WorldWideScience

Sample records for cancer nanotechnology research

  1. Cancer nanotechnology

    Directory of Open Access Journals (Sweden)

    Jagdale Swati

    2009-01-01

    Full Text Available Cancer nanotechnology is the latest trend in cancer therapy. It helps the pharmacist to formulate the product with maximum therapeutic value and minimum or negligible range side effects. Cancer is the disease in which the abnormal cells are quite similar to the normal cell with just minute functional or genetic change. Thus, it is very hard to target the abnormal cells by the conventional method of the drug delivery system. Nanotechnology is probably the only method that can be used for site-specific action without causing the side effects by killing the normal cells. This review article describes the possible way to exploit the nanotechnology to targeted drug therapy in cancer. The various methods used are: systemic delivery systems, passive targeting, active targeting, intracellular delivery, subcellular localization, and nanoparticle drugs. Different cancer detection techniques like carbon nanotubes, nanorods, and biosensors are also available. This review article gives an idea about the possible potential of nanotechnology in drug delivery, drug targeting, and the diagnosis of cancer.

  2. Highlights of recent developments and trends in cancer nanotechnology research--view from NCI Alliance for Nanotechnology in Cancer.

    Science.gov (United States)

    Hull, L C; Farrell, D; Grodzinski, P

    2014-01-01

    Although the incidence of cancer and cancer related deaths in the United States has decreased over the past two decades due to improvements in early detection and treatment, cancer still is responsible for a quarter of the deaths in this country. There is much room for improvement on the standard treatments currently available and the National Cancer Institute (NCI) has recognized the potential for nanotechnology and nanomaterials in this area. The NCI Alliance for Nanotechnology in Cancer was formed in 2004 to support multidisciplinary researchers in the application of nanotechnology to cancer diagnosis and treatment. The researchers in the Alliance have been productive in generating innovative solutions to some of the central issues of cancer treatment including how to detect tumors earlier, how to target cancer cells specifically, and how to improve the therapeutic index of existing chemotherapies and radiotherapy treatments. Highly creative ideas are being pursued where novelty in nanomaterial development enables new modalities of detection or therapy. This review highlights some of the innovative materials approaches being pursued by researchers funded by the NCI Alliance. Their discoveries to improve the functionality of nanoparticles for medical applications includes the generation of new platforms, improvements in the manufacturing of nanoparticles and determining the underlying reasons for the movement of nanoparticles in the blood.

  3. From nanotechnology to nanomedicine: applications to cancer research.

    Science.gov (United States)

    Seigneuric, R; Markey, L; Nuyten, D S A; Dubernet, C; Evelo, C T A; Finot, E; Garrido, C

    2010-10-01

    Scientific advances have significantly improved the practice of medicine by providing objective and quantitative means for exploring the human body and disease states. These innovative technologies have already profoundly improved disease detection, imaging, treatment and patient follow-up. Today's analytical limits are at the nanoscale level (one-billionth of a meter) enabling a detailed exploration at the level of DNA, RNA, proteins and metabolites which are in fact nano-objects. This translational review aims at integrating some recent advances from micro- and nano-technologies with high potential for improving daily oncology practice.

  4. Multifunctional Nanotechnology Research

    Science.gov (United States)

    2016-03-01

    resistive states being unsusceptible to trillions of nanosecond pulse readouts. In addition, a low positive temperature dependence (5.9e-4 1/C) results in...REPORT 3. DATES COVERED (From - To) JAN 2015 – JAN 2016 4. TITLE AND SUBTITLE MULTIFUNCTIONAL NANOTECHNOLOGY RESEARCH 5a. CONTRACT NUMBER IN- HOUSE ...is to provide a foundation for an affordable, ultra-dense, low -power computer system for processing spatio-temporal data on the fly. This includes

  5. Nanotechnology-based approaches in anticancer research.

    Science.gov (United States)

    Jabir, Nasimudeen R; Tabrez, Shams; Ashraf, Ghulam Md; Shakil, Shazi; Damanhouri, Ghazi A; Kamal, Mohammad A

    2012-01-01

    Cancer is a highly complex disease to understand, because it entails multiple cellular physiological systems. The most common cancer treatments are restricted to chemotherapy, radiation and surgery. Moreover, the early recognition and treatment of cancer remains a technological bottleneck. There is an urgent need to develop new and innovative technologies that could help to delineate tumor margins, identify residual tumor cells and micrometastases, and determine whether a tumor has been completely removed or not. Nanotechnology has witnessed significant progress in the past few decades, and its effect is widespread nowadays in every field. Nanoparticles can be modified in numerous ways to prolong circulation, enhance drug localization, increase drug efficacy, and potentially decrease chances of multidrug resistance by the use of nanotechnology. Recently, research in the field of cancer nanotechnology has made remarkable advances. The present review summarizes the application of various nanotechnology-based approaches towards the diagnostics and therapeutics of cancer.

  6. Emerging nanotechnologies for cancer immunotherapy.

    Science.gov (United States)

    Shukla, Sourabh; Steinmetz, Nicole F

    2016-05-01

    Founded on the growing insight into the complex cancer-immune system interactions, adjuvant immunotherapies are rapidly emerging and being adapted for the treatment of various human malignancies. Immune checkpoint inhibitors, for example, have already shown clinical success. Nevertheless, many approaches are not optimized, require frequent administration, are associated with systemic toxicities and only show modest efficacy as monotherapies. Nanotechnology can potentially enhance the efficacy of such immunotherapies by improving the delivery, retention and release of immunostimulatory agents and biologicals in targeted cell populations and tissues. This review presents the current status and emerging trends in such nanotechnology-based cancer immunotherapies including the role of nanoparticles as carriers of immunomodulators, nanoparticles-based cancer vaccines, and depots for sustained immunostimulation. Also highlighted are key translational challenges and opportunities in this rapidly growing field.

  7. Astronomy and Cancer Research: X-Rays and Nanotechnology from Black Holes to Cancer Therapy

    Science.gov (United States)

    Pradhan, Anil K.; Nahar, Sultana N.

    It seems highly unlikely that any connection is to be found between astronomy and medicine. But then it also appears to be obvious: X-rays. However, that is quite superficial because the nature of X-rays in the two disciplines is quite different. Nevertheless, we describe recent research on exactly that kind of link. Furthermore, the linkage lies in atomic physics, and via spectroscopy which is a vital tool in astronomy and may also be equally valuable in biomedical research. This review begins with the physics of black hole environments as viewed through X-ray spectroscopy. It is then shown that similar physics can be applied to spectroscopic imaging and therapeutics using heavy-element (high-Z) moieties designed to target cancerous tumors. X-ray irradiation of high-Z nanomaterials as radiosensitizing agents should be extremely efficient for therapy and diagnostics (theranostics). However, broadband radiation from conventional X-ray sources (such as CT scanners) results in vast and unnecessary radiation exposure. Monochromatic X-ray sources are expected to be considerably more efficient. We have developed a new and comprehensive methodology—Resonant Nano-Plasma Theranostics (RNPT)—that encompasses the use of monochromatic X-ray sources and high-Z nanoparticles. Ongoing research entails theoretical computations, numerical simulations, and in vitro and in vivo biomedical experiments. Stemming from basic theoretical studies of Kα resonant photoabsorption and fluorescence in all elements of the Periodic Table, we have established a comprehensive multi-disciplinary program involving researchers from physics, chemistry, astronomy, pathology, radiation oncology and radiology. Large-scale calculations necessary for theory and modeling are done at a variety of computational platforms at the Ohio Supercomputer Center. The final goal is the implementation of RNPT for clinical applications.

  8. Diagnosis of prostate cancer via nanotechnological approach.

    Science.gov (United States)

    Kang, Benedict J; Jeun, Minhong; Jang, Gun Hyuk; Song, Sang Hoon; Jeong, In Gab; Kim, Choung-Soo; Searson, Peter C; Lee, Kwan Hyi

    2015-01-01

    Prostate cancer is one of the leading causes of cancer-related deaths among the Caucasian adult males in Europe and the USA. Currently available diagnostic strategies for patients with prostate cancer are invasive and unpleasant and have poor accuracy. Many patients have been overly or underly treated resulting in a controversy regarding the reliability of current conventional diagnostic approaches. This review discusses the state-of-the-art research in the development of novel noninvasive prostate cancer diagnostics using nanotechnology coupled with suggested diagnostic strategies for their clinical implication.

  9. Nanotechnology for Early Cancer Detection

    Directory of Open Access Journals (Sweden)

    Joon Won Park

    2010-01-01

    Full Text Available Vast numbers of studies and developments in the nanotechnology area have been conducted and many nanomaterials have been utilized to detect cancers at early stages. Nanomaterials have unique physical, optical and electrical properties that have proven to be very useful in sensing. Quantum dots, gold nanoparticles, magnetic nanoparticles, carbon nanotubes, gold nanowires and many other materials have been developed over the years, alongside the discovery of a wide range of biomarkers to lower the detection limit of cancer biomarkers. Proteins, antibody fragments, DNA fragments, and RNA fragments are the base of cancer biomarkers and have been used as targets in cancer detection and monitoring. It is highly anticipated that in the near future, we might be able to detect cancer at a very early stage, providing a much higher chance of treatment.

  10. The Dartmouth Center for Cancer Nanotechnology Excellence: magnetic hyperthermia.

    Science.gov (United States)

    Baker, Ian; Fiering, Steve N; Griswold, Karl E; Hoopes, P Jack; Kekalo, Katerina; Ndong, Christian; Paulsen, Keith; Petryk, Alicea A; Pogue, Brian; Shubitidze, Fridon; Weaver, John

    2015-01-01

    The Dartmouth Center for Cancer Nanotechnology Excellence - one of nine funded by the National Cancer Institute as part of the Alliance for Nanotechnology in Cancer - focuses on the use of magnetic nanoparticles for cancer diagnostics and hyperthermia therapy. It brings together a diverse team of engineers and biomedical researchers with expertise in nanomaterials, molecular targeting, advanced biomedical imaging and translational in vivo studies. The goal of successfully treating cancer is being approached by developing nanoparticles, conjugating them with Fabs, hyperthermia treatment, immunotherapy and sensing treatment response.

  11. Nanotechnology in the management of cervical cancer.

    Science.gov (United States)

    Chen, Jiezhong; Gu, Wenyi; Yang, Lei; Chen, Chen; Shao, Renfu; Xu, Kewei; Xu, Zhi Ping

    2015-03-01

    Cervical cancer is a major disease with high mortality. All cervical cancers are caused by infection with human papillomaviruses (HPV). Although preventive vaccines for cervical cancer are successful, treatment of cervical cancer is far less satisfactory because of multidrug resistance and side effects. In this review, we summarize the recent application of nanotechnology to the diagnosis and treatment of cervical cancer as well as the development of HPV vaccines. Early detection of cervical cancer enables tumours to be efficiently removed by surgical procedures, leading to increased survival rate. The current method of detecting cervical cancer by Pap smear can only achieve 50% sensitivity, whereas nanotechnology has been used to detect HPVs with greatly improved sensitivity. In cervical cancer treatment, nanotechnology has been used for the delivery of anticancer drugs to increase treatment efficacy and decrease side effects. Nanodelivery of HPV preventive and therapeutic vaccines has also been investigated to increase vaccine efficacy. Overall, these developments suggest that nanoparticle-based vaccine may become the most effective way to prevent and treat cervical cancer, assisted or combined with some other nanotechnology-based therapy.

  12. Diagnosis of prostate cancer via nanotechnological approach

    Directory of Open Access Journals (Sweden)

    Kang BJ

    2015-10-01

    Full Text Available Benedict J Kang,1,2,* Minhong Jeun,1,2,* Gun Hyuk Jang,1,2 Sang Hoon Song,3 In Gab Jeong,3 Choung-Soo Kim,3 Peter C Searson,4 Kwan Hyi Lee1,2 1KIST Biomedical Research Institute, 2Department of Biomedical Engineering, Korea University of Science and Technology (UST, 3Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; 4Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA *These authors contributed equally to this work Abstract: Prostate cancer is one of the leading causes of cancer-related deaths among the Caucasian adult males in Europe and the USA. Currently available diagnostic strategies for patients with prostate cancer are invasive and unpleasant and have poor accuracy. Many patients have been overly or underly treated resulting in a controversy regarding the reliability of current conventional diagnostic approaches. This review discusses the state-of-the-art research in the development of novel noninvasive prostate cancer diagnostics using nanotechnology coupled with suggested diagnostic strategies for their clinical implication.Keywords: bioassay, nanomaterial, nanodevice, PSA, non-PSA biomarker, bodily fluid

  13. Engaging Undergraduates through Interdisciplinary Research in Nanotechnology

    Science.gov (United States)

    Goonewardene, Anura U.; Offutt, Christine; Whitling, Jacqueline; Woodhouse, Donald

    2012-01-01

    To recruit and retain more students in all science disciplines at our small (5,000 student) public university, we implemented an interdisciplinary strategy focusing on nanotechnology and enhanced undergraduate research. Inherently interdisciplinary, the novelty of nanotechnology and its growing career potential appeal to students. To engage…

  14. Sociocultural Meanings of Nanotechnology: Research Methodologies

    Science.gov (United States)

    Bainbridge, William Sims

    2004-06-01

    This article identifies six social-science research methodologies that will be useful for charting the sociocultural meaning of nanotechnology: web-based questionnaires, vignette experiments, analysis of web linkages, recommender systems, quantitative content analysis, and qualitative textual analysis. Data from a range of sources are used to illustrate how the methods can delineate the intellectual content and institutional structure of the emerging nanotechnology culture. Such methods will make it possible in future to test hypotheses such as that there are two competing definitions of nanotechnology - the technical-scientific and the science-fiction - that are influencing public perceptions by different routes and in different directions.

  15. Review of "Cancer Nanotechnology: Methods and Protocols (Methods in Molecular Biology" by Stephen R. Grobmyer (Editor, Brij M. Moudgil (Editor

    Directory of Open Access Journals (Sweden)

    Steinmetz Nicole F

    2010-09-01

    Full Text Available Abstract Cancer remains one of the leading causes of death. Research and resulting technologies have contributed to rising numbers of cancer survivors. Cancer nanotechnology is a novel and burgeoning field with the promise to open the door for the development of improved cancer therapies and detection methods. Cancer nanotechnology has the potential to become clinical reality.

  16. Carbon nanotubes for in vivo cancer nanotechnology

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The latest progress of using carbon nanotubes(CNTs) for in vivo cancer nanotechnology is reviewed.CNTs can be functionalized by either covalent or non-covalent chemistry to produce functional bioconjugates for many in vivo applications.In vivo behaviors and toxicology studies of CNTs are summarized,suggesting no significant toxicity of well functionalized CNTs to the treated mice.Owing to their unique chemical and physical properties,CNTs,especially single-walled carbon nanotubes(SWNTs),have been widely used for various modalities of in vivo cancer treatment and imaging.Future development of CNT-based nanomedicine may bring novel opportunities to cancer diagnosis and therapy.

  17. Micro- and nanotechnologies in plankton research

    Science.gov (United States)

    Mohammed, Javeed Shaikh

    2015-05-01

    A better understanding of the vast range of plankton and their interactions with the marine environment would allow prediction of their large-scale impact on the marine ecosystem, and provide in-depth knowledge on pollution and climate change. Numerous technologies, especially lab-on-a-chip microsystems, are being used to this end. Marine biofouling is a global issue with significant economic consequences. Ecofriendly polymer nanotechnologies are being developed to combat marine biofouling. Furthermore, nanomaterials hold great potential for bioremediation and biofuel production. Excellent reviews covering focused topics in plankton research exist, with only a handful discussing both micro- and nanotechnologies. This work reviews both micro- and nanotechnologies applied to broad-ranging plankton research topics including flow cytometry, chemotaxis/toxicity assays, biofilm formation, marine antifouling/fouling-release surfaces and coatings, green energy, green nanomaterials, microalgae immobilization, and bioremediation. It is anticipated that developments in plankton research will see engineered exploitation of micro- and nanotechnologies. The current review is therefore intended to promote micro-/nanotechnology researchers to team up with limnologists/oceanographers, and develop novel strategies for understanding and green exploitation of the complex marine ecosystem.

  18. Nanotechnology for the delivery of phytochemicals in cancer therapy.

    Science.gov (United States)

    Xie, Jing; Yang, Zhaogang; Zhou, Chenguang; Zhu, Jing; Lee, Robert J; Teng, Lesheng

    2016-01-01

    The aim of this review is to summarize advances that have been made in the delivery of phytochemicals for cancer therapy by the use of nanotechnology. Over recent decades, much research effort has been invested in developing phytochemicals as cancer therapeutic agents. However, several impediments to their wide spread use as drugs still have to be overcome. Among these are low solubility, poor penetration into cells, high hepatic disposition, and narrow therapeutic index. Rapid clearance or uptake by normal tissues and wide tissue distribution result in low drug accumulation in the target tumor sites can result in undesired drug exposure in normal tissues. Association with or encapsulation in nanoscale drug carriers is a potential strategy to address these problems. This review discussed lessons learned on the use of nanotechnology for delivery of phytochemicals that been tested in clinical trials or are moving towards the clinic.

  19. Drug targeting systems for cancer therapy: nanotechnological approach.

    Science.gov (United States)

    Tigli Aydin, R Seda

    2015-01-01

    Progress in cancer treatment remains challenging because of the great nature of tumor cells to be drug resistant. However, advances in the field of nanotechnology have enabled the delivery of drugs for cancer treatment by passively and actively targeting to tumor cells with nanoparticles. Dramatic improvements in nanotherapeutics, as applied to cancer, have rapidly accelerated clinical investigations. In this review, drug-targeting systems using nanotechnology and approved and clinically investigated nanoparticles for cancer therapy are discussed. In addition, the rationale for a nanotechnological approach to cancer therapy is emphasized because of its promising advances in the treatment of cancer patients.

  20. Nanotechnology research in Turkey: A university-driven achievement

    OpenAIRE

    Berna Beyhan; M. Teoman Pamukçu

    2011-01-01

    We deal with nanotechnology research activities in Turkey. Based on publication data retrieved from ISI Web of SSCI database, the main actors and the main characteristics of nanotechnology research in Turkey are identified. Following a brief introduction to nanoscience and nanotechnology research, it goes on with a discussion on nanotechnology related science and technology policy efforts in developing countries and particularly in Turkey. Then using bibliometric methods and social network an...

  1. Application of nanotechnology in cancers prevention, early detection and treatment.

    Science.gov (United States)

    Patel, Shraddha P; Patel, Parshottambhai B; Parekh, Bhavesh B

    2014-01-01

    Use of nanotechnology in medical science is a rapidly developing area. New opportunities of diagnosis, imaging and therapy have developed due to recent rapid advancement by nanotechnology. The most common areas to be affected are diagnostic, imaging and targeted drug delivery in gastroenterology, oncology, cardiovascular medicine, obstetrics and gynecology. Mass screening with inexpensive imaging might be possible in the near future with the help of nanotechnology. This review paper provides an overview of causes of cancer and the application of nanotechnology in cancer prevention, detection and treatment.

  2. Applications of gold nanoparticles in cancer nanotechnology

    Directory of Open Access Journals (Sweden)

    Weibo Cai

    2008-09-01

    Full Text Available Weibo Cai1,2, Ting Gao3, Hao Hong1, Jiangtao Sun11Departments of Radiology and Medical Physics, School of Medicine and Public Health, University of Wisconsin – Madison, Madison, Wisconsin, USA; 2University of Wisconsin Paul P. Carbone Comprehensive Cancer Center, Madison, Wisconsin, USA; 3Tyco Electronics Corporation, 306 Constitution Drive, Menlo Park, California, USAAbstract: It has been almost 4 decades since the “war on cancer” was declared. It is now generally believed that personalized medicine is the future for cancer patient management. Possessing unprecedented potential for early detection, accurate diagnosis, and personalized treatment of cancer, nanoparticles have been extensively studied over the last decade. In this review, we will summarize the current state-of-the-art of gold nanoparticles in biomedical applications targeting cancer. Gold nanospheres, nanorods, nanoshells, nanocages, and surface enhanced Raman scattering nanoparticles will be discussed in detail regarding their uses in in vitro assays, ex vivo and in vivo imaging, cancer therapy, and drug delivery. Multifunctionality is the key feature of nanoparticle-based agents. Targeting ligands, imaging labels, therapeutic drugs, and other functionalities can all be integrated to allow for targeted molecular imaging and molecular therapy of cancer. Big strides have been made and many proof-of-principle studies have been successfully performed. The future looks brighter than ever yet many hurdles remain to be conquered. A multifunctional platform based on gold nanoparticles, with multiple receptor targeting, multimodality imaging, and multiple therapeutic entities, holds the promise for a “magic gold bullet” against cancer.Keywords: gold nanoparticles, cancer, nanotechnology, optical imaging, nanomedicine, molecular therapy

  3. Integrative filtration research and sustainable nanotechnology

    Institute of Scientific and Technical Information of China (English)

    Jing Wang; Drew Thompson; David Y.H.Pui

    2013-01-01

    With the wide applications of nanomaterials in an array of industries,more concerns are being raised about the occupational health and safety of nanoparticles in the workplace,and implications of nanotechnology on the environment and living systems.Studies on environmental,health and safety (EHS) issues of nanomaterials play a significant role in public acceptance,and eventual sustainability,of nanotechnology.We present research results on three aspects of the EHS studies:characterization and measurement of nanoparticles,nanoparticle emission and exposure at workplaces,and control and abatement of nanoparticle release using filtration technology.Measurement of nanoparticle agglomerates using a newly developed instrument,the Universal Nanoparticle Analyzer,is discussed.Nanoparticle emission and exposure measurement results for carbon nanotubes in the manufacture of nanocomposites and for silicon nanoparticles in their production at a pilot scale facility are presented.Filtration of nanoparticles and nanoparticle agglomerates are also studied.

  4. Factors affecting the perceptions of Iranian agricultural researchers towards nanotechnology.

    Science.gov (United States)

    Hosseini, Seyed Mahmood; Rezaei, Rohollah

    2011-07-01

    This descriptive survey research was undertaken to design appropriate programs for the creation of a positive perception of nanotechnology among their intended beneficiaries. In order to do that, the factors affecting positive perceptions were defined. A stratified random sample of 278 science board members was selected out of 984 researchers who were working in 22 National Agricultural Research Institutions (NARIs). Data were collected by using a mailed questionnaire. The descriptive results revealed that more than half of the respondents had "low" or "very low" familiarity with nanotechnology. Regression analysis indicated that the perceptions of Iranian NARI Science Board Members towards nanotechnology were explained by three variables: the level of their familiarity with emerging applications of nanotechnology in agriculture, the level of their familiarity with nanotechnology and their work experiences. The findings of this study can contribute to a better understanding of the present situation of the development of nanotechnology and the planning of appropriate programs for creating a positive perception of nanotechnology.

  5. Research trends in nanotechnology studies across geo-economic areas

    OpenAIRE

    2010-01-01

    The purpose of this paper is to analyze the current temporal and spatial research trajectories in nanoscience and nanotechnology studies in order to display the worldwide patterns of research fields across main economic players. The results show the leadership of Europe and North America in nanotechnology research, although the role of China has been growing over time. Current nanotechnology studies have been growing in chemistry and medicine because of applications of nanomaterials mainly in...

  6. Overcoming multidrug resistance(MDR) in cancer by nanotechnology

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The emerging nanotechnology-based drug delivery holds tremendous potential to deliver chemotherapeutic drugs for treatment of multidrug resistance(MDR) cancer.This drug delivery system could improve the pharmacokinetic behavior of antitumor drugs,deliver chemotherapeutic drugs to target sites,control release of drugs,and reduce the systemic toxicity of drugs in MDR cancer.This review addresses the use of nanotechnology to overcome MDR classified on the bases of the fundamental mechanisms of MDR and various approaches to deliver drugs for treatment of MDR cancer.

  7. Convergence of nanotechnology and cancer prevention: are we there yet?

    Science.gov (United States)

    Menter, David G; Patterson, Sherri L; Logsdon, Craig D; Kopetz, Scott; Sood, Anil K; Hawk, Ernest T

    2014-10-01

    Nanotechnology is emerging as a promising modality for cancer treatment; however, in the realm of cancer prevention, its full utility has yet to be determined. Here, we discuss the potential of integrating nanotechnology in cancer prevention to augment early diagnosis, precision targeting, and controlled release of chemopreventive agents, reduced toxicity, risk/response assessment, and personalized point-of-care monitoring. Cancer is a multistep, progressive disease; the functional and acquired characteristics of the early precancer phenotype are intrinsically different from those of a more advanced anaplastic or invasive malignancy. Therefore, applying nanotechnology to precancers is likely to be far more challenging than applying it to established disease. Frank cancers are more readily identifiable through imaging and biomarker and histopathologic assessment than their precancerous precursors. In addition, prevention subjects routinely have more rigorous intervention criteria than therapy subjects. Any nanopreventive agent developed to prevent sporadic cancers found in the general population must exhibit a very low risk of serious side effects. In contrast, a greater risk of side effects might be more acceptable in subjects at high risk for cancer. Using nanotechnology to prevent cancer is an aspirational goal, but clearly identifying the intermediate objectives and potential barriers is an essential first step in this exciting journey.

  8. DETECTION OF CANCER BIOMARKERS WITH NANOTECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2013-01-01

    Full Text Available Early detection of cancer biomarkers with high precision is critically important for cancer therapy. A variety of sensors based on different nanostructured materials have attracted intensive research interest due to their potential for highly sensitive and selective detection of cancer biomarkers. This review covers the use of a variety of nanostructured materials, including carbon nanotubes, silicon nanowires, gold nanoparticles and quantum dots, in the fabrication of sensors. Emphases are placed on how the detection systems work and what detection limits can be achieved. Some assays described in this review outperform established methods for cancer biomarker detection. It is highly promising that these sensors would soon move into commercial-scale production and find routine use in hospitals.

  9. Nanotechnology Method Comparison for Early Detection of Cancer

    Directory of Open Access Journals (Sweden)

    Wamakshi Bhati

    2013-02-01

    Full Text Available Since 1999, cancer has been the leading cause of death under the age of 85 years and the eradication of this disease has been the long sought-after goal of scientists and physicians. Cancer is a disease in which abnormal cells divide uncontrollably. These abnormal cells have the ability to invade and destroy normal body cells, which is life threatening. One of the most important factors in effective cancer treatment is the detection of cancerous tumour cells in an early stage. Nanotechnology brings new hope to the arena of cancer detection research, owing to nanoparticles’ unique physical and chemical properties, giving them the potential to be used in the detection and monitoring of cancer. One such approach is quantum dots based detection which is rapid, easy and economical enabling quick point-of-care screening of cancer markers. QDs have got unique properties which make them ideal for detecting tumours. On the other hand, Gold nanoparticles have been in the bio-imaging spotlight due to their special optical properties. Au-NPs with strong surface-plasmon-enhanced absorption and scattering have allowed them to emerge as powerful imaging labels and contrast agents. This paper includes the comparative study of both the methods. Compared with quantum dots, the gold-nanoparticles are more than 200 times brighter on a particle-to-particle basis, although they are about 60 times larger by volume. Thus, Gold nanoparticles in suspension, offers advantages compared with quantum dots in that the gold appears to be non-toxic and the particles produce a brighter, sharper signal.

  10. Unique roles of nanotechnology in medicine and cancer-II

    Directory of Open Access Journals (Sweden)

    F Alam

    2015-01-01

    Full Text Available Applications of nanotechnology in medicine and cancer are becoming increasingly popular. Common nanomaterials and devices applicable in cancer medicine are classifiable as liposomes, polymeric-micelles, dendrimers, nano-cantilevers, carbon nanotubes, quantum dots, magnetic-nanoparticles, gold nanoparticles (AuNPs and certain miscellaneous nanoparticles. Here, we present review of the structure, function and utilities of the various approved, under trial and pretrial nanodevices applicable in the cancer care and medicine. The liposomes are phospholipid-vesicles made use in carrying drugs to the target site minimizing the bio-distribution toxicity and a number of such theranostics have been approved for clinical practice. Newly worked out liposomes and polymeric micelles are under the trail phases for nano-therapeutic utility. A multifunctional dendrimer conjugate with imaging, targeting and drug molecules of paclitaxel has been recently synthesized for cancer theranostic applications. Nano-cantilever based assays are likely going to replace the conventions methods of chemical pathological investigations. Carbon nanotubes are emerging for utility in regenerative and cancer medicine. Quantum dots hold great promise for the micro-metastasis and intra-operative tumor imaging. Important applications of magnetic nanoparticles are in the cardiac stents, photodynamic therapy and liver metastasis imaging. The AuNPs have been employed for cell imaging, computed tomography and cancer therapy. Besides these categories, miscellaneous other nanoparticles are being discovered for utility in the cancer diagnosis and disease management. However, the use of nanoparticles should be cautious since the toxic effects of nanoparticles are not well-known. The use of nanoparticles in the clinical practice and their toxicity profile require further extensive research.

  11. Application of nanotechnology in the treatment and diagnosis of gastrointestinal cancers: review of recent patents.

    Science.gov (United States)

    Prados, Jose; Melguizo, Consolacion; Perazzoli, Gloria; Cabeza, Laura; Carrasco, Esther; Oliver, Jaime; Jiménez-Luna, Cristina; Leiva, Maria C; Ortiz, Raúl; Álvarez, Pablo J; Aranega, Antonia

    2014-01-01

    Gastrointestinal cancers remain one of the main causes of death in developed countries. The main obstacles to combating these diseases are the limitations of current diagnostic techniques and the low stability, availability, and/or specificity of pharmacological treatment. In recent years, nanotechnology has revolutionized many fields of medicine, including oncology. The association of chemotherapeutic agents with nanoparticles offers improvement in the solubility and stability of antitumor agents, avoidance of drug degradation, and reductions in therapeutic dose and toxicity, increasing drug levels in tumor tissue and decreasing them in healthy tissue. The use of specific molecules that drive nanoparticles to the tumor tissue represents a major advance in therapeutic specificity. In addition, the use of nanotechnology in contrast agents has yielded improvements in the diagnosis and the follow-up of tumors. These nanotechnologies have all been applied in gastrointestinal cancer treatment, first in vitro, and subsequently in vivo, with promising results reported in some clinical trials. A large number of patents have been generated by nanotechnology research over recent years. The objective of this paper is to review patents on the clinical use of nanoparticles for gastrointestinal cancer diagnosis and therapy and to offer an overview of the impact of nanotechnology on the management of this disease.

  12. Recent insights in nanotechnology-based drugs and formulations designed for effective anti-cancer therapy.

    Science.gov (United States)

    Piktel, Ewelina; Niemirowicz, Katarzyna; Wątek, Marzena; Wollny, Tomasz; Deptuła, Piotr; Bucki, Robert

    2016-05-26

    The rapid development of nanotechnology provides alternative approaches to overcome several limitations of conventional anti-cancer therapy. Drug targeting using functionalized nanoparticles to advance their transport to the dedicated site, became a new standard in novel anti-cancer methods. In effect, the employment of nanoparticles during design of antineoplastic drugs helps to improve pharmacokinetic properties, with subsequent development of high specific, non-toxic and biocompatible anti-cancer agents. However, the physicochemical and biological diversity of nanomaterials and a broad spectrum of unique features influencing their biological action requires continuous research to assess their activity. Among numerous nanosystems designed to eradicate cancer cells, only a limited number of them entered the clinical trials. It is anticipated that progress in development of nanotechnology-based anti-cancer materials will provide modern, individualized anti-cancer therapies assuring decrease in morbidity and mortality from cancer diseases. In this review we discussed the implication of nanomaterials in design of new drugs for effective antineoplastic therapy and describe a variety of mechanisms and challenges for selective tumor targeting. We emphasized the recent advantages in the field of nanotechnology-based strategies to fight cancer and discussed their part in effective anti-cancer therapy and successful drug delivery.

  13. Nanotechnology

    CERN Document Server

    CERN. Geneva

    2003-01-01

    Structuring matter on the nanometer range is much more that just making things smaller than in existing microscale devices. Rather the exploitation of phenomena that stem exclusively from the nanoscale dimensions of device elements holds the promise of new functionalities and applications in various fields as electronics, mechanics, optics or medicine. I will give a general introduction in the basics of nanotechnology, illustrated by existing and envisaged applications from which a strong impact on both science and our daily life is to be expected. I will also discuss the methodology and experimental techniques, as scanning probe microscopies and lithography.

  14. Nanotechnology-based inhalation treatments for lung cancer: state of the art

    Science.gov (United States)

    Ahmad, Javed; Akhter, Sohail; Rizwanullah, Md; Amin, Saima; Rahman, Mahfoozur; Ahmad, Mohammad Zaki; Rizvi, Moshahid Alam; Kamal, Mohammad A; Ahmad, Farhan Jalees

    2015-01-01

    Considering the challenges associated with conventional chemotherapy, targeted and local delivery of chemotherapeutics via nanoparticle (NP) carriers to the lungs is an emerging area of interest. Recent studies and growing clinical application in cancer nanotechnology showed the huge potential of NPs as drug carriers in cancer therapy, including in lung carcinoma for diagnosis, imaging, and theranostics. Researchers have confirmed that nanotechnology-based inhalation chemotherapy is viable and more effective than conventional chemotherapy, with lesser side effects. Recently, many nanocarriers have been investigated, including liposomes, polymeric micelles, polymeric NPs, solid lipid NPs, and inorganic NPs for inhalation treatments of lung cancer. Yet, the toxicity of such nanomaterials to the lungs tissues and further distribution to other organs due to systemic absorption on inhalation delivery is a debatable concern. Here, prospect of NPs-based local lung cancer targeting through inhalation route as well as its associated challenges are discussed. PMID:26640374

  15. Nanotechnology-based drug delivery systems for treatment of oral cancer: a review

    Directory of Open Access Journals (Sweden)

    Calixto G

    2014-08-01

    Full Text Available Giovana Calixto, Jéssica Bernegossi, Bruno Fonseca-Santos, Marlus Chorilli School of Pharmaceutical Sciences, Department of Drugs and Pharmaceuticals, São Paulo State University (UNESP, São Paulo, Brazil Abstract: Oral cancer (oral cavity and oropharynx is a common and aggressive cancer that invades local tissue, can cause metastasis, and has a high mortality rate. Conventional treatment strategies, such as surgery and chemoradiotherapy, have improved over the past few decades; however, they remain far from optimal. Currently, cancer research is focused on improving cancer diagnosis and treatment methods (oral cavity and oropharynx nanotechnology, which involves the design, characterization, production, and application of nanoscale drug delivery systems. In medicine, nanotechnologies, such as polymeric nanoparticles, solid lipid nanoparticles, nanostructured lipid carriers, gold nanoparticles, hydrogels, cyclodextrin complexes, and liquid crystals, are promising tools for diagnostic probes and therapeutic devices. The objective of this study is to present a systematic review of nanotechnology-based drug delivery systems for oral cancers. Keywords: targeted delivery, oral squamous cell carcinoma, oral cancer treatment

  16. Cancer nanotechnology: a new commercialization pipeline for diagnostics, imaging agents, and therapies

    Science.gov (United States)

    Ptak, Krzysztof; Farrell, Dorothy; Hinkal, George; Panaro, Nicholas J.; Hook, Sara; Grodzinski, Piotr

    2011-06-01

    Nanotechnology - the science and engineering of manipulating matter at the molecular scale to create devices with novel chemical, physical and biological properties - has the potential to radically change oncology. Research sponsored by the NCI Alliance for Nanotechnology in Cancer has led to the development of nanomaterials as platforms of increasing complexity and devices of superior sensitivity, speed and multiplexing capability. Input from clinicians has guided researchers in the design of technologies to address specific needs in the areas of cancer therapy and therapeutic monitoring, in vivo imaging, and in vitro diagnostics. The promising output from the Alliance has led to many new companies being founded to commercialize their nanomedical product line. Furthermore, several of these technologies, which are discussed in this paper, have advanced to clinically testing.

  17. Nanotechnology-based intelligent drug design for cancer metastasis treatment.

    Science.gov (United States)

    Gao, Yu; Xie, Jingjing; Chen, Haijun; Gu, Songen; Zhao, Rongli; Shao, Jingwei; Jia, Lee

    2014-01-01

    Traditional chemotherapy used today at clinics is mainly inherited from the thinking and designs made four decades ago when the Cancer War was declared. The potency of those chemotherapy drugs on in-vitro cancer cells is clearly demonstrated at even nanomolar levels. However, due to their non-specific effects in the body on normal tissues, these drugs cause toxicity, deteriorate patient's life quality, weaken the host immunosurveillance system, and result in an irreversible damage to human's own recovery power. Owing to their unique physical and biological properties, nanotechnology-based chemotherapies seem to have an ability to specifically and safely reach tumor foci with enhanced efficacy and low toxicity. Herein, we comprehensively examine the current nanotechnology-based pharmaceutical platforms and strategies for intelligent design of new nanomedicines based on targeted drug delivery system (TDDS) for cancer metastasis treatment, analyze the pros and cons of nanomedicines versus traditional chemotherapy, and evaluate the importance that nanomaterials can bring in to significantly improve cancer metastasis treatment.

  18. The state of research after 25 years of Nanotechnology

    Science.gov (United States)

    Demming, Anna

    2013-01-01

    In 1990 the transistor was big—not just hugely prevalent in day-to-day devices but literally large in size compared with present day counterparts. Still, as Christoph Gerber describes in our latest Nanotechnology Discussions podcast [1], with transistor footprints decreasing every two years as described in Moore's law, by 1990 the electronics industry saw itself broaching new territory: nanotechnology. Atoms had made their debut as real-world observables with the first scanning probe microscopes only a few years previously, prompted by efforts to understand how physical systems behave at this scale. And in this heady climate of burgeoning nanoscale innovations Nanotechnology published its first issue, the world's first academic journal dedicated to nanoscale science and technology. This year the journal publishes its 25th volume and to celebrate we have commissioned a special issue presenting a snapshot of developments leading some of the most active areas in the field today [2]. As nanotechnology has matured both device-focused and fundamental research have placed high demands on improving fabrication processes to generate structures cheaply, efficiently and reliably. Since its discovery graphene has been under close scrutiny for the potential to exploit its optical transparency, mechanical flexibility and high carrier mobility. 'However', point out Ho Cho, Jong-Hyun Ahn and colleagues in Korea, 'it is still significantly challenging to develop clean and simple fabrication procedures'. They demonstrate how photo-curable ion gel gate dielectrics can be used to produce self-aligned flexible graphene transistors and inverters [3] simply without extra graphene-patterning steps. Sang Ouk Kim and colleagues at the Korea Advanced Institute of Science and Technology demonstrate another method for avoiding complex fabrication techniques, creating highly aligned graphene nanoribbon with their mussel-inspired block copolymer lithography and directed self-assembly [4

  19. Defense Nanotechnology Research and Development Programs

    Science.gov (United States)

    2005-05-17

    that can be dyed to match specific patterns and woven into uniforms. • An electrospun fiberized adhesive has been developed for fabric laminates...150 by 30 crossbars ). • High moment, magnetic nano-tags have been fabricated that allow DNA fingerprinting without DNA amplification (i.e., the... learned , and DoD guidance is critical to assure both the optimum direction of ongoing research efforts and the optimum leveraging of this knowledge to

  20. Nanotechnology; its significance in cancer and photodynamic therapy

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Gaeeni

    2015-07-01

    Full Text Available In the last decade, developments in nanotechnology have provided a new field in medicine called “Nanomedicine”. Nanomedicine has provided new tools for photodynamic therapy. Quantum dots (QDs are approximately spherical nanoparticles that have attracted broad attention and have been used in nanomedicine applications. QDs have high molar extinction coefficients and photoluminescence quantum yield, narrow emission spectra, broad absorption, large effective stokes shifts. QDs are more photostable and resistant to metabolic degradation. These photosensitizing properties can be used as photosensitizers for Photodynamic Therapy (PDT. PDT has been recommended for its unique characteristic, such as low side effect and more efficiency. Therefore, nanomedicine leads a promising future for targeted therapy in cancer tumor. Furthermore, QDs have recently been applied in PDT, which will be addressed in this review letter. Also this review letter evaluates key aspects of nano-particulate design and engineering, including the advantage of the nanometer scale size range, biological behavior, and safety profile.

  1. Nanotechnology in bladder cancer: current state of development and clinical practice.

    Science.gov (United States)

    Tomlinson, Ben; Lin, Tzu-yin; Dall'Era, Marc; Pan, Chong-Xian

    2015-01-01

    Nanotechnology is being developed for the diagnosis and treatment of both nonmyoinvasive bladder cancer (NMIBC) and invasive bladder cancer. The diagnostic applications of nanotechnology in NMIBC mainly focus on tumor identification during endoscopy to increase complete resection of bladder cancer while nanotechnology to capture malignant cells or their components continues to be developed. The therapeutic applications of nanotechnology in NMIBC are to reformulate biological and cytotoxic agents for intravesical instillation, combine both diagnostic and therapeutic application in one nanoformulation. In invasive and advanced bladder cancer, magnetic resonance imaging with supraparamagnetic iron oxide nanoparticles can improve the sensitivity and specificity in detecting small metastasis to lymph nodes. Nanoformulation of cytotoxic agents can potentially decrease the toxicity while increasing efficacy.

  2. Nanotechnology for delivery of gemcitabine to treat pancreatic cancer.

    Science.gov (United States)

    Birhanu, Gebremariam; Javar, Hamid Akbari; Seyedjafari, Ehsan; Zandi-Karimi, Ali

    2017-04-01

    Pancreatic cancer (PC) is one of the most deadly and quickly fatal human cancers with a 5-year mortality rate close to 100%. Its prognosis is very poor, mainly because of its hostile biological behavior and late onset of symptoms for clinical diagnosis; these bring limitations on therapeutic interventions. Factors contributing for the difficulties in treating PC include: high rate of drug resistance, fast metastasis to different organs, poor prognosis and relapse of the tumor after therapy. After being approved by US FDA 1997, Gemcitabine (Gem) is the first line and the gold standard drug for all stages of advanced PC till now. However, its efficacy is unsatisfactory, mainly due to; its chemical instability and poor cellular uptake, resulting in an extremely short half-life and low bioavailability. To solve this drawbacks and increase the therapeutic outcome important progress has been achieved in the field of nanotechnology and offers a promising and effective alternative. This review mainly focus on the most commonly investigated nanoparticle (NP) delivery systems of Gem for PC treatment and the latest progresses achieved. Novel nanocarriers with better tumor targeting efficiencies and maximum treatment outcome to treat this deadly due are given much attention.

  3. Review on early technology assessments of nanotechnologies in oncology

    NARCIS (Netherlands)

    Retèl, Valesca P.; Hummel, Marjan J.M.; Harten, van Wim

    2009-01-01

    Nanotechnology is expected to play an increasingly important role in the diagnostics, prognostics, and management of targeted cancer treatments. While papers have described promising results for nanotechnology in experimental settings, the translation of fundamental research into clinical applicatio

  4. Nanotechnology-based inhalation treatments for lung cancer: state of the art

    Directory of Open Access Journals (Sweden)

    Ahmad J

    2015-11-01

    Full Text Available Javed Ahmad,1,* Sohail Akhter,2,3,* Md Rizwanullah,1 Saima Amin,1 Mahfoozur Rahman,4 Mohammad Zaki Ahmad,5 Moshahid Alam Rizvi,6 Mohammad A Kamal,7 Farhan Jalees Ahmad1,21Department of Pharmaceutics, 2Nanomedicine Research Lab, Faculty of Pharmacy, Jamia Hamdard, New Delhi, India; 3Centre de Biophysique Moléculaire(CBM-CNRS UPR4301, University of Orléans, Orléans Cedex 2, France; 4Department of Pharmaceutics, Abhilashi College of Pharmacy, Mandi, HP, India; 5Department of Pharmaceutics, College of Pharmacy, Najran University, Saudi Arabia; 6Department of Biosciences, Jamia Millia Islamia, New Delhi, India; 7Metabolomics and Enzymology Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia*These authors contributed equally to this workAbstract: Considering the challenges associated with conventional chemotherapy, targeted and local delivery of chemotherapeutics via nanoparticle (NP carriers to the lungs is an emerging area of interest. Recent studies and growing clinical application in cancer nanotechnology showed the huge potential of NPs as drug carriers in cancer therapy, including in lung carcinoma for diagnosis, imaging, and theranostics. Researchers have confirmed that nanotechnology-based inhalation chemotherapy is viable and more effective than conventional chemotherapy, with lesser side effects. Recently, many nanocarriers have been investigated, including liposomes, polymeric micelles, polymeric NPs, solid lipid NPs, and inorganic NPs for inhalation treatments of lung cancer. Yet, the toxicity of such nanomaterials to the lungs tissues and further distribution to other organs due to systemic absorption on inhalation delivery is a debatable concern. Here, prospect of NPs-based local lung cancer targeting through inhalation route as well as its associated challenges are discussed.Keywords: nanoparticles, lung cancer, inhalational chemotherapy, drug targeting, nanotoxicity

  5. Scientists' Ethical Obligations and Social Responsibility for Nanotechnology Research.

    Science.gov (United States)

    Corley, Elizabeth A; Kim, Youngjae; Scheufele, Dietram A

    2016-02-01

    Scientists' sense of social responsibility is particularly relevant for emerging technologies. Since a regulatory vacuum can sometimes occur in the early stages of these technologies, individual scientists' social responsibility might be one of the most significant checks on the risks and negative consequences of this scientific research. In this article, we analyze data from a 2011 mail survey of leading U.S. nanoscientists to explore their perceptions the regarding social and ethical responsibilities for their nanotechnology research. Our analyses show that leading U.S. nanoscientists express a moderate level of social responsibility about their research. Yet, they have a strong sense of ethical obligation to protect laboratory workers (in both universities and industry) from unhealthy exposure to nanomaterials. We also find that there are significant differences in scientists' sense of social and ethical responsibility depending on their demographic characteristics, job affiliation, attention to media content, risk perceptions and benefit perceptions. We conclude with some implications for future research.

  6. Brazilian research dedicated to nanotechnology and risks to health and environment

    OpenAIRE

    Alencar, Maria Simone de Menezes; Bochner,Rosany; Dias, Miriam Ferreira Freire

    2015-01-01

    Nanotechnology has great potential to transform science and industry in a lot of areas. Despite the large interest in research in this area, the safety risks and the impact of the use of nanotechnology on health are still underexplored. This study aims to identify the research conducted in Brazil regarding the risks involving the use of nanotechnology. It was based on Directory of Research Groups and on Currículo Lattes. We detected 798 articles about nanotechnology and health, but only 41 of...

  7. EDITORIAL: Nanopores—the 'Holey Grail' in nanotechnology research Nanopores—the 'Holey Grail' in nanotechnology research

    Science.gov (United States)

    Demming, Anna

    2012-06-01

    'Negative space' may be as important in the development of nanomaterials as it is in creating works of art. The term refers to the space around and between objects, an important aspect in artistic composition. In nanotechnology, while nanoposts and nanowires have been assiduously studied and exploited for enhancing the performance of solar cells [1], real-time chemical sensors [2], UV emitters [3] and many other applications, nanopore structures have also yielded important advances in a wide range of fields. In this issue Melnikov, Leburton and Gracheva report on the electrostatic properties of nanopores in a layered semiconductor, and show how they allow a more accurate characterization of DNA than pores in other membranes [4]. Nanoporous materials have been applied to a diverse range of technological challenges. In recognition of its potential in high-efficiency solar cells, Prakasam and colleagues in the US reported the first ever synthesis of self-aligned nanoporous haematite [5]. Haematite is abundant, stable, non-toxic and has a band gap in the visible region and, as their work demonstrates, the photoresponse of nanoporous haematite is very promising for energy harvesting applications. Nanoporous aluminum oxide has also proved to be a particularly valuable material in applications ranging from liquid display panels to biosensor microchips. A collaboration of researchers in Taiwan demonstrated that porous aluminum oxide on an indium tin oxide surface could act as an alignment layer in liquid crystal display panels that have a transmittance of 60-80%, and switch from black to bright with a response time of 62.5 ms [6]. In Korea, Chung, Son and Min investigated the effect of nanostructural parameters of porous aluminum oxide on cell adhesion and proliferation for cell-based microchips [7]. While aluminum oxide without any modifications is not favourable for adherent cell culture, the proliferation of cells dramatically increased in porous aluminum oxide

  8. Evaluating the performance of Russia in the research in nanotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Terekhov, A. I., E-mail: a.i.terekhov@mail.ru [Russian Academy of Sciences, Central Economics and Mathematics Institute (Russian Federation)

    2012-11-15

    The article analyzes the development of nano research in Russia during the years 1990-2010. To identify the contribution of Russia in nanoscience and to compare it with the contribution of other countries, we used the international multidisciplinary database Science Citation Index Expanded. Scientific performance is measured based on the growth rate of nano publications by countries and in the world, authorship patterns, indexes of international collaboration, etc. The indicators used are the national publication output, the total citations and the average citation per nano publication, the number and subject profile of highly cited nano publications; contribution and impact of Russian institutions. The article describes the current state and trends of nano research in Russia, their key players and the existing 'centers of excellence.' It also discusses some inconsistencies of Russia's science policy in the field of nanotechnology in light of the performed bibliometric study.

  9. Evaluating the performance of Russia in the research in nanotechnology

    Science.gov (United States)

    Terekhov, A. I.

    2012-11-01

    The article analyzes the development of nano research in Russia during the years 1990-2010. To identify the contribution of Russia in nanoscience and to compare it with the contribution of other countries, we used the international multidisciplinary database Science Citation Index Expanded. Scientific performance is measured based on the growth rate of nano publications by countries and in the world, authorship patterns, indexes of international collaboration, etc. The indicators used are the national publication output, the total citations and the average citation per nano publication, the number and subject profile of highly cited nano publications; contribution and impact of Russian institutions. The article describes the current state and trends of nano research in Russia, their key players and the existing "centers of excellence." It also discusses some inconsistencies of Russia's science policy in the field of nanotechnology in light of the performed bibliometric study.

  10. Some applications of nanotechnologies in stem cells research

    Energy Technology Data Exchange (ETDEWEB)

    Belicchi, M. [Fondazione IRCCS Ospedale Policlinico di Milano, Via Francesco Sforza, Milano 20122 (Italy); Cancedda, R. [Istituto Nazionale per la Ricerca sul Cancro and Dipartimento di Oncologia Biologia e Genetica - Universita di Genova, Largo R. Benzi 10, Genova 16132 (Italy); Cedola, A. [Istituto di Fotonica e Nanotecnologie - CNR, Via Cinto Romano 42, Roma 00156 (Italy); Fiori, F. [Dipartimento S.A.I.F.E.T. Sezione di Scienze Fisiche - Universita' Politecnica delle Marche, Via Brecce Bianche, Ancona 60131 (Italy); INBB - Istituto Nazionale Biostrutture e Biosistemi (Italy); CNISM - Matec (Ancona) (Italy); Gavina, M. [Fondazione IRCCS Ospedale Policlinico di Milano, Via Francesco Sforza, Milano 20122 (Italy); Giuliani, A. [Dipartimento S.A.I.F.E.T. Sezione di Scienze Fisiche - Universita' Politecnica delle Marche, Via Brecce Bianche, Ancona 60131 (Italy); CNISM - Matec (Ancona) (Italy); Komlev, V.S. [Dipartimento S.A.I.F.E.T. Sezione di Scienze Fisiche - Universita' Politecnica delle Marche, Via Brecce Bianche, Ancona 60131 (Italy); Institute for Physical Chemistry of Ceramics, Russian Academy of Sciences, Ozernaya 48, 119361 Moscow (Russian Federation); Lagomarsino, S. [Istituto di Fotonica e Nanotecnologie - CNR, Via Cinto Romano 42, Roma 00156 (Italy); Mastrogiacomo, M. [Istituto Nazionale per la Ricerca sul Cancro and Dipartimento di Oncologia Biologia e Genetica - Universita di Genova, Largo R. Benzi 10, Genova 16132 (Italy); Renghini, C. [Dipartimento S.A.I.F.E.T. Sezione di Scienze Fisiche - Universita' Politecnica delle Marche, Via Brecce Bianche, Ancona 60131 (Italy); INBB - Istituto Nazionale Biostrutture e Biosistemi (Italy); CNISM - Matec (Ancona) (Italy); Rustichelli, F., E-mail: f.rustichelli@univpm.i [Dipartimento S.A.I.F.E.T. Sezione di Scienze Fisiche - Universita' Politecnica delle Marche, Via Brecce Bianche, Ancona 60131 (Italy); INBB - Istituto Nazionale Biostrutture e Biosistemi (Italy); CNISM - Matec (Ancona) (Italy)

    2009-12-15

    Stem cell based tissue engineering therapies involve the administration of ex vivo manipulated stem cell populations with the purpose of repairing and regenerating damaged or diseased tissue. Currently available methods of monitoring transplanted cells are quite limited. To monitor the outcomes of stem cell therapy longitudinally requires the development of non-destructive strategies that are capable of identifying the location, magnitude, and duration of cellular survival and fate. The recent development of imaging techniques offers great potential to address these critical issues by non-invasively tracking the fate of the transplanted cells. This review offers a focused presentation of some examples of the use of imaging techniques connected to the nanotechnological world in research areas related to stem cells. In particular investigations will be considered concerning tissue-engineered bone, treatment of intervertebral disc degeneration, treatment by human stem cells of muscular dystrophy of Duchenne in small animal models and the repair of spinal cord injuries.

  11. The role of nanotechnology in induced pluripotent and embryonic stem cells research.

    Science.gov (United States)

    Chen, Lukui; Qiu, Rong; Li, Lushen

    2014-12-01

    This paper reviews the recent studies on development of nanotechnology in the field of induced pluripotent and embryonic stem cells. Stem cell therapy is a promising therapy that can improve the quality of life for patients with refractory diseases. However, this option is limited by the scarcity of tissues, ethical problem, and tumorigenicity. Nanotechnology is another promising therapy that can be used to mimic the extracellular matrix, label the implanted cells, and also can be applied in the tissue engineering. In this review, we briefly introduce implementation of nanotechnology in induced pluripotent and embryonic stem cells research. Finally, the potential application of nanotechnology in tissue engineering and regenerative medicine is also discussed.

  12. Science system path-dependencies and their influences: nanotechnology research in Russia.

    Science.gov (United States)

    Karaulova, Maria; Gök, Abdullah; Shackleton, Oliver; Shapira, Philip

    In this paper, we study the influence of path dependencies on the development of an emerging technology in a transitional economy. Our focus is the development of nanotechnology in Russia in the period between 1990 and 2012. By examining outputs, publication paths and collaboration patterns, we identify a series of factors that help to explain Russia's limited success in leveraging its ambitious national nanotechnology initiative. The analysis highlights four path-dependent tendencies of Russian nanotechnology research: publication pathways and the gatekeeping role of the Russian Academy of Sciences; increasing geographical and institutional centralisation of nanotechnology research; limited institutional diffusion; and patterns associated with the internationalisation of Russian research. We discuss policy implications related to path dependence, nanotechnology research in Russia and to the broader reform of the Russian science system.

  13. Center of nanotechnology for cancer diagnosis and treatment launched in Tianjin

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ On 24 August, a center of nanotechnology for cancer diagnosis and treatment was officially inaugurated in Tianjin. The center was jointly established by the CAS Institute of High-energy Physics, the CAS affiliated National Center for Nanoscience and Technology, and the Tianjin Medical University Cancer Institute and Hospital.

  14. 78 FR 4150 - Update of NIOSH Nanotechnology Strategic Plan for Research and Guidance

    Science.gov (United States)

    2013-01-18

    ... HUMAN SERVICES Centers for Disease Control and Prevention Update of NIOSH Nanotechnology Strategic Plan...: Request for Information: Update of NIOSH Nanotechnology Strategic Plan for Research and Guidance. SUMMARY... and Prevention (CDC) seeks comment on the types of hazard identification and risk management...

  15. Early phase Technology Assessment of nanotechnology in oncology

    NARCIS (Netherlands)

    Retèl, Valesca P.; Hummel, Marjan J.M.; Harten, van Willem H.

    2008-01-01

    To perform early Technology Assessment (TA) of nanotechnology in oncology. The possibilities of nanotechnology for detection (imaging), diagnosis and treatment of cancer are subject of different research programs where major investments are concerned. As a range of bio- nanotechnologies is expected

  16. 76 FR 66932 - The National Cancer Institute (NCI) Announces the Initiation of a Public Private Industry...

    Science.gov (United States)

    2011-10-28

    ... promising opportunities based on nanotechnology from academic research to the clinical environment; 4... Initiation of a Public Private Industry Partnership on Translation of Nanotechnology in Cancer (TONIC) To Promote Translational Research and Development Opportunities of Nanotechnology-Based Cancer...

  17. Researcher views about funding sources and conflicts of interest in nanotechnology.

    Science.gov (United States)

    McComas, Katherine A

    2012-12-01

    Dependence in nanotechnology on external funding and academic-industry relationships has led to questions concerning its influence on research directions, as well as the potential for conflicts of interest to arise and impact scientific integrity and public trust. This study uses a survey of 193 nanotechnology industry and academic researchers to explore whether they share similar concerns. Although these concerns are not unique to nanotechnology, its emerging nature and the prominence of industry funding lend credence to understanding its researchers' views, as these researchers are shaping the norms and direction of the field. The results of the survey show general agreement that funding sources are influencing research directions in nanotechnology; many respondents saw this influence in their own work as well as other researchers' work. Respondents also agreed that funding considerations were likely to influence whether researchers shared their results. Irrespective of their institutional affiliation or funding status, twice as many researchers as not considered financial conflicts of interest a cause for concern, and three times as many respondents as not disagreed financial conflicts of interest in nanotechnology were uncommon. Only a third was satisfied with the way that conflicts of interest are currently managed and believed current procedures would protect the integrity of nanotechnology research. The results also found differences in views depending on researchers' institutional affiliation and funding status.

  18. Nanoscience and nanotechnologies in food industries: opportunities and research trends

    Science.gov (United States)

    Ranjan, Shivendu; Dasgupta, Nandita; Chakraborty, Arkadyuti Roy; Melvin Samuel, S.; Ramalingam, Chidambaram; Shanker, Rishi; Kumar, Ashutosh

    2014-06-01

    Nanomaterials have gained importance in various fields of science, technology, medicine, colloid technologies, diagnostics, drug delivery, personal care applications and others due to their small size and unique physico-chemical characteristic. Apart from above mentioned area, it is also extensively being used in food sector specifically in preservation and packaging. The future applications in food can also be extended to improve the shelf life, food quality, safety, fortification and biosensors for contaminated or spoiled food or food packaging. Different types and shapes of nanomaterials are being employed depending upon the need and nature of the food. Characterisation of these nanomaterials is essential to understand the interaction with the food matrix and also with biological compartment. This review is focused on application of nanotechnology in food industries. It also gives insight on commercial products in market with usage of nanomaterials, current research and future aspects in these areas. Currently, they are being incorporated into commercial products at a faster rate than the development of knowledge and regulations to mitigate potential health and environmental impacts associated with their manufacturing, application and disposal. As nanomaterials are finding new application every day, care should be taken about their potential toxic effects.

  19. Potential Applications of Nanotechnology for the Diagnosis and Treatment of Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Joshua eMcCarroll

    2014-01-01

    Full Text Available Despite improvements in our understanding of pancreatic cancer and the emerging concept of personalized medicine for the treatment of this disease, it is still the fourth most common cause of cancer death in the western world. It is established that pancreatic cancer is a highly heterogeneous disease with a complex tumor microenvironment. Indeed the extensive stroma surrounding the cancer cells has been shown to be important in promoting tumor growth and metastases, as well as sequestering chemotherapeutic agents consequently decreasing delivery to the tumor cells. Nanotechnology has come to the forefront in the areas of medical diagnostics, imaging, and therapeutic drug delivery. This review will focus on the potential applications of nanotechnology for diagnosis, imaging, and delivery of therapeutic agents for the treatment of pancreatic cancer.

  20. Research on the societal impacts of nanotechnology: a preliminary comparison of USA, Europe and Japan.

    Science.gov (United States)

    Matsuda, Masami; Hunt, Geoffrey

    2009-01-01

    We initiate some comparisons between Japan, Europe and USA on how far there is governmental support for the ethical, legal, social and environmental dimensions of nanotechnology development. It is evident that in the USA and Europe nanotechnology is now firmly embedded in the consideration of ELSI. Yet Japan has not yet adequately recognized the importance of these dimensions. The history of bioethics in Japan is short. In Europe, as early as 2004, a nanotechnology report by the UK's Royal Society referred to the possibility of some nanotubes and fibres having asbestos-like toxicity. The negative history of asbestos in Europe and USA is not yet fully identified as a Japanese problem. Japan is therefore in the process of seeking how best to address societal aspects of nanotechnology. Should the precautionary principle be applied to Japan's nanotechnology initiative as in Europe? Should 5-10% of the government's nanotechnology budget be allocated to ELSI research and measures? We propose that the government and industrial sector in Japan play a much more proactive part in the regional and international growth of research into the wider risk assessment, social, health and environmental context of nanotechnologies, not simply try to borrow lessons from the West at a later date.

  1. Advanced Lung Cancer Screening: An Individualized Molecular Nanotechnology Approach

    Science.gov (United States)

    2016-03-01

    Bethesda, MD, USA2014. Available from: http://seer.cancer.gov/ csr /1975_2011/. 4. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA: a cancer...Bioinformatics 2015. Available from: http:// genome.uscs.edu. 35. Brandes JC, Carraway H, Herman JG. Optimal primer design using the novel primer design...Cancer Statistics Review, 1975-2011. http://seer.cancer.gov/ csr /1975_2011/. 2. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J

  2. Structure of the Global Nanoscience and Nanotechnology Research Literature

    Science.gov (United States)

    2006-01-01

    and stability of low-content gold- cerium oxide catalysts for the water-gas shift reaction Cluster Metrics Authors wu, sh 7 wang, xy 7 zheng...Nanoparticle; Nanotube; Nanostructure; Nanocomposite; Nanowire; Nanocrystal; Nanofiber; Nanofibre; Nanosphere; Nanorod; Nanotechnology; Nanocluster ...properties/thermal properties, crystal structure/crystallinity • Phenomena: Deposition, oxidation , crystallization, catalytic activity, nucleation

  3. [Contribution of research to the responsible and sustainable development of nanotechnologies].

    Science.gov (United States)

    Iavicoli, S; Boccuni, F

    2008-01-01

    The newly-fledged nanotechnologies offer opportunities for social development but uncertainties prevail about their impact on human and environmental health. Right now there is still a huge gap between technological progress and research into the health and safety aspects of nanomaterials. This is clear from the quantity of nano-products already on the market--more than 600--and the public and private funds dedicated to the development of nanotechnologies, which are almost a hundred times those available for research into their effects on health and safety. Estimates have it that by 2014 nanotechnologies will be widely used in our society, and ten million new jobs will be created. Therefore it becomes essential to plan an integrated approach to specific risk analysis at work. The following gaps and needs come to light: limited information; difficulties in relating nanotechnologies and production of nanomaterials to specific areas of application; efforts required to assess the hazards posed by nanomaterials in realistic exposure conditions; ethical issues about nanotechnology in the workplace likely to arise from today's knowledge about the hazards of nanomaterials and the risks they may pose to workers. An integrated approach to research, cooperation and communication strategies is essential if we are to direct our efforts towards responsible and sustainable growth of nanotechnologies.

  4. How can nanotechnology help membrane vesicle-based cancer immunotherapy development?

    Science.gov (United States)

    Tian, Xin; Zhu, Motao; Nie, Guangjun

    2013-01-01

    Exosomes are nanosized vesicles originating from endosomal compartments and secreted by most living cells. In the past decade, exosomes have emerged as potent tools for cancer immunotherapy due to their important roles in modulation of immune responses, and promising results have been achieved in exosome-based immunotherapy. The recent rapid progress of nanotechnology, especially on tailored design of nanocarriers for drug delivery based on both passive and active targeting strategies, sheds light on re-engineering native membrane vesicles for enhanced immune regulation and therapy. Applications of nanotechnology toolkits might provide new opportunity not only for value-added therapeutic or diagnostic strategies based on exosomes in cancer immunotherapy, but also new insights for biogenesis and biological relevance of membrane vesicles. This commentary focuses on the recent development and limitations of using exosomes in cancer immunotherapy and our perspectives on how nanomaterials with potential immune regulatory effects could be introduced into exosome-based immunotherapy.

  5. Bio-Nanotechnology: Challenges for Trainees in a Multidisciplinary Research Program

    Science.gov (United States)

    Koehne, Jessica Erin

    2009-01-01

    The recent developments in the field of nanotechnology have provided scientists with a new set of nanoscale materials, tools and devices in which to investigate the biological science thus creating the mulitdisciplinary field of bio-nanotechnology. Bio-nanotechnology merges the biological sciences with other scientific disciplines ranging from chemistry to engineering. Todays students must have a working knowledge of a variety of scientific disciplines in order to be successful in this new field of study. This talk will provide insight into the issue of multidisciplinary education from the perspective of a graduate student working in the field of bio-nanotechnology. From the classes we take to the research we perform, how does the modern graduate student attain the training required to succeed in this field?

  6. Skin Cancer and Its Treatment: Novel Treatment Approaches with Emphasis on Nanotechnology

    Directory of Open Access Journals (Sweden)

    Kristjan Orthaber

    2017-01-01

    Full Text Available The life expectancy in the Western world is increasing for a long time, which is the courtesy of a higher life standard, a more thorough hygiene, and, of course, the progress of modern medicine. Nevertheless, one of the illnesses that still proves to be a great challenge regardless of the recent advancements in medicine is cancer. Skin cancer is, according to the World Health Organization, the most common malignancy for the white population. The beginning of the paper offers a brief overview of the latest available information concerning epidemiology, aetiology, diagnostics, and treatment options for skin cancer, whereas the rest of the article deals with modern approaches to skin cancer treatment, highlighting recent development of nanotechnology based treatment approaches. Among these, we focus especially on the newest nanotechnological approaches combined with chemotherapy, a field which specialises in target specificity, drug release control, and real time monitoring with the goal being to diminish unwanted side effects and their severity, achieving a cheaper treatment and a generally more efficient chemotherapy. The field of nanotechnology is a rapidly developing one, judging by already approved clinical studies or by new theranostic agents that combine both the therapeutic and diagnostic modalities.

  7. 2nd FP7 Conference and International Summer School Nanotechnology : From Fundamental Research to Innovations

    CERN Document Server

    Yatsenko, Leonid

    2015-01-01

    This book presents some of the latest achievements in nanotechnology and nanomaterials from leading researchers in Ukraine, Europe, and beyond. It features contributions from participants in the 2nd International Summer School “Nanotechnology: From Fundamental Research to Innovations” and International Research and Practice Conference “Nanotechnology and Nanomaterials”, NANO-2013, which were held in Bukovel, Ukraine on August 25-September 1, 2013. These events took place within the framework of the European Commission FP7 project Nanotwinning, and were organized jointly by the Institute of Physics of the National Academy of Sciences of Ukraine, University of Tartu (Estonia), University of Turin (Italy), and Pierre and Marie Curie University (France). Internationally recognized experts from a wide range of universities and research institutions share their knowledge and key results on topics ranging from nanooptics, nanoplasmonics, and interface studies to energy storage and biomedical applications. Pr...

  8. Perspectives of Nanotechnology in Minimally Invasive Therapy of Breast Cancer

    Directory of Open Access Journals (Sweden)

    Yamin Yang

    2013-01-01

    Full Text Available Breast cancer, the most common type of cancer among women in the western world, affects approximately one out of every eight women over their lifetime. In recognition of the high invasiveness of surgical excision and severe side effects of chemical and radiation therapies, increasing efforts are made to seek minimally invasive modalities with fewer side effects. Nanoparticles (<100 nm in size have shown promising capabilities for delivering targeted therapeutic drugs to cancer cells and confining the treatment mainly within tumors. Additionally, some nanoparticles exhibit distinct properties, such as conversion of photonic energy into heat, and these properties enable eradication of cancer cells. In this review, current utilization of nanostructures for cancer therapy, especially in minimally invasive therapy, is summarized with a particular interest in breast cancer.

  9. Types of Cancer Research

    Science.gov (United States)

    An infographic from the National Cancer Institute (NCI) describing the four broad categories of cancer research: basic research, clinical research, population-based research, and translational research.

  10. Nanotechnology-Based Drug Delivery Systems for Photodynamic Therapy of Cancer: A Review.

    Science.gov (United States)

    Calixto, Giovana Maria Fioramonti; Bernegossi, Jéssica; de Freitas, Laura Marise; Fontana, Carla Raquel; Chorilli, Marlus

    2016-03-11

    Photodynamic therapy (PDT) is a promising alternative approach for improved cancer treatment. In PDT, a photosensitizer (PS) is administered that can be activated by light of a specific wavelength, which causes selective damage to the tumor and its surrounding vasculature. The success of PDT is limited by the difficulty in administering photosensitizers (PSs) with low water solubility, which compromises the clinical use of several molecules. Incorporation of PSs in nanostructured drug delivery systems, such as polymeric nanoparticles (PNPs), solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs), gold nanoparticles (AuNPs), hydrogels, liposomes, liquid crystals, dendrimers, and cyclodextrin is a potential strategy to overcome this difficulty. Additionally, nanotechnology-based drug delivery systems may improve the transcytosis of a PS across epithelial and endothelial barriers and afford the simultaneous co-delivery of two or more drugs. Based on this, the application of nanotechnology in medicine may offer numerous exciting possibilities in cancer treatment and improve the efficacy of available therapeutics. Therefore, the aim of this paper is to review nanotechnology-based drug delivery systems for photodynamic therapy of cancer.

  11. Breast Cancer Research Update

    Science.gov (United States)

    ... JavaScript on. Feature: Breast Cancer Breast Cancer Research Update Winter 2017 Table of Contents National Cancer Institute ... Addressing Breast Cancer's Unequal Burden / Breast Cancer Research Update Winter 2017 Issue: Volume 11 Number 4 Page ...

  12. Nano-energy research trends: bibliometrical analysis of nanotechnology research in the energy sector

    Energy Technology Data Exchange (ETDEWEB)

    Menendez-Manjon, Ana; Moldenhauer, Kirsten; Wagener, Philipp [Laser Zentrum Hannover e.V. (Germany); Barcikowski, Stephan, E-mail: stephan.barcikowski@uni-due.de [University of Duisburg-Essen, Chair of Technical Chemistry I (Germany)

    2011-09-15

    Nano-energy, the part of nanotechnology dedicated to the study and improvement of the Energy Supply Sector, is a promising and perspective research field. A robust method to quantify international scientific activities in this field is the literature search. An evaluative bibliometric approach applied to the Science Citation Index has been done to retrieve a set of articles related to nano-energy and get knowledge of the direction and trends followed by this particular scientific topic. The resulting database showed an exponential increase of the number of publications issuing nano-based investigations in the energy sector in the last decade, accelerating to an annual growth rate of 1,100%. The most cited articles and the material-clustering protocol revealed that carbon-nanoelements and their application in solar energy harvesting and conversion, and energy storage devices have been principally investigated and represent the main focus in that continuously growing research field. The number of nanotechnology-related papers in the energy database increased monotonically for harvesting, conversion, and storage the last decade, being energy distribution and usage not affected. TiO{sub 2} or SnO{sub 2} nanoparticles or thin films, and nanocomposites occupied the following top positions in the investigated material ranking. This trend was constant along the decade, as confirmed by network analyses. Supported by discipline-clustering, we observed the fundamental character of the research developed between 2000 and 2009, relying mainly on material science and chemistry. Hence, further implementation of nanotechnology findings is needed to stimulate nano-based energy-focused technologies reaching widespread commercial applications.

  13. Nano-energy research trends: bibliometrical analysis of nanotechnology research in the energy sector

    Science.gov (United States)

    Menéndez-Manjón, Ana; Moldenhauer, Kirsten; Wagener, Philipp; Barcikowski, Stephan

    2011-09-01

    Nano-energy, the part of nanotechnology dedicated to the study and improvement of the Energy Supply Sector, is a promising and perspective research field. A robust method to quantify international scientific activities in this field is the literature search. An evaluative bibliometric approach applied to the Science Citation Index has been done to retrieve a set of articles related to nano-energy and get knowledge of the direction and trends followed by this particular scientific topic. The resulting database showed an exponential increase of the number of publications issuing nano-based investigations in the energy sector in the last decade, accelerating to an annual growth rate of 1,100%. The most cited articles and the material-clustering protocol revealed that carbon-nanoelements and their application in solar energy harvesting and conversion, and energy storage devices have been principally investigated and represent the main focus in that continuously growing research field. The number of nanotechnology-related papers in the energy database increased monotonically for harvesting, conversion, and storage the last decade, being energy distribution and usage not affected. TiO2 or SnO2 nanoparticles or thin films, and nanocomposites occupied the following top positions in the investigated material ranking. This trend was constant along the decade, as confirmed by network analyses. Supported by discipline-clustering, we observed the fundamental character of the research developed between 2000 and 2009, relying mainly on material science and chemistry. Hence, further implementation of nanotechnology findings is needed to stimulate nano-based energy-focused technologies reaching widespread commercial applications.

  14. Therapeutic Potential of Delivering Arsenic Trioxide into HPV-Infected Cervical Cancer Cells Using Liposomal Nanotechnology

    Science.gov (United States)

    Wang, Xiaoyan; Li, Dong; Ghali, Lucy; Xia, Ruidong; Munoz, Leonardo P.; Garelick, Hemda; Bell, Celia; Wen, Xuesong

    2016-02-01

    Arsenic trioxide (ATO) has been used successfully to treat acute promyelocytic leukaemia, and since this discovery, it has also been researched as a possible treatment for other haematological and solid cancers. Even though many positive results have been found in the laboratory, wider clinical use of ATO has been compromised by its toxicity at higher concentrations. The aim of this study was to explore an improved method for delivering ATO using liposomal nanotechnology to evaluate whether this could reduce drug toxicity and improve the efficacy of ATO in treating human papillomavirus (HPV)-associated cancers. HeLa, C33a, and human keratinocytes were exposed to 5 μm of ATO in both free and liposomal forms for 48 h. The stability of the prepared samples was tested using inductively coupled plasma optical emission spectrometer (ICP-OES) to measure the intracellular arsenic concentrations after treatment. Fluorescent double-immunocytochemical staining was carried out to evaluate the protein expression levels of HPV-E6 oncogene and caspase-3. Cell apoptosis was analysed by flow cytometry. Results showed that liposomal ATO was more effective than free ATO in reducing protein levels of HPV-E6 and inducing cell apoptosis in HeLa cells. Moreover, lower toxicity was observed when liposomal-delivered ATO was used. This could be explained by lower intracellular concentrations of arsenic. The slowly accumulated intracellular ATO through liposomal delivery might act as a reservoir which releases ATO gradually to maintain its anti-HPV effects. To conclude, liposome-delivered ATO could protect cells from the direct toxic effects induced by higher concentrations of intracellular ATO. Different pathways may be involved in this process, depending on local architecture of the tissues and HPV status.

  15. Development of a Nanotechnology Platform for Prostate Cancer Gene Therapy

    Science.gov (United States)

    2013-07-01

    symposium will be held at the Hilton Omaha, Nebraska’s only 4 diamond hotel , located at 1001 Cass Street and within easy walking distance of the Old...Accommodations are available at the Hilton Omaha at reduced conference rates. Alternate accommodations may also be found at several nearby hotels ...endosome membrane, and d) a nuclear localization signal (NLS) to actively translocate pDNA towards the nucleus of cancer cells. The gene delivery system

  16. NanoSTAIR: A new strategic proposal to impulse standardization in nanotechnology research

    NARCIS (Netherlands)

    Ipiña, J.M.L. de; Salvi, O.; Hazebrouck, B.; Jovanovic, A.; Carre, F.; Saamanen, A.; Brouwer, D.; Schmitt, M.; Martin, S.

    2015-01-01

    Nanotechnology is considered one of the key technologies of the 21st century within Europe and a Key-Enabling Technology (KET) by Horizon 2020. Standardization has been identified in H2020 as one of the innovation-support measures by bridging the gap between research and the market, and helping the

  17. Nanotechnology and Ethics: The Role of Regulation Versus Self-Commitment in Shaping Researchers' Behavior

    NARCIS (Netherlands)

    Fink, M.; Harms, Rainer; Hatak, I.

    2012-01-01

    The governance of nanotechnology seeks to limit its risks, without constraining opportunities. The literature on the effectiveness of approaches to governance has neglected approaches that impact directly on the behavior of a researcher. We analyze the effectiveness of legal regulations versus regul

  18. 76 FR 8788 - National Nanotechnology Coordination Office; Bridging NanoEHS Research Efforts: A Joint US-EU...

    Science.gov (United States)

    2011-02-15

    ...-EU Workshop: Public Meeting AGENCY: National Nanotechnology Coordination Office, STPO. ACTION: Notice... nanomaterials and nanotechnology-enabled products, to encourage joint US-EU programs of work that would leverage... contact/ interest groups/themes between key US and EU researchers for near-term and future...

  19. Nanotechnology: Future of Oncotherapy.

    Science.gov (United States)

    Gharpure, Kshipra M; Wu, Sherry Y; Li, Chun; Lopez-Berestein, Gabriel; Sood, Anil K

    2015-07-15

    Recent advances in nanotechnology have established its importance in several areas including medicine. The myriad of applications in oncology range from detection and diagnosis to drug delivery and treatment. Although nanotechnology has attracted a lot of attention, the practical application of nanotechnology to clinical cancer care is still in its infancy. This review summarizes the role that nanotechnology has played in improving cancer therapy, its potential for affecting all aspects of cancer care, and the challenges that must be overcome to realize its full promise.

  20. EDITORIAL: Nanotechnological selection Nanotechnological selection

    Science.gov (United States)

    Demming, Anna

    2013-01-01

    across the channel. The aim of achieving selectivity encompasses a huge range of fields in nanotechnology research, from sensing and medicine to nanoelectronics and self-assembly. As our understanding of how nanosystems behave deepens, so too does the hunger to improve our capabilities, allowing greater precision and control in manipulating these systems. Selectivity is far from trivial when shrinking to systems of nanoscale dimensions, but the range of opportunities it brings just keeps on growing. References [1] Gong X, Li J, Guo C, Xu K and Hui Y 2012 Molecular switch for tuning ions across nanopores by an external electric field Nanotechnology 24 025502 [2] Brannon-Peppas L and Blanchette J O 2004 Nanoparticle and targeted systems for cancer therapy Adv. Drug Deliv. Rev 56 1649-59 [3] Lukianova-Hleb E Y, Hanna E Y, Hafner J H and Lapotko D O 2010 Tunable plasmonic nanobubbles for cell theranostics Nanotechnology 21 085102 [4] Zhang T, Mubeen S, Myung N V and Deshusses M A 2008 Recent progress in carbon nanotube-based gas sensors Nanotechnology 19 332001 [5] Mangu R, Rajaputra S and Singh V P 2011 MWCNT-polymer composites as highly sensitive and selective room temperature gas sensors Nanotechnology 22 215502 [6]Meller A, Nivon L, Brandin E, Golovchenko J and Branton D 2000 Rapid nanopore discrimination between single polynucleotide molecules Proc. Natl Acad. Sci. 97 1079-84 [7] Asghar W, Ilyas A, Deshmukh R R, Sumitsawan S, Timmons R B and Iqbal S M 2011 Pulsed plasma polymerization for controlling shrinkage and surface composition of nanopores Nanotechnology 22 285304

  1. Use of Nanotechnology to Develop Multi-Drug Inhibitors For Cancer Therapy.

    Science.gov (United States)

    Gowda, Raghavendra; Jones, Nathan R; Banerjee, Shubhadeep; Robertson, Gavin P

    2013-12-01

    Therapeutic agents that inhibit a single target often cannot combat a multifactorial disease such as cancer. Thus, multi-target inhibitors (MTIs) are needed to circumvent complications such as the development of resistance. There are two predominant types of MTIs, (a) single drug inhibitor (SDIs) that affect multiple pathways simultaneously, and (b) combinatorial agents or multi-drug inhibitors (MDIs) that inhibit multiple pathways. Single agent multi-target kinase inhibitors are amongst the most prominent class of compounds belonging to the former, whereas the latter includes many different classes of combinatorial agents that have been used to achieve synergistic efficacy against cancer. Safe delivery and accumulation at the tumor site is of paramount importance for MTIs because inhibition of multiple key signaling pathways has the potential to lead to systemic toxicity. For this reason, the development of drug delivery mechanisms using nanotechnology is preferable in order to ensure that the MDIs accumulate in the tumor vasculature, thereby increasing efficacy and minimizing off-target and systemic side effects. This review will discuss how nanotechnology can be used for the development of MTIs for cancer therapy and also it concludes with a discussion of the future of nanoparticle-based MTIs as well as the continuing obstacles being faced during the development of these unique agents.'

  2. Potential of nanotechnology as a delivery platform against tuberculosis: current research review.

    Science.gov (United States)

    Choudhary, S; Kusum Devi, V

    2015-03-28

    This review focusses on the current ongoing research in the field of tuberculosis comprising the resistant strains. It specifies a proper data analysis with results in concise form from areas gripping in: diagnostic nanotechnology, vaccine nanotechnology and the prime field of interest i.e., therapeutic nanotechnology. Primarily, therapeutic area recollects the research findings from advanced drug delivery (primary era) to the targeted drug delivery (modern era). The vaccine-based area derives the immune-specific targeting with enhanced emphasis on vaccine extraction and preparation of nanoparticles. Finally, the diagnostic area signifies the imaging techniques that may be employed in the diagnosis of TB. Not only that, there are some researches that emphasized on finding the comparable diagnostic differences between normal and resistant strains. With the advent of carbon nanotubes, metallic NPs, a newer hope has emerged out in diagnostic research, which may extend to therapeutic research applications too. Modifications of natural polymers, least or no use of organic solvents, size controlled NPs, optimized methodology, etc., are fields that need more effort to bypass toxicity. If above desired possibilities get the priority during research, it may lead to shift in the timeline towards much more oriented research.

  3. Nanotechnology Research Directions for Societal Needs in 2020 Retrospective and Outlook

    CERN Document Server

    Roco, Mihail C; Mirkin, Chad A

    2011-01-01

    This volume presents a comprehensive perspective on the global scientific, technological, and societal impact of nanotechnology since 2000, and explores the opportunities and research directions in the next decade to 2020.  The vision for the future of nanotechnology presented here draws on scientific insights from U.S. experts in the field, examinations of lessons learned, and international perspectives shared by participants from 35 countries in a series of high-level workshops organized by Mike Roco of the National Science Foundation (NSF), along with a team of American co-hosts that includes Chad Mirkin, Mark Hersam, Evelyn Hu, and several other eminent U.S. scientists.  The study performed in support of the U.S. National Nanotechnology Initiative (NNI) aims to redefine the R&D goals for nanoscale science and engineering integration and to establish nanotechnology as a general-purpose technology in the next decade. It intends to provide decision makers in academia, industry, and government with a n...

  4. Selected proceedings of the FP7 International Summer School Nanotechnology: From Fundamental Research to Innovations

    CERN Document Server

    Yatsenko, Leonid; Brodin, Mikhaylo; Nanomaterials imaging techniques, surface studies, and applications

    2013-01-01

    This book presents cutting-edge research on a wide range of nanotechnology techniques and applications.  It features contributions from scientists who participated in the International Summer School “Nanotechnology: From Fundamental Research to Innovations” in Bukovel, Ukraine on August 26 – September 2, 2012 funded by the European Commission FP7 project Nanotwinning implemented by the Institute of Physics of National Academy of Sciences of Ukraine and partner institutions: University of Tartu (Estonia), European Profiles A.E. (Greece), University of Turin (Italy) and Université Pierre et Marie Curie (France).  Worldwide experts present the latest results on such key topics as microscopy of nanostructures; nanocomposites; nanostructured interfaces and surfaces; nanooptics; nanoplasmonics; and enhanced vibrational spectroscopy.  Imaging technique coverage ranges from atomic force microscopy and spectroscopy, multiphoton imagery, and laser diagnostics of nanomaterials and nanostructures, to resonance ...

  5. Research priorities to advance eco-responsible nanotechnology.

    Science.gov (United States)

    Alvarez, Pedro J J; Colvin, Vicki; Lead, Jamie; Stone, Vicki

    2009-07-28

    Manufactured nanomaterials (MNMs) are rapidly being incorporated into a wide variety of commercial products with significant potential for environmental release, which calls for eco-responsible design and disposal of nanoenabled products. Critical research needs to advance this urgent priority include (1) structure-activity relationships to predict functional stability and chemistry of MNMs in the environment and to discern properties that increase their bioavailability, bioaccumulation, and toxicity; (2) standardized protocols to assess MNM bioavailability, trophic transfer, and sublethal effects; and (3) validated multiphase fate and transport models that consider various release scenarios and predict the form and concentration of MNMs at the point of exposure. These efforts would greatly benefit from the development of robust analytical techniques to characterize and to track MNMs in the environment and to validate models and from shared reference MNM libraries.

  6. Research on Vibration Isolation Systems Used in Laser and Nanotechnologies

    Directory of Open Access Journals (Sweden)

    Justinas Kuncė

    2012-12-01

    Full Text Available The paper discusses the efficiency of a vibration isolation system made of the optical table and two negative-stiffness tables and considers excitation referring to harmonic and nonharmonic methods in the frequency range of 0,2–110 Hz. The article reviews the types and sources of vibrations and types of vibration isolation systems, including those of negative-stiffness. The paper also presents the methodology of experimental tests and proposes research on vibration transmissibility. A composite system consisting of two vibration isolation table having negative stiffness and an air table has been tested. The results and conclusions of experimental analysis are suggested at the end of the article.Article in Lithuanian

  7. Nanotechnology Research

    Science.gov (United States)

    2012-10-01

    critical feature size of Si-based, field-effect transistors has dropped below 50 nm, and yet continued reduction in transistor dimensions is...varied in our experiments, we cannot determine the overall effect it has on switching behavior. A distinguishing feature of the TiOx-based devices...Slocik, J.E. Van Nostrand, N.J. Halas, and R.R. Naik, “Electrical conductivity of cationized ferritin decorated gold nanoshells ”, J. Appl. Phys. 111

  8. 75 FR 24972 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Nanotechnology...

    Science.gov (United States)

    2010-05-06

    ...--Nanotechnology Enterprise Consortium Notice is hereby given that, on April 1, 2010, pursuant to Section 6(a) of... venture are: Nanotechnology Enterprise, Inc. Columbia, MO; The Boeing Company, Chicago, IL; CertTech, LLC... collaborate on applying nanotechnology to create innovation products for commercial and military...

  9. Preclinical imaging and translational animal models of cancer for accelerated clinical implementation of nanotechnologies and macromolecular agents.

    Science.gov (United States)

    De Souza, Raquel; Spence, Tara; Huang, Huang; Allen, Christine

    2015-12-10

    The majority of animal models of cancer have performed poorly in terms of predicting clinical performance of new therapeutics, which are most often first evaluated in patients with advanced, metastatic disease. The development and use of metastatic models of cancer may enhance clinical translatability of preclinical studies focused on the development of nanotechnology-based drug delivery systems and macromolecular therapeutics, potentially accelerating their clinical implementation. It is recognized that the development and use of such models are not without challenge. Preclinical imaging tools offer a solution by allowing temporal and spatial characterization of metastatic lesions. This paper provides a review of imaging methods applicable for evaluation of novel therapeutics in clinically relevant models of advanced cancer. An overview of currently utilized models of oncology in small animals is followed by image-based development and characterization of visceral metastatic cancer models. Examples of imaging tools employed for metastatic lesion detection, evaluation of anti-tumor and anti-metastatic potential and biodistribution of novel therapies, as well as the co-development and/or use of imageable surrogates of response, are also discussed. While the focus is on development of macromolecular and nanotechnology-based therapeutics, examples with small molecules are included in some cases to illustrate concepts and approaches that can be applied in the assessment of nanotechnologies or macromolecules.

  10. A Comparative Study of Two Folate-Conjugated Gold Nanoparticles for Cancer Nanotechnology Applications

    Energy Technology Data Exchange (ETDEWEB)

    Mansoori, G. Ali, E-mail: mansoori@uic.edu; Brandenburg, Kenneth S. [Department of Bioengineering, University of Illinois at Chicago, 851 S. Morgan St. (MC 063), Chicago, IL 60607 (United States); Shakeri-Zadeh, Ali [Department of Medical Physics, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2010-11-18

    We report a comparative study of synthesis, characteristics and in vitro tests of two folate-conjugated gold nanoparticles (AuNP) differing in linkers and AuNP sizes for selective targeting of folate-receptor positive cancerous cells. The linkers chosen were 4-aminothiophenol (4Atp) and 6-mercapto-1-hexanol (MH) with nanoconjugate products named Folate-4Atp-AuNP and Folate-MH-AuNP. We report the folate-receptor tissue distribution and its endocytosis for targeted nanotechnology. Comparison of the two nanoconjugates’ syntheses and characterization is also reported, including materials and methods of synthesis, UV-visible absorption spectroscopic measurements, Fourier Transform Infra Red (FTIR) measurements, Transmission electron microscopy (TEM) images and size distributions, X-ray diffraction data, elemental analyses and chemical stability comparison. In addition to the analytical characterization of the nanoconjugates, the cell lethality was measured in HeLa (high level of folate receptor expression) and MCF-7 (low level of folate receptor expression) cells. The nanoconjugates themselves, as well as the intense pulsed light (IPL) were not harmful to cell viability. However, upon stimulation of the folate targeted nanoconjugates with the IPL, ~98% cell killing was found in HeLa cells and only ~9% in MCF-7 cells after four hours incubation with the nanoconjugate. This demonstrates that folate targeting is effective in selecting for specific cell populations. Considering the various comparisons made, we conclude that Folate-4Atp-AuNP is superior to Folate-MH-AuNP for cancer therapy.

  11. EDITORIAL: Multitasking in nanotechnology Multitasking in nanotechnology

    Science.gov (United States)

    Demming, Anna

    2013-06-01

    Nanostructures are smart. Like phones, where making calls is now just one of a long list of handy functions, researchers are increasingly developing nanostructures that seem a 'Jack of all trades' and a master of several. In this issue researchers at the Chinese Academy of Sciences and Northeastern University describe a nanoscale sensing device that not only detects oxygen, water vapour and H2S—at levels of H2S as low as 100 ppm—but powers itself at the same time [1]. With energy high on the agenda in research and commerce the work is likely to prove a valuable contribution in nanoscale technology research, where systems are famed not just for exhibiting rare and highly functional properties, but lots of them. In nanomedicine multifunctionality is particularly topical [2]. Twenty years ago it may have seemed hard to improve on the development of iron oxide nanoparticles capable of targeting proteins so that diseased tissues could be located in the living body through magnetic resonance imaging signals [3]. More recently researchers have demonstrated nanoparticles that not only target and trace the disease, but treat it too. Therapeutic and diagnostic functions are now combined in nanoparticles so often that researchers in the field have adopted a new term—theranostics. At Cornell University in the US, researchers reported the synthesis of gold and iron oxide hybrid nanoparticles that bind to an antigen present in colorectal cancer [4]. The nanoparticles could be traced using magnetic resonance or two-photon photoluminescence imaging, and they could also treat cancerous cells hyperthermally as a result of their high photothermal absorption. At the Universidad Autónoma de Madrid in Spain, researchers have investigated the effect of functionalizing nanoparticles on their biocompatibility and internalization [5]. Their results emphasize how charge is an important factor, with cationic magnetic nanoparticles proving best suited to cell tracking by magnetic

  12. Nanotechnology at KT

    DEFF Research Database (Denmark)

    Glarborg, Peter; Hassager, Ole; Jonsson, Gunnar Eigil

    2002-01-01

    The objective of this report is to provide the reader an overview of the research activities at the Department of Chemical Engineering in the area of "nanotechnology"......The objective of this report is to provide the reader an overview of the research activities at the Department of Chemical Engineering in the area of "nanotechnology"...

  13. 3rd International Summer School Nanotechnology : From Fundamental Research to Innovations

    CERN Document Server

    Yatsenko, Leonid

    2015-01-01

    This book highlights the most recent advances in nanoscience from leading researchers in Ukraine, Europe, and beyond.  It features contributions from participants of the 3rd International Summer School “Nanotechnology: From Fundamental Research to Innovations,” held in Yaremche, Ukraine on August 23-26, 2014 and of the 2nd International NANO-2014 Conference, held in Lviv, Ukraine on August 27-30, 2014.  These events took place within the framework of the European Commission FP7 project Nanotwinning, and were organized jointly by the Institute of Physics of the National Academy of Sciences of Ukraine, University of Tartu (Estonia), University of Turin (Italy), and Pierre and Marie Curie University (France).  Internationally recognized experts from a wide range of universities and research institutions share their knowledge and key results in the areas of nanocomposites and nanomaterials, nanostructured surfaces, microscopy of nano-objects, nano-optics and nanophotonics, nanoplasmonics, nanochemistry, na...

  14. Microfluidics & nanotechnology: Towards fully integrated analytical devices for the detection of cancer biomarkers

    KAUST Repository

    Perozziello, Gerardo

    2014-01-01

    In this paper, we describe an innovative modular microfluidic platform allowing filtering, concentration and analysis of peptides from a complex mixture. The platform is composed of a microfluidic filtering device and a superhydrophobic surface integrating surface enhanced Raman scattering (SERS) sensors. The microfluidic device was used to filter specific peptides (MW 1553.73 D) derived from the BRCA1 protein, a tumor-suppressor molecule which plays a pivotal role in the development of breast cancers, from albumin (66.5 KD), the most represented protein in human plasma. The filtering process consisted of driving the complex mixture through a porous membrane having a cut-off of 12-14 kD by hydrodynamic flow. The filtered samples coming out of the microfluidic device were subsequently deposited on a superhydrophobic surface formed by micro pillars on top of which nanograins were fabricated. The nanograins coupled to a Raman spectroscopy instrument acted as a SERS sensor and allowed analysis of the filtered sample on top of the surface once it evaporated. By using the presented platform, we demonstrate being able to sort small peptides from bigger proteins and to detect them by using a label-free technique at a resolution down to 0.1 ng μL-1. The combination of microfluidics and nanotechnology to develop the presented microfluidic platform may give rise to a new generation of biosensors capable of detecting low concentration samples from complex mixtures without the need for any sample pretreatment or labelling. The developed devices could have future applications in the field of early diagnosis of severe illnesses, e.g. early cancer detection. This journal is

  15. A Comparative Study of Two Folate-Conjugated Gold Nanoparticles for Cancer Nanotechnology Applications

    Directory of Open Access Journals (Sweden)

    Ali Shakeri-Zadeh

    2010-11-01

    Full Text Available We report a comparative study of synthesis, characteristics and in vitro tests of two folate-conjugated gold nanoparticles (AuNP differing in linkers and AuNP sizes for selective targeting of folate-receptor positive cancerous cells. The linkers chosen were 4-aminothiophenol (4Atp and 6-mercapto-1-hexanol (MH with nanoconjugate products named Folate-4Atp-AuNP and Folate-MH-AuNP. We report the folate-receptor tissue distribution and its endocytosis for targeted nanotechnology. Comparison of the two nanoconjugates’ syntheses and characterization is also reported, including materials and methods of synthesis, UV-visible absorption spectroscopic measurements, Fourier Transform Infra Red (FTIR measurements, Transmission electron microscopy (TEM images and size distributions, X-ray diffraction data, elemental analyses and chemical stability comparison. In addition to the analytical characterization of the nanoconjugates, the cell lethality was measured in HeLa (high level of folate receptor expression and MCF-7 (low level of folate receptor expression cells. The nanoconjugates themselves, as well as the intense pulsed light (IPL were not harmful to cell viability. However, upon stimulation of the folate targeted nanoconjugates with the IPL, ~98% cell killing was found in HeLa cells and only ~9% in MCF-7 cells after four hours incubation with the nanoconjugate. This demonstrates that folate targeting is effective in selecting for specific cell populations. Considering the various comparisons made, we conclude that Folate-4Atp-AuNP is superior to Folate-MH-AuNP for cancer therapy.

  16. EDITORIAL: Terahertz nanotechnology Terahertz nanotechnology

    Science.gov (United States)

    Demming, Anna; Tonouchi, Masayoshi; Reno, John L.

    2013-05-01

    A useful synergy is being established between terahertz research and nanotechnology. High power sources [1-3] and detectors [4] in what was once considered the terahertz 'frequency gap' [5] in the electromagnetic spectrum have stimulated research with huge potential benefits in a range of industries including food, medicine and security, as well as fundamental physics and astrophysics. This special section, with guest editors Masayoshi Tonouchi and John Reno, gives a glimpse of the new horizons nanotechnology is broaching in terahertz research. While the wavelengths relevant to the terahertz domain range from hundreds of micrometres to millimetres, structures at the nanoscale reveal interesting low energy dynamics in this region. As a result terahertz spectroscopy techniques are becoming increasingly important in nanomaterial characterization, as demonstrated in this special section by colleagues at the University of Oxford in the UK and the Australian National University. They use terahertz spectroscopy to identify the best nanostructure parameters for specific applications [6]. The low energy dynamics in nanostructures also makes them valuable tools for terahertz detection [7]. In addition the much sought after terahertz detection over broadband frequency ranges has been demonstrated, providing versatility that has been greatly in demand, particularly in spectroscopy applications [8, 9]. Also in this special section, researchers in Germany and China tackle some of the coupling issues in terahertz time domain spectroscopy with an emitter specifically well suited for systems operated with an amplified fibre [3]. 'In medical imaging, the advantage of THz radiation is safety, because its energy is much lower than the ionization energy of biological molecules, in contrast to hazardous x-ray radiation,' explains Joo-Hiuk Son from the University of Seoul in Korea in his review [10]. As he also points out, the rotational and vibrational energies of water molecules are

  17. Situation in Europe and the World: A Code of Conduct for Responsible European Research in Nanoscience and Nanotechnology

    Science.gov (United States)

    Galiay, Philippe

    The code of conduct for responsible research in nanoscience and nanotechnology adopted and proposed to the Member States of the European Union by the European Commission on 7 February 2008 is the only one of its kind in the world. It results from an approach that is unusual enough to deserve deeper analysis.

  18. Nanotechnology for Treating Cancer: Pitfalls and Bridges on the Path to Nanomedicines

    Science.gov (United States)

    Despite their promise, only a few nano-formulated drugs are used in humans. The NCI Nanotechnology Characterization Lab helps companies and academic investigators maximize their chance of successful clinical use.

  19. Nanotechnology in Urology

    Science.gov (United States)

    Jayasimha, Sudhindra

    2017-01-01

    Introduction: Nanotechnology has revolutionized our approach to medical diagnostics as well as therapeutics and has spanned an entirely new branch of research. This review addresses the potential applications of Nanotechnology in Urology. This article is based on the Dr. Sitharaman Best Essay award of the Urological Society of India for 2016. Methods: A PubMed search was performed for all relevant articles using the terms, “nanotechnology, nanoparticles, nanoshells, nanoscaffolds, and nanofibers.” Results: The developments in diagnostics include novel techniques of imaging of genitourinary malignancies, prostate-specific antigen measurement, early detection of mutations that are diagnostic for polycystic kidney disease. The potential applications of nanotechnology are in the targeted therapy of genitourinary malignancies, erectile dysfunction, overactive bladder, bladder reconstruction, construction of artificial kidneys and biodegradable stents as well as in robotic surgery. Conclusions: Nanotechnology is a rapidly emerging branch of research in urology with diverse and clinically significant applications in diagnostics as well as therapeutics. PMID:28197024

  20. Nanotechnology for missiles

    Science.gov (United States)

    Ruffin, Paul B.

    2004-07-01

    Nanotechnology development is progressing very rapidly. Several billions of dollars have been invested in nanoscience research since 2000. Pioneering nanotechnology research efforts have been primarily conducted at research institutions and centers. This paper identifies developments in nanoscience and technology that could provide significant advances in missile systems applications. Nanotechnology offers opportunities in the areas of advanced materials for coatings, including thin-film optical coatings, light-weight, strong armor and missile structural components, embedded computing, and "smart" structures; nano-particles for explosives, warheads, turbine engine systems, and propellants to enhance missile propulsion; nano-sensors for autonomous chemical detection; and nano-tube arrays for fuel storage and power generation. The Aviation and Missile Research, Development, and Engineering Center (AMRDEC) is actively collaborating with academia, industry, and other Government agencies to accelerate the development and transition of nanotechnology to favorably impact Army Transformation. Currently, we are identifying near-term applications and quantifying requirements for nanotechnology use in Army missile systems, as well as monitoring and screening research and developmental efforts in the industrial community for military applications. Combining MicroElectroMechanical Systems (MEMS) and nanotechnology is the next step toward providing technical solutions for the Army"s transformation. Several research and development projects that are currently underway at AMRDEC in this technology area are discussed. A top-level roadmap of MEMS/nanotechnology development projects for aviation and missile applications is presented at the end.

  1. Societal response to nanotechnology: converging technologies–converging societal response research?

    NARCIS (Netherlands)

    Ronteltap, A.; Fischer, A.R.H.; Tobi, H.

    2011-01-01

    Nanotechnology is an emerging technology particularly vulnerable to societal unrest, which may hinder its further development. With the increasing convergence of several technological domains in the field of nanotechnology, so too could convergence of social science methods help to anticipate societ

  2. Nanotechnology in corneal neovascularization therapy--a review.

    Science.gov (United States)

    Gonzalez, Lilian; Loza, Raymond J; Han, Kyu-Yeon; Sunoqrot, Suhair; Cunningham, Christy; Purta, Patryk; Drake, James; Jain, Sandeep; Hong, Seungpyo; Chang, Jin-Hong

    2013-03-01

    Nanotechnology is an up-and-coming branch of science that studies and designs materials with at least one dimension sized from 1-100 nm. These nanomaterials have unique functions at the cellular, atomic, and molecular levels. The term "nanotechnology" was first coined in 1974. Since then, it has evolved dramatically and now consists of distinct and independent scientific fields. Nanotechnology is a highly studied topic of interest, as nanoparticles can be applied to various fields ranging from medicine and pharmacology, to chemistry and agriculture, to environmental science and consumer goods. The rapidly evolving field of nanomedicine incorporates nanotechnology with medical applications, seeking to give rise to new diagnostic means, treatments, and tools. Over the past two decades, numerous studies that underscore the successful fusion of nanotechnology with novel medical applications have emerged. This has given rise to promising new therapies for a variety of diseases, especially cancer. It is becoming abundantly clear that nanotechnology has found a place in the medical field by providing new and more efficient ways to deliver treatment. Ophthalmology can also stand to benefit significantly from the advances in nanotechnology research. As it relates to the eye, research in the nanomedicine field has been particularly focused on developing various treatments to prevent and/or reduce corneal neovascularization among other ophthalmologic disorders. This review article aims to provide an overview of corneal neovascularization, currently available treatments, and where nanotechnology comes into play.

  3. Nanotechnology Innovations

    Science.gov (United States)

    Malroy, Eric

    2010-01-01

    Nanotechnology is rapidly affecting all engineering disciplines as new products and applications are being found and brought to market. This session will present an overview of nanotechnology and let you learn about the advances in the field and how it could impact you. Some of the areas touched upon will be nanomaterials with their multifunctional capabilities, nanotechnology impact on energy systems, nanobiotechnology including nanomedicine, and nanotechnology relevant to space systems with a focus on ECLSS. Also, some important advances related to thermal systems will be presented as well as future predictions on nanotechnology.

  4. Systemic Delivery of Anti-miRNA for Suppression of Triple Negative Breast Cancer Utilizing RNA Nanotechnology.

    Science.gov (United States)

    Shu, Dan; Li, Hui; Shu, Yi; Xiong, Gaofeng; Carson, William E; Haque, Farzin; Xu, Ren; Guo, Peixuan

    2015-10-27

    MicroRNAs play important roles in regulating the gene expression and life cycle of cancer cells. In particular, miR-21, an oncogenic miRNA is a major player involved in tumor initiation, progression, invasion and metastasis in several cancers, including triple negative breast cancer (TNBC). However, delivery of therapeutic miRNA or anti-miRNA specifically into cancer cells in vivo without collateral damage to healthy cells remains challenging. We report here the application of RNA nanotechnology for specific and efficient delivery of anti-miR-21 to block the growth of TNBC in orthotopic mouse models. The 15 nm therapeutic RNA nanoparticles contains the 58-nucleotide (nt) phi29 pRNA-3WJ as a core, a 8-nt sequence complementary to the seed region of miR-21, and a 39-nt epidermal growth factor receptor (EGFR) targeting aptamer for internalizing RNA nanoparticles into cancer cells via receptor mediated endocytosis. The RNase resistant and thermodynamically stable RNA nanoparticles remained intact after systemic injection into mice and strongly bound to tumors with little or no accumulation in healthy organs 8 h postinjection, and subsequently repressed tumor growth at low doses. The observed specific cancer targeting and tumor regression is a result of several key attributes of RNA nanoparticles: anionic charge which disallows nonspecific passage across negatively charged cell membrane; "active" targeting using RNA aptamers which increases the homing of RNA nanoparticles to cancer cells; nanoscale size and shape which avoids rapid renal clearance and engulfment by lung macrophages and liver Kupffer cells; favorable biodistribution profiles with little accumulation in healthy organs, which minimizes nonspecific side effects; and favorable pharmacokinetic profiles with extended in vivo half-life. The results demonstrate the clinical potentials of RNA nanotechnology based platform to deliver miRNA based therapeutics for cancer treatment.

  5. Nanotechnology for social needs: contributions from Latin American research in the areas of health, energy and water

    Energy Technology Data Exchange (ETDEWEB)

    Invernizzi, Noela, E-mail: noela@ufpr.br; Foladori, Guillermo; Robles-Belmont, Eduardo; Záyago Lau, Edgar; Figueroa, Edgar Arteaga; Bagattolli, Carolina; Carrozza, Tomás Javier; Chiancone, Adriana; Urquijo, William [Universidade Federal do Paraná, Programa de Pós-Graduação em Políticas Públicas (Brazil)

    2015-05-15

    This paper reviews, based on data from scientific publications and research groups, the state of the art of nanotechnology research applied to the areas of medicine, energy and water in Latin America. Such areas have been considered as particularly relevant in order to meet the social needs of the developing countries. It is shown that the countries in the region have incorporated these areas to their nanotechnology agendas and several countries have increasing research capacities. However, such capacities are concentrated in Brazil and Mexico, while the regional cooperation networks are still weak. Although the research topics tend to align with relevant social issues, there are still a number of challenges so as the results of such investigations may be effectively reflected in quality of life improvements; one of them is that many publications and research topics are on basic science, which makes it difficult to evaluate their potential application field.

  6. EDITORIAL: Nanotechnology in vivo Nanotechnology in vivo

    Science.gov (United States)

    Demming, Anna

    2010-04-01

    Since the development of x-rays the ability to image inside our bodies has provided medicine with a potent diagnostic tool, as well as fascinating us with the eerie evidence of our mechanistic mortality. In December 2008 Osamu Shimomura, Martin Chalfie and Roger Y Tsien received a Nobel Prize for the discovery and development of the green fluorescent protein. The award recognised a new discovery that further facilitated our abilities to follow cellular activities and delve deeper into the workings of living organisms. Since the first observation of green fluorescent protein in jelly fish over thirty years ago, quantum dots have emerged as a potential alternative tool for imaging [1]. The advantages of quantum dots over organic dyes and fluorescent proteins include intense luminescence, high molar extinction coefficient, resistance to photobleaching, and broad excitation with narrow emission bands. However, one drawback for biological applications has been the layer of hydrophobic organic ligands often present at the surface as a result of the synthesis procedures. One solution to improve the solubility of quantum dots has been to conjugate them with a hydrophilic substance, as reported by Nie et al [2]. Chitosan is a hydrophilic, non-toxic, biocompatible and biodegradable substance and has been conjugated with quantum dots such as CdSe-ZnS [2] for bioassays and intracellular labelling. As well as luminescence, different nanoparticles present a variety of exceptional properties that render them useful in a range of bio applications, including MRI, drug delivery and cancer hyperthermia therapy. The ability to harness these various attributes in one system was reported by researchers in China, who incorporated magnetic nanoparticles, fluorescent quantum dots and pharmaceutical drugs into chitosan nanoparticles for multifunctional smart drug delivery systems [3]. More recently silicon quantum dots have emerged as a less cytotoxic alternative to CdSe for bio

  7. Ethical issues in nanotechnology.

    Science.gov (United States)

    Florczyk, Stephen J; Saha, Subrata

    2007-01-01

    Nanotechnology is a rapidly developing area in science involved with manipulating matter at the atomic or molecular level. Nanotechnology is typically defined at a scale on the order of less than approximately 100 nm. Matter possesses unique properties at these size levels that are neither Newtonian nor quantum, but between the two regimes.These unique properties have created significant interest and excitement, sparking numerous research investigations. Nanotechnology is a very broad field with many current and potential applications. Some important examples of applications include battlefield activated dynamic armor clothing for soldiers, additives to sunscreens, and diagnostic laboratories on a chip to monitor general personal health. Groundbreaking capabilities often raise new questions. Any new scientific or technological development has the usual concomitant associated ethical issues, specifically regarding containment and regulation. These ethical issues are more pronounced with nanotechnology due to the sharp divide between those who see its great potential and opponents who express fears. Nanotechnology supporters believe that it has the potential to transform our lives dramatically, while opponents of nanotechnology fear that self-replicating "nanobots" could escape from laboratories and reduce all life on earth to "gray goo. "These fears have swayed generally uninformed public opinions via the media and sensational entertainment. A critical discussion of ethical issues surrounding nanotechnology, including the interaction of nanotechnology with the body and the environment--nanobiotechnology--and regulation of nanotechnology, is presented. We advocate strong, uniform regulations for nanotechnology, but only the use of regulations as needed. The limited use of regulations prevents the regulations from becoming burdensome and inhibiting research in the field.

  8. Frontiers in transport phenomena research and education: Energy systems, biological systems, security, information technology and nanotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, T.L.; Faghri, A. [Department of Mechanical Engineering, The University of Connecticut, Storrs, CT 06269-3139 (United States); Viskanta, R. [School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907-2088 (United States)

    2008-09-15

    A US National Science Foundation-sponsored workshop entitled ''Frontiers in Transport Phenomena Research and Education: Energy Systems, Biological Systems, Security, Information Technology, and Nanotechnology'' was held in May of 2007 at the University of Connecticut. The workshop provided a venue for researchers, educators and policy-makers to identify frontier challenges and associated opportunities in heat and mass transfer. Approximately 300 invited participants from academia, business and government from the US and abroad attended. Based upon the final recommendations on the topical matter of the workshop, several trends become apparent. A strong interest in sustainable energy is evident. A continued need to understand the coupling between broad length (and time) scales persists, but the emerging need to better understand transport phenomena at the macro/mega scale has evolved. The need to develop new metrology techniques to collect and archive reliable property data persists. Societal sustainability received major attention in two of the reports. Matters involving innovation, entrepreneurship, and globalization of the engineering profession have emerged, and the responsibility to improve the technical literacy of the public-at-large is discussed. Integration of research thrusts and education activities is highlighted throughout. Specific recommendations, made by the panelists with input from the international heat transfer community and directed to the National Science Foundation, are included in several reports. (author)

  9. Potential applications of curcumin and its novel synthetic analogs and nanotechnology-based formulations in cancer prevention and therapy

    Directory of Open Access Journals (Sweden)

    Batra Surinder K

    2011-08-01

    Full Text Available Abstract Curcumin has attracted great attention in the therapeutic arsenal in clinical oncology due to its chemopreventive, antitumoral, radiosensibilizing and chemosensibilizing activities against various types of aggressive and recurrent cancers. These malignancies include leukemias, lymphomas, multiple myeloma, brain cancer, melanoma and skin, lung, prostate, breast, ovarian, liver, gastrointestinal, pancreatic and colorectal epithelial cancers. Curcumin mediates its anti-proliferative, anti-invasive and apoptotic effects on cancer cells, including cancer stem/progenitor cells and their progenies, through multiple molecular mechanisms. The oncogenic pathways inhibited by curcumin encompass the members of epidermal growth factor receptors (EGFR and erbB2, sonic hedgehog (SHH/GLIs and Wnt/β-catenin and downstream signaling elements such as Akt, nuclear factor-kappa B (NF-κB and signal transducers and activators of transcription (STATs. In counterbalance, the high metabolic instability and poor systemic bioavailability of curcumin limit its therapeutic efficacy in human. Of great therapeutic interest, the selective delivery of synthetic analogs or nanotechnology-based formulations of curcumin to tumors, alone or in combination with other anticancer drugs, may improve their chemopreventive and chemotherapeutic efficacies against cancer progression and relapse. Novel curcumin formulations may also be used to reverse drug resistance, eradicate the total cancer cell mass and improve the anticarcinogenic efficacy of the current anti-hormonal and chemotherapeutic treatments for patients with various aggressive and lethal cancers.

  10. Nanotechnology applications in thoracic surgery.

    Science.gov (United States)

    Hofferberth, Sophie C; Grinstaff, Mark W; Colson, Yolonda L

    2016-07-01

    Nanotechnology is an emerging, rapidly evolving field with the potential to significantly impact care across the full spectrum of cancer therapy. Of note, several recent nanotechnological advances show particular promise to improve outcomes for thoracic surgical patients. A variety of nanotechnologies are described that offer possible solutions to existing challenges encountered in the detection, diagnosis and treatment of lung cancer. Nanotechnology-based imaging platforms have the ability to improve the surgical care of patients with thoracic malignancies through technological advances in intraoperative tumour localization, lymph node mapping and accuracy of tumour resection. Moreover, nanotechnology is poised to revolutionize adjuvant lung cancer therapy. Common chemotherapeutic drugs, such as paclitaxel, docetaxel and doxorubicin, are being formulated using various nanotechnologies to improve drug delivery, whereas nanoparticle (NP)-based imaging technologies can monitor the tumour microenvironment and facilitate molecularly targeted lung cancer therapy. Although early nanotechnology-based delivery systems show promise, the next frontier in lung cancer therapy is the development of 'theranostic' multifunctional NPs capable of integrating diagnosis, drug monitoring, tumour targeting and controlled drug release into various unifying platforms. This article provides an overview of key existing and emerging nanotechnology platforms that may find clinical application in thoracic surgery in the near future.

  11. Global cancer research initiative

    Directory of Open Access Journals (Sweden)

    Richard R Love

    2010-05-01

    Full Text Available Richard R LoveThe Ohio State University Comprehensive Cancer Center, Columbus, OH, USAAbstract: Cancer is an increasing problem for low- and middle-income countries undergoing an epidemiologic transition from dominantly acute communicable disease to more frequent chronic disease with increased public health successes in the former domain. Progress against cancer in high-income countries has been modest and has come at enormous expense. There are several well-conceived global policy and planning initiatives which, with adequate political will, can favorably impact the growing global cancer challenges. Most financial resources for cancer, however, are spent on diagnosis and management of patients with disease in circumstances where specific knowledge about effective approaches is significantly limited, and the majority of interventions, other than surgery, are not cost-effective in resource-limited countries by global standards. In summary, how to intervene effectively on a global scale for the majority of citizens who develop cancer is poorly defined. In contrast to technology-transfer approaches, markedly increased clinical research activities are more likely to benefit cancer sufferers. In these contexts, a global cancer research initiative is proposed, and mechanisms for realizing such an effort are suggested.Keywords: breast cancer, research, global, international, low-income, middle-income

  12. Profiles in Cancer Research

    Science.gov (United States)

    These articles put a face to some of the thousands of individuals who contribute to NCI’s cancer research efforts. The profiles highlight the work of scientists and clinicians and describe the circumstances and motivation behind their work.

  13. Bioprinting for cancer research.

    Science.gov (United States)

    Knowlton, Stephanie; Onal, Sevgi; Yu, Chu Hsiang; Zhao, Jean J; Tasoglu, Savas

    2015-09-01

    Bioprinting offers the ability to create highly complex 3D architectures with living cells. This cutting-edge technique has significantly gained popularity and applicability in several fields. Bioprinting methods have been developed to effectively and rapidly pattern living cells, biological macromolecules, and biomaterials. These technologies hold great potential for applications in cancer research. Bioprinted cancer models represent a significant improvement over previous 2D models by mimicking 3D complexity and facilitating physiologically relevant cell-cell and cell-matrix interactions. Here we review bioprinting methods based on inkjet, microextrusion, and laser technologies and compare 3D cancer models with 2D cancer models. We discuss bioprinted models that mimic the tumor microenvironment, providing a platform for deeper understanding of cancer pathology, anticancer drug screening, and cancer treatment development.

  14. Is there a relationship between research sponsorship and publication impact? An analysis of funding acknowledgments in nanotechnology papers.

    Directory of Open Access Journals (Sweden)

    Jue Wang

    Full Text Available This study analyzes funding acknowledgments in scientific papers to investigate relationships between research sponsorship and publication impacts. We identify acknowledgments to research sponsors for nanotechnology papers published in the Web of Science during a one-year sample period. We examine the citations accrued by these papers and the journal impact factors of their publication titles. The results show that publications from grant sponsored research exhibit higher impacts in terms of both journal ranking and citation counts than research that is not grant sponsored. We discuss the method and models used, and the insights provided by this approach as well as it limitations.

  15. Nanotechnology in dentistry.

    Science.gov (United States)

    Saravana, Kumar R; Vijayalakshmi, R

    2006-01-01

    Nanotechnology is manipulating matter at nanometer level and the application of the same to medicine is called nanomedicine. Nanotechnology holds promise for advanced diagnostics, targeted drug delivery, and biosensors. In the long-term, medical nanorobots will allow instant pathogen diagnosis and extermination, individual cell surgery in vivo, and improvement of natural physiological function. Current research is focusing on fabrication of nanostructures, nanoactuators, and nanomotors, along with means to assemble them into larger systems, economically and in great numbers.

  16. Nanotechnology in dentistry

    Directory of Open Access Journals (Sweden)

    Kumar Saravana

    2006-01-01

    Full Text Available Nanotechnology is manipulating matter at nanometer level and the application of the same to medicine is called nanomedicine. Nanotechnology holds promise for advanced diagnostics, targeted drug delivery, and biosensors. In the long-term, medical nanorobots will allow instant pathogen diagnosis and extermination, individual cell surgery in vivo, and improvement of natural physiological function. Current research is focusing on fabrication of nanostructures, nanoactuators, and nanomotors, along with means to assemble them into larger systems, economically and in great numbers.

  17. What Students and Researchers in Nanoscience and Nanotechnology Should Know about PUS and STS: A Look at Fages and Albe's Viewpoint on Social Issues in Nanoscience and Nanotechnology Master's Degrees

    Science.gov (United States)

    Pouliot, Chantal

    2015-01-01

    In this paper, in order to pursue the conversation begun by Fages and Albe ("Cult Stud Sci Educ" 2014), I highlight three conceptual contributions that could be made by familiarizing nanoscience and nanotechnology researchers and engineers with the work being carried out in science and technology studies and public understanding of…

  18. (Updated) Nanotechnology: Understanding the Tiny Particles That May Save a Life | Poster

    Science.gov (United States)

    By Nathalie Walker, Guest Writer Could nanotechnology—the study of tiny matter ranging in size from 1 to 200 nanometers—be the future of cancer treatment? Although it is a relatively new field in cancer research, nanotechnology is not new to everyday life. Have you ever thought about the tennis ball you’ve thrown with your dog at the park and wondered what it is made of? Nanotechnology is used to make the tennis ball stronger.

  19. EDITORIAL: Nanotechnology under the skin Nanotechnology under the skin

    Science.gov (United States)

    Demming, Anna

    2011-07-01

    Concerns over health and ecological implications as living organisms are increasingly exposed to nanoparticles are constantly raised. Yet the use of nanoscale structures in technology and medicine has already infiltrated daily life in countless ways. from cosmetics and sun cream to mobile phones. The potential of nanotechnology in medicine is particularly difficult to ignore and ranges from cancer treatment to immune system activation [1]. The reduced dimensions of nanostructures lend them to targeted diagnostic and therapeutic practices that enable treatment with greater accuracy and less discomfort. Striking a balance between over caution and recklessness can be tricky, and provides an additional drive to investigate and learn more about the science of the nanoscale. Alongside investigations to exploit nanoparticles in medicine and technology, there have been a substantial number of studies to investigate the possible effects on our health, as well as some studies on the environmental ramifications. Researchers in the US have investigated the effects on aquatic life of ZnO nanoparticles, which may pollute lakes and rivers through accidental release during fabrication or as wash out from consumer materials [2]. The study is focused on zebrafish during early development. Zhu et al observe that while there may be evidence that Zn2+ ions and ZnO nanoparticles have toxic effects on zebrafish embryos, these effects are apparently mitigated by a type of sediment formulated from the nanoparticles. The positive contribution of nanotechnology in cancer treatment is an area of particularly high research activity at present. Although traditional chemotherapeutic agents can be effective against the growth of cancerous cells, they can have a detrimental effect on the immune system, which is critical in combating cancer. Researchers in China studied the behaviour of C60(OH)20 nanoparticles in vivo and found that they play important roles in the anti-tumour process by activating

  20. Targeted anticancer therapy: overexpressed receptors and nanotechnology.

    Science.gov (United States)

    Akhtar, Mohd Javed; Ahamed, Maqusood; Alhadlaq, Hisham A; Alrokayan, Salman A; Kumar, Sudhir

    2014-09-25

    Targeted delivery of anticancer drugs to cancer cells and tissues is a promising field due to its potential to spare unaffected cells and tissues, but it has been a major challenge to achieve success in these therapeutic approaches. Several innovative approaches to targeted drug delivery have been devised based on available knowledge in cancer biology and on technological advancements. To achieve the desired selectivity of drug delivery, nanotechnology has enabled researchers to design nanoparticles (NPs) to incorporate anticancer drugs and act as nanocarriers. Recently, many receptor molecules known to be overexpressed in cancer have been explored as docking sites for the targeting of anticancer drugs. In principle, anticancer drugs can be concentrated specifically in cancer cells and tissues by conjugating drug-containing nanocarriers with ligands against these receptors. Several mechanisms can be employed to induce triggered drug release in response to either endogenous trigger or exogenous trigger so that the anticancer drug is only released upon reaching and preferentially accumulating in the tumor tissue. This review focuses on overexpressed receptors exploited in targeting drugs to cancerous tissues and the tumor microenvironment. We briefly evaluate the structure and function of these receptor molecules, emphasizing the elegant mechanisms by which certain characteristics of cancer can be exploited in cancer treatment. After this discussion of receptors, we review their respective ligands and then the anticancer drugs delivered by nanotechnology in preclinical models of cancer. Ligand-functionalized nanocarriers have delivered significantly higher amounts of anticancer drugs in many in vitro and in vivo models of cancer compared to cancer models lacking such receptors or drug carrying nanocarriers devoid of ligand. This increased concentration of anticancer drug in the tumor site enabled by nanotechnology could have a major impact on the efficiency of cancer

  1. Nanotechnology in health care

    CERN Document Server

    Sahoo, Sanjeeb K

    2012-01-01

    Nanomedicine: Emerging Field of Nanotechnology to Human HealthNanomedicines: Impacts in Ocular Delivery and TargetingImmuno-Nanosystems to CNS Pathologies: State of the Art PEGylated Zinc Protoporphyrin: A Micelle-Forming Polymeric Drug for Cancer TherapyORMOSIL Nanoparticles: Nanomedicine Approach for Drug/Gene Delivery to the BrainMagnetic Nanoparticles: A Versatile System for Therapeutic and Imaging SystemNanobiotechnology: A New Generation of Biomedicine Application of Nanotechnology-Based Drug Delivery and Targeting to LungsAptamers and Nanomedicine in C

  2. Potential role of naturally derived polyphenols and their nanotechnology delivery in cancer.

    Science.gov (United States)

    Khushnud, Tasnima; Mousa, Shaker A

    2013-09-01

    Polyphenols are natural compounds found in plants, fruits, chocolate, and beverages such as tea and wine. To date, the majority of polyphenol research shows them to have anticancer activity in cell lines and animal models. Some human clinical trials also indicate possible anticancer benefits are associated with polyphenols. A problem with polyphenols is their short half-life and low bioavailability; thus the use of nanoparticles to enhance their delivery is a new research field. A Pubmed search was conducted to find in vitro, in vivo, and human clinical trials done within the past 10 years involving the use of polyphenols against different cancer types, and for studies done within the past 5 years on the use of nanoparticles to enhance polyphenol delivery. Based on the studies found, it is observed that polyphenols may be a potential alternative or additive therapy against cancer, and the use of nanoparticles to enhance their delivery to tumors is a promising approach. However, further human clinical trials are necessary to better understand the use of polyphenols as well as their nanoparticle-mediated delivery.

  3. Analysis of Co-Authorship Indicators, Betweenness Centrality and Structural Holes of the Iranian Nanotechnology Researchers in Science Citation Index (1991-2011

    Directory of Open Access Journals (Sweden)

    Mohammad Hassanzadeh

    2012-12-01

    Full Text Available This research aimed to investigate Iranian papers on nanotechnology area against some scientometrics indicators such as most prolific, most cited and so on. The statistical population were all papers have been published by Iranian researchers on nanotechnology in the Science Citation Index (SCI from 1991 to 7 August 2011 (4605 records that has been done with the aim of identifying, the most prolific, most cited and most effect of Iranian nanotechnology scientists. The results showed that the collaborative index in per-document was 3.39. The highest collaborative index was in 1997 with six authors by per-document. Iranian nanotechnology researchers' degree of collaboration was 0.96 this indicates, greater tendency of nanotechnology authors towards co-authorship. Considering total collaboration coefficient (0.64, nanotechnology authors have shown tendency to production of scientific collaborative document. The highest collaboration coefficient (0.83 And the lowest collaboration coefficient (0.5 have been allocated to the 1997 and 1991 respectively.

  4. Thinking on the Application of Nanotechnology in the Mechanism Research on the Traditional Chinese Medicine Diagnosis and Treatment of Diabetes Mellitus

    Energy Technology Data Exchange (ETDEWEB)

    Xu Yunxiang; Zhang Li; Chen Pengdian [Acupuncture and Massage College, Guangzhou University of Chinese Medicine, Guangzhou, 510405 (China); Chen Guizhen, E-mail: cgzhen2000@163.com [Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405 (China)

    2011-02-01

    Nanotechnology is an advanced scientific technique in the 21st century and diabetes mellitus (DM) is a commonly seen chronic disease, which seriously threatens the health of human beings. By analyzing the relationship between nanotechnology and biological medicine, nanotechnology and traditional Chinese medicine (TCM) and the advances and the existing problems of TCM diagnosing and treating DM, the application of nanotechnological methods for the mechanism research on TCM diagnosis and treatment of DM was discussed. It is indicated that nanotechnology is one of the fastest developmental, the most potential and the far-reaching high and new technologies in current world, and it greatly promotes the development of biological medicine and TCM. With the application of nanotechnology of medical diagnostics and medical materials, it will make the development of TCM possess an unprecedented field, which consequently could integrate the macroscopical and microscopical syndrome differentiation. It's pointed out that breakthrough will be achieved from the research of the administration route, the improvement of medical biological availability and the selection of the acupoint prescriptions on mechanism research on TCM for the diagnosis and treatment of diabetes mellitus.

  5. Nanotechnology in the Security

    CERN Document Server

    Kruchinin, Sergei

    2015-01-01

    The topics discussed at the NATO Advanced Research Workshop "Nanotechnology in the Security Systems" included nanophysics,   nanotechnology,  nanomaterials, sensors, biosensors security systems, explosive  detection . There have been many significant advances in the past two years and some entirely new directions of research are just opening up. Recent advances in nanoscience have demonstrated that fundamentally new physical phenomena  are found when systems are reduced in size with  dimensions, comparable to the fundamental microscopic  length scales of the investigated material. Recent developments in nanotechnology and measurement techniques now allow experimental investigation of transport properties of nanodevices. This work will be of interest to researchers working in spintronics, molecular electronics and quantum information processing.

  6. Nanotechnology in automotive industry: research strategy and trends for the future-small objects, big impacts.

    Science.gov (United States)

    Coelho, Margarida C; Torrão, Guilhermina; Emami, Nazanin; Grácio, José

    2012-08-01

    The goal of this paper is to emphasize and present briefly the nanotechnology science and its potential impact on the automotive industry in order to improve the production of recent models with an optimization of the safety performance and a reduction in the environmental impacts. Nanomaterials can be applied in car bodies as light weight constructions without compromising the stiffness and crashwortiness, which means less material and less fuel consumption. This paper outlines the progress of nanotechnology applications into the safety features of more recent vehicle models and fuel efficiency, but also emphasis the importance of sustainable development on the application of these technologies and life cycle analysis of the considered materials, in order to meet the society trends and customers demands to improve ecology, safety and comfort.

  7. An Analysis of the Function and of CAS In National Nanotechnology Research

    Institute of Scientific and Technical Information of China (English)

    PENG Zilong; MENG Wei; LIU Peihua

    2005-01-01

    @@ NBIC, namely nanoscience & nano-technology, biotechnology & biomedicine (including genetic engineering), information technology (including computing and communications) and cognitive science (including cognitive neuroscience) are universally regarded as four R&D disciplines to critically influence human life in the near future. Providing technological groundwork for the latter three's healthy development, nanoscience and related technologies now become the most active S&T frontiers in the world today.

  8. Nanotechnologies in Latvia: Commercialisation Aspect

    Directory of Open Access Journals (Sweden)

    Geipele I.

    2014-12-01

    Full Text Available The authors consider the possibilities to apply the nanotechnology products of manufacturing industries in Latvia for further commercialisation. The purpose of the research is to find out the preliminary criteria for the system of engineering economic indicators for multifunctional nanocoating technologies. The article provides new findings and calculations for the local nanotechnology market research characterising the development of nanotechnology industry. The authors outline a scope of issues as to low activities rankings in Latvia on application of locally produced nanotechnologies towards efficiency of the resource use for nanocoating technologies. For the first time in Latvia, the authors make the case study research and summarise the latest performance indicators of the Latvian companies operating in the nanotechnology industry.

  9. Nanotechnology: Opportunities and Challenges

    Science.gov (United States)

    Meyyappan, Meyya

    2003-01-01

    Nanotechnology seeks to exploit novel physical, chemical, biological, mechanical, electrical, and other properties, which arise primarily due to the nanoscale nature of certain materials. A key example is carbon nanotubes (CNTs) which exhibit unique electrical and extraordinary mechanical properties and offer remarkable potential for revolutionary applications in electronics devices, computing, and data storage technology, sensors, composites, nanoelectromechanical systems (NEMS), and as tip in scanning probe microscopy (SPM) for imaging and nanolithography. Thus the CNT synthesis, characterization, and applications touch upon all disciplines of science and engineering. This presentation will provide an overview and progress report on this and other major research candidates in Nanotechnology and address opportunities and challenges ahead.

  10. Artificial intelligence in nanotechnology.

    Science.gov (United States)

    Sacha, G M; Varona, P

    2013-11-15

    During the last decade there has been increasing use of artificial intelligence tools in nanotechnology research. In this paper we review some of these efforts in the context of interpreting scanning probe microscopy, the study of biological nanosystems, the classification of material properties at the nanoscale, theoretical approaches and simulations in nanoscience, and generally in the design of nanodevices. Current trends and future perspectives in the development of nanocomputing hardware that can boost artificial-intelligence-based applications are also discussed. Convergence between artificial intelligence and nanotechnology can shape the path for many technological developments in the field of information sciences that will rely on new computer architectures and data representations, hybrid technologies that use biological entities and nanotechnological devices, bioengineering, neuroscience and a large variety of related disciplines.

  11. Nanotechnology for chemical engineers

    CERN Document Server

    Salaheldeen Elnashaie, Said; Hashemipour Rafsanjani, Hassan

    2015-01-01

    The book describes the basic principles of transforming nano-technology into nano-engineering with a particular focus on chemical engineering fundamentals. This book provides vital information about differences between descriptive technology and quantitative engineering for students as well as working professionals in various fields of nanotechnology. Besides chemical engineering principles, the fundamentals of nanotechnology are also covered along with detailed explanation of several specific nanoscale processes from chemical engineering point of view. This information is presented in form of practical examples and case studies that help the engineers and researchers to integrate the processes which can meet the commercial production. It is worth mentioning here that, the main challenge in nanostructure and nanodevices production is nowadays related to the economic point of view. The uniqueness of this book is a balance between important insights into the synthetic methods of nano-structures and nanomaterial...

  12. Artificial intelligence in nanotechnology

    Science.gov (United States)

    Sacha, G. M.; Varona, P.

    2013-11-01

    During the last decade there has been increasing use of artificial intelligence tools in nanotechnology research. In this paper we review some of these efforts in the context of interpreting scanning probe microscopy, the study of biological nanosystems, the classification of material properties at the nanoscale, theoretical approaches and simulations in nanoscience, and generally in the design of nanodevices. Current trends and future perspectives in the development of nanocomputing hardware that can boost artificial-intelligence-based applications are also discussed. Convergence between artificial intelligence and nanotechnology can shape the path for many technological developments in the field of information sciences that will rely on new computer architectures and data representations, hybrid technologies that use biological entities and nanotechnological devices, bioengineering, neuroscience and a large variety of related disciplines.

  13. Lipid Nanotechnology

    NARCIS (Netherlands)

    Mashaghi, Samaneh; Jadidi, Tayebeh; Koenderink, Gijsje; Mashaghi, Alireza

    2013-01-01

    Nanotechnology is a multidisciplinary field that covers a vast and diverse array of devices and machines derived from engineering, physics, materials science, chemistry and biology. These devices have found applications in biomedical sciences, such as targeted drug delivery, bio-imaging, sensing and

  14. Fostering Cooperation in Cancer Research

    Science.gov (United States)

    Thursday, June 25, 2015 Memorandum of Understanding (MoU) was signed between US National Cancer Institute and three agencies of the Indian government - the Department of Biotechnology, the Indian Council of Medical Research, and the Indian National Cancer Institute, a part of the All India Institute of Medical Sciences to foster cooperation in cancer research.

  15. Complement-mediated tumour growth: implications for cancer nanotechnology and nanomedicines

    DEFF Research Database (Denmark)

    Moghimi, S. M.; Andresen, Thomas Lars

    2009-01-01

    The recent unexpected observation that complement activation helps turnout growth and progression has an important bearing on the future development of cancer nanomedicines for site-specific tumour targeting as these entities are capable of triggering complement. These issues are discussed...... and suggestions are provided for future design and development of safer and effective cancer nanomedicines....

  16. Determining the Scope of Collection Development and Research Assistance for Cross-Disciplinary Areas: A Case Study of Two Contrasting Areas, Nanotechnology and Transportation Engineering

    Science.gov (United States)

    Williamson, Jeanine M.; Han, Lee D.; Colon-Aguirre, Monica

    2009-01-01

    The study examined the extent of cross-disciplinarity in nanotechnology and transportation engineering research. Researchers in these two fields were determined from the web sites of the U.S. News and World Report top 100 schools in civil engineering and materials science. Web of Science searches for 2006 and 2007 articles were obtained and the…

  17. Nanotechnology - An emerging technology

    Science.gov (United States)

    Buckingham, D.

    2007-01-01

    The science of nanotechnology is still in its infancy. However, progress is being made in research and development of potential beneficial properties of nanomaterials that could play an integral part in the development of new and changing uses for mineral commodities. Nanotechnology is a kind of toolbox that allows industry to make nanomaterials and nanostructures with special properties. New nanotechnology applications of mineral commodities in their nanoscale form are being discovered, researched and developed. At the same time, there is continued research into environmental, human health and safety concerns that inherently arise from the development of a new technology. Except for a few nanomaterials (CNTs, copper, silver and zinc oxide), widespread applications are hampered by processing and suitable commercial-scale production techniques, high manufacturing costs, product price, and environmental, and human health and safety concerns. Whether nanotechnology causes a tidal wave of change or is a long-term evolutionary process of technology, new applications of familiar mineral commodities will be created. As research and development continues, the ability to manipulate matter at the nanoscale into increasingly sophisticated nanomaterials will improve and open up new possibilities for industry that will change the flow and use of mineral commodities and the materials and products that are used.

  18. Nanotechnology in respiratory medicine.

    Science.gov (United States)

    Omlor, Albert Joachim; Nguyen, Juliane; Bals, Robert; Dinh, Quoc Thai

    2015-05-29

    Like two sides of the same coin, nanotechnology can be both boon and bane for respiratory medicine. Nanomaterials open new ways in diagnostics and treatment of lung diseases. Nanoparticle based drug delivery systems can help against diseases such as lung cancer, tuberculosis, and pulmonary fibrosis. Moreover, nanoparticles can be loaded with DNA and act as vectors for gene therapy in diseases like cystic fibrosis. Even lung diagnostics with computer tomography (CT) or magnetic resonance imaging (MRI) profits from new nanoparticle based contrast agents. However, the risks of nanotechnology also have to be taken into consideration as engineered nanomaterials resemble natural fine dusts and fibers, which are known to be harmful for the respiratory system in many cases. Recent studies have shown that nanoparticles in the respiratory tract can influence the immune system, can create oxidative stress and even cause genotoxicity. Another important aspect to assess the safety of nanotechnology based products is the absorption of nanoparticles. It was demonstrated that the amount of pulmonary nanoparticle uptake not only depends on physical and chemical nanoparticle characteristics but also on the health status of the organism. The huge diversity in nanotechnology could revolutionize medicine but makes safety assessment a challenging task.

  19. Interfaces e organização da pesquisa no Brasil: da Química à Nanotecnologia Research organization in Brazil: from chemistry to Nanotechnology

    Directory of Open Access Journals (Sweden)

    Henrique E. Toma

    2005-12-01

    Full Text Available Nanotechnology can be viewed as a powerful tool, capable of shaping the chemistry of atoms and molecules, converting them into exciting nanosized and nanostructured materials, devices and machines. However, in pursuing this task, an exceptional ability is required to deal with complex inter- and multidisciplinary approaches, as imposed by the nanoscale. A new research organization framework, capable of promoting cooperative interactions in many complementary areas, including the industries, is demanded. In this sense, an interesting example are the nanotechnology networks and millenium institutes recently created in Brazil. The highlights and weakness of such cooperative research networks are discussed, in addition to relevant nanotechnology themes focusing on the special needs and resources from the developing nations.

  20. Cancer research and therapy: Where are we today?

    Directory of Open Access Journals (Sweden)

    Sampada Sawant

    2014-12-01

    Full Text Available Till date scientists are struggling to understand the complete mechanism of carcinogenesis. In future, the real time detection of cancer may help scientists to identify some of the complicated biological mechanisms. Certain special features of cancer cells enable researchers to deliver the drug or to develop the right drug therapy. These cell properties include over expression or over activity in uptake of certain nutrients e.g. folic acid and increased permeability. Listed properties might vary depending upon the type of cancer and can be fully exploited by using nanoparticles either to detect the site of cancer or to direct the drug at the affected site. Product approach like drug conjugates, complexes serves as a good platform to solve issues like solubility, toxicity, poor penetration and stability related to cancer drugs. Beside this, several drug delivery platforms are under development by researchers in academia as well as in industry to deliver therapeutic molecules and new chemical entities to the targeted site in body. Amongst them, nanotechnology both at molecular and supramolecular level is a leading platform and can help to image, detect and treat cancer. Surface modification of nanoparticles by coating or anchoring their surface with special markers, materials, peptide, proteins, antibodies or antigens add extra feature and thereby can enhance the effectiveness. These treatments can be used individually or in combined form. In this review, advances on nanotechnological platform are discussed together with some assisting techniques like magnetic field, photo or light field, sonic rays are touched upon. New biological therapies that are advancing in this direction include the antisense therapy, cell therapy, gene therapy, radiation therapy and SiRNA interfaces which are discussed in brief in this article. This article gives short overview on use of complementary and alternative medicine for treatment of cancer such as traditional

  1. Review on early technology assessments of nanotechnologies in oncology.

    Science.gov (United States)

    Retèl, Valesca P; Hummel, Marjan J M; van Harten, Wim H

    2009-12-01

    Nanotechnology is expected to play an increasingly important role in the diagnostics, prognostics, and management of targeted cancer treatments. While papers have described promising results for nanotechnology in experimental settings, the translation of fundamental research into clinical applications has yet to be widely adopted. In future, policy makers will need to anticipate new developments for clinical implementation and introduce technology assessments. Here we present an overview of the literature on the technology assessments that have already been undertaken on early stage nanotechnology in cancer care, with particular emphasis placed on clinical efficacy, efficiency, logistics, patient-related features and technology dynamics. Owing to the current stage of development of most nanotechnologies, we found only a limited number of publications describing the application of either Health Technology Assessment (HTA) or Constructive Technology Assessment (CTA). In spite of the promising conclusions of most papers concerning the benefits of clinical implementation, actual clinically relevant applications were rarely encountered, and so far only a few publications report application of systematic forms of technology assessment. Most articles consider aspects of environmental safety, regulation and ethics, often mentioning the need to investigate such issues more thoroughly. Evaluation of financial and organizational aspects is often missing. In order to obtain a realistic perspective on the translation and implementation process there is a need for a broad and systematic evaluation of nanotechnologies at early stages of development. Assessment methods taking technology dynamics into account, such as Constructive Technology Assessment (CTA) should be considered for evaluation purposes.

  2. Nanotechnology researchers' collaboration relationships: a gender analysis of access to scientific information.

    Science.gov (United States)

    Villanueva-Felez, Africa; Woolley, Richard; Cañibano, Carolina

    2015-02-01

    Women are underrepresented in science, technology, engineering, and mathematics fields, particularly at higher levels of organizations. This article investigates the impact of this underrepresentation on the processes of interpersonal collaboration in nanotechnology. Analyses are conducted to assess: (I) the comparative tie strength of women's and men's collaborations, (2) whether women and men gain equal access to scientific information through collaborators, (3) which tie characteristics are associated with access to information for women and men, and (4) whether women and men acquire equivalent amounts of information by strengthening ties. Our results show that the overall tie strength is less for women's collaborations and that women acquire less strategic information through collaborators. Women and men rely on different tie characteristics in accessing information, but are equally effective in acquiring additional information resources by strengthening ties. This article demonstrates that the underrepresentation of women in science, technology, engineering, and mathematics has an impact on the interpersonal processes of scientific collaboration, to the disadvantage of women scientists.

  3. Nanotechnology in dentistry: prevention, diagnosis, and therapy

    Directory of Open Access Journals (Sweden)

    Abou Neel EA

    2015-10-01

    Full Text Available Ensanya Ali Abou Neel,1–3 Laurent Bozec,3 Roman A Perez,4,5 Hae-Won Kim,4–6 Jonathan C Knowles3,5 1Division of Biomaterials, Operative Dentistry Department, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia; 2Biomaterials Department, Faculty of Dentistry, Tanta University, Tanta, Egypt; 3UCL Eastman Dental Institute, Biomaterials and Tissue Engineering, London, UK; 4Institute of Tissue Regenerative Engineering (ITREN, 5Department of Nanobiomedical Science and BK21 Plus NBM Global Research Center for Regenerative Medicine, 6Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, Republic of Korea Abstract: Nanotechnology has rapidly expanded into all areas of science; it offers significant alternative ways to solve scientific and medical questions and problems. In dentistry, nanotechnology has been exploited in the development of restorative materials with some significant success. This review discusses nanointerfaces that could compromise the longevity of dental restorations, and how nanotechnolgy has been employed to modify them for providing long-term successful restorations. It also focuses on some challenging areas in dentistry, eg, oral biofilm and cancers, and how nanotechnology overcomes these challenges. The recent advances in nanodentistry and innovations in oral health-related diagnostic, preventive, and therapeutic methods required to maintain and obtain perfect oral health, have been discussed. The recent advances in nanotechnology could hold promise in bringing a paradigm shift in dental field. Although there are numerous complex therapies being developed to treat many diseases, their clinical use requires careful consideration of the expense of synthesis and implementation. Keywords: nanotechnology, nanointerfaces, biofilm-related oral diseases, tissue engineering, drug delivery, toxicity

  4. Research in Danish cancer rehabilitation

    DEFF Research Database (Denmark)

    Høybye, Mette Terp; Dalton, Susanne Oksbjerg; Christensen, Jane

    2008-01-01

    of the cancer survivors with respect to cancer site, sociodemographic variables, social network, lifestyle, self-rated health and the prevalence of cancer-related late effects. The study is part of the FOCARE research project, in which the long-term effects of the rehabilitation programme are evaluated...

  5. Basic research in kidney cancer

    NARCIS (Netherlands)

    Oosterwijk, E.; Rathmell, W.K.; Junker, K.; Brannon, A.R.; Pouliot, F.; Finley, D.S.; Mulders, P.F.A.; Kirkali, Z.; Uemura, H.; Belldegrun, A.

    2011-01-01

    CONTEXT: Advances in basic research will enhance prognosis, diagnosis, and treatment of renal cancer patients. OBJECTIVE: To discuss advances in our understanding of the molecular basis of renal cancer, targeted therapies, renal cancer and immunity, and genetic factors and renal cell carcinoma (RCC)

  6. Nanotechnology in Disease Diagnostic Techniques.

    Science.gov (United States)

    Savaliya, Reema; Shah, Darshini; Singh, Ragini; Kumar, Ashutosh; Shankar, Rishi; Dhawan, Alok; Singh, Sanjay

    2015-06-25

    Currently the major research highlights of bioengineering and medical technology are directed towards development of improved diagnostic techniques to screen complex diseases. Screening requirements are for the identification of the cause of illnesses, monitoring the improvement or progression of the state of diseases such as cancer, cardiovascular or neurodegenerative diseases. Nanotechnology enables the manipulation of materials at nanoscale and has shown potential to enhance sensitivity, selectivity and lower the cost of a diagnosis. The causative biomolecules (DNA, proteins) can be detected by red-shifted absorbance of gold nanoparticles or alteration in the conductance of a nanowire or nanotubes, and deflection of a micro or nano-cantilever. Several types of nanomaterials such as metals, metal-oxides and quantum dots have shown ample advantages over traditional diagnosis, intracellular labeling and visualization of target cells/tissues. Nanotechnology has also opened several avenues which could be further developed to enable enhanced visualization of tissues, cells, DNA and proteins over a point-of-care device. Protein or gene chips created using nanomaterials could be further be integrated into a convenient nano-fluidic device for better disease diagnosis.

  7. The Potential Role of Nanotechnology in Therapeutic Approaches for Triple Negative Breast Cancer

    Directory of Open Access Journals (Sweden)

    Andras G. Lacko

    2013-06-01

    Full Text Available Triple Negative Breast Cancer, TNBC, a highly aggressive and metastatic type of breast cancer, is characterized by loss of expression of the estrogen receptor (ER, progesterone receptor (PR, and a lack of overexpression of the human epidermal growth factor receptor 2 (HER2. It is a heterogeneous group of tumors with diverse histology, molecular uniqueness and response to treatment. Unfortunately, TNBC patients do not benefit from current anti-HER2 or hormone positive targeted breast cancer treatments; consequently, these patients rely primarily on chemotherapy. However, the 5-year survival rate for woman with metastatic TNBC is less than 30%. As a result of ineffective treatments, TNBC tumors often progress to metastatic lesions in the brain and lung. Brain metastases of invasive breast cancer are associated with 1 and 2 year survival rate of 20% and <2% respectively. Because the only current systemic treatment for TNBC is chemotherapy, alternative targeted therapies are urgently needed to improve the prognosis for TNBC patients. This review is focused on opportunities for developing new approaches for filling the current void in an effective treatment for TNBC patients.

  8. Research Advances of Nanotechnology in Ovarian Carcinoma%纳米技术在卵巢癌中的研究进展

    Institute of Scientific and Technical Information of China (English)

    刘思思(综述); 周英琼(审校)

    2016-01-01

    Ovarian cancer is one of the most common malignant tumors in the female reproductive sys-tem,with concealed early onset,late stage diagnosis and high mortality.Because of the small diameter,uni-form distribution, better tissue compatibility and target localization ability after surface modification , nano material has become one of the hot topics in the research of diagnosis and treatment of ovarian cancer .Here is to make a review of the most recent advances of the characteristics of different nano carriers and nanotechnol-ogy in ovarian cancer cell specific capture,ultrasound,computed tomography and magnetic resonance imaging diagnosis,chemotherapy,radiotherapy and gene therapy.%卵巢癌是女性生殖系统最常见的恶性肿瘤之一,早期起病隐匿,确诊多为中期晚,致死率高。纳米材料因其直径小、分布均匀,经表面修饰后的纳米粒子具有较好的组织相容性以及靶向定位能力,日益成为卵巢癌诊断和治疗的研究热点之一。该文综述了纳米药物不同载体的特性、纳米技术在卵巢癌肿瘤细胞特异捕获及超声、计算机断层扫描、磁共振成像等在化疗、放疗和基因治疗中的最新研究进展。

  9. Research Advances: Pacific Northwest National Laboratory Finds New Way to Detect Destructive Enzyme Activity--Hair Dye Relies on Nanotechnology--Ways to Increase Shelf Life of Milk

    Science.gov (United States)

    King, Angela G.

    2007-01-01

    Recent advances in various research fields are described. Scientists at the Pacific Northwest National Laboratory have found a new way to detect destructive enzyme activity, scientists in France have found that an ancient hair dye used by ancient people in Greece and Rome relied on nanotechnology and in the U.S. scientists are developing new…

  10. INDUSTRIAL TECHNOLOGICAL RESEARCH «DEVELOPMENT OF RUSSIAN MARKET OF NANOTECHNOLOGICAL PRODUCTS IN CONSTRUCTION UNTIL 2020». PART 2. ANALYSIS OF THE WORLD MARKET

    Directory of Open Access Journals (Sweden)

    GUSEV Boris Vladimirovich

    2013-04-01

    Full Text Available Some results of the industrial research «Development of Russian market of nanotechnological products in construction until 2020» have been published. Authors invite all interested specialists and specialized organization to take part in the broad public discussion.

  11. Visual framing of nanotechnology in newspapers

    DEFF Research Database (Denmark)

    Nielsen, Kristian Hvidtfelt

    discourse, very little research into to the visual communication of science in public has been carried out. Nanotechnology is an emerging scientific discipline that just recently has entered the public sphere. Surveys show that most Europeans and most Americans have very little knowledge about...... nanotechnology. Even so, there is a marked difference between Europeans who generally are cautious, it not skeptical about nanotechnology, and American who seem to have a much more positive attitude towards nanotechnology. Objective This paper surveys visual images used to communicate nanotechnology (and...... nanotechnology-related issues) in the printed press in Denmark from 1993 to 2006. Based on a representative sample of newspaper articles referring to nanotechnology, the survey categorizes and analyzes the images used. Studies have shown that to a high degree newspaper readers use images to navigate...

  12. Identification and visualization of the intellectual structure and the main research lines in nanoscience and nanotechnology at the worldwide level

    Science.gov (United States)

    Muñoz-Écija, Teresa; Vargas-Quesada, Benjamín; Chinchilla-Rodríguez, Zaida

    2017-02-01

    The aim of this paper is to make manifest the intellectual and cognitive structure of nanoscience and nanotechnology (NST) by means of visualization techniques. To this end, we used data from the Web of Science (WoS), delimiting the data to the category NST during the period of 2000-2013, retrieving a total of 198,275 documents. Through direct author citation of these works, we identified their origins and the seminal papers, and through word co-occurrence extracted from the titles and abstracts, the main lines of research were identified. In view of both structures, we may affirm that NST is a young scientific discipline in constant expansion, needing time to establish its foundations but showing a strongly interdisciplinary character; its development is furthermore dependent upon knowledge from other disciplines, such as physics, chemistry, or material sciences. We believe that this information may be very useful for the NST scientific community, as it reflects a large-scale analysis of the research lines of NST and how research has changed over time in the diverse areas of NST. This study is moreover intended to offer a useful tool for the NST scientific community, revealing at a glance the main research lines and landmark papers. Finally, the methodology used in this study can be replicated in any other field of science to explore its intellectual and cognitive structure.

  13. Identification and visualization of the intellectual structure and the main research lines in nanoscience and nanotechnology at the worldwide level.

    Science.gov (United States)

    Muñoz-Écija, Teresa; Vargas-Quesada, Benjamín; Chinchilla-Rodríguez, Zaida

    2017-01-01

    The aim of this paper is to make manifest the intellectual and cognitive structure of nanoscience and nanotechnology (NST) by means of visualization techniques. To this end, we used data from the Web of Science (WoS), delimiting the data to the category NST during the period of 2000-2013, retrieving a total of 198,275 documents. Through direct author citation of these works, we identified their origins and the seminal papers, and through word co-occurrence extracted from the titles and abstracts, the main lines of research were identified. In view of both structures, we may affirm that NST is a young scientific discipline in constant expansion, needing time to establish its foundations but showing a strongly interdisciplinary character; its development is furthermore dependent upon knowledge from other disciplines, such as physics, chemistry, or material sciences. We believe that this information may be very useful for the NST scientific community, as it reflects a large-scale analysis of the research lines of NST and how research has changed over time in the diverse areas of NST. This study is moreover intended to offer a useful tool for the NST scientific community, revealing at a glance the main research lines and landmark papers. Finally, the methodology used in this study can be replicated in any other field of science to explore its intellectual and cognitive structure.

  14. Current concepts in cancer research

    Directory of Open Access Journals (Sweden)

    Ivan Kok Seng Yap

    2013-04-01

    Full Text Available Cancer research is an extremely broadtopic covering many scientific disciplines includingbiology (e.g. biochemistry and signal transduction,chemistry (e.g. drug discover and development,physics (e.g. diagnostic devices and even computerscience (e.g. bioinformatics. Some would argue thatcancer research will continue in much the same wayas it is by adding further layers of complexity to thescientific knowledge that is already complex and almostbeyond measure. But we anticipate that cancer researchwill undergo a dramatic paradigm shift due to therecent explosion of new discoveries in cancer biology.This review article focuses on the latest horizons incancer research concerning cancer epigenetics, cancerstem cells, cancer immunology and cancer metabolism.

  15. Evaluation of a nanotechnology-based carrier for delivery of curcumin in prostate cancer cells.

    Science.gov (United States)

    Thangapazham, Rajesh L; Puri, Anu; Tele, Shrikant; Blumenthal, Robert; Maheshwari, Radha K

    2008-05-01

    We have initiated studies to enhance targeted delivery of an anticancer agent, curcumin, for prostate cancer treatment by incorporating this agent into the liposomes (nanodelivery vehicles primarily composed of phospholipids) coated with prostate membrane specific antigen specific antibodies. We prepared curcumin-loaded liposomes of various lipid compositions by sonication at an average size of 100-150 nm. Un-entrapped curcumin was removed by size exclusion chromatography. Data show that curcumin preferentially partitioned into liposomes prepared from dimyristoyl phosphatidyl choline (DMPC) and cholesterol among the various compositions tested. The anti-proliferative activity of liposomal curcumin was studied using two human prostate cancer cell lines (LNCaP and C4-2B) by a tetrazolium dye-based (MTT) assay. Treatment of cells with liposomal curcumin (5-10 microM) for 24-48 h at 37 degrees C resulted in at least 70-80% inhibition of cellular proliferation without affecting their viability. On the other hand, free curcumin exhibited similar inhibition only at 10-fold higher doses (>50 microM). We also observed that LNCaP cells were relatively more sensitive to liposomal curcumin mediated block of cellular proliferation than C4-2B cells. We are currently developing liposome formulations with targeting ability to further improve the efficacy of curcumin in vivo.

  16. How nanotechnology works in medicine

    Directory of Open Access Journals (Sweden)

    Arshpreet Kaur

    2012-09-01

    Full Text Available Nanomedicine is the medical application of nanotechnology. Nanomedicine ranges from the medical applications of nanomaterials, to nanoelectronic biosensors, and even possible future applications of molecular nanotechnology. Current problems for nanomedicine involve understanding the issues related to toxicity and environmental impact of nanoscale materials. Nanomedicine seeks to deliver a valuable set of research tools and clinically useful devices in the near future. The National Nanotechnology Initiative expects new commercial applications in the pharmaceutical industry that may include advanced drug delivery systems, new therapies, and in vivo imaging. At present international hospitals are working on projects to develop new medical devices with the help of nanotechnology to better serve the world. Neuro-electronic interfaces and other nanoelectronics-based sensors are another active goal of research. Nanosensors are used mainly include various medicinal purposes and as gateways to building other nanoproducts, such as computer chips that work at the nanoscale and nanorobots

  17. Nanotechnology for sustainable energy

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, Elena [Molecular Nanotechnology Laboratory, University of Alicante, Carretera Alicante-San Vicente s/n, E-03690 Alicante (Spain); Rus, Guillermo; Garcia-Martinez, Javier [Dpt. Structural Mechanics, University of Granada, Politecnico de Fuentenueva, 18071 Granada (Spain)

    2009-12-15

    Nanotechnology is generating a lot of attention these days and therefore building great expectations not only in the academic community but also among investors, the governments, and industry. Its unique capability to fabricate new structures at atomic scale has already produced novel materials and devices with great potential applications in a wide number of fields. Among them, significant breakthroughs are especially required in the energy sector that will allow us to maintain our increasing appetite for energy, which increases both with the number of people that join the developed economies and with our demand per capita. This needs to be done in a way that includes the environment in the wealth production equation as we gather more evidences of the human impact on the climate, biodiversity and quality of the air, water and soil. This review article does not cover in detail all the specific contributions from nanotechnology to the various sustainable energies, but in a broader way, it collects the most recent advances of nanotechnology to sustainable energy production, storage and use. For this review paper, solar, hydrogen and new generation batteries and supercapacitors are described as the most significant examples of the contributions of nanotechnology in the energy sector. The aim of this review article is to present some significant contributions from many research groups who are mainly unconnected and are working from different viewpoints, to find solutions to one of the great challenges of our time, i.e., the production and use of energy, without compromising our environment, from one of the most exciting and multidisciplinary fields, nanotechnology. (author)

  18. Overcoming drug efflux-based multidrug resistance in cancer with nanotechnology

    Institute of Scientific and Technical Information of China (English)

    Xue Xue; Xing-Jie Liang

    2012-01-01

    Multidrug resistance (MDR),which significantly decreases the efficacy of anticancer drugs and causes tumor recurrence,has been a major challenge in clinical cancer treatment with chemotherapeutic drugs for decades.Several mechanisms of overcoming drug resistance have been postulated.Well known Pglycoprotein (P-gp) and other drug efflux transporters are considered to be critical in pumping anticancer drugs out of cells and causing chemotherapy failure.Innovative theranostic (therapeutic and diagnostic)strategies with nanoparticles are rapidly evolving and are anticipated to offer opportunities to overcome these limits.In this review,we discuss the mechanisms of drug efflux-mediated resistance and the application of multiple nanoparticle-based platforms to overcome chemoresistance and improve therapeutic outcome.

  19. Nebraska Prostate Cancer Research Program

    Science.gov (United States)

    2014-07-01

    2011.  LaTayia Aaron and Joann Powell. (2012). Dioxin exposure enhances nuclear localization of androgen receptor...to be trained in different areas of prostate cancer research. For example, the focus areas or research include Biomarkers , Therapy, Genetics, and...example, the focus areas or research include Biomarkers , Therapy, Genetics, and Tumor Biology as outlined by the laboratory research descriptions in the

  20. Organic Agriculture and Nanotechnology

    OpenAIRE

    Jahanban, Leila; Davari, Mohammadreza

    2014-01-01

    Organic agriculture is a holistic production management system which promotes and enhances agro-ecosystem health, including biodiversity, biological cycles and soil biological activity. On the other hand, nanotechnology is a rapidly developing domain of research and practice, the terminology is in a state of flux and usage is evolving. Nano-applications are being applied across the entire agriculture and food sectors. In agriculture, for example, nano-pesticides and nano-sensors are changing ...

  1. Identifying creative research accomplishments: Methodology and results for nanotechnology and human genetics

    NARCIS (Netherlands)

    Heinze, Thomas; Shapira, Philip; Senker, Jacqueline; Kuhlmann, Stefan

    2007-01-01

    Motivated by concerns about the organizational and institutional conditions that foster research creativity in science, we focus on how creative research can be defined, operationalized, and empirically identified. A functional typology of research creativity is proposed encompassing theoretical, me

  2. American Institute for Cancer Research

    Science.gov (United States)

    ... About Cancer By Cancer Site What Is Cancer Foods That Fight Cancer Tools You Can Use Cancer Infographics & Multimedia Studying ... About Cancer By Cancer Site What Is Cancer Foods That Fight Cancer Tools You Can Use Cancer Infographics & Multimedia Studying ...

  3. Path-Breaking Directions of Nanotechnology-Based Chemotherapy and Molecular Cancer Therapy

    NARCIS (Netherlands)

    Coccia, M.; Wang, L.

    2015-01-01

    A fundamental question in the field of technological forecasting and foresight is how to detect likely fruitful technological trajectories in new research fields, such as nanomedicine. We confront this question by developing an approach based on trends and networks of vital variables, analyzed by bi

  4. The effect of nanotechnology on education

    Science.gov (United States)

    Viriyavejakul, Chantana

    2008-04-01

    The research objective was to study 1) the situation and readiness of the Thai education for the integration of nanotechnology and 2) to propose the plans, the strategies and guidelines for educational reform to adapt nanotechnology to the system. The data collection was done by 4 methods: 1) documentary study, 2) observation, 3) informal interviews, and 4) group discussion. The findings revealed that: 1. William Wresch's Theory (1997) was used in this research to study of the situation and readiness of the Thai education for the integration of nanotechnology. 1) Getting connected to nanotechnology by search engine websites, libraries, magazines, books, and discussions with experts. 2) Curriculum integration: nanotechnology should be integrated in many branches of engineering, such as industrial, computer, civil, chemical, electrical, mechanical, etc. 3) Resources for educators: nanotechnology knowledge should be spread in academic circles by publications and the Internet websites. 4) Training and professional resources for teachers: Teachers should be trained by experts in nanotechnology and researchers from the National Nanotechnology Center. This will help trainees get correct knowledge, comprehension, and awareness in order to apply to their professions and businesses in the future. 2. As for the plans, the strategies, and guidelines for educational reform to adapt nanotechnology to the present system, I analyzed the world nanotechnology situation that might have an effect on Thai society. The study is based on the National Plan to Develop Nanotechnology. The goal of this plan is to develop nanotechnology to be the national strategy within 10 years (2004-2013) and have it integrated into the Thai system. There are 4 parts in this plan: 1) nanomaterials, 2) nanoelectronics, 3) nanobiotechnology, and 4) human resources development. Data for human resource development should be worked with the present technology and use the country's resources to produce many

  5. What's New in Thyroid Cancer Research and Treatment?

    Science.gov (United States)

    ... Thyroid Cancer About Thyroid Cancer What’s New in Thyroid Cancer Research and Treatment? Important research into thyroid cancer ... in Thyroid Cancer Research and Treatment? More In Thyroid Cancer About Thyroid Cancer Causes, Risk Factors, and Prevention ...

  6. What's New in Testicular Cancer Research and Treatment?

    Science.gov (United States)

    ... Testicular Cancer About Testicular Cancer What’s New in Testicular Cancer Research and Treatment? Important research into testicular cancer ... in Testicular Cancer Research and Treatment? More In Testicular Cancer About Testicular Cancer Causes, Risk Factors, and Prevention ...

  7. Prostate Cancer Research Training Program

    Science.gov (United States)

    2013-05-01

    evaluate medication safety. Examples of HERCe research include recent publications on breast cancer treatments, complications of chemotherapy for...with specific interest in minimally invasive procedures, new techniques, and outcomes. Dr. Brown initiated many of the laparoscopic and robotic ... surgery as it is one of the main areas of his clinical expertise. Currently, he performs more prostate cancer surgery than any other physician in

  8. NANOTECHNOLOGY: A BOON OR BANE

    Directory of Open Access Journals (Sweden)

    Priyanka Singh

    2011-12-01

    Full Text Available Nanotechnology deals with the physical and chemical attributes of molecular scale structures, and they can be combined to form larger structures for human use. Because of this dimensional range, nanoparticles and structure get some unusual and novel properties. Nanotechnology deals with the study and analysis of these properties also. Indeed it is an emerging area of applied science and technology whose theme is the control of matter on the atomic and molecular scale generally 100nm or smaller. The impact of nanotechnology is expanding and nothing will remain untouched. Applications are enormous and limitless. Nanotechnology enables doing things better than in the conventional technology viz.•Economic development•Improving food security•Health Diagnosis, Monitoring and Scanning•Safe Drinking Water•Environmental pollution•Agriculture•Energy Storage, Production and ConservationAs a coin has two sides, nanotechnology also has a flip side. No doubt, nanotechnology will be incorporated into every facet of our lives, making things easier, faster and longer lasting. Potential dangers of technology that are being discussed in various forms includes•Possible increased inflammatory response in the body due to small size•Potential terrorist use•Social disruption from new products/ lifestyles•Risks of a “Grey Goo” (hypothetical end of the worldNow there is a critical need to fund researchers and engineers across disciplines and institutional boundaries in order to advance in the arena of nanotechnologies. There must be innovative partnerships that integrate research and education, accelerate applications and fully explore the implications of nanotechnology on our health, wealth and lives.

  9. Chiral Nanoscience and Nanotechnology

    Directory of Open Access Journals (Sweden)

    Dibyendu S. Bag

    2008-09-01

    Full Text Available The paper reviews nanoscale science and technology of chiral molecules/macromolecules-under twosubtopics-chiral nanotechnology and nano-chiral technology. Chiral nanotechnology discusses thenanotechnology, where molecular chirality plays a role in the properties of materials, including molecularswitches, molecular motors, and other molecular devices; chiral supramolecules and self-assembled nanotubesand their functions are also highlighted. Nano-chiral technology  describes the nanoscale approaches to chiraltechnology such as asymmetric synthesis and catalysis, chiral separation and detection, and enantiomericanalysis. Chiral sensors have also been included. The state-of-the-art chiral research at DMSRDE,Kanpur isalso presented.Defence Science Journal, 2008, 58(5, pp.626-635, DOI:http://dx.doi.org/10.14429/dsj.58.1685

  10. 纳米药物载体抗肿瘤多药耐药机制的研究进展%Research Progress of the Mechanisms of Nanotechnology in the Treatment of Multidrug Resistant Tumors

    Institute of Scientific and Technical Information of China (English)

    赵金香; 李耀华

    2015-01-01

    肿瘤细胞对化疗药物产生多药耐药(multidrug resistance,MDR)是临床化疗失败的一个重要原因,而纳米技术的发展为肿瘤药物的靶向输送提供了新的研究机遇。纳米载体可以通过避免和降低MDR肿瘤细胞的药物外排泵,靶向肿瘤干细胞(cancer stem cells,CSC)克服其复发性,阻断肿瘤细胞的互调及其作用的微环境,以及改变免疫反应等增强细胞对化疗药物的敏感性。本文综述了肿瘤多药耐药的机制,纳米药物载体抗肿瘤多药耐药的机制研究的新进展。%Multidrug resistance (MDR) is a main reason for the failure of tumor chemotherapy, the development of nanotechnology sheds light on targeted delivery of antitumor drugs. Nanocarriers can not only enhance the sensitivity of tumor cells to chemothera-peutic drugs but also downregulate the invasion and metastasis of tumor. The mechanisms of nanocarriers' anti-tumor effect involve in targeting cancer stem cells to overcome MDR and prevent recurrence, preventing the cross talk between cancer cells and their micro-environment, and modifying the immune response to improve the treatment of MDR cancers. In this review, new research progresses of the mechanisms of multidrug resistance and anti-tumor effects of nanotechnology are reviewed.

  11. Mouse models for cancer research

    Institute of Scientific and Technical Information of China (English)

    Wei Zhang; Lynette Moore; Ping Ji

    2011-01-01

    Mouse models of cancer enable researchers to leamn about tumor biology in complicated and dynamic physiological systems. Since the development of gene targeting in mice, cancer biologists have been among the most frequent users of transgenic mouse models, which have dramatically increased knowledge about how cancers form and grow. The Chinese Joumnal of Cancer will publish a series of papers reporting the use of mouse models in studying genetic events in cancer cases. This editorial is an overview of the development and applications of mouse models of cancer and directs the reader to upcoming papers describing the use of these models to be published in coming issues, beginning with three articles in the current issue.

  12. Nanotechnology: The Next Challenge for Organics

    OpenAIRE

    Paull, John; Lyons, Kristen

    2008-01-01

    Nanotechnology is the fast growing science of the ultra small; it is creating engineered particles in the size range 1 to 100 nanometres. At this size, materials exhibit novel behaviours. Nanotechnology is a rapidly expanding multibillion dollar industry, with research being heavily promoted by governments, and especially the US. Nanoscale materials are already incorporated into more than 580 consumer products, including food, packaging, cosmetics, clothing and paint. Nanotechnology has been ...

  13. Nebraska Prostate Cancer Research Program

    Science.gov (United States)

    2015-10-01

    Annual National Symposium on Prostate Cancer by CCRTD, CAU, March 16-19, 2014. 15. Appendix #15: Peer- reviewed scientific publication with inputs...and  Immunology Y. Tu CU Regulation of G‐Protein‐Coupled  Receptors in Prostate  Cancer     Acknowledgements: DOD CDMRP PCa Research Program PC121645...AWARD NUMBER: W81XWH-13-1-0264 TITLE: Nebraska Prostate Cancer Research Program PRINCIPAL INVESTIGATOR: Ming-Fong Lin, Ph.D

  14. Computational Nanotechnology Molecular Electronics, Materials and Machines

    Science.gov (United States)

    Srivastava, Deepak; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    This presentation covers research being performed on computational nanotechnology, carbon nanotubes and fullerenes at the NASA Ames Research Center. Topics cover include: nanomechanics of nanomaterials, nanotubes and composite materials, molecular electronics with nanotube junctions, kinky chemistry, and nanotechnology for solid-state quantum computers using fullerenes.

  15. Analysis of heterogeneous collaboration in the German research system with a focus on nanotechnology

    NARCIS (Netherlands)

    Heinze, Thomas; Kuhlmann, Stefan; Jansen, Dorothea

    2007-01-01

    The German research system is functionally differentiated into various institutional pillars, most importantly the university system and the extrauniversity sector including institutes of the Helmholtz Association, the Max Planck Society, the Leibniz Association and the Fraunhofer Society. While the

  16. The National Nanotechnology Initiative: Research and Development Leading to a Revolution in Technology and Industry

    Science.gov (United States)

    2010-02-01

    drug and gene therapy , nanostructures for tissue engineering, and a variety of other biomedical applications, in addition to research tools that aid...therapeutic efficacy. In addition to the real-time assessment of targeted therapy with enhanced efficacy, the identification of quantitative in vivo...are examining the fate of nanoparticles in the aquatic environment. Some of this research concerns bacterially mediated production of quantum dots

  17. Green nanotechnology

    Science.gov (United States)

    Smith, Geoff B.

    2011-10-01

    Nanotechnology, in particular nanophotonics, is proving essential to achieving green outcomes of sustainability and renewable energy at the scales needed. Coatings, composites and polymeric structures used in windows, roof and wall coatings, energy storage, insulation and other components in energy efficient buildings will increasingly involve nanostructure, as will solar cells. Nanostructures have the potential to revolutionize thermoelectric power and may one day provide efficient refrigerant free cooling. Nanomaterials enable optimization of optical, opto-electrical and thermal responses to this urgent task. Optical harmonization of material responses to environmental energy flows involves (i) large changes in spectral response over limited wavelength bands (ii) tailoring to environmental dynamics. The latter includes engineering angle of incidence dependencies and switchable (or chromogenic) responses. Nanomaterials can be made at sufficient scale and low enough cost to be both economic and to have a high impact on a short time scale. Issues to be addressed include human safety and property changes induced during manufacture, handling and outdoor use. Unexpected bonuses have arisen in this work, for example the savings and environmental benefits of cool roofs extend beyond the more obvious benefit of reduced heat flows from the roof into the building.

  18. Breast Cancer Research Program

    Science.gov (United States)

    2010-09-01

    tion of tumor cells with red indicating the highest density of tumor cells at the primary tumor (4th mammary fat pad ) and purple/blue showing the...Idea Award Elaine Hardman and Philippe Georgel “ Maternal Consumption of Omega 3 Fatty Acids to Reduce Breast Cancer Risk in Offspring” FY09

  19. Application of Nanotechnology in Therapy of Prostate Cancer%纳米技术在前列腺癌诊疗中的应用

    Institute of Scientific and Technical Information of China (English)

    黄星华; 谭国斌; 李冠奕; 吴上超; 周建华

    2016-01-01

    The application of nanotechnology in medicine is offering many exciting possibilities in healthcare, partic-ularly by targeted delivery of anticancer drugs and imaging contrast agents. Prostate cancer is the cause of the most com-mon malignant tumours and is the second leading cause of cancer death among American and European men. The inci-dence of prostate cancer increases in our country,because of the change of diet structure and life style.The nanoparticles could overcome the lack of specificity of conventional chemotherapeutic agents and the low of sensitivity of the early detection of precancerous. In this paper, the Application of nanotechnology in therapy of prostate cancer will be reviewed.%纳米技术在医学上的应用具有较好的发展前景,特别是在抗肿瘤药物的靶向给药和影像增强剂方面。前列腺癌是欧美男性最常见的恶性肿瘤,位于男性肿瘤死亡率的第二位。随着人口寿命延长、饮食结构和生活方式改变,我国前列腺癌发病率不断升高。纳米技术的发展有利于克服传统化疗药物特异性低和癌前病变早期检测低灵敏度等难题。本文主要对纳米技术在前列腺癌治疗中的应用进行综述。

  20. German innovation initiative for nanotechnology

    Science.gov (United States)

    Rieke, Volker; Bachmann, Gerd

    2004-10-01

    In many areas of nanotechnology, Germany can count on a good knowledge basis due to its diverse activities in nanosciences. This knowledge basis, when paired with the production and sales structures needed for implementation and the internationally renowned German talent for system integration, should consequently lead to success in the marketplace. And this is exactly the field of application for the innovation initiative "Nanotechnologie erobert Märkte" (nanotechnology conquers markets) and for the new BMBF strategy in support of nanotechnology. Until now, aspects of nanotechnology have been advanced within the confines of their respective technical subject areas. However, the primary aim of incorporating them into an overall national strategy is to build on Germany's well-developed and internationally competitive research in science and technology to tap the potential of Germany's important industrial sectors for the application of nanotechnology through joint research projects (leading-edge innovations) that strategically target the value-added chain. This development is to be supported by government education policy to remedy a threatening shortage of skilled professionals. To realize that goal, forward-looking political policymaking must become oriented to a uniform concept of innovation, one that takes into consideration all facets of new technological advances that can contribute to a new culture of innovation in Germany. And that includes education and research policy as well as a climate that encourages and supports innovation in science, business and society.

  1. Results of research in the area of nanotechnologies and nanomaterials. Part 2

    Directory of Open Access Journals (Sweden)

    KARPOV Alexey Ivanovich

    2014-04-01

    Full Text Available To popularize scientific achievements in construction the main results of Russian and foreign scientists’ research are published in the form of abstract. Within the investigation «Obtaining and research of physical and chemical properties of nanosized system nickel–copper» experimentally proved model of synthesis of nanosized powders of system nickel–copper based on the method of reduction of metal salts from water solution has been offered; optimal conditions for obtaining radiographic pure powders have been determined. The paper also deals with conditions for obtaining and phase composition of mixed nickel and copper hydroxides including those which are stable when stored in wet conditions. The copper hydroxide stabilization method has been proposed. The practical value of performed investigation «Research of electron structure functionalized carbon nanotubes by spectographic methods with synchronous radiation» is that it developed one of the areas of physical chemistry: complex research of electron structure of carbon nanotubes including functionalized ones was carried out by the method of experimental (spectographic with synchrotron radiation of different energies and theoretical methods; the general methods of the modern applied plasmonics aimed at identification of characteristics of defects formation in carbon nanosystems of low dimension have been developed.

  2. Early phase Technology Assessment of nanotechnology in oncology.

    Science.gov (United States)

    Retèl, Valesca P; Hummel, Marjan J M; van Harten, Willem H

    2008-01-01

    To perform early Technology Assessment (TA) of nanotechnology in oncology. The possibilities of nanotechnology for detection (imaging), diagnosis and treatment of cancer are subject of different research programs where major investments are concerned. As a range of bio- nanotechnologies is expected to enter the oncology field it is relevant to consider the various aspects involved in especially early TA. This article provides two cases of early assessment of (predecessors of) nanotechnologies: Microarray Analysis and Photodynamic Therapy implementation, which methodology can be extrapolated to other nanotechnologies in oncology. Constructive Technology Assessment (CTA) is used for the introduction of technologies that are still in a dynamic phase of development or in an early stage of diffusion. The selection of studied aspects in CTA is based on: clinical aspects (safety, efficacy, and effectiveness), economic (cost-effectiveness), patient related (QoL, ethical/juridical and psychosocial), organizational aspects (diffusion and adoption) and scenario drafting. The features of the technology and the phase of implementation are decisive for choices and timing of the specific aspects to be studied. A framework was drafted to decide on the relevant aspects. In the first case, early implementation of Microarray Analysis; clinical effectiveness, logistics, patient centeredness and scenario drafting were given priority. Related to the diffusion-phase of Photodynamic Therapy however other aspects were evaluated, such as early cost-effectiveness analysis for possible reimbursement. Often CTA will result in a mixed method design. Especially scenario drafting is a powerful instrument to predict possible developments that can be anticipated upon in the assessment. CTA is appropriate for the study of early implementation of new technologies in oncology. In early TA small series often necessitate a mix of quantitative and qualitative methods. The features of nanotechnology

  3. Trust in Nanotechnology? On Trust as Analytical Tool in Social Research on Emerging Technologies.

    Science.gov (United States)

    Am, Trond Grønli

    2011-04-01

    Trust has become an important aspect of evaluating the relationship between lay public and technology implementation. Experiences have shown that a focus on trust provides a richer understanding of reasons for backlashes of technology in society than a mere focus of public understanding of risks and science communication. Therefore, trust is also widely used as a key concept for understanding and predicting trust or distrust in emerging technologies. But whereas trust broadens the scope for understanding established technologies with well-defined questions and controversies, it easily fails to do so with emerging technologies, where there are no shared questions, a lack of public familiarity with the technology in question, and a restricted understanding amongst social researchers as to where distrust is likely to arise and how and under which form the technology will actually be implemented. Rather contrary, 'trust' might sometimes even direct social research into fixed structures that makes it even more difficult for social research to provide socially robust knowledge. This article therefore suggests that if trust is to maintain its important role in evaluating emerging technologies, the approach has to be widened and initially focus not on people's motivations for trust, but rather the object of trust it self, as to predicting how and where distrust might appear, how the object is established as an object of trust, and how it is established in relation with the public.

  4. Results of research in the area of nanotechnologies and nanomaterials. Part 4

    Directory of Open Access Journals (Sweden)

    KARPOV Alexey Ivanovich

    2014-08-01

    Full Text Available To popularize scientific achievements in construction the main results of Russian and foreign scientists’ research are published in the form of abstract. Within the frame of the research «Nanocomposite cabel elastrons based on polyvinylchloride and aluminum silicate» new nanocomposite materials based on polyvinylchloride elastron with organomodified montmorillonite and combinations of it with non-halogen fire flame retardant have been developed. The experiment shows that carbamide-containing organoclay is the efficient filler of polyvinylchloride elastron. The receipts and production method for new polymer nanocomposites based on PVC elastron and organomodified montmorillonite have been designed. The paper provides information on the methods to obtain nanodimensional natural fillers; principles for choosing organomodifiers and their influence on the quality of nanodimensional flaked silicate fillers; application efficiency of organoclays when modifying properties of polymer materials. All that makes the results of the research to be very useful for specialists engaged into the area of filler manufacture, creation and processing of polymer composite material and designing products of them. Specialists can use published materials in their scientific and practical activities.

  5. PREFACE: Rusnanotech 2010 International Forum on Nanotechnology

    Science.gov (United States)

    Kazaryan, Konstantin

    2011-03-01

    Deputy Director, Institute of Semiconductor Physics, Siberian Branch of Russian Academy of Sciences, RussiaProf Vladimir Kvardakov, Corresponding Member of Russian Academy of SciencesExecutive Director, Kurchatov Center of Synchrotron Radiation and Nanotechnology, RussiaProf Edward Son, Corresponding member of Russian Academy of SciencesScientific Deputy Director, Joint Institute for High Temperatures, Russian Academy of Sciences, RussiaProf Andrey GudkovSenior Vice President, Basic Science Chairman, Department of Cell Stress Biology, Roswell Park Cancer Institute, USAProf Robert NemanichChair, Department of Physics, Arizona State University, USAProf Kandlikar SatishProfessor, Rochester Institute of Technology, USAProf Xiang ZhangUC Berkeley, Director of NSF Nano-scale Science and Engineering Center (NSEC), USAProf Andrei ZvyaginProfessor, Macquarie University, AustraliaProf Sergey KalyuzhnyDirector of the Scientific and Technological Expertise Department, RUSNANO, RussiaKonstantin Kazaryan, PhDExpert of the Scientific and Technological Expertise Department, RUSNANO, Russia, Program Committee SecretarySimeon ZhavoronkovHead of Nanotechnology Programs Development Office, Rusnanotech Forum Fund for the Nanotechnology Development, Russia Editors of the proceedings: Section "Nanoelectronics" - Corresponding Member of Russian Academy of Sciences, Professor Anatoly Dvurechenskii (Institute of Semiconductor Physics, RAS).Section "Nanophotonics" - Professor Vasily Klimov (Institute of Physics, RAS).Section "Nanodiagnostics" - Professor P Kashkarov (Russian Scientific Center, Kurchatov Institute).Section "Nanotechnology for power engineering" - Corresponding Member of Russian Academy of Sciences, Professor Eduard Son (Joint Institute for High Temperatures, RAS).Section "Catalysis and chemical industry" - Member of Russian Academy of Sciences, Professor Valentin Parmon (Institute of Catalysis SB RAS).Section "Nanomaterials" - E Obraztsova, PhD (Institute of Physics, RAS), Marat Gallamov Ph

  6. Nanomedicine, nanotechnology in medicine

    Science.gov (United States)

    Boisseau, Patrick; Loubaton, Bertrand

    2011-09-01

    Nanomedicine is a relatively new field of science and technology. It looks sometimes ill defined and interpretations of that term may vary, especially between Europe and the United States. By interacting with biological molecules, therefore at nanoscale, nanotechnology opens up a vast field of research and application. Interactions between artificial molecular assemblies or nanodevices and biomolecules can be understood both in the extracellular medium and inside the human cells. Operating at nanoscale allows to exploit physical properties different from those observed at microscale such as the volume/surface ratio. The investigated diagnostic applications can be considered for in vitro as well as for in vivo diagnosis. In vitro, the synthesised particles and manipulation or detection devices allow for the recognition, capture, and concentration of biomolecules. In vivo, the synthetic molecular assemblies are mainly designed as a contrast agent for imaging. A second area exhibiting a strong development is "nanodrugs" where nanoparticles are designed for targeted drug delivery. The use of such carriers improves the drug biodistribution, targeting active molecules to diseased tissues while protecting healthy tissue. A third area of application is regenerative medicine where nanotechnology allows developing biocompatible materials which support growth of cells used in cell therapy. The application of nanotechnology to medicine raises new issues because of new uses they allow, for instance: Is the power of these new diagnostics manageable by the medical profession? What means treating a patient without any clinical signs? Nanomedicine can contribute to the development of a personalised medicine both for diagnosis and therapy. There exists in many countries existing regulatory frameworks addressing the basic rules of safety and effectiveness of nanotechnology based medicine, whether molecular assemblies or medical devices. However, there is a need to clarify or to

  7. Results of research in the area of nanotechnologies and nanomaterials. Part 5.

    Directory of Open Access Journals (Sweden)

    KARPOV Alexey Ivanovich

    2014-10-01

    Full Text Available To popularize scientific achievements in construction the main results of Russian and foreign scientists’ research are published in the form of abstract. These are main results of the research «Polymer construction nanocomposites based on polyvinylchloride»: technological recommendations on the use of multilayer carbon nanotubes, silicagel functionalized with the sulfur and silica sol in receipts of shape-moulded PVC-products for construction industry which allow increasing strength by 12–25%, thermal stability by 35–50% and decreasing melt viscosity (the factor increases 2–5 times; receipts and technology for production of high-filled construction composites based on PVC functionalized with silica sol and wood flour with population up to 68 mass.% when molding index is increased 12 times and thermal stability is increased by 60%. The specialists may be interested in the results of the following research: – I.S. Maeva «Modification of anhydride compositions with ultra- and nanodispersed additives»; – E.G. Chebotareva «Nanomodified composites of construction purpose with the use of epoxy resin»; – A.A. Volodchenko «Non-autoclave silicate materials with the use of natural nanodispersed raw materials»; – O.V. Popkova «Production and properties of metal-containing nanoparticles (Fe, Co, Ni, Zn, Ce, Cd, Pd, Ag, Mo, stabilized by nanodiamond of denotational synthesis and high pressure polyethylene»; – M.A. Fronya «Complex study of mechanical properties and structure of polymer composite materials with carbon modification fillers: nanotubes and ultradispersed diamonds»; – M.S. Babaeva «Production and study of nanoparticles of polymer-colloid complexes based on polymers of N,N-diallyl-N,N-chloride dimethylammonium and natrium dodecylsulfate». Published materials can be used by the specialists in their scientific and practical activities in construction, housing and communal services as well as in the joint economical

  8. Consumer attitudes towards nanotechnology in food products

    NARCIS (Netherlands)

    Steenis, Nigel D.; Fischer, Arnout R.H.

    2016-01-01

    Purpose – Nanotechnology is a technology that holds much promise for food production. It is, however not clear to what extent consumers will accept different types of nanotechnologies in food products. The purpose of this paper is to research consumer attitudes towards differing applications of f

  9. Nanotechnology Education: Contemporary Content and Approaches

    Science.gov (United States)

    Ernst, Jeremy V.

    2009-01-01

    Nanotechnology is a multidisciplinary field of research and development identified as a major priority in the United States. Progress in science and engineering at the nanoscale is critical for national security, prosperity of the economy, and enhancement of the quality of life. It is anticipated that nanotechnology will be a major transitional…

  10. Results of research in the area of nanotechnologies and nanomaterials. Part 6

    Directory of Open Access Journals (Sweden)

    KARPOV Alexey Ivanovich

    2014-12-01

    Full Text Available To popularize scientific achievements in construction the main results of Russian and foreign scientists’ research are published in the form of abstract. The result of research «Cement composites with additives of multi-layer carbon nanotubes (MLCN» is a new production technology and optimal compositions for complex nanomodified additives (CNMA. Introduction of such additives in the quantity of 12 mass.% of cement mass provides within 8–12 hours early stripping strength more than 15–40 Mpa, water impermeability more than W20 and frost resistance F60–F700. The technology provides double increase of work performance and metalriging turnover. The difference between the new production technology and the traditional one is that the line of production of chemical additives contains a new unit designed for manufacture of CNMA based on MLCN. The unit consists of precision feeder (the size of dose is 5 g., ultrasound dispersant with power 4 kW and frequency of operation 22 kHz and turbulent mixer with power 7,5 kW. The developed technology provides precise dose and even distribution of CNMA in mixture. The author developed technical conditions № 5745-111-02069622-2013 for manufacture of CNMA based on MLCN of different refinement purity and dispersiveness for high strength reinforced-concrete blocks used as finishing materials in subway tunnels. The specialists may be also interested in results of the research «Nanostructured perlite binder and foam concrete based on it» by Miroshnikov E.V., «Constructional steel fiber concretes modified with complex carbon micro- and nanosize additives» by Alatorceva U.V., «Physical and chemical study of nanocomposite template-assembled materials produced with the controlled sol-gel synthesis» by Krekoten' A.V., «Production and study of nanoparticles of polymer-colloid complexes based on polymers of chloride N,N-diallyl-N,N-dimethylammonio and dodecylsulfate sodium» by Babaeva M.S.,

  11. Nanotechnology and human health

    CERN Document Server

    Malsch, Ineke

    2013-01-01

    Addressing medium- and long-term expectations for human health, this book reviews current scientific and technical developments in nanotechnology for biomedical, agrofood, and environmental applications. This collection of perspectives on the ethical, legal, and societal implications of bionanotechnology provides unique insight into contemporary technological developments. Readers with a technical background will benefit from the overview of the state-of-the-art research in their field, while readers with a social science background will benefit from the discussion of realistic prospects of na

  12. Responsible nanotechnology development

    Science.gov (United States)

    Forloni, Gianluigi

    2012-08-01

    Nanotechnologies have an increasing relevance in our life, numerous products already on the market are associated with this new technology. Although the chemical constituents of nanomaterials are often well known, the properties at the nano level are completely different from the bulk materials. Independently from the specific application the knowledge in this field involves different type of scientific competence. The accountability of the nanomaterial research imply the parallel development of innovative methodological approaches to assess and manage the risks associated to the exposure for humans and environmental to the nanomaterials for their entire life-cycle: production, application, use and waste discharge. The vast numbers of applications and the enormous amount of variables influencing the characteristics of the nanomaterials make particularly difficult the elaboration of appropriate nanotoxicological protocols. According to the official declarations exist an awareness of the public institutions in charge of the regulatory system, about the environmental, health and safety implications of nanotechnology, but the scientific information is insufficient to support appropriate mandatory rules. Public research programmers must play an important role in providing greater incentives and encouragement for nanotechnologies that support sustainable development to avoid endangering humanity's well being in the long-term. The existing imbalance in funds allocated to nanotech research needs to be corrected so that impact assessment and minimization and not only application come high in the agenda. Research funding should consider as a priority the elimination of knowledge gaps instead of promoting technological application only. With the creation of a public register collecting nanomaterials and new applications it is possible, starting from the information available, initiate a sustainable route, allowing the gradual development of a rational and informed approach to

  13. Bioengineered riboflavin in nanotechnology.

    Science.gov (United States)

    Beztsinna, N; Solé, M; Taib, N; Bestel, I

    2016-02-01

    Riboflavin (RF) is an essential water-soluble vitamin with unique biological and physicochemical properties such as transporterspecific cell internalization, implication in redox reactions, fluorescence and photosensitizing. Due to these features RF attracted researchers in various fields from targeted drug delivery and tissue engineering to optoelectronics and biosensors. In this review we will give a brief reminder of RF chemistry, its optical, photosensitizing properties, RF transporter systems and its role in pathologies. We will point a special attention on the recent findings concerning RF applications in nanotechnologies such as RF functionalized nanoparticles, polymers, biomolecules, carbon nanotubes, hydrogels and implants for tissue engineering.

  14. EDITORIAL: Nanotechnology in motion Nanotechnology in motion

    Science.gov (United States)

    Demming, Anna

    2012-02-01

    development of the electron microscope, which aimed to exceed the resolving power of diffraction-limited optical microscopes. Since the diffraction limit is proportional to the incident wavelength, the shorter wavelength electron beam allows smaller features to be resolved than optical light. Ernst Ruska shared the Nobel Prize for Physics in 1986 for his work in developing the transmission electron microscope [5]. The technique continues to provide an invaluable tool in nanotechnology studies, as demonstrated recently by a collaboration of researchers in the US, Singapore and Korea used electron and atomic force microscopy in their investigation of the deposition of gold nanoparticles on graphene and the enhanced conductivity of the doped film [6]. The other half of the 1986 Nobel Prize was awarded jointly to Gerd Binnig and Heinrich Rohrer 'for their design of the scanning tunnelling microscope'. The scanning tunnelling microscope offered the first glimpses of atomic scale features, galvanizing research in nanoscale science and technology into a burst of fruitful activity that persists to this day. Instead of using the diffraction and scattering of beams to 'see' nanoscale structures, the atomic force microscope developed by Binnig, Quate and Gerber in the 1980s [1] determines the surface topology 'by touch'. The device uses nanoscale changes in the forces exerted on a tip as it scans the sample surface to generate an image. As might be expected, innovations on the original atomic force microscope have now been developed achieving ever greater sensitivities for imaging soft matter without destroying it. Recent work by collaborators at the University of Bristol and the University of Glasgow used a cigar-shaped nanoparticle held in optical tweezers as the scanning tip. The technique is not diffraction limited, imparts less force on samples than contact scanning probe microscopy techniques, and allows highly curved and strongly scattering samples to be imaged [7]. In this issue

  15. Using a Deliberative Exercise to Foster Public Engagement in Nanotechnology

    Science.gov (United States)

    Jones, Angela R.; Anderson, Ashley A.; Yeo, Sara K.; Greenberg, Andrew E.; Brossard, Dominique; Moore, John W.

    2014-01-01

    Nanotechnology is an emerging technology poised to benefit society both technically and socially, but as with any new advance, there is potential risk. This paper describes a novel deliberative exercise involving nanotechnology that engages the public in debate regarding the funding of nanotechnology-related research while also discussing…

  16. Effect of Nanotechnology Instructions on Senior High School Students

    Science.gov (United States)

    Lu, Chow-Chin; Sung, Chia-Chi

    2011-01-01

    In this research, we cooperate with senior high school teachers to understand current nanotechnology model of senior high school nanotechnology curriculum in Taiwan. Then design senior high school nanotechnology (nano-tech) curriculum to teach 503 senior high school students. After teaching the nano-tech curriculum we use the "Nanotechnology…

  17. Nanotechnology and Public Interest Dialogue: Some International Observations

    Science.gov (United States)

    Bowman, Diana M.; Hodge, Graeme A.

    2007-01-01

    This article examines nanotechnology within the context of the public interest. It notes that though nanotechnology research and development investment totalled US$9.6 billion in 2005, the public presently understands neither the implications nor how it might be best governed. The article maps a range of nanotechnology dialogue activities under…

  18. Methodological bases of innovative training of specialists in nanotechnology field

    OpenAIRE

    FIGOVSKY Oleg Lvovich; SHAMELKHANOVA Nelya A.; AIDAROVA Saule B.

    2016-01-01

    The performance of innovative training system aimed at highly intellectual specialists in the area of nanotechnologies for Kazakhstan’s economy demands establishment and development of nanotechnological market in the country, teaching of innovative engineering combined with consistent research, integration of trained specialists with latest technologies and sciences at the international level. Methodological aspects of training competitive specialists for nanotechnological field are spe...

  19. Nanotechnology in paper electronics

    Science.gov (United States)

    Demming, Anna; Österbacka, Professor Ronald; Han, Jin-Woo, Dr

    2014-03-01

    devices. If 'writing is thinking on paper' [15], it seems researchers are finding yet more powerful means of putting their ideas on paper. References [1] Barquinha P, Martins R, Pereira L and Fortunato E 2012 Transparent Oxide Electronics: From Materials to Devices (Chichester: Wiley) [2] Zocco A T, You H, Hagen J A and Steckl A J 2014 Pentacene organic thin film transistors on flexible paper and glass substrates Nanotechnology 25 094005 [3] Pereira L, Gaspar D, Guerin D, Delattre A, Fortunato E and Martins R 2014 The influence of fibril composition and dimension on the performance of paper gated oxide transistors Nanotechnology 25 094007 [4] Wu G, Wan C, Zhou J, Zhu L and Wan Q 2014 Low-voltage protonic/electronic hybrid indium-zinc-oxide synaptic transistors on paper substrates Nanotechnology 25 094001 [5] Shin H, Yoon B, Park I S and Kim J-M 2014 An electrothermochromic paper display based on colorimetrically reversible polydiacetylenes Nanotechnology 25 094011 [6] Ihalainen P, Pettersson F, Pesonen M, Viitala T, Määttänen A, Österbacka R and Peltonen J 2014 An impedimetric study of DNA hybridization on paper supported inkjet-printed gold electrodes Nanotechnology 25 094009 [7] Wang Y, Shi Y, Zhao C X, Wong J I, Sun X W and Yang H Y 2014 Printed all-solid flexible microsupercapacitors: towards the general route for high energy storage device Nanotechnology 25 094010 [8] Andersson H A, Manuilskiy A, Haller S, Hummelgård M, Sidén J, Hummelgård C, Olin H and Nilsson H-E 2014 Assembling surface mounted components on ink-jet printed double sided paper circuit board Nanotechnology 25 094002 [9] Gaspar D, Fernandes S N, de Oliveira A G, Fernandes J G, Grey P, Pontes R V, Pereira L, Martins R, Godinho M H and Fortunato E 2014 Nanocrystalline cellulose applied simultaneously as gate dielectric and substrate on flexible field effect transistors Nanotechnology 25 094008 [10] Männl U, van den Berg C, Magunje B, Härting M, Britton D T, Jones S, Mvan Staden M J and Scriba M

  20. Nanotechnology in medicine emerging applications

    CERN Document Server

    Koprowski, Gene

    2012-01-01

    This book will describe some of the most recent breakthroughs and promising developments in the search for improved diagnostics and therapies at the very small scales of living biological systems. While still very much a technology in the research and development stage, nanotechnology is already transforming today's medicine. This book, written by a general science author, provides a general overview of medical treatment potentials of nanotechnology in new, more effective drug delivery systems, in less invasive, ultra-small scale medical tools, and in new materials that can mimic or enhance na

  1. Stem cell tracking by nanotechnologies.

    Science.gov (United States)

    Villa, Chiara; Erratico, Silvia; Razini, Paola; Fiori, Fabrizio; Rustichelli, Franco; Torrente, Yvan; Belicchi, Marzia

    2010-03-12

    Advances in stem cell research have provided important understanding of the cell biology and offered great promise for developing new strategies for tissue regeneration. The beneficial effects of stem cell therapy depend also by the development of new approachs for the track of stem cells in living subjects over time after transplantation. Recent developments in the use of nanotechnologies have contributed to advance of the high-resolution in vivo imaging methods, including positron emission tomography (PET), single-photon emission tomography (SPECT), magnetic resonance (MR) imaging, and X-Ray computed microtomography (microCT). This review examines the use of nanotechnologies for stem cell tracking.

  2. Stem Cell Tracking by Nanotechnologies

    Directory of Open Access Journals (Sweden)

    Marzia Belicchi

    2010-03-01

    Full Text Available Advances in stem cell research have provided important understanding of the cell biology and offered great promise for developing new strategies for tissue regeneration. The beneficial effects of stem cell therapy depend also by the development of new approachs for the track of stem cells in living subjects over time after transplantation. Recent developments in the use of nanotechnologies have contributed to advance of the high-resolution in vivo imaging methods, including positron emission tomography (PET, single-photon emission tomography (SPECT, magnetic resonance (MR imaging, and X-Ray computed microtomography (microCT. This review examines the use of nanotechnologies for stem cell tracking.

  3. DNA nanotechnology and fluorescence applications.

    Science.gov (United States)

    Schlichthaerle, Thomas; Strauss, Maximilian T; Schueder, Florian; Woehrstein, Johannes B; Jungmann, Ralf

    2016-06-01

    Structural DNA nanotechnology allow researchers to use the unique molecular recognition properties of DNA strands to construct nanoscale objects with almost arbitrary complexity in two and three dimensions. Abstracted as molecular breadboards, DNA nanostructures enable nanometer-precise placement of guest molecules such as proteins, fluorophores, or nanoparticles. These assemblies can be used to study biological phenomena with unprecedented control over number, spacing, and molecular identity. Here, we give a general introduction to structural DNA nanotechnology and more specifically discuss applications of DNA nanostructures in the field of fluorescence and plasmonics.

  4. What's New in Liver Cancer Research and Treatment?

    Science.gov (United States)

    ... Liver Cancer About Liver Cancer What's New in Liver Cancer Research and Treatment? Because there are only a ... in Liver Cancer Research and Treatment? More In Liver Cancer About Liver Cancer Causes, Risk Factors, and Prevention ...

  5. What's New in Ovarian Cancer Research and Treatment?

    Science.gov (United States)

    ... Ovarian Cancer About Ovarian Cancer What's New in Ovarian Cancer Research and Treatment? Risk factors and causes Scientists ... in Ovarian Cancer Research and Treatment? More In Ovarian Cancer About Ovarian Cancer Causes, Risk Factors, and Prevention ...

  6. Nanotechnologies, bioethics and human dignity.

    Science.gov (United States)

    Visciano, Silvia

    2011-01-01

    Nanoscale science, research, and technology present a complex set of circumstances. First of all, this field involves many different subjects, including biology, chemistry, physics, and environment sciences. Secondly, although scientists are working increasingly at a molecular level, nanotechnology is about much more than a reduction of scale. Indeed, nanoscience and Nanotechnologies offer an unprecedented ability to control and manipulate nature, offering hope for progress. Ethical perspectives vary considerably in this field, but commentators and researchers share a concern about a specific worrisome issue: the lack of appropriate ethical and legal principles and processes (associated with issues including health risks, human body manipulation, and private life violation), to guide nanotechnological R&D, commercialization, and final use. Some authors partially reject this concern by suggesting that Nanoscience and Nanotechnologies do not constitute an autonomous category, and that they are instead just the operative result of combining other traditional areas of study. However the nanotechnological debate brings up the semantic and content issues of bioethics and foments a contentious discussion emphasizing human dignity. Issues include enhancement versus therapeutic intervention, traceability versus privacy, and societal benefits versus risks. From these preliminary considerations, we will move on to discuss (I) the traditional, although still controversial, relationship between bioethics and human dignity, and (II) return to the subject of nanotechnology. We will discuss how today in Europe, although still indefinite, the principle of respect for human dignity is a welcomed contributor to "ethical vigilance" about the uncertain development of new nano-scale technologies. We will also note how U.S. strategy in this regard is simply lacking and appears only as a purely discursive "key issue in long term ".

  7. The Formation of Data on Nanotechnological Processes

    Directory of Open Access Journals (Sweden)

    Oleynik Olga Stepanovna

    2015-05-01

    Full Text Available The article presents the statistical monitoring of the main trends of nanotechnology development in Russia, as well as the review of the modern programs and documents devoted to urgent issues of nanotechnology development. The formation of system of statistical monitoring of nanotechnologies development in the Russian Federation includes the development of methodology and tools of statistical supervision over creation, commercialization, the use of nanotechnologies, and also the nanotechnological production. The authors carry out the analysis of the main directions and structure of co-funding of “The Program of nanotech industry development in the Russian Federation till 2015”. The sources of official statistical data on nanotechnologies in Russia are considered. The purpose of forming this essentially new direction of statistics consists in the creation of system of collecting, processing and submission of the regular, systematized and complex data which are adequately reflecting the state, the level of development and the prospects of nanotechnological sphere capacity which provide informational support to state policy and adoption of reasonable administrative decisions. The authors describe the system of statistical observations in the sphere of nanotechnologies. Today the statistics of nanotechnologies in Russia remains at the stage of formation and modernization according to the international standards, being supplemented every year with the new indicators which allow investigating different sides and tendencies of nanotech industry development. Nowadays the following aspects of the activity connected with nanotechnologies have already being studied by means of statistical methods: scientific research and developments; creation and use of nanotechnologies; demand for staff; production, including the innovative one.

  8. Gene-Environment Research and Cancer Epidemiology

    Science.gov (United States)

    The Epidemiology and Genomics Research Program supports extramural research that investigates both genetic and environmental factors that may contribute to the etiology of cancer and/or impact cancer outcomes.

  9. Center for Herbal Research on Colorectal Cancer

    Data.gov (United States)

    Federal Laboratory Consortium — Research Area: Herbs Program:Centers of Excellence for Research on CAM Description:Colorectal cancer is the third most common cancer and the third leading cause of...

  10. Frederick National Laboratory for Cancer Research

    Data.gov (United States)

    Federal Laboratory Consortium — Among the many cancer research laboratories operated by NCI, the Frederick National Laboratory for Cancer Research(FNLCR) is unique in that it is a Federally Funded...

  11. Nanovate commercializing disruptive nanotechnologies

    CERN Document Server

    Anis, Mohab; Sarhan, Wesam; Elsemary, Mona

    2017-01-01

    This book introduces readers from diverse backgrounds to the principles underlying nanotechnology, from devices to systems, while also describing in detail how businesses can use nanotechnology to redesign their products and processes, in order to have a clear edge over their competition. The authors include 75 case studies, describing in a highly-accessible manner, real nanotechnology innovations from 15 different industrial sectors. For each case study, the technology or business challenges faced by the company are highlighted, the type of nanotechnology adopted is defined, and the eventual economic and social impact is described. Introduces fundamentals of nanotechnology and its applications in a highly-accessible manner Includes 75 case studies of commercializing nanotechnology from 15 industrial sectors, including Automotive, Consumer Electronics, and Renewable Energy Enables nanotechnology experts to learn simple and important business concepts to facilitate the transfer of science to the market Introdu...

  12. What's New in Research and Treatment for Thymus Cancer?

    Science.gov (United States)

    ... Cancer What’s New in Research and Treatment for Thymus Cancer? There is always research going on in ... Research and Treatment for Thymus Cancer? More In Thymus Cancer About Thymus Cancer Causes, Risk Factors, and ...

  13. Nanotechnology applications in medicine and dentistry.

    Science.gov (United States)

    Gupta, Jyoti

    2011-05-01

    Nanotechnology, or nanoscience, refers to the research and development of an applied science at the atomic, molecular, or macromolecular levels (i.e. molecular engineering, manufacturing). The prefix "nano" is defined as a unit of measurement in which the characteristic dimension is one billionth of a unit. Although the nanoscale is small in size, its potential is vast. As nanotechnology expands in other fields, clinicians, scientists, and manufacturers are working to discover the uses and advances in biomedical sciences. Applications of nanotechnology in medical and dental fields have only approached the horizon with opportunities and possibilities for the future that can only be limited by our imagination. This paper provides an early glimpse of nanotechnology applications in medicine and dentistry to illustrate their potentially far-reaching impacts on clinical practice. It also narrates the safety issues concerning nanotechnology applications.

  14. Taking a precautionary approach to nanotechnology

    Directory of Open Access Journals (Sweden)

    Dónal P. O’Mathúna

    2011-07-01

    Full Text Available Nanotechnology is developing at a rapid pace. Concerns have been raised about the risks nanotechnology may carry for human health and the environment. The precautionary principle has developed within environmental ethics as a way to reduce the risk of harm with emerging technologies. It has been incorporated into a number of documents addressing nanotechnology risks, including the European Commission’s Code of Conduct for Responsible Nanosciences and Nanotechnologies Research. The central features of the precautionary principle are reviewed here. These include addressing situations of scientific uncertainty and serious or irreversible harm, developing a proportionate response, and having reasonable grounds for concern. These factors will be applied to carbon nanotubes to demonstrate how the precautionary principle can lead to practical guidelines during the development of nanotechnology.

  15. Nanotechnologies in food and meat processing

    Directory of Open Access Journals (Sweden)

    Lech Ozimek

    2010-12-01

    Full Text Available This paper highlights the evolution of nanoscience and nanotechnologies from the global perspective and their potential application in food systems including meat processing. Nanotechnology has its roots in a talk delivered in 1959 by physicist Richard Feynman to the American Physical Society. Nanoscience refers to components properties at nanoscale and nanotechnology refers to process or processes used in the manufacture and/or biofabrication of new materials measured at nanoscale. Nanotechnology offers a wide range of opportunities for the development of innovative products and applications in food system. Functional foods, nutraceuticals, bioactives, farmafoods, etc. are very recent example of it. Nanotechnology and nanomaterials are a natural part of food processing and conventional foods, because the characteristic properties of many foods rely on nanometer sized components. Some of the areas where nanotechnologies are set to make a difference in meat processing in near future relate to intelligent packaging of meat and meat products, meat derived bioactive peptides, pro- and pre-biotics inclusion in processed meat products, fat based nanoemulsions for antioxidant delivery, nanosensors and nanotracers for meat biosecurity tracing and nanostructured meat products with defined functions. New horizons for nanotechnology in meat science may be achieved by further research on nanoscale structures and methods to control interactions between single molecules. However, it shall be mentioned that nanotechnologies and nanomaterials are calling for their regulations and safety assessment as some of the materials are new and their safety never tested before.

  16. From Diagnosis to Treatment: Clinical Applications of Nanotechnology in Thoracic Surgery.

    Science.gov (United States)

    Digesu, Christopher S; Hofferberth, Sophie C; Grinstaff, Mark W; Colson, Yolonda L

    2016-05-01

    Nanotechnology is an emerging field with potential as an adjunct to cancer therapy, particularly thoracic surgery. Therapy can be delivered to tumors in a more targeted fashion, with less systemic toxicity. Nanoparticles may aid in diagnosis, preoperative characterization, and intraoperative localization of thoracic tumors and their lymphatics. Focused research into nanotechnology's ability to deliver both diagnostics and therapeutics has led to the development of nanotheranostics, which promises to improve the treatment of thoracic malignancies through enhanced tumor targeting, controlled drug delivery, and therapeutic monitoring. This article reviews nanoplatforms, their unique properties, and the potential for clinical application in thoracic surgery.

  17. Nanotechnology in biorobotics: opportunities and challenges

    Energy Technology Data Exchange (ETDEWEB)

    Ricotti, Leonardo, E-mail: l.ricotti@sssup.it; Menciassi, Arianna [Scuola Superiore Sant’Anna, The BioRobotics Institute (Italy)

    2015-02-15

    Nanotechnology recently opened a series of unexpected technological opportunities that drove the emergence of novel scientific and technological fields, which have the potential to dramatically change the lives of millions of citizens. Some of these opportunities have been already caught by researchers working in the different fields related to biorobotics, while other exciting possibilities still lie on the horizon. This article highlights how nanotechnology applications recently impacted the development of advanced solutions for actuation and sensing and the achievement of microrobots, nanorobots, and non-conventional larger robotic systems. The open challenges are described, together with the most promising research avenues involving nanotechnology.

  18. Circulating Tumor Cells: From Theory to Nanotechnology-Based Detection.

    Science.gov (United States)

    Ming, Yue; Li, Yuanyuan; Xing, Haiyan; Luo, Minghe; Li, Ziwei; Chen, Jianhong; Mo, Jingxin; Shi, Sanjun

    2017-01-01

    Cancer stem cells with stem-cell properties are regarded as tumor initiating cells. Sharing stem-cell properties, circulating tumor cells (CTCs) are responsible for the development of metastasis, which significant affects CTC analysis in clinical practice. Due to their extremely low occurrence in blood, however, it is challenging to enumerate and analyze CTCs. Nanotechnology is able to address the problems of insufficient capture efficiency and low purity of CTCs owing to the unique structural and functional properties of nanomaterials, showing strong promise for CTC isolation and detection. In this review, we discuss the role of stem-like CTCs in metastases, provide insight into recent progress in CTC isolation and detection approaches using various nanoplatforms, and highlight the role of nanotechnology in the advancement of CTC research.

  19. Circulating Tumor Cells: From Theory to Nanotechnology-Based Detection

    Science.gov (United States)

    Ming, Yue; Li, Yuanyuan; Xing, Haiyan; Luo, Minghe; Li, Ziwei; Chen, Jianhong; Mo, Jingxin; Shi, Sanjun

    2017-01-01

    Cancer stem cells with stem-cell properties are regarded as tumor initiating cells. Sharing stem-cell properties, circulating tumor cells (CTCs) are responsible for the development of metastasis, which significant affects CTC analysis in clinical practice. Due to their extremely low occurrence in blood, however, it is challenging to enumerate and analyze CTCs. Nanotechnology is able to address the problems of insufficient capture efficiency and low purity of CTCs owing to the unique structural and functional properties of nanomaterials, showing strong promise for CTC isolation and detection. In this review, we discuss the role of stem-like CTCs in metastases, provide insight into recent progress in CTC isolation and detection approaches using various nanoplatforms, and highlight the role of nanotechnology in the advancement of CTC research. PMID:28203204

  20. Nanoscience Nanotechnologies and Nanophysics

    CERN Document Server

    Dupas, Claire; Lahmani, Marcel

    2007-01-01

    Nanotechnologies and nanosciences are a fast-developing field of research, which sit at the point of convergence of several disciplines (physics, chemistry, biology, mechanics, etc.). This practically-oriented overview is designed to provide students and researchers with essential information on both the tools of manufacture and specific features of the nanometric scale, as well as applications within the most active fields (electronics, magnetism, information storage, biology). Specific applications and techniques covered include nanolithography, STM and AFM, nanowires and supramolecules, molecular electronics, optronics, and simulation. Each section of the book devotes considerable space to industrial applications and prospective developments. The carefully edited contributions are written by reserach workers and unirveisty instructors who are experts in their own fields and full up-to-date with the latest developments. Their uniform and self-contained nature permit users to access the most relevant chapter...

  1. Drosophila models for cancer research.

    Science.gov (United States)

    Vidal, Marcos; Cagan, Ross L

    2006-02-01

    Drosophila is a model system for cancer research. Investigation with fruit flies has facilitated a number of important recent discoveries in the field: the hippo signaling pathway, which coordinates cell proliferation and death to achieve normal tissue size; 'social' behaviors of cells, including cell competition and apoptosis-induced compensatory proliferation, that help ensure normal tissue size; and a growing understanding of how oncogenes and tumor suppressors cooperate to achieve tumor growth and metastasis in situ. In the future, Drosophila models can be extended beyond basic research in the search for human therapeutics.

  2. Nanotechnology in dentistry: prevention, diagnosis, and therapy.

    Science.gov (United States)

    Abou Neel, Ensanya Ali; Bozec, Laurent; Perez, Roman A; Kim, Hae-Won; Knowles, Jonathan C

    2015-01-01

    Nanotechnology has rapidly expanded into all areas of science; it offers significant alternative ways to solve scientific and medical questions and problems. In dentistry, nanotechnology has been exploited in the development of restorative materials with some significant success. This review discusses nanointerfaces that could compromise the longevity of dental restorations, and how nanotechnolgy has been employed to modify them for providing long-term successful restorations. It also focuses on some challenging areas in dentistry, eg, oral biofilm and cancers, and how nanotechnology overcomes these challenges. The recent advances in nanodentistry and innovations in oral health-related diagnostic, preventive, and therapeutic methods required to maintain and obtain perfect oral health, have been discussed. The recent advances in nanotechnology could hold promise in bringing a paradigm shift in dental field. Although there are numerous complex therapies being developed to treat many diseases, their clinical use requires careful consideration of the expense of synthesis and implementation.

  3. EDITORIAL: Quantum phenomena in Nanotechnology Quantum phenomena in Nanotechnology

    Science.gov (United States)

    Loss, Daniel

    2009-10-01

    Twenty years ago the Institute of Physics launched the journal Nanotechnology from its publishing house based in the home town of Paul Dirac, a legendary figure in the development of quantum mechanics at the turn of the last century. At the beginning of the 20th century, the adoption of quantum mechanical descriptions of events transformed the existing deterministic world view. But in many ways it also revolutionised the progress of research itself. For the first time since the 17th century when Francis Bacon established inductive reasoning as the means of advancing science from fact to axiom to law, theory was progressing ahead of experiments instead of providing explanations for observations that had already been made. Dirac's postulation of antimatter through purely theoretical investigation before its observation is the archetypal example of theory leading the way for experiment. The progress of nanotechnology and the development of tools and techniques that enabled the investigation of systems at the nanoscale brought with them many fascinating observations of phenomena that could only be explained through quantum mechanics, first theoretically deduced decades previously. At the nanoscale, quantum confinement effects dominate the electrical and optical properties of systems. They also render new opportunities for manipulating the response of systems. For example, a better understanding of these systems has enabled the rapid development of quantum dots with precisely determined properties, which can be exploited in a range of applications from medical imaging and photovoltaic solar cells to quantum computation, a radically new information technology being currently developed in many labs worldwide. As the first ever academic journal in nanotechnology, {\\it Nanotechnology} has been the forum for papers detailing progress of the science through extremely exciting times. In the early years of the journal, the investigation of electron spin led to the formulation

  4. Biomedical nanotechnology.

    Science.gov (United States)

    Hurst, Sarah J

    2011-01-01

    This chapter summarizes the roles of nanomaterials in biomedical applications, focusing on those highlighted in this volume. A brief history of nanoscience and technology and a general introduction to the field are presented. Then, the chemical and physical properties of nanostructures that make them ideal for use in biomedical applications are highlighted. Examples of common applications, including sensing, imaging, and therapeutics, are given. Finally, the challenges associated with translating this field from the research laboratory to the clinic setting, in terms of the larger societal implications, are discussed.

  5. Interdisciplinary Research Training in Breast Cancer

    Science.gov (United States)

    2005-07-01

    University. An Internet-Based Low- Literacy Cancer Communication Intervention. $1,500, funded. * 2004- Pfizer Clear Health Communication Program. An...Internet-Based Low- Literacy Cancer Communication Intervention. $195,000, not funded. 0 2004- DOD Breast Cancer Research Program, Multidisciplinary...of Connecticut and Yale University. While providing didactic experience in advanced research, methodology, it allows the candidate to have sustained

  6. DNA Nanotechnology

    Science.gov (United States)

    Taniguchi, Masateru; Kawai, Tomoji

    2002-11-01

    DNA is one candidate of promising molecules for molecular electronic devices, since it has the double helix structure with pi-electron bases for electron transport, the address at 0.4 nm intervals, and the self-assembly. Electrical conductivity and nanostructure of DNA and modified DNA molecules are investigated in order to research the application of DNA in nanoelectronic devices. It has been revealed that DNA is a wide-gap semiconductor in the absence of doping. The conductivity of DNA has been controlled by chemical doping, electric field doping, and photo-doping. It has found that Poly(dG)[middle dot]Poly(dC) has the best conductivity and can function as a conducting nanowire. The pattern of DNA network is controlled by changing the concentration of the DNA solution.

  7. Applications of nanotechnology in biomedicine

    Directory of Open Access Journals (Sweden)

    Andreia Chirilă

    2014-06-01

    Full Text Available Nanobiotechnology is a new field in research, constituting the interface between the life sciences and nanotechnology. In this field, the size of the working range is between 1 nm and 100 nm. This new domain it proposes the exploitation of quality biomolecules and processes involved in the development of materials or devices with definite activity in medicine. Therapeutic nanotechnology seeks to provide specific features that can reduce morbidity and mortality in humans and animals, of which the most important are: a minimal invasive therapy, high density functions and the concentration in very small volumes. The first origins of the concept of nano-medicine are from Feynman's, who had the visionary idea of the nanorobots and similar mechanisms that could be designed, constructed, and placed in the body to perform cellular repairs at the molecular level. With the priorities crystallization in the medicine domain of XX and especially of the XXI’s century, also nanomedicine gained the momentum. In this respect the review proposes to introduce the reader to this fascinating field. There are provided information about cancer’s nanotherapy, examples of systems, applications of DNA, magnetic separation and manipulation of cells and biomolecules, nanotechnology applications in tissue engineering and many more. Also there are presented applications of nanotechnology in tissue engineering and about nano-robots.

  8. Nanotechnology impact on the automotive industry.

    Science.gov (United States)

    Wong, Kaufui V; Paddon, Patrick A

    2014-01-01

    Nanotechnology has been implemented widely in the automotive industry. This technology is particularly useful in coatings, fabrics, structural materials, fluids, lubricants, tires, and preliminary applications in smart glass/windows and video display systems. A special sub-class of improved materials, alternative energy, has also seen a boost from advances in nanotechnology, and continues to be an active research area. A correlation exists in the automotive industry between the areas with increased nanotechnology incorporation and those with increased profit margins via improvements and customer demands.

  9. [Nanotechnology in food production: advances and problems].

    Science.gov (United States)

    Vernikov, V M; Arianova, E A; Gmoshinskiĭ, I V; Khotimchenko, S A; Tutel'ian, V A

    2009-01-01

    Presented article is a review of the modern data on nanotechnology use in food manufacturing. There are discussed the basic scopes of nanotechnology application in food industry. One of the main problems arising in connection with introduction of nanotechnology in food, is an absence of reliable methods of identification and the control of nanoparticles is in structure of foodstuff including the control of their authenticity. Other problem is connected to necessity of an estimation of the risks connected to presence of potentially toxic nanoparticles in food. The analysis of foreign experience of researches in the given area allows to formulate methodological approaches to formation of domestic system of nanosafety.

  10. Colloid and interface chemistry for nanotechnology

    CERN Document Server

    Kralchevsky, Peter

    2013-01-01

    Colloid and interface science dealt with nanoscale objects for nearly a century before the term nanotechnology was coined. An interdisciplinary field, it bridges the macroscopic world and the small world of atoms and molecules. Colloid and Interface Chemistry for Nanotechnology is a collection of manuscripts reflecting the activities of research teams that have been involved in the networking project Colloid and Interface Chemistry for Nanotechnology (2006-2011), Action D43, the European Science Foundation. The project was a part of the intergovernmental framework for Cooperation in Science an

  11. Prostate cancer research in China

    Institute of Scientific and Technical Information of China (English)

    Shan-Cheng Ren; Rui Chen; Ying-Hao Sun

    2013-01-01

    Prostate cancer (PCa) research in China has been on a rocketing trend in recent years.The first genome-wide association study (GWAS)in China identified two new PCa risk associated single nucleotide polymorphisms (SNPs).Next generation sequencing is beginning to be used,yielding novel findings:gene fusions,long non-coding RNAs and other variations.Mechanisms of PCa progression have been illustrated while various diagnosis biomarkers have been investigated extensively.Personalized therapy based on genetic factors,nano-medicine and traditional Chinese medicine has been the focus of experimental therapeutic research for PCa.This review intends to shed light upon the recent progress in PCa research in China and points out the possible breakthroughs in the future.

  12. Breast Cancer and the Environment Research Program

    Science.gov (United States)

    The Breast Cancer and the Environment Research Program supports a multidisciplinary network of scientists, clinicians, and community partners to examine the effects of environmental exposures that may predispose a woman to breast cancer throughout her life.

  13. Applications of Nanotechnology in Veterinary Medicine

    Directory of Open Access Journals (Sweden)

    Vikrama Chakravarthi. P and Sri N. Balaji

    Full Text Available In the recent years the application of nanotechnology in human and veterinary medicine has shown a great progress. Scientists foresee that this progress in the field of nanotechnology could represent a major breakthrough in addressing some of the technical challenges faced by human and veterinary profession. While the great hopes of nanomedicine are disease detection and new pharmaceuticals for humans, veterinary applications of nanotechnology may become the proving ground for untried and more controversial techniques from nanocapsule vaccines to sex selection in breeding. Nanotechnology has the potential to impact not only the way we live, but also the way we practice veterinary medicine. Examples of potential applications in animal agriculture and veterinary medicine include disease diagnosis and treatment delivery systems, new tools for molecular and cellular breeding, the security of animal food products, modification of animal waste, pathogen detection, and many more. Existing research has demonstrated the feasibility of introducing nanoshells and nanotubes into animals to seek and destroy targeted cells. These building blocks of nanotechnology are expected to be integrated into systems over the next couple of decades on a commercial basis. This article describes some of the principal areas of nanotechnology currently being undertaken in the world of medicine.The main purposes of this article are to trigger the interest of discoveries of veterinary profession in the field of nanotechnology and to provide a glimpse at potential important targets for nanotechnology in the field of veterinary medicine. Also it is important to mention that because nanotechnology is at a very early stage of development, it may take several years to perform the necessary research and conduct clinical trials for obtaining meaningful results. This tool as it develops over the next several decades will have major implications in veterinary and animal science

  14. EDITORIAL: Trends in Nanotechnology

    Science.gov (United States)

    Correia, Antonio; Serena, Pedro A.; Saenz, Juan Jose; Welland, Mark; Reifenberger, Ron

    2004-04-01

    With effect from August 2004 the journal Nanotechnology will discontinue the `Letters to the Editor' section. The increase in publication speed achieved for all articles now means that letters have no advantage. Fully electronic publication processes including electronic submission, refereeing and proofing, ensure that all papers are processed with minimum delay and are published as soon as they are ready. The journal will continue to publish high-quality original research papers, reviews and tutorials, as well as papers on the ethical and societal implications of nanotechnology at the discretion of the Editorial Board. All submitted papers will undergo a pre-selection procedure for suitability by the Editors of the journal. If a paper is accepted for consideration by the journal it will be sent to independent experts in the field for peer review. To speed up the publication process, we encourage authors to suggest five independent experts in their field as potential referees and supply their title, name, affiliation and e-mail address. The Editors of the journal may use these names at their discretion. Authors may also request that certain people are not to be used as referees. Papers of special interest will be given the utmost priority and on acceptance will be publicized further through worldwide press releases and reviews on the Institute of Physics website and on nanotechweb.org. As a service to authors and to the international physics community, and as part of our commitment to give authors' work as much visibility as possible, all papers are freely available online for 30 days from their electronic publication date. This means open access for citations to everyone in the world. We will also send an electronic offprint of your published paper to ten colleagues of your choice, giving your article an increased chance of being cited quickly. In the meantime, we are pleased to announce an increase in the Impact Factor of the journal in 2003 to 2.304, which means

  15. Machine Phase Fullerene Nanotechnology: 1996

    Science.gov (United States)

    Globus, Al; Chancellor, Marisa K. (Technical Monitor)

    1997-01-01

    NASA has used exotic materials for spacecraft and experimental aircraft to good effect for many decades. In spite of many advances, transportation to space still costs about $10,000 per pound. Drexler has proposed a hypothetical nanotechnology based on diamond and investigated the properties of such molecular systems. These studies and others suggest enormous potential for aerospace systems. Unfortunately, methods to realize diamonoid nanotechnology are at best highly speculative. Recent computational efforts at NASA Ames Research Center and computation and experiment elsewhere suggest that a nanotechnology of machine phase functionalized fullerenes may be synthetically relatively accessible and of great aerospace interest. Machine phase materials are (hypothetical) materials consisting entirely or in large part of microscopic machines. In a sense, most living matter fits this definition. To begin investigation of fullerene nanotechnology, we used molecular dynamics to study the properties of carbon nanotube based gears and gear/shaft configurations. Experiments on C60 and quantum calculations suggest that benzyne may react with carbon nanotubes to form gear teeth. Han has computationally demonstrated that molecular gears fashioned from (14,0) single-walled carbon nanotubes and benzyne teeth should operate well at 50-100 gigahertz. Results suggest that rotation can be converted to rotating or linear motion, and linear motion may be converted into rotation. Preliminary results suggest that these mechanical systems can be cooled by a helium atmosphere. Furthermore, Deepak has successfully simulated using helical electric fields generated by a laser to power fullerene gears once a positive and negative charge have been added to form a dipole. Even with mechanical motion, cooling, and power; creating a viable nanotechnology requires support structures, computer control, a system architecture, a variety of components, and some approach to manufacture. Additional

  16. Nanotechnology and Social Context

    Science.gov (United States)

    Sandler, Ronald

    2007-01-01

    The central claims defended in this article are the following: (a) The social and ethical challenges of nanotechnology can be fully identified only if both the characteristic features of nanotechnologies and the social contexts into which they are emerging are considered. (b) When this is done, a host of significant social context issues, or…

  17. Nanotechnologies for sustainable construction

    DEFF Research Database (Denmark)

    Geiker, Mette Rica; Andersen, Maj Munch

    2009-01-01

    This chapter aims to highlight key aspects and recent trends in the development and application of nanotechnology to facilitate sustainable construction, use and demolition of buildings and infrastructure structures, ‘nanoconstruction’. Nanotechnology is not a technology but a very diverse...

  18. Nanotechnology in ophthalmology.

    Science.gov (United States)

    Zarbin, Marco A; Montemagno, Carlo; Leary, James F; Ritch, Robert

    2010-10-01

    Nanotechnology involves the creation and use of materials and devices at the size scale of intracellular structures and molecules, and involves systems and constructs in the order of nanotechnology as applied to nanomedicine (e.g., biomimicry and pseudointelligence). Some applications of nanotechnology to ophthalmology are described (including treatment of oxidative stress; measurement of intraocular pressure; theragnostics; use of nanoparticles to treat choroidal new vessels, prevent scarring after glaucoma surgery, and treat retinal degenerative disease with gene therapy; prosthetics; and regenerative nanomedicine). Nanotechnology will revolutionize our approach to current therapeutic challenges (e.g., drug delivery, postoperative scarring) and will enable us to address currently unsolvable problems (e.g., sight-restoring therapy for patients with retinal degenerative disease). Obstacles to the incorporation of nanotechnology remain, such as safe manufacturing techniques and unintended biological consequences of nanomaterial use. These obstacles are not insurmountable, and revolutionary treatments for ophthalmic diseases are expected to result from this burgeoning field.

  19. Nanotechnology Safety Self-Study

    Energy Technology Data Exchange (ETDEWEB)

    Grogin, Phillip W. [Los Alamos National Laboratory

    2016-03-29

    Nanoparticles are near-atomic scale structures between 1 and 100 nanometers (one billionth of a meter). Engineered nanoparticles are intentionally created and are used in research and development at Sandia National Laboratories (SNL) and Los Alamos National Laboratory (LANL). This course, Nanotechnology Safety Self-Study, presents an overview of the hazards, controls, and uncertainties associated with the use of unbound engineered nanoscale particles (UNP) in a laboratory environment.

  20. Stem Cell Tracking by Nanotechnologies

    OpenAIRE

    Marzia Belicchi; Yvan Torrente; Franco Rustichelli; Fabrizio Fiori; Paola Razini; Silvia Erratico; Chiara Villa

    2010-01-01

    Advances in stem cell research have provided important understanding of the cell biology and offered great promise for developing new strategies for tissue regeneration. The beneficial effects of stem cell therapy depend also by the development of new approachs for the track of stem cells in living subjects over time after transplantation. Recent developments in the use of nanotechnologies have contributed to advance of the high-resolution in vivo imaging methods, including positron emission ...

  1. Lysyl oxidase in cancer research.

    Science.gov (United States)

    Perryman, Lara; Erler, Janine T

    2014-01-01

    Metastasis is the main reason for cancer-associated deaths and therapies are desperately needed to target the progression of cancer. Lysyl oxidase (LOX) plays a pivotal role in cancer progression, including metastasis, and is therefore is an attractive therapeutic target. In this review we will breakdown the process of cancer progression and the various roles that LOX plays has in the advancement of cancer. We will highlight why LOX is an exciting therapeutic target for the future.

  2. Advances in Nanotechnology for Restorative Dentistry

    Directory of Open Access Journals (Sweden)

    Zohaib Khurshid

    2015-02-01

    Full Text Available Rationalizing has become a new trend in the world of science and technology. Nanotechnology has ascended to become one of the most favorable technologies, and one which will change the application of materials in different fields. The quality of dental biomaterials has been improved by the emergence of nanotechnology. This technology manufactures materials with much better properties or by improving the properties of existing materials. The science of nanotechnology has become the most popular area of research, currently covering a broad range of applications in dentistry. This review describes the basic concept of nanomaterials, recent innovations in nanomaterials and their applications in restorative dentistry. Advances in nanotechnologies are paving the future of dentistry, and there are a plenty of hopes placed on nanomaterials in terms of improving the health care of dental patients.

  3. Institutional profile: the London Centre for Nanotechnology.

    Science.gov (United States)

    Weston, David; Bontoux, Thierry

    2009-12-01

    Located in the London neighborhoods of Bloomsbury and South Kensington, the London Centre for Nanotechnology is a UK-based multidisciplinary research center that operates at the forefront of science and technology. It is a joint venture between two of the world's leading institutions, UCL and Imperial College London, uniting their strong capabilities in the disciplines that underpin nanotechnology: engineering, the physical sciences and biomedicine. The London Centre for Nanotechnology has a unique operating model that accesses and focuses the combined skills of the Departments of Chemistry, Physics, Materials, Medicine, Electrical and Electronic Engineering, Mechanical Engineering, Chemical Engineering, Biochemical Engineering and Earth Sciences across the two universities. It aims to provide the nanoscience and nanotechnology required to solve major problems in healthcare, information processing, energy and the environment.

  4. Origins of life: a route to nanotechnology.

    Science.gov (United States)

    Sowerby, S J; Holm, N G; Petersen, G B

    2001-06-01

    The origins of life and nanotechnology are two seemingly disparate areas of scientific investigation. However, the fundamental questions of life's beginnings and the applied construction of a Drexlerian nanotechnology both share a similar problem; how did and how can self-reproducing molecular machines originate? Here we draw attention to the coincidence between nanotechnology and origins research with particular attention paid to the spontaneous adsorption and scanning tunneling microscopy investigation of purine and pyrimidine bases self-organized into monolayers, adsorbed to the surfaces of crystalline solids. These molecules which encode biological information in nucleic acids, can form supramolecular architectures exhibiting enantiomorphism with the complexity to store and encode putative protobiological information. We conclude that the application of nanotechnology to the investigation of life's origins, and vice versa, could provide a viable route to an evolution-driven synthetic life.

  5. Food nanotechnology - an overview.

    Science.gov (United States)

    Sekhon, Bhupinder S

    2010-05-04

    Food nanotechnology is an area of emerging interest and opens up a whole universe of new possibilities for the food industry. The basic categories of nanotechnology applications and functionalities currently in the development of food packaging include: the improvement of plastic materials barriers, the incorporation of active components that can deliver functional attributes beyond those of conventional active packaging, and the sensing and signaling of relevant information. Nano food packaging materials may extend food life, improve food safety, alert consumers that food is contaminated or spoiled, repair tears in packaging, and even release preservatives to extend the life of the food in the package. Nanotechnology applications in the food industry can be utilized to detect bacteria in packaging, or produce stronger flavors and color quality, and safety by increasing the barrier properties. Nanotechnology holds great promise to provide benefits not just within food products but also around food products. In fact, nanotechnology introduces new chances for innovation in the food industry at immense speed, but uncertainty and health concerns are also emerging. EU/WE/global legislation for the regulation of nanotechnology in food are meager. Moreover, current legislation appears unsuitable to nanotechnology specificity.

  6. Basic research on cancer related to radiation associated medical researches

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong In; Hwang, Dae Yong; Bang, Ho Yoon [and others

    2000-12-01

    Basic Research on Cancer related to Radiation Associated Medical Researches including 1. Establishment of animal model of colorectal cancer liver metastasis and measurement of angiogenesis, 2. Tissue expression of Tie-1 and Tie-2 in human colorectal cancer, 3. Enhancement of G2/Mphase Cell Fraction by Adenovirus-mediated p53 Gene Transfer in Ovarian Cancer Cell Lines, 4. Clinical Characteristics of the patients with Non-B Non-C Hepatocellular Carcinoma and Frequency of HBV, HCV and TTV Viremia in these Patients, 5. Significance of serum iron and ferritin in patients with stomach cancer, 6. Telomerase assay for early detection of lung cancer, 7. Study on the Usefulness of Aldehyde dehydrogenase-2 Genotyping for Risk Group of Alcohol-related Cancer Screening, 8. Gene therapy using hepatoma specific promoter, 9. Study on the Influence of DNA repair gene, XRCC1 Genotypes on the Risk of Head and Neck Cancer were performed.

  7. Novel translational strategies in colorectal cancer research

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Defining translational research is still a complex task. In oncology, translational research implies using our basic knowledge learnt from in vitro and in vivo experiments to directly improve diagnostic tools and therapeutic approaches in cancer patients. Moreover, the better understanding of human cancer and its use to design more reliable tumor models and more accurate experimental systems also has to be considered a good example of translational research. The identification and characterization of new molecular markers and the discovery of novel targeted therapies are two main goals in colorectal cancer translational research. However, the straightforward translation of basic research findings, specifically into colorectal cancer treatment and vice versa is still underway. In the present paper, a summarized view of some of the new available approaches on colorectal cancer translational research is provided. Pros and cons are discussed for every approach exposed.

  8. ACCELERATING NANO-TECHNOLOGICAL

    DEFF Research Database (Denmark)

    Jensen, Jens Stissing; Koch, Christian

    2007-01-01

    By viewing the construction industry as a technological innovation system (TIS) this paper discusses possible initiatives to accelerate nanotechnological innovations. The point of departure is a recent report on the application of nano-technology in the Danish construction industry, which concludes...... of the system are furthermore poorly equipped at identifying potentials within high-tech areas. In order to exploit the potentials of nano-technology it is thus argued that an alternative TIS needs to be established. Initiatives should identify and support “incubation rooms” or marked niches in order...

  9. The Implementation of Innovation and Resource Allocation with Nanotechnology

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    All natural and living systems are governed by atomic and molecular behavior at the nanoscale. Research is now seeking systematic approaches to create revolutionary new products and technologies by control of matter at the same scale.Nanotechnology is expected to have a profound impact on our society.The vision,research and development strategy,and timeline of the nanotechnology initiative are presented by using several recent scientific discoveries, innovations and results from industry. This article demonstrates the implications of innovation for nanotechnology development. To deal with the innovation, a theory of nanotechnology development must come to terms with the developmental, organisational, and strategic dimensions of innovative resource allocation.

  10. 纳米技术在医学领域的研究应用%Research and Application of Nanotechnology in Medical Field

    Institute of Scientific and Technical Information of China (English)

    李梦云; 司丽芳; 李健; 郭建军; 李会芳

    2014-01-01

    纳米是长度的度量单位,又称毫微米,即百万分之一毫米。目前,纳米技术已在多个行业得到了应用,如纳米物理学、纳米电子学、纳米生物学、纳米化学、纳米计量学和纳米加工学等。应用于药物学领域的纳米技术称为纳米药物学。纳米粒在药物学上的应用主要有纳米药物载体和纳米药物制剂2种。纳米药物的生产成本低、效率高、自动化程度高、规模大,而药物的作用也实现了器官靶向、高效和低毒等革命性的突破,并具有稳定性好、对胃肠刺激性小等优点。因此,纳米药物在国际工业领域以及医药领域均具有广阔的发展前景。阐述了纳米技术在医学领域的研究及应用。%Nanometer is a measurement unit of length, also named as millimicron (one millionth of a millimeter). Nowadays, nanotechnology has been applied in many industries, such as nanophysics, nanoelectronics, nanobiology, nanochemistry, nanometrology, nano-machining. The nanotechnology applied in pharmacology field was named as nanopharmics. The nano-particles applied in pharmacology included nano-drug carrier and nano-medicine preparation. The nano-drugs had low production cost, high efficiency, high automation degree and large scale. And the nano-drugs realized organ targeting, high efficiency, low toxicity and other revolutionary breakthrough. The nano-drugs had advantages of good stability, small stimulation to stomach and intestines, etc. Therefore, nano-drugs had a broad development foreground in industry field and medical field in the world. The research and application of nanotechnology in medical field were reviewed.

  11. 结构DN A纳米新技术的研究现状与应用%Research status and application of structural DNA nanotechnology

    Institute of Scientific and Technical Information of China (English)

    黄春; 侯贺伟; 叶盟盟; 李萌萌; 崔光照; 王延峰

    2014-01-01

    Structural DNA nanotechnology was systematic summarized,including the research status of DNA self-assembly,DNA origami and SST self-assembly.In the design of Zhengzhou University of Light Industry badge for instance,DNA origami and SST self-assembly were introduced to devise and establish DNA struc-tural model of school badge with hollow structure.With this example,structural DNA nanotechnology was valued and investigated.The main application of the technique was in the aspects of the assembly of guiding inorganic nanoparticles with precision,the equipment of nano-bio-chip,as well as the combination with micro-machining technology.In view of this it was proposed that structural DNA nanotechnology would play a more active role in the application field of nano-electronic circuits and devices,nano-optoelectronics,bio-sensors of high sensitivity and high specificity,molecular robotics,materials science and nano-medicine etc.in future development.%综述了结构DNA纳米技术---DNA自组装、DNA折纸术和SST自组装的研究现状,并以郑州轻工业学院校徽设计中引入DNA折纸术构建校徽DNA结构模型、利用SST自组装方法设计构造镂空结构的校徽图形为例,对结构DNA纳米技术予以评析与探讨;鉴于该技术目前主要应用于引导无机纳米粒子精确装配、装备纳米生物芯片以及与微加工技术相结合等方面,提出:纳米电子电路及器件、纳米光电子学、高灵敏度高特异性生物传感器、分子机器人、材料学和纳米医学等领域,将是结构DNA纳米技术应用未来的发展方向。

  12. Nutrition and Cancer Prevention Research Practicum | Division of Cancer Prevention

    Science.gov (United States)

    The Nutritional Science Research Group in the Division of Cancer Prevention at the National Cancer Institute, National Institutes of Health and the Department of Nutrition at the Clinical Center, National Institutes of Health are offering a one week educational opportunity in "Nutrition and Cancer Prevention Research" for individuals with a sustained commitment to nutrition and health promotion. This one-week intense learning session provides specialized instruction in the role of diet and bioactive food components as modifiers of cancer incidence and tumor behavior. |

  13. Research and comprehensive cancer control coalitions.

    Science.gov (United States)

    Vinson, Cynthia; La Porta, Madeline; Todd, William; Palafox, Neal A; Wilson, Katherine M; Fairley, Temeika

    2010-12-01

    The goal of cancer control research is "to generate basic knowledge about how to monitor and change individual and collective behavior and to ensure that knowledge is translated into practice and policy rapidly, effectively, and efficiently" (Division of Cancer Control and Population Sciences in Cancer control framework and synthese rationale, 2010). Research activities span the cancer control continuum from prevention to early detection and diagnosis through treatment and survivorship (Division of Cancer Control and Population Sciences in Cancer control framework and synthese rationale, 2010). While significant advancements have been made in understanding, preventing and treating cancer in the past few decades, these benefits have yielded disproportionate results in cancer morbidity and mortality across various socioeconomic and racial/ethnic subgroups (Ozols et al in J Clin Oncol, 25(1):146-1622, 2007). It has been a high priority since the beginning of the Comprehensive Cancer Control (CCC) movement to utilize research in the development and implementation of cancer plans in the states, tribes and tribal organizations, territories and US Pacific Island Jurisdictions. Nevertheless, dissemination and implementation of research in coalition activities has been challenging for many programs. Lessons learned from programs and coalitions in the implementation and evaluation of CCC activities, as well as resources provided by national partners, can assist coalitions with the translation of research into practice.

  14. Inequality gaps in nanotechnology development in Latin America

    Directory of Open Access Journals (Sweden)

    Guillermo Foladori

    2013-06-01

    Full Text Available Nanotechnology has been spurred by science, technology and innovation policies in most Latin American countries since the last decade. Public policies and funding have been accompanied by a common rhetoric, highlighting the potential of nanotechnology for increasing competitiveness and growth and providing the region with more efficient and innovative products. Based on an assessment of nanotechnology policies and capabilities in nine countries this article highlights three characteristics of nanotechnology in Latin America that might hinder its contribution to an equitable development within the region. The first characteristic is the conspicuous trend towards an intra-regional gap in capacity building as a result of the unequal historical development of science and technology among these countries and the large differences in equipment and financial resources devoted to nanotechnology.  The second characteristic is the strength of “international signals” vis-à-vis the national needs in the orientation of nanotechnology. On the one hand, nanotechnology is main and foremost oriented to achieve international competitiveness, which may lead its development to international market demands. On the other hand, nanotechnology research in Latin American countries has been configured within internationalized academic networks, which may influence local research agendas towards foreign research priorities. The third characteristic is the absence of research on potential impacts of nanotechnology on human health and the environment, as well as other societal implications, which may generate new forms of unequal distribution of benefits and risks.

  15. Genomic Datasets for Cancer Research

    Science.gov (United States)

    A variety of datasets from genome-wide association studies of cancer and other genotype-phenotype studies, including sequencing and molecular diagnostic assays, are available to approved investigators through the Extramural National Cancer Institute Data Access Committee.

  16. Nanotechnology - The New Frontier of Medicine.

    Science.gov (United States)

    Datta, R; Jaitawat, S S

    2006-07-01

    Molecular nanotechnology is destined to become the core technology in 21(st) century medicine. Nanotechnology mean, controlling biologically relevant structures with molecular precision. Nanomedicine is exploring how to use carbon buckyballs, dendrimers and other cleverly engineered nanoparticles in novel drugs to combat viruses, bacteria, cancer and delivery of drugs. Medical nanorobots will be of the size of a microbe, capable of self-replication, containing onboard sensors, computers, manipulators, pumps, pressure tanks and power supplies. Building such sophisticated molecular machine systems will require molecular manufacturing to using massively parallel assembly lines in nanofactories.

  17. Nebraska Prostate Cancer Research Program

    Science.gov (United States)

    2014-10-01

    MacDonald, Richard G; Mehta, Parmender P; Mott, Justin L; Naslavsky, Naava; Palanimuthu Ponnusamy, Moorthy; Ramaley, Robert F; Sorgen, Paul L; Steinke...feedback regulation of PI3K and androgen receptor signaling in PTEN-deficient prostate cancer, Cancer Cell 19 (2011) 575–586. [29] B.J. Feldman , D... Feldman , The development of androgen-independent prostate cancer, Nat. Rev. Cancer 1 (2001) 34–45. [30] J.D. Debes, D.J. Tindall, Mechanisms of androgen

  18. Applications of electrochemistry and nanotechnology in biology and medicine II

    CERN Document Server

    Eliaz, Noam

    2011-01-01

    The study of electrochemical nanotechnology has emerged as researchers apply electrochemistry to nanoscience and nanotechnology. These two related volumes in the Modern Aspects of Electrochemistry Series review recent developments and breakthroughs in the specific application of electrochemistry and nanotechnology to biology and medicine. Internationally renowned experts contribute chapters that address both fundamental and practical aspects of several key emerging technologies in biomedicine, such as the processing of new biomaterials, biofunctionalization of surfaces, characterization of bio

  19. Nanotechnology for telecommunications

    CERN Document Server

    Anwar, Sohail; Qazi, Salahuddin; Ilyas, Mohammad

    2010-01-01

    With its unique promise to revolutionize science, engineering, technology, and other fields, nanotechnology continues to profoundly impact associated materials, components, and systems, particularly those used in telecommunications. These developments are leading to easier convergence of related technologies, massive storage data, compact storage devices, and higher-performance computing. Nanotechnology for Telecommunications presents vital technical scientific information to help readers grasp issues and challenges associated with nanoscale telecommunication system development and commerciali

  20. Chiral Nanoscience and Nanotechnology

    OpenAIRE

    Dibyendu S. Bag; T.C. Shami; K.U. Bhasker Rao

    2008-01-01

    The paper reviews nanoscale science and technology of chiral molecules/macromolecules-under twosubtopics-chiral nanotechnology and nano-chiral technology. Chiral nanotechnology discusses thenanotechnology, where molecular chirality plays a role in the properties of materials, including molecularswitches, molecular motors, and other molecular devices; chiral supramolecules and self-assembled nanotubesand their functions are also highlighted. Nano-chiral technology  describes the nanoscale appr...

  1. African Organization for Research and Training in Cancer: position and vision for cancer research on the African Continent

    OpenAIRE

    Ogunbiyi, J. Olufemi; Stefan, D. Cristina; Timothy R. Rebbeck

    2016-01-01

    The African Organization for Research and training in Cancer (AORTIC) bases the following position statements on a critical appraisal of the state on cancer research and cancer care in Africa including information on the availability of data on cancer burden, screening and prevention for cancer in Africa, cancer care personnel, treatment modalities, and access to cancer care.

  2. Commercialization of nanotechnology.

    Science.gov (United States)

    Hobson, David W

    2009-01-01

    The emerging and potential commercial applications of nanotechnologies clearly have great potential to significantly advance and even potentially revolutionize various aspects of medical practice and medical product development. Nanotechnology is already touching upon many aspects of medicine, including drug delivery, diagnostic imaging, clinical diagnostics, nanomedicines, and the use of nanomaterials in medical devices. This technology is already having an impact; many products are on the market and a growing number is in the pipeline. Momentum is steadily building for the successful development of additional nanotech products to diagnose and treat disease; the most active areas of product development are drug delivery and in vivo imaging. Nanotechnology is also addressing many unmet needs in the pharmaceutical industry, including the reformulation of drugs to improve their bioavailability or toxicity profiles. The advancement of medical nanotechnology is expected to advance over at least three different generations or phases, beginning with the introduction of simple nanoparticulate and nanostructural improvements to current product and process types, then eventually moving on to nanoproducts and nanodevices that are limited only by the imagination and limits of the technology itself. This review looks at some recent developments in the commercialization of nanotechnology for various medical applications as well as general trends in the industry, and explores the nanotechnology industry that is involved in developing medical products and procedures with a view toward technology commercialization.

  3. Nanotechnology between the lab and the shop floor: what are the effects on labor?

    Science.gov (United States)

    Invernizzi, Noela

    2011-06-01

    Nanotechnology's effects on labor and employment have received little attention within research and debates on the social implications of nanotechnology. This article shows that, in spite of its incipient development, nanotechnology is unquestionably moving toward manufacturing, involving a still very small but increasing component of the labor force. Based on secondary data and the literature review, I compose a picture of the emerging jobs in nanotechnology and highlight four emerging trends in nanotechnology workers' skills requirements. I show that, in addition to job creation, nanotechnology diffusion is likely to pose labor market changes that may be disruptive for some categories of workers.

  4. Crystal structure and chemotherapeutic efficacy of the novel compound, gallium tetrachloride betaine, against breast cancer using nanotechnology.

    Science.gov (United States)

    Salem, Ahmed; Noaman, Eman; Kandil, Eman; Badawi, Abdelfattah; Mostafa, Nihal

    2016-08-01

    The objective of this study was to investigate the antitumor efficacy of a novel synthesized compound, betaine gallium-tetrachloride (BTG), alone or combined with ZnO-nanoparticles (BTG + ZnO-NPs) on the incidence of 7, 12-dimethylbenz-anthrathene-induced mammary tumor in female rats. Crystal and molecular structure of the prepared BTG were identified using X-ray crystallography. In vitro study revealed BTG more cytotoxic than BTG + ZnO-NPs on human breast cancer (MCF-7) cell line. In vivo study demonstrated that the blood antioxidant status of tumor-bearing rats (DMBA group) was significantly lower than normal noticeable by a significant decrease in GSH content, GPx, SOD, and CAT activities associated with a significantly high MDA content. Both treatments have significantly elevated SOD and CAT activities with a concomitant decrease of MDA level compared to DMBA group. However, BTG + ZnO-NPs accentuated the decrease of GSH regarding DMBA group. The results showed also that both treatments significantly activate caspase-3 enzyme and apoptosis in mammary glands. Their administration to tumor-bearing rats was found to significantly reduce plasma iron and iron-binding capacity (TIBC) compared to DMBA group. Regarding liver function, both treatments significantly reduced the increase of ALT and AST activities compared to DMBA group. However, BTG + ZnO-NPs decreased albumin below normal level. Histopathological studies showed that normalization of tissue structures was higher in BTG than BTG + ZnO-NPs treatment. According to the results obtained, it is observed that the antitumor effect of BTG alone was as strong as BTG + ZnO-NPs and even more efficient in some aspects accordingly, a combination is not needed. Thus, the novel synthetic gallium derivatives may potentially present a new hope for the development of breast cancer therapeutics, which should attract further scientific and pharmaceutical interest.

  5. Micro and nanotechnological tools for study of RNA.

    Science.gov (United States)

    Yoshizawa, Satoko

    2012-07-01

    Micro and nanotechnologies have originally contributed to engineering, especially in electronics. These technologies enable fabrication and assembly of materials at micrometer and nanometer scales and the manipulation of nano-objects. The power of these technologies has now been exploited in analyzes of biologically relevant molecules. In this review, the use of micro and nanotechnological tools in RNA research is described.

  6. Consumer attitudes towards nanotechnologies applied to food production

    NARCIS (Netherlands)

    Frewer, L.J.; Gupta, N.; George, S.; Fischer, A.R.H.; Giles, E.L.; Coles, D.G.

    2014-01-01

    The literature on public perceptions of, and attitudes towards, nanotechnology used in the agrifood sector is reviewed. Research into consumer perceptions and attitudes has focused on general applications of nanotechnology, rather than within the agrifood sector. Perceptions of risk and benefit asso

  7. DCB - Cancer Immunology, Hematology, and Etiology Research

    Science.gov (United States)

    Part of NCI’s Division of Cancer Biology’s research portfolio, studies supported include the characterization of basic mechanisms relevant to anti-tumor immune responses and hematologic malignancies.

  8. NCI investment in nanotechnology: achievements and challenges for the future.

    Science.gov (United States)

    Dickherber, Anthony; Morris, Stephanie A; Grodzinski, Piotr

    2015-01-01

    Nanotechnology offers an exceptional and unique opportunity for developing a new generation of tools addressing persistent challenges to progress in cancer research and clinical care. The National Cancer Institute (NCI) recognizes this potential, which is why it invests roughly $150 M per year in nanobiotechnology training, research and development. By exploiting the various capacities of nanomaterials, the range of nanoscale vectors and probes potentially available suggests much is possible for precisely investigating, manipulating, and targeting the mechanisms of cancer across the full spectrum of research and clinical care. NCI has played a key role among federal R&D agencies in recognizing early the value of nanobiotechnology in medicine and committing to its development as well as providing training support for new investigators in the field. These investments have allowed many in the research community to pursue breakthrough capabilities that have already yielded broad benefits. Presented here is an overview of how NCI has made these investments with some consideration of how it will continue to work with this research community to pursue paradigm-changing innovations that offer relief from the burdens of cancer.

  9. Research Areas: Causes of Cancer

    Science.gov (United States)

    Understanding the exposures and risk factors that cause cancer, as well as the genetic abnormalities associated with the disease, has helped us to reduce certain exposures and to ameliorate their harmful effects.

  10. Nanotechnology in radiation oncology.

    Science.gov (United States)

    Wang, Andrew Z; Tepper, Joel E

    2014-09-10

    Nanotechnology, the manipulation of matter on atomic and molecular scales, is a relatively new branch of science. It has already made a significant impact on clinical medicine, especially in oncology. Nanomaterial has several characteristics that are ideal for oncology applications, including preferential accumulation in tumors, low distribution in normal tissues, biodistribution, pharmacokinetics, and clearance, that differ from those of small molecules. Because these properties are also well suited for applications in radiation oncology, nanomaterials have been used in many different areas of radiation oncology for imaging and treatment planning, as well as for radiosensitization to improve the therapeutic ratio. In this article, we review the unique properties of nanomaterials that are favorable for oncology applications and examine the various applications of nanotechnology in radiation oncology. We also discuss the future directions of nanotechnology within the context of radiation oncology.

  11. The track nanotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Waheed, A. [British Institute of Technology and E-Commerce, London E7 9HZ (United Kingdom); Physics Department, University of Reading, Reading RG6 6AF (United Kingdom); Forsyth, D., E-mail: dforsyth@bite.ac.u [British Institute of Technology and E-Commerce, London E7 9HZ (United Kingdom); Watts, A. [Department of Physics, UCL, London Centre of Nanotechnology (LCN), 17-19 Gordon Street, London WC1H OAH (United Kingdom); Saad, A.F. [Physics Department, Faculty of Science, Garyounis University, Benghazi (Libyan Arab Jamahiriya); Mitchell, G.R. [British Institute of Technology and E-Commerce, London E7 9HZ (United Kingdom); Physics Department, University of Reading, Reading RG6 6AF (United Kingdom); Farmer, M. [British Institute of Technology and E-Commerce, London E7 9HZ (United Kingdom); Harris, P.J.F. [Physics Department, University of Reading, Reading RG6 6AF (United Kingdom)

    2009-10-15

    The discipline now called Solid State Nuclear Track Detection (SSNTD) dates back to 1958 and has its roots in the United Kingdom. Its strength stems chiefly from factors such as its simplicity, small geometry, permanent maintenance of the nuclear record and other diversified applications. A very important field with exciting applications reported recently in conjuction with the nuclear track technique is nanotechnology, which has applications in biology, chemistry, industry, medicare and health, information technology, biotechnology, and metallurgical and chemical technologies. Nanotechnology requires material design followed by the study of the quantum effects for final produced applications in sensors, medical diagnosis, information technology to name a few. We, in this article, present a review of past and present applications of SSNTD suggesting ways to apply the technique in nanotechnology, with special reference to development of nanostructure for applications utilising nanowires, nanofilters and sensors.

  12. EDITORIAL: Nanotechnology impact on sensors Nanotechnology impact on sensors

    Science.gov (United States)

    Brugger, Jürgen

    2009-10-01

    A sensor is a device that responds to a stimulus by generating a functional output induced by a change in some intrinsic properties. We are surrounded by sensors and sensing networks that monitor a multitude of parameters in view of enhancing our safety and quality of life. Sensors assist us in health care and diagnostics, they monitor our environment, our aeroplanes and automobiles, our mobile phones, game consoles and watches, and last but not least, many of our human body functions. Modern sensing systems have greatly benefited in recent decades from advances in microelectronics and microengineering, mainly in view of making sensors smaller, cheaper, more sensitive, more selective, and with a better signal-to-noise ratio, following classical scaling rules. So how about nanotechnology-enabled sensing? Nanoscale features have a great impact on many (though not all) sensing systems, in particular where the surface-to-volume ratio plays a fundamental role, such as in certain chemical and gas sensors. The high surface-to-volume ratios of nanoporous and nanostructured materials have led to their implementation in sensing systems since sensing research first began to engage with the nanotechnology. The surface plasmon resonances of nanostructures have also enriched the scope for developing novel sensing devices. On the other hand, sensors where bulk properties dominate, such as inertial sensors, are less likely to benefit from extreme scaling. Advances in thin film techniques and chemical synthesis have allowed material properties to be tailored to sensing requirements for enhanced performance. These bottom-up fabrication techniques enable parallel fabrication of ordered nanostructures, often in domain-like areas with molecular precision. At the same time the progress in top-down methods such as scanning probe lithography, nanoimprint lithography, soft-lithography and stencil lithography have also facilitated research into sensing and actuating nanotechnology. Although

  13. Cancer systems biology: signal processing for cancer research

    Institute of Scientific and Technical Information of China (English)

    Olli Yli-Harja; Antti Ylip(a)(a); Matti Nykter; Wei Zhang

    2011-01-01

    In this editorial we introduce the research paradigms of signal processing in the era of systems biology. Signal processing is a field of science traditionally focused on modeling electronic and communications systems, but recently it has turned to biological applications with astounding results. The essence of signal processing is to describe the natural world by mathematical models and then, based on these models, develop efficient computational tools for solving engineering problems. Here, we underline, with examples, the endless possibilities which arise when the battle-hardened tools of engineering are applied to solve the problems that have tormented cancer researchers. Based on this approach, a new field has emerged, called cancer systems biology. Despite its short history, cancer systems biology has already produced several success stories tackling previously impracticable problems. Perhaps most importantly, it has been accepted as an integral part of the major endeavors of cancer research, such as analyzing the genomic and epigenomic data produced by The Cancer Genome Atlas (TCGA) project. Finally, we show that signal processing and cancer research, two fields that are seemingly distant from each other, have merged into a field that is indeed more than the sum of its parts.

  14. Cancer systems biology: signal processing for cancer research.

    Science.gov (United States)

    Yli-Harja, Olli; Ylipää, Antti; Nykter, Matti; Zhang, Wei

    2011-04-01

    In this editorial we introduce the research paradigms of signal processing in the era of systems biology. Signal processing is a field of science traditionally focused on modeling electronic and communications systems, but recently it has turned to biological applications with astounding results. The essence of signal processing is to describe the natural world by mathematical models and then, based on these models, develop efficient computational tools for solving engineering problems. Here, we underline, with examples, the endless possibilities which arise when the battle-hardened tools of engineering are applied to solve the problems that have tormented cancer researchers. Based on this approach, a new field has emerged, called cancer systems biology. Despite its short history, cancer systems biology has already produced several success stories tackling previously impracticable problems. Perhaps most importantly, it has been accepted as an integral part of the major endeavors of cancer research, such as analyzing the genomic and epigenomic data produced by The Cancer Genome Atlas (TCGA) project. Finally, we show that signal processing and cancer research, two fields that are seemingly distant from each other, have merged into a field that is indeed more than the sum of its parts.

  15. Nanotechnology in electrocatalysis for energy

    CERN Document Server

    Lavacchi, Alessandro; Vizza, Francesco

    2014-01-01

    This book focuses on nanotechnology in electrocatalysis for energy applications. In particular the book covers nanostructured electrocatalysts for low temperature fuel cells, low temperature electrolyzers and electrochemical valorization. The function of this book is to provide an introduction to basic principles of electrocatalysis, together with a review of the main classes of materials and electrode architectures. This book will illustrate the basic ideas behind material design and provide an introductory sketch of current research focuses. The easy-to-follow three part book focuses on majo

  16. Broadening nanotechnology's impact on development

    NARCIS (Netherlands)

    Beumer, K.

    2016-01-01

    Discussions about nanotechnology and development focus on applications that directly address the needs of the world’s poor. Nanotechnology can certainly make an impact in the fight against global poverty, but we need to broaden our imagination.

  17. Broadening nanotechnology's impact on development

    Science.gov (United States)

    Beumer, Koen

    2016-05-01

    Discussions about nanotechnology and development focus on applications that directly address the needs of the world's poor. Nanotechnology can certainly make an impact in the fight against global poverty, but we need to broaden our imagination.

  18. EDITORIAL: New developments for Nanotechnology

    Science.gov (United States)

    Welland, Mark

    2007-01-01

    relevance and impact of nanotechnology in general. With all this growth and change there are always some constant factors that specifically concern authors. Prominent amongst these is the speed of publication. Remarkably, our current publication times are among the most competitive internationally with current receipt to publication times of less than three months. Although this time will be shortened by weekly publication, it will be further reduced by the introduction of an article numbering system as opposed to page numbering. Here, an accepted article is assigned a number and published immediately; there is no need to wait for other articles to form a complete issue. Articles will be published on the web as soon as they are available. The number of nano-related journals continues to grow, making for a highly congested and competitive market. The fact that Nanotechnology, the longest established journal in the field, continues to grow in size, is able to dynamically change in response to authors and readers alike, and can draw on the renowned academic publishing capabilities of IOP Publishing, means that we look forward to an exciting and productive future. As we strive to deliver the best possible service to our authors and readers we aim to attract the very best of international nanoscience and nanotechnology so that Nanotechnology becomes the pre-eminent journal for reporting research in the field.

  19. Understanding the nanotechnology revolution

    CERN Document Server

    Wolf, Edward L

    2012-01-01

    This is a unique introduction for general readers to the underlying concepts of nanotechnology, covering a wide spectrum ranging from biology to quantum computing. The material is presented in the simplest possible way, including a few mathematical equations, but not mathematical derivations. It also outlines as simply as possible the major contributions to modern technology of physics-based nanophysical devices, such as the atomic clock, global positioning systems, and magnetic resonance imaging. As a result, readers are able to establish a connection between nanotechnology and day-to-day

  20. TCGA researchers identify 4 subtypes of stomach cancer

    Science.gov (United States)

    Stomach cancers fall into four distinct molecular subtypes, researchers with The Cancer Genome Atlas (TCGA) Network have found. Scientists report that this discovery could change how researchers think about developing treatments for stomach cancer, also c

  1. Infectious Agents and Cancer Epidemiology Research Webinar Series

    Science.gov (United States)

    Infectious Agents and Cancer Epidemiology Research Webinar Series highlights emerging and cutting-edge research related to infection-associated cancers, shares scientific knowledge about technologies and methods, and fosters cross-disciplinary discussions on infectious agents and cancer epidemiology.

  2. Contextualising Nanotechnology in Chemistry Education

    Science.gov (United States)

    O'Connor, Christine; Hayden, Hugh

    2008-01-01

    In recent years nanotechnology has become part of the content of many undergraduate chemistry and physics degree courses. This paper deals with the role of contextualisation of nanotechnology in the delivery of the content, as nanotechnology is only now being slowly integrated into many chemistry degree courses in Ireland and elsewhere. An…

  3. Nanotechnology: From Feynman to Funding

    Science.gov (United States)

    Drexler, K. Eric

    2004-01-01

    The revolutionary Feynman vision of a powerful and general nanotechnology, based on nanomachines that build with atom-by-atom control, promises great opportunities and, if abused, great dangers. This vision made nanotechnology a buzzword and launched the global nanotechnology race. Along the way, however, the meaning of the word has shifted. A…

  4. Nanotechnology and human health: risks and benefits.

    Science.gov (United States)

    Cattaneo, Anna Giulia; Gornati, Rosalba; Sabbioni, Enrico; Chiriva-Internati, Maurizio; Cobos, Everardo; Jenkins, Marjorie R; Bernardini, Giovanni

    2010-11-01

    Nanotechnology is expected to be promising in many fields of medical applications, mainly in cancer treatment. While a large number of very attractive exploitations open up for the clinics, regulatory agencies are very careful in admitting new nanomaterials for human use because of their potential toxicity. The very active research on new nanomaterials that are potentially useful in medicine has not been counterbalanced by an adequate knowledge of their pharmacokinetics and toxicity. The different nanocarriers used to transport and release the active molecules to the target tissues should be treated as additives, with potential side effects of themselves or by virtue of their dissolution or aggregation inside the body. Only recently has a systematic classification of nanomaterials been proposed, posing the basis for dedicated modeling at the nanoscale level. The use of in silico methods, such as nano-QSAR and PSAR, while highly desirable to expedite and rationalize the following stages of toxicological research, are not an alternative, but an introduction to mandatory experimental work.

  5. About the Breast and Gynecologic Cancer Research Group | Division of Cancer Prevention

    Science.gov (United States)

    The Breast and Gynecologic Cancer Research Group conducts and fosters the development of research on the prevention and early detection of breast cancer, cervix and human papillomavirus (HPV)-related cancers, endometrial cancers, ovarian cancers, and precursor conditions related to these cancers. |

  6. Nanotechnology Review: Molecular Electronics to Molecular Motors

    Science.gov (United States)

    Srivastava, Deepak; Saini, Subhash (Technical Monitor)

    1998-01-01

    Reviewing the status of current approaches and future projections, as already published in scientific journals and books, the talk will summarize the direction in which computational and experimental nanotechnologies are progressing. Examples of nanotechnological approaches to the concepts of design and simulation of carbon nanotube based molecular electronic and mechanical devices will be presented. The concepts of nanotube based gears and motors will be discussed. The above is a non-technical review talk which covers long term precompetitive basic research in already published material that has been presented before many US scientific meeting audiences.

  7. Historical overview of nanotechnology and nanotoxicology.

    Science.gov (United States)

    Santamaria, Annette

    2012-01-01

    Although scientists have been studying nanoscience phenomena for many decades, technological developments in the second half of the twentieth century provided valuable tools that permitted researchers to study and develop materials in the nanoscale size range and helped formalize nanotechnology as a scientific field. This chapter provides a brief history of the field of nanotechnology, with an emphasis on the development of nanotoxicology as a scientific field. A brief overview of the worldwide regulatory activities for nanomaterials is also presented. The future development and safe use of nanomaterials in a diverse range of consumer products will be interesting, intellectually challenging, exciting, and hopefully very beneficial for the society.

  8. Nutritional and Nanotechnological Modulators of Microglia

    Science.gov (United States)

    Maysinger, Dusica; Zhang, Issan

    2016-01-01

    Microglia are the essential responders to alimentary, pharmacological, and nanotechnological immunomodulators. These neural cells play multiple roles as surveyors, sculptors, and guardians of essential parts of complex neural circuitries. Microglia can play dual roles in the central nervous system; they can be deleterious and/or protective. The immunomodulatory effects of alimentary components, gut microbiota, and nanotechnological products have been investigated in microglia at the single-cell level and in vivo using intravital imaging approaches, and different biochemical assays. This review highlights some of the emerging questions and topics from studies involving alimentation, microbiota, nanotechnological products, and associated problems in this area of research. Some of the advantages and limitations of in vitro and in vivo models used to study the neuromodulatory effects of these factors, as well as the merits and pitfalls of intravital imaging modalities employed are presented. PMID:27471505

  9. Nanotechnology in Agriculture

    Science.gov (United States)

    An overview is given of the application of nanotechnology to agriculture. This is an active field of R&D, where a large number of findings and innovations have been reported. For example, in soil management, applications reported include nanofertilizers, soil binders, water retention aids, and nut...

  10. Nanotechnology and the Law

    Science.gov (United States)

    Desmoulin-Canselier, Sonia; Lacour, Stéphanie

    Law and nanotechnology form a vast subject. The aim here will be to examine them from the societal standpoint of nanoethics, if necessary without due reference to the work that has been undertaken. For while law differs from ethics, as we shall attempt to explain throughout this reflection, it must also be studied in its relationship with social realities.

  11. Trends in nanotechnology patents

    Science.gov (United States)

    Chen, Hsinchun; Roco, Mihail C.; Li, Xin; Lin, Yiling

    2008-03-01

    An analysis of 30 years of data on patent publications from the US Patent and Trademark Office, the European Patent Office and the Japan Patent Office confirms the dominance of companies and selected academic institutions from the US, Europe and Japan in the commercialization of nanotechnology.

  12. Perceptions and attitude effects on nanotechnology acceptance: an exploratory framework

    Science.gov (United States)

    Ganesh Pillai, Rajani; Bezbaruah, Achintya N.

    2017-02-01

    Existing literature in people's attitude toward nanotechnology and acceptance of nanotechnology applications has generally investigated the impact of factors at the individual or context levels. While this vast body of research is very informative, a comprehensive understanding of how attitude toward nanotechnology are formed and factors influencing the acceptance of nanotechnology are elusive. This paper proposes an exploratory nanotechnology perception-attitude-acceptance framework (Nano-PAAF) to build a systematic understanding of the phenomenon. The framework proposes that perceptions of risks and benefits of nanotechnology are influenced by cognitive, affective, and sociocultural factors. The sociodemographic factors of consumers and contextual factors mitigate the influence of cognitive, affective, and sociocultural factors on the perception of risks and benefits. The perceived risks and benefits in turn influence people's attitude toward nanotechnology, which then influences acceptance of nanotechnology products. This framework will need further development over time to incorporate emerging knowledge and is expected to be useful for researchers, decision and policy makers, industry, and business entities.

  13. Research in micro-nanotechnology and systems: a European perspective. Opportunities in framework programme 7: 2007-2013

    Science.gov (United States)

    Vergara, I.; Van Caenegem, G.; Ibáñez, F.

    2007-05-01

    The Research European Programmes have paid attention to the area of microsystems since the early 90's when the Research was focused on Micro-Electro-Mechanical Systems. Since then the interest has grown into an area of Microsystems and Micro Nano Technology for a wide set of applications in which the multidiscipline and the convergence of technologies play an important role. Systems combining sensing, processing and actuating are increasingly complex involving different disciplines and integrating different technologies, and making the field of Microsystems technology expands to the field of 'Smart Integrated Systems'. Today the attention is focused in the increasing complexity and miniaturization of the systems, networking capabilities and autonomy. The recently launched 7th Framework Programme and the coordination of national or regional research initiatives will help to realise the research agenda for this strategic field for Europe. This paper will give some results of ongoing initiatives, some visions and an outlook for the future with focus in micro and nanosytems.

  14. An overview of the results of dissertation research in the field of nanotechnology and nanomaterials. Part 2

    OpenAIRE

    2015-01-01

    To popularize scientific achievements the main results of Russian and foreign scientists’ research are published in the form of abstract. The research «Increasing of concrete strength with carbon nanotubes by means of hydrodynamic cavitation» contains the calculation of prime cost of the main raw components which are necessary to produce fine-grained concrete with strength class B55, that demonstrates the economic efficiency of application of CNT as modifying additive for cement composites. M...

  15. Phenomenology in pediatric cancer nursing research.

    Science.gov (United States)

    Fochtman, Dianne

    2008-01-01

    What does it mean to have cancer as a child or adolescent? To understand this, researchers must study the illness from the child's point of view and listen to these children's descriptions of their "lived world." Phenomenology is a qualitative research methodology that can be used to discover and interpret meaning. To use phenomenology congruently, the philosophical background must be understood as well as the adaptation of the philosophical basis to research in the caring sciences. Only when clinicians truly understand the meaning of this illness to the child can they design nursing interventions to ease suffering and increase quality of life in children and adolescents with cancer.

  16. NIH Research Leads to Cervical Cancer Vaccine

    Science.gov (United States)

    ... Current Issue Past Issues Sexually Transmitted Diseases NIH Research Leads to Cervical Cancer Vaccine Past Issues / Fall 2008 Table of Contents For ... mystery. Most important, however, is to have a vaccine which potentially can ... focusing their research on helping to produce second-generation HPV vaccines ...

  17. Antiproton radiation found effective in cancer research

    CERN Multimedia

    2003-01-01

    "An international collaboration of scientists has completed the first ever antiproton beam experiments designed to reveal the biological effectiveness of antiproton radiation in terminating cells used for cancer research...PBar Labs assembled the collaboration at CERN (European Organization for Nuclear Research in Geneva) to perform the measurements" (1 page).

  18. Nanotechnology: Principles and Applications

    Science.gov (United States)

    Logothetidis, S.

    Nanotechnology is one of the leading scientific fields today since it combines knowledge from the fields of Physics, Chemistry, Biology, Medicine, Informatics, and Engineering. It is an emerging technological field with great potential to lead in great breakthroughs that can be applied in real life. Novel nano- and biomaterials, and nanodevices are fabricated and controlled by nanotechnology tools and techniques, which investigate and tune the properties, responses, and functions of living and non-living matter, at sizes below 100 nm. The application and use of nanomaterials in electronic and mechanical devices, in optical and magnetic components, quantum computing, tissue engineering, and other biotechnologies, with smallest features, widths well below 100 nm, are the economically most important parts of the nanotechnology nowadays and presumably in the near future. The number of nanoproducts is rapidly growing since more and more nanoengineered materials are reaching the global market The continuous revolution in nanotechnology will result in the fabrication of nanomaterials with properties and functionalities which are going to have positive changes in the lives of our citizens, be it in health, environment, electronics or any other field. In the energy generation challenge where the conventional fuel resources cannot remain the dominant energy source, taking into account the increasing consumption demand and the CO2 emissions alternative renewable energy sources based on new technologies have to be promoted. Innovative solar cell technologies that utilize nanostructured materials and composite systems such as organic photovoltaics offer great technological potential due to their attractive properties such as the potential of large-scale and low-cost roll-to-roll manufacturing processes The advances in nanomaterials necessitate parallel progress of the nanometrology tools and techniques to characterize and manipulate nanostructures. Revolutionary new approaches

  19. An intelligent approach to nanotechnology

    Science.gov (United States)

    Demming, Anna

    2013-11-01

    Control counts for little without a guiding principle. Whether manipulating atoms with a scanning probe or controlling carrier concentration in thin film deposition, intelligent intervention is required to steer the process from aimless precision towards a finely optimized design. In this issue G M Sacha and P Varona describe how artificial intelligence approaches can help towards modelling and simulating nanosystems, increasing our grasp of the nuances of these systems and how to optimize them for specific applications [1]. More than a labour-saving technique their review also suggests how genetic algorithms and artificial neural networks can supersede existing capabilities to tackle some of the challenges in moving a range of nanotechnologies forward. Research has made giant strides in determining not just what system parameters enhance performance but how. Nanoparticle synthesis is a typical example, where the field has shifted from simple synthesis and observation to unearthing insights as to dominating factors that can be identified and enlisted to control the morphological and chemical properties of synthesized products. One example is the neat study on reaction media viscosity for silver nanocrystal synthesis, where Park, Im and Park in Korea demonstrated a level of size control that had previously proved hard to achieve [2]. Silver nanoparticles have many potential applications including catalysis [3], sensing [4] and surface enhanced Raman scattering [5]. In their study, Park and colleagues obtain size-controlled 30 nm silver nanocrystals in a viscosity controlled medium of 1,5-pentanediol and demonstrate their use as sacrificial cores for the fabrication of a low-refractive filler. Another nanomaterial that has barely seen an ebb in research activity over the past two decades is ZnO, with a legion of reports detailing how to produce ZnO in different nanoscale forms from rods [6], belts [7] and flowers [8] to highly ordered arrays of vertically aligned

  20. Exploiting developments in nanotechnology for the preferential delivery of platinum-based anti-cancer agents to tumours: targeting some of the hallmarks of cancer.

    Science.gov (United States)

    Parker, James P; Ude, Ziga; Marmion, Celine J

    2016-01-01

    Platinum drugs as anti-cancer therapeutics are held in extremely high regard. Despite their success, there are drawbacks associated with their use; their dose-limiting toxicity, their limited activity against an array of common cancers and patient resistance to Pt-based therapeutic regimes. Current investigations in medicinal inorganic chemistry strive to offset these shortcomings through selective targeting of Pt drugs and/or the development of Pt drugs with new or multiple modes of action. A comprehensive overview showcasing how liposomes, nanocapsules, polymers, dendrimers, nanoparticles and nanotubes may be employed as vehicles to selectively deliver cytotoxic Pt payloads to tumour cells is provided.

  1. Nanotechnology and Nanoscale Science: Educational challenges

    Science.gov (United States)

    Jones, M. Gail; Blonder, Ron; Gardner, Grant E.; Albe, Virginie; Falvo, Michael; Chevrier, Joel

    2013-06-01

    Nanotechnology has been touted as the next 'industrial revolution' of our modern age. In order for successful research, development, and social discourses to take place in this field, education research is needed to inform the development of standards, course development, and workforce preparation. In addition, there is a growing need to educate citizens and students about risks, benefits, and social and ethical issues related to nanotechnology. This position paper describes the advancements that have been made in nanoscale science and nanotechnology, and the challenges that exist to educate students and the public about critical nanoscience concepts. This paper reviews the current research on nanotechnology education including curricula, educational programs, informal education, and teacher education. Furthermore, the unique risks, benefits and ethics of these unusual technological applications are described in relation to nanoeducation goals. Finally, we outline needed future research in the areas of nanoscience content, standards and curricula, nanoscience pedagogy, teacher education, and the risks, benefits, and social and ethical dimensions for education in this emerging field.

  2. Articulation: how societal goals matter in nanotechnology

    NARCIS (Netherlands)

    Bos, C.

    2016-01-01

    Science policies try to steer scientists to conduct societally relevant research. This societal relevance is often expressed in large societal goals, such as addressing sustainability or helping with the problems that an ageing society might bring. Emerging technologies, like nanotechnology, are oft

  3. A longitudinal analysis of nanotechnology literature: 1976-2004

    Energy Technology Data Exchange (ETDEWEB)

    Li Xin, E-mail: xinli@email.arizona.edu; Chen Hsinchun; Dang Yan; Lin Yiling; Larson, Catherine A. [University of Arizona, Artificial Intelligence Lab, Department of Management Information Systems, Eller College of Management (United States); Roco, Mihail C., E-mail: mroco@nsf.go [National Science Foundation (United States)

    2008-12-15

    Nanotechnology research and applications have experienced rapid growth in recent years. We assessed the status of nanotechnology research worldwide by applying bibliographic, content map, and citation network analysis to a data set of about 200,000 nanotechnology papers published in the Thomson Science Citation Index Expanded database (SCI) from 1976 to 2004. This longitudinal study shows a quasi-exponential growth of nanotechnology articles with an average annual growth rate of 20.7% after 1991. The United States had the largest contribution of nanotechnology research and China and Korea had the fastest growth rates. The largest institutional contributions were from the Chinese Academy of Sciences and the Russian Academy of Sciences. The high-impact papers generally described tools, theories, technologies, perspectives, and overviews of nanotechnology. From the top 20 institutions, based on the average number of paper citations in 1976-2004, 17 were in the Unites States, 2 in France and 1 in Germany. Content map analysis identified the evolution of the major topics researched from 1976 to 2004, including investigative tools, physical phenomena, and experiment environments. Both the country citation network and the institution citation network had relatively high clustering, indicating the existence of citation communities in the two networks, and specific patterns in forming citation communities. The United States, Germany, Japan, and China were major citation centers in nanotechnology research with close inter-citation relationships.

  4. Updates in colorectal cancer stem cell research

    Directory of Open Access Journals (Sweden)

    Chun-Jie Li

    2014-01-01

    Full Text Available Colorectal cancer (CRC is one of the world most common malignant tumors, also is the main disease, which cause tumor-associated death. Surgery and chemotherapy are the most used treatment of CRC. Recent research reported that, cancer stem cells (CSCs are considered as the origin of tumor genesis, development, metastasis and recurrence in theory. At present, it has been proved that, CSCs existed in many tumors including CRC. In this review, we summary the identification of CSCs according to the cell surface markers, and the development of drugs that target colorectal cancer stem cells.

  5. Radiation related basic cancer research

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Hoon; Yoo, Young Do; Hong, Seok Il [and others

    2000-04-01

    We studied the mechanism of radiation-induced apoptosis, the factors involved signaling, and the establishment of radiation-resistant cell lines in this study. During the TGF beta-stimulated epithelial mesenchymal transition(EMT), actin rearrangement occurred first and fibronectin matrix assembly followed. These two events were considered independent since cytochalasin-D did not inhibit TGF stimulated matrix assembly and fibronectin supplementation did not induce EMT. During EMT, alpha 5 beta 1 integrin and alpha v integrin have increased but MMP activation was not accompanied, which suggest that induction of extracellular matrix and activation of integrins may be main contributor for the EMT. Serum depriving induced apoptosis of HUVECs was prevented by vascular endothelial growth factor(VEGF) and PMA. The apoptosis prevention by VEGF and PMA were conformed by DNA fragmentation assay. The p53 expression level was down regulated by VEGF and PMA compared with serum deprived HUVECs. However, VEGF and PMA induces c-Myc expression level on these cells. We made the 5 radiation-resistant clones from breast, lung and cervical cancer cells. More than 70%, 100% and 50% increased resistance was detected in breast cancer cells, lung cancer cells, and cervical cells, respectively. We carried out differential display-PCR to clone the radiation-resistant genes. 9 out of 10 genes were analyzed their sequence.

  6. Stromal response to prostate cancer: nanotechnology-based detection of thioredoxin-interacting protein partners distinguishes prostate cancer associated stroma from that of benign prostatic hyperplasia.

    Science.gov (United States)

    Singer, Elizabeth; Linehan, Jennifer; Babilonia, Gail; Imam, S Ashraf; Smith, David; Loera, Sofia; Wilson, Timothy; Smith, Steven

    2013-01-01

    Histological staining of reactive stroma has been shown to be a predictor of biochemical recurrence in prostate cancer, however, molecular markers of the stromal response to prostate cancer have not yet been fully delineated. The objective of this study was to determine whether or not the stromal biomarkers detected with a thioredoxin-targeted nanodevice could be used to distinguish the stroma associated with benign prostatic hyperplasia from that associated with PCA. In this regard, we recently demonstrated that a thioredoxin-targeted nanodevice selectively binds to reactive stroma in frozen prostate tumor tissue sections. To accomplish this, random frozen prostate tissue sections from each of 35 patients who underwent resection were incubated with the nanodevice and graded for fluorescent intensity. An adjacent section from each case was stained with Hematoxylin & Eosin to confirm the diagnosis. Select cases were stained with Masson's Trichrome or immunohistochemically using antibodies to thioredoxin reductase 1, thioredoxin reductase 2 or peroxiredoxin 1. Our results demonstrate that the graded intensity of nanodevice binding to the stroma associated with PCA was significantly higher (p = 0.0127) than that of benign prostatic hyperplasia using the t-test. Immunohistochemical staining of adjacent sections in representative cases showed that none of the two commonly studied thioredoxin interacting protein partners mirrored the fluorescence pattern seen with the nanodevice. However, thioredoxin reductase 2 protein was clearly shown to be a biomarker of prostate cancer-associated reactive stroma whose presence distinguishes the stroma associated with benign prostatic hyperplasia from that associated with prostate cancer. We conclude that the signal detected by the nanodevice, in contrast to individual targets detected with antibodies used in this study, originates from multiple thioredoxin interacting protein partners that distinguish the M2 neutrophil and

  7. Stromal response to prostate cancer: nanotechnology-based detection of thioredoxin-interacting protein partners distinguishes prostate cancer associated stroma from that of benign prostatic hyperplasia.

    Directory of Open Access Journals (Sweden)

    Elizabeth Singer

    Full Text Available Histological staining of reactive stroma has been shown to be a predictor of biochemical recurrence in prostate cancer, however, molecular markers of the stromal response to prostate cancer have not yet been fully delineated. The objective of this study was to determine whether or not the stromal biomarkers detected with a thioredoxin-targeted nanodevice could be used to distinguish the stroma associated with benign prostatic hyperplasia from that associated with PCA. In this regard, we recently demonstrated that a thioredoxin-targeted nanodevice selectively binds to reactive stroma in frozen prostate tumor tissue sections. To accomplish this, random frozen prostate tissue sections from each of 35 patients who underwent resection were incubated with the nanodevice and graded for fluorescent intensity. An adjacent section from each case was stained with Hematoxylin & Eosin to confirm the diagnosis. Select cases were stained with Masson's Trichrome or immunohistochemically using antibodies to thioredoxin reductase 1, thioredoxin reductase 2 or peroxiredoxin 1. Our results demonstrate that the graded intensity of nanodevice binding to the stroma associated with PCA was significantly higher (p = 0.0127 than that of benign prostatic hyperplasia using the t-test. Immunohistochemical staining of adjacent sections in representative cases showed that none of the two commonly studied thioredoxin interacting protein partners mirrored the fluorescence pattern seen with the nanodevice. However, thioredoxin reductase 2 protein was clearly shown to be a biomarker of prostate cancer-associated reactive stroma whose presence distinguishes the stroma associated with benign prostatic hyperplasia from that associated with prostate cancer. We conclude that the signal detected by the nanodevice, in contrast to individual targets detected with antibodies used in this study, originates from multiple thioredoxin interacting protein partners that distinguish the M2

  8. Nanoscience and nanotechnology in Europe

    Science.gov (United States)

    Tolles, William A.

    1994-12-01

    The subject of nanoscience and/or nanotechnology is of considerable interest as a rapidly expanding frontier of research. This report documents information gathered at 44 laboratories in Europe by the author over a six month period. Research activities in physics, electronics, materials, chemistry, and biotechnology are included. Fundamental advances in fabrication, characterization, and utilization of nanostructures are presented. Areas of greatest interest include nanostructures for electronic and optical materials and devices, sensors, and other applications envisioned. Research programs covered include lithography, materials, self-assembly, local probes, transport properties, quantum dots and wires, surface film behavior, some magnetic and optical behavior, including nonlinear spectroscopy, high frequency device behavior, and mechanical measurements at nanodimensions. A short description of the environment at each laboratory visited is included.

  9. Nanofluid two-phase flow and thermal physics: a new research frontier of nanotechnology and its challenges.

    Science.gov (United States)

    Cheng, Lixin; Bandarra Filho, Enio P; Thome, John R

    2008-07-01

    Nanofluids are a new class of fluids engineered by dispersing nanometer-size solid particles in base fluids. As a new research frontier, nanofluid two-phase flow and thermal physics have the potential to improve heat transfer and energy efficiency in thermal management systems for many applications, such as microelectronics, power electronics, transportation, nuclear engineering, heat pipes, refrigeration, air-conditioning and heat pump systems. So far, the study of nanofluid two-phase flow and thermal physics is still in its infancy. This field of research provides many opportunities to study new frontiers but also poses great challenges. To summarize the current status of research in this newly developing interdisciplinary field and to identify the future research needs as well, this paper focuses on presenting a comprehensive review of nucleate pool boiling, flow boiling, critical heat flux, condensation and two-phase flow of nanofluids. Even for the limited studies done so far, there are some controversies. Conclusions and contradictions on the available nanofluid studies on physical properties, two-phase flow, heat transfer and critical heat flux (CHF) are presented. Based on a comprehensive analysis, it has been realized that the physical properties of nanofluids such as surface tension, liquid thermal conductivity, viscosity and density have significant effects on the nanofluid two-phase flow and heat transfer characteristics but the lack of the accurate knowledge of these physical properties has greatly limited the study in this interdisciplinary field. Therefore, effort should be made to contribute to the physical property database of nanofluids as a first priority. Secondly, in particular, research on nanofluid two-phase flow and heat transfer in microchannels should be emphasized in the future.

  10. Nanotechnology and regenerative therapeutics in plastic surgery: The next frontier.

    Science.gov (United States)

    Tan, Aaron; Chawla, Reema; G, Natasha; Mahdibeiraghdar, Sara; Jeyaraj, Rebecca; Rajadas, Jayakumar; Hamblin, Michael R; Seifalian, Alexander M

    2016-01-01

    The rapid ascent of nanotechnology and regenerative therapeutics as applied to medicine and surgery has seen an exponential rise in the scale of research generated in this field. This is evidenced not only by the sheer volume of papers dedicated to nanotechnology but also in a large number of new journals dedicated to nanotechnology and regenerative therapeutics specifically to medicine and surgery. Aspects of nanotechnology that have already brought benefits to these areas include advanced drug delivery platforms, molecular imaging and materials engineering for surgical implants. Particular areas of interest include nerve regeneration, burns and wound care, artificial skin with nanoelectronic sensors and head and neck surgery. This study presents a review of nanotechnology and regenerative therapeutics, with focus on its applications and implications in plastic surgery.

  11. Nanotechnology and its relationship to interventional radiology. Part I: imaging.

    LENUS (Irish Health Repository)

    Power, Sarah

    2012-02-01

    Nanotechnology refers to the design, creation, and manipulation of structures on the nanometer scale. Interventional radiology stands to benefit greatly from advances in nanotechnology because much of the ongoing research is focused toward novel methods of imaging and delivery of therapy through minimally invasive means. Through the development of new techniques and therapies, nanotechnology has the potential to broaden the horizon of interventional radiology and ensure its continued success. This two-part review is intended to acquaint the interventionalist with the field of nanotechnology, and provide an overview of potential applications, while highlighting advances relevant to interventional radiology. Part I of the article deals with an introduction to some of the basic concepts of nanotechnology and outlines some of the potential imaging applications, concentrating mainly on advances in oncological and vascular imaging.

  12. Unique benefits of nanotechnology to drug delivery and diagnostics.

    Science.gov (United States)

    McNeil, Scott E

    2011-01-01

    Nanotechnology offers many potential benefits to medical research by making pharmaceuticals more efficacious and by decreasing their adverse side-effects. Preclinical characterization of nanoparticles intended for medical applications is complicated--due to the variety of materials used, their unique surface properties and multifunctional nature. This chapter serves as an introduction to the volume, giving a broad overview of applications of nanotechnology to medicine, and describes some of the beneficial aspects of nanotechnology-based drug delivery. We define nanotechnology and provide brief descriptions of the major classes of nanomaterials used for medical applications. The following two chapters discuss scientific and regulatory hurdles involved in the use of nanotechnology in medicine. The remaining bulk of the volume provides the reader with protocols that have been tested against clinically relevant nanoparticles and describes some of the nuances of nanoparticle types and necessary controls.

  13. Nanotechnology and its relationship to interventional radiology. Part I: imaging.

    LENUS (Irish Health Repository)

    Power, Sarah

    2011-04-01

    Nanotechnology refers to the design, creation, and manipulation of structures on the nanometer scale. Interventional radiology stands to benefit greatly from advances in nanotechnology because much of the ongoing research is focused toward novel methods of imaging and delivery of therapy through minimally invasive means. Through the development of new techniques and therapies, nanotechnology has the potential to broaden the horizon of interventional radiology and ensure its continued success. This two-part review is intended to acquaint the interventionalist with the field of nanotechnology, and provide an overview of potential applications, while highlighting advances relevant to interventional radiology. Part I of the article deals with an introduction to some of the basic concepts of nanotechnology and outlines some of the potential imaging applications, concentrating mainly on advances in oncological and vascular imaging.

  14. Introduction to Nanotechnology for Defense Environment, Health & Safety (EHS) and Research Professionals in Support of the Acquisition Process

    Science.gov (United States)

    2011-03-28

    www.denix.osd.mil/MERIT Ultra fine particles ~50 1713- Ramazzini described black 197 4- First GMO lung disease mouse created by Jaenisch Diesel...exhaust Engineered NP _____ _,.? • GMO Technology 1985- Oberdorster described inhalation toxicity of Ti02 2003-lssue recognized by EPA, NIOSH...other agencies 2004- California pass broad ban on GMO products Growing Body of EHS Research Far-reaching implications or singular exceptions

  15. Green Chemistry for Nanotechnology: Opportunities and Future Challenges

    Energy Technology Data Exchange (ETDEWEB)

    Preeti Nigam, Joshi, E-mail: ph.joshi@ncl.res.in [Combichem Bioresource Center, National Chemical Laboratory, Pune (India)

    2016-01-26

    Nanotechnology is a paradigm for emerging technologies and much talked about area of science. It is the technology of future and has revolutionized all fields of medicine, agriculture, environmental and electronics by providing abilities that would never have previously dreamt of. It is a unique platform of multidisciplinary approaches integrating diverse fields of engineering, biology, physics and chemistry. In recent years, nanotechnology has seen the fastest pace in its all aspects of synthesis methodologies and wide applications in all areas of medicine, agricultural, environmental, and electronics. It is the impact of nanotechnology approaches that new fields of nanomedicine, cancer nanotechnology, nanorobotics and nanoelectronics have been emerged and are flourishing with the advances in this expanding field. Nanotechnology holds the potential for pervasive and promising applications and getting significant attention and financial aids also. Although there are different definitions of nanotechnology, in broad prospective, nanotechnology can be described as designing or exploiting materials at nanometer dimensions (i.e., one dimension less than 100 nanometers). At nanoscale, substances have a larger surface area to volume ratio than conventional materials which is the prime reason behind their increased level of reactivity, improved and size tunable magnetic, optical and electrical properties and more toxicity also.

  16. Automation of Technology for Cancer Research.

    Science.gov (United States)

    van der Ent, Wietske; Veneman, Wouter J; Groenewoud, Arwin; Chen, Lanpeng; Tulotta, Claudia; Hogendoorn, Pancras C W; Spaink, Herman P; Snaar-Jagalska, B Ewa

    2016-01-01

    Zebrafish embryos can be obtained for research purposes in large numbers at low cost and embryos develop externally in limited space, making them highly suitable for high-throughput cancer studies and drug screens. Non-invasive live imaging of various processes within the larvae is possible due to their transparency during development, and a multitude of available fluorescent transgenic reporter lines.To perform high-throughput studies, handling large amounts of embryos and larvae is required. With such high number of individuals, even minute tasks may become time-consuming and arduous. In this chapter, an overview is given of the developments in the automation of various steps of large scale zebrafish cancer research for discovering important cancer pathways and drugs for the treatment of human disease. The focus lies on various tools developed for cancer cell implantation, embryo handling and sorting, microfluidic systems for imaging and drug treatment, and image acquisition and analysis. Examples will be given of employment of these technologies within the fields of toxicology research and cancer research.

  17. Nanomedicines as cancer therapeutics: Current status

    NARCIS (Netherlands)

    Akhter, S.; Ahmad, M; Ramzani, F.; Singh, A..; Ahmad, I.; Rahman, Z.; Ahmad, F.J.; Storm, G.; Kok, R.J.

    2013-01-01

    As of 21st century, cancer is arguably the most complex and challenging disease known to mankind and an inevitable public health concern of this millennium. Nanotechnology, suitably amalgamated with cancer research, has ushered an era of highly personalized and safer medicines which can improve canc

  18. An overview of the results of dissertation research in the field of nanotechnology and nanomaterials. Part 1

    Directory of Open Access Journals (Sweden)

    KARPOV Alexey Ivanovich

    2015-02-01

    Full Text Available To popularize scientific achievements the main results of Russian and foreign scientists’ research are published in the form of abstract. The result of the research «Nanomodified sulphurous binders for construction materials of general and special purpose» is the new methodological principles for development nanomodified sulphurous binders which are based on the consistent decomposition of quality criteria system of such materials, identification of elementary controlling receipt and technological factors through classification properties by phenomena, processes and components, scientific justification of material components choice, and then definition of experiment and statistic dependencies of influence of controlling factors on the material properties and performance of multicriterion optimization of receipt and technology for production of the material. The decomposition of quality criteria system of nanomodified sulphurous binders is based on the data about the possible application areas (chemically resistant concretes, capsulating of high toxic and radioactive wastes, seal of joints in chemically resistant coatings, etc. and requirements of GOST 4.200-78 «Quality criteria system for products. Construction. Basic regulations». Decomposition of a property (or a set of the properties by phenomena, processes and phases with identification of elementary factors is the base for identification of and ranking of controlling receipt and technological factors. Dispersed phase of nanomodified sulphurous binders has been grounded. It was shown thatit’s necessary to consider the possibility of formation of sulfide in the structure of obtained material and perform selection of raw mix taking into account the properties of forming sulfides and operation conditions of these construction materials and structures (first of all such as humidity, temperature and presence of any aggressive environments. The specialists may be also interested in the

  19. An overview of the results of dissertation research in the field of nanotechnology and nanomaterials. Part 4

    Directory of Open Access Journals (Sweden)

    KARPOV Alexey Ivanovich

    2015-11-01

    Full Text Available To popularize scientific achievements the main results of Russian and foreign scientists’ research are published in the form of abstract. The research «Materials of autoclave hardening with the use of nanostructured modifier based on magnetic rock of acid content» set the theory and experimentally proves the opportunity to use magma rock of acid composition for production of nanostructured modifier of the materials of autoclave hardening. Activity of nanostructured modifier is provided by its composition and production technology: high specific surface with formation of nanodispersed polymineral; surface amorphization of rock-forming minerals; processes of mechanical and chemical dissolution of quartz and feldspar components with formation of active silica and alumina silica acids. The research has determined the character of the influence of nanostructured modifier in the sand blend on the gas formation, expansion of concrete mix and finally on the structure formation of the materials during preautoclave period. The authors proposed the compositions for the materials of autoclave hardening with the use of nanostructured modifier made of granite to produce: pressed articles (silicate brick of density 1835–1950 kg/m², ultimate compressive strength – 17,8–23,3 МPа, thermal conductivity – 0,56–0,6 W/m°С., frost resistance – 40–55 cycles, water absorption – 11,4–12,2%. The developed articles meet the requirements of the existing codes: strength grade М150–М200 and frost resistance grade F35–F50. The specialists may be also interested in the following research: «Physical and chemical properties and structure of monomeric and polymer acetylenecarboxylated metals and nanocomposites based on them», «Nanomodified sulphuric binders for the construction materials of general and specific purpose», «Synthesis and catalytic properties of mesoporous nanomaterials based on СеО₂», «Synthesis and properties of

  20. Nanotechnologies a general introduction

    CERN Document Server

    CERN. Geneva; Ferrari, M; Li Bassi, A

    2007-01-01

    After a brief description of what is nanotechnology (a triple definition will be attempted) and of its importance for the society, this first lecture manly aims at showing how nanoscience makes various nanotechnologies possible. The surprising story of direct imaging and manipulation of atoms (scanning probe microscopies will be the specific subject of the third lecture by prof. Andrea Li Bassi) is told to naturally introduce the crucial role of quantum confinement and surface defects. The electronic and vibrational properties of nanostructures are then discussed to understand the connection between the deeply modified (with respect to the bulk) quantum spectra and the physico-chemical properties of nanoscopic objects. In this context the concept of superatom (and its generalizations) is stressed. The essential role of both size and size control is finally emphasized discussing some significant applications in the fields of materials, devices and medicine. To this last argument (nanomedicine) the second lectu...

  1. Risk of nanotechnology

    Science.gov (United States)

    Louda, Petr; Bakalova, Totka

    2014-05-01

    Nano-this and nano-that. These days it seems you need the prefix "nano" for products or applications if you want to be either very trendy or incredibly scary. This "nano-trend" has assumed "mega" proportions. Vague promises of a better life are met by equally vague, generalized fears about a worse future. These debates have some aspects in common: the subject is complex and not easy to explain; there is no consensus on risks and benefits. - A particular problem with nanotechnology lies in the huge gap between the public perception of what the hype promises and the scientific and commercial reality of what the technology actually delivers today and in the near future. There is nanoscience, which is the study of phenomena and manipulation of material at the nanoscale, in essence an extension of existing sciences into the nanoscale. Then there is nanotechnology, which is the design, characterization, production and application of structures, devices and systems by controlling shape and size at the nanoscale. Nanotechnology should really be called nanotechnologies: There is no single field of nanotechnology. The term broadly refers to such fields as biology, physics or chemistry, any scientific field really, or a combination thereof, that deals with the deliberate and controlled manufacturing of nanostructures. In addressing the health and environmental impact of nanotechnology we need to differentiate two types of nanostructures: (1) Nanocomposites, nanostructured surfaces and nanocomponents (electronic, optical, sensors etc.), where nanoscale particles are incorporated into a substance, material or device ("fixed" nanoparticles); and (2) "free" nanoparticles, where at some stage in production or use individual nanoparticles of a substance are present. There are four entry routes for nanoparticles into the body: they can be inhaled, swallowed, absorbed through skin or be deliberately injected during medical procedures. Once within the body they are highly mobile and

  2. An overview of the results of dissertation research in the field of nanotechnology and nanomaterials. Part 2

    Directory of Open Access Journals (Sweden)

    KARPOV Alexey Ivanovich

    2015-04-01

    Full Text Available To popularize scientific achievements the main results of Russian and foreign scientists’ research are published in the form of abstract. The research «Aerated concrete of autoclave hardening with the use of nanostructured modifier» has the following results: 1. The practicability of the use of the additives based on melamine-formaldehyde for plasticization of nanostructured silica modifier was proved. The optimal content of plasticizer is 0,1%. 2. The compositions of aerated concrete of autoclave hardening for construction and thermal insulation with quality classes D350–D500 and durability classes ВО,75; В2,5–В5 were proposed. 3. The technology for production of aerated concrete of autoclave hardening which comprises the use of nanostructured modifier. The specialists may be also interested in the research held by Vindizheva A.S. «Nanocomposite cabel elastrons based on polyvinylchloride and aluminum silicates », Ashrapov A.Kh. «Polymer construction nanocomposites based on polyvinylchloride », Dyatlov A.K. «Fine-grained self-compacting concrete with complex nanocontaining additive», Khuzin A.F. «Cement composites with additives of multilayer carbon nanotubes», Ermolin M.S. «Rectification of nano- and microparticles in rotating spiral columns for the analysis of polydispersed samples», Yukhaeva G.R. «Nanocomposite materials based on polyethylene and graphite nanoplates: synthesis, structure, properties», Shepelev D.S. «Energy exchange and localization of energy in carbon nanotubes», Nelyubova V.V. «Compressed silicate autoclave materials with the use of nanostructured modifier», Mironova A.S. «Nanofilled plaster compositions to increase durability of building facades», Goncharova M.A. «Structure formation and technology of construction and special composites based on little used metallurgy wastes», Maiorova L.A. «Controlled self-organization of azaporphyrins into 2D and 3D-nanostructures in Langmuir layers and

  3. Nanotechnology: A Policy Primer

    Science.gov (United States)

    2013-06-24

    Evidence from Increased Plant Biomass, Fruit Yield and Phytomedicine Content in Bitter Melon,” BMC Biotechnology , PubMed, April 26, 2013, http...contrast to many previous emerging technologies—such as semiconductors, satellites, software, and biotechnology —the U.S. lead is narrower, and the...approximately $67.5 billion. Cientifica also concluded that the United States had fallen behind both Russia and China in nanotechnology R&D funding on a

  4. Nanostructures and Nanotechnology

    Science.gov (United States)

    Natelson, Douglas

    2015-06-01

    Preface; 1. Introduction and overview; 2. Solid state physics in a nutshell; 3. Bulk materials; 4. Fabrication and characterization at the nanoscale; 5. Real solids: defects, interactions, confinement; 6. Charge transport and nanoelectronics; 7. Magnetism and magnetoelectronics; 8. Photonics; 9. Micro and nanomechanics; 10. Micro and nanofluidics; 11. Bionanotechnology: a very brief overview; 12. Nanotechnology and the future; Appendix: common quantum mechanics and statistical mechanics results; References; Index.

  5. Nanotechnology and vaccine development

    Directory of Open Access Journals (Sweden)

    Mi-Gyeong Kim

    2014-10-01

    Full Text Available Despite the progress of conventional vaccines, improvements are clearly required due to concerns about the weak immunogenicity of these vaccines, intrinsic instability in vivo, toxicity, and the need for multiple administrations. To overcome such problems, nanotechnology platforms have recently been incorporated into vaccine development. Nanocarrier-based delivery systems offer an opportunity to enhance the humoral and cellular immune responses. This advantage is attributable to the nanoscale particle size, which facilitates uptake by phagocytic cells, the gut-associated lymphoid tissue, and the mucosa-associated lymphoid tissue, leading to efficient antigen recognition and presentation. Modifying the surfaces of nanocarriers with a variety of targeting moieties permits the delivery of antigens to specific cell surface receptors, thereby stimulating specific and selective immune responses. In this review, we introduce recent advances in nanocarrier-based vaccine delivery systems, with a focus on the types of carriers, including liposomes, emulsions, polymer-based particles, and carbon-based nanomaterials. We describe the remaining challenges and possible breakthroughs, including the development of needle-free nanotechnologies and a fundamental understanding of the in vivo behavior and stability of the nanocarriers in nanotechnology-based delivery systems.

  6. Introduction to the Field of Nanotechnology Ethics and Policy

    NARCIS (Netherlands)

    Linton, J.D.; Walsh, S.

    2012-01-01

    Nanotechnologies and nanoscience have generated an unprecedented global research and development race involving dozens of countries. The understanding of associated environmental, ethical, and societal implications lags far behind the science and technology. Consequently, it is critical to consider

  7. Inequality gaps in nanotechnology development in Latin America

    Directory of Open Access Journals (Sweden)

    Guillermo Foladori

    2013-06-01

    The third characteristic is the absence of research on potential impacts of nanotechnology on human health and the environment, as well as other societal implications, which may generate new forms of unequal distribution of benefits and risks.

  8. An overview of the results of dissertation research in the field of nanotechnology and nanomaterials. Part 2

    Directory of Open Access Journals (Sweden)

    KARPOV Alexey Ivanovich

    2015-08-01

    Full Text Available To popularize scientific achievements the main results of Russian and foreign scientists’ research are published in the form of abstract. The research «Increasing of concrete strength with carbon nanotubes by means of hydrodynamic cavitation» contains the calculation of prime cost of the main raw components which are necessary to produce fine-grained concrete with strength class B55, that demonstrates the economic efficiency of application of CNT as modifying additive for cement composites. Modification of concrete matrix with CNT leads to higher breaking point of compressive strength and that makes it possible to reduce discharge intensity of cement by the strength unit of the material. In this case introduction of 0,05% initial CNT of binder mass into concrete led to 1,5 times increased strength-to-weight ratio. The amount of saved resources was determined as the cost difference between amount of raw materials which are necessary to produce concrete B55 class of traditional composition and the concrete similar by the class obtained due to introduction of carbon nanomodifier into it. The choice of the cost of 1 gram of multilayer CNT was based on the analysis of commercial offers of Russian and foreign companies that are specilized in manufacture and realization of carbon nanomaterials. The specialists may be also interested in the research held by Podgorny I.I. «Materials of autoclave hardening with the use of nanostructured modifier based on magnetic rock of acid content», Satjukov А.B. «Nanomodified composite binder for special construction mortars», Hammadi Mustafa Abdul Madzhid Hamid «The method to nanomodify cement concretes with nanomortar», Altynnik N.I. «Aeroconcrete of autoclave hardening with the use of nanostructured modifier», Volkov D.S. «Complex approaches to characterization of nanodiamonds of detonation synthesis and their colloid solutions», Ermolin М.S. «Rectification of nano- and microparticles in rotating

  9. Nanotechnology based devices and applications in medicine: An overview

    Directory of Open Access Journals (Sweden)

    Elvis A Martis

    2012-01-01

    Full Text Available Nanotechnology has been the most explored and extensively studied area in recent times. Many devices which were earlier impossible to imagine, are being developed at a lightning speed with the application of nanotechnology. To overcome the challenges offered by the most dreaded diseases, such as cancer or any disease involving the central nervous system or other inaccessible areas of the human body, nanotechnology has been proved to be a boon in making the treatment more target specific and minimizing the toxicities. This review describes a handful of important devices and applications based on nanotechnology in medicine made in recent times. This article also describes in brief the regulatory concerns and the ethical issues pertaining to nanomedical devices.

  10. Institutional shared resources and translational cancer research

    Directory of Open Access Journals (Sweden)

    De Paoli Paolo

    2009-06-01

    Full Text Available Abstract The development and maintenance of adequate shared infrastructures is considered a major goal for academic centers promoting translational research programs. Among infrastructures favoring translational research, centralized facilities characterized by shared, multidisciplinary use of expensive laboratory instrumentation, or by complex computer hardware and software and/or by high professional skills are necessary to maintain or improve institutional scientific competitiveness. The success or failure of a shared resource program also depends on the choice of appropriate institutional policies and requires an effective institutional governance regarding decisions on staffing, existence and composition of advisory committees, policies and of defined mechanisms of reporting, budgeting and financial support of each resource. Shared Resources represent a widely diffused model to sustain cancer research; in fact, web sites from an impressive number of research Institutes and Universities in the U.S. contain pages dedicated to the SR that have been established in each Center, making a complete view of the situation impossible. However, a nation-wide overview of how Cancer Centers develop SR programs is available on the web site for NCI-designated Cancer Centers in the U.S., while in Europe, information is available for individual Cancer centers. This article will briefly summarize the institutional policies, the organizational needs, the characteristics, scientific aims, and future developments of SRs necessary to develop effective translational research programs in oncology. In fact, the physical build-up of SRs per se is not sufficient for the successful translation of biomedical research. Appropriate policies to improve the academic culture in collaboration, the availability of educational programs for translational investigators, the existence of administrative facilitations for translational research and an efficient organization

  11. Nanotechnology in neurology: Genesis, current status, and future prospects

    Directory of Open Access Journals (Sweden)

    Paurush Ambesh

    2015-01-01

    Full Text Available Nanotechnology is a promising, novel field of technological development. There is great potential in research and clinical applications for neurological diseases. Here we chronicle the inception of nanotechnology, discuss its integration with neurology, and highlight the challenges in current application. Some of the problems involving practical use of neuronanotechnology are direct biological toxicity, visualization of the nanodevice, and the short life expectancy of nanomachinery. Neuron cell therapy is an upcoming field for the treatment of challenging problems in neurology. Peptide nanofibers based on amphiphilic molecules have been developed that can autoregulate their structure depending on the conditions of the surrounding milieu. Such frameworks are promising for serving as drug delivery systems or communication bridges between damaged neurons. For common disabling diseases such as Alzheimer′s disease (AD, Parkinson′s disease (PD, amyotrophic lateral sclerosis (ALS, and multiple sclerosis (MS, recent developments have seen revolutionary nanotech-based novelties, which are discussed here in detail. Bioimaging integrated with nanoneuromedicine has opened up new doors for cancer and infection therapeutics.

  12. The social and economic challenges of nanotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Stephen; Jones, Richard; Geldart, Alison

    2003-07-01

    . While there is some debate about whether this vision is realisable, amongst those who accept it the discussion focuses on rather extreme outcomes, both utopian and dystopian. There is also an emerging debate amongst those more focused on short-term outcomes. This pits those who believe that the rapid growth of nanotechnotogy will have strongly positive economic benefits, and those who on the grounds of environmentalism and social equity seek to slow or halt its development. One immediate issue that is growing in prominence is whether existing regulatory regimes are robust enough to deal with any special qualities that nanostructured materials may have, or whether new solutions are required. These diverging views on nanotechnotogy and the increasingly public debate, involving civil society, non-governmental organisations and the media, have led to concerns that there will be a backlash against nanotechnology akin to that over genetic modification. In response the call is for social science to take a role focused on promoting social awareness and acceptance of nanotechnology. The agenda for the social sciences needs to be broader than the public-science interface. Three themes stand out as important: the governance of technological change; social learning and the evaluation of risk and opportunity under uncertainty; the role of new technology in ameliorating or accentuating inequity and economic divides. Tackling these themes will involve a range of social science issues, many of which are topical independently of nanotechnology, for instance technology transfer, ageing, the commercialisation of science, and change management. Nonetheless there may well be issues unique to nanotechnology, arising from its inherent interdisciplinarity and its capacity to affect the human-machine-nature interface. A programme of research designed to address the diverse social science issues should thus both build on existing research and develop fresh avenues, particularly through

  13. Development of green nanotechnology and factors influencing it in China.

    Science.gov (United States)

    He, Xin; Qiao, Guanghui

    2013-03-01

    The rise of nanotechnology brings an unprecedented change to us, but its uncertainty may also causes unforeseen hazards to human health and the environment. Many countries around the world are actively researching and developing green nanotechnology which is non-toxic, environmentally friendly for the interests of humanity, and this systematic project needs the collaboration and efforts of government, research institutions, enterprises and public groups.

  14. Impact of proteomics on bladder cancer research

    DEFF Research Database (Denmark)

    Celis, Julio E; Gromova, Irina; Moreira, José Manuel Alfonso

    2004-01-01

    Detecting bladder cancer at an early stage and predicting how a tumor will behave and act in response to therapy, as well as the identification of new targets for therapeutic intervention, are among the main areas of research that will benefit from the current explosion in the number of powerful ...

  15. Prostate Cancer Research Training Program

    Science.gov (United States)

    2011-05-01

    Associate, Department of Internal Medicine (319-356-4159) http://www.int- med.uiowa.edu/Divisions/ Cardiology /Directory/Micha elSchultz.html Dr. Schultz’s...Core, DNA Core, Flow Cytometry Core, to name but a few. For research that includes laboratory animals, professional, humane veterinary care is

  16. Nanotechnology - Enabling Future Space Viability

    Science.gov (United States)

    2009-03-18

    OFFICIAL USE ONLY – PENDING AWC PUBLIC AFFAIRS RELEASE nanotechnology will occur in the fields of medicine , protective clothing, energy, water...on Accelerating Change, 2008. 29 J. Storrs Hall, Nanofuture: What’s Next for Nanotechnology (Amherst, NY: Prometheus Books, 2005), 30. 30 Garreau...Radical Evolution, 53, 58-9. 31 J. Storrs Hall, Nanofuture: What’s Next for Nanotechnology (Amherst, NY: Prometheus Books, 2005), 17. 32Ibid

  17. The social responsibility of Nanoscience and Nanotechnology: an integral approach

    Energy Technology Data Exchange (ETDEWEB)

    Caballero-Diaz, Encarnacion; Simonet, Bartolome M.; Valcarcel, Miguel, E-mail: qa1vacam@uco.es [University of Cordoba, Department of Analytical Chemistry (Spain)

    2013-04-15

    The concept of social responsibility provides the ideal framework for raising awareness and arousing reflection on the social and environmental impact of nanoparticles in the range of 1-100 nm generated from research activities in nanoscience and production-related activities in nanotechnology. The model proposed here relates the essential aspects of these concepts by connecting the classical sequence Research-Development-Innovation (R and D and I) to nanoscience and nanotechnology (N and N) and social responsibility (SR). This paper identifies the stakeholders of the process and provides an extensive definition of Social Responsibility and related concepts. In addition, it describes the internal and external connotations of the implementation of SR at research centers and nanotechnological industries, and discusses the social implications of nanoscience and nanotechnology with provision for subjects such as nanoethics, nanotoxicity, and nanomedicine, which have emerged from the widespread use of nanomaterials by today's society.

  18. Prostate Cancer Research Training Program

    Science.gov (United States)

    2014-05-01

    Iowa. It is conveniently located on the northern edge of the campus and is served by the free Cambus transportation system. The Mayflower has...and museums (art, natural history, and sports). In addition, there are a large number of restaurants ranging from fast food to fine dining...of Iowa. It is conveniently located on the west campus near the research labs and is served by the free Cambus transportation system. The

  19. Computational nanomedicine and nanotechnology lectures with computer practicums

    CERN Document Server

    Letfullin, Renat R

    2016-01-01

    This textbook, aimed at advanced undergraduate and graduate students, introduces the basic knowledge required for nanomedicine and nanotechnology, and emphasizes how the combined use of chemistry and light with nanoparticles can serve as treatments and therapies for cancer. This includes nanodevices, nanophototherapies, nanodrug design, and laser heating of nanoparticles and cell organelles. In addition, the book covers the emerging fields of nanophotonics and nanoplasmonics, which deal with nanoscale confinement of radiation and optical interactions on a scale much smaller than the wavelength of the light. The applications of nanophotonics and nanoplasmonics to biomedical research discussed in the book range from optical biosensing to photodynamic therapies. Cutting-edge and reflective of the multidisciplinary nature of nanomedicine, this book effectively combines knowledge and modeling from nanoscience, medicine, biotechnology, physics, optics, engineering, and pharmacy in an easily digestible format. Among...

  20. Innovations in nanotechnology for water treatment

    Directory of Open Access Journals (Sweden)

    Gehrke I

    2015-01-01

    Full Text Available Ilka Gehrke, Andreas Geiser, Annette Somborn-SchulzFraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, Oberhausen, GermanyAbstract: Important challenges in the global water situation, mainly resulting from worldwide population growth and climate change, require novel innovative water technologies in order to ensure a supply of drinking water and reduce global water pollution. Against this background, the adaptation of highly advanced nanotechnology to traditional process engineering offers new opportunities in technological developments for advanced water and wastewater technology processes. Here, an overview of recent advances in nanotechnologies for water and wastewater treatment processes is provided, including nanobased materials, such as nanoadsorbents, nanometals, nanomembranes, and photocatalysts. The beneficial properties of these materials as well as technical barriers when compared with conventional processes are reported. The state of commercialization is presented and an outlook on further research opportunities is given for each type of nanobased material and process. In addition to the promising technological enhancements, the limitations of nanotechnology for water applications, such as laws and regulations as well as potential health risks, are summarized. The legal framework according to nanoengineered materials and processes that are used for water and wastewater treatment is considered for European countries and for the USA.Keywords: nanotechnology, water technology, nanoadsorbents, nanometals, nanomembranes, photocatalysis

  1. Nanotechnology for sustainable development: retrospective and outlook

    Energy Technology Data Exchange (ETDEWEB)

    Diallo, Mamadou S., E-mail: mdiallo@kaist.ac.kr [Korea Advanced Institute of Science and Technology (KAIST), Graduate School of Energy, Environment, Water and Sustainability (EEWS) (Korea, Republic of); Fromer, Neil A. [California Institute of Technology, Resnick Sustainability Institute (United States); Jhon, Myung S. [Carnegie Mellon University, Department of Chemical Engineering (United States)

    2013-11-15

    The world is facing great challenges in meeting rising demands for basic commodities (e.g., food, water and energy), finished goods (e.g., cell phones, cars and airplanes) and services (e.g., shelter, healthcare and employment) while reducing and minimizing the impact of human activities on Earth’s global environment and climate. Nanotechnology has emerged as a versatile platform that could provide efficient, cost-effective and environmentally acceptable solutions to the global sustainability challenges facing society. This special issue of the Journal of Nanoparticle Research is devoted to the utilization of nanotechnology to improve or achieve sustainable development. We highlight recent advances and discuss opportunities of utilizing nanotechnology to address global challenges in (1) water purification, (2) clean energy technologies, (3) greenhouse gases management, (4) materials supply and utilization, and (5) green manufacturing and chemistry. In addition to the technical challenges listed above, we also discuss societal perspectives and provide an outlook of the role of nanotechnology in the convergence of knowledge, technology and society for achieving sustainable development.

  2. Nanotechnology for sustainable development: retrospective and outlook

    Science.gov (United States)

    Diallo, Mamadou S.; Fromer, Neil A.; Jhon, Myung S.

    2013-11-01

    The world is facing great challenges in meeting rising demands for basic commodities (e.g., food, water and energy), finished goods (e.g., cell phones, cars and airplanes) and services (e.g., shelter, healthcare and employment) while reducing and minimizing the impact of human activities on Earth's global environment and climate. Nanotechnology has emerged as a versatile platform that could provide efficient, cost-effective and environmentally acceptable solutions to the global sustainability challenges facing society. This special issue of the Journal of Nanoparticle Research is devoted to the utilization of nanotechnology to improve or achieve sustainable development. We highlight recent advances and discuss opportunities of utilizing nanotechnology to address global challenges in (1) water purification, (2) clean energy technologies, (3) greenhouse gases management, (4) materials supply and utilization, and (5) green manufacturing and chemistry. In addition to the technical challenges listed above, we also discuss societal perspectives and provide an outlook of the role of nanotechnology in the convergence of knowledge, technology and society for achieving sustainable development.

  3. Scientometrics Analysis of Nanotechnology in MEDLINE

    Directory of Open Access Journals (Sweden)

    Ali Asgharzadeh

    2011-09-01

    Full Text Available Introduction: Nanotechnology is the study and application of extremely small things and can be used across all the other science fields, such as chemistry, biology, physics, materials science, and engineering. An alternative method for considering the trend of research activities in countries is quantitative analysis of scientific output. The objective of current study is to analyze and visualize the trend of scientific output in the field of nanotechnology in MEDLINE during a period of 10 years 2001-2010. Method: The extraction of data was restricted to the data set that was indexed as a major main heading of “nanotechnology” in MEDLINE through 2001 – 2010. Data about patent applications was obtained from WIPO Statistics Database. Database of Science Citation Index Expanded (SCIE was selected from Web of Science to obtain publications indexed under the topic of nanotechnology. Result: Analysis of data showed that the research activities in the field of nanotechnology have been increased steady through the period of study. The number of publications in 2010 was ~ 84 times greater than those in 2001. English language consisting of 98% of total publications was the most dominant language of publications. Based on Bradford’s scattering’s law the journal of “ Nanoscience and Nanotechnology“ distributing 12.8% of total publications was the most prolific journal. Conclusion: The USA contributing 39% of world’s publications in the field was the most productive country followed by China (10%, Germany (6%, Japan (6%, Korea (5% and UK (4%. The most majority of world’s publications (70% were produced by these six countries. The tremendous growth of publications was simultaneously with the rapid growth of patent application in the field of Micro-structural and nano-technology in WIPO.

  4. Ubiquitin proteasome system research in gastrointestinal cancer.

    Science.gov (United States)

    Zhong, Jia-Ling; Huang, Chang-Zhi

    2016-02-15

    The ubiquitin proteasome system (UPS) is important for the degradation of proteins in eukaryotic cells. It is involved in nearly every cellular process and plays an important role in maintaining body homeostasis. An increasing body of evidence has linked alterations in the UPS to gastrointestinal malignancies, including esophageal, gastric and colorectal cancers. Here, we summarize the current literature detailing the involvement of the UPS in gastrointestinal cancer, highlighting its role in tumor occurrence and development, providing information for therapeutic targets research and anti-gastrointestinal tumor drug design.

  5. Methodological bases of innovative training of specialists in nanotechnology field

    Directory of Open Access Journals (Sweden)

    FIGOVSKY Oleg Lvovich

    2016-10-01

    Full Text Available The performance of innovative training system aimed at highly intellectual specialists in the area of nanotechnologies for Kazakhstan’s economy demands establishment and development of nanotechnological market in the country, teaching of innovative engineering combined with consistent research, integration of trained specialists with latest technologies and sciences at the international level. Methodological aspects of training competitive specialists for nanotechnological field are specific. The paper presents methodological principles of innovative training of specialists for science-intensive industry that were realized according to grant given by the Ministry of Education and Science of the Republic of Kazakhstan.

  6. ULTRAFINE FLUORESCENT DIAMONDS IN NANOTECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Kanyuk M. I.

    2014-07-01

    Full Text Available The purpose of the work is to summarize the literature data concerning ultrafine diamonds, namely their industrial production, as well as considerable photostability and biocompatibility that promote their use in modern visualization techniques. It is shown that due to the unique physical properties, they are promising materials for using in nanotechnology in the near future. Possibility of diverse surface modification, small size and large absorption surface are the basis for their use in different approaches for drug and gene delivery into a cell. The changes in the properties of nanodiamond surface modification methods of their creation, stabilization and applications are described. It can be said that fluorescent surface-modified nanodiamonds are a promising target in various research methods that would be widely used for labeling of living cells, as well as in the processes of genes and drugs delivery into a cell.

  7. Multidisciplinary Cognitive Content of Nanoscience and Nanotechnology

    CERN Document Server

    Milojević, Staša

    2012-01-01

    This article examines the cognitive evolution and disciplinary diversity of nanotechnology as expressed through the terminology used in titles of nano journal articles. The analysis is based on the NanoBank bibliographic database of 287,106 nano articles published between 1981 and 2004. We perform multifaceted analyses of title words, focusing on 100 most frequent terms. Hierarchical clustering of title terms reveals three distinct time periods of cognitive development of nano research: formative (1981-1990), early (1991-1998), and current (after 1998). Early period is characterized by the introduction of thin film deposition techniques, while the current period is characterized by the increased focus on carbon nanotube and nanoparticle research. We introduce a method to identify disciplinary components of nanotechnology. It shows that the nano research is being carried out in a number of diverse parent disciplines. Currently only 5% of articles are published in dedicated nano-only journals. We find that some...

  8. Nanotechnology for dental implants.

    Science.gov (United States)

    Tomsia, Antoni P; Lee, Janice S; Wegst, Ulrike G K; Saiz, Eduardo

    2013-01-01

    With the advent of nanotechnology, an opportunity exists for the engineering of new dental implant materials. Metallic dental implants have been successfully used for decades, but they have shortcomings related to osseointegration and mechanical properties that do not match those of bone. Absent the development of an entirely new class of materials, faster osseointegration of currently available dental implants can be accomplished by various surface modifications. To date, there is no consensus regarding the preferred method(s) of implant surface modification, and further development will be required before the ideal implant surface can be created, let alone become available for clinical use. Current approaches can generally be categorized into three areas: ceramic coatings, surface functionalization, and patterning on the micro- to nanoscale. The distinctions among these are imprecise, as some or all of these approaches can be combined to improve in vivo implant performance. These surface improvements have resulted in durable implants with a high percentage of success and long-term function. Nanotechnology has provided another set of opportunities for the manipulation of implant surfaces in its capacity to mimic the surface topography formed by extracellular matrix components of natural tissue. The possibilities introduced by nanotechnology now permit the tailoring of implant chemistry and structure with an unprecedented degree of control. For the first time, tools are available that can be used to manipulate the physicochemical environment and monitor key cellular events at the molecular level. These new tools and capabilities will result in faster bone formation, reduced healing time, and rapid recovery to function.

  9. Translating basic research in cancer patient care

    Directory of Open Access Journals (Sweden)

    Marcello Maugeri-Saccà

    2011-01-01

    Full Text Available With the advent of molecular targeted therapies and the development of high-throughput biotechnologies, it has become evident that progress in cancer research is largely due to the creation of multidisciplinary teams able to plan clinical trials supported by appropriate molecular hypotheses. These efforts have culminated in the identification and validation of biomarkers predictive of response, as well as in the generation of more accurate prognostic tools. The identification of cancer stem cells has provided further insights into mechanisms of cancer, and many studies have tried to translate this biological notion into prognostic and predictive information. In this regard, new agents targeting key stemness-related pathways have entered the clinical development, and preliminary data suggested an encouraging antitumor activity.

  10. Microarray Applications in Cancer Research

    Science.gov (United States)

    Kim, Il-Jin; Kang, Hio Chung

    2004-01-01

    DNA microarray technology permits simultaneous analysis of thousands of DNA sequences for genomic research and diagnostics applications. Microarray technology represents the most recent and exciting advance in the application of hybridization-based technology for biological sciences analysis. This review focuses on the classification (oligonucleotide vs. cDNA) and application (mutation-genotyping vs. gene expression) of microarrays. Oligonucleotide microarrays can be used both in mutation-genotyping and gene expression analysis, while cDNA microarrays can only be used in gene expression analysis. We review microarray mutation analysis, including examining the use of three oligonucleotide microarrays developed in our laboratory to determine mutations in RET, β-catenin and K-ras genes. We also discuss the use of the Affymetrix GeneChip in mutation analysis. We review microarray gene expression analysis, including the classifying of such studies into four categories: class comparison, class prediction, class discovery and identification of biomarkers. PMID:20368836

  11. The National Nanotechnology Initiative: Research and Development Leading to a Revolution in Technology and Industry. Supplement to the President’s 2012 Budget

    Science.gov (United States)

    2011-02-01

    ASU) and University of California Santa Barbara (UCSB). NSF’s Office of International Science and Engineering ( OISE ) will support a range of...nanotechnology activities will be done in competition with other projects. All current OISE programs support multiple projects in this area. USDA/FS...operation and Development OISE Office of International Science and Engineering (NSF) OMB Office of Management and Budget (Executive Office of the

  12. Nanotechnology and Life Cycle Assessment. A systems approach to Nanotechnology and the environment:Synthesis of Results Obtained at a Workshop Washington, DC 2–3 October 2006

    OpenAIRE

    Klöpffer, Walter; Curran, Mary Ann; Frankl, Paolo; Heijungs, Reinout; Köhler, Annette; OLSEN Stig Irving

    2007-01-01

    This report summarizes the results of “Nanotechnology and Life Cycle Assessment,” a twoday workshop jointly convened by the Woodrow Wilson Center Project on Emerging Nanotechnologies; the United States Environmental Protection Agency Office of Research and Development; and the European Commission, RTD.G4 “Nano S&T: Converging Science and Technologies.” Held in October 2006, the workshop involved international experts from the fields of Life Cycle Assessment (LCA) and nanotechnology. The m...

  13. Nanotechnology publications and citations by leading countries and blocs

    Energy Technology Data Exchange (ETDEWEB)

    Youtie, Jan, E-mail: jan.youtie@innovate.gatech.ed [Enterprise Innovation Institute, Georgia Institute of Technology (United States); Shapira, Philip, E-mail: pshapira@gatech.ed [Georgia Institute of Technology, School of Public Policy (United States); Porter, Alan L., E-mail: aporter@isye.gatech.ed [Georgia Institute of Technology, Technology Policy and Assessment Center, School of Public Policy (United States)

    2008-08-15

    This article examines the relative positions with respect to nanotechnology research publications of the European Union (EU), the United States (US), Japan, Germany, China, and three Asian Tiger nations (South Korea, Singapore, and Taiwan). The analysis uses a dataset of nanotechnology publication records for the time period 1990 through 2006 (part year) extracted from the Science Citation Index obtained through the Web of Science and was developed through a two-stage modularized Boolean approach. The results show that although the EU and the US have the highest number of nanotechnology publications, China and other Asian countries are increasing their publications rapidly, taking an ever-larger proportion of the total. When viewed in terms of the quality-based measure of citations, Asian nanotechnology researchers also show growth in recent years. However, by such citation measures, the US still maintains a strongly dominant position, followed by the EU.

  14. Nanotechnology publications and citations by leading countries and blocs

    Science.gov (United States)

    Youtie, Jan; Shapira, Philip; Porter, Alan L.

    2008-08-01

    This article examines the relative positions with respect to nanotechnology research publications of the European Union (EU), the United States (US), Japan, Germany, China, and three Asian Tiger nations (South Korea, Singapore, and Taiwan). The analysis uses a dataset of nanotechnology publication records for the time period 1990 through 2006 (part year) extracted from the Science Citation Index obtained through the Web of Science and was developed through a two-stage modularized Boolean approach. The results show that although the EU and the US have the highest number of nanotechnology publications, China and other Asian countries are increasing their publications rapidly, taking an ever-larger proportion of the total. When viewed in terms of the quality-based measure of citations, Asian nanotechnology researchers also show growth in recent years. However, by such citation measures, the US still maintains a strongly dominant position, followed by the EU.

  15. Nanotechnology: The Incredible Invisible World

    Science.gov (United States)

    Roberts, Amanda S.

    2011-01-01

    The concept of nanotechnology was first introduced in 1959 by Richard Feynman at a meeting of the American Physical Society. Nanotechnology opens the door to an exciting new science/technology/engineering field. The possibilities for the uses of this technology should inspire the imagination to think big. Many are already pursuing such feats…

  16. Nanotechnology overview: Opportunities and challenges

    Science.gov (United States)

    Nanotechnology can be defined as the science of manipulating matter at the nanometer scale in order to discover new properties and possibly produce new products. For the past 30 years, a considerable amount of scientific interest and R&D funding devoted to nanotechnology has led to rapid developmen...

  17. Food nanotechnology – an overview

    Directory of Open Access Journals (Sweden)

    Bhupinder S Sekhon

    2010-05-01

    Full Text Available Bhupinder S SekhonInstitute of Pharmacy and Department of Biotechnology, Punjab College of Technical Education, Jhande, Ludhiana, IndiaAbstract: Food nanotechnology is an area of emerging interest and opens up a whole universe of new possibilities for the food industry. The basic categories of nanotechnology applications and functionalities currently in the development of food packaging include: the improvement of plastic materials barriers, the incorporation of active components that can deliver functional attributes beyond those of conventional active packaging, and the sensing and signaling of relevant information. Nano food packaging materials may extend food life, improve food safety, alert consumers that food is contaminated or spoiled, repair tears in packaging, and even release preservatives to extend the life of the food in the package. Nanotechnology applications in the food industry can be utilized to detect bacteria in packaging, or produce stronger flavors and color quality, and safety by increasing the barrier properties. Nanotechnology holds great promise to provide benefits not just within food products but also around food products. In fact, nanotechnology introduces new chances for innovation in the food industry at immense speed, but uncertainty and health concerns are also emerging. EU/WE/global legislation for the regulation of nanotechnology in food are meager. Moreover, current legislation appears unsuitable to nanotechnology specificity.Keywords: nanotechnology, nanofood, food packaging, nanoparticles, nanoencapsulation

  18. Introduction: Epidemiologic research and prevention of occupational cancer in Europe.

    OpenAIRE

    Boffetta, P.; Kogevinas, M.

    1999-01-01

    Research on occupational cancer epidemiology has been an important area of occupational health in Europe since the early studies were conducted in the United Kingdom in the 1950s and 1960s. During the last decade, occupational cancer research in Europe has gained an international dimension and become increasingly interdisciplinary in nature. At present, occupational exposures might be responsible for 13 to 18% of lung cancers, 2 to 10% of bladder cancers, and 2 to 8% of laryngeal cancers in E...

  19. Robotics, Ethics, and Nanotechnology

    Science.gov (United States)

    Ganascia, Jean-Gabriel

    It may seem out of character to find a chapter on robotics in a book about nanotechnology, and even more so a chapter on the application of ethics to robots. Indeed, as we shall see, the questions look quite different in these two fields, i.e., in robotics and nanoscience. In short, in the case of robots, we are dealing with artificial beings endowed with higher cognitive faculties, such as language, reasoning, action, and perception, whereas in the case of nano-objects, we are talking about invisible macromolecules which act, move, and duplicate unseen to us. In one case, we find ourselves confronted by a possibly evil double of ourselves, and in the other, a creeping and intangible nebula assails us from all sides. In one case, we are faced with an alter ego which, although unknown, is clearly perceptible, while in the other, an unspeakable ooze, the notorious grey goo, whose properties are both mysterious and sinister, enters and immerses us. This leads to a shift in the ethical problem situation: the notion of responsibility can no longer be worded in the same terms because, despite its otherness, the robot can always be located somewhere, while in the case of nanotechnologies, myriad nanometric objects permeate everywhere, disseminating uncontrollably.

  20. NANOTECHNOLOGY USE IN MEDICINE

    Directory of Open Access Journals (Sweden)

    Gopal Reddy

    2014-12-01

    Full Text Available Technology is shrinking quantity wise, increasing quality wise at a rather rapid rate. As a result, more and more advancements are taking place at the cellular, molecular and atomic level — at the nanoscale. NANOTECHNOLOGY: Is especially important to medicine because the medical field deals with things on the smallest of levels. Additionally, the small nano devices that are being developed right now can enter the body and treat and prevent diseases. NANOMEDICINE: Is the application of nanotechnology (the engineering of tiny machines for the prevention and treatment of disease in the human body. This evolving discipline has the potential to dramatically change medical science. NANOBOTS: Smallest of robots could be used to perform a number of functions inside the body and out. They could even be programmed to build other nanobots. NANOCOMPUTERS: To direct nanobots in their work, there are special computers. NANOTWEEZERS: devices are designed to manipulate nanostructures. Nanotweezers are usually constructed using nanotubes. NANOCHIP: Is an integrated circuit that is so small, in physical terms, that individual particles of matter play major roles

  1. What Counts as a 'Social and Ethical Issue' in Nanotechnology?

    Directory of Open Access Journals (Sweden)

    Bruce V. Lewenstein

    2005-04-01

    Full Text Available As 'social and ethical issues' becomes a recurring phrase in the community paying attention to nanotechnology research, a crucial question becomes: what counts as a social and ethical issue? A typical list includes privacy, environmental health and safety, media hype, and other apparently unrelated issues. This article surveys those issues and suggests that concerns about fundamental concepts of ethics, such as fairness, justice, equity, and especially power, unite the various issues identified as 'social and ethical issues' in nanotechnology.

  2. Gestion inter-organisationnelle des connaissances : le cas des nanotechnologies

    OpenAIRE

    Pérez Martelo, Constanza,

    2013-01-01

    The thesis deals with knowledge management processes and associated practices in interorganizational contexts. With an insight of intellectual craftsmanship, we focus on the case study of Nanoscience and Nanotechnology (NST) that involves a wide diversity of participant organizations and knowledge fields. By studying three specific contexts –a Colombian network of research groups, a European collaborative project, and a laboratory of materials belonging to a micro and nanotechnology cluster o...

  3. Nanoparticles, nanotechnology – potential environmental and occupational hazards

    Directory of Open Access Journals (Sweden)

    Henryka Langauer-Lewowicka

    2014-06-01

    Full Text Available The paper presents some information about current state of knowledge of the risk of engineered nanoparticles and nanotechnology for the environment and human health. The nanotechnology influences all industrial and public sectors including healthcare, agriculture, transport, energy, information and communication technologies. Both, the potential benefits and risks, associated with the application of engineered nanoparticles have been widely debated in recent years. The most important problem for the future research is the evaluation of the risk associated with nanomaterials exposure.

  4. Nanotechnology in agri-food production: an overview.

    Science.gov (United States)

    Sekhon, Bhupinder Singh

    2014-01-01

    arisen regarding the safety of nanomaterials, and researchers and companies will need to prove that these nanotechnologies do not have more of a negative impact on the environment.

  5. 3rd International Conference Nanotechnology and Nanomaterials

    CERN Document Server

    Yatsenko, Leonid

    2016-01-01

    This book presents some of the latest achievements in nanotechnology and nanomaterials from leading researchers in Ukraine, Europe, and beyond. It features contributions from participants in the 3rd International Science and Practice Conference Nanotechnology and Nanomaterials (NANO2015) held in Lviv, Ukraine on August 26-30, 2015. The International Conference was organized jointly by the Institute of Physics of the National Academy of Sciences of Ukraine, University of Tartu (Estonia), Ivan Franko National University of Lviv (Ukraine), University of Turin (Italy), Pierre and Marie Curie University (France), and European Profiles A.E. (Greece). Internationally recognized experts from a wide range of universities and research institutions share their knowledge and key results on topics ranging from nanooptics, nanoplasmonics, and interface studies to energy storage and biomedical applications. Presents cutting-edge advances in nanocomposites and carbon and silicon-based nanomaterials for a wide range of engine...

  6. Improving Cancer Care Through Nursing Research.

    Science.gov (United States)

    Mayer, Deborah K

    2015-09-01

    Nursing research and nurse researchers have been an integral and significant part of the Oncology Nursing Society's (ONS's) history, as evidenced by the development of the Nursing Research Committee within a few years of ONS's establishment. Ruth McCorkle, PhD, RN, FAAN, was the committee's first chairperson in 1979. This was followed by the creation of the Advanced Nursing Research Special Interest Group in 1989 under the leadership of Jean Brown, PhD, RN, FAAN. ONS also began to recognize nurse researchers in 1994 by creating the annual ONS Distinguished Researcher Award to recognize the contributions of a member who has conducted or promoted research that has enhanced the science and practice of oncology nursing. The list of recipients and of their work is impressive and reflects the wide range of our practice areas (see http://bit.ly/1MTC5cp for the recipient list). In addition, the ONS Foundation began funding research in 1981 and has distributed more than $24 million in research grants, research fellowships, and other scholarships, lectures, public education projects, and career development awards (ONS Foundation, 2015). And, in 2006, the Putting Evidence Into Practice resource was unveiled, which provides evidence-based intervention reviews for the 20 most common problems experienced by patients with cancer and their caregivers (www.ons
.org/practice-resources/pep)
.

  7. [Nanotechnologies: from information sciences to pharmacology].

    Science.gov (United States)

    Grognet, Jean-Marc

    2008-01-01

    The considerable breakthroughs of the physics during the last 30 years allowed us to conceive components, devices or materials at the nanoscale level and to manipulate them. Applications are already envisaged in the field of the medical and pharmaceutical sciences. These nanotechnologies will be applied to the biology as well as the diagnosis, the therapeutics and the functional rehabilitation (nanomedicine). Consequences in the pharmaceutical research and development are also possible in a near future.

  8. China and the United States--Global partners, competitors and collaborators in nanotechnology development.

    Science.gov (United States)

    Gao, Yu; Jin, Biyu; Shen, Weiyu; Sinko, Patrick J; Xie, Xiaodong; Zhang, Huijuan; Jia, Lee

    2016-01-01

    USA and China are two leading countries engaged in nanotechnology research and development. They compete with each other for fruits in this innovative area in a parallel and compatible manner. Understanding the status and developmental prospects of nanotechnology in USA and China is important for policy-makers to decide nanotechnology priorities and funding, and to explore new ways for global cooperation on key issues. We here present the nanoscience and nanomedicine research and the related productivity measured by publications, and patent applications, governmental funding, policies and regulations, institutional translational research, industrial and enterprise growth in nanotechnology-related fields across China and USA. The comparison reveals some marked asymmetries of nanotechnology development in China and USA, which may be helpful for future directions to strengthen nanotechnology collaboration for both countries, and for the world as a whole.

  9. Gaps in nutritional research among older adults with cancer

    OpenAIRE

    Presley, Carolyn J.; Dotan, Efrat; Soto-Perez-de-Celis, Enrique; Jatoi, Aminah; Mohile, Supriya G.; Won, Elizabeth; Alibhai, Shabbir; Kilari, Deepak; Harrison, Robert; Klepin, Heidi D.; Wildes, Tanya M.; Mustian, Karen; Demark-Wahnefried, Wendy

    2016-01-01

    Nutritional issues among older adults with cancer are an understudied area of research despite significant prognostic implications for treatment side effects, cancer-specific mortality, and overall survival. In May of 2015, the National Cancer Institute and the National Institute on Aging co-sponsored a conference focused on future directions in geriatric oncology research. Nutritional research among older adults with cancer was highlighted as a major area of concern as most nutritional cance...

  10. A Milestone in Cancer Research and Treatment in India

    Science.gov (United States)

    Tata Memorial Center is celebrating 75 years of leadership service towards cancer control and research in India. In honor of this anniversary, TMC is hosting A Conference of New Ideas in Cancer – Challenging Dogmas on February 26-28th, 2016 as part of its platinum jubilee events. CGH Director, Dr. Ted Trimble, will give a plenary talk: "Thinking Outside the Box in Cancer Research - Perspectives from the US NCI” in the session titled: Future of Cancer Research: US and European perspectives.

  11. The cancer translational research informatics platform

    Directory of Open Access Journals (Sweden)

    Johnson Kimberly

    2008-12-01

    Full Text Available Abstract Background Despite the pressing need for the creation of applications that facilitate the aggregation of clinical and molecular data, most current applications are proprietary and lack the necessary compliance with standards that would allow for cross-institutional data exchange. In line with its mission of accelerating research discoveries and improving patient outcomes by linking networks of researchers, physicians, and patients focused on cancer research, caBIG (cancer Biomedical Informatics Grid™ has sponsored the creation of the caTRIP (Cancer Translational Research Informatics Platform tool, with the purpose of aggregating clinical and molecular data in a repository that is user-friendly, easily accessible, as well as compliant with regulatory requirements of privacy and security. Results caTRIP has been developed as an N-tier architecture, with three primary tiers: domain services, the distributed query engine, and the graphical user interface, primarily making use of the caGrid infrastructure to ensure compatibility with other tools currently developed by caBIG. The application interface was designed so that users can construct queries using either the Simple Interface via drop-down menus or the Advanced Interface for more sophisticated searching strategies to using drag-and-drop. Furthermore, the application addresses the security concerns of authentication, authorization, and delegation, as well as an automated honest broker service for deidentifying data. Conclusion Currently being deployed at Duke University and a few other centers, we expect that caTRIP will make a significant contribution to further the development of translational research through the facilitation of its data exchange and storage processes.

  12. Nanotechnology-based drug delivery systems

    Directory of Open Access Journals (Sweden)

    Singh Baljit

    2007-12-01

    Full Text Available Abstract Nanoparticles hold tremendous potential as an effective drug delivery system. In this review we discussed recent developments in nanotechnology for drug delivery. To overcome the problems of gene and drug delivery, nanotechnology has gained interest in recent years. Nanosystems with different compositions and biological properties have been extensively investigated for drug and gene delivery applications. To achieve efficient drug delivery it is important to understand the interactions of nanomaterials with the biological environment, targeting cell-surface receptors, drug release, multiple drug administration, stability of therapeutic agents and molecular mechanisms of cell signalling involved in pathobiology of the disease under consideration. Several anti-cancer drugs including paclitaxel, doxorubicin, 5-fluorouracil and dexamethasone have been successfully formulated using nanomaterials. Quantom dots, chitosan, Polylactic/glycolic acid (PLGA and PLGA-based nanoparticles have also been used for in vitro RNAi delivery. Brain cancer is one of the most difficult malignancies to detect and treat mainly because of the difficulty in getting imaging and therapeutic agents past the blood-brain barrier and into the brain. Anti-cancer drugs such as loperamide and doxorubicin bound to nanomaterials have been shown to cross the intact blood-brain barrier and released at therapeutic concentrations in the brain. The use of nanomaterials including peptide-based nanotubes to target the vascular endothelial growth factor (VEGF receptor and cell adhesion molecules like integrins, cadherins and selectins, is a new approach to control disease progression.

  13. Biomimetic Nanotechnology: A Powerful Means to address Global Challenges

    CERN Document Server

    Gebeshuber, Ille C

    2010-01-01

    Biomimetic nanotechnology is a prominent research area at the meeting place of life sciences with engineering and physics: it is a continuously growing field that deals with knowledge transfer from biology to nanotechnology. Biomimetic nanotechnology is a field that has the potential to substantially support successful mastering of major global challenges. The Millennium Project was commissioned by the United Nations Secretary-General in 2002 to develop a concrete action plan for the world to reverse the grinding poverty, hunger and disease affecting billions of people. It states 15 Global Challenges: sustainable development, water, population and resources, democratization, long-term perspectives, information technology, the rich-poor gap, health, capacity to decide, peace and conflict, status of women, transnational crime, energy, science and technology and global ethics. The possible contributions to master these challenges with the help of biomimetic nanotechnology will be discussed in detail.

  14. Cultural cognition of the risks and benefits of nanotechnology

    Science.gov (United States)

    Kahan, Dan M.; Braman, Donald; Slovic, Paul; Gastil, John; Cohen, Geoffrey

    2009-02-01

    How is public opinion towards nanotechnology likely to evolve? The `familiarity hypothesis' holds that support for nanotechnology will likely grow as awareness of it expands. The basis of this conjecture is opinion polling, which finds that few members of the public claim to know much about nanotechnology, but that those who say they do are substantially more likely to believe its benefits outweigh its risks. Some researchers, however, have avoided endorsing the familiarity hypothesis, stressing that cognitive heuristics and biases could create anxiety as the public learns more about this novel science. We conducted an experimental study aimed at determining how members of the public would react to balanced information about nanotechnology risks and benefits. Finding no support for the familiarity hypothesis, the study instead yielded strong evidence that public attitudes are likely to be shaped by psychological dynamics associated with cultural cognition.

  15. The Frontiers of Nanotechnology and Nanomedicine (SIG MED).

    Science.gov (United States)

    Lei, Polin P.

    2000-01-01

    This abstract of a planned session on the future of medicine explains the use of nanotechnology in medicine to manipulate biomolecules that regulate life and death processes and to help improve health care delivery. Topics include nanodevices for drug delivery, cancer detection and cure, and repairing genes. (LRW)

  16. Nanotechnology applications in osteodistraction

    Directory of Open Access Journals (Sweden)

    Adam E Singleton

    2014-06-01

    Full Text Available Most current strategies for bone regeneration have relatively satisfactory results. However, there are drawbacks and limitations associated with their use and availability, and even controversial reports about their efficacy and cost-effectiveness. The induction of new bone formation through distraction osteogenesis (DO is widespread clinical application in the treatment of bone defects, limb deformities, and fracture nonunions. However, a lengthy period of external fixation is usually needed to allow the new bone to consolidate, and complications such as refracture at the distraction gap often occur. Although various biomaterials have been used as injectable delivery systems in DO models, little has been reported on the use of nanobiomaterials as carrier materials for the sustained release of growth factors in bone regeneration. One area of focus in nanotechnology is the delivery of osteogenic factors in an attempt to modulate the formation of bone. This review article seeks to demonstrate the potential of nanobiomaterials to improve biological applications pertinent to osteodistraction.

  17. Nanostructures and nanotechnology

    CERN Document Server

    Natelson, Douglas

    2015-01-01

    Focusing on the fundamental principles of nanoscience and nanotechnology, this carefully developed textbook will equip students with a deep understanding of the nanoscale. • Each new topic is introduced with a concise summary of the relevant physical principles, emphasising universal commonalities between seemingly disparate areas, and encouraging students to develop an intuitive understanding of this diverse area of study • Accessible introductions to condensed matter physics and materials systems provide students from a broad range of scientific disciplines with all the necessary background • Theoretical concepts are linked to real-world applications, allowing students to connect theory and practice • Chapters are packed with problems to help students develop and retain their understanding, as well as engaging colour illustrations, and are accompanied by suggestions for additional reading. Containing enough material for a one- or two-semester course, this is an excellent resource for senior undergra...

  18. Pharmacoresistant epilepsy and nanotechnology.

    Science.gov (United States)

    Rosillo-de la Torre, Argelia; Luna-Bárcenas, Gabriel; Orozco-Suárez, Sandra; Salgado-Ceballos, Hermelinda; García, Perla; Lazarowski, Alberto; Rocha, Luisa

    2014-06-01

    Epilepsy is one of the most common chronic neurological disorders. Furthermore, it is associated to diminished health-related quality of life and is thus considered a major public health problem. In spite of the large number of available and ongoing development of several new antiepileptic drugs (AEDs), a high percentage of patients with epilepsy (35-40%) are resistant to pharmacotherapy. A hypothesis to explain pharmacoresistance in epilepsy suggests that overexpression of multidrug resistance proteins, such as P-glycoprotein, on the endothelium of the blood brain barrier represents a challenge for effective AED delivery and concentration levels in the brain. Proven therapeutic strategies to control pharmacoresistant epilepsy include epilepsy surgery and neuromodulation. Unfortunately, not all patients are candidates for these therapies. Nanotechnology represents an attractive strategy to overcome the limited brain access of AEDs in patients with pharmacoresistant epilepsy. This manuscript presents a review of evidences supporting this idea.

  19. About the Prostate and Urologic Cancer Research Group | Division of Cancer Prevention

    Science.gov (United States)

    The Prostate and Urologic Cancer Research Group conducts and supports research on prostate and bladder cancers, and new approaches to clinical prevention studies including cancer immunoprevention. The group develops, implements and monitors research efforts in chemoprevention, nutrition, genetic, and immunologic interventions, screening, early detection and other prevention strategies. |

  20. Progress of nanotechnology research in NASA%NASA在纳米技术领域的研究和应用进展

    Institute of Scientific and Technical Information of China (English)

    高鸿; 邢焰; 刘泊天; 张静静; 蒋晋东

    2016-01-01

    NASA drafted a 20yr+ roadmap for the development of nanotechnology and injected the related nanotechnologies into its launch missions. Those nanotechnologies are considered to enable a precise control of desired material properties, and after being fully utilized, could lead to the manufacture of smaller spacecrafts with better environmental applicability in the future. This paper follows the important projects concerned, include: 1) Advanced structural materials and their applications; 2) Energy generation and storage; 3) Thermal control materials and their applications; 4) Sensors, electronics and devices; 5) New patterns of propellant and propulsion.%NASA一直致力于先进航天技术探索与应用,其中,为推动纳米技术的发展与应用,规划了20年的研究发展计划。相关纳米技术被认为能够精确实现材料的预想性能,并可制备出更小、更具环境稳定性的航天器。文章跟踪介绍NASA在纳米技术领域的研究和应用进展,包括:1)先进结构材料及其应用;2)能量的生成与储存;3)热控制材料及其应用;4)纳米传感器的发展;5)推进剂及推进器的革新等。

  1. NCI Community Oncology Research Program Approved | Division of Cancer Prevention

    Science.gov (United States)

    On June 24, 2013, the National Cancer Institute (NCI) Board of Scientific Advisors approved the creation of the NCI Community Oncology Research Program (NCORP). NCORP will bring state-of-the art cancer prevention, control, treatment and imaging clinical trials, cancer care delivery research, and disparities studies to individuals in their own communities. |

  2. Nanotechnology and Secondary Science Teacher's Self-Efficacy

    Science.gov (United States)

    Cox, Elena K.

    The recommendations of the United States President's Council of Advisors on Science and Technology and the multi-agency National Nanotechnology Initiative (NNI) identified the need to prepare the workforce and specialists in the field of nanotechnology in order for the United States to continue to compete in the global marketplace. There is a lack of research reported in recent literature on the readiness of secondary science teachers to introduce higher level sciences---specifically nanotechnology---in their classes. The central research question of this study examined secondary science teachers' beliefs about teaching nanotechnology comfortably, effectively, and successfully. Bandura's self-efficacy theory provided the conceptual framework for this phenomenological study. A data analysis rubric was used to identify themes and patterns that emerged from detailed descriptions during in-depth interviews with 15 secondary science teachers. The analysis revealed the shared, lived experiences of teachers and their beliefs about their effectiveness and comfort in teaching higher-level sciences, specifically nanotechnology. The results of the study indicated that, with rare exceptions, secondary science teachers do not feel comfortable or effective, nor do they believe they have adequate training to teach nanotechnology concepts to their students. These teachers believed they were not prepared or trained in incorporating these higher level science concepts in the curriculum. Secondary science teachers' self-efficacy and personal beliefs of effectiveness in teaching nanotechnology can be an important component in achieving a positive social change by helping to familiarize high school students with nanotechnology and how it can benefit society and the future of science.

  3. Framing effects on risk perception of nanotechnology

    OpenAIRE

    Schütz, Holger; Wiedemann, Peter M.

    2008-01-01

    Abstract How do people judge nanotechnology risks that are completely unfamiliar to them? Drawing on results of previous studies on framing and risk perception, two hypotheses about potential influences on nanotechnology risk perception were examined in an experimental study: 1) Risk perception of nanotechnology is influenced by its benefit perception. 2) Risk perception of nanotechnology is ...

  4. Adherence to the World Cancer Research Fund/American Institute for Cancer Research recommendations and breast cancer risk.

    Science.gov (United States)

    Harris, Holly R; Bergkvist, Leif; Wolk, Alicja

    2016-06-01

    The World Cancer Research Fund/American Association for Cancer Research (WCRF/AICR) has published eight nutrition-related recommendations for the prevention of cancer. However, few prospective studies have examined these recommendations by breast cancer hormone receptor subtype and only one case-control study has included the dietary supplements recommendation in their evaluation. We investigated whether adherence to the WCRF/AICR cancer prevention recommendations was associated with breast cancer incidence, overall and by hormone receptor subtype, in the Swedish Mammography Cohort. Among 31,514 primarily postmenopausal women diet and lifestyle factors were assessed with a self-administered food frequency questionnaire. A score was constructed based on adherence to the recommendations for body fatness, physical activity, energy density, plant foods, animal foods, alcoholic drinks and dietary supplements (score range 0-7). Cox proportional hazard models were used to calculate hazard ratios (HRs) and 95% confidence intervals (95% CIs). During 15 years of follow-up 1,388 cases of breast cancer were identified. Women who met six to seven recommendations had a 51% decreased risk of breast cancer compared to women meeting only zero to two recommendations (95% CI = 0.35-0.70). The association between each additional recommendation met and breast cancer risk was strongest for the ER-positive/PR-positive subtype (HR = 0.86; 95% CI = 0.79-0.94), while for the ER-negative/PR-negative subtype the individual recommendations regarding plant and animal foods were most strongly associated with reduced risk. Our findings support that adherence to the WCRF/AICR recommendations reduces breast cancer risk in a population of primarily postmenopausal women. Promoting these recommendations to the public could help reduce breast cancer incidence.

  5. Protein nanotechnology: what is it?

    Science.gov (United States)

    Gerrard, Juliet A

    2013-01-01

    Protein nanotechnology is an emerging field that is still defining itself. It embraces the intersection of protein science, which exists naturally at the nanoscale, and the burgeoning field of nanotechnology. In this opening chapter, a select review is given of some of the exciting nanostructures that have already been created using proteins, and the sorts of applications that protein engineers are reaching towards in the nanotechnology space. This provides an introduction to the rest of the volume, which provides inspirational case studies, along with tips and tools to manipulate proteins into new forms and architectures, beyond Nature's original intentions.

  6. Nanotechnology: “Revolutionary Developments in Future”

    CERN Document Server

    CERN. Geneva

    2014-01-01

    Introductory notes will be made on the definition, structures, phenomena, functions, synthesis, properties, and characterization at the nanoscale. Some indications on nanoMaterials research and markets in Europe will be given. The spectrum of structural and functional/smart nanomaterials: metallic and ceramic materials, coating, composites ….will be reviewed Key challenges for nanomaterials design and engineering will be highlighted. The range of applications for nanotechnologies will be sumarized: for nano-electronics (information and communication), health care, energy and transport, nuclear and accelerator technologies, security and safety etc NanoMaterials and Technologies are key in future accelerator engineering: construction, operation and experimentation. Nanotechnology in next generation industries is a must. Nanometrology and standardisation (materials and equipment) are also an important items. Environmental and health implications of nanomaterials science and technology: Some guidance and safe...

  7. Cancer survivorship research: a review of the literature and summary of current NCI-designated cancer center projects.

    Science.gov (United States)

    Harrop, J Phil; Dean, Julie A; Paskett, Electra D

    2011-10-01

    The number of cancer survivors and the amount of cancer survivorship research have grown substantially during the past three decades. This article provides a review of interventional and observational cancer survivorship research efforts as well as a summary of current cancer survivorship research projects being conducted by National Cancer Institute-designated cancer centers in an effort to identify areas that need further attention.

  8. Progress through Collaboration - Office of Cancer Clinical Proteomics Research

    Science.gov (United States)

    The National Cancer Institute (NCI), through the Office of Cancer Clinical Proteomics Research (OCCPR), has signed two Memorandums of Understanding (MOUs) in the areas of sharing proteomics reagents and protocols and also in regulatory science.

  9. Regenerative nanotechnology in oral and maxillofacial surgery.

    Science.gov (United States)

    Shakib, Kaveh; Tan, Aaron; Soskic, Vukic; Seifalian, Alexander M

    2014-12-01

    Regenerative nanotechnology is at the forefront of medical research, and translational medicine is a challenge to both scientists and clinicians. Although there has been an exponential rise in the volume of research generated about it for both medical and surgical uses, key questions remain about its actual benefits. Nevertheless, some people think that therapeutics based on its principles may form the core of applied research for the future. Here we give an account of its current use in oral and maxillofacial surgery, and implications and challenges for the future.

  10. Nanosciences and nanotechnology evolution or revolution?

    CERN Document Server

    Lahmani, Marcel; Dupas-Haeberlin, Claire; Hesto, Patrice

    2016-01-01

    This book provides information to the state of art of research in nanotechnology and nano medicine and risks of nano technology. It covers an interdisciplinary and very wide scope of the latest fundamental research status and industrial applications of nano technologies ranging from nano physics, nano chemistry to biotechnology and toxicology. It provides information to last legislation of nano usage and potential social impact too. The book contains also a reference list of major European research centers and associated universities offering licences and master of nano matter. For clarity and attractivity, the book has many illustrations and specific inserts to complete the understanding of the scientific texts.

  11. Think small: nanotechnology for plastic surgeons.

    Science.gov (United States)

    Nasir, Amir R; Brenner, Sara A

    2012-11-01

    The purpose of this article is to introduce the topic of nanotechnology to plastic surgeons and to discuss its relevance to medicine in general and plastic surgery in particular. Nanotechnology will be defined, and some important historical milestones discussed. Common applications of nanotechnology in various medical and surgical subspecialties will be reviewed. Future applications of nanotechnology to plastic surgery will be examined. Finally, the critical field of nanotoxicology and the safe use of nanotechnology in medicine and plastic surgery will be addressed.

  12. Nanoethics: Ethics For, From, or With Nanotechnologies?

    OpenAIRE

    2010-01-01

    The concern for ethics is a leitmotiv when dealing with nanotechnologies. However, the target of this concern is far from being obvious, and the word 'nanoethics' itself has no clear-cut definition. Indeed, nanoethics is usually said to be 'the ethics of nanotechnologies', but it is never specified whether this 'ethics of nanotechnologies' is 'an ethics for nanotechnologies' or 'an ethics from nanotechnologies'. This paper aims to show that these two characterizations of nanoethics (for/from)...

  13. An Exploration of Irish Consumer Acceptance of Nanotechnology Applications in Food

    OpenAIRE

    Greehy, Grainne; McCarthy, Mary; Henchion, Maeve M.; Dillon, Emma J.; McCarthy, Sinead

    2011-01-01

    Nanotechnology has come to the attention of food stakeholders in recent years. It offers many potential benefits to food companies and consumers, for example the ability to produce healthier food without compromising taste, but it has also generated much debate, in particular about potential unknown risks associated with food applications of nanotechnology. This research provides some insights into Irish consumer acceptance of food related applications of nanotechnology and details the determ...

  14. Aquatic invasive species: Lessons from cancer research

    Science.gov (United States)

    Sepulveda, Adam; Ray, Andrew; Al-Chokhachy, Robert K.; Muhlfeld, Clint C.; Gresswell, Robert E.; Gross, Jackson A.; Kershner, Jeffrey L.

    2014-01-01

    Aquatic invasive species are disrupting ecosystems with increasing frequency. Successful control of these invasions has been rare: Biologists and managers have few tools for fighting aquatic invaders. In contrast, the medical community has long worked to develop tools for preventing and fighting cancer. Its successes are marked by a coordinated research approach with multiple steps: prevention, early detection, diagnosis, treatment options and rehabilitation. The authors discuss how these steps can be applied to aquatic invasive species, such as the American bullfrog (Lithobates catesbeianus), in the Northern Rocky Mountain region of the United States, to expedite tool development and implementation along with achievement of biodiversity conservation goals.

  15. Nanosciences and Nanotechnologies Learning and Teaching in Secondary Education: A Review of Literature

    Science.gov (United States)

    Hingant, Benedicte; Albe, Virginie

    2010-01-01

    This literature review provides an overview of recent studies on the introduction of nanosciences and nanotechnologies in secondary education. Four salient research topics have emerged: questions and reflections preceding curriculum development on nanosciences and nanotechnologies lessons; research on students' conceptualisations of nano-related…

  16. EDITORIAL: Ensuring sustainability with green nanotechnology Ensuring sustainability with green nanotechnology

    Science.gov (United States)

    Wong, Stanislaus; Karn, Barbara

    2012-07-01

    Nanotechnology offers immense promise for developing new technologies that are more sustainable than current technologies. All major industrial sectors have felt nanotechnology's impact, mainly from the incorporation of nanomaterials into their products. For example, nanotechnology has improved the design and performance of products in areas as diverse as electronics, medicine and medical devices, food and agriculture, cosmetics, chemicals, materials, coatings, energy, as well as many others. Moreover, the revenues from nanotechnology-enabled products are not trivial. For instance, Lux Research maintains that commercial sales in both Europe and the USA will attain revenues of over 1 trillion from nano-enabled products by 2015. The manufacturing of the nanomaterials for these products uses many processes equivalent to chemical manufacturing processes. As a result, manufacturing nanomaterials can produce either harmful pollutants or adverse environmental impacts similar to those from chemical manufacturing. Unlike the chemical industry, however, those same processes are not ingrained in the manufacturing of nanomaterials, and the opportunity exists at the initial design stage to purposely account for and mitigate out potentially harmful environmental impacts. While prevention has not been a priority in current industries, it can become a main concern for the new and future industries that manufacture nanomaterials on a bulk commercial scale. This is where green nanotechnology comes in. Green nanotechnology involves deliberate efforts aimed at developing meaningful and reasonable protocols for generating products and their associated production processes in a benign fashion. The goal is a conscious minimization of risks associated with the products of nanoscience. The green products of nanotechnology are those that are used in either direct or indirect environmental applications. Direct environmental applications provide benefits such as monitoring using nano

  17. Gaps in nutritional research among older adults with cancer.

    Science.gov (United States)

    Presley, Carolyn J; Dotan, Efrat; Soto-Perez-de-Celis, Enrique; Jatoi, Aminah; Mohile, Supriya G; Won, Elizabeth; Alibhai, Shabbir; Kilari, Deepak; Harrison, Robert; Klepin, Heidi D; Wildes, Tanya M; Mustian, Karen; Demark-Wahnefried, Wendy

    2016-07-01

    Nutritional issues among older adults with cancer are an understudied area of research despite significant prognostic implications for treatment side effects, cancer-specific mortality, and overall survival. In May of 2015, the National Cancer Institute and the National Institute on Aging co-sponsored a conference focused on future directions in geriatric oncology research. Nutritional research among older adults with cancer was highlighted as a major area of concern as most nutritional cancer research has been conducted among younger adults, with limited evidence to guide the care of nutritional issues among older adults with cancer. Cancer diagnoses among older adults are increasing, and the care of the older adult with cancer is complicated due to multimorbidity, heterogeneous functional status, polypharmacy, deficits in cognitive and mental health, and several other non-cancer factors. Due to this complexity, nutritional needs are dynamic, multifaceted, and dependent on the clinical scenario. This manuscript outlines the proceedings of this conference including knowledge gaps and recommendations for future nutritional research among older adults with cancer. Three common clinical scenarios encountered by oncologists include (1) weight loss during anti-cancer therapy, (2) malnutrition during advanced disease, and (3) obesity during survivorship. In this manuscript, we provide a brief overview of relevant cancer literature within these three areas, knowledge gaps that exist, and recommendations for future research.

  18. Nanotechnology and health: From boundary object to bodily intervention

    Science.gov (United States)

    Perry, Karen-Marie Elah

    Nanotechnology is commonly understood to involve the manipulation of individual molecules and atoms. Increasingly, healthcare practices in British Columbia are articulated through the nanotechnological in relationship to the body. The hope for better treatment and diagnosis of disease is located in the specificity of nanotechnological applications -- the finely tuned targeting of cells and treatments geared towards individual molecular profiles. However, this same specificity also alarms regulators, activists and consumer groups in the potential for increased toxicity. Drawing from participant observation, ethnographic interviews, and theoretical orientations adopted by Susan Leigh Star and Jeffrey Bowker, this thesis explores three questions: 1) How can nanotechnology inhabit multiple contexts at once and have both local and shared meaning; 2) How can people who live in one community draw their meanings from people and objects situated there and communicate with those inhabiting another; and 3) What moral and political consequences attend each of these questions? Keywords: nanotechnology; medical anthropology; anthropology of the body; science studies; critical theory; feminist theory; ethnography; qualitative research; biomedicine; nanotoxicology; bionanotechnology; British Columbia; Canada; nanomedicine; medical nanotechnology.

  19. Food nanotechnology – an overview

    OpenAIRE

    Bhupinder S Sekhon

    2010-01-01

    Food nanotechnology is an area of emerging interest and opens up a whole universe of new possibilities for the food industry. The basic categories of nanotechnology applications and functionalities currently in the development of food packaging include: the improvement of plastic materials barriers, the incorporation of active components that can deliver functional attributes beyond those of conventional active packaging, and the sensing and signaling of relevant information. Nano food packag...

  20. Food nanotechnology – an overview

    OpenAIRE

    Bhupinder S Sekhon

    2010-01-01

    Bhupinder S SekhonInstitute of Pharmacy and Department of Biotechnology, Punjab College of Technical Education, Jhande, Ludhiana, IndiaAbstract: Food nanotechnology is an area of emerging interest and opens up a whole universe of new possibilities for the food industry. The basic categories of nanotechnology applications and functionalities currently in the development of food packaging include: the improvement of plastic materials barriers, the incorporation of active components that can del...

  1. Editorial: Trends in Nanotechnology (TNT2005)

    Science.gov (United States)

    Correia, Antonio; Serena, Pedro A.; José Saenz, Juan; Reifenberger, Ron; Ordejón, Pablo

    2006-05-01

    This special issue of physica status solidi (a) presents representative contributions describing the main topics covered at the sixth Trends in Nanotechnology (TNT2005) International Conference, held in Oviedo (Spain), 29 August-2 September 2005.During the last years many international or national conferences have emerged in response to the growing awareness of the importance of nanotechnology as key issue for the future scientific and technological development. Among these, the conference series Trends in Nanotechnology has become one of the most important meeting points in the nanotechnology field: it provides fresh organisation ideas, brings together well known speakers, and promotes a suitable environment for discussions, exchanging ideas, enhancing scientific and personal relations among participants. TNT2005 was organised in a similar way to the five prior TNT conferences, with an impressive scientific programme including 40 Keynote lectures and two Nobel prizes, without parallel sessions, covering a wide spectrum of Nanotechnology research. In 2005, more than 360 scientists worldwide attended this event and contributed with more than 60 oral contributions and 250 posters, stimulating discussions about their most recent research.The aim of the conference was to focus on the applications of Nanotechnology and to bring together, in a scientific forum, various worldwide groups belonging to industry, universities and government institutions. TNT2005 was particularly effective at transmitting information and establishing contacts among workers in this field. Graduate students attending such conferences have understood the importance of interdisciplinary skills to afford their future research lines. 76 graduate students received a grant allowing them to present their work. 28 prizes to the best posters were awarded during this event. We would like to thank all the participants for their assistance, as well as the authors for their written contributions.TNT2005 is

  2. Current Research and Management of Ovarian Cancer in China

    Institute of Scientific and Technical Information of China (English)

    GUMeijiao; SHIWei

    2002-01-01

    Ovarian cancer is ne of the most lethal malignant tumors in China,represents the third most common cancer after cervical cancer and endometrial cancer,and the first leading cause of death from hynaecological cancers.Due to the lack of effective screening strategies and the absence of symptoms in early-stage of disease,over 70% of patients present at an advanced stage.Despite the advances in surgical techniques and conventional chemotheraphy,the prognosis of ovarian cancer has not been improved significantly,and indeed the long-term survival for patients with advanced disease does not exceed 20%.The aetiology of ovarian cancer temains poorly understood.In China,the major focus of research is to clarify the mechanism underlying ovarian cancer,develop more effective life-saving diagnostic and therapeutic measures,and undertake more population-based studies.This article summarizes current research,diagnosis and management of ovarian cancer in China.

  3. Socio-ethical education in nanotechnology engineering programmes: a case study in Malaysia.

    Science.gov (United States)

    Balakrishnan, Balamuralithara; Er, Pek Hoon; Visvanathan, Punita

    2013-09-01

    The unique properties of nanotechnology have made nanotechnology education and its related subjects increasingly important not only for students but for mankind at large. This particular technology brings educators to work together to prepare and produce competent engineers and scientists for this field. One of the key challenges in nanotechnology engineering is to produce graduate students who are not only competent in technical knowledge but possess the necessary attitude and awareness toward the social and ethical issues related to nanotechnology. In this paper, a research model has been developed to assess Malaysian nanotechnology engineering students' attitudes and whether their perspectives have attained the necessary objectives of ethical education throughout their programme of study. The findings from this investigation show that socio ethical education has a strong influence on the students' knowledge, skills and attitudes pertaining to socio ethical issues related to nanotechnology.

  4. Soft matter nanotechnology from structure to function

    CERN Document Server

    Chen, Xiaodong

    2015-01-01

    Using the well-honed tools of nanotechnology, this book presents breakthrough results in soft matter research, benefitting from the synergies between the chemistry, physics, biology, materials science, and engineering communities. The team of international authors delves beyond mere structure-making and places the emphasis firmly on imparting functionality to soft nanomaterials with a focus on devices and applications. Alongside reviewing the current level of knowledge, they also put forward novel ideas to foster research and development in such expanding fields as nanobiotechnology and nanom

  5. Functionalized surfaces and nanostructures for nanotechnological applications

    Science.gov (United States)

    2003-01-01

    1. Introduction Despite unprecedented government funding and public interest in nanotechnology, few can accurately define the scope, range or potential applications of this technology. One of the most pressing issues facing nanoscientists and technologists today is that of communicating with the non-scientific community. As a result of decades of speculation, a number of myths have grown up around the field, making it difficult for the general public, or indeed the business and financial communities, to understand what is a fundamental shift in the way we look at our interactions with the natural world. This article attempts to address some of these misconceptions, and explain why scientists, businesses and governments are spending large amounts of time and money on nanoscale research and development. 2. What is nanotechnology? Take a random selection of scientists, engineers, investors and the general public and ask them what nanotechnology is and you will receive a range of replies as broad as nanotechnology itself. For many scientists, it is nothing startlingly new; after all we have been working at the nanoscale for decades, through electron microscopy, scanning probe microscopies or simply growing and analysing thin films. For most other groups, however, nanotechnology means something far more ambitious, miniature submarines in the bloodstream, little cogs and gears made out of atoms, space elevators made of nanotubes, and the colonization of space. It is no wonder people often muddle up nanotechnology with science fiction. 3. What is the nanoscale? Although a metre is defined by the International Standards Organization as `the length of the path travelled by light in vacuum during a time interval of 1/299 792 458 of a second' and a nanometre is by definition 10- 9 of a metre, this does not help scientists to communicate the nanoscale to non-scientists. It is in human nature to relate sizes by reference to everyday objects, and the commonest definition of

  6. Advancement of the Emerging Field of RNA Nanotechnology

    Science.gov (United States)

    2017-01-01

    The field of RNA nanotechnology has advanced rapidly during the past decade. A variety of programmable RNA nanoparticles with defined shape, size, and stoichiometry have been developed for diverse applications in nanobiotechnology. The rising popularity of RNA nanoparticles is due to a number of factors: (1) removing the concern of RNA degradation in vitro and in vivo by introducing chemical modification into nucleotides without significant alteration of the RNA property in folding and self-assembly; (2) confirming the concept that RNA displays very high thermodynamic stability and is suitable for in vivo trafficking and other applications; (3) obtaining the knowledge to tune the immunogenic properties of synthetic RNA constructs for in vivo applications; (4) increased understanding of the 4D structure and intermolecular interaction of RNA molecules; (5) developing methods to control shape, size, and stoichiometry of RNA nanoparticles; (6) increasing knowledge of regulation and processing functions of RNA in cells; (7) decreasing cost of RNA production by biological and chemical synthesis; and (8) proving the concept that RNA is a safe and specific therapeutic modality for cancer and other diseases with little or no accumulation in vital organs. Other applications of RNA nanotechnology, such as adapting them to construct 2D, 3D, and 4D structures for use in tissue engineering, biosensing, resistive biomemory, and potential computer logic gate modules, have stimulated the interest of the scientific community. This review aims to outline the current state of the art of RNA nanoparticles as programmable smart complexes and offers perspectives on the promising avenues of research in this fast-growing field. PMID:28045501

  7. Research progress on the molecular classification of tumors by quantum dot-based nanotechnology%基于量子点标记探针技术的肿瘤分子分型研究进展

    Institute of Scientific and Technical Information of China (English)

    方敏; 彭春伟; 陈创; 庞代文; 李雁

    2014-01-01

    Malignant tumors are highly heterogeneous in terms of molecular phenotypes such that personalized therapy will be-come the standard for tumor therapy. Molecular classifications of cancer based on differences in biological behavior are important for selecting treatment strategies and prognostication. The unique optical and chemical properties of quantum dots have been widely used in biomedical applications such as tumor diagnosis, monitoring, pathogenesis, treatment, molecular pathology, and heterogeneity based on biological markers. In this study, we discuss the application of quantum dot-based nanotechnology and the molecular classification of cancer in personalized oncology.%恶性肿瘤在分子水平上具有高度异质性,是个体化治疗的依据。发展同时显示肿瘤原位多分子指标的技术对研究肿瘤生物学行为至关重要。量子点标记探针技术因其具有独特的光学和化学特性,在肿瘤诊断、监测、治疗、发病机制、分子分型及异质性研究中均有广阔应用前景。本文总结该技术在肿瘤分子分型方面的应用进展。

  8. Nanotechnology and its applications in Veterinary and Animal Science

    Directory of Open Access Journals (Sweden)

    S. S. Patil

    Full Text Available Nanotechnology has a tremendous potential to revolutionize agriculture and livestock sector. It can provide new tools for molecular and cellular biology, biotechnology, veterinary physiology, animal genetics, reproduction etc. which will allow researchers to handle biological materials such as DNA, proteins or cells in minute quantities usually nano-liters or pico-liters. Nanotechnology tools like microfluidics, nanomaterials, bioanalytical nanosensors, etc. has the potential to solve many more puzzles related to animal health, production, reproduction and prevention and treatment of diseases. It is reasonable to presume that in the upcoming year’s nanotechnology research will reform the science and technology of the animal health and will help to boost up the livestock production. Nanotechnology will have a profound impact, but not in the immediate future as it is in the early stages of its development and needs to equip scientists, engineers and biologists to work at the cellular and molecular levels for significant benefits in healthcare and animal medicine. But It is reasonable to presume that in the upcoming year’s nanotechnology research will revolutionize animal health and help to boost up livestock production. [Vet World 2009; 2(12.000: 475-477

  9. NANOTECHNOLOGY IN TEXTILE INDUSTRY [REVIEW

    Directory of Open Access Journals (Sweden)

    RATIU Mariana

    2015-05-01

    Full Text Available Nanoscience and nanotechnology are the study and application of extremely small things and can be used across all the other science fields, such as chemistry, biology, physics, materials science, and engineering. Nanotechnology overcomes the limitation of applying conventional methods to impart certain properties to textile materials. There is no doubt that in the next few years nanotechnology will penetrate into every area of the textile industry. Nanotextiles are nanoscale fibrous materials that can be fictionalized with a vast array of novel properties, including antibiotic activity, self-cleaning and the ability to increase reaction rates by providing large surface areas to potential reactants. These materials are used not only as cloth fabric, but as filter materials, wound-healing gauzes and antibacterial food packaging agents in food industry. World demand for nano-materials will rise more than two-and-a-half times to $5.5 billion in 2016 driven by a combination of increased market penetration of existing materials, and ongoing development of new materials and applications. In recent years was demonstrated that nanotechnology can be used to enhance textile attributes, such as fabric softness, durability and breathability, water repellency, fire retardancy, antimicrobial properties in fibers, yarns and fabrics. The development of smart nanotextiles has the potential to revolutionize the production of fibers, fabrics or nonwovens and functionality of our clothing and all types of textile products and applications. Nanotechnology is considered one of the most promising technologies for the 21st century. Today is said that if the IT is the wave of the present, the nanotechnology is the wave of the present, the nanotechnology is the wave of the future.

  10. Job Opening for Medical Officer in DCP’s Breast and Gynecologic Cancer Research Group | Division of Cancer Prevention

    Science.gov (United States)

    The Breast and Gynecologic Cancer Research Group (BGCRG), Division of Cancer Prevention (DCP), National Cancer Institute (NCI), has an opening for an experienced Medical Officer. BGCRG focuses on fostering the development and conduct of research on the prevention and early detection of breast cancer, cervix and human papillomavirus (HPV)-related cancers, endometrial cancers, ovarian cancers, and precursor conditions related to these cancers. Learn more about BGCRG. |

  11. Towards meeting the research needs of Australian cancer consumers

    Directory of Open Access Journals (Sweden)

    Saunders Carla

    2012-12-01

    Full Text Available Abstract Background There is a growing amount of literature to support the view that active involvement in research by consumers, especially informed and networked consumers, benefits the quality and direction of research itself, the research process and, most importantly, people affected by cancer. Our exploratory project focuses on identifying their priorities and developing a process to assess the research needs of Australian cancer consumers which may be useful beyond the cancer scenario. Methods This project was consumer initiated, developed and implemented, with the assistance of a leading Australian cancer consumer advocacy group, Cancer Voices NSW (CVN. Such direct involvement is unusual and ensures that the priorities identified, and the process itself, are not influenced by other interests, regardless how well-intentioned they may be. The processes established, and data collection via a workshop, followed by a questionnaire to confirm and prioritise findings, and comparison with a similar UK exercise, are detailed in this paper. Results Needs across five topic areas reflecting cancer control domains (prevention and risk; screening and diagnosis; treatment; survivorship; and end of life were identified. Cancer consumers high priority research needs were found to be: earlier diagnosis of metastatic cancers; the extent of use of best practice palliative care guidelines; identifying barriers to cancer risk behaviour change; and environmental, nutrition and lifestyle risk factors for people with cancer. A process for identifying consumers’ research priorities was developed and applied; this may be useful for further investigation in this under-studied area. Conclusion The findings provide a model for developing a consumer derived research agenda in Australia which can be used to inform the strategic direction of cancer research. Consumers have been seeking a workable method to achieve this and have worked in collaboration with a major

  12. The Legitimation of Novel Technologies: The Case of Nanotechnology

    Science.gov (United States)

    Thyroff, Anastasia E.

    Nanotechnology is the control, manipulation, and application of matter on an atomic and molecular level. The technology is complex and confusing to consumers, and its long-term safety and effect on the human body, as well as the environment, are unknown. However, for the past decade, nanotechnology has been used to develop consumer products and food with novel and attractive attributes. Since nanotechnology is still not well known, it is not legitimized; that is, it has not been deemed safe and accepted by society. However, the market for nanotechnology is in the legitimation process. It will take an entire network of key stakeholders playing a specific roles for nanotechnology to legitimize. Specifically, each key stakeholder will align with a certain cultural discourse to frame nanotechnology in a particular way that complements their values. In Essay 1, I follow previous market system dynamic's literature and combine Actor Network Theory (ANT), Foucault's Discourse on Power and Goffman's Frame analysis to theoretically explore what the actor network for nanotechnology looks like. Four dominate frames are identified: 1) Advancement (i.e., government), 2) Management (i.e., industry), 3) Development (i.e., academia/scientists), and 4) Informant (i.e., NGO). Essay 2 empirically explores each actor's perspective on the nanotechnology network through a total of 24 interviews. A hermeneutic approach is used to analyze the 208 page text and themes describing each actor's role from a self and other's perspective are discussed. Additionally, three overarching themes (i.e., contradiction, constance, and cutoff) emerge; these themes describe the degree of similarity in how actors view their role in the nanotechnology network compared to how other actor's view that actor's role. In Essay 3, I bring critical theory into market system's research to better contextualize market formation theories. Specifically, I discuss how critical theory can be used to supplement ANT. I

  13. Nanotechnology in agri-food production: an overview

    Directory of Open Access Journals (Sweden)

    Sekhon BS

    2014-05-01

    one of the keys to influencing consumer acceptance. On the basis of only a handful of toxicological studies, concerns have arisen regarding the safety of nanomaterials, and researchers and companies will need to prove that these nanotechnologies do not have more of a negative impact on the environment.Keywords: agriculture, food, nanotechnology, nanoparticle, nanopesticides, nanosensors, smart delivery systems

  14. Differential network analysis in human cancer research.

    Science.gov (United States)

    Gill, Ryan; Datta, Somnath; Datta, Susmita

    2014-01-01

    A complex disease like cancer is hardly caused by one gene or one protein singly. It is usually caused by the perturbation of the network formed by several genes or proteins. In the last decade several research teams have attempted to construct interaction maps of genes and proteins either experimentally or reverse engineer interaction maps using computational techniques. These networks were usually created under a certain condition such as an environmental condition, a particular disease, or a specific tissue type. Lately, however, there has been greater emphasis on finding the differential structure of the existing network topology under a novel condition or disease status to elucidate the perturbation in a biological system. In this review/tutorial article we briefly mention some of the research done in this area; we mainly illustrate the computational/statistical methods developed by our team in recent years for differential network analysis using publicly available gene expression data collected from a well known cancer study. This data includes a group of patients with acute lymphoblastic leukemia and a group with acute myeloid leukemia. In particular, we describe the statistical tests to detect the change in the network topology based on connectivity scores which measure the association or interaction between pairs of genes. The tests under various scores are applied to this data set to perform a differential network analysis on gene expression for human leukemia. We believe that, in the future, differential network analysis will be a standard way to view the changes in gene expression and protein expression data globally and these types of tests could be useful in analyzing the complex differential signatures.

  15. Current applications of nanotechnology in dentistry: a review.

    Science.gov (United States)

    Bhavikatti, Shaeesta Khaleelahmed; Bhardwaj, Smiti; Prabhuji, M L V

    2014-01-01

    With the increasing demand for advances in diagnosis and treatment modalities, nanotechnology is being considered as a groundbreaking and viable research subject. This technology, which deals with matter in nanodimensions, has widened our views of poorly understood health issues and provided novel means of diagnosis and treatment. Researchers in the field of dentistry have explored the potential of nanoparticles in existing therapeutic modalities with moderate success. The key implementations in the field of dentistry include local drug delivery agents, restorative materials, bone graft materials, and implant surface modifications. This review provides detailed insights about current developments in the field of dentistry, and discusses potential future uses of nanotechnology.

  16. Lung Cancer:Symptoms, Diagnosis, Treatments & Research | NIH MedlinePlus the Magazine

    Science.gov (United States)

    ... of this page please turn Javascript on. Feature: Lung Cancer Lung Cancer: Symptoms, Diagnosis, Treatments & Research Past Issues / Winter 2013 ... lung cancer are given intravenously or by mouth. Lung Cancer Research The large-scale National Lung Screening Trial, ...

  17. Technical structure of the global nanoscience and nanotechnology literature

    Energy Technology Data Exchange (ETDEWEB)

    Kostoff, Ronald N., E-mail: kostofr@onr.navy.mil; Koytcheff, Raymond G. [Office of Naval Research (United States); Lau, Clifford G. Y. [Institute for Defense Analyses (United States)

    2007-10-15

    Text mining was used to extract technical intelligence from the open source global nanotechnology and nanoscience research literature. An extensive nanotechnology/nanoscience-focused query was applied to the Science Citation Index/Social Science Citation Index (SCI/SSCI) databases. The nanotechnology/nanoscience research literature technical structure (taxonomy) was obtained using computational linguistics/document clustering and factor analysis. The infrastructure (prolific authors, key journals/institutions/countries, most cited authors/journals/documents) for each of the clusters generated by the document clustering algorithm was obtained using bibliometrics. Another novel addition was the use of phrase auto-correlation maps to show technical thrust areas based on phrase co-occurrence in Abstracts, and the use of phrase-phrase cross-correlation maps to show technical thrust areas based on phrase relations due to the sharing of common co-occurring phrases. The {approx}400 most cited nanotechnology papers since 1991 were grouped, and their characteristics generated. Whereas the main analysis provided technical thrusts of all nanotechnology papers retrieved, analysis of the most cited papers allowed their characteristics to be displayed. Finally, most cited papers from selected time periods were extracted, along with all publications from those time periods, and the institutions and countries were compared based on their representation in the most cited documents list relative to their representation in the most publications list.

  18. Nanotechnology Based Treatments for Neurological Disorders from Genetics Perspective

    Directory of Open Access Journals (Sweden)

    Nicholas S. Kurek

    2013-02-01

    Full Text Available Nanotechology involves the application, analysis and manipulation of nanomaterials. These materials have unique and medically useful properties due to their nanoscale parameters. Nanotechnology based treatments and diagnostics might eventually bring great relief to people suffering from neurological disorders including autism spectrum disorders, Alzheimer’s disease and Parkinson’s disorders. A large variety of nonmaterials such as viruses, carbon nanotubes, gold and silica nanoparticles, nanoshells, quantum dots, genetic material and proteins as well as hordes of other forms of nanotechnology have been researched in order to determine their potential in enhancing disease treatments and diagnostics. Nanotechnology has shown countless applications and might eventually be used in every biotech/health industry. Nevertheless, many nanomaterials may pose some safety risks and whether their benefits overweigh the risk is still being debated. Once the proper ethical and safety protocols are established and enough research is completed, nanotechnology is expected to benefit the mankind enormously. In this article, we will discuss and analyze many ways in which, nanotechnology based treatments and diagnostics will be used to help people with neurological disorders through the methods that we currently have at our disposal. [Archives Medical Review Journal 2013; 22(1.000: 12-32

  19. Nano Mapper: an Internet knowledge mapping system for nanotechnology development

    Energy Technology Data Exchange (ETDEWEB)

    Li Xin, E-mail: xinli@eller.arizona.edu; Hu, Daning, E-mail: hud@eller.arizona.edu; Dang Yan, E-mail: ydang@eller.arizona.edu; Chen Hsinchun, E-mail: hchen@eller.arizona.ed [University of Arizona, Departmet of Management Information Systems, Eller College of Management (United States); Roco, Mihail C., E-mail: mroco@nsf.go [National Science Foundation (United States); Larson, Catherine A., E-mail: cal@eller.arizona.edu; Chan, Joyce, E-mail: joycepchan@eller.arizona.ed [University of Arizona, Department of Management Information Systems, Eller College of Management (United States)

    2009-04-15

    Nanotechnology research has experienced rapid growth in recent years. Advances in information technology enable efficient investigation of publications, their contents, and relationships for large sets of nanotechnology-related documents in order to assess the status of the field. This paper presents the development of a new knowledge mapping system, called Nano Mapper (http://nanomapper.eller.arizona.eduhttp://nanomapper.eller.arizona.edu), which integrates the analysis of nanotechnology patents and research grants into a Web-based platform. The Nano Mapper system currently contains nanotechnology-related patents for 1976-2006 from the United States Patent and Trademark Office (USPTO), European Patent Office (EPO), and Japan Patent Office (JPO), as well as grant documents from the U.S. National Science Foundation (NSF) for the same time period. The system provides complex search functionalities, and makes available a set of analysis and visualization tools (statistics, trend graphs, citation networks, and content maps) that can be applied to different levels of analytical units (countries, institutions, technical fields) and for different time intervals. The paper shows important nanotechnology patenting activities at USPTO for 2005-2006 identified through the Nano Mapper system.

  20. Cancer immunoinformatics: a new assistant tool for malignant disease research

    Institute of Scientific and Technical Information of China (English)

    Wang Weijia; Zhang Rupeng; Liang Han; Zhang Hui; Li Fangxuan; Yu Jinpu; Li Hui

    2014-01-01

    Objective To introduce the recent developments in cancer immunoinformatics with an emphasis on the latest trends and future direction.Data sources All related articles in this review were searched from PubMed published in English from 1992 to 2013.The search terms were cancer,immunoinformatics,immunological databases,and computational vaccinology.Study selection Original articles and reviews those were related to application of cancer immunoinformatics about tumor basic and clinical research were selected.Results Cancer immunoinformatics has been widely researched and applied in a series of fields of cancer research,including computational tools for cancer,cancer immunological databases,computational vaccinology,and cancer diagnostic workflows.Furthermore,the improvement of its theory and technology brings an enlightening insight into understanding and researching cancer and helps expound more deep and complete mechanisms of tumorigenesis and progression.Conclusion Cancer immunoinformatics provides promising methods and novel strategies for the discovery and development of tumor basic and clinical research.

  1. Awareness on adverse effects of nanotechnology increases negative perception among public: survey study from Singapore

    Energy Technology Data Exchange (ETDEWEB)

    George, Saji, E-mail: saji-george@nyp.edu.sg [Nanyang Polytechnic, Centre for Sustainable Nanotechnology, School of Chemical & Life Sciences (Singapore); Kaptan, Gulbanu [Newcastle University, Food and Society Group, CRE School of Agriculture, Food and Rural Development (United Kingdom); Lee, Joel [Nanyang Polytechnic, Centre for Sustainable Nanotechnology, School of Chemical & Life Sciences (Singapore); Frewer, Lynn, E-mail: lynn.frewer@newcastle.ac.uk [Newcastle University, Food and Society Group, CRE School of Agriculture, Food and Rural Development (United Kingdom)

    2014-12-15

    As has been demonstrated by recent societal controversies associated with the introduction of novel technologies, societal acceptance of a technology and its applications is shaped by consumers’ perceived risks and benefits. The research reported here investigates public perceptions of nanotechnology in Singapore, where technological innovation is an established part of the economy, and it might be expected that consumer perceptions of risk are low, and those of benefit are high. The contribution of socio-demographic variables, knowledge level and exposure to risk information in shaping risk perception about nanotechnology applications within different application sectors were analysed. About ∼80 % of respondents have some understanding of nanotechnology, 60 % report having heard some negative information, and 39 % perceive nanotechnology as beneficial, while 27.5 % perceive it as risky. Nanotechnology application in food was reported to cause the most concern in the consumers included in the sample. Two-step cluster analysis of the data enabled grouping of respondents into those who expressed ‘less concern’ or ‘more concern’ based on their average scores for concern levels expressed with applications of nanotechnology in different sectors. Profiling of these clusters revealed that, apart from various socio-demographic factors, exposure to risk-related information, rather than awareness in nanotechnology itself, resulted in respondents expressing greater concern about nanotechnology applications. The results provide evidence upon which regulatory agencies and industries can base policies regarding informed risk–benefit communication and management associated with the introduction of commercial applications of nanotechnology.

  2. Awareness on adverse effects of nanotechnology increases negative perception among public: survey study from Singapore

    Science.gov (United States)

    George, Saji; Kaptan, Gulbanu; Lee, Joel; Frewer, Lynn

    2014-12-01

    As has been demonstrated by recent societal controversies associated with the introduction of novel technologies, societal acceptance of a technology and its applications is shaped by consumers' perceived risks and benefits. The research reported here investigates public perceptions of nanotechnology in Singapore, where technological innovation is an established part of the economy, and it might be expected that consumer perceptions of risk are low, and those of benefit are high. The contribution of socio-demographic variables, knowledge level and exposure to risk information in shaping risk perception about nanotechnology applications within different application sectors were analysed. About 80 % of respondents have some understanding of nanotechnology, 60 % report having heard some negative information, and 39 % perceive nanotechnology as beneficial, while 27.5 % perceive it as risky. Nanotechnology application in food was reported to cause the most concern in the consumers included in the sample. Two-step cluster analysis of the data enabled grouping of respondents into those who expressed `less concern' or `more concern' based on their average scores for concern levels expressed with applications of nanotechnology in different sectors. Profiling of these clusters revealed that, apart from various socio-demographic factors, exposure to risk-related information, rather than awareness in nanotechnology itself, resulted in respondents expressing greater concern about nanotechnology applications. The results provide evidence upon which regulatory agencies and industries can base policies regarding informed risk-benefit communication and management associated with the introduction of commercial applications of nanotechnology.

  3. Twelve years of nanoscience and nanotechnology publications in Mexico

    Science.gov (United States)

    Lau, Edgar Záyago; Frederick, Stacey; Foladori, Guillermo

    2014-01-01

    Mexico is the second country in Latin America with regard to Nanoscience and Nanotechnology Research and Development, according to various indicators. Nanoscience and Nanotechnologies are viewed as strategic areas in government policy since 2001. In the last few decades, important policy changes in Science and Technology (S&T) have been implemented with an aim to integrate the business sector with government scientific research. This article reviews information from the Web of Science relevant to articles on nanoscience and nanotechnology stretching back 12 years, and explains the changes in S&T policy. The information uncovered leads to three conclusions: the participation of the business sector is negligible; there is a significant concentration of scientific production among a very few institutions; and the country is essentially divided geographically, with scientific production concentrated in the center and north of the country.

  4. The John Milner Nutrition and Cancer Prevention Research Practicum | Division of Cancer Prevention

    Science.gov (United States)

    The Nutritional Science Research Group in the Division of Cancer Prevention at the National Cancer Institute, National Institutes of Health and the Department of Nutrition at the Clinical Center, National Institutes of Health, and the U.S. Department of Agriculture’s Beltsville Human Nutrition Research Center are offering a one-week educational opportunity in Nutrition and Cancer Prevention Research for individuals with a sustained commitment to nutrition and health promotion. |

  5. Nanotechnology: Role in dental biofilms

    Directory of Open Access Journals (Sweden)

    Bhardwaj Sonia

    2009-01-01

    Full Text Available Biofilms are surface- adherent populations of microorganisms consisting of cells, water and extracellular matrix material Nanotechnology is promising field of science which can guide our understanding of the role of interspecies interaction in the development of biofilm. Streptococcus mutans with other species of bacteria has been known to form dental biofilm. The correlation between genetically modified bacteria Streptococcus mutans and nanoscale morphology has been assessed using AFMi.e atomic force microscopy. Nanotechnology application includes 16 O/ 18 O reverse proteolytic labeling,use of quantum dots for labeling of bacterial cells, selective removal of cariogenic bacteria while preserving the normal oral flora and silver antimicrobial nanotechnology against pathogens associated with biofilms. The future comprises a mouthwash full of smart nanomachines which can allow the harmless flora of mouth to flourish in a healthy ecosystem

  6. Nanotechnologies in Cuba: Popularization and Training

    Science.gov (United States)

    Rodríguez Castellanos, Carlos

    In Cuba, as in other countries, activities in the field of nanotechnology emerged from the converging development of research in materials physics and chemistry, microelectronics, supramolecular physics, microbiology and molecular biology. During the 1990s, theoretical and experimental work on semiconductor nanostructures gained in importance. Cuban physicists organized the Red CYTED (Network CYTED) to "study fabrication and characterization of semiconductor nanostructures for micro and optoelectronics" which functioned between 1998 and 2003 with the participation of eight Spanish-American countries. The network organized various courses and scientific meetings, edited a book and supported the scientific collaboration among the participant institutions.

  7. Scope of nanotechnology in modern textiles

    Science.gov (United States)

    This review article demonstrates the scope and applications of nanotechnology towards modification and development of advanced textile fibers, yarns and fabrics and their processing techniques. Basically, it summarizes the recent advances made in nanotechnology and its applications to cotton textil...

  8. A bibliometric analysis of the development of next generation active nanotechnologies

    Science.gov (United States)

    Suominen, Arho; Li, Yin; Youtie, Jan; Shapira, Philip

    2016-09-01

    Delineating the emergence of nanotechnologies that offer new functionalities is an important element in an anticipatory approach to the governance of nanotechnology and its potential impacts. This paper examines the transition to next generation active nanotechnologies which incorporate functions that respond to the environment or systems concepts that combine devices and structures that are dynamic and which may change their states in use. We develop an approach to identifying these active nanotechnologies and then use bibliometric analysis to examine the extent of research papers and patents involving these concepts. We also examine references to environmental, health, and safety concepts in these papers, given that these next generation nanotechnologies are likely to have risk profiles that are different from those of first-generation passive nanomaterials. Our results show a steady growth overall in focus on active nanotechnologies in the research literature and in patents over the study period of 1990-2010. We also find an increase in consideration given to environmental, health, and safety topics. While gaps are highlighted in our understanding of research and innovation in active nanotechnologies, the results suggest that there is beginning to be a shift to active nanotechnologies, with the implication that governance processes need to be conscious of this shift and to prepare for it.

  9. Biography: Dr Iain Frame, director of research, prostate cancer UK.

    Science.gov (United States)

    Frame, Iain; Maprayil, Sophia

    2014-11-01

    Sophia Maprayil, Commissioning Editor for Expert Review of Anticancer Therapy, talks to Dr Iain Frame, Director of Research for Prostate Cancer UK. Iain is Prostate Cancer UK's first Director of Research, responsible for overseeing the development and implementation of the charity's ambitious new research strategy. He joined Prostate Cancer UK in 2012 from Diabetes UK where he held the post of Research Director for 5 years. Since joining Prostate Cancer UK in 2012 Iain has overseen a dramatic increase in the charity's research spend, from 2 million a year, to 7.5 million a year. Previously Iain worked in research management at the Wellcome Trust and before that as a parasitologist and researcher exploring various aspects of molecular biology of a number of different parasites.

  10. The potential consequences for cancer care and cancer research of Brexit

    Science.gov (United States)

    Selby, Peter; Lawler, Mark; Baird, Richard; Banks, Ian; Johnston, Patrick; Nurse, Paul

    2017-01-01

    Following the UK “Brexit” vote in June 2016, there are many uncertainties and risks for cancer research and cancer care in the UK. These are summarised and the importance of sustained engagement and influence from the cancer community on UK governments is emphasised. PMID:28275394

  11. Bringing global cancer leaders together at the 4th Annual Symposium on Global Cancer Research

    Science.gov (United States)

    The Annual Symposium on Global Cancer Research held in April 2016 was developed with a special focus on innovative and low-cost technologies in global cancer control, and brought inspiring keynote speakers such as John Seffrin, Former CEO of the American Cancer Society, and Tom Bollyky, Senior Fellow for Global Health at the Council on Foreign Relations.

  12. The potential consequences for cancer care and cancer research of Brexit.

    Science.gov (United States)

    Selby, Peter; Lawler, Mark; Baird, Richard; Banks, Ian; Johnston, Patrick; Nurse, Paul

    2017-01-01

    Following the UK "Brexit" vote in June 2016, there are many uncertainties and risks for cancer research and cancer care in the UK. These are summarised and the importance of sustained engagement and influence from the cancer community on UK governments is emphasised.

  13. Cancer complementary and alternative medicine research at the US National Cancer Institute.

    Science.gov (United States)

    Jia, Libin

    2012-05-01

    The United States National Cancer Institute (NCI) supports complementary and alternative medicine (CAM) research which includes different methods and practices (such as nutrition therapies) and other medical systems (such as Chinese medicine). In recent years, NCI has spent around $120 million each year on various CAM-related research projects on cancer prevention, treatment, symptom/side effect management and epidemiology. The categories of CAM research involved include nutritional therapeutics, pharmacological and biological treatments, mind-body interventions, manipulative and body based methods, alternative medical systems, exercise therapies, spiritual therapies and energy therapies on a range of types of cancer. The NCI Office of Cancer Complementary and Alternative Medicine (OCCAM) supports various intramural and extramural cancer CAM research projects. Examples of these cancer CAM projects are presented and discussed. In addition, OCCAM also supports international research projects.

  14. Prostate Cancer Stem Cells: Research Advances.

    Science.gov (United States)

    Jaworska, Dagmara; Król, Wojciech; Szliszka, Ewelina

    2015-01-01

    Cancer stem cells have been defined as cells within a tumor that possesses the capacity to self-renew and to cause the heterogeneous lineages of cancer cells that comprise the tumor. Experimental evidence showed that these highly tumorigenic cells might be responsible for initiation and progression of cancer into invasive and metastatic disease. Eradicating prostate cancer stem cells, the root of the problem, has been considered as a promising target in prostate cancer treatment to improve the prognosis for patients with advanced stages of the disease.

  15. Prostate Cancer Stem Cells: Research Advances

    Directory of Open Access Journals (Sweden)

    Dagmara Jaworska

    2015-11-01

    Full Text Available Cancer stem cells have been defined as cells within a tumor that possesses the capacity to self-renew and to cause the heterogeneous lineages of cancer cells that comprise the tumor. Experimental evidence showed that these highly tumorigenic cells might be responsible for initiation and progression of cancer into invasive and metastatic disease. Eradicating prostate cancer stem cells, the root of the problem, has been considered as a promising target in prostate cancer treatment to improve the prognosis for patients with advanced stages of the disease.

  16. Russia's Policy and Standing in Nanotechnology

    Science.gov (United States)

    Terekhov, Alexander I.

    2013-01-01

    In this article, I consider the historical stages of development of nanotechnology in Russia as well as the political framework for this. It is shown that early federal nanotechnology programs in Russia date back to the 1990s and that since the mid-2000s, nanotechnology has attracted the increasing attention of government. I characterize the…

  17. Patent, Nanotechnology, and the Role of University

    Directory of Open Access Journals (Sweden)

    Agus Sardjono

    2011-01-01

    Full Text Available University has significant contribution tot the development of nanotechnology, The role of university can be implemented through the TTLO, particulary in an effort to build a bridge for bottom-up nanotechnology for commercial purposes. There will be an increasingly significant link betweent the patent system on the university role in the development of nanotechnology.

  18. Research on cancer diagnosis in Malaysia: current status.

    Science.gov (United States)

    Looi, L M; Zubaidah, Z; Cheah, P L; Cheong, S K; Gudum, H R; Iekhsan, O; Ikram, S I; Jamal, R; Mak, J W; Othman, N H; Puteri, J N; Rosline, H; Sabariah, A R; Seow, H F; Sharifah, N A

    2004-06-01

    Cancer is a major morbidity and mortality concern in Malaysia. Based on National Cancer Registry data, the Malaysian population is estimated to bear a cancer burden of about 40,000 new cases per year, and a cumulative lifetime risk of about 1:4. Cancer research in Malaysia has to consider needs relevant to our population, and resources constraints. Hence, funding bodies prioritise cancers of high prevalence, unique to our community and posing specific clinical problems. Cancer diagnosis is crucial to cancer management. While cancer diagnosis research largely aims at improvements in diagnostic information towards more appropriate therapy, it also impacts upon policy development and other areas of cancer management. The scope of cancer diagnosis upon which this paper is based, and their possible impact on other R&D areas, has been broadly categorized into: (1) identification of aetiological agents and their linkages to the development of precancer and cancer (impact on policy development, cancer prevention and treatment), (2) cancer biology and pathogenesis (impact on cancer prevention, treatment strategies and product development), (3) improvements in accuracy, sensitivity and specificity in cancer detection, monitoring and classification (impact on technology development) and (4) prognostic and predictive parameters (impact on treatment strategies). This paper is based on data collected by the Working Group on Cancer Diagnosis Research for the First National Conference on Cancer Research Coordination in April 2004. Data was collated from the databases of Institutions/Universities where the authors are employed, the Ministry of Science, Technology and Innovation (MOSTI) and targeted survey feedback from key cancer researchers. Under the 7th Malaysia Plan, 76 cancer projects were funded through the Intensified Research in Priority Areas (IRPA) scheme of MOSTI, amounting to almost RM15 million of grant money. 47(61.8%) of these projects were substantially in cancer

  19. Cancer Research Repository for Individuals With Cancer Diagnosis, High Risk Individuals, and Individuals With No History of Cancer (Control)

    Science.gov (United States)

    2016-11-14

    Pancreatic Cancer; Thyroid Cancer; Lung Cancer; Esophageal Cancer; Thymus Cancer; Colon Cancer; Rectal Cancer; GIST; Anal Cancer; Bile Duct Cancer; Duodenal Cancer; Gallbladder Cancer; Gastric Cancer; Liver Cancer; Small Intestine Cancer; Peritoneal Surface Malignancies; Familial Adenomatous Polyposis; Lynch Syndrome; Bladder Cancer; Kidney Cancer; Penile Cancer; Prostate Cancer; Testicular Cancer; Ureter Cancer; Urethral Cancer; Hypopharyngeal Cancer; Laryngeal Cancer; Lip Cancer; Oral Cavity Cancer; Nasopharyngeal Cancer; Oropharyngeal Cancer; Paranasal Sinus Cancer; Nasal Cavity Cancer; Salivary Gland Cancer; Skin Cancer; CNS Tumor; CNS Cancer; Mesothelioma; Breastcancer; Leukemia; Melanoma; Sarcoma; Unknown Primary Tumor; Multiple Myeloma; Ovarian Cancer; Endometrial Cancer; Vaginal Cancer

  20. Towards discovery-driven translational research in breast cancer

    DEFF Research Database (Denmark)

    2005-01-01

    Discovery-driven translational research in breast cancer is moving steadily from the study of cell lines to the analysis of clinically relevant samples that, together with the ever increasing number of novel and powerful technologies available within genomics, proteomics and functional genomics......, promise to have a major impact on the way breast cancer will be diagnosed, treated and monitored in the future. Here we present a brief report on long-term ongoing strategies at the Danish Centre for Translational Breast Cancer Research to search for markers for early detection and targets for therapeutic...... biology approach to fight breast cancer....

  1. Multidisciplinary cognitive content of nanoscience and nanotechnology

    Science.gov (United States)

    Milojević, Staša

    2012-01-01

    This article examines the cognitive evolution and disciplinary diversity of nanoscience/nanotechnology (nano research) as expressed through the terminology used in titles of nano journal articles. The analysis is based on the NanoBank bibliographic database of 287,106 nano articles published between 1981 and 2004. We perform multifaceted analyses of title words, focusing on 100 most frequent words or phrases (terms). Hierarchical clustering of title terms reveals three distinct time periods of cognitive development of nano research: formative (1981-1990), early (from 1991 to 1998), and current (after 1998). Early period is characterized by the introduction of thin film deposition techniques, while the current period is characterized by the increased focus on carbon nanotube and nanoparticle research. We introduce a method to identify disciplinary components of nanotechnology. It shows that the nano research is being carried out in a number of diverse parent disciplines. Currently, only 5% of articles are published in dedicated nano-only journals. We find that some 85% of nano research today is multidisciplinary. The case study of the diffusion of several nano-specific terms (e.g., "carbon nanotube") shows that concepts spread from the initially few disciplinary components to the majority of them in a time span of around a decade. Hierarchical clustering of disciplinary components reveals that the cognitive content of current nanoscience can be divided into nine clusters. Some clusters account for a large fraction of nano research and are identified with such parent disciplines as the condensed matter and applied physics, materials science, and analytical chemistry. Other clusters represent much smaller parts of nano research, but are as cognitively distinct. In the decreasing order of size, these fields are: polymer science, biotechnology, general chemistry, surface science, and pharmacology. Cognitive content of research published in nano-only journals is the

  2. Multidisciplinary cognitive content of nanoscience and nanotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Milojevic, Stasa, E-mail: smilojev@indiana.edu [Indiana University, School of Library and Information Science (United States)

    2012-01-15

    This article examines the cognitive evolution and disciplinary diversity of nanoscience/nanotechnology (nano research) as expressed through the terminology used in titles of nano journal articles. The analysis is based on the NanoBank bibliographic database of 287,106 nano articles published between 1981 and 2004. We perform multifaceted analyses of title words, focusing on 100 most frequent words or phrases (terms). Hierarchical clustering of title terms reveals three distinct time periods of cognitive development of nano research: formative (1981-1990), early (from 1991 to 1998), and current (after 1998). Early period is characterized by the introduction of thin film deposition techniques, while the current period is characterized by the increased focus on carbon nanotube and nanoparticle research. We introduce a method to identify disciplinary components of nanotechnology. It shows that the nano research is being carried out in a number of diverse parent disciplines. Currently, only 5% of articles are published in dedicated nano-only journals. We find that some 85% of nano research today is multidisciplinary. The case study of the diffusion of several nano-specific terms (e.g., 'carbon nanotube') shows that concepts spread from the initially few disciplinary components to the majority of them in a time span of around a decade. Hierarchical clustering of disciplinary components reveals that the cognitive content of current nanoscience can be divided into nine clusters. Some clusters account for a large fraction of nano research and are identified with such parent disciplines as the condensed matter and applied physics, materials science, and analytical chemistry. Other clusters represent much smaller parts of nano research, but are as cognitively distinct. In the decreasing order of size, these fields are: polymer science, biotechnology, general chemistry, surface science, and pharmacology. Cognitive content of research published in nano-only journals

  3. [The applications and advantages of Drosophila melanogaster in cancer research].

    Science.gov (United States)

    Huo, Guitao; Lu, Jianjun; Qu, Zhe; Lin, Zhi; Zhang, Di; Yang, Yanwei; Li, Bo

    2014-01-01

    The common fruit fly, Drosophila melanogaster, has been used to study human disease as a model organism for many years. Many basic biological, physiological, and neurological properties are conserved between mammals and fly. Moreover, Drosophila melanogaster has its unique advantage as a model organism. Recent studies showed that the high level of signaling pathway conservation in tumorigenesis between fly and human and its feasible genetic operation make fly an effective model for oncology research. Numerous research findings showed Drosophila melanogaster was an ideal model for studying the molecular mechanisms of tumorigenesis, invasion and metastasis. This review mainly focuses on the advantages of Drosophila melanogaster in cancer research, established models used for the research of specific cancers and prospective research direction of oncology. It is hoped that this paper can provide insight for cancer research and development of anti-cancer drugs.

  4. Engineering applications of nanotechnology from energy to drug delivery

    CERN Document Server

    Hamid, Nor

    2017-01-01

    This book focuses on the use of nanotechnology in several fields of engineering. Among others, the reader will find valuable information as to how nanotechnology can aid in extending the life of component materials exposed to corrosive atmospheres, in thermal fluid energy conversion processes, anti-reflection coatings on photovoltaic cells to yield enhanced output from solar cells, in connection with friction and wear reduction in automobiles, and buoyancy suppression in free convective heat transfer. Moreover, this unique resource presents the latest research on nanoscale transport phenomena and concludes with a look at likely future trends.

  5. Accelerating nano-technological innovation in the Danish construction industry

    DEFF Research Database (Denmark)

    Koch, Christian; Stissing Jensen, Jens

    2007-01-01

      By viewing the construction industry as a technological innovation system (TIS) this paper discusses possible initiatives to accelerate nanotechnological innovations. The point of departure is a recent report on the application of nano-technology in the Danish construction industry, which...... concludes that opportunities are generally poorly appreciated by the industry and research communities alike. It is found that the construction industry is characterised by low-tech trajectories where dedicated innovation networks are often too fragile for innovations to stabilize and diffuse....... The institutional features of the system are furthermore poorly equipped at identifying potentials within high-tech areas. In order to exploit the potentials of nano-technology it is thus argued that an alternative TIS needs to be established. Initiatives should identify and support "incubation rooms" or marked...

  6. Advances and Prospect of Nanotechnology in Stem Cells

    Science.gov (United States)

    Wang, Zheng; Ruan, Jing; Cui, Daxiang

    2009-07-01

    In recent years, stem cell nanotechnology has emerged as a new exciting field. Theoretical and experimental studies of interaction between nanomaterials or nanostructures and stem cells have made great advances. The importance of nanomaterials, nanostructures, and nanotechnology to the fundamental developments in stem cells-based therapies for injuries and degenerative diseases has been recognized. In particular, the effects of structure and properties of nanomaterials on the proliferation and differentiation of stem cells have become a new interdisciplinary frontier in regeneration medicine and material science. Here we review some of the main advances in this field over the past few years, explore the application prospects, and discuss the issues, approaches and challenges, with the aim of improving application of nanotechnology in the stem cells research and development.

  7. 3rd International Conference on Nanotechnologies and Biomedical Engineering

    CERN Document Server

    Tiginyanu, Ion

    2016-01-01

    This volume presents the proceedings of the 3rd International Conference on Nanotechnologies and Biomedical Engineering which was held on September 23-26, 2015 in Chisinau, Republic of Moldova. ICNBME-2015 continues the series of International Conferences in the field of nanotechnologies and biomedical engineering. It aims at bringing together scientists and engineers dealing with fundamental and applied research for reporting on the latest theoretical developments and applications involved in the fields. Topics include Nanotechnologies and nanomaterials Plasmonics and metamaterials Bio-micro/nano technologies Biomaterials Biosensors and sensors systems Biomedical instrumentation Biomedical signal processing Biomedical imaging and image processing Molecular, cellular and tissue engineering Clinical engineering, health technology management and assessment; Health informatics, e-health and telemedicine Biomedical engineering education Nuclear and radiation safety and security Innovations and technology transfer...

  8. Nanotechnology in the regulation of stem cell behavior

    Directory of Open Access Journals (Sweden)

    King-Chuen Wu, Ching-Li Tseng, Chi-Chang Wu, Feng-Chen Kao, Yuan-Kun Tu, Edmund C So and Yang-Kao Wang

    2013-01-01

    Full Text Available Stem cells are known for their potential to repair damaged tissues. The adhesion, growth and differentiation of stem cells are likely controlled by the surrounding microenvironment which contains both chemical and physical cues. Physical cues in the microenvironment, for example, nanotopography, were shown to play important roles in stem cell fate decisions. Thus, controlling stem cell behavior by nanoscale topography has become an important issue in stem cell biology. Nanotechnology has emerged as a new exciting field and research from this field has greatly advanced. Nanotechnology allows the manipulation of sophisticated surfaces/scaffolds which can mimic the cellular environment for regulating cellular behaviors. Thus, we summarize recent studies on nanotechnology with applications to stem cell biology, including the regulation of stem cell adhesion, growth, differentiation, tracking and imaging. Understanding the interactions of nanomaterials with stem cells may provide the knowledge to apply to cell–scaffold combinations in tissue engineering and regenerative medicine.

  9. 2nd international conference on advanced nanomaterials and nanotechnology

    CERN Document Server

    Goswami, D; Perumal, A

    2013-01-01

    Nanoscale science and technology have occupied centre stage globally in modern scientific research and discourses in the early twenty first century. The enabling nature of the technology makes it important in modern electronics, computing, materials, healthcare, energy and the environment. This volume contains selected articles presented (as Invited/Oral/Poster presentations) at the 2nd international conference on advanced materials and nanotechnology (ICANN-2011) held recently at the Indian Institute of Technology Guwahati, during Dec 8-10, 2011. The list of topics covered in this proceedings include: Synthesis and self assembly of nanomaterials Nanoscale characterisation Nanophotonics & Nanoelectronics Nanobiotechnology Nanocomposites  F   Nanomagnetism Nanomaterials for Enery Computational Nanotechnology Commercialization of Nanotechnology The conference was represented by around 400 participants from several countries including delegates invited from USA, Germany, Japan, UK, Taiwan, Italy, Singapor...

  10. Nanotechnology and Society A discussion-based undergraduate course

    CERN Document Server

    Tahan, C; Zenner, G M; Ellison, K D; Crone, W C; Miller, C A; Tahan, Charles; Leung, Ricky; Miller, Clark A.

    2006-01-01

    Nanotechnology has emerged as a broad and exciting, yet ill-defined, field of scientific research and technological innovation. Important questions have arisen about the technology's potential economic, social, and environmental implications by prominent technology leaders, nanotechnology boosters, science fiction authors, policy officials, and environmental organizations. We have developed an undergraduate course that offers an opportunity for students from a wide range of disciplines, including the natural and social sciences, humanities, and engineering, to learn about nanoscience and nanotechnology, to explore these questions, and to reflect on the broader place of technology in modern societies. The course is built around active learning methods and seeks to develop the students' critical thinking skills, written and verbal communication abilities, and general knowledge of nanoscience and nanoengineering concepts. Continuous assessment was used to gain information about the effectiveness of class discuss...

  11. Food Nanotechnology - Food Packaging Applications

    Science.gov (United States)

    Astonishing growth in the market for nanofoods is predicted in the future, from the current market of $2.6 billion to $20.4 billion in 2010. The market for nanotechnology in food packaging alone is expected to reach $360 million in 2008. In large part, the impetus for this predicted growth is the ...

  12. Food Nanotechnology: Food Packaging Applications

    Science.gov (United States)

    Astonishing growth in the market for nanofoods is predicted in the future, from the current market of $2.6 billion to $20.4 billion in 2010. The market for nanotechnology in food packaging alone is expected to reach $360 million in 2008. In large part the impetus for this predicted growth is the e...

  13. Soft nanotechnology: "structure" vs. "function".

    Science.gov (United States)

    Whitesides, George M; Lipomi, Darren J

    2009-01-01

    This paper offers a perspective on "soft nanotechnology"; that is, the branch of nanotechnology concerned with the synthesis and properties of organic and organometallic nanostructures, and with nanofabrication using techniques in which soft components play key roles. It begins with a brief history of soft nanotechnology. This history has followed a path involving a gradual shift from the promise of revolutionary electronics, nanorobotics, and other futuristic concepts, to the realization of evolutionary improvements in the technology for current challenges in information technology, medicine, and sustainability. Soft nanoscience is an area that is occupied principally by chemists, and is in many ways indistinguishable from "nanochemistry". The paper identifies the natural tendency of its practitioners--exemplified by the speakers at this Faraday Discussion--to focus on synthesis and structure, rather than on function and application, of nanostructures. Soft nanotechnology has the potential to apply to a wide variety of large-scale applied (information technology, healthcare cost reduction, sustainability, energy) and fundamental (molecular biochemistry, cell biology, charge transport in organic matter) problems.

  14. Nanotechnology for the developing world

    Energy Technology Data Exchange (ETDEWEB)

    El Naschie, M. Saladin [Department of Physics, University of Alexandria (Egypt); Department of Astrophysics, Cairo University (Egypt); Department of Physics, Mansura University (Egypt)

    2006-11-15

    The letter discusses the indispensable importance of Nanotechnology for the scientific and economical revival of the developing world. Similar to the nuclear age, and maybe far more so, the nanoage will be something of a Hemingway line of demarcation between the have and the have nots.

  15. Next generation distributed computing for cancer research.

    Science.gov (United States)

    Agarwal, Pankaj; Owzar, Kouros

    2014-01-01

    Advances in next generation sequencing (NGS) and mass spectrometry (MS) technologies have provided many new opportunities and angles for extending the scope of translational cancer research while creating tremendous challenges in data management and analysis. The resulting informatics challenge is invariably not amenable to the use of traditional computing models. Recent advances in scalable computing and associated infrastructure, particularly distributed computing for Big Data, can provide solutions for addressing these challenges. In this review, the next generation of distributed computing technologies that can address these informatics problems is described from the perspective of three key components of a computational platform, namely computing, data storage and management, and networking. A broad overview of scalable computing is provided to set the context for a detailed description of Hadoop, a technology that is being rapidly adopted for large-scale distributed computing. A proof-of-concept Hadoop cluster, set up for performance benchmarking of NGS read alignment, is described as an example of how to work with Hadoop. Finally, Hadoop is compared with a number of other current technologies for distributed computing.

  16. Major clinical research advances in gynecologic cancer in 2015

    Science.gov (United States)

    2016-01-01

    In 2015, fourteen topics were selected as major research advances in gynecologic oncology. For ovarian cancer, high-level evidence for annual screening with multimodal strategy which could reduce ovarian cancer deaths was reported. The best preventive strategies with current status of evidence level were also summarized. Final report of chemotherapy or upfront surgery (CHORUS) trial of neoadjuvant chemotherapy in advanced stage ovarian cancer and individualized therapy based on gene characteristics followed. There was no sign of abating in great interest in immunotherapy as well as targeted therapies in various gynecologic cancers. The fifth Ovarian Cancer Consensus Conference which was held in November 7–9 in Tokyo was briefly introduced. For cervical cancer, update of human papillomavirus vaccines regarding two-dose regimen, 9-valent vaccine, and therapeutic vaccine was reviewed. For corpus cancer, the safety concern of power morcellation in presumed fibroids was explored again with regard to age and prevalence of corpus malignancy. Hormone therapy and endometrial cancer risk, trabectedin as an option for leiomyosarcoma, endometrial cancer and Lynch syndrome, and the radiation therapy guidelines were also discussed. In addition, adjuvant therapy in vulvar cancer and the updated of targeted therapy in gynecologic cancer were addressed. For breast cancer, palbociclib in hormone-receptor-positive advanced disease, oncotype DX Recurrence Score in low-risk patients, regional nodal irradiation to internal mammary, supraclavicular, and axillary lymph nodes, and cavity shave margins were summarized as the last topics covered in this review. PMID:27775259

  17. Citizenship Education to Nanotechnologies: Teaching Knowledge About Nanotechnologies and Educating for Responsible Citizenship

    Directory of Open Access Journals (Sweden)

    Nathalie Panissal

    2012-12-01

    Full Text Available We present a research based on a project for citizenship education tonanotechnologies in a French high school which aims at teaching the specific characteristics of nanotechnologies, of their fields of application and of the controversies which are linked to them. At the junction of Socially Acute Questions didactics and of the cultural-historical Vygotskian theory, we analyze the knowledge at work in a debate on the promises and risks connected with nanotechnologies. The knowledge mobilized by the students (17- to 18 yearsold in their dialogical interactions can refer back to the archetypal narrativeswhose origin lies in men’s social and cultural history. Through the joint effect of cumulative talk and exploratory talk, the students co-construct the concepts linked to the Social Ethical Issues: risks and human enhancement. We show that the debate at school leads students to be able to construct reasoned opinion and to position themselves in their environment in a responsible way. This educational innovation appears to be relevant for combining the learning of academic and cultural contents with social competencies necessary for committed citizenship education in the field of nanotechnologies.

  18. [Research progression of translational medicine in gastric cancer].

    Science.gov (United States)

    Li, Maoran; Zhao, Gang; Zhu, Chunchao

    2014-02-01

    Gastric cancer is one of the most common malignant tumors which is a great threat to human health. In recent years, the reform of surgical mordalities and the optimization of radiation and chemotherapy is still far from reducing morbidity and mortality of gastric cancer. As a new research pattern, translational medicine has emerged in various clinical subjects, which leads to remarkable effects. In this paper, the definition and development of translational medicine, molecular markers and drug treatment of gastric cancer will be discussed and the feasibility of translational medicine in the treatment of gastric cancer will be explained. In our opinion, the intervention of translational medicine could change the current situation that scientific researches is severely disconnected with clinical practice and increase the detection rate of gastric cancer and the effective rate of adjuvant therapy after surgery to improve the prognosis of patients with gastric cancer.

  19. The Changing Landscape of Lung Cancer Research and Treatment

    Science.gov (United States)

    Along with the Lung Cancer Social Media (#LCSM) community, the National Cancer Institute will be co-hosting a lively and interactive Google Hangout on Air about the changing landscape of lung cancer research and treatment. During the chat, viewers will have the opportunity to pose questions to a panel of lung cancer experts including NCI's Dr. Shakun Malik, the head of thoracic oncology therapeutics, Roy S. Herbst, MD, PhD, Chief of Medical Oncology, Yale Cancer Center and Smilow Cancer Hospital at Yale-New Haven and David Tom Cooke MD FACS, Head, Section of General Thoracic Surgery University of California, Davis. You can also learn more and follow along on the #LCSM Chat page. The chat will be moderated by lung cancer advocate and #LCSM co-founder, Janet Freeman-Daily. To ask questions of our experts, simply use the #LCSM hashtag during the chat.

  20. Biomedical text mining and its applications in cancer research.

    Science.gov (United States)

    Zhu, Fei; Patumcharoenpol, Preecha; Zhang, Cheng; Yang, Yang; Chan, Jonathan; Meechai, Asawin; Vongsangnak, Wanwipa; Shen, Bairong

    2013-04-01

    Cancer is a malignant disease that has caused millions of human deaths. Its study has a long history of well over 100years. There have been an enormous number of publications on cancer research. This integrated but unstructured biomedical text is of great value for cancer diagnostics, treatment, and prevention. The immense body and rapid growth of biomedical text on cancer has led to the appearance of a large number of text mining techniques aimed at extracting novel knowledge from scientific text. Biomedical text mining on cancer research is computationally automatic and high-throughput in nature. However, it is error-prone due to the complexity of natural language processing. In this review, we introduce the basic concepts underlying text mining and examine some frequently used algorithms, tools, and data sets, as well as assessing how much these algorithms have been utilized. We then discuss the current state-of-the-art text mining applications in cancer research and we also provide some resources for cancer text mining. With the development of systems biology, researchers tend to understand complex biomedical systems from a systems biology viewpoint. Thus, the full utilization of text mining to facilitate cancer systems biology research is fast becoming a major concern. To address this issue, we describe the general workflow of text mining in cancer systems biology and each phase of the workflow. We hope that this review can (i) provide a useful overview of the current work of this field; (ii) help researchers to choose text mining tools and datasets; and (iii) highlight how to apply text mining to assist cancer systems biology research.

  1. From supramolecular chemistry to nanotechnology : assembly of 3D nanostructures

    NARCIS (Netherlands)

    Ling, Xing Yi

    2008-01-01

    Fabricating well-defined and stable nanoparticle arrays and crystals in a controlled fashion receives growing attention in nanotechnology owing to the potential application in optoelectronic devices, biological sensors, and photonic structures. The research described in this thesis aims to construct

  2. The Future of Prostate Cancer Research and Treatment

    Science.gov (United States)

    On January 12, 2017 prostate cancer experts William Dahut, M.D. of the National Cancer Institute and Dr. Heather Cheng, M.D. of the University of Washington had a vibrant discussion about current and future research areas and treatment options for prostate cancer. The panel was moderated by Ana Fadich, MPH, CHES Vice President at Men’s Health of the Men's Health Network.

  3. Meharry-Johns Hopkins Center for Prostate Cancer Research

    Science.gov (United States)

    2014-08-01

    Prostate cancer, Dietary risk factors , Lycopene, Genetic predisposition, African-Americans, Cancer research training, Quality of life, Community...that of CA men (73.9 per 100,000 AA / 25.6 per 100,000 C). Genetic and dietary factors have been identified in explaining a portion of the excess...cancer may occur earlier and be more aggressive among African-American men.  Other possible risk factors include obesity , lifestyle and environmental

  4. Supportive and Palliative Care Research | Division of Cancer Prevention

    Science.gov (United States)

    Supportive and palliative care research includes studies to prevent or treat the acute and chronic symptoms and morbidities related to cancer and its treatment, and to examine the effects of cancer and its treatment on quality of life and psychosocial issues and treatment strategies at the end of life. Active Projects can range from caregiver issues to geriatrics, physical functioning to cognitive dysfunction. | Examining symptoms and morbidities related to cancer, its treatment, quality of life and end of life.

  5. International Partnerships for Clinical Cancer Research

    Science.gov (United States)

    CGH co-sponsors the 2015 International Symposium on Cancer Clinical Trials and related meetings held in partnership with the Japanese National Cancer Center (JNCC) and Embassies of France, Korea, United Kingdom (UK), and United States (US) in Tokyo on May 14 - 15, 2015.

  6. Neurosurgery in the realm of 10(-9), part 1: stardust and nanotechnology in neuroscience.

    Science.gov (United States)

    Elder, James B; Liu, Charles Y; Apuzzo, Michael L J

    2008-01-01

    Nanotechnology as a science has evolved from notions and speculation to emerge as a prominent combination of science and engineering that stands to impact innumerable aspects of technology. Medicine in general and neurosurgery in particular will benefit greatly in terms of improved diagnostic and therapeutic capabilities. The recent explosion in nanotechnology products, including diverse applications such as beauty products and medical contrast agents, has been accompanied by an ever increasing volume of literature. Recent articles from our institution provided an historical and scientific background of nanotechnology, with a purposeful focus on nanomedicine. Future applications of nanotechnology to neuroscience and neurosurgery were briefly addressed. The present article is the first of two that will further this discussion by providing specific details of current nanotechnology applications and research related to neuroscience and clinical neurosurgery. This article also provides relevant perspective in scale, history, economics, and toxicology. Topics of specific importance to developments or advances of technologies used by neuroscientists and neurosurgeons are presented. In addition, advances in the field of microelectromechanical systems technology are discussed. Although larger than nanoscale, microelectromechanical systems technologies will play an important role in the future of medicine and neurosurgery. The second article will discuss current nanotechnologies that are being, or will be in the near future, incorporated into the armamentarium of the neurosurgeon. The goal of these articles is to keep the neuroscience community abreast of current developments in nanotechnology, nanomedicine, and, in particular, nanoneurosurgery, and to present possibilities for future applications of nanotechnology. As applications of nanotechnology permeate all forms of scientific and medical research, clinical applications will continue to emerge. Physicians of the

  7. Graphic Evolution Witness the Development of Lung Cancer Translational Research

    Directory of Open Access Journals (Sweden)

    Chao ZHANG

    2016-06-01

    Full Text Available Lung cancer treatment has altered from conventional chemotherapy to targeted treatment, which now has been turned to the immunotherapy. Translational research has played an irreplaceable role during this progression which graphic evolution has witnessed. The evolution has gone through forest plot, KM-curve, waterfall plot, spider plot and timeline-area, showing us the refining concept and gradual process of lung cancer treatment undergoing from community towards individual. Even though the latest immunotherapy is getting increasingly hot, the result isn’t quite expected. Meanwhile, the limitations of conventional treatment still exist which require further research. This article will primarily illustrate the development of translational research of lung cancer via the aspect of curve evolution and analysis some abortive clinical trials in lung cancer surgery for inspiring the next graphic style and lung cancer treatment.

  8. Nanotechnology and the Environment

    Directory of Open Access Journals (Sweden)

    Elena Serrano

    2010-05-01

    Full Text Available This book intends to present a comprehensive overview of recent progress with regard to different aspects of nanomaterials research and development that are closely related to their manufacture process, through to their release to the environment, identifying the critical areas undergoing further research.

  9. [Recommendations for cancer prevention of World Cancer Research Fund (WCRF): situational analysis for Chile].

    Science.gov (United States)

    Crovetto, Mirta; Uauy, Ricardo

    2013-05-01

    The main diet-related cancers include colorectal, lung, breast in (postmenopausal) women, stomach, esophagus, prostate and pancreas. After tobacco, obesity is the leading cause of cancer; it accounts for one third of all cancers. Cancer is associated with high total body fat, abdominal fat and weight gain in adult life. These are all potentially modifiable risk factors. Consumption of a "healthy diet" and living an "active life" can significantly reduce the risk of cancer. The aim of this study was to analyze the recommendations published by the World Cancer Research Fund (WCRF) and American Institute for Cancer Research (AICR) for the prevention of cancer in 2007. We compared the recommendations of Food, Nutrition and Physical Activity and the Prevention of Cancer: a global perspective", with the national situation in Chile, analyzing the national report on the prevalence of risk factors. Our main finding was that the pattern of consumption and lifestyles differ markedly from the WCRF recommendations: we observed an over consumption of sugary drinks and high intake of processed foods high in sodium and total fat and low consumption of legumes, vegetables, fruits high in antioxidants and fiber that protect from cancer. Chile has an increased cancer prevalence which is associated with poor quality diets, rising mean body mass index and a sedentary behavior. We recommend the strengthening programs to promote healthy diets and active living, in order to reduce cancer risk.

  10. NCI Community Oncology Research Program (NCORP) | Division of Cancer Prevention

    Science.gov (United States)

    The NCI Community Oncology Research Program (NCORP) is a national network of cancer care investigators, providers, academia, and other organizations that care for diverse populations in health systems. View the list of publications from NCORP. | Clinical Trials network of cancer care professionals who care for diverse populations across the U.S.

  11. Biospecimen Core Resource - Office of Cancer Clinical Proteomics Research

    Science.gov (United States)

    The purpose of this notice is to notify the community that the National Cancer Institute's (NCI’s) Office of Cancer Clinical Proteomics Research (OCCPR) is seeking sources to establish a Biospecimen Core Resource (BCR), capable of receiving, qualifying, processing, and distributing annotated biospecimens.

  12. Does cancer research focus on areas of importance to patients?

    Science.gov (United States)

    Moorcraft, Sing Yu; Sangha, Amrit; Peckitt, Clare; Sanchez, Rodrigo; Lee, Martin; Pattison, Natalie; Wiseman, Theresa

    2016-01-01

    The majority of research ideas are proposed by clinicians or scientists and little is currently known about which areas of research patients feel are important. We performed a 4 week pilot patient survey at the Royal Marsden (a specialist cancer centre) to investigate patients' views on priorities for cancer research. A total of 780 patients completed the survey and the top research priorities were identified as: detection and prevention of cancer, scientific understanding, curative treatment and personalised treatment. The top research priorities were remarkably consistent across age, gender and a variety of tumour types. We believe that patients' views should be considered alongside those of clinicians and researchers when devising research proposals and strategies.

  13. Bioengineered riboflavin in nanotechnology

    NARCIS (Netherlands)

    Beztsinna, N; Solé, M; Taib, N; Bestel, I

    2016-01-01

    Riboflavin (RF) is an essential water-soluble vitamin with unique biological and physicochemical properties such as transporterspecific cell internalization, implication in redox reactions, fluorescence and photosensitizing. Due to these features RF attracted researchers in various fields from targe

  14. Building capacity for sustainable research programmes for cancer in Africa.

    Science.gov (United States)

    Adewole, Isaac; Martin, Damali N; Williams, Makeda J; Adebamowo, Clement; Bhatia, Kishor; Berling, Christine; Casper, Corey; Elshamy, Karima; Elzawawy, Ahmed; Lawlor, Rita T; Legood, Rosa; Mbulaiteye, Sam M; Odedina, Folakemi T; Olopade, Olufunmilayo I; Olopade, Christopher O; Parkin, Donald M; Rebbeck, Timothy R; Ross, Hana; Santini, Luiz A; Torode, Julie; Trimble, Edward L; Wild, Christopher P; Young, Annie M; Kerr, David J

    2014-05-01

    Cancer research in Africa will have a pivotal role in cancer control planning in this continent. However, environments (such as those in academic or clinical settings) with limited research infrastructure (laboratories, biorespositories, databases) coupled with inadequate funding and other resources have hampered African scientists from carrying out rigorous research. In September 2012, over 100 scientists with expertise in cancer research in Africa met in London to discuss the challenges in performing high-quality research, and to formulate the next steps for building sustainable, comprehensive and multi-disciplinary programmes relevant to Africa. This was the first meeting among five major organizations: the African Organisation for Research and Training in Africa (AORTIC), the Africa Oxford Cancer Foundation (AfrOx), and the National Cancer Institutes (NCI) of Brazil, France and the USA. This article summarizes the discussions and recommendations of this meeting, including the next steps required to create sustainable and impactful research programmes that will enable evidenced-based cancer control approaches and planning at the local, regional and national levels.

  15. Stem cell concepts renew cancer research.

    Science.gov (United States)

    Dick, John E

    2008-12-15

    Although uncontrolled proliferation is a distinguishing property of a tumor as a whole, the individual cells that make up the tumor exhibit considerable variation in many properties, including morphology, proliferation kinetics, and the ability to initiate tumor growth in transplant assays. Understanding the molecular and cellular basis of this heterogeneity has important implications in the design of therapeutic strategies. The mechanistic basis of tumor heterogeneity has been uncertain; however, there is now strong evidence that cancer is a cellular hierarchy with cancer stem cells at the apex. This review provides a historical overview of the influence of hematology on the development of stem cell concepts and their linkage to cancer.

  16. Research Progress of Exosomes in Lung Cancer Diagnosis and Treatment

    Directory of Open Access Journals (Sweden)

    Hongbo ZOU

    2016-11-01

    Full Text Available As the leading cause of morbidity and cancer related-death worldwide, lung cancer has a serious threat to human health. Exosomes are nanoscale lipid membrane vesicles derived from multivesicles, which containing active biomolecules including proteins, lipids, nucleic acids and etc. Exosomes play important roles in lung cancer initiation and progression by promoting the formation of tumor microenvironment, enhancing tumor invasive and metastasis capability, leading to immunosuppression and resistance to chemoradiotherapy, and also have the application value in early diagnosis and treatment. This review summarizes the research progress of exosomes in tumor initiation and progression, and its roles in diagnosis and treatment of lung cancer.

  17. Nanotechnology Infrared Optics for Astronomy Missions

    Science.gov (United States)

    Smith, Howard A.; Frogel, Jay (Technical Monitor)

    2003-01-01

    The program "Nanotechnology Infrared Optics for Astronomy Missions" will design and develop new, nanotechnology techniques for infrared optical devices suitable for use in NASA space missions. The proposal combines expertise from the Smithsonian Astrophysical Observatory, the Naval Research Laboratory, the Goddard Space Flight Center, and the Physics Department at the Queen Mary and Westfield College in London, now relocated to the University of Cardiff, Cardiff, Wales. The method uses individually tailored metal grids and layered stacks of metal mesh grids, both inductive (freestanding) and capacitive (substrate-mounted), to produce various kinds of filters. The program has the following goals: 1) Model FIR filter properties using electric-circuit analogs and near-field, EM diffraction calculations. 2) Prototype fabrication of meshes on various substrates, with various materials, and of various dimensions. 3) Test filter prototypes and iterate with the modeling programs. 4) Travel to related sites, including trips to Washington, D.C. (location of NRL and GSFC), London (location of QMW), Cardiff, Wales, and Rome (location of ISO PMS project headquarters). 5) Produce ancillary science, including both publication of testing on mesh performance and infrared astronomical science.

  18. Antimicrobial applications of nanotechnology: methods and literature

    Directory of Open Access Journals (Sweden)

    Seil JT

    2012-06-01

    Full Text Available Justin T Seil, Thomas J WebsterLaboratory for Nanomedicine Research, School of Engineering, Brown University, Providence, RI, USAAbstract: The need for novel antibiotics comes from the relatively high incidence of bacterial infection and the growing resistance of bacteria to conventional antibiotics. Consequently, new methods for reducing bacteria activity (and associated infections are badly needed. Nanotechnology, the use of materials with dimensions on the atomic or molecular scale, has become increasingly utilized for medical applications and is of great interest as an approach to killing or reducing the activity of numerous microorganisms. While some natural antibacterial materials, such as zinc and silver, possess greater antibacterial properties as particle size is reduced into the nanometer regime (due to the increased surface to volume ratio of a given mass of particles, the physical structure of a nanoparticle itself and the way in which it interacts with and penetrates into bacteria appears to also provide unique bactericidal mechanisms. A variety of techniques to evaluate bacteria viability, each with unique advantages and disadvantages, has been established and must be understood in order to determine the effectiveness of nanoparticles (diameter ≤100 nm as antimicrobial agents. In addition to addressing those techniques, a review of select literature and a summary of bacteriostatic and bactericidal mechanisms are covered in this manuscript.Keywords: nanomaterial, nanoparticle, nanotechnology, bacteria, antibacterial, biofilm

  19. Breast Cancer Translational Research Center of Excellence

    Science.gov (United States)

    2015-09-01

    the standard of care for treating breast diseases and breast cancer. This approach integrates prevention , screening, diagnosis, treatment and...follow a healthy lifestyle ?” (submitted for publication clearance April 2015). Ellsworth RE, Mamula KA, Costantino NS, Deyarmin B, Kostyniak PJ, Chi...disorders. The project will continue utilizing a multidisciplinary approach as the standard of care for treating breast diseases and breast cancer. This

  20. Nanotechnological Basis for Advanced Sensors

    CERN Document Server

    Reithmaier, Johann Peter; Kulisch, Wilhelm; Popov, Cyril; Petkov, Plamen

    2011-01-01

    Bringing together experts from 15 countries, this book is based on the lectures and contributions of the NATO Advanced Study Institute on “Nanotechnological Basis for Advanced Sensors” held in Sozopol, Bulgaria, 30 May - 11 June, 2010. It gives a broad overview on this topic, and includes articles on: techniques for preparation and characterization of sensor materials; different types of nanoscaled materials for sensor applications, addressing both their structure (nanoparticles, nanocomposites, nanostructured films, etc.) and chemical nature (carbon-based, oxides, glasses, etc.); and on advanced sensors that exploit nanoscience and nanotechnology. In addition, the volume represents an interdisciplinary approach with authors coming from diverse fields such as physics, chemistry, engineering, materials science and biology. A particular strength of the book is its combination of longer papers, introducing the basic knowledge on a certain topic, and brief contributions highlighting special types of sensors a...

  1. National Needs Drivers for Nanotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Yonas, G.; Picraux, S.T.

    2000-10-09

    Societal needs related to demographics, resources, and human behavior will drive technological advances over the next 20 years. Nanotechnology is anticipated to be an important enabler of these advances, and thus maybe anticipated to have significant influence on new systems approaches to solving societal problems as well as on extending current science and technology-based applications. To examine the potential implications of nanotechnology a societal needs-driven approach is taken. Thus the methodology is to present the definition of the problem, and then examine system concepts, technology issues, and promising future directions. We approach the problem definition from a national and global security perspective and identify three key areas involving the condition of the planet, the human condition, and global security. In anticipating societal issues in the context of revolutionary technologies, such as maybe enabled by nanoscience, the importance of working on the entire life cycle of any technological solution is stressed.

  2. Nanotechnology: a slightly different history

    CERN Document Server

    Schulz, Peter

    2015-01-01

    Many introductory articles and books about nanotechnology have been written to disseminate this apparently new technology, which investigate and manipulates matter at dimension of a billionth of a meter. However, these texts show in general a common feature: there is very little about the origins of this multidisciplinary field. If anything is mentioned at all, a few dates, facts and characters are reinforced, which under the scrutiny of a careful historical digging do not sustain as really founding landmarks of the field. Nevertheless, in spite of these flaws, such historical narratives bring up important elements to understand and contextualize this human endeavor, as well as the corresponding dissemination among the public: would nanotechnology be a cultural imperative?

  3. Big Data-Led Cancer Research, Application, and Insights.

    Science.gov (United States)

    Brown, James A L; Ni Chonghaile, Triona; Matchett, Kyle B; Lynam-Lennon, Niamh; Kiely, Patrick A

    2016-11-01

    Insights distilled from integrating multiple big-data or "omic" datasets have revealed functional hierarchies of molecular networks driving tumorigenesis and modifiers of treatment response. Identifying these novel key regulatory and dysregulated elements is now informing personalized medicine. Crucially, although there are many advantages to this approach, there are several key considerations to address. Here, we examine how this big data-led approach is impacting many diverse areas of cancer research, through review of the key presentations given at the Irish Association for Cancer Research Meeting and importantly how the results may be applied to positively affect patient outcomes. Cancer Res; 76(21); 6167-70. ©2016 AACR.

  4. Textbook of Nanoscience and Nanotechnology

    CERN Document Server

    Murty, B S; Raj, Baldev; Rath, B B; Murday, James

    2013-01-01

    This book is meant to serve as a textbook for beginners in the field of nanoscience and nanotechnology. It can also be used as additional reading in this multifaceted area. It covers the entire spectrum of nanoscience and technology: introduction, terminology, historical perspectives of this domain of science, unique and widely differing properties, advances in the various synthesis, consolidation and characterization techniques, applications of nanoscience and technology and emerging materials and technologies.

  5. Gastric cancer research in Mexico: a public health priority.

    Science.gov (United States)

    Sampieri, Clara Luz; Mora, Mauricio

    2014-04-28

    This study aimed review studies conducted on Mexican patients diagnosed with gastric cancer and/or diseases associated with its development, in which at least one Mexican institute has participated, and to assess their contributions to the primary and secondary prevention of this disease. A search of the Medline database was conducted using the following keywords: gastric/stomach cancer, Mexico. Studies of the Mexican population were selected in which at least one Mexican Institute had participated and where the findings could support public policy proposals directed towards the primary or secondary prevention of gastric cancer. Of the 148 studies found in the Medline database, 100 were discarded and 48 were reviewed. According to the analysis presented, these studies were classified as: epidemiology of gastric cancer (5/48); risk factors and protectors relating to gastric cancer (9/48); relationship between Helicobacter pylori and pathologies associated with gastric cancer and the development of the disease (16/48); relationship between the Epstein-Barr virus and pathologies associated with gastric cancer and the development of the disease (3/48); molecular markers for the development of diseases associated with gastric cancer and gastric cancer (15/48). Mexico requires a program for the prevention and control of gastric cancer based on national health indicators. This should be produced by a multidisciplinary committee of experts who can propose actions that are relevant in the current national context. The few studies of gastric cancer conducted on the Mexican population in national institutes highlight the poor connection that currently exists between the scientific community and the health sector in terms of resolving this health issue. Public policies for health research should support projects with findings that can be translated into benefits for the population. This review serves to identify national research groups studying gastric cancer in the Mexican

  6. Gastric cancer research in Mexico: A public health priority

    Science.gov (United States)

    Sampieri, Clara Luz; Mora, Mauricio

    2014-01-01

    This study aimed review studies conducted on Mexican patients diagnosed with gastric cancer and/or diseases associated with its development, in which at least one Mexican institute has participated, and to assess their contributions to the primary and secondary prevention of this disease. A search of the Medline database was conducted using the following keywords: gastric/stomach cancer, Mexico. Studies of the Mexican population were selected in which at least one Mexican Institute had participated and where the findings could support public policy proposals directed towards the primary or secondary prevention of gastric cancer. Of the 148 studies found in the Medline database, 100 were discarded and 48 were reviewed. According to the analysis presented, these studies were classified as: epidemiology of gastric cancer (5/48); risk factors and protectors relating to gastric cancer (9/48); relationship between Helicobacter pylori and pathologies associated with gastric cancer and the development of the disease (16/48); relationship between the Epstein-Barr virus and pathologies associated with gastric cancer and the development of the disease (3/48); molecular markers for the development of diseases associated with gastric cancer and gastric cancer (15/48). Mexico requires a program for the prevention and control of gastric cancer based on national health indicators. This should be produced by a multidisciplinary committee of experts who can propose actions that are relevant in the current national context. The few studies of gastric cancer conducted on the Mexican population in national institutes highlight the poor connection that currently exists between the scientific community and the health sector in terms of resolving this health issue. Public policies for health research should support projects with findings that can be translated into benefits for the population. This review serves to identify national research groups studying gastric cancer in the Mexican

  7. Identification of high independent prognostic value of nanotechnology based circulating tumor cell enumeration in first-line chemotherapy for metastatic breast cancer patients.

    Science.gov (United States)

    Liu, Xiao-Ran; Shao, Bin; Peng, Jia-Xi; Li, Hui-Ping; Yang, Yan-Lian; Kong, Wei-Yao; Song, Guo-Hong; Jiang, Han-Fang; Liang, Xu; Yan, Ying

    2017-04-01

    Enumeration of circulating tumor cells (CTCs) is a promising tool in the management of metastatic breast cancer (MBC). This study investigated the capturing efficiency and prognostic value of our previously reported peptide-based nanomagnetic CTC isolation system (Pep@MNPs). We counted CTCs in blood samples taken at baseline (n = 102) and later at patients' first clinical evaluation after starting firstline chemotherapy (n = 72) in a cohort of women treated for MBC. Their median follow-up was 16.3 months (range: 9.0-31.0 months). The CTC detection rate was 69.6 % for the baseline samples. Patients with ≤2 CTC/2 ml at baseline had longer median progression-free survival (PFS) than did those with >2 CTC/2 ml (17.0 months vs. 8.0 months; P = 0.002). Patients with ≤2 CTC/2 ml both at baseline and first clinical evaluation had longest PFS (18.2 months) among all patient groups (P = 0.004). Particularly, among patients with stable disease (SD; per imaging evaluation) our assay could identify those with longer PFS (P 2 CTC/2 ml at baseline were also significantly more likely to suffer liver metastasis (P = 0.010). This study confirmed the prognostic value of Pep@MNPs assays for MBC patients who undergo firstline chemotherapy, and offered extra stratification regarding PFS for patients with SD, and a possible indicator for patients at risk for liver metastasis.

  8. Improving Peptide Applications Using Nanotechnology.

    Science.gov (United States)

    Narayanaswamy, Radhika; Wang, Tao; Torchilin, Vladimir P

    2016-01-01

    Peptides are being successfully used in various fields including therapy and drug delivery. With advancement in nanotechnology and targeted delivery carrier systems, suitable modification of peptides has enabled achievement of many desirable goals over-riding some of the major disadvantages associated with the delivery of peptides in vivo. Conjugation or physical encapsulation of peptides to various nanocarriers, such as liposomes, micelles and solid-lipid nanoparticles, has improved their in vivo performance multi-fold. The amenability of peptides to modification in chemistry and functionalization with suitable nanocarriers are very relevant aspects in their use and have led to the use of 'smart' nanoparticles with suitable linker chemistries that favor peptide targeting or release at the desired sites, minimizing off-target effects. This review focuses on how nanotechnology has been used to improve the number of peptide applications. The paper also focuses on the chemistry behind peptide conjugation to nanocarriers, the commonly employed linker chemistries and the several improvements that have already been achieved in the areas of peptide use with the help of nanotechnology.

  9. Applications of nanotechnology in dermatology.

    Science.gov (United States)

    DeLouise, Lisa A

    2012-03-01

    What are nanoparticles and why are they important in dermatology? These questions are addressed by highlighting recent developments in the nanotechnology field that have increased the potential for intentional and unintentional nanoparticle skin exposure. The role of environmental factors in the interaction of nanoparticles with skin and the potential mechanisms by which nanoparticles may influence skin response to environmental factors are discussed. Trends emerging from recent literature suggest that the positive benefit of engineered nanoparticles for use in cosmetics and as tools for understanding skin biology and curing skin disease outweigh potential toxicity concerns. Discoveries reported in this journal are highlighted. This review begins with a general introduction to the field of nanotechnology and nanomedicine. This is followed by a discussion of the current state of understanding of nanoparticle skin penetration and their use in three therapeutic applications. Challenges that must be overcome to derive clinical benefit from the application of nanotechnology to skin are discussed last, providing perspective on the significant opportunity that exists for future studies in investigative dermatology.

  10. Virginia Tech part of $14 million National Science Foundation nanotechnology grant

    OpenAIRE

    Doss, Catherine

    2008-01-01

    Researchers from geosciences and civil and environmental engineering at Virginia Tech are part of a consortium of four principal universities and five other schools awarded a multi-million dollar grant to study nanotechnology and the environment.

  11. A survey of etiologic hypotheses among testicular cancer researchers

    DEFF Research Database (Denmark)

    Stang, A; Trabert, B; Rusner, C

    2015-01-01

    the plausibility of the suggested etiologic hypotheses on a scale of 1 (very implausible) to 10 (very plausible). This report describes the methodology of the survey, the score distributions by individual hypotheses, hypothesis group, and the participants' major research fields, and discuss the hypotheses......Basic research results can provide new ideas and hypotheses to be examined in epidemiological studies. We conducted a survey among testicular cancer researchers on hypotheses concerning the etiology of this malignancy. All researchers on the mailing list of Copenhagen Testis Cancer Workshops...

  12. A comparison of cancer burden and research spending reveals discrepancies in the distribution of research funding

    Directory of Open Access Journals (Sweden)

    Carter Ashley JR

    2012-07-01

    Full Text Available Abstract Background Ideally, the distribution of research funding for different types of cancer should be equitable with respect to the societal burden each type of cancer imposes. These burdens can be estimated in a variety of ways; “Years of Life Lost” (YLL measures the severity of death in regard to the age it occurs, "Disability-Adjusted Life-Years" (DALY estimates the effects of non-lethal disabilities incurred by disease and economic metrics focus on the losses to tax revenue, productivity or direct medical expenses. We compared research funding from the National Cancer Institute (NCI to a variety of burden metrics for the most common types of cancer to identify mismatches between spending and societal burden. Methods Research funding levels were obtained from the NCI website and information for societal health and economic burdens were collected from government databases and published reports. We calculated the funding levels per unit burden for a wide range of different cancers and burden metrics and compared these values to identify discrepancies. Results Our analysis reveals a considerable mismatch between funding levels and burden. Some cancers are funded at levels far higher than their relative burden suggests (breast cancer, prostate cancer, and leukemia while other cancers appear underfunded (bladder, esophageal, liver, oral, pancreatic, stomach, and uterine cancers. Conclusions These discrepancies indicate that an improved method of health care research funding allocation should be investigated to better match funding levels to societal burden.

  13. Single molecules and nanotechnology

    CERN Document Server

    Vogel, Horst

    2007-01-01

    This book focuses on recent advances in the rapidly evolving field of single molecule research. These advances are of importance for the investigation of biopolymers and cellular biochemical reactions, and are essential to the development of quantitative biology. Written by leading experts in the field, the articles cover a broad range of topics, including: quantum photonics of organic dyes and inorganic nanoparticles their use in detecting properties of single molecules the monitoring of single molecule (enzymatic) reactions single protein (un)folding in nanometer-sized confined volumes the dynamics of molecular interactions in biological cells The book is written for advanced students and scientists who wish to survey the concepts, techniques and results of single molecule research and assess them for their own scientific activities.

  14. Photonanomedicine: a convergence of photodynamic therapy and nanotechnology

    Science.gov (United States)

    Obaid, Girgis; Broekgaarden, Mans; Bulin, Anne-Laure; Huang, Huang-Chiao; Kuriakose, Jerrin; Liu, Joyce; Hasan, Tayyaba

    2016-06-01

    As clinical nanomedicine has emerged over the past two decades, phototherapeutic advancements using nanotechnology have also evolved and impacted disease management. Because of unique features attributable to the light activation process of molecules, photonanomedicine (PNM) holds significant promise as a personalized, image-guided therapeutic approach for cancer and non-cancer pathologies. The convergence of advanced photochemical therapies such as photodynamic therapy (PDT) and imaging modalities with sophisticated nanotechnologies is enabling the ongoing evolution of fundamental PNM formulations, such as Visudyne®, into progressive forward-looking platforms that integrate theranostics (therapeutics and diagnostics), molecular selectivity, the spatiotemporally controlled release of synergistic therapeutics, along with regulated, sustained drug dosing. Considering that the envisioned goal of these integrated platforms is proving to be realistic, this review will discuss how PNM has evolved over the years as a preclinical and clinical amalgamation of nanotechnology with PDT. The encouraging investigations that emphasize the potent synergy between photochemistry and nanotherapeutics, in addition to the growing realization of the value of these multi-faceted theranostic nanoplatforms, will assist in driving PNM formulations into mainstream oncological clinical practice as a necessary tool in the medical armamentarium.

  15. Nutrigenetics in cancer research--folate metabolism and colorectal cancer.

    Science.gov (United States)

    Ulrich, Cornelia M

    2005-11-01

    The B vitamin folate is essential for one-carbon transfer reactions, including those related to the methylation of DNA or other substrates and nucleotide synthesis. Epidemiologic and experimental studies implicate low-folate intakes in elevated risk of colorectal neoplasia and suggest that biologic mechanisms underlying this relation include disturbances in DNA methylation patterns or adverse effects on DNA synthesis and repair. With the completion of the Human Genome Project, a vast amount of data on inherited genetic variability has become available. This genetic information can be used in studies of molecular epidemiology to provide information on multiple aspects of folate metabolism. First, studies linking polymorphisms in folate metabolism to an altered risk of cancer provide evidence for a causal link between this pathway and colorectal carcinogenesis. Second, studies on genetic characteristics can help clarify whether certain individuals may benefit from higher or lower intakes of folate or nutrients relevant to folate metabolism. Third, studies on genetic polymorphisms can generate hypotheses regarding possible biologic mechanisms that connect this pathway to carcinogenesis. Last, genetic variability in folate metabolism may predict survival after a cancer diagnosis, possibly via pharmacogenetic effects. To solve the puzzle of the folate-cancer relation, a transdisciplinary approach is needed that integrates knowledge from epidemiology, clinical studies, experimental nutrition, and mathematical modeling. This review illustrates knowledge that can be gained from molecular epidemiology in the context of nutrigenetics, and the questions that this approach can answer or raise.

  16. Brain Cancer in Workers Employed at a Laboratory Research Facility.

    Directory of Open Access Journals (Sweden)

    James J Collins

    Full Text Available An earlier study of research facility workers found more brain cancer deaths than expected, but no workplace exposures were implicated.Adding four additional years of vital-status follow-up, we reassessed the risk of death from brain cancer in the same workforce, including 5,284 workers employed between 1963, when the facility opened, and 2007. We compared the work histories of the brain cancer decedents in relationship to when they died and their ages at death.As in most other studies of laboratory and research workers, we found low rates of total mortality, total cancers, accidents, suicides, and chronic conditions such as heart disease and diabetes. We found no new brain cancer deaths in the four years of additional follow-up. Our best estimate of the brain cancer standardized mortality ratio (SMR was 1.32 (95% confidence interval [95% CI] 0.66-2.37, but the SMR might have been as high as 1.69. Deaths from benign brain tumors and other non-malignant diseases of the nervous system were at or below expected levels.With the addition of four more years of follow-up and in the absence of any new brain cancers, the updated estimate of the risk of brain cancer death is smaller than in the original study. There was no consistent pattern among the work histories of decedents that indicated a common causative exposure.

  17. Advances in cancer research. Volume 41

    Energy Technology Data Exchange (ETDEWEB)

    Klein, G.; Weinhouse, S.

    1984-01-01

    This book contains seven chapters. They are: The Epidemiology of Diet and Cancer; Molecular Aspects of Immunoglobin Expression by Human B Cell Leukemias and Lymphomas; Mouse Mammary Tumor Virus: Transcriptional Control and Involvement in Tumorigenesis; Dominant Susceptibility to Cancer in Man; Multiple Myeloma; Waldenstreom's Macroglobulinemia, and Benign Monoclonal Gammopathy: Characteristics of the B Cell Clone, Immunoregulatory Cell Populations and Clinical Implications; Idiotype Network Interactions in Tumor Immunity; and Chromosomal Location of Immunoglobulin Genes: Partial Mapping of these Genes in the Rabbit and Comparison with Ig Genes Carrying Chromosomes of Man and Mouse.

  18. Pancreatic Cancer: Updates on Translational Research and Future Applications

    Directory of Open Access Journals (Sweden)

    Evangelos G Sarris

    2013-03-01

    Full Text Available Pancreatic cancer is one of the most lethal malignancies with a mortality rate almost equal to its incidence. It is ranked as the fourth leading cause of cancer-related deaths in the United States, and despite intensive basic and clinical research over the last few years, the survival benefit for the majority of patients with pancreatic cancer is still disappointing. Due to the absence of specific symptoms and the lack of early detection tests, pancreatic cancer is usually diagnosed at an advanced inoperrable stage and palliative chemotherapy with the purine analogue gemcitabine in combination with the targeted agent erlotinib, remains the mainstay method in the management of these patients. Therefore, there is an imperative need for new findings in the translational research field with prognostic, predictive and therapeutic value. In this paper we summarize five most interesting research abstracts as presented at the 2013 American Society of Clinical Oncology (ASCO Gastrointestinal Cancers Symposium. In particular, we focus on Abstract #141 which investigates the interaction between liver and pancreatic organ damage in patients with pancreatic cancer and the potential contribution of the patatin-like phospholipase domain containing 3 (PNPLA3 gene variation in pancreatic cancer development and on Abstract #149, in which, the prognostic and predictive role of SWI/SNF complex, a chromatin-remodeling complex, is examined. The key role of pharmacogenomics, in terms of predicting response and resistance to chemotherapy in pancreatic cancer patients, is analyzed in Abstract #142 and the contribution of circulating tumor cell detection in the early diagnosis of pancreatic cancer, allowing the avoidance of more invasive procedures like EUS-FNA, is discussed in Abstract #157. Lastly, in Abstract #164, the diagnostic utility of YKL-40 and IL-6 in pancreatic cancer patients is investigated.

  19. A review of nanotechnology with an emphasis on Nanoplex

    Directory of Open Access Journals (Sweden)

    Rupali Nanasaheb Kadam

    2015-06-01

    Full Text Available The use of nanotechnology based on the development and fabrication of nanostructures is one approach that has been employed to overcome the challenges involved with conventional drug delivery systems. Formulating Nanoplex is the new trend in nanotechnology. A nanoplex is a complex formed by a drug nanoparticle with an oppositely charged polyelectrolyte. Both cationic and anionic drugs form complexes with oppositely charged polyelectrolytes. Compared with other nanostructures, the yield of Nanoplex is greater and the complexation efficiency is better. Nanoplex are also easier to prepare. Nanoplex formulation is characterized through the production yield, complexation efficiency, drug loading, particle size and zeta potential using scanning electron microscopy, differential scanning calorimetry, X-ray diffraction and dialysis studies. Nanoplex have wide-ranging applications in different fields such as cancer therapy, gene drug delivery, drug delivery to the brain and protein and peptide drug delivery.

  20. Epigenetic research in cancer epidemiology: trends, opportunities, and challenges.

    Science.gov (United States)

    Verma, Mukesh; Rogers, Scott; Divi, Rao L; Schully, Sheri D; Nelson, Stefanie; Joseph Su, L; Ross, Sharon A; Pilch, Susan; Winn, Deborah M; Khoury, Muin J

    2014-02-01

    Epigenetics is emerging as an important field in cancer epidemiology that promises to provide insights into gene regulation and facilitate cancer control throughout the cancer care continuum. Increasingly, investigators are incorporating epigenetic analysis into the studies of etiology and outcomes. To understand current progress and trends in the inclusion of epigenetics in cancer epidemiology, we evaluated the published literature and the National Cancer Institute (NCI)-supported research grant awards in this field to identify trends in epigenetics research. We present a summary of the epidemiologic studies in NCI's grant portfolio (from January 2005 through December 2012) and in the scientific literature published during the same period, irrespective of support from the NCI. Blood cells and tumor tissue were the most commonly used biospecimens in these studies, although buccal cells, cervical cells, sputum, and stool samples were also used. DNA methylation profiling was the focus of the majority of studies, but several studies also measured microRNA profiles. We illustrate here the current status of epidemiologic studies that are evaluating epigenetic changes in large populations. The incorporation of epigenomic assessments in cancer epidemiology studies has and is likely to continue to provide important insights into the field of cancer research.