of a novel mouse model that expresses human MUC1 as a self molecule (PDA.MUC1 mice). Pancreatic tumors arise in an appropriate MUC1-tolerant background within an immune competent host. Significant enhancement in the development of pancreatic intraepithelial pre-neoplastic lesions (PanINs) and progression to adenocarcinoma is observed in PDA.MUC1 mice, possibly due to increased proliferation. Tumors from PDA.MUC1 mice express higher levels of cyclooxygenase-2 and indoleamine 2,3, dioxygenase compared to PDA mice lacking MUC1, especially during early stages of tumor development. The increased pro-inflammatory milieu correlates with an increased percentage of regulatory T cells and myeloid suppressor cells in the pancreatic tumor and tumor draining lymph nodes. Data shows that during pancreatic cancer progression, MUC1-mediated mechanisms enhance the onset and progression of the disease which in turn regulate the immune responses. Thus, the mouse model is ideally-suited for testing novel chemopreventive and therapeutic strategies against pancreatic cancer. PMID:18713982

  3. Role of prostate specific antigen and immediate confirmatory biopsy in predicting progression during active surveillance for low risk prostate cancer.

    Science.gov (United States)

    Adamy, Ari; Yee, David S; Matsushita, Kazuhito; Maschino, Alexandra; Cronin, Angel; Vickers, Andrew; Guillonneau, Bertrand; Scardino, Peter T; Eastham, James A

    2011-02-01

    We evaluated predictors of progression after starting active surveillance, especially the role of prostate specific antigen and immediate confirmatory prostate biopsy. A total of 238 men with prostate cancer met active surveillance eligibility criteria and were analyzed for progression with time. Cox proportional hazards regression was used to evaluate predictors of progression. Progression was evaluated using 2 definitions, including no longer meeting 1) full and 2) modified criteria, excluding prostate specific antigen greater than 10 ng/ml as a criterion. Using full criteria 61 patients progressed during followup. The 2 and 5-year progression-free probability was 80% and 60%, respectively. With prostate specific antigen included in progression criteria prostate specific antigen at confirmatory biopsy (HR 1.29, 95% CI 1.14-1.46, p <0.0005) and positive confirmatory biopsy (HR 1.75, 95% CI 1.01-3.04, p = 0.047) were independent predictors of progression. Of the 61 cases 34 failed due to increased prostate specific antigen, including only 5 with subsequent progression by biopsy criteria. When prostate specific antigen was excluded from progression criteria, only 32 cases progressed, and 2 and 5-year progression-free probability was 91% and 76%, respectively. Using modified criteria as an end point positive confirmatory biopsy was the only independent predictor of progression (HR 3.16, 95% CI 1.41-7.09, p = 0.005). Active surveillance is feasible in patients with low risk prostate cancer and most patients show little evidence of progression within 5 years. There is no clear justification for treating patients in whom prostate specific antigen increases above 10 ng/ml in the absence of other indications of tumor progression. Patients considering active surveillance should undergo confirmatory biopsy to better assess the risk of progression. Copyright © 2011 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  4. Role of Protein Synthesis Initiation Factors in Dietary Soy Isoflavone-Mediated Effects on Breast Cancer Progression

    Science.gov (United States)

    2012-03-01

    Manuscript s • Submitted to the Journal of Nutritional Biochemistry (Feb 21, 2012) “The soy isoflavone equol may increase cancer malignancy via upregulation...29] Ko KP, Park SK, Park B et al. Isoflavones from phytoestrogens and gastric cancer risk: a nested case-control study within the Korean...Dietary Soy Isoflavone-Mediated Effects on Breast Cancer Progression. PRINCIPAL INVESTIGATOR: Columba de la Parra Simental CONTRACTING

  5. Post-translational modifications of the extracellular matrix are key events in cancer progression: opportunities for biochemical marker development

    DEFF Research Database (Denmark)

    Leeming, D J; Bay-Jensen, A C; Vassiliadis, E

    2011-01-01

    -associated extracellular matrix (ECM) proteins. Furthermore, severe cellular stress and inflammation, caused by cancer, results in generation of PTMs, which will be distributed throughout the ECM. This gives rise to release of protein-specific fragments to the circulation. Here we highlight the importance of remodeling...... of the ECM in cancer and the generation of PTMs, which may be cancer specific and reflect disease progression; thus having potential for biochemical marker development....

  6. Dogs as a Model for Cancer.

    Science.gov (United States)

    Gardner, Heather L; Fenger, Joelle M; London, Cheryl A

    2016-01-01

    Spontaneous cancers in client-owned dogs closely recapitulate their human counterparts with respect to clinical presentation, histological features, molecular profiles, and response and resistance to therapy, as well as the evolution of drug-resistant metastases. In several instances the incorporation of dogs with cancer into the preclinical development path of cancer therapeutics has influenced outcome by helping to establish pharmacokinetic/pharmacodynamics relationships, dose/regimen, expected clinical toxicities, and ultimately the potential for biologic activity. As our understanding regarding the molecular drivers of canine cancers has improved, unique opportunities have emerged to leverage this spontaneous model to better guide cancer drug development so that th