WorldWideScience

Sample records for cancer pc3 cells1

  1. Expression of nucleostemin in prostate cancer and its effect on the proliferation of PC-3 cells

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Background Nucleostemin is essential for the proliferation and survival of stem and cancer cells,but it is unknown whether this newly identified molecule is involved in prostate cancer pathogenesis.Methods Total RNA and protein were extracted from prostate cancer tissues and PC-3,LNCap and DU145 cell lines.The nucleostemin mRNA and protein expression were measured by RT-PCR and Western blot.Immunohistochemistry was also used to detect the nucleostemin protein expression in prostate cancer tissues and PC-3 cells.A nucleostemin specific,short hairpin RNA,expression plasmid was used to transfect PC-3 cells.The changes of nucleostemin gene were detected and the proliferative capacity of the cells was determined.Results Nucleostemin was highly expressed in prostate cancer tissues and cell lines.Nucleostemin expression level in the silencer group PC-3 cells remarkably reduced.The proliferation rate of silencer group PC-3 cells decreased and the percentage of G1 stage cells increased.The neoplasm forming capacity in nude mice of the silencer group PC-3 cells decreased significantly.Conclusions Nucleostemin is highly expressed in prostate cancer tissues and cell lines.The proliferative capacity of PC-3 cells is remarkably reduced after silencing nucleostemin gene expression.

  2. The Biological Effect of Hepsin on the Proliferation and Invasion of PC-3 Prostate Cancer Cells

    Institute of Scientific and Technical Information of China (English)

    Yong Xu; Zhiqiang Fan; Jantao Sun; Ranlu Liu; Weiming Zhao; Chunyu Wang; Ju Zhang

    2006-01-01

    OBJECTIVE Recent studies have shown that hepsin, a type of transmembrane serine protease, is highly upregulated in prostate cancer, but, little is known about its role in progression and invasion of this cancer. We constructed a hepsin-expressing plasmid and transfected it into PC-3 cells to investigate the effect of the hepsin gene on the biological behavior of the PC-3 cells.METHODS Plasmid pHepsin-IRES2 was transfected into prostate cancer PC-3 cells using Fugene6, and the cells with stable hepsin expression were screened and selected with Zeocin (600 mg/L). The hepsin mRNA level was measured by real-time PCR and the growth curve of the PC-3-transfected cells assessed using MTT and BrdU assays. A Boyden chamber was used to examine the difference in invasion and metastases between transfected and non-transfected cells.RESULTS The hepsin mRNA level in pHepsin-IRES2 transfected -PC-3 cells was significantly higher than that found in the control PC-3 cells. While the growth curve of the hepsin gene transfected PC-3 cells showed that there was no significant effect on proliferation, the invasive ability of the pHepsin-IRES2 transfected PC-3 cells, as compared with control cells, was significantly increased (P<0.05).CONCLUSION The results suggest that even though hepsin has no effect on the proliferation of prostate cancer PC-3 cells, it does promote cellular invasion and metastasis.Therefore hepsin may have a role in the development of prostate cancer.

  3. The Anticancer Effect of Fucoidan in PC-3 Prostate Cancer Cells

    Directory of Open Access Journals (Sweden)

    Hee-Kyoung Kang

    2013-08-01

    Full Text Available Fucoidan, a sulfated polysaccharide, has a variety of biological activities, such as anti-cancer, anti-angiogenic and anti-inflammatory. However, the mechanisms of action of fucoidan as an anti-cancer agent have not been fully elucidated. The present study examined the anti-cancer effect of fucoidan obtained from Undaria pinnatifida in PC-3 cells, human prostate cancer cells. Fucoidan induced the apoptosis of PC-3 cells by activating both intrinsic and extrinsic pathways. The induction of apoptosis was accompanied by the activation of extracellular signal-regulated kinase mitogen-activated protein kinase (ERK1/2 MAPK and the inactivation of p38 MAPK and phosphatidylinositol 3-kinase (PI3K/Akt. In addition, fucoidan also induced the up-regulation of p21Cip1/Waf and down-regulation of E2F-1 cell-cycle-related proteins. Furthermore, in the Wnt/β-catenin pathway, fucoidan activated GSK-3β that resulted in the decrease of β-catenin level, followed by the decrease of c-myc and cyclin D1 expressions, target genes of β-catenin in PC-3 cells. These results suggested that fucoidan treatment could induce intrinsic and extrinsic apoptosis pathways via the activation of ERK1/2 MAPK, the inactivation of p38 MAPK and PI3K/Akt signaling pathway, and the down-regulation of Wnt/β-catenin signaling pathway in PC-3 prostate cancer cells. These data support that fucoidan might have potential for the treatment of prostate cancer.

  4. CD147对前列腺癌PC-3细胞自噬的影响%CD147 affects autophagy of prostate cancer PC-3 cells

    Institute of Scientific and Technical Information of China (English)

    方芳; 冯淳; 姚杨; 马潇潇; 王立国

    2014-01-01

    [ ABSTRACT] AIM: To study the autophagy of prostate cancer PC-3 cells induced by CD147 in vitro.ME-THODS:Themethod of amino acid starvation to induce autophagy was used.The expression of CD147 was detected by Western blotting.To study the functional effects of CD147 on autophagy in prostate cancer PC-3 cells, the down-regulation of CD147 expression was induced by the technique of RNAi.The conversion of autophagic marker protein LC3-I to LC3-II was determined by Western blotting.The cell death after starvation-induced autophagy was analyzed by trypan blue exclu-sion assay.RESULTS:The CD147 expression gradually increased in starvation-induced autophagy.The down-regulation of CD147 significantly increased the expression of autophagy-related protein LC3-II compared with control group.Mean-while, the cell death rates increased from (19.3 ±3.1)%and (22.3 ±3.5)%in control groups to (38.4 ±3.1)%in si-lencing the expression of CD147 in the PC-3 cells (P<0.05).CONCLUSION:CD147 inhibits starvation-induced auto-phgy and autophagy death in the prostate cancer PC-3 cells.%目的:研究白细胞分化抗原(CD)147在体外对前列腺癌PC-3细胞的自噬作用。方法:通过氨基酸饥饿法建立自噬模型,免疫印迹技术检测CD147的表达。利用RNA干扰CD147表达的细胞系,免疫印迹技术检测自噬蛋白LC3-I和LC3-II的表达;台盼蓝排斥实验检测细胞的死亡情况。结果:在PC-3细胞自噬模型中,随着饥饿诱导时间延长,CD147表达逐渐升高。用RNA干扰技术降低CD147表达后,与阴性对照组比较,在自噬模型中CD147干扰组自噬相关蛋白LC3-II表达增多;并且细胞死亡数量明显增加,阴性对照组细胞死亡率分别为(19.3±3.1)%和(22.3±3.5)%,而在CD147干涉组细胞死亡率为(38.4±3.1)%,差异有统计学意义(P<0.05)。结论:在前列腺癌PC-3细胞中CD147抑制饥饿诱导的自噬,减少自噬性细胞死亡的发生。

  5. Effect of cyclin G2 on proliferative ability of prostate cancer PC-3 cell.

    Science.gov (United States)

    Cui, D W; Cheng, Y J; Jing, S W; Sun, G G

    2014-04-01

    This study aimed to analyze the expression, clinical significance of cyclin G2 (CCNG2) in prostate carcinoma, and the biological effect in its cell line by CCNG2 overexpression. Immunohistochemistry and Western blot were used to analyze CCNG2 protein expression in 85 cases of prostate cancer and normal tissues to study the relationship between CCNG2 expression and clinical factors. CCNG2 lentiviral vector and empty vector were, respectively, transfected into prostate cancer PC-3 cell line. Reverse transcription-polymerase chain reaction (RT-PCR) and Western blot were used to detect the mRNA level and protein of CCNG2. MTT assay and cell cycle were also conducted as to the influence of the upregulated expression of CCNG2 that might be found on PC-3 cells biological effect. The level of CCNG2 protein expression was found to be significantly lower in prostate cancer tissue than normal tissues (P size (P lymph node metastasis, clinic stage, and Gleason score (P prostate cancer and correlated significantly with lymph node metastasis, clinic stage, and Gleason score, suggesting that CCNG2 may play important roles as a negative regulator to prostate cancer cell.

  6. Molecular lipidomics of exosomes released by PC-3 prostate cancer cells

    DEFF Research Database (Denmark)

    Llorente, A.; Skotland, T.; Sylvanne, T.

    2013-01-01

    The molecular lipid composition of exosomes is largely unknown. In this study, sophisticated shotgun and targeted molecular lipidomic assays were performed for in-depth analysis of the lipidomes of the metastatic prostate cancer cell line, PC-3, and their released exosomes. This study, based...... in the quantification of approximately 280 molecular lipid species, provides the most extensive lipid analysis of cells and exosomes to date. Interestingly, major differences were found in the lipid composition of exosomes compared to parent cells. Exosomes show a remarkable enrichment of distinct lipids, demonstrating...

  7. Matrix-Dependent Regulation of AKT in Hepsin-Overexpressing PC3 Prostate Cancer Cells

    Directory of Open Access Journals (Sweden)

    Stephanie M Wittig-Blaich

    2011-07-01

    Full Text Available The serine-protease hepsin is one of the most prominently overexpressed genes in human prostate carcinoma. Forced expression of the enzyme in mice prostates is associated with matrix degradation, invasive growth, and prostate cancer progression. Conversely, hepsin overexpression in metastatic prostate cancer cell lines was reported to induce cell cycle arrest and reduction of invasive growth in vitro. We used a system for doxycycline (dox-inducible target gene expression in metastasis-derived PC3 cells to analyze the effects of hepsin in a quantitative manner. Loss of viability and adhesion correlated with hepsin expression levels during anchorage-dependent but not anchorage-independent growth. Full expression of hepsin led to cell death and detachment and was specifically associated with reduced phosphorylation of AKT at Ser473, which was restored by growth on matrix derived from RWPE1 normal prostatic epithelial cells. In the chorioallantoic membrane xenograft model, hepsin overexpression in PC3 cells reduced the viability of tumors but did not suppress invasive growth. The data presented here provide evidence that elevated levels of hepsin interfere with cell adhesion and viability in the background of prostate cancer as well as other tissue types, the details of which depend on the microenvironment provided. Our findings suggest that overexpression of the enzyme in prostate carcinogenesis must be spatially and temporally restricted for the efficient development of tumors and metastases.

  8. Matrix-Dependent Regulation of AKT in Hepsin-Overexpressing PC3 Prostate Cancer Cells12

    Science.gov (United States)

    Wittig-Blaich, Stephanie M; Kacprzyk, Lukasz A; Eismann, Thorsten; Bewerunge-Hudler, Melanie; Kruse, Petra; Winkler, Eva; Strauss, Wolfgang S L; Hibst, Raimund; Steiner, Rudolf; Schrader, Mark; Mertens, Daniel; Sültmann, Holger; Wittig, Rainer

    2011-01-01

    The serine-protease hepsin is one of the most prominently overexpressed genes in human prostate carcinoma. Forced expression of the enzyme in mice prostates is associated with matrix degradation, invasive growth, and prostate cancer progression. Conversely, hepsin overexpression in metastatic prostate cancer cell lines was reported to induce cell cycle arrest and reduction of invasive growth in vitro. We used a system for doxycycline (dox)-inducible target gene expression in metastasis-derived PC3 cells to analyze the effects of hepsin in a quantitative manner. Loss of viability and adhesion correlated with hepsin expression levels during anchorage-dependent but not anchorage-independent growth. Full expression of hepsin led to cell death and detachment and was specifically associated with reduced phosphorylation of AKT at Ser473, which was restored by growth on matrix derived from RWPE1 normal prostatic epithelial cells. In the chorioallantoic membrane xenograft model, hepsin overexpression in PC3 cells reduced the viability of tumors but did not suppress invasive growth. The data presented here provide evidence that elevated levels of hepsin interfere with cell adhesion and viability in the background of prostate cancer as well as other tissue types, the details of which depend on the microenvironment provided. Our findings suggest that overexpression of the enzyme in prostate carcinogenesis must be spatially and temporally restricted for the efficient development of tumors and metastases. PMID:21750652

  9. Effect of melamine on [Ca(2+)]i and viability in PC3 human prostate cancer cells.

    Science.gov (United States)

    Yu, Chia-Cheng; Chou, Chiang-Ting; Sun, Te-Kung; Liang, Wei-Zhe; Cheng, Jin-Shiung; Chang, Hong-Tai; Wang, Jue-Long; Tseng, Hui-Wen; Kuo, Chun-Chi; Chen, Fu-An; Kuo, Daih-Huang; Shieh, Pochuen; Jan, Chung-Ren

    2014-11-01

    Melamine is thought to be an endocrine disrupter that affects physiology in cells. This study examined the effect of melamine on cytosolic free Ca(2+) concentrations ([Ca(2+)]i) and viability in PC3 human prostate cancer cells. Melamine evoked [Ca(2+)]i rises concentration-dependently. Melamine-evoked Ca(2+) entry was inhibited by nifedipine, econazole, SKF96365, GF109203X and phorbol 12-myristate 13 acetate. In Ca(2+)-free medium, treatment with the endoplasmic reticulum Ca(2+) pump inhibitor thapsigargin inhibited melamine-evoked [Ca(2+)]i rise. Conversely, treatment with melamine abolished thapsigargin-evoked [Ca(2+)]i rise. Inhibition of phospholipase C with U73122 did not alter melamine-evoked [Ca(2+)]i rise. Melamine at 500-800μM decreased cell viability, which was not reversed by pretreatment with the Ca(2+) chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester (BAPTA/AM). Collectively, our data suggest that in PC3 cells, melamine induced [Ca(2+)]i rises by evoking phospholipase C-independent Ca(2+) release from the endoplasmic reticulum, and Ca(2+) entry via protein kinase C-regulated store-operated Ca(2+) entry. Melamine also caused Ca(2+)-independent cell death.

  10. Safrole-induced Ca2+ mobilization and cytotoxicity in human PC3 prostate cancer cells.

    Science.gov (United States)

    Chang, H C; Cheng, H H; Huang, C J; Chen, W C; Chen, I S; Liu, S I; Hsu, S S; Chang, H T; Wang, J K; Lu, Y C; Chou, C T; Jan, C R

    2006-01-01

    The effect of the carcinogen safrole on intracellular Ca2+ mobilization and on viability of human PC3 prostate cancer cells was examined. Cytosolic free Ca2+ levels ([Ca2+]i) were measured by using fura-2 as a probe. Safrole at concentrations above 10 microM increased [Ca2+]i in a concentration-dependent manner with an EC50 value of 350 microM. The Ca2+ signal was reduced by more than half after removing extracellular Ca2+ but was unaffected by nifedipine, nicardipine, nimodipine, diltiazem, or verapamil. In Ca2+-free medium, after treatment with 650 microM safrole, 1 microM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor) failed to release Ca2+. Neither inhibition of phospholipase C with U73122 nor modulation of protein kinase C activity affected safrole-induced Ca2+ release. Overnight incubation with 0.65-65 microM safrole did not affect cell viability, but incubation with 325-625 microM safrole decreased viability. Collectively, the data suggest that in PC3 cells, safrole induced a [Ca2+]i increase by causing Ca2+ release from the endoplasmic reticulum in a phospholipase C- and protein kinase C-independent fashion, and by inducing Ca2+ influx. Safrole can decrease cell viability in a concentration-dependent manner.

  11. Sublethal Irradiation Promotes Migration and Invasiveness of Prostate Cancer PC-3 Cells: Implications for Radiotherapy of Human Prostate Cancer

    Institute of Scientific and Technical Information of China (English)

    Xiaoyi Zhang; Baofa Hong; Jianguang Zhou; Liquan Zhou; Lian Zou

    2007-01-01

    OBJECTIVE To study the changes in the matrix metalloproteinases-2 and 9 (MMP2, MMP9) induced by 60Co y-ray external irradiation of human prostate cancer PC-3 cells.METHODS Human prostate cancer PC-3 cells were irradiated with different doses of 60Coy-rays. Cell migration and invasiveness were evaluated and the expression of MMP2, and MMP9 was investigated by RT-PCR, Western blotting and flow cytometry(FCM).RESULTS Irradiation enchances invasive protential at the doses of 1,3 and 5 Gy.whereas it significantly inhibits cell migration. CONCLUSION The different doses of 60Co y-ray external irradiation for prostate cancer may have different effects through the changes of MMP2, and MMP9 expression.

  12. Tumor Necrosis Factor-related Apoptosis Ligand Induces Apoptosis in Prostate Cancer PC-3M Cell Line

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhohui; WANG Huafang; GU Longjie; YE Zhewei; XIAO Yajun

    2005-01-01

    To study the effect of tumor necrosis factor-related apoptosis inducing ligand (TRAIL)on PC-3M cell line, PC-3M cell line was incubated with gradient concentrations of TRAIL for 4-24h. Annixin-Ⅴ fluorescence staining and TUNEL method were employed to detect the apoptosis of PC-3M cells. The morphology of apoptotic PC-3M cells was observed by electron microscopy. The relationship between TRAIL concentrations and the percentage of apoptotic cells was evaluated by flow cytometry. The proliferation inhibitory ratio was calculated by using MTT colorimetry. Our results showed that apoptosis of PC-3M cells could be induced by treatment with TRAIL for at most 4 h. The results of flow cytometry and MTT colorimetry demonstrated a time- and concentration-dependent relationship between cell apoptosis rate and TRAIL concentration. It is concluded that apoptosis of PC-3M cells can be induced by TRAIL. Because of the selective killing effect of TRAIL on tumor ceils, it may become a potential alternative for the treatment of advanced prostate cancer.

  13. 黄腐酚抑制人前列腺癌PC3细胞增殖机制初探%Mechanism of Xanthohumol inhibits human prostate cancer PC3 cell proliferation

    Institute of Scientific and Technical Information of China (English)

    张文超; 周程; 刘峰; 孙枝红; 马涟清; 刘启明; 杜宇平; 王勤

    2016-01-01

    Objective:To investigate the mechanism of inhibition in proliferation of human prostate cancer PC3 cells by Xanthohumol.Methods:Examine the effect of Xanthohumol on PC3 proliferation using cell cycle and apopto-sis analysis.Examine the effect of Xanthohumol on the key proteins of Notch signaling pathway by Western blot.Re-sults:Xanthohumol inhibited the proliferation of PC3 and limited the activation of Notch signaling pathway.Xanthohu-mol can reduce GSK -3βactivation,leading to the inactivation of Notch signaling pathways.Conclusion:Xanthohu-mol could inhibit human prostate cancer PC3 cell proliferation via reducing Notch signaling pathway activation by in-hibition of GSK -3βactivation.%目的:初步探讨黄腐酚抑制人前列腺癌 PC3细胞增殖机制。方法:检测细胞周期和凋亡分析黄腐酚对 PC3细胞增殖的影响;Western blot 分析黄腐酚对 Notch 信号通路关键蛋白的作用。结果:黄腐酚可以抑制PC3细胞增殖,同时降低 Notch 信号通路活性。在黄腐酚对 Notch 信号通路的作用机制研究中发现,黄腐酚能够降低 GSK -3β活性,引起 Notch 信号通路活性降低。结论:黄腐酚可能是通过抑制 GSK -3β活性从而降低Notch 信号通路活性,最终抑制 PC3细胞的增殖。

  14. Skip Regulates TGF-β1-Induced Extracellular Matrix Degrading Proteases Expression in Human PC-3 Prostate Cancer Cells

    Directory of Open Access Journals (Sweden)

    Victor Villar

    2013-01-01

    Full Text Available Purpose. To determine whether Ski-interacting protein (SKIP regulates TGF-β1-stimulated expression of urokinase-type plasminogen activator (uPA, matrix metalloproteinase-9 (MMP-9, and uPA Inhibitor (PAI-1 in the androgen-independent human prostate cancer cell model. Materials and Methods. PC-3 prostate cancer cell line was used. The role of SKIP was evaluated using synthetic small interference RNA (siRNA compounds. The expression of uPA, MMP-9, and PAI-1 was evaluated by zymography assays, RT-PCR, and promoter transactivation analysis. Results. In PC-3 cells TGF-β1 treatment stimulated uPA, PAI-1, and MMP-9 expressions. The knockdown of SKIP in PC-3 cells enhanced the basal level of uPA, and TGF-β1 treatment inhibited uPA production. Both PAI-1 and MMP-9 production levels were increased in response to TGF-β1. The ectopic expression of SKIP inhibited both TGF-β1-induced uPA and MMP-9 promoter transactivation, while PAI-1 promoter response to the factor was unaffected. Conclusions. SKIP regulates the expression of uPA, PAI-1, and MMP-9 stimulated by TGF-β1 in PC-3 cells. Thus, SKIP is implicated in the regulation of extracellular matrix degradation and can therefore be suggested as a novel therapeutic target in prostate cancer treatment.

  15. Inhibitory effects of antagonists of growth hormone-releasing hormone on growth and invasiveness of PC3 human prostate cancer.

    Science.gov (United States)

    Muñoz-Moreno, Laura; Arenas, M Isabel; Schally, Andrew V; Fernández-Martínez, Ana B; Zarka, Elías; González-Santander, Marta; Carmena, María J; Vacas, Eva; Prieto, Juan C; Bajo, Ana M

    2013-02-15

    New approaches are needed to the therapy of advanced prostate cancer. This study determined the effect of growth hormone-releasing hormone (GHRH) antagonists, JMR-132 and JV-1-38 on growth of PC3 tumors as well as on angiogenesis and metastasis through the evaluation of various factors that contribute largely to the progression of prostate cancer. Human PC3 androgen-independent prostate cancer cells were injected subcutaneously into nude mice. The treatment with JMR-132 (10 μg/day) or JV-1-38 (20 μg/day) lasted 41 days. We also evaluated the effects of JMR-132 and JV-1-38 on proliferation, cell adhesion and migration in PC-3 cells in vitro. Several techniques (Western blot, reverse transcription polymerase chain reaction, immunohistochemistry, ELISA and zymography) were used to evaluate the expression levels of GHRH receptors and its splice variants, GHRH, vascular endothelial growth factor (VEGF), hypoxia inducible factor (HIF)-1α, metalloproteinases (MMPs) -2 and -9, β-catenin and E-cadherin. GHRH antagonists suppressed the proliferation of PC-3 cells in vitro and significantly inhibited growth of PC3 tumors. After treatment with these analogues, we found an increase in expression of GHRH receptor accompanied by a decrease of GHRH levels, a reduction in both VEGF and HIF-1α expression and in active forms of MMP-2 and MMP-9, a significant increase in levels of membrane-associated β-catenin and a significant decline in E-cadherin. These results support that the blockade of GHRH receptors can modulate elements involved in angiogenesis and metastasis. Consequently, GHRH antagonists could be considered as suitable candidates for therapeutic trials in the management of androgen-independent prostate cancer.

  16. Depletion of the histone chaperone tNASP inhibits proliferation and induces apoptosis in prostate cancer PC-3 cells

    Directory of Open Access Journals (Sweden)

    Tsuruta James K

    2011-04-01

    Full Text Available Abstract Background NASP (Nuclear Autoantigenic Sperm Protein is a histone chaperone that is present in all dividing cells. NASP has two splice variants: tNASP and sNASP. Only cancer, germ, transformed, and embryonic cells have a high level of expression of the tNASP splice variant. We examined the consequences of tNASP depletion for prostate cancer PC-3 cells. Methods tNASP was depleted from prostate cancer PC-3 cells, cervical cancer HeLa cells, and prostate epithelial PWR-1E cells using lentivirus expression of tNASP shRNA. Cell cycle changes were studied by proliferation assay with CFSE labeling and double thymidine synchronization. Gene expression profiles were detected using RT2Profiler PCR Array, Western and Northern blotting. Results PC-3 and HeLa cells showed inhibited proliferation, increased levels of cyclin-dependant kinase inhibitor p21 protein and apoptosis, whereas non-tumorigenic PWR-1E cells did not. All three cell types showed decreased levels of HSPA2. Supporting in vitro experiments demonstrated that tNASP, but not sNASP is required for activation of HSPA2. Conclusions Our results demonstrate that PC-3 and HeLa cancer cells require tNASP to maintain high levels of HSPA2 activity and therefore viability, while PWR-1E cells are unaffected by tNASP depletion. These different cellular responses most likely arise from changes in the interaction between tNASP and HSPA2 and disturbed tNASP chaperoning of linker histones. This study has demonstrated that tNASP is critical for the survival of prostate cancer cells and suggests that targeting tNASP expression can lead to a new approach for prostate cancer treatment.

  17. Apoptotic effect of demethoxyfumitremorgin C from marine fungus Aspergillus fumigatus on PC3 human prostate cancer cells.

    Science.gov (United States)

    Kim, Young-Sang; Kim, Se-Kwon; Park, Sun Joo

    2017-03-28

    Demethoxyfumitremorgin C, a secondary metabolite of the marine fungus, Aspergillus fumigatus, had been reported to demonstrate cytotoxic effect on mouse tsFT210 cells. However, no information is available regarding its functional mechanism and the chemo-sensitization effects on different kinds of human cancer cells. We found that treatment of demethoxyfumitremorgin C inhibited the cell viability of PC3 human advanced prostate cancer cells, induced apoptosis as determined by Annexin V/propidium iodide double staining, and decreased mitochondrial membrane potential. Demethoxyfumitremorgin C induced apoptosis was associated with downregulation of anti-apoptotic proteins: Ras, PI3K, Akt, Bcl-xL, and Bcl-2, and upregulation of pro-apoptotic Bax. Demethoxyfumitremorgin C activated caspase-3, -8, and -9, leading to PARP cleavage. Additionally, caspase inhibitors blocked demethoxyfumitremorgin C-induced apoptosis of PC3 cells. These results suggest that demethoxyfumitremorgin C from Aspergillus fumigatus inhibits the proliferation of PC3 human prostate cancer cells via the intrinsic (mitochondrial) and extrinsic pathway, followed by downstream events leading to apoptotic cell death. Demethoxyfumitremorgin C could therefore, serve as a useful agent to treat human advanced prostate cancer.

  18. Isolation of eugenyl β-primeveroside from Camellia sasanqua and its anticancer activity in PC3 prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Chun-Chieh Wang

    2016-01-01

    Full Text Available Most studies of tea trees have focused on their ornamental properties, there are fewer published studies on their medical values. The purpose of this study was to compare the chemical constituents and the biological potential of the water extract of leaves in eight species of Camellia including Camellia sinensis. Among eight Camellia species, Camellia sasanqua showed potent anticancer activities in prostate cancer PC3 cells. In addition to catechins, the major component, eugenyl β-primeveroside was detected in C. sasanqua. Eugenyl β-primeveroside blocked the progression of cell cycle at G1 phase by inducing p53 expression and further upregulating p21 expression. Moreover, eugenyl β-primeveroside induced apoptosis in PC3 prostate cancer cells. Our results suggest that C. sasanqua may have anticancer potential.

  19. U94 alters FN1 and ANGPTL4 gene expression and inhibits tumorigenesis of prostate cancer cell line PC3

    Directory of Open Access Journals (Sweden)

    Chan Wai-Yee

    2005-06-01

    Full Text Available Abstract Background Insensitivity of advanced-stage prostate cancer to androgen ablation therapy is a serious problem in clinical practice because it is associated with aggressive progression and poor prognosis. Targeted therapeutic drug discovery efforts are thwarted by lack of adequate knowledge of gene(s associated with prostate tumorigenesis. Therefore there is the need for studies to provide leads to targeted intervention measures. Here we propose that stable expression of U94, a tumor suppressor gene encoded by human herpesvirus 6A (HHV-6A, could alter gene expression and thereby inhibit the tumorigenicity of PC3 cell line. Microarray gene expression profiling on U94 recombinant PC3 cell line could reveal genes that would elucidate prostate cancer biology, and hopefully identify potential therapeutic targets. Results We have shown that stable expression of U94 gene in PC3 cell line inhibited its focus formation in culture, and tumorigenesis in nude mice. Moreover gene expression profiling revealed dramatic upregulation of FN 1 (fibronectin, 91 ± 16-fold, and profound downregulation of ANGPTL 4 (angiopoietin-like-4, 20 ± 4-fold in U94 recombinant PC3 cell line. Quantitative real-time polymerase chain reaction (QRT-PCR analysis showed that the pattern of expression of FN 1 and ANGPTL 4 mRNA were consistent with the microarray data. Based on previous reports, the findings in this study implicate upregulation of FN 1 and downregulation of ANGPTL 4 in the anti tumor activity of U94. Genes with cancer inhibitory activities that were also upregulated include SERPINE 2 (serine/cysteine protease inhibitor 2, 7 ± 1-fold increase and ADAMTS 1 (a disintegrin-like and metalloprotease with thrombospondin type 1 motif, 7 ± 2-fold increase. Additionally, SPUVE 23 (serine protease 23 that is pro-tumorigenic was significantly downregulated (10 ± 1-fold. Conclusion The dramatic upregulation of FN 1 and downregulation of ANGPTL 4 genes in PC3 cell line

  20. Phenolic alkaloids from Menispermum dauricum inhibits BxPC-3 pancreatic cancer cells by blocking of Hedgehog signaling pathway

    OpenAIRE

    Zhou, Zhong-guang; Zhang, Chao-ying; Fei, Hong-xin; Zhong, Li-Li; Bai, Yun

    2015-01-01

    Background: The Hedgehog (Hh) signaling pathway plays an important role in pancreatic cancer (PC) cells. Phenolic alkaloids from Menispermum dauricum (PAMD), a traditional Chinese medicine used for the treatment of immune disorders, have been reported to have antitumor activity recently. Objective: To investigate the efficacy and mechanism of PAMD against PC cell BxPC-3. Materials and Methods: F assay was used to assess cell proliferation inhibition of PAMD; the apoptotic induction and cell c...

  1. MicroRNA-181b expression in prostate cancer tissues and its influence on the biological behavior of the prostate cancer cell line PC-3.

    Science.gov (United States)

    He, L; Yao, H; Fan, L H; Liu, L; Qiu, S; Li, X; Gao, J P; Hao, C Q

    2013-04-02

    We examined microRNA-181b (miRNA) expression in prostate cancer tissues and its effect on the prostate cancer cell line PC-3. Tissues from 27 cases of prostate cancer and 30 samples of normal human prostate were collected by surgical removal. Total miRNA was extracted, and the relative expression of miR-181b was quantified using RT-PCR. miR-181b ASO was transfected into prostate cancer PC-3 cells. miR-181b expression in transfected and non-transfected cells was measured using RT-PCR. Changes in cell apoptosis were measured using flow cytometry. MTT and cell growth curve methods were used to assess the influence of miR-181b expression on cell proliferation. The changes in cell invasive ability in vitro were detected using the Transwell chamber method. miR-181b was up-regulated in the prostate cancer tissues compared with the normal prostate samples. It was down-regulated after miR-181b ASO transfection into the prostate cancer PC-3 cells. Down-regulation of miR-181b in the PC-3 cell induced apoptosis, inhibited proliferation, and depressed invasion of PC-3 cells in vitro. As miR-181b is over-expressed in prostate cancer, its down-regulation could have potential as gene therapy for prostate cancer by inducing apoptosis, inhibiting proliferation and depressing invasion by cancer cells.

  2. In Vitro Antimetastatic Effect of Phosphatidylinositol 3-Kinase Inhibitor ZSTK474 on Prostate Cancer PC3 Cells

    Directory of Open Access Journals (Sweden)

    Dexin Kong

    2013-06-01

    Full Text Available Tumor metastasis is the main cause of lethality of prostate cancer, because conventional therapies like surgery and hormone treatment rarely work at this stage. Tumor cell migration, invasion and adhesion are necessary processes for metastasis. By providing nutrition and an escape route from the primary site, angiogenesis is also required for tumor metastasis. Phosphatidylinositol 3-kinases (PI3Ks are well known to play important roles in tumorigenesis as well as metastasis. ZSTK474 is a specific PI3K inhibitor developed for solid tumor therapy. In the present report, antimetastatic activities of ZSTK474 were investigated in vitro by determining the effects on the main metastatic processes. ZSTK474 exhibited inhibitory effects on migration, invasion and adhesive ability of prostate cancer PC3 cells. Furthermore, ZSTK474 inhibited phosphorylation of Akt substrate-Girdin, and the secretion of matrix metalloproteinase (MMP, both of which were reported to be closely involved in migration and invasion. On the other hand, ZSTK474 inhibited the expression of HIF-1α and the secretion of vascular endothelial growth factor (VEGF, suggesting its potential antiangiogenic activity on PC3 cells. Moreover, we demonstrated the antiangiogenesis by determining the effect of ZSTK474-reduced VEGF on tube formation of human umbilical vein endothelial cells (HUVECs. In conclusion, ZSTK474 was demonstrated to have potential in vitro antimetastatic effects on PC3 cells via dual mechanisms: inhibition of metastatic processes including cell migration, invasion and adhesion, and antiangiogenesis via blockade of VEGF secretion.

  3. Kanglaite combined Gemcitabine inhibits growth of nude mouse subcutaneous transplantation tumor of human PC-3 pancreatic cancer cell

    Institute of Scientific and Technical Information of China (English)

    WANG Wei; JIN Jian-guang; QIN Zhao-yin

    2005-01-01

    Objective:To study the mechanisms of pancreatic cancer treatment with Kanglaite combined Gemcitabine by investigating the relationship between the apoptosis and the expression of bcl-2, Bax and VEGF in pancreatic cancer cells.Methods:Nude mouse subcutaneous transplantation tumor model of Human PC-3 pancreatic cancer was established; the expressions of bcl-2, Bax and VEGF of transplantation tumor cell were determined; the earlier apoptosis rate of pancreatic cancer cell and the gross tumor volume were determined. Results:Kanglaite combined Gemcitabine remarkably decreased the protein expression of bcl-2,raised the expression of Bax,increased the apoptosis rate of the pancreatic cancer and contract the gross tumor volume. Kanglaite greatly decreased the protein expression of VEGF of the tumor cell. Conclusion:Therapeutic efficacy of Kanglaite combined Gemcitabine is far better than separate use of the two medicines in the pancreatic cancer transplantation tumor treatment.

  4. 龙葵碱对前列腺癌细胞系PC-3的体外抑制作用%Inbibitory effect of solanine on prostate cancer cell line PC-3 in vitro

    Institute of Scientific and Technical Information of China (English)

    章俊; 施国伟

    2011-01-01

    Objective: To investigate the mechanisms of the effects of solanine on human androgen-independent prostate cancer cell line PC-3 in vitro. Methods: PC-3 cells were treated with solanine at the concentration of 0, 30, 40 and 50 μg/ml, and the cell activity was measured by CCK-8 at 12, 24 and 48 hours after the treatment. At 24 hours, the cell cycle and apoptosis were detected by flow cytometry and fluorescence microscopy, and the protein expressions of IκBα and Bcl-2 determined by Western blot. Results: Solanine suppressed the growth of PC-3 cells in a dose- and time-dependent manner in vitro, with significant differences among different concentration and time groups ( P < 0.05 ). The cycle of the PC-3 cells was arrested in the S phase ( P < 0. 05 ), with a significantly higher rate of apoptosis in the treated groups than in the controls ( P < 0.05 ). The protein expression of IκBα was obviously up-regulated and that of Bcl-2 down-regulated in all the solanine concentration groups. Conclusion: Solanine has an anti-prostate cancer effect by inhibiting PC-3 cell proliferation, arresting the S phase, inducing cell apoptosis, up-regulating the protein expression of IκBα and down-regulating that of Bcl-2.%目的:探讨龙葵碱对雄激素非依赖型人前列腺癌PC-3细胞的体外抑制作用及其机制.方法:分别用0、30、40、50μg/ml浓度的龙葵碱作用PC-3细胞,12、24、48h后应用CCK-8法检测细胞生长活性、24h后流式细胞仪测定细胞周期及细胞凋亡变化,荧光显微镜观察细胞凋亡,24h后应用Western印迹方法检测细胞内IKBa和Bcl-2蛋白的表达.结果:龙葵碱能显著抑制PC-3细胞的生长,呈剂量与时间依赖性,不同浓度龙葵碱组之间与不同作用时间组之间的差异具有显著性意义(P均<0.05).龙葵碱诱导PC-3细胞出现S期阻滞(P<0.05),各浓度组凋亡细胞比例均高于对照组,差异有显著意义(P均<0.05);不同浓度龙葵碱作用后,可以上调

  5. Cucurmosin induces apoptosis of BxPC-3 human pancreatic cancer cells via inactivation of the EGFR signaling pathway.

    Science.gov (United States)

    Zhang, Baoming; Huang, Heguang; Xie, Jieming; Xu, Chunsen; Chen, Minghuang; Wang, Congfei; Yang, Aiqin; Yin, Qiang

    2012-03-01

    Pancreatic cancer remains the fourth most common cause of cancer-related death in the United States. Potent therapeutic strategies are urgently needed for pancreatic cancer. Cucurmosin is a novel type 1 ribosome-inactivating protein (RIP) isolated from the sarcocarp of Cucurbita moschata (pumpkin). Due to its cytotoxicity, cucurmosin can inhibit tumor cell proliferation through induction of apoptosis on tumor cells, but the specific mechanism is still unclear. We explored the function of cucurmosin in BxPC-3 pancreatic cancer cells using multiple cellular and molecular approaches such as 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, flow cytometry, reverse transcription polymerase chain reaction (RT-PCR), Western blotting and transmission electron microscopy for observing typical changes and formation of apoptotic bodies. We found that cucurmosin inhibited the proliferation of BxPC-3 cells in a time- and dose-dependent manner, and increased the cell population in the G0-G1 phase. With increasing concentration of cucurmosin, the expression of EGFR, p-PI3K, Akt, p-Akt, mTOR, p-mTOR, P70S6K-α, p-P70S6K-α, 4E-BP1 and p-4E-BP1 at the protein level was decreased, whereas the expression of p-Bad and caspase-9 was elevated. However, the mRNA expression of EGFR did not change. These findings suggest that cucurmosin can down-regulate the expression of EGFR by targeting. Cucurmosin induces the apoptosis of BxPC-3 pancreatic cancer cells via the PI3K/Akt/mTOR signaling pathway.

  6. Allyl isothiocyanate, a constituent of cruciferous vegetables, inhibits growth of PC-3 human prostate cancer xenografts in vivo.

    Science.gov (United States)

    Srivastava, Sanjay K; Xiao, Dong; Lew, Karen L; Hershberger, Pamela; Kokkinakis, Demetrius M; Johnson, Candace S; Trump, Donald L; Singh, Shivendra V

    2003-10-01

    We have shown previously that allyl isothiocyanate (AITC), a constituent of cruciferous vegetables, significantly inhibits survival of PC-3 and LNCaP human prostate cancer cells in culture, whereas proliferation of a normal prostate epithelial cell line is minimally affected by AITC even at concentrations that are highly cytotoxic to the prostate cancer cells. The present studies were designed to test the hypothesis that AITC administration may retard growth of human prostate cancer xenografts in vivo. Bolus i.p. injection of 10 micromol AITC, three times per week (Monday, Wednesday and Friday) beginning the day of tumor cell implantation, significantly inhibited the growth of PC-3 xenograft (P < 0.05 by two-way ANOVA). For example, 26 days after tumor cell implantation, the average tumor volume in control mice (1025 +/- 205 mm3) was approximately 1.7-fold higher compared with AITC-treated mice. Histological analysis of tumors excised at the termination of the experiment revealed a statistically significant increase in number of apoptotic bodies with a concomitant decrease in cells undergoing mitosis in the tumors of AITC-treated mice compared with that of control mice. Western blot analysis indicated an approximately 70% reduction in the levels of anti-apoptotic protein Bcl-2 in the tumor lysate of AITC-treated mice compared with that of control mice. Moreover, the tumors from AITC-treated mice, but not control mice, exhibited cleavage of BID, which is known to promote apoptosis. Statistically significant reduction in the expression of several proteins that regulate G2/M progression, including cyclin B1, cell division cycle (Cdc)25B and Cdc25C (44, 45 and 90% reduction, respectively, compared with control), was also observed in the tumors of AITC-treated mice relative to control tumors. In conclusion, the results of the present study indicate that AITC administration inhibits growth of PC-3 xenografts in vivo by inducing apoptosis and reducing mitotic activity.

  7. A partner monoclonal antibody to Moab 730 kills 100% of DU145 and PC3 androgen-independent cancer cells

    Indian Academy of Sciences (India)

    Hemant Kumar Vyas; Rahul Pal; Nirmal K Lohiya; G P Talwar

    2009-12-01

    A number of therapeutic options are available for patients with prostate carcinoma till the time that the tumour is hormone dependent. However, no fully effective therapy is available for the treatment of androgen-independent prostate carcinomas. Antibodies directed at epitopes unique to or overexpressed on the cancer cells could be of therapeutic utility. A monoclonal antibody (Moab) 2C4 has been generated, which binds with cells of two androgenindependent prostate cancers, DU145 and PC3, and does not bind to peripheral blood leukocytes (PBLs) of healthy donors. This antibody, along with the previously developed Moab 730, kills 100% of both DU145 and PC3 cells in the presence of complement and does not have a deleterious effect on PBLs of healthy males. The anti-tumour action of the two antibodies prevents the establishment of DU145 cell tumour in nude mice in vivo. Moab 2C4 in combination with 730 has potential for use as therapy for androgen-independent cancers.

  8. Carbon ion irradiation of the human prostate cancer cell line PC3: a whole genome microarray study.

    Science.gov (United States)

    Suetens, Annelies; Moreels, Marjan; Quintens, Roel; Chiriotti, Sabina; Tabury, Kevin; Michaux, Arlette; Grégoire, Vincent; Baatout, Sarah

    2014-04-01

    Hadrontherapy is a form of external radiation therapy, which uses beams of charged particles such as carbon ions. Compared to conventional radiotherapy with photons, the main advantage of carbon ion therapy is the precise dose localization along with an increased biological effectiveness. The first results obtained from prostate cancer patients treated with carbon ion therapy showed good local tumor control and survival rates. In view of this advanced treatment modality we investigated the effects of irradiation with different beam qualities on gene expression changes in the PC3 prostate adenocarcinoma cell line. For this purpose, PC3 cells were irradiated with various doses (0.0, 0.5 and 2.0 Gy) of carbon ions (LET=33.7 keV/µm) at the beam of the Grand Accélérateur National d'Ions Lourds (Caen, France). Comparative experiments with X-rays were performed at the Belgian Nuclear Research Centre. Genome-wide gene expression was analyzed using microarrays. Our results show a downregulation in many genes involved in cell cycle and cell organization processes after 2.0 Gy irradiation. This effect was more pronounced after carbon ion irradiation compared with X-rays. Furthermore, we found a significant downregulation of many genes related to cell motility. Several of these changes were confirmed using qPCR. In addition, recurrence-free survival analysis of prostate cancer patients based on one of these motility genes (FN1) revealed that patients with low expression levels had a prolonged recurrence-free survival time, indicating that this gene may be a potential prognostic biomarker for prostate cancer. Understanding how different radiation qualities affect the cellular behavior of prostate cancer cells is important to improve the clinical outcome of cancer radiation therapy.

  9. Activities of Ten Essential Oils towards Propionibacterium acnes and PC-3, A-549 and MCF-7 Cancer Cells

    Directory of Open Access Journals (Sweden)

    Yuangang Zu

    2010-04-01

    Full Text Available Ten essential oils, namely, mint (Mentha spicata L.,Lamiaceae, ginger (Zingiber officinaleRosc.,Zingiberaceae, lemon (Citrus limon Burm.f.,Rutaceae, grapefruit (Citrus paradisi Macf., Rutaceae, jasmine (Jasminum grandiflora L.,Oleaceae, lavender (Mill.,Lamiaceae, chamomile (Matricaria chamomilla L., Compositae, thyme (Thymus vulgaris L., Lamiaceae, rose (Rosa damascena Mill.,Rosaceae and cinnamon (Cinnamomum zeylanicumN. Lauraceae were tested for their antibacterial activities towards Propionibacterium acnes and in vitro toxicology against three human cancer cell lines. Thyme, cinnamon and rose essential oils exhibited the best antibacterial activities towards P. acnes, with inhibition diameters of 40 ± 1.2 mm, 33.5 ± 1.5 mm and 16.5 ± 0.7 mm, and minimal inhibitory concentrations of 0.016% (v/v, 0.016% (v/v and 0.031% (v/v, respectively. Time-kill dynamic procedures showed that thyme, cinnamon, rose, and lavender essential oils exhibited the strongest bactericidal activities at a concentration of 0.25% (v/v, and P. acnes was completely killed after 5 min. The thyme essential oil exhibited the strongest cytotoxicity towards three human cancer cells. Its inhibition concentration 50% (IC50 values on PC-3, A549 and MCF-7 tumor cell lines were 0.010% (v/v, 0.011% (v/v and 0.030% (v/v, respectively. The cytotoxicity of 10 essential oils on human prostate carcinoma cell (PC-3 was significantly stronger than on human lung carcinoma (A549 and human breast cancer (MCF-7 cell lines.

  10. GPNMB/OA protein increases the invasiveness of human metastatic prostate cancer cell lines DU145 and PC3 through MMP-2 and MMP-9 activity

    Energy Technology Data Exchange (ETDEWEB)

    Fiorentini, Chiara; Bodei, Serena; Bedussi, Francesca; Fragni, Martina; Bonini, Sara Anna [Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, V.le Europa 11, 25124 Brescia (Italy); Simeone, Claudio; Zani, Danilo [Division of Urology, Department of Surgery, Radiology and Public Health, University of Brescia, P.le Spedali Civili 1, 25124 Brescia (Italy); Berruti, Alfredo [Medical Oncology, Department of Surgery, Radiology, and Public Health, University of Brescia, P.le Spedali Civili 1, 25124 Brescia (Italy); Missale, Cristina; Memo, Maurizio; Spano, PierFranco [Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, V.le Europa 11, 25124 Brescia (Italy); Sigala, Sandra, E-mail: sigala@med.unibs.it [Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, V.le Europa 11, 25124 Brescia (Italy)

    2014-04-15

    Non-metastatic glycoprotein melanoma protein B (GPNMB), also known as osteoactivin (OA) is expressed in a wide array of tumors and represents an emerging target for drug development. In this study, we investigated the role of GPNMB/OA in the progression of human metastatic DU145 and PC3 prostate cancer cells. GPNMB/OA contribution in PCa malignant phenotype has been analyzed by small interfering RNA-induced GPNMB/OA silencing. We found that following GPNMB/OA silencing the migration capability of both DU145 and PC3 cells, evaluated by using in vitro invasivity assay, as well as the metalloproteinases MMP-2 and MMP-9 activity were equally strongly inhibited. By contrast knocking down GPNMB/OA weakly attenuated cell proliferation rate of DU145, an effect that paralleled with an increase number of apoptotic cells. However, PC3 cell growth seems to be not affected by GPNMB/OA. Together, these data reveal that GPNMB/OA acts as a critical molecular mediator promoting the acquisition of the more aggressive, pro-metastatic phenotype distinctive of human DU145 and PC3 cell lines. - Highlights: • GPNMB/OA expression correlates with DU145 and PC3 cells malignant phenotype. • GPNMB/OA silencing affects the migration capability of both DU145 and PC3 cells. • GPNMB/OA increases invasiveness by up-regulating MMPs activity. • GPNMB/OA promotes DU145 and PC3 cells progression into a more aggressive phenotype.

  11. Effect of thymol on Ca²⁺ homeostasis and viability in PC3 human prostate cancer cells.

    Science.gov (United States)

    Yeh, Jeng-Hsien; Chou, Chiang-Ting; Chen, I-Shu; Lu, Ti; Lin, Ko-Long; Yu, Chia-Cheng; Liang, Wei-Zhe; Chang, Hong-Tai; Kuo, Chun-Chi; Ho, Chin-Man; Chang, Wen-Teng; Shieh, Pochuen; Jan, Chung-Ren

    2017-02-28

    Thymol is a phenolic compound that affects physiology in different cell models. However, whether thymol affects Ca²⁺ homeostasis in prostate cancer cells is unknown. The action of this compound on cytosolic Ca²⁺ concentrations ([Ca²⁺]i) and viability in PC3 human prostate cancer cells was explored. The results show that thymol at concentrations of 100-1500 μM caused [Ca²⁺]i rises in a concentration-dependent manner. Removal of extracellular Ca²⁺ reduced thymol’s effect by approximately 80%. Thymol-induced Ca²⁺ entry was confirmed by Mn²⁺ entry-induced quench of fura-2 fluorescence, and was inhibited by approximately 30% by Ca²⁺ entry modulators (nifedipine, econazole, SKF96365), and the protein kinase C (PKC) inhibitor GF109203X. In Ca²⁺-free medium, treatment with the endoplasmic reticulum Ca²⁺ pump inhibitor thapsigargin abolished thymol-induced [Ca²⁺]i rises. Treatment with thymol also abolished thapsigargin-induced [Ca²⁺]i rises. Thymol-induced Ca²⁺ release from the endoplasmic reticulum was abolished by the phospholipase C (PLC) inhibitor U73122. Thymol at 100-900 μM decreased cell viability, which was not reversed by pretreatment with the Ca²⁺ chelator 1,2-bis(2-aminophenoxy) ethane-N,N,N’,N’-tetraacetic acid-acetoxymethyl ester (BAPTA/AM). Together, in PC3 cells, thymol induced [Ca²⁺]i rises by inducing PLC-dependent Ca²⁺ release from the endoplasmic reticulum and Ca²⁺ entry via PKC-sensitive store-operated Ca²⁺ channels and other unknown channels. Thymol also induced Ca²⁺-dissociated cell death.

  12. Doxorubicin-loaded magnetic nanoparticle clusters for chemo-photothermal treatment of the prostate cancer cell line PC3.

    Science.gov (United States)

    Zhang, Weibing; Zheng, Xinmin; Shen, Shun; Wang, Xinghuan

    2015-10-16

    In addition to the conventional cancer treatment such as radiotherapy, chemotherapy and surgical management, nanomedicine-based approaches have attracted widespread attention in recent years. In this paper, a promising nanocarrier, magnetic nanoparticle clusters (MNCs) as porous materials which provided enough room on the surface, was developed for loading chemotherapeutic agent of doxorubicin (DOX). Moreover, MNCs are a good near-infrared (NIR) photothermal mediator. Thus, MNCs have great potential both in photothermal therapy (PTT) and drug delivery for chemo-photothermal therapy of cancer. We firstly explored the destruction of prostate cancer in vitro by the combination of PTT and chemotherapy using DOX@MNCs. Upon NIR irradiation at 808 nm, more cancer cells were killed when PC3 cells incubated with DOX@MNCs, owing to both MNCs-mediated photothermal ablation and cytotoxicity of light-triggered DOX release. Compared with PTT or chemotherapy alone, the chemo-photothermal therapy by DOX@MNCs showed a synergistically higher therapeutic efficacy.

  13. RNAi-mediated knockdown of pituitary tumor-transforming gene-1 (PTTG1) suppresses the proliferation and invasive potential of PC3 human prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Huang, S.Q. [Department of Urology and Center of Nephrology, Xinqiao Hospital, Third Military Medical University, Chongqing (China); Institute of Urology, Peking University and Department of Urology, First Hospital, Peking University, Beijing (China); Liao, Q.J.; Wang, X.W. [Department of Urology and Center of Nephrology, Xinqiao Hospital, Third Military Medical University, Chongqing (China); Xin, D.Q. [Institute of Urology, Peking University and Department of Urology, First Hospital, Peking University, Beijing (China); Chen, S.X.; Wu, Q.J.; Ye, G. [Department of Urology and Center of Nephrology, Xinqiao Hospital, Third Military Medical University, Chongqing (China)

    2012-08-10

    Pituitary tumor-transforming gene-1 (PTTG1) is a proto-oncogene that promotes tumorigenesis and metastasis in numerous cell types and is overexpressed in a variety of human tumors. We have demonstrated that PTTG1 expression was up-regulated in both human prostate cancer specimens and prostate cancer cell lines. For a more direct assessment of the function of PTTG1 in prostate tumorigenesis, RNAi-mediated knockdown was used to selectively decrease PTTG1 expression in PC3 human prostate tumor cells. After three weeks of selection, colonies stably transfected with PTTG1-targeted RNAi (the knockdown PC3 cell line) or empty vector (the control PC3 cell line) were selected and expanded to investigate the role of PTTG1 expression in PC3 cell growth and invasion. Cell proliferation rate was significantly slower (28%) in the PTTG1 knockdown line after 6 days of growth as indicated by an MTT cell viability assay (P < 0.05). Similarly, a soft agar colony formation assay revealed significantly fewer (66.7%) PTTG1 knockdown PC3 cell colonies than control colonies after three weeks of growth. In addition, PTTG1 knockdown resulted in cell cycle arrest at G1 as indicated by fluorescence-activated cell sorting. The PTTG1 knockdown PC3 cell line also exhibited significantly reduced migration through Matrigel in a transwell assay of invasive potential, and down-regulation of PTTG1 could lead to increased sensitivity of these prostate cancer cells to a commonly used anticancer drug, taxol. Thus, PTTG1 expression is crucial for PC3 cell proliferation and invasion, and could be a promising new target for prostate cancer therapy.

  14. Metformin inhibits the proliferation of human prostate cancer PC-3 cells via the downregulation of insulin-like growth factor 1 receptor

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Haruo, E-mail: hal.kato@gunma-u.ac.jp; Sekine, Yoshitaka; Furuya, Yosuke; Miyazawa, Yoshiyuki; Koike, Hidekazu; Suzuki, Kazuhiro

    2015-05-22

    Metformin is a biguanide drug that is widely used for the treatment of type 2 diabetes. Recent studies have shown that metformin inhibits cancer cell proliferation and tumor growth both in vitro and in vivo. The anti-tumor mechanisms of metformin include activation of the AMP-activated protein kinase/mTOR pathway and direct inhibition of insulin/insulin-like growth factor (IGF)-mediated cellular proliferation. However, the anti-tumor mechanism in prostate cancer remains unclear. Because activation of the IGF-1 receptor (IGF-1R) is required for prostate cell proliferation, IGF-1R inhibitors may be of therapeutic value. Accordingly, we examined the effects of metformin on IGF-1R signaling in prostate cancer cells. Metformin significantly inhibited PC-3 cell proliferation, migration, and invasion. IGF-1R mRNA expression decreased significantly after 48 h of treatment, and IGF-1R protein expression decreased in a similar manner. IGF-1R knockdown by siRNA transfection led to inhibited proliferation, migration and invasion of PC-3 cells. IGF-1 activated both ERK1/2 and Akt, but these effects were attenuated by metformin treatment. In addition, intraperitoneal treatment with metformin significantly reduced tumor growth and IGF-1R mRNA expression in PC-3 xenografts. Our results suggest that metformin is a potent inhibitor of the IGF-1/IGF-1R system and may be beneficial in prostate cancer treatment. - Highlights: • Metformin inhibited PC-3 cell proliferation, migration, and invasion. • Metformin decreased IGF-1R mRNA and protein expressions in PC-3 cells. • Metformin inhibited IGF-1 induced ERK and Akt phosphorylations in PC-3 cells. • Metformin treatment inhibited PC-3 cell growth and IGF-1R expression in vivo. • Metformin may be a potent inhibitor of the IGF-1/IGF-1R signaling.

  15. Inhibition of breast cancer invasion by TIS21/BTG2/Pc3-Akt1-Sp1-Nox4 pathway targeting actin nucleators, mDia genes.

    Science.gov (United States)

    Choi, J-A; Jung, Y S; Kim, J Y; Kim, H M; Lim, I K

    2016-01-01

    The mammalian homolog of Drosophila diaphanous (mDia), actin nucleator, has been known to participate in the process of invasion and metastasis of cancer cells via regulating a number of actin-related biological processes. We have previously reported that tumor suppressor TIS21(/BTG2/Pc3) (TIS21) inhibits invadopodia formation by downregulating reactive oxygen species (ROS) in MDA-MB-231 cells. We herein report that TIS21(/BTG2/Pc3) downregulates diaphanous-related formin (DRF) expression via reducing NADPH oxidase 4 (Nox4)-derived ROS generation by Akt1 activation and subsequently impairs invasion activity of the highly invasive breast cancer cells. Knockdown of Akt1 by RNA interference recovered the TIS21(/BTG2/Pc3)-inhibited F-actin remodeling and ROS generation by recovering Nox4 expression. Furthermore, Sp1-mediated Nox4 transcription was downregulated by TIS21(/BTG2/Pc3)-Akt1 signals, leading to the inhibition of cancer cell invasion via F-actin remodeling by mDia genes. To our best knowledge, this is the first study to show that TIS21(/BTG2/Pc3)-Akt1 inhibited Sp1-Nox4-ROS cascade, subsequently reducing invasion activity via inhibition of mDia family genes.

  16. Effects of cyclohexanone analogues of curcumin on growth, apoptosis and NF-κB activity in PC-3 human prostate cancer cells.

    Science.gov (United States)

    Wei, Xingchuan; DU, Zhi-Yun; Cui, Xiao-Xing; Verano, Michael; Mo, Rong Qing; Tang, Zhi Kai; Conney, Allan H; Zheng, Xi; Zhang, Kun

    2012-08-01

    Curcumin is a non-nutritive yellow pigment found in the spice turmeric, which is derived from the rhizome of the plant Curcuma longa Linn. Six cyclohexanone analogues of curcumin (A(1)-A(6)) were investigated for their effects on growth and apoptosis in PC-3 human prostate cancer cells. The ability of these compounds to inhibit NF-κB activity in PC-3 cells was also determined. Five out of the six curcumin analogues (A(2)-A(6)) had stronger inhibitory effects compared to curcumin on the growth of cultured PC-3 cells. Compounds A(2)-A(6) also had stronger stimulatory effects on apoptosis in PC-3 cells than curcumin, and these curcumin analogues more potently inhibited NF-κB activity than curcumin. The inhibitory effects of these compounds on NF-κB activity correlated with their effects on growth inhibition and apoptosis stimulation in PC-3 cells. The results of the present study provide a rationale for in vivo studies with A(2)-A(6) using suitable animal models of prostate cancer.

  17. 3p21.3 tumor suppressor gene RBM5 inhibits growth of human prostate cancer PC-3 cells through apoptosis

    Directory of Open Access Journals (Sweden)

    Zhao Lijing

    2012-11-01

    Full Text Available Abstract Background Recent studies have indicated that the nuclear RNA-binding protein RBM5 has the ability to modulate apoptosis and suppress tumor growth. The aim of this study is to investigate the expression of RBM5 in human prostate cancer and its mechanism of tumor suppression. Methods The expression of RBM5 protein in cancerous prostatic tissues and normal tissues was examined by IHC. PC-3 cell line was used to determine the apoptotic function of RBM5 in vitro. PC-3 cells were transiently transfected with pcDNA3.1-RBM5. Cell viability was determined by MTT assay. Rhodamine 123 staining and Annexin V analysis were performed to observe the apoptotic activity of PC-3 cells overexpressing RBM5. Expression of apoptosis-related genes was assessed by western blot. Results The expression of RBM5 protein was significantly decreased in cancerous prostatic tissues compared to the normal tissues. PC-3 cells overexpressing RBM5 showed not only significant growth inhibition compared with the vector controls, but also dysfunction of mitochondrial membrane potential and increased apoptotic activity. To further define RBM5 function in apoptotic pathways, we investigated differential expression profiles of various BH3-only proteins including Bid, Bad, and Bim, and apoptosis regulatory proteins include P53, cleaved caspase9, and cleaved caspase3. We found that the expression of both BH3-only proteins and apoptosis regulatory proteins was increased in RBM5 transfected cells. Conclusion The expression of RBM5 protein was significantly decreased in cancerous prostatic tissues, which suggests that RBM5 plays an important role in the pathogenesis of prostate cancer. RBM5 may induce the apoptosis of prostate cancer PC-3 cells by modulating the mitochondrial apoptotic pathway, and thus RBM5 might be a promising target for gene therapy on prostate cancer.

  18. Effect of dehydroepiandrosterone derivatives on the activity of 5α-reductase isoenzymes and on cancer cell line PC-3.

    Science.gov (United States)

    Bratoeff, Eugene; Garrido, Mariana; Ramírez-Apan, Teresa; Heuze, Yvonne; Sánchez, Araceli; Soriano, Juan; Cabeza, Marisa

    2014-11-01

    It is well known that testosterone (T) under the influence of 5α-reductase enzyme is converted to dihydrotestosterone (DHT), which causes androgen-dependent diseases. The aim of this study was to synthesize new dehydroepiandrosterone derivatives (3a-e, 4a-i, 6 and 7) having potential inhibitory activity against the 5α-reductase enzyme. This paper also reports the in vivo pharmacological effect of these steroidal molecules. The results from this study showed that all compounds exhibited low inhibitory activity for 5α-reductase type 1 and 2 enzymes and they failed to bind to the androgen receptor. Furthermore, in the in vivo experiment, steroids 3b, 4f, and 4 g showed comparable antiandrogenic activity to that of finasteride; only derivatives 4d and 7 produced a considerable decrease in the weight of the prostate gland of gonadectomized hamsters treated with (T). On the other hand, compounds 4a, f and h showed 100% inhibition of the growth of prostate cancer cell line PC-3, with compound 4 g having a 98.2% antiproliferative effect at 50 μM. The overall data indicated that these steroidal molecules, having an aromatic ester moiety at C-3 (4f-h), could have anticancer properties.

  19. Contragestazol (DL111-IT) inhibits proliferation of human androgen-independent prostate cancer cell line PC3 in vitro and in vivo

    Institute of Scientific and Technical Information of China (English)

    Qiao-Jun He; Bo Yang; Yi-Jia Lou; Rui-Ying Fang

    2005-01-01

    Aim: To evaluate the antiproliferative activity of contragestazol (DL 1 11-IT) on the human prostate cancer cell line PC3 in vitro and in vivo and to elucidate its potential molecular mechanisms. Methods: The cell killing ability of DL111-IT was measured by the 3-(4,5-dimethylthia-zol,2-yl)-2,5-diphenyltetrazolium bromide (MTT) reagent assay method and the tumor xenograft model. The cell cycle was analyzed by flow cytometry and protein expression,including retinoblastoma (pRb), cyclin-dependent kinase 4 (CDK4) and cyclin D1, was detected by Western blotting.Results: DL111-IT exhibited high efficiency on cell growth inhibition of the human androgen-independent prostate cancer cell line PC3. The drug concentration that yielded 50 % cell inhibition (IC50 value) was 9.9 mg/mL. In the PC3tumor xenograft study, DL111-IT (1.25 mg/kg-20.0 mg/kg) given once a day for 10 days significantly inhibited tumor growth, with the inhibition rate ranging from 21% to 50 %. Flow cytometric analysis indicated that DL111-IT could cause G1 arrest in the PC3 cell line, but not apoptosis. DL111-IT enhanced pRb expression and down-regulated CDK4and cyclin D1 expression, suggesting that cell cycle regulation might contribute to the anticancer property of DL111-IT. Conclusion: DL111-Itinhibits the proliferation of human androgen-independent prostate cancer cell line PC3 in vitro and in vivo by a cell cycle regulation pathway.

  20. Acidic extracellular pH promotes prostate cancer bone metastasis by enhancing PC-3 stem cell characteristics, cell invasiveness and VEGF-induced vasculogenesis of BM-EPCs.

    Science.gov (United States)

    Huang, Sheng; Tang, Yubo; Peng, Xinsheng; Cai, Xingdong; Wa, Qingde; Ren, Dong; Li, Qiji; Luo, Jiaquan; Li, Liangping; Zou, Xuenong; Huang, Shuai

    2016-10-01

    Bone metastasis is a main cause of cancer-related mortality in patients with advanced prostate cancer. Emerging evidence suggests that the acidic extracellular microenvironment plays significant roles in the growth and metastasis of tumors. However, the effects of acidity on bone metastasis of PCa remain undefined. In the present study, PC-3 cells were cultured in acidic medium (AM; pH 6.5) or neutral medium (NM; pH 7.4), aiming to investigate the effects and possible mechanisms of acidic extracellular microenvironment in bone metastasis of PCa. Our results showed that AM can promote spheroid and colony formations, cell viability and expression of stem cell characteristic-related markers in PC-3 cells. Moreover, AM stimulates MMP-9 secretion and promotes invasiveness of PC-3 cells, and these effects can be inhibited by blocking of MMP-9. Furthermore, AM stimulates VEGF secretion of PC-3 and AM conditioned medium (CMAM) promotes vasculogenesis of BM-EPCs by increasing cell viability, migration, tube formation, which involved activating the phosphorylation of VEGFR-2, Akt and P38, when pH of NM conditioned medium (CMNM) was modulated the same as AM conditioned medium (CMAM). Further studies have shown that CMNM induced vasculogenesis of BM-EPCs can be inhibited by the inhibition of VEGFR2 with DMH4. These findings suggest that acidic extracellular microenvironment may have the potential to modulate prostate cancer bone metastasis by enhancing PC-3 stem cell characteristics, cell invasiveness and VEGF-induced vasculogenesis of BM-EPCs. Improved anticancer strategies should be designed to selectively target acidic tumor microenvironment.

  1. Electrogenerated chemiluminescence biosensing for the detection of prostate PC-3 cancer cells incorporating antibody as capture probe and ruthenium complex-labelled wheat germ agglutinin as signal probe

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Haiying [Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062 (China); Department of Chemistry, Yuncheng University, Yuncheng 044300 (China); Li, Zhejian; Shan, Meng; Li, Congcong; Qi, Honglan; Gao, Qiang [Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062 (China); Wang, Jinyi [College of Science and College of Veterinary Medicine, Northwest A& F University, Yangling 712100 (China); Zhang, Chengxiao, E-mail: cxzhang@snnu.edu.cn [Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062 (China)

    2015-03-10

    Highlights: • A novel biosensor was developed for the detection of prostate cancer cells. • The selectivity of the biosensor was improved using antibody as capture probe. • The biosensor showed the low extremely detection limit of 2.6 × 10{sup 2} cells mL{sup −1}. • The ruthenium complex-labelled WGA can be transported in the cell vesicles. - Abstract: A highly selective and sensitive electrogenerated chemiluminescence (ECL) biosensor for the detection of prostate PC-3 cancer cells was designed using a prostate specific antibody as a capture probe and ruthenium complex-labelled wheat germ agglutinin as a signal probe. The ECL biosensor was fabricated by covalently immobilising the capture probe on a graphene oxide-coated glassy carbon electrode. Target PC-3 cells were selectively captured on the surface of the biosensor, and then, the signal probe was bound with the captured PC-3 cells to form a sandwich. In the presence of tripropylamine, the ECL intensity of the sandwich biosensor was logarithmically directly proportion to the concentration of PC-3 cells over a range from 7.0 × 10{sup 2} to 3.0 × 10{sup 4} cells mL{sup −1}, with a detection limit of 2.6 × 10{sup 2} cells mL{sup −1}. The ECL biosensor was also applied to detect prostate specific antigen with a detection limit of 0.1 ng mL{sup −1}. The high selectivity of the biosensor was demonstrated in comparison with that of a lectin-based biosensor. The strategy developed in this study may be a promising approach and could be extended to the design of ECL biosensors for highly sensitive and selective detection of other cancer-related cells or cancer biomarkers using different probes.

  2. The bioactive compounds alpha-chaconine and gallic acid in potato extracts decrease survival and induce apoptosis in LNCaP and PC3 prostate cancer cells.

    Science.gov (United States)

    Reddivari, Lavanya; Vanamala, Jairam; Safe, Stephen H; Miller, J Creighton

    2010-01-01

    We recently reported that colored potato extracts and an anthocyanin rich fraction suppressed lymph-node carcinoma of the prostate (LNCaP) and prostate cancer-3 (PC-3) prostate cancer cell proliferation and induced apoptosis via caspase-dependent and caspase-independent pathways. Chlorogenic acid, caffeic acid, gallic acid, catechin, malvidin, and glycoalkaloids (alpha-chaconine and solanine) have now been identified as the major bioactive components of potato, and their effects on LNCaP and PC-3 cell proliferation and apoptosis have been investigated. alpha-chaconine (5 microg/ml) and gallic acid (15 microg/ml) exhibited potent antiproliferative properties and increased cyclin-dependent kinase inhibitor p27 levels in both cell lines. Both alpha-chaconine and gallic acid induced poly [adenosine diphosphate (ADP)] ribose polymerase cleavage and caspase-dependent apoptosis in LNCaP cells; however, caspase-independent apoptosis through nuclear translocation of endonuclease G was observed in both LNCaP and PC-3 cells. alpha-chaconine and gallic acid activated c-Jun N-terminal protein kinase (JNK), and this response played a major role in induction of caspase-dependent apoptosis in LNCaP cells; whereas modulation of JNK and mitogen-activated protein kinase did not affect alpha-chaconine- and gallic acid-induced caspase-independent apoptosis. These results suggest that apoptosis induced by whole potato extracts in prostate cancer cell lines may be in part due to alpha-chaconine and gallic acid.

  3. Neolignans from Saururus chinensis inhibit PC-3 prostate cancer cell growth via apoptosis and senescence-like mechanisms.

    Science.gov (United States)

    Song, Seo-Young; Lee, Inkyoung; Park, Chaehwa; Lee, Hyeon; Hahm, Jong-Cheon; Kang, Won Ki

    2005-10-01

    This study investigated the anticancer activity and related mechanisms of neolignans, especially threo, erythro-manassantin A (compound 2), which are isolated from Saururus chinensis, in PC-3 cells. Compound 2 strongly inhibited the proliferation of PC-3 cells in a dose-dependent manner. Different cell morphologies were observed depending on the concentration of compound 2, which suggested different growth inhibitory mechanisms. DNA flow cytometry indicated that both low and high concentrations of compound 2 induced the arrest of PC-3 cells in G1 phase. Western blot analyses showed that hyperphosphorylated Rb and E2F-1 were decreased, whereas hypophosphorylated Rb was increased. The cells treated with compound 2 at 200 ng/ml showed shrinkage morphologically, and the staining of annexin V-FITC revealed apoptotic cell death of these cells. The induction of apoptosis was accompanied by the cleavage of caspase-3, -8, and -9, as well as the downregulation of the Bcl-2 and the upregulation of Bax. By contrast, at low compound 2 concentration (1 ng/ml), the cells arrested in G1 showed characteristic changes in morphology, such as an enlarged, flattened cell shape; the majority strongly expressed SA-beta-galactosidase activity. The number of cells undergoing apoptosis was negligible, and no poly(ADP-ribose) polymerase (PARP) cleavage was observed. The increase of p21 was noticed. However, it appeared to be transient rather than sustained. The protein p27 may be important for maintaining the senescence machinery induced by compound 2 because p27 expression was increased at low concentration compared with that at high concentration. In conclusion, compound 2 showed a significant growth inhibitory effect in PC-3 cells via two different mechanisms, i.e., apoptosis at high concentration and senescence at low concentration.

  4. Effect of peroxiredoxin 1 overexpression on oxidant injury of human PC3 prostate cancer cells%Prx 1高表达对人PC3前列腺癌细胞氧化损伤的作用

    Institute of Scientific and Technical Information of China (English)

    沈传陆; 朱俊

    2005-01-01

    目的:探讨过氧化物还原酶1(Prx1)表达增加对人肿瘤细胞抗过氧化氢毒性作用的影响.方法:构建Prx1真核表达质粒,稳定转染培养的人PC3前列腺癌细胞,用Western blot检测Prx1在稳定转染PC3细胞中的表达,用MTY法观察细胞的存活率.结果:Western blot分析表明,Prx1真核表达质粒稳定转染的PC3细胞表达Prx 1显著增加;MTT分析表明,在过氧化氢浓度为0.25、0.5、1和2 mmol·L-1时,Prx1稳定转染的PC3细胞存活率显著增加.结论:Prx1高表达显著增强人PC3前列腺癌细胞抗过氧化氢毒性作用.

  5. Preparation of catechin extracts and nanoemulsions from green tea leaf waste and their inhibition effect on prostate cancer cell PC-3

    Directory of Open Access Journals (Sweden)

    Tsai YJ

    2016-05-01

    Full Text Available Yin-Jieh Tsai, Bing-Huei ChenDepartment of Food Science, Fu Jen Catholic University, New Taipei City, Taiwan, Republic of China Abstract: Green tea is one of the most commonly consumed natural health beverages in Taiwan’s market, with the major functional component catechin being shown to possess several biological activities such as antioxidation, anticancer, and prevention of cardiovascular disease. The objectives of this study were to develop a high-performance liquid chromatography–mass spectrometry method to determine the variety and content of catechins in green tea leaf waste, a by-product obtained during processing of tea beverage. In addition, catechin nanoemulsion was prepared to study its inhibition effect on prostate cancer cell PC-3. Results showed that a total of eight catechin standards were separated within 25 minutes by using a Gemini C18 column and a gradient mobile phase of 0.1% formic acid (A and acetonitrile (B with flow rate at 1 mL/min, column temperature at 30°C, and detection wavelength at 280 nm. Among various extraction solvents, 50% ethanol generated the highest yield of total catechins from tea leaf waste, of which five catechins were identified and quantified. The catechin nanoemulsion was composed of catechin extract, lecithin, Tween 80, and deionized water in an appropriate proportion, with the mean particle size being 11.45 nm, encapsulation efficiency 88.1%, and zeta potential -66.3 mV. A high stability of catechin nanoemulsion was shown over a storage period of 120 days at 4°C. Both catechin extract and nanoemulsion could inhibit growth of PC-3 tumor cells, with the half maximal inhibitory concentration being 15.4 µg/mL and 8.5 µg/mL, respectively. The PC-3 cell cycle was arrested at S phase through elevation of P27 expression and decline of cyclin A, cyclin B, cyclin-dependent kinase 2, and cyclin-dependent kinase 1 expression. In addition, both catechin extract and nanoemulsion could induce

  6. Effects of irradiation on the [methyl-{sup 3}H]choline uptake in the human prostate cancer cell lines LNCaP and PC3

    Energy Technology Data Exchange (ETDEWEB)

    Holzapfel, K.; Mueller, S.A.; Seidl, C.; Schwaiger, M.; Senekowitsch-Schmidtke, R. [Dept. of Nuclear Medicine, Technical Univ. of Munich (Germany); Grosu, A.L. [Dept. of Radiation Oncology, Technical Univ. of Munich (Germany)

    2008-06-15

    Background and purpose: choline positron emission tomography (PET) can help to optimize radiation treatment strategy of prostate cancer. Therefore, the aim of this study was to elucidate the effects of ionizing radiation on the choline uptake in an androgen-dependent (LNCaP) and an androgen-independent (PC3) prostate cancer cell line. Material and methods: uptake of [methyl-{sup 3}H]choline chloride was investigated between 4 and 96 h after irradiation with 6 Gy. Dose dependence of choline uptake was examined following irradiation with 2-12 Gy, and cell survival was analyzed via the clonogenic assay. Michaelis-Menten kinetics was determined 24 h (PC3) and 48 h (LNCaP) after irradiation with 6 Gy. Results: PC3 cells showed a significant transitory increase of [methyl-{sup 3}H]choline uptake with a maximum at 24 h after irradiation. In LNCaP cells irradiation induced a significant decrease with a minimum at 48 h. Changes in choline uptake in both cell lines were almost dose-independent up to 12 Gy. Following irradiation with 6 Gy, transport capacity (v{sub max}) increased and Michaelis-Menten constant (K{sub M}) decreased in PC3 cells, while in LNCaP cells the two parameters behaved vice versa. Conclusion: changes in choline uptake following irradiation might be due to metabolic changes associated with initiation of processes that finally cause cell death. Thus, changes in tumor choline uptake monitored by PET after radiotherapy might not exclusively reflect therapeutic success but also altered tracer uptake as a consequence of irradiation. (orig.)

  7. miR-181b在前列腺组织中的表达及对前列腺癌细胞PC-3生物学功能的影响%The expression of miR-181b in prostate cancer and effects of miR-181b on the biological behavior of prostate cancer PC-3 cell line

    Institute of Scientific and Technical Information of China (English)

    何龙; 邱实; 刘龙; 姚辉; 范连慧; 李昕

    2011-01-01

    目的:探讨miR-181b在前列腺癌组织中的表达及miR-181b对前列腺癌PC-3细胞生物学功能的影响.方法:收集27例前列腺癌手术标本及30例正常前列腺组织标本,提取总微小RNA,应用实时荧光定量PCR技术检测miR-181b的表达情况.选取人前列腺癌细胞株PC-3细胞为研究对象,转染miR-181b ASO.应用实时荧光定量PCR技术检测转染miR-181b ASO PC-3细胞中miR-181b 的表达情况;流式细胞术检测转染miR-181b ASO PC-3细胞的凋亡变化情况;MTT实验及细胞生长曲线检测转染miR-181b ASO PC-3细胞增殖能力的影响;Transwell侵袭实验检测转染miR-181b ASO PC-3细胞侵袭能力的影响.结果:miR-181b在前列腺癌组织中高表达.转染miR-181b ASO 使PC-3细胞中miR-181b的表达降低;促进了PC-3细胞凋亡;miR-181b的表达降低导致前列腺癌细胞株PC-3增殖能力的减弱;miR-181b的表达降低导致前列腺癌细胞PC-3侵袭能力减弱.结论:miR-181b在前列腺癌组织中高表达,封闭前列腺癌细胞中miR-181b的表达,可以促进细胞凋亡及抑制细胞的增殖及侵袭,可能在前列腺肿瘤的基因治疗中起到积极作用.%Objective : To study the expression of miR - 181b in specimens of prostate cancer and to investigate the effects of miR - 181b on the biological behavior of prostate cancer PC - 3 cell line. Methods : issues from 27 cases of prostate cancer and 30 samples of normal human prostate were collected after surgical operation. Total miRNA was extracted and the relative expression of miR - 181b was quantified by Real - time PCR. miR - 181b ASO was transfected into prostate cancer PC - 3 cell. The expressions of miR - 181b in transfected and non - transfected cells were measured by Real - time PCR;The changes of cell apoptosis were measured by flow cytometry; MTT assay and growth curve were used to assess the effect of miR - 181b on cell proliferation; The changs of cell invasion abilities in vitro were detected hy

  8. Calcification in human osteoblasts cultured in medium conditioned by the prostatic cancer cell line PC-3 and prostatic acid phosphatase.

    Science.gov (United States)

    Kimura, G; Sugisaki, Y; Masugi, Y; Nakazawa, N

    1992-01-01

    A medium that had been conditioned by PC-3 cells stimulated the calcification of a human osteoblastic cell line, Tak-10, in a nonmitogenic culture. The calcification of the osteoblasts was stimulated maximally at a 25% concentration of the conditioned medium. Calcification activity was markedly enhanced by the addition of both prostatic acid phosphatase (PAP) and its substrate, alpha-glycerophosphate, to the medium; however, PAP added alone did not enhance this activity. These results suggest that human prostatic carcinoma cells produce a factor that stimulates the calcification of the human osteoblasts. Results have also suggested that PAP is a requisite for osteogenesis provided that its substrates are abundant in the medium.

  9. Bioenergetic and antiapoptotic properties of mitochondria from cultured human prostate cancer cell lines PC-3, DU145 and LNCaP.

    Directory of Open Access Journals (Sweden)

    Alexander Panov

    Full Text Available The purpose of this work was to reveal the metabolic features of mitochondria that might be essential for inhibition of apoptotic potential in prostate cancer cells. We studied mitochondria isolated from normal prostate epithelial cells (PrEC, metastatic prostate cancer cell lines LNCaP, PC-3, DU145; and non-prostate cancer cells - human fibrosarcoma HT1080 cells; and normal human lymphoblastoid cells. PrEC cells contained 2 to 4 times less mitochondria per gram of cells than the three PC cell lines. Respiratory activities of PrEC cell mitochondria were 5-20-fold lower than PC mitochondria, depending on substrates and the metabolic state, due to lower content and lower activity of the respiratory enzyme complexes. Mitochondria from the three metastatic prostate cancer cell lines revealed several features that are distinctive only to these cells: low affinity of Complex I for NADH, 20-30 mV higher electrical membrane potential (ΔΨ. Unprotected with cyclosporine A (CsA the PC-3 mitochondria required 4 times more Ca²⁺ to open the permeability transition pore (mPTP when compared with the PrEC mitochondria, and they did not undergo swelling even in the presence of alamethicin, a large pore forming antibiotic. In the presence of CsA, the PC-3 mitochondria did not open spontaneously the mPTP. We conclude that the low apoptotic potential of the metastatic PC cells may arise from inhibition of the Ca²⁺-dependent permeability transition due to a very high ΔΨ and higher capacity to sequester Ca²⁺. We suggest that due to the high ΔΨ, mitochondrial metabolism of the metastatic prostate cancer cells is predominantly based on utilization of glutamate and glutamine, which may promote development of cachexia.

  10. Tyrosine kinase Src mediates Notch-1 activation in BxPC3 pancreatic cancer cells%胰腺癌BxPC3细胞中Src激酶对Notch-1活化的调节

    Institute of Scientific and Technical Information of China (English)

    杨小燕; 张玉祥; 王泽生

    2008-01-01

    目的 探讨在胰腺癌细胞BxPC3中,Src激酶对Notch-1活化的影响.方法 用siRNA干扰的方法分别抑制Notch-1和c-Src的表达;加入Src激酶抑制剂PP2抑制Src激酶活性;MTT法检测细胞的生长;Western blot检测Notch-1蛋白活性形式NICD水平的变化.结果 抑制Notch-1表达及抑制Src激酶活性可明显抑制BxPC3细胞生长;抑制Src激酶活性及抑制c-Src蛋白表达可下调Notch-1 NICD水平.结论 Src激酶在胰腺癌细胞BxPC3中促进Notch-1的活化,促进BxPc3细胞的生长.

  11. Plumbagin elicits differential proteomic responses mainly involving cell cycle, apoptosis, autophagy, and epithelial-to-mesenchymal transition pathways in human prostate cancer PC-3 and DU145 cells

    Directory of Open Access Journals (Sweden)

    Qui JX

    2015-01-01

    Full Text Available Jia-Xuan Qiu,1,2 Zhi-Wei Zhou, 3,4 Zhi-Xu He,4 Ruan Jin Zhao,5 Xueji Zhang,6 Lun Yang,7 Shu-Feng Zhou,3,4 Zong-Fu Mao11School of Public Health, Wuhan University, Wuhan, Hubei, People’s Republic of China; 2Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China; 3Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA; 4Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, Guizhou, People’s Republic of China; 5Center for Traditional Chinese Medicine, Sarasota, FL, USA; 6Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing, People’s Republic of China; 7Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education, Shanghai Jiao Tong University, Shanghai, People’s Republic of ChinaAbstract: Plumbagin (PLB has exhibited a potent anticancer effect in preclinical studies, but the molecular interactome remains elusive. This study aimed to compare the quantitative proteomic responses to PLB treatment in human prostate cancer PC-3 and DU145 cells using the approach of stable-isotope labeling by amino acids in cell culture (SILAC. The data were finally validated using Western blot assay. First, the bioinformatic analysis predicted that PLB could interact with 78 proteins that were involved in cell proliferation and apoptosis, immunity, and signal transduction. Our quantitative proteomic study using SILAC revealed that there were at least 1,225 and 267 proteins interacting with PLB and there were 341 and 107 signaling pathways and cellular functions potentially regulated by PLB in PC-3 and DU145 cells, respectively. These proteins and pathways played a

  12. 异黄酮类化合物对前列腺癌细胞PC-3增殖的抑制%Effects of Flavonoid on the Proliferation of Prostate Cancer Cells PC-3

    Institute of Scientific and Technical Information of China (English)

    余增丽; 张立实; 吴德生

    2002-01-01

    [目的] 通过观察金雀异黄素(genistein,GS)、大豆苷元(daidzein,DA)和大豆黄素(glycitein,GL)对前列腺癌细胞(PC-3)增殖的影响,探讨通过膳食干预途径预防前列腺癌发病的可行性.[方法] 将PC-3在PRMI 1640培养液(含10%小牛血清)中采用开放式单层贴壁培养.实验设溶剂对照组、顺铂阳性对照组及三种受试物各三个剂量组(5×10-6 mol/L,25×10-6 mol/L,75×10-6 mol/L),采用MTT法、3H-TdR掺入法及流式细胞术对PC-3的增殖情况进行分析.[结果] 与溶剂对照组相比,25 μmol/L GS、75 μmol/L DA和75 μmol/L GL对PC-3处理72 h可抑制PC-3增殖,抑制率分别为42%、50%及39%.三种受试物均可抑制细胞DNA合成并推进G0/G1期细胞进入S期,降低细胞增殖指数.[结论] 大豆异黄酮类化合物GS、DA和GL均具有明显抑制前列腺癌细胞PC-3增殖效应,并呈现剂量-效应和时间-效应关系,提示通过膳食干预方式可预防前列腺癌的发生.

  13. Expression of human AR cDNA driven by its own promoter results in mild promotion, but not suppression, of growth in human prostate cancer PC-3 cells%自身启动子驱动的人雄激素受体cDNA的表达能够适度促进而不是抑制人前列腺癌细胞PC-3的生长

    Institute of Scientific and Technical Information of China (English)

    Saleh Altuwaijri; Cheng-Chia Wu; Yuan-Jie Niu; Atsushi Mizokami; Hong-Chiang Chang; Chawnshang Chang

    2007-01-01

    Aim: To examine the physiological role of the androgen receptor (AR) in the PC-3 cell line by transfecting full-length functional AR cDNA driven by its natural human AR promoter. Methods: We generated an AR-expressing PC-3(AR)9 stable clone that expresses AR under the control of the natural human AR promoter and compared its proliferation to that of the PC-3(AR)2 (stable clone that expresses AR under the control of the cytomegalovirus (CMV) promoter,established by Heisler et al.) after androgen treatment. Results: We found that dihydrotestosterone (DHT) from 0.001 nmol/L to 10 nmol/L induces cell cycle arrest or inhibits proliferation of PC-3(AR)2 compared with its vector control, PC-3(pIRES). In contrast, PC-3(AR)9 cell growth slightly increased or did not change when treated with physiological concentrations of 1 nmol/L DHT. Conclusion: These data suggest that intracellular control of AR expression levels through the natural AR promoter might be needed for determining AR function in androgen-independent prostate cancer (AIPC) PC-3 cells. Unlike previous publications that showed DHT mediated suppression of PC-3 growth after transfection of viral promoter-driven AR overexpression, we report here that DHT-mediated PC-3 proliferation is slightly induced or does not change compared with its baseline after reintroducing AR expression driven by its own natural promoter, as shown in PC-3(AR)9 prostate cancer cells.

  14. Isolation of three new annonaceous acetogenins from Graviola fruit (Annona muricata) and their anti-proliferation on human prostate cancer cell PC-3.

    Science.gov (United States)

    Sun, Shi; Liu, Jingchun; Zhou, Ninghui; Zhu, Wenjun; Dou, Q Ping; Zhou, Kequan

    2016-09-01

    Bioassay-guided fractionation of the fruit powder of Graviola (Annona muricata) was continued to be conducted and yielded three more novel bioactive compounds: C-35 annonaceous acetogenins, muricins M and N, and C-37 annonaceous acetogenins, muricenin. They all contain a mono-tetrahydrofuran ring and four hydroxyl groups. The structures were elucidated by spectral methods and chemical modification after isolation via open column chromatographic separation and HPLC purification. Especially, murices M and N demonstrated more potent anti-proliferative activities against human prostate cancer PC-3 cells.

  15. Preparation of catechin extracts and nanoemulsions from green tea leaf waste and their inhibition effect on prostate cancer cell PC-3.

    Science.gov (United States)

    Tsai, Yin-Jieh; Chen, Bing-Huei

    2016-01-01

    Green tea is one of the most commonly consumed natural health beverages in Taiwan's market, with the major functional component catechin being shown to possess several biological activities such as antioxidation, anticancer, and prevention of cardiovascular disease. The objectives of this study were to develop a high-performance liquid chromatography-mass spectrometry method to determine the variety and content of catechins in green tea leaf waste, a by-product obtained during processing of tea beverage. In addition, catechin nanoemulsion was prepared to study its inhibition effect on prostate cancer cell PC-3. Results showed that a total of eight catechin standards were separated within 25 minutes by using a Gemini C18 column and a gradient mobile phase of 0.1% formic acid (A) and acetonitrile (B) with flow rate at 1 mL/min, column temperature at 30°C, and detection wavelength at 280 nm. Among various extraction solvents, 50% ethanol generated the highest yield of total catechins from tea leaf waste, of which five catechins were identified and quantified. The catechin nanoemulsion was composed of catechin extract, lecithin, Tween 80, and deionized water in an appropriate proportion, with the mean particle size being 11.45 nm, encapsulation efficiency 88.1%, and zeta potential -66.3 mV. A high stability of catechin nanoemulsion was shown over a storage period of 120 days at 4°C. Both catechin extract and nanoemulsion could inhibit growth of PC-3 tumor cells, with the half maximal inhibitory concentration being 15.4 μg/mL and 8.5 μg/mL, respectively. The PC-3 cell cycle was arrested at S phase through elevation of P27 expression and decline of cyclin A, cyclin B, cyclin-dependent kinase 2, and cyclin-dependent kinase 1 expression. In addition, both catechin extract and nanoemulsion could induce apoptosis of PC-3 cells through decrease in B-cell lymphoma 2 (bcl-2) expression and increase in cytochrome c expression for activation of caspase-3, caspase-8, and

  16. Reactive-oxygen-species-mediated Cdc25C degradation results in differential antiproliferative activities of vanadate, tungstate, and molybdate in the PC-3 human prostate cancer cell line.

    Science.gov (United States)

    Liu, Tong-Tong; Liu, Yan-Jun; Wang, Qin; Yang, Xiao-Gai; Wang, Kui

    2012-02-01

    The differential antiproliferative effects of vanadate, tungstate, and molybdate on human prostate cancer cell line PC-3 were compared and the underlying mechanisms were investigated. The results demonstrate that all of the three oxoanions can cause G(2)/M cell cycle arrest, which is evidenced by the increase in the level of phosphorylated Cdc2 at its inactive Tyr-15 site. Moreover, even if the difference in cellular uptake among the three oxoanions is excluded from the possible factors affecting their antiproliferative activity, vanadate exerted a much more potent effect in PC-3 cells than the other two oxoanions. Our results also reveal that reactive oxygen species (ROS)-mediated degradation of Cdc25C rather than Cdc25A or Cdc25B is responsible for vanadate-induced G(2)/M cell cycle arrest. We propose a possible mechanism to clarify the differential effect of the three oxoanions in biological systems beyond just considering that they are structural analogs of phosphate. We suggest that ROS formation is unlikely to be involved in the biological function of tungstate and molybdate, whereas the redox properties of vanadium may be important factors for it to exert pharmacological effects. Further, given the evidence from epidemiology studies of the association between diabetes and prostate cancer, the possibility of vanadate as a good candidate as both an antidiabetic and an anticancer agent or a chemopreventive agent is indicated.

  17. Caffeic acid phenethyl ester causes p21 induction, Akt signaling reduction, and growth inhibition in PC-3 human prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Hui-Ping Lin

    Full Text Available Caffeic acid phenethyl ester (CAPE treatment suppressed proliferation, colony formation, and cell cycle progression in PC-3 human prostate cancer cells. CAPE decreased protein expression of cyclin D1, cyclin E, SKP2, c-Myc, Akt1, Akt2, Akt3, total Akt, mTOR, Bcl-2, Rb, as well as phosphorylation of Rb, ERK1/2, Akt, mTOR, GSK3α, GSK3β, PDK1; but increased protein expression of KLF6 and p21(Cip1. Microarray analysis indicated that pathways involved in cellular movement, cell death, proliferation, and cell cycle were affected by CAPE. Co-treatment of CAPE with chemotherapeutic drugs vinblastine, paclitaxol, and estramustine indicated synergistic suppression effect. CAPE administration may serve as a potential adjuvant therapy for prostate cancer.

  18. Biosynthesis, Antibacterial Activity and Anticancer Effects Against Prostate Cancer (PC-3) Cells of Silver Nanoparticles Using Dimocarpus Longan Lour. Peel Extract

    Science.gov (United States)

    He, Yan; Du, Zhiyun; Ma, Shijing; Cheng, Shupeng; Jiang, Sen; Liu, Yue; Li, Dongli; Huang, Huarong; Zhang, Kun; Zheng, Xi

    2016-06-01

    Metal nanoparticles, particularly silver nanoparticles (AgNPs), are developing more important roles as diagnostic and therapeutic agents for cancers with the improvement of eco-friendly synthesis methods. This study demonstrates the biosynthesis, antibacterial activity, and anticancer effects of silver nanoparticles using Dimocarpus Longan Lour. peel aqueous extract. The AgNPs were characterized by UV-vis absorption spectroscopy, X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), and Fourier transform infrared spectroscope (FTIR). The bactericidal properties of the synthesized AgNPs were observed via the agar dilution method and the growth inhibition test. The cytotoxicity effect was explored on human prostate cancer PC-3 cells in vitro by trypan blue assay. The expressions of phosphorylated stat 3, bcl-2, survivin, and caspase-3 were examined by Western blot analysis. The longan peel extract acted as a strong reducing and stabilizing agent during the synthesis. Water-soluble AgNPs of size 9-32 nm was gathered with a face-centered cubic structure. The AgNPs had potent bactericidal activities against gram-positive and gram-negative bacteria with a dose-related effect. AgNPs also showed dose-dependent cytotoxicity against PC-3 cells through a decrease of stat 3, bcl-2, and survivin, as well as an increase in caspase-3. These findings confirm the bactericidal properties and explored a potential anticancer application of AgNPs for prostate cancer therapy. Further research should be focused on the comprehensive study of molecular mechanism and in vivo effects on the prostate cancer.

  19. Effects of Ethanol Extract from Zingiber on the Proliferation of Human Prostatic Cancer PC-3 Cells in vitro%生姜醇提取物抑制人前列腺癌 PC-3细胞增殖的体外研究

    Institute of Scientific and Technical Information of China (English)

    蒋茂林; 王毅; 曹正国; 张朝胜; 黎建欣; 肖恒军; 彭潋; 蒋鸿涛

    2015-01-01

    目的:观察生姜醇提取物(extract of zingiber ethanol,EZE)对人前列腺癌 PC-3细胞体外增殖的影响,并探讨其可能的调控机制。方法运用 MTT 法检测不同浓度 EZE 对 PC-3细胞体外增殖的影响;Western-blot 检测不同浓度 EZE 作用于 PC-3细胞一定时间后其 P53、Bcl-2蛋白的表达情况。结果MTT 法结果提示,随着 EZE 浓度的增加与作用时间的延长,PC-3细胞 DE 增殖抑制率均增加,与对照组比较均有显著差异(P<0.05);Western-blot 结果显示 EZE 作用 PC-3细胞后可上调 P53、下调 Bcl-2蛋白的表达,并呈一定的量效关系。结论EZE 能够抑制 PC-3细胞体外增殖,其机制可能与其上调 P53、下调 Bcl-2蛋白的表达有关。%Objective To investigate the effects of ethanol extracts from Zingiber (EEZ) on the proliferation of human pro-static cancer PC-3 cells (PC-3) and its possible mechanisms. Methods MTT was used to analyze the effects of different doses of ethanol extract of Zingiber on the proliferation of human Prostatic cancer PC-3 cells. Western-blot was applied to detect the expressions of bcl-2 and p53 protein in PC-3 cells after treated by EEZ. Results MTT assay showed that the inhibition rate of cell proliferation all increased along with the increase of concentration and interaction time of EEZ. But it was sig-nificantly higher in the experimental group than in the control group (P<0.05). Western-blot assay showed that P53 protein expression increased while Bcl-2 protein expression reduced within a certain range of treating time and dose in PC-3 cells treated by EEZ. Conclusion Ethanol extract of Zingiber could inhibit the proliferation of PC-3 cells in vitro within a certain range of treating time and dose. The increase of P53 protein expression and decrease of Bcl-2 protein expression might be involved.

  20. 不同方法转染人前列腺癌PC-3细胞pEGFP-N1基因的体外实验研究%Study of pEGFP-N1 transfection into human prostate cancer cell PC-3 by different transfecticion methods in vitro

    Institute of Scientific and Technical Information of China (English)

    吴作辉; 白文坤; 张吉臻; 张跃力; 申锷; 胡兵

    2012-01-01

    目的:探讨转染人前列腺癌PC-3细胞pEGFP-N1基因的最佳转染方法.方法:以超声微泡造影剂、超声辐照、脂质体转染及其相互结合的方法,将质粒pEGFP-N1基因转染人前列腺癌PC-3细胞,24 h后以荧光显微镜观察前列腺癌PC-3细胞中的绿色荧光蛋白表达情况,并用流式细胞仪测定转染率.结果:以超声+微泡+脂质体组基因转染效率最高,与其他组比较,差异均有统计学意义(P<0.05).结论:超声联合微泡与脂质体结合能明显提高pEGFP-N1基因在人前列腺癌细胞中的转染率,是一种较理想的基因转染方法.%Objective: To find a better method to transfer pEGFP-Nl into human PC-3 prostate cancer cell. Methods:Ultrasound contrast agent microbubbles, ultrasound, and lipofection method or combined with each other were used to transfer plasmid pEGFP into human prostate cancer PC-3 cells. The expression of pEGFP-Nl was studied by fluorescerce microscope and flow cytometry 24 hours after transfection. Results: Ultrasound combined with microbubble and liposome group had the best efficiency and had significant difference compared to other groups(P<0. 05). Conclusions:The use of ultrasound, in combination with microbubbles, could be a potential physical method for increasing liposome gene delivery efficiency.

  1. 沙利度胺对前列腺癌PC3细胞的体外作用及机制研究%Study on in vitro effects and mechanism of Thalidomide on prostate cancer cell line PC-3

    Institute of Scientific and Technical Information of China (English)

    崔旭辉; 薛学义; 许宁

    2012-01-01

    Objective To investigate the growing inhibitory effect of Thalidomide on hormone-independent prostatic cancer cell line PC-3, and explore the related mechanism. Methods PC-3 cells were treated with Thalidomide in different concentrations. The cell growth and proliferation were assessed by CCK-8 assay. and the flow cytometry (FCM) was employed to examine the apoptosis rate. The level of HIF-1α and VEGF mRNA expression was examined by the RT-PCR technique in the PC-3 cells treated before and after with Thalidomide. The expression of HIF-1α ,VEGF, Bcl-2 and Bax protein in PC-3 cells treated by Thalidomide was detected by the Western blot. Results With administration of Thalidomide in different concentrations, the growth and proliferation of PC-3 cells significantly decreased(P<0.05). Thalidomide produced antiproliferative effeets on PC-3 cells in a dose and time-dependent manner. The outcome of FCM indicated Thalidomide could induce apoptosis of PC-3 cells, and there was statistically significant difference between the control group and treatment group (P<0.05). The mRNA expression of HIF-1α and VEGF was gradually down-regulated with the increase of Thalidomide dosage. The Bax positivity of PC-3 cells treated with Thalidomide was increasing along with the increase of drug concentration, but not in the control cells. The HIF-1 α, VEGF and Bcl-2 content in PC-3 cells was lowering when Thalidomide was given in an increasing concentration. Conclusion Under the condition used in this study, Thalidomide can inhibit the proliferation of PC-3 cells in vitro. Induction of apoptosis and inhibition of angiogenesis may be possibly the two mechanisms for its anticancer action.%目的 研究沙利度胺对激素非依赖性前列腺癌(AIPC)细胞株PC-3体外生长的抑制作用及其可能的机制.方法 将不同浓度的沙利度胺作用于AIPC细胞株PC-3,采用CCK-8法检测沙利度胺对PC-3细胞的增殖抑制作用;流式细胞仪检测凋亡率;通过RT-PCR

  2. 百里醌抑制人胰腺癌BxPC-3细胞体外运动和侵袭的研究%Thymoquinone Inhibits Migration and Invasion of Human Pancreatic Cancer BxPC-3 Cells in vitro

    Institute of Scientific and Technical Information of China (English)

    慕刚刚; 于红刚; 李红艳; 李维

    2014-01-01

    背景:胰腺癌是恶性程度最高的消化道肿瘤,目前吉西他滨依赖的化疗对抑制胰腺癌转移的治疗效果欠佳。研究发现百里醌对多种肿瘤细胞具有抑制增殖、促进凋亡的作用。目的:探讨百里醌对人胰腺癌BxPC-3细胞体外运动和侵袭的影响及其作用机制。方法:常规培养人胰腺癌细胞株BxPC-3,加入不同浓度百里醌进行处理。采用Boyden小室法检测细胞体外运动、侵袭情况;蛋白质印迹法检测细胞FAK、Akt蛋白表达和Akt磷酸化水平的改变;免疫荧光技术检测细胞内FAK表达、细胞黏着斑和F-actin的变化。结果:10、25μmoI/L百里醌对BxPC-3细胞体外运动的抑制率分别为43.4%、73.8%,对体外侵袭的抑制率分别为60.5%、75.6%,百里醌呈浓度依赖性地抑制胰腺癌BxPC-3细胞的体外运动、侵袭(P<0.05)。百里醌能明显下调BxPC-3细胞FAK表达,并抑制细胞磷酸化Akt的激活。百里醌可诱导FAK弥散分布于胞质,明显抑制黏着斑形成和F-actin的聚合集化。结论:百里醌通过抑制FAK/PI3K/Akt通路的信号转导和激酶活性,浓度依赖性地抑制人胰腺癌BxPC-3细胞的体外运动和侵袭。%BacKground:Human pancreatic cancer is a highIy maIignant tumor of digestive system. CurrentIy,gemcitabine based conventionaI chemotherapy has onIy very Iimited efficacy on metastasis of pancreatic cancer. Studies have shown that thymoquinone has remarkabIe effect of inhibiting proIiferation and enhancing apoptosis on a variety of cancer ceIIs. Aims:To investigate the effect and mechanism of thymoquinone on inhibiting the migration and invasion of human pancreatic cancer BxPC-3 ceIIs in vitro. Methods:Human pancreatic cancer BxPC-3 ceIIs were conventionaIIy cuItured and treated with different concentrations of thymoquinone. The migration and invasion of BxPC-3 ceIIs were determined by Boyden chamber assay. The expressions of FAK,Akt and phosphory

  3. 甲磺酸加贝酯对人胰腺癌BxPC-3细胞增殖及其裸鼠移植瘤生长的抑制作用%Inhibitory Effects of Gabexate Mesylate on the Proliferation of Human Pancreatic Cancer BxPC-3 Cells and the Growth of Transplantable Tumor in Nude Rats

    Institute of Scientific and Technical Information of China (English)

    母齐鸣; 廖波

    2013-01-01

    OBJECTIVE:To study the inhibitory effects of gabexate mesylate (GM) on the proliferation of human pancreatic cancer BxPC-3 cells and the growth of transplantable tumor in nude rats.METHODS:The inhibitory rates of 0,0.01,0.1,0.25,0.5 and 1.0 mmol/L GM on the growth of BxPC-3 cells were detected by cytometry after treated for 24,48 and 72 h,respectively.Apoptosis rates of BxPC-3 cells were detected by flow cytometry after treated with 0,0.25,0.5 and 1.0 mmol/L GM for 24 h.The transplantable tumor model of nude rats was established and randomly divided into trial group (GM 5 mg/kg) and control group (0.9% sodium chloride) with 7 rats in each group.A day after inoculated with tumor tissues,both groups were given relevant medicines intraperitoneally twice a day for consecutive 14 days.The size of tumor in nude rats was determined in 2 groups each week,and anti-tumor rate was calculated after consecutive 6 weeks of measurement.RESULTS:Compared with non-administration,0.01and 0.1 mmol/L GM had no inhibitory effect on the growth of BxPC-3 cells (P>0.05) ; the inhibitory effect of 0.25,0.5 and 1.0 mmol/L GM on the growth of BxPC-3 cells were increased significantly (P<0.05),in dose-dependent and time-dependent manner.The apoptotic rates of BxPC-3 cells were 7%,15.2% and 21.4% after treated with 0.25,0.5,1.0 mmol/L GM,which were significant higher than 2% of BxPC-3 cells without treatment (P<0.05 or P<0.01).Compared with control group,there was no statistical significance in the tumor volume of rats in trial group within 2 weeks of treatment (P>0.05),but the tumor volume of rats decreased significantly since third week (P<0.05).Anti-tumor rate of GM in nude rats was 41.43%.CONCLUSIONS:GM can inhibit the growth of BxPC-3 cells and induce the apoptosis of the cells in dose-dependant and time-dependant manner.It also can inhibite the growth of trans plantable tumor in unde rats.%目的:研究甲磺酸加贝酯(GM)对人胰腺癌BxPC-3细胞增殖及其

  4. Comparative analysis of Notch1 and Notch2 binding sites in the genome of BxPC3 pancreatic cancer cells

    Science.gov (United States)

    Liu, Hao; Zhou, Ping; Lan, Hong; Chen, Jia; Zhang, Yu-xiang

    2017-01-01

    Notch signaling plays a key role in the development of pancreatic cancer. Among the four identified Notch receptors, Notch1 and Notch2 share the highest homology. Notch1 has been reported to be an oncogene but some reports indicate that Notch2, not Notch1, plays a key role in pancreatic carcinogenesis. As both are transcription factors, examination of their genomic binding sites might reveal interesting functional differences between them. Notch proteins do not have DNA-binding domain. In the canonical Notch signaling pathway, ligand binding induces the release and nuclear translocation of Notch receptor intracellular domains (NICDs), which then interact with the transcription factor CSL, resulting in subsequent activation of the canonical Notch target genes. We investigated the binding site profiles of Notch1and Notch2 in the BxPC3 genome using CHIP-Seq and bioinfomatics. We found that Notch1, Notch2 and CSL generally bound to different target genes. We also found that only a small subset of Notch1 and Notch2 binding sites overlap with that of CSL, but about half of the CSL binding overlap with that of Notch1 or Notch2, indicating most Notch signaling activities are CSL-independent.

  5. 靶向ADAM17基因siRNA对前列腺癌PC-3细胞增殖能力的影响%Inhibitory effect of siRNA targeting ADAM17 on the proliferation of prostate cancer PC-3 cells

    Institute of Scientific and Technical Information of China (English)

    林锋; 于晓光; 林平; 刘鑫; 李栋; 刘紫君; 邹海峰; 姜颖; 赵雪飞; 冯金发

    2012-01-01

    Objective: To study the effect of siRNA targeting ADAM17 (ADAM17-siRNA ) on the proliferation of prostate cancer PC-3 cells. Methods: After transfecting PC-3 cells with ADAM17-siRA 1 and ADAM17-siRNA 2, we detected the expressions of ADAM17 mRNA and protein by RT- PCR and Western blotting, respectively. We measured the changes in the proliferation and DNA synthesis of PC-3 cells by MTT and bromodeoxyuridine (BrdU) incorporation assay, examined the cell cycle profile by flow cytometry, and determined the expressions of the genes associated with PC-3 cell proliferation by Western blotting. Results: Both ADAM17-siRNA 1 and 2 effectively reduced the expressions of ADAM 17 mRNA and protein in the PC-3 cells. Knockdown of ADAM17 with the two siRNAs significantly inhibited cell proliferation as compared with the control group (0. 43 ± 0. 57 and 0.44 ± 0. 64 vs 0. 80 ±0.51, P < 0. 05 ) and down-regulated DNA synthesis ( 0. 48 ± 0. 43 and 0. 54 ± 0. 59 vs 0. 79 ± 0. 72, P < 0. 05 ). The cell cycle profile showed that the cell population of the Gl phase was markedly higher in both the ADAM17 -siRNA groups than in the control ([61.83 ±2.41]% and [59. 78 ±1.92]% vs [41.38 ±1.53]% , P<0.05), but that of the S phase remarkably lower in the former two than in the latter ([23.64 ±2.56]% and [25. 24 ± 1.86]% vs [33.51 ± 1.47]% , P<0.05) , with a concomitant decrease in the expression of the cell cycle protein eyclin D1 and increase in the cyclin-dependent kinase inhibitor p21. Conclusion: ADAM17-siRNA can effectively inhibit the proliferation of PC-3 cells by up-regulating eyclin Dl and down-regulating p21 protein, and ADAM17 has a potential value in the gene therapy of prostate cancer.%目的:探讨靶向抑制ADAM17基因对雄激素非信赖性前列腺癌PC-3细胞增殖的影响. 方法:应用ADAM17 siRNA转染PC-3细胞后,通过RT-PCR、Western印迹方法分别检测ADAM17 mRNA和蛋白表达变化;MTT、BrdU掺入法检测下调ADAM17对PC-3细胞的增殖

  6. The synergistic effects of rhTRAIL and adenovirus-mediated NDRG2 gene on prostate cancer cell line PC-3%腺病毒介导NDRG2基因和rhTRAIL对人前列腺癌细胞株PC-3的协同作用

    Institute of Scientific and Technical Information of China (English)

    崔潇义; 高磊; 李瑞晓; 汤磊; 严奉奇; 张瑞; 于磊; 袁建林; 武国军

    2013-01-01

    Objective To investigate the antitumor activities of Ad-NDRG2 and reconstruction human TNF-related apoptosis-inducing ligand on human prostate cancer PC-3 cells. Methods The protein expressions of CyclinD1, p21 and NDRG2 in the cells were determined by Western-blot. MTT and flow cytometry tests were used to observe the effects of 10-6 ng/ml, 10-7 ng/ml, 10-8 ng/ml rhTRAIL and Ad-NDRG2 on prostate cancer cell line PC-3 single or synergistic administration ways for 24, 48 and 72 hours in vitro. Male BALB/C-nu mice with PC-3 prostate cancer cell lines were treated by rhTRAIL and Ad-NDRG2 singly or synergistically in vivo. Results After infected by adenovirus, the proteins expression of NDRG2 and p21 in PC-3 cells all was high. But the proteins expression of CyclinD1 was low. Ad-NDRG2 enhanced the growth suppression (suppression ratio≥37.5%) and induced apoptosis(apoptosis ratio≥35.4%)by above 10-7 mol/L rhTRAIL in PC-3 cells. In vivo experiment showed that rhTRAIL, Ad-NDRG2, combination of TRAIL and Ad-NDRG2 inhibited tumor growth by the rates of 32.6%, 30.1% and 54.7%, respectively. The coefficient of drug interaction(CDI) of TRAIL and Ad-NDRG2 was 0.86. Conclusions Ad-NDRG2 can enhance the growth suppression and induce apoptosis by rhTRAIL in synergistic way in vitro and in vivo, which showed its great potential in the treatment of androgen-independent carcinoma of prostate.%目的:观察携带NDRG2基因的腺病毒(Ad-NDRG2)与重组人肿瘤坏死因子相关凋亡诱导配体(rhTRAIL)联合给药对人前列腺癌细胞株PC-3的抗肿瘤增效作用。方法以Ad-NDRG2感染体外培养的PC-3细胞,采用Western blot方法检测NDRG2蛋白表达水平的变化。流式细胞仪检测术和MTT实验分析Ad-NDRG2给药后PC-3细胞对TRAIL敏感性的变化。建立裸鼠移植瘤模型,观察Ad-NDRG2与TRAIL联合给药的体内抗肿瘤作用。结果病毒感染单位为40MOI时的感染效率可达100%。Ad-NDRG2感染后PC-3细胞中NDRG2

  7. Abrogation of heat-shock protein (HSP)70 expression induced cell growth inhibition and apoptosis in human androgen-independent prostate cancer cell line PC-3m

    Institute of Scientific and Technical Information of China (English)

    Zhi-GangZhao; Qing-ZhengMa; Chun-XiaoXu

    2004-01-01

    Aim: To investigate the effect of abrogating heat shock protein (HSP) 70 expression by antisense HSP70 oligonucleotides treatment on human androgen-independent prostate cancer cell line PC-3m growth. Methods: PC3m cells were treated with 0-16μmol/L antisense HSP70 oligomers for 0-100 hr. Cell growth inhibition was analyzed using a trypan blue dye exclusion test. Apoptotic cells were detected and confirmed by flow cytometric analysis and DNA fragmentation analysis. The protein expression of HSP70 and bcl-2 affected by antisense HSP70 oligomers were determined using Western blot. Results: Antisense HSP70 oligomer induced apoptosis and then inhibited proliferation of PC-3m cells in a dose- and time-dependent manner. Ladder-like patterns of DNA fragments were observed in PC-3m cells treated with 10μmol/L antisense HSP70 oligomer for 48 hr or 8μtmol/L for 72 hr on agarose gel electrophoresis. Antisense HSP70 oligomer pretreatment enhanced the subsequent induction of apoptosis by heat shock in PC-3m cells. In addition, undetectable HSP70 expression was observed at a concentration of 10μtmol/L antisense HSP70 oligomer treatment for 48 hr or 8μtmol/L for 72 hr in Western blot, which was paralleled by decreased expression levels of anti-apoptotic protein bcl-2. Conclusion: HSP70 antisense oligomer treatment abro-gates the expression of HSP70, which may disrupt HSP70-bcl-2-interactions and further down-regulate bcl-2 expression,in turn inducing apoptosis and inhibiting cell growth in PC-3m cells. (Asian JAndro12004 Dec;6:319-324)

  8. Preferential colonization of metastases by oncolytic vaccinia virus strain GLV-1h68 in a human PC-3 prostate cancer model in nude mice.

    Directory of Open Access Journals (Sweden)

    Ulrike Donat

    Full Text Available Recently, we showed that the oncolytic vaccinia virus GLV-1h68 has a significant therapeutic potential in treating lymph node metastases of human PC-3 prostate carcinoma in tumor xenografts. In this study, underlying mechanisms of the virus-mediated metastases reduction were analyzed. Immunohistochemistry demonstrated that virus-treatment resulted in a drastically decrease of blood and lymph vessels, representing essential routes for PC-3 cell migration, in both tumors and metastases. Thus, GLV-1h68 drastically reduced essential routes for the metastatic spread of PC-3 cells. Furthermore, analysis of viral distribution in GLV-1h68-injected tumor-bearing mice by plaque assays, revealed significantly higher virus titers in metastases compared to solid tumors. To elucidate conditions potentially mediating the preferential viral colonization and eradication of metastases, microenvironmental components of uninfected tumors and metastases were compared by microscopic studies. These analyses revealed that PC-3 lymph node metastases showed increased vascular permeability, higher proliferation status of tumor cells as determined by BrdU- and Ki-67 assays and lesser necrosis of PC-3 cells than solid tumors. Moreover, an increased number of immune cells (MHCII(+/CD68(+ macrophages, MHCII(+/CD19(+ B lymphocytes combined with an up-regulated expression of pro-inflammatory cytokines was observed in metastases in comparison to primary PC-3 tumors. We propose that these microenvironmental components mediated the metastatic tropism of GLV-1h68. Therefore, vaccinia virus-based oncolytic virotherapy might offer a novel treatment of metastatic prostate carcinomas in humans.

  9. RNA interference of silent mating type information regulation 2 homolog 1 SIRT1 arrests cell cycle progress of prostate cancer PC3 cells%RNA干扰沉默信息调节因子2同源蛋白1阻滞前列腺癌PC3细胞周期

    Institute of Scientific and Technical Information of China (English)

    李驰; 王忠利

    2014-01-01

    Objective:To observe the effects of double-stranded small interfering RNA (siRNA) of the silent mating-type infor-mation regulation 2 homolog 1 (SIRT1) on the cell proliferation, cell cycle progression, and expression levels of the cell cycle negative regulators. These regulators include P21, P27, and phosphorylated retinoblastoma (PRb) proteins present in prostate cancer PC3 cells. This work further aims to explore the possible underlying mechanism for such effects. Methods:PC3 cells were cultured in vitro and then randomly divided into the mock group, scramble siRNA transfected group, and SIRT1 siRNA-transfected group. SIRT1 siRNA ef-ficiency was examined through reverse transcription polymerase chain reaction and Western blot analysis. The inhibitory rate of PC3 cell growth was determined through a methyl thiazolyl tetrazolium assay, and the cell cycle was investigated with the use of flow cytom-etry. The P21 and P27 protein expression levels and PRb status were determined by Western blot assay. Results:Compared with those of the mock and scramble siRNA groups, the expression levels of SIRT1 mRNA and protein significantly decreased in SIRT1 siR-NA-transfected cells. In addition, the inhibitory rate of PC3 cell growth was markedly increased, and the cell cycle of the PC3 cells was arrested at the G1 stage. The expression levels of negative cell cycle regulators, including P21 and P27 protein levels increased, whereas Rb protein phosphorylation was inhibited in SIRT1 siRNA-transfected PC3 cells. Conclusion: SIRT1 RNA interference inhibits PC3 cell growth and arrests cell cycle progression through the upregulation of the P21 and P27 proteins and the inhibition of Rb protein phosphorylation.%目的:观察沉默信息调节因子2同源蛋白1(SIRT1)小干扰RNA(siRNA)对前列腺癌PC3细胞生长增殖、细胞周期和P21、P27细胞周期调节蛋白及视网膜母细胞瘤(retinoblastoma,Rb)蛋白表达变化影响,探讨SIRT1在前列腺癌

  10. Androgen receptors and hormone sensitivity of a human prostatic cancer cell line (PC-3) are modulated by natural beta-interferon

    NARCIS (Netherlands)

    G. Sica (G.); G. Dell'Acqua (G.); F. Iacopino (F.); A. Fattorossi (A.); P. Marchetti (P.); Th.H. van der Kwast (Theo); M. Pavone-Macaluso (M.)

    1991-01-01

    textabstractAndrogen recptors are expressed at a low level in the cell line PC-3, which does not respond to either androgens or antiandrogens. If these cells are exposed to natural beta-interferon (β-IFN) a reduction in cell growth and an increase in androgen receptors, evaluated by both biochemical

  11. Study of Arctiin and Arctigenin in Inducing Non-apoptotic Death of Human Prostate Cancer PC3 Cells%牛蒡子苷与苷元诱导人前列腺癌PC3细胞非凋亡性死亡的研究

    Institute of Scientific and Technical Information of China (English)

    李孝庆; 杨瑞仪; 刘抗伦; 沈小玲; 胡英杰

    2013-01-01

    [目的]观察牛蒡子苷(ARC)与牛蒡子苷元(ARG)对人前列腺癌PC3细胞增殖的影响,并探讨其相关机制.[方法]采用不同浓度的ARC与ARG作用于PC3细胞,四甲基偶氮唑盐(MTT)法检测其对细胞增殖的影响;瑞姬氏染色观察用药前后细胞形态变化;Annexin V-异硫氰酸荧光素-碘化丙啶(FITC/PI)双染结合流式细胞术检测细胞凋亡或坏死情况;Western-blot法检测凋亡相关蛋白Bcl-2、Bax和Caspase 3的表达情况.[结果]ARC与ARG均能抑制PC3细胞的增殖,此抑制作用具有时间和浓度依赖性,两药物作用48 h组细胞存活率均显著低于24 h组(P<0.01);ARC与ARG处理组的细胞形态变化表现为细胞膜回缩,细胞质减少,胞膜紧贴胞核,胞液纤维网状结构;流式细胞术检测发现:与空白对照组比较,ARC组与ARG组可显著增加Annexin V-FITC/PI双染阳性率(P<0.05或P<0.01),PI单染阳性率在浓度为20μmol/L和5μmol/L时也显著增加(P<0.01),但Annexin V-FITC单染阳性率均无显著变化(P>0.05).Western-blot分析结果显示:ARC或ARG作用细胞48 h时,可显著降低Bcl-2表达水平(P<0.01),但对Bax和Caspase-3蛋白的表达无显著影响(P>0.05).[结论]ARC与ARG可诱导PC3细胞发生非凋亡性死亡,其作用机制可能与诱导Bcl-2表达下调相关.%Objective To investigate the effect of arctiin (ARC) and arctigenin (ARG) on human prostate cancer PC3 cells,and to explore their relevant mechanisms.Methods PC3 cells were cultured with ARC or ARG at various concentrations.Cell survival was measured by methyl thiazolyl tetrazolium (MTT) assay.Morphological changes of cells before and after treatment were observed by Rui Ji's dye staining.Apoptosis and necrosis of PC3 cells were detected by Annexin V-FITC/PI staining with flow cytometer.The expression of apoptosis-related proteins such as Bcl-2,Bax and Caspase 3 was detected by western blotting method.Results The proliferation of PC3 cells was inhibited by both

  12. Evaluation of the radio modifier effect of propolis on chinese hamster ovary (CHO-K1) and human prostate cancer (PC3) cells, irradiated with 60-CO; Avaliacao do efeito radiomodificador da propolis em celulas de ovario de hamster chines (CHO-K1) e em celulas tumorais de prostata (PC3), irradiadas com CO-60

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Geyza Spigoti

    2011-07-01

    In the last decades, it has been given a great interest to investigations concerning natural, effective, nontoxic compounds with radioprotective potential together with the increasing utilization of different types of ionizing radiation for various applications. Among them propolis, a resinous compound produced by honeybees (Apis mellifera), has been considered quite promising, since it presents several advantageous biological characteristics, i. e., anti-inflammatory, antimicrobial, anticarcinogenic, antioxidant and also free radical scavenging action. The purpose of the present study was to evaluate the effect of Brazilian propolis, collected in the State of Rio Grande do Sul, on Chinese hamster ovary (CHO-K1) and human prostate cancer (PC3) cells, irradiated with {sup 60}Co {gamma} radiation. For this purpose, three interlinked parameters were analyzed: micronucleus induction, cell viability and clonogenic death. The choice of these parameters was justified by their biological significance, in addition to the fact that they are readily observable and measurable in irradiated cells. The cytogenetic data obtained showed a radioprotective effect of propolis (5-100 {mu}g/ml) in the induction of DNA damage for both cell lines, irradiated with doses of 1 - 4 Gy. The cytotoxicity assay, however, showed a prominent antiproliferative effect of propolis (50 - 400{mu}/ml) in PC3 cells irradiated with 5 G{gamma}. The survival curves obtained were adequately fitted by a linear-quadratic model, where the {alpha} coefficient was higher in CHO-K1 cells. Concerning the clonogenic capacity, PC3 cells were more radiosensitive than CHO-K1 cells at the higher doses of the survival curve. Propolis at the concentrations of 30 - 100 {mu}g/ml, did not influence the clonogenic potential of PC3 cells, since the survival curves, associated or not with propolis, were found similar, although the combined treatment in CHO-K1 cells exhibited a stimulating proliferative effect. The data

  13. 钙调蛋白依赖性蛋白激酶Ⅱ对前列腺癌PC3细胞增殖、侵袭及上皮-间充质转化的影响%Effects of calcium/calmodulin dependent protein kinase Ⅱ on proliferation, invasion and epithelia-mesenchymal transition of prostate cancer PC3 cells

    Institute of Scientific and Technical Information of China (English)

    彭璇; 陈晖; 王敏; 刘修恒

    2015-01-01

    Objective To observe the effects of inactivation of calcium/calmodulin dependent protein kinase Ⅱ (CaMK Ⅱ) on proliferation, invasion and epithelia-mesenchymal transition related signaling pathway in prostate cancer PC3 cells.Methods The activity of CaMK Ⅱ in PC3 cells was suppressed by KN93, a pharmacological inhibitor.MTT assay was used to detect the inhibition rate of PC3 cells and the invasion ability of PC3 cells was examined using Transwell invasion chambers.The protein expression of phosphorylated CaMK Ⅱ (p-CaMK Ⅱ), nuclear factor κB (NF-κB), zinc finger transcription factor (Snail), and Raf kinase inhibitory protein (RKIP) was measured by Western blotting.Results After treatment with KN93 for 24 h, the protein expression of p-CaMK Ⅱ PC3 cells treated with 5, 10, 20 μmol/L KN93 (0.453 ± 0.070, 0.368 ± 0.076, and 0.308 ± 0.011) was significantly decreased as compare with control group (0.596 ± 0.028) (P < 0.05 or 0.01), 40 μmol/L KN93 almost completely inhibited p-CaMK Ⅱ protein expression.The inhibition rate of PC3 cells treated with KN93 for 24 h was (6.88±1.79)%, (12.92 ±2.74)%, (17.88 ±2.86)% and (31.23 ±4.24)%, and (16.53 ±2.45) %, (29.02 ± 1.74) %, (40.52 ± 1.98) % and (52.26 ± 3.51) % for 48 h respectively.The number of the invasion PC3 cells in control and KN93 groups was (149 ± 17), (97 ± 7), (59 ± 9),(51 ±7), and (24 ± 3)/high magnification mirror (HP) respectively.The number of invasion cells in KN93 groups was significantly decreased when compared with control group (P < 0.01).The protein expression of NF-κB p65 had no significant difference between control and KN93 groups (P > 0.05), but p-NF-κB p65 was down-regulated in KN93 groups (0.483 ± 0.052, 0.490 ± 0.064, 0.432 ± 0.057,and 0.341 ±0.008) when compared with control group (0.597 ±0.020, P <0.05 or 0.01).As compared with control group (0.716 ±0.046), Snail protein expression in PC3 cells treated with 5, and 10 μmol/L KN93 (0

  14. 吉非替尼和NS398对前列腺癌PC-3M细胞增殖和侵袭力影响的研究%Effects of gefitinib and NS-398 on the proliferation and invasion ability of prostate cancer cell line ;PC-3 in vitro

    Institute of Scientific and Technical Information of China (English)

    朱佳庚; 吴宏飞; 林建中

    2014-01-01

    Objective To observe the effects and possible mechanism of epidermal growth factor receptor specific inhibitor gefitinib and cyclooxygenase-2 specific inhibitor NS-398 on the proliferation and invasion ability of prostate cancer cell line PC-3M in vitro. Methods Cell proliferation was assayed by using MTT method.The invasion ability was examined by Transwell assay. The mRNA and protein expression of MMP-9 and VEGF was detected by quantitative real-time reverse transcription-polymerase chain reaction(qRT-PCR), and Western blotting respectively. Results MTT analyses revealed that gefitinib and NS-398 combination markedly induced decrease in cell viability compared to either drug(P<0.05). Additionally, the two drugs combination showed a greater suppression in the invasion ability (P<0.01). Also, we found that the combination induced more profound decrease in the expression level of MMP-9 and VEGF mRNA and protein (P<0.01). Conclusions The results suggest that gefitinib and NS-398 combination can significantly suppress PC-3M cells proliferation and invasion ability. VEGF and MMP-9 gene down-regulation may be involved in this progress.%目的:应用表皮生长因子受体(EGFR)特异性阻断剂吉非替尼(Gefitinib)和环氧化酶2(COX-2)特异性阻断剂NS398单独或联合作用于前列腺癌PC-3M细胞,观察对细胞增殖和侵袭能力的影响及可能机制研究。方法采用四甲基偶氮唑蓝法(MTT)和 Transwell 检测Gefitinib和NS398应用对细胞增殖和侵袭能力的影响,应用实时荧光定量聚合酶链反应(qRT-PCR)和Western blot法检测药物应用前后基质金属蛋白酶9(MMP-9)、表皮生长因子(VEGF)基因和蛋白表达水平的变化。结果 MTT结果显示Gefitinib或NS398都可抑制PC-3M细胞增殖(P<0.05),两者联合应用作用更明显(P<0.01),Transwell结果表明两种阻断剂都能在一定程度上抑制细胞侵袭能力(P<0.05)

  15. 基于表达谱芯片的冬凌草甲素抑制胰腺癌BxPC-3细胞的机制研究%Study on The Inhibitory Mechanism of Oridonin in Pancreatic Cancers BxPC-3 Cells by DNA Microarray

    Institute of Scientific and Technical Information of China (English)

    岳静; 沈雯; 许健; 牟一平; 张婷; 张斌

    2013-01-01

      [目的]应用表达谱芯片比较冬凌草甲素干预前后人胰腺癌细胞株BxPC-3的基因表达差异,寻找细胞增殖和凋亡的调控分子和信号通路,探讨冬凌草甲素抗肿瘤的分子机制。[方法]提取空白对照组及冬凌草甲素作用组总RNA,并利用标准的变性琼脂糖凝胶电泳检测其完整性。借助安捷伦快速扩增标记试剂盒标记样品,与基因表达谱芯片于安捷伦杂交室进行杂交,安捷伦DNA微阵列扫描仪扫描芯片收集数据,经分析得出药物作用后差异表达的基因。[结果]32μg·mL-1冬凌草甲素组与空白对照组相比,显著上调基因有520种,显著下调基因有651种,其中Caspase-3、Caspase-7、Caspase-8、Caspase-9等基因和蛋白经PCR和western blot得到验证。[结论]冬凌草甲素对胰腺癌细胞BxPC-3基因表达谱有一定影响,其抗肿瘤和免疫调节作用可能与一系列肿瘤及免疫相关基因的表达变化有关。%Objective]To find out the regulatory molecules in the signal pathways on cel proliferation or apoptosis, and explore the inhibitory mechanism of oridonin on pancreatic tumor, we compared the difference of genes expression between treatment with and without oridonin in pancreatic cancer BxPC-3 cel s. [Method]Total RNA was extracted using Trizol after treated by oridonin 32μg/ml for 36 hours, and the integrity and concentration of total RNA were assessed by electrophoresis on a denaturing agarose gel. Agilent Quick Amp Labeling Kit was used for sample labeling. Hybridization was performed in Agilent's SureHyb Hybridization Chambers. Slides were scanned with the Agilent DNA microarray Scanner. The differential y expressed genes were screened after data analysis. [Results]Compared with two groups, 520 genes up-regulated and 651 genes down-regulated were screened. Moreover, the expressions of Caspase-3, Caspase-7, Caspase-8, Caspase-9, etc. were verified by PCR and western blot. [Conclusion

  16. The Effects of Lycopene on the Methylation of the GSTP1 Promoter and Global Methylation in Prostatic Cancer Cell Lines PC3 and LNCaP

    Directory of Open Access Journals (Sweden)

    Li-Juan Fu

    2014-01-01

    Full Text Available DNA (cytosine-5- methylation silencing of GSTP1 function occurs in prostate adenocarcinoma (PCa. Previous studies have shown that there is an inverse relationship between dietary lycopene intake and the risk of PCa. However, it is unknown whether lycopene reactivates the tumor suppressor gene glutathioneS-transferase-π (GSTP1 by demethylation of the hypermethylated CpGs that act to silence the GSTP1 promoter. Here, we demonstrated that lycopene treatment significantly decreased the methylation levels of the GSTP1 promoter and increased the mRNA and protein levels of GSTP1 in an androgen-independent PC-3 cell line. In contrast, lycopene treatment did not demethylate the GSTP1 promoter or increase GSTP1 expression in the androgen-dependent LNCaP cell line. DNA methyltransferase (DNMT 3A protein levels were downregulated in PC-3 cells following lycopene treatment; however, DNMT1 and DNMT3B levels were unchanged. Furthermore, the long interspersed element (LINE-1 and short interspersed element ALU were not demethylated when treated by lycopene. In LNCaP cells, lycopene treatment did not affect any detected DNMT protein expression, and the methylation levels of LINE-1 and ALU were decreased. These results indicated that the protective effect of lycopene on the prostate is different between androgen-dependent and androgen-independent derived PCa cells. Further, in vivo studies should be conducted to confirm these promising results and to evaluate the potential role of lycopene in the protection of the prostate.

  17. Expression of PED/PEA-15 and XIAP in prostate cancer cells and their effects on prostate cancer cell (PC-3) apoptosis%抗凋亡因子XIAP和PED/PEA-15在前列腺癌(PC-3)中的表达及对细胞凋亡的影响

    Institute of Scientific and Technical Information of China (English)

    胡晓勇; 陈晓春; 朱朝辉; 曾甫清; 鲁功成

    2006-01-01

    目的检测抗凋亡因子XIAP与PED/PEA-15在前列腺癌细胞(PC-3)中的表达,探讨二者对前列腺癌细胞凋亡的影响.方法应用半定量RT-PCR法检测前列腺癌细胞(PC-3)中PED/PEA-15和XIAP的表达.设计并构建PED/PEA-15和XIAP特异的siRNA载体,以脂质体法转染二者的siRNA载体至前列腺癌细胞(PC-3)中,半定量RT-PCR法检测特异siRNA载体对PED/PEA-15和XIAP转录的影响;光镜观察细胞形态改变;流式细胞法检测细胞凋亡的变化.结果半定量RT-PCR显示PED/PEA-15和XIAP均在前列腺癌细胞(PC-3)中高表达.酶切和DNA测序证实XIAP和PED/PEA-15 siRNA载体构建成功.共转染XIAP和PED/PEA-15 siRNA载体入PC-3细胞,可导致XIAP和PED/PEA-15的转录抑制,并增加PC-3细胞对阿霉素的敏感性,凋亡明显增加,处理组凋亡率为79%,对照组为46%,两组差异有统计学意义(P<0.05).结论PED/PEA-15和XIAP在前列腺癌的凋亡中可起重要作用.

  18. Effect of vitamin C on androgen independent prostate cancer cells (PC3 and Mat-Ly-Lu) in vitro: involvement of reactive oxygen species-effect on cell number, viability and DNA synthesis.

    Science.gov (United States)

    Menon, M; Maramag, C; Malhotra, R K; Seethalakshmi, L

    1998-06-01

    Studies have described the protective role of vitamin C (ascorbic acid) in certain types of cancer. In this study, we report the effects of vitamin C treatment of two androgen independent prostate cancer cell lines from human (PC3) and rat (Mat-Ly-Lu or MLL) sources. In vitro treatment of PC3 and MLL with sodium ascorbate acid (0-10 mM) resulted in a decrease in cell viability and thymidine incorporation into DNA. These effects of vit. C were dose and time dependent. Ascorbate induced these changes through the production of hydrogen peroxide since addition of catalase (100-300 units/ml), an enzyme that degrades hydrogen peroxide, inhibited the effects of ascorbate on these cell lines. In contrast, superoxide dismutase, an enzyme that dismutates superoxide and generates hydrogen peroxide did not prevent ascorbate-induced changes emphasizing the involvement of reactive oxygen species (ROS) in cellular damage. That singlet oxygen scavengers such as sodium azide and hydroquinone, hydroxyl radical scavengers such as D-mannitol and DL-alpha-tocopherol did not counteract the effects of ascorbate on thymidine incorporation suggests that these free radicals are not involved in cellular damage. In conclusion, these results suggest that vitamin C inhibits tumor growth by virtue of producing reactive oxygen species. These results suggest that ascorbate is a potent anticancer agent for prostate cancer cells.

  19. Label-free real-time acoustic sensing of microvesicle release from prostate cancer (PC3) cells using a Quartz Crystal Microbalance.

    Science.gov (United States)

    Stratton, Dan; Lange, Sigrun; Kholia, Sharad; Jorfi, Samireh; Antwi-Baffour, Samuel; Inal, Jameel

    2014-10-24

    Using a Quartz Crystal Microbalance with dissipation monitoring, QCM-D (label-free system) measuring changes in resonant frequency (Δf) that equate to mass deposited on a sensor, we showed the attachment, over a 60min period, of a monolayer of PC3 cells to the gold electrodes of the quartz crystal sensor, which had been rendered hydrophilic. That MVs were released upon BzATP stimulation of cells was confirmed by NTA analysis (average 250nm diameter), flow cytometry, showing high phosphatidylserine exposition and by fluorescent (Annexin V Alexa Fluor® 488-positive) and electron microscopy. Over a period of 1000s (16.7min) during which early apoptosis increased from 4% plateauing at 10% and late apoptosis rose to 2%, the Δf increased 20Hz, thereupon remaining constant for the last 1000s of the experiment. Using the Sauerbrey equation, the loss in mass, which corresponded to the release of 2.36×10(6)MVs, was calculated to be 23ng. We therefore estimated the mass of an MV to be 0.24pg. With the deposition on the QCM-D of 3.5×10(7)MVs over 200s, the decrease in Δf (Hz) gave an estimate of 0.235pg per MV.

  20. Validation of the Antiproliferative Effects of Organic Extracts from the Green Husk of Juglans regia L. on PC-3 Human Prostate Cancer Cells by Assessment of Apoptosis-Related Genes

    Directory of Open Access Journals (Sweden)

    Ali A. Alshatwi

    2012-01-01

    Full Text Available With the increased use of plant-based cancer chemotherapy, exploring the antiproliferative effects of phytochemicals for anticancer drug design has gained considerable attention worldwide. This study was undertaken to investigate the effect of walnut green husk extracts on cell proliferation and to determine the possible molecular mechanism of extract-induced cell death by quantifying the expression of Bcl-2, Bax, caspases-3, and Tp53. PC-3 human prostate cancer cells. In this study, we found that green husk extracts suppressed proliferation and induced apoptosis in a dose- and time-dependent manner by modulating expression of apoptosis-related genes. This involved DNA fragmentation (determined by TUNEL assay and significant changes in levels of mRNA and the expression of corresponding proteins. An increase in expressions of Bax, caspase-3, and tp53 genes and their corresponding proteins was detected using real-time PCR and western blot analysis in PC-3 cells treated with the green husk organic extracts. In contrast, Bcl2 expression was downregulated after exposure to the extracts. Our data suggest the presence of bioactive compound(s in walnut green husks that are capable of killing prostate carcinoma cells by inducing apoptosis and that the husks are a candidate source of anticancer drugs.

  1. Label-free real-time acoustic sensing of microvesicle release from prostate cancer (PC3) cells using a Quartz Crystal Microbalance

    Energy Technology Data Exchange (ETDEWEB)

    Stratton, Dan [Cellular and Molecular Immunology Research Centre, School of Human Sciences, London Metropolitan University, London (United Kingdom); Lange, Sigrun [University College London School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX (United Kingdom); Kholia, Sharad; Jorfi, Samireh; Antwi-Baffour, Samuel [Cellular and Molecular Immunology Research Centre, School of Human Sciences, London Metropolitan University, London (United Kingdom); Inal, Jameel, E-mail: j.inal@londonmet.ac.uk [Cellular and Molecular Immunology Research Centre, School of Human Sciences, London Metropolitan University, London (United Kingdom)

    2014-10-24

    Highlights: • Microvesiculating cells record loss of mass on a Quartz Crystal Microbalance. • Using the Quartz Crystal Microbalance microvesicles are measured at 0.24 pg. • The QCM-D reveals loss in viscoelastic properties in microvesiculating cells. - Abstract: Using a Quartz Crystal Microbalance with dissipation monitoring, QCM-D (label-free system) measuring changes in resonant frequency (Δf) that equate to mass deposited on a sensor, we showed the attachment, over a 60 min period, of a monolayer of PC3 cells to the gold electrodes of the quartz crystal sensor, which had been rendered hydrophilic. That MVs were released upon BzATP stimulation of cells was confirmed by NTA analysis (average 250 nm diameter), flow cytometry, showing high phosphatidylserine exposition and by fluorescent (Annexin V Alexa Fluor® 488-positive) and electron microscopy. Over a period of 1000s (16.7 min) during which early apoptosis increased from 4% plateauing at 10% and late apoptosis rose to 2%, the Δf increased 20 Hz, thereupon remaining constant for the last 1000s of the experiment. Using the Sauerbrey equation, the loss in mass, which corresponded to the release of 2.36 × 10{sup 6} MVs, was calculated to be 23 ng. We therefore estimated the mass of an MV to be 0.24 pg. With the deposition on the QCM-D of 3.5 × 10{sup 7} MVs over 200s, the decrease in Δf (Hz) gave an estimate of 0.235 pg per MV.

  2. Experiment of Killing Human Prostate Cancer Cell Line (PC -3) with Combination of TRAIL and DDP in vitro%TRAIL联合顺铂体外杀伤前列腺癌PC-3细胞株的实验研究

    Institute of Scientific and Technical Information of China (English)

    曾四平; 肖亚军; 章小平; 李炎生

    2010-01-01

    目的 探讨肿瘤坏死因子相关凋亡诱导配体(TRAIL)联合化疗药物顺铂(DDP)对前列腺癌PC-3细胞株的体外杀伤作用. 方法 分别采用不同浓度的DDP(1.0μg/ml、5.0μg/ml、10.0μg/ml、20.0μg/ml、50.0μg/ml、100.0μg/ml)与TRAIL(10.0ng/ml、20.0ng/ml、50.0ng/ml、100.0ng/ml、200.0ng/ml)作用PC-3细胞株,24h后MTT法检测细胞的吸光度;DDP(5.0ng/m1)与TRAIL(50.0ng/ml)联合作用PC-3细胞4h、8h、12h、16h、20h、24h后,MTT法检测检测细胞的吸光度;并按细胞的抑制率(100%)=(1-实验组吸光度/阳性对照组吸光度)×100%计算DDP组、TRAIL组及两者联合应用对细胞的抑制率,比较组间细胞抑制率的差异. 结果 单独应用DDP或者TRAIL对PC-3细胞体外杀伤作用有浓度依赖性,浓度增高一定程度时对PC-3细胞的抑制作用会处于一个相对平台期;联合应用DDP+TRAIL组与单独应用同浓度的DDP及TRAIL组相比,其对PC-3细胞的体外杀伤作用明显增强,P<0.05,差异具有显著性意义;联合应用DDP与TRAIL对PC-3细胞的体外杀伤作用具有明显的时间依赖性. 结论 DDP能明显提高TRAIL对前列腺痛PC-3细胞株的杀伤作用,其机制与死亡受体DR5的表达上调有关.

  3. Comparative analysis of Notch1 and Notch2 binding sites in the genome of BxPC3 pancreatic cancer cells

    OpenAIRE

    Liu, Hao; Zhou, Ping; Lan, Hong; Chen, Jia; Yu-xiang ZHANG

    2017-01-01

    Notch signaling plays a key role in the development of pancreatic cancer. Among the four identified Notch receptors, Notch1 and Notch2 share the highest homology. Notch1 has been reported to be an oncogene but some reports indicate that Notch2, not Notch1, plays a key role in pancreatic carcinogenesis. As both are transcription factors, examination of their genomic binding sites might reveal interesting functional differences between them. Notch proteins do not have DNA-binding domain. In the...

  4. Kaempferol inhibits proliferation of human prostate cancer PC-3 cells via down-regulation of PCNA and VCAM-1%下调PCNA和VCAM-1表达参与山柰酚抑制人前列腺癌细胞增殖

    Institute of Scientific and Technical Information of China (English)

    仇炜; 雷宇华; 苏明; 李冬军; 张宁; 沈永青

    2011-01-01

    Aim To investigate the effects of kaempferol on the inhibition of the proliferation of human prostate cancer PC-3 cells. Methods MTT assays, cell counting ancl flow cytometry were performecl to investigate the effects of kaempferol on proliferation and apoptosis of PC -3 cells. Western blot assays were performed to analyze the expression of PCNA and VCAM -1. Results Kaempferol inhibited proliferation of PC-3 cells, and decreased the expression of PCNA and VCAM-I. Kaempferol induced S and G2/M phase cell cycle arrest to PC-3 cells, but did not significantly affect apoptosis. Conclusion Kaempferol induces S and G2/M phase cell cycle arrest ancl inhibits proliferation of PC-3 cells via down-regulation of PCNA and VCAM-1.%目的 探讨山柰酚对人前列腺癌PC-3细胞增殖的抑制作用及机制.方法 采用MTT、细胞计数、流式细胞学等方法检测山柰酚对PC-3细胞增殖及凋亡的作用;使用Western blot检测增殖细胞核抗原(proliferating cell nuclear antigen, PCNA)及血管细胞黏附分子1(vascular cell adhesion molecule 1, VCAM-1)的表达.结果 山柰酚抑制人前列腺癌PC-3细胞增殖,降低PCNA及VCAM-1的表达水平,诱导PC-3细胞阻滞于S期及G2/M期,但山柰酚对PC-3细胞凋亡无影响.结论 山柰酚诱导PC-3细胞阻滞于S期及G2/M期,山柰酚抑制PC-3细胞增殖的作用与该药下调PCNA及VCAM-1的表达有关.

  5. Omi/HtrA2对前列腺癌细胞株PED/PEA-15表达及PC-3细胞凋亡的影响%Effects of Omi/HtrA2 on Expression of Anti-apoptotic Protein PED/PEA-15 and Apoptosis of Prostate Cancer Cell Line PC-3

    Institute of Scientific and Technical Information of China (English)

    胡晓勇; 陈晓春; 朱朝辉; 陈朝晖; 曾甫清; 鲁功成

    2006-01-01

    背景与目的:促、抑凋亡因子间的相互作用与肿瘤的发生、发展密切相关.Omi/HtrA2是新近发现的一种凋亡调节因子,PED/PEA-15是一种广泛表达的抗凋亡蛋白.本研究旨在探讨Omi/HtrA2对PED/PEA-15表达和前列腺癌细胞PC-3凋亡的影响.方法:构建Omi/HtrA2的表达载体和siRNA载体,并用脂质体法分别将两载体转染至PC-3细胞中,Western blot和ELISA法检测Omi/HtrA2对PED/PEA-15表达和细胞凋亡的影响;Caspase-8检测试剂盒检测PED/PEA-15对Caspase-8活性的影响;Western blot、RT-PCR法检测Omi/HtrA2特异siRNA序列对其转录、翻译的影响,流式细胞仪检测siRNA导致Omi/HtrA2基因沉默后PC-3细胞凋亡的变化.结果:酶切和DNA测序证实Omi/HtrA2的表达载体和siRNA载体构建成功.通过转染Omi/HtrA2表达载体高表达Omi/HtrA2可抑制PED/PEA-1 5表达,并增加肿瘤细胞的凋亡率;抑制PED/PEA-15的表达可提高Caspase-8活性.siRNA沉默Omi/HtrA2基因后PC-3细胞对顺铂的敏感性降低.结论:Omi/HtrA2可通过抑制抗凋亡蛋白PED/PEA-15表达而在PC-3细胞凋亡中发挥重要作用.

  6. Thymoquinone Potentiates Antitumor Activity of Gemcitabine in Pancreatic Cancer BxPC-3 Cells in vitro%百里醌联合吉西他滨对胰腺癌BxPC-3细胞体外生长的影响

    Institute of Scientific and Technical Information of China (English)

    慕刚刚; 于红刚; 李红艳; 张玲利

    2014-01-01

    目的 探讨百里醌联合吉西他滨对胰腺癌BxPC-3细胞增殖和凋亡的影响,并探讨其作用机制.方法 采用CCK-8法检测细胞相对活性,Hoechst染色法及流式细胞术检测细胞凋亡情况,Western blot法检测凋亡相关蛋白(Bcl-2、Bax、XI-AP)、半胱天冬酶(cleaved-caspase-3、cleaved-caspase-9)、PTEN、Akt及phospho-Akt蛋白的表达.结果 百里醌呈浓度依赖性地抑制胰腺癌BxPC-3细胞增殖,诱导细胞凋亡.吉西他滨组(GEM)、百里醌组(TQ)、百里醌联合吉西他滨组(TQ+GEM)、百里醌与吉西他滨序贯给药组(TQ-GEM)相对细胞活性分别为83.7%±4.1%、51.8%±6.0%、48.25%±6.50%、33.3%±3.9%;早期凋亡率分别为12.2%±3.8%、30.4%±4.3%、43.5%±5.7%、58.3%±6.1%;各组相对细胞活性均明显低于对照组(P<0.05),而细胞凋亡率显著增高(P<0.05);与GEM组比较,TQ-GEM组与TQ+ GEM组相对细胞活性明显下调(P <0.001),凋亡率明显上调(P <0.001);TQ-GEM组较TQ+ GEM组出现更明显的增殖受抑(P <0.001),更高的细胞凋亡率(P<0.001).百里醌-吉西他滨序贯给药作用于胰腺癌BxPC-3细胞后,BxPC-3细胞中Bax蛋白表达明显下调,而Bcl-2、XIAP、cleaved caspase-3、cleaved caspase-9蛋白表达明显上调.百里醌可显著上调BxPC-3细胞PTEN的表达,明显抑制Akt磷酸化.结论 百里醌可明显增强吉西他滨对体外胰腺癌细胞生长抑制作用,可能是通过上调PTEN,Akt去磷酸化,促使Bcl-2、XIAP表达上调及Bax表达下调,活化caspase-3、caspase-9诱导细胞凋亡而实现.

  7. CD147 RNA interference affect the growth of prostate cancer PC-3 cell line%CD147 RNA干扰对前列腺癌细胞生长的影响

    Institute of Scientific and Technical Information of China (English)

    方芳; 方青; 鞠晓红; 钟月; 王立国

    2007-01-01

    目的 观察针对CD147 RNA干扰对前列腺癌PC-3细胞生长的影响.方法 用针对CD147分子的3个RNA干扰片段构建的表达载体转染PC-3细胞,获得稳定表达株.通过RT-PCR检测转染后CD147分子mRNA的表达水平变化;MTT法检测各组PC-3细胞增殖变化.结果 RT-PCR结果发现第1、3干扰片段可以较好的封闭前列腺癌PC-3细胞CD147分子mRNA表达水平;MTT法显示CD147分子封闭后对前列腺癌PC-3细胞的生长无影响(P>0.05).结论 封闭CD147分子对前列腺癌PC-3细胞的生长无影响.

  8. Glycosylphosphatidylinositol Anchor Modification Machinery Deficiency Is Responsible for the Formation of Pro-Prion Protein (PrP) in BxPC-3 Protein and Increases Cancer Cell Motility.

    Science.gov (United States)

    Yang, Liheng; Gao, Zhenxing; Hu, Lipeng; Wu, Guiru; Yang, Xiaowen; Zhang, Lihua; Zhu, Ying; Wong, Boon-Seng; Xin, Wei; Sy, Man-Sun; Li, Chaoyang

    2016-02-19

    The normal cellular prion protein (PrP) is a glycosylphosphatidylinositol (GPI)-anchored cell surface glycoprotein. However, in pancreatic ductal adenocarcinoma cell lines, such as BxPC-3, PrP exists as a pro-PrP retaining its glycosylphosphatidylinositol (GPI) peptide signaling sequence. Here, we report the identification of another pancreatic ductal adenocarcinoma cell line, AsPC-1, which expresses a mature GPI-anchored PrP. Comparison of the 24 genes involved in the GPI anchor modification pathway between AsPC-1 and BxPC-3 revealed 15 of the 24 genes, including PGAP1 and PIG-F, were down-regulated in the latter cells. We also identified six missense mutations in DPM2, PIG-C, PIG-N, and PIG-P alongside eight silent mutations. When BxPC-3 cells were fused with Chinese hamster ovary (CHO) cells, which lack endogenous PrP, pro-PrP was successfully converted into mature GPI-anchored PrP. Expression of the individual gene, such as PGAP1, PIG-F, or PIG-C, into BxPC-3 cells does not result in phosphoinositide-specific phospholipase C sensitivity of PrP. However, when PIG-F but not PIG-P is expressed in PGAP1-expressing BxPC-3 cells, PrP on the surface of the cells becomes phosphoinositide-specific phospholipase C-sensitive. Thus, low expression of PIG-F and PGAP1 is the major factor contributing to the accumulation of pro-PrP. More importantly, BxPC-3 cells expressing GPI-anchored PrP migrate much slower than BxPC-3 cells bearing pro-PrP. In addition, GPI-anchored PrP-bearing AsPC-1 cells also migrate slower than pro-PrP bearing BxPC-3 cells, although both cells express filamin A. "Knocking out" PRNP in BxPC-3 cell drastically reduces its migration. Collectively, these results show that multiple gene irregularity in BxPC-3 cells is responsible for the formation of pro-PrP, and binding of pro-PrP to filamin A contributes to enhanced tumor cell motility.

  9. Inhibitory effect of apigenin on the growth of human prostate cancer PC-3 cells transplanted tumor in nude mice%芹菜素对人前列腺癌裸鼠移植瘤的抑制作用

    Institute of Scientific and Technical Information of China (English)

    李卫林; 南存金; 王怡君; 木海琦; 杨森; 李峰; 陈映鹤

    2011-01-01

    目的 观察芹菜素对人前列腺癌PC-3细胞裸鼠移植瘤生长的影响.方法 通过皮下种植PC-3细胞建立人前列腺癌裸鼠移植瘤模型,成瘤后随机分为4组,对照组[二甲基亚砜(DMSO)+生理盐水(NS),0.2 ml/d]、芹菜素低剂量组(每天12.5 mg/kg)、芹菜素中剂量组(每天25mg/kg)、芹菜素高剂量组(每天50 mg/kg),每组6只,每日腹腔注射1次,共28次.通过测量移植瘤体积变化绘制生长曲线,根据终末瘤重比较计算抑瘤率.透射电镜观察组织细胞的超微结构变化.结果 根据不同组的体积变化,芹菜素中、高剂量组可抑制移植瘤的生长,与对照组和低剂量组比较,差异有统计学意义(P<0.05),但芹菜素低剂量组与对照组比较,移植瘤的生长无明显受抑制,差异无统计学意义(P>0.05).中剂量组终末瘤重(1.44±0.50)g,抑瘤率46.7%和高剂量组终末瘤重(0.46±0.17)g,抑瘤率83.0%,低于对照组终末瘤重(2.70±0.52)g,抑瘤率0.0%和低剂量组终未瘤重(2.68±0.41)g,抑瘤率0.7%,差异有统计学意义(P<0.05).但芹菜素低剂量组与对照组移植瘤的终末瘤重和抑瘤率比较,差异无统计学意义(P>0.05).透射电镜观察结果显示中、高剂量组的肿瘤细胞体积变小,细胞核固缩,染色质浓缩、边集,内质网水肿、空泡化,局部的细胞器溶解等凋亡和胀亡的细胞形态表现,而对照组和芹菜素低剂量组基本无此改变.结论 芹菜素中、高剂量组对裸鼠前列腺癌移植瘤的生长有抑制作用,其机制可能是通过凋亡和胀亡的形式使肿瘤细胞死亡从而起到抑制人前列腺癌裸鼠移植瘤的生长作用.%Objective To observe the effect of alcgenin on the growth of human prostate cancer PC-3 cells transplanted tumor in nude mice.Methods Human prostate cancer PC-3 cells cultured in vitro were subcutaneously inoculated into nude mice to establish transplanted tumor model.All tumor-bearing mice were randomly

  10. In vitro antitumor activity of silybin nanosuspension in PC-3 cells.

    Science.gov (United States)

    Zheng, Dandan; Wang, Yancai; Zhang, Dianrui; Liu, Zhaoping; Duan, Cunxian; Jia, Lejiao; Wang, Feihu; Liu, Yue; Liu, Guangpu; Hao, Leilei; Zhang, Qiang

    2011-08-28

    The present study aims to evaluate the antitumor activity of silybin nanosuspension on human prostatic carcinoma PC-3 cell line in vitro. Silybin nanosuspension was prepared by the high pressure homogenization (HPH) method. MTT assay, observation of morphological changes and apoptotic body showed that silybin nanosuspension could significantly enhance the in vitro cytotoxicity against PC-3 cells compared to the silybin solution. Flow cytometric (FCM) analysis demonstrated that silybin nanosuspension induced G1 cycle arrest and apoptosis in PC-3 cells. Thereby, the overall results suggest that the silybin nanosuspension represents a potential source of medicine for the treatment of human prostate cancer.

  11. PC-3细胞中雄激素受体突变体的表达和转录激活功能的研究%Transactivity alterations of androgen receptor mutants in PC-3 cells of advanced prostate cancers

    Institute of Scientific and Technical Information of China (English)

    卢莹; 陈光椿; 李忆东; 卢建

    2005-01-01

    目的:探讨前列腺癌中发现的4种雄激素受体(androgen receptor,AR)的点突变对AR转录激活功能的影响.方法:将野生型AR(wtAR)或AR突变体的表达载体与报告基因(pMMTV-LUC)及内参照基因(pRLSV40-LUC)质粒共转染入PC-3细胞中,分别用雄激素受体的激动剂二氢睾酮(DHT)以及其他甾体激素(雌二醇及孕激素)处理细胞,24 h后用双荧光素酶报告基因分析系统检测报告基因的活性,同时用Western印迹法检测AR蛋白.结果:在DHT作用下,G142V、D221H突变体对报告基因的诱导水平高于wtAR,是wtAR的近1.30倍(P<0.05),其余突变体与wtAR相比对报告基因的诱导水平无显著差异;在雌二醇(E2)与孕激素(PROG)作用下,E872Q对报告基因的诱导水平高于wtAR,分别为wtAR的1.27、1.47倍(P<0.05).结论:G142V、D221H点突变使AR突变体转录激活功能增强,E872Q点突变可能影响了AR的配体结合特异性,上述结果有助于阐明前列腺癌由雄激素依赖性转为非依赖性的机制.

  12. 镉诱导PC-3细胞金属硫蛋白和锌转运体的基因表达%Metallothionein and Zinc Transporter Gene Expression in Human Prostate Cancer Cells Exposed to Cadmium

    Institute of Scientific and Technical Information of China (English)

    邵波; 常秀丽; 金泰廙; 周袁芬

    2006-01-01

    [目的]研究镉对前列腺癌PC-3细胞中金属硫蛋白(Metalllothionein,MT)和锌转运体(Zinc transporter,ZnT)基因表达的影响.[方法]0、10、20、40、80和100μmol/L氯化镉处理PC-3细胞,细胞存活率用噻唑蓝(MTT)方法检测;MT-1F、MT-JX、MT-2A和ZnT-J基因的mRNA表达用RT-PCR进行检测.[结果]氯化镉(≥40μmol/L)对PC-3细胞具有明显的抑制生长作用(P<0.05).MT-1F和MT-2A的mRNA水平在5μmol/L氯化镉诱导时表达水平达最高,随着氯化镉浓度的增高mRNA的表达呈下降趋势.MT-1X的mRNA表达水平随氯化镉浓度增加呈不断上升趋势,在40μmol/L表达水平为最高.ZnT-J的mRNA在10 μmol/L氯化镉诱导表达水平为最高,随着氯化镉浓度的增高mRNA表达呈下降趋势.[结论]镉可诱导PC-3细胞MT-1F、MT-JX、MT-2A和ZnT-J基因mRNA表达增高.

  13. Inhibition of potentially anti-apoptotic proteins by antisense protein kinase C-alpha (Isis 3521) and antisense bcl-2 (G3139) phosphorothioate oligodeoxynucleotides: relationship to the decreased viability of T24 bladder and PC3 prostate cancer cells.

    Science.gov (United States)

    Benimetskaya, L; Miller, P; Benimetsky, S; Maciaszek, A; Guga, P; Beaucage, S L; Wilk, A; Grajkowski, A; Halperin, A L; Stein, C A

    2001-12-01

    Isis 3521 and G3139 are 20- and 18-mer phosphorothioate oligonucleotides, respectively, targeted to the protein kinase C (PKC)-alpha and bcl-2 mRNAs. Treatment of T24 bladder and PC3 prostate carcinoma cells with full-length and 3'-truncation mutants of Isis 3521 causes down-regulation of PKC-alpha protein and mRNA. However, at the level of a 15-mer and shorter, down-regulation of mRNA expression is no longer observed. Further, no diminution in cellular viability, as measured by 3-(4,5-dimethylthiazol-2-yl)2,5-diphenyl tetrazolium bromide assay, in response to increasing concentrations of paclitaxel, can be observed for these shorter oligomers. These observations not only indicate that PKC-alpha protein expression can be down-regulated by both RNase H-dependent and -independent mechanisms but also that down-regulation of PKC-alpha is insufficient by itself to "chemosensitize" cells. G3139, which down-regulates bcl-2 protein and mRNA expression, also down-regulates PKC-alpha protein and mRNA expression but not that of PKC-betaI, -epsilon, or -zeta. However, the down-regulation of PKC-alpha and bcl-2 are not linked. When the carrier Eufectin 5 is employed, only bcl-2 is down-regulated in both T24 and PC3 cells at 50 nM oligonucleotide concentration. At 100 nM, both bcl-2 and PKC-alpha expression are down-regulated, and only at this concentration can "chemosensitization" to paclitaxel and carboplatin be observed. In contrast, the down-regulation of bcl-2 seems to be linked with that of RelA (p65). However, this too is also not sufficient for chemosensitization, even though it leads to the loss of expression of genes under the putative control of nuclear factor-kappaB and to detachment of the cells from plastic surfaces. These results underscore the complexity of the intracellular requirements for the initiation of chemosensitization to anti-neoplastic agents.

  14. Empirically modelled Pc3 activity based on solar wind parameters

    Directory of Open Access Journals (Sweden)

    T. Raita

    2010-09-01

    Full Text Available It is known that under certain solar wind (SW/interplanetary magnetic field (IMF conditions (e.g. high SW speed, low cone angle the occurrence of ground-level Pc3–4 pulsations is more likely. In this paper we demonstrate that in the event of anomalously low SW particle density, Pc3 activity is extremely low regardless of otherwise favourable SW speed and cone angle. We re-investigate the SW control of Pc3 pulsation activity through a statistical analysis and two empirical models with emphasis on the influence of SW density on Pc3 activity. We utilise SW and IMF measurements from the OMNI project and ground-based magnetometer measurements from the MM100 array to relate SW and IMF measurements to the occurrence of Pc3 activity. Multiple linear regression and artificial neural network models are used in iterative processes in order to identify sets of SW-based input parameters, which optimally reproduce a set of Pc3 activity data. The inclusion of SW density in the parameter set significantly improves the models. Not only the density itself, but other density related parameters, such as the dynamic pressure of the SW, or the standoff distance of the magnetopause work equally well in the model. The disappearance of Pc3s during low-density events can have at least four reasons according to the existing upstream wave theory: 1. Pausing the ion-cyclotron resonance that generates the upstream ultra low frequency waves in the absence of protons, 2. Weakening of the bow shock that implies less efficient reflection, 3. The SW becomes sub-Alfvénic and hence it is not able to sweep back the waves propagating upstream with the Alfvén-speed, and 4. The increase of the standoff distance of the magnetopause (and of the bow shock. Although the models cannot account for the lack of Pc3s during intervals when the SW density is extremely low, the resulting sets of optimal model inputs support the generation of mid latitude Pc3 activity predominantly through

  15. Silibinin inhibits fibronectin induced motility, invasiveness and survival in human prostate carcinoma PC3 cells via targeting integrin signaling

    Energy Technology Data Exchange (ETDEWEB)

    Deep, Gagan [Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO (United States); University of Colorado Cancer Center, University of Colorado Denver, Aurora, CO (United States); Kumar, Rahul; Jain, Anil K. [Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO (United States); Agarwal, Chapla [Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO (United States); University of Colorado Cancer Center, University of Colorado Denver, Aurora, CO (United States); Agarwal, Rajesh, E-mail: Rajesh.agarwal@ucdenver.edu [Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO (United States); University of Colorado Cancer Center, University of Colorado Denver, Aurora, CO (United States)

    2014-10-15

    Highlights: • Silibinin inhibits fibronectin-induce motile morphology in PC3 cells. • Silibinin inhibits fibronectin-induced migration and invasion in PC3 cells. • Silibinin targets fibronectin-induced integrins and downstream signaling molecule. - Abstract: Prostate cancer (PCA) is the 2nd leading cause of cancer-related deaths among men in the United States. Preventing or inhibiting metastasis-related events through non-toxic agents could be a useful approach for lowering high mortality among PCA patients. We have earlier reported that natural flavonoid silibinin possesses strong anti-metastatic efficacy against PCA however, mechanism/s of its action still remains largely unknown. One of the major events during metastasis is the replacement of cell–cell interaction with integrins-based cell–matrix interaction that controls motility, invasiveness and survival of cancer cells. Accordingly, here we examined silibinin effect on advanced human PCA PC3 cells’ interaction with extracellular matrix component fibronectin. Silibinin (50–200 μM) treatment significantly decreased the fibronectin (5 μg/ml)-induced motile morphology via targeting actin cytoskeleton organization in PC3 cells. Silibinin also decreased the fibronectin-induced cell proliferation and motility but significantly increased cell death in PC3 cells. Silibinin also inhibited the PC3 cells invasiveness in Transwell invasion assays with fibronectin or cancer associated fibroblasts (CAFs) serving as chemoattractant. Importantly, PC3-luc cells cultured on fibronectin showed rapid dissemination and localized in lungs following tail vein injection in athymic male nude mice; however, in silibinin-treated PC3-luc cells, dissemination and lung localization was largely compromised. Molecular analyses revealed that silibinin treatment modulated the fibronectin-induced expression of integrins (α5, αV, β1 and β3), actin-remodeling (FAK, Src, GTPases, ARP2 and cortactin), apoptosis (cPARP and

  16. PC3 prostate tumor-initiating cells with molecular profile FAM65Bhigh/MFI2low/LEF1low increase tumor angiogenesis

    Directory of Open Access Journals (Sweden)

    Waxman David J

    2010-12-01

    Full Text Available Abstract Background Cancer stem-like cells are proposed to sustain solid tumors by virtue of their capacity for self-renewal and differentiation to cells that comprise the bulk of the tumor, and have been identified for a variety of cancers based on characteristic clonal morphologies and patterns of marker gene expression. Methods Single cell cloning and spheroid culture studies were used to identify a population of cancer stem-like cells in the androgen-independent human prostate cancer cell line PC3. Results We demonstrate that, under standard culture conditions, ~10% of PC3 cells form holoclones with cancer stem cell characteristics. These holoclones display high self-renewal capability in spheroid formation assays under low attachment and serum-free culture conditions, retain their holoclone morphology when passaged at high cell density, exhibit moderate drug resistance, and show high tumorigenicity in scid immunodeficient mice. PC3 holoclones readily form spheres, and PC3-derived spheres yield a high percentage of holoclones, further supporting their cancer stem cell-like nature. We identified one gene, FAM65B, whose expression is consistently up regulated in PC3 holoclones compared to paraclones, the major cell morphology in the parental PC3 cell population, and two genes, MFI2 and LEF1, that are consistently down regulated. This molecular profile, FAM65Bhigh/MFI2low/LEF1low, also characterizes spheres generated from parental PC3 cells. The PC3 holoclones did not show significant enriched expression of the putative prostate cancer stem cell markers CD44 and integrin α2β1. PC3 tumors seeded with holoclones showed dramatic down regulation of FAM65B and dramatic up regulation of MFI2 and LEF1, and unexpectedly, a marked increase in tumor vascularity compared to parental PC3 tumors, suggesting a role of cancer stem cells in tumor angiogenesis. Conclusions These findings support the proposal that PC3 tumors are sustained by a small number of

  17. Effect of selective cyclooxygenase-2 inhibitor NS398 on the proliferation and apoptosis of prostate cancer cell line PC0-3 in vitro%选择性COX-2抑制剂NS398对前列腺癌PC-3细胞增殖与凋亡的影响

    Institute of Scientific and Technical Information of China (English)

    王功成; 浦金贤; 丁翔

    2007-01-01

    目的 观察环氧化酶-2(COX-2)抑制剂NS398对前列腺癌细胞PC-3增殖和凋亡的影响.方法 采用四甲基偶氮唑蓝法(MTT法)检测不同浓度和不同时间NS398对PC-3细胞增殖的影响;RT-PCR法检测不同浓度NS398作用PC-3细胞24 h后COX-2 mRNA的表达;酶联免疫测定法(ELISA)检测不同浓度NS398作用PC-3细胞24 h后PGE2释放水平,流式细胞仪检测不同浓度NS398作用PC-3细胞24 h后细胞凋亡情况.结果 NS398可以抑制PC-3细胞的增殖,呈时间和剂量依赖性;RTPCR和ELISA法检测结果显示,随着NS398浓度增高,PC-3细胞COX-2 mRNA表达和PGE2释放水平呈下调趋势,细胞凋亡检测结果显示100,200 μmol/L NS398对PC-3细胞具有诱导凋亡的作用.结论 NS398可能通过COX-2依赖性途径抑制前列腺癌PC-3细胞增殖,促进肿瘤细胞凋亡.

  18. The anti-cancer effect of PC-3 sensitized DC vaccine on human immune reconstruction NOD/SCID mice model bearing human prostate carcinoma%DC疫苗对荷人前列腺癌免疫重建NOD/SCID小鼠的抑瘤作用

    Institute of Scientific and Technical Information of China (English)

    周海滨; 付强

    2016-01-01

    目的 探讨PC-3细胞冻融抗原致敏的树突状细胞(dendritic cells,DC)疫苗(PC-3-DC)对荷人前列腺癌免疫重建NOD/SCID小鼠(hu-PBL-NOD/SCID)的抑瘤作用.方法 采用人外周血淋巴细胞(peripheral blood lymphocytes,PBL)腹腔注射法建立hu-PBL-NOD/SCID小鼠模型,随机分为实验组(PC-3-DC组)和对照组(DC组、PBS组),腹腔分别注射PC-3-DC疫苗、未致敏的DC和PBS.每周1次,共2次,然后接种1×107 PC-3细胞,观察鼠成瘤率、成瘤潜伏期、肿瘤体积以及测定特异性CTL活性.结果 ELISA法可检测到小鼠血清中人IgG水平,hu-PBL-NOD/SCID嵌合模型重建成功,各组小鼠间成瘤率无明显差异,但PC-3-DC组成瘤潜伏期延长,肿瘤生长缓慢,2周后肿瘤体积明显小于DC组和PBS组,差异有统计学意义(P<0.05),实验组脾淋巴细胞对PC-3细胞有特异性杀伤效应,而对K562细胞则无杀伤活性.结论 负载PC-3冻融抗原的DC疫苗可诱导人T淋巴细胞活化增殖,能有效抑制hu-PBL-NOD/SCID小鼠肿瘤的生长.%Objectives To investigate the effect of dendritic cells (DC) stimulated with PC-3 cells lysate inhibiting tumor action in human immune reconstruction NOD/SCID mice model bearing human prostate carcinoma.Methods Human immune reconstruction NOD/SCID mice model was established by intraperitoneal injection of human peripheral blood lymphocytes.The PC-3 DC vaccine,naive DC,PBS were injected respectively,and then they were injected subcutaneously with 1 × 107 PC -3 cells.Tumorigenic rate,latent period,and tumor volume were observed,and specific CTL activity was measured.Results The serum concentration of human lgG in hu-PBL-NOD/SCID mice model was confirmed by ELISA that suggested that the hu-PBL-NOD/SCID mice model was established successfully.Tumorigenic rates were the same among these groups.However,tumors grew slowly in PC-3 DC vaccine groups,and its latent period was prolonged.Tumor volumes were significantly smaller than those in control group

  19. Interaction of PC-3 cells with fibronectin adsorbed on sulfonated polystyrene surfaces

    Directory of Open Access Journals (Sweden)

    Hanna M. Kowalczyńska

    2012-01-01

    Full Text Available The ability of cancer cells to invade neighboring tissues is crucial for cell dissemination and tumor metastasis. It is generally assumed that cell adhesion to extracellular matrix proteins is an important stage of cancer progression. Hence, adhesion of cancer cells under in vitro conditions to proteins adsorbed on a substratum surface has been studied to provide a better understanding of cell-protein interaction mechanisms. A protein, adsorbed in an appropriate conformation on a substratum surface, creates a biologically active layer that regulates such cell functions as adhesion, spreading, proliferation and migration. In our study, we examined the interaction of PC-3 cells under in vitro conditions with fibronectin adsorbed on sulfonated polystyrene surfaces of a defined chemical composition and topography. We investigated cell adhesion to fibronectin and cell spreading. Using automatic, sequential microscopic image registration, we are the first to present observations of the dynamics of PC-3 cell spreading and the cell shape during this process. Our results show that cell adhesion and the shape of spreading cells strongly depend on the time interaction with fibronectin. The analysis of images of cytoskeletal protein distribution in the cell region near the cell-substratum interface revealed that induction of a signal cascade took place, which led to the reorganization of the cytoskeletal proteins and the activation of focal adhesion kinase (FAK. (Folia Histochemica et Cytobiologica 2011; Vol. 49, No. 4, pp. 706–718

  20. Interaction of PC-3 cells with fibronectin adsorbed on sulfonated polystyrene surfaces.

    Science.gov (United States)

    Stachurska, Anna; Kowalczyńska, Hanna M

    2011-01-01

    The ability of cancer cells to invade neighboring tissues is crucial for cell dissemination and tumor metastasis. It is generally assumed that cell adhesion to extracellular matrix proteins is an important stage of cancer progression. Hence, adhesion of cancer cells under in vitro conditions to proteins adsorbed on a substratum surface has been studied to provide a better understanding of cell-protein interaction mechanisms. A protein, adsorbed in an appropriate conformation on a substratum surface, creates a biologically active layer that regulates such cell functions as adhesion, spreading, proliferation and migration. In our study, we examined the interaction of PC-3 cells under in vitro conditions with fibronectin adsorbed on sulfonated polystyrene surfaces of a defined chemical composition and topography. We investigated cell adhesion to fibronectin and cell spreading. Using automatic, sequential microscopic image registration, we are the first to present observations of the dynamics of PC-3 cell spreading and the cell shape during this process. Our results show that cell adhesion and the shape of spreading cells strongly depend on the time interaction with fibronectin. The analysis of images of cytoskeletal protein distribution in the cell region near the cell-substratum interface revealed that induction of a signal cascade took place, which led to the reorganization of the cytoskeletal proteins and the activation of focal adhesion kinase (FAK).

  1. Herbal infusions; their phenolic profile, antioxidant and anti-inflammatory effects in HT29 and PC3 cells.

    Science.gov (United States)

    Kogiannou, Dimitra A A; Kalogeropoulos, Nick; Kefalas, Panagiotis; Polissiou, Moschos G; Kaliora, Andriana C

    2013-11-01

    In this survey, we analyzed the phenolic profile of six herbal infusions namely Cretan marjoram, pink savory, oregano, mountain tea, pennyroyal and chamomile by LCDAD-MS and by GC-MS. Further, we investigated their anticarcinogenic effect as to their ability to (a) scavenge free radicals (b) inhibit proliferation (c) decrease IL-8 levels and (d) regulate nuclear factor-kappa B in epithelial colon cancer (HT29) and prostate (PC3) cancer cells. All herbal infusions exhibited antiradical activity correlated positevely with total phenolic content. Further, infusions exhibited the potential to inhibit cell proliferation and to reduce IL-8 levels in HT29 colon and PC3 prostate cancer cells. The molecular target for chamomile in HT29 seemed to be the NF-κB, while for the other herbal infusions needs to be identified. This study is the first to show the potential chemopreventive activity of infusions prepared from the examined herbs.

  2. File list: His.Prs.50.AllAg.PC-3 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Prs.50.AllAg.PC-3 hg19 Histone Prostate PC-3 SRX539665,SRX539663,SRX181769,SRX5...39662,SRX539664 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Prs.50.AllAg.PC-3.bed ...

  3. Zinc Protoporphyrin Upregulates Heme Oxygenase-1 in PC-3 Cells via the Stress Response Pathway

    Directory of Open Access Journals (Sweden)

    Simon C. M. Kwok

    2013-01-01

    Full Text Available Zinc protoporphyrin IX (ZnPP, a naturally occurring molecule formed in iron deficiency or lead poisoning, is a potent competitive inhibitor of heme oxygenase-1 (HO-1. It also regulates expression of HO-1 at the transcriptional level. However, the effect of ZnPP on HO-1 expression is controversial. It was shown to induce HO-1 expression in some cells, but suppress it in others. The objective of this study is to investigate the effect of ZnPP on HO-1 expression in prostate cancer PC-3 cells. Incubation of PC-3 cells with 10 μM ZnPP for 4 h showed only a slight induction of HO-1 mRNA and protein, but the induction was high after 16 h and was maintained through 48 h of incubation. Of all the known responsive elements in the HO-1 promoter, ZnPP activated mainly the stress response elements. Of the various protein kinase inhibitors and antioxidant tested, only Ro 31-8220 abrogated ZnPP-induced HO-1 expression, suggesting that activation of HO-1 gene by ZnPP may involve protein kinase C (PKC. The involvement of PKC α, β, δ, η, θ, and ζ isoforms was ruled out by the use of specific inhibitors. The isoform of PKC involved and participation of other transcription factors remain to be studied.

  4. Overexpression of vascular endothelial growth factor C increases growth and alters the metastatic pattern of orthotopic PC-3 prostate tumors

    Directory of Open Access Journals (Sweden)

    Väänänen H Kalervo

    2009-10-01

    Full Text Available Abstract Background Prostate cancer metastasizes to regional lymph nodes and distant sites but the roles of lymphatic and hematogenous pathways in metastasis are not fully understood. Methods We studied the roles of VEGF-C and VEGFR3 in prostate cancer metastasis by blocking VEGFR3 using intravenous adenovirus-delivered VEGFR3-Ig fusion protein (VEGFR3-Ig and by ectopic expression of VEGF-C in PC-3 prostate tumors in nude mice. Results VEGFR3-Ig decreased the density of lymphatic capillaries in orthotopic PC-3 tumors (p p p p Conclusion The data suggest that even though VEGF-C/VEGFR3 pathway is primarily required for lymphangiogenesis and lymphatic metastasis, an increased level of VEGF-C can also stimulate angiogenesis, which is associated with growth of orthotopic prostate tumors and a switch from a primary pattern of lymph node metastasis to an increased proportion of metastases at distant sites.

  5. In Vivo Selection of Phage for the Optical Imaging of PC-3 Human Prostate Carcinoma in Mice

    Directory of Open Access Journals (Sweden)

    Jessica R. Newton

    2006-09-01

    Full Text Available There is an increasing medical need to detect and spatially localize early and aggressive forms of prostate cancer. Affinity ligands derived from bacteriophage (phage library screens can be developed to molecularly target prostate cancer with fluorochromes for optical imaging. Toward this goal, we used in vivo phage display and a newly described micropanning assay to select for phage that extravasate and bind human PC-3 prostate carcinoma xenografts in severe combined immune deficiency mice. One resulting phage clone (G1 displaying the peptide sequence IAGLATPGWSHWLAL was fluorescently labeled with the near-infrared fluorophore AlexaFluor 680 and was evaluated both in vitro and in vivo for its ability to bind and target PC-3 prostate carcinomas. The fluorescently labeled phage clone (G1 had a tumor-to-muscle ratio of ~30 in experiments. In addition, prostate tumors (PC-3 were readily detectable by optical-imaging methods. These results show proof of principle that diseasespecific library-derived fluorescent probes can be rapidly developed for use in the early detection of cancers by optical means.

  6. Echinophora platyloba DC (Apiaceae crude extract induces apoptosis in human prostate adenocarcinoma cells (PC 3

    Directory of Open Access Journals (Sweden)

    Fatemeh Zare Shahneh

    2014-10-01

    Full Text Available Background: Prostate cancer is the second leading malignancy worldwide and the second prominent cause of cancer-related deaths among men. Therefore, there is a serious necessity for finding advanced alternative therapeutic measures against this lethal malignancy. In this article, we report the cytotoxicity and the mechanism of cell death of the methanolic extract prepared from Echinophora platyloba DC plant against human prostate adenocarcinoma PC 3 cell line and Human Umbilical Vein Endothelial Cells HUVEC cell line. Methods: Cytotoxicity and viability of the methanolic extract were assessed by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay and dye exclusion assay. Cell death enzyme-linked immunosorbent assay (ELISA was employed to quantify the nucleosome production resulting from nuclear DNA fragmentation during apoptosis and determine whether the mechanism involves induction of apoptosis or necrosis. The cell death was identified as apoptosis using terminal deoxynucleotidyl transferase (TdT-mediated dUTP nick end labeling (TUNEL assay and DNA fragmentation gel electrophoresis. Results: E. platyloba could decrease cell viability in malignant cells in a dose- and time-dependent manner. The IC50 values against PC 3 were determined as 236.136 ± 12.4, 143.400 ± 7.2, and 69.383 ± 1.29 μg/ml after 24, 36, and 48 h, respectively, but there was no significant activity in HUVEC normal cell (IC50 > 800 μg/ml. Morphological characterizations and DNA laddering assay showed that the methanolic extract treated cells displayed marked apoptotic characteristics such as nuclear fragmentation, appearance of apoptotic bodies, and DNA laddering fragment. Increase in an early apoptotic population was observed in a dose-dependent manner. PC 3 cell death elicited by the extract was found to be apoptotic in nature based a clear indication of TUNEL assay and gel electrophoresis DNA fragmentation, which is a hallmark of apoptosis

  7. Trichostatin A and Genistein Enhance the Anti-proliferative Effect of Vitamin D on Prostate Cancer Cells%曲古菌素A或金雀异黄素增强维生素D对前列腺癌细胞PC-3和DU-145的生长抑制作用

    Institute of Scientific and Technical Information of China (English)

    梁伟; 郑杰

    2009-01-01

    探讨1α,25二羟维生素D3[1,25(OH)2D3]联合曲古菌素A(trichostatin A,TSA)或金雀异黄素对维生素D不敏感前列腺癌PC-3和DU-145细胞生长的影响及其作用机制.肼和流式细胞术检测显示1,25(OH)2D3与TSA联合后对PC-3细胞的生长抑制率以及1,25(OH)2D3与金雀异黄素联合后对DU-145细胞的生长抑制率均高于单独用1,25(OH)2D3.1,25(OH)2D3与TSA联合对PC-3细胞的细胞周期阻滞效果优于单独用1,25(OH)2D3,而对DU-145细胞不如单独用1,25(OH)2D3.RT-PCR结果显示1,25(OH)2D3与TSA联合用药后,PC-3细胞p21cip1 mRNA表达水平比各单独用药组高,而DU-145细胞未见明显变化.PC-3细胞中SMRTmRNA表达水平高于DU-145细胞,而DU-145细胞中CYP24 mRNA的表达水平高于PC-3细胞,TSA和金雀异黄素可分别抑制SMRT和CYP24的表达.另外ELISA结果显示金雀异黄素明显下调DU-145细胞中的CYP24表达水平.这些研究结果表明PC-3和DU-145细胞对维生素D不敏感的机制不同,TSA可增强1,25(OH)2D3对PC-3细胞的生长抑制作用,而金雀异黄素则可增强1,25(OH)2D3对DU-145细胞的生长抑制作用,这为临床治疗维生素D不敏感肿瘤提供了新的选择.

  8. Preliminary evaluation of antitumor effect and induction apoptosis in PC-3 cells of extract from Patrinia heterophylla

    Directory of Open Access Journals (Sweden)

    Bo Yang

    2011-06-01

    Full Text Available Patrinia heterophylla Bunge, Caprifoliaceae, is a traditional Chinese medicine that has been used for cancer therapy. In our study, a panel of human cancer cells was treated with extract of Patrinia heterophylla Bunge. (PHEB, MTT study showed that PC-3 Human prostate adenocarcinoma was the most responsive (IC50 9.21±0.32 µg/mL one to cell growth inhibition, the further study also demonstrated that PHEB could inhibit the proliferation of PC-3 based on a concentration-and time-dependent manner. The transplanted model of sarcoma 180 (S180 and hepatoma 22 (H22 was established in mice, the study demonstrated that i.p. administration of 20, 40, 60 mg/kg PHEB exhibited a significant inhibitory effect on the growth of transplantation tumor, with inhibition rate 23.9, 48.4 and 53.6% on S180 and 21.0, 46.3 and 57.2% on H22, respectively. To investigate the molecular mechanism of PHEB in PC-3, the morphological changes of apoptosis were observed by fluorescent microscopy, apoptosis rate was analyzed by flow cytometry (FCM. Morphological characterizations such as apoptotic bodies and membrane blebs were shown by microscopy. The increase of an early apoptotic population was observed in a dose-dependent manner. These results suggest that PHEB has anti-tumor effects and its mechanism is attributed partially to apoptosis induced.

  9. Hypoxia preconditioning of mesenchymal stromal cells enhances PC3 cell lymphatic metastasis accompanied by VEGFR-3/CCR7 activation.

    Science.gov (United States)

    Huang, Xin; Su, Kunkai; Zhou, Limin; Shen, Guofang; Dong, Qi; Lou, Yijia; Zheng, Shu

    2013-12-01

    Mesenchymal stromal cells (MSCs) in bone marrow may enhance tumor metastases through the secretion of chemokines. MSCs have been reported to home toward the hypoxic tumor microenvironment in vivo. In this study, we investigated prostate cancer PC3 cell behavior under the influence of hypoxia preconditioned MSCs and explored the related mechanism of prostate cancer lymphatic metastases in mice. Transwell assays revealed that VEGF-C receptor, VEGFR-3, as well as chemokine CCL21 receptor, CC chemokine receptor 7 (CCR7), were responsible for the migration of PC3 cells toward hypoxia preconditioned MSCs. Knock-in Ccr7 in PC3 cells also improved cell migration in vitro. Furthermore, when PC3 cells were labeled using the hrGfp-lentiviral vector, and were combined with hypoxia preconditioned MSCs for xenografting, it resulted in an enhancement of lymph node metastases accompanied by up-regulation of VEGFR-3 and CCR7 in primary tumors. Both PI3K/Akt/IκBα and JAK2/STAT3 signaling pathways were activated in xenografts in the presence of hypoxia-preconditioned MSCs. Unexpectedly, the p-VEGFR-2/VEGFR-2 ratio was attenuated accompanied by decreased JAK1 expression, indicating a switching-off of potential vascular signal within xenografts in the presence of hypoxia-preconditioned MSCs. Unlike results from other studies, VEGF-C maintained a stable expression in both conditions, which indicated that hypoxia preconditioning of MSCs did not influence VEGF-C secretion. Our results provide the new insights into the functional molecular events and signalings influencing prostate tumor metastases, suggesting a hopeful diagnosis and treatment in new approaches.

  10. Alendronate decreases orthotopic PC-3 prostate tumor growth and metastasis to prostate-draining lymph nodes in nude mice

    Directory of Open Access Journals (Sweden)

    Väänänen Kalervo

    2008-03-01

    Full Text Available Abstract Background Metastatic prostate cancer is associated with a high morbidity and mortality but the spreading mechanisms are still poorly understood. The aminobisphosphonate alendronate, used to reduce bone loss, has also been shown to inhibit the invasion and migration of prostate cancer cells in vitro. We used a modified orthotopic PC-3 nude mouse tumor model of human prostate cancer to study whether alendronate affects prostate tumor growth and metastasis. Methods PC-3 cells (5 × 105 were implanted in the prostates of nude mice and the mice were treated with alendronate (0.5 mg/kg/day in PBS, s.c. or vehicle for 4 weeks. After sacrifice, the sizes of tumor-bearing prostates were measured and the tumors and prostate-draining regional iliac and sacral lymph nodes were excised for studies on markers of proliferation, apoptosis, angiogenesis and lymphangiogenesis, using histomorphometry and immunohistochemistry. Results Tumor occurrence in the prostate was 73% in the alendronate-treated group and 81% in the control group. Mean tumor size (218 mm3, range: 96–485 mm3, n = 11 in the alendronate-treated mice was 41% of that in the control mice (513 mm3, range: 209–1350 mm3, n = 13 (p p p p Conclusion Our results demonstrate that alendronate treatment opposes growth of orthotopic PC-3 tumors and decreases tumor metastasis to prostate-draining lymph nodes. This effect could be at least partly explained by decreased angiogenesis and increased apoptosis. The results suggest that bisphosphonates have anti-tumoral and anti-invasive effects on primary prostate cancer.

  11. Recombinant adenovirus-mediated shRNA silencing of midkine gene in BxPC-3 cells

    Institute of Scientific and Technical Information of China (English)

    Mingyue Xiong; Kunzheng Wang

    2009-01-01

    Objective:To investigate the silencing effects of recombinant adenovirus Ad-shRNA-MK on midkine(MK) gene in pancreatic cancer cells. Methods:Ad-shRNA-MK was used to infect pancreatic cancer BxPC-3 cells. Assays were conducted for knockdown of the MK gene on the day of infection and on the 1a, 3rd, 5th, 7th, and 9th days post-infection by using immunocytochemistry, real-time RT-PCR, and Western blot analysis. Results:The adenoviral Ad-shRNA-PTN was constructed successfully, and infection was confirmed by electron microscopic observation. By using real-time RT-PCR, the inhibition rates of MK mRNA expression in the BxPC-3 cells were 20%, 80%, 55%, and 23% on the 1st, 3rd, 5th, and 7th days post-infection. Immunocytochemistry and Western blot analysis confirmed this effect at the gene product level. Conclusion:Efficient and specific knockdown of MK in pancreatic cancer cells by adenoviral Ad-shRNA-PTN is a potentially powerful tool for the study of gene therapy of pancreatic cancer nerve infiltration.

  12. Trichosanthin inhibiting PC3 proil ferationv ai down-regulation the expression of p-ERK and Cyc lin D1%天花粉蛋白通过下调p-ERK及Cyclin D1表达抑制PC3细胞增殖

    Institute of Scientific and Technical Information of China (English)

    黄益玲; 胡火军; 尤程程; 黄迎娣; 黄利鸣

    2015-01-01

    目的:探讨天花粉蛋白(TCS)体外对前列腺癌细胞(PC3)生长的抑制作用及可能机制。方法采用噻唑蓝(MTT)检测TCS对PC3细胞的抑制作用。流式细胞术( FCM)检测TCS对PC3细胞周期的影响,Western印迹检测TCS对ERK、p-ERK及细胞周期调节蛋白Cyclin D1表达的影响。结果 MTT 结果显示 TCS 能有效抑制 PC3细胞的生长,具有时间及剂量依赖性。流式细胞检测发现 TCS能够将 PC3细胞阻滞于 G1期, Western 印迹检测TCS能抑制ERK磷酸化及细胞周期调节蛋白Cyclin D1的表达。结论 TCS对PC3细胞的增殖具有明显的抑制作用,其作用机制可能与抑制丝裂原活化蛋白激酶( MAPK)细胞增殖信号通路及降低Cyclin D1表达,从而诱导细胞发生G1期阻滞有关。%[Abstrca t] Obj ective To explore the inhibition effect of Trichosanthin (TCS) on prostate cancer PC3 cells and investigate the pos-sible mechanism .Methods MTT assay was used to detect the proliferation inhibition effect of TCS on PC 3 cells,cell cycle was analyzed by flow cytometry.Expressions of p-ERK and Cyclin D1 protein were detected by Western blot .Results TCS could inhibit the growth of PC 3 cell in a time and dose dependent manner .FCM detection showed that TCS could arrest PC 3 cells in G1 Phase.Western blot found that the protein expressions of p-ERK and Cyclin D1 were decreased after treated with TCS .Conclusions TCS could inhibit the proliferation of PC 3 cells by down-regulating the mitogen activated protein kinase pathway and inducing the G 1 phase arrest.

  13. Effects of Oridonin on proliferation and apoptosis of PC-3 cells%冬凌草甲素通过改变CyclinD2、CyclinE、P27的表达对PC-3细胞抑制增殖和凋亡诱导效应

    Institute of Scientific and Technical Information of China (English)

    李进; 杨罗艳; 吴洪涛

    2012-01-01

    Objective To investigate the effect of Oridonin on apoptosis of human prostate cancer cell lines (PC-3 cells) and their molecular mechanism. Methods The PC-3 cells were intervened by Oridonin in different concentration. The vitality of the PC-3 cells was detected by MTT assay. The change of cell cycle was analyzed by the flow cytometry; and the changes of expressions of CyclinD2, CyclinE, P27 in PC-3 cells were detected by the real-time fluorescent quantitative determination. Results (1) Oridonin increased the percentage of the G0/G1 phase and decreased the S phase of PC-3 cells; (2) Oridonin down regulated the expression of CyclinD2 and CyclinE, and up regulated the expression of P27 in a concentration-dependent way in PC-3 cells. Conclusion Oridonin can inhibit proliferation of PC-3 cells and induce their apoptosis through regulating the cell cycle protein, blocking the "checkpoint" of the G1/S phase, down-regulating CyclinD2 and CyclinE as well as up-regulating P27.%目的 探索冬凌草甲素对人雄激素非依赖性前列腺癌细胞株——PC-3细胞的诱导凋亡作用及其分子机制.方法 用不同浓度的冬凌草甲素干预PC-3细胞,MTT试验分析观察其对PC-3细胞活力的影响;流式细胞仪检测细胞周期变化;实时荧光定量PCR方法检测PC-3细胞CyclinD2、CyclinE、p27蛋白表达的变化.结果 (1)冬凌草甲素增加G0/G1期PC-3细胞百分率,降低S期PC-3细胞百分率;(2)冬凌草甲素以浓度依赖性方式抑制PC-3细胞的CyclinD2、CyclinE蛋白表达,而P27蛋白表达上调;结论 冬凌草甲素通过影响细胞周期调节蛋白、阻断细胞周期G1/S期“稽查点”;抑制CyclinD2、CyclinE,上调P27等途径抑制PC-3细胞增殖及诱导PC-3细胞凋亡.

  14. Multipoint Observations of Low Latitude ULF Pc3 Waves in South-East Australia

    Indian Academy of Sciences (India)

    I. A. Ansari

    2008-03-01

    Geomagnetic pulsations recorded on the ground are the signatures of the integrated signals from the magnetosphere. Pc3 geomagnetic pulsations are quasi-sinusoidal variations in the earth’s magnetic field in the period range 10–45 seconds. The magnitude of these pulsations ranges from fraction of a nT (nano Tesla) to several nT. These pulsations can be observed in a number of ways. However, the application of ground-based magnetometer arrays has proven to be one of the most successful methods of studying the spatial structure of hydromagnetic waves in the earth’s magnetosphere. The solar wind provides the energy for the earth’s magnetospheric processes. Pc3-5 geomagnetic pulsations can be generated either externally or internally with respect to the magnetosphere. The Pc3 studies undertaken in the past have been confined to middle and high latitudes. The spatial and temporal variations observed in Pc3 occurrence are of vital importance because they provide evidence which can be directly related to wave generation mechanisms both inside and external to the magnetosphere. At low latitudes (L < 3) wave energy predominates in the Pc3 band and the spatial characteristics of these pulsations have received little attention in the past. An array of four low latitude induction coil magnetometers were established in south-east Australia over a longitudinal range of 17 degrees at L = 1.8 to 2.7 for carrying out the study of the effect of the solar wind velocity on these pulsations. Digital dynamic spectra showing Pc3 pulsation activity over a period of about six months have been used to evaluate Pc3 pulsation occurrence. Pc3 occurrence probability at low latitudes has been found to be dominant for the solar wind velocity in the range 400–700 km/s. The results suggest that solar wind controls Pc3 occurrence through a mechanism in which Pc3 wave energy is convected through the magnetosheath and coupled to the standing oscillations of magnetospheric field lines.

  15. Effect of resveratrol and beta-sitosterol in combination on reactive oxygen species and prostaglandin release by PC-3 cells.

    Science.gov (United States)

    Awad, Atif B; Burr, Andrew T; Fink, Carol S

    2005-03-01

    The objective of this project was to identify some possible mechanisms by which two common phytochemicals, resveratrol and beta-sitosterol, inhibit the growth of human prostate cancer PC-3 cells. These mechanisms include the effect of the phytochemicals on apoptosis, cell cycle progression, prostaglandin synthesis and the production of reactive oxygen species (ROS). Prostaglandins have been known to play a role in regulating cell growth and apoptosis. PC-3 cells were supplemented with 50 microM resveratrol or 16 microM beta-sitosterol alone or in combination for up to 5 days. Phytochemical supplementation resulted in inhibition in cell growth. beta-Sitosterol was more potent than resveratrol and the combination of the two resulted in greater inhibition than supplementation with either alone. Long-term supplementation with resveratrol or beta-sitosterol elevated basal prostaglandin release but beta-sitosterol was much more potent than resveratrol in this regard. beta-Sitosterol was more effective than resveratrol in inducing apoptosis and the combination had an intermediate effect after 1 day of supplementation. Cells supplemented with resveratrol were arrested at the G1 phase and at the G2/M phase in the case of beta-sitosterol while the combination resulted in cell arrest at the two phases of the cell cycle. beta-Sitosterol increased ROS production while resveratrol decreased ROS production. The combination of the two phytochemicals resulted in an intermediate level of ROS. The observed changes in prostaglandin levels and ROS production by these two phytochemicals may suggest their mediation in the growth inhibition. The reduction in ROS level and increase by resveratrol supplementation in PC-3 cells reflects the antioxidant properties of resveratrol. It was concluded that these phytochemicals may induce the inhibition of tumor growth by stimulating apoptosis and arresting cells at different locations in the cell cycle and the mechanism may involve alterations in

  16. TRPM8与前列腺癌:过表达还是抑制,这是个问题-对本期《TRPM8对前列腺癌PC-3细胞增殖和迁移能力影响的研究》一文的评论%TRPM8 and prostate cancer: to overexpress or repress,that is the question-comment on "Effects of TRPM8 on proliferation and motility of prostate cancer PC-3 cells" by Yang ZH et al. in Asian Journal of Andrology

    Institute of Scientific and Technical Information of China (English)

    Prakash Kulkami

    2009-01-01

    @@ The progression of cells from a normal differentiated state in which the rates of proliferation and apoptosis are in check, to a tumorigenic and metastatic state where these rates are imbalanced, likely involves the accumulation of mutations in multiple genes, and the evolution and clonal selection of more aggressive phenotypes. These events are associated with changes in the expression of numerous gene products including the transient receptor potential (TRP) proteins. TRP proteins are a family of Ca2~- and Na+-permeable channels that play a diverse and important role in cellular physiology and pathology. One member of this family, TRPM8, a receptor-activated non-selective cation channel is highly expressed in prostate cancer (PCa) cells and in recent years, has emerged as a promising prognostic marker and putative therapeutic target in PCa.

  17. Changes of Gene Expression in the Apoptosis Pathway in Lncap and PC3 Cells Exposed to X-Rays or Protons

    Science.gov (United States)

    Zhang, Ye; Rohde, Larry H.; Mehta, Satish K.; Pierson, Duane L.; Wu, Honglu

    2009-01-01

    Radio-resistant or recurrent prostate cancer represents a serious health risk for approximately 20%-30% of patients treated with primary radiation therapy for clinically localized prostate cancer. In our current studies, we investigated the expressions of apoptosis related gene expression profile (84 genes) in two distinct prostate cell lines Lncap (P53+ and AR+) and PC3 (P53- and AR-) before and after exposure to X-rays or protons, using cDNA PCR arrays. In Lncap cells, 10Gy X-ray radiation significantly induced the expression of 19 out of 84 genes at 4h after irradiation. The changed genes were mostly in death and death receptor domain families, TNF ligand and receptor families, and apoptotic group of the BCL2 family, especially in P53 related genes, such as FAS, BAX, BAK1 and GADD45A. In PC3, X-rays only induced the expression of 3 genes, including an increased expression of BIRC3. There was no difference of the X-ray mediated cell killing in both cell lines using the cell cycle analysis. However, these X-ray-induced gene expression differences between PC3 and Lncap may explain the phenotype of PC3 cells that shows more tolerant not only to radiation, but also to other apoptosis inducing and sensitizing reagents. To compare the effectiveness of cell killing with X-rays, we also exposed PC3 cells to 10Gy protons at the Bragg peak region. Protons did not induce more apoptosis than X-rays for the same dose. In comparison to X-rays, protons significantly altered expressions of 13 genes in PC3, which included decreased expressions of anti-apoptosis genes (BCL2 and BCL2L2), and increased expressions of death and death receptor domain family genes, TNF ligand and receptor family and several kinases (FAS, DAPK1 and RIPK2). These data suggest that proton treatment is more effective in influencing the apoptosis pathways in PC3 cells than X-rays, thus protons may be more effective in the treatment of specific prostate tumor.

  18. Antiproliferation and cell apoptosis inducing bioactivities of constituents from Dysosma versipellis in PC3 and Bcap-37 cell lines

    Directory of Open Access Journals (Sweden)

    Song Baoan

    2011-06-01

    Full Text Available Abstract Background Recently, interest in phytochemicals from traditional Chinese medicinal herbs with the capability to inhibit cancer cells growth and proliferation has been growing rapidly due to their nontoxic nature. Dysosma versipellis as Bereridaceae plants is an endemic species in China, which has been proved to be an important Chinese herbal medicine because of its biological activity. However, systematic and comprehensive studies on the phytochemicals from Dysosma versipellis and their bioactivity are limited. Results Fifteen compounds were isolated and characterized from the roots of Dysosma versipellis, among which six compounds were isolated from this plant for the first time. The inhibitory activities of these compounds were investigated on tumor cells PC3, Bcap-37 and BGC-823 in vitro by MTT method, and the results showed that podophyllotoxone (PTO and 4'-demethyldeoxypodophyllotoxin (DDPT had potent inhibitory activities against the growth of human carcinoma cell lines. Subsequent fluorescence staining and flow cytometry analysis indicated that these two compounds could induce apoptosis in PC3 and Bcap-37 cells, and the apoptosis ratios reached the peak (12.0% and 14.1% after 72 h of treatment at 20 μM, respectively. Conclusions This study suggests that most of the compounds from the roots of D. versipellis could inhibit the growth of human carcinoma cells. In addition, PTO and DDPT could induce apoptosis of tumor cells.

  19. Antiproliferative activity and induction of apoptosis in PC-3 cells by the chalcone cardamonin from Campomanesia adamantium (Myrtaceae) in a bioactivity-guided study.

    Science.gov (United States)

    Pascoal, Aislan Cristina Rheder Fagundes; Ehrenfried, Carlos Augusto; Lopez, Begoña Gimenez-Cassina; de Araujo, Thiago Matos; Pascoal, Vinicius D'ávila Bitencourt; Gilioli, Rovilson; Anhê, Gabriel Forato; Ruiz, Ana Lúcia Tasca Goes; Carvalho, João Ernesto de; Stefanello, Maria Elida Alves; Salvador, Marcos José

    2014-02-07

    The Myrtaceae family is a common source of medicines used in the treatment of numerous diseases in South America. In Brazil, fruits of the Campomanesia species are widely used to make liqueurs, juices and sweets, whereas leaves are traditionally employed as a medicine for dysentery, stomach problems, diarrhea, cystitis and urethritis. Ethanol extracts of Campomanesia adamantium (Myrtaceae) leaves and fruits were evaluated against prostate cancer cells (PC-3). The compound (2E)-1-(2,4-dihydroxy-6-methoxyphenyl)-3-phenylprop-2-en-1-one, cardamonin) was isolated from ethanol extracts of C. adamantium leaves in a bioactivity-guided study and quantified by UPLC-MS/MS. In vitro studies showed that the isolated chalcone cardamonin inhibited prostate cancer cell proliferation and decreased the expression of NFkB1. Moreover, analysis by flow cytometry showed that this compound induced DNA fragmentation, suggesting an effect on apoptosis induction in the PC-3 cell line.

  20. 11'-Deoxyverticillin A induces caspase-dependent cell anontosis in PC3M cells%11-脱氧轮枝菌素A引起前列腺癌PC3M细胞Caspase依赖的凋亡

    Institute of Scientific and Technical Information of China (English)

    时迎娣; 张迎秋; 倪扬笑; 史国利; 杨怀义

    2012-01-01

    Recent years, the incidence and mortality of prostate cancer have increased dramatically in China. At earlier stages, most diagnosed prostate cancers are responsive to androgen depletion treatment, yet, nearly all patients will eventually progress to metastatic androgen-independent prostate cancer (AIPC), which still has no effective therapeutic method or drug to deal with. 1 l'-Deoxyverticillin A (C42) belongs to the family of epipolythiodioxopiperazines (ETPs), an interesting class of fungal toxins that inhibit farnesyl transferase. Compounds holding such a property have been explored as putative anticancer agents. Ih this study, using PC3M cells, an AIPC cell line, we investigated the effect of the compound on apoptosis and explored the underlying mechanism. It revealed that C42 markedly enhanced the activity of caspase-3/7 and increased the accumulation of the cleaved PARP, all of which are the markers of apoptosis. It also revealed that C42 either decreased cell viability or inhibited the growth of PC3M cells. Moreover, we observed that the loss of cell viability and cell growth inhibition induced by C42 were both time- and dosage dependent. Taken together, we indicated that C42 can induce caspase-dependent apoptosis in AIPC cells, and the results presented here will broaden our knowledge about the molecular mechanisms by which C42 exerts its anticancer activity, and future work in this direction may provide valuable information in the development of these compounds into effective cancer therapeutic strategies against androgen-independent prostate cancer.%近几年,我国前列腺癌的发病率和致死率均明显升高.虽然早期肿瘤对去雄激素疗法敏感,但最终几乎所有病人均可转变为雄激素非依赖型.目前,对于此类病人还没有好的治疗手段和药物.11-脱氧轮枝菌素A (11′-deoxyverticillin A,C42)是一种从冬虫夏草共生菌中分离得到的多硫代二氧基哌嗪(Epipolythiodioxopiperazines,ETPs)族结构

  1. PKB negatively modulates TGF-β responsiveness in prostate carcinoma PC-3 cells through its interaction with Smad3

    Institute of Scientific and Technical Information of China (English)

    LI Wei; XIN Dianqi; GUO Yinlu

    2006-01-01

    Most prostate cancers are insensitive to growth-inhibitory effect of TGF-β, while PI3K-PKB signaling is highly activated in prostate cancers. We investigated whether the PI3K-PKB signaling contributes to TGF-β insensitivity in PTEN-null prostate cancer PC-3 cells. Cell growth analysis showed that inhibition of PI3K-PKB pathway by LY294002 enhanced growth inhibition and cell cycle arrest induced by TGF-β. Furthermore, activation of PI3K-PKB pathway by insulin or overexpression of PKB decreased the transcriptional activity of TGF-β, as measured by the TGF-β/Smad3-responsive CAGAluciferase reporter, while inhibition of PI3K-PKB pathway by introducing PTEN, inactive PKB mutant or using LY294002 promoted TGF-β-induced expression of CAGA-luciferase. Co-immunoprecipitation studies further demonstrated that Smad3 interacted with PKB through its linker region and MH2 domain.This interaction was facilitated by insulin and disrupted by TGF-β signaling activation. Our results suggest that the PI3K-PKB pathway may play an important role in rendering cell resistance to the antiproliferative effect of TGF-β and regulating cell response to TGF-β.

  2. Pharmacodynamics of TRPV1 Agonists in a Bioassay Using Human PC-3 Cells

    Directory of Open Access Journals (Sweden)

    Daniel Alvarez-Berdugo

    2014-01-01

    Full Text Available Purpose. TRPV1 is a multimodal channel mainly expressed in sensory neurons. We aimed to explore the pharmacodynamics of the TRPV1 agonists, capsaicin, natural capsaicinoids, and piperine in an in vitro bioassay using human PC-3 cells and to examine desensitization and the effect of the specific antagonist SB366791. Methods. PC-3 cells expressing TRPV1 were incubated with Fluo-4. Fluorescence emission changes following exposition to agonists with and without preincubation with antagonists were assessed and referred to maximal fluorescence following the addition of ionomycin. Concentration-response curves were fitted to the Hill equation. Results. Capsaicin and piperine had similar pharmacodynamics (Emax 204.8 ± 184.3% piperine versus 176.6 ± 35.83% capsaicin, P=0.8814, Hill coefficient 0.70 ± 0.50 piperine versus 1.59 ± 0.86 capsaicin, P=0.3752. In contrast, capsaicinoids had lower Emax (40.99 ± 6.14% capsaicinoids versus 176.6 ± 35.83% capsaicin, P<0.001. All the TRPV1 agonists showed significant desensitization after the second exposition and their effects were strongly inhibited by SB366791. Conclusion. TRPV1 receptor is successfully stimulated by capsaicin, piperine, and natural capsaicinoids. These agonists present desensitization and their effect is significantly reduced by a TRPV1-specific antagonist. In addition, PC-3 cell bioassays proved useful in the study of TRPV1 pharmacodynamics.

  3. The Regulation of Matrix Metalloproteinase Expression and the Role of Discoidin Domain Receptor 1/2 Signalling in Zoledronate-treated PC3 Cells.

    Science.gov (United States)

    Reel, Buket; Korkmaz, Ceren Gonen; Arun, Mehmet Zuhuri; Yildirim, Gokce; Ogut, Deniz; Kaymak, Aysegul; Micili, Serap Cilaker; Ergur, Bekir Ugur

    2015-01-01

    Discoidin Domain Receptors (DDR1/DDR2) are tyrosine kinase receptors which are activated by collagen. DDR signalling regulates cell migration, proliferation, apoptosis and matrix metalloproteinase (MMP) production. MMPs degrade extracellular matrix (ECM) and play essential role in tumor growth, invasion and metastasis. Nitrogen-containing bisphosphonates (N-BPs) which strongly inhibit osteoclastic activity are commonly used for osteoporosis treatment. They also have MMP inhibitory effect. In this study, we aimed to investigate the effects of zoledronate in PC3 cells and the possible role of DDR signalling and downstream pathways in these inhibitory effects. We studied messenger RNA (mRNA) and protein expressions of MMP-2,-9,-8, DDR1/DDR2 type I procollagen (TIP) and mRNA levels of PCA-1, MMP-13 and DDR-initiated signalling pathway players including K-Ras oncogene, ERK1, JNK1, p38, AKT-1 and BCLX in PC3 cells in the presence or absence of zoledronate (10-100 μM) for 2-3 days. Zoledronate (100 μM) down-regulated DDR1/ DDR2, TIP mRNAs but did not change MMP-13 (collagenase-3) mRNA. However, zoledronate up-regulated MMP-8 (collagenase-2) mRNA. Zoledronate also inhibited mRNA expressions of K-Ras, ERK1, AKT-1, BCLX and PCA-1; but did not change JNK1, p38 mRNA levels. Zoledronate (100 μM) supressed DDR1/DDR2, TIP expressions; and gelatinase (MMP-2/MMP-9) expressions/activities. Conversely, zoledronate up-regulated MMP-8 expression in PC3 cells. Zoledronate down-regulates MMP-2/-9 expressions in PC3 prostate cancer cells. DDR1/DDR2 signalling and DDR-initiated downstream Ras/Raf/ERK and PI3K/AKT pathways may at least partially responsible for MMP inhibitory effect of zoledronate.

  4. Inositol hexaphosphate downregulates both constitutive and ligand-induced mitogenic and cell survival signaling, and causes caspase-mediated apoptotic death of human prostate carcinoma PC-3 cells.

    Science.gov (United States)

    Gu, Mallikarjuna; Raina, Komal; Agarwal, Chapla; Agarwal, Rajesh

    2010-01-01

    Constitutively active mitogenic and prosurvival signaling cascades due to aberrant expression and interaction of growth factors and their receptors are well documented in human prostate cancer (PCa). Epidermal growth factor (EGF) and insulin-like growth factor-1 (IGF-1) are potent mitogens that regulate proliferation and survival of PCa cells via autocrine and paracrine loops involving both mitogen-activated protein kinase (MAPK)- and Akt-mediated signaling. Accordingly, here we assessed the effect of inositol hexaphosphate (IP6) on constitutive and ligand (EGF and IGF-1)-induced biological responses and associated signaling cascades in advanced and androgen-independent human PCa PC-3 cells. Treatment of PC-3 cells with 2 mM IP6 strongly inhibited both growth and proliferation and decreased cell viability; similar effects were also observed in other human PCa DU145 and LNCaP cells. IP6 also caused a strong apoptotic death of PC-3 cells together with caspase 3 and PARP cleavage. Mechanistic studies showed that biological effects of IP6 were associated with inhibition of both constitutive and ligand-induced Akt phosphorylation together with a decrease in total Akt levels, but a differential inhibitory effect on MAPKs extra cellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal protein kinase (JNK1/2), and p38 under constitutive and ligand-activated conditions. Under similar condition, IP6 also inhibited AP-1 DNA-binding activity and decreased nuclear levels of both phospho and total c-Fos and c-Jun. Together, these findings for the first time establish IP6 efficacy in inhibiting aberrant EGF receptor (EGFR) or IGF-1 receptor (IGF-1R) pathway-mediated sustained growth promoting and survival signaling cascades in advanced and androgen-independent human PCa PC-3 cells, which might have translational implications in advanced human PCa control and management.

  5. Effects of oridonin nanosuspension on cell proliferation and apoptosis of human prostatic carcinoma PC-3 cell line.

    Science.gov (United States)

    Zhang, Zhen; Zhang, Xiumei; Xue, Wei; Yangyang, Yuna; Xu, Derong; Zhao, Yunxue; Lou, Haiyan

    2010-10-05

    This study aims to investigate the inhibitory effects of oridonin nanosuspension on human prostatic carcinoma PC-3 cell line in vitro. The PC-3 cells were incubated with increasing concentrations of oridonin solution and nanosuspensions for 12 hours, 24 hours, and 36 hours. MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay was performed to measure cellular viability and investigate the effect of oridonin on cell growth of PC-3. Annexin V-FITC/PI staining method was used to determine the effect of oridonin by fluorescence microscope and flow cytometry, respectively. Nanosuspension on early apoptosis of PC-3 cells was also evaluated. Oridonin significantly inhibited the growth of PC-3 cells after 12 hours, 24 hours, and 36 hours of treatment in a dose-dependent manner (P nanosuspension enhanced the inhibition ratio of proliferation. The observation of propidium iodide fluorescence staining confirmed the MTT assay results. The cell proportion of PC-3 at the G2/M phase in the nanosuspension treatment group was upregulated compared with that of the control and oridonin solution groups. Both oridonin solution and nanosuspension promoted the early apoptosis of PC-3 cells. Furthermore, while improving the ratio of early apoptosis, oridonin nanosuspensions also enhanced growth suppression, and induced apoptosis of PC-3 cells. This shows great potential in the treatment of androgen-independent carcinoma of prostate by oridonin nanosuspensions.

  6. Effects of oridonin nanosuspension on cell proliferation and apoptosis of human prostatic carcinoma PC-3 cell line

    Directory of Open Access Journals (Sweden)

    Zhen Zhang

    2010-10-01

    Full Text Available Zhen Zhang, Xiumei Zhang, Wei Xue, Yuna YangYang, Derong Xu, Yunxue Zhao, Haiyan LouSchool of Medicine, Shandong University, Jinan, Republic of ChinaAbstract: This study aims to investigate the inhibitory effects of oridonin nanosuspension on human prostatic carcinoma PC-3 cell line in vitro. The PC-3 cells were incubated with increasing concentrations of oridonin solution and nanosuspensions for 12 hours, 24 hours, and 36 hours. MTT [3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide] assay was performed to measure cellular viability and investigate the effect of oridonin on cell growth of PC-3. Annexin V-FITC/PI staining method was used to determine the effect of oridonin by fluorescence microscope and flow cytometry, respectively. Nanosuspension on early apoptosis of PC-3 cells was also evaluated. Oridonin significantly inhibited the growth of PC-3 cells after 12 hours, 24 hours, and 36 hours of treatment in a dose-dependent manner (P < 0.05. Compared with the same concentration of oridonin solution, oridonin nanosuspension enhanced the inhibition ratio of proliferation. The observation of propidium iodide fluorescence staining confirmed the MTT assay results. The cell proportion of PC-3 at the G2/M phase in the nanosuspension treatment group was upregulated compared with that of the control and oridonin solution groups. Both oridonin solution and nanosuspension promoted the early apoptosis of PC-3 cells. Furthermore, while improving the ratio of early apoptosis, oridonin nanosuspensions also enhanced growth suppression, and induced apoptosis of PC-3 cells. This shows great potential in the treatment of androgen-independent carcinoma of prostate by oridonin nanosuspensions.Keywords: oridonin, nanosuspension, carcinoma of prostate, PC-3 cells, cell cycle, apoptosis

  7. Progesterone inhibits proliferation and modulates expression of proliferation-Related genes in classical progesterone receptor-negative human BxPC3 pancreatic adenocarcinoma cells.

    Science.gov (United States)

    Goncharov, Alexey I; Maslakova, Aitsana A; Polikarpova, Anna V; Bulanova, Elena A; Guseva, Alexandra A; Morozov, Ivan A; Rubtsov, Petr M; Smirnova, Olga V; Shchelkunova, Tatiana A

    2017-01-01

    Recent studies suggest that progesterone may possess anti-tumorigenic properties. However, a growth-modulatory role of progestins in human cancer cells remains obscure. With the discovery of a new class of membrane progesterone receptors (mPRs) belonging to the progestin and adipoQ receptor gene family, it becomes important to study the effect of this hormone on proliferation of tumor cells that do not express classical nuclear progesterone receptors (nPRs). To identify a cell line expressing high levels of mPRs and lacking nPRs, we examined mRNA levels of nPRs and three forms of mPRs in sixteen human tumor cell lines of different origin. High expression of mPR mRNA has been found in pancreatic adenocarcinoma BxPC3 cells, while nPR mRNA has not been detected in these cells. Western blot analysis confirmed these findings at the protein level. We revealed specific binding of labeled progesterone in these cells with affinity constant similar to that of human mPR expressed in yeast cells. Progesterone at high concentration of 20 μM significantly reduced the mRNA levels of proliferation markers Ki67 and PCNA, as well as of cyclin D1, and increased the mRNA levels of cyclin dependent kinase inhibitors p21 and p27. Progesterone (1 μM and 20 μM) significantly inhibited proliferative activity of BxPC3 cells. These results point to anti-proliferative effects of the progesterone high concentrations on BxPC3 cells and suggest that activation of mPRs may mediate this action. Our data are a starting point for further investigations regarding the application of progesterone in pancreatic cancer.

  8. Vaccinia virus-mediated intra-tumoral expression of matrix metalloproteinase 9 enhances oncolysis of PC-3 xenograft tumors

    Directory of Open Access Journals (Sweden)

    Schäfer Simon

    2012-08-01

    Full Text Available Abstract Background Oncolytic viruses, including vaccinia virus (VACV, are a promising alternative to classical mono-cancer treatment methods such as surgery, chemo- or radiotherapy. However, combined therapeutic modalities may be more effective than mono-therapies. In this study, we enhanced the effectiveness of oncolytic virotherapy by matrix metalloproteinase (MMP-9-mediated degradation of proteins of the tumoral extracellular matrix (ECM, leading to increased viral distribution within the tumors. Methods For this study, the oncolytic vaccinia virus GLV-1h255, containing the mmp-9 gene, was constructed and used to treat PC-3 tumor-bearing mice, achieving an intra-tumoral over-expression of MMP-9. The intra-tumoral MMP-9 content was quantified by immunohistochemistry in tumor sections. Therapeutic efficacy of GLV-1h255 was evaluated by monitoring tumor growth kinetics and intra-tumoral virus titers. Microenvironmental changes mediated by the intra-tumoral MMP-9 over-expression were investigated by microscopic quantification of the collagen IV content, the blood vessel density (BVD and the analysis of lymph node metastasis formation. Results GLV-1h255-treatment of PC-3 tumors led to a significant over-expression of intra-tumoral MMP-9, accompanied by a marked decrease in collagen IV content in infected tumor areas, when compared to GLV-1h68-infected tumor areas. This led to considerably elevated virus titers in GLV-1h255 infected tumors, and to enhanced tumor regression. The analysis of the BVD, as well as the lumbar and renal lymph node volumes, revealed lower BVD and significantly smaller lymph nodes in both GLV-1h68- and GLV-1h255- injected mice compared to those injected with PBS, indicating that MMP-9 over-expression does not alter the metastasis-reducing effect of oncolytic VACV. Conclusions Taken together, these results indicate that a GLV-1h255-mediated intra-tumoral over-expression of MMP-9 leads to a degradation of collagen IV

  9. Effect of hypoxia inducible factor-1α gene silencing on glycolysis correlated gene expression in BxPC-3 cell line%基因沉默缺氧诱导因子-1α对BxPC-3细胞株糖酵解基因表达的影响

    Institute of Scientific and Technical Information of China (English)

    蒋奕; 吴国豪; 何国栋; 庄秋林; 张波; 韩寓嵩

    2012-01-01

    目的 观察沉默缺氧诱导因子(HIF)-1α基因表达对于缺氧微环境下人胰腺癌BxPC-3细胞株中糖酵解相关基因表达的影响.方法 通过合成小于扰RNA((siRNA))转染沉默BxPC-3细胞株中HIF-1α基因表达.将细胞分为空白对照组(BxPC-3)、空白质粒转染对照组(GFP)和HIF-1α基因沉默组(sh-HIF-1α),分别在正常环境(21.0%O2)和缺氧环境(0.5%~1.0% O2)中培养48 h后,检测各组细胞中糖酵解相关基因[如丙酮酸激酶1(PDK-1)、乳酸脱氢酶A(LDH-A)和柠檬酸合成酶(CS)]的表达以及细胞糖酵解产物乳酸含量的改变.结果 与正常环境比较,缺氧培养后sh-HIF-1α组细胞内HIF-1αmRNA增加了12.4%,蛋白增加了1.6倍,显著低于BxPC-3组和GFP组(P<0.05),PDK-1和LDH-A的表达也明显低于两个对照组(P<0.05).相应的sh-HIF-1α组的乳酸含量为(4.8 ±0.3)nmol/106个细胞,明显低于BxPC-3组(9.1±0.5)nmol/106个细胞和GFP组(9.2±0.5) nmol/106个细胞(P<0.05).相反,缺氧时BxPC-3组和GFP组细胞中与线粒体氧化磷酸化相关的CS基因表达明显下降,低于其在sh-HIF-1α组细胞中的表达(P<0.05).结论 缺氧可以诱导BxPC-3细胞株中HIF-1α基因高表达并促进糖酵解相关的PDK-1和LDH-A等基因表达.而通过沉默HIF-1α基因,可以抑制上述基因的表达,并促进CS基因表达,从而抑制肿瘤细胞的糖酵解代谢.%Objective To investigate the impact of hypoxia inducible factor (HIF)-1α gene silencing on glycolysis correlated gene expression in human pancreatic cancer cell line (BxPC-3) under hypoxic conditions.Methods The siRNA was synthesized to silence the expression of HIF-1α in BxPC-3 cell line.The transfected cells were divided into three groups:blank control group (BxPC-3),empty plasmid vector transfection group (GFP) and HIF-1α gene silencing group (sh-HIF-1α).All cells were cultured under either normoxic (21.0% O2) or hypoxic (0.5%-1.0% O2) conditions for 48 h.Then pyruvate

  10. Effect of genistein on the biological behavior of PC-3 cell line of prostatic carcinoma%染料木黄酮对前列腺癌细胞系PC-3生物学行为影响的意义

    Institute of Scientific and Technical Information of China (English)

    高晓康; 杨波; 王禾; 刘贺亮; 邵晨; 邵国兴; 康福霞

    2004-01-01

    ,and the percent of G2/M cells was 14.9%, 27.4% ,33.1% ,31.9% in the 0,10,20 and 40 μ mol/L genistein group respectively.The percent of apoptosis cells was 0%, 6.5% ,14.2% ,25.4% respectively. The ability of genistein-treated cells to invade the reconstituted basement membrane decreased to 31.8%, 8.6% and 3.96% in comparison with that of the control group. CONCLUSION:Genitein inhbits the invasion of PC-3 cells in a dose-dependent manner. Genistein may act as a protective drug for prostatic cancer by inhibiting the proliferation,inducing apoptosis and decreasing the invasive ability of PC-3 cells.

  11. Study on Cyclin D/Rb/p16 Signal Pathway of BxPC-3 Cell Line Treated with Oridonin%冬凌草甲素对胰腺癌BxPC-3细胞Cyclin D/Rb/p16信号蛋白的影响研究

    Institute of Scientific and Technical Information of China (English)

    沈雯; 许健; 孙金权; 牟一平; 吴晓莉

    2013-01-01

    , Hoechst 33258 fluorescence staining showed characteristic change of apoptosis, the expression of CDK4 reduced to the minimum, and p16 gene reached the maximum; p16 gene presented methylation after treated with oridonin for 36h in BxPC-3 cel s. [Conclusion]1. Oridonin could induce BxPC-3 cel s into apoptosis. 2. Oridonin down-regulated CDK4, and up-regulated p16 and the methylation of p16 gene in BxPC-3 cel , but without effect on p16 gene methylation, which suggested that oridonin inhibited pancreatic cancer through Cyclin D/Rb/p16 signal pathway to a certain extent.

  12. 比较不同频率低频超声联合微泡促进脂质体介导的pEGFP质粒转染人前列腺癌细胞的实验研究%A comparison study of different low-frequency ultrasound combining with microbubbles promote the liposome-mediated pEGFP plasmid transfection into human prostate cancer PC3 cells

    Institute of Scientific and Technical Information of China (English)

    张蔚; 白文坤; 寿文德; 王玉; 陈旖旎; 杨雨; 胡兵

    2015-01-01

    目的 比较不同频率低频超声联合微泡促进脂质体介导的pEGFP质粒转染人前列腺癌PC3细胞.方法 实验共分7组:空白对照组仅人前列腺癌PC3细胞株,不进行任何处理;质粒组每毫升细胞悬液中加入1μg质粒;脂质体组每毫升细胞悬液中加入100μl转染液;脂质体+微泡组每毫升细胞中悬液加入100μl转染液和200μl微泡,低频超声联合脂质体+微泡组每毫升细胞悬液中加入100 μl转染液和200μl微泡,同时采用声功率为400 mW/cm2的脉冲超声波辐照模式,辐照时间240 s,占空比设为1∶1,依据辐照频率不同又分3个亚组,分别为20 kHz超声组、500 kHz超声组和1 MHz超声组.每组设6个复孔.各组经处理后继续培养24 h,荧光显微镜观察转染情况;流式细胞仪检测各组转染率.结果 荧光显微镜下,低频超声联合脂质体+微泡组PC3细胞胞质内可见大量绿色荧光蛋白表达,明显多于其他各组,各亚组间又以20 kHz超声组绿色荧光蛋白较多;脂质体组和脂质体+微泡组绿色荧光蛋白表达量亦多于空白对照组和质粒组.流式细胞仪检测显示,低频超声联合脂质体微泡组转染率高于质粒组,其中20 kHz超声组转染率最高,明显高于其他各组,差异有统计学意义(P<0.05).脂质体组与脂质体+微泡组之间、500 kHz超声组与1 MHz超声组之间转染率比较差异无统计学意义.结论 低频超声辐照微泡可显著促进脂质体介导的pEGFP质粒转染人前列腺癌PC3细胞.在相同声功率、相同辐照面积下,随着辐照频率的升高,转染率呈现下降趋势.

  13. PI-3K and p38MAPK Pathways Upregulate the Epidermal Growth Factor Induced Cyclooxygenase-2 Expression in PC-3 Cells%PI-3K和p38MAPK通路在EGF诱导PC-3细胞环氧化酶-2表达上调中的作用

    Institute of Scientific and Technical Information of China (English)

    贾瑞鹏; 林建中; 刘军; 苏江浩; 包卿兵; 朱佳庚

    2008-01-01

    目的:研究p38丝裂原激活蛋白激酶(p38MAPK)和磷脂酰肌醇-3激酶(PI/3K)通路在表皮生长因子(EGF)诱导的激素非依赖性前列腺癌(hormone-refractory prostate cancer,HRPC)PC-3细胞环氧化酶2(cyclooxygenase-2,COX-2)表达上调中的作用. 方法:MTT法检测EGF(0μg/L)、EGF(10 μg/L)、EGF(10μg/L)+PI-3K阻断剂(LY294002,20μmol/L)、EGF(10μg/L)+p38MAPK阻断剂(SC203580,20μmol/L)处理后的细胞增殖情况.RT-PCR和Western印迹测定上述处理24 h后PC-3细胞COX-2的表达变化,ELISA测定细胞培养液中前列腺素E2(PGE2)的变化. 结果:LY294002和SC203580明显抑制EGF刺激后的PC-3细胞增殖(P<0.05)及EGF诱导的COX-2上调和PGE2生成(P<0.05). 结论:PI-3K通路和p38MAPK通路可能参与了EGF诱导的PC-3细胞COX-2的表达上调.

  14. TLR7激动剂Gardiquimod上调BxPC-3细胞中IL-15 mRNA表达%The agonist of TLR7 Gardiquimod up-regulates the expression of interleukin-15 in BxPC-3 cells

    Institute of Scientific and Technical Information of China (English)

    王芳; 金锐; 李磊; 程丰伟; 罗欣; 张胜权

    2015-01-01

    Objective To investigate the expression of Toll-like receptor 7 ( TLR7 ) in pancreatic cancer BxPC-3 cells, and to explore the effect of TLR7 activation on the expression of interleukin-15(IL-15). Methods BxPC-3 cells were used to analyze the expression of TLR7 by Western blot and Real-time PCR. The cells were treated with Gardiquimod (3 μg/ml) at different times, the expression of IL-15 at mRNA level by Real-time PCR. Western blot was performed to analyze the phosphorylation level changes of phosphatidyl inositol kinase serine/threonine kinase (PI3K-AKT) protein in BxPC-3 cells stimulated by TLR7 ligand Gardiquimod. Results Western blot and Real-time PCR results showed that compared with peripheral blood mononuclear cells ( PBMC ) , TLR7 presented weak expression in BxPC-3 cells. Gardiquimod could increase the expression of IL-15 in BxPC-3 cells. TLR7 agonist could activate the PI3K-AKT signaling pathway. Conclusion Gardiquimod can up-regulate the expression of IL-15 and this effect can be associated with PI3K-AKT signaling pathway.%目的:研究TLR7在胰腺癌BxPC-3细胞中表达,并探讨TLR7激动剂激活TLR7后细胞因子白介素15( IL-15)的表达。方法通过 Western blot 和 Real-time PCR 分析TLR7在细胞内的表达水平;BxPC-3细胞经过不同时间点Gardiquimod(3μg/ml)的处理后,Real-time PCR 分析 TLR7激活后 IL-15 mRNA 水平表达变化;Western blot 分析Gardiquimod刺激细胞后,磷脂酰肌醇-3-激酶-蛋白质丝氨酸苏氨酸激酶( PI3K-AKT)信号通路的变化。结果 Western blot和 Real-time PCR结果显示:与外周血单核细胞( PBMC)相比, TLR7在 BxPC-3中弱表达;Real-time PCR分析显示:Gardiquimod处理细胞后能刺激细胞中IL-15的表达;TLR7激动剂能够激活 PI3K-AKT信号通路。结论 Gardiquimod激活TLR7后能够上调 IL-15的表达,并且其激活与 PI3K-AKT信号途径相关。

  15. Doxycycline inhibit the expression of MMP- 2 and the invasion of PC - 3 in vitro%Doxycycline对PC-3细胞金属蛋白酶表达及生物学行为影响的意义

    Institute of Scientific and Technical Information of China (English)

    高晓康; 王禾

    2001-01-01

    目的研究Doxycycline抑制雄性激素非依赖型前列腺癌细胞PC-3细胞金属蛋白酶蛋白酶的表达及其与体外侵袭转移能力的关系.方法以免疫组织化学方法和transwell小室法研究不同浓度的Doxycycline对PC-3中金属蛋白酶的表达的影响及对体外侵袭转移能力的影响.结果免疫组织化学方法检测结果表明Doxy-cycline可以抑制PC-3细胞对金属蛋白酶蛋白的表达,transwell小室法结果显示Doxycycline可以抑制PC-3的侵袭转移能力,且两者均具有浓度依赖性.结论Doxycycline可以抑制PC-3的侵袭及转移,与其抑制金属蛋白酶的表达有关.为Doxycycline治疗前列腺癌提供了实验依据.

  16. Survivin在冬凌草甲素介导下对人前列腺癌细胞PC-3凋亡的作用%The role of Survivin in the apoptosis of PC-3 cells induced by Oridonin

    Institute of Scientific and Technical Information of China (English)

    李进; 杨罗艳; 吴洪涛

    2012-01-01

    目的 观察冬凌草甲素对人雄激素非依赖性前列腺癌细胞株-PC-3细胞的诱导凋亡作用,探讨Survivin在此过程中的作用.方法 用不同浓度的冬凌草甲素干预PC-3细胞,MTr试验分析观察其对PC-3细胞活力的影响;通过用流式细胞仪分析PC-3早期凋亡细胞的百分率;用Western印迹检法、实时荧光定量PCR方法检测PC-3细胞Survivin的蛋白和mRNA表达的变化.结果 (1)细胞生长抑制力呈一定的时间、剂量依赖性,冬凌草甲素浓度为2.5、5、10、20、40 μmol/L时,干预48h后相对应的平均细胞生长抑制率依次为9.2%、25.3%、39.3%、77.2%、92.5%,药物抑制PC-3细胞活力的IC50约为10.29 μmol/L;流式细胞仪检测经不同浓度的冬凌草甲素(0,10,20,40 μmol/L)干预48 h后,PC-3细胞的早期凋亡率分别为4.8%,15.4%,19.5%和27.4%(P<0.05).(2)冬凌草甲素以浓度依赖性方式抑制PC-3细胞的Survivin的蛋白和mRNA表达.结论 冬凌草甲素能以浓度依赖性方式诱导PC-3细胞凋亡.冬凌草甲素通过影响Survivin的表达来诱导PC-3细胞凋亡.%Objective To study the apoptosis-inducing effect of Oridonin on PC-3 cells line and the role of Survivin in the process.Methods After PC-3 cells were incubated with different concentrations of Oridonin,cell viability was analyzed with MTT assay.The percentage of earlier apoptosis cell was analyzed by flow cytometry.The protein expression of Survivin in PC-3 cells were detected by Western blot and fluorescent quantitative PCR.Results Oridonin effectively inhibited the proliferation of PC-3 cells in a concentration-time dependent way.After PC-3 cells were treated with Oridonin ( 2.5,5,10,20,40 μmol/L)for 48 hours,the cytotoxicity index were 9.2%,25.3%,39.3%,77.2%,92.5% and the IC50 of PC-3 cells was 10.29 μmol/L,respectively.Flow cytometry was used to detect the effect of different concentration of Oridonin (0,10,20,40 μmol/L) for 48 hours

  17. Metastasis-inhibiting effect of Oridonin on PC-3 cells and its mechanism%冬凌草甲素对PC-3转移的抑制效应及其分子机制

    Institute of Scientific and Technical Information of China (English)

    李进; 杨罗艳; 吴洪涛

    2011-01-01

    目的 探讨冬凌草甲素是否具有抑制PC-3细胞转移的能力及其分子机制.方法 用不同浓度的冬凌草甲素作用于PC-3细胞,用体外驱化运动实验检测PC-3细胞运动驱化能力的变化;用实时荧光定量聚合酶链反应(PCR)方法检测PC-3细胞中血管内皮生长因子(VEGF)、基质金属蛋白酶( MMP)-2和MMP-9 mRNA表达的变化;用酶联免疫吸附试验(ELISA)检测PC-3细胞上清VEGF、MMP-2和MMP-9浓度的变化.结果 体外驱化运动实验证明冬凌草甲素能以浓度依赖性方式抑制PC-3细胞转移,以40μmol/L冬凌草甲素组差异有统计学意义(P<0.01);冬凌草甲素以浓度依赖性方式抑制PC-3细胞及其上清中VEGF、MMP-2和MMP-9的表达(P<0.01).结论 冬凌草甲素具有抑制PC-3细胞转移的能力,其机制可能与药物下调VEGF、MMP-2和MMP-9有关.%Objective To determine metastasis-inhibiting capability of Oridonin on PC-3 cells and to explore its mechanisms.Methods After PC-3 cells were Incubated with different concentrations of Oridonin,the metastasis ability was analyzed through experiment of chemotaxic migration.The mRNA expression levels of vascular endothelial growth factor (VEGF),matrix metalloproteinase ( MMP)-2 and MMP-9 were detected by using fluorescent quantitative polymerase chain reaction (PCR).The expression levels of VEGF,MMP-2 and MMP-9 proteins were examined by using enzyme linked immunosorbent assay (ELISA).Results Oridonin effectively inhibited the metastasis of PC-3 cells in a concentration- and timedependent manner,and there was significant difference between 40 μmol/L group and other groups (P <0.01 ).Oridonin effectively inhibited the expression levels of VEGF and MMP-9 in a concentration- and time-dependent fashion ( P < 0.01 ).Conclusion Oridonin can inhibit metastasis of PC-3 cells effectively in a concentration-dependent manner probably by down-regulating the expression of VEGF,MMP-2 and MMP-9.

  18. Evaluation of RU58841 as an anti-androgen in prostate PC3 cells and a topical anti-alopecia agent in the bald scalp of stumptailed macaques.

    Science.gov (United States)

    Pan, H J; Wilding, G; Uno, H; Inui, S; Goldsmith, L; Messing, E; Chang, C

    1998-08-01

    The effect of androgen receptor transcriptional activation by RU58841, a nonsteroidal anti-androgen, was studied in the human prostate cancer PC3 cell line by cotransfection with wild-type androgen receptor (wt AR) and an androgen-responsive reporter (MMTV-ARE-CAT) construct. Anti-and rogens, hydroxyflutamide, and Casodex, and the antiestrogen, genistein, were studied in parallel for comparison with RU58841. The wt AR was activated only by the androgen dihydrotestosterone (DHT). Neither the anti-androgens nor antiestrogen can enhance AR transcriptional activity at 10(-11)-10(-7)M in PC3 cells. Hydroxyflutamide, RU58841, and Casodex, but not genistein, displayed competitively suppressive effects on DHT activation of wt AR. The potency of RU58841 was comparable to that of hydroxyflutamide. From this result, topical application of RU58841, which is considered to be a potential therapy for skin diseases, may induce systemic side effects. However, RU58841, on topical application, revealed a potent increase in density, thickening, and length of hair in the macaque model of androgenetic alopecia, whereas no systemic effects were detected. Together our results suggest that RU58841 may have potent antagonism to the wt AR and could be considered as a topically applied active anti-androgen for the treatment of androgen-dependent skin disorders, such as acne, androgenetic alopecia, and hirsutism.

  19. Roles of vimentin and 14-3-3 zeta/delta in the inhibitory effects of heparin on PC-3M cell proliferation and B16-F10-luc-G5 cells metastasis

    Institute of Scientific and Technical Information of China (English)

    Yah PAN; Xue-jun LI; Li-jun ZHONG; Hong ZHOU; Xin WANG; Kui CHEN; Hao-peng YANG; Yilixiati XIAOKAITI; Aikebaier MAIMAITI; Ling JIANG

    2012-01-01

    Aim:To investigate the inhibitory effects of heparin on PC-3M cells proliferation in vitro and B16-F10-luc-G5 cells metastasis in Balb/c nude mice and identify the protein expression patterns to elucidate the action mechanism of heparin.Methods:Human prostate cancer PC-3M cells were incubated with heparin 0.5 to 125 μg/mL for 24 h.The proliferation of PC-3M ceils was assessed by MTS assay.BrdU incoporation and Ki67 expression were detected using a high content screening (HCS) assay.The cell cycle and apoptosis of PC-3M cells were tested by flow cytometry.B16-F10-luc-G5 cardinoma cells were injected into the lateral tail vein of 6-week old male Balb/c nude mice and heparin 30 mg/kg was administered iv 30 min before and 24 h after injection.The metasis of B16-F10-luc-G5 cells was detected by bioluminescence assay.Activated partial thromboplastin time (APTT) and hemorheological parameters were measured on d 14 after injection of B16-F10-luc-G5 carcinoma cells in Balb/c mice.The global protein changes in PC-3M cells and frozen lung tissues from mice burdened with B16-F10-luc-G5 cells were determined by 2-dimensional gel electrophoresis and image analysis.The protein expression of vimentin and 14-3-3 zeta/delta was measured by Western blot.The mRNA transcription of vimentin,transforming growth factor (TGF)-β,E-cadherin,and αv-integrin was measured by RT-PCR.Results:Heparin 25 and 125 μg/mL significantly inhibited the proliferation,arrested the cells in G1 phase,and suppressed BrdU incorporation and Ki67 expression in PC-3M cells compared with the model group.But it had no significant effect on apoptosis of PC-3M cells.Heparin 30 mg/kg markedly inhibits the metastasis of B16-F10-luc-G5 cells on day 8.Additionally,heparin administration maintained relatively normal red blood hematocrit but had no influence on APTT in nude mice burdened with B16-F10-luc-G5 cells.Thirty of down-regulated protein spots were identified after heparin treatment,many of which are related to

  20. Effects of terazosin on cell proliferation and apoptosis in PC-3 cell line%特拉唑嗪诱导前列腺癌PC-3细胞凋亡的实验研究

    Institute of Scientific and Technical Information of China (English)

    郭彬; 卢小刚; 钟东亮; 吴文起; 欧莉莉

    2009-01-01

    目的 探讨α1 肾上腺素受体拮抗剂特拉唑嗪对激素非依赖性前列腺癌细胞株PC-3细胞凋亡的影响.方法 应用不同浓度特拉唑嗪处理对数生长期的PC-3细胞,以MTT比色法检测细胞生长抑制率,流式细胞术(FCM)检测细胞凋亡和细胞周期变化,Western-Blot检测凋亡相关蛋白Caspase-7和PARP表达的变化.结果应用15 μmol/L、25 μmol/L、50 μmol/L 特拉唑嗪分别处理PC-3细胞24 h及48 h后,随着药物浓度的增加和处理时间的延长,细胞生长受到抑制,凋亡细胞增多,部分细胞形态学结构破坏.Western-Blot法检测显示PC-3细胞凋亡的增加与PARP的降解有关,与Caspase-7的表达无明显关系.结论 特拉唑嗪对PC-3细胞的生长抑制呈剂量依赖关系,并可能通过Caspase-PARP凋亡通路诱导PC-3细胞凋亡.

  1. Cusp-latitude Pc3 spectra: band-limited and power-law components

    Directory of Open Access Journals (Sweden)

    P. V. Ponomarenko

    Full Text Available This work attempts to fill a gap in comparative studies of upstream-generated Pc3–4 waves and broad band ULF noise observed at cusp latitudes. We performed a statistical analysis of the spectral properties of three years of cusp-latitude ground magnetometer data, finding that the average daytime Pc3–4 spectra are characterized by two principal components: an upstream-related band-limited enhancement (‘signal’ and a power-law background (‘noise’ with S(f a  f -4 . Based on this information we developed an algorithm allowing for the deconvolution of these two components in the spectral domain. The frequency of the signal enhancement increases linearly with IMF magnitude as f [mHz] ~ 4.4 | BIMF | [nT], and its power maximizes around IMF cone angles qxB ~ 20 and 160° and at 10:30–11:00 MLT. Both spectral components exhibit similar semiannual variations with equinoctial maxima. The back-ground noise power grows with increasing southward Bz and remains nearly constant for northward Bz . Its diurnal variation resembles that of Pc5 field-line resonance power, with a maximum near 09:00 MLT. Both the band-limited signal and broad band noise components show power-law growth with solar wind velocity a V 5.71sw and a V 4.12sw, respectively. Thus, the effective signal-to-noise ratio increases with in-creasing Vsw. The observations suggest that the noise generation is associated with reconnection processes.

    Key words. Magnetospheric physics (magnetopause, cusp, and boundary layers; MHD waves and instabilities; solar wind magnetosphere interactions

  2. Determining propagation routes of Pc 3/4 pulsations to low latitudes with ground-based magnetometers.

    Science.gov (United States)

    Weygand, J. M.; Moldwin, M. B.; Berube, D.; Engebretson, M. J.; Rassoul, H. K.

    2001-12-01

    A number of Pc 3/4 pulsation events were identified during January, 2000. These events occurred only on the dayside magnetosphere and have frequencies consistent with previous IMF correlations. We have performed a comparison of the phase difference of Pc 3/4 pulsations with the MEASURE and MACCS magnetometer arrays, both of which employ GPS timing. The results suggest that most Pc 3/4 pulsations first arrive at low L values (L of ≈ 1.7). However, some cases appear to show no phase difference within the one second precision of the measurements. This study will focus on the ``ionospheric transistor'' model and the theory that magnetic upstream waves cross the magnetopause directly into the magnetosphere.

  3. Effects of apigenin on cell proliferation of human pancreatic carcinoma cell line BxPC-3 in vitro

    Institute of Scientific and Technical Information of China (English)

    Jiancang Ma; Qiang Li; Jun Zhao; Ying Guo; Qinghua Su; Zongzheng Ji

    2007-01-01

    Objective: To observe the effects of apigenin on cell proliferation of human pancreatic carcinoma cell line BxPC-3 in vitro.Methods :The inhibitive effects of apigenin at different concentrations (0 μmol/L, 100 μmol/L, 200 μmol/L, and 400 μmol/L)on human pancreatic carcinoma cell line BxPC-3 were detected by MTT assays, transmission electron microscope, agarose gel electrophoresis and flow cytometry. The immunohistochemistry was used to detect the expression of Bcl-2 and Bax gene. Results:Apigenin at different concentrations could inhibit the proliferation of human pancreatic carcinoma cell lines BxPC-3, and the inhibitive effect was dose-dependent. The cell cycle of pancreatic carcinoma cells was arrested at G2/M phase. The results of immunohistochemistry showed that the density of apigenin increased, and the expression of Bcl-2 gene was reduced gradually. At the same time the expression of Bax gene was enhanced. Conclusion: Apigenin could inhibit the proliferation of human pancreatic carcinoma cell lines BxPC-3 in vitro. The effect of apoptosis was accompanied with the expression of Bcl-2 decrease and Bax increase.

  4. Silencing nc886, a Non-Coding RNA, Induces Apoptosis of Human Endometrial Cancer Cells-1A In Vitro

    Science.gov (United States)

    Hu, Zhuoying; Zhang, Hongyu; Tang, Liangdan; Lou, Meng; Geng, Yanqing

    2017-01-01

    Background The role that nc886, a non-coding microRNA, plays in human endometrial cancer is unknown. The present study aimed to describe the functional role of nc886 in human endometrial cancer-1A (HEC-1A) cell line, which may provide another target for human endometrial cancer treatment. Material/Methods The expression levels of nv886 in normal human endometrial tissue and the early phase and late phase of human endometrial cancer tissues were determined and compared by fluorescence in situ hybridization (FISH). Small interference RNA (siRNA) was used to inhibit nc886, and cell proliferation was evaluated with the MTT test. mRNA levels of PKR, NF-κB, vascular endothelial growth factor (VEGF), and caspase-3 were determined against glyceraldehyde 3-phosphate dehydrogenase (GAPDH between the HEC-1A control group and the silenced group (nc886 silenced with siRNA) by real-time reverse transcription polymerase chain reaction (RT-PCR). The protein levels of PKR (total and phosphorylated form), NF-κB, VEGF, and caspase-3 were determined against GAPDH by Western blotting, and cell apoptosis was determined by flow cytometry. Results Our results indicated that a higher level of nc886 was expressed in the late phase of human endometrial cancer tissue, less than in the early phase but still higher than in normal human endometrial tissue. After nc886 was silenced, protein levels of p-PKR (phosphorylated PKR) and caspase-3 were increased, whereas NF-κB and VEGF were decreased. Conclusions The rate of apoptosis in the silenced group was increased and the rate of cell proliferation was slower in comparison to the control. PMID:28298621

  5. 547 An Earlier, More Severe Presentation of G6pc3 Deficiency in a Male Infant From Mexico

    OpenAIRE

    Cruz, Alonso

    2012-01-01

    Background Severe congenital neutropenia is a bone marrow failure syndrome characterized by severe neutropenia present from birth. We present a case of G6PC3 deficiency presenting at an earlier age, with a more severe clinical picture than previously reported. Case report A 3-month-old boy, born to nonconsanguineous parents was delivered by C-section at 35 weeks gestation. He was admitted to neonatal intensive care unit for prematurity and poor respiratory effort requiring mechanical ventilat...

  6. Microwave-mediated extracellular synthesis of metallic silver and zinc oxide nanoparticles using macro-algae (Gracilaria edulis) extracts and its anticancer activity against human PC3 cell lines.

    Science.gov (United States)

    Priyadharshini, Ramaramesh Indra; Prasannaraj, Govindaraj; Geetha, Natesan; Venkatachalam, Perumal

    2014-12-01

    A rapid and novel microwave-mediated protocol was established for extracellular synthesis of metallic silver (Ag) and zinc oxide (ZnO) nanoparticles using the extracts of macro-algae Gracilaria edulis (GE) and also examined its anticancer activity against human prostate cancer cell lines (PC3). The formation of silver nanoparticles (GEAgNPs) and zinc oxide nanoparticles (GEZnONPs) in the reaction mixture was determined by ultraviolet-visible spectroscopy. The synthesized Ag and ZnO nanoparticles were characterized by X-ray diffraction, Fourier transform infra-red spectroscopy, energy dispersive X-ray, and field emission scanning electron microscopy. The silver and zinc oxide nanoparticles were spherical and rod-shaped, respectively. Cell viability assays were carried out to determine the cytotoxic effects of AgNPs and ZnONPs against PC3 and normal African monkey kidney (VERO) cell line. The inhibitory concentration values were found to be 39.60, 28.55, 53.99 μg/mL and 68.49, 88.05, 71.98 μg/mL against PC3 cells and Vero cells for AgNPs, ZnONPs, and aqueous G. edulis extracts, respectively, at 48 h incubation period. As evidenced by acridine orange/ethidium bromide staining, the percentage of the apoptotic bodies was found to be 62 and 70 % for AgNPs and ZnONPs, respectively. The present results strongly suggest that the synthesized ZnONPs showed an effective anticancer activity against PC3 cell lines than AgNPs.

  7. Rapamycin inhibited the proliferation of prostate carcinoma cell line PC-3M-2B4 in vitro%雷帕霉素抑制人前列腺癌细胞增殖及其作用机制

    Institute of Scientific and Technical Information of China (English)

    郑航; 胡伟; 郑新民; 李世文; 王行环

    2011-01-01

    目的 观察雷帕霉素(Rapamycin)对体外培养的人前列腺癌PC-3M-2B4细胞增殖及凋亡的影响,探讨其机制.方法 分别用不同浓度的雷帕霉素(100、200、400、800μg/L)对细胞进行干预后,采用噻唑蓝(MTT)比色法检测细胞增殖变化,流式细胞术检测细胞凋亡变化,Western blot 法检测凋亡相关蛋白bcl-2及bax表达的变化.结果 雷帕霉素能明显抑制PC-3M-2B4细胞的增殖活性,此作用呈现量-效、时-效关系.雷帕霉素呈浓度依赖性诱导细胞凋亡.雷帕霉素作用PC-3M-2B4细胞后,细胞内凋亡抑制蛋白bcl-2的表达明显降低,bax蛋白的表达明显增加.结论 雷帕霉素能够通过调节凋亡相关蛋白bcl-2和bax的表达比例,诱导前列腺癌细胞凋亡,从而抑制肿瘤生长.%Objective To investigate the effects of Rapamycin on the growth and apoptosis of human prostate carcinoma cell line PC-3M-2B4. Methods The inhibitory effect of Rapamycin was observed at 100,200,400,800μg/L on the growth of human prostate carcinoma cell line PC-3M-2B4 in serum-free medium for different concentrations by methyl thiazol tetrazolium (MTF) assays. Flow cytometry (FCM)analysis was used to study the changes of cell apoptosis. The expression level of bcl-2 and bax was determined by Western blotting. Results Rapamycin caused dose-dependent inhibition on the growth of human prostate carcinoma cell line PC-3M-2B4 in a concentration-and time dependent manner. Rapamycin induced the apoptosis of PC-3M-2B4 cells in a concentration-dependent manner. The levels of bcl-2 protein were reduced gradually with the increase of concentration or action time. Conclusion Rapamycin, a mTOR inhibitor, inhibits the growth of human prostate cancer cell and induces apoptosis of human prostate cancer cell. mTOR might be a potential target for anti-prostate cancer.

  8. PUMA gene inhibits the growth of PC-3 Pancreatic carcinoma cells%PUMA基因转染对胰腺癌细胞生长的影响

    Institute of Scientific and Technical Information of China (English)

    张克君; 李德春; 朱新国; 朱东明; 赵志泓

    2006-01-01

    目的 探讨PUMA基因转染抑制胰腺肿瘤生长的体内外效果.方法 利用脂质体转染法将表达PUMA的质粒转染导入胰腺癌细胞株PC-3中,G418筛选出阳性克隆,Western和RT-PCR法检测PUMA转染后PC-3 PUMA的表达,流式细胞仪检测转染后细胞凋亡率;分别将转染PUMA的PC-3细胞(实验组)和未转染的PC-3细胞移植到裸鼠体内,比较裸鼠移植肿瘤的大小和重量以及PUMA表达.结果 PUMA表达质粒转染的PC-3细胞(PC-3/PUMA)稳定表达PUMA,其细胞凋亡率为(5.50 ± 0.90)%,明显高于未转染组的(1.073 ± 0.248)%和空载体转染组的(1.08 ± 0.35)%(P <0.05);裸鼠接种4周后PC-3/PUMA细胞成瘤率为70%,PC-3细胞和空载体PC-3细胞成瘤率为100%(P > 0.05),PC-3/PUMA细胞形成的肿瘤体积比PC-3细胞和空载体PC-3细胞明显减小(P <0.05),并且形成的肿瘤组织中PUMA高表达.结论 胰腺癌细胞中缺失PUMA基因表达,PUMA转染胰腺癌细胞后表达PUMA,并能促进细胞凋亡.

  9. Wave properties near the subsolar magnetopause - Pc 3-4 energy coupling for northward interplanetary magnetic field

    Science.gov (United States)

    Song, P.; Russell, C. T.; Strangeway, R. J.; Wygant, J. R.; Cattell, C. A.; Fitzenreiter, R. J.; Anderson, R. R.

    1993-01-01

    Strong slow mode waves in the Pc 3-4 frequency range are found in the magnetosheath close to the magnetopause. We have studied these waves at one of the ISEE subsolar magnetopause crossings using the magnetic field, electric field, and plasma measurements. We use the pressure balance at the magnetopause to calibrate the Fast Plasma Experiment data versus the magnetometer data. When we perform such a calibration and renormalization, we find that the slow mode structures are not in pressure balance and small scale fluctuations in the total pressure still remain in the Pc 3-4 range. Energy in the total pressure fluctuations can be transmitted through the magnetopause by boundary motions. The Poynting flux calculated from the electric and magnetic field measurements suggests that a net Poynting flux is transmitted into the magnetopause. The two independent measurements show a similar energy transmission coefficient. The transmitted energy flux is about 18 percent of the magnetic energy flux of the waves in the magnetosheath. Part of this transmitted energy is lost in the sheath transition layer before it enters the closed field line region. The waves reaching the boundary layer decay rapidly. Little wave power is transmitted into the magnetosphere.

  10. The third replicon of members of the Burkholderia cepacia Complex, plasmid pC3, plays a role in stress tolerance.

    Science.gov (United States)

    Agnoli, Kirsty; Frauenknecht, Carmen; Freitag, Roman; Schwager, Stephan; Jenul, Christian; Vergunst, Annette; Carlier, Aurelien; Eberl, Leo

    2014-02-01

    The metabolically versatile Burkholderia cepacia complex (Bcc) occupies a variety of niches, including the plant rhizosphere and the cystic fibrosis lung (where it is often fatal to the patient). Bcc members have multipartite genomes, of which the third replicon, pC3 (previously chromosome 3), has been shown to be a nonessential megaplasmid which confers virulence and both antifungal and proteolytic activity on several strains. In this study, pC3 curing was extended to cover strains of 16 of the 17 members of the Bcc, and the phenotypes conferred by pC3 were determined. B. cenocepacia strains H111, MCO-3, and HI2424 were previously cured of pC3; however, this had not proved possible in the epidemic strain K56-2. Here, we investigated the mechanism of this unexpected stability and found that efficient toxin-antitoxin systems are responsible for maintaining pC3 of strain K56-2. Identification of these systems allowed neutralization of the toxins and the subsequent deletion of K56-2pC3. The cured strain was found to exhibit reduced antifungal activity and was attenuated in both the zebrafish and the Caenorhabditis elegans model of infection. We used a PCR screening method to examine the prevalence of pC3 within 110 Bcc isolates and found that this replicon was absent in only four cases, suggesting evolutionary fixation. It is shown that plasmid pC3 increases the resistance of B. cenocepacia H111 to various stresses (oxidative, osmotic, high-temperature, and chlorhexidine-induced stresses), explaining the prevalence of this replicon within the Bcc.

  11. Ghrelin inhibits proliferation and increases T-type Ca{sup 2+} channel expression in PC-3 human prostate carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Diaz-Lezama, Nundehui; Hernandez-Elvira, Mariana [Laboratory of Neuroendocrinology, Institute of Physiology, Autonomous University of Puebla (BUAP), Puebla (Mexico); Sandoval, Alejandro [School of Medicine FES Iztacala, National Autonomous University of Mexico (UNAM), Tlalnepantla (Mexico); Monroy, Alma; Felix, Ricardo [Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), Mexico City (Mexico); Monjaraz, Eduardo, E-mail: emguzman@siu.buap.mx [Laboratory of Neuroendocrinology, Institute of Physiology, Autonomous University of Puebla (BUAP), Puebla (Mexico)

    2010-12-03

    Research highlights: {yields} Ghrelin decreases prostate carcinoma PC-3 cells proliferation. {yields} Ghrelin favors apoptosis in PC-3 cells. {yields} Ghrelin increase in intracellular free Ca{sup 2+} levels in PC-3 cells. {yields} Grelin up-regulates expression of T-type Ca{sup 2+} channels in PC-3 cells. {yields} PC-3 cells express T-channels of the Ca{sub V}3.1 and Ca{sub V}3.2 subtype. -- Abstract: Ghrelin is a multifunctional peptide hormone with roles in growth hormone release, food intake and cell proliferation. With ghrelin now recognized as important in neoplastic processes, the aim of this report is to present findings from a series of in vitro studies evaluating the cellular mechanisms involved in ghrelin regulation of proliferation in the PC-3 human prostate carcinoma cells. The results showed that ghrelin significantly decreased proliferation and induced apoptosis. Consistent with a role in apoptosis, an increase in intracellular free Ca{sup 2+} levels was observed in the ghrelin-treated cells, which was accompanied by up-regulated expression of T-type voltage-gated Ca{sup 2+} channels. Interestingly, T-channel antagonists were able to prevent the effects of ghrelin on cell proliferation. These results suggest that ghrelin inhibits proliferation and may promote apoptosis by regulating T-type Ca{sup 2+} channel expression.

  12. Satellite observations of the spatial extent and structure of Pc 3, 4, 5 pulsations near the magnetospheric equator

    Science.gov (United States)

    Singer, H. J.; Russell, C. T.; Kivelson, M. G.; Fritz, T. A.; Lennartsson, W.

    1979-01-01

    Simultaneous observations of Pc 3, 4, 5 pulsations by five satellites in the pre-noon local time sector at and near synchronous orbit are examined. The periods of these simultaneous pulsations are not the same at the different observation points. This difference is attributed to site dependent resonant conditions. The spatial properties of the temporal phenomenon are demonstrated with observations by ISEE-1 and -2 as they pass through oscillations in a spatially limited region. Fundamental and second harmonic standing Alfven waves are observed simultaneously on the same field line. The periods are consistent with model predictions when the measured plasma composition, which by mass consists mainly of singly ionized oxygen, is taken into account.

  13. Rapid induction of PC3/BTG2 gene by hepatopoietin or partial hepatectomy and its mRNA expression in hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    Zhi-Min Zhang; Dong Wang; Ge Wang; Chuan Chen; Zhi-Xiang Yang; Feng Jin; Jin-Lu San; Wen Xu; Qiong Li; Zeng-Peng Li

    2009-01-01

    BACKGROUND: The anti-proliferative gene, PC3 (pheoch-romocytoma cell 3)/BTG2 (B-cell translocation gene 2), is one of the early growth response genes and belongs to the BTG/Tob protein family. This study aimed to assess the effects of recombinant human hepatopoietin (HPO) and partial hepatectomy on rapidly induced expression of immediate-early genes and to investigate the expression of PC3/BTG2 mRNA in hepatocellular carcinoma (HCC) at different stages of progression. METHODS: After a rat model of partial hepatectomy was established, we investigated gene expression within 1 hour after 2/3 partial hepatectomy by representational difference analysis and in a primary cultured hepatocyte system. The expression levels of PC3/BTG2 from liver tissues of the rat model were assessed by RT-PCR and Northern blotting. Meanwhile, the expression of BTG2 mRNA in a tissue microarray of HCC was determined byin situ hybridization. RESULTS: The PC3/BTG2 gene was rapidly induced after 2/3 partial hepatectomy and its expression peaked within 1-2 hours after operation. HPO rapidly induced the expression of the genes c-fos, LRF-1, and PC3 in primary cultured rat hepatocytes, which might be one of the molecular mechanisms by which HPO stimulates hepatocyte proliferation. Positive BTG2 mRNA expression was detected in 71.19% (42/59) of the HCC samples an in 75% (3/4) of the normal liver tissue samples obtained from the region around the HCC tissues. PC3/BTG2 mRNA was located mainly in the cytoplasm of HCC cells and its expression was related to the degree of differentiation. CONCLUSIONS: Recombinant human HPO and partial hepatectomy rapidly induce the expression of the PC3/BTG2 gene. PC3/BTG2 mRNA is highly expressed in HCC cells and its expression is related to the degree of cell differentiation. The abnormal expression of PC3/BTG2 is closely related to the genesis and development of HCC, so PC3/BTG2 may play an important role in these processes.

  14. Oridonin induced the apoptosis of PC-3 cells and its mechanism%冬凌草甲素诱导人雄激素非依赖性前列腺癌PC-3细胞凋亡及其机制

    Institute of Scientific and Technical Information of China (English)

    李进; 杨罗艳; 吴洪涛

    2011-01-01

    Objective To observe the proliferation inhibition and apoptosis promotion effect of oridonin on PC-3 cells.Methods PC-3 cells were treated with different concentrations of oridonin.MTT assay and drug concentration-time survival curve were used to test the effect of oridonin on the PC-3 cells.The percentage of earlier apoptosis cells was analyzed by flow cytometry.The protein expression of caspase-3,Bcl-2,and Bax in the PC-3 cells was detected by Western blot.Results Oridonin effectively inhibited the proliferation of PC-3 cells in both concentration- and time-dependent manner,and the IC50 of PC-3 cells was 10.29 μmol/L.Hochest33258 staining and flow eytometry deteced that oridonin induced the apoptosis of PC-3 cells in a concentration-dependent manner (P < 0.05 ).Oridonin down-regulated Bcl-2,up-regulated Bax protein,and activated caspase-3 in a concentration-dependent manner in the PC-3 cells.Conclusion The apoptosis of PC-3 cells induced by oridonin might be associated with the mitochondrial pathway.%目的:探讨冬凌草甲素抑制人雄激素非依赖性前列腺癌细胞株PC-3细胞的增殖、诱导其凋亡的作用.方法:用不同浓度的冬凌草甲素干预PC-3细胞,通过MTT实验和细胞的药物浓度-时间生长曲线分析观察其对PC-3细胞活力的影响;用流式细胞仪分析PC-3早期凋亡细胞的百分率;Western印迹检测Bax Bcl-2和caspase-3蛋白表达的变化.结果:冬凌草甲素呈时间和浓度依赖性地抑制PC-3细胞增殖,药物抑制PC-3细胞活力的IC50约为10.29 μmol/L;凋亡细胞形态学鉴定、流式细胞仪检测结果均表明冬凌草甲素能以浓度依赖性方式诱导PC-3细胞凋亡(P<0.05);冬凌草甲素以浓度依赖性方式抑制PC-3细胞的Bcl-2蛋白表达,而上调Bax蛋白表达并活化caspaase-3.结论:冬凌草甲素可能通过线粒体途径诱导PC-3细胞凋亡.

  15. The Inhibitory Effects of an Antisense u-PAR Vector on Invasion of Highly Invasive Human Prostate Carcinoma PC-3M Cell Subclones

    Institute of Scientific and Technical Information of China (English)

    廖国宁; 李清芬; 冯友梅; 邓耀祖; 李卓娅; 龚非力; 马丁

    2003-01-01

    Summary: To observe the inhibitory effects of an antisense u-PAR vector on invasion of highly inva-sive PC-3M cell subclones, the effects of the antisense u-PAR on activity of MMP-9 in those highlyinvasive cell subclones were detected by a quantitative RT-PCR and zymography. The monolayer in-vasion assay and colony formation assay in soft agar were used. And tumorigenesis rate and invasionsby the cell subclones with or without the antisense u-PAR were observed in nude mice. It was foundthat in vitro growth of highly invasive PC-3M cell subclones transfected with the antisense u-PARwas declined, and the ability of anchorage-independent growth of those cell subclones was found de-creased sharply, with the inhibiting rate becoming 79 % and 60 %, respectively. Although the anti-sense u-PAR didn't change MMP-9 gene transcription, they could inhibit the activation of MMP-9 ofhighly invasive PC-3M cell subclones. Moreover, the tumorigenesis rate of the cell subclones with theantisense u-PAR decreased and the growth of a neoplasm also slowed down. Thet tests showed thedifference between experimental and control groups was statistically significant (P<0. 01). The anti-sense u-PAR vector could not only inhibit the invasion ability of highly invasive PC-3M cell subclonesin vitro but also restrain the growth of those cell subclones in vivo.

  16. Survival and differentiation defects contribute to neutropenia in glucose-6-phosphatase-β (G6PC3) deficiency in a model of mouse neutrophil granulocyte differentiation.

    Science.gov (United States)

    Gautam, S; Kirschnek, S; Gentle, I E; Kopiniok, C; Henneke, P; Häcker, H; Malleret, L; Belaaouaj, A; Häcker, G

    2013-08-01

    Differentiation of neutrophil granulocytes (neutrophils) occurs through several steps in the bone marrow and requires a coordinate regulation of factors determining survival and lineage-specific development. A number of genes are known whose deficiency disrupts neutrophil generation in humans and in mice. One of the proteins encoded by these genes, glucose-6-phosphatase-β (G6PC3), is involved in glucose metabolism. G6PC3 deficiency causes neutropenia in humans and in mice, linked to enhanced apoptosis and ER stress. We used a model of conditional Hoxb8 expression to test molecular and functional differentiation as well as survival defects in neutrophils from G6PC3(-/-) mice. Progenitor lines were established and differentiated into neutrophils when Hoxb8 was turned off. G6PC3(-/-) progenitor cells underwent substantial apoptosis when differentiation was started. Transgenic expression of Bcl-XL rescued survival; however, Bcl-XL-protected differentiated cells showed reduced proliferation, immaturity and functional deficiency such as altered MAP kinase signaling and reduced cytokine secretion. Impaired glucose utilization was found and was associated with ER stress and apoptosis, associated with the upregulation of Bim and Bax; downregulation of Bim protected against apoptosis during differentiation. ER-stress further caused a profound loss of expression and secretion of the main neutrophil product neutrophil elastase during differentiation. Transplantation of wild-type Hoxb8-progenitor cells into irradiated mice allowed differentiation into neutrophils in the bone marrow in vivo. Transplantation of G6PC3(-/-) cells yielded few mature neutrophils in bone marrow and peripheral blood. Transgenic Bcl-XL permitted differentiation of G6PC3(-/-) cells in vivo. However, functional deficiencies and differentiation abnormalities remained. Differentiation of macrophages from Hoxb8-dependent progenitors was only slightly disturbed. A combination of defects in differentiation

  17. 蝙蝠葛酚性碱对BxPC-3裸鼠的抑瘤作用及对bFGF表达的影响%Effects of phenolic alkaloids from menispermum dauricum on tumor inhibitory and expression of bFGF in BxPC-3 nude mice

    Institute of Scientific and Technical Information of China (English)

    苏云明; 崔艳; 李薇婕; 李宜航; 刘坤; 孟丹; 章艳

    2009-01-01

    目的 研究蝙蝠葛酚性碱(PAMD)对BxPC-3裸鼠的抑瘤作用及对肿瘤新生血管bFGF表达的影响,进一步探讨其作用机制.方法 建立BxPC-3裸鼠的动物模型,检测蝙蝠葛酚性碱对转移瘤的抑制率,同时应用SP免疫组织化学方法检测各组BxPC-3裸鼠肿瘤组织bFGF的表达水平.结果 蝙蝠葛酚性碱对BxPC-3裸鼠瘤组织具有抑制作用,高、中、低剂量组抑瘤率分别为34.91%、52.83%、41.51%,与模型对照组比较具有统计学意义(P<0.01);各剂量均能明显降低BxPC-3裸鼠瘤组织bFGF的表达水平.结论 蝙蝠葛酚性碱对BxPC-3裸鼠肿瘤具有明显的抑制作用,其机制可能是通过改善裸鼠免疫功能,抑制肿瘤新生血管形成来实现的.

  18. Cytosine deaminase adenoviral vector and 5-fluorocytosine selectively reduce breast cancer cells 1 million-fold when they contaminate hematopoietic cells: a potential purging method for autologous transplantation.

    Science.gov (United States)

    Garcia-Sanchez, F; Pizzorno, G; Fu, S Q; Nanakorn, T; Krause, D S; Liang, J; Adams, E; Leffert, J J; Yin, L H; Cooperberg, M R; Hanania, E; Wang, W L; Won, J H; Peng, X Y; Cote, R; Brown, R; Burtness, B; Giles, R; Crystal, R; Deisseroth, A B

    1998-07-15

    Ad.CMV-CD is a replication incompetent adenoviral vector carrying a cytomegalovirus (CMV)-driven transcription unit of the cytosine deaminase (CD) gene. The CD transcription unit in this vector catalyzes the deamination of the nontoxic pro-drug, 5-fluorocytosine (5-FC), thus converting it to the cytotoxic drug 5-fluorouracil (5-FU). This adenoviral vector prodrug activation system has been proposed for use in selectively sensitizing breast cancer cells, which may contaminate collections of autologous stem cells products from breast cancer patients, to the toxic effects of 5-FC, without damaging the reconstitutive capability of the normal hematopoietic cells. This system could conceivably kill even the nondividing breast cancer cells, because the levels of 5-FU generated by this system are 10 to 30 times that associated with systemic administration of 5-FU. The incorporation of 5-FU into mRNA at these high levels is sufficient to disrupt mRNA processing and protein synthesis so that even nondividing cells die of protein starvation. To test if the CD adenoviral vector sensitizes breast cancer cells to 5-FC, we exposed primary explants of normal human mammary epithelial cells (HMECs) and the established breast cancer cell (BCC) lines MCF-7 and MDA-MB-453 to the Ad.CMV-CD for 90 minutes. This produced a 100-fold sensitization of these epithelial cells to the effects of 48 hours of exposure to 5-FC. We next tested the selectivity of this system for BCC. When peripheral blood mononuclear cells (PBMCs), collected from cancer patients during the recovery phase from conventional dose chemotherapy-induced myelosuppression, were exposed to the Ad.CMV-CD for 90 minutes in serum-free conditions, little or no detectable conversion of 5-FC into 5-FU was seen even after 48 hours of exposure to high doses of 5-FC. In contrast, 70% of 5-FC was converted into the cytotoxic agent 5-FU when MCF-7 breast cancer cells (BCCs) were exposed to the same Ad.CMV-CD vector followed by 5-FC for

  19. Upregulation of ULK1 expression in PC-3 cells following tumor protein P53 transfection by sonoporation

    Science.gov (United States)

    WANG, YU; CHEN, YI-NI; ZHANG, WEI; YANG, YU; BAI, WEN-KUN; SHEN, E; HU, BING

    2016-01-01

    The aim of the present study was to investigate whether ultrasound combined with microbubbles was able to enhance liposome-mediated transfection of genes into human prostate cancer cells, and to examine the association between autophagy and tumor protein P53 (P53). An MTT assay was used to evaluate cell viability, while flow cytometry and fluorescence microscopy were used to measure gene transfection efficiency. Autophagy was observed using transmission electron microscopy. Reverse transcription-polymerase chain reaction (RT-PCR) and western blot analysis were used to assess the expression of autophagy-associated genes. The results of the present study revealed that cell viability was significantly reduced following successfully enhanced transfection of P53 by ultrasound combined with microbubbles. In addition, serine/threonine-protein kinase ULK1 levels were simultaneously upregulated. Castration-resistant prostate cancer is difficult to treat and is investigated in the present study. P53 has a significant role in a number of key biological functions, including DNA repair, apoptosis, cell cycle, autophagy, senescence and angiogenesis. Prior to the present study, to the best of our knowledge, increased transfection efficiency and reduced side effects have been difficult to achieve. Ultrasound is considered to be a ‘gentle’ technique that may be able to achieve increased transfection efficiency and reduced side effects. The results of the present study highlight a potential novel therapeutic strategy for the treatment of prostate cancer. PMID:26870270

  20. Protective effects of l-carnitine and piracetam against mitochondrial permeability transition and PC3 cell necrosis induced by simvastatin.

    Science.gov (United States)

    Costa, Rute A P; Fernandes, Mariana P; de Souza-Pinto, Nadja C; Vercesi, Aníbal E

    2013-02-15

    Mitochondrial oxidative stress followed by membrane permeability transition (MPT) has been considered as a possible mechanism for statins cytotoxicity. Statins use has been associated with reduced risk of cancer incidence, especially prostate cancer. Here we investigated the pathways leading to simvastatin-induced prostate cancer cell death as well as the mechanisms of cell death protection by l-carnitine or piracetam. These compounds are known to prevent and/or protect against cell death mediated by oxidative mitochondrial damage induced by a variety of conditions, either in vivo or in vitro. The results provide evidence that simvastatin induced MPT and cell necrosis were sensitive to either l-carnitine or piracetam in a dose-dependent fashion and mediated by additive mechanisms. When combined, l-carnitine and piracetam acted at concentrations significantly lower than they act individually. These results shed new light into both the cytotoxic mechanisms of statins and the mechanisms underlying the protection against MPT and cell death by the compounds l-carnitine and piracetam.

  1. 冬凌草甲素和survivin反义核苷酸对前列腺癌细胞作用的研究%Effects of survivin antisense oligodeoxynecleotides and Oridonin on PC-3 cells

    Institute of Scientific and Technical Information of China (English)

    李进; 杨罗艳; 吴洪涛

    2014-01-01

    Objective To explore the synergistic effects of survivin antisense oligonucleotides combined with Oridonin on growth, apoptosis, and the expression of survivin of PC-3 cells. Methods Human prostate carcinoma cells PC-3 on logarithmic growth phase were used in this study. The cell vitality was determined by MTT assay. The combination index (CI) was calculated using Pharmaconamics CalcuSynsoftware. The apoptotic rate was examined by flow cytometer (FCM). The expression of survivin was detected by Western Blot and Real-time Fluorescent Quantitation-PCR. Results After transfection with antisense Survivin RNAi, the proliferation of PC-3 cells was inhibited markedly. An obvious apoptosis was found in the transfected PC-3 cells. The inhibitory effect of combined administration of survivin antisense and Oridonin on cell proliferation was much stronger than that of the single way (P<0.01). It showed that there was a synergistic effect (Fa<0.80). Western Blot and RT-PCR assays demonstrated that survivin antisense and Oridonin all inhibited the expression of survivin(P <0.01). Conclusion Combined survivin antisense and Oridonin significantly inhibits cell proliferation, induces cell apoptosis and down-regulates survivin expression in PC-3 cells, indicating that survivin antisense and Oridonin have a synergistic effect on PC-3 cells.%目的:探讨冬凌草甲素联合survivin反义核苷酸(反义链)对前列腺癌PC-3细胞株增殖和凋亡以及survivin mRNA和蛋白的影响。方法常规培养PC-3细胞,用四甲基偶氮唑盐法(MTT法)检测survivin反义链联合冬凌草甲素对PC-3细胞增殖的影响;流式细胞仪(FCM)检测PC-3细胞凋亡率;以CalcuSyn药效学软件计算联合指数(CI)评价survivin反义链联合凌草甲素对PC-3细胞的联合效应,并通过荧光定量PCR和Western blot方法检测PC-3细胞survivin基因和蛋白表达变化。结果 survivin反义链转染PC-3细胞后,可以显著抑制PC-3细胞增殖,且能诱导PC

  2. Coffee inhibits nuclear factor-kappa B in prostate cancer cells and xenografts.

    Science.gov (United States)

    Kolberg, Marit; Pedersen, Sigrid; Mitake, Maiko; Holm, Kristine Lillebø; Bøhn, Siv Kjølsrud; Blomhoff, Heidi Kiil; Carlsen, Harald; Blomhoff, Rune; Paur, Ingvild

    2016-01-01

    Chronic inflammation contributes to prostate cancer and the transcription factor Nuclear Factor-kappa B (NF-κB) is constitutively active in most such cancers. We examine the effects of coffee on NF-κB and on the regulation of selected genes in human-derived prostate cancer cells (PC3) and in PC3 xenografts in athymic nude mice. PC3 cells stably transduced with an NF-κB-luciferase reporter were used both in vitro and for xenografts. NF-κB activity was measured by reporter assays, DNA binding and in vivo imaging. Gene expression was measured in PC3 cells, xenografts and tumor microenvironment by low-density arrays. Western blotting of activated caspases was used to quantify apoptosis. Coffee inhibited TNFα-induced NF-κB activity and DNA-binding in PC3 cells. Furthermore, coffee increased apoptosis and modulated expression of a number of inflammation- and cancer-related genes in TNFα-treated PC3 cells. In vivo imaging revealed a 31% lower NF-κB-luciferase activation in the xenografts of the mice receiving 5% coffee compared to control mice. Interestingly, we observed major changes in gene expression in the PC3 cells in xenografts as compared to PC3 cells in vitro. In PC3 xenografts, genes related to inflammation, apoptosis and cytoprotection were down-regulated in mice receiving coffee, and coffee also affected the gene expression in the xenograft microenvironment. Our data demonstrate that coffee inhibits NF-κB activity in PC3 cells in vitro and in xenografts. Furthermore, coffee modulates transcription of genes related to prostate cancer and inflammation. Our results are the first to suggest mechanistic links between coffee consumption and prostate cancer in an experimental mouse model.

  3. Adult siblings with homozygous G6PC3 mutations expand our understanding of the severe congenital neutropenia type 4 (SCN4 phenotype

    Directory of Open Access Journals (Sweden)

    Fernandez Bridget A

    2012-11-01

    Full Text Available Abstract Background Severe congenital neutropenia type 4 (SCN4 is an autosomal recessive disorder caused by mutations in the third subunit of the enzyme glucose-6-phosphatase (G6PC3. Its core features are congenital neutropenia and a prominent venous skin pattern, and affected individuals have variable birth defects. Oculocutaneous albinism type 4 (OCA4 is caused by autosomal recessive mutations in SLC45A2. Methods We report a sister and brother from Newfoundland, Canada with complex phenotypes. The sister was previously reported by Cullinane et al., 2011. We performed homozygosity mapping, next generation sequencing and conventional Sanger sequencing to identify mutations that cause the phenotype in this family. We have also summarized clinical data from 49 previously reported SCN4 cases with overlapping phenotypes and interpret the medical histories of these siblings in the context of the literature. Results The siblings’ phenotype is due in part to a homozygous mutation in G6PC3, [c.829C > T, p.Gln277X]. Their ages are 38 and 37 years respectively and they are the oldest SCN4 patients published to date. Both presented with congenital neutropenia and later developed Crohn disease. We suggest that the latter is a previously unrecognized SCN4 manifestation and that not all affected individuals have an intellectual disability. The sister also has a homozygous mutation in SLC45A2, which explains her severe oculocutaneous hypopigmentation. Her brother carried one SLC45A2 mutation and was diagnosed with “partial OCA” in childhood. Conclusions This family highlights that apparently novel syndromes can in fact be caused by two known autosomal recessive disorders.

  4. Cancer

    Science.gov (United States)

    ... cancer Non-Hodgkin lymphoma Ovarian cancer Pancreatic cancer Testicular cancer Thyroid cancer Uterine cancer Symptoms Symptoms of cancer ... tumor Obesity Pancreatic cancer Prostate cancer Stomach cancer Testicular cancer Throat or larynx cancer Thyroid cancer Patient Instructions ...

  5. Yes-mediated phosphorylation of focal adhesion kinase at tyrosine 861 increases metastatic potential of prostate cancer cells

    NARCIS (Netherlands)

    Chatterji, T.; Varkaris, A.S.; Parikh, N.U.; Song, J.H.; Cheng, C.J.; Schweppe, R.E.; Alexander, S.; Davis, J.W.; Troncoso, P.; Friedl, P.H.; Kuang, J.; Lin, S.H.; Gallick, G.E.

    2015-01-01

    To study the role of FAK signaling complexes in promoting metastatic properties of prostate cancer (PCa) cells, we selected stable, highly migratory variants, termed PC3 Mig-3 and DU145 Mig-3, from two well-characterized PCa cell lines, PC3 and DU145. These variants were not only increased migration

  6. 六磷酸肌醇对人胰腺癌细胞株PC-3和人胰腺原代培养细胞增殖分化的影响%The Influence of inositol hexaphosphate on proliferation and differentiation of human pancreatic adenocarcinoma cell line PC- 3 and human pancreatic primary culture cell

    Institute of Scientific and Technical Information of China (English)

    项海; 黄孝王; 宋靖; 项秉该

    2007-01-01

    目的 观察六磷酸肌醇(IP6)在不同浓度、不同时间作用下对胰腺癌细胞株PC-3和正常胰腺原代培养细胞生长、分化的影响.方法 直接细胞记数绘制生长抑制曲线、MTT法、流式细胞计检测细胞凋亡等方法观察PC-3细胞株和原代培养细胞增殖、分化特性.结果 IP6对PC-3胰腺癌细胞的抑制呈时间、剂量依赖性,10 mmol/L时抑制作用达到最强,5mmol/L时的抑制效果稍小于10 mmol/L;IP6在<5 mmol/L时对人胰腺原代培养细胞的增殖几乎无影响,5 mmol/L时有轻度的抑制作用,10 mmol/L有明显的抑制作用.结论 5 mmol/L的IP6既最大限度的杀伤肿瘤细胞,又最小程度的干扰非靶细胞,为最佳抑癌浓度.

  7. Pretargeted immunoPET of prostate cancer with an anti-TROP-2 x anti-HSG bispecific antibody in mice with PC3 xenografts

    NARCIS (Netherlands)

    Rij, C.M. van; Frielink, C.; Goldenberg, D.M.; Sharkey, R.M.; Franssen, G.M.; Lutje, S.; McBride, W.J.; Oyen, W.J.G.; Boerman, O.C.

    2015-01-01

    PURPOSE: Pretargeting with bispecific antibodies and radiolabeled hapten-peptides could be used to specifically target tumors with high target-to-background ratios. TF12 is a trivalent bispecific antibody that consists of two anti-TROP-2 Fab fragments and one anti-HSG (histamine-succinyl-glycine) Fa

  8. Induction of steroid sulfatase expression by tumor necrosis factor-α through phosphatidylinositol 3-kinase/Akt signaling pathway in PC-3 human prostate cancer cells

    OpenAIRE

    Suh, Bo-Young; Jung, Jin-Joo; Park, Nahee; Seong, Cheul-Hun; Im, Hee-Jung; Kwon, Yeojung; Kim, Donghak; Chun, Young-Jin

    2011-01-01

    Steroid sulfatase (STS) is responsible for the hydrolysis of aryl and alkyl steroid sulfates and has a pivotal role in regulating the formation of biologically active estrogens. STS may be considered a new promising drug target for treating estrogen-mediated carcinogenesis. However, the molecular mechanism of STS expression is not well-known. To investigate whether tumor necrosis factor (TNF)-α is able to regulate gene transcription of STS, we studied the effect of TNF-α on STS expression in ...

  9. Apoptosis induction by erucylphosphohomocholine via the 18 kDa mitochondrial translocator protein: implications for cancer treatment.

    Science.gov (United States)

    Veenman, Leo; Gavish, Moshe; Kugler, Wilfried

    2014-05-01

    Many types of cancer, for example glioblastoma, show resistance against current anti-cancer treatments. One reason is that they are not capable to effectively activate their intracellular cell death pathways. Novel treatments designed to overcome these deficiencies in cancer cells present promising concepts to eradicate chemotherapy-resistant cancer cells. One of these approaches includes the membrane seeking compound erucylphosphohomocholine (ErPC3) which is part of the latest generation of alkylphospholipid analogs developed over the last two-and-a-half decades. ErPC3 exerts potent antineoplastic effects in animal models and against established cancer cell lines including, for example, glioblastoma and different types of leukemia, while sparing their normal counterparts. Starting with a historical survey, we report here on the anticancer activity of ErPC3 and on ErPC3's established mechanisms of action. We cover the current knowledge on the induction of mitochondrial apoptosis by ErPC3, including its interaction with the 18 kDa translocator protein (TSPO). In addition we discuss other signaling pathways modulated by ErPC3. Interaction with the TSPO leads to activation of the mitochondrial apoptosis cascade. This includes cardiolipin oxidation at mitochondrial levels, collapse of the mitochondrial membrane potential, and release of cytochrome c, the initiating steps of the mitochondrial apoptosis cascade. Other pathways modulated by ErPC3 include different kinases for the PI3K/Akt/mTOR and the MAP kinase pathways. Furthermore, ErPC3's cytotoxic actions may include its effects on phosphatidylcholine synthesis to inhibit the endoplasmic reticulum enzyme CTP:phosphocholine cytidyltransferase. These basic research data hopefully will lead to effective approaches toward exploitation of ErPC3 for the treatment of cancer.

  10. Mangiferin inhibition of proliferation and induction of apoptosis in human prostate cancer cells is correlated with downregulation of B-cell lymphoma-2 and upregulation of microRNA-182.

    Science.gov (United States)

    Li, Minglin; Ma, Huili; Yang, Lixin; Li, Peng

    2016-01-01

    Mangiferin, a flavonoid extracted from the mango tree, possesses anti-inflammatory, antibacterial, anti-herpes simplex and antitumor activity, and is able to affect immune function. The present study investigated the anticancer effects of mangiferin treatment on PC3 human prostate cancer cells, and the potential underlying mechanisms. In the present study, an MTT assay was used to analyze the proliferation of PC3 cells. Subsequently, flow cytometry and colorimetric assay kits were utilized to measure the PC3 cell apoptotic rate. The expression levels of B-cell lymphoma-2 (Bcl-2) and microRNA-182 (miR-182) were detected using western blot analysis and quantitative reverse transcription-polymerase chain reaction, respectively. Finally, miR-182 and anti-miR-182 were transfected into PC3 cells, which were used to investigate the effects of mangiferin. Mangiferin treatment reduced the proliferation of PC3 human prostate cancer cells in a concentration- and time-dependent manner. In addition, mangiferin was able to promote apoptosis and induce the caspase-3 activity of PC3 human prostate cancer cells. Mangiferin treatment was also able to significantly reduce Bcl-2 expression levels and enhance miR-182 expression in PC3 cells. Finally, it was observed that mangiferin inhibited proliferation and induced apoptosis in PC3 human prostate cancer cells, and this effect was correlated with downregulation of Bcl-2 and upregulation of miR-182.

  11. DNMT1和DNMT3b基因干扰对胰腺癌BxPC-3细胞增殖和凋亡的影响%Effect of silencing DNMT1 and DNMT3b gene on the proliferation and apoptosis of pancreatic carcinoma BxPC-3 cells by RNA interference

    Institute of Scientific and Technical Information of China (English)

    肖卫东; 李勇; 邹叶青; 李学明; 蔡军; 曾林山

    2012-01-01

    目的 观察DNA甲基转移酶1(DNMT1)和DNA甲基转移酶3b(DNMT3b)基因干扰对胰腺癌BxPC-3细胞增殖和凋亡的影响.方法 利用LipofectamineTM 2000转染DNMT1和DNMT3b小分子干扰RNA (siRNA)至胰腺癌BxPC-3细胞.实验共分5组:DNMT1干扰组(转染DNMT1-siRNA)、DNMT3b干扰组(转染DNMT3b-siRNA)、双重干扰组(转染DNMT1+ DNMT3b-siRNA)、阴性对照组(转染negative-siRNA)和空白对照组(转染脂质体).转染48 h后,应用荧光定量聚合酶链反应(PCR)法和Western blot法分别检测细胞中DNMT1、DNMT3b mRNA和蛋白的表达水平;噻唑蓝(MTT)比色法检测细胞体外增殖活力;流式细胞仪检测细胞凋亡.结果 与空白对照组和阴性对照组比较,各干扰组的DNMT1和(或)DNMT3b mRNA及蛋白表达量均显著降低(P<0.01).DNMTI干扰组和双重干扰组的细胞生长抑制率分别为30.9%和28.3%,均显著高于DNMT3b干扰组的14.5% (P<0.01),而DNMT1干扰组和双重干扰组之间差异无统计学意义(P>0.05).空白对照组、阴性对照组、DNMT1干扰组、DNMT3b干扰组和双重干扰组的细胞凋亡率分别为3.74%、5.07%、44.46%、24.20%和39.24%,各干扰组的细胞凋亡率均比对照组显著增加(P<0.01),DNMT1干扰组与双重干扰组的细胞凋亡率均显著高于DNMT3b干扰组(P<0.01),而DNMT1干扰组与双重干扰组之间差异无统计学意义(P>0.05).结论 DNMT1和(或)DNMT3b基因表达下调后,能抑制胰腺癌BxPC-3细胞生长,并能诱导细胞凋亡.DNMT1单干扰的抑癌作用优于DNMT3b单干扰,DNMT1和DNMT3b双重干扰无明显的协同效应.%Objective To investigate the effect of silencing DNA methy transferas 1 (DNMT1) and DNMT3b gene on the proliferation and apoptosis of pancreatic carcinoma BxPC-3 cells by RNA interference.Methods DNMT1 and DNMT3b-siRNA were transfected into BxPC-3 cells mediated by LipofectamineTM 2000. BxPC-3 cells were divided into five groups:DNMT1 interference group

  12. A combined crossed beam and theoretical investigation of O(3P)+C3H3→C3H2+OH

    Science.gov (United States)

    Lee, Hohjai; Joo, Sun-Kyu; Kwon, Lee-Kyoung; Choi, Jong-Ho

    2004-02-01

    The radical-radical reaction dynamics of ground-state atomic oxygen [O(3P)] with propargyl radicals (C3H3) has first been investigated in a crossed beam configuration. The radical reactants O(3P) and C3H3 were produced by the photodissociation of NO2 and the supersonic flash pyrolysis of precursor propargyl bromide, respectively. A new exothermic channel of O(3P)+C3H3→C3H2+OH was identified and the nascent distributions of the product OH in the ground vibrational state (X 2Π:ν″=0) showed bimodal rotational excitations composed of the low- and high-N″ components without spin-orbit propensities. The averaged ratios of Π(A')/Π(A″) were determined to be 0.60±0.28. With the aid of ab initio theory it is predicted that on the lowest doublet potential energy surface, the reaction proceeds via the addition complexes formed through the barrierless addition of O(3P) to C3H3. The common direct abstraction pathway through a collinear geometry does not occur due to the high entrance barrier in our low collision energy regime. In addition, the major reaction channel is calculated to be the formation of propynal (CHCCHO)+H, and the counterpart C3H2 of the probed OH product in the title reaction is cyclopropenylidene (1c-C3H2) after considering the factors of barrier height, reaction enthalpy and structural features of the intermediates formed along the reaction coordinate. On the basis of the statistical prior and rotational surprisal analyses, the ratio of population partitioning for the low- and high-N″ is found to be about 1:2, and the reaction is described in terms of two competing addition-complex mechanisms: a major short-lived dynamic complex and a minor long-lived statistical complex. The observed unusual reaction mechanism stands in sharp contrast with the reaction of O(3P) with allyl radical (C3H5), a second significant conjugated hydrocarbon radical, which shows totally dynamic processes [J. Chem. Phys. 117, 2017 (2002)], and should be understood based upon the characteristic electronic structures and reactivity of the intermediates on the potential energy surface.

  13. α-Solanine Inhibits Invasion of Human Prostate Cancer Cell by Suppressing Epithelial-Mesenchymal Transition and MMPs Expression

    OpenAIRE

    Kun-Hung Shen; Alex Chien-Hwa Liao; Jui-Hsiang Hung; Wei-Jiunn Lee; Kai-Chieh Hu; Pin-Tsen Lin; Ruei-Fang Liao; Pin-Shern Chen

    2014-01-01

    α-Solanine, a naturally occurring steroidal glycoalkaloid found in nightshade (Solanum nigrum Linn.), was found to inhibit proliferation and induce apoptosis of tumor cells. However, the mechanism involved in suppression of cancer cell metastasis by α-solanine remains unclear. This study investigates the suppression mechanism of α-solanine on motility of the human prostate cancer cell PC-3. Results show that α-solanine reduces the viability of PC-3 cells. When treated with non-toxic doses of ...

  14. 蝙蝠葛酚性碱对BxPC-3荷瘤裸鼠细胞凋亡相关基因P53蛋白表达的影响%The Effect of Phenolic Alkaloids of Menispermum Dauricum(PAMD)on the Expression of Related Gene P53 of Cell Apoptosis of BxPC-3 Tumor-bearing Nude Mice

    Institute of Scientific and Technical Information of China (English)

    周忠光; 白云; 赵鑫; 范越; 王怀刚; 朱丹; 朱孝娟; 苏云明

    2011-01-01

    目的:观察蝙蝠葛酚性碱(PAMD)对胰腺癌(BXPC-3)荷瘤裸鼠肿瘤组织中P53蛋白表达的影响.方法:通过蛋白印迹技术(Western blotting)观察PAMD对胰腺癌细胞株BxPC-3皮下异位移植瘤细胞凋亡相关基因p53蛋白表达的影响.结果:PAMD能够显著降低胰腺癌细胞株BxPC-3裸鼠皮下异位移植瘤组织中p53蛋白表达量.结论:PAMD对胰腺癌细胞株BxPC-3裸鼠皮下异位移植瘤表现出明显抑制作用,能够有效的抑制肿瘤生长,其机理可能与PAMD能够诱导细胞凋亡及影响凋亡相关基因P53蛋白的表达有关.

  15. Berberine inhibits the proliferation of prostate cancer cells and induces G₀/G₁ or G₂/M phase arrest at different concentrations.

    Science.gov (United States)

    Lu, Wei; Du, Shanshan; Wang, Jiaqiang

    2015-05-01

    Prostate cancer is the second most common disease of the male reproductive system. Berberine is a quaternary ammonium salt that is extracted from plants. The aim of the current study was to explore the antitumor activity of berberine in prostate cancer cells and identify the underlying mechanism of its effects. PC3 human and RM‑1 mouse prostate cancer cells were treated with increasing concentrations of berberine, followed by analysis of the cell viability with an MTT assay. The results demonstrated that berberine markedly inhibited the proliferation of PC3 and RM‑1 cells, and that the inhibitory effects to PC3 and RM‑1 were enhanced in a concentration‑ and time‑dependent manner. Flow cytometry was used to analyze the cell cycle of PC3 human prostate cancer cells, and the results demonstrated that G0/G1 phase arrest was induced following treatment with 10 µM berberine (Pberberine (50 µM) the survival rate of PC3 cells at the G2/M phase was significantly increased compared with the cells treated with 10 µM berberine, which suggests that different cell cycle signaling pathways were activated when PC3 cells were treated with low and high concentrations of berberine. Thus, clarifying the mechanism underlying these effects in prostate cancer may provide novel molecular targets for prostate cancer therapy.

  16. Stem cell characteristics in prostate cancer cell lines.

    NARCIS (Netherlands)

    Pfeiffer, M.J.; Schalken, J.A.

    2010-01-01

    BACKGROUND: Recent studies indicate the presence of a small, stem-like cell population in several human cancers that is crucial for the tumour (re)population. OBJECTIVE: Six established prostate cancer (PCa) cell lines-DU145, DuCaP, LAPC-4, 22Rv1, LNCaP, and PC-3-were examined for their stem cell pr

  17. Elevated AKR1C3 expression promotes prostate cancer cell survival and prostate cell-mediated endothelial cell tube formation: implications for prostate cancer progressioan

    Directory of Open Access Journals (Sweden)

    Davis Jeffrey S

    2010-12-01

    Full Text Available Abstract Background Aldo-keto reductase (AKR 1C family member 3 (AKR1C3, one of four identified human AKR1C enzymes, catalyzes steroid, prostaglandin, and xenobiotic metabolism. In the prostate, AKR1C3 is up-regulated in localized and advanced prostate adenocarcinoma, and is associated with prostate cancer (PCa aggressiveness. Here we propose a novel pathological function of AKR1C3 in tumor angiogenesis and its potential role in promoting PCa progression. Methods To recapitulate elevated AKR1C3 expression in cancerous prostate, the human PCa PC-3 cell line was stably transfected with an AKR1C3 expression construct to establish PC3-AKR1C3 transfectants. Microarray and bioinformatics analysis were performed to identify AKR1C3-mediated pathways of activation and their potential biological consequences in PC-3 cells. Western blot analysis, reverse transcription-polymerase chain reaction (RT-PCR, enzyme-linked immunosorbent assay (ELISA, and an in vitro Matrigel angiogenesis assays were applied to validate the pro-angiogenic activity of PC3-AKR1C3 transfectants identified by bioinformatics analysis. Results Microarray and bioinformatics analysis suggested that overexpression of AKR1C3 in PC-3 cells modulates estrogen and androgen metabolism, activates insulin-like growth factor (IGF-1 and Akt signaling pathways, as well as promotes tumor angiogenesis and aggressiveness. Levels of IGF-1 receptor (IGF-1R and Akt activation as well as vascular endothelial growth factor (VEGF expression and secretion were significantly elevated in PC3-AKR1C3 transfectants in comparison to PC3-mock transfectants. PC3-AKR1C3 transfectants also promoted endothelial cell (EC tube formation on Matrigel as compared to the AKR1C3-negative parental PC-3 cells and PC3-mock transfectants. Pre-treatment of PC3-AKR1C3 transfectants with a selective IGF-1R kinase inhibitor (AG1024 or a non-selective phosphoinositide 3-kinases (PI3K inhibitor (LY294002 abolished ability of the cells

  18. Shifting p53-induced senescence to cell death by TIS21(/BTG2/Pc3) gene through posttranslational modification of p53 protein.

    Science.gov (United States)

    Choi, Ok Ran; Ryu, Min Sook; Lim, In Kyoung

    2016-09-01

    Cellular senescence and apoptosis can be regulated by p53 activity, although the underlying mechanism of the switch between the two events remains largely unknown. Cells exposed to cancer chemotherapy can escape to senescence phenotype rather than undergoing apoptosis. By employing adenoviral transduction of p53 or TIS21 genes, we observed shifting of p53 induced-senescence to apoptosis in EJ bladder cancer cells, which express H-RasV12 and mutant p53; transduction of p53 increased H-RasV12 expression along with senescence phenotypes, whereas coexpression with TIS21 (p53+TIS21) induced cell death rather than senescence. The TIS21-mediated switch of senescence to apoptosis was accompanied by nuclear translocation of p53 protein and its modifications on Ser-15 and Ser-46 phosphorylation and acetylations on Lys-120, -320, -373 and -382 residues. Mechanistically, TIS21(/BTG2) regulated posttranslational modification of p53 via enhancing miR34a and Bax expressions as opposed to inhibiting SIRT1 and Bcl2 expression. At the same time, TIS21 increased APAF-1 and p53AIP1 expressions, but inhibited the interaction of p53 with iASPP. In vitro tumorigenicity was significantly reduced in the p53+TIS21 expresser through inhibiting micro-colony proliferation by TIS21. Effect of TIS21 on the regulation of p53 activity was confirmed by knockdown of TIS21 expression by RNA interference. Therefore, we suggest TIS21 expression as an endogenous cell death inducer at the downstream of p53 gene, which might be useful for intractable cancer chemotherapy.

  19. Antilipolytic drug boosts glucose metabolism in prostate cancer

    DEFF Research Database (Denmark)

    Andersen, Kim Francis; Divilov, Vadim; Koziorowski, Jacek;

    2013-01-01

    The antilipolytic drug Acipimox reduces free fatty acid (FFA) levels in the blood stream. We examined the effect of reduced FFAs on glucose metabolism in androgen-dependent (CWR22Rv1) and androgen-independent (PC3) prostate cancer (PCa) xenografts.......The antilipolytic drug Acipimox reduces free fatty acid (FFA) levels in the blood stream. We examined the effect of reduced FFAs on glucose metabolism in androgen-dependent (CWR22Rv1) and androgen-independent (PC3) prostate cancer (PCa) xenografts....

  20. Hyaluronan-Based Therapy for Metastatic Prostate Cancer

    Science.gov (United States)

    2015-07-01

    cancer cell lines (PC3, DU145) correlate with greater tumorigenic and metastatic properties over prostate cancer cell lines (LNCaP) that do not...tumorigenic and metastatic properties (right). B) Cy5.5-labeled HA-NPs (50 µg/mL) or HA polymer (234.4 kDa) were incubated for 2 hours with PC3 cells. C...lysed with DISC IP lysis buffer (30 mM Tris, pH 7.4, 150 mM NaCl, 10% glycerol , 1% Triton X-100 with 1 mM PMSF, and 1 μg/mL each of aprotinin, leupeptin

  1. The Akt-inhibitor Erufosine induces apoptotic cell death in prostate cancer cells and increases the short term effects of ionizing radiation

    Directory of Open Access Journals (Sweden)

    Eibl Hans-Jörg

    2010-11-01

    Full Text Available Abstract Background and Purpose The phosphatidylinositol-3-kinase (PI3K/Akt pathway is frequently deregulated in prostate cancer and associated with neoplastic transformation, malignant progression, and enhanced resistance to classical chemotherapy and radiotherapy. Thus, it is a promising target for therapeutic intervention. In the present study, the cytotoxic action of the Akt inhibitor Erufosine (ErPC3 was analyzed in prostate cancer cells and compared to the cytotoxicity of the PI3K inhibitor LY294002. Moreover, the efficacy of combined treatment with Akt inhibitors and ionizing radiation in prostate cancer cells was examined. Materials and methods Prostate cancer cell lines PC3, DU145, and LNCaP were treated with ErPC3 (1-100 µM, LY294002 (25-100 µM, irradiated (0-10 Gy, or subjected to combined treatments. Cell viability was determined by the WST-1 assay. Apoptosis induction was analyzed by flow cytometry after staining with propidium iodide in a hypotonic citrate buffer, and by Western blotting using antibodies against caspase-3 and its substrate PARP. Akt activity and regulation of the expression of Bcl-2 family members and key downstream effectors involved in apoptosis regulation were examined by Western blot analysis. Results The Akt inhibitor ErPC3 exerted anti-neoplastic effects in prostate cancer cells, however with different potency. The anti-neoplastic action of ErPC3 was associated with reduced phosphoserine 473-Akt levels and induction of apoptosis. PC3 and LNCaP prostate cancer cells were also sensitive to treatment with the PI3K inhibitor LY294002. However, the ErPC3-sensitive PC3-cells were less susceptible to LY294002 than the ErPC3-refractory LNCaP cells. Although both cell lines were largely resistant to radiation-induced apoptosis, both cell lines showed higher levels of apoptotic cell death when ErPC3 was combined with radiotherapy. Conclusions Our data suggest that constitutive Akt activation and survival are

  2. Comparative uptake of polyamines by prostate and non-prostate cancer cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Srinath, P.; McQuarrie, S.A.; Suresh, M.R. E-mail: msuresh@pharmacy.ualberta.ca

    2002-05-01

    The Km and Vmax of [{sup 14}C]-radiolabeled polyamines were determined for PC-3 and AT3B-1 cell lines. With PC-3 Km values are in the following order: ornithine> spermidine> spermine> putrescine, while with AT3B-1 it was spermidine> ornithine> spermine> putrescine. To determine which of these polyamines exhibit higher accumulation, the relative uptake of all the four amines was studied with prostate (PC-3, AT3B-1, LNCaP) and non-prostate (MCF-7, KLN-205, OVCAR) cell lines at 10 and 20 {mu}M after 1 hour. Spermine and spermidine accumulated at higher levels in prostate (AT3B-1 and LNCaP) over non-prostate cell lines (p<0.01). Putrescine accumulated more in PC-3 and LNCaP than the non-prostate cancer cells.

  3. Survey of Differentially Methylated Promoters in Prostate Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Yipeng Wang

    2005-08-01

    Full Text Available DNA methylation, copy number in the genomes of three immortalized prostate epithelial, five cancer cell lines (LNCaP, PC3, PC3M, PC3M-Pro4, PC3MLN4 were compared using a microarray-based technique. Genomic DNA is cut with a methylation-sensitive enzyme Hpall, followed by linker ligation, polymerase chain reaction (PCR amplification, labeling, hybridization to an array of promoter sequences. Only those parts of the genomic DNA that have unmethylated restriction sites within a few hundred base pairs generate PCR products detectable on an array. Of 2732 promoter sequences on a test array, 504 (18.5% showed differential hybridization between immortalized prostate epithelial, cancer cell lines. Among candidate hypermethylated genes in cancer-derived lines, there were eight (CD44, CDKN1A, ESR1, PLAU, RARB, SFN, TNFRSF6, TSPY previously observed in prostate cancer, 13 previously known methylation targets in other cancers (ARHI, bcl-2, BRCA1, CDKN2C, GADD45A, MTAP, PGR, SLC26A4, SPARC, SYK, TJP2, UCHL1, WIT-1. The majority of genes that appear to be both differentially methylated, differentially regulated between prostate epithelial, cancer cell lines are novel methylation targets, including PAK6, RAD50, TLX3, PIR51, MAP2K5, INSR, FBN1, GG2-1, representing a rich new source of candidate genes used to study the role of DNA methylation in prostate tumors.

  4. Hsp90 C-terminal inhibitors exhibit antimigratory activity by disrupting the Hsp90α/Aha1 complex in PC3-MM2 cells.

    Science.gov (United States)

    Ghosh, Suman; Shinogle, Heather E; Garg, Gaurav; Vielhauer, George A; Holzbeierlein, Jeffrey M; Dobrowsky, Rick T; Blagg, Brian S J

    2015-02-20

    Human Hsp90 isoforms are molecular chaperones that are often up-regulated in malignances and represent a primary target for Hsp90 inhibitors undergoing clinical evaluation. Hsp90α is a stress-inducible isoform of Hsp90 that plays a significant role in apoptosis and metastasis. Though Hsp90α is secreted into the extracellular space under metastatic conditions, its role in cancer biology is poorly understood. We report that Hsp90α associates with the Aha1 co-chaperone and found this complex to localize in secretory vesicles and at the leading edge of migrating cells. Knockdown of Hsp90α resulted in a defect in cell migration. The functional role of Hsp90α/Aha1 was studied by treating the cells with various novobiocin-based Hsp90 C-terminal inhibitors. These inhibitors disrupted the Hsp90α/Aha1 complex, caused a cytoplasmic redistribution of Hsp90α and Aha1, and decreased cell migration. Structure-function studies determined that disruption of Hsp90α/Aha1 association and inhibition of cell migration correlated with the presence of a benzamide side chain, since an acetamide substituted analog was less effective. Our results show that disruption of Hsp90α/Aha1 interactions with novobiocin-based Hsp90 C-terminal inhibitors may limit the metastatic potential of tumors.

  5. SOST Inhibits Prostate Cancer Invasion.

    Directory of Open Access Journals (Sweden)

    Bryan D Hudson

    Full Text Available Inhibitors of Wnt signaling have been shown to be involved in prostate cancer (PC metastasis; however the role of Sclerostin (Sost has not yet been explored. Here we show that elevated Wnt signaling derived from Sost deficient osteoblasts promotes PC invasion, while rhSOST has an inhibitory effect. In contrast, rhDKK1 promotes PC elongation and filopodia formation, morphological changes characteristic of an invasive phenotype. Furthermore, rhDKK1 was found to activate canonical Wnt signaling in PC3 cells, suggesting that SOST and DKK1 have opposing roles on Wnt signaling in this context. Gene expression analysis of PC3 cells co-cultured with OBs exhibiting varying amounts of Wnt signaling identified CRIM1 as one of the transcripts upregulated under highly invasive conditions. We found CRIM1 overexpression to also promote cell-invasion. These findings suggest that bone-derived Wnt signaling may enhance PC tropism by promoting CRIM1 expression and facilitating cancer cell invasion and adhesion to bone. We concluded that SOST and DKK1 have opposing effects on PC3 cell invasion and that bone-derived Wnt signaling positively contributes to the invasive phenotypes of PC3 cells by activating CRIM1 expression and facilitating PC-OB physical interaction. As such, we investigated the effects of high concentrations of SOST in vivo. We found that PC3-cells overexpressing SOST injected via the tail vein in NSG mice did not readily metastasize, and those injected intrafemorally had significantly reduced osteolysis, suggesting that targeting the molecular bone environment may influence bone metastatic prognosis in clinical settings.

  6. Notch activation by phenethyl isothiocyanate attenuates its inhibitory effect on prostate cancer cell migration.

    Directory of Open Access Journals (Sweden)

    Su-Hyeong Kim

    Full Text Available Phenethyl isothiocyanate (PEITC is a promising cancer chemopreventive component of edible cruciferous vegetables with in vivo efficacy against prostate cancer in experimental rodents. Cancer chemopreventive response to PEITC is characterized by its ability to inhibit multiple oncogenic signaling pathways, including nuclear factor-κB, Akt, and androgen receptor. The present study demonstrates, for the first time, that PEITC treatment activates Notch signaling in malignant as well as normal human prostate cells. Exposure of human prostate cancer cells (LNCaP, PC-3, and DU145 and a normal human prostate epithelial cell line (PrEC to PEITC resulted in cleavage (active form of Notch1 and Notch2, and increased transcriptional activity of Notch. In PC-3 and LNCaP cells, PEITC treatment caused induction of Notch ligands Jagged1 and Jagged2 (PC-3, overexpression of γ-secretase complex components Presenilin1 and Nicastrin (PC-3, nuclear enrichment of cleaved Notch2, and/or up-regulation of Notch1, Notch2, Jagged1, and/or Jagged2 mRNA. PEITC-induced apoptosis in LNCaP and PC-3 cells was significantly attenuated by RNA interference of Notch2, but not by pharmacological inhibition of Notch1. Inhibition of PC-3 and LNCaP cell migration resulting from PEITC exposure was significantly augmented by knockdown of Notch2 protein as well as pharmacological inhibition of Notch1 activation. Nuclear expression of cleaved Notch2 protein was significantly higher in PC-3 xenografts from PEITC-treated mice and dorsolateral prostates from PEITC-fed TRAMP mice compared with respective control. Because Notch signaling is implicated in epithelial-mesenchymal transition and metastasis, the present study suggests that anti-metastatic effect of PEITC may be augmented by a combination regimen involving a Notch inhibitor.

  7. Inhibitory Effect of Isoflavones on Prostate Cancer Cells and PTEN Gene

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Objective To explore the mechanisms by which genistein and daidzein inhibit the growth of prostate cancer cells. Methods LNCaP and PC-3 cells were exposed to genistein and daidzein and cell viability was determined by MTT assay and cytotoxicity of the drugs by LDH test. Flow cytometry (FCM) was used to assess the cell cycle in LNCaP and PC-3 cells.Reverse transcription-polymerase chain reaction (RT-PCR) was applied to examine the expression of PTEN gene (a tumor suppressor gene), estrogen receptor alpha gene (Erα), estrogen receptor beta gene (Erβ), androgen receptor gene (AR) and vascular endothelial growth factor gene (VEGF). Results The viability of PC-3 and LNCaP cells decreased with increasing concentrations and exposure time of genistein and daidzein. Genistein increased G2/M phase cells in PC-3 cells while decreased S phase cells in LNCaP cells in a dose-dependent manner. Daidzein exerted no influence on the cell cycle of LNCaP and PC-3 cells, but the apoptosis percentage of LNCaP cells was elevated significantly by daidzein. Genistein induced the expression of PTEN gene in PC-3 and LNCaP cells. Daidzein induced the expression of PTEN gene in LNCaP but not in PC-3 cells. The expression of VEGF, Erα and Erβ genes decreased and AR gene was not expressed after incubation with genistein and daidzein in PC-3 cells. In LNCaP cells, the expression of VEGF and AR gene decreased but there was no change in the expression of Erα and Erβ gene after incubation with genistein and daidzein. Conclusion Genistein and daidzein exert a time- and dose-dependent inhibitory effect on PC-3 and LNCaP cells. The down-regulation of ER gene by daidzein influences the growth of PC-3 cells directly. The inhibition of PC-3 cells by genistein and that of LNCaP cells by genistein and daidzein may be via Akt pathway that is repressed by PTEN gene, which subsequently down-regulates the expression of AR and VEGF genes. Our results suggest that the expression of PTEN gene plays a key

  8. Effects of TRPC6 on invasibility of low-differentiated prostate cancer cells

    Institute of Scientific and Technical Information of China (English)

    Dong Wang; Xiang Li; Jing Liu; Jun Li; Li-Jun Li; Ming-Xing Qiu

    2014-01-01

    Objective: To study the expression of TRPC6 among prostate cancer cells, establish high expression cell lines of TRPC6, and to provide potential cell mode for prostate cancer oncogenesis and development. Methods: Occurrence and development of prostate cancer cells, PC3, PC-3 m DU145, 22 rv1, LNCaP and normal prostate epithelial cells in the PrEC TRPC6 expression level were detected by QPCR method. Calcium phosphate transfection method was used to package retrovirus pLEGFP-N1-TRPC6 and pLEGFP-N1-vector and infect the prostate cancer cells, a stable high expression of TRPC6 prostate cancer cells. Sable cell lines of TRPC6, matrix metalloproteinase (MMP) 2, MMP9 expression was detected by QPCR and Western blot. Change of cell invasion ability was detected by Transwell. Results: The expression level of prostate cancer cells TRPC6 were higher than control group PrEC cells. Among TPRC6 the expression of cell line PC 3 transfer potential wre the lowest, and high transfer cell line PC-3M express was the highest. Real-time fluorescent quantitative PCR and western blot results showed that after filter, the seventh generation of cell TRPC6 protein and mRNA expression levels were higher than the control group obviously. Transwell experimental results showed that the overexpression of TRPC6 could promote the invasion ability of PC3 prostate cancer cells. Conclusions: TRPC6 expressed in prostate cancer cells is in disorder, and its action may be associated with the invasion and metastasis of prostate cancer cells; successful establishment of stable high expression of TRPC6 prostate cancer cells primarily confirm the invasion-trigger ability of TRPC6 on prostate cancer, and lay down the foundation for exploring the TRPC6’s role in the occurrence and development of prostate cancer mechanism.

  9. Implication of expression of Nanog in prostate cancer cells and their stem cells.

    Science.gov (United States)

    Gong, Chen; Liao, Hui; Guo, Fengjin; Qin, Liang; Qi, Jun

    2012-04-01

    Recent studies suggested that the prostate cancer may arise from prostate cancer stem cells that share some same characteristics with normal stem cells. The purpose of this study was to detect the differences of Nanog expression between PC3 prostate cancer cell line and its tumor stem cells, and the relationship was preliminarily examined between Nanog and prostate cancer and its tumor stem cells. By using magnetic active cell sorting (MACS), we isolated a population of CD44(+)/CD133(+) prostate cancer cells that display stem cell characteristics from PC3 cell line. Immunohistochemistry revealed positive expressions of CD44, CD133 and α(2)β(1)-integin in the isolated cells. CCK-8 analysis showed that isolated cells had a strong proliferative ability. The formation of the cell spheres in serum-free medium and holoclones in serum-supplied medium showed that the cells were capable of self-renewing, indicating that the isolated cells were a population of cancer stem-like cells derived from PC3 cell line. Western blotting exhibited that the isolated cells had higher experession of Nanog, an embryonic stem marker, as compared with PC3 cells. Our study showed that Nanog might be helpful in sustaining the self-renewal and the undifferentiation of prostate cancer stem cells, and may serve as a marker for prostate cancer stem cells for isolation and identification.

  10. Survival Signaling in Prostate Cancer: Role of Androgen Receptor and Integrins in Regulating Survival

    Science.gov (United States)

    2011-01-01

    negative regulator of PI3K signaling, is lost in ~30% of clinical prostate cancers and in ~60% of metastatic cancers, resulting in constitutive...AR1 cells treated with vehicle (Etoh), 10nM Casodex ( Caso ), or 10nM RU486 (RU). F) Viability of PC3-AR1 or AR2 cells treated with Casodex in the

  11. Effects of eicosapentaenoic acid and docosahexaenoic acid on prostate cancer cell migration and invasion induced by tumor-associated macrophages.

    Directory of Open Access Journals (Sweden)

    Cheng-Chung Li

    Full Text Available Eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA are the major n-3 polyunsaturated fatty acids (PUFAs in fish oil that decrease the risk of prostate cancer. Tumor-associated macrophages (TAMs are the main leukocytes of intratumoral infiltration, and increased TAMs correlates with poor prostate cancer prognosis. However, the mechanism of n-3 PUFAs on prostate cancer cell progression induced by TAMs is not well understood. In this study, we investigated the effects of EPA and DHA on modulating of migration and invasion of prostate cancer cells induced by TAMs-like M2-type macrophages. PC-3 prostate cancer cells were pretreated with EPA, DHA, or the peroxisome proliferator-activated receptor (PPAR-γ antagonist, GW9662, before exposure to conditioned medium (CM. CM was derived from M2-polarized THP-1 macrophages. The migratory and invasive abilities of PC-3 cells were evaluated using a coculture system of M2-type macrophages and PC-3 cells. EPA/DHA administration decreased migration and invasion of PC-3 cells. The PPAR-γ DNA-binding activity and cytosolic inhibitory factor κBα (IκBα protein expression increased while the nuclear factor (NF-κB p65 transcriptional activity and nuclear NF-κB p65 protein level decreased in PC-3 cells incubated with CM in the presence of EPA/DHA. Further, EPA/DHA downregulated mRNA expressions of matrix metalloproteinase-9, cyclooxygenase-2, vascular endothelial growth factor, and macrophage colony-stimulating factor. Pretreatment with GW9662 abolished the favorable effects of EPA/DHA on PC-3 cells. These results indicate that EPA/DHA administration reduced migration, invasion and macrophage chemotaxis of PC-3 cells induced by TAM-like M2-type macrophages, which may partly be explained by activation of PPAR-γ and decreased NF-κB p65 transcriptional activity.

  12. Exploring the Presence of microDNAs in Prostate Cancer Cell Lines, Tissue, and Sera of Prostate Cancer Patients and its Possible Application as Biomarker

    Science.gov (United States)

    2016-04-01

    LnCap (PSA,  hK2  and  AR  positive), C4-2, and PC-3 (non-­‐tranformed  prostate   epithelium )) and ovarian (ES2 and OVCAR-8) cancer cell...PC-3 & C4-2, (non-tranformed prostate epithelium ) and two ovarian cancer cell lines (ES2 and OVCAR-8). The summary of isolation of microDNA in...kidney, liver, lung , skeletal muscle, spleen, sperm, testis and thymus) (5). EccDNA sequences were then enriched by multiple displacement amplification

  13. RhoC and ROCKs regulate cancer cell interactions with endothelial cells.

    Science.gov (United States)

    Reymond, Nicolas; Im, Jae Hong; Garg, Ritu; Cox, Susan; Soyer, Magali; Riou, Philippe; Colomba, Audrey; Muschel, Ruth J; Ridley, Anne J

    2015-06-01

    RhoC is a member of the Rho GTPase family that is implicated in cancer progression by stimulating cancer cell invasiveness. Here we report that RhoC regulates the interaction of cancer cells with vascular endothelial cells (ECs), a crucial step in the metastatic process. RhoC depletion by RNAi reduces PC3 prostate cancer cell adhesion to ECs, intercalation between ECs as well as transendothelial migration in vitro. Depletion of the kinases ROCK1 and ROCK2, two known RhoC downstream effectors, similarly decreases cancer interaction with ECs. RhoC also regulates the extension of protrusions made by cancer cells on vascular ECs in vivo. Transient RhoC depletion is sufficient to reduce both early PC3 cell retention in the lungs and experimental metastasis formation in vivo. Our results indicate RhoC plays a central role in cancer cell interaction with vascular ECs, which is a critical event for cancer progression.

  14. Cavin-1/PTRF alters prostate cancer cell-derived extracellular vesicle content and internalization to attenuate extracellular vesicle-mediated osteoclastogenesis and osteoblast proliferation

    Directory of Open Access Journals (Sweden)

    Kerry L. Inder

    2014-06-01

    Full Text Available Background: Tumour-derived extracellular vesicles (EVs play a role in tumour progression; however, the spectrum of molecular mechanisms regulating EV secretion and cargo selection remain to be fully elucidated. We have reported that cavin-1 expression in prostate cancer PC3 cells reduced the abundance of a subset of EV proteins, concomitant with reduced xenograft tumour growth and metastasis. Methods: We examined the functional outcomes and mechanisms of cavin-1 expression on PC3-derived EVs (PC3-EVs. Results: PC3-EVs were internalized by osteoclast precursor RAW264.7 cells and primary human osteoblasts (hOBs in vitro, stimulating osteoclastogenesis 37-fold and hOB proliferation 1.5-fold, respectively. Strikingly, EVs derived from cavin-1-expressing PC3 cells (cavin-1-PC3-EVs failed to induce multinucleate osteoblasts or hOB proliferation. Cavin-1 was not detected in EVs, indicating an indirect mechanism of action. EV morphology, size and quantity were also not affected by cavin-1 expression, suggesting that cavin-1 modulated EV cargo recruitment rather than release. While cavin-1-EVs had no osteoclastogenic function, they were internalized by RAW264.7 cells but at a reduced efficiency compared to control EVs. EV surface proteins are required for internalization of PC3-EVs by RAW264.7 cells, as proteinase K treatment abolished uptake of both control and cavin-1-PC3-EVs. Removal of sialic acid modifications by neuraminidase treatment increased the amount of control PC3-EVs internalized by RAW264.7 cells, without affecting cavin-1-PC3-EVs. This suggests that cavin-1 expression altered the glycosylation modifications on PC3-EV surface. Finally, cavin-1 expression did not affect EV in vivo tissue targeting as both control and cavin-1-PC3-EVs were predominantly retained in the lung and bone 24 hours after injection into mice. Discussion: Taken together, our results reveal a novel pathway for EV cargo sorting, and highlight the potential of utilizing

  15. 沉默DNMT1和DNMT3b基因对胰腺癌BxPC-3细胞p16,RASSF1A基因启动子甲基化的影响%Effect of gene silencing of DNMT1 and DNMT3b on the methylation in the promoter region of p 16 and RASSF1A gene in pancreatic carcinoma BxPC-3 cells

    Institute of Scientific and Technical Information of China (English)

    肖卫东; 李勇; 邹叶青; 李学明; 蔡军; 曾林山; 胡伟

    2012-01-01

    目的:探讨沉默DNMT1和DNMT3b基因对胰腺癌BxPC-3细胞p16,RASSF1A基因启动子甲基化的影响.方法:将胰腺癌BxPC-3细胞分为5组:DNMT1干扰组(转染DNMT1-siRNA),DNMT3b干扰组(转染DNMT3b-siRNA),双重干扰组(转染DNMT1+DNMT3b-siRNA),阴性对照组(转染阴性siRNA)和空白对照组(转染脂质体).转染48 h后,应用荧光定最PCR法和Western blot法分别检测细胞中DNMT1和DNMT3b的mRNA及蛋白的表达水平;甲基化特异性PCR法检测p16和RASSF1A基因启动子甲基化.结果:与空白对照组和阴性对照组比较,各干扰组目的基因的mRNA及蛋白表达量均明显降低(均P<0.01).空白对照组与阴性对照组p16和RASSF1A基因甲基化阳性;DNMT1干扰组和双重干扰组p16基因甲基化阴性,RASSF1A基因部分甲基化;DNMT3b干扰组p16基因部分甲基化,RASSF1A基因甲基化阳性.结论:DNMT1单干扰对胰腺癌BxPC-3细胞p16和RASSF1A基因的去甲基化作用优于DNMT3b单干扰,DNMT1和DNMT3b双重干扰无明显的协同效应;提示DNMT1是胰腺癌去甲基化治疗的一个有效靶点.%Objective: To investigate the effect of gene silencing of DNMT1 and DNMT3b on methylation in the promoter region of pl6 and RASSF1A gene in pancreatic carcinoma BxPC-3 cells.Methods: The pancreatic carcinoma BxPC-3 cells were divided into five groups, which included the DNMT1 interference group (transfected with DNMTl-siRNA), DNMT3b interference group (transfected with DNMT3b-siRNA), double interference group (transfected with DNMTl+DNMT3b-siRNA), negative control group (transfected negative-siRNA) and blank control group (transfected with lipofectamine). Forty-eight hours after transfection, the mRNA and protein expression of DNMT1 and DNMT3b were analyzed by real-time RT-PCR and Western blot, and the methylation status in the promoter region of pl6 and RASSF1A gene was detected with methylation-specific PCR (MSP).Results: Compared with the negative or blank control group, the m

  16. Arsenic trioxide enhances the radiation sensitivity of androgen-dependent and -independent human prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Hui-Wen Chiu

    Full Text Available Prostate cancer is the most common malignancy in men. In the present study, LNCaP (androgen-sensitive human prostate cancer cells and PC-3 cells (androgen-independent human prostate cancer cells were used to investigate the anti-cancer effects of ionizing radiation (IR combined with arsenic trioxide (ATO and to determine the underlying mechanisms in vitro and in vivo. We found that IR combined with ATO increases the therapeutic efficacy compared to individual treatments in LNCaP and PC-3 human prostate cancer cells. In addition, combined treatment showed enhanced reactive oxygen species (ROS generation compared to treatment with ATO or IR alone in PC-3 cells. Combined treatment induced autophagy and apoptosis in LNCaP cells, and mainly induced autophagy in PC-3 cells. The cell death that was induced by the combined treatment was primarily the result of inhibition of the Akt/mTOR signaling pathways. Furthermore, we found that the combined treatment of cells pre-treated with 3-MA resulted in a significant change in AO-positive cells and cytotoxicity. In an in vivo study, the combination treatment had anti-tumor growth effects. These novel findings suggest that combined treatment is a potential therapeutic strategy not only for androgen-dependent prostate cancer but also for androgen-independent prostate cancer.

  17. Prazosin Displays Anticancer Activity against Human Prostate Cancers: Targeting DNA, Cell Cycle

    Directory of Open Access Journals (Sweden)

    Ssu-Chia Lin

    2007-10-01

    Full Text Available Quinazoline-based α1,-adrenoceptor antagonists, in particular doxazosin, terazosin, are suggested to display antineoplastic activity against prostate cancers. However, there are few studies elucidating the effect of prazosin. In this study, prazosin displayed antiproliferative activity superior to that of other α1-blockers, including doxazosin, terazosin, tamsulosin, phentolamine. Prazosin induced G2 checkpoint arrest, subsequent apoptosis in prostate cancer PC-3, DU-145, LNCaP cells. In p53-null PC-3 cells, prazosin induced an increase in DNA str, breaks, ATM/ATR checkpoint pathways, leading to the activation of downstream signaling cascades, including Cdc25c phosphorylation at Ser216, nuclear export of Cdc25c, cyclin-dependent kinase (Cdk 1 phosphorylation at Tyr15. The data, together with sustained elevated cyclin A levels (other than cyclin B1 levels, suggested that Cdki activity was inactivated by prazosin. Moreover, prazosin triggered mitochondria-mediated, caspaseexecuted apoptotic pathways in PC-3 cells. The oral administration of prazosin significantly reduced tumor mass in PC-3-derived cancer xenografts in nude mice. In summary, we suggest that prazosin is a potential antitumor agent that induces cell apoptosis through the induction of DNA damage stress, leading to Cdki inactivation, G2 checkpoint arrest. Subsequently, mitochondriamediated caspase cascades are triggered to induce apoptosis in PC-3 cells.

  18. Quantitative comparison of cancer and normal cell adhesion using organosilane monolayer templates: an experimental study on the anti-adhesion effect of green-tea catechins.

    Science.gov (United States)

    Sakamoto, Rumi; Kakinuma, Eisuke; Masuda, Kentaro; Takeuchi, Yuko; Ito, Kosaku; Iketaki, Kentaro; Matsuzaki, Takahisa; Nakabayashi, Seiichiro; Yoshikawa, Hiroshi Y; Yamamoto, Hideaki; Sato, Yuko; Tanii, Takashi

    2016-09-01

    The main constituent of green tea, (-)-Epigallocatechin-3-O-gallate (EGCG), is known to have cancer-specific chemopreventive effects. In the present work, we investigated how EGCG suppresses cell adhesion by comparing the adhesion of human pancreatic cancer cells (AsPC-1 and BxPC-3) and their counterpart, normal human embryonic pancreas-derived cells (1C3D3), in catechin-containing media using organosilane monolayer templates (OMTs). The purpose of this work is (1) to evaluate the quantitativeness in the measurement of cell adhesion with the OMT and (2) to show how green-tea catechins suppress cell adhesion in a cancer-specific manner. For the first purpose, the adhesion of cancer and normal cells was compared using the OMT. The cell adhesion in different type of catechins such as EGCG, (-)-Epicatechin-3-O-gallate (ECG) and (-)-Epicatechin (EC) was also evaluated. The measurements revealed that the anti-adhesion effect of green-tea catechins is cancer-specific, and the order is EGCG≫ECG>EC. The results agree well with the data reported to date, showing the quantitativeness of the new method. For the second purpose, the contact area of cells on the OMT was measured by reflection interference contrast microscopy. The cell-OMT contact area of cancer cells decreases with increasing EGCG concentration, whereas that of normal cells remains constant. The results reveal a twofold action of EGCG on cancer cell adhesion-suppressing cell attachment to a candidate adhesion site and decreasing the contact area of the cells-and validates the use of OMT as a tool for screening cancer cell adhesion.

  19. 那可丁对人胰腺癌BxPC3细胞中HIF-1α及其靶基因VEGF表达的影响

    Institute of Scientific and Technical Information of China (English)

    张翠芳; 赵秋; 柯晓煜; 廖宇圣

    2010-01-01

    @@ 缺氧诱导因子-1α(HIF-1α)是一种在哺乳动物组织中广泛存在的转录因子,它可诱导VEGF转录活性的增强和表达增加,在肿瘤细胞的能量代谢、血管生成、促进肿瘤增殖和转移中起重要作用[1].因此,抑制HIF-1α可能作为恶性肿瘤治疗的一个靶点.那可丁(noscapine)是一种阿片类生物碱.最新研究发现,那可丁能阻断HIF-1α的表达.此外,它还有抗血管形成的作用[2].本实验观察不同浓度的那可丁在氯化钴(CoCl_2)诱导缺氧的状态下对人胰腺癌细胞株BxPC3细胞中HIF-1α、VEGF基因表达的影响,探讨那可丁作为新的化疗药物治疗胰腺癌的可行性.

  20. Integrin β4 and vinculin contained in exosomes are potential markers for progression of prostate cancer associated with taxane-resistance.

    Science.gov (United States)

    Kawakami, Kyojiro; Fujita, Yasunori; Kato, Taku; Mizutani, Kosuke; Kameyama, Koji; Tsumoto, Hiroki; Miura, Yuri; Deguchi, Takashi; Ito, Masafumi

    2015-07-01

    Treatment with taxanes for castration-resistant prostate cancer often leads to the development of resistance. It has been recently demonstrated that exosomes present in the body fluids contain proteins and RNAs in the cells from which they are derived and could serve as a diagnostic marker for various diseases. In the present study, we aimed to identify proteins contained in exosomes that could be markers for progression and taxane-resistance of prostate cancer. Exosomes were isolated by differential centrifugation from the culture medium of taxane-resistant human prostate cancer PC-3 cells (PC-3R) and their parental PC-3 cells. Isolated exosomes were subjected to iTRAQ-based quantitative proteomic analysis. Exosomes were also isolated from the culture medium by using anti-CD9 antibody-conjugated magnetic beads. Protein expression was knocked down by siRNA transfection followed by analysis of the silencing effects. Proteomic analysis showed that integrin β4 (ITGB4) and vinculin (VCL) were upregulated in exosomes derived from PC-3R cells compared to PC-3 cells. The elevation of ITGB4 and VCL was confirmed in exosomes captured by anti-CD9 antibody from the culture medium of PC-3R cells. Silencing of ITGB4 and VCL expression did not affect proliferation and taxane-resistance of PC-3R cells, but ITGB4 knockdown attenuated both cell migration and invasion and VCL knockdown reduced invasion. Our results suggest that ITGB4 and VCL in exosomes could be useful markers for progression of prostate cancer associated with taxane-resistance, providing the basis for development of an exosome-based diagnostic system.

  1. Anterior gradient protein-2 is a regulator of cellular adhesion in prostate cancer.

    Directory of Open Access Journals (Sweden)

    Diptiman Chanda

    Full Text Available Anterior Gradient Protein (AGR-2 is reported to be over-expressed in many epithelial cancers and promotes metastasis. A clear-cut mechanism for its observed function(s has not been previously identified. We found significant upregulation of AGR-2 expression in a bone metastatic prostate cancer cell line, PC3, following culturing in bone marrow-conditioned medium. Substantial AGR-2 expression was also confirmed in prostate cancer tissue specimens in patients with bone lesions. By developing stable clones of PC3 cells with varying levels of AGR-2 expression, we identified that abrogation of AGR-2 significantly reduced cellular attachment to fibronectin, collagen I, collagen IV, laminin I and fibrinogen. Loss of cellular adhesion was associated with sharp decrease in the expression of α4, α5, αV, β3 and β4 integrins. Failure to undergo apoptosis following detachment is a hallmark of epithelial cancer metastasis. The AGR-2-silenced PC3 cells showed higher resistance to Tumor necrosis factor-related apoptosis- inducing ligand (TRAIL induced apoptosis in vitro. This observation was also supported by significantly reduced Caspase-3 expression in AGR-2-silenced PC3 cells, which is a key effector of both extrinsic and intrinsic death signaling pathways. These data suggest that AGR-2 influence prostate cancer metastasis by regulation of cellular adhesion and apoptosis.

  2. Radio-sensitization of Prostate Cancer Cells by Monensin Treatment and its associated Gene Expression Profiling Changes

    Science.gov (United States)

    Zhang Ye; Rohde, Larry H.; Wu, Honglu

    2008-01-01

    Radio-resistant or recurrent prostate cancer represents a serious health risk for approximately 20%-30% of patients treated with primary radiation therapy for clinically localized prostate cancer. Here, we investigated the effect of monensin on sensitizing radiation mediated cell killing of two radio-resistant prostate cell lines Lncap (P53+ and AR+) and PC3 (P53- and AR-). Treatment with monensin alone (5 micromoles-20 micromoles) showed a significant direct cell killing of Lncap (10-30%), but not PC3 cells. Monensin was also shown to successfully sensitize Lncap cells to X-ray radiation (2Gy-10Gy) mediated cell death, up to 50% of killing with the combined treatment. To better understand the mechanisms of radio-resistance of these two cell lines and their different response to monensin, the apoptosis related gene expression profiles in both cell lines were analyzed using cDNA PCR array. Without any treatment, PC3 showed a much higher expression level of antiapoptosis genes than Lncap in the BCL2 family, the caspase/card family and the TNF ligand/receptor family. At 2 hr after 20 micormolar monensin treatment alone, only the TRAF and CIDE family showed a greater induction in Lncap cells than in PC3. Exposures to 10 Gy X-rays alone of Lncap cells significantly induced gene expression levels in the death and death receptor domain family, the TNF ligand and receptor family, and apoptotic group of BCL2 family; whereas exposures of PC3 induced only the expression of genes in the anti-apoptosis group of CASP and CARD family. Furthermore, we selectively suppressed the expression of several anti-apoptosis genes (BCL-xl, Bcl2A1, BIRC2, BIRC3 and CASP2) in PC3 cells by using the siRNA treatment. Exposure to 10Gy X-rays alone showed an enhanced cell killing (about 15%) in BCL-x1 silenced cells, but not in cells with siRNA treatment targeting other anti-apoptosis genes. We also exposed PC3 cells to protons in the Bragg peak region to compare the effectiveness of cell killing

  3. Cancer

    Science.gov (United States)

    Cancer begins in your cells, which are the building blocks of your body. Normally, your body forms ... be benign or malignant. Benign tumors aren't cancer while malignant ones are. Cells from malignant tumors ...

  4. Structure-activity relationships of a-, ß1-, and d-Tomatines and Tomatidine Against Human Breast (MDA-MB-231), Gastric (KATO-III), and Prostate (PC3) Cancer Cells

    Science.gov (United States)

    Partial acid hydrolysis of the tetrasaccharide (lycotetraose) side chain of the tomato glycoalkaloid a-tomatine resulted in the formation of four products with three (ß1-tomatine), two ('-tomatine), one (d-tomatine), and zero (tomatidine) sugar residues. These compounds were isolated by chromatogra...

  5. Glycogen synthesis correlates with androgen-dependent growth arrest in prostate cancer

    Directory of Open Access Journals (Sweden)

    Gorin Frederic A

    2005-03-01

    Full Text Available Abstract Background Androgen withdrawal in normal prostate or androgen-dependent prostate cancer is associated with the downregulation of several glycolytic enzymes and with reduced glucose uptake. Although glycogen metabolism is known to regulate the intracellular glucose level its involvement in androgen response has not been studied. Methods We investigated the effects of androgen on glycogen phosphorylase (GP, glycogen synthase (GS and on glycogen accumulation in the androgen-receptor (AR reconstituted PC3 cell line containing either an empty vector (PC3-AR-V or vector with HPV-E7 (PC3-AR-E7 and the LNCaP cell line. Results Androgen addition in PC3 cells expressing the AR mimics androgen ablation in androgen-dependent prostate cells. Incubation of PC3-AR-V or PC3-AR-E7 cells with the androgen R1881 induced G1 cell cycle arrest within 24 hours and resulted in a gradual cell number reduction over 5 days thereafter, which was accompanied by a 2 to 5 fold increase in glycogen content. 24 hours after androgen-treatment the level of Glucose-6-P (G-6-P had increased threefold and after 48 hours the GS and GP activities increased twofold. Under this condition inhibition of glycogenolysis with the selective GP inhibitor CP-91149 enhanced the increase in glycogen content and further reduced the cell number. The androgen-dependent LNCaP cells that endogenously express AR responded to androgen withdrawal with growth arrest and increased glycogen content. CP-91149 further increased glycogen content and caused a reduction of cell number. Conclusion Increased glycogenesis is part of the androgen receptor-mediated cellular response and blockage of glycogenolysis by the GP inhibitor CP-91149 further increased glycogenesis. The combined use of a GP inhibitor with hormone therapy may increase the efficacy of hormone treatment by decreasing the survival of prostate cancer cells and thereby reducing the chance of cancer recurrence.

  6. Calcium homeostasis and mitochondrial function during death of prostate cancer cells exposed to statins

    OpenAIRE

    Kivia Aparecida Pontes de Oliveira

    2008-01-01

    Resumo: As estatinas são inibidores da 3-hidroxi-3-metilglutaril CoA (HMG-CoA) redutase usados no tratamento de hipercolesterolemia. Estudos in vitro e in vivo têm demonstrado que as estatinas podem ter efeitos anti-cancerígenos. No presente estudo analisamos os mecanismos de toxicidade de sinvastatina e de lovastatina nas linhagens de câncer de próstata LNCaP e PC-3. Curvas dose-resposta do efeito das estatinas (0,1-100 µM) sobre as células LNCaP e PC-3 mostraram efeitos similares e maior se...

  7. New alternatively spliced variant of prostate-specific membrane antigen PSM-E suppresses the proliferation, migration and invasiveness of prostate cancer cells.

    Science.gov (United States)

    Cao, Kai-Yuan; Xu, Lin; Zhang, Ding-Mei; Zhang, Xiao-Ming; Zhang, Tian; He, Xia; Wang, Zhu; Feng, Fa-Shen; Qiu, Shao-Peng; Shen, Guan-Xin

    2012-06-01

    PSM-E is a newly discovered alternatively spliced variant of prostate-specific membrane antigen (PSMA). In the current study, its role on the proliferation, invasiveness and migration in prostate cancer cell lines was analyzed. PSM-E and PSMA (as a comparison) eukaryotic expression vectors pcDNA3.0/PSM-E and pcDNA3.0/PSMA were constructed, validated by RT-PCR and Western blotting, and PSMA/PSM-E overexpression PC-3 cell models were built. Gene interference was used to block PSMA and the expression of its splice variants in LNCap cells. Three shRNA fragments were synthesized against PSMA, cloned into the vector pSilencer 2.1-U6-neo, their interference effect was evaluated by RT-PCR and Western blotting, and pSilencer 2.1-U6-neo‑shRNA3 (named p‑shRNA3) was chosen in further analyses. Growth curves were drawn to observe the proliferation change, which showed that PSM-E had the potential to suppress proliferation (PPSM-E interfering LNCap cells (P>0.05). Cross-river test showed that the migration speeds of PSM-E/PC-3 and PSMA/PC-3 were both significantly slower than the vector negative control, and faster in p-shRNA3 interfering LNCap cells compared with its vector negative control (PPSM-E/PC-3 and PSMA/PC-3 (P>0.05). Transwell assay showed that the invasive cells of both PSMA/PC-3 and PSM-E/PC-3 were fewer compared to the vector negative control (PPSM-E was weaker than PSMA (PPSM-E could suppress proliferation, migration and invasiveness of prostate cancer cells. Its suppression effect on cell proliferation is stronger compared to PSMA and the suppression effect on invasiveness is weaker than that of PSMA.

  8. Cystatin C is downregulated in prostate cancer and modulates invasion of prostate cancer cells via MAPK/Erk and androgen receptor pathways.

    Directory of Open Access Journals (Sweden)

    Barbara Wegiel

    Full Text Available Cystatin C is believed to prevent tumor progression by inhibiting the activities of a family of lysosomal cysteine proteases. However, little is known about the precise mechanism of cystatin C function in prostate cancer. In the present study, we examined the expression of cystatin C and its association with matrix metalloproteinases 2 (MMP2 and androgen receptor (AR in a tissue microarray comparing benign and malignant specimens from 448 patients who underwent radical prostatectomy for localized prostate cancer. Cystatin C expression was significantly lower in cancer specimens than in benign tissues (p<0.001 and there was a statistically significant inverse correlation between expression of cystatin C and MMP2 (r(s (2 = -0.056, p = 0.05. There was a clear trend that patients with decreased level of cystatin C had lower overall survival. Targeted inhibition of cystatin C using specific siRNA resulted in an increased invasiveness of PC3 cells, whereas induction of cystatin C overexpression greatly reduced invasion rate of PC3 in vitro. The effect of cystatin C on modulating the PC3 cell invasion was provoked by Erk2 inhibitor that specifically inhibited MAPK/Erk2 activity. This suggests that cystatin C may mediate tumor cell invasion by modulating the activity of MAPK/Erk cascades. Consistent with our immunohistochemical findings that patients with low expression of cystatin C and high expression of androgen receptor (AR tend to have worse overall survival than patients with high expression of cystatin C and high AR expression, induced overexpression of AR in PC3 cells expressing cystatin C siRNA greatly enhanced the invasiveness of PC3 cells. This suggests that there may be a crosstalk between cystatin C and AR-mediated pathways. Our study uncovers a novel role for cystatin C and its associated cellular pathways in prostate cancer invasion and metastasis.

  9. Regulation of DNA synthesis and the cell cycle in human prostate cancer cells and lymphocytes by ovine uterine serpin

    Directory of Open Access Journals (Sweden)

    Hansen Peter J

    2008-01-01

    Full Text Available Abstract Background Uterine serpins are members of the serine proteinase inhibitor superfamily. Like some other serpins, these proteins do not appear to be functional proteinase inhibitors. The most studied member of the group, ovine uterine serpin (OvUS, inhibits proliferation of several cell types including activated lymphocytes, bovine preimplantation embryos, and cell lines for lymphoma, canine primary osteosarcoma and human prostate cancer (PC-3 cells. The goal for the present study was to evaluate the mechanism by which OvUS inhibits cell proliferation. In particular, it was tested whether inhibition of DNA synthesis in PC-3 cells involves cytotoxic actions of OvUS or the induction of apoptosis. The effect of OvUS in the production of the autocrine and angiogenic cytokine interleukin (IL-8 by PC-3 cells was also determined. Finally, it was tested whether OvUS blocks specific steps in the cell cycle using both PC-3 cells and lymphocytes. Results Recombinant OvUS blocked proliferation of PC-3 cells at concentrations as low as 8 μg/ml as determined by measurements of [3H]thymidine incorporation or ATP content per well. Treatment of PC-3 cells with OvUS did not cause cytotoxicity or apoptosis or alter interleukin-8 secretion into medium. Results from flow cytometry experiments showed that OvUS blocked the entry of PC-3 cells into S phase and the exit from G2/M phase. In addition, OvUS blocked entry of lymphocytes into S phase following activation of proliferation with phytohemagglutinin. Conclusion Results indicate that OvUS acts to block cell proliferation through disruption of the cell cycle dynamics rather than induction of cytotoxicity or apoptosis. The finding that OvUS can regulate cell proliferation makes this one of only a few serpins that function to inhibit cell growth.

  10. Screening of Differently Expressed Genes in Human Prostate Cancer Cell Lines with Different Metastasis Potentials

    Institute of Scientific and Technical Information of China (English)

    SONG Anping; LIAO Guoning; WU Mingfu; LU Yunping; MA Ding

    2007-01-01

    In order to screen the genes differentially expressed in two human prostate cancer cells with different metastasis potentials, suppression subtractive hybridization (SSH) was done twice on human prostate cancer cell line with high potential of metastasis PC3M-1E8 and its synogenetic cell line PC3M-2B4 with low metastasis potential. In the first subtraction PC3M-2B4 was used as tester and PC3M-1E8 as driver and the forward subtractive library was constructed. In the second one the tester and driver were interchanged and the reverse subtractive library was constructed. The screened clones of both libraries were sequenced and Gene Bank homology search was performed. Some clones were confirmed by quantitative real-time PCR. The results showed that two subtrac-tive libraries containing 238 positive clones were constructed. Analysis of 16 sequenced clones ran-domly picked from two libraries showed that 4 differentially expressed gene fragments were identi-fied as new EST with unknown functions. It was concluded that two subtractive libraries of human prostate cancer cell lines with different metastasis potentials were constructed successfully.

  11. Heme oxygenase-1 (HO-1 expression in prostate cancer cells modulates the oxidative response in bone cells.

    Directory of Open Access Journals (Sweden)

    Mercedes Ferrando

    Full Text Available Prostate cancer (PCa is a leading cause of death among males. It is currently estimated that inflammatory responses are linked to 15-20% of all deaths from cancer worldwide. PCa is dominated by complications arising from metastasis to the bone where the tumor cells interact with the bone microenvironment impairing the balance between bone formation and degradation. However, the molecular nature of this interaction is not completely understood. Heme oxygenase-1 (HO-1 counteracts oxidative damage and inflammation. Previous studies from our laboratory showed that HO-1 is implicated in PCa, demonstrating that endogenous HO-1 inhibits bone derived-prostate cancer cells proliferation, invasion and migration and decreases tumor growth and angiogenesis in vivo. The aim of this work was to analyze the impact of HO-1 modulated PCa cells on osteoblasts proliferation in vitro and on bone remodeling in vivo. Using a co-culture system of PC3 cells with primary mice osteoblasts (PMOs, we demonstrated that HO-1 pharmacological induction (hemin treatment abrogated the diminution of PMOs proliferation induced by PCa cells and decreased the expression of osteoclast-modulating factors in osteoblasts. No changes were detected in the expression of genes involved in osteoblasts differentiation. However, co-culture of hemin pre-treated PC3 cells (PC3 Hem with PMOs provoked an oxidative status and activated FoxO signaling in osteoblasts. The percentage of active osteoblasts positive for HO-1 increased in calvarias explants co-cultured with PC3 Hem cells. Nuclear HO-1 expression was detected in tumors generated by in vivo bone injection of HO-1 stable transfected PC3 (PC3HO-1 cells in the femur of SCID mice. These results suggest that HO-1 has the potential to modify the bone microenvironment impacting on PCa bone metastasis.

  12. Combination of α-Tomatine and Curcumin Inhibits Growth and Induces Apoptosis in Human Prostate Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Huarong Huang

    Full Text Available α-Tomatine is a glycoalkaloid found in tomatoes and curcumin is a major yellow pigment of turmeric. In the present study, the combined effect of these two compounds on prostate cancer cells was studied. Treatment of different prostate cancer cells with curcumin or α-tomatine alone resulted in growth inhibition and apoptosis in a concentration-dependent manner. Combinations of α-tomatine and curcumin synergistically inhibited the growth and induced apoptosis in prostate cancer PC-3 cells. Effects of the α-tomatine and curcumin combination were associated with synergistic inhibition of NF-κB activity and a potent decrease in the expression of its downstream gene Bcl-2 in the cells. Moreover, strong decreases in the levels of phospho-Akt and phosphor-ERK1/2 were found in PC-3 cells treated with α-tomatine and curcumin in combination. In animal experiment, SCID mice with PC-3 xenograft tumors were treated with α-tomatine and curcumin. Combination of α-tomatine and curcumin more potently inhibited the growth of PC-3 tumors than either agent alone. Results from the present study indicate that α-tomatine in combination with curcumin may be an effective strategy for inhibiting the growth of prostate cancer.

  13. 双特异性抗肿瘤重组腺病毒对前列腺癌细胞的抑制作用%Inhibition effect on prostate cancer cells by an hTERT-promoter-dependent oncolytic adenovirus that expresses apoptin

    Institute of Scientific and Technical Information of China (English)

    王金辉; 张慕淳; 李霄; 齐延新; 刘广臣; 孙丹丹; 金宁一

    2012-01-01

    Objective To investigate the inhibition effects of an hTERT-promoter-dependent oncolytic adenovirus Ad-VT that expresses apoptin on human prostatic carcinoma cell PC-3. Methods MTT assay was used to measure viability of PC-3 cell which was infected by recombinant adenovirus.The viability was measured at time points of 12,24,36,48,60,72,84 and 96 h after infection.AO/EB staining,DAPI staining,Annexin V assay were used to investigate the lethal effect and style of Ad-VT on PC-3 cell in vitro.The Caspases were measured by whole cell extraction of PC-3 cells 48hrs after infection. Results Ad-VT,Ad-VP3 and Ad-GT inhibited the proliferation of PC-3 cell in vitro.Ad-VT and Ad-GT were more effective than Ad-VP3 on cell growth,P < 0.05.At 48,72,96 h time points,the inhibition effect of Ad-VT on PC-3 cell exhibited a dose related manner.When infection at MOI 100,the inhibition effect of Ad-VT on PC-3 cells exhibited time related manner.The AO/EB staining,DAPI staining,Annexin V assay,Annexin V assays and Caspase assays showed that Ad-VT inhibited the proliferation of PC-3 cells by inducing apoptosis of prostate cancer cells,Loss of cytoplasmic membrane integrity. Conclusions The hTERT-promoterdependent oncolytic adenovirus Ad-VT could effectively suppress prostate cancer cells PC-3 growth.%目的 探讨结合肿瘤特异性启动子hTERTp和特异性抑癌基因Apoptin的腺病毒AdhTERTp-E1 a-A poptin (Ad-VT)对前列腺癌PC-3细胞的抑制作用. 方法 于96孔板内制备前列腺癌PC-3单层细胞(5×103个/孔),分别用100个感染复数(multiplicity of infection,M OI)、10 MOI和1 M0I的重组腺病毒Ad-VT、Ad-CMV-Apoptin(Ad-VP3)、Ad-hTERTp-El a-EGFP (Ad-GT)和Ad-CMV-EGFP(Ad-EGFP)进行感染,以未感染孔为对照,每个剂量设3个复孔.采用96 h噻唑盐(MTT)法,检测重组腺病毒对PC-3细胞的抑制作用.于6孔板制备PC-3单层细胞(1 × 106个/孔),分别用100 MOI的Ad-VT、Ad-VP3、Ad-GT和Ad-EGFP感染PC-3细胞,培养48 h后,分别应

  14. The role of the transcription factor SIM2 in prostate cancer.

    Directory of Open Access Journals (Sweden)

    Bin Lu

    Full Text Available BACKGROUND: Recent reports have suggested a possible involvement of Single-minded homolog 2 (SIM2 in human solid cancers, including prostate cancer. However, the exact role of SIM2 in cancer in general, and in prostate cancer in particular, remains largely unknown. This study was designed to elucidate the role of SIM2 in prostate cancer using a shRNA-based approach in the PC3 prostate cancer cell line. METHODS: Lentiviral shRNAs were used to inhibit SIM2 gene and protein levels in PC3 cells. Quantitative RT-PCR and branched DNA were performed to evaluate transcript expression. SIM2 protein expression level was measured by western blot. Profiling of gene expression spanning the whole genome, as well as polar metabolomics of several major metabolic pathways was performed to identify major pathway dysregulations. RESULTS: SIM2 gene and protein products were significantly downregulated by lenti-shRNA in PC3 cell line. This low expression of SIM2 affected gene expression profile, revealing significant changes in major signaling pathways, networks and functions. In addition, major metabolic pathways were affected. CONCLUSION: Taken together, our results suggest an involvement of SIM2 in key traits of prostate tumor cell biology and might underlie a contribution of this transcription factor to prostate cancer onset and progression.

  15. Metformin induces apoptosis of pancreatic cancer cells

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    AIM: To assess the role and mechanism of mefformin in inducing apoptosis of pancreatic cancer cells. METHODS: The human pancreatic cancer cell lines ASPC-1, BxPc-3, PANC-1 and SW1990 were exposed to mefformin. The inhibition of cell proliferation and colony formation via apoptosis induction and S phase arrest in pancreatic cancer cell lines of mefformin was tested.RESULTS: In each pancreatic cancer cell line tested, metformin inhibited cell proliferation in a dose dependent manner in MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assays). Flow cytometric analysis showed that metformin reduced the number of cells in G1 and increased the percentage of cells in S phase as well as the apoptotic fraction. Enzymelinked immunosorbent assay (EUSA) showed that metformin induced apaptosis in all pancreatic cancer cell lines. In Western blot studies, metformin induced oly-ADP-ribose polymerase(PARP) cleavage (an indicator of aspase activation) in all pancreatic cancer cell lines. The general caspase inhibitor (VAD-fmk) completely abolished metformin-induced PARP cleavage and apoptosis in ASPC-1 BxPc-3 and PANC-1, the caspase-8 specific inhibitor (IETD-fmk) and the caspase-9 specific inhibitor (LEHD-fmk) only partially abrogated metformin-induced apoptosis and PARP cleavage in BxPc-3 and PANC-1 cells. We also observed that metformin treatment ramatically reduced epidermal growth factor receptor (EGFR) and phosphorylated mitogen activated protein kinase (P-MAPK) in both a time- and dose-dependent manner in all cell lines tested.CONCLUSION: Metformin significantly inhibits cell proliferation and apoptosis in all pancreatic cell lines. And the metformin-induced apoptosis is associated with PARP leavage, activation of caspase-3, -8, and -9 in a time- and dose-dependent manner. Hence, both caspase-8 and -9-initiated apoptotic signaling pathways contribute to metforrnin-induced apoptosis in pancreatic cell lines.

  16. A precisely substituted benzopyran targets androgen refractory prostate cancer cells through selective modulation of estrogen receptors.

    Science.gov (United States)

    Kumar, Rajeev; Verma, Vikas; Sharma, Vikas; Jain, Ashish; Singh, Vishal; Sarswat, Amit; Maikhuri, Jagdamba P; Sharma, Vishnu L; Gupta, Gopal

    2015-03-15

    Dietary consumption of phytoestrogens like genistein has been linked with lower incidence of prostate cancer. The estradiol-like benzopyran core of genistein confers estrogen receptor-β (ER-β) selectivity that imparts weak anti-proliferative activity against prostate cancer cells. DL-2-[4-(2-piperidinoethoxy)phenyl]-3-phenyl-2H-1-benzopyran (BP), a SERM designed with benzopyran core, targeted androgen independent prostate cancer (PC-3) cells 14-times more potently than genistein, ~25% more efficiently than tamoxifen and 6.5-times more actively than ICI-182780, without forfeiting significant specificity in comparison to genistein. BP increased apoptosis (annexin-V and TUNEL labeling), arrested cell cycle, and significantly increased caspase-3 activity along with mRNA expressions of estrogen receptor (ER)-β and FasL (qPCR) in PC-3 cells. In classical ERE-luc reporter assay BP behaved as a potent ER-α antagonist and ER-β agonist. Accordingly, it decreased expression of ER-α target PS2 (P<0.01) and increased expression of ER-β target TNF-α (P<0.05) genes in PC-3. ER-β deficient PC-3 (siRNA-transfected) was resistant to apoptotic and anti-proliferative actions of SERMs, including stimulation of FasL expression by BP. BP significantly inhibited phosphorylation of Akt and ERK-1/2, JNK and p38 in PC-3 (immunoblotting), and thus adopted a multi-pathway mechanism to exert a more potent anti-proliferative activity against prostate cancer cells than natural and synthetic SERMs. Its precise ER-subtype specific activity presents a unique lead structure for further optimization.

  17. Cancer

    Science.gov (United States)

    ... uses a surgical tool to remove the tumor.Mohs' surgery. Layers of cancer cells are removed one ... usually have not been approved by the U.S. Food and Drug Administration (FDA). The medicine may have ...

  18. Yes-mediated phosphorylation of focal adhesion kinase at tyrosine 861 increases metastatic potential of prostate cancer cells.

    Science.gov (United States)

    Chatterji, Tanushree; Varkaris, Andreas S; Parikh, Nila U; Song, Jian H; Cheng, Chien-Jui; Schweppe, Rebecca E; Alexander, Stephanie; Davis, John W; Troncoso, Patricia; Friedl, Peter; Kuang, Jian; Lin, Sue-Hwa; Gallick, Gary E

    2015-04-30

    To study the role of FAK signaling complexes in promoting metastatic properties of prostate cancer (PCa) cells, we selected stable, highly migratory variants, termed PC3 Mig-3 and DU145 Mig-3, from two well-characterized PCa cell lines, PC3 and DU145. These variants were not only increased migration and invasion in vitro, but were also more metastatic to lymph nodes following intraprostatic injection into nude mice. Both PC3 Mig-3 and DU145 Mig-3 were specifically increased in phosphorylation of FAK Y861. We therefore examined potential alterations in Src family kinases responsible for FAK phosphorylation and determined only Yes expression was increased. Overexpression of Yes in PC3 parental cells and src-/-fyn-/-yes-/- fibroblasts selectively increased FAK Y861 phosphorylation, and increased migration. Knockdown of Yes in PC3 Mig-3 cells decreased migration and decreased lymph node metastasis following orthotopic implantation of into nude mice. In human specimens, Yes expression was increased in lymph node metastases relative to paired primary tumors from the same patient, and increased pFAK Y861 expression in lymph node metastases correlated with poor prognosis. These results demonstrate a unique role for Yes in phosphorylation of FAK and in promoting PCa metastasis. Therefore, phosphorylated FAK Y861 and increased Yes expression may be predictive markers for PCa metastasis.

  19. Oleanolic acid inhibits cell survival and proliferation of prostate cancer cells in vitro and in vivo through the PI3K/Akt pathway.

    Science.gov (United States)

    Li, Xuechao; Song, Yarong; Zhang, Peng; Zhu, Hongxue; Chen, Lifeng; Xiao, Yajun; Xing, Yifei

    2016-06-01

    Oleanolic acid (OA) is a naturally occurring pentacyclic triterpenoid and possesses diverse pharmacological activities, including anti-cancer effects that have been confirmed in multiple types of human cancers. However, the potential effect of natural OA on human prostate cancer is still unclear. The present study aimed to explore whether and how OA exerted anti-cancer effects in prostate cancer. Our data showed that OA inhibited cell viability and proliferation, and promoted cell apoptosis and G0/G1 phase cell cycle arrest in prostate cancer PC-3, DU145, and LNCaP cells, in a dose-dependent manner. In addition, OA was found to regulate the expression levels of apoptosis-related and cell cycle-related proteins, as well as the activity of PI3K/Akt pathway, in a dose-dependent manner. Mechanistically, our data revealed that OA exerted anti-cancer effects in vitro in PC-3 and DU145 cells by repressing the PI3K/Akt pathway. In agreement, OA also suppressed the tumor growth of PC-3 cells in vivo via inhibition of the PI3K/Akt pathway. In conclusion, our findings demonstrate the anti-cancer properties of OA in prostate cancer cells, both in vitro and in vivo, and provide the experimental evidence for the use of OA as an adjuvant agent for prostate cancer patients.

  20. Targeted Approach to Overcoming Treatment Resistance in Advanced Prostate Cancer

    Science.gov (United States)

    2015-09-01

    nitrogen) aliquot of PC3 cells (ATCC: human prostate adenocarcinoma). 2. Disperse into 75 cm2 flask containing RPMI 1640 media supplemented with 10% fetal ...compound #88 shows high cell killing efficacy in prostate cancer cell lines, including taxol resistant cells that stems from the induction of apoptosis...approach engages computational modeling to identify compounds that target a specific, mismatch repair protein-­‐dependent cell death pathway. A

  1. Mechanisms of antiprostate cancer by gum mastic: NF-κB signal as target

    Institute of Scientific and Technical Information of China (English)

    Mei-lan HE; Ang LI; Chun-su XU; Shun-li WANG; Meng-jie ZHANG; Hua GU; Yao-qin YANG; Hui-hong TAO

    2007-01-01

    Aim: To study the effect of gum mastic, a natural resin, on the proliferation of androgen-independent prostate cancer PC-3 cells, and further investigate the mechanisms involved in this regulatory system, taking nuclear factor kB (NF-kB) signal as the target. Methods: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and a flow cytometer were used to detect the effect of gum mastic on the proliferation of PC-3 cells. Then, reporter gene assay, RT-PCR, and Western blotting were carried out to study the effects of gum mastic on the NF-κB protein level and the NF-kB signal pathway. The expression of genes involved in the NF-kB signal pathway, including cyclin D1, inhibitors of kBs (IkBα), and phosphorylated Akt (p-AKT), were measured. In addition, transient transfection assays with the 5×NF-κB consensus sequence promoter was also used to test the effects of gum mastic. Results: Gum mastic inhibited PC-3 cell growth and blocked the PC-3 cell cycle in the G1 phase. Gum mastic also suppressed NF-κB activity in the PC-3 cells. The expression of cyclin D1, a crucial cell cycle regulator and an NF-kB downstream target gene, was reduced as well. Moreover, gum mastic decreased the p-AKT protein level and increased the IkBα protein level.Conclusion: Gum mastic inhibited the proliferation and blocked the cell cycle progression in PC-3 cells by suppressing NF-κB activity and the NF-κB signal pathway.

  2. Combination Effects of Docetaxel and Doxorubicin in Hormone-Refractory Prostate Cancer Cells

    Directory of Open Access Journals (Sweden)

    Eleftheria Tsakalozou

    2012-01-01

    Full Text Available Combination effects of docetaxel (DOC and doxorubicin (DOX were investigated in prostate cancer cells (PC3 and DU145. Combination indices (CIs were determined using the unified theory in various concentrations and mixing ratios (synergy: CI1.1. DOC showed a biphasic cytotoxicity pattern with the half maximal inhibitory concentration (IC50 at the picomolar range for PC3 (0.598 nM and DU145 (0.469 nM, following 72 h drug exposure. The IC50s of DOX were 908 nM and 343 nM for PC3 and DU145, respectively. Strong synergy was seen when PC3 was treated with DOC at concentrations lower than its IC50 values (0.125~0.5 nM plus DOX (2~8 times IC50. Equipotent drug combination treatments (7×7 revealed that the DOC/DOX combination leads to high synergy and effective cell death only in a narrow concentration range in DU145. This study provides a convenient method to predict multiple drug combination effects by the estimated CI values as well as cell viability data. The proposed DOC/DOX mixing ratios can be used to design combination drug cocktails or delivery systems to improve chemotherapy for cancer patients.

  3. Promotion of tumor development in prostate cancer by progerin

    Directory of Open Access Journals (Sweden)

    Nie Daotai

    2010-11-01

    Full Text Available Abstract Progerin is a truncated form of lamin A. It is identified in patients with Hutchinson-Gilford progeria syndrome (HGPS, a disease characterized by accelerated aging. The contribution of progerin toward aging has been shown to be related to increased DNA damages. Since aging is one major risk factor for carcinogenesis, and genomic instability is a hallmark of malignant cancers, we investigated the expression of progerin in human cancer cells, and whether its expression contributes to carcinogenesis. Using RT-PCR and Western blotting, we detected the expression of progerin in prostate PC-3, DU145 and LNCaP cells at mRNA and protein levels. Ectopic progerin expression did not cause cellular senescence in PC-3 or MCF7 cells. PC-3 cells progerin transfectants were sensitized to DNA damage agent camptothecin (CPT; and persistent DNA damage responses were observed, which might be caused by progerin induced defective DNA damage repair. In addition, progerin transfectants were more tumorigenic in vivo than vector control cells. Our study for the first time describes the expression of progerin in a number of human cancer cell lines and its contributory role in tumorigenesis.

  4. A Milk Protein, Casein, as a Proliferation Promoting Factor in Prostate Cancer Cells

    Science.gov (United States)

    Park, Sung-Woo; Kim, Joo-Young; Kim, You-Sun; Lee, Sang Jin; Chung, Moon Kee

    2014-01-01

    Purpose Despite most epidemiologic studies reporting that an increase in milk intake affects the growth of prostate cancer, the results of experimental studies are not consistent. In this study, we investigated the proliferation of prostate cancer cells treated with casein, the main protein in milk. Materials and Methods Prostate cancer cells (LNCaP and PC3), lung cancer cells (A459), stomach cancer cells (SNU484), breast cancer cells (MCF7), immortalized human embryonic kidney cells (HEK293), and immortalized normal prostate cells (RWPE1) were treated with either 0.1 or 1 mg/mL of α-casein and total casein extracted from bovine milk. Treatments were carried out in serum-free media for 72 hours. The proliferation of each cell line was evaluated by an 3-(4,5-Dimethyl-thiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Results α-Casein and total casein did not affect the proliferations of RWPE1, HEK293, A459, SNU484, MCF7, HEK293, or RWPE1 cells. However, PC3 cells treated with 1 mg/mL of α-casein and casein showed increased proliferation (228% and 166%, respectively), and the proliferation of LNCaP cells was also enhanced by 134% and 142%, respectively. The proliferation mechanism of α-casein in PC3 and LNCaP cells did not appear to be related to the induction of Insulin-like growth factor-1 (IGF-1), since the level of IGF-1 did not change upon the supplementation of casein. Conclusions The milk protein, casein, promotes the proliferation of prostate cancer cells such as PC3 and LNCaP. PMID:25237656

  5. Forced Expression of ZNF143 Restrains Cancer Cell Growth

    Directory of Open Access Journals (Sweden)

    Kimitoshi Kohno

    2011-10-01

    Full Text Available We previously reported that the transcription factor Zinc Finger Protein 143 (ZNF143 regulates the expression of genes associated with cell cycle and cell division, and that downregulation of ZNF143 induces cell cycle arrest at G2/M. To assess the function of ZNF143 expression in the cell cycle, we established two cells with forced expression of ZNF143 derived from PC3 prostate cancer cell lines. These cell lines overexpress genes associated with cell cycle and cell division, such as polo-like kinase 1 (PLK1, aurora kinase B (AURKB and some minichromosome maintenance complex components (MCM. However, the doubling time of cells with forced expression of ZNF143 was approximately twice as long as its control counterpart cell line. Analysis following serum starvation and re-seeding showed that PC3 cells were synchronized at G1 in the cell cycle. Also, ZNF143 expression fluctuated, and was at its lowest level in G2/M. However, PC3 cells with forced expression of ZNF143 synchronized at G2/M, and showed lack of cell cycle-dependent fluctuation of nuclear expression of MCM proteins. Furthermore, G2/M population of both cisplatin-resistant PCDP6 cells over-expressing ZNF143 (derived from PC3 cells and cells with forced expression of ZNF143 was significantly higher than that of each counterpart, and the doubling time of PCDP6 cells is about 2.5 times longer than that of PC3 cells. These data suggested that fluctuations in ZNF143 expression are required both for gene expression associated with cell cycle and for cell division.

  6. Forced Expression of ZNF143 Restrains Cancer Cell Growth

    Energy Technology Data Exchange (ETDEWEB)

    Izumi, Hiroto, E-mail: h-izumi@med.uoeh-u.ac.jp; Yasuniwa, Yoshihiro; Akiyama, Masaki; Yamaguchi, Takahiro; Kuma, Akihiro; Kitamura, Noriaki; Kohno, Kimitoshi [Department of Molecular Biology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555 (Japan)

    2011-10-19

    We previously reported that the transcription factor Zinc Finger Protein 143 (ZNF143) regulates the expression of genes associated with cell cycle and cell division, and that downregulation of ZNF143 induces cell cycle arrest at G2/M. To assess the function of ZNF143 expression in the cell cycle, we established two cells with forced expression of ZNF143 derived from PC3 prostate cancer cell lines. These cell lines overexpress genes associated with cell cycle and cell division, such as polo-like kinase 1 (PLK1), aurora kinase B (AURKB) and some minichromosome maintenance complex components (MCM). However, the doubling time of cells with forced expression of ZNF143 was approximately twice as long as its control counterpart cell line. Analysis following serum starvation and re-seeding showed that PC3 cells were synchronized at G1 in the cell cycle. Also, ZNF143 expression fluctuated, and was at its lowest level in G2/M. However, PC3 cells with forced expression of ZNF143 synchronized at G2/M, and showed lack of cell cycle-dependent fluctuation of nuclear expression of MCM proteins. Furthermore, G2/M population of both cisplatin-resistant PCDP6 cells over-expressing ZNF143 (derived from PC3 cells) and cells with forced expression of ZNF143 was significantly higher than that of each counterpart, and the doubling time of PCDP6 cells is about 2.5 times longer than that of PC3 cells. These data suggested that fluctuations in ZNF143 expression are required both for gene expression associated with cell cycle and for cell division.

  7. In vivo biomarker expression patterns are preserved in 3D cultures of Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Windus, Louisa C.E.; Kiss, Debra L.; Glover, Tristan [Eskitis Institute for Cell and Molecular Therapies, Discovery Biology, Griffith University, Nathan 4111, Brisbane, Queensland (Australia); Avery, Vicky M., E-mail: v.avery@griffith.edu.au [Eskitis Institute for Cell and Molecular Therapies, Discovery Biology, Griffith University, Nathan 4111, Brisbane, Queensland (Australia)

    2012-11-15

    Here we report that Prostate Cancer (PCa) cell-lines DU145, PC3, LNCaP and RWPE-1 grown in 3D matrices in contrast to conventional 2D monolayers, display distinct differences in cell morphology, proliferation and expression of important biomarker proteins associated with cancer progression. Consistent with in vivo growth rates, in 3D cultures, all PCa cell-lines were found to proliferate at significantly lower rates in comparison to their 2D counterparts. Moreover, when grown in a 3D matrix, metastatic PC3 cell-lines were found to mimic more precisely protein expression patterns of metastatic tumour formation as found in vivo. In comparison to the prostate epithelial cell-line RWPE-1, metastatic PC3 cell-lines exhibited a down-regulation of E-cadherin and {alpha}6 integrin expression and an up-regulation of N-cadherin, Vimentin and {beta}1 integrin expression and re-expressed non-transcriptionally active AR. In comparison to the non-invasive LNCaP cell-lines, PC3 cells were found to have an up-regulation of chemokine receptor CXCR4, consistent with a metastatic phenotype. In 2D cultures, there was little distinction in protein expression between metastatic, non-invasive and epithelial cells. These results suggest that 3D cultures are more representative of in vivo morphology and may serve as a more biologically relevant model in the drug discovery pipeline. -- Highlights: Black-Right-Pointing-Pointer We developed and optimised 3D culturing techniques for Prostate Cancer cell-lines. Black-Right-Pointing-Pointer We investigated biomarker expression in 2D versus 3D culture techniques. Black-Right-Pointing-Pointer Metastatic PC3 cells re-expressed non-transcriptionally active androgen receptor. Black-Right-Pointing-Pointer Metastatic PCa cell lines retain in vivo-like antigenic profiles in 3D cultures.

  8. Growth inhibiting effects of terazosin on androgen-independent prostate cancer cell lines

    Institute of Scientific and Technical Information of China (English)

    许克新; 王向红; 凌明达; 王云川

    2003-01-01

    Objective To study the effects of an α1-adrenoceptor antagonist, terazosin on the androgen-independent prostate cancer cell lines PC-3 and DU145.Methods Two androgen independent cell lines, PC-3 and DU145, were used to determine cell viability, colony-forming ability, as well as cell cycle distribution, after exposure to terazosin. Western blot analysis was used to determine the expression of p21WAF1 and p27KIP1.Results This study shows that terazosin inhibits not only prostate cancer cell growth but also its colony forming ability, both of which are main targets of clinical treatment. In addition, terazosin is shown to inhibit cell growth through G1 phase cell cycle arrest and the up-regulation of p27KIP1.Conclusion This study provides evidence that the α1-adrenoceptor antagonist terazosin may have therapeutic potential in the treatment of advanced hormone refractory prostate cancer.

  9. MUC1 selectively targets human pancreatic cancer in orthotopic nude mouse models.

    Directory of Open Access Journals (Sweden)

    Jeong Youp Park

    Full Text Available The goal of this study was to determine whether MUC1 antibody conjugated with a fluorophore could be used to visualize pancreatic cancer. Anti-MUC1 (CT2 antibody was conjugated with 550 nm or 650 nm fluorophores. Nude mouse were used to make subcutaneous and orthotopic models of pancreatic cancer. Western blot and flow cytometric analysis confirmed the expression of MUC1 in human pancreatic cancer cell lines including BxPC-3 and Panc-1. Immunocytochemistry with fluorophore conjugated anti-MUC1 antibody demonstrated fluorescent areas on the membrane of Panc-1 cancer cells. After injecting the conjugated anti-MUC1 antibodies via the tail vein, subcutaneously transplanted Panc-1 and BxPC-3 tumors emitted strong fluorescent signals. In the subcutaneous tumor models, the fluorescent signal from the conjugated anti-MUC1 antibody was noted around the margin of the tumor and space between the cells. The conjugated anti-MUC1 antibody bound the tumor in orthotopically-transplanted Panc-1 and BxPC-3 models enabling the tumors to be imaged. This study showed that fluorophore conjugated anti-MUC1 antibodies could visualize pancreatic tumors in vitro and in vivo and may help to improve the diagnosis and treatment of pancreatic cancer.

  10. Do androgen deprivation drugs affect the immune cross-talk between mononuclear and prostate cancer cells?

    Science.gov (United States)

    Salman, Hertzel; Bergman, Michael; Blumberger, Naava; Djaldetti, Meir; Bessler, Hanna

    2014-02-01

    The aim of the study was to examine the effect of androgen deprivation drugs, i.e. leuprolide and bicalutamide on the immune cross-talk between human peripheral blood mononuclear cells (PBMC) and cells from PC-3 and LNCaP human prostate cancer lines. PBMC, PC-3 and LNCaP were separately incubated without and with two androgen-deprivation drugs, i.e. leuprolide and bicalutamide, and the secretion of IL-1β, IL-6, IL-1ra and IL-10 was examined. In addition, the effect of both drugs on the production of those cytokines was carried out after 24 hours incubation of PBMC with both types of cancer cells. Leuprolide or bicalutamide did not affect the production of the cytokines by PBMC or by the prostate cancer cells from the two lines. Incubation of PBMC with PC-3 or LNCaP cells caused increased production of IL-1β, IL-6 and IL-10 as compared with PBMC incubated without malignant cells. While 10(-7) M and 10(-8) M of leuprolide caused a decreased secretion of IL-1β by PBMC previously incubated with prostate cancer cells without the drug, bicalutamide did not affect this PBMC activity at any drug concentration. This observation suggests the existence of an additional mechanism explaining the effect of androgen deprivation therapy in prostate cancer patients.

  11. Effect of Turkish propolis extracts on proteome of prostate cancer cell line

    Directory of Open Access Journals (Sweden)

    Barlak Yaşam

    2011-12-01

    Full Text Available Abstract Background Propolis is a natural, resinous hive product that has several pharmacological activities. Its composition varies depending on the vegetation, climate, season and environmental conditions of the area from where it was collected. Surface enhanced laser desorption ionization time of flight mass spectrometry (SELDI-TOF MS is a proteomic approach which has been used in cancer proteomics studies. Prostate cancer is one of the most commonly diagnosed cancers in men. It has shown that nutritional supplements rich in polyphenolic compounds such as propolis play a significant role in prostate cancer chemoprevention. The aim of this study is to evaluate if protein expression profile in PC-3 prostate cancer cell lines could be differentiated when incubated with dimethyl sulfoxide and water extracts of Turkish propolis. Results The antioxidant potentials of dimethyl sulfoxide and water extracts of propolis were found in correlation with the amount of total phenolic compounds of them. Dimethyl sulfoxide and water extracts of propolis of 20 μg/mL reduced the cell viability to 24.5% and 17.7%, respectively. Statistically significant discriminatory peaks between control PC-3 cells and dimethyl sulfoxide extract of propolis-treated PC-3 cells were found to be the proteomic features at m/z 5143, 8703, 12661, 20184 and 32794, detected by CM10 ProteinChip, and the peak at m/z 3772, detected by Q10 ProteinChip. Between control PC-3 cells and water extract of propolis-treated PC-3 cells, statistically significant discriminatory peaks were found to be the proteomic features at m/z 15846, 16052 and 24658, detected by CM10 ProteinChip and the peaks at m/z 10348, 10899 and 11603, detected by Q10 ProteinChip. Conclusions It was concluded that dimethyl sulfoxide and water extracts of Turkish propolis may have anti-proliferative activity through differentiating protein expression profile in PC-3 prostate cancer cell lines along with their antioxidant

  12. Survey of Differentially Methylated Promoters in Prostate Cancer Cell Lines1*

    Science.gov (United States)

    Wang, Yipeng; Yu, Qiuju; Cho, Ann H; Rondeau, Gaelle; Welsh, John; Adamson, Eileen; Mercola, Dan; McClelland, Michael

    2005-01-01

    Abstract DNA methylation and copy number in the genomes of three immortalized prostate epithelial and five cancer cell lines (LNCaP, PC3, PC3M, PC3M-Pro4, and PC3M-LN4) were compared using a microarray-based technique. Genomic DNA is cut with a methylation-sensitive enzyme HpaII, followed by linker ligation, polymerase chain reaction (PCR) amplification, labeling, and hybridization to an array of promoter sequences. Only those parts of the genomic DNA that have unmethylated restriction sites within a few hundred base pairs generate PCR products detectable on an array. Of 2732 promoter sequences on a test array, 504 (18.5%) showed differential hybridization between immortalized prostate epithelial and cancer cell lines. Among candidate hypermethylated genes in cancer-derived lines, there were eight (CD44, CDKN1A, ESR1, PLAU, RARB, SFN, TNFRSF6, and TSPY) previously observed in prostate cancer and 13 previously known methylation targets in other cancers (ARHI, bcl-2, BRCA1, CDKN2C, GADD45A, MTAP, PGR, SLC26A4, SPARC, SYK, TJP2, UCHL1, and WIT-1). The majority of genes that appear to be both differentially methylated and differentially regulated between prostate epithelial and cancer cell lines are novel methylation targets, including PAK6, RAD50, TLX3, PIR51, MAP2K5, INSR, FBN1, and GG2-1, representing a rich new source of candidate genes used to study the role of DNA methylation in prostate tumors. PMID:16207477

  13. CANCER

    Directory of Open Access Journals (Sweden)

    N. Kavoussi

    1973-09-01

    Full Text Available There are many carcinogenetic elements in industry and it is for this reason that study and research concerning the effect of these materials is carried out on a national and international level. The establishment and growth of cancer are affected by different factors in two main areas:-1 The nature of the human or animal including sex, age, point and method of entry, fat metabolism, place of agglomeration of carcinogenetic material, amount of material absorbed by the body and the immunity of the body.2 The different nature of the carcinogenetic material e.g. physical, chemical quality, degree of solvency in fat and purity of impurity of the element. As the development of cancer is dependent upon so many factors, it is extremely difficult to determine whether a causative element is principle or contributory. Some materials are not carcinogenetic when they are pure but become so when they combine with other elements. All of this creates an industrial health problem in that it is almost impossible to plan an adequate prevention and safety program. The body through its system of immunity protects itself against small amounts of carcinogens but when this amount increases and reaches a certain level the body is not longer able to defend itself. ILO advises an effective protection campaign against cancer based on the Well –equipped laboratories, Well-educated personnel, the establishment of industrial hygiene within factories, the regular control of safety systems, and the implementation of industrial health principles and research programs.

  14. Piperine, a Bioactive Component of Pepper Spice Exerts Therapeutic Effects on Androgen Dependent and Androgen Independent Prostate Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Abhilash Samykutty

    Full Text Available Prostate cancer is the most common solid malignancy in men, with 32,000 deaths annually. Piperine, a major alkaloid constituent of black pepper, has previously been reported to have anti-cancer activity in variety of cancer cell lines. The effect of piperine against prostate cancer is not currently known. Therefore, in this study, we investigated the anti-tumor mechanisms of piperine on androgen dependent and androgen independent prostate cancer cells. Here, we show that piperine inhibited the proliferation of LNCaP, PC-3, 22RV1 and DU-145 prostate cancer cells in a dose dependent manner. Furthermore, Annexin-V staining demonstrated that piperine treatment induced apoptosis in hormone dependent prostate cancer cells (LNCaP. Using global caspase activation assay, we show that piperine-induced apoptosis resulted in caspase activation in LNCaP and PC-3 cells. Further studies revealed that piperine treatment resulted in the activation of caspase-3 and cleavage of PARP-1 proteins in LNCaP, PC-3 and DU-145 prostate cancer cells. Piperine treatment also disrupted androgen receptor (AR expression in LNCaP prostate cancer cells. Our evaluations further show that there is a significant reduction of Prostate Specific Antigen (PSA levels following piperine treatment in LNCaP cells. NF-kB and STAT-3 transcription factors have previously been shown to play a role in angiogenesis and invasion of prostate cancer cells. Interestingly, treatment of LNCaP, PC-3 and DU-145 prostate cancer cells with piperine resulted in reduced expression of phosphorylated STAT-3 and Nuclear factor-κB (NF-kB transcription factors. These results correlated with the results of Boyden chamber assay, wherein piperine treatment reduced the cell migration of LNCaP and PC-3 cells. Finally, we show that piperine treatment significantly reduced the androgen dependent and androgen independent tumor growth in nude mice model xenotransplanted with prostate cancer cells. Taken together, these

  15. In Vitro and In Vivo Efficacy Studies of Lavender angustifolia Essential Oil and Its Active Constituents on the Proliferation of Human Prostate Cancer.

    Science.gov (United States)

    Zhao, Yunqi; Chen, Ran; Wang, Yun; Qing, Chen; Wang, Wei; Yang, Yixin

    2016-05-05

    Lavandula angustifolia is the most widely cultivated Lavandula species. The extraction of its flower and leaves has been used as herbal medicine. In this study, the in vitro antitumor activities were tested on human prostate cancer PC-3 and DU145 cell lines. Flow cytometry technology was applied to study apoptosis induction and cell cycle arrest. The PC-3 cell line was used to establish subcutaneous xenograft tumors in nude mice. Paraffin sections from xenograft tumor specimens were used in the TUNEL (terminal deocynucleotide transferase dUTP nick end labeling) assay and an immunohistochemistry assay to detect cell proliferation markers Ki67 and PCNA. Lavender essential oil, linalool, and linalyl acetate showed stronger inhibitory effect on PC-3 cells than on DU145 cells. The apoptotic cell populations observed in PC-3 cells treated with lavender essential oil, linalool, and linalyl acetate were 74.76%, 67.11%, and 56.14%, respectively. The PC-3 cells were mainly arrested in the G2/M phase. In the xenograft model with PC-3 cell transplantation, essential oil and linalool significantly suppressed tumor growth. The immunosignals of Ki67 and PCNA in the essential oil, linalool, and linalyl acetate treatment groups were significantly lower than that of the control group in xenograft tumor sections. The TUNEL assay indicated that each of the 3 phytochemicals significantly induced apoptosis compared to the control group. This study provides novel insight and evidence on the antiproliferative effect of L angustifolia essential oil and its major constituents on human prostate cancer. The antitumor effect was associated with cell proliferation inhibition and apoptosis induction in xenograft tumors.

  16. Zerumbone inhibits growth of hormone refractory prostate cancer cells by inhibiting JAK2/STAT3 pathway and increases paclitaxel sensitivity.

    Science.gov (United States)

    Jorvig, Jessica E; Chakraborty, Arup

    2015-02-01

    Zerumbone, a phytochemical isolated from Zingiber zerumbet has been shown previously to exhibit antineoplastic activity. But, the effect of zerumbone in prostate cancer has not been evaluated. Prostate cancer is frequently associated with elevated levels of interleukin-6 (IL-6), which exerts its oncogenic effects through activation of Janus kinase 2 (JAK2) followed by activation of the transcription factor STAT3 (signal transducer and activator of transcription 3). Here, we investigated whether the anticancer effects of zerumbone are mediated through inhibition of the JAK2/STAT3 signaling pathway and whether zerumbone can increase the paclitaxel (PTX) sensitivity of prostate cancer cells. Zerumbone exerted significant cytotoxicity of DU145 versus PC3 prostate cancer cells through cell cycle arrest at G0/G1 phase followed by apoptosis. Zerumbone selectively inhibited JAK2 in both DU145 and PC3 cells. However, the biological axis of IL-6/JAK2/STAT3 was inhibited only in DU145 cells as no STAT3 phosphorylation was detected in PC3 cells even after IL-6 stimulation. Other signaling pathways in DU145 cells remained unaffected. The expression of prostate cancer-associated genes, including cyclin D1, IL-6, COX2, and ETV1, was blocked. Zerumbone also synergistically increased the sensitivity to PTX. Further preclinical study might reveal the potential use of zerumbone as a chemotherapeutic agent for hormone refractory prostate cancer where IL-6/JAK2/STAT3 signaling is aberrantly active and may be combined with PTX.

  17. Monascuspiloin enhances the radiation sensitivity of human prostate cancer cells by stimulating endoplasmic reticulum stress and inducing autophagy.

    Directory of Open Access Journals (Sweden)

    Hui-Wen Chiu

    Full Text Available Prostate cancer is a very common cancer among males. Traditional treatments for prostate cancer have limited efficacy; therefore, new therapeutic strategies and/or new adjuvant drugs must be explored. Red yeast rice (RYR is a traditional food spice made in Asia by fermenting white rice with Monascus purpureus Went yeast. Accumulating evidence indicates that RYR has antitumor activity. In this study, PC-3 cells (human prostate cancer cells were used to investigate the anti-cancer effects of ionizing radiation (IR combined with monascuspiloin (MP, a yellow pigment isolated from Monascus pilosus M93-fermented rice and to determine the underlying mechanisms of these effects in vitro and in vivo. We found that IR combined with MP showed increased therapeutic efficacy when compared with either treatment alone in PC-3 cells. In addition, the combined treatment enhanced DNA damage and endoplasmic reticulum (ER stress. The combined treatment induced primarily autophagy in PC-3 cells, and the cell death that was induced by the combined treatment was chiefly the result of inhibition of the Akt/mTOR signaling pathways. In an in vivo study, the combination treatment showed greater anti-tumor growth effects. These novel findings suggest that the combined treatment could be a potential therapeutic strategy for prostate cancer.

  18. Induction of apoptosis by cyclooxygenase-2 inhibitors in prostate cancer cell lines.

    Science.gov (United States)

    Kamijo, T; Sato, T; Nagatomi, Y; Kitamura, T

    2001-07-01

    Prostaglandins are thought to play an important role in the proliferation of prostate cancer and are highly expressed in prostate cancer tissue. Cyclooxygenase-2 (COX-2), or prostaglandin endoperoxide synthase, is a key enzyme in the conversion of arachidonic acid into prostaglandin. In several cancers, COX-2 contributes to the proliferation and metastasis of cancer cells. To assess the role of COX-2 in prostate cancer, we investigated whether the inhibition of COX-2 affected the proliferation of prostate cancer cells. The human prostate cancer cell lines, LNCaP and PC 3, and a normal prostate stromal cell line (PrSC) were treated with COX-2 inhibitors NS 398 and Etodolac. The proliferation rate of the cell lines was examined using 3(4,5-dimethylethiazoly 1-2-) 2,5-diphonyl tetrazolium bromide (MTT) assays. A DNA fragmentation assay was also used for proof of apoptosis. COX-2 inhibitors could suppress the proliferation of LNCaP and PC 3 cells. In contrast, PrSC was not affected by COX-2 inhibitors. These suppressive effects occurred in a time- and dose-dependent manner. One of mechanisms responsible for cell death was apoptosis. COX-2 seems to play a significant role in the progression of prostate cancer. COX-2 may be a therapeutic target for prostate cancer. Since COX-2 inhibitors suppress proliferation and induce apoptosis in prostate cancer cells, and have no effect in normal prostate stromal cells, COX-2 inhibitors will be useful for the treatment of prostate cancer.

  19. Cuprous oxide nanoparticles inhibit prostate cancer by attenuating the stemness of cancer cells via inhibition of the Wnt signaling pathway

    Science.gov (United States)

    Wang, Ye; Yang, Qi-Wei; Yang, Qing; Zhou, Tie; Shi, Min-Feng; Sun, Chen-Xia; Gao, Xiu-Xia; Cheng, Yan-Qiong; Cui, Xin-Gang; Sun, Ying-Hao

    2017-01-01

    Disordered copper metabolism plays a critical role in the development of various cancers. As a nanomedicine containing copper, cuprous oxide nanoparticles (CONPs) exert ideal antitumor pharmacological effects in vitro and in vivo. Prostate cancer is a frequently diagnosed male malignancy prone to relapse, and castration resistance is the main reason for endocrine therapy failure. However, whether CONPs have the potential to treat castration-resistant prostate cancer is still unknown. Here, using the castration-resistant PC-3 human prostate cancer cell line as a model, we report that CONPs can selectively induce apoptosis and inhibit the proliferation of cancer cells in vitro and in vivo without affecting normal prostate epithelial cells. CONPs can also attenuate the stemness of cancer cells and inhibit the Wnt signaling pathway, both of which highlight the great potential of CONPs as a new clinical castration-resistant prostate cancer therapy.

  20. Upregulation of vascular endothelial growth factor by cobalt chloride-simulated hypoxia is mediated by persistent induction of cyclooxygenase-2 in a metastatic human prostate cancer cell line.

    Science.gov (United States)

    Liu, X H; Kirschenbaum, A; Yao, S; Stearns, M E; Holland, J F; Claffey, K; Levine, A C

    1999-01-01

    Upregulation of vascular endothelial growth factor (VEGF) expression induced by hypoxia is crucial event leading to neovascularization. Cyclooxygenase-2, an inducible enzyme that catalyzes the formation of prostaglandins (PGs) from arachidonic acid, has been demonstrated to be induced by hypoxia and play role in angiogenesis and metastasis. To investigate the potential effect of COX-2 on hypoxia-induced VEGF expression in prostate cancer. We examined the relationship between COX-2 expression and VEGF induction in response to cobalt chloride (CoCl2)-simulated hypoxia in three human prostate cancer cell lines with differing biological phenotypes. Northern blotting and ELISA revealed that all three tested cell lines constitutively expressed VEGF mRNA, and secreted VEGF protein to different degrees (LNCaP > PC-3 > PC3ML). However, these cell lines differed in the ability to produce VEGF in the presence of CoCl2-simulated hypoxia. CoCl2 treatment resulted in 40% and 75% increases in VEGF mRNA, and 50% and 95% in protein secretion by LNCaP and PC-3 cell lines, respectively. In contrast, PC-3ML cell line, a PC-3 subline with highly invasive, metastatic phenotype, exhibits a dramatic upregulation of VEGF, 5.6-fold in mRNA and 6.3-fold in protein secretion after treatment with CoCl2. The upregulation of VEGF in PC-3ML cells is accompanied by a persistent induction of COX-2 mRNA (6.5-fold) and protein (5-fold). Whereas COX-2 expression is only transiently induced in PC-3 cells and not affected by CoCl2 in LNCaP cells. Moreover, the increases in VEGF mRNA and protein secretion induced by CoCl2 in PC-3ML cells were significantly suppressed following exposure to NS398, a selective COX-2 inhibitor. Finally, the effect of COX-2 inhibition on CoCl2-induced VEGF production was reversed by the treatment with exogenous PGE2. Our data demonstrate that VEGF induction by cobalt chloride-simulated hypoxia is maintained by a concomitant, persistent induction of COX-2 expression and

  1. Plant-Derived MINA-05 Inhibits Human Prostate Cancer Proliferation In Vitro and Lymph Node Spread In Vivo

    Directory of Open Access Journals (Sweden)

    Kate Vandyke

    2007-04-01

    Full Text Available Few treatment options exist for metastatic prostate cancer (PC that becomes hormone refractory (HRPC. In vitro, plant-derived MINA-05 caused dose-dependent decreases in cell numbers in HRPC cell lines LNCaPC4-2B and PC-3, and in androgen-sensitive LNCaP-FGC, DuCaP, and LAPC-4, by WST-1 assay. MINA-05 pretreatment significantly decreased clonogenic survival in agar and on plastic at 1 × and 2 × IC50 for PC-3 (P < .05 and P < .001, respectively, and at 1/2 ×, 1 ×, and 2 × IC50 for LNCaP-FGC cells (P < .001. MINA-05 also induced G2M arrest of LNCaP-FGC and PC-3 cells (by flow cytometry and caused some apoptosis in LNCaPFGC (sub-G1, peak on flow, expression of activated caspase-3 but not in PC-3 cells. Western blotting indicated that these cell cycle changes were associated with decreased levels of regulatory proteins cyclin B1 and cdc25C. MINA-05 given daily by gavage for 39 days did not diminish primary orthotopic PC-3 growth in nude mice, but decreased the extent of lymph node invasion at higher doses. We conclude that MINA-05 induces G2M arrest, inhibits cell growth, reduces PC cell re-growth in vitro, and reduces lymph node invasion after orthotopic PC-3 cell implantation in vivo. It has potential as an adjuvant treatment for patients with PC.

  2. Influence of ellagic acid on prostate cancer cell proliferation:A caspase-dependent pathway

    Institute of Scientific and Technical Information of China (English)

    Arshi Malik; Sarah Afaq; Mohammad Shahid; Kafil Akhtar; Abdullah Assiri

    2011-01-01

    Objective:To evaluate the effect of allagic acid treatment on the cell viability of human prostate cancer cells.Methods: Ellagic acid (10-100mol/L) treatment (48 h) of human prostate carcinomaPC3 cells was found to result in a dose-dependent inhibition of cell growth and apoptosis ofPC3 cells as assessed by MTTassay, western blotting, flow cytometry and confocal microscopy.Results: We observed that ellagic acid treatment ofPC3 cells resulted in a dose dependent inhibition of cell growth/cell viability. This ellagic acid caused cell growth inhibition was found to be accompanied by induction of apoptosis, as assessed by the cleavage of poly (ADP-ribose) polymerase(PARP) and morphological changes. Further, induction of apoptosis accompanied a decrease in the levels of antiapoptotic protein Bcl-2 and increase in proapoptotic protein Bax, thus shifting the Bax: Bcl-2 ratio in favor of apoptosis. Ellagic acid treatment of PC3 cells was also found to result in significant activation of caspases, as shown by the dose dependent decrease in the protein expression of procaspase-3, -6, -8 and-9. This ellagic acid-mediated induction of apoptosis was significantly (80%-90%) inhibited by the caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp (OMe)-fluoromethylketone(Z-VAD-FMK). Thus these data suggested an essential role of caspases in ellagic acid-mediated apoptosis ofPC3 cells.Conclusions:It is tempting to suggest that consumption of tropical pigmented fruits and vegetables could be an effective strategy to combat prostate cancer.

  3. Hydrogen sulfide mediates the anti-survival effect of sulforaphane on human prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Yanxi [Department of Biology, Lakehead University, Thunder Bay (Canada); College of Life Science, Shanxi University, Taiyuan (China); Wu, Bo [Department of Biology, Lakehead University, Thunder Bay (Canada); Department of Pathophysiology, Harbin Medical University, Harbin (China); Cao, Qiuhui [Department of Biology, Lakehead University, Thunder Bay (Canada); Wu, Lingyun [Department of Pathophysiology, Harbin Medical University, Harbin (China); Department of Pharmacology, University of Saskatchewan, Saskatoon (Canada); Yang, Guangdong, E-mail: gyang@lakeheadu.ca [The School of Kinesiology, Lakehead University, Thunder Bay (Canada)

    2011-12-15

    Hydrogen sulfide (H{sub 2}S) is a novel gasotransmitter that regulates cell proliferation and other cellular functions. Sulforaphane (SFN) is a sulfur-containing compound that exhibits anticancer properties, and young sprouts of broccoli are particularly rich in SFN. There is consistent epidemiological evidence that the consumption of sulfur-containing vegetables, such as garlic and cruciferous vegetables, may help reduce the occurrence of prostate cancer. Here we found that a large amount of H{sub 2}S is released when SFN is added into cell culture medium or mixed with mouse liver homogenates, respectively. Both SFN and NaHS (a H{sub 2}S donor) decreased the viability of PC-3 cells (a human prostate cancer cell line) in a dose-dependent manner, and supplement of methemoglobin or oxidized glutathione (two H{sub 2}S scavengers) reversed SFN-reduced cell viability. We further found both cystathionine gamma-lyase (CSE) and cystathionine beta-synthase are expressed in PC-3 cells and mouse prostate tissues. H{sub 2}S production in prostate tissues from CSE knockout mice was only 20% of that from wild-type mice, suggesting CSE is a major H{sub 2}S-producing enzyme in prostate. CSE overexpression enhanced H{sub 2}S production and inhibited cell viability in PC-3 cells. In addition, both SFN and NaHS activated p38 mitogen-activated protein kinases (MAPK) and c-Jun N-terminal kinase (JNK). Pre-treatment of PC-3 cells with methemoglobin decreased SFN-stimulated MAPK activities. Suppression of both p38 MAPK and JNK reversed H{sub 2}S- or SFN-reduced viability of PC-3 cells. Our results demonstrated that H{sub 2}S mediates the inhibitory effect of SFN on the proliferation of PC-3 cells, which suggests that H{sub 2}S-releasing diet or drug might be beneficial in the treatment of prostate cancer. Highlights: Black-Right-Pointing-Pointer A large amount of H{sub 2}S is released from sulforaphane. Black-Right-Pointing-Pointer H{sub 2}S mediates the anti-survival effect of

  4. A novel mechanism of methylglyoxal cytotoxicity in prostate cancer cells.

    Science.gov (United States)

    Antognelli, Cinzia; Mezzasoma, Letizia; Fettucciari, Katia; Talesa, Vincenzo Nicola

    2013-04-01

    Methylglyoxal is one of the most powerful glycating agents of proteins and other important cellular components and has been shown to be toxic to cultured cells. Methylglyoxal cytotoxicity appears to occur through cell-cycle arrest but, more often, through induction of apoptosis. In this study we examined whether, and through which molecular mechanism, methylglyoxal affects the growth of poorly aggressive LNCaP and invasive PC3 human prostate cancer cells, where its role has not been exhaustively investigated yet. We demonstrated that methylglyoxal is cytotoxic on LNCaP and PC3 and that such cytotoxicity occurs not via cell proliferation but apoptosis control. Moreover, we demonstrated that methylglyoxal cytotoxicity, potentiated by the silencing of its major scavenging enzyme Glyoxalase I, occurred via different apoptotic responses in LNCaP and PC3 cells that also showed a different susceptibility to this metabolite. Finally, we showed that the observed methylglyoxal apoptogenic role involved different molecular pathways, specifically mediated by methylglyoxal or methylglyoxal-derived argpyrimidine intracellular accumulation and NF-kB signaling-pathway. In particular, in LNCaP cells, methylglyoxal, through the accumulation of argpyrimidine, desensitized the key cell survival NF-kB signaling pathway, which was consistent with the modulation of NF-kB-regulated genes, triggering a mitochondrial apoptotic pathway. The results suggest that this physiological compound merits investigation as a potential chemo-preventive/-therapeutic agent, in differently aggressive prostate cancers.

  5. Proliferative effect of whey from cows' milk varying in phyto-oestrogens in human breast and prostate cancer cells.

    Science.gov (United States)

    Nielsen, Tina S; Höjer, Annika; Gustavsson, Anne-Maj; Hansen-Møller, Jens; Purup, Stig

    2012-05-01

    Intake of dietary phyto-oestrogens has received a great deal of attention owing to their potential influence on hormone-sensitive cancers such as breast and prostate cancer. Cows' milk contains phyto-oestrogens and the content varies according to the composition of the feed and the type and amount of legumes used. In this study we evaluated the proliferative effect of milk (whey) with different phyto-oestrogen content in human breast (MCF-7) and prostate cancer cells (PC-3). Milk was obtained from cows fed either a birdsfoot trefoil-timothy silage based ration (B1) or two different red clover silage based diets (R1 and R2) resulting in total phyto-oestrogen contents of 403, 1659 and 1434 ng/ml for the B1, R1 and R2 diets, respectively. Whey was produced from the milk and added to cell culture medium in concentrations up to 10% for MCF-7 cells and 5% for PC-3 cells. Cell proliferation was measured fluorometrically after 7 d for MCF-7 cells and 5 d for PC-3 cells. There was no significant difference in the proliferative effect of whey from the different dietary treatments at any of the whey concentrations tested. An anti-proliferative effect (Pwhey was seen when tested in the presence of 10 pM oestradiol in the medium. This effect was independent of dietary treatment of cows. Whey induced a significant (Pmilk decreased PC-3 cell proliferation, and therefore the stimulatory effect of whey in PC-3 cells is believed to be mediated by other bioactives than equol. In conclusion, our results suggest that using whey in these proliferation assays, it was not possible to discriminate between milk with high or low levels of phyto-oestrogens.

  6. Radiation-induced cyclooxygenase 2 up-regulation is dependent on redox status in prostate cancer cells.

    Science.gov (United States)

    Li, Lingyun; Steinauer, Kirsten K; Dirks, Amie J; Husbeck, Bryan; Gibbs, Iris; Knox, Susan J

    2003-12-01

    Cyclooxygenase 2 (COX2) is the inducible isozyme of COX, a key enzyme in arachidonate metabolism and the conversion of arachidonic acid (AA) to prostaglandins (PGs) and other eicosanoids. Previous studies have demonstrated that the COX2 protein is up-regulated in prostate cancer cells after irradiation and that this results in elevated levels of PGE(2). In the present study, we further investigated whether radiation-induced COX2 up-regulation is dependent on the redox status of cells from the prostate cancer cell line PC-3. l-Buthionine sulfoximine (BSO), which inhibits gamma glutamyl cysteine synthetase (gammaGCS), and the antioxidants alpha-lipoic acid and N-acetyl-l-cysteine (NAC) were used to modulate the cellular redox status. BSO decreased the cellular GSH level and increased cellular reactive oxygen species (ROS) in PC-3 cells, whereas alpha-lipoic acid and NAC increased the GSH level and decreased cellular ROS. Both radiation and the oxidant H(2)O(2) had similar effects on COX2 up-regulation and PGE(2) production in PC-3 cells, suggesting that radiation-induced COX2 up-regulation is secondary to the production of ROS. The relative increases in COX2 expression and PGE(2) production induced by radiation and H(2)O(2) were even greater when PC-3 cells were pretreated with BSO. When the cells were pretreated with alpha-lipoic acid or NAC for 24 h, both radiation- and H(2)O(2)-induced COX2 up-regulation and PGE(2) production were markedly inhibited. These results demonstrate that radiation-induced COX2 up-regulation in prostate cancer cells is modulated by the cellular redox status. Radiation-induced increases in ROS levels contribute to the adaptive response of PC-3 cells, resulting in elevated levels of COX2.

  7. 3-Bromopyruvate induces rapid human prostate cancer cell death by affecting cell energy metabolism, GSH pool and the glyoxalase system.

    Science.gov (United States)

    Valenti, Daniela; Vacca, Rosa A; de Bari, Lidia

    2015-12-01

    3-bromopyruvate (3-BP) is an anti-tumour drug effective on hepatocellular carcinoma and other tumour cell types, which affects both glycolytic and mitochondrial targets, depleting cellular ATP pool. Here we tested 3-BP on human prostate cancer cells showing, differently from other tumour types, efficient ATP production and functional mitochondrial metabolism. We found that 3-BP rapidly induced cultured androgen-insensitive (PC-3) and androgen-responsive (LNCaP) prostate cancer cell death at low concentrations (IC(50) values of 50 and 70 μM, respectively) with a multimodal mechanism of action. In particular, 3-BP-treated PC-3 cells showed a selective, strong reduction of glyceraldeide 3-phosphate dehydrogenase activity, due to the direct interaction of the drug with the enzyme. Moreover, 3-BP strongly impaired both glutamate/malate- and succinate-dependent mitochondrial respiration, membrane potential generation and ATP synthesis, concomitant with the inhibition of respiratory chain complex I, II and ATP synthase activities. The drastic reduction of cellular ATP levels and depletion of GSH pool, associated with significant increase in cell oxidative stress, were found after 3-BP treatment of PC-3 cells. Interestingly, the activity of both glyoxalase I and II, devoted to the elimination of the cytotoxic methylglyoxal, was strongly inhibited by 3-BP. Both N-acetylcysteine and aminoguanidine, GSH precursor and methylglyoxal scavenger, respectively, prevented 3-BP-induced PC-3 cell death, showing that impaired cell antioxidant and detoxifying capacities are crucial events leading to cell death. The provided information on the multi-target cytotoxic action of 3-BP, finally leading to PC-3 cell necrosis, might be useful for future development of 3-BP as a therapeutic option for prostate cancer treatment.

  8. Glutathione Levels and Susceptibility to Chemically Induced Injury in Two Human Prostate Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Lawrence H. Lash

    2015-06-01

    Full Text Available More aggressive prostate cancer cells (PCCs are often resistant to chemotherapy. Differences exist in redox status and mitochondrial metabolism that may help explain this phenomenon. Two human PCC lines, PC-3 cells (more aggressive and LNCaP cells (less aggressive, were compared with regard to cellular glutathione (GSH levels, susceptibility to either oxidants or GSH depletors, and expression of several proteins involved in apoptosis and stress response to test the hypothesis that more aggressive PCCs exhibit higher GSH concentrations and are relatively resistant to cytotoxicity. PC-3 cells exhibited 4.2-fold higher GSH concentration than LNCaP cells but only modest differences in acute cytotoxicity were observed at certain time points. However, only LNCaP cells underwent diamide-induced apoptosis. PC-3 cells exhibited higher levels of Bax and caspase-8 cleavage product but lower levels of Bcl-2 than LNCaP cells. However, LNCaP cells exhibited higher expression of Fas receptor (FasR but also higher levels of several stress response and antioxidant proteins than PC-3 cells. LNCaP cells also exhibited higher levels of several mitochondrial antioxidant systems, suggesting a compensatory response. Thus, significant differences in redox status and expression of proteins involved in apoptosis and stress response may contribute to PCC aggressiveness.

  9. Momordin Ic, a new natural SENP1 inhibitor, inhibits prostate cancer cell proliferation.

    Science.gov (United States)

    Wu, Jingjing; Lei, Hu; Zhang, Jinfu; Chen, Xiangyun; Tang, Caixia; Wang, Weiwei; Xu, Hanzhang; Xiao, Weilie; Gu, Wenli; Wu, Yingli

    2016-09-13

    SUMO-specific protease 1 (SENP1), a member of the de-SUMOylation protease family, is elevated in prostate cancer (PCa) cells and is involved in PCa pathogenesis. Momordin Ιc (Mc), a natural pentacyclic triterpenoid, inhibited SENP1 in vitro, as reflected by reduced SENP1C-induced cleavage of SUMO2-ΔRanGAP1. Mc also altered the thermal stability of SENP1 in a newly developed cellular thermal shift assay, indicating that Mc directly interacts with SENP1 in PCa cells. Consistent with SENP1 inhibition, Mc increased SUMOylated protein levels, which was further confirmed by the accumulation of two known SUMOylated proteins, hypoxia inducible factor-1a and nucleus accumbens associated protein 1 in PC3 cells. Compared to LNCaP and normal prostate epithelial RWPE-1 cells, PC3 cells had higher levels of SENP1 mRNA and were more sensitive to Mc-induced growth inhibition. Mc also reduced SENP1 mRNA levels in PCa cells. Overexpression of SENP1 rescued PC3 cells from Mc-induced apoptosis. Finally, Mc suppressed cell proliferation and induced cell death in vivo in a xenograft PC3 tumor mouse model. These findings demonstrate that Mc is a novel SENP1 inhibitor with potential therapeutic value for PCa. Investigation of other pentacyclic triterpenoids may aid in the development of novel SENP1 inhibitor drugs.

  10. The Expression of Lactoferrin in BPH-EPS, BPH-free EPS and Prostate Cancer Secretion

    Institute of Scientific and Technical Information of China (English)

    Xu Kexin; Wang Xiaofeng; Hou Shukun; Wang Yunchun

    2003-01-01

    To examine the expression of lactoferrin(Lf) in both the expressed prostatic secretion(EPS)of BPHpatients,normal males and the secretion of prostate cancer cell lines PC-3 and DU145.The potential correlation of Lf with prostaticcarcinogenesis was also investigated.Methods:Forty EPS samples obtained from 20 BPH patients and 20 normal males as well as thesecretions of prostate cancer cell lines PC-3 and DU145 were subjected to two-dimensional gel electrophoresis(2-DE).Massspectrometry was performed to confirm the nature of the expressed proteins in EPS and prostatic cancer secretion. Results:Based on theresulting electrophoretograms and the followed mass spectrometry analysis,several differentially expressed proteins were detected andthe up-regulation of Lf (MW 35KDa,pI 7-7.5)in BPH-EPS,compared with BPH-free EPS,was also observed. More importantly, Lf wasabsent in prostate cancer cell lines PC-3 and DU145.Conclusion:The results indicate Lf may be produced specifically by benignprostatic epithelium and prostate lost its Lf secretion during the process of carcinogenesis.

  11. Carvacrol Alleviates Prostate Cancer Cell Proliferation, Migration, and Invasion through Regulation of PI3K/Akt and MAPK Signaling Pathways

    Science.gov (United States)

    Luo, Yun; Wu, Jie-Ying; Lu, Min-Hua; Shi, Zhi

    2016-01-01

    TRPM7 is a potential therapeutic target for treatment of prostate cancer. In this study, we investigated the effects of nonselective TRPM7 inhibitor carvacrol on cell proliferation, migration, and invasion of prostate cancer PC-3 and DU145 cells. Our results showed that carvacrol blocked TRPM7-like currents in PC-3 and DU145 cells and reduced their proliferation, migration, and invasion. Moreover, carvacrol treatment significantly decreased MMP-2, p-Akt, and p-ERK1/2 protein expression and inhibited F-actin reorganization. Furthermore, consistently, TRPM7 knockdown reduced prostate cancer cell proliferation, migration, and invasion as well. Our study suggests that carvacrol may have therapeutic potential for the treatment of prostate cancer through its inhibition of TRPM7 channels and suppression of PI3K/Akt and MAPK signaling pathways. PMID:27803760

  12. Sesamin inhibits lipopolysaccharide-induced proliferation and invasion through the p38-MAPK and NF-κB signaling pathways in prostate cancer cells.

    Science.gov (United States)

    Xu, Peiyuan; Cai, Fei; Liu, Xiaofei; Guo, Lele

    2015-06-01

    Sesamin, a lipid-soluble lignan, is one of the major constituents of sesame. Previous studies have reported that sesamin induces growth inhibition in human cancer cells, particularly prostate cancer cells. In the present study, we mainly explored the mechanism underlying the protective effect of sesamin on prostate cancer cell proliferation and invasion induced by lipopolysaccharide (LPS). We found that the proliferation of PC3 cells, as determined using the MTT assay, and the expression of cyclin D1, COX-2, Bcl-2 and survivin proteins elevated by LPS were distinctly inhibited by sesamin in a dose-dependent manner. Meanwhile, the ability of PC3 cell invasion, as determined using the Transwell assay and the expression of matrix metalloproteinase 9 (MMP-9), intercellular adhesion molecule-1 (ICAM-1) and vascular endothelial growth factor (VEGF) proteins increased by LPS were obviously reduced by sesamin in a dose-dependent manner. In addition, the accumulation of TGF-α and interleukin-6 (IL-6) production induced by LPS in the culture supernatant was found to be decreased dose-dependently with sesamin pretreatment in PC3 cells using the enzyme-linked immunosorbent assay (ELISA) kit. Furthermore, phosphorylation of the p38 protein and nuclear factor (NF)-κB activity in the PC3 cells were enhanced by LPS and further inhibited with sesamin, SB203580 pretreatment or p38-siRNA transfection, respectively. Sesamin or SB203580 pretreatment obviously inhibited PC3 cells-derived tumor growth induced by LPS in vivo. Taken together, these results suggest that the potential ability of sesamin to downregulate the secretion of cytokines and the expression of cell proliferative- and invasive-related gene products induced by LPS was shown to be via the p38 mitogen-activated protein kinase (p38-MAPK) and NF-κB signaling pathways, which may be one of the mechanisms of the anticancer activity of this sesamin agent in prostate cancer cells.

  13. In vitro anticancer activity of extracts of Mentha Spp. against human cancer cells.

    Science.gov (United States)

    Sharma, Vikas; Hussain, Shabir; Gupta, Moni; Saxena, Ajit Kumar

    2014-10-01

    In vitro anticancer potential of methanolic and aqueous extracts of whole plants of Mentha arvensis, M. longifolia, M. spicata and M. viridis at concentration of 100 μg/ml was evaluated against eight human cancer cell lines--A-549, COLO-205, HCT-116, MCF-7, NCI-H322, PC-3, THP-1 and U-87MG from six different origins (breast, colon, glioblastoma, lung, leukemia and prostate) using sulphorhodamine blue (SRB) assay. Methanolic extracts of above-mentioned Mentha Spp. displayed anti-proliferative effect in the range of 70-97% against four human cancer cell lines, namely COLO-205, MCF-7, NCI-H322 and THP-1; however, aqueous extracts were found to be active against HCT-116 and PC-3. The results indicate that Mentha Spp. contain certain constituents with cytotoxic properties which may find use in developing anticancer agents.

  14. Zinc inhibits nuclear factor-kappa B activation and sensitizes prostate cancer cells to cytotoxic agents.

    Science.gov (United States)

    Uzzo, Robert G; Leavis, Paul; Hatch, William; Gabai, Vladimir L; Dulin, Nickolai; Zvartau, Nadezhda; Kolenko, Vladimir M

    2002-11-01

    Prostate carcinogenesis involves transformation of zinc-accumulating normal epithelial cells to malignant cells, which do not accumulate zinc. In this study, we demonstrate by immunoblotting and immunohistochemistry that physiological levels of zinc inhibit activation of nuclear factor (NF)-kappa B transcription factor in PC-3 and DU-145 human prostate cancer cells, reduce expression of NF-kappa B-controlled antiapoptotic protein c-IAP2, and activate c-Jun NH(2)-terminal kinases. Preincubation of PC-3 cells with physiological concentrations of zinc sensitized tumor cells to tumor necrosis factor (TNF)-alpha, and paclitaxel mediated cell death as defined by terminal deoxynucleotidyl transferase-mediated nick end labeling assay. These results suggest one possible mechanism for the inhibitory effect of zinc on the development and progression of prostate malignancy and might have important consequences for the prevention and treatment of prostate cancer.

  15. Microvascular Channel Device to Study Aggressiveness in Prostate Cancer Metastasis

    Science.gov (United States)

    2014-08-01

    applied a dynamic flow-based E-selectin+SDF-1 coated micro -channel model to isolate and characterize a subpopulation of adhering prostate cancer cells...treatment. 15. SUBJECT TERMS prostate cancer, metastasis, selectin, circulating, Micro -vascular 16. SECURITY CLASSIFICATION OF: 17...utilized RNA interference to knock down ESL-1 expression in PC-3 and DU145 cells. Two shESL-1 (shESL-1#4 and shESL-1#5) and one scramble (scESL-1

  16. Alterations in cancer cell mechanical properties after fluid shear stress exposure: a micropipette aspiration study

    Directory of Open Access Journals (Sweden)

    Chivukula VK

    2015-01-01

    Full Text Available Venkat Keshav Chivukula,1 Benjamin L Krog,1,2 Jones T Nauseef,2 Michael D Henry,2 Sarah C Vigmostad1 1Department of Biomedical Engineering, 2Department of Molecular Physiology and Biophysics, Holden Comprehensive Cancer Center, University of Iowa, Seamans Center for the Engineering Arts and Sciences, Iowa City, IA, USA Abstract: Over 90% of cancer deaths result not from primary tumor development, but from metastatic tumors that arise after cancer cells circulate to distal sites via the circulatory system. While it is known that metastasis is an inefficient process, the effect of hemodynamic parameters such as fluid shear stress (FSS on the viability and efficacy of metastasis is not well understood. Recent work has shown that select cancer cells may be able to survive and possibly even adapt to FSS in vitro. The current research seeks to characterize the effect of FSS on the mechanical properties of suspended cancer cells in vitro. Nontransformed prostate epithelial cells (PrEC LH and transformed prostate cancer cells (PC-3 were used in this study. The Young's modulus was determined using micropipette aspiration. We examined cells in suspension but not exposed to FSS (unsheared and immediately after exposure to high (6,400 dyn/cm2 and low (510 dyn/cm2 FSS. The PrEC LH cells were ~140% stiffer than the PC-3 cells not exposed to FSS. Post-FSS exposure, there was an increase of ~77% in Young's modulus after exposure to high FSS and a ~47% increase in Young's modulus after exposure to low FSS for the PC-3 cells. There was no significant change in the Young's modulus of PrEC LH cells post-FSS exposure. Our findings indicate that cancer cells adapt to FSS, with an increased Young's modulus being one of the adaptive responses, and that this adaptation is specific only to PC-3 cells and is not seen in PrEC LH cells. Moreover, this adaptation appears to be graded in response to the magnitude of FSS experienced by the cancer cells. This is the first study

  17. Argentatin B Inhibits Proliferation of Prostate and Colon Cancer Cells by Inducing Cell Senescence

    OpenAIRE

    Ela Alcántara-Flores; Alicia Enriqueta Brechú-Franco; Patricia García-López; Leticia Rocha-Zavaleta; Rebeca López-Marure; Mariano Martínez-Vázquez

    2015-01-01

    Argentatin B has been shown to inhibit the growth of colon HCT-15, and prostate PC-3 cancer cells. However, the mechanism by which argentatin B inhibits cell proliferation is still unknown. We aimed to investigate the mechanism by which argentatin B inhibits cell proliferation. The cell cycle was studied by flow cytometry. Apoptosis was evaluated by Annexin-V-Fluos, and Hoechst 33342 dye staining. Cell senescence was evaluated by proliferation tests, and staining for SA-β-galactosidase. Senes...

  18. Syndecan-1 responsive microRNA-126 and 149 regulate cell proliferation in prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Tomomi; Shimada, Keiji [Department of Pathology, Nara Medical University School of Medicine, Nara (Japan); Tatsumi, Yoshihiro [Department of Pathology, Nara Medical University School of Medicine, Nara (Japan); Department of Urology, Nara Medical University School of Medicine, Nara (Japan); Fujimoto, Kiyohide [Department of Urology, Nara Medical University School of Medicine, Nara (Japan); Konishi, Noboru, E-mail: nkonishi@naramed-u.ac.jp [Department of Pathology, Nara Medical University School of Medicine, Nara (Japan)

    2015-01-02

    Highlights: • Syndecan-1 is highly expressed in androgen independent prostate cancer cells, PC3. • Syndecan-1 regulates the expression of miR-126 and -149 in prostate cancer cells. • MiR-126 and 149 control cell growth via p21 induction and senescence mechanism. • MiR-126 and 149 promote cell proliferation by suppressing SOX2, NANOG, and Oct4. - Abstract: MicroRNAs (miRNAs) are short (19–24 nt), low molecular weight RNAs that play important roles in the regulation of target genes associated with cell proliferation, differentiation, and development, by binding to the 3′-untranslated region of the target mRNAs. In this study, we examined the expression of miRNA-126 (miR-126) and miR-149 in prostate cancer, and investigated the molecular mechanisms by which they affect syndecan-1 in prostate cancer. Functional analysis of miR-126 and miR-149 was conducted in the prostate cancer cell lines, PC3, Du145, and LNCaP. The expression levels of SOX2, NANOG, Oct4, miR-126 and miR-149 were evaluated by quantitative RT-PCR. After silencing syndecan-1, miR-126, and/or miR-149 in the PC3 cells, cell proliferation, senescence, and p21 induction were assessed using the MTS assay, senescence-associated β-galactosidase (SA-β-Gal) assay, and immunocytochemistry, respectively. Compared to the Du145 and LNCaP cells, PC3 cells exhibited higher expression of syndecan-1. When syndecan-1 was silenced, the PC3 cells showed reduced expression of miR-126 and miR-149 most effectively. Suppression of miR-126 and/or miR-149 significantly inhibited cell growth via p21 induction and subsequently, induced senescence. The mRNA expression levels of SOX2, NANOG, and Oct4 were significantly increased in response to the silencing of miR-126 and/or miR-149. Our results suggest that miR-126 and miR-149 are associated with the expression of syndecan-1 in prostate cancer cells. These miRNAs promote cell proliferation by suppressing SOX2, NANOG, and Oct4. The regulation of these factors by mi

  19. Insulin-like growth factor binding protein-5 influences pancreatic cancer cell growth

    Institute of Scientific and Technical Information of China (English)

    Sarah K Johnson; Randy S Haun

    2009-01-01

    AIM: To investigate the functional significance of insulin-like growth factor binding protein-5 (IGFBP-5) overexpression in pancreatic cancer (PaC).METHODS: The effects of IGFBP-5 on cell growth were assessed by stable transfection of BxPC-3 and PANC-1 cell lines and measuring cell number and DNA synthesis. Alterations in the cell cycle were assessed by flow cytometry and immunoblot analyses.Changes in cell survival and signal transduction were evaluated after mitogen activated protein kinase and phosphatidylinositol 3-kinase (PI3K) inhibitor treatment.RESULTS: After serum depr ivat ion, IGFBP-5 expression increased both cell number and DNA synthesis in BxPC-3 cells, but reduced cell number in PANC-1 cells. Consistent with this observation, cell cycle analysis of IGFBP-5-expressing cells revealed accelerated cell cycle progression in BxPC-3 and G2/M arrest of PANC-1 cells. Signal transduction analysis revealed that Akt activation was increased in BxPC-3, but reduced in PANC-1 cells that express IGFBP-5. Inhibition of PI3K with LY294002 suppressed extracellular signal-regulated kinase-1 and -2 (ERK1/2) activation in BxPC-3, but enhanced ERK1/2 activation in PANC-1 cells that express IGFBP-5. When MEK1/2 was blocked, Akt activation remained elevated in IGFBP-5 expressing PaC cells; however, inhibition of PI3K or MEK1/2 abrogated IGFBP-5-mediated cell survival.CONCLUSION: These results indicate that IGFBP-5 expression affects the cell cycle and survival signal pathways and thus it may be an important mediator of PaC cell growth.

  20. Effects of α-adrenoreceptor antagonists on apoptosis and proliferation of pancreatic cancer cells in vitro

    Institute of Scientific and Technical Information of China (English)

    Su-Gang Shen; Dong Zhang; Heng-Tong Hu; Jun-Hui Li; Zheng Wang; Qing-Yong Ma

    2008-01-01

    AIM: To discuss the expression of α-adrenoreceptors in pancreatic cancer cell lines PC-2 and PC-3 and the effects of α1- and α2-adrenoreceptor antagonists, yohimbine and urapidil hydrochloride, on the cell lines in vitro.METHODS: We cultured the human ductal pancreatic adenocarcinoma cell lines PC-2 and PC-3 and analyzed the mRNA expression of α1- and α2-adrenergic receptors by reverse transcription polymerase chain reaction (RT-PCR).The effects of yohimbine and urapidil hydrochloride on cell proliferation were assessed by 3-(4,5-dimethylthiasol-2-yl)2,4,-diphenyltetrazolium bromide (MTT) assay. Apoptosis was detected using the terminal deoxyribonucleoticlyl transferase (TdT)-mediated biotin-16-dUTP nick-end labeling (TUNEL) assay and flow cytometry (FCM).RESULTS: PC-2 expressed rnRNA in α1- and α2-adrenoreceptors. MTT assays showed that urapidil hydrochloride had no effect on PC-3 cell lines. However,exposure to urapidil hydrochloride increased DNA synthesis in PC-2 cell lines as compared to the control group. PC-2 cell lines were sensitive to both drugs. The proliferation of the 2 cell lines was inhibited by yohimbine.Cell proliferation was inhibited by yohimbine via apoptosis induction.CONCLUSION: The expression of α1-and α2-adrenoreceptors is different in PC-2 and PC-3 cell lines,which might be indicative of their different functions. Theα2-adrenoceptor antagonist, yohimbine, can inhibit the proliferation of both cell lines and induce their apoptosis,suggesting that yohimbine can be used as an anticancer drug for apoptosis of PC-2 and PC-3 cells.

  1. Adhesion of Pancreatic Cancer Cells in a Liver-Microvasculature Mimicking Coculture Correlates with Their Propensity to Form Liver-Specific Metastasis In Vivo

    Directory of Open Access Journals (Sweden)

    Mohammad Mahfuz Chowdhury

    2014-01-01

    Full Text Available Organ-specific characteristic of endothelial cells (ECs is crucial for specific adhesion of cancer cells to ECs, which is a key factor in the formation of organ-specific metastasis. In this study, we developed a coculture of TMNK-1 (immortalized liver sinusoidal ECs with 10T1/2 (resembling hepatic stellate cells to augment organ-specific characteristic of TMNK-1 and investigated adhesion of two pancreatic cancer cells (MIA-PaCa-2 and BxPC-3 in the culture. MIA-PaCa-2 and BxPC-3 adhesion in TMNK-1+10T1/2coating culture (TMNK-1 monolayer over 10T1/2 layer on collagen coated surface were similar. However, in TMNK-1+10T1/2gel (coculture on collagen gel surface, MIA-PaCa-2 adhesion was significantly higher than BxPC-3, which was congruent with the reported higher propensity of MIA-PaCa-2 than BxPC-3 to form liver metastasis in vivo. Notably, as compared to BxPC-3, MIA-PaCa-2 adhesion was lower and similar in TMNK-1 only culture on the collagen coated and gel surfaces, respectively. Investigation of the adhesion in the representative human umbilical vein ECs (HUVECs cultures and upon blocking of surface molecules of ECs revealed that MIA-PaCa-2 adhesion was strongly dependent on the organ-specific upregulated characteristics of TMNK-1 in TMNK-1+10T1/2gel culture. Therefore, the developed coculture would be a potential assay for screening novel drugs to inhibit the liver-microvasculature specific adhesion of cancer cells.

  2. Adhesion of pancreatic cancer cells in a liver-microvasculature mimicking coculture correlates with their propensity to form liver-specific metastasis in vivo.

    Science.gov (United States)

    Chowdhury, Mohammad Mahfuz; Danoy, Mathieu; Rahman, Farhana; Shinohara, Marie; Kaneda, Shohei; Shiba, Kiyotaka; Fujita, Naoya; Fujii, Teruo; Sakai, Yasuyuki

    2014-01-01

    Organ-specific characteristic of endothelial cells (ECs) is crucial for specific adhesion of cancer cells to ECs, which is a key factor in the formation of organ-specific metastasis. In this study, we developed a coculture of TMNK-1 (immortalized liver sinusoidal ECs) with 10T1/2 (resembling hepatic stellate cells) to augment organ-specific characteristic of TMNK-1 and investigated adhesion of two pancreatic cancer cells (MIA-PaCa-2 and BxPC-3) in the culture. MIA-PaCa-2 and BxPC-3 adhesion in TMNK-1+10T1/ 2|coating culture (TMNK-1 monolayer over 10T1/2 layer on collagen coated surface) were similar. However, in TMNK-1+10T1/ 2|gel (coculture on collagen gel surface), MIA-PaCa-2 adhesion was significantly higher than BxPC-3, which was congruent with the reported higher propensity of MIA-PaCa-2 than BxPC-3 to form liver metastasis in vivo. Notably, as compared to BxPC-3, MIA-PaCa-2 adhesion was lower and similar in TMNK-1 only culture on the collagen coated and gel surfaces, respectively. Investigation of the adhesion in the representative human umbilical vein ECs (HUVECs) cultures and upon blocking of surface molecules of ECs revealed that MIA-PaCa-2 adhesion was strongly dependent on the organ-specific upregulated characteristics of TMNK-1 in TMNK-1+10T1/ 2|gel culture. Therefore, the developed coculture would be a potential assay for screening novel drugs to inhibit the liver-microvasculature specific adhesion of cancer cells.

  3. In vitro and in vivo effects of phenethyl isothiocyanate treatment on vimentin protein expression in cancer cells.

    Science.gov (United States)

    Sakao, Kozue; Hahm, Eun-Ryeong; Singh, Shivendra V

    2013-01-01

    We have shown previously that cancer prevention by cruciferous vegetable constituent phenethyl isothiocyanate (PEITC) in a transgenic mouse model of prostate cancer is associated with induction of E-cadherin protein expression. Because suppression of E-cadherin protein concomitant with induction of mesenchymal markers (e.g., vimentin) is a biochemical hallmark of epithelial-mesenchymal transition, a process implicated in cancer metastasis, we hypothesized that PEITC treatment was likely to suppress vimentin protein expression. Contrary to this prediction, exposure of human breast (MDA-MB-231) and prostate cancer cells (PC-3 and DU145) to PEITC resulted in a dose-dependent increase in vimentin protein level, which was observed as early as 6 h posttreatment and persisted for the duration of the experiment (24 h). RNA interference of vimentin resulted in a modest augmentation of PEITC-mediated inhibition of MDA-MB-231 and PC-3 cell migration as well as cell viability. Furthermore, the PEITC-induced apoptosis was moderately increased upon siRNA knockdown of vimentin protein in MDA-MB-231 and PC-3 cells. To our surprise, PEITC treatment caused a marked decrease in vimentin protein expression in breast and prostate carcinoma in vivo in transgenic mouse models, although the difference was statistically significant only in the breast carcinomas. The present study highlights the importance of in vivo correlative studies for validation of the in vitro mechanistic observations.

  4. Growth inhibition and apoptosis in cancer cells induced by polyphenolic compounds of Acacia hydaspica: Involvement of multiple signal transduction pathways

    Science.gov (United States)

    Afsar, Tayyaba; Trembley, Janeen H.; Salomon, Christine E.; Razak, Suhail; Khan, Muhammad Rashid; Ahmed, Khalil

    2016-01-01

    Acacia hydaspica R. Parker is known for its medicinal uses in multiple ailments. In this study, we performed bioassay-guided fractionation of cytotoxic compounds from A. hydaspica and investigated their effects on growth and signaling activity in prostate and breast cancer cell lines. Four active polyphenolic compounds were identified as 7-O-galloyl catechin (GC), catechin (C), methyl gallate (MG), and catechin-3-O-gallate (CG). The four compounds inhibited prostate cancer PC-3 cell growth in a dose-dependent manner, whereas CG and MG inhibited breast cancer MDA-MB-231 cell growth. All tested compounds inhibited cell survival and colony growth in both cell lines, and there was evidence of chromatin condensation, cell shrinkage and apoptotic bodies. Further, acridine orange, ethidium bromide, propidium iodide and DAPI staining demonstrated that cell death occurred partly via apoptosis in both PC-3 and MDA-MB-231 cells. In PC-3 cells treatment repressed the expression of anti-apoptotic molecules Bcl-2, Bcl-xL and survivin, coupled with down-regulation of signaling pathways AKT, NFκB, ERK1/2 and JAK/STAT. In MDA-MB-231 cells, treatment induced reduction of CK2α, Bcl-xL, survivin and xIAP protein expression along with suppression of NFκB, JAK/STAT and PI3K pathways. Our findings suggest that certain polyphenolic compounds derived from A. hydaspica may be promising chemopreventive/therapeutic candidates against cancer. PMID:26975752

  5. c-Myc is a novel target of cell cycle arrest by honokiol in prostate cancer cells.

    Science.gov (United States)

    Hahm, Eun-Ryeong; Singh, Krishna Beer; Singh, Shivendra V

    2016-09-01

    Honokiol (HNK), a highly promising phytochemical derived from Magnolia officinalis plant, exhibits in vitro and in vivo anticancer activity against prostate cancer but the underlying mechanism is not fully clear. This study was undertaken to delineate the role of c-Myc in anticancer effects of HNK. Exposure of prostate cancer cells to plasma achievable doses of HNK resulted in a marked decrease in levels of total and/or phosphorylated c-Myc protein as well as its mRNA expression. We also observed suppression of c-Myc protein in PC-3 xenografts upon oral HNK administration. Stable overexpression of c-Myc in PC-3 and 22Rv1 cells conferred significant protection against HNK-mediated growth inhibition and G0-G1 phase cell cycle arrest. HNK treatment decreased expression of c-Myc downstream targets including Cyclin D1 and Enhancer of Zeste Homolog 2 (EZH2), and these effects were partially restored upon c-Myc overexpression. In addition, PC-3 and DU145 cells with stable knockdown of EZH2 were relatively more sensitive to growth inhibition by HNK compared with control cells. Finally, androgen receptor overexpression abrogated HNK-mediated downregulation of c-Myc and its targets particularly EZH2. The present study indicates that c-Myc, which is often overexpressed in early and late stages of human prostate cancer, is a novel target of prostate cancer growth inhibition by HNK.

  6. Deprivation of arginine by recombinant human arginase in prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Hsueh Eddy C

    2012-04-01

    Full Text Available Abstract Background Recombinant human arginase (rhArg has been developed for arginine deprivation therapy in cancer, and is currently under clinical investigation. During pre-clinical evaluation, rhArg has exhibited significant anti-proliferative activity in cancer cells deficient in the expression of ornithine carbamoyl transferase (OCT. Interestingly, a variety of cancer cells such as melanoma and prostate cancer deficient in argininosuccinate synthetase (ASS are sensitive to arginine deprivation by arginine deiminase. In this study, we investigated levels of gene expression of OCT and ASS, and the effects of rhArg in human prostate cancer cells: LNCaP (androgen-dependent, PC-3 and DU-145 (both androgen-independent. Results Quantitative real-time PCR showed minimal to absent gene expression of OCT, but ample expression of ASS expression in all 3 cell lines. Cell viability assay after 72-h exposure of rhArg showed all 3 lines had half maximal inhibitory concentration less than or equal to 0.02 U/ml. Addition of ornithine to cell culture media failed to rescue these cells from rhArg-mediated cytotoxicity. Decreased phosphorylation of 4E-BP1, a downstream effector of mammalian target of rapamycin (mTOR, was noted in DU-145 and PC-3 after exposure to rhArg. Moreover, there was no significant apoptosis induction after arginine deprivation by rhArg in all 3 prostate cancer cell lines. Conclusion rhArg causes significant cytotoxicity in LNCaP, DU-145 and PC-3 prostate cancer cells which all demonstrate decreased OCT expression. Inhibition of mTOR manifested by hypophosphorylation of 4E-BP1 suggests autophagy is involved as alternative cell death mechanism. rhArg demonstrates a promising novel agent for prostate cancer treatment.

  7. Biochemical characterization of riboflavin carrier protein (RCP) in prostate cancer.

    Science.gov (United States)

    Johnson, Tanya; Ouhtit, Allal; Gaur, Rajiv; Fernando, Augusta; Schwarzenberger, Paul; Su, Joseph; Ismail, Mohamed F; El-Sayyad, Hassan I; Karande, Anjali; Elmageed, Zakaria Abd; Rao, Prakash; Raj, Madhwa

    2009-01-01

    Riboflavin carrier protein (RCP) is a growth- and development-specific protein. Here, we characterized the expression of this protein in prostate cancer by polyclonal and monoclonal antibodies against chicken RCP. RCP was localized to both androgen-dependent and independent prostate cancer cell lines. Compared to controls, RCP was over-expressed in all 45 prostate adenocarcinomas, irrespective of the Gleason's score or the stage of the disease. The identified RCP had a molecular weight of 38 kDa, similar to RCP purified from chicken. Presence of this protein was also confirmed by siRNA inhibition analysis. Antibodies to chicken RCP inhibited incorporation of tritiated thymidine into DNA and prevented riboflavin uptake in PC3 prostate cancer cells, suggesting a critical function of this protein in prostate cancer cell growth. These data suggest that RCP can be used as a tumor biomarker in prostate cancer.

  8. Anti-IL-20 Monoclonal Antibody Suppresses Prostate Cancer Growth and Bone Osteolysis in Murine Models.

    Directory of Open Access Journals (Sweden)

    Yu-Hsiang Hsu

    Full Text Available Interleukin (IL-20 is a proinflammatory cytokine in the IL-10 family. IL-20 is associated with tumor promotion in the pathogenesis of oral, bladder, and breast cancer. However, little is known about the role of IL-20 in prostate cancer. We hypothesize that IL-20 promotes the growth of prostate cancer cells. Immunohistochemical staining showed that IL-20 and its receptors were expressed in human PC-3 and LNCaP prostate cancer cell lines and in prostate tumor tissue from 40 patients. In vitro, IL-20 upregulated N-cadherin, STAT3, vimentin, fibronectin, RANKL, cathepsin G, and cathepsin K, and increased the migration and colony formation of prostate cancer cells via activated p38, ERK1/2, AKT, and NF-κB signals in PC-3 cells. We investigated the effects of anti-IL-20 monoclonal antibody 7E on prostate tumor growth in vivo using SCID mouse subcutaneous and intratibial xenograft tumor models. In vivo, 7E reduced tumor growth, suppressed tumor-mediated osteolysis, and protected bone mineral density after intratibial injection of prostate cancer cells. We conclude that IL-20 is involved in the cell migration, colony formation, and tumor-induced osteolysis of prostate cancer. Therefore, IL-20 might be a novel target for treating prostate cancer.

  9. Com-1/p8 acts as a putative tumour suppressor in prostate cancer.

    Science.gov (United States)

    Jiang, Wen G; Davies, Gaynor; Martin, Tracey A; Kynaston, Howard; Mason, Malcolm D; Fodstad, Oystein

    2006-11-01

    Com-1, candidate of metastasis-1, also known as p8, is a recently discovered molecule with a putative role in determining the metastatic nature of cancer cells. We have investigated the expression of Com-1 in normal and malignant human prostate tissues and its molecular interaction within prostate cancer cells. The expression of Com-1 in human prostate tissues and prostate cancer cell lines was assessed at both the mRNA and protein levels, by RT-PCR and immunohistochemistry. The staining intensity of Com-1 was semiquantified using computer assisted image analysis. Full- length Com-1 cDNA was isolated from normal mammary tissues. Ribozyme transgenes that specifically target human Com-1 were constructed using the pEF6/V5-His vector. The growth of prostate cancer cells in vitro and tumour growth in vivo (athymic mice model) following Com-1 overexpression in prostate cancer cells were determined. In normal prostate tissues, the epithelial cells strongly stained Com-1, both in the cytoplasm and in the nucleus. In contrast, prostate cancer cells in tumour tissue showed substantially reduced Com-1 staining levels (p Com-1. Transfection of these cells with hammerhead ribozyme transgenes resulted in the loss of expression of the Com-1 transcript. Using an in vitro invasion assay we found that the loss of Com-1 from prostate cancer cells increased their invasiveness. Knockout of Com-1 also resulted in the accelerated growth of all three cell lines. Forced overexpression of Com-1/ p8 in prostate cancer cells was able to reverse the changes in invasiveness and growth seen with the Com-1 knock-out cells. In a spontaneous tumour model, it was demonstrated that PC-3 cells with forced overexpression of Com-1 (PC-3com1Exp) had a significantly slower rate of growth compared with control cells (tumour size 36.6 +/- 31.2 vs 114.3 +/- 68.1 mm3, for tumours from PC-3com1Exp and control PC-3 cells, respectively, p = 0.0023). In conclusion, Com-1/p8 was expressed at lower levels in human

  10. The role of calcium-sensing receptor and signalling pathways in the pathophysiology in two in vitro models of malignant hypercalcemia: the rat rice H-500 Leydig testis cancer and prostate cancer (PC-3) cells. Expression and regulation of pituitary tumor transforming gene in Leydig testis cancer

    DEFF Research Database (Denmark)

    Tfelt-Hansen, J.

    2008-01-01

    studies. The CaR upregulated the release of parathyroid hormone-related peptide (PTHrP), the main mediator of hypercalcemia in HHM. The growth rate of the tumor was also increased by stimulation of the CaR, as DNA synthesis and protection against apoptosis were enhanced. The oncogene, pituitary tumor...

  11. Characterisation and Manipulation of Docetaxel Resistant Prostate Cancer Cell Lines

    LENUS (Irish Health Repository)

    O'Neill, Amanda J

    2011-10-07

    Abstract Background There is no effective treatment strategy for advanced castration-resistant prostate cancer. Although Docetaxel (Taxotere®) represents the most active chemotherapeutic agent it only gives a modest survival advantage with most patients eventually progressing because of inherent or acquired drug resistance. The aims of this study were to further investigate the mechanisms of resistance to Docetaxel. Three Docetaxel resistant sub-lines were generated and confirmed to be resistant to the apoptotic and anti-proliferative effects of increasing concentrations of Docetaxel. Results The resistant DU-145 R and 22RV1 R had expression of P-glycoprotein and its inhibition with Elacridar partially and totally reversed the resistant phenotype in the two cell lines respectively, which was not seen in the PC-3 resistant sublines. Resistance was also not mediated in the PC-3 cells by cellular senescence or autophagy but multiple changes in pro- and anti-apoptotic genes and proteins were demonstrated. Even though there were lower basal levels of NF-κB activity in the PC-3 D12 cells compared to the Parental PC-3, docetaxel induced higher NF-κB activity and IκB phosphorylation at 3 and 6 hours with only minor changes in the DU-145 cells. Inhibition of NF-κB with the BAY 11-7082 inhibitor reversed the resistance to Docetaxel. Conclusion This study confirms that multiple mechanisms contribute to Docetaxel resistance and the central transcription factor NF-κB plays an immensely important role in determining docetaxel-resistance which may represent an appropriate therapeutic target.

  12. DNA fragmentation and apoptosis induced by safranal in human prostate cancer cell line

    Directory of Open Access Journals (Sweden)

    Saeed Samarghandian

    2013-01-01

    Full Text Available Objectives: Apoptosis, an important mechanism that contributes to cell growth reduction, is reported to be induced by Crocus sativus (Saffron in different cancer types. However, limited effort has been made to correlate these effects to the active ingredients of saffron. The present study was designed to elucidate cytotoxic and apoptosis induction by safranal, the major coloring compound in saffron, in a human prostate cancer cell line (PC-3. Materials and Methods: PC-3 and human fetal lung fibroblast (MRC-5 cells were cultured and exposed to safranal (5, 10, 15, and 20 μg/ml. The 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay was performed to assess cytotoxicity. DNA fragmentation was assessed by gel electrophoresis. Cells were incubated with different concentrations of safranal, and cell morphologic changes and apoptosis were determined by the normal inverted microscope, Annexin V, and propidium iodide, followed by flow cytometric analysis, respectively. Results: MTT assay revealed a remarkable and concentration-dependent cytotoxic effect of safranal on PC-3 cells in comparison with non-malignant cell line. The morphologic alterations of the cells confirmed the MTT results. The IC 50 values against PC-3 cells were found to be 13.0 ΁ 0.07 and 6.4 ΁ 0.09 μg/ml at 48 and 72 h, respectively. Safranal induced an early and late apoptosis in the flow cytometry histogram of treated cells, indicating apoptosis is involved in this toxicity. DNA analysis revealed typical ladders as early as 48 and 72 h after treatment, indicative of apoptosis. Conclusions: Our preclinical study demonstrated a prostate cancer cell line to be highly sensitive to safranal-mediated growth inhibition and apoptotic cell death. Although the molecular mechanisms of safranal action are not clearly understood, it appears to have potential as a therapeutic agent.

  13. Andrographolide inhibits prostate cancer by targeting cell cycle regulators, CXCR3 and CXCR7 chemokine receptors.

    Science.gov (United States)

    Mir, Hina; Kapur, Neeraj; Singh, Rajesh; Sonpavde, Guru; Lillard, James W; Singh, Shailesh

    2016-01-01

    Despite state of the art cancer diagnostics and therapies offered in clinic, prostate cancer (PCa) remains the second leading cause of cancer-related deaths. Hence, more robust therapeutic/preventive regimes are required to combat this lethal disease. In the current study, we have tested the efficacy of Andrographolide (AG), a bioactive diterpenoid isolated from Andrographis paniculata, against PCa. This natural agent selectively affects PCa cell viability in a dose and time-dependent manner, without affecting primary prostate epithelial cells. Furthermore, AG showed differential effect on cell cycle phases in LNCaP, C4-2b and PC3 cells compared to retinoblastoma protein (RB(-/-)) and CDKN2A lacking DU-145 cells. G2/M transition was blocked in LNCaP, C4-2b and PC3 after AG treatment whereas DU-145 cells failed to transit G1/S phase. This difference was primarily due to differential activation of cell cycle regulators in these cell lines. Levels of cyclin A2 after AG treatment increased in all PCa cells line. Cyclin B1 levels increased in LNCaP and PC3, decreased in C4-2b and showed no difference in DU-145 cells after AG treatment. AG decreased cyclin E2 levels only in PC3 and DU-145 cells. It also altered Rb, H3, Wee1 and CDC2 phosphorylation in PCa cells. Intriguingly, AG reduced cell viability and the ability of PCa cells to migrate via modulating CXCL11 and CXCR3 and CXCR7 expression. The significant impact of AG on cellular and molecular processes involved in PCa progression suggests its potential use as a therapeutic and/or preventive agent for PCa.

  14. Rapamycin enhances docetaxel-induced cytotoxicity in a androgen-independent prostate cancer xenograft model by survivin downregulation

    Energy Technology Data Exchange (ETDEWEB)

    Morikawa, Yasuyuki, E-mail: yasu-m@med.gunma-u.ac.jp [Department of Urology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maeabshi, Gunma 3718511 (Japan); Koike, Hidekazu; Sekine, Yoshitaka; Matsui, Hiroshi; Shibata, Yasuhiro; Ito, Kazuto; Suzuki, Kazuhiro [Department of Urology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maeabshi, Gunma 3718511 (Japan)

    2012-03-16

    Highlights: Black-Right-Pointing-Pointer Rapamycin (RPM) enhances the susceptibility of PC3 cells to docetaxel. Black-Right-Pointing-Pointer Low-dosage of docetaxel (DTX) did not reduce survivin expression levels in PC3 cells. Black-Right-Pointing-Pointer Combination treatment of RPM with DTX suppressed the expression of surviving. Black-Right-Pointing-Pointer SiRNA against survivin enhanced the susceptibility of PC3 cells to DTX. Black-Right-Pointing-Pointer RPM and DTX cotreatment inhibited PC3 cell growth and decreased surviving in vivo. -- Abstract: Background: Docetaxel is a first-line treatment choice in castration-resistant prostate cancer (CRPC). However, the management of CRPC remains an important challenge in oncology. There have been many reports on the effects of rapamycin, which is an inhibitor of the mammalian target of rapamycin (mTOR), in the treatment of carcinogenesis. We assessed the cytotoxic effects of the combination treatment of docetaxel and rapamycin in prostate cancer cells. Furthermore, we examined the relationship between these treatments and survivin, which is a member of the inhibitory apoptosis family. Methods: Prostate cancer cells were cultured and treated with docetaxel and rapamycin. The effects on proliferation were evaluated with the MTS assay. In addition, we evaluated the effect on proliferation of the combination treatment induced knockdown of survivin expression by small interfering RNA transfection and docetaxel. Protein expression levels were assayed using western blotting. PC3 cells and xenograft growth in nude mice were used to evaluate the in vivo efficacy of docetaxel and its combination with rapamycin. Results: In vitro and in vivo, the combination of rapamycin with docetaxel resulted in a greater inhibition of proliferation than treatment with rapamycin or docetaxel alone. In addition, in vitro and in vivo, rapamycin decreased basal surviving levels, and cotreatment with docetaxel further decreased these levels

  15. Functional Role of mTORC2 versus Integrin-Linked Kinase in Mediating Ser473-Akt Phosphorylation in PTEN-Negative Prostate and Breast Cancer Cell Lines.

    Directory of Open Access Journals (Sweden)

    Su-Lin Lee

    Full Text Available Although the rictor-mTOR complex (mTORC2 has been shown to act as phosphoinositide-dependent kinase (PDK2 in many cell types, other kinases have also been implicated in mediating Ser473-Akt phosphorylation. Here, we demonstrated the cell line specificity of integrin-linked kinase (ILK versus mTORC2 as PDK2 in LNCaP and PC-3 prostate and MDA-MB-468 breast cancer cells, of which the PTEN-negative status allowed the study of Ser473-Akt phosphorylation independent of external stimulation. PC-3 and MDA-MB-468 cells showed upregulated ILK expression relative to LNCaP cells, which expressed a high abundance of mTOR. Exposure to Ku-0063794, a second-generation mTOR inhibitor, decreased Ser473-Akt phosphorylation in LNCaP cells, but not in PC-3 or MDA-MB-468 cells. In contrast, treatment with T315, a novel ILK inhibitor, reduced the phosphorylation of Ser473-Akt in PC-3 and MDA-MB-468 cells without affecting that in LNCaP cells. This cell line specificity was verified by comparing Ser473-Akt phosphorylation status after genetic knockdown of rictor, ILK, and other putative Ser-473-Akt kinases. Genetic knockdown of rictor, but not ILK or the other kinases examined, inhibited Ser473-Akt phosphorylation in LNCaP cells. Conversely, PC-3 and MDA-MB-468 cells were susceptible to the effect of ILK silencing on Ser473-Akt phosphorylation, while knockdown of rictor or any of the other target kinases had no appreciable effect. Co-immunoprecipitation analysis demonstrated the physical interaction between ILK and Akt in PC-3 cells, and T315 blocked ILK-mediated Ser473 phosphorylation of bacterially expressed Akt. ILK also formed complexes with rictor in PC-3 and MDA-MB-468 cells that were disrupted by T315, but such complexes were not observed in LNCaP cells. In the PTEN-functional MDA-MB-231 cell line, both T315 and Ku-0063794 suppressed EGF-induced Ser473-Akt phosphorylation. Inhibition of ILK by T315 or siRNA-mediated knockdown suppressed epithelial

  16. ERBB2 increases metastatic potentials specifically in androgen-insensitive prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Jessica Tome-Garcia

    Full Text Available Despite all the blood-based biomarkers used to monitor prostate cancer patients, prostate cancer remains as the second common cause of cancer mortality in men in the United States. This is largely due to a lack of understanding of the molecular pathways that are responsible for the aggressive forms of prostate cancers, the castrate-resistant prostate cancer and the metastatic prostate cancer. Cell signaling pathways activated by the ERBB2 oncogene or the RAS oncogene are frequently found to be altered in metastatic prostate cancers. To evaluate and define the role of the ERBB2/RAS pathway in prostate cancer metastasis, we have evaluated the impact of ERBB2- or RAS-overexpression on the metastatic potentials for four prostate cancer cell lines derived from tumors with different androgen sensitivities. To do so, we transfected the human DU145, LnCaP, and PC3 prostate cancer cells and the murine Myc-CaP prostate cancer cells with the activated form of ERBB2 or H-RAS and assessed their metastatic potentials by three complementary assays, a wound healing assay, a transwell motility assay, and a transwell invasion assay. We showed that while overexpression of ERBB2 increased the metastatic potential of the androgen-insensitive prostate cancer cells (i.e. PC3 and DU145, it did not affect metastatic potentials of the androgen-sensitive prostate cancer cells (i.e. LnCaP and Myc-CaP. In contrast, overexpression of H-RAS only increased the cell motility of Myc-CaP cells, which overexpress the human c-MYC oncogene. Our data suggest that ERBB2 collaborates with androgen signaling to promote prostate cancer metastasis, and that although RAS is one of the critical downstream effectors of ERBB2, it does not phenocopy ERBB2 for its impact on the metastatic potentials of prostate cancer cell lines.

  17. Nanohybride Materials Based on Magnetite-Gold Nanoparticles for Diagnostics of Prostate Cancer: Synthesis and In Vitro Testing.

    Science.gov (United States)

    Machulkin, A E; Garanina, A S; Zhironkina, O A; Beloglazkina, E K; Zyk, N V; Savchenko, A G; Kotelyanskii, V E; Mazhuga, A G

    2016-09-01

    We synthesized a fluorescence conjugate and modified magnetite-gold nanoparticles carrying prostate specific membrane antigen (PSMA) as the ligand. Analysis of their binding to human prostate cancer cell lines PC-3 (PSMA(-)) and LNCaP (PSMA(+)) showed selective interaction of the synthesized conjugate and modified nanoparticles with LNCaP cells. These findings suggest that these nanoparticles can be used in tissue-specific magnetic-resonance imaging.

  18. Prostate Cancer Cell Growth: Stimulatory Role of Neurotensin and Mechanism of Inhibition by Flavonoids as Related to Protein Kinase C

    Science.gov (United States)

    2010-01-01

    contribute to the malignant state [61–63]. In a prior study [28], we found that NTstimulates PC3 cells to release HB -EGF, which presumably transactivates...growth factor EGFR, EGF receptor ERK, extracellular signal-regulated kinase FAK, focal adhesion kinase GPCR, G protein-coupled receptor Hb -EGF, heparin...al. reported that levels of NT but not CCK (measured by immunoassay ) in fasted sera from patients with pancreatic cancer were significantly elevated in

  19. HDAC inhibitors, MS-275 and salermide, potentiates the anticancer effect of EF24 in human pancreatic cancer cells

    Science.gov (United States)

    Yar Saglam, Atiye Seda; Yilmaz, Akin; Onen, Hacer Ilke; Alp, Ebru; Kayhan, Handan; Ekmekci, Abdullah

    2016-01-01

    Histone deacetylases (HDACs) play a major role in the regulation of chromatin structure and gene expression by changing acetylation status of histone and non-histone proteins. MS-275 (entinostat, MS) is a well-known benzamide-based HDACI and Salermide (SAL), a reverse amide compound HDACI, have antiproliferative effects on several human cancer cells. In this study, we aimed to investigate the effects of HDACIs (MS and SAL) alone and/or combined use with EF24 (EF), a novel synthetic curcumin analog, on human pancreatic cancer cell line (BxPC-3). In vitro, BxPC-3 cells were exposed to varying concentrations of MS, SAL with or without EF, and their effects on cell viability, acetylated Histone H3 and H4 levels, cytotoxicity, and cleaved caspase 3 levels, and cell cycle distribution were measured. The viability of BxPC-3 cells decreased significantly after treatment with EF, MS and SAL treatments. MS and SAL treatment increased the acetylation of histone H3 and H4 in a dose dependent manner. MS and SAL alone or combined with EF were increased the number of cells in G1 phase. In addition, treatment with agents significantly decreased the ratio of cell in G2/M phase. There were significant dose-dependent increases at cleaved Caspase 3 levels after MS treatment but not after SAL treatment. Our results showed that HDAC inhibitors (MS and SAL), when combined with EF, may effectively reduce pancreatic cancer cell (BxPC-3) progression and stop the cell cycle at G1 phase. Further molecular analyses are needed to understand the fundamental molecular consequences of HDAC inhibition in pancreas cancer cells. PMID:27330528

  20. A precisely substituted benzopyran targets androgen refractory prostate cancer cells through selective modulation of estrogen receptors

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Rajeev; Verma, Vikas; Sharma, Vikas; Jain, Ashish; Singh, Vishal [Division of Endocrinology, CSIR—Central Drug Research Institute, Lucknow 226 031 (India); Sarswat, Amit [Division of Medicinal & Process Chemistry, CSIR—Central Drug Research Institute, Lucknow 226 031 (India); Maikhuri, Jagdamba P. [Division of Endocrinology, CSIR—Central Drug Research Institute, Lucknow 226 031 (India); Sharma, Vishnu L. [Division of Medicinal & Process Chemistry, CSIR—Central Drug Research Institute, Lucknow 226 031 (India); Gupta, Gopal, E-mail: g_gupta@cdri.res.in [Division of Endocrinology, CSIR—Central Drug Research Institute, Lucknow 226 031 (India)

    2015-03-15

    Dietary consumption of phytoestrogens like genistein has been linked with lower incidence of prostate cancer. The estradiol-like benzopyran core of genistein confers estrogen receptor-β (ER-β) selectivity that imparts weak anti-proliferative activity against prostate cancer cells. DL-2-[4-(2-piperidinoethoxy)phenyl]-3-phenyl-2H-1-benzopyran (BP), a SERM designed with benzopyran core, targeted androgen independent prostate cancer (PC-3) cells 14-times more potently than genistein, ~ 25% more efficiently than tamoxifen and 6.5-times more actively than ICI-182780, without forfeiting significant specificity in comparison to genistein. BP increased apoptosis (annexin-V and TUNEL labeling), arrested cell cycle, and significantly increased caspase-3 activity along with mRNA expressions of estrogen receptor (ER)-β and FasL (qPCR) in PC-3 cells. In classical ERE-luc reporter assay BP behaved as a potent ER-α antagonist and ER-β agonist. Accordingly, it decreased expression of ER-α target PS2 (P < 0.01) and increased expression of ER-β target TNF-α (P < 0.05) genes in PC-3. ER-β deficient PC-3 (siRNA-transfected) was resistant to apoptotic and anti-proliferative actions of SERMs, including stimulation of FasL expression by BP. BP significantly inhibited phosphorylation of Akt and ERK-1/2, JNK and p38 in PC-3 (immunoblotting), and thus adopted a multi-pathway mechanism to exert a more potent anti-proliferative activity against prostate cancer cells than natural and synthetic SERMs. Its precise ER-subtype specific activity presents a unique lead structure for further optimization. - Highlights: • BP with benzopyran core of genistein was identified for ER-β selective action. • BP was 14-times more potent than genistien in targeting prostate cancer cells. • It behaved as a potent ER-β agonist and ER-α antagonist in gene reporter assays. • BP's anti-proliferative action was inhibited significantly in ER-β deficient cells. • BP — a unique lead

  1. Aldehyde dehydrogenase activity selects for the holoclone phenotype in prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Doherty, R.E.; Haywood-Small, S.L. [Biomedical Research Centre, Sheffield Hallam University, Sheffield S1 1WB (United Kingdom); Sisley, K. [Department of Oncology, Academic Unit of Ophthalmology and Orthopties, University of Sheffield, Sheffield S10 2RX (United Kingdom); Cross, N.A., E-mail: n.cross@shu.ac.uk [Biomedical Research Centre, Sheffield Hallam University, Sheffield S1 1WB (United Kingdom)

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer Isolated ALDH{sup Hi} PC3 cells preferentially form primitive holoclone-type colonies. Black-Right-Pointing-Pointer Primitive holoclone colonies are predominantly ALDH{sup Lo} but contain rare ALDH{sup Hi} cells. Black-Right-Pointing-Pointer Holoclone-forming cells are not restricted to the ALDH{sup Hi} population. Black-Right-Pointing-Pointer ALDH phenotypic plasticity occurs in PC3 cells (ALDH{sup Lo} to ALDH{sup Hi} and vice versa). Black-Right-Pointing-Pointer ALDH{sup Hi} cells are observed but very rare in PC3 spheroids grown in stem cell medium. -- Abstract: Aldehyde dehydrogenase 1 (ALDH) activity is considered to be a marker of cancer stem cells (CSCs) in many tumour models, since these cells are more proliferative and tumourigenic than ALDH{sup Lo} cells in experimental models. However it is unclear whether all CSC-like cells are within the ALDH{sup Hi} population, or whether all ALDH{sup Hi} cells are highly proliferative and tumourigenic. The ability to establish a stem cell hierarchy in vitro, whereby sub-populations of cells have differing proliferative and differentiation capacities, is an alternate indication of the presence of stem cell-like populations within cell lines. In this study, we have examined the interaction between ALDH status and the ability to establish a stem cell hierarchy in PC3 prostate cancer cells. We demonstrate that PC3 cells contain a stem cell hierarchy, and isolation of ALDH{sup Hi} cells enriches for the most primitive holoclone population, however holoclone formation is not restricted to ALDH{sup Hi} cells. In addition, we show that ALDH activity undergoes phenotypic plasticity, since the ALDH{sup Lo} population can develop ALDH{sup Hi} populations comparable to parental cells within 2 weeks in culture. Furthermore, we show that the majority of ALDH{sup Hi} cells are found within the least primitive paraclone population, which is circumvented by culturing PC3 cells as spheroids in

  2. A combination of desmopressin and docetaxel inhibit cell proliferation and invasion mediated by urokinase-type plasminogen activator (uPA) in human prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Hiroshi; Klotz, Laurence H. [Division of Urology, Sunnybrook Health Sciences Center, Toronto, ON (Canada); Sugar, Linda M. [Department of Pathology, Sunnybrook Health Sciences Center, Toronto, ON (Canada); Kiss, Alexander [Department of Research Design and Biostatistics, Institute for Clinical Evaluative Sciences, Sunnybrook Health Sciences Center, Toronto, ON (Canada); Venkateswaran, Vasundara, E-mail: vasundara.venkateswaran@sunnybrook.ca [Division of Urology, Sunnybrook Health Sciences Center, Toronto, ON (Canada)

    2015-08-28

    Background: This study was designed to assess the effectiveness of a combination treatment using both desmopressin and docetaxel in prostate cancer treatment. Desmopressin is a well-known synthetic analogue of the antidiuretic hormone vasopressin. It has recently been demonstrated to inhibit tumor progression and metastasis in in vivo models. Docetaxel is widely used for the treatment of castration resistant prostate cancer (CRPC) patients. However, durable responses have been uncommon to date. In this study, we investigated the anti-tumor effect of desmopressin in combination with docetaxel in vitro and in vivo. Methods: Two prostate cancer cells (PC3, LNCaP) were treated with different concentrations of desmopressin alone, docetaxel alone, and a combination of desmopressin and docetaxel. Cell proliferation was determined by MTS assay. The anti-invasive and anti-migration potential of desmopressin and in combination with docetaxel were examined by wound healing assay, migration chamber assay, and matrigel invasion assay. Results: The combination of desmopressin and docetaxel resulted in a significant inhibition of PC3 and LNCaP cell proliferation (p < 0.01). Additionally, cell migration and invasion were also inhibited by the combination when compared to that of either treatment alone in PC3 cells (p < 0.01). The anti-tumor effect of this combination treatment was associated with down-regulation of both urokinase-type plasminogen activator (uPA) and matrix metalloproteinase (MMP-2 and MMP-9) in PC3 cells. Conclusions: We are the first to elucidate the anti-tumor and anti-metastatic potential of desmopressin in combination with docetaxel in a prostate cancer model via the uPA-MMP pathway. Our finding could potentially contribute to the therapeutic profile of desmopressin and enhance the efficacy of docetaxel based treatment for CRPC. - Highlights: • Desmopressin inhibits cell proliferation in prostate cancer cells. • The expression of cyclin A and CDK2

  3. Targeting Btk/Etk of prostate cancer cells by a novel dual inhibitor

    Science.gov (United States)

    Guo, W; Liu, R; Bhardwaj, G; Yang, J C; Changou, C; Ma, A-H; Mazloom, A; Chintapalli, S; Xiao, K; Xiao, W; Kumaresan, P; Sanchez, E; Yeh, C-T; Evans, C P; Patterson, R; Lam, K S; Kung, H-J

    2014-01-01

    Btk and Etk/BMX are Tec-family non-receptor tyrosine kinases. Btk has previously been reported to be expressed primarily in B cells and has an important role in immune responses and B-cell malignancies. Etk has been shown previously to provide a strong survival and metastasis signal in human prostate cancer cells, and to confer androgen independence and drug resistance. While the role of Etk in prostate carcinogenesis is well established, the functions of Btk in prostate cancer have never been investigated, likely due to the perception that Btk is a hematopoietic, but not epithelial, kinase. Herein, we found that Btk is overexpressed in prostate cancer tissues and prostate cancer cells. The level of Btk in prostate cancer tissues correlates with cancer grades. Knockdown of Btk expression selectively inhibits the growth of prostate cancer cells, but not that of the normal prostate epithelial cells, which express very little Btk. Dual inhibition of Btk and Etk has an additive inhibitory effect on prostate cancer cell growth. To explore Btk and Etk as targets for prostate cancer, we developed a small molecule dual inhibitor of Btk and Etk, CTN06. Treatment of PC3 and other prostate cancer cells, but not immortalized prostate epithelial cells with CTN06 resulted in effective cell killing, accompanied by the attenuation of Btk/Etk signals. The killing effect of CTN06 is more potent than that of commonly used inhibitors against Src, Raf/VEGFR and EGFR. CTN06 induces apoptosis as well as autophagy in human prostate cancer cells, and is a chemo-sensitizer for docetaxel (DTX), a standard of care for metastatic prostate cancer patients. CTN06 also impeded the migration of human prostate cancer cells based on a ‘wound healing' assay. The anti-cancer effect of CTN06 was further validated in vivo in a PC3 xenograft mouse model. PMID:25188519

  4. microRNA-145 Mediates the Inhibitory Effect of Adipose Tissue-Derived Stromal Cells on Prostate Cancer.

    Science.gov (United States)

    Takahara, Kiyoshi; Ii, Masaaki; Inamoto, Teruo; Nakagawa, Takatoshi; Ibuki, Naokazu; Yoshikawa, Yuki; Tsujino, Takuya; Uchimoto, Taizo; Saito, Kenkichi; Takai, Tomoaki; Tanda, Naoki; Minami, Koichiro; Uehara, Hirofumi; Komura, Kazumasa; Hirano, Hajime; Nomi, Hayahito; Kiyama, Satoshi; Asahi, Michio; Azuma, Haruhito

    2016-09-01

    Adipose-derived stromal cell (ASC), known as one of the mesenchymal stem cells (MSCs), is a promising tool for regenerative medicine; however, the effect of ASCs on tumor growth has not been studied sufficiently. We investigated the hypothesis that ASCs have an inhibitory effect on metastatic tumor progression. To evaluate the in vitro inhibitory effect of ASCs on metastatic prostate cancer (PCa), direct coculture and indirect separate culture experiments with PC3M-luc2 cells and human ASCs were performed, and ASCs were administered to PC3M-luc2 cell-derived tumor-bearing nude mice for in vivo experiment. We also performed exosome microRNA (miRNA) array analysis to explore a mechanistic insight into the effect of ASCs on PCa cell proliferation/apoptosis. Both in vitro and in vivo experiments exhibited the inhibitory effect of ASCs on PC3M-luc2 cell proliferation, inducing apoptosis and PCa growth, respectively. Among upregulated miRNAs in ASCs compared with fibroblasts, we focused on miR-145, which was known as a tumor suppressor. ASC-derived conditioned medium (CM) significantly inhibited PC3M-luc2 cell proliferation, inducing apoptosis, but the effect was canceled by miR-145 knockdown in ASCs. ASC miR-145 knockdown CM also reduced the expression of Caspase 3/7 with increased antiapoptotic protein, BclxL, expression in PC3M-luc2 cells. This study provides preclinical data that ASCs inhibit PCa growth, inducing PCa cell apoptosis with reduced activity of BclxL, at least in part, by miR-145, including exosomes released from ASCs, suggesting that ASC administration could be a novel and promising therapeutic strategy in patients with PCa.

  5. Altered Expression of Connexin-43 and Impaired Capacity of Gap Junctional Intercellular Communication in Prostate Cancer Cells

    Institute of Scientific and Technical Information of China (English)

    XING Yifei; XIAO Yajun; ZENG FuQing; ZHAO Jun; XIAO Chuanguo; XIONG Ping; FENG Wei

    2007-01-01

    Connexin-43 (Cx43) expression in prostate cancer (PCa) cells and the potency of gap junctional intercellular communication (GJIC) in the cells were investigated, with an attempt to elucidate the reason why the so-called "bystander effect" mediated by thymidine kinase (TK) suicide gene therapy on PCa cells is not of significance and to explore the role of GJIC in PCa carcinogenesis.mRNA and protein expression of Cx43 in a PCa cell line PC-3m was detected by reverse-transcription polymerase chain reaction (RT-PCR) and strapt-avidin-biotin-enzyme complex (SABC) immunohistochemical staining, and inherent GJIC of PC-3m cells was assayed by scrape-loading and dye transfer (SLDT) assay. The expression of Cx43 in human normal and malignant prostate tissues was determined by SABC immunohistochemistry as well. It was found that Cx43 mRNA and protein expression in PC-3m cells was slightly reduced as compared with positive controls and the location of Cx43 protein was aberrant in cytoplasm rather than on membrane. Assessment of paraffin sections demonstrated that the expression of Cx43 protein in PCa cells was abnormally located and markedly diminished as compared with normal prostatic epithelial ones, displaying a negative correlation to the pathological grade (χ2=4.025, P<0.05). Additionally, capacity of inherent GJIC in PC-3m cells was disrupted, which was semi-quantified as (+) or (-). It was indicated that both down-regulated expression of Cx43 mRNA and aberrant location of Cx43 protein participated in the mechanisms leading to deficient GJIC in PC-3m cells. Lack of efficient GJIC is a molecular event, which may contribute not only to limited extent of "bystander effect", but also to initiation and progression of prostatic neoplasm.

  6. EphrinA1-targeted nanoshells for photothermal ablation of prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Andre M Gobin

    2008-10-01

    Full Text Available Andre M Gobin, James J Moon, Jennifer L WestDepartment of Bioengineering, Rice University, Houston, TX, USAAbstract: Gold-coated silica nanoshells are a class of nanoparticles that can be designed to possess strong absorption of light in the near infrared (NIR wavelength region. When injected intravenously, these nanoshells have been shown to accumulate in tumors and subsequently mediate photothermal treatment, leading to tumor regression. In this work, we sought to improve their specificity by targeting them to prostate tumor cells. We report selective targeting of PC-3 cells with nanoshells conjugated to ephrinA1, a ligand for EphA2 receptor that is overexpressed on PC-3 cells. We demonstrate selective photo-thermal destruction of these cells upon application of the NIR laser.Keywords: nanoshell, near infrared, photothermal treatment, prostate cancer

  7. Myeloid cell leukemia-1 is a key molecular target for mithramycin A-induced apoptosis in androgen-independent prostate cancer cells and a tumor xenograft animal model.

    Science.gov (United States)

    Choi, Eun-Sun; Jung, Ji-Youn; Lee, Jin-Seok; Park, Jong-Hwan; Cho, Nam-Pyo; Cho, Sung-Dae

    2013-01-01

    Mithramycin A (Mith) is a natural polyketide that has been used in multiple areas of research including apoptosis of various cancer cells. Here, we examined the critical role of Mith in apoptosis and its molecular mechanism in DU145 and PC3 prostate cancer cells and tumor xenografts. Mith decreased cell growth and induced apoptosis in DU145 and PC-3 cells. Myeloid cell leukemia-1 (Mcl-1) was over-expressed in both cell lines compared to RWPE1 cells. Mith inhibited Mcl-1 protein expression in both cells, but only altered Mcl-1 mRNA levels in PC-3 cells. We also found that Mith reduced Mcl-1 protein levels through both proteasome-dependent protein degradation and the inhibition of protein synthesis in DU145 cells. Studies using siRNA confirmed that the knockdown of Mcl-1 induced apoptosis. Mith significantly suppressed TPA-induced neoplastic cell transformation through the down-regulation of the Mcl-1 protein in JB6 cells, and suppressed the transforming activity of both cell types. Mith also inhibited tumor growth and Mcl-1 levels, in addition to inducing apoptosis, in athymic nude mice bearing DU145 cell xenografts without affecting five normal organs. Therefore, Mith inhibits cell growth and induces apoptosis by suppressing Mcl-1 in both prostate cancer cells and xenograft tumors, and thus is a potent anticancer drug candidate for prostate cancer.

  8. RGD-conjugated albumin nanoparticles as a novel delivery vehicle in pancreatic cancer therapy.

    Science.gov (United States)

    Ji, Shunrong; Xu, Jin; Zhang, Bo; Yao, Wantong; Xu, Wenyan; Wu, Wenzhe; Xu, Yongfeng; Wang, Hao; Ni, Quanxing; Hou, Huimin; Yu, Xianjun

    2012-02-15

    Integrin αvβ3 receptor is expressed on several types of cancer cells, including pancreatic cancer cells, and plays an important role in tumor growth and metastasis. The ability to target the integrin αvβ3 receptor on cancer cells increases the efficacy of targeted therapy and reduces the side effects. The aim of this study is to develop a novel arginine-glycine-aspartic acid (RGD) peptide -conjugated albumin nanoparticle to enhance the intracellular uptake of anticancer drug into the pancreatic cancer cells through receptor-mediated endocytosis. In the cellular uptake studies, the fluorescent signal of RGD-conjugated BSANPs in BxPC3 cells was higher than that of BSANPs without RGD conjugation as determined by fluorescence spectrophotometer. We also found that BSANPs bound to BxPC3 cells in a time- and concentration-dependent manner. The uptake of RGD-conjugated BSANPs by pancreatic cancer cells was inhibited by an excess amount of free RGD peptide, indicating that the binding and/or uptake were mediated by the αvβ3 receptor. Furthermore, the nanoparticles were found to be located close to the nuclei by using laser scanning confocal microscopy. Besides, no significant in vitro cytotoxicity was observed as measured with MTT assay. Both in vitro and in vivo antitumor efficacy was improved by targeting gemcitabine-loaded nanoparticles to BxPC-3 cells using RGD peptides. Therefore, the RGD-conjugated BSANPs hold great potential as an effective drug delivery system to deliver therapeutic agents to pancreatic cancer.

  9. Preclinical evaluation of (111)In-DTPA-INCA-X anti-Ku70/Ku80 monoclonal antibody in prostate cancer.

    Science.gov (United States)

    Evans-Axelsson, Susan; Vilhelmsson Timmermand, Oskar; Welinder, Charlotte; Borrebaeck, Carl Ak; Strand, Sven-Erik; Tran, Thuy A; Jansson, Bo; Bjartell, Anders

    2014-01-01

    The aim of this investigation was to assess the Ku70/Ku80 complex as a potential target for antibody imaging of prostate cancer. We evaluated the in vivo and ex vivo tumor targeting and biodistribution of the (111)In-labeled human internalizing antibody, INCA-X ((111)In-DTPA-INCA-X antibody), in NMRI-nude mice bearing human PC-3, PC-3M-Lu2 or DU145 xenografts. DTPA-conjugated, non-labeled antibody was pre-administered at different time-points followed by a single intravenous injection of (111)In-DTPA-INCA-X. At 48, 72 and 96 h post-injection, tissues were harvested, and the antibody distribution was determined by measuring radioactivity. Preclinical SPECT/CT imaging of mice with and without the predose was performed at 48 hours post-injection of labeled DTPA-INCA-X. Biodistribution of the labeled antibody showed enriched activity in tumor, spleen and liver. Animals pre-administered with DTPA-INCA-X showed increased tumor uptake and blood content of (111)In-DTPA-INCA-X with reduced splenic and liver uptake. The in vitro and in vivo data presented show that the (111)In-labeled INCA-X antibody is internalized into prostate cancer cells and by pre-administering non-labeled DTPA-INCA-X, we were able to significantly reduce the off target binding and increase the (111)In-DTPA-INCA-X mAb uptake in PC-3, PC-3M-Lu2 and DU145 xenografts. The results are encouraging and identifying the Ku70/Ku80 antigen as a target is worth further investigation for functional imaging of prostate cancer.

  10. Cyclooxygenase-2 expression is dependent upon epidermal growth factor receptor expression or activation in androgen independent prostate cancer

    Institute of Scientific and Technical Information of China (English)

    Rui-Peng Jia; Lu-Wei Xu; Qi Su; Jian-Hua Zhao; Wen-Cheng Li; Feng Wang; Zheng Xu

    2008-01-01

    Aim: To investigate the expression of cyclooxygenase-2 (COX-2) and epidermal growth factor receptor (EGFR) and the possible mechanism in the development in androgen independent prostate cancer (AIPC). Methods: Immunohis- tochemistry was performed on paraffin-embedded sections with goat polyclonal against COX-2 and mouse mono- clonal antibody against EGFR in 30 AIPC and 18 androgen dependent prostate cancer (ADPC) specimens. The effect of epidermal growth factor (EGF) treatments on the expression of COX-2 and signal pathway in PC-3 and DU-145 cells was studied using reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analysis. ELISA was used to measure prostaglandin E2 (PGE2) levels in the media of PC-3 and DU-145 incubated with EGF for 24 h. Results: COX-2 was positively expressed in AIPC and ADPC, which were predominantly in endochylema of prostate cancer (Pca) cells. Intense staining was seen in AIPC (80%) and in ADPC (55.5%), but there was no significant association between the two groups. EGFR expression was also positive in the two groups (61.8% in ADPC and 90% in AIPC, P < 0.01). A significant association was found between EGFR expression and a higher Gleason score (P < 0.05) or tumor stage (P < 0.05). The expression of PGE2 was increased in PC-3 and DU-145 cells after being incubated with EGF. Both p38MAPK and PI-3K pathway were involved in the PC-3 cell COX-2 upregulation course. In DU- 145, only p38MAPK pathway was associated with COX-2 upregulation. Conclusion: EGFR activation induces COX-2 expression through PI-3K and/or p38MAPK pathways. COX-2 and EGFR inhibitors might have a cooperative anti-tumor effect in Pca.

  11. Chemopreventive effect of PSP through targeting of prostate cancer stem cell-like population.

    Science.gov (United States)

    Luk, Sze-Ue; Lee, Terence Kin-Wah; Liu, Ji; Lee, Davy Tak-Wing; Chiu, Yung-Tuen; Ma, Stephanie; Ng, Irene Oi-Lin; Wong, Yong-Chuan; Chan, Franky Leung; Ling, Ming-Tat

    2011-01-01

    Recent evidence suggested that prostate cancer stem/progenitor cells (CSC) are responsible for cancer initiation as well as disease progression. Unfortunately, conventional therapies are only effective in targeting the more differentiated cancer cells and spare the CSCs. Here, we report that PSP, an active component extracted from the mushroom Turkey tail (also known as Coriolus versicolor), is effective in targeting prostate CSCs. We found that treatment of the prostate cancer cell line PC-3 with PSP led to the down-regulation of CSC markers (CD133 and CD44) in a time and dose-dependent manner. Meanwhile, PSP treatment not only suppressed the ability of PC-3 cells to form prostaspheres under non-adherent culture conditions, but also inhibited their tumorigenicity in vivo, further proving that PSP can suppress prostate CSC properties. To investigate if the anti-CSC effect of PSP may lead to prostate cancer chemoprevention, transgenic mice (TgMAP) that spontaneously develop prostate tumors were orally fed with PSP for 20 weeks. Whereas 100% of the mice that fed with water only developed prostate tumors at the end of experiment, no tumors could be found in any of the mice fed with PSP, suggesting that PSP treatment can completely inhibit prostate tumor formation. Our results not only demonstrated the intriguing anti-CSC effect of PSP, but also revealed, for the first time, the surprising chemopreventive property of oral PSP consumption against prostate cancer.

  12. Pomegranate Juice Metabolites, Ellagic Acid and Urolithin A, Synergistically Inhibit Androgen-Independent Prostate Cancer Cell Growth via Distinct Effects on Cell Cycle Control and Apoptosis

    OpenAIRE

    Roberto Vicinanza; Yanjun Zhang; Susanne M Henning; David Heber

    2013-01-01

    Ellagitannins (ETs) from pomegranate juice (PJ) are bioactive polyphenols with chemopreventive potential against prostate cancer (PCa). ETs are not absorbed intact but are partially hydrolyzed in the gut to ellagic acid (EA). Colonic microflora can convert EA to urolithin A (UA), and EA and UA enter the circulation after PJ consumption. Here, we studied the effects of EA and UA on cell proliferation, cell cycle, and apoptosis in DU-145 and PC-3 androgen-independent PCa cells and whether combi...

  13. Allyl isothiocyanate, a constituent of cruciferous vegetables, inhibits proliferation of human prostate cancer cells by causing G2/M arrest and inducing apoptosis.

    Science.gov (United States)

    Xiao, Dong; Srivastava, Sanjay K; Lew, Karen L; Zeng, Yan; Hershberger, Pamela; Johnson, Candace S; Trump, Donald L; Singh, Shivendra V

    2003-05-01

    Dietary isothiocyanates (ITCs) are highly effective in affording protection against chemically induced cancers in laboratory animals. In the present study, we demonstrate that allyl isothiocyanate (AITC), a constituent of cruciferous vegetables, significantly inhibits proliferation of cultured PC-3 (androgen-independent) and LNCaP (androgen-dependent) human prostate cancer cells in a dose-dependent manner with an IC(50) of approximately 15-17 micro M. On the other hand, survival of a normal prostate epithelial cell line (PrEC) was minimally affected by AITC even at concentrations that were highly cytotoxic to the prostate cancer cells. Reduced proliferation of PC-3 as well as LNCaP cells in the presence of AITC correlated with accumulation of cells in G(2)/M phase and induction of apoptosis. In contrast, AITC treatment failed to induce apoptosis or cause G(2)/M phase arrest in PrEC cells. A 24 h treatment of PC-3 and LNCaP cells with 20 micro M AITC caused a significant decrease in the levels of proteins that regulate G(2)/M progression, including Cdk1 (32-50% reduction), Cdc25B (44-48% reduction) and Cdc25C (>90% reduction). A significant reduction in the expression of cyclin B1 protein (approximately 45%) was observed only in LNCaP cells. A 24 h exposure of PC-3 and LNCaP cells to an apoptosis-inducing concentration of AITC (20 micro M) resulted in a significant decrease (31-68%) in the levels of anti-apoptotic protein Bcl-2 in both cell lines, and approximately 58% reduction in Bcl-X(L) protein expression in LNCaP cells. In conclusion, it seems reasonable to hypothesize that AITC, and possibly other ITCs, may find use in the treatment of human prostate cancers.

  14. Cytotoxic activity of Thai medicinal plants for cancer treatment

    Directory of Open Access Journals (Sweden)

    Chawaboon Dechsukum

    2005-08-01

    Full Text Available Twelve Thai medicinal plants as the ingredients of a Southern Thai traditional formula for cancer treatment were selected to test cytotoxicity activity against two types of human cancer cell lines ; large cell lung carcinoma (CORL-23 and prostate cancer cell lines (PC3 and one type of normal human cell line, fibroblast cells (10FS. SRB assay was used to test cytotoxic activity against all the cell types. Two of the extracts (water and ethanolic extracts procedures used were similar to those practised by Thai traditional doctors. One concentration (50 μg/ml of two different extracts was tested first against cell lines and the active plant extracts were diluted and tested for calculating IC50. The ethanolic extracts of six plants (Bridelia ovata, Curcuma zedoaria, Derris scandens, Dioscorea membranacea, Nardostachys jatamansi and Rhinacanthus nasutus showed cytotoxic activity (IC50< 30 μg/ml against lung and prostate cancer cell lines. Dioscorea membranacea roots showed the highest cytotoxic activity against lung cancer cell lines ( IC50= 4.6 μg/ml but it exhibited low cytotoxic activity against prostate cancer cell lines (IC50= 17.55 μg/ml and less cytotoxic activity against normal cell lines (IC50= 66.05 μg/ml. Curcuma zedoaria showed cytotoxic activity against COR L-23 and PC3 but less cytotoxic activity against 10FS (IC50 = 6.05, 17.84 and 55.50 μg/ml respectively Rhinacanthus nasutus root extract showed the highest cytotoxic activity against PC3 ( IC50 = 2.01 μg/ml and this extract also showed high activity against COR L-23 and 10FS (IC50=5.05 and 10.95 μg/ml respectively. The water extract of all plants exhibited no activity against all types of human cells. Two ethanolic plant extracts (Dioscorea membranacea and Curcuma zedoaria which showed specific activity against lung cancer cell lines and less cytotoxic activity against normal cells should be further investigated for active compounds against lung cancer cell.

  15. Oxidized low-density lipoprotein is associated with advanced-stage prostate cancer.

    Science.gov (United States)

    Wan, Fangning; Qin, Xiaojian; Zhang, Guiming; Lu, Xiaolin; Zhu, Yao; Zhang, Hailiang; Dai, Bo; Shi, Guohai; Ye, Dingwei

    2015-05-01

    Clinical and epidemiological data suggest coronary artery disease shares etiology with prostate cancer (PCa). The aim of this work was to assess the effects of several serum markers reported in cardiovascular disease on PCa. Serum markers (oxidized low-density lipoprotein [ox-LDL], apolipoprotein [apo] B100, and apoB48) in peripheral blood samples from 50 patients from Fudan University Shanghai Cancer Center (FUSCC) with localized or lymph node metastatic PCa were investigated in this study. Twenty-five samples from normal individuals were set as controls. We first conducted enzyme-linked immunosorbent assay analysis to select candidate markers that were significantly different between these patients and controls. Then, the clinical relevance between OLR1 (the ox-LDL receptor) expression and PCa was analyzed in The Cancer Genome Atlas (TCGA) cohort. We also investigated the function of ox-LDL in PCa cell lines in vitro. Phosphorylation protein chips were used to analyze cell signaling pathways in ox-LDL-treated PC-3 cells. The ox-LDL level was found to be significantly correlated with N stage of prostate cancer. OLR1 expression was correlated with lymph node metastasis in the TCGA cohort. In vitro, ox-LDL stimulated the proliferation, migration, and invasion of LNCaP and PC-3 in a dose-dependent manner. The results of phosphoprotein microarray illustrated that ox-LDL could influence multiple signaling pathways of PC-3. Activation of proliferation promoting signaling pathways (including β-catenin, cMyc, NF-κB, STAT1, STAT3) as well as apoptosis-associating signaling pathways (including p27, caspase-3) demonstrated that ox-LDL had complicated effects on prostate cancer. Increased serum ox-LDL level and OLR1 expression may indicate advanced-stage PCa and lymph node metastasis. Moreover, ox-LDL could stimulate PCa proliferation, migration, and invasion in vitro.

  16. Interleukin-8 increases vascular endothelial growth factor and neuropilin expression and stimulates ERK activation in human pancreatic cancer.

    Science.gov (United States)

    Li, Min; Zhang, Yuqing; Feurino, Louis W; Wang, Hao; Fisher, William E; Brunicardi, F Charles; Chen, Changyi; Yao, Qizhi

    2008-04-01

    Interleukin-8 (IL-8) is associated with tumorigenesis by promoting angiogenesis and metastasis. Although up-regulation of IL-8 is indicated in many cancers, its function in pancreatic cancer has not been well characterized. In this study we examined the expression of IL-8 on pancreatic cancer cells and clinical tissue specimens, and investigated the effect of exogenous IL-8 on gene expression, and signaling in human pancreatic cancer cells. We found that pancreatic cancer cells expressed higher amount of IL-8 mRNA than normal human pancreatic ductal epithelium cells. IL-8 mRNA was also substantially overexpressed in 11 of 14 (79%) clinical pancreatic-adenocarcinoma samples compared with that in their surrounding normal tissues. Exogenous IL-8 up-regulated the expression of vascular endothelial growth factor(165), and neuropilin (NRP)-2 in BxPC-3 cells, one of human pancreatic cancer cell lines. IL-8 expression was inducible by hypoxia mimicking reagent cobalt chloride. In addition, IL-8 activated extracellular signal-regulated kinase (ERK)1/2 signaling pathway in BxPC-3 cells. Our studies suggest that IL-8 might be a malignant factor in human pancreatic cancer by induction of vascular endothelial growth factor and NRP-2 expression and ERK activation. Targeting IL-8 along with other antiangiogenesis therapy could be an effective treatment for this malignancy.

  17. Quantum dots for multiplexed detection and characterisation of prostate cancer cells using a scanning near-field optical microscope.

    Directory of Open Access Journals (Sweden)

    Kelly-Ann D Walker

    Full Text Available In this study scanning near-field optical microscopy (SNOM has been utilised in conjunction with quantum dot labelling to interrogate the biomolecular composition of cell membranes. The technique overcomes the limits of optical diffraction found in standard fluorescence microscopy and also yields vital topographic information. The technique has been applied to investigate cell-cell adhesion in human epithelial cells. This has been realised through immunofluorescence labelling of the cell-cell adhesion protein E-cadherin. Moreover, a dual labelling protocol has been optimised to facilitate a comparative study of the adhesion mechanisms and the effect of aberrant adhesion protein expression in both healthy and cancerous epithelial cells. This study reports clear differences in the morphology and phenotype of healthy and cancerous cells. In healthy prostate epithelial cells (PNT2, E-cadherin was predominantly located around the cell periphery and within filopodial extensions. The presence of E-cadherin appeared to be enhanced when cell-cell contact was established. In contrast, examination of metastatic prostate adenocarcinoma cells (PC-3 revealed no E-cadherin labelling around the periphery of the cells. This lack of functional E-cadherin in PC-3 cells coincided with a markedly different morphology and PC-3 cells were not found to form close cell-cell associations with their neighbours. We have demonstrated that with a fully optimised sample preparation methodology, multiplexed quantum dot labelling in conjunction with SNOM imaging can be successfully applied to interrogate biomolecular localisation within delicate cellular membranes.

  18. miR-449a enhances radiosensitivity through modulating pRb/E2F1 in prostate cancer cells.

    Science.gov (United States)

    Mao, Aihong; Liu, Yang; Wang, Yali; Zhao, Qiuyue; Zhou, Xin; Sun, Chao; Di, Cuixia; Si, Jing; Gan, Lu; Zhang, Hong

    2016-04-01

    miR-449a, a novel tumor suppressor, is deregulated in various malignancies, including prostate cancer. Overexpression of miR-449a induces cell cycle arrest, apoptosis, and senescence, but its role in response to ionizing radiation and underlying molecular mechanism are still unknown. Here, we report that miR-449a enhances radiation-induced G2/M phase arrest and apoptosis through modulating pRb/E2F1 and sensitizes prostate cancer cells to X-ray radiation. In wild-type Rb PC-3 cells, overexpression of miR-449a enhances radiation-induced G2/M arrest and apoptosis and promotes the sensitivity to X-ray radiation. While mutant Rb DU-145 cells are resistant to the X-ray radiation despite in the presence of miR-449a. The cell cycle distribution of DU-145 cells is not significantly altered by miR-449a in the response to ionizing radiation. Furthermore, elevated miR-449a downregulates cell cycle regulator CDC25A and oncogene HDAC1. By targeting genes involved in controlling pRb/E2F1 activity, miR-449a regulates cell cycle progression and apoptosis and consequently enhances the radiosensitivity of PC-3 cells. Thus, miR-449a, as a miRNA component of the Rb pathway, promotes the radiosensitivity of PC-3 cells through regulating pRb/E2F1.

  19. Antiproliferative activity of the dietary isothiocyanate erucin, a bioactive compound from cruciferous vegetables, on human prostate cancer cells.

    Science.gov (United States)

    Melchini, Antonietta; Traka, Maria H; Catania, Stefania; Miceli, Natalizia; Taviano, Maria Fernanda; Maimone, Patrizia; Francisco, Marta; Mithen, Richard F; Costa, Chiara

    2013-01-01

    It is becoming increasingly clear that many dietary agents, such as isothiocyanates (ITCs) from cruciferous vegetables, can retard or prevent the process of prostate carcinogenesis. Erucin (ER) is a dietary ITC, which has been recently considered a promising cancer chemopreventive phytochemical. The potential protective activity of ER against prostate cancer was investigated using prostate adenocarcinoma cells (PC3), to analyze its effects on pathways involved in cell growth regulation, such as the cyclin-dependent kinase (CDKs) inhibitor p21(WAF1/CIP1) (p21), phosphatidylinositol-3 kinase/AKT, and extracellular signal-regulated kinases (ERK)1/2 signaling pathways. We have shown for the first time that ER increases significantly p21 protein expression and ERK1/2 phosphorylation in a dose-dependent manner to inhibit PC3 cell proliferation (P ≤ 0.01). Compared to the structurally related sulforaphane, a well-studied broccoli-derived ITC, ER showed lower potency in inhibiting proliferation of PC3 cells, as well as in modulating p21 and pERK1/2 protein levels. Neither of the naturally occurring ITCs was able to affect significantly pAKT protein levels in prostate cells at all concentrations tested (0-25 μM). It is clearly important for the translation of laboratory findings to clinical approaches to investigate in animal and cell studies the molecular mechanisms by which ITCs may exert health promoting effects.

  20. Design and synthesis of novel 1,2,3-triazole derivatives of coronopilin as anti-cancer compounds.

    Science.gov (United States)

    Khazir, Jabeena; Hyder, Irfan; Gayatri, J Laxmi; Prasad Yandrati, Leela; Nalla, Naresh; Chasoo, Gousia; Mahajan, Ajay; Saxena, A K; Alam, M S; Qazi, G N; Sampath Kumar, Halmuthur M

    2014-07-23

    A series of 1,2,3-triazole coronopilin congeners have been designed and synthesized by employing click chemistry approach starting from parthenin and evaluated for their cytotoxicity against a panel of six human cancer cell lines (PC-3, THP-1, HCT-15, HeLa, A-549 and MCF-7). While many compounds exhibited significant anticancer activity, compound 3a, was found to be the most promising analogue in this series with IC50 values of 3.1 μM on PC-3 cell line. Flow-cytometric studies showed that 1,2,3-triazole derivative-3a induce dose dependent apoptosis in the sub G1 phase. This lead molecule-3a was further studied for NF-κB (p65) transcription factor inhibitory activity using Elisa and western blotting analysis which confirmed concentration dependent inhibitory activity against NF-κB, p65 with 80% inhibition in 24 h at 100 μM.

  1. Alterations of expression and regulation of transforming growth factor beta in human cancer prostate cell lines.

    Science.gov (United States)

    Blanchère, M; Saunier, E; Mestayer, C; Broshuis, M; Mowszowicz, I

    2002-11-01

    TGF beta can promote and/or suppress prostate tumor growth through multiple and opposing actions. Alterations of its expression, secretion, regulation or of the sensitivity of target cells can lead to a favorable environment for tumor development. To gain a better insight in TGF beta function during cancer progression, we have used different cultured human prostate cells: preneoplastic PNT2 cells, the androgen-dependent LNCaP and the androgen-independent PC3 and DU145 prostate cancer cell lines. We have studied by specific ELISA assays in conditioned media (CM), the secretion of TGF beta 1 and TGF beta 2 in basal conditions and after hormonal treatment (DHT or E2) and the expression of TGF beta 1 mRNA by Northern blot. We have also compared the effect of fibroblast CM on TGF beta secretion by the different cell types. Compared to PNT2 cells, cancer cell lines secrete lower levels of active TGF beta which are not increased in the presence of fibroblast CM. LNCaP cells respond to androgen or estrogen treatment by a 10-fold increase of active TGF beta secretion while PC3 and DU145 are unresponsive. In conclusion, prostate cancer cell lines have lost part of their ability to secrete and activate TGF beta, and to regulate this secretion through stromal-epithelial interactions. Androgen-sensitive cancer cells may compensate this loss by hormonal regulation.

  2. Inhibition of Stromal PlGF Suppresses the Growth of Prostate Cancer Xenografts

    Directory of Open Access Journals (Sweden)

    Dietmar Abraham

    2013-09-01

    Full Text Available The growth and vascularization of prostate cancer is dependent on interactions between cancer cells and supporting stromal cells. The primary stromal cell type found in prostate tumors is the carcinoma-associated fibroblast, which produces placental growth factor (PlGF. PlGF is a member of the vascular endothelial growth factor (VEGF family of angiogenic molecules and PlGF mRNA levels increase after androgen deprivation therapy in prostate cancer. In this study, we show that PlGF has a direct dose-dependent proliferative effect on human PC-3 prostate cancer cells in vitro and fibroblast-derived PlGF increases PC-3 proliferation in co-culture. In xenograft tumor models, intratumoral administration of murine PlGF siRNA reduced stromal-derived PlGF expression, reduced tumor burden and decreased the number of Ki-67 positive proliferating cells associated with reduced vascular density. These data show that targeting stromal PlGF expression may represent a therapeutic target for the treatment of prostate cancer.

  3. Effect of Protein Hydrolysates on Pancreatic Cancer Cells

    DEFF Research Database (Denmark)

    Ossum, Carlo G.; Andersen, Lisa Lystbæk; Nielsen, Henrik Hauch

    Effect of Fish Protein Hydrolysates on Pancreatic Cancer Cells Carlo G. Ossum1, Lisa Lystbæk Andersen2, Henrik Hauch Nielsen2, Else K. Hoffmann1, and Flemming Jessen2 1University of Copenhagen, Department of Biology, Denmark, 2Technical University of Denmark (DTU), National Food Institute, Denmark...... hydrolysates obtained by enzymatic hydrolysis on cancer cell proliferation. Skin and belly flap muscle from trout were hydrolysed with the unspecific proteases Alcalase, Neutrase, or UE1 (all from Novozymes, Bagsværd, Denmark) to a hydrolysis degree of 1-15%. The hydrolysates were tested for biological...... activities affecting cell proliferation and ability to modulate caspase activity in pancreatic cancer cells COLO357 and BxPC-3 in vitro. A number of the hydrolysates showed caspase promoting activity; in particular products containing muscle tissue, i.e. belly flap, were able to stimulate caspase activity...

  4. Investigation of the selenium metabolism in cancer cell lines

    DEFF Research Database (Denmark)

    Lunøe, Kristoffer; Gabel-Jensen, Charlotte; Stürup, Stefan

    2011-01-01

    incubated with cells for 24 h and the induction of cell death was measured using flow cytometry. The amounts of total selenium in cell medium, cell lysate and the insoluble fractions was determined by ICP-MS. Speciation analysis of cellular fractions was performed by reversed phase, anion exchange and size...... except MeSeA. Speciation analysis showed that MeSeA was completely transformed during the incubations, while metabolic conversion of the other Se compounds was limited. Production of volatile dimethyl diselenide was observed for MeSeA and MeSeCys. MeSeA, MeSeCys and selenite showed noticeable protein......The aim of this work was to compare different selenium species for their ability to induce cell death in different cancer cell lines, while investigating the underlying chemistry by speciation analysis. A prostate cancer cell line (PC-3), a colon cancer cell line (HT-29) and a leukaemia cell line...

  5. MIM, a Potential Metastasis Suppressor Gene in Bladder Cancer

    Directory of Open Access Journals (Sweden)

    Young-Goo Lee

    2002-01-01

    Full Text Available Using a modified version of the mRNA differential display technique, five human bladder cancer cell lines from low grade to metastatic were analyzed to identify differences in gene expression. A 316-bp cDNA (C11300 was isolated that was not expressed in the metastatic cell line TccSuP. Sequence analysis revealed that this gene was identical to KIAA 0429, has a 5.3-kb transcript that mapped to 8824.1. The protein is predicted to be 356 amino acids in size and has an actin-binding WH2 domain. Northern blot revealed expression in multiple normal tissues, but none in a metastatic breast cancer cell line (SKBR3 or in metastatic prostatic cancer cell lines (LNCaP, PC3. We have named this gene Missing in Metastasis (MIM and our data suggest that it may be involved in cytoskeletal organization.

  6. Repositioning "old" drugs for new causes: identifying new inhibitors of prostate cancer cell migration and invasion.

    Science.gov (United States)

    Shah, Esha T; Upadhyaya, Akanksha; Philp, Lisa K; Tang, Tiffany; Skalamera, Dubravka; Gunter, Jennifer; Nelson, Colleen C; Williams, Elizabeth D; Hollier, Brett G

    2016-04-01

    The majority of prostate cancer (PCa) deaths occur due to the metastatic spread of tumor cells to distant organs. Currently, there is a lack of effective therapies once tumor cells have spread outside the prostate. It is therefore imperative to rapidly develop therapeutics to inhibit the metastatic spread of tumor cells. Gain of cell motility and invasive properties is the first step of metastasis and by inhibiting motility one can potentially inhibit metastasis. Using the drug repositioning strategy, we developed a cell-based multi-parameter primary screening assay to identify drugs that inhibit the migratory and invasive properties of metastatic PC-3 PCa cells. Following the completion of the primary screening assay, 33 drugs were identified from an FDA approved drug library that either inhibited migration or were cytotoxic to the PC-3 cells. Based on the data obtained from the subsequent validation studies, mitoxantrone hydrochloride, simvastatin, fluvastatin and vandetanib were identified as strong candidates that can inhibit both the migration and invasion of PC-3 cells without significantly affecting cell viability. By employing the drug repositioning strategy instead of a de novo drug discovery and development strategy, the identified drug candidates have the potential to be rapidly translated into the clinic for the management of men with aggressive forms of PCa.

  7. Curcumin AntiCancer Studies in Pancreatic Cancer

    Science.gov (United States)

    Bimonte, Sabrina; Barbieri, Antonio; Leongito, Maddalena; Piccirillo, Mauro; Giudice, Aldo; Pivonello, Claudia; de Angelis, Cristina; Granata, Vincenza; Palaia, Raffaele; Izzo, Francesco

    2016-01-01

    Pancreatic cancer (PC) is one of the deadliest cancers worldwide. Surgical resection remains the only curative therapeutic treatment for this disease, although only the minority of patients can be resected due to late diagnosis. Systemic gemcitabine-based chemotherapy plus nab-paclitaxel are used as the gold-standard therapy for patients with advanced PC; although this treatment is associated with a better overall survival compared to the old treatment, many side effects and poor results are still present. Therefore, new alternative therapies have been considered for treatment of advanced PC. Several preclinical studies have demonstrated that curcumin, a naturally occurring polyphenolic compound, has anticancer effects against different types of cancer, including PC, by modulating many molecular targets. Regarding PC, in vitro studies have shown potent cytotoxic effects of curcumin on different PC cell lines including MiaPaCa-2, Panc-1, AsPC-1, and BxPC-3. In addition, in vivo studies on PC models have shown that the anti-proliferative effects of curcumin are caused by the inhibition of oxidative stress and angiogenesis and are due to the induction of apoptosis. On the basis of these results, several researchers tested the anticancer effects of curcumin in clinical trials, trying to overcome the poor bioavailability of this agent by developing new bioavailable forms of curcumin. In this article, we review the results of pre-clinical and clinical studies on the effects of curcumin in the treatment of PC. PMID:27438851

  8. Curcumin AntiCancer Studies in Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Sabrina Bimonte

    2016-07-01

    Full Text Available Pancreatic cancer (PC is one of the deadliest cancers worldwide. Surgical resection remains the only curative therapeutic treatment for this disease, although only the minority of patients can be resected due to late diagnosis. Systemic gemcitabine-based chemotherapy plus nab-paclitaxel are used as the gold-standard therapy for patients with advanced PC; although this treatment is associated with a better overall survival compared to the old treatment, many side effects and poor results are still present. Therefore, new alternative therapies have been considered for treatment of advanced PC. Several preclinical studies have demonstrated that curcumin, a naturally occurring polyphenolic compound, has anticancer effects against different types of cancer, including PC, by modulating many molecular targets. Regarding PC, in vitro studies have shown potent cytotoxic effects of curcumin on different PC cell lines including MiaPaCa-2, Panc-1, AsPC-1, and BxPC-3. In addition, in vivo studies on PC models have shown that the anti-proliferative effects of curcumin are caused by the inhibition of oxidative stress and angiogenesis and are due to the induction of apoptosis. On the basis of these results, several researchers tested the anticancer effects of curcumin in clinical trials, trying to overcome the poor bioavailability of this agent by developing new bioavailable forms of curcumin. In this article, we review the results of pre-clinical and clinical studies on the effects of curcumin in the treatment of PC.

  9. Enhanced killing of androgen-independent prostate cancer cells using inositol hexakisphosphate in combination with proteasome inhibitors.

    Science.gov (United States)

    Diallo, J-S; Betton, B; Parent, N; Péant, B; Lessard, L; Le Page, C; Bertrand, R; Mes-Masson, A-M; Saad, F

    2008-11-18

    Effective treatments for androgen-independent prostate cancer (AIPCa) are lacking. To address this, emerging therapeutics such as proteasome inhibitors are currently undergoing clinical trials. Inositol hexakisphosphate (IP6) is an orally non-toxic phytochemical that exhibits antitumour activity against several types of cancer including PCa. We have previously shown that treatment of PC3 cells with IP6 induces the transcription of a subset of nuclear factor-kappaB (NF-kappaB)-responsive and pro-apoptotic BCL-2 family genes. In this study, we report that although NF-kappaB subunits p50/p65 translocate to the nucleus of PC3 cells in response to IP6, inhibition of NF-kappaB-mediated transcription using non-degradable inhibitor of kappaB (IkappaB)-alpha does not modulate IP6 sensitivity. Treatment with IP6 also leads to increased protein levels of PUMA, BIK/NBK and NOXA between 4 and 8 h of treatment and decreased levels of MCL-1 and BCL-2 after 24 h. Although blocking transcription using actinomycin D does not modulate PC3 cell sensitivity to IP6, inhibition of protein translation using cycloheximide has a significant protective effect. In contrast, blocking proteasome-mediated protein degradation using MG-132 significantly enhances the ability of IP6 to reduce cellular metabolic activity in both PC3 and DU145 AIPCa cell lines. This effect of combined treatment on mitochondrial depolarisation is particularly striking and is also reproduced by another proteasome inhibitor (ALLN). The enhanced effect of combined MG132/IP6 treatment is almost completely inhibited by cycloheximide and correlates with changes in BCL-2 family protein levels. Altogether these results suggest a role for BCL-2 family proteins in mediating the combined effect of IP6 and proteasome inhibitors and warrant further pre-clinical studies for the treatment of AIPCa.

  10. Preclinical evaluation of sunitinib, a multi-tyrosine kinase inhibitor, as a radiosensitizer for human prostate cancer

    Directory of Open Access Journals (Sweden)

    Brooks Colin

    2012-09-01

    Full Text Available Abstract Background Many prostate cancers demonstrate an increased expression of growth factor receptors such as vascular endothelial growth factor receptor (VEGFR and platelet derived growth factor receptor (PDGFR which have been correlated with increased resistance to radiotherapy and poor prognosis in other tumors. Therefore, response to radiation could potentially be improved by using inhibitors of these abnormally activated pathways. We have investigated the radiosensitizing effects of sunitinib, a potent, multi-tyrosine kinase inhibitor of the VEGFR and PDGFR receptors, on human prostate cancer cells. Methods The radiosensitizing effects of sunitinib were assessed on human prostate cancer cell lines DU145, PC3 and LNCaP by clonogenic assay. Sunitinib’s ability to inhibit the activities of its key targets was determined by immunoblot analysis. The radiosensitizing effects of sunitinib in vivo were tested on human tumor xenografts growing in nude mice where response was assessed by tumor growth delay. Results Clonogenic survival curve assays for both DU145 and PC3 cells showed that the surviving fraction at 2 Gy was reduced from 0.70 and 0.52 in controls to 0.44 and 0.38, respectively, by a 24 hr pretreatment with 100 nM sunitinib. LNCaP cells were not radiosensitized by sunitinib. Dose dependent decreases in VEGFR and PDGFR activation were also observed following sunitinib in both DU145 and PC3 cells. We assessed the ability of sunitinib to radiosensitize PC3 xenograft tumors growing in the hind limb of nude mice. Sunitinib given concurrently with radiation did not prolong tumor growth delay. However, when animals were treated with sunitinib commencing the day after fractionated radiation was complete, tumor growth delay was enhanced compared to radiation alone. Conclusions We conclude, based on the in vivo results, that sunitinib and radiation do not interact directly to radiosensitize the PC3 tumor cells in vivo as they did in vitro

  11. Adipose-derived stromal cells inhibit prostate cancer cell proliferation inducing apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Takahara, Kiyoshi [Department of Urology, Faculty of Medicine, Osaka Medical College, Osaka (Japan); Ii, Masaaki, E-mail: masaii@art.osaka-med.ac.jp [Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Osaka (Japan); Inamoto, Teruo; Komura, Kazumasa; Ibuki, Naokazu; Minami, Koichiro; Uehara, Hirofumi; Hirano, Hajime; Nomi, Hayahito; Kiyama, Satoshi [Department of Urology, Faculty of Medicine, Osaka Medical College, Osaka (Japan); Asahi, Michio [Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Osaka (Japan); Azuma, Haruhito [Department of Urology, Faculty of Medicine, Osaka Medical College, Osaka (Japan)

    2014-04-18

    Highlights: • AdSC transplantation exhibits inhibitory effect on tumor progressions of PCa cells. • AdSC-induced PCa cell apoptosis may occur via the TGF-β signaling pathway. • High expression of the TGF-β1 gene in AdSCs. - Abstract: Mesenchymal stem cells (MSCs) have generated a great deal of interest in the field of regenerative medicine. Adipose-derived stromal cells (AdSCs) are known to exhibit extensive proliferation potential and can undergo multilineage differentiation, sharing similar characteristics to bone marrow-derived MSCs. However, as the effect of AdSCs on tumor growth has not been studied sufficiently, we assessed the degree to which AdSCs affect the proliferation of prostate cancer (PCa) cell. Human AdSCs exerted an inhibitory effect on the proliferation of androgen-responsive (LNCaP) and androgen-nonresponsive (PC3) human PCa cells, while normal human dermal fibroblasts (NHDFs) did not, and in fact promoted PCa cell proliferation to a degree. Moreover, AdSCs induced apoptosis of LNCaP cells and PC3 cells, activating the caspase3/7 signaling pathway. cDNA microarray analysis suggested that AdSC-induced apoptosis in both LNCaP and PC3 cells was related to the TGF-β signaling pathway. Consistent with our in vitro observations, local transplantation of AdSCs delayed the growth of tumors derived from both LNCaP- and PC3-xenografts in immunodeficient mice. This is the first preclinical study to have directly demonstrated that AdSC-induced PCa cell apoptosis may occur via the TGF-β signaling pathway, irrespective of androgen-responsiveness. Since autologous AdSCs can be easily isolated from adipose tissue without any ethical concerns, we suggest that therapy with these cells could be a novel approach for patients with PCa.

  12. Effects of cIAP-1, cIAP-2 and XIAP triple knockdown on prostate cancer cell susceptibility to apoptosis, cell survival and proliferation

    Directory of Open Access Journals (Sweden)

    Dowling Catherine

    2009-06-01

    Full Text Available Abstract Background Manipulating apoptotic resistance represents an important strategy for the treatment of hormone refractory prostate cancer. We hypothesised that the Inhibitor of Apoptosis (IAP Proteins may be mediating this resistance and knockdown of cIAP-1, cIAP-2 and XIAP would increase sensitivity to apoptosis. Methods cIAP-1, cIAP-2 and XIAP where knocked down either individually or in combination using siRNA in androgen independent prostate cancer PC-3 cells as confirmed by real-time PCR and western blotting. Cells were then treated with TRAIL, Etoposide, or Tunicamycin, and apoptosis assessed by PI DNA staining. Apoptosis was confirmed with Annexin V labelling and measurement of PARP cleavage, and was inhibited using the pan-caspase inhibitor, zVAD.fmk. Clonogenic assays and assessment of ID-1 expression by western blotting were used to measure recovery and proliferation. Results PC-3 are resistant to TRAIL induced apoptosis and have elevated expression of cIAP-1, cIAP-2 and XIAP. Combined knockdown sensitised PC-3 to TRAIL induced apoptosis, but not to Etoposide or Tunicmycin, with corresponding increases in caspase activity and PARP cleavage which was inhibited by ZVAD.fmk. Triple knock down decreased proliferation which was confirmed by decreased ID-1 expression. Conclusion Simultaneous knock down of the IAPs not only sensitised the PC-3 to TRAIL but also inhibited their proliferation rates and clonogenic survival. The inability to alter sensitivity to other triggers of apoptosis suggests that this effect is specific for death receptor pathways and knock down might facilitate immune-surveillance mechanisms to counter cancer progression and, in combination with therapeutic approaches using TRAIL, could represent an important treatment strategy.

  13. Effects of cIAP-1, cIAP-2 and XIAP triple knockdown on prostate cancer cell susceptibility to apoptosis, cell survival and proliferation.

    LENUS (Irish Health Repository)

    Gill, Catherine

    2009-01-01

    BACKGROUND: Manipulating apoptotic resistance represents an important strategy for the treatment of hormone refractory prostate cancer. We hypothesised that the Inhibitor of Apoptosis (IAP) Proteins may be mediating this resistance and knockdown of cIAP-1, cIAP-2 and XIAP would increase sensitivity to apoptosis. METHODS: cIAP-1, cIAP-2 and XIAP where knocked down either individually or in combination using siRNA in androgen independent prostate cancer PC-3 cells as confirmed by real-time PCR and western blotting. Cells were then treated with TRAIL, Etoposide, or Tunicamycin, and apoptosis assessed by PI DNA staining. Apoptosis was confirmed with Annexin V labelling and measurement of PARP cleavage, and was inhibited using the pan-caspase inhibitor, zVAD.fmk. Clonogenic assays and assessment of ID-1 expression by western blotting were used to measure recovery and proliferation. RESULTS: PC-3 are resistant to TRAIL induced apoptosis and have elevated expression of cIAP-1, cIAP-2 and XIAP. Combined knockdown sensitised PC-3 to TRAIL induced apoptosis, but not to Etoposide or Tunicmycin, with corresponding increases in caspase activity and PARP cleavage which was inhibited by ZVAD.fmk. Triple knock down decreased proliferation which was confirmed by decreased ID-1 expression. CONCLUSION: Simultaneous knock down of the IAPs not only sensitised the PC-3 to TRAIL but also inhibited their proliferation rates and clonogenic survival. The inability to alter sensitivity to other triggers of apoptosis suggests that this effect is specific for death receptor pathways and knock down might facilitate immune-surveillance mechanisms to counter cancer progression and, in combination with therapeutic approaches using TRAIL, could represent an important treatment strategy.

  14. SLUG promotes prostate cancer cell migration and invasion via CXCR4/CXCL12 axis

    Directory of Open Access Journals (Sweden)

    Uygur Berna

    2011-11-01

    Full Text Available Abstract Background SLUG is a zinc-finger transcription factor of the Snail/Slug zinc-finger family that plays a role in migration and invasion of tumor cells. Mechanisms by which SLUG promotes migration and invasion in prostate cancers remain elusive. Methods Expression level of CXCR4 and CXCL12 was examined by Western blot, RT-PCR, and qPCR analyses. Forced expression of SLUG was mediated by retroviruses, and SLUG and CXCL12 was downregulated by shRNAs-expressing lentiviruses. Migration and invasion of prostate cancer were measured by scratch-wound assay and invasion assay, respectively. Research We demonstrated that forced expression of SLUG elevated CXCR4 and CXCL12 expression in human prostate cancer cell lines PC3, DU145, 22RV1, and LNCaP; conversely, reduced expression of SLUG by shRNA downregulated CXCR4 and CXCL12 expression at RNA and protein levels in prostate cancer cells. Furthermore, ectopic expression of SLUG increased MMP9 expression and activity in PC3, 22RV1, and DU-145 cells, and SLUG knockdown by shRNA downregulated MMP9 expression. We showed that CXCL12 is required for SLUG-mediated MMP9 expression in prostate cancer cells. Moreover, we found that migration and invasion of prostate cancer cells was increased by ectopic expression of SLUG and decreased by SLUG knockdown. Notably, knockdown of CXCL12 by shRNA impaired SLUG-mediated migration and invasion in prostate cancer cells. Lastly, our data suggest that CXCL12 and SLUG regulate migration and invasion of prostate cancer cells independent of cell growth. Conclusion We provide the first compelling evidence that upregulation of autocrine CXCL12 is a major mechanism underlying SLUG-mediated migration and invasion of prostate cancer cells. Our findings suggest that CXCL12 is a therapeutic target for prostate cancer metastasis.

  15. Survivin gene silencing sensitizes prostate cancer cells to selenium growth inhibition

    Directory of Open Access Journals (Sweden)

    Liu Xichun

    2010-08-01

    Full Text Available Abstract Background Prostate cancer is a leading cause of cancer-related death in men worldwide. Survivin is a member of the inhibitor of apoptosis (IAP protein family that is expressed in the majority of human tumors including prostate cancer, but is barely detectable in terminally differentiated normal cells. Downregulation of survivin could sensitize prostate cancer cells to chemotherapeutic agents in vitro and in vivo. Selenium is an essential trace element. Several studies have shown that selenium compounds inhibit the growth of prostate cancer cells. The objective of this study is to investigate whether survivin gene silencing in conjunction with selenium treatment could enhance the therapeutic efficacy for prostate cancer and to elucidate the underlying mechanisms. Methods Expression of survivin was analyzed in a collection of normal and malignant prostatic tissues by immunohistochemical staining. In vitro studies were conducted in PC-3M, C4-2B, and 22Rv1 prostate cancer cells. The effect of selenium on survivin expression was analyzed by Western blotting and semi-quantitative RT-PCR. Survivin gene knockdown was carried out by transfecting cells with a short hairpin RNA (shRNA designed against survivin. Cell proliferation was quantitated by the 3-(4,5-Dimethylthiazol-2-yl- 2,5-Diphenyltetrazolium Bromide (MTT assay and apoptosis by propidium iodide staining followed by flow cytometry analysis. Finally, in vivo tumor growth assay was performed by establishing PC-3M xenograft in nude mice and monitoring tumor growth following transfection and treatment. Results We found that survivin was undetectable in normal prostatic tissues but was highly expressed in prostate cancers. Survivin knockdown or selenium treatment inhibited the growth of prostate cancer cells, but the selenium effect was modest. In contrast to what have been observed in other cell lines, selenium treatment had little or no effect on survivin expression in several androgen

  16. Recurrent SKIL-activating rearrangements in ETS-negative prostate cancer.

    Science.gov (United States)

    Annala, Matti; Kivinummi, Kati; Tuominen, Joonas; Karakurt, Serdar; Granberg, Kirsi; Latonen, Leena; Ylipää, Antti; Sjöblom, Liisa; Ruusuvuori, Pekka; Saramäki, Outi; Kaukoniemi, Kirsi M; Yli-Harja, Olli; Vessella, Robert L; Tammela, Teuvo L J; Zhang, Wei; Visakorpi, Tapio; Nykter, Matti

    2015-03-20

    Prostate cancer is the third most common cause of male cancer death in developed countries, and one of the most comprehensively characterized human cancers. Roughly 60% of prostate cancers harbor gene fusions that juxtapose ETS-family transcription factors with androgen regulated promoters. A second subtype, characterized by SPINK1 overexpression, accounts for 15% of prostate cancers. Here we report the discovery of a new prostate cancer subtype characterized by rearrangements juxtaposing the SMAD inhibitor SKIL with androgen regulated promoters, leading to increased SKIL expression. SKIL fusions were found in 6 of 540 (1.1%) prostate cancers and 1 of 27 (3.7%) cell lines and xenografts. 6 of 7 SKIL-positive cancers were negative for ETS overexpression, suggesting mutual exclusivity with ETS fusions. SKIL knockdown led to growth arrest in PC-3 and LNCaP cell line models of prostate cancer, and its overexpression led to increased invasiveness in RWPE-1 cells. The role of SKIL as a prostate cancer oncogene lends support to recent studies on the role of TGF-β signaling as a rate-limiting step in prostate cancer progression. Our findings highlight SKIL as an oncogene and potential therapeutic target in 1-2% of prostate cancers, amounting to an estimated 10,000 cancer diagnoses per year worldwide.

  17. Magnolol Affects Cellular Proliferation, Polyamine Biosynthesis and Catabolism-Linked Protein Expression and Associated Cellular Signaling Pathways in Human Prostate Cancer Cells in vitro

    Directory of Open Access Journals (Sweden)

    Brendan T. McKeown

    2015-01-01

    Full Text Available Background: Prostate cancer is the most commonly diagnosed form of cancer in men in Canada and the United States. Both genetic and environmental factors contribute to the development and progression of many cancers, including prostate cancer. Context and purpose of this study: This study investigated the effects of magnolol, a compound found in the roots and bark of the magnolia tree Magnolia officinalis, on cellular proliferation and proliferation-linked activities of PC3 human prostate cancer cells in vitro. Results: PC3 cells exposed to magnolol at a concentration of 80 μM for 6 hours exhibited decreased protein expression of ornithine decarboxylase, a key regulator in polyamine biosynthesis, as well as affecting the expression of other proteins involved in polyamine biosynthesis and catabolism. Furthermore, protein expression of the R2 subunit of ribonucleotide reductase, a key regulatory protein associated with DNA synthesis, was significantly decreased. Finally, the MAPK (mitogen-activated protein kinase, PI3K (phosphatidylinositol 3-kinase, NFκB (nuclear factor of kappa-light-chain-enhancer of activated B cells and AP-1 (activator protein 1 cellular signaling pathways were assayed to determine which, if any, of these pathways magnolol exposure would alter. Protein expressions of p-JNK-1 and c-jun were significantly increased while p-p38, JNK-1/2, PI3Kp85, p-PI3Kp85, p-Akt, NFκBp65, p-IκBα and IκBα protein expressions were significantly decreased. Conclusions: These alterations further support the anti-proliferative effects of magnolol on PC3 human prostate cancer cells in vitro and suggest that magnolol may have potential as a novel anti-prostate cancer agent.

  18. Embelin-Induced Apoptosis of Human Prostate Cancer Cells Is Mediated through Modulation of Akt and β-Catenin Signaling.

    Directory of Open Access Journals (Sweden)

    Nahee Park

    Full Text Available There is increasing evidence that embelin, an active component of Embelia ribes, induces apoptosis in human cancer cells, but the detailed mechanisms are still unclear. Here, we have investigated the effect of embelin on the growth of human prostate cancer cells. Embelin strongly inhibited cell growth especially in human prostate cancer cell lines, including PC3, DU145, LNCaP-LN3 and normal prostate epithelial cell, RWPE-1 compared to breast cancer (MDA-MB-231, MCF-7, and T47D, hepatoma (HepG2, Hep3B, and HuH-7, or choriocarcinoma (JEG-3. We observed that embelin induced apoptosis of PC3 cells in a time-dependent manner correlated with decreased expression of Bcl-2, Bcl-xL, and Mcl-1, increased translocation of Bax into mitochondria, and a reduction in the mitochondrial membrane potential. Furthermore, embelin induced voltage-dependent anion channel (VDAC 1 expression and oligomerization, which may promote cytochrome c and AIF release. Because embelin was able to inhibit Akt activation and cyclooxygenase-2 expression, the effects on Wnt/ β-catenin signaling were determined. Embelin activated glycogen synthase kinase (GSK-3β by preventing phosphorylation and suppressed β-catenin expression. Attenuation of β-catenin-mediated TCF transcriptional activity and gene transcription, such as cyclin D1, c-myc, and matrix metalloproteinase (MMP-7, were shown in embelin-treated cells. The changes in β-catenin levels in response to embelin were blocked by lithium chloride, a GSK-3 inhibitor, indicating that embelin may decrease β-catenin expression via GSK-3β activation. Furthermore, exposure of PC3 cells to embelin resulted in a significant decrease in cell migration and invasion. In conclusion, these findings suggest that inhibition of Akt signaling and activation of GSK-3β partially contributes to the pro-apoptotic effect of embelin in prostate cancer cells.

  19. Suppression of growth and invasive behavior of human prostate cancer cells by ProstaCaid™: mechanism of activity.

    Science.gov (United States)

    Jiang, Jiahua; Eliaz, Isaac; Sliva, Daniel

    2011-06-01

    Since the use of dietary supplements as alternative treatments or adjuvant therapies in cancer treatment is growing, a scientific verification of their biological activity and the detailed mechanisms of their action are necessary for the acceptance of dietary supplements in conventional cancer treatments. In the present study we have evaluated the anti-cancer effects of dietary supplement ProstaCaid™ (PC) which contains mycelium from medicinal mushrooms (Ganoderma lucidum, Coriolus versicolor, Phellinus linteus), saw palmetto berry, pomegranate, pumpkin seed, green tea [40% epigallocatechin-3-gallate (EGCG)], Japanese knotweed (50% resveratrol), extracts of turmeric root (BCM-95®), grape skin, pygeum bark, sarsaparilla root, Scutellaria barbata, eleuthero root, Job's tears, astragalus root, skullcap, dandelion, coptis root, broccoli, and stinging nettle, with purified vitamin C, vitamin D3, selenium, quercetin, citrus bioflavonoid complex, β sitosterolzinc, lycopene, α lipoic acid, boron, berberine and 3.3'-diinodolymethane (DIM). We show that PC treatment resulted in the inhibition of cell proliferation of the highly invasive human hormone refractory (independent) PC-3 prostate cancer cells in a dose- and time-dependent manner with IC50 56.0, 45.6 and 39.0 µg/ml for 24, 48 and 72 h, respectively. DNA-microarray analysis demonstrated that PC inhibits proliferation through the modulation of expression of CCND1, CDK4, CDKN1A, E2F1, MAPK6 and PCNA genes. In addition, PC also suppresses metastatic behavior of PC-3 by the inhibition of cell adhesion, cell migration and cell invasion, which was associated with the down-regulation of expression of CAV1, IGF2, NR2F1, and PLAU genes and suppressed secretion of the urokinase plasminogen activator (uPA) from PC-3 cells. In conclusion, the dietary supplement PC is a promising natural complex with the potency to inhibit invasive human prostate cancer.

  20. Cellular contractility and extracellular matrix stiffness regulate matrix metalloproteinase activity in pancreatic cancer cells.

    Science.gov (United States)

    Haage, Amanda; Schneider, Ian C

    2014-08-01

    The pathogenesis of cancer is often driven by local invasion and metastasis. Recently, mechanical properties of the tumor microenvironment have been identified as potent regulators of invasion and metastasis, while matrix metalloproteinases (MMPs) are classically known as significant enhancers of cancer cell migration and invasion. Here we have been able to sensitively measure MMP activity changes in response to specific extracellular matrix (ECM) environments and cell contractility states. Cells of a pancreatic cancer cell line, Panc-1, up-regulate MMP activities between 3- and 10-fold with increased cell contractility. Conversely, they down-regulate MMP activities when contractility is blocked to levels seen with pan-MMP activity inhibitors. Similar, albeit attenuated, responses are seen in other pancreatic cancer cell lines, BxPC-3 and AsPC-1. In addition, MMP activity was modulated by substrate stiffness, collagen gel concentration, and the degree of collagen cross-linking, when cells were plated on collagen gels ranging from 0.5 to 5 mg/ml that span the physiological range of substrate stiffness (50-2000 Pa). Panc-1 cells showed enhanced MMP activity on stiffer substrates, whereas BxPC-3 and AsPC-1 cells showed diminished MMP activity. In addition, eliminating heparan sulfate proteoglycans using heparinase completely abrogated the mechanical induction of MMP activity. These results demonstrate the first functional link between MMP activity, contractility, and ECM stiffness and provide an explanation as to why stiffer environments result in enhanced cell migration and invasion.

  1. The calcimimetic R-568 induces apoptotic cell death in prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Cheng Guangming

    2009-07-01

    Full Text Available Abstract Background Increased serum level of parathyroid hormone (PTH was found in metastatic prostate cancers. Calcimimetic R-568 was reported to reduce PTH expression, to suppress cell proliferation and to induce apoptosis in parathyroid cells. In this study, we investigated the effect of R-568 on cellular survival of prostate cancer cells. Methods Prostate cancer cell lines LNCaP and PC-3 were used in this study. Cellular survival was determined with MTT, trypan blue exclusion and fluorescent Live/Death assays. Western blot assay was utilized to assess apoptotic events induced by R-568 treatment. JC-1 staining was used to evaluate mitochondrial membrane potential. Results In cultured prostate cancer LNCaP and PC-3 cells, R-568 treatment significantly reduced cellular survival in a dose- and time-dependent manner. R-568-induced cell death was an apoptotic event, as evidenced by caspase-3 processing and PARP cleavage, as well as JC-1 color change in mitochondria. Knocking down calcium sensing receptor (CaSR significantly reduced R-568-induced cytotoxicity. Enforced expression of Bcl-xL gene abolished R-568-induced cell death, while loss of Bcl-xL expression led to increased cell death in R-568-treated LNCaP cells,. Conclusion Taken together, our data demonstrated that calcimimetic R-568 triggers an intrinsic mitochondria-related apoptotic pathway, which is dependent on the CaSR and is modulated by Bcl-xL anti-apoptotic pathway.

  2. 15-lipoxygenase metabolites of docosahexaenoic acid inhibit prostate cancer cell proliferation and survival.

    Directory of Open Access Journals (Sweden)

    Joseph T O'Flaherty

    Full Text Available A 15-LOX, it is proposed, suppresses the growth of prostate cancer in part by converting arachidonic, eicosatrienoic, and/or eicosapentaenoic acids to n-6 hydroxy metabolites. These metabolites inhibit the proliferation of PC3, LNCaP, and DU145 prostate cancer cells but only at ≥1-10 µM. We show here that the 15-LOX metabolites of docosahexaenoic acid (DHA, 17-hydroperoxy-, 17-hydroxy-, 10,17-dihydroxy-, and 7,17-dihydroxy-DHA inhibit the proliferation of these cells at ≥0.001, 0.01, 1, and 1 µM, respectively. By comparison, the corresponding 15-hydroperoxy, 15-hydroxy, 8,15-dihydroxy, and 5,15-dihydroxy metabolites of arachidonic acid as well as DHA itself require ≥10-100 µM to do this. Like DHA, the DHA metabolites a induce PC3 cells to activate a peroxisome proliferator-activated receptor-γ (PPARγ reporter, express syndecan-1, and become apoptotic and b are blocked from slowing cell proliferation by pharmacological inhibition or knockdown of PPARγ or syndecan-1. The DHA metabolites thus slow prostate cancer cell proliferation by engaging the PPARγ/syndecan-1 pathway of apoptosis and thereby may contribute to the prostate cancer-suppressing effects of not only 15-LOX but also dietary DHA.

  3. miR-17* suppresses tumorigenicity of prostate cancer by inhibiting mitochondrial antioxidant enzymes.

    Directory of Open Access Journals (Sweden)

    Yong Xu

    Full Text Available Aberrant micro RNA (miRNA expression has been implicated in the pathogenesis of cancer. Recent studies have shown that the miR-17-92 cluster is overexpressed in many types of cancer. The oncogenic function of mature miRNAs encoded by the miR-17-92 cluster has been identified from the 5' arm of six precursors. However, the function of the miRNAs produced from the 3' arm of these precursors remains unknown. The present study demonstrates that miR-17* is able to suppress critical primary mitochondrial antioxidant enzymes, such as manganese superoxide dismutase (MnSOD, glutathione peroxidase-2 (GPX2 and thioredoxin reductase-2 (TrxR2. Transfection of miR-17* into prostate cancer PC-3 cells significantly reduces levels of the three antioxidant proteins and activity of the luciferase reporter under the control of miR-17* binding sequences located in the 3'-untranslated regions of the three target genes. Disulfiram (DSF, a dithiolcarbomate drug shown to have an anticancer effect, induces the level of mature miR-17* and cell death in PCa cells, which can be attenuated by transfection of antisense miR-17*. Increasing miR-17* level in PC-3 cells by a Tet-on based conditional expression system markedly suppresses its tumorigencity. These results suggest that miR-17* may suppress tumorigenicity of prostate cancer through inhibition of mitochondrial antioxidant enzymes.

  4. Studying circulating prostate cancer cells by in-vivo flow cytometer

    Science.gov (United States)

    Guo, Jin; Gu, Zhengqin; Chen, Tong; Wang, Cheng; Wei, Xunbin

    2012-03-01

    Prostate cancer is the most common malignancy in American men and the second leading cause of deaths from cancer, after lung cancer. The tumor usually grows slowly and remains confined to the gland for many years. As the cancer advances, however, it can metastasize throughout other areas of the body, such as the bones, lungs, and liver. Surgical resection, hormonal therapy, chemotherapy and radiation therapy are the foundation of current prostate cancer therapies. Treatments for prostate cause both short- and long-term side effects that may be difficult to accept. Molecular mechanisms of prostate cancer metastasis need to be understood better and new therapies must be developed to selectively target to unique characteristics of cancer cell growth and metastasis. We have developed the "in vivo microscopy" to study the mechanisms that govern prostate cancer cell spread through the microenvironment in vivo in real-time confocal near-infrared fluorescence imaging. A recently developed "in vivo flow cytometer" and optical imaging are used to assess prostate cancer cell spreading and the circulation kinetics of prostate cancer cells. We have measured the depletion kinetics of cancer cells with different metastatic potential. Interestingly, more invasive PC-3 prostate cancer cells are depleted faster from the circulation than LNCaP cells.

  5. Synergistic chemoprotective mechanisms of dietary phytoestrogens in a select combination against prostate cancer.

    Science.gov (United States)

    Kumar, Rajeev; Verma, Vikas; Jain, Ashish; Jain, Rajeev K; Maikhuri, Jagdamba P; Gupta, Gopal

    2011-08-01

    Combination of dietary phytoestrogens with diverse molecular mechanisms may enhance their anticancer efficacy at physiological concentrations, as evidenced in epidemiological studies. A select combination of three dietary phytoestrogens containing 8.33 μM each of genistein (G), quercetin (Q) and biochanin A (B) was found to be more potent in inhibiting the growth of androgen-responsive prostate cancer cells (LNCaP) as well as DU-145 and PC-3 prostate cancer cells in vitro than either 25 μM of G, B or Q or 12.5+12.5 μM of G+Q, Q+B or G+B. Subsequent mechanistic studies in PC-3 cells indicated that the action of phytoestrogens was mediated both through estrogen receptor (ER)-dependent and ER-independent pathways as potent estrogen antagonist ICI-182780 (ICI, 5 μM) could not completely mask the synergistic anticancer effects, which were sustained appreciably in presence of ICI. G+Q+B combination was significantly more effective than individual compounds or their double combinations in increasing ER-β, bax (mRNA expression); phospho-JNK, bax (protein levels); and in decreasing bcl-2, cyclin E, c-myc (mRNA expression); phospho-AKT, phospho-ERK, bcl-2, proliferating cell nuclear antigen (protein levels) in PC-3 cells. Phytoestrogens also synergistically stimulated caspase-3 activity. Our findings suggest that selectively combining anticancer phytoestrogens could significantly increase the efficacy of individual components resulting in improved efficacy at physiologically achievable concentrations. The combination mechanism of multiple anticancer phytochemicals may be indicative of the potential of some vegetarian diet components to elicit chemopreventive effects against prostate cancer at their physiologically achievable concentrations, in vivo.

  6. p14ARF upregulation of p53 and enhanced effects of 5-fluorouracil in pancreatic cancer

    Institute of Scientific and Technical Information of China (English)

    张群华; 倪泉兴; 甘军; 沈兆忠; 罗建民; 金忱; 张妞; 张延龄

    2003-01-01

    Objective To investigate the synergistic antitumor effects of combined use of p14ARF gene and 5-fluorouracil (5-Fu) in pancreatic cancer.Methods A human pancreatic cancer cell line PC-3 was transfected with lipofectin-mediated recombinant p14ARF gene, and was then administered with 5-Fu. Cell growth, morphological changes, cell cycle, apoptosis, and molecular changes were measured using the MTT assay, flow cytometry, RT-PCR, Western blotting, and immunocytochemical assays.Results After transfection of p14ARF, cell growth was obviously inhibited, resulting in an accumulation of cells in the G1 phase. The proportion of cells in the G1 phase was significantly increased from 58.51% to 75.92 %, and in the S and G2/M phases decreased significantly from 20.05% to 12.60%, and from 21.44% to 11.48 %, respectively, as compared with those of the control groups. PC-3/p14ARF cells that underwent 5-Fu treatment had significantly greater G2/M phase accumulation, from 11.48% to 53.47 %. The apoptopic index was increased in PC-3/p14ARF cells from 3.64% to 19.62%. The MTT assay showed p14ARF-expressing cells were significantly more sensitive to 5-Fu (0.01-10 mg/L) than those devoid of p14ARF expression (P<0.01). Western blotting showed p14ARF upregulates p53 expression. Conclusion Combined use of p14ARF gene and 5-Fu acts synergistically to inhibit pancreatic cancer cell proliferation, suggesting a new anticancer strategy.

  7. Pleiotropic effects of cancer cells' secreted factors on human stromal (mesenchymal) stem cells

    DEFF Research Database (Denmark)

    Al-toub, Mashael; Almusa, Abdulaziz; Almajed, Mohammed

    2013-01-01

    INTRODUCTION: Studying cancer tumors' microenvironment may reveal a novel role in driving cancer progression and metastasis. The biological interaction between stromal (mesenchymal) stem cells (MSCs) and cancer cells remains incompletely understood. Herein, we investigated the effects of tumor...... cells' secreted factors as represented by a panel of human cancer cell lines (breast (MCF7 and MDA-MB-231); prostate (PC-3); lung (NCI-H522); colon (HT-29) and head & neck (FaDu)) on the biological characteristics of MSCs. METHODS: Morphological changes were assessed using fluorescence microscopy....... Changes in gene expression were assessed using Agilent microarray and qRT-PCR. GeneSpring 12.1 and DAVID tools were used for bioinformatic and signaling pathway analyses. Cell migration was assessed using a transwell migration system. SB-431542, PF-573228 and PD98059 were used to inhibit transforming...

  8. Anti-proliferative Effects of Androctonus amoreuxi Scorpion and Cerastes cerastes Snake Venoms on Human Prostate Cancer Cells

    Science.gov (United States)

    Akef, Hassan; Kotb, Nahla; Abo-Elmatty, Dina; Salem, Sayed

    2017-01-01

    The present study evaluated the effects of Androctonus amoreuxi scorpion venom, Cerastes cerastes snake venom and their mixture on prostate cancer cells (PC3). An MTT assay was used to determine the anti-proliferative effect of the venoms, while quantitative real time PCR was used to evaluate the expression of apoptosis-related genes (Bax and Bcl-2). Furthermore, colorimetric assays were used to measure the levels of malondialdehyde (MDA) and antioxidant enzymes. Our results show that the venoms significantly reduced PC3 cell viability in a dose-dependent manner. On the other hand, these venoms significantly decreased Bcl-2 gene expression. Additionally, C. cerastes venom significantly reduced Bax gene expression, while A. amoreuxi venom and a mixture of A. amoreuxi & C. cerastes venoms did not alter Bax expression. Consequently, these venoms significantly increased the Bax/Bcl-2 ratio and the oxidative stress biomarker MDA. Furthermore, these venoms also increased the activity levels of the antioxidant enzymes, catalase, superoxide dismutase, glutathione peroxidase, glutathione reductase, and glutathione-S-transferase. Overall, the venoms have cytotoxic and anti-proliferative effects on PC3 cells. PMID:28382285

  9. The engineered thymidylate kinase (TMPK)/AZT enzyme-prodrug axis offers efficient bystander cell killing for suicide gene therapy of cancer.

    Science.gov (United States)

    Sato, Takeya; Neschadim, Anton; Lavie, Arnon; Yanagisawa, Teruyuki; Medin, Jeffrey A

    2013-01-01

    We previously described a novel suicide (or 'cell fate control') gene therapy enzyme/prodrug system based on an engineered variant of human thymidylate kinase (TMPK) that potentiates azidothymidine (AZT) activation. Delivery of a suicide gene sequence into tumors by lentiviral transduction embodies a cancer gene therapy that could employ bystander cell killing as a mechanism driving significant tumor regression in vivo. Here we present evidence of a significant bystander cell killing in vitro and in vivo mediated by the TMPK/AZT suicide gene axis that is reliant on the formation of functional gap-junctional intercellular communications (GJICs). Potentiation of AZT activation by the engineered TMPK expressed in the human prostate cancer cell line, PC-3, resulted in effective bystander killing of PC-3 cells lacking TMPK expression--an effect that could be blocked by the GJIC inhibitor, carbenoxolone. Although GJICs are mainly formed by connexins, a new family of GJIC molecules designated pannexins has been recently identified. PC-3 cells expressed both connexin43 (Cx43) and Pannexin1 (Panx1), but Panx1 expression predominated at the plasma membrane, whereas Cx43 expression was primarily localized to the cytosol. The contribution of bystander effects to the reduction of solid tumor xenografts established by the PC-3 cell line was evaluated in an animal model. We demonstrate the contribution of bystander cell killing to tumor regression in a xenograft model relying on the delivery of expression of the TMPK suicide gene into tumors via direct intratumoral injection of recombinant therapeutic lentivirus. Taken together, our data underscore that the TMPK/AZT enzyme-prodrug axis can be effectively utilized in suicide gene therapy of solid tumors, wherein significant tumor regression can be achieved via bystander effects mediated by GJICs.

  10. The engineered thymidylate kinase (TMPK/AZT enzyme-prodrug axis offers efficient bystander cell killing for suicide gene therapy of cancer.

    Directory of Open Access Journals (Sweden)

    Takeya Sato

    Full Text Available We previously described a novel suicide (or 'cell fate control' gene therapy enzyme/prodrug system based on an engineered variant of human thymidylate kinase (TMPK that potentiates azidothymidine (AZT activation. Delivery of a suicide gene sequence into tumors by lentiviral transduction embodies a cancer gene therapy that could employ bystander cell killing as a mechanism driving significant tumor regression in vivo. Here we present evidence of a significant bystander cell killing in vitro and in vivo mediated by the TMPK/AZT suicide gene axis that is reliant on the formation of functional gap-junctional intercellular communications (GJICs. Potentiation of AZT activation by the engineered TMPK expressed in the human prostate cancer cell line, PC-3, resulted in effective bystander killing of PC-3 cells lacking TMPK expression--an effect that could be blocked by the GJIC inhibitor, carbenoxolone. Although GJICs are mainly formed by connexins, a new family of GJIC molecules designated pannexins has been recently identified. PC-3 cells expressed both connexin43 (Cx43 and Pannexin1 (Panx1, but Panx1 expression predominated at the plasma membrane, whereas Cx43 expression was primarily localized to the cytosol. The contribution of bystander effects to the reduction of solid tumor xenografts established by the PC-3 cell line was evaluated in an animal model. We demonstrate the contribution of bystander cell killing to tumor regression in a xenograft model relying on the delivery of expression of the TMPK suicide gene into tumors via direct intratumoral injection of recombinant therapeutic lentivirus. Taken together, our data underscore that the TMPK/AZT enzyme-prodrug axis can be effectively utilized in suicide gene therapy of solid tumors, wherein significant tumor regression can be achieved via bystander effects mediated by GJICs.

  11. In vitro study on specific anti-tumor immunity induced by using retrovirus-mediated murine inter-leukin-12 gene-modified dendritic cells sensitized by HSP70-PC-3m peptide against prostate carcinoma%白介素-12基因转染致敏树突状细胞体外诱导特异抗前列腺癌效应的实验研究

    Institute of Scientific and Technical Information of China (English)

    杜岳峰; 邢毅飞; 曾甫清; 王美玉; 陆鹏; 刘先艮

    2006-01-01

    背景与目的:前列腺癌是泌尿系统疾病中发病率和死亡率较高的恶性肿瘤,临床积极寻求最佳治疗方案.白细胞介素-12(IL-12)具有促T细胞增殖分化和抗肿瘤免疫作用,负载肿瘤抗原的树突状细胞(DC)疫苗可诱导机体产生特异性的抗肿瘤免疫效应,联合两者抗肿瘤效应,探讨逆转录病毒介导白细胞介素-12(IL-12)基因转染DC体外诱导特异免疫杀伤前列腺癌细胞的效能及其机制.方法:构建IL-12基因逆转录病毒重组质粒,转染PA317细胞后获得相应病毒,转染前列腺癌(PCa)患者外周血DC成DC-IL-12细胞.以HSP70-PC-3m肿瘤混合肽负载DC-IL-12细胞得致敏的DC.MTT法检测T淋巴细胞(1×105个/ml)增殖分化能力,细胞毒实验检测DC-IL-12诱导的细胞毒T淋巴细胞(CTL)及其上清液对PC-3m细胞株杀伤作用.结果:DC经IL-12修饰后48h分泌高水平IL-12(26.35±3.12)ng/L及IFN-r(778±28)ng/L,均显著高于未转染组(P<0.05).DC-IL-12细胞诱导的CTL及其上清液对前列腺癌PC-3m细胞均有显著杀伤作用,杀伤率显著高于未转染组,分别为(76.43±6.20)%vs(42.12±2.80)%和(66.38±7.56)%vs(14.23±5.42)%(P<0.05),对膀胱癌细胞EJ无明显杀伤作用.结论:IL-12基因修饰增强PC-3m细胞抗原致敏DC体外诱导同源T淋巴细胞产生特异性的抗前列腺癌免疫效能,其机制与IL-12基因转染DC后促进分泌IL-12、IFN-r及增强T淋巴细胞活化状态密切相关.

  12. Theranostic reduction-sensitive gemcitabine prodrug micelles for near-infrared imaging and pancreatic cancer therapy

    Science.gov (United States)

    Han, Haijie; Wang, Haibo; Chen, Yangjun; Li, Zuhong; Wang, Yin; Jin, Qiao; Ji, Jian

    2015-12-01

    A biodegradable and reduction-cleavable gemcitabine (GEM) polymeric prodrug with in vivo near-infrared (NIR) imaging ability was reported. This theranostic GEM prodrug PEG-b-[PLA-co-PMAC-graft-(IR820-co-GEM)] was synthesized by ring-opening polymerization and ``click'' reaction. The as-prepared reduction-sensitive prodrug could self-assemble into prodrug micelles in aqueous solution confirmed by dynamic light scattering (DLS) and transmission electron microscopy (TEM). In vitro drug release studies showed that these prodrug micelles were able to release GEM in an intracellular-mimicking reductive environment. These prodrug micelles could be effectively internalized by BxPC-3 pancreatic cancer cells, which were observed by confocal laser scanning microscopy (CLSM). Meanwhile, a methyl thiazolyl tetrazolium (MTT) assay demonstrated that this prodrug exhibited high cytotoxicity against BxPC-3 cells. The in vivo whole-animal near-infrared (NIR) imaging results showed that these prodrug micelles could be effectively accumulated in tumor tissue and had a longer blood circulation time than IR820-COOH. The endogenous reduction-sensitive gemcitabine prodrug micelles with the in vivo NIR imaging ability might have great potential in image-guided pancreatic cancer therapy.A biodegradable and reduction-cleavable gemcitabine (GEM) polymeric prodrug with in vivo near-infrared (NIR) imaging ability was reported. This theranostic GEM prodrug PEG-b-[PLA-co-PMAC-graft-(IR820-co-GEM)] was synthesized by ring-opening polymerization and ``click'' reaction. The as-prepared reduction-sensitive prodrug could self-assemble into prodrug micelles in aqueous solution confirmed by dynamic light scattering (DLS) and transmission electron microscopy (TEM). In vitro drug release studies showed that these prodrug micelles were able to release GEM in an intracellular-mimicking reductive environment. These prodrug micelles could be effectively internalized by BxPC-3 pancreatic cancer cells, which

  13. Anibamine and its Analogues as Novel Anti-Prostate Cancer Agents

    Science.gov (United States)

    2009-06-01

    structural studies of the CB1 cannabinoid receptor . J. Pept. Res. 2002, 60 (6), 348–56. (26) (a) Sirois, S.; Wei, D. Q.; Du, Q. S.; Chou, K. C. Virtual...Investigation of the impact of chemokine receptor CCR5 antagonist on prostate cancer cell growth and progression using M 12, PC-3, DU-145 and LNCa P... receptor CCR5, to further facilitate our next generation molecular design. This part of work has been published in the Journal of Che mical Informatics

  14. Molecular determinants of the antitumor effects of trichostatin A in pancreatic cancer cells

    Institute of Scientific and Technical Information of China (English)

    Elisabeth; Emonds; Brit; Fitzner; Robert; Jaster

    2010-01-01

    AIM:To gain molecular insights into the action of the histone deacetylase inhibitor(HDACI) trichostatin-A(TSA) in pancreatic cancer(PC) cells.METHODS:Three PC cell lines,BxPC-3,AsPC-1 and CAPAN-1,were treated with various concentrations of TSA for def ined periods of time.DNA synthesis was assessed by measuring the incorporation of 5-bromo-2'deoxyuridine.Gene expression at the level of mRNA was quantif ied by real-time polymerase chain reaction.Expression and phosphorylation of proteins was monitored by imm...

  15. Parathyroid hormone related-protein promotes epithelial-to-mesenchymal transition in prostate cancer.

    Directory of Open Access Journals (Sweden)

    Weg M Ongkeko

    Full Text Available Parathyroid hormone-related protein (PTHrP possesses a variety of physiological and developmental functions and is also known to facilitate the progression of many common cancers, notably their skeletal invasion, primarily by increasing bone resorption. The purpose of this study was to determine whether PTHrP could promote epithelial-to-mesenchymal transition (EMT, a process implicated in cancer stem cells that is critically involved in cancer invasion and metastasis. EMT was observed in DU 145 prostate cancer cells stably overexpressing either the 1-141 or 1-173 isoform of PTHrP, where there was upregulation of Snail and vimentin and downregulation of E-cadherin relative to parental DU 145. By contrast, the opposite effect was observed in PC-3 prostate cancer cells where high levels of PTHrP were knocked-down via lentiviral siRNA transduction. Increased tumor progression was observed in PTHrP-overexpressing DU 145 cells while decreased progression was observed in PTHrP-knockdown PC-3 cells. PTHrP-overexpressing DU 145 formed larger tumors when implanted orthoptopically into nude mice and in one case resulted in spinal metastasis, an effect not observed among mice injected with parental DU 145 cells. PTHrP-overexpressing DU 145 cells also caused significant bone destruction when injected into the tibiae of nude mice, while parental DU 145 cells caused little to no destruction of bone. Together, these results suggest that PTHrP may work through EMT to promote an aggressive and metastatic phenotype in prostate cancer, a pathway of importance in cancer stem cells. Thus, continued efforts to elucidate the pathways involved in PTHrP-induced EMT as well as to develop ways to specifically target PTHrP signaling may lead to more effective therapies for prostate cancer.

  16. CXCR4 Inhibition with AMD3100 Sensitizes Prostate Cancer to Docetaxel Chemotherapy

    Directory of Open Access Journals (Sweden)

    Urszula M. Domanska

    2012-08-01

    Full Text Available Several in vitro and in vivo models have revealed the key role of CXCR4/CXCL12 axis in tumor-stroma interactions. Stromal cells present in the tumor microenvironment express high levels of CXCL12 protein, directly stimulating proliferation and migration of CXCR4-expressing cancer cells. This specific prosurvival influence of stromal cells on tumor cells is thought to protect them from cytotoxic chemotherapy and is postulated as a possible explanation for the minimal residual disease in hematological and solid cancers. Therefore, CXCR4/CXCL12 signaling is an attractive therapeutic target in cancer, as proven in preclinical leukemia mouse models, where CXCR4 inhibition sensitized cancer cells to conventional chemotherapy. This study investigates whether inhibition of CXCR4 with the specific inhibitor AMD3100 sensitizes human prostate cancer cells to docetaxel. We showed that both mouse and human stromal cell lines have a protective effect on PC3-luc cells by promoting their survival after chemotherapy. Furthermore, we demonstrated that AMD3100 sensitizes PC3-luc cells to docetaxel. In a subcutaneous xenograft mouse model of human prostate carcinoma, we showed that a combination of docetaxel and AMD3100 exerts increased antitumor effect compared with docetaxel alone. We concluded that CXCR4 inhibition chemosensitizes prostate cancer cells, both in vitro and in vivo. To explore the relevance of these findings, we analyzed CXCR4 expression levels in human prostate cancer samples. We found that cancer cells present in bone metastatic lesions express higher CXCR4 levels relative to the cells present in primary tumors and lymph node metastatic lesions. These findings underscore the potential of CXCR4 inhibitors as chemosensitizing agents.

  17. Exosomal ITGA3 interferes with non-cancerous prostate cell functions and is increased in urine exosomes of metastatic prostate cancer patients

    Directory of Open Access Journals (Sweden)

    Irene V. Bijnsdorp

    2013-10-01

    Full Text Available Background: Cancer cells are able to change the protein expression and behavior of non-cancerous surrounding cells. Exosomes, secreted by prostate cancer (PCa cells, may have a functional role in cancer metastasis and present a promising source for protein biomarkers. The aim of the present study was to identify which proteins in exosomes can influence non-cancerous cells, and to determine whether we can use urine exosomal proteins to identify high-risk PCa patients. Method: Exosomes were isolated by ultracentrifugation. Migration and invasion were studied by the transwell (invasion assay. Proteomics was performed by LC-MS/MS and identified proteins were validated by Western blotting. Cellular uptake of fluorescent labeled PKH67-exosomes was measured by FACS. Results: Based on comparative protein profiling by mass spectrometry-based proteomics of LNCaP- and PC3-exosomes, we selected ITGA3 and ITGB1, involved in migration/invasion, for further analyses. Inhibition of exosomal ITGA3 reduced the migration and invasion of non-cancerous prostate epithelial cells (prEC almost completely. Cellular uptake of exosomes by prEC was higher with PC3-exosomes compared to LNCaP exosomes. Finally, ITGA3 and ITGB1 were more abundant in urine exosomes of metastatic patients (p<0.05, compared to benign prostate hyperplasia or PCa. Conclusion: These data indicate exosomal ITGA3 and ITGB1 may play a role in manipulating non-cancerous surrounding cells and that measurement of ITGA3 and ITGB1 in urine exosomes has the potential to identify patients with metastatic PCa in a non-invasive manner.

  18. α-Mangostin Suppresses the Viability and Epithelial-Mesenchymal Transition of Pancreatic Cancer Cells by Downregulating the PI3K/Akt Pathway

    Directory of Open Access Journals (Sweden)

    Qinhong Xu

    2014-01-01

    Full Text Available α-Mangostin, a natural product isolated from the pericarp of the mangosteen fruit, has been shown to inhibit the growth of tumor cells in various types of cancers. However, the underlying molecular mechanisms are largely unclear. Here, we report that α-mangostin suppressed the viability and epithelial-mesenchymal transition (EMT of pancreatic cancer cells through inhibition of the PI3K/Akt pathway. Treatment of pancreatic cancer BxPc-3 and Panc-1 cells with α-mangostin resulted in loss of cell viability, accompanied by enhanced cell apoptosis, cell cycle arrest at G1 phase, and decrease of cyclin-D1. Moreover, Transwell and Matrigel invasion assays showed that α-mangostin significantly reduced the migration and invasion of pancreatic cancer cells. Consistent with these results, α-mangostin decreased the expression of MMP-2, MMP-9, N-cadherin, and vimentin and increased the expression of E-cadherin. Furthermore, we found that α-mangostin suppressed the activity of the PI3K/Akt pathway in pancreatic cancer cells as demonstrated by the reduction of the Akt phosphorylation by α-mangostin. Finally, α-mangostin significantly inhibited the growth of BxPc-3 tumor mouse xenografts. Our results suggest that α-mangostin may be potentially used as a novel adjuvant therapy or complementary alternative medicine for the management of pancreatic cancers.

  19. The microRNA-218 and ROBO-1 signaling axis correlates with the lymphatic metastasis of pancreatic cancer.

    Science.gov (United States)

    He, Hang; Di, Yang; Liang, Minrui; Yang, Feng; Yao, Lie; Hao, Sijie; Li, Ji; Jiang, Yongjian; Jin, Chen; Fu, Deliang

    2013-08-01

    Pancreatic cancer is known for its poor prognosis and early lymphatic metastasis is a notable characteristic. microRNAs (miRNAs) have been shown to be involved in the initiation and progression of pancreatic cancer. We, therefore, established a screening strategy to find miRNAs related to the lymphatic metastasis of pancreatic cancer and explored the target genes of miRNAs. miRNA array profiles were analyzed in tissue samples [pancreatic ductal adenocarcinoma (PDAC) and matched adjacent benign tissues (MAT)] and cell lines (BxPC-3-LN and BxPC-3). Combined analysis of profiling data from tissue samples and cell lines was used to identify miRNAs related to the lymphatic metastasis of pancreatic cancer. The expression levels of miRNAs were confirmed by real‑time reverse transcription PCR (RT-PCR) in tissue samples and cell lines. The correlation between miRNAs and clinicopathological characteristics was investigated. The expression features of miRNAs in pancreatic cancer, precursor lesions and metastatic lymph nodes were characterized by in situ hybridization (ISH). Predicted target genes of miRNAs were validated by RT-PCR and the protein levels of target genes were revealed by western blotting. Seventy and 63 miRNAs were differentially expressed in pancreatic cancer and BxPC-3-LN, compared to MAT and BxPC-3, respectively. Combined microarray analysis found 4 co-differentially expressed miRNAs (miRNA-663, miRNA-145, miRNA-218 and let-7) related to the lymphatic metastasis of pancreatic cancer. miRNA-218 was significantly downregulated in BxPC-3-LN (fold-change>10) and the expression levels of miRNA-218 were confirmed by RT-PCR. The group with lymph node metastasis and the elder group (age>64) showed lower expression of miRNA-218 (P=0.003 and 0.002), compared to patients without lymph nodes metastasis and patients in the younger group (age≤64), respectively. The expression of miRNA‑218 showed a decreasing trend from normal acinar/ductal epithelium, intraductal

  20. Design, synthesis and cytotoxicity studies of dithiocarbamate ester derivatives of emetine in prostate cancer cell lines.

    Science.gov (United States)

    Akinboye, Emmanuel S; Bamji, Zebalda D; Kwabi-Addo, Bernard; Ejeh, David; Copeland, Robert L; Denmeade, Samuel R; Bakare, Oladapo

    2015-09-01

    A small library of emetine dithiocarbamate ester derivatives were synthesized in 25-86% yield via derivatization of the N2'- position of emetine. Anticancer evaluation of these compounds in androgen receptor positive LNCaP and androgen receptor negative PC3 and DU145 prostate cancer cell lines revealed time dependent and dose-dependent cytotoxicity. With the exception of compound 4c, all the dithiocarbamate ester analogs in this study showed appreciable potency in all the prostate cancer cell lines (regardless of whether it is androgen receptor positive or negative) with a cytotoxicity IC50 value ranging from 1.312 ± 0.032 μM to 5.201 ± 0.125 μM by day 7 of treatment. Compared to the sodium dithiocarbamate salt 1, all the dithiocarbamate ester analogs (2 and 4a-4 g) displayed lower cytotoxicity than compound 1 (PC3, IC50 = 0.087 ± 0.005 μM; DU145, IC50 = 0.079 ± 0.003 μM and LNCaP, IC50 = 0.079 ± 0.003 μM) on day 7 of treatment. Consequently, it appears that S-alkylation of compound 1 leads to a more stable dithiocarbamate ester derivative that resulted in lower anticancer activity in the prostate cancer cell lines.

  1. Apoptotic and anti-angiogenic effects of Salvia triloba extract in prostate cancer cell lines.

    Science.gov (United States)

    Atmaca, Harika; Bozkurt, Emir

    2016-03-01

    Plants, due to their remarkable composition, are considered as natural resources of bioactive compounds with specific biological activities. Salvia genus (Lamiaceae) has been used around the world in complementary medicine since ancient times. We investigated the cytotoxic, apoptotic and anti-angiogenic effects of methanolic Salvia triloba extract (STE) in prostate cancer cells. Cell viability was evaluated by XTT; apoptosis was investigated by DNA fragmentation and caspase 3/7 activity assays. Changes in the angiogenic cytokine levels were investigated by human angiogenesis antibody array. Scratch assay was used to determine the cell motility. STE induced cytotoxicity and apoptosis in a concentration-dependent manner in both cancer cells; however, it was not cytotoxic to normal cells. Cell motility was reduced in PC-3, DU-145 and HUVEC cells by STE treatment. ANG, ENA-78, bFGF, EGF, IGF-1 and VEGF-D levels were significantly decreased by -2.9, -3.7, -1.7, -1.7, -2.0 and -1.8 fold in STE-treated DU-145 cells, however, ANG, IL-8, LEP, RANTES, TIMP-1, TIMP-2 and VEGF levels were significantly decreased by -5.1, -2.0, -2.4, -3.1, -1.5, -2.0 and -2.5 fold in PC-3 cells. These data suggest that STE might be a promising candidate for anti-tumor and anti-angiogenic treatment of prostate cancer.

  2. UNBS5162, a Novel Naphthalimide That Decreases CXCL Chemokine Expression in Experimental Prostate Cancers

    Directory of Open Access Journals (Sweden)

    Tatjana Mijatovic

    2008-06-01

    Full Text Available Several naphthalimides have been evaluated clinically as potential anticancer agents. UNBS3157, a naphthalimide that belongs to the same class as amonafide, was designed to avoid the specific activating metabolism that induces amonafide’s hematotoxicity. The current study shows that UNBS3157 rapidly and irreversibly hydrolyzes to UNBS5162 without generating amonafide. In vivo UNBS5162 after repeat administration significantly increased survival in orthotopic human prostate cancer models. Results obtained by the National Cancer Institute (NCI using UNBS3157 and UNBS5162 against the NCI 60 cell line panel did not show a correlation with any other compound present in the NCI database, including amonafide, thereby suggesting a unique mechanism of action for these two novel naphthalimides. Affymetrix genome-wide microarray analysis and enzyme-linked immunosorbent assay revealed that in vitro exposure of PC-3 cells to UNBS5162 (1 μM for 5 successive days dramatically decreased the expression of the proangiogenic CXCL chemokines. Histopathology additionally revealed antiangiogenic properties in vivo for UNBS5162 in the orthotopic PC-3 model. In conclusion, the present study reveals UNBS5162 to be a pan-antagonist of CXCL chemokine expression, with the compound displaying antitumor effects in experimental models of human refractory prostate cancer when administered alone and found to enhance the activity of taxol when coadministered with the taxoid.

  3. Phellinus linteus extract sensitizes advanced prostate cancer cells to apoptosis in athymic nude mice.

    Science.gov (United States)

    Tsuji, Takanori; Du, Wei; Nishioka, Takashi; Chen, Lihua; Yamamoto, Daisuke; Chen, Chang Yan

    2010-03-31

    Phellinus linteus (PL) mushroom possesses anti-tumor property. We previously reported that the treatment with PL caused cultured human prostate cancer cells to undergo apoptosis. To further studying the mechanisms of PL-mediated apoptosis, we performed xenograft assay, together with in vitro assays, to evaluate the effect of PL on the genesis and progression of the tumors formed from the inoculation of prostate cancer PC3 or DU145 cells. After the inoculation, nude mice were injected with PL every two days for 12 days. Although PL treatment did not prevent the formation of the inoculated tumors, the growth rate of the tumors after PL treatment was dramatically attenuated. We then tested the effect of PL on the tumors 12 days after the inoculation. After inoculated tumors reached a certain size, PL was administrated to the mice by subcutaneous injection. The histochemistry or immunochemistry analysis showed that apoptosis occurred with the activation of caspase 3 in the tumors formed by inoculating prostate cancer DU145 or PC3 cells. The data was in a good agreement with that from cultured cells. Thus, our in vivo study suggests that PL not only is able to attenuate tumor growth, but also to cause tumor regression by inducing apoptosis.

  4. Phellinus linteus extract sensitizes advanced prostate cancer cells to apoptosis in athymic nude mice.

    Directory of Open Access Journals (Sweden)

    Takanori Tsuji

    Full Text Available Phellinus linteus (PL mushroom possesses anti-tumor property. We previously reported that the treatment with PL caused cultured human prostate cancer cells to undergo apoptosis. To further studying the mechanisms of PL-mediated apoptosis, we performed xenograft assay, together with in vitro assays, to evaluate the effect of PL on the genesis and progression of the tumors formed from the inoculation of prostate cancer PC3 or DU145 cells. After the inoculation, nude mice were injected with PL every two days for 12 days. Although PL treatment did not prevent the formation of the inoculated tumors, the growth rate of the tumors after PL treatment was dramatically attenuated. We then tested the effect of PL on the tumors 12 days after the inoculation. After inoculated tumors reached a certain size, PL was administrated to the mice by subcutaneous injection. The histochemistry or immunochemistry analysis showed that apoptosis occurred with the activation of caspase 3 in the tumors formed by inoculating prostate cancer DU145 or PC3 cells. The data was in a good agreement with that from cultured cells. Thus, our in vivo study suggests that PL not only is able to attenuate tumor growth, but also to cause tumor regression by inducing apoptosis.

  5. Expression of a model gene in prostate cancer cells lentivirally transduced in vitro and in vivo.

    Science.gov (United States)

    Bastide, C; Maroc, N; Bladou, F; Hassoun, J; Maitland, N; Mannoni, P; Bagnis, C

    2003-01-01

    In a preclinical model for prostate cancer gene therapy, we have tested lentiviral vectors as a practical possibility for the transfer and long-term expression of the EGFP gene both in vitro and in vivo. The human prostate cancer cell lines DU145 and PC3 were transduced using experimental conditions which permitted analysis of the expression from a single proviral vector per cell. The transduced cells stably expressed the EGFP transgene for 4 months. After injection of the transduced cell populations into Nod-SCID mice a decrease in EGFP was only observed in a minority of cases, while the majority of tumors maintained transgene expression at in vitro levels. In vivo injection of viral vector preparations directly into pre-established subcutaneous or orthotopic tumor masses, obtained by implantation of untransduced PC3 and DU145 cells led to a high transduction efficiency. While the efficiency of direct intratumoral transduction was proportional to the dose of virus injected, the results indicated some technical limitations inherent in these approaches to prostate cancer gene therapy.

  6. Fungal metabolites of xanthohumol with potent antiproliferative activity on human cancer cell lines in vitro.

    Science.gov (United States)

    Tronina, Tomasz; Bartmańska, Agnieszka; Filip-Psurska, Beata; Wietrzyk, Joanna; Popłoński, Jarosław; Huszcza, Ewa

    2013-04-01

    Xanthohumol (1) and xanthohumol D (2) were isolated from spent hops. Isoxanthohumol (3) was obtained from xanthohumol by isomerisation in alkaline solution. Six metabolites were obtained as a result of transformation of xanthohumol (1) by selected fungal cultures. Their structures were established on the basis of their spectral data. One of them: 2″-(2'''-hydroxyisopropyl)-dihydrofurano-[4″,5″:3',4']-4',2-dihydroxy-6'-methoxy-α,β-dihydrochalcone (6) has not been previously reported in the literature. The antioxidant properties of hops flavonoids and xanthohumol derivatives were investigated using the 2,2'-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging method. The effects of these compounds on proliferation of MCF-7, PC-3 and HT-29 human cancer cell lines were determined by the SRB assay. With the exception of one metabolite, all tested compounds showed antiproliferative activity against the tested human cancer lines. α,β-Dihydroxanthohumol (4), obtained through the biotransformation of xanthohumol, showed higher antiproliferative activity against MCF-7 human breast carcinoma cell line than cisplatin, a widely used anticancer therapeutic agent, and a comparably high activity against PC-3 human prostate cancer cell line.

  7. In vitro studies on the modification of low-dose hyper-radiosensitivity in prostate cancer cells by incubation with genistein and estradiol

    Directory of Open Access Journals (Sweden)

    Thelen Paul

    2008-07-01

    Full Text Available Abstract Background As the majority of prostate cancers (PC express estrogen receptors, we evaluated the combination of radiation and estrogenic stimulation (estrogen and genistein on the radiosensitivity of PC cells in vitro. Methods PC cells LNCaP (androgen-sensitive and PC-3 (androgen-independent were evaluated. Estrogen receptor (ER expression was analyzed by means of immunostaining. Cells were incubated in FCS-free media with genistein 10 μM and estradiol 10 μM 24 h before irradiation and up to 24 h after irradiation. Clonogenic survival, cell cycle changes, and expression of p21 were assessed. Results LNCaP expressed both ER-α and ER-β, PC-3 did not. Incubation of LNCaP and PC-3 with genistein resulted in a significant reduction of clonogenic survival. Incubation with estradiol exhibited in low concentrations (0.01 μM stimulatory effects, while higher concentrations did not influence survival. Both genistein 10 μM and estradiol 10 μM increased low-dose hyper-radiosensitivity [HRS] in LNCaP, while hormonal incubation abolished HRS in PC-3. In LNCaP cells hormonal stimulation inhibited p21 induction after irradiation with 4 Gy. In PC-3 cells, the proportion of cells in G2/M was increased after irradiation with 4 Gy. Conclusion We found an increased HRS to low irradiation doses after incubation with estradiol or genistein in ER-α and ER-β positive LNCaP cells. This is of high clinical interest, as this tumor model reflects a locally advanced, androgen dependent PC. In contrast, in ER-α and ER-β negative PC-3 cells we observed an abolishing of the HRS to low irradiation doses by hormonal stimulation. The effects of both tested compounds on survival were ER and p53 independent. Since genistein and estradiol effects in both cell lines were comparable, neither ER- nor p53-expression seemed to play a role in the linked signalling. Nevertheless both compounds targeted the same molecular switch. To identify the underlying molecular

  8. 前列腺癌中白细胞介素-6的表达及其意义%The Expression and Significance of Interleukin-6 in Prostate Cancer

    Institute of Scientific and Technical Information of China (English)

    包世新; 杨为民; 叶章群

    2009-01-01

    Objective To study the role of interleukin-6(IL-6)in the pathogenesis of prostate cancer and its clinical significance. Methods Immunohistochemistry and RT-PCR were used to detect the expression of IL-6 protein and mRNA in frozen prostatic adenocarcinoma,adjacent benign prostatic tissue,and prostate cancer cell lines PC-3 and LNCaP. The serum levels of IL-6 in patients with prostate cancer and healthy controls,and the supernatants of prostate cancer cell cultures were measured by using ELISA. Results The IL-6 protein levels in prostate cancer tissue and PC-3 cells were significantly higher than those in adjacent benign prostatic tissue and LNCaP cells. The serum IL-6 levels in the patients with prostate cancer were markedly higher than those in the healthy controls. The IL-6 levels in supernatants in PC-3 cells were notably higher than those in the LNCaP cells. Conclusion The IL-6 gene may act as an important regulator in prostate cancer progression and may be one of the causes of prostate cancer conversion from an initially androgen-dependent state into an androgen-independent state.%目的 探讨细胞因子白细胞介素-6(IL-6)在前列腺癌发生发展中的作用及其临床意义.方法 ①采用免疫组化SABC法和逆转录-聚合酶链反应(RT-PCR)法对前列腺癌组织及其相应的癌旁前列腺组织和前列腺癌细胞系PC-3及LNCaP中的IL-6表达进行检测;②采用酶联免疫吸附试验(ELlSA)检测前列腺癌患者及随机正常人群外周血中IL-6的浓度和前列腺癌细胞系PC-3及LNCaP培养上清液中的IL-6浓度.结果 ①前列腺癌组织中IL-6表达明显强于相应的癌旁前列腺组织,且与肿瘤的分期分级相关;PC-3细胞中IL-6呈强阳性表达,而LNCaP细胞中IL-6呈弱阳性表达.②前列腺癌患者外周血中IL-6浓度显著高于正常人群组;而PC-3细胞组培养上清液中IL-6浓度也明显高于LNCaP细胞组.结论 IL-6基因可能在前列腺癌的发生发展中起重要作用,

  9. Differential role of Sloan-Kettering Institute (Ski) protein in Nodal and transforming growth factor-beta (TGF-β)-induced Smad signaling in prostate cancer cells.

    Science.gov (United States)

    Vo, BaoHan T; Cody, Bianca; Cao, Yang; Khan, Shafiq A

    2012-11-01

    Transforming growth factor-beta (TGF-β) signaling pathways contain both tumor suppressor and tumor promoting activities. We have demonstrated that Nodal, another member of the TGF-β superfamily, and its receptors are expressed in prostate cancer cells. Nodal and TGF-β exerted similar biological effects on prostate cells; both inhibited proliferation in WPE, RWPE1 and DU145 cells, whereas neither had any effect on the proliferation of LNCaP or PC3 cells. Interestingly, Nodal and TGF-β induced migration in PC3 cells, but not in DU145 cells. TGF-β induced predominantly phosphorylation of Smad3, whereas Nodal induced phosphorylation of only Smad2. We also determined the expression and differential role of Ski, a corepressor of Smad2/3, in Nodal and TGF-β signaling in prostate cancer cells. Similar levels of Ski mRNA were found in several established prostate cell lines; however, high levels of Ski protein were only detected in prostate cancer cells and prostate cancer tissue samples. Exogenous Nodal and TGF-β had no effects on Ski mRNA levels. On the other hand, TGF-β induced a rapid degradation of Ski protein mediated by the proteasomal pathway, whereas Nodal had no effect on Ski protein. Reduced Ski levels correlated with increased basal and TGF-β-induced Smad2/3 phosphorylation. Knockdown of endogenous Ski reduced proliferation in DU145 cells and enhanced migration of PC3 cells. We conclude that high levels of Ski expression in prostate cancer cells may be responsible for repression of TGF-β and Smad3 signaling, but Ski protein levels do not influence Nodal and Smad2 signaling.

  10. Colon cancer

    Science.gov (United States)

    Colorectal cancer; Cancer - colon; Rectal cancer; Cancer - rectum; Adenocarcinoma - colon; Colon - adenocarcinoma ... In the United States, colorectal cancer is one of the leading causes of deaths due to cancer. Early diagnosis can often lead to a complete cure. Almost ...

  11. Glyphosate and AMPA inhibit cancer cell growth through inhibiting intracellular glycine synthesis

    Directory of Open Access Journals (Sweden)

    Li Q

    2013-07-01

    Full Text Available Qingli Li,1,2 Mark J Lambrechts,1 Qiuyang Zhang,1 Sen Liu,1 Dongxia Ge,1 Rutie Yin,2 Mingrong Xi,2 Zongbing You1 1Departments of Structural and Cellular Biology and Orthopaedic Surgery, Tulane Cancer Center and Louisiana Cancer Research Consortium, Tulane Center for Stem Cell Research and Regenerative Medicine, and Tulane Center for Aging, Tulane University Health Sciences Center, New Orleans, LA, USA; 2Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, People’s Republic of China Abstract: Glycine is a nonessential amino acid that is reversibly converted from serine intracellularly by serine hydroxymethyltransferase. Glyphosate and its degradation product, aminomethylphosphonic acid (AMPA, are analogs to glycine, thus they may inhibit serine hydroxymethyltransferase to decrease intracellular glycine synthesis. In this study, we found that glyphosate and AMPA inhibited cell growth in eight human cancer cell lines but not in two immortalized human normal prostatic epithelial cell lines. AMPA arrested C4-2B and PC-3 cancer cells in the G1/G0 phase and inhibited entry into the S phase of the cell cycle. AMPA also promoted apoptosis in C4-2B and PC-3 cancer cell lines. AMPA upregulated p53 and p21 protein levels as well as procaspase 9 protein levels in C4-2B cells, whereas it downregulated cyclin D3 protein levels. AMPA also activated caspase 3 and induced cleavage of poly (adenosine diphosphate [ADP]-ribose polymerase. This study provides the first evidence that glyphosate and AMPA can inhibit proliferation and promote apoptosis of cancer cells but not normal cells, suggesting that they have potentials to be developed into a new anticancer therapy. Keywords: serine hydroxymethyltransferase, prostate cancer, apoptosis

  12. Up-regulation of insulin-like growth factor-binding protein 3 by 5-fluorouracil (5-FU) leads to the potent anti-proliferative effect of androgen deprivation therapy combined with 5-FU in human prostate cancer cell lines.

    Science.gov (United States)

    Kawabata, Rumi; Oie, Shinji; Takahashi, Masayuki; Kanayama, Hiroomi; Oka, Toshinori; Itoh, Kohji

    2011-06-01

    In this study, we investigated the synergistic mechanism of anti-androgen and 5-fluorouracil (5-FU) combination therapy against castration-resistant prostate cancer (CRPC). Four prostate cancer cell lines, LNCaP, 22Rv1, DU145 and PC3, were examined for their growth dependency on androgens and the insulin-like growth factor 1 (IGF1). We assessed the expression changes of certain growth factor receptors and regulating proteins when treated with 5-FU, and found that 5-FU increased the expression of the IGF-binding protein 3 (IGFBP3). Furthermore, 5-FU inhibited the phosphorylation of Akt and p70 S6K, while the knockdown of IGFBP3 reduced the levels of poly (ADP-ribose) polymerase cleaved by 5-FU in PC3 cells. Therefore, the up-regulation of IGFBP3 by 5-FU not only inhibits cell growth by reducing the IGF1 signal but also induces apoptosis in PC3 cells. The synergistic effect of bicalutamide and 5-FU on 22Rv1 cells was reduced by IGFBP3 gene silencing using small-interfering RNA. These results suggest that the up-regulation of IGFBP3 induced by 5-FU plays an important role in the potent anti-tumor effect of 5-FU combined with anti-androgens on CRPC. Androgen-deprivation therapy combined with 5-FU could therefore be an appropriate therapy for CRPC patients.

  13. Cell Adhesion Regulates Expression of the Androgen Receptor and Coregulators in Different Prostate Cancer Cells

    Directory of Open Access Journals (Sweden)

    Sheng Li

    2007-02-01

    Full Text Available Prostate cancer cells adhere to a tumor basement membrane, while secretoryepithelial cells reside in a suprabasal cell compartment. Since tumor cells are derived fromsuprabasal epithelial cells, they experience de-novo substratum adhesion in the context ofoncogenesis. We therefore analyzed whether cell-matrix adhesion could affect the proteinexpression and activity of the AR. In this study, AR protein expression declined uponsuspension of BPH-1-AR cells, but not in PC-3-AR cells shown by Western blot. In a timecourse study, BPH-1 cell lost AR expression within 6 hours, and the synthetic androgen,R1881 reduced the loss of AR expression. We further explored the mechanism of AR loss insuspended BPH-1 cells. BPH-1-AR cells underwent apoptosis (anoikis when suspended for2 - 5 hours. Suspension did not induce significant apoptosis or decreasing of AR expressionin PC-3 cells. Inhibition of apoptosis in suspended BPH-1-AR cells, either by expression ofBcl-2 or Bcl-xl or by treatment with Z-VAD, a caspase inhibitor, prevented loss of ARprotein. In contrast, the calpain protease inhibitor , ALLN, accelerated the loss of AR proteinexpression. Additionally, cell-matrix adhesion changed the expression of coregulators of ARin the mRNA level of prostate cancer cells. Our results demonstrate that AR proteinexpression was reduced through activation of cell death pathways, and thus indirectly through cell suspension in BPH-AR cells. The activity of AR can also be regulated by adhesion in PC-3-AR and LNCaP cells through affecting the coregulators level.

  14. RLIP76-dependent suppression of PI3K/AKT/Bcl-2 pathway by miR-101 induces apoptosis in prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jing; Song, Qi; Cai, Yi; Wang, Peng; Wang, Min; Zhang, Dong, E-mail: zhangd1117@yahoo.com

    2015-08-07

    MicroRNA-101 (miR-101) participates in carcinogenesis and tumor progression in various cancers. However, its biological functions in prostate cancer are still unclear. Here, we demonstrate that miR-101 represents a critical role in regulating cell apoptosis in prostate cancer cells. We first demonstrated that miR-101 treatment promoted apoptosis in DU145 and PC3 cells by using flow cytometric analysis and transmission electron microscopy (TEM). To verify the mechanisms, we identified a novel miR-101 target, Ral binding protein 1 (RLIP76). We found miR-101 transfection significantly suppresses RLIP76 expression, which can transactivate phosphorylation of PI3K-Akt signaling, and resulted in an amplification of Bcl2-induced apoptosis. Furthermore, we demonstrated that RLIP76 overexpression could reverse the anti-tumor effects of miR-101 in DU145 and PC3 cells by using flow cytometry assay and MTT assay. Taken together, our results revealed that the effect of miR-101 on prostate cancer cell apoptosis was due to RLIP76 regulation of the PI3K/Akt/Bcl-2 signaling pathway. - Highlights: • miR-101 inhibited prostate cancer cell proliferation and enhanced apoptosis. • miR-101 directly targeted and regulated RLIP76 expression. • miR-101 suppressed PI3K/Akt/Bcl-2 signaling pathway by targeting RLIP76.

  15. Magnolol causes alterations in the cell cycle in androgen insensitive human prostate cancer cells in vitro by affecting expression of key cell cycle regulatory proteins.

    Science.gov (United States)

    McKeown, Brendan T; McDougall, Luke; Catalli, Adriana; Hurta, Robert A R

    2014-01-01

    Prostate cancer, one of the most common cancers in the Western world, affects many men worldwide. This study investigated the effects of magnolol, a compound found in the roots and bark of the magnolia tree Magnolia officinalis, on the behavior of 2 androgen insensitive human prostate cancer cell lines, DU145 and PC3, in vitro. Magnolol, in a 24-h exposure at 40 and 80 μM, was found to be cytotoxic to cells. Magnolol also affected cell cycle progression of DU145 and PC3 cells, resulting in alterations to the cell cycle and subsequently decreasing the proportion of cells entering the G2/M-phase of the cell cycle. Magnolol inhibited the expression of cell cycle regulatory proteins including cyclins A, B1, D1, and E, as well as CDK2 and CDK4. Protein expression levels of pRBp107 decreased and pRBp130 protein expression levels increased in response to magnolol exposure, whereas p16(INK4a), p21, and p27 protein expression levels were apparently unchanged post 24-h exposure. Magnolol exposure at 6 h did increase p27 protein expression levels. This study has demonstrated that magnolol can alter the behavior of androgen insensitive human prostate cancer cells in vitro and suggests that magnolol may have potential as a novel anti-prostate cancer agent.

  16. Copper modulates zinc metalloproteinase-dependent ectodomain shedding of key signaling and adhesion proteins and promotes the invasion of prostate cancer epithelial cells.

    Science.gov (United States)

    Parr-Sturgess, Catherine A; Tinker, Claire L; Hart, Claire A; Brown, Michael D; Clarke, Noel W; Parkin, Edward T

    2012-10-01

    A disintegrin and metalloproteinases (ADAMs) and matrix metalloproteinases (MMPs) are zinc metalloproteinases (ZMPs) that catalyze the "ectodomain shedding" of a range of cell surface proteins including signaling and adhesion molecules. These "sheddases" are associated with the invasion and metastasis of a range of cancers. Increased serum and tumor tissue levels of copper are also observed in several cancers, although little is known about how the metal might promote disease progression at the molecular level. In the current study, we investigated whether copper might regulate the ectodomain shedding of two key cell surface proteins implicated in the invasion and metastasis of prostate cancer, the Notch ligand Jagged1 and the adhesion molecule E-cadherin, and whether the metal was able to influence the invasion of the prostate cancer epithelial cell line PC3. Physiological copper concentrations stimulated the ZMP-mediated proteolysis of Jagged1 and E-cadherin in cell culture models, whereas other divalent metals had no effect. Copper-mediated Jagged1 proteolysis was also observed following the pretreatment of cells with cycloheximide and in a cell-free membrane system, indicating a posttranslational mechanism of sheddase activation. Finally, the concentrations of copper that stimulated ZMP-mediated protein shedding also enhanced PC3 invasion; an effect that could be negated using a sheddase inhibitor or copper chelators. Collectively, these data implicate copper as an important factor in promoting prostate cancer cell invasion and indicate that the selective posttranslational activation of ZMP-mediated protein shedding might play a role in this process.

  17. Expression of PPAR-γ and effect of its ligand in prostate cancer tissues%前列腺癌组织PPAR-γ及其配体表达和作用机制的研究

    Institute of Scientific and Technical Information of China (English)

    祝海; 翁博文; 徐珞; 于小玲; 侯四川; 孙小庆; 朱磊一; 綦海燕

    2012-01-01

    OHIECTTVE; To investigate the protein expression of PPAR-y in prostate cancer and the inhibitory effect of its ligand TGZ on the growth of human prostate cancer cell. METHODS; Expression of PPAR-y was detected in adult prostate,hyperplastic and cancerous tissues by immunohistochemistry. PC-3 cells treated by various concentration of TGZ were assessed. The expression of PPAR-y was detected by immunohistochemistry,antiproliferation was obtained by MTT assay and the analysis of apoptosis was detected by flow cytometer. RESULTS; Expression of PPAR-y in prostate rancer tissues was significantly higher than that in hyperplastic prostates and adult prostates. Expression of PPAR-y was closely related to cell differentiation and TNM stages of prostate cancer. Irnmunohislochemistry showed thai PPAR-y was expressed in PC-3 cell line and the expression of PPAR-y showed an urr regulation trend in dose-dependenl manner when TGZ was used in different concentrations to exert their anti-proliferative activity. Mil assay demonstrated that TGZ had a potent inhibitory effect on the growth of PC-3 cells with a dose-dependent and time-dependent manner. Flow cytometer showed that TGZ induced apoptosis in dose-dependent manner. CONCLUSIONS; PPAR-y is closely associated with clinieopathological characteristics of prostate cancer. The growth inhibitory and apoptosis effect of TGZ is mediated through PPAR-y signaling pathway in prostate cancer cells in vitro .suggesting that PPAR-y might be a novel therapeutic target for prostate cancer.%目的:研究人前列腺癌组织及前列腺癌细胞中PPAR-γ的表达及其配体曲格列酮对前列腺癌细胞生长的影响,探讨曲格列酮抑制前列腺癌的机制.方法:免疫组化法检测成人前列腺组织、前列腺增生组织和前列腺癌组织PPAR-γ蛋白表达.不同浓度的曲格列酮处理人前列腺癌PC-3细胞,采用MTT法观察细胞增殖抑制作用;Annexin V/PI法流式细胞仪检测细胞凋亡;免疫组

  18. α-Solanine Inhibits Invasion of Human Prostate Cancer Cell by Suppressing Epithelial-Mesenchymal Transition and MMPs Expression

    Directory of Open Access Journals (Sweden)

    Kun-Hung Shen

    2014-08-01

    Full Text Available α-Solanine, a naturally occurring steroidal glycoalkaloid found in nightshade (Solanum nigrum Linn., was found to inhibit proliferation and induce apoptosis of tumor cells. However, the mechanism involved in suppression of cancer cell metastasis by α-solanine remains unclear. This study investigates the suppression mechanism of α-solanine on motility of the human prostate cancer cell PC-3. Results show that α-solanine reduces the viability of PC-3 cells. When treated with non-toxic doses of α-solanine, cell invasion is markedly suppressed by α-solanine. α-Solanine also significantly elevates epithelial marker E-cadherin expression, while it concomitantly decreases mesenchymal marker vimentin expression, suggesting it suppresses epithelial-mesenchymal transition (EMT. α-Solanine reduces the mRNA level of matrix metalloproteinase-2 (MMP-2, MMP-9 and extracellular inducer of matrix metalloproteinase (EMMPRIN, but increases the expression of reversion-inducing cysteine-rich protein with kazal motifs (RECK, and tissue inhibitor of metalloproteinase-1 (TIMP-1 and TIMP-2. Immunoblotting assays indicate α-solanine is effective in suppressing the phosphorylation of phosphatidylinositide-3 kinase (PI3K, Akt and ERK. Moreover, α-solanine downregulates oncogenic microRNA-21 (miR-21 and upregulates tumor suppressor miR-138 expression. Taken together, the results suggest that inhibition of PC-3 cell invasion by α-solanine may be, at least in part, through blocking EMT and MMPs expression. α-Solanine also reduces ERK and PI3K/Akt signaling pathways and regulates expression of miR-21 and miR-138. These findings suggest an attractive therapeutic potential of α-solanine for suppressing invasion of prostate cancer cell.

  19. α-Solanine inhibits invasion of human prostate cancer cell by suppressing epithelial-mesenchymal transition and MMPs expression.

    Science.gov (United States)

    Shen, Kun-Hung; Liao, Alex Chien-Hwa; Hung, Jui-Hsiang; Lee, Wei-Jiunn; Hu, Kai-Chieh; Lin, Pin-Tsen; Liao, Ruei-Fang; Chen, Pin-Shern

    2014-08-11

    α-Solanine, a naturally occurring steroidal glycoalkaloid found in nightshade (Solanum nigrum Linn.), was found to inhibit proliferation and induce apoptosis of tumor cells. However, the mechanism involved in suppression of cancer cell metastasis by α-solanine remains unclear. This study investigates the suppression mechanism of α-solanine on motility of the human prostate cancer cell PC-3. Results show that α-solanine reduces the viability of PC-3 cells. When treated with non-toxic doses of α-solanine, cell invasion is markedly suppressed by α-solanine. α-Solanine also significantly elevates epithelial marker E-cadherin expression, while it concomitantly decreases mesenchymal marker vimentin expression, suggesting it suppresses epithelial-mesenchymal transition (EMT). α-Solanine reduces the mRNA level of matrix metalloproteinase-2 (MMP-2), MMP-9 and extracellular inducer of matrix metalloproteinase (EMMPRIN), but increases the expression of reversion-inducing cysteine-rich protein with kazal motifs (RECK), and tissue inhibitor of metalloproteinase-1 (TIMP-1) and TIMP-2. Immunoblotting assays indicate α-solanine is effective in suppressing the phosphorylation of phosphatidylinositide-3 kinase (PI3K), Akt and ERK. Moreover, α-solanine downregulates oncogenic microRNA-21 (miR-21) and upregulates tumor suppressor miR-138 expression. Taken together, the results suggest that inhibition of PC-3 cell invasion by α-solanine may be, at least in part, through blocking EMT and MMPs expression. α-Solanine also reduces ERK and PI3K/Akt signaling pathways and regulates expression of miR-21 and miR-138. These findings suggest an attractive therapeutic potential of α-solanine for suppressing invasion of prostate cancer cell.

  20. L-lactate metabolism can occur in normal and cancer prostate cells via the novel mitochondrial L-lactate dehydrogenase.

    Science.gov (United States)

    De Bari, Lidia; Chieppa, Gabriella; Marra, Ersilia; Passarella, Salvatore

    2010-12-01

    Both normal (PTN1A) and cancer (PC3) prostate cells produce high levels of L-lactate because of a low energy supply via the citric cycle and oxidative phosphorylation. Since some mammalian mitochondria possess a mitochondrial L-lactate dehydrogenase (mLDH), we investigated whether prostate cells can take up L-lactate and metabolize it in the mitochondria. We report here that externally added L-lactate can enter both normal and cancer cells and mitochondria, as shown by both the oxygen consumption and by the increase in fluorescence of NAD(P)H which occur as a result of L-lactate addition. In both cell types L-lactate enters mitochondria in a carrier-mediated manner, as shown by the inhibition of swelling measurements due to the non-penetrant thiol reagent mersalyl. An L-lactate dehydrogenase exists in mitochondria of both cell types located in the inner compartment, as shown by kinetic investigation and by immunological analysis. The mLDHs proved to differ from the cytosolic enzymes (which themselves differ from one another) as functionally investigated with respect to kinetic features and pH profile. Normal and cancer cells were found to differ from one another with respect to mLDH protein level and activity, being the enzyme more highly expressed and of higher activity in PC3 cells. Moreover, the kinetic features and pH profiles of the PC3 mLDH also differ from those of the PNT1A enzyme, this suggesting the occurrence of separate isoenzymes.

  1. SU-E-T-668: Radiosensitizing Effect of Bosutinib On Prostate and Colon Cancers: A Pilot in Vitro Study

    Energy Technology Data Exchange (ETDEWEB)

    Wang, B; Cvetkovic, D; Chen, L; Ma, C [Fox Chase Cancer Center, Philadelphia, PA (United States); Wang, C [Fox Chase Cancer Center, Philadelphia, PA (United States); West China Hospital, Sichuan University, Chengdu, Sichuan (China)

    2015-06-15

    Purpose: Recently it has been reported that Bosutinib, a clinical kinase inhibitor, can enhance the tumor cell chemosensitivity by overriding DNA damage checkpoints. However, to the best of our knowledge, there is no report on its effect on cell radiosensitivity in the literature. The objective of the present study is to determine whether Bosutinib has the potential to be used as a radiosensitizer for various cancer cell lines. Methods: In this study, we tested 4 cell lines derived from human prostate (LNCaP, PC-3, DU-145) and colon (HT-29) cancers. The cells were seeded into 12-well plates 24 hours prior to the radiation treatments. For each cell line, we designed 4 study groups, namely, the control, Bosutinib, radiotherapy, and radiotherapy+Bosutinib groups. We used 6 MV photon beams from a Siemens Artiste accelerator to deliver 2 Gy dose in one fraction to the cells in the radiotherapy and radiotherapy+Bosutinib groups. Immediately after irradiation, the cells in the radiotherapy+Bosutinib group were treated with Bosutinib (1µM) for 3 hours. The cell survival was evaluated through clonogenic assays. Results: The cell survival rates of the LNCaP, PC-3, DU-145, and HT-29 cells were found to be 21%, 92%, 76%, and 93% for the radiotherapy group; 21%, 69%, 67%, and 81% for the radiotherapy+Bosutinib group; and 103%, 107%, 86%, and 102% for the Bosutinib group, respectively. Although synergetic cell killing was not seen for the LNCaP and DU-145 cell lines in this study, the cell survival data from the clonogenic assay indicated that Bosutinib could enhance the sensitivity of PC-3 and HT-29 cells to radiation treatment. Conclusion: Our preliminary results demonstrated the possibility of Bosutinib as a radiosensitizer for certain prostate and colon cancers, which are resistant to radiotherapy. Further studies are warranted to quantify the radiosensitizing effect of Bosutinib.

  2. Sarcosine induces increase in HER2/neu expression in androgen-dependent prostate cancer cells

    DEFF Research Database (Denmark)

    Dahl, Malin; Bouchelouche, Pierre; Kramer-Marek, Gabriela

    2011-01-01

    epithelial cells. The aim of this work was to investigate the effect of sarcosine on HER2/neu expression in prostate cancer cell lines LNCaP (androgen dependent), PC-3 and DU145 (both androgen independent). Relative amounts of HER2/neu and androgen receptor (AR) transcripts were determined using RT......Increasing evidence suggests that Human epidermal growth factor receptor 2 (HER2/neu) is involved in progression of prostate cancer. Recently, sarcosine was reported to be highly increased during prostate cancer progression, and exogenous sarcosine induces an invasive phenotype in benign prostate......-qPCR. Total expression of HER2/neu was confirmed by Western blot (WB). HER2/neu protein on the surface of living LNCaP cells was visualized by confocal microscopy using a HER2/neu-specific fluorescent probe. Exposure of LNCaP cells to 50 µM sarcosine for 24 h resulted in a 58% increase of the HER2/neu m...

  3. Sarcosine induces increase in HER2/neu expression in androgen-dependent prostate cancer cells

    DEFF Research Database (Denmark)

    Dahl, Malin; Bouchelouche, Pierre; Kramer-Marek, Gabriela

    2011-01-01

    epithelial cells. The aim of this work was to investigate the effect of sarcosine on HER2/neu expression in prostate cancer cell lines LNCaP (androgen dependent), PC-3 and DU145 (both androgen independent). Relative amounts of HER2/neu and androgen receptor (AR) transcripts were determined using RT......Increasing evidence suggests that Human epidermal growth factor receptor 2 (HER2/neu) is involved in progression of prostate cancer. Recently, sarcosine was reported to be highly increased during prostate cancer progression, and exogenous sarcosine induces an invasive phenotype in benign prostate......-qPCR. Total expression of HER2/neu was confirmed by Western blot (WB). HER2/neu protein on the surface of living LNCaP cells was visualized by confocal microscopy using a HER2/neu-specific fluorescent probe. Exposure of LNCaP cells to 50 μM sarcosine for 24 h resulted in a 58% increase of the HER2/neu m...

  4. A good molecular target for prostate cancer chemotherapy

    Institute of Scientific and Technical Information of China (English)

    Sidney R Grimes

    2011-01-01

    @@ An exciting new basic medical research study shows that inhibition of the activity of the kinesin spindle protein Eg5 effectively blocks cell division and induces cell death in prostate cancer cells.1 The potent anticancer drug S-(methoxytrityl)-L-cysteine(S(MeO)TLC)spe-cifically blocks activity of Eg5 in prostate cancer cells, arrests cell division, induces cell death during mitosis and inhibits prostate cancer cells in a mouse model of prostate cancer.

  5. Extracellular pH Modulates Neuroendocrine Prostate Cancer Cell Metabolism and Susceptibility to the Mitochondrial Inhibitor Niclosamide.

    Directory of Open Access Journals (Sweden)

    Joseph E Ippolito

    Full Text Available Neuroendocrine prostate cancer is a lethal variant of prostate cancer that is associated with castrate-resistant growth, metastasis, and mortality. The tumor environment of neuroendocrine prostate cancer is heterogeneous and characterized by hypoxia, necrosis, and numerous mitoses. Although acidic extracellular pH has been implicated in aggressive cancer features including metastasis and therapeutic resistance, its role in neuroendocrine prostate cancer physiology and metabolism has not yet been explored. We used the well-characterized PNEC cell line as a model to establish the effects of extracellular pH (pH 6.5, 7.4, and 8.5 on neuroendocrine prostate cancer cell metabolism. We discovered that alkalinization of extracellular pH converted cellular metabolism to a nutrient consumption-dependent state that was susceptible to glucose deprivation, glutamine deprivation, and 2-deoxyglucose (2-DG mediated inhibition of glycolysis. Conversely, acidic pH shifted cellular metabolism toward an oxidative phosphorylation (OXPHOS-dependent state that was susceptible to OXPHOS inhibition. Based upon this mechanistic knowledge of pH-dependent metabolism, we identified that the FDA-approved anti-helminthic niclosamide depolarized mitochondrial potential and depleted ATP levels in PNEC cells whose effects were enhanced in acidic pH. To further establish relevance of these findings, we tested the effects of extracellular pH on susceptibility to nutrient deprivation and OXPHOS inhibition in a cohort of castrate-resistant prostate cancer cell lines C4-2B, PC-3, and PC-3M. We discovered similar pH-dependent toxicity profiles among all cell lines with these treatments. These findings underscore a potential importance to acidic extracellular pH in the modulation of cell metabolism in tumors and development of an emerging paradigm that exploits the synergy of environment and therapeutic efficacy in cancer.

  6. Suppression of human prostate cancer cell growth by alpha1-adrenoceptor antagonists doxazosin and terazosin via induction of apoptosis.

    Science.gov (United States)

    Kyprianou, N; Benning, C M

    2000-08-15

    Recent evidence from our laboratory has demonstrated that alpha1-adrenoceptor antagonists doxazosin and terazosin induced apoptosis in prostate epithelial and smooth muscle cells in patients with benign prostatic hypertrophy (BPH; J. Urol., 159: 1810-1815, 1998; J. Urol., 161: 2002-2007, 1999). In this study, we investigated the biological action of three alpha1-adrenoceptor antagonists, doxazosin, terazosin, and tamsulosin, against prostate cancer cell growth. The antigrowth effect of the three alpha1-adrenoceptor antagonists was examined in two human prostate cancer cell lines, PC-3 and DU-145, and a prostate smooth muscle cell primary culture, SMC-1, on the basis of: (a) cell viability assay; (b) rate of DNA synthesis; and (c) induction of apoptosis. Our results indicate that treatment of prostate cancer cells with doxazosin or terazosin results in a significant loss of cell viability, via induction of apoptosis in a dose-dependent manner, whereas tamsulosin had no effect on prostate cell growth. Neither doxazosin nor terazosin exerted a significant effect on the rate of cell proliferation in prostate cancer cells. Exposure to phenoxybenzamine, an irreversible inhibitor of alpha1-adrenoceptors, does not abrogate the apoptotic effect of doxazosin or terazosin against human prostate cancer or smooth muscle cells. This suggests that the apoptotic activity of doxazosin and terazosin against prostate cells is independent of their capacity to antagonize alpha1-adrenoceptors. Furthermore, an in vivo efficacy trial demonstrated that doxazosin administration (at tolerated pharmacologically relevant doses) in SCID mice bearing PC-3 prostate cancer xenografts resulted in a significant inhibition of tumor growth. These findings demonstrate the ability of doxazosin and terazosin (but not tamsulosin) to suppress prostate cancer cell growth in vitro and in vivo by inducing apoptosis without affecting cell proliferation. This evidence provides the rationale for targeting both

  7. Regulation of GLUT transporters by flavonoids in androgen-sensitive and -insensitive prostate cancer cells.

    Science.gov (United States)

    Gonzalez-Menendez, Pedro; Hevia, David; Rodriguez-Garcia, Aida; Mayo, Juan C; Sainz, Rosa M

    2014-09-01

    Cancer cells show different metabolic requirements from normal cells. In prostate cancer, particularly, glycolytic metabolism differs in androgen-responsive and nonresponsive cells. In addition, some natural compounds with antiproliferative activities are able to modify glucose entry into cells by either modulating glucose transporter (GLUT) expression or by altering glucose binding. The aim of this work was to study the regulation of some GLUTs (GLUT1 and GLUT4) in both androgen-sensitive (LNCaP) and -insensitive (PC-3) prostate cancer cells by 4 structurally different flavonoids (ie, genistein, phloretin, apigenin, and daidzein). Glucose uptake was measured using nonradiolabeled 2-deoxyglucose. The evaluation of protein levels as well as subcellular distribution of GLUT1/4 were analyzed by Western blot and immunocytochemistry, respectively. Androgen-insensitive LNCaP-R and androgen-sensitive PC-3-AR cells were used to study the effect of androgen signaling. Additionally, a docking simulation was employed to compare interactions between flavonoids and XylE, a bacterial homolog of GLUT1 to -4. Results show for the first time the presence of functionally relevant GLUT4 in prostate cancer cells. Furthermore, differences in GLUT1 and GLUT4 levels and glucose uptake were found, without differences on subcellular distribution, after incubation with flavonoids. Docking simulation showed that all compounds interact with the same location of transporters. More importantly, differences between androgen-sensitive and -insensitive prostate cancer cells were found in both GLUT protein levels and glucose uptake. Thus, phenotypic characteristics of prostate cancer cells are responsible for the different effects of these flavonoids in glucose uptake and in GLUT expression rather than their structural differences, with the most effective in reducing cell growth being the highest in modifying glucose uptake and GLUT levels.

  8. Hypermethylation and aberrant expression of secreted fizzled-related protein genes in pancreatic cancer

    Institute of Scientific and Technical Information of China (English)

    Xian-Min Bu; Cheng-Hai Zhao; Ning Zhang; Feng Gao; Shuai Lin; Xian-Wei Dai

    2008-01-01

    AIM:To determine the methylation status and aberrant expression of some secreted frizzled-related protein (SFRP) genes in pancreatic cancer and explore their role in pancreatic carcinogenesis. METHODS:Methylation status and expression of SFRP genes were detected by methylation-specific PCR (MSPCR) and reverse-transcription PCR (RT-PCR) respectively. RESULTS:The frequencies of methylation for SFRP genes 1,2,4,5 were 70%, 48.3%,60% and 76.7% in pancreatic cancer samples, and 21.7%, 20%,10% and 36.7% in matched cancer adjacent normal tissue samples,respectively (χ2=28.23,P<0.0001 for SFRP gene 1; χ2=10.71,P=0.001 for SFRP gene 2;χ2=32.97,P<0.0001 for SFRP gene 4;χ2=19.55,P<0.0001 for SFRP gene 5). Expression loss of SFRP genes 1,2,4 and 5 was found in 65%,40%,55% and 71.7% of 60 pancreatic cancer samples, and 25%,15%,18.3% and 31.7% of matched cancer adjacent normal tissue samples,respectively (χ2=19.39,P<0.0001 for SFRP gene 1;χ2=9.40,P=0.002 for SFRP gene 2;χ2=17.37,P<0.0001 for SFRP gene 4;χ2=19.22,P<0.0001 for SFRP gene 5).SFRP gene 1 was methylated but not expressed in PC-3 and PANC-1,SFRP gene 2 was methylated but not expressed in PANC-1 and CFPAC-1,SFRP gene 4 was methylated but not expressed in PC-3,and SFRP gene 5 was methylated but not expressed in CFPAC-1. CONCLUSION:Hypermethylation and aberrant expression of SFRP genes are common in pancreatic cancer,which may be involved in pancreatic carcinogenesis.

  9. GSK3β and β-Catenin Modulate Radiation Cytotoxicity in Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Richard L. Watson

    2010-05-01

    Full Text Available BACKGROUND: Knowledge of factors and mechanisms contributing to the inherent radioresistance of pancreatic cancer may improve cancer treatment. Irradiation inhibits glycogen synthase kinase 3β (GSK3β by phosphorylation at serine 9. In turn, release of cytosolic membrane β-catenin with subsequent nuclear translocation promotes survival. Both GSK3β and β-catenin have been implicated in cancer cell proliferation and resistance to death. METHODS: We investigated pancreatic cancer cell survival after radiation in vitro and in vivo, with a particular focus on the role of the function of the GSK3β/β-catenin axis. RESULTS: Lithium chloride, RNAi-medicated silencing of GSK3β, or the expression of a kinase dead mutant GSK3β resulted in radioresistance of Panc1 and BxPC3 pancreatic cancer cells. Conversely, ectopic expression of a constitutively active form of GSK3β resulted in radiosensitization of Panc1 cells. GSK3β silencing increased radiation-induced β-catenin target gene expression asmeasured by studies of AXIN2 and LEF1 transcript levels. Western blot analysis of total and phosphorylated levels of GSK3β and β-catenin showed that GSK3β inhibition resulted in stabilization of β-catenin. Xenografts of both BxPC3 and Panc1 with targeted silencing of GSK3β exhibited radioresistance in vivo. Silencing of β-catenin resulted in radiosensitization, whereas a nondegradable β-catenin construct induced radioresistance. CONCLUSIONS: These data support the hypothesis that GSK3β modulates the cellular response to radiation in a β-catenin-dependent mechanism. Further understanding of this pathway may enhance the development of clinical trials combining drugs inhibiting β-catenin activation with radiation and chemotherapy in locally advanced pancreatic cancer.

  10. Tumor-associated Endo180 requires stromal-derived LOX to promote metastatic prostate cancer cell migration on human ECM surfaces.

    Science.gov (United States)

    Caley, Matthew P; King, Helen; Shah, Neel; Wang, Kai; Rodriguez-Teja, Mercedes; Gronau, Julian H; Waxman, Jonathan; Sturge, Justin

    2016-02-01

    The diverse composition and structure of extracellular matrix (ECM) interfaces encountered by tumor cells at secondary tissue sites can influence metastatic progression. Extensive in vitro and in vivo data has confirmed that metastasizing tumor cells can adopt different migratory modes in response to their microenvironment. Here we present a model that uses human stromal cell-derived matrices to demonstrate that plasticity in tumor cell movement is controlled by the tumor-associated collagen receptor Endo180 (CD280, CLEC13E, KIAA0709, MRC2, TEM9, uPARAP) and the crosslinking of collagen fibers by stromal-derived lysyl oxidase (LOX). Human osteoblast-derived and fibroblast-derived ECM supported a rounded 'amoeboid-like' mode of cell migration and enhanced Endo180 expression in three prostate cancer cell lines (PC3, VCaP, DU145). Genetic silencing of Endo180 reverted PC3 cells from their rounded mode of migration towards a bipolar 'mesenchymal-like' mode of migration and blocked their translocation on human fibroblast-derived and osteoblast-derived matrices. The concomitant decrease in PC3 cell migration and increase in Endo180 expression induced by stromal LOX inhibition indicates that the Endo180-dependent rounded mode of prostate cancer cell migration requires ECM crosslinking. In conclusion, this study introduces a realistic in vitro model for the study of metastatic prostate cancer cell plasticity and pinpoints the cooperation between tumor-associated Endo180 and the stiff microenvironment imposed by stromal-derived LOX as a potential target for limiting metastatic progression in prostate cancer.

  11. 白三烯B4在塞来昔布介导的抗癌效应中的作用%Role of LTB4 in celecoxib-mediated anti-cancer effect

    Institute of Scientific and Technical Information of China (English)

    管蕾; 高鹏; 郑杰

    2011-01-01

    Objective To investigate the role of leukotriene B4 (LTB4) in celecoxib (a cyclooxygenase-2 inhibitor)-mediated anti-cancer effect. Methods The effects of celecoxib, LTB4 and nordihydroguaiaretic acid(NDGA) on the viability of human colon cancer HT-29 cells and human prostate cancer PC-3 cells as well as LTB4 addition on celecoxib-mediated anticancer effect were determined by MTT assay. Effects of celecoxib on the production of prostaglandin E2 (PGE2) and LTB4 in the both cancer cell lines were detected by ELISA. Results After treatment with celecoxib, the cell survival and expression of LTB4 were decreased in the both cell lines(P<0. 05 or P<0. 01), and only the expression of PGE2 was down-regulated in HT-29 cells ( P< 0. 01 ). Moreover, the inhibitory effect of celecoxib on HT-29 cell survival was antagonized by incubation with LTB4 (P< 0. 01) ,and HT-29 cell survival was significantly inhibited by NDGA ( P< 0. 01 ), which were not obviously changed in PC-3 cells. Conclusion Anti-cancer effect of celecoxib is cyclooxygenase-2independent in HT-29 and PC-3 cells, whereas only in HT-29 cells, celecoxib plays a role in anti-cancer via down-regulating LTB4 production.%目的 研究白三烯B4(LTB4)在环氧合酶2(COX-2)抑制剂塞来昔布介导的抗癌效应中的作用.方法 MTT法检测塞来昔布、LTB4和去甲二氢愈创木酸(NDGA)对人结肠癌HT-29细胞和人前列腺癌PC-3细胞生存的影响以及LTB4对塞来昔布抗癌效应的影响.ELISA法检测塞来昔布对癌细胞中前列腺素E2(PGE2)和LTB4表达的影响.结果 塞来昔布抑制HT-29和PC-3细胞的生存及LTB4表达(P<0.05或P<0.01),但仅下调HT-29细胞的PGE2表达(P<0.01).LTB4能拮抗塞来昔布对HT-29细胞生长的抑制作用(P<0.01),NDGA明显抑制HT-29细胞的生存(P<0.01),而对PC-3细胞则没有这些作用.结论 塞来昔布对HT-29和PC-3细胞的抑制效应是COX-2非依赖性的,且只有在HT-29细胞中,塞来昔布的抗癌

  12. Enrichment of prostate cancer stem-like cells from human prostate cancer cell lines by culture in serum-free medium and chemoradiotherapy.

    Science.gov (United States)

    Wang, Lei; Huang, Xing; Zheng, Xinmin; Wang, Xinghuan; Li, Shiwen; Zhang, Lin; Yang, Zhonghua; Xia, Zhiping

    2013-01-01

    The discovery of rare subpopulations of cancer stem cells (CSCs) has created a new focus in cancer research. As CSCs demonstrate resistance to chemoradiation therapy relative to other cancer cells, this allows the enrichment of CSC populations by killing apoptosis-susceptible cancer cells. In this study, three commonly used human prostate cancer (PCa) cell lines (DU145, PC-3 and LNCaP) were examined for their expression of the putative stem cell markers CD133 and CD44 via flow cytometric analysis. Under normal culture conditions, CD133(+)/CD44(+) cells were only present in the DU145 cell line, and comprised only a minor percentage (0.1% ± 0.01%) of the total population. However, the proportion of these CD133(+)/CD44(+) prostate CSCs could be increased in these cell lines via culture in serum-free medium (SFM), or through chemotherapy or radiotherapy. Indeed, after culture in SFM, the proportion of CD133(+)/CD44(+) cells in DU145 and PC-3 had increased to 10.3% and 3.0%, respectively. Moreover, the proportion had increased to 9.8% enriched by chemotherapy and 3.5% by radiotherapy in DU145. Colony-formation tests, cell invasion assays, and tumor xenografts in BALB/c nude mice were used to evaluate the stem cell properties of CD133(+)/CD44(+) PCa cells that were isolated via fluorescence-activated cell sorting (FACS). CD133(+)/CD44(+) cells had an enhanced colony-formation capability and invasive ability in vitro, and displayed greater tumorigenic properties in vivo. These results demonstrate the presence of CD133(+)/CD44(+) prostate CSCs in established PCa cell lines and that populations of these cells can be enriched by culture in SFM or chemoradiotherapy. Finding novel therapies to override chemoradiation resistance in the prostate CSCs is the key to improve long-term results in PCa management.

  13. Highly efficient site-specific transgenesis in cancer cell lines

    Directory of Open Access Journals (Sweden)

    Michael Iacovos P

    2012-12-01

    Full Text Available Abstract Background Transgenes introduced into cancer cell lines serve as powerful tools for identification of genes involved in cancer. However, the random nature of genomic integration site of a transgene highly influences the fidelity, reliability and level of its expression. In order to alleviate this bottleneck, we characterized the potential utility of a novel PhiC31 integrase-mediated site-specific insertion system (PhiC31-IMSI for introduction of transgenes into a pre-inserted docking site in the genome of cancer cells. Methods According to this system, a “docking-site” was first randomly inserted into human cancer cell lines and clones with a single copy were selected. Subsequently, an “incoming” vector containing the gene of interest was specifically inserted in the docking-site using PhiC31. Results Using the Pc-3 and SKOV-3 cancer cell lines, we showed that transgene insertion is reproducible and reliable. Furthermore, the selection system ensured that all surviving stable transgenic lines harbored the correct integration site. We demonstrated that the expression levels of reporter genes, such as green fluorescent protein and luciferase, from the same locus were comparable among sister, isogenic clones. Using in vivo xenograft studies, we showed that the genetically altered cancer cell lines retain the properties of the parental line. To achieve temporal control of transgene expression, we coupled our insertion strategy with the doxycycline inducible system and demonstrated tight regulation of the expression of the antiangiogenic molecule sFlt-1-Fc in Pc-3 cells. Furthermore, we introduced the luciferase gene into the insertion cassette allowing for possible live imaging of cancer cells in transplantation assays. We also generated a series of Gateway cloning-compatible intermediate cassettes ready for high-throughput cloning of transgenes and demonstrated that PhiC31-IMSI can be achieved in a high throughput 96-well plate

  14. Non-invasive imaging of GFP-luciferase labeled orthotopic prostate cancer model in nude mice using bioluminescence system%可发光可连续检测原位前列腺癌模型的建立

    Institute of Scientific and Technical Information of China (English)

    宋超; 廖文彪; 杨嗣星; 王玲珑

    2012-01-01

    Objective To develop preclinical orthotopic model in nude mice for sensitive prostate cancer cell tracking during tumor progression using bioluminescent technique.Methods The human prostate cancer cell line PC3 cells were transduced with green fluorescent protein (GFP) -luciferase fusion gene by a lentivirus vector which can express high activity of luciferase and GFP.Stably transduced GFP-LucPC3 monoclonal cells were got with Blasticidin selection.Labeled or normal tumor cells ( 5 × 106 ) were implanted into the flanks of 6 animals to build up an intradermal xenograft prostate cancer model,which provided prostate cancer graft to build the orthotopic prostate tumor model,and to confirm the tumorigenesis ablitiy of GFP-Luc-PC3.Tumor tissue from the either PC3 or GFP-Luc-PC3 line tumors was harvested and cut into pieces of about 2 mm3.These were grafted into the anterior prostates of 24 male animals which were randomly divided into two groups.The tumor growth was monitored by both WIS 200 and ex vivo tumor weight analysis 2,4,6 and 8 weeks after tumor tissue grafting.The bioluminescent signal values as well as tumor weight was measured,and their relationship was analyzed accordingly.Results A GFP-LucPC3 cell line was established which had the same growth pattern as well as tumorigenesis ability as normal PC3 cells.There was a positive linear correlation between bioluminescent signal and cell number with the coefficient factor r =0.997.In orthotopic prostate cancer model,all 12 mice in GFP-Luc-PC3 group developed prostate tumor,from which the bioluminescent signal could be recorded.In normal PC3 group,there was no significant bioluminescent signal.The bioluminescent values (photons/second) in vivo were (69.13298±2.07900) E+05,(82.66208±1.231 00) E+05,(91.94257±2.321 00) E+05 and ( 130.643 40 ± 3.247 00) E + 05 respectively 2,4,6 and 8 weeks after tumor tissue implantation.The tumor weight ex vivo was ( 9.67 ± 1.07 ),( 12.47 ± 2.12),( 16.45 ± 2.57 ),and ( 21

  15. Relationship of STAT3 activity with chemosensitivity to cisplatin in prostate cancer cell lines%前列腺癌细胞系中STAT3活性与顺铂敏感性之间的关系

    Institute of Scientific and Technical Information of China (English)

    韩慧; 李春燕; 刘希; 储黎; 许青

    2012-01-01

    目的 研究前列腺癌细胞系中STAT3活性与顺铂敏感性之间的关系.方法 通过免疫细胞化学和蛋白质印迹法(Western blotting)检测3种常见前列腺癌细胞系LNCaP、PC3、DU145基础STAT3的活性;选取激素非依赖性细胞系PC3、DU145,分别加入2 ng/ml、20 ng/ml、200 ng/ml、2μg/ml、20 μg/ml顺铂检测细胞增殖抑制情况,蛋白质印迹法检测低浓度顺铂作用DU145后STAT3的活性变化.结果 激素非依赖性前列腺癌细胞系PC3、DU145中STAT3的活性较激素依赖性细胞系LNCaP中的高,且STAT3活性较低的PC3细胞较DU145细胞对顺铂更敏感,低浓度顺铂长时间作用DU145后可引起STAT3活性上调.结论 STAT3可能参与调节前列腺癌细胞对顺铂的敏感性.%Objective To investigate the relationship between STAT3 activity and sensitivity to cisplatin in prostate cancer cell lines. Methods STAT3 activity was examined by immunocytochemistry and Western blotting analysis in three prostate cancer cell lines: LNCaP, PC3 and DU145. Androgen-independent cell lines PC3 and DU145 were selected to examine the inhibitory effect of various concentrations of cisplatin (2 ng/ml, 20 ng/ml, 200 ng/ml, 2 pg/ml and 20 fxg/ml). STAT3 activity of DU145 cell line was re-examined by Western blotting analysis after treatment with low concentration of cisplatin. Results The STAT3 activity of androgen-independent cell lines PC3 and DU145 was higher than that of androgen-dependent cell line LNCaP. The sensitivity of DU145 cells to cisplatin was lower than that of PC3 cells with lower STAT3 activity. Treatment with low concentration of cisplatin for a long period caused STAT3 activation in DU145. Conclusion Our results suggest that STAT3 may play a role in regulating the sensitivity of prostate cancer cells to cisplatin.

  16. Emodin induces apoptosis in human prostate cancer cell LNCaP

    Institute of Scientific and Technical Information of China (English)

    Chun-Xiao Yu; Xiao-Qian Zhang; Lu-Dong Kang; Peng-Ju Zhang; Wei-Wen Chen; Wen-Wen Liu; Qing-Wei Liu; Jian-Ye Zhang

    2008-01-01

    Aim: To elucidate effects and mechanisms of emodin in prostate cancer cells. Methods: Viability of emodin-treated LNCaP cells and PC-3 cells was measured by MTT assay. Following emodin treatments, DNA fragmentation was assayed by agarose gel electrophoresis. Apoptosis rate and the expression of Fas and FasL were assayed by flow cytometric analysis. The mRNA expression levels of androgen receptor (AR), prostate-specific antigen (PSA), p53, p21, Bcl-2, Bax, caspase-3, -8, -9 and Fas were detected by RT-PCR, and the protein expression levels of AR, p53 and p21 were detected by Western blot analysis. Results: In contrast to PC-3, emodin caused a marked increase in apoptosis and a decrease in cell proliferation in LNCaP cells. The expression of AR and PSA was decreased and the expression of p53 and p21 was increased as the emodin concentrations were increased. In the same time, emodin induced apoptosis of LNCaP cells through the upregulation of caspase-3 and -9, as well as the increase of Bax/Bcl-2 ratio. However, it did not involve modulation of Fas or caspase-8 protein expression. Conclusion: In prostate cancer cell line, LNCaP, emodin inhibites the proliferation by AR and p53-p21 pathways, and induces apoptosis via the mitochondrial pathway. (Asian J Androl 2008 Jul; 10: 625-634)

  17. The Zinc-Schiff Base-Novicidin Complex as a Potential Prostate Cancer Therapy

    Science.gov (United States)

    Milosavljevic, Vedran; Haddad, Yazan; Merlos Rodrigo, Miguel Angel; Moulick, Amitava; Polanska, Hana; Hynek, David; Heger, Zbynek; Kopel, Pavel; Adam, Vojtech

    2016-01-01

    Prostate cancer cells control energy metabolism by chelating intracellular zinc. Thus, zinc delivery has been a popular therapeutic approach for prostate cancer. Here, we propose the use of the membrane-penetrating peptide Novicidin connected to zinc-Schiff base as a carrier vehicle for the delivery of zinc to prostate cells. Mass spectrometry, electrochemistry and spectrophotometry confirmed the formation/stability of this complex and provided insight regarding the availability of zinc for complex interactions. This delivery system showed minor toxicity in normal PNT1A cells and high potency towards PC3 tumor cells. The complex preferentially penetrated PC3 tumor cells in contrast to confinement to the membranes of PNT1A. Furthermore, zinc uptake was confirmed in both cell lines. Molecular analysis was used to confirm the activation of zinc stress (e.g., ZnT-1) and apoptosis (e.g., CASP-1). Our results strongly suggest that the zinc-Schiff base-Novicidin complex has great potential as a novel anticancer drug. PMID:27727290

  18. Tocopherols and saponins derived from Argania spinosa exert, an antiproliferative effect on human prostate cancer.

    Science.gov (United States)

    Drissi, A; Bennani, H; Giton, F; Charrouf, Z; Fiet, J; Adlouni, A

    2006-10-01

    The aim of our study is to evaluate the antiproliferative effect of tocopherols obtained from alimentary virgin argan oil extracted from the endemic argan tree of Morocco and of saponins extracted from argan press cake on three human prostatic cell lines (DU145, LNCaP, and PC3). The results were compared to 2-methoxyestradiol as antiproliferative drug candidates. Cytotoxicity and antiproliferative effects were investigated after cells' treatment with tocopherols and saponins compared to 2-Methoxyoestradiol as the positive control. Tocopherols and saponins extracted from argan tree and 2-methoxyestradiol exhibit a dose-response cytotoxic effect and an antiproliferative action on the tested cell lines. The best antiproliferative effect of tocopherols is obtained with DU145 and LNCaP cell lines (28 microg/ml and 32 microg/ml, respectively, as GI50). The saponins fraction displayed the best antiproliferative effect on the PC3 cell line with 18 microg/ml as GI50. Our results confirm the antiproliferative effect of 2-methoxyestradiol and show for the first time the antiproliferative effect of tocopherols and saponins extracted from the argan tree on hormone-dependent and hormone-independent prostate cancer cell lines. These data suggest that argan oil is of potential interest in developing new strategies for prostate cancer prevention.

  19. Troxerutin, a natural flavonoid binds to DNA minor groove and enhances cancer cell killing in response to radiation.

    Science.gov (United States)

    Panat, Niranjan A; Singh, Beena G; Maurya, Dharmendra K; Sandur, Santosh K; Ghaskadbi, Saroj S

    2016-05-05

    Troxerutin, a flavonoid best known for its radioprotective and antioxidant properties is of considerable interest of study due to its broad pharmacological activities. The present study on troxerutin highlights its abilities to bind DNA and enhance cancer cell killing in response to radiation. Troxerutin showed strong binding with calf thymus DNA in vitro. Troxerutin-DNA interaction was confirmed by CD spectropolarimetry. The mode of binding of troxerutin to DNA was assessed by competing troxerutin with EtBr or DAPI, known DNA intercalator and a minor groove binder, respectively. DAPI fluorescence was drastically reduced with linear increase in troxerutin concentration suggesting possible binding of troxerutin to DNA minor groove. Further, computational studies of docking of troxerutin molecule on mammalian DNA also indicated possible troxerutin-DNA interaction at minor groove of DNA. Troxerutin was found to mainly localize in the nucleus of prostate cancer cells. It induced cytotoxicity in radioresistant (DU145) and sensitive (PC3) prostate cancer cells. When troxerutin pre-treated DU145 and PC3 cells were exposed to γ-radiation, cytotoxicity as estimated by MTT assay, was found to be further enhanced. In addition, the % subG1 population detected by propidium iodide staining also showed similar response when combined with radiation. A similar trend was observed in terms of ROS generation and DNA damage in DU145 cells when troxerutin and radiation were combined. DNA binding at minor groove by troxerutin may have contributed to strand breaks leading to increased radiation induced cell death.

  20. Chemoresistance in prostate cancer cells is regulated by miRNAs and Hedgehog pathway.

    Directory of Open Access Journals (Sweden)

    Saurabh Singh

    Full Text Available Many prostate cancers relapse due to the generation of chemoresistance rendering first-line treatment drugs like paclitaxel (PTX ineffective. The present study aims to determine the role of miRNAs and Hedgehog (Hh pathway in chemoresistant prostate cancer and to evaluate the combination therapy using Hh inhibitor cyclopamine (CYA. Studies were conducted on PTX resistant DU145-TXR and PC3-TXR cell lines and clinical prostate tissues. Drug sensitivity and apoptosis assays showed significantly improved cytotoxicity with combination of PTX and CYA. To distinguish the presence of cancer stem cell like side populations (SP, Hoechst 33342 flow cytometry method was used. PTX resistant DU145 and PC3 cells, as well as human prostate cancer tissue possess a distinct SP fraction. Nearly 75% of the SP cells are in the G0/G1 phase compared to 62% for non-SP cells and have higher expression of stem cell markers as well. SP cell fraction was increased following PTX monotherapy and treatment with CYA or CYA plus PTX effectively reduced their numbers suggesting the effectiveness of combination therapy. SP fraction cells were allowed to differentiate and reanalyzed by Hoechst staining and gene expression analysis. Post differentiation, SP cells constitute 15.8% of total viable cells which decreases to 0.6% on treatment with CYA. The expression levels of P-gp efflux protein were also significantly decreased on treatment with PTX and CYA combination. MicroRNA profiling of DU145-TXR and PC3-TXR cells and prostate cancer tissue from the patients showed decreased expression of tumor suppressor miRNAs such as miR34a and miR200c. Treatment with PTX and CYA combination restored the expression of miR200c and 34a, confirming their role in modulating chemoresistance. We have shown that supplementing mitotic stabilizer drugs such as PTX with Hh-inhibitor CYA can reverse PTX chemoresistance and eliminate SP fraction in androgen independent, metastatic prostate cancer cell

  1. Androgen suppresses the proliferation of androgen receptor-positive castration-resistant prostate cancer cells via inhibition of Cdk2, CyclinA, and Skp2.

    Directory of Open Access Journals (Sweden)

    John M Kokontis

    Full Text Available The majority of prostate cancer (PCa patient receiving androgen ablation therapy eventually develop castration-resistant prostate cancer (CRPC. We previously reported that androgen treatment suppresses Skp2 and c-Myc through androgen receptor (AR and induced G1 cell cycle arrest in androgen-independent LNCaP 104-R2 cells, a late stage CRPC cell line model. However, the mechanism of androgenic regulation of Skp2 in CRPC cells was not fully understood. In this study, we investigated the androgenic regulation of Skp2 in two AR-positive CRPC cell line models, the LNCaP 104-R1 and PC-3AR Cells. The former one is an early stage androgen-independent LNCaP cells, while the later one is PC-3 cells re-expressing either wild type AR or mutant LNCaP AR. Proliferation of LNCaP 104-R1 and PC-3AR cells is not dependent on but is suppressed by androgen. We observed in this study that androgen treatment reduced protein expression of Cdk2, Cdk7, Cyclin A, cyclin H, Skp2, c-Myc, and E2F-1; lessened phosphorylation of Thr14, Tyr15, and Thr160 on Cdk2; decreased activity of Cdk2; induced protein level of p27(Kip1; and caused G1 cell cycle arrest in LNCaP 104-R1 cells and PC-3AR cells. Overexpression of Skp2 protein in LNCaP 104-R1 or PC-3AR cells partially blocked accumulation of p27(Kip1 and increased Cdk2 activity under androgen treatment, which partially blocked the androgenic suppressive effects on proliferation and cell cycle. Analyzing on-line gene array data of 214 normal and PCa samples indicated that gene expression of Skp2, Cdk2, and cyclin A positively correlates to each other, while Cdk7 negatively correlates to these genes. These observations suggested that androgen suppresses the proliferation of CRPC cells partially through inhibition of Cyclin A, Cdk2, and Skp2.

  2. Androgen suppresses the proliferation of androgen receptor-positive castration-resistant prostate cancer cells via inhibition of Cdk2, CyclinA, and Skp2.

    Science.gov (United States)

    Kokontis, John M; Lin, Hui-Ping; Jiang, Shih Sheng; Lin, Ching-Yu; Fukuchi, Junichi; Hiipakka, Richard A; Chung, Chi-Jung; Chan, Tzu-Min; Liao, Shutsung; Chang, Chung-Ho; Chuu, Chih-Pin

    2014-01-01

    The majority of prostate cancer (PCa) patient receiving androgen ablation therapy eventually develop castration-resistant prostate cancer (CRPC). We previously reported that androgen treatment suppresses Skp2 and c-Myc through androgen receptor (AR) and induced G1 cell cycle arrest in androgen-independent LNCaP 104-R2 cells, a late stage CRPC cell line model. However, the mechanism of androgenic regulation of Skp2 in CRPC cells was not fully understood. In this study, we investigated the androgenic regulation of Skp2 in two AR-positive CRPC cell line models, the LNCaP 104-R1 and PC-3AR Cells. The former one is an early stage androgen-independent LNCaP cells, while the later one is PC-3 cells re-expressing either wild type AR or mutant LNCaP AR. Proliferation of LNCaP 104-R1 and PC-3AR cells is not dependent on but is suppressed by androgen. We observed in this study that androgen treatment reduced protein expression of Cdk2, Cdk7, Cyclin A, cyclin H, Skp2, c-Myc, and E2F-1; lessened phosphorylation of Thr14, Tyr15, and Thr160 on Cdk2; decreased activity of Cdk2; induced protein level of p27(Kip1); and caused G1 cell cycle arrest in LNCaP 104-R1 cells and PC-3AR cells. Overexpression of Skp2 protein in LNCaP 104-R1 or PC-3AR cells partially blocked accumulation of p27(Kip1) and increased Cdk2 activity under androgen treatment, which partially blocked the androgenic suppressive effects on proliferation and cell cycle. Analyzing on-line gene array data of 214 normal and PCa samples indicated that gene expression of Skp2, Cdk2, and cyclin A positively correlates to each other, while Cdk7 negatively correlates to these genes. These observations suggested that androgen suppresses the proliferation of CRPC cells partially through inhibition of Cyclin A, Cdk2, and Skp2.

  3. Activation of the hedgehog pathway in advanced prostate cancer

    Directory of Open Access Journals (Sweden)

    McCormick Frank

    2004-10-01

    Full Text Available Abstract Background The hedgehog pathway plays a critical role in the development of prostate. However, the role of the hedgehog pathway in prostate cancer is not clear. Prostate cancer is the second most prevalent cause of cancer death in American men. Therefore, identification of novel therapeutic targets for prostate cancer has significant clinical implications. Results Here we report that activation of the hedgehog pathway occurs frequently in advanced human prostate cancer. We find that high levels of hedgehog target genes, PTCH1 and hedgehog-interacting protein (HIP, are detected in over 70% of prostate tumors with Gleason scores 8–10, but in only 22% of tumors with Gleason scores 3–6. Furthermore, four available metastatic tumors all have high expression of PTCH1 and HIP. To identify the mechanism of the hedgehog signaling activation, we examine expression of Su(Fu protein, a negative regulator of the hedgehog pathway. We find that Su(Fu protein is undetectable in 11 of 27 PTCH1 positive tumors, two of them contain somatic loss-of-function mutations of Su(Fu. Furthermore, expression of sonic hedgehog protein is detected in majority of PTCH1 positive tumors (24 out of 27. High levels of hedgehog target genes are also detected in four prostate cancer cell lines (TSU, DU145, LN-Cap and PC3. We demonstrate that inhibition of hedgehog signaling by smoothened antagonist, cyclopamine, suppresses hedgehog signaling, down-regulates cell invasiveness and induces apoptosis. In addition, cancer cells expressing Gli1 under the CMV promoter are resistant to cyclopamine-mediated apoptosis. All these data suggest a significant role of the hedgehog pathway for cellular functions of prostate cancer cells. Conclusion Our data indicate that activation of the hedgehog pathway, through loss of Su(Fu or overexpression of sonic hedgehog, may involve tumor progression and metastases of prostate cancer. Thus, targeted inhibition of hedgehog signaling may have

  4. Near infra-red photoimmunotherapy with anti-CEA-IR700 results in extensive tumor lysis and a significant decrease in tumor burden in orthotopic mouse models of pancreatic cancer.

    Directory of Open Access Journals (Sweden)

    Ali A Maawy

    Full Text Available Photoimmunotherapy (PIT of cancer utilizes tumor-specific monoclonal antibodies conjugated to a photosensitizer phthalocyanine dye IR700 which becomes cytotoxic upon irradiation with near infrared light. In this study, we aimed to evaluate the efficacy of PIT on human pancreatic cancer cells in vitro and in vivo in an orthotopic nude mouse model. The binding capacity of anti-CEA antibody to BxPC-3 human pancreatic cancer cells was determined by FACS analysis. An in vitro cytotoxicity assay was used to determine cell death following treatment with PIT. For in vivo determination of PIT efficacy, nude mice were orthotopically implanted with BxPC-3 pancreatic tumors expressing green fluorescent protein (GFP. After tumor engraftment, the mice were divided into two groups: (1 treatment with anti-CEA-IR700 + 690 nm laser and (2 treatment with 690 nm laser only. Anti-CEA-IR700 (100 μg was administered to group (1 via tail vein injection 24 hours prior to therapy. Tumors were then surgically exposed and treated with phototherapy at an intensity of 150 mW/cm2 for 30 minutes. Whole body imaging was done subsequently for 5 weeks using an OV-100 small animal imaging system. Anti-CEA-IR700 antibody bound to the BxPC3 cells to a high degree as shown by FACS analysis. Anti-CEA-IR700 caused extensive cancer cell killing after light activation compared to control cells in cytotoxicity assays. In the orthotopic models of pancreatic cancer, the anti-CEA-IR700 group had significantly smaller tumors than the control after 5 weeks (p<0.001. There was no significant difference in the body weights of mice in the anti-CEA-IR700 and control groups indicating that PIT was well tolerated by the mice.

  5. Naringenin modulates the metastasis of human prostate cancer cells by down regulating the matrix metalloproteinases -2/-9 via ROS/ERK1/2 pathways

    Directory of Open Access Journals (Sweden)

    Er-Jiang Lin

    2014-08-01

    Full Text Available Metastasis is a multifactorial condition that complicates cancer treatment options and widens the target of treatment. Matrix mettalopriteinases (MMPs of the extracellular matrix (ECM are involved in metastasis, thus they present as potential targets in halting cancer metastasis. The study was undertaken to investigate the influence of naringenin, a naturally occurring flavonoid on the metastasis of human prostate cancer cells (PC-3 and DU145. Naringenin was observed to be effective in reducing the viability and migratory percentage of PC-3 and DU145 cells. Naringenin significantly reduced the expression and activities of the chief MMPs (MMP-2 and MMP-9 as assessed by western blotting, real-time PCR and gelatin zymography analysis. The influence of naringenin on extracellular signal-regulated kinase (ERK -ERK1/2 was analysed by western blotting. The results indicated that naringenin was able to effectively inhibit ERK1/2. Naringenin exposure also significantly suppressed the levels of reactive oxygen species (ROS. Naringenin thus stands as an effective chemotherapeutic agent for prostate cancer treatment that could be further explored.

  6. Design, synthesis and validation of integrin {alpha}{sub 2}{beta}{sub 1}-targeted probe for microPET imaging of prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chiun-Wei; Li, Zibo; Cai, Hancheng; Chen, Kai; Shahinian, Tony; Conti, Peter S. [University of Southern California, Department of Radiology, Los Angeles, CA (United States)

    2011-07-15

    The ability of PET to aid in the diagnosis and management of recurrent and/or disseminated metastatic prostate cancer may be enhanced by the development of novel prognostic imaging probes. Accumulating experimental evidence indicates that overexpression of integrin {alpha}{sub 2}{beta}{sub 1} may correlate with progression in human prostate cancer. In this study, {sup 64}Cu-labeled integrin {alpha}{sub 2}{beta}{sub 1}-targeted PET probes were designed and evaluated for the imaging of prostate cancer. DGEA peptides conjugated with a bifunctional chelator (BFC) were developed to image integrin {alpha}{sub 2}{beta}{sub 1} expression with PET in a subcutaneous PC-3 xenograft model. The microPET images were reconstructed by a two-dimensional ordered subsets expectation maximum algorithm. The average radioactivity accumulation within a tumor or an organ was quantified from the multiple region of interest volumes. The PET tracer demonstrated prominent tumor uptake in the PC-3 xenograft (integrin {alpha}{sub 2}{beta}{sub 1}-positive). The receptor specificity was confirmed in a blocking experiment. Moreover, the low tracer uptake in a CWR-22 tumor model (negative control) further confirmed the receptor specificity. The sarcophagine-conjugated DGEA peptide allows noninvasive imaging of tumor-associated {alpha}{sub 2}{beta}{sub 1} expression, which may be a useful PET probe for evaluating the metastatic potential of prostate cancer. (orig.)

  7. Targeted Knockdown of the Kinetochore Protein D40/Knl-1 Inhibits Human Cancer in a p53 Status-Independent Manner.

    Science.gov (United States)

    Urata, Yuri N; Takeshita, Fumitaka; Tanaka, Hiroki; Ochiya, Takahiro; Takimoto, Masato

    2015-09-08

    The D40 gene encodes a kinetochore protein that plays an essential role in kinetochore formation during mitosis. Short inhibitory RNA against D40, D40 siRNA, has been shown to deplete the D40 protein in the human cancer cell line HeLa, which harbors wild-type p53, and this activity was followed by the significant inhibition of cell growth and induction of apoptotic cell death. The p53-null cancer cell line, PC-3M-luc, is also sensitive to the significant growth inhibition and cell death induced by D40 siRNA. The growth of PC-3M-luc tumors transplanted into nude mice was inhibited by the systemic administration of D40 siRNA and the atelocollagen complex. Furthermore, D40 siRNA significantly inhibited growth and induced apoptotic cell death in a cell line with a gain-of-function (GOF) mutation in p53, MDA-MB231-luc, and also inhibited the growth of tumors transplanted into mice when administered as a D40 siRNA/atelocollagen complex. These results indicated that D40 siRNA induced apoptotic cell death in human cancer cell lines, and inhibited their growth in vitro and in vivo regardless of p53 status. Therefore, D40 siRNA is a potential candidate anti-cancer reagent.

  8. FMN-coated fluorescent iron oxide nanoparticles for RCP-mediated targeting and labeling of metabolically active cancer and endothelial cells.

    Science.gov (United States)

    Jayapaul, Jabadurai; Hodenius, Michael; Arns, Susanne; Lederle, Wiltrud; Lammers, Twan; Comba, Peter; Kiessling, Fabian; Gaetjens, Jessica

    2011-09-01

    Riboflavin is an essential vitamin for cellular metabolism and is highly upregulated in metabolically active cells. Consequently, targeting the riboflavin carrier protein (RCP) may be a promising strategy for labeling cancer and activated endothelial cells. Therefore, Ultrasmall SuperParamagnetic Iron Oxide nanoparticles (USPIO) were adsorptively coated with the endogenous RCP ligand flavin mononucleotide (FMN), which renders them target-specific and fluorescent. The core diameter, surface morphology and surface coverage of the resulting FMN-coated USPIO (FLUSPIO) were evaluated using a variety of physico-chemical characterization techniques (TEM, DLS, MRI and fluorescence spectroscopy). The biocompatibility of FLUSPIO was confirmed using three different cell viability assays (Trypan blue staining, 7-AAD staining and TUNEL). In vitro evaluation of FLUSPIO using MRI and fluorescence microscopy demonstrated high labeling efficiency of cancer cells (PC-3, DU-145, LnCap) and activated endothelial cells (HUVEC). Competition experiments (using MRI and ICP-MS) with a 10- and 100-fold excess of free FMN confirmed RCP-specific uptake of the FLUSPIO by PC-3 cells and HUVEC. Hence, RCP-targeting via FMN may be an elegant way to render nanoparticles fluorescent and to increase the labeling efficacy of cancer and activated endothelial cells. This was shown for FLUSPIO, which due to their high T(2)-relaxivity, are favorably suited for MR cell tracking experiments and cancer detection in vivo.

  9. RGS16, a novel p53 and pRb cross-talk candidate inhibits migration and invasion of pancreatic cancer cells.

    Science.gov (United States)

    Carper, Miranda B; Denvir, James; Boskovic, Goran; Primerano, Donald A; Claudio, Pier Paolo

    2014-11-01

    Data collected since the discovery of p53 and pRb/RB1 suggests these tumor suppressors cooperate to inhibit tumor progression. Patients who have mutations in both p53 and RB1 genes have increased tumor reoccurrence and decreased survival compared to patients with only one tumor suppressor gene inactivated. It remains unclear how p53 and pRb cooperate toward inhibiting tumorigenesis. Using RNA expression profiling we identified 179 p53 and pRb cross-talk candidates in normal lung fibroblasts (WI38) cells exogenously coexpressing p53 and pRb. Regulator of G protein signaling 16 (RGS16) was among the p53 and pRb cross-talk candidates and has been implicated in inhibiting activation of several oncogenic pathways associated with proliferation, migration, and invasion of cancer cells. RGS16 has been found to be downregulated in pancreatic cancer patients with metastases compared to patients without metastasis. Expression of RGS16 mRNA was decreased in the pancreatic cancer cell lines tested compared to control. Expression of RGS16 inhibited migration of the BxPC-3 and AsPC-1 but not PANC-1 cells and inhibited invasion of BxPC-3 and AsPC-1 cells with no impact on cell viability. We have identified for the first time p53 and pRb cross-talk candidates and a role for RGS16 to inhibit pancreatic cancer migration and invasion.

  10. Efficient analysis of a small number of cancer cells at the single-cell level using an electroactive double-well array.

    Science.gov (United States)

    Kim, Soo Hyeon; Fujii, Teruo

    2016-07-01

    Analysis of the intracellular materials of a small number of cancer cells at the single-cell level is important to improve our understanding of cellular heterogeneity in rare cells. To analyze an extremely small number of cancer cells (less than hundreds of cells), an efficient system is required in order to analyze target cells with minimal sample loss. Here, we present a novel approach utilizing an advanced electroactive double-well array (EdWA) for on-chip analysis of a small number of cancer cells at the single-cell level with minimal loss of target cells. The EdWA consisted of cell-sized trap-wells for deterministic single-cell trapping using dielectrophoresis and high aspect ratio reaction-wells for confining the cell lysates extracted by lysing trapped single cells via electroporation. We demonstrated a highly efficient single-cell arraying (a cell capture efficiency of 96 ± 3%) by trapping diluted human prostate cancer cells (PC3 cells). On-chip single-cell analysis was performed by measuring the intracellular β-galactosidase (β-gal) activity after lysing the trapped single cells inside a tightly enclosed EdWA in the presence of a fluorogenic enzyme substrate. The PC3 cells showed large cell-to-cell variations in β-gal activity although they were cultured under the same conditions in a culture dish. This simple and effective system has great potential for high throughput single-cell analysis of rare cells.

  11. The chemomodulatory effects of glufosfamide on docetaxel cytotoxicity in prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Reem T. Attia

    2016-06-01

    Full Text Available Background. Glufosfamide (GLU is a glucose conjugate of ifosfamide in which isophosphoramide mustard is glycosidically linked to the β-D-glucose molecule. Based on GLU structure, it is considered a targeted chemotherapy with fewer side effects. The main objective of the current study is to assess the cytotoxic potential of GLU for the first time in prostate cancer (PC cells representing different stages of the tumor. Furthermore, this study examined the potential synergistic activity of GLU in combination with docetaxel (DOC. Methods. Two different cell lines were used, LNCaP and PC-3. Concentration-response curves were assessed. The tested groups per cell line were, control, GLU, DOC and combination. Treatment duration was 72 h. Cytotoxicity was assessed using sulforhodamine B (SRB assay and half maximal inhibitory concentration (IC50 was calculated. Synergy analyses were performed using Calcusyn®software. Subsequent mechanistic studies included β-glucosidase activity assay, glucose uptake and apoptosis studies, namely annexin V-FITC assay and the protein expression of mitochondrial pathway signals including Bcl-2, Bax, Caspase 9 and 3 were assessed. Data are presented as mean ± SD; comparisons were carried out using one way analysis of variance (ANOVA followed by Tukey-Kramer’s test for post hoc analysis. Results. GLU induced cytotoxicity in both cell lines in a concentration-dependent manner. The IC50 in PC-3 cells was significantly lower by 19% when compared to that of LNCaP cells. The IC50 of combining both drugs showed comparable effect to DOC in PC-3 but was tremendously lowered by 49% compared to the same group in LNCaP cell line. β-glucosidase activity was higher in LNCaP by about 67% compared to that determined in PC-3 cells while the glucose uptake in PC-3 cells was almost 2 folds that found in LNCaP cells. These results were directly correlated to the efficacy of GLU in each cell line. Treatment of PC cells with GLU as single

  12. Quercetin modulates Wnt signaling components in prostate cancer cell line by inhibiting cell viability, migration, and metastases.

    Science.gov (United States)

    Baruah, Meghna M; Khandwekar, Anand P; Sharma, Neeti

    2016-10-01

    Epithelial-mesenchymal transition (EMT) is a plastic transition in tumor progression during which cancer cells undergo dramatic changes acquiring highly invasive properties. Transforming growth factor-β (TGF-β) is an inducer of EMT in epithelial cells and is obligatory for acquiring invasive phenotype in carcinoma. TGF-β plays a vital role in metastasis and tumorigenesis in prostate cancer, and mutations in the components of Wnt signaling pathways are associated with various kinds of cancers including prostate cancer. The purpose of this study was to identify alterations in Wnt signaling pathway components involved during prostate cancer progression and to determine the effect of quercetin on TGF-β-induced EMT in prostate cancer (PC-3) cell line. The expression of epithelial and mesenchymal markers and the components of Wnt signaling pathway were evaluated by real-time polymerase chain reaction. It was observed that quercetin prevented TGF-β-induced expression of vimentin and N-cadherin and increased the expression of E-cadherin in PC-3 cells, thus preventing TGF-β-induced EMT. Furthermore, the relative expression of Twist, Snail, and Slug showed that quercetin significantly decreased TGF-β-induced expression of Twist, Snail, and Slug. In the present study, the expression of epithelial markers were found to be upregulated in naive state and downregulated in induced state whereas the mesenchymal markers were found to be downregulated in naive state and upregulated in induced state. Thus, our study concludes that quercetin may prevent prostate cancer metastasis by regulating the components of Wnt pathway.

  13. Relationship between single nucleotide polymorphisms in the deoxycytidine kinase gene and chemosensitivity of gemcitabine in six pancreatic cancer cell lines

    Institute of Scientific and Technical Information of China (English)

    SI Shuang; LIAO Quan; ZHAO Yu-pei; HU Ya; ZHANG Qiang; YOU Li-li

    2011-01-01

    Background Single nucleotide polymorphisms (SNPs) in the deoxycytidine kinase (dCK) gene are associated with chemosensitivity to nucleoside analogs. 2',2'-Difluoro 2'-deoxycytidine (gemcitabine) is a first-line nucleoside analog drug in the treatment of pancreatic cancer. However, the association between SNPs in the dCK gene and chemosensitivity to gemcitabine has not been fully established. Therefore, the present study aimed to investigate the relationship between SNPs in the dCKgene and chemosensitivity to gemcitabine in human pancreatic cancer cell lines.Methods Seven SNPs in the dCK gene were sequenced in six human pancreatic cancer cell lines. The chemosensitivity of these six cell lines to gemcitabine were evaluated in vitro with a Cell Counting Kit-8 (CCK-8) test.Inhibition rates were used to express the chemosensitivity of pancreatic cancer cell lines to gemcitabine.Results The genotype of the A9846G SNP in the dCKgene was determined in six human pancreatic cancer cell lines.The cell lines BxPC-3 and T3M4 carried the A9846G SNP genotype AG, whereas cell lines AsPC-1, Mia PaCa2, SW1990 and SU86.86 carried the GG genotype. Cell lines with the AG genotype (BxPC-3 and T3M4) were more sensitive to gemcitabine compared with cell lines with the GG genotype (AsPC-1, Mia PaCa2, SW1990 and SU86.86) and significantly different inhibition rates were observed between cell lines carrying the AG and GG genotypes (P <0.01).Conclusions Variants in the A9846G SNP of the dCK gene were associated with sensitivity to gemcitabine in pancreatic cancer cell lines. The dCK A9846G SNP may act as a genetic marker to predict chemotherapy efficacy of gemcitabine in pancreatic cancer.

  14. Down-regulation of Yes Associated Protein 1 expression reduces cell proliferation and clonogenicity of pancreatic cancer cells.

    Directory of Open Access Journals (Sweden)

    Caroline H Diep

    Full Text Available BACKGROUND: The Hippo pathway regulates organ size by inhibiting cell proliferation and promoting cell apoptosis upon its activation. The Yes Associated Protein 1 (YAP1 is a nuclear effector of the Hippo pathway that promotes cell growth as a transcription co-activator. In human cancer, the YAP1 gene was reported as amplified and over-expressed in several tumor types. METHODS: Immunohistochemical staining of YAP1 protein was used to assess the expression of YAP1 in pancreatic tumor tissues. siRNA oligonucleotides were used to knockdown the expression of YAP1 and their effects on pancreatic cancer cells were investigated using cell proliferation, apoptosis, and anchorage-independent growth assays. The Wilcoxon signed-rank, Pearson correlation coefficient, Kendall's Tau, Spearman's Rho, and an independent two-sample t (two-tailed test were used to determine the statistical significance of the data. RESULTS: Immunohistochemistry studies in pancreatic tumor tissues revealed YAP1 staining intensities were moderate to strong in the nucleus and cytoplasm of the tumor cells, whereas the adjacent normal epithelial showed negative to weak staining. In cultured cells, YAP1 expression and localization was modulated by cell density. YAP1 total protein expression increased in the nuclear fractions in BxPC-3 and PANC-1, while it declined in HPDE6 as cell density increased. Additionally, treatment of pancreatic cancer cell lines, BxPC-3 and PANC-1, with YAP1-targeting siRNA oligonucleotides significantly reduced their proliferation in vitro. Furthermore, treatment with YAP1 siRNA oligonucleotides diminished the anchorage-independent growth on soft agar of pancreatic cancer cells, suggesting a role of YAP1 in pancreatic cancer tumorigenesis. CONCLUSIONS: YAP1 is overexpressed in pancreatic cancer tissues and potentially plays an important role in the clonogenicity and growth of pancreatic cancer cells.

  15. 3,3′-Diindolylmethane, but not indole-3-carbinol, inhibits histone deacetylase activity in prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Beaver, Laura M., E-mail: beaverl@onid.orst.edu [Linus Pauling Institute, Oregon State University, 307 Linus Pauling Science Center, Corvallis, OR 97331 (United States); School of Biological and Population Health Sciences, Oregon State University, 103 Milam Hall, Corvallis, OR 97331 (United States); Yu, Tian-Wei, E-mail: david.yu@oregonstate.edu [Linus Pauling Institute, Oregon State University, 307 Linus Pauling Science Center, Corvallis, OR 97331 (United States); Sokolowski, Elizabeth I., E-mail: sokolowe@onid.orst.edu [School of Biological and Population Health Sciences, Oregon State University, 103 Milam Hall, Corvallis, OR 97331 (United States); Williams, David E., E-mail: david.williams@oregonstate.edu [Linus Pauling Institute, Oregon State University, 307 Linus Pauling Science Center, Corvallis, OR 97331 (United States); Department of Environmental and Molecular Toxicology, Oregon State University, 1007 Agriculture and Life Sciences Building, Corvallis, OR 97331 (United States); Dashwood, Roderick H., E-mail: rod.dashwood@oregonstate.edu [Linus Pauling Institute, Oregon State University, 307 Linus Pauling Science Center, Corvallis, OR 97331 (United States); Department of Environmental and Molecular Toxicology, Oregon State University, 1007 Agriculture and Life Sciences Building, Corvallis, OR 97331 (United States); Ho, Emily, E-mail: Emily.Ho@oregonstate.edu [Linus Pauling Institute, Oregon State University, 307 Linus Pauling Science Center, Corvallis, OR 97331 (United States); School of Biological and Population Health Sciences, Oregon State University, 103 Milam Hall, Corvallis, OR 97331 (United States)

    2012-09-15

    Increased consumption of cruciferous vegetables is associated with a reduced risk of developing prostate cancer. Indole-3-carbinol (I3C) and 3,3′-diindolylmethane (DIM) are phytochemicals derived from cruciferous vegetables that have shown promise in inhibiting prostate cancer in experimental models. Histone deacetylase (HDAC) inhibition is an emerging target for cancer prevention and therapy. We sought to examine the effects of I3C and DIM on HDACs in human prostate cancer cell lines: androgen insensitive PC-3 cells and androgen sensitive LNCaP cells. I3C modestly inhibited HDAC activity in LNCaP cells by 25% but no inhibition of HDAC activity was detected in PC-3 cells. In contrast, DIM significantly inhibited HDAC activity in both cell lines by as much as 66%. Decreases in HDAC activity correlated with increased expression of p21, a known target of HDAC inhibitors. DIM treatment caused a significant decrease in the expression of HDAC2 protein in both cancer cell lines but no significant change in the protein levels of HDAC1, HDAC3, HDAC4, HDAC6 or HDAC8 was detected. Taken together, these results show that inhibition of HDAC activity by DIM may contribute to the phytochemicals' anti-proliferative effects in the prostate. The ability of DIM to target aberrant epigenetic patterns, in addition to its effects on detoxification of carcinogens, may make it an effective chemopreventive agent by targeting multiple stages of prostate carcinogenesis. -- Highlights: ► DIM inhibits HDAC activity and decreases HDAC2 expression in prostate cancer cells. ► DIM is significantly more effective than I3C at inhibiting HDAC activity. ► I3C has no effect on HDAC protein expression. ► Inhibition of HDAC activity by DIM is associated with increased p21 expression. ► HDAC inhibition may be a novel epigenetic mechanism for cancer prevention with DIM.

  16. Crude Garlic Extract Inhibits Cell Proliferation and Induces Cell Cycle Arrest and Apoptosis of Cancer Cells In Vitro.

    Science.gov (United States)

    Bagul, Mukta; Kakumanu, Srikanth; Wilson, Thomas A

    2015-07-01

    Garlic and its lipid-based extracts have played an important medicinal role in humans for centuries that includes antimicrobial, hypoglycemic, and lipid-lowering properties. The present study was to investigate the effects of crude garlic extract (CGE) on the proliferation of human breast, prostate, hepatic, and colon cancer cell lines and mouse macrophageal cells, not previously studied. The human cancer cell lines, such as hepatic (Hep-G2), colon (Caco-2), prostate (PC-3), and breast (MCF-7), were propagated at 37°C; air/CO2 (95:5 v/v) using the ATCC-formulated RPMI-1640 Medium and 10% fetal bovine serum (FBS), while the mouse macrophage cell line (TIB-71) was propagated at 37°C; air/CO2 (95:5 v/v) using the ATCC-formulated DMEM and 10% FBS. All cells were plated at a density of ∼5000 cells/well. After overnight incubation, the cells were treated with 0.125, 0.25, 0.5, or 1 μg/mL of CGE an additional 72 h. Inhibition of cell proliferation of 80-90% was observed for Hep-G2, MCF-7, TIB-71, and PC-3 cells, but only 40-55% for the Caco-2 cells when treated with 0.25, 0.5, or 1 μg/mL. In a coculture study of Caco-2 and TIB-71 cells, inhibition of cell proliferation of 90% was observed for Caco-2 cells compared to the 40-55% when cultured separately. CGE also induced cell cycle arrest and had a fourfold increase in caspase activity (apoptosis) in PC-3 cells when treated at a dose of 0.5 or 1 μg/mL. This investigation of CGE clearly highlights the fact that the lipid bioactive compounds in CGE have the potential as promising anticancer agents.

  17. Distinct phenotypes of human prostate cancer cells associate with different adaptation to hypoxia and pro-inflammatory gene expression.

    Directory of Open Access Journals (Sweden)

    Linda Ravenna

    Full Text Available Hypoxia and inflammation are strictly interconnected both concurring to prostate cancer progression. Numerous reports highlight the role of tumor cells in the synthesis of pro-inflammatory molecules and show that hypoxia can modulate a number of these genes contributing substantially to the increase of cancer aggressiveness. However, little is known about the importance of the tumor phenotype in this process. The present study explores how different features, including differentiation and aggressiveness, of prostate tumor cell lines impact on the hypoxic remodeling of pro-inflammatory gene expression and malignancy. We performed our studies on three cell lines with increasing metastatic potential: the well differentiated androgen-dependent LNCaP and the less differentiated and androgen-independent DU145 and PC3. We analyzed the effect that hypoxic treatment has on modulating pro-inflammatory gene expression and evaluated the role HIF isoforms and NF-kB play in sustaining this process. DU145 and PC3 cells evidenced a higher normoxic expression and a more complete hypoxic induction of pro-inflammatory molecules compared to the well differentiated LNCaP cell line. The role of HIF1α and NF-kB, the master regulators of hypoxia and inflammation respectively, in sustaining the hypoxic pro-inflammatory phenotype was different according to cell type. NF-kB was observed to play a main role in DU145 and PC3 cells in which treatment with the NF-kB inhibitor parthenolide was able to counteract both the hypoxic pro-inflammatory shift and HIF1α activation but not in LNCaP cells. Our data highlight that tumor prostate cell phenotype contributes at a different degree and with different mechanisms to the hypoxic pro-inflammatory gene expression related to tumor progression.

  18. NKX3.1 contributes to S phase entry and regulates DNA damage response (DDR) in prostate cancer cell lines.

    Science.gov (United States)

    Erbaykent-Tepedelen, Burcu; Ozmen, Besra; Varisli, Lokman; Gonen-Korkmaz, Ceren; Debelec-Butuner, Bilge; Muhammed Syed, Hamid; Yilmazer-Cakmak, Ozgur; Korkmaz, Kemal Sami

    2011-10-14

    NKX3.1 is an androgen-regulated homeobox gene that encodes a tissue-restricted transcription factor, which plays an important role in the differentiation of the prostate epithelium. Thus, the role of NKX3.1 as a functional topoisomerase I activity enhancer in cell cycle regulation and the DNA damage response (DDR) was explored in prostate cancer cell lines. As an early response to DNA damage following CPT-11 treatment, we found that there was an increase in the γH2AX(S139) foci number and that total phosphorylation levels were reduced in PC-3 cells following ectopic NKX3.1 expression as well as in LNCaP cells following androgen administration. Furthermore, upon drug treatment, the increase in ATM(S1981) phosphorylation was reduced in the presence of NKX3.1 expression, whereas DNA-PKcs expression was increased. Additionally, phosphorylation of CHK2(T68) and NBS1(S343) was abrogated by ectopic NKX3.1 expression, compared with the increasing levels in control PC-3 cells in a time-course experiment. Finally, NKX3.1 expression maintained a high cyclin D1 expression level regardless of drug treatment, while total γH2AX(S139) phosphorylation remained depleted in PC-3, as well as in LNCaP, cells. Thus, we suggest that androgen regulated NKX3.1 maintains an active DDR at the intra S progression and contributes to the chemotherapeutic resistance of prostate cancer cells to DNA damaging compounds.

  19. Role of the Phospholipase A2 Receptor in Liposome Drug Delivery in Prostate Cancer Cells

    Science.gov (United States)

    2015-01-01

    The M-type phospholipase A2 receptor (PLA2R1) is a member of the C-type lectin superfamily and can internalize secreted phospholipase A2 (sPLA2) via endocytosis in non-cancer cells. sPLA2 itself was recently shown to be overexpressed in prostate tumors and to be a possible mediator of metastasis; however, little is known about the expression of PLA2R1 or its function in prostate cancers. Thus, we examined PLA2R1 expression in primary prostate cells (PCS-440-010) and human prostate cancer cells (LNCaP, DU-145, and PC-3), and we determined the effect of PLA2R1 knockdown on cytotoxicity induced by free or liposome-encapsulated chemotherapeutics. Immunoblot analysis demonstrated that the expression of PLA2R1 was higher in prostate cancer cells compared to that in primary prostate cells. Knockdown of PLA2R1 expression in PC-3 cells using shRNA increased cell proliferation and did not affect the toxicity of cisplatin, doxorubicin (Dox), and docetaxel. In contrast, PLA2R1 knockdown increased the in vitro toxicity of Dox encapsulated in sPLA2 responsive liposomes (SPRL) and correlated with increased Dox and SPRL uptake. Knockdown of PLA2R1 also increased the expression of Group IIA and X sPLA2. These data show the novel findings that PLA2R1 is expressed in prostate cancer cells, that PLA2R1 expression alters cell proliferation, and that PLA2R1 modulates the behavior of liposome-based nanoparticles. Furthermore, these studies suggest that PLA2R1 may represent a novel molecular target for controlling tumor growth or modulating delivery of lipid-based nanomedicines. PMID:25189995

  20. Preselection of A- and B- modified d-homo lactone and d-seco androstane derivatives as potent compounds with antiproliferative activity against breast and prostate cancer cells - QSAR approach and molecular docking analysis.

    Science.gov (United States)

    Kovačević, Strahinja Z; Podunavac-Kuzmanović, Sanja O; Jevrić, Lidija R; Vukić, Vladimir R; Savić, Marina P; Djurendić, Evgenija A

    2016-10-10

    The problem with trial-and-error approach in organic synthesis of targeted anticancer compounds can be successfully avoided by computational modeling of molecules, docking studies and chemometric tools. It has been proven that A- and B- modified d-homo lactone and d-seco androstane derivatives are compounds with significant antiproliferative activity against estrogen-independent breast adenocarcinoma (ER-, MDA-MB-231) and androgen-independent prostate cancer cells (AR-, PC-3). This paper presents the quantitative structure-activity relationship (QSAR) models based on artificial neural networks (ANNs) which are able to predict whether d-homo lactone and/or d-seco androstane-based compounds will express antiproliferative activity against breast cancer cells (MDA-MB-231) or not. Also, the present paper describes the molecular docking study of 3β-acetoxy-5α,6α-epoxy- (3) and 6α,7α-epoxy-1,4-dien-3-one (24) d-homo lactone androstane derivatives, as well as 4-en-3-one (15) d-seco androstane derivative, which are compounds with strong or moderate antiproliferative activity against prostate cancer cells (PC-3), and compares them with commercially available medicament for prostate cancer - abiraterone. The obtained promising results can be used as guidelines in further syntheses of novel d-homo lactone and d-seco androstane derivatives with antiproliferative activity against breast and prostate cancer cells.