WorldWideScience

Sample records for cancer mutation signatures

  1. Signatures of mutational processes in human cancer

    NARCIS (Netherlands)

    Alexandrov, L.B.; Nik-Zainal, S.; Wedge, D.C.; Aparicio, S.A.; Behjati, S.; Biankin, A.V.; Bignell, G.R.; Bolli, N.; Borg, A.; Borresen-Dale, A.L.; Boyault, S.; Burkhardt, B.; Butler, A.P.; Caldas, C.; Davies, H.R.; Desmedt, C.; Eils, R.; Eyfjord, J.E.; Foekens, J.A.; Greaves, M.; Hosoda, F.; Hutter, B.; Ilicic, T.; Imbeaud, S.; Imielinsk, M.; Jager, N.; Jones, D.T.; Knappskog, S.; Kool, M.; Lakhani, S.R.; Lopez-Otin, C.; Martin, S.; Munshi, N.C.; Nakamura, H.; Northcott, P.A.; Pajic, M.; Papaemmanuil, E.; Paradiso, A.; Pearson, J.V.; Puente, X.S.; Raine, K.; Ramakrishna, M.; Richardson, A.L.; Richter, J.; Rosenstiel, P.; Schlesner, M.; Schumacher, T.N.; Span, P.N.; Teague, J.W.; Totoki, Y.; Tutt, A.N.; Valdes-Mas, R.; Buuren, M.M. van; Veer, L. van 't; Vincent-Salomon, A.; Waddell, N.; Yates, L.R.; Zucman-Rossi, J.; Futreal, P.A.; McDermott, U.; Lichter, P.; Meyerson, M.; Grimmond, S.M.; Siebert, R.; Campo, E.; Shibata, T.; Pfister, S.M.; Campbell, P.J.; Stratton, M.R.; Schlooz-Vries, M.S.; Tol, J.J. van; Laarhoven, H.W. van; Sweep, F.C.; Bult, P.; et al.,

    2013-01-01

    All cancers are caused by somatic mutations; however, understanding of the biological processes generating these mutations is limited. The catalogue of somatic mutations from a cancer genome bears the signatures of the mutational processes that have been operative. Here we analysed 4,938,362

  2. A mutational signature reveals alterations underlying deficient homologous recombination repair in breast cancer.

    Science.gov (United States)

    Polak, Paz; Kim, Jaegil; Braunstein, Lior Z; Karlic, Rosa; Haradhavala, Nicholas J; Tiao, Grace; Rosebrock, Daniel; Livitz, Dimitri; Kübler, Kirsten; Mouw, Kent W; Kamburov, Atanas; Maruvka, Yosef E; Leshchiner, Ignaty; Lander, Eric S; Golub, Todd R; Zick, Aviad; Orthwein, Alexandre; Lawrence, Michael S; Batra, Rajbir N; Caldas, Carlos; Haber, Daniel A; Laird, Peter W; Shen, Hui; Ellisen, Leif W; D'Andrea, Alan D; Chanock, Stephen J; Foulkes, William D; Getz, Gad

    2017-10-01

    Biallelic inactivation of BRCA1 or BRCA2 is associated with a pattern of genome-wide mutations known as signature 3. By analyzing ∼1,000 breast cancer samples, we confirmed this association and established that germline nonsense and frameshift variants in PALB2, but not in ATM or CHEK2, can also give rise to the same signature. We were able to accurately classify missense BRCA1 or BRCA2 variants known to impair homologous recombination (HR) on the basis of this signature. Finally, we show that epigenetic silencing of RAD51C and BRCA1 by promoter methylation is strongly associated with signature 3 and, in our data set, was highly enriched in basal-like breast cancers in young individuals of African descent.

  3. DNA polymerase η mutational signatures are found in a variety of different types of cancer.

    Science.gov (United States)

    Rogozin, Igor B; Goncearenco, Alexander; Lada, Artem G; De, Subhajyoti; Yurchenko, Vyacheslav; Nudelman, German; Panchenko, Anna R; Cooper, David N; Pavlov, Youri I

    2018-01-01

    DNA polymerase (pol) η is a specialized error-prone polymerase with at least two quite different and contrasting cellular roles: to mitigate the genetic consequences of solar UV irradiation, and promote somatic hypermutation in the variable regions of immunoglobulin genes. Misregulation and mistargeting of pol η can compromise genome integrity. We explored whether the mutational signature of pol η could be found in datasets of human somatic mutations derived from normal and cancer cells. A substantial excess of single and tandem somatic mutations within known pol η mutable motifs was noted in skin cancer as well as in many other types of human cancer, suggesting that somatic mutations in A:T bases generated by DNA polymerase η are a common feature of tumorigenesis. Another peculiarity of pol ηmutational signatures, mutations in YCG motifs, led us to speculate that error-prone DNA synthesis opposite methylated CpG dinucleotides by misregulated pol η in tumors might constitute an additional mechanism of cytosine demethylation in this hypermutable dinucleotide.

  4. Multifunctional imaging signature for V-KI-RAS2 Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations in colorectal cancer.

    Science.gov (United States)

    Miles, Kenneth A; Ganeshan, Balaji; Rodriguez-Justo, Manuel; Goh, Vicky J; Ziauddin, Zia; Engledow, Alec; Meagher, Marie; Endozo, Raymondo; Taylor, Stuart A; Halligan, Stephen; Ell, Peter J; Groves, Ashley M

    2014-03-01

    This study explores the potential for multifunctional imaging to provide a signature for V-KI-RAS2 Kirsten rat sarcoma viral oncogene homolog (KRAS) gene mutations in colorectal cancer. This prospective study approved by the institutional review board comprised 33 patients undergoing PET/CT before surgery for proven primary colorectal cancer. Tumor tissue was examined histologically for presence of the KRAS mutations and for expression of hypoxia-inducible factor-1 (HIF-1) and minichromosome maintenance protein 2 (mcm2). The following imaging parameters were derived for each tumor: (18)F-FDG uptake ((18)F-FDG maximum standardized uptake value [SUVmax]), CT texture (expressed as mean of positive pixels [MPP]), and blood flow measured by dynamic contrast-enhanced CT. A recursive decision tree was developed in which the imaging investigations were applied sequentially to identify tumors with KRAS mutations. Monte Carlo analysis provided mean values and 95% confidence intervals for sensitivity, specificity, and accuracy. The final decision tree comprised 4 decision nodes and 5 terminal nodes, 2 of which identified KRAS mutants. The true-positive rate, false-positive rate, and accuracy (95% confidence intervals) of the decision tree were 82.4% (63.9%-93.9%), 0% (0%-10.4%), and 90.1% (79.2%-96.0%), respectively. KRAS mutants with high (18)F-FDG SUVmax and low MPP showed greater frequency of HIF-1 expression (P = 0.032). KRAS mutants with low (18)F-FDG SUV(max), high MPP, and high blood flow expressed mcm2 (P = 0.036). Multifunctional imaging with PET/CT and recursive decision-tree analysis to combine measurements of tumor (18)F-FDG uptake, CT texture, and perfusion has the potential to identify imaging signatures for colorectal cancers with KRAS mutations exhibiting hypoxic or proliferative phenotypes.

  5. Genetic Mutation and Exosome Signature of Human Papilloma Virus Associated Oropharyngeal Cancer

    Science.gov (United States)

    Kannan, Anbarasu; Hertweck, Kate L.; Philley, Julie V.; Wells, Robert B.; Dasgupta, Santanu

    2017-01-01

    Human papilloma virus-16 (HPV-16) associated oropharyngeal cancer (HPVOPC) is increasing alarmingly in the United States. We performed whole genome sequencing of a 44 year old, male HPVOPC subject diagnosed with moderately differentiated tonsillar carcinoma. We identified new somatic mutation in MUC16 (A.k.a. CA-125), MUC12, MUC4, MUC6, MUC2, SIRPA, HLA-DRB1, HLA-A and HLA-B molecules. Increased protein expression of MUC16, SIRPA and decreased expression of HLA-DRB1 was further demonstrated in this HPVOPC subject and an additional set of 15 HPVOPC cases. Copy number gain (3 copies) was also observed for MUC2, MUC4, MUC6 and SIRPA. Enhanced expression of MUC16, SIRPA and HPV-16-E7 protein was detectable in the circulating exosomes of numerous HPVOPC subjects. Treatment of non-tumorigenic mammary epithelial cells with exosomes derived from aggressive HPVOPC cells harboring MUC16, SIRPA and HPV-16-E7 proteins augmented invasion and induced epithelial to mesenchymal transition (EMT) accompanied by an increased expression ratio of the EMT markers Vimentin/E-cadherin. Exosome based screening of key HPVOPC associated molecules could be beneficial for early cancer diagnosis, monitoring and surveillance. PMID:28383029

  6. Mutation Clusters from Cancer Exome.

    Science.gov (United States)

    Kakushadze, Zura; Yu, Willie

    2017-08-15

    We apply our statistically deterministic machine learning/clustering algorithm *K-means (recently developed in https://ssrn.com/abstract=2908286) to 10,656 published exome samples for 32 cancer types. A majority of cancer types exhibit a mutation clustering structure. Our results are in-sample stable. They are also out-of-sample stable when applied to 1389 published genome samples across 14 cancer types. In contrast, we find in- and out-of-sample instabilities in cancer signatures extracted from exome samples via nonnegative matrix factorization (NMF), a computationally-costly and non-deterministic method. Extracting stable mutation structures from exome data could have important implications for speed and cost, which are critical for early-stage cancer diagnostics, such as novel blood-test methods currently in development.

  7. Genetic Mutations in Cancer

    Science.gov (United States)

    Many different types of genetic mutations are found in cancer cells. This infographic outlines certain types of alterations that are present in cancer, such as missense, nonsense, frameshift, and chromosome rearrangements.

  8. Genome-scale mutational signatures of aflatoxin in cells, mice, and human tumors

    Science.gov (United States)

    Huang, Mi Ni; Yu, Willie; Teoh, Wei Wei; Ardin, Maude; Jusakul, Apinya; Ng, Alvin Wei Tian; Boot, Arnoud; Abedi-Ardekani, Behnoush; Villar, Stephanie; Myint, Swe Swe; Othman, Rashidah; Poon, Song Ling; Heguy, Adriana; Olivier, Magali; Hollstein, Monica; Tan, Patrick; Teh, Bin Tean; Sabapathy, Kanaga; Zavadil, Jiri; Rozen, Steven G.

    2017-01-01

    Aflatoxin B1 (AFB1) is a mutagen and IARC (International Agency for Research on Cancer) Group 1 carcinogen that causes hepatocellular carcinoma (HCC). Here, we present the first whole-genome data on the mutational signatures of AFB1 exposure from a total of >40,000 mutations in four experimental systems: two different human cell lines, in liver tumors in wild-type mice, and in mice that carried a hepatitis B surface antigen transgene—this to model the multiplicative effects of aflatoxin exposure and hepatitis B in causing HCC. AFB1 mutational signatures from all four experimental systems were remarkably similar. We integrated the experimental mutational signatures with data from newly sequenced HCCs from Qidong County, China, a region of well-studied aflatoxin exposure. This indicated that COSMIC mutational signature 24, previously hypothesized to stem from aflatoxin exposure, indeed likely represents AFB1 exposure, possibly combined with other exposures. Among published somatic mutation data, we found evidence of AFB1 exposure in 0.7% of HCCs treated in North America, 1% of HCCs from Japan, but 16% of HCCs from Hong Kong. Thus, aflatoxin exposure apparently remains a substantial public health issue in some areas. This aspect of our study exemplifies the promise of future widespread resequencing of tumor genomes in providing new insights into the contribution of mutagenic exposures to cancer incidence. PMID:28739859

  9. Gene expression signatures for colorectal cancer microsatellite status and HNPCC

    DEFF Research Database (Denmark)

    Kruhøffer, M; Jensen, J L; Laiho, P

    2005-01-01

    The majority of microsatellite instable (MSI) colorectal cancers are sporadic, but a subset belongs to the syndrome hereditary non-polyposis colorectal cancer (HNPCC). Microsatellite instability is caused by dysfunction of the mismatch repair (MMR) system that leads to a mutator phenotype, and MSI...... of 101 stage II and III colorectal cancers (34 MSI, 67 microsatellite stable (MSS)) using high-density oligonucleotide microarrays. From these data, we constructed a nine-gene signature capable of separating the mismatch repair proficient and deficient tumours. Subsequently, we demonstrated...... is correlated to prognosis and response to chemotherapy. Gene expression signatures as predictive markers are being developed for many cancers, and the identification of a signature for MMR deficiency would be of interest both clinically and biologically. To address this issue, we profiled the gene expression...

  10. Distinct mutational signatures characterize concurrent loss of polymerase proofreading and mismatch repair.

    Science.gov (United States)

    Haradhvala, N J; Kim, J; Maruvka, Y E; Polak, P; Rosebrock, D; Livitz, D; Hess, J M; Leshchiner, I; Kamburov, A; Mouw, K W; Lawrence, M S; Getz, G

    2018-05-01

    Fidelity of DNA replication is maintained using polymerase proofreading and the mismatch repair pathway. Tumors with loss of function of either mechanism have elevated mutation rates with characteristic mutational signatures. Here we report that tumors with concurrent loss of both polymerase proofreading and mismatch repair function have mutational patterns that are not a simple sum of the signatures of the individual alterations, but correspond to distinct, previously unexplained signatures: COSMIC database signatures 14 and 20. We then demonstrate that in all five cases in which the chronological order of events could be determined, polymerase epsilon proofreading alterations precede the defect in mismatch repair. Overall, we illustrate that multiple distinct mutational signatures can result from different combinations of a smaller number of mutational processes (of either damage or repair), which can influence the interpretation and discovery of mutational signatures.

  11. Molecular characterization of circulating colorectal tumor cells defines genetic signatures for individualized cancer care

    Science.gov (United States)

    Kong, Say Li; Liu, Xingliang; Suhaimi, Nur-Afidah Mohamed; Koh, Kenneth Jia Hao; Hu, Min; Lee, Daniel Yoke San; Cima, Igor; Phyo, Wai Min; Lee, Esther Xing Wei; Tai, Joyce A.; Foong, Yu Miin; Vo, Jess Honganh; Koh, Poh Koon; Zhang, Tong; Ying, Jackie Y.; Lim, Bing; Tan, Min-Han; Hillmer, Axel M.

    2017-01-01

    Studies on circulating tumor cells (CTCs) have largely focused on platform development and CTC enumeration rather than on the genomic characterization of CTCs. To address this, we performed targeted sequencing of CTCs of colorectal cancer patients and compared the mutations with the matched primary tumors. We collected preoperative blood and matched primary tumor samples from 48 colorectal cancer patients. CTCs were isolated using a label-free microfiltration device on a silicon microsieve. Upon whole genome amplification, we performed amplicon-based targeted sequencing on a panel of 39 druggable and frequently mutated genes on both CTCs and fresh-frozen tumor samples. We developed an analysis pipeline to minimize false-positive detection of somatic mutations in amplified DNA. In 60% of the CTC-enriched blood samples, we detected primary tumor matching mutations. We found a significant positive correlation between the allele frequencies of somatic mutations detected in CTCs and abnormal CEA serum level. Strikingly, we found driver mutations and amplifications in cancer and druggable genes such as APC, KRAS, TP53, ERBB3, FBXW7 and ERBB2. In addition, we found that CTCs carried mutation signatures that resembled the signatures of their primary tumors. Cumulatively, our study defined genetic signatures and somatic mutation frequency of colorectal CTCs. The identification of druggable mutations in CTCs of preoperative colorectal cancer patients could lead to more timely and focused therapeutic interventions. PMID:28978093

  12. Can specific transcriptional regulators assemble a universal cancer signature?

    Science.gov (United States)

    Roy, Janine; Isik, Zerrin; Pilarsky, Christian; Schroeder, Michael

    2013-10-01

    Recently, there is a lot of interest in using biomarker signatures derived from gene expression data to predict cancer progression. We assembled signatures of 25 published datasets covering 13 types of cancers. How do these signatures compare with each other? On one hand signatures answering the same biological question should overlap, whereas signatures predicting different cancer types should differ. On the other hand, there could also be a Universal Cancer Signature that is predictive independently of the cancer type. Initially, we generate signatures for all datasets using classical approaches such as t-test and fold change and then, we explore signatures resulting from a network-based method, that applies the random surfer model of Google's PageRank algorithm. We show that the signatures as published by the authors and the signatures generated with classical methods do not overlap - not even for the same cancer type - whereas the network-based signatures strongly overlap. Selecting 10 out of 37 universal cancer genes gives the optimal prediction for all cancers thus taking a first step towards a Universal Cancer Signature. We furthermore analyze and discuss the involved genes in terms of the Hallmarks of cancer and in particular single out SP1, JUN/FOS and NFKB1 and examine their specific role in cancer progression.

  13. Hunting for the Signatures of Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Giorgi, Elena Edi [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-04-26

    This prompts the ambitious question: can we find common mutations across individuals with the same cancer? And how many of these mutational patterns that are common across individuals can we attribute to particular exposures or biological processes? Distinguished postdoctoral researcher Ludmil Alexandrov, from the Los Alamos National Laboratory, has been working on this problem since his he was a PhD student at the Wellcome Trust Sanger Institute.

  14. Combining Gene Signatures Improves Prediction of Breast Cancer Survival

    Science.gov (United States)

    Zhao, Xi; Naume, Bjørn; Langerød, Anita; Frigessi, Arnoldo; Kristensen, Vessela N.; Børresen-Dale, Anne-Lise; Lingjærde, Ole Christian

    2011-01-01

    Background Several gene sets for prediction of breast cancer survival have been derived from whole-genome mRNA expression profiles. Here, we develop a statistical framework to explore whether combination of the information from such sets may improve prediction of recurrence and breast cancer specific death in early-stage breast cancers. Microarray data from two clinically similar cohorts of breast cancer patients are used as training (n = 123) and test set (n = 81), respectively. Gene sets from eleven previously published gene signatures are included in the study. Principal Findings To investigate the relationship between breast cancer survival and gene expression on a particular gene set, a Cox proportional hazards model is applied using partial likelihood regression with an L2 penalty to avoid overfitting and using cross-validation to determine the penalty weight. The fitted models are applied to an independent test set to obtain a predicted risk for each individual and each gene set. Hierarchical clustering of the test individuals on the basis of the vector of predicted risks results in two clusters with distinct clinical characteristics in terms of the distribution of molecular subtypes, ER, PR status, TP53 mutation status and histological grade category, and associated with significantly different survival probabilities (recurrence: p = 0.005; breast cancer death: p = 0.014). Finally, principal components analysis of the gene signatures is used to derive combined predictors used to fit a new Cox model. This model classifies test individuals into two risk groups with distinct survival characteristics (recurrence: p = 0.003; breast cancer death: p = 0.001). The latter classifier outperforms all the individual gene signatures, as well as Cox models based on traditional clinical parameters and the Adjuvant! Online for survival prediction. Conclusion Combining the predictive strength of multiple gene signatures improves prediction of breast

  15. Combining gene signatures improves prediction of breast cancer survival.

    Directory of Open Access Journals (Sweden)

    Xi Zhao

    Full Text Available BACKGROUND: Several gene sets for prediction of breast cancer survival have been derived from whole-genome mRNA expression profiles. Here, we develop a statistical framework to explore whether combination of the information from such sets may improve prediction of recurrence and breast cancer specific death in early-stage breast cancers. Microarray data from two clinically similar cohorts of breast cancer patients are used as training (n = 123 and test set (n = 81, respectively. Gene sets from eleven previously published gene signatures are included in the study. PRINCIPAL FINDINGS: To investigate the relationship between breast cancer survival and gene expression on a particular gene set, a Cox proportional hazards model is applied using partial likelihood regression with an L2 penalty to avoid overfitting and using cross-validation to determine the penalty weight. The fitted models are applied to an independent test set to obtain a predicted risk for each individual and each gene set. Hierarchical clustering of the test individuals on the basis of the vector of predicted risks results in two clusters with distinct clinical characteristics in terms of the distribution of molecular subtypes, ER, PR status, TP53 mutation status and histological grade category, and associated with significantly different survival probabilities (recurrence: p = 0.005; breast cancer death: p = 0.014. Finally, principal components analysis of the gene signatures is used to derive combined predictors used to fit a new Cox model. This model classifies test individuals into two risk groups with distinct survival characteristics (recurrence: p = 0.003; breast cancer death: p = 0.001. The latter classifier outperforms all the individual gene signatures, as well as Cox models based on traditional clinical parameters and the Adjuvant! Online for survival prediction. CONCLUSION: Combining the predictive strength of multiple gene signatures improves

  16. Mitochondrial mutations drive prostate cancer aggression

    DEFF Research Database (Denmark)

    Hopkins, Julia F.; Sabelnykova, Veronica Y.; Weischenfeldt, Joachim

    2017-01-01

    Nuclear mutations are well known to drive tumor incidence, aggression and response to therapy. By contrast, the frequency and roles of mutations in the maternally inherited mitochondrial genome are poorly understood. Here we sequence the mitochondrial genomes of 384 localized prostate cancer...... in prostate cancer, and suggest interplay between nuclear and mitochondrial mutational profiles in prostate cancer....

  17. Protein signature of lung cancer tissues.

    Directory of Open Access Journals (Sweden)

    Michael R Mehan

    Full Text Available Lung cancer remains the most common cause of cancer-related mortality. We applied a highly multiplexed proteomic technology (SOMAscan to compare protein expression signatures of non small-cell lung cancer (NSCLC tissues with healthy adjacent and distant tissues from surgical resections. In this first report of SOMAscan applied to tissues, we highlight 36 proteins that exhibit the largest expression differences between matched tumor and non-tumor tissues. The concentrations of twenty proteins increased and sixteen decreased in tumor tissue, thirteen of which are novel for NSCLC. NSCLC tissue biomarkers identified here overlap with a core set identified in a large serum-based NSCLC study with SOMAscan. We show that large-scale comparative analysis of protein expression can be used to develop novel histochemical probes. As expected, relative differences in protein expression are greater in tissues than in serum. The combined results from tissue and serum present the most extensive view to date of the complex changes in NSCLC protein expression and provide important implications for diagnosis and treatment.

  18. Finding cancer driver mutations in the era of big data research.

    Science.gov (United States)

    Poulos, Rebecca C; Wong, Jason W H

    2018-04-02

    In the last decade, the costs of genome sequencing have decreased considerably. The commencement of large-scale cancer sequencing projects has enabled cancer genomics to join the big data revolution. One of the challenges still facing cancer genomics research is determining which are the driver mutations in an individual cancer, as these contribute only a small subset of the overall mutation profile of a tumour. Focusing primarily on somatic single nucleotide mutations in this review, we consider both coding and non-coding driver mutations, and discuss how such mutations might be identified from cancer sequencing datasets. We describe some of the tools and database that are available for the annotation of somatic variants and the identification of cancer driver genes. We also address the use of genome-wide variation in mutation load to establish background mutation rates from which to identify driver mutations under positive selection. Finally, we describe the ways in which mutational signatures can act as clues for the identification of cancer drivers, as these mutations may cause, or arise from, certain mutational processes. By defining the molecular changes responsible for driving cancer development, new cancer treatment strategies may be developed or novel preventative measures proposed.

  19. A network-based gene expression signature informs prognosis and treatment for colorectal cancer patients.

    Directory of Open Access Journals (Sweden)

    Mingguang Shi

    Full Text Available Several studies have reported gene expression signatures that predict recurrence risk in stage II and III colorectal cancer (CRC patients with minimal gene membership overlap and undefined biological relevance. The goal of this study was to investigate biological themes underlying these signatures, to infer genes of potential mechanistic importance to the CRC recurrence phenotype and to test whether accurate prognostic models can be developed using mechanistically important genes.We investigated eight published CRC gene expression signatures and found no functional convergence in Gene Ontology enrichment analysis. Using a random walk-based approach, we integrated these signatures and publicly available somatic mutation data on a protein-protein interaction network and inferred 487 genes that were plausible candidate molecular underpinnings for the CRC recurrence phenotype. We named the list of 487 genes a NEM signature because it integrated information from Network, Expression, and Mutation. The signature showed significant enrichment in four biological processes closely related to cancer pathophysiology and provided good coverage of known oncogenes, tumor suppressors, and CRC-related signaling pathways. A NEM signature-based Survival Support Vector Machine prognostic model was trained using a microarray gene expression dataset and tested on an independent dataset. The model-based scores showed a 75.7% concordance with the real survival data and separated patients into two groups with significantly different relapse-free survival (p = 0.002. Similar results were obtained with reversed training and testing datasets (p = 0.007. Furthermore, adjuvant chemotherapy was significantly associated with prolonged survival of the high-risk patients (p = 0.006, but not beneficial to the low-risk patients (p = 0.491.The NEM signature not only reflects CRC biology but also informs patient prognosis and treatment response. Thus, the network

  20. Single-Cell Analysis of Human Pancreas Reveals Transcriptional Signatures of Aging and Somatic Mutation Patterns.

    Science.gov (United States)

    Enge, Martin; Arda, H Efsun; Mignardi, Marco; Beausang, John; Bottino, Rita; Kim, Seung K; Quake, Stephen R

    2017-10-05

    As organisms age, cells accumulate genetic and epigenetic errors that eventually lead to impaired organ function or catastrophic transformation such as cancer. Because aging reflects a stochastic process of increasing disorder, cells in an organ will be individually affected in different ways, thus rendering bulk analyses of postmitotic adult cells difficult to interpret. Here, we directly measure the effects of aging in human tissue by performing single-cell transcriptome analysis of 2,544 human pancreas cells from eight donors spanning six decades of life. We find that islet endocrine cells from older donors display increased levels of transcriptional noise and potential fate drift. By determining the mutational history of individual cells, we uncover a novel mutational signature in healthy aging endocrine cells. Our results demonstrate the feasibility of using single-cell RNA sequencing (RNA-seq) data from primary cells to derive insights into genetic and transcriptional processes that operate on aging human tissue. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Distinct microbiological signatures associated with triple negative breast cancer.

    Science.gov (United States)

    Banerjee, Sagarika; Wei, Zhi; Tan, Fei; Peck, Kristen N; Shih, Natalie; Feldman, Michael; Rebbeck, Timothy R; Alwine, James C; Robertson, Erle S

    2015-10-15

    Infectious agents are the third highest human cancer risk factor and may have a greater role in the origin and/or progression of cancers, and related pathogenesis. Thus, knowing the specific viruses and microbial agents associated with a cancer type may provide insights into cause, diagnosis and treatment. We utilized a pan-pathogen array technology to identify the microbial signatures associated with triple negative breast cancer (TNBC). This technology detects low copy number and fragmented genomes extracted from formalin-fixed paraffin embedded archival tissues. The results, validated by PCR and sequencing, define a microbial signature present in TNBC tissue which was underrepresented in normal tissue. Hierarchical clustering analysis displayed two broad microbial signatures, one prevalent in bacteria and parasites and one prevalent in viruses. These signatures demonstrate a new paradigm in our understanding of the link between microorganisms and cancer, as causative or commensal in the tumor microenvironment and provide new diagnostic potential.

  2. Identifying driver mutations in sequenced cancer genomes

    DEFF Research Database (Denmark)

    Raphael, Benjamin J; Dobson, Jason R; Oesper, Layla

    2014-01-01

    High-throughput DNA sequencing is revolutionizing the study of cancer and enabling the measurement of the somatic mutations that drive cancer development. However, the resulting sequencing datasets are large and complex, obscuring the clinically important mutations in a background of errors, nois...... patterns of mutual exclusivity. These techniques, coupled with advances in high-throughput DNA sequencing, are enabling precision medicine approaches to the diagnosis and treatment of cancer....

  3. Soft sweeps III: the signature of positive selection from recurrent mutation.

    Directory of Open Access Journals (Sweden)

    Pleuni S Pennings

    2006-12-01

    Full Text Available Polymorphism data can be used to identify loci at which a beneficial allele has recently gone to fixation, given that an accurate description of the signature of selection is available. In the classical model that is used, a favored allele derives from a single mutational origin. This ignores the fact that beneficial alleles can enter a population recurrently by mutation during the selective phase. In this study, we present a combination of analytical and simulation results to demonstrate the effect of adaptation from recurrent mutation on summary statistics for polymorphism data from a linked neutral locus. We also analyze the power of standard neutrality tests based on the frequency spectrum or on linkage disequilibrium (LD under this scenario. For recurrent beneficial mutation at biologically realistic rates, we find substantial deviations from the classical pattern of a selective sweep from a single new mutation. Deviations from neutrality in the level of polymorphism and in the frequency spectrum are much less pronounced than in the classical sweep pattern. In contrast, for levels of LD, the signature is even stronger if recurrent beneficial mutation plays a role. We suggest a variant of existing LD tests that increases their power to detect this signature.

  4. Mutational signatures reveal the role of RAD52 in p53-independent p21-driven genomic instability

    DEFF Research Database (Denmark)

    Galanos, Panagiotis; Pappas, George; Polyzos, Alexander

    2018-01-01

    . Consequently, fewer single nucleotide substitutions (SNSs) occur, while formation of highly deleterious DNA double-strand breaks (DSBs) is enhanced, crafting a characteristic mutational signature landscape. Guided by the mutational signatures formed, we find that the DSBs are repaired by Rad52-dependent break...

  5. TOX3 mutations in breast cancer.

    Directory of Open Access Journals (Sweden)

    James Owain Jones

    Full Text Available TOX3 maps to 16q12, a region commonly lost in breast cancers and recently implicated in the risk of developing breast cancer. However, not much is known of the role of TOX3 itself in breast cancer biology. This is the first study to determine the importance of TOX3 mutations in breast cancers. We screened TOX3 for mutations in 133 breast tumours and identified four mutations (three missense, one in-frame deletion of 30 base pairs in six primary tumours, corresponding to an overall mutation frequency of 4.5%. One potentially deleterious missense mutation in exon 3 (Leu129Phe was identified in one tumour (genomic DNA and cDNA. Whilst copy number changes of 16q12 are common in breast cancer, our data show that mutations of TOX3 are present at low frequency in tumours. Our results support that TOX3 should be further investigated to elucidate its role in breast cancer biology.

  6. Stalled replication forks generate a distinct mutational signature in yeast

    DEFF Research Database (Denmark)

    Larsen, Nicolai B.; Liberti, Sascha E.; Vogel, Ivan

    2017-01-01

    Proliferating cells acquire genome alterations during the act of DNA replication. This leads to mutation accumulation and somatic cell mosaicism in multicellular organisms, and is also implicated as an underlying cause of aging and tumorigenesis. The molecular mechanisms of DNA replication...... Escherichia coli Tus/Ter complex) engineered into the yeast genome. We demonstrate that transient stalling at this barrier induces a distinct pattern of genome rearrangements in the newly replicated region behind the stalled fork, which primarily consist of localized losses and duplications of DNA sequences....... These genetic alterations arise through the aberrant repair of a single-stranded DNA gap, in a process that is dependent on Exo1- and Shu1-dependent homologous recombination repair (HRR). Furthermore, aberrant processing of HRR intermediates, and elevated HRR-associated mutagenesis, is detectable in a yeast...

  7. *K-means and Cluster Models for Cancer Signatures

    OpenAIRE

    Kakushadze, Zura; Yu, Willie

    2017-01-01

    We present *K-means clustering algorithm and source code by expanding statistical clustering methods applied in https://ssrn.com/abstract=2802753 to quantitative finance. *K-means is statistically deterministic without specifying initial centers, etc. We apply *K-means to extracting cancer signatures from genome data without using nonnegative matrix factorization (NMF). *K-means’ computational cost is a fraction of NMF’s. Using 1389 published samples for 14 cancer types, we find that 3 cancer...

  8. Identifying pathways affected by cancer mutations.

    Science.gov (United States)

    Iengar, Prathima

    2017-12-16

    Mutations in 15 cancers, sourced from the COSMIC Whole Genomes database, and 297 human pathways, arranged into pathway groups based on the processes they orchestrate, and sourced from the KEGG pathway database, have together been used to identify pathways affected by cancer mutations. Genes studied in ≥15, and mutated in ≥10 samples of a cancer have been considered recurrently mutated, and pathways with recurrently mutated genes have been considered affected in the cancer. Novel doughnut plots have been presented which enable visualization of the extent to which pathways and genes, in each pathway group, are targeted, in each cancer. The 'organismal systems' pathway group (including organism-level pathways; e.g., nervous system) is the most targeted, more than even the well-recognized signal transduction, cell-cycle and apoptosis, and DNA repair pathway groups. The important, yet poorly-recognized, role played by the group merits attention. Pathways affected in ≥7 cancers yielded insights into processes affected. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. POLE somatic mutations in advanced colorectal cancer.

    Science.gov (United States)

    Guerra, Joana; Pinto, Carla; Pinto, Diana; Pinheiro, Manuela; Silva, Romina; Peixoto, Ana; Rocha, Patrícia; Veiga, Isabel; Santos, Catarina; Santos, Rui; Cabreira, Verónica; Lopes, Paula; Henrique, Rui; Teixeira, Manuel R

    2017-12-01

    Despite all the knowledge already gathered, the picture of somatic genetic changes in colorectal tumorigenesis is far from complete. Recently, germline and somatic mutations in the exonuclease domain of polymerase epsilon, catalytic subunit (POLE) gene have been reported in a small subset of microsatellite-stable and hypermutated colorectal carcinomas (CRCs), affecting the proofreading activity of the enzyme and leading to misincorporation of bases during DNA replication. To evaluate the role of POLE mutations in colorectal carcinogenesis, namely in advanced CRC, we searched for somatic mutations by Sanger sequencing in tumor DNA samples from 307 cases. Microsatellite instability and mutation analyses of a panel of oncogenes were performed in the tumors harboring POLE mutations. Three heterozygous mutations were found in two tumors, the c.857C>G, p.Pro286Arg, the c.901G>A, p.Asp301Asn, and the c.1376C>T, p.Ser459Phe. Of the POLE-mutated CRCs, one tumor was microsatellite-stable and the other had low microsatellite instability, whereas KRAS and PIK3CA mutations were found in one tumor each. We conclude that POLE somatic mutations exist but are rare in advanced CRC, with further larger studies being necessary to evaluate its biological and clinical implications. © 2017 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  10. Validation of a radiosensitivity molecular signature in breast cancer

    NARCIS (Netherlands)

    S.A. Eschrich (Steven); C. Fulp (Carl); Y. Pawitan (Yudi); J.A. Foekens (John); M. Smid (Marcel); J.W.M. Martens (John); M. Echevarria (Michelle); P.S. Kamath (Patrick); J.-H. Lee (Ji-Hyun); E.E. Harris (Eleanor); J. Bergh (Jonas); J.F. Torres-Roca (Javier)

    2012-01-01

    textabstractPurpose: Previously, we developed a radiosensitivity molecular signature [radiosensitivity index (RSI)] that was clinically validated in 3 independent datasets (rectal, esophageal, and head and neck) in 118 patients. Here, we test RSI in radiotherapy (RT)-treated breast cancer patients.

  11. Immunotherapy Targets Common Cancer Mutation

    Science.gov (United States)

    In a study of an immune therapy for colorectal cancer that involved a single patient, researchers identified a method for targeting the cancer-causing protein produced by a mutant form of the KRAS gene.

  12. A basal stem cell signature identifies aggressive prostate cancer phenotypes

    Science.gov (United States)

    Smith, Bryan A.; Sokolov, Artem; Uzunangelov, Vladislav; Baertsch, Robert; Newton, Yulia; Graim, Kiley; Mathis, Colleen; Cheng, Donghui; Stuart, Joshua M.; Witte, Owen N.

    2015-01-01

    Evidence from numerous cancers suggests that increased aggressiveness is accompanied by up-regulation of signaling pathways and acquisition of properties common to stem cells. It is unclear if different subtypes of late-stage cancer vary in stemness properties and whether or not these subtypes are transcriptionally similar to normal tissue stem cells. We report a gene signature specific for human prostate basal cells that is differentially enriched in various phenotypes of late-stage metastatic prostate cancer. We FACS-purified and transcriptionally profiled basal and luminal epithelial populations from the benign and cancerous regions of primary human prostates. High-throughput RNA sequencing showed the basal population to be defined by genes associated with stem cell signaling programs and invasiveness. Application of a 91-gene basal signature to gene expression datasets from patients with organ-confined or hormone-refractory metastatic prostate cancer revealed that metastatic small cell neuroendocrine carcinoma was molecularly more stem-like than either metastatic adenocarcinoma or organ-confined adenocarcinoma. Bioinformatic analysis of the basal cell and two human small cell gene signatures identified a set of E2F target genes common between prostate small cell neuroendocrine carcinoma and primary prostate basal cells. Taken together, our data suggest that aggressive prostate cancer shares a conserved transcriptional program with normal adult prostate basal stem cells. PMID:26460041

  13. Gene Signature in Sessile Serrated Polyps Identifies Colon Cancer Subtype

    Science.gov (United States)

    Kanth, Priyanka; Bronner, Mary P.; Boucher, Kenneth M.; Burt, Randall W.; Neklason, Deborah W.; Hagedorn, Curt H.; Delker, Don A.

    2016-01-01

    Sessile serrated colon adenoma/polyps (SSA/Ps) are found during routine screening colonoscopy and may account for 20–30% of colon cancers. However, differentiating SSA/Ps from hyperplastic polyps (HP) with little risk of cancer is challenging and complementary molecular markers are needed. Additionally, the molecular mechanisms of colon cancer development from SSA/Ps are poorly understood. RNA sequencing was performed on 21 SSA/Ps, 10 HPs, 10 adenomas, 21 uninvolved colon and 20 control colon specimens. Differential expression and leave-one-out cross validation methods were used to define a unique gene signature of SSA/Ps. Our SSA/P gene signature was evaluated in colon cancer RNA-Seq data from The Cancer Genome Atlas (TCGA) to identify a subtype of colon cancers that may develop from SSA/Ps. A total of 1422 differentially expressed genes were found in SSA/Ps relative to controls. Serrated polyposis syndrome (n=12) and sporadic SSA/Ps (n=9) exhibited almost complete (96%) gene overlap. A 51-gene panel in SSA/P showed similar expression in a subset of TCGA colon cancers with high microsatellite instability (MSI-H). A smaller seven-gene panel showed high sensitivity and specificity in identifying BRAF mutant, CpG island methylator phenotype high (CIMP-H) and MLH1 silenced colon cancers. We describe a unique gene signature in SSA/Ps that identifies a subset of colon cancers likely to develop through the serrated pathway. These gene panels may be utilized for improved differentiation of SSA/Ps from HPs and provide insights into novel molecular pathways altered in colon cancer arising from the serrated pathway. PMID:27026680

  14. PMS2 mutations in childhood cancer.

    Science.gov (United States)

    De Vos, Michel; Hayward, Bruce E; Charlton, Ruth; Taylor, Graham R; Glaser, Adam W; Picton, Susan; Cole, Trevor R; Maher, Eamonn R; McKeown, Carole M E; Mann, Jill R; Yates, John R; Baralle, Diana; Rankin, Julia; Bonthron, David T; Sheridan, Eamonn

    2006-03-01

    Until recently, the PMS2 DNA mismatch repair gene has only rarely been implicated as a cancer susceptibility locus. New studies have shown, however, that earlier analyses of this gene have had technical limitations and also that the genetic behavior of mutant PMS2 alleles is unusual, in that, unlike MLH1 or MSH2 mutations, PMS2 mutations show low heterozygote penetrance. As a result, a dominantly inherited cancer predisposition has not been a feature reported in families with PMS2 mutations. Such families have instead been ascertained through childhood-onset cancers in homozygotes or through apparently sporadic colorectal cancer in heterozygotes. We present further information on the phenotype associated with homozygous PMS2 deficiency in 13 patients from six families of Pakistani origin living in the United Kingdom. This syndrome is characterized by café-au-lait skin pigmentation and a characteristic tumor spectrum, including leukemias, lymphomas, cerebral malignancies (such as supratentorial primitive neuroectodermal tumors, astrocytomas, and glioblastomas), and colorectal neoplasia with an onset in early adult life. We present evidence for a founder effect in five families, all of which carried the same R802-->X mutation (i.e., arginine-802 to stop) in PMS2. This cancer syndrome can be mistaken for neurofibromatosis type 1, with important management implications including the risk of the disorder occurring in siblings and the likelihood of tumor development in affected individuals.

  15. Cancer3D: understanding cancer mutations through protein structures.

    Science.gov (United States)

    Porta-Pardo, Eduard; Hrabe, Thomas; Godzik, Adam

    2015-01-01

    The new era of cancer genomics is providing us with extensive knowledge of mutations and other alterations in cancer. The Cancer3D database at http://www.cancer3d.org gives an open and user-friendly way to analyze cancer missense mutations in the context of structures of proteins in which they are found. The database also helps users analyze the distribution patterns of the mutations as well as their relationship to changes in drug activity through two algorithms: e-Driver and e-Drug. These algorithms use knowledge of modular structure of genes and proteins to separately study each region. This approach allows users to find novel candidate driver regions or drug biomarkers that cannot be found when similar analyses are done on the whole-gene level. The Cancer3D database provides access to the results of such analyses based on data from The Cancer Genome Atlas (TCGA) and the Cancer Cell Line Encyclopedia (CCLE). In addition, it displays mutations from over 14,700 proteins mapped to more than 24,300 structures from PDB. This helps users visualize the distribution of mutations and identify novel three-dimensional patterns in their distribution. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. *K-means and cluster models for cancer signatures.

    Science.gov (United States)

    Kakushadze, Zura; Yu, Willie

    2017-09-01

    We present *K-means clustering algorithm and source code by expanding statistical clustering methods applied in https://ssrn.com/abstract=2802753 to quantitative finance. *K-means is statistically deterministic without specifying initial centers, etc. We apply *K-means to extracting cancer signatures from genome data without using nonnegative matrix factorization (NMF). *K-means' computational cost is a fraction of NMF's. Using 1389 published samples for 14 cancer types, we find that 3 cancers (liver cancer, lung cancer and renal cell carcinoma) stand out and do not have cluster-like structures. Two clusters have especially high within-cluster correlations with 11 other cancers indicating common underlying structures. Our approach opens a novel avenue for studying such structures. *K-means is universal and can be applied in other fields. We discuss some potential applications in quantitative finance.

  17. Signature of genetic associations in oral cancer.

    Science.gov (United States)

    Sharma, Vishwas; Nandan, Amrita; Sharma, Amitesh Kumar; Singh, Harpreet; Bharadwaj, Mausumi; Sinha, Dhirendra Narain; Mehrotra, Ravi

    2017-10-01

    Oral cancer etiology is complex and controlled by multi-factorial events including genetic events. Candidate gene studies, genome-wide association studies, and next-generation sequencing identified various chromosomal loci to be associated with oral cancer. There is no available review that could give us the comprehensive picture of genetic loci identified to be associated with oral cancer by candidate gene studies-based, genome-wide association studies-based, and next-generation sequencing-based approaches. A systematic literature search was performed in the PubMed database to identify the loci associated with oral cancer by exclusive candidate gene studies-based, genome-wide association studies-based, and next-generation sequencing-based study approaches. The information of loci associated with oral cancer is made online through the resource "ORNATE." Next, screening of the loci validated by candidate gene studies and next-generation sequencing approach or by two independent studies within candidate gene studies or next-generation sequencing approaches were performed. A total of 264 loci were identified to be associated with oral cancer by candidate gene studies, genome-wide association studies, and next-generation sequencing approaches. In total, 28 loci, that is, 14q32.33 (AKT1), 5q22.2 (APC), 11q22.3 (ATM), 2q33.1 (CASP8), 11q13.3 (CCND1), 16q22.1 (CDH1), 9p21.3 (CDKN2A), 1q31.1 (COX-2), 7p11.2 (EGFR), 22q13.2 (EP300), 4q35.2 (FAT1), 4q31.3 (FBXW7), 4p16.3 (FGFR3), 1p13.3 (GSTM1-GSTT1), 11q13.2 (GSTP1), 11p15.5 (H-RAS), 3p25.3 (hOGG1), 1q32.1 (IL-10), 4q13.3 (IL-8), 12p12.1 (KRAS), 12q15 (MDM2), 12q13.12 (MLL2), 9q34.3 (NOTCH1), 17p13.1 (p53), 3q26.32 (PIK3CA), 10q23.31 (PTEN), 13q14.2 (RB1), and 5q14.2 (XRCC4), were validated to be associated with oral cancer. "ORNATE" gives a snapshot of genetic loci associated with oral cancer. All 28 loci were validated to be linked to oral cancer for which further fine-mapping followed by gene-by-gene and gene

  18. NSD1 mutations generate a genome-wide DNA methylation signature.

    LENUS (Irish Health Repository)

    Choufani, S

    2015-12-22

    Sotos syndrome (SS) represents an important human model system for the study of epigenetic regulation; it is an overgrowth\\/intellectual disability syndrome caused by mutations in a histone methyltransferase, NSD1. As layered epigenetic modifications are often interdependent, we propose that pathogenic NSD1 mutations have a genome-wide impact on the most stable epigenetic mark, DNA methylation (DNAm). By interrogating DNAm in SS patients, we identify a genome-wide, highly significant NSD1(+\\/-)-specific signature that differentiates pathogenic NSD1 mutations from controls, benign NSD1 variants and the clinically overlapping Weaver syndrome. Validation studies of independent cohorts of SS and controls assigned 100% of these samples correctly. This highly specific and sensitive NSD1(+\\/-) signature encompasses genes that function in cellular morphogenesis and neuronal differentiation, reflecting cardinal features of the SS phenotype. The identification of SS-specific genome-wide DNAm alterations will facilitate both the elucidation of the molecular pathophysiology of SS and the development of improved diagnostic testing.

  19. Building prognostic models for breast cancer patients using clinical variables and hundreds of gene expression signatures

    Directory of Open Access Journals (Sweden)

    Liu Yufeng

    2011-01-01

    Full Text Available Abstract Background Multiple breast cancer gene expression profiles have been developed that appear to provide similar abilities to predict outcome and may outperform clinical-pathologic criteria; however, the extent to which seemingly disparate profiles provide additive prognostic information is not known, nor do we know whether prognostic profiles perform equally across clinically defined breast cancer subtypes. We evaluated whether combining the prognostic powers of standard breast cancer clinical variables with a large set of gene expression signatures could improve on our ability to predict patient outcomes. Methods Using clinical-pathological variables and a collection of 323 gene expression "modules", including 115 previously published signatures, we build multivariate Cox proportional hazards models using a dataset of 550 node-negative systemically untreated breast cancer patients. Models predictive of pathological complete response (pCR to neoadjuvant chemotherapy were also built using this approach. Results We identified statistically significant prognostic models for relapse-free survival (RFS at 7 years for the entire population, and for the subgroups of patients with ER-positive, or Luminal tumors. Furthermore, we found that combined models that included both clinical and genomic parameters improved prognostication compared with models with either clinical or genomic variables alone. Finally, we were able to build statistically significant combined models for pathological complete response (pCR predictions for the entire population. Conclusions Integration of gene expression signatures and clinical-pathological factors is an improved method over either variable type alone. Highly prognostic models could be created when using all patients, and for the subset of patients with lymph node-negative and ER-positive breast cancers. Other variables beyond gene expression and clinical-pathological variables, like gene mutation status or DNA

  20. Toward a comprehensive and systematic methylome signature in colorectal cancers

    OpenAIRE

    Ashktorab, Hassan; Rahi, Hamed; Wansley, Daniel; Varma, Sudhir; Shokrani, Babak; Lee, Edward; Daremipouran, Mohammad; Laiyemo, Adeyinka; Goel, Ajay; Carethers, John M; Brim, Hassan

    2013-01-01

    CpG Island Methylator Phenotype (CIMP) is one of the underlying mechanisms in colorectal cancer (CRC). This study aimed to define a methylome signature in CRC through a methylation microarray analysis and a compilation of promising CIMP markers from the literature. Illumina HumanMethylation27 (IHM27) array data was generated and analyzed based on statistical differences in methylation data (1st approach) or based on overall differences in methylation percentages using lower 95% CI (2nd approa...

  1. NRF2 Mutation Confers Malignant Potential and Resistance to Chemoradiation Therapy in Advanced Esophageal Squamous Cancer

    Directory of Open Access Journals (Sweden)

    Tatsuhiro Shibata

    2011-09-01

    Full Text Available Esophageal squamous cancer (ESC is one of the most aggressive tumors of the gastrointestinal tract. A combination of chemotherapy and radiation therapy (CRT has improved the clinical outcome, but the molecular background determining the effectiveness of therapy remains unknown. NRF2 is a master transcriptional regulator of stress adaptation, and gain of-function mutation of NRF2 in cancer confers resistance to stressors including anticancer therapy. Direct resequencing analysis revealed that Nrf2 gain-of-function mutation occurred recurrently (18/82, 22% in advanced ESC tumors and ESC cell lines (3/10. The presence of Nrf2 mutation was associated with tumor recurrence and poor prognosis. Short hairpin RNA-mediated down-regulation of NRF2 in ESC cells that harbor only mutated Nrf2 allele revealed that themutant NRF2 conferred increased cell proliferation, attachment-independent survival, and resistance to 5-fluorouracil and γ-irradiation. Based on the Nrf2 mutation status, gene expression signatures associated with NRF2 mutation were extracted from ESC cell lines, and their potential utility for monitoring and prognosis was examined in a cohort of 33 pre-CRT cases of ESC. The molecular signatures of NRF2 mutation were significantly predictive and prognostic for CRT response. In conclusion, recurrent NRF2 mutation confers malignant potential and resistance to therapy in advanced ESC, resulting in a poorer outcome. Molecular signatures of NRF2 mutation can be applied as predictive markers of response to CRT, and efficient inhibition of aberrant NRF2 activation could be a promising approach in combination with CRT.

  2. Progression inference for somatic mutations in cancer

    Directory of Open Access Journals (Sweden)

    Leif E. Peterson

    2017-04-01

    Full Text Available Computational methods were employed to determine progression inference of genomic alterations in commonly occurring cancers. Using cross-sectional TCGA data, we computed evolutionary trajectories involving selectivity relationships among pairs of gene-specific genomic alterations such as somatic mutations, deletions, amplifications, downregulation, and upregulation among the top 20 driver genes associated with each cancer. Results indicate that the majority of hierarchies involved TP53, PIK3CA, ERBB2, APC, KRAS, EGFR, IDH1, VHL, etc. Research into the order and accumulation of genomic alterations among cancer driver genes will ever-increase as the costs of nextgen sequencing subside, and personalized/precision medicine incorporates whole-genome scans into the diagnosis and treatment of cancer. Keywords: Oncology, Cancer research, Genetics, Computational biology

  3. The high cancer incidence in young people in Italy: do genetic signatures reveal their environmental causes?

    Directory of Open Access Journals (Sweden)

    Ruggero Ridolfi

    2016-03-01

    Full Text Available The increased incidence of cancer in children and adolescents registered in Italy in the last few decades is one of the highest amongst Western countries. The causes are difficult to identify, but recent daily news and some epidemiological surveys, such as the ‘Sentieri’ study, suggest that environmental pollution has an important role. In the past 20 years, epigenetic studies have described how the changes induced by the cell microenvironment on the non-coding parts of the genome can heavily influence gene function, contributing to the carcinogenesis process. Connecting links amongst the external environment, cellular microenvironment and functional epigenetic and genetic mutations promote carcinogenesis. Today, the whole genome sequencing techniques for human cancers can help to formulate a map of mutational signatures in individual tumours, and a list of mutational fingerprints showing exposure to specific environmental mutagens is being developed. Determining the ethical, legal and economic consequences of known cancer causative agents in young people will be a crucial step for a serious reconsideration of primary prevention.

  4. Hereditary non-polyposis colorectal cancer : Identification of mutation carriers and assessing pathogenicity of mutations

    NARCIS (Netherlands)

    Niessen, RC; Sijmons, RH; Berends, MJW; Ou, J; Hofstra, RNW; Kleibeuker, JH

    2004-01-01

    Hereditary non-polyposis colorectal cancer (HNPCC), also referred to as Lynch syndrome, is an autosomal dominantly inherited disorder that is characterized by susceptibility to colorectal cancer and extracolonic malignancies, in particular endometrial cancer. HNPCC is caused by pathogenic mutations

  5. Germinal and somatic mutations in cancer

    International Nuclear Information System (INIS)

    Knudson, A.G. Jr.

    1977-01-01

    The role of germinal and somatic mutations in carcinogenesis leads to the conclusion that environmental carcinogens probably exert their effects via somatic mutations. Susceptibility to this process may itself be genetically determined, so we may deduce that two groups, one genetic and one non-genetic, are included in the 'environmental' class. Other individuals seem to acquire cancer even in the absence of such environmental agents, and these too may be classified into a genetic and a non-genetic group. It has been estimated that in industrial countries, the environmental groups include 70-80% of all cancer cases, but we are only beginning to know how to separate the genetic and non-genetic subgroups. The genetic subgroup of the 'non-environmental' group is very small, probably of the order of magnitude of 1-2% for cancer as a whole. The remainder, about 25%, comprises a non-genetic, non-environmental subgroup that seems to arise as a consequence of 'spontaneous' somatic mutations. The incidence of these 'background' cancers is what we should combat with preventive and therapeutic measures

  6. CMS-dependent prognostic impact of KRAS and BRAFV600E mutations in primary colorectal cancer.

    Science.gov (United States)

    Smeby, J; Sveen, A; Merok, M A; Danielsen, S A; Eilertsen, I A; Guren, M G; Dienstmann, R; Nesbakken, A; Lothe, R A

    2018-05-01

    The prognostic impact of KRAS and BRAFV600E mutations in primary colorectal cancer (CRC) varies with microsatellite instability (MSI) status. The gene expression-based consensus molecular subtypes (CMSs) of CRC define molecularly and clinically distinct subgroups, and represent a novel stratification framework in biomarker analysis. We investigated the prognostic value of these mutations within the CMS groups. Totally 1197 primary tumors from a Norwegian series of CRC stage I-IV were analyzed for MSI and mutation status in hotspots in KRAS (codons 12, 13 and 61) and BRAF (codon 600). A subset was analyzed for gene expression and confident CMS classification was obtained for 317 samples. This cohort was expanded with clinical and molecular data, including CMS classification, from 514 patients in the publically available dataset GSE39582. Gene expression signatures associated with KRAS and BRAFV600E mutations were used to evaluate differential impact of mutations on gene expression among the CMS groups. BRAFV600E and KRAS mutations were both associated with inferior 5-year overall survival (OS) exclusively in MSS tumors (BRAFV600E mutation versus KRAS/BRAF wild-type: Hazard ratio (HR) 2.85, P CMS1, leading to negative prognostic impact in this subtype (OS: BRAFV600E mutation versus wild-type: HR 7.73, P = 0.001). In contrast, the poor prognosis of KRAS mutations was limited to MSS tumors with CMS2/CMS3 epithelial-like gene expression profiles (OS: KRAS mutation versus wild-type: HR 1.51, P = 0.011). The subtype-specific prognostic associations were substantiated by differential effects of BRAFV600E and KRAS mutations on gene expression signatures according to the MSI status and CMS group. BRAFV600E mutations are enriched and associated with metastatic disease in CMS1 MSS tumors, leading to poor prognosis in this subtype. KRAS mutations are associated with adverse outcome in epithelial (CMS2/CMS3) MSS tumors.

  7. The landscape of cancer genes and mutational processes in breast cancer

    NARCIS (Netherlands)

    Stephens, Philip J.; Tarpey, Patrick S.; Davies, Helen; van Loo, Peter; Greenman, Chris; Wedge, David C.; Nik-Zainal, Serena; Martin, Sancha; Varela, Ignacio; Bignell, Graham R.; Yates, Lucy R.; Papaemmanuil, Elli; Beare, David; Butler, Adam; Cheverton, Angela; Gamble, John; Hinton, Jonathan; Jia, Mingming; Jayakumar, Alagu; Jones, David; Latimer, Calli; Lau, King Wai; McLaren, Stuart; McBride, David J.; Menzies, Andrew; Mudie, Laura; Raine, Keiran; Rad, Roland; Chapman, Michael Spencer; Teague, Jon; Easton, Douglas; Langerød, Anita; Lee, Ming Ta Michael; Shen, Chen-Yang; tee, Benita Tan Kiat; Huimin, Bernice Wong; Broeks, Annegien; Vargas, Ana Cristina; Turashvili, Gulisa; Martens, John; Fatima, Aquila; Miron, Penelope; Chin, Suet-Feung; Thomas, Gilles; Boyault, Sandrine; Mariani, Odette; Lakhani, Sunil R.; van de Vijver, Marc; van 't Veer, Laura; Foekens, John

    2012-01-01

    All cancers carry somatic mutations in their genomes. A subset, known as driver mutations, confer clonal selective advantage on cancer cells and are causally implicated in oncogenesis(1), and the remainder are passenger mutations. The driver mutations and mutational processes operative in breast

  8. Higher prevalence of KRAS mutations in colorectal cancer in Saudi ...

    African Journals Online (AJOL)

    We studied retrospectively tumor samples of 83 Saudi metastatic CRC patients for KRAS mutations in codon 12 and codon 13, to evaluate the relevance of KRAS mutation positive colorectal cancers with metastatic sites. KRAS mutation was observed in 42.2% (35/83) patients with CRC. The most common mutations were in ...

  9. Mutational Context and Diverse Clonal Development in Early and Late Bladder Cancer

    Directory of Open Access Journals (Sweden)

    Iver Nordentoft

    2014-06-01

    Full Text Available Bladder cancer (or urothelial cell carcinoma [UCC] is characterized by field disease (malignant alterations in surrounding mucosa and frequent recurrences. Whole-genome, exome, and transcriptome sequencing of 38 tumors, including four metachronous tumor pairs and 20 superficial tumors, identified an APOBEC mutational signature in one-third. This was biased toward the sense strand, correlated with mean expression level, and clustered near breakpoints. A > G mutations were up to eight times more frequent on the sense strand (p < 0.002 in [ACG]AT contexts. The patient-specific APOBEC signature was negatively correlated to repair-gene expression and was not related to clinicopathological parameters. Mutations in gene families and single genes were related to tumor stage, and expression of chromatin modifiers correlated with survival. Evolutionary and subclonal analyses of early/late tumor pairs showed a unitary origin, and discrete tumor clones contained mutated cancer genes. The ancestral clones contained Pik3ca/Kdm6a mutations and may reflect the field-disease mutations shared among later tumors.

  10. Isocitrate dehydrogenase 1 R132C mutation occurs exclusively in microsatellite stable colorectal cancers with the CpG island methylator phenotype.

    Science.gov (United States)

    Whitehall, V L J; Dumenil, T D; McKeone, D M; Bond, C E; Bettington, M L; Buttenshaw, R L; Bowdler, L; Montgomery, G W; Wockner, L F; Leggett, B A

    2014-11-01

    The CpG Island Methylator Phenotype (CIMP) is fundamental to an important subset of colorectal cancer; however, its cause is unknown. CIMP is associated with microsatellite instability but is also found in BRAF mutant microsatellite stable cancers that are associated with poor prognosis. The isocitrate dehydrogenase 1 (IDH1) gene causes CIMP in glioma due to an activating mutation that produces the 2-hydroxyglutarate oncometabolite. We therefore examined IDH1 alteration as a potential cause of CIMP in colorectal cancer. The IDH1 mutational hotspot was screened in 86 CIMP-positive and 80 CIMP-negative cancers. The entire coding sequence was examined in 81 CIMP-positive colorectal cancers. Forty-seven cancers varying by CIMP-status and IDH1 mutation status were examined using Illumina 450K DNA methylation microarrays. The R132C IDH1 mutation was detected in 4/166 cancers. All IDH1 mutations were in CIMP cancers that were BRAF mutant and microsatellite stable (4/45, 8.9%). Unsupervised hierarchical cluster analysis identified an IDH1 mutation-like methylation signature in approximately half of the CIMP-positive cancers. IDH1 mutation appears to cause CIMP in a small proportion of BRAF mutant, microsatellite stable colorectal cancers. This study provides a precedent that a single gene mutation may cause CIMP in colorectal cancer, and that this will be associated with a specific epigenetic signature and clinicopathological features.

  11. Prevalence of deleterious ATM germline mutations in gastric cancer patients.

    Science.gov (United States)

    Huang, Dong-Sheng; Tao, Hou-Quan; He, Xu-Jun; Long, Ming; Yu, Sheng; Xia, Ying-Jie; Wei, Zhang; Xiong, Zikai; Jones, Sian; He, Yiping; Yan, Hai; Wang, Xiaoyue

    2015-12-01

    Besides CDH1, few hereditary gastric cancer predisposition genes have been previously reported. In this study, we discovered two germline ATM mutations (p.Y1203fs and p.N1223S) in a Chinese family with a history of gastric cancer by screening 83 cancer susceptibility genes. Using a published exome sequencing dataset, we found deleterious germline mutations of ATM in 2.7% of 335 gastric cancer patients of different ethnic origins. The frequency of deleterious ATM mutations in gastric cancer patients is significantly higher than that in general population (p=0.0000435), suggesting an association of ATM mutations with gastric cancer predisposition. We also observed biallelic inactivation of ATM in tumors of two gastric cancer patients. Further evaluation of ATM mutations in hereditary gastric cancer will facilitate genetic testing and risk assessment.

  12. Radiation Gene-expression Signatures in Primary Breast Cancer Cells.

    Science.gov (United States)

    Minafra, Luigi; Bravatà, Valentina; Cammarata, Francesco P; Russo, Giorgio; Gilardi, Maria C; Forte, Giusi I

    2018-05-01

    In breast cancer (BC) care, radiation therapy (RT) is an efficient treatment to control localized tumor. Radiobiological research is needed to understand molecular differences that affect radiosensitivity of different tumor subtypes and the response variability. The aim of this study was to analyze gene expression profiling (GEP) in primary BC cells following irradiation with doses of 9 Gy and 23 Gy delivered by intraoperative electron radiation therapy (IOERT) in order to define gene signatures of response to high doses of ionizing radiation. We performed GEP by cDNA microarrays and evaluated cell survival after IOERT treatment in primary BC cell cultures. Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) was performed to validate candidate genes. We showed, for the first time, a 4-gene and a 6-gene signature, as new molecular biomarkers, in two primary BC cell cultures after exposure at 9 Gy and 23 Gy respectively, for which we observed a significantly high survival rate. Gene signatures activated by different doses of ionizing radiation may predict response to RT and contribute to defining a personalized biological-driven treatment plan. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  13. Formalin fixation increases deamination mutation signature but should not lead to false positive mutations in clinical practice.

    Directory of Open Access Journals (Sweden)

    Leah M Prentice

    Full Text Available Genomic analysis of cancer tissues is an essential aspect of personalized oncology treatment. Though it has been suggested that formalin fixation of patient tissues may be suboptimal for molecular studies, this tissue processing approach remains the industry standard. Therefore clinical molecular laboratories must be able to work with formalin fixed, paraffin embedded (FFPE material. This study examines the effects of pre-analytic variables introduced by routine pathology processing on specimens used for clinical reports produced by next-generation sequencing technology. Tissue resected from three colorectal cancer patients was subjected to 2, 15, 24, and 48 hour fixation times in neutral buffered formalin. DNA was extracted from all tissues twice, once with uracil-N-glycosylase (UNG treatment to counter deamination effects, and once without. Of note, deamination events at methylated cytosine, as found at CpG sites, remains unaffected by UNG. After extraction a two-step PCR targeted sequencing method was performed using the Illumina MiSeq and the data was analyzed via a custom-built bioinformatics pipeline, including filtration of reads with mapping quality T/A mutations that is not represented in DNA treated with UNG. This suggests these errors may be due to deamination events triggered by a longer fixation time. However the allelic frequency of these events remained below the limit of detection for reportable mutations in this assay (<2%. We do however recommend that suspected intratumoral heterogeneity events be verified by re-sequencing the same FFPE block.

  14. IDH mutations in liver cell plasticity and biliary cancer

    Science.gov (United States)

    Saha, Supriya K; Parachoniak, Christine A; Bardeesy, Nabeel

    2014-01-01

    Intrahepatic cholangiocarcinoma (ICC) is an aggressive cancer associated with the bile ducts within the liver. These tumors are characterized by frequent gain-of-function mutations in the isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) genes—that are also common in subsets of neural, haematopoietic and bone tumors, but rare or absent in the other types of gastrointestinal malignancy. Mutant IDH acts through a novel mechanism of oncogenesis, producing high levels of the metabolite 2-hydroxyglutarate, which interferes with the function of α-ketoglutarate-dependent enzymes that regulate diverse cellular processes including histone demethylation and DNA modification. Recently, we used in vitro stem cell systems and genetically engineered mouse models (GEMMs) to demonstrate that mutant IDH promotes ICC formation by blocking hepatocyte differentiation and increasing pools of hepatic progenitors that are susceptible to additional oncogenic hits leading to ICC. We found that silencing of HNF4A—encoding a master transcriptional regulator of hepatocyte identity and quiescence—was critical to mutant IDH-mediated inhibition of liver differentiation. In line with these findings, human ICC with IDH mutations are characterized by a hepatic progenitor cell transcriptional signature suggesting that they are a distinct ICC subtype as compared to IDH wild type tumors. The role of mutant IDH in controlling hepatic differentiation state suggests the potential of newly developed inhibitors of the mutant enzyme as a form of differentiation therapy in a solid tumor. PMID:25485496

  15. Polyphenols as Promising Drugs against Main Breast Cancer Signatures

    Directory of Open Access Journals (Sweden)

    María Losada-Echeberría

    2017-11-01

    Full Text Available Breast cancer is one of the most common neoplasms worldwide, and in spite of clinical and pharmacological advances, it is still a clinical problem, causing morbidity and mortality. On the one hand, breast cancer shares with other neoplasms some molecular signatures such as an imbalanced redox state, cell cycle alterations, increased proliferation and an inflammatory status. On the other hand, breast cancer shows differential molecular subtypes that determine its prognosis and treatment. These are characterized mainly by hormone receptors especially estrogen receptors (ERs and epidermal growth factor receptor 2 (HER2. Tumors with none of these receptors are classified as triple negative breast cancer (TNBC and are associated with a worse prognosis. The success of treatments partially depends on their specificity and the adequate molecular classification of tumors. New advances in anticancer drug discovery using natural compounds have been made in the last few decades, and polyphenols have emerged as promising molecules. They may act on various molecular targets because of their promiscuous behavior, presenting several physiological effects, some of which confer antitumor activity. This review analyzes the accumulated evidence of the antitumor effects of plant polyphenols on breast cancer, with special attention to their activity on ERs and HER2 targets and also covering different aspects such as redox balance, uncontrolled proliferation and chronic inflammation.

  16. Polyphenols as Promising Drugs against Main Breast Cancer Signatures

    Science.gov (United States)

    Herranz-López, María; Micol, Vicente

    2017-01-01

    Breast cancer is one of the most common neoplasms worldwide, and in spite of clinical and pharmacological advances, it is still a clinical problem, causing morbidity and mortality. On the one hand, breast cancer shares with other neoplasms some molecular signatures such as an imbalanced redox state, cell cycle alterations, increased proliferation and an inflammatory status. On the other hand, breast cancer shows differential molecular subtypes that determine its prognosis and treatment. These are characterized mainly by hormone receptors especially estrogen receptors (ERs) and epidermal growth factor receptor 2 (HER2). Tumors with none of these receptors are classified as triple negative breast cancer (TNBC) and are associated with a worse prognosis. The success of treatments partially depends on their specificity and the adequate molecular classification of tumors. New advances in anticancer drug discovery using natural compounds have been made in the last few decades, and polyphenols have emerged as promising molecules. They may act on various molecular targets because of their promiscuous behavior, presenting several physiological effects, some of which confer antitumor activity. This review analyzes the accumulated evidence of the antitumor effects of plant polyphenols on breast cancer, with special attention to their activity on ERs and HER2 targets and also covering different aspects such as redox balance, uncontrolled proliferation and chronic inflammation. PMID:29112149

  17. Receptor tyrosine kinase mutations in developmental syndromes and cancer: two sides of the same coin

    Science.gov (United States)

    McDonell, Laura M.; Kernohan, Kristin D.; Boycott, Kym M.; Sawyer, Sarah L.

    2015-01-01

    Receptor tyrosine kinases (RTKs) are a family of ligand-binding cell surface receptors that regulate a wide range of essential cellular activities, including proliferation, differentiation, cell-cycle progression, survival and apoptosis. As such, these proteins play an important role during development and throughout life; germline mutations in genes encoding RTKs cause several developmental syndromes, while somatic alterations contribute to the pathogenesis of many aggressive cancers. This creates an interesting paradigm in which mutation timing, type and location in a gene leads to different cell signaling and biological responses, and ultimately phenotypic outcomes. In this review, we highlight the roles of RTKs in developmental disorders and cancer. The multifaceted roles of these receptors, their genetic signatures and their signaling during developmental morphogenesis and oncogenesis are discussed. Additionally, we propose that comparative analysis of RTK mutations responsible for developmental syndromes may shed light on those driving tumorigenesis. PMID:26152202

  18. The Landscape of Somatic Genetic Alterations in Breast Cancers From ATM Germline Mutation Carriers.

    Science.gov (United States)

    Weigelt, Britta; Bi, Rui; Kumar, Rahul; Blecua, Pedro; Mandelker, Diana L; Geyer, Felipe C; Pareja, Fresia; James, Paul A; Couch, Fergus J; Eccles, Diana M; Blows, Fiona; Pharoah, Paul; Li, Anqi; Selenica, Pier; Lim, Raymond S; Jayakumaran, Gowtham; Waddell, Nic; Shen, Ronglai; Norton, Larry; Wen, Hannah Y; Powell, Simon N; Riaz, Nadeem; Robson, Mark E; Reis-Filho, Jorge S; Chenevix-Trench, Georgia

    2018-02-28

    Pathogenic germline variants in ataxia-telangiectasia mutated (ATM), a gene that plays a role in DNA damage response and cell cycle checkpoints, confer an increased breast cancer (BC) risk. Here, we investigated the phenotypic characteristics and landscape of somatic genetic alterations in 24 BCs from ATM germline mutation carriers by whole-exome and targeted sequencing. ATM-associated BCs were consistently hormone receptor positive and largely displayed minimal immune infiltrate. Although 79.2% of these tumors exhibited loss of heterozygosity of the ATM wild-type allele, none displayed high activity of mutational signature 3 associated with defective homologous recombination DNA (HRD) repair. No TP53 mutations were found in the ATM-associated BCs. Analysis of an independent data set confirmed that germline ATM variants and TP53 somatic mutations are mutually exclusive. Our findings indicate that ATM-associated BCs often harbor bi-allelic inactivation of ATM, are phenotypically distinct from BRCA1/2-associated BCs, lack HRD-related mutational signatures, and that TP53 and ATM genetic alterations are likely epistatic.

  19. Replicative DNA polymerase mutations in cancer.

    Science.gov (United States)

    Heitzer, Ellen; Tomlinson, Ian

    2014-02-01

    Three DNA polymerases - Pol α, Pol δ and Pol ɛ - are essential for DNA replication. After initiation of DNA synthesis by Pol α, Pol δ or Pol ɛ take over on the lagging and leading strand respectively. Pol δ and Pol ɛ perform the bulk of replication with very high fidelity, which is ensured by Watson-Crick base pairing and 3'exonuclease (proofreading) activity. Yeast models have shown that mutations in the exonuclease domain of Pol δ and Pol ɛ homologues can cause a mutator phenotype. Recently, we identified germline exonuclease domain mutations (EDMs) in human POLD1 and POLE that predispose to 'polymerase proofreading associated polyposis' (PPAP), a disease characterised by multiple colorectal adenomas and carcinoma, with high penetrance and dominant inheritance. Moreover, somatic EDMs in POLE have also been found in sporadic colorectal and endometrial cancers. Tumors with EDMs are microsatellite stable and show an 'ultramutator' phenotype, with a dramatic increase in base substitutions. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. A site specific model and analysis of the neutral somatic mutation rate in whole-genome cancer data.

    Science.gov (United States)

    Bertl, Johanna; Guo, Qianyun; Juul, Malene; Besenbacher, Søren; Nielsen, Morten Muhlig; Hornshøj, Henrik; Pedersen, Jakob Skou; Hobolth, Asger

    2018-04-19

    Detailed modelling of the neutral mutational process in cancer cells is crucial for identifying driver mutations and understanding the mutational mechanisms that act during cancer development. The neutral mutational process is very complex: whole-genome analyses have revealed that the mutation rate differs between cancer types, between patients and along the genome depending on the genetic and epigenetic context. Therefore, methods that predict the number of different types of mutations in regions or specific genomic elements must consider local genomic explanatory variables. A major drawback of most methods is the need to average the explanatory variables across the entire region or genomic element. This procedure is particularly problematic if the explanatory variable varies dramatically in the element under consideration. To take into account the fine scale of the explanatory variables, we model the probabilities of different types of mutations for each position in the genome by multinomial logistic regression. We analyse 505 cancer genomes from 14 different cancer types and compare the performance in predicting mutation rate for both regional based models and site-specific models. We show that for 1000 randomly selected genomic positions, the site-specific model predicts the mutation rate much better than regional based models. We use a forward selection procedure to identify the most important explanatory variables. The procedure identifies site-specific conservation (phyloP), replication timing, and expression level as the best predictors for the mutation rate. Finally, our model confirms and quantifies certain well-known mutational signatures. We find that our site-specific multinomial regression model outperforms the regional based models. The possibility of including genomic variables on different scales and patient specific variables makes it a versatile framework for studying different mutational mechanisms. Our model can serve as the neutral null model

  1. Validation of a Radiosensitivity Molecular Signature in Breast Cancer

    Science.gov (United States)

    Eschrich, Steven A.; Fulp, William J.; Pawitan, Yudi; Foekens, John A.; Smid, Marcel; Martens, John W. M.; Echevarria, Michelle; Kamath, Vidya; Lee, Ji-Hyun; Harris, Eleanor E.; Bergh, Jonas; Torres-Roca, Javier F.

    2014-01-01

    Purpose Previously, we developed a radiosensitivity molecular signature (RSI) that was clinically-validated in three independent datasets (rectal, esophageal, head and neck) in 118 patients. Here, we test RSI in radiotherapy (RT) treated breast cancer patients. Experimental Design RSI was tested in two previously published breast cancer datasets. Patients were treated at the Karolinska University Hospital (n=159) and Erasmus Medical Center (n=344). RSI was applied as previously described. Results We tested RSI in RT-treated patients (Karolinska). Patients predicted to be radiosensitive (RS) had an improved 5 yr relapse-free survival when compared with radioresistant (RR) patients (95% vs. 75%, p=0.0212) but there was no difference between RS/RR patients treated without RT (71% vs. 77%, p=0.6744), consistent with RSI being RT-specific (interaction term RSIxRT, p=0.05). Similarly, in the Erasmus dataset RT-treated RS patients had an improved 5-year distant-metastasis-free survival over RR patients (77% vs. 64%, p=0.0409) but no difference was observed in patients treated without RT (RS vs. RR, 80% vs. 81%, p=0.9425). Multivariable analysis showed RSI is the strongest variable in RT-treated patients (Karolinska, HR=5.53, p=0.0987, Erasmus, HR=1.64, p=0.0758) and in backward selection (removal alpha of 0.10) RSI was the only variable remaining in the final model. Finally, RSI is an independent predictor of outcome in RT-treated ER+ patients (Erasmus, multivariable analysis, HR=2.64, p=0.0085). Conclusions RSI is validated in two independent breast cancer datasets totaling 503 patients. Including prior data, RSI is validated in five independent cohorts (621 patients) and represents, to our knowledge, the most extensively validated molecular signature in radiation oncology. PMID:22832933

  2. Cancer risks for MLH1 and MSH2 mutation carriers

    OpenAIRE

    Dowty, James G.; Win, Aung K.; Buchanan, Daniel D.; Lindor, Noralane M.; Macrae, Finlay A.; Clendenning, Mark; Antill, Yoland C.; Thibodeau, Stephen N.; Casey, Graham; Gallinger, Steve; Le Marchand, Loic; Newcomb, Polly A.; Haile, Robert W.; Young, Graeme P.; James, Paul A.

    2013-01-01

    We studied 17,576 members of 166 MLH1 and 224 MSH2 mutation-carrying families from the Colon Cancer Family Registry. Average cumulative risks of colorectal cancer (CRC), endometrial cancer (EC) and other cancers for carriers were estimated using modified segregation analysis conditioned on ascertainment criteria. Heterogeneity in risks was investigated using a polygenic risk modifier. Average CRC cumulative risks to age 70 years (95% confidence intervals) for MLH1 and MSH2 mutation carriers, ...

  3. Whole genomes redefine the mutational landscape of pancreatic cancer.

    Science.gov (United States)

    Waddell, Nicola; Pajic, Marina; Patch, Ann-Marie; Chang, David K; Kassahn, Karin S; Bailey, Peter; Johns, Amber L; Miller, David; Nones, Katia; Quek, Kelly; Quinn, Michael C J; Robertson, Alan J; Fadlullah, Muhammad Z H; Bruxner, Tim J C; Christ, Angelika N; Harliwong, Ivon; Idrisoglu, Senel; Manning, Suzanne; Nourse, Craig; Nourbakhsh, Ehsan; Wani, Shivangi; Wilson, Peter J; Markham, Emma; Cloonan, Nicole; Anderson, Matthew J; Fink, J Lynn; Holmes, Oliver; Kazakoff, Stephen H; Leonard, Conrad; Newell, Felicity; Poudel, Barsha; Song, Sarah; Taylor, Darrin; Waddell, Nick; Wood, Scott; Xu, Qinying; Wu, Jianmin; Pinese, Mark; Cowley, Mark J; Lee, Hong C; Jones, Marc D; Nagrial, Adnan M; Humphris, Jeremy; Chantrill, Lorraine A; Chin, Venessa; Steinmann, Angela M; Mawson, Amanda; Humphrey, Emily S; Colvin, Emily K; Chou, Angela; Scarlett, Christopher J; Pinho, Andreia V; Giry-Laterriere, Marc; Rooman, Ilse; Samra, Jaswinder S; Kench, James G; Pettitt, Jessica A; Merrett, Neil D; Toon, Christopher; Epari, Krishna; Nguyen, Nam Q; Barbour, Andrew; Zeps, Nikolajs; Jamieson, Nigel B; Graham, Janet S; Niclou, Simone P; Bjerkvig, Rolf; Grützmann, Robert; Aust, Daniela; Hruban, Ralph H; Maitra, Anirban; Iacobuzio-Donahue, Christine A; Wolfgang, Christopher L; Morgan, Richard A; Lawlor, Rita T; Corbo, Vincenzo; Bassi, Claudio; Falconi, Massimo; Zamboni, Giuseppe; Tortora, Giampaolo; Tempero, Margaret A; Gill, Anthony J; Eshleman, James R; Pilarsky, Christian; Scarpa, Aldo; Musgrove, Elizabeth A; Pearson, John V; Biankin, Andrew V; Grimmond, Sean M

    2015-02-26

    Pancreatic cancer remains one of the most lethal of malignancies and a major health burden. We performed whole-genome sequencing and copy number variation (CNV) analysis of 100 pancreatic ductal adenocarcinomas (PDACs). Chromosomal rearrangements leading to gene disruption were prevalent, affecting genes known to be important in pancreatic cancer (TP53, SMAD4, CDKN2A, ARID1A and ROBO2) and new candidate drivers of pancreatic carcinogenesis (KDM6A and PREX2). Patterns of structural variation (variation in chromosomal structure) classified PDACs into 4 subtypes with potential clinical utility: the subtypes were termed stable, locally rearranged, scattered and unstable. A significant proportion harboured focal amplifications, many of which contained druggable oncogenes (ERBB2, MET, FGFR1, CDK6, PIK3R3 and PIK3CA), but at low individual patient prevalence. Genomic instability co-segregated with inactivation of DNA maintenance genes (BRCA1, BRCA2 or PALB2) and a mutational signature of DNA damage repair deficiency. Of 8 patients who received platinum therapy, 4 of 5 individuals with these measures of defective DNA maintenance responded.

  4. Whole genomes redefine the mutational landscape of pancreatic cancer

    Science.gov (United States)

    Waddell, Nicola; Pajic, Marina; Patch, Ann-Marie; Chang, David K.; Kassahn, Karin S.; Bailey, Peter; Johns, Amber L.; Miller, David; Nones, Katia; Quek, Kelly; Quinn, Michael C. J.; Robertson, Alan J.; Fadlullah, Muhammad Z. H.; Bruxner, Tim J. C.; Christ, Angelika N.; Harliwong, Ivon; Idrisoglu, Senel; Manning, Suzanne; Nourse, Craig; Nourbakhsh, Ehsan; Wani, Shivangi; Wilson, Peter J; Markham, Emma; Cloonan, Nicole; Anderson, Matthew J.; Fink, J. Lynn; Holmes, Oliver; Kazakoff, Stephen H.; Leonard, Conrad; Newell, Felicity; Poudel, Barsha; Song, Sarah; Taylor, Darrin; Waddell, Nick; Wood, Scott; Xu, Qinying; Wu, Jianmin; Pinese, Mark; Cowley, Mark J.; Lee, Hong C.; Jones, Marc D.; Nagrial, Adnan M.; Humphris, Jeremy; Chantrill, Lorraine A.; Chin, Venessa; Steinmann, Angela M.; Mawson, Amanda; Humphrey, Emily S.; Colvin, Emily K.; Chou, Angela; Scarlett, Christopher J.; Pinho, Andreia V.; Giry-Laterriere, Marc; Rooman, Ilse; Samra, Jaswinder S.; Kench, James G.; Pettitt, Jessica A.; Merrett, Neil D.; Toon, Christopher; Epari, Krishna; Nguyen, Nam Q.; Barbour, Andrew; Zeps, Nikolajs; Jamieson, Nigel B.; Graham, Janet S.; Niclou, Simone P.; Bjerkvig, Rolf; Grützmann, Robert; Aust, Daniela; Hruban, Ralph H.; Maitra, Anirban; Iacobuzio-Donahue, Christine A.; Wolfgang, Christopher L.; Morgan, Richard A.; Lawlor, Rita T.; Corbo, Vincenzo; Bassi, Claudio; Falconi, Massimo; Zamboni, Giuseppe; Tortora, Giampaolo; Tempero, Margaret A.; Gill, Anthony J.; Eshleman, James R.; Pilarsky, Christian; Scarpa, Aldo; Musgrove, Elizabeth A.; Pearson, John V.; Biankin, Andrew V.; Grimmond, Sean M.

    2015-01-01

    Pancreatic cancer remains one of the most lethal of malignancies and a major health burden. We performed whole-genome sequencing and copy number variation (CNV) analysis of 100 pancreatic ductal adenocarcinomas (PDACs). Chromosomal rearrangements leading to gene disruption were prevalent, affecting genes known to be important in pancreatic cancer (TP53, SMAD4, CDKN2A, ARID1A and ROBO2) and new candidate drivers of pancreatic carcinogenesis (KDM6A and PREX2). Patterns of structural variation (variation in chromosomal structure) classified PDACs into 4 subtypes with potential clinical utility: the subtypes were termed stable, locally rearranged, scattered and unstable. A significant proportion harboured focal amplifications, many of which contained druggable oncogenes (ERBB2, MET, FGFR1, CDK6, PIK3R3 and PIK3CA), but at low individual patient prevalence. Genomic instability co-segregated with inactivation of DNA maintenance genes (BRCA1, BRCA2 or PALB2) and a mutational signature of DNA damage repair deficiency. Of 8 patients who received platinum therapy, 4 of 5 individuals with these measures of defective DNA maintenance responded. PMID:25719666

  5. Evaluating predictive pharmacogenetic signatures of adverse events in colorectal cancer patients treated with fluoropyrimidines.

    Directory of Open Access Journals (Sweden)

    Barbara A Jennings

    Full Text Available The potential clinical utility of genetic markers associated with response to fluoropyrimidine treatment in colorectal cancer patients remains controversial despite extensive study. Our aim was to test the clinical validity of both novel and previously identified markers of adverse events in a broad clinical setting. We have conducted an observational pharmacogenetic study of early adverse events in a cohort study of 254 colorectal cancer patients treated with 5-fluorouracil or capecitabine. Sixteen variants of nine key folate (pharmacodynamic and drug metabolising (pharmacokinetic enzymes have been analysed as individual markers and/or signatures of markers. We found a significant association between TYMP S471L (rs11479 and early dose modifications and/or severe adverse events (adjusted OR = 2.02 [1.03; 4.00], p = 0.042, adjusted OR = 2.70 [1.23; 5.92], p = 0.01 respectively. There was also a significant association between these phenotypes and a signature of DPYD mutations (Adjusted OR = 3.96 [1.17; 13.33], p = 0.03, adjusted OR = 6.76 [1.99; 22.96], p = 0.002 respectively. We did not identify any significant associations between the individual candidate pharmacodynamic markers and toxicity. If a predictive test for early adverse events analysed the TYMP and DPYD variants as a signature, the sensitivity would be 45.5 %, with a positive predictive value of just 33.9 % and thus poor clinical validity. Most studies to date have been under-powered to consider multiple pharmacokinetic and pharmacodynamic variants simultaneously but this and similar individualised data sets could be pooled in meta-analyses to resolve uncertainties about the potential clinical utility of these markers.

  6. HER2 activating mutations are targets for colorectal cancer treatment.

    Science.gov (United States)

    Kavuri, Shyam M; Jain, Naveen; Galimi, Francesco; Cottino, Francesca; Leto, Simonetta M; Migliardi, Giorgia; Searleman, Adam C; Shen, Wei; Monsey, John; Trusolino, Livio; Jacobs, Samuel A; Bertotti, Andrea; Bose, Ron

    2015-08-01

    The Cancer Genome Atlas project identified HER2 somatic mutations and gene amplification in 7% of patients with colorectal cancer. Introduction of the HER2 mutations S310F, L755S, V777L, V842I, and L866M into colon epithelial cells increased signaling pathways and anchorage-independent cell growth, indicating that they are activating mutations. Introduction of these HER2 activating mutations into colorectal cancer cell lines produced resistance to cetuximab and panitumumab by sustaining MAPK phosphorylation. HER2 mutants are potently inhibited by low nanomolar doses of the irreversible tyrosine kinase inhibitors neratinib and afatinib. HER2 gene sequencing of 48 cetuximab-resistant, quadruple (KRAS, NRAS, BRAF, and PIK3CA) wild-type (WT) colorectal cancer patient-derived xenografts (PDX) identified 4 PDXs with HER2 mutations. HER2-targeted therapies were tested on two PDXs. Treatment with a single HER2-targeted drug (trastuzumab, neratinib, or lapatinib) delayed tumor growth, but dual HER2-targeted therapy with trastuzumab plus tyrosine kinase inhibitors produced regression of these HER2-mutated PDXs. HER2 activating mutations cause EGFR antibody resistance in colorectal cell lines, and PDXs with HER2 mutations show durable tumor regression when treated with dual HER2-targeted therapy. These data provide a strong preclinical rationale for clinical trials targeting HER2 activating mutations in metastatic colorectal cancer. ©2015 American Association for Cancer Research.

  7. SPOP Mutations in Prostate Cancer across Demographically Diverse Patient Cohorts

    Directory of Open Access Journals (Sweden)

    Mirjam Blattner

    2014-01-01

    Full Text Available BACKGROUND: Recurrent mutations in the Speckle-Type POZ Protein (SPOP gene occur in up to 15% of prostate cancers. However, the frequency and features of cancers with these mutations across different populations is unknown. OBJECTIVE: To investigate SPOP mutations across diverse cohorts and validate a series of assays employing high-resolution melting (HRM analysis and Sanger sequencing for mutational analysis of formalin-fixed paraffin-embedded material. DESIGN, SETTING, AND PARTICIPANTS: 720 prostate cancer samples from six international cohorts spanning Caucasian, African American, and Asian patients, including both prostate-specific antigen-screened and unscreened populations, were screened for their SPOP mutation status. Status of SPOP was correlated to molecular features (ERG rearrangement, PTEN deletion, and CHD1 deletion as well as clinical and pathologic features. RESULTS AND LIMITATIONS: Overall frequency of SPOP mutations was 8.1% (4.6% to 14.4%, SPOP mutation was inversely associated with ERG rearrangement (P < .01, and SPOP mutant (SPOPmut cancers had higher rates of CHD1 deletions (P < .01. There were no significant differences in biochemical recurrence in SPOPmut cancers. Limitations of this study include missing mutational data due to sample quality and lack of power to identify a difference in clinical outcomes. CONCLUSION: SPOP is mutated in 4.6% to 14.4% of patients with prostate cancer across different ethnic and demographic backgrounds. There was no significant association between SPOP mutations with ethnicity, clinical, or pathologic parameters. Mutual exclusivity of SPOP mutation with ERG rearrangement as well as a high association with CHD1 deletion reinforces SPOP mutation as defining a distinct molecular subclass of prostate cancer.

  8. Mutation analysis of breast cancer gene BRCA among breast cancer Jordanian females

    International Nuclear Information System (INIS)

    Atoum, Manar F.; Al-Kayed, Sameer A.

    2004-01-01

    To screen mutations of the tumor suppressor breast cancer susceptibility gene 1 (BRCA1) within 3 exons among Jordanian breast cancer females. A total of 135 Jordanian breast cancer females were genetically analyzed by denaturing gradient electrophoresis (DGGE) for mutation detection in 3 BRCA1 exons (2, 11 and 20) between 2000-2002 in Al-Basheer Hospital, Amman, Jordan. Of the studied patients 50 had a family history of breast cancer, 28 had a family history of cancer other than breast cancer, and 57 had no family history of any cancer. Five germline mutations were detected among breast cancer females with a family history of breast cancers (one in exon 2 and 4 mutations in exon 11). Another germline mutation (within exon 11) was detected among breast cancer females with family history of cancer other than breast cancer, and no mutation was detected among breast cancer females with no family history of any cancer or among normal control females. Screening mutations within exon 2, exon 11 and exon 20 showed that most screened mutations were within BRCA1 exon 11 among breast cancer Jordanian families with a family history of breast cancer. (author)

  9. Mutations and epimutations in the origin of cancer

    Energy Technology Data Exchange (ETDEWEB)

    Peltomaeki, Paeivi, E-mail: Paivi.Peltomaki@Helsinki.Fi

    2012-02-15

    Cancer is traditionally viewed as a disease of abnormal cell proliferation controlled by a series of mutations. Mutations typically affect oncogenes or tumor suppressor genes thereby conferring growth advantage. Genomic instability facilitates mutation accumulation. Recent findings demonstrate that activation of oncogenes and inactivation of tumor suppressor genes, as well as genomic instability, can be achieved by epigenetic mechanisms as well. Unlike genetic mutations, epimutations do not change the base sequence of DNA and are potentially reversible. Similar to genetic mutations, epimutations are associated with specific patterns of gene expression that are heritable through cell divisions. Knudson's hypothesis postulates that inactivation of tumor suppressor genes requires two hits, with the first hit occurring either in somatic cells (sporadic cancer) or in the germline (hereditary cancer) and the second one always being somatic. Studies on hereditary and sporadic forms of colorectal carcinoma have made it evident that, apart from genetic mutations, epimutations may serve as either hit or both. Furthermore, recent next-generation sequencing studies show that epigenetic genes, such as those encoding histone modifying enzymes and subunits for chromatin remodeling systems, are themselves frequent targets of somatic mutations in cancer and can act like tumor suppressor genes or oncogenes. This review discusses genetic vs. epigenetic origin of cancer, including cancer susceptibility, in light of recent discoveries. Situations in which mutations and epimutations occur to serve analogous purposes are highlighted.

  10. Next generation sequencing of Cytokeratin 20-negative Merkel cell carcinoma reveals ultraviolet-signature mutations and recurrent TP53 and RB1 inactivation.

    Science.gov (United States)

    Harms, Paul W; Collie, Angela M B; Hovelson, Daniel H; Cani, Andi K; Verhaegen, Monique E; Patel, Rajiv M; Fullen, Douglas R; Omata, Kei; Dlugosz, Andrzej A; Tomlins, Scott A; Billings, Steven D

    2016-03-01

    Merkel cell carcinoma is a rare but highly aggressive cutaneous neuroendocrine carcinoma. Cytokeratin 20 (CK20) is expressed in ~95% of Merkel cell carcinomas and is useful for distinction from morphologically similar entities including metastatic small-cell lung carcinoma. Lack of CK20 expression may make diagnosis of Merkel cell carcinoma more challenging, and has unknown biological significance. Approximately 80% of CK20-positive Merkel cell carcinomas are associated with the oncogenic Merkel cell polyomavirus. Merkel cell carcinomas lacking Merkel cell polyomavirus display distinct genetic changes from Merkel cell polyomavirus-positive Merkel cell carcinoma, including RB1 inactivating mutations. Unlike CK20-positive Merkel cell carcinoma, the majority of CK20-negative Merkel cell carcinomas are Merkel cell polyomavirus-negative, suggesting CK20-negative Merkel cell carcinomas predominantly arise through virus-independent pathway(s) and may harbor additional genetic differences from conventional Merkel cell carcinoma. Hence, we analyzed 15 CK20-negative Merkel cell carcinoma tumors (10 Merkel cell polyomavirus-negative, four Merkel cell polyomavirus-positive, and one undetermined) using the Ion Ampliseq Comprehensive Cancer Panel, which assesses copy number alterations and mutations in 409 cancer-relevant genes. Twelve tumors displayed prioritized high-level chromosomal gains or losses (average 1.9 per tumor). Non-synonymous high-confidence somatic mutations were detected in 14 tumors (average 11.9 per tumor). Assessing all somatic coding mutations, an ultraviolet-signature mutational profile was present, and more prevalent in Merkel cell polyomavirus-negative tumors. Recurrent deleterious tumor suppressor mutations affected TP53 (9/15, 60%), RB1 (3/15, 20%), and BAP1 (2/15, 13%). Oncogenic activating mutations included PIK3CA (3/15, 20%), AKT1 (1/15, 7%) and EZH2 (1/15, 7%). In conclusion, CK20-negative Merkel cell carcinoma display overlapping genetic changes

  11. Next Generation Sequencing of Cytokeratin 20-Negative Merkel Cell Carcinoma Reveals Ultraviolet Signature Mutations and Recurrent TP53 and RB1 Inactivation

    Science.gov (United States)

    Harms, Paul W.; Collie, Angela M. B.; Hovelson, Daniel H.; Cani, Andi K.; Verhaegen, Monique E.; Patel, Rajiv M.; Fullen, Douglas R.; Omata, Kei; Dlugosz, Andrzej A.; Tomlins, Scott A.; Billings, Steven D.

    2016-01-01

    Merkel cell carcinoma is a rare but highly aggressive cutaneous neuroendocrine carcinoma. Cytokeratin-20 (CK20) is expressed in approximately 95% of Merkel cell carcinomas and is useful for distinction from morphologically similar entities including metastatic small cell lung carcinoma. Lack of CK20 expression may make diagnosis of Merkel cell carcinoma more challenging, and has unknown biological significance. Approximately 80% of CK20-positive Merkel cell carcinomas are associated with the oncogenic Merkel cell polyomavirus. Merkel cell carcinomas lacking Merkel cell polyomavirus display distinct genetic changes from Merkel cell polyomavirus-positive Merkel cell carcinoma, including RB1 inactivating mutations. Unlike CK20-positive Merkel cell carcinoma, the majority of CK20-negative Merkel cell carcinomas are Merkel cell polyomavirus-negative, suggesting CK20-negative Merkel cell carcinomas predominantly arise through virus-independent pathway(s) and may harbor additional genetic differences from conventional Merkel cell carcinoma. Hence, we analyzed 15 CK20-negative Merkel cell carcinoma tumors (ten Merkel cell polyomavirus-negative, four Merkel cell polyomavirus-positive, and one undetermined) using the Ion Ampliseq Comprehensive Cancer Panel, which assesses copy number alterations and mutations in 409 cancer-relevant genes. Twelve tumors displayed prioritized high-level chromosomal gains or losses (average 1.9 per tumor). Non-synonymous high confidence somatic mutations were detected in 14 tumors (average 11.9 per tumor). Assessing all somatic coding mutations, an ultraviolet-signature mutational profile was present, and more prevalent in Merkel cell polyomavirus-negative tumors. Recurrent deleterious tumor suppressor mutations affected TP53 (9/15, 60%), RB1 (3/15, 20%), and BAP1 (2/15, 13%). Oncogenic activating mutations included PIK3CA (3/15, 20%), AKT1 (1/15, 7%)) and EZH2 (1/15, 7%). In conclusion, CK20-negative Merkel cell carcinoma display overlapping

  12. Developing a PTEN-ERG Signature to Improve Molecular Risk Stratification in Prostate Cancer

    Science.gov (United States)

    2017-10-01

    AWARD NUMBER: W81XWH-16-1-0737 TITLE: Developing a PTEN-ERG Signature to Improve Molecular Risk Stratification in Prostate Cancer PRINCIPAL...AND SUBTITLE 5a. CONTRACT NUMBER Developing a PTEN-ERG Signature to Improve Molecular Risk Stratification in Prostate Cancer 5b. GRANT NUMBER W81XWH...that there exist distinctive molecular correlates of PTEN loss in the context of ETS-negative versus ETS-positive human prostate cancers and that

  13. Performance of mitochondrial DNA mutations detecting early stage cancer

    International Nuclear Information System (INIS)

    Jakupciak, John P; Srivastava, Sudhir; Sidransky, David; O'Connell, Catherine D; Maragh, Samantha; Markowitz, Maura E; Greenberg, Alissa K; Hoque, Mohammad O; Maitra, Anirban; Barker, Peter E; Wagner, Paul D; Rom, William N

    2008-01-01

    Mutations in the mitochondrial genome (mtgenome) have been associated with cancer and many other disorders. These mutations can be point mutations or deletions, or admixtures (heteroplasmy). The detection of mtDNA mutations in body fluids using resequencing microarrays, which are more sensitive than other sequencing methods, could provide a strategy to measure mutation loads in remote anatomical sites. We determined the mtDNA mutation load in the entire mitochondrial genome of 26 individuals with different early stage cancers (lung, bladder, kidney) and 12 heavy smokers without cancer. MtDNA was sequenced from three matched specimens (blood, tumor and body fluid) from each cancer patient and two matched specimens (blood and sputum) from smokers without cancer. The inherited wildtype sequence in the blood was compared to the sequences present in the tumor and body fluid, detected using the Affymetrix Genechip ® Human Mitochondrial Resequencing Array 1.0 and supplemented by capillary sequencing for noncoding region. Using this high-throughput method, 75% of the tumors were found to contain mtDNA mutations, higher than in our previous studies, and 36% of the body fluids from these cancer patients contained mtDNA mutations. Most of the mutations detected were heteroplasmic. A statistically significantly higher heteroplasmy rate occurred in tumor specimens when compared to both body fluid of cancer patients and sputum of controls, and in patient blood compared to blood of controls. Only 2 of the 12 sputum specimens from heavy smokers without cancer (17%) contained mtDNA mutations. Although patient mutations were spread throughout the mtDNA genome in the lung, bladder and kidney series, a statistically significant elevation of tRNA and ND complex mutations was detected in tumors. Our findings indicate comprehensive mtDNA resequencing can be a high-throughput tool for detecting mutations in clinical samples with potential applications for cancer detection, but it is

  14. Common filaggrin gene mutations and risk of cervical cancer

    DEFF Research Database (Denmark)

    Bager, Peter; Wohlfahrt, Jan; Sørensen, Erik

    2015-01-01

    BACKGROUND: As carriers of filaggrin gene (FLG) mutations may have a compromised cervical mucosal barrier against human papillomavirus infection, our primary objective was to study their risk of cervical cancer. METHODS: We genotyped 586 cervical cancer patients for the two most common FLG...... mutations, R501X and 2282del4, using blood from the Copenhagen Hospital Biobank, Denmark. Controls (n = 8050) were genotyped in previous population-based studies. Information on cervical cancer, mortality and emigration were obtained from national registers. Odds ratios (OR) were estimated by logistic...... and stratification by cancer stage. RESULTS: The primary results showed that FLG mutations were not associated with the risk of cervical cancer (6.3% of cases and 7.7% of controls were carriers; OR adjusted 0.81, 95% CI 0.57-1.14; OR adjusted+ weighted 0.96, 95% CI 0.58-1.57). Among cases, FLG mutations increased...

  15. BRCA2 Mutations in 154 Finnish Male Breast Cancer Patients

    Directory of Open Access Journals (Sweden)

    Kirsi Syrjäkoski

    2004-09-01

    Full Text Available The etiology and pathogenesis of male breast cancer (MBC are poorly known. This is due to the fact that the disease is rare, and large-scale genetic epidemiologic studies have been difficult to carry out. Here, we studied the frequency of eight recurrent Finnish BRCA2 founder mutations in a large cohort of 154 MBC patients (65% diagnosed in Finland from 1967 to 1996. Founder mutations were detected in 10 patients (6.5%, eight of whom carried the 9346(-2 A>G mutation. Two novel mutations (4075 delGT and 5808 del5 were discovered in a screening of the entire BRCA2 coding region in 34 samples. However, these mutations were not found in the rest of the 120 patients studied. Patients with positive family history of breast and/or ovarian cancer were often BRCA2 mutation carriers (44%, whereas those with no family history showed a low frequency of involvement (3.6%; P < .0001. Finally, we found only one Finnish MBC patient with 999 dell, the most common founder mutation in Finnish female breast cancer (FBC patients, and one that explains most of the hereditary FBC and MBC cases in Iceland. The variation in BRCA2 mutation spectrum between Finnish MBC patients and FBC patients in Finland and breast cancer patients in Iceland suggests that modifying genetic and environmental factors may significantly influence the penetrance of MBC and FBC in individuals carrying germline BRCA2 mutations in some populations.

  16. Hereditary cancer genes are highly susceptible to splicing mutations

    Science.gov (United States)

    Soemedi, Rachel; Maguire, Samantha; Murray, Michael F.; Monaghan, Sean F.

    2018-01-01

    Substitutions that disrupt pre-mRNA splicing are a common cause of genetic disease. On average, 13.4% of all hereditary disease alleles are classified as splicing mutations mapping to the canonical 5′ and 3′ splice sites. However, splicing mutations present in exons and deeper intronic positions are vastly underreported. A recent re-analysis of coding mutations in exon 10 of the Lynch Syndrome gene, MLH1, revealed an extremely high rate (77%) of mutations that lead to defective splicing. This finding is confirmed by extending the sampling to five other exons in the MLH1 gene. Further analysis suggests a more general phenomenon of defective splicing driving Lynch Syndrome. Of the 36 mutations tested, 11 disrupted splicing. Furthermore, analyzing past reports suggest that MLH1 mutations in canonical splice sites also occupy a much higher fraction (36%) of total mutations than expected. When performing a comprehensive analysis of splicing mutations in human disease genes, we found that three main causal genes of Lynch Syndrome, MLH1, MSH2, and PMS2, belonged to a class of 86 disease genes which are enriched for splicing mutations. Other cancer genes were also enriched in the 86 susceptible genes. The enrichment of splicing mutations in hereditary cancers strongly argues for additional priority in interpreting clinical sequencing data in relation to cancer and splicing. PMID:29505604

  17. Hereditary cancer genes are highly susceptible to splicing mutations.

    Directory of Open Access Journals (Sweden)

    Christy L Rhine

    2018-03-01

    Full Text Available Substitutions that disrupt pre-mRNA splicing are a common cause of genetic disease. On average, 13.4% of all hereditary disease alleles are classified as splicing mutations mapping to the canonical 5' and 3' splice sites. However, splicing mutations present in exons and deeper intronic positions are vastly underreported. A recent re-analysis of coding mutations in exon 10 of the Lynch Syndrome gene, MLH1, revealed an extremely high rate (77% of mutations that lead to defective splicing. This finding is confirmed by extending the sampling to five other exons in the MLH1 gene. Further analysis suggests a more general phenomenon of defective splicing driving Lynch Syndrome. Of the 36 mutations tested, 11 disrupted splicing. Furthermore, analyzing past reports suggest that MLH1 mutations in canonical splice sites also occupy a much higher fraction (36% of total mutations than expected. When performing a comprehensive analysis of splicing mutations in human disease genes, we found that three main causal genes of Lynch Syndrome, MLH1, MSH2, and PMS2, belonged to a class of 86 disease genes which are enriched for splicing mutations. Other cancer genes were also enriched in the 86 susceptible genes. The enrichment of splicing mutations in hereditary cancers strongly argues for additional priority in interpreting clinical sequencing data in relation to cancer and splicing.

  18. Genome-Wide Mutational Signature of the Chemotherapeutic Agent Mitomycin C in Caenorhabditis elegans.

    Science.gov (United States)

    Tam, Annie S; Chu, Jeffrey S C; Rose, Ann M

    2015-11-12

    Cancer therapy largely depends on chemotherapeutic agents that generate DNA lesions. However, our understanding of the nature of the resulting lesions as well as the mutational profiles of these chemotherapeutic agents is limited. Among these lesions, DNA interstrand crosslinks are among the more toxic types of DNA damage. Here, we have characterized the mutational spectrum of the commonly used DNA interstrand crosslinking agent mitomycin C (MMC). Using a combination of genetic mapping, whole genome sequencing, and genomic analysis, we have identified and confirmed several genomic lesions linked to MMC-induced DNA damage in Caenorhabditis elegans. Our data indicate that MMC predominantly causes deletions, with a 5'-CpG-3' sequence context prevalent in the deleted regions of DNA. Furthermore, we identified microhomology flanking the deletion junctions, indicative of DNA repair via nonhomologous end joining. Based on these results, we propose a general repair mechanism that is likely to be involved in the biological response to this highly toxic agent. In conclusion, the systematic study we have described provides insight into potential sequence specificity of MMC with DNA. Copyright © 2016 Tam et al.

  19. Genome-Wide Mutational Signature of the Chemotherapeutic Agent Mitomycin C in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Annie S. Tam

    2016-01-01

    Full Text Available Cancer therapy largely depends on chemotherapeutic agents that generate DNA lesions. However, our understanding of the nature of the resulting lesions as well as the mutational profiles of these chemotherapeutic agents is limited. Among these lesions, DNA interstrand crosslinks are among the more toxic types of DNA damage. Here, we have characterized the mutational spectrum of the commonly used DNA interstrand crosslinking agent mitomycin C (MMC. Using a combination of genetic mapping, whole genome sequencing, and genomic analysis, we have identified and confirmed several genomic lesions linked to MMC-induced DNA damage in Caenorhabditis elegans. Our data indicate that MMC predominantly causes deletions, with a 5′-CpG-3′ sequence context prevalent in the deleted regions of DNA. Furthermore, we identified microhomology flanking the deletion junctions, indicative of DNA repair via nonhomologous end joining. Based on these results, we propose a general repair mechanism that is likely to be involved in the biological response to this highly toxic agent. In conclusion, the systematic study we have described provides insight into potential sequence specificity of MMC with DNA.

  20. Mutational analysis and clinical correlation of metastatic colorectal cancer.

    Science.gov (United States)

    Russo, Andrea L; Borger, Darrell R; Szymonifka, Jackie; Ryan, David P; Wo, Jennifer Y; Blaszkowsky, Lawrence S; Kwak, Eunice L; Allen, Jill N; Wadlow, Raymond C; Zhu, Andrew X; Murphy, Janet E; Faris, Jason E; Dias-Santagata, Dora; Haigis, Kevin M; Ellisen, Leif W; Iafrate, Anthony J; Hong, Theodore S

    2014-05-15

    Early identification of mutations may guide patients with metastatic colorectal cancer toward targeted therapies that may be life prolonging. The authors assessed tumor genotype correlations with clinical characteristics to determine whether mutational profiling can account for clinical similarities, differences, and outcomes. Under Institutional Review Board approval, 222 patients with metastatic colon adenocarcinoma (n = 158) and rectal adenocarcinoma (n = 64) who underwent clinical tumor genotyping were reviewed. Multiplexed tumor genotyping screened for >150 mutations across 15 commonly mutated cancer genes. The chi-square test was used to assess genotype frequency by tumor site and additional clinical characteristics. Cox multivariate analysis was used to assess the impact of genotype on overall survival. Broad-based tumor genotyping revealed clinical and anatomic differences that could be linked to gene mutations. NRAS mutations were associated with rectal cancer versus colon cancer (12.5% vs 0.6%; P colon cancer (13% vs 3%; P = .024) and older age (15.8% vs 4.6%; P = .006). TP53 mutations were associated with rectal cancer (30% vs 18%; P = .048), younger age (14% vs 28.7%; P = .007), and men (26.4% vs 14%; P = .03). Lung metastases were associated with PIK3CA mutations (23% vs 8.7%; P = .004). Only mutations in BRAF were independently associated with decreased overall survival (hazard ratio, 2.4; 95% confidence interval, 1.09-5.27; P = .029). The current study suggests that underlying molecular profiles can differ between colon and rectal cancers. Further investigation is warranted to assess whether the differences identified are important in determining the optimal treatment course for these patients. © 2014 American Cancer Society.

  1. PIK3CA mutations frequently coexist with RAS and BRAF mutations in patients with advanced cancers.

    Directory of Open Access Journals (Sweden)

    Filip Janku

    Full Text Available Oncogenic mutations of PIK3CA, RAS (KRAS, NRAS, and BRAF have been identified in various malignancies, and activate the PI3K/AKT/mTOR and RAS/RAF/MEK pathways, respectively. Both pathways are critical drivers of tumorigenesis.Tumor tissues from 504 patients with diverse cancers referred to the Clinical Center for Targeted Therapy at MD Anderson Cancer Center starting in October 2008 were analyzed for PIK3CA, RAS (KRAS, NRAS, and BRAF mutations using polymerase chain reaction-based DNA sequencing.PIK3CA mutations were found in 54 (11% of 504 patients tested; KRAS in 69 (19% of 367; NRAS in 19 (8% of 225; and BRAF in 31 (9% of 361 patients. PIK3CA mutations were most frequent in squamous cervical (5/14, 36%, uterine (7/28, 25%, breast (6/29, 21%, and colorectal cancers (18/105, 17%; KRAS in pancreatic (5/9, 56%, colorectal (49/97, 51%, and uterine cancers (3/20, 15%; NRAS in melanoma (12/40, 30%, and uterine cancer (2/11, 18%; BRAF in melanoma (23/52, 44%, and colorectal cancer (5/88, 6%. Regardless of histology, KRAS mutations were found in 38% of patients with PIK3CA mutations compared to 16% of patients with wild-type (wtPIK3CA (p = 0.001. In total, RAS (KRAS, NRAS or BRAF mutations were found in 47% of patients with PIK3CA mutations vs. 24% of patients wtPIK3CA (p = 0.001. PIK3CA mutations were found in 28% of patients with KRAS mutations compared to 10% with wtKRAS (p = 0.001 and in 20% of patients with RAS (KRAS, NRAS or BRAF mutations compared to 8% with wtRAS (KRAS, NRAS or wtBRAF (p = 0.001.PIK3CA, RAS (KRAS, NRAS, and BRAF mutations are frequent in diverse tumors. In a wide variety of tumors, PIK3CA mutations coexist with RAS (KRAS, NRAS and BRAF mutations.

  2. Blocking DNA Repair in Advanced BRCA-Mutated Cancer

    Science.gov (United States)

    In this trial, patients with relapsed or refractory advanced cancer and confirmed BRCA mutations who have not previously been treated with a PARP inhibitor will be given BMN 673 by mouth once a day in 28-day cycles.

  3. Lethal mutagenesis: targeting the mutator phenotype in cancer.

    Science.gov (United States)

    Fox, Edward J; Loeb, Lawrence A

    2010-10-01

    The evolution of cancer and RNA viruses share many similarities. Both exploit high levels of genotypic diversity to enable extensive phenotypic plasticity and thereby facilitate rapid adaptation. In order to accumulate large numbers of mutations, we have proposed that cancers express a mutator phenotype. Similar to cancer cells, many viral populations, by replicating their genomes with low fidelity, carry a substantial mutational load. As high levels of mutation are potentially deleterious, the viral mutation frequency is thresholded at a level below which viral populations equilibrate in a traditional mutation-selection balance, and above which the population is no longer viable, i.e., the population undergoes an error catastrophe. Because their mutation frequencies are fine-tuned just below this error threshold, viral populations are susceptible to further increases in mutational load and, recently this phenomenon has been exploited therapeutically by a concept that has been termed lethal mutagenesis. Here we review the application of lethal mutagenesis to the treatment of HIV and discuss how lethal mutagenesis may represent a novel therapeutic approach for the treatment of solid cancers. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. RANK ligand as a potential target for breast cancer prevention in BRCA1-mutation carriers.

    Science.gov (United States)

    Nolan, Emma; Vaillant, François; Branstetter, Daniel; Pal, Bhupinder; Giner, Göknur; Whitehead, Lachlan; Lok, Sheau W; Mann, Gregory B; Rohrbach, Kathy; Huang, Li-Ya; Soriano, Rosalia; Smyth, Gordon K; Dougall, William C; Visvader, Jane E; Lindeman, Geoffrey J

    2016-08-01

    Individuals who have mutations in the breast-cancer-susceptibility gene BRCA1 (hereafter referred to as BRCA1-mutation carriers) frequently undergo prophylactic mastectomy to minimize their risk of breast cancer. The identification of an effective prevention therapy therefore remains a 'holy grail' for the field. Precancerous BRCA1(mut/+) tissue harbors an aberrant population of luminal progenitor cells, and deregulated progesterone signaling has been implicated in BRCA1-associated oncogenesis. Coupled with the findings that tumor necrosis factor superfamily member 11 (TNFSF11; also known as RANKL) is a key paracrine effector of progesterone signaling and that RANKL and its receptor TNFRSF11A (also known as RANK) contribute to mammary tumorigenesis, we investigated a role for this pathway in the pre-neoplastic phase of BRCA1-mutation carriers. We identified two subsets of luminal progenitors (RANK(+) and RANK(-)) in histologically normal tissue of BRCA1-mutation carriers and showed that RANK(+) cells are highly proliferative, have grossly aberrant DNA repair and bear a molecular signature similar to that of basal-like breast cancer. These data suggest that RANK(+) and not RANK(-) progenitors are a key target population in these women. Inhibition of RANKL signaling by treatment with denosumab in three-dimensional breast organoids derived from pre-neoplastic BRCA1(mut/+) tissue attenuated progesterone-induced proliferation. Notably, proliferation was markedly reduced in breast biopsies from BRCA1-mutation carriers who were treated with denosumab. Furthermore, inhibition of RANKL in a Brca1-deficient mouse model substantially curtailed mammary tumorigenesis. Taken together, these findings identify a targetable pathway in a putative cell-of-origin population in BRCA1-mutation carriers and implicate RANKL blockade as a promising strategy in the prevention of breast cancer.

  5. Epidermal growth factor receptor mutation in gastric cancer.

    Science.gov (United States)

    Liu, Zhimin; Liu, Lina; Li, Mei; Wang, Zhaohui; Feng, Lu; Zhang, Qiuping; Cheng, Shihua; Lu, Shen

    2011-04-01

    Epidermal growth factor receptor (EGFR) and Kirsten-RAS (KRAS) mutations have been identified as predictors of response to EGFR tyrosine kinase inhibitors (TKIs) in non-small cell lung cancer. We aimed to screen the mutations of both genes in gastric carcinoma to detect the suitability of EGFR TKIs for patients with gastric carcinoma. We screened EGFR mutation in exons 19-21 and KRAS mutation in exon 2 in 58 gastric adenocarcinomas from China using high resolution melting analysis (HRMA). Positive samples were confirmed by DNA sequencing. Three EGFR missense mutations (5.2%) and 22 single nucleotide polymorphisms (SNP, Q787Q, 37.9%) were identified. To our knowledge, we report for the first time three mutation patterns of EGFR, Y801C, L858R and G863D, in gastric carcinoma. Two samples with EGFR mutation were mucinous adenocarcinoma. These three samples were collected from male patients aged over 75 years old. The frequency of KRAS mutation was 10.3% (6/58). The exclusiveness of EGFR and KRAS mutations was proven for the first time in gastric cancer. Gastric carcinoma of the mucinous adenocarcinoma type collected from older male patients may harbour EGFR mutations. The small subset of gastric adenocarcinoma patients may respond to EGFR TKIs.

  6. Systematic Analysis of Splice-Site-Creating Mutations in Cancer

    Directory of Open Access Journals (Sweden)

    Reyka G. Jayasinghe

    2018-04-01

    Full Text Available Summary: For the past decade, cancer genomic studies have focused on mutations leading to splice-site disruption, overlooking those having splice-creating potential. Here, we applied a bioinformatic tool, MiSplice, for the large-scale discovery of splice-site-creating mutations (SCMs across 8,656 TCGA tumors. We report 1,964 originally mis-annotated mutations having clear evidence of creating alternative splice junctions. TP53 and GATA3 have 26 and 18 SCMs, respectively, and ATRX has 5 from lower-grade gliomas. Mutations in 11 genes, including PARP1, BRCA1, and BAP1, were experimentally validated for splice-site-creating function. Notably, we found that neoantigens induced by SCMs are likely several folds more immunogenic compared to missense mutations, exemplified by the recurrent GATA3 SCM. Further, high expression of PD-1 and PD-L1 was observed in tumors with SCMs, suggesting candidates for immune blockade therapy. Our work highlights the importance of integrating DNA and RNA data for understanding the functional and the clinical implications of mutations in human diseases. : Jayasinghe et al. identify nearly 2,000 splice-site-creating mutations (SCMs from over 8,000 tumor samples across 33 cancer types. They provide a more accurate interpretation of previously mis-annotated mutations, highlighting the importance of integrating data types to understand the functional and the clinical implications of splicing mutations in human disease. Keywords: splicing, RNA, mutations of clinical relevance

  7. A simple algebraic cancer equation: calculating how cancers may arise with normal mutation rates

    Directory of Open Access Journals (Sweden)

    Shibata Darryl

    2010-01-01

    Full Text Available Abstract Background The purpose of this article is to present a relatively easy to understand cancer model where transformation occurs when the first cell, among many at risk within a colon, accumulates a set of driver mutations. The analysis of this model yields a simple algebraic equation, which takes as inputs the number of stem cells, mutation and division rates, and the number of driver mutations, and makes predictions about cancer epidemiology. Methods The equation [p = 1 - (1 - (1 - (1 - udkNm ] calculates the probability of cancer (p and contains five parameters: the number of divisions (d, the number of stem cells (N × m, the number of critical rate-limiting pathway driver mutations (k, and the mutation rate (u. In this model progression to cancer "starts" at conception and mutations accumulate with cell division. Transformation occurs when a critical number of rate-limiting pathway mutations first accumulates within a single stem cell. Results When applied to several colorectal cancer data sets, parameter values consistent with crypt stem cell biology and normal mutation rates were able to match the increase in cancer with aging, and the mutation frequencies found in cancer genomes. The equation can help explain how cancer risks may vary with age, height, germline mutations, and aspirin use. APC mutations may shorten pathways to cancer by effectively increasing the numbers of stem cells at risk. Conclusions The equation illustrates that age-related increases in cancer frequencies may result from relatively normal division and mutation rates. Although this equation does not encompass all of the known complexity of cancer, it may be useful, especially in a teaching setting, to help illustrate relationships between small and large cancer features.

  8. Filaggrin loss-of-function mutations and incident cancer

    DEFF Research Database (Denmark)

    Skaaby, T; Husemoen, L L N; Thyssen, J P

    2014-01-01

    BACKGROUND: Loss-of-function mutations in the filaggrin gene (FLG) could have opposing effects on cancer risk, as mutations are associated with both 10% higher serum vitamin D levels, which may protect against cancer, and with impaired skin barrier function, which may lead to higher cancer...... (HR 1·09, 95% CI 0·61-1·94), urinary cancer (HR 1·30, 95% CI 0·51-3·29), malignant melanoma (HR 1·03, 95% CI 0·41-2·58) and NMSC (HR 0·70, 95% CI 0·47-1·05). Among participants aged over 60 years at baseline, we found statistically significant lower risks of all cancers and NMSC among FLG mutation...

  9. Spectrum of K ras mutations in Pakistani colorectal cancer patients

    Energy Technology Data Exchange (ETDEWEB)

    Murtaza, B.N.; Bibi, A. [School of Biological Sciences, University of the Punjab, Quaid-i-Azam Campus, Lahore (Pakistan); Rashid, M.U.; Khan, Y.I. [Shaukat Khanum Memorial Cancer Hospital and Research Centre, Johar Town, Lahore (Pakistan); Chaudri, M.S. [Services Institute of Medical Sciences, Lahore (Pakistan); Shakoori, A.R. [School of Biological Sciences, University of the Punjab, Quaid-i-Azam Campus, Lahore (Pakistan)

    2013-11-29

    The incidence of colorectal cancer (CRC) is increasing daily worldwide. Although different aspects of CRC have been studied in other parts of the world, relatively little or almost no information is available in Pakistan about different aspects of this disease at the molecular level. The present study was aimed at determining the frequency and prevalence of K ras gene mutations in Pakistani CRC patients. Tissue and blood samples of 150 CRC patients (64% male and 36% female) were used for PCR amplification of K ras and detection of mutations by denaturing gradient gel electrophoresis, restriction fragment length polymorphism analysis, and nucleotide sequencing. The K ras mutation frequency was found to be 13%, and the most prevalent mutations were found at codons 12 and 13. A novel mutation was also found at codon 31. The dominant mutation observed was a G to A transition. Female patients were more susceptible to K ras mutations, and these mutations were predominant in patients with a nonmetastatic stage of CRC. No significant differences in the prevalence of K ras mutations were observed for patient age, gender, or tumor type. It can be inferred from this study that Pakistani CRC patients have a lower frequency of K ras mutations compared to those observed in other parts of the world, and that K ras mutations seemed to be significantly associated with female patients.

  10. Spectrum of K ras mutations in Pakistani colorectal cancer patients

    International Nuclear Information System (INIS)

    Murtaza, B.N.; Bibi, A.; Rashid, M.U.; Khan, Y.I.; Chaudri, M.S.; Shakoori, A.R.

    2013-01-01

    The incidence of colorectal cancer (CRC) is increasing daily worldwide. Although different aspects of CRC have been studied in other parts of the world, relatively little or almost no information is available in Pakistan about different aspects of this disease at the molecular level. The present study was aimed at determining the frequency and prevalence of K ras gene mutations in Pakistani CRC patients. Tissue and blood samples of 150 CRC patients (64% male and 36% female) were used for PCR amplification of K ras and detection of mutations by denaturing gradient gel electrophoresis, restriction fragment length polymorphism analysis, and nucleotide sequencing. The K ras mutation frequency was found to be 13%, and the most prevalent mutations were found at codons 12 and 13. A novel mutation was also found at codon 31. The dominant mutation observed was a G to A transition. Female patients were more susceptible to K ras mutations, and these mutations were predominant in patients with a nonmetastatic stage of CRC. No significant differences in the prevalence of K ras mutations were observed for patient age, gender, or tumor type. It can be inferred from this study that Pakistani CRC patients have a lower frequency of K ras mutations compared to those observed in other parts of the world, and that K ras mutations seemed to be significantly associated with female patients

  11. The role of mutation in the new cancer paradigm

    Directory of Open Access Journals (Sweden)

    Prehn Richmond T

    2005-04-01

    Full Text Available Abstract The almost universal belief that cancer is caused by mutation may gradually be giving way to the belief that cancer begins as a cellular adaptation that involves the local epigenetic silencing of various genes. In my own interpretation of the new epigenetic paradigm, the genes epigenetically suppressed are genes that normally serve in post-embryonic life to suppress and keep suppressed those other genes upon which embryonic development depends. Those other genes, if not silenced or suppressed in the post-embryonic animal, become, I suggest, the oncogenes that are the basis of neoplasia. Mutations that occur in silenced genes supposedly go unrepaired and are, therefore, postulated to accumulate, but such mutations probably play little or no causative role in neoplasia because they occur in already epigenetically silenced genes. These mutations probably often serve to make the silencing, and therefore the cancer, epigenetically irreversible.

  12. Adaptation of a RAS pathway activation signature from FF to FFPE tissues in colorectal cancer

    Directory of Open Access Journals (Sweden)

    Bernard Omolo

    2016-10-01

    Full Text Available Abstract Background The KRAS gene is mutated in about 40 % of colorectal cancer (CRC cases, which has been clinically validated as a predictive mutational marker of intrinsic resistance to anti-EGFR inhibitor (EGFRi therapy. Since nearly 60 % of patients with a wild type KRAS fail to respond to EGFRi combination therapies, there is a need to develop more reliable molecular signatures to better predict response. Here we address the challenge of adapting a gene expression signature predictive of RAS pathway activation, created using fresh frozen (FF tissues, for use with more widely available formalin fixed paraffin-embedded (FFPE tissues. Methods In this study, we evaluated the translation of an 18-gene RAS pathway signature score from FF to FFPE in 54 CRC cases, using a head-to-head comparison of five technology platforms. FFPE-based technologies included the Affymetrix GeneChip (Affy, NanoString nCounter™ (NanoS, Illumina whole genome RNASeq (RNA-Acc, Illumina targeted RNASeq (t-RNA, and Illumina stranded Total RNA-rRNA-depletion (rRNA. Results Using Affy_FF as the “gold” standard, initial analysis of the 18-gene RAS scores on all 54 samples shows varying pairwise Spearman correlations, with (1 Affy_FFPE (r = 0.233, p = 0.090; (2 NanoS_FFPE (r = 0.608, p < 0.0001; (3 RNA-Acc_FFPE (r = 0.175, p = 0.21; (4 t-RNA_FFPE (r = −0.237, p = 0.085; (5 and t-RNA (r = −0.012, p = 0.93. These results suggest that only NanoString has successful FF to FFPE translation. The subsequent removal of identified “problematic” samples (n = 15 and genes (n = 2 further improves the correlations of Affy_FF with three of the five technologies: Affy_FFPE (r = 0.672, p < 0.0001; NanoS_FFPE (r = 0.738, p < 0.0001; and RNA-Acc_FFPE (r = 0.483, p = 0.002. Conclusions Of the five technology platforms tested, NanoString technology provides a more faithful translation of the RAS pathway gene

  13. Toward a comprehensive and systematic methylome signature in colorectal cancers.

    Science.gov (United States)

    Ashktorab, Hassan; Rahi, Hamed; Wansley, Daniel; Varma, Sudhir; Shokrani, Babak; Lee, Edward; Daremipouran, Mohammad; Laiyemo, Adeyinka; Goel, Ajay; Carethers, John M; Brim, Hassan

    2013-08-01

    CpG Island Methylator Phenotype (CIMP) is one of the underlying mechanisms in colorectal cancer (CRC). This study aimed to define a methylome signature in CRC through a methylation microarray analysis and a compilation of promising CIMP markers from the literature. Illumina HumanMethylation27 (IHM27) array data was generated and analyzed based on statistical differences in methylation data (1st approach) or based on overall differences in methylation percentages using lower 95% CI (2nd approach). Pyrosequencing was performed for the validation of nine genes. A meta-analysis was used to identify CIMP and non-CIMP markers that were hypermethylated in CRC but did not yet make it to the CIMP genes' list. Our 1st approach for array data analysis demonstrated the limitations in selecting genes for further validation, highlighting the need for the 2nd bioinformatics approach to adequately select genes with differential aberrant methylation. A more comprehensive list, which included non-CIMP genes, such as APC, EVL, CD109, PTEN, TWIST1, DCC, PTPRD, SFRP1, ICAM5, RASSF1A, EYA4, 30ST2, LAMA1, KCNQ5, ADHEF1, and TFPI2, was established. Array data are useful to categorize and cluster colonic lesions based on their global methylation profiles; however, its usefulness in identifying robust methylation markers is limited and rely on the data analysis method. We have identified 16 non-CIMP-panel genes for which we provide rationale for inclusion in a more comprehensive characterization of CIMP+ CRCs. The identification of a definitive list for methylome specific genes in CRC will contribute to better clinical management of CRC patients.

  14. MutSpec: a Galaxy toolbox for streamlined analyses of somatic mutation spectra in human and mouse cancer genomes.

    Science.gov (United States)

    Ardin, Maude; Cahais, Vincent; Castells, Xavier; Bouaoun, Liacine; Byrnes, Graham; Herceg, Zdenko; Zavadil, Jiri; Olivier, Magali

    2016-04-18

    The nature of somatic mutations observed in human tumors at single gene or genome-wide levels can reveal information on past carcinogenic exposures and mutational processes contributing to tumor development. While large amounts of sequencing data are being generated, the associated analysis and interpretation of mutation patterns that may reveal clues about the natural history of cancer present complex and challenging tasks that require advanced bioinformatics skills. To make such analyses accessible to a wider community of researchers with no programming expertise, we have developed within the web-based user-friendly platform Galaxy a first-of-its-kind package called MutSpec. MutSpec includes a set of tools that perform variant annotation and use advanced statistics for the identification of mutation signatures present in cancer genomes and for comparing the obtained signatures with those published in the COSMIC database and other sources. MutSpec offers an accessible framework for building reproducible analysis pipelines, integrating existing methods and scripts developed in-house with publicly available R packages. MutSpec may be used to analyse data from whole-exome, whole-genome or targeted sequencing experiments performed on human or mouse genomes. Results are provided in various formats including rich graphical outputs. An example is presented to illustrate the package functionalities, the straightforward workflow analysis and the richness of the statistics and publication-grade graphics produced by the tool. MutSpec offers an easy-to-use graphical interface embedded in the popular Galaxy platform that can be used by researchers with limited programming or bioinformatics expertise to analyse mutation signatures present in cancer genomes. MutSpec can thus effectively assist in the discovery of complex mutational processes resulting from exogenous and endogenous carcinogenic insults.

  15. Telomerase reverse transcriptase promoter mutations in bladder cancer

    DEFF Research Database (Denmark)

    Allory, Yves; Beukers, Willemien; Sagrera, Ana

    2014-01-01

    for detection of recurrences in urine in patients with urothelial bladder cancer (UBC). DESIGN, SETTING, AND PARTICIPANTS: A set of 111 UBCs of different stages was used to assess TERT promoter mutations by Sanger sequencing and TERT messenger RNA (mRNA) expression by reverse transcription...... surveillance after diagnosis of non-muscle-invasive UBC (n=194), was tested using a SNaPshot assay. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Association of mutation status with age, sex, tobacco, stage, grade, fibroblast growth factor receptor 3 (FGFR3) mutation, progression-free survival, disease...... frequent among FGFR3 mutant tumors (p=0.0002). There was no association between TERT mutations and mRNA expression (p=0.3). Mutations were not associated with clinical outcome. In urine, TERT mutations had 90% specificity in subjects with hematuria but no bladder tumor, and 73% in recurrence-free UBC...

  16. A genomic copy number signature predicts radiation exposure in post-Chernobyl breast cancer.

    Science.gov (United States)

    Wilke, Christina M; Braselmann, Herbert; Hess, Julia; Klymenko, Sergiy V; Chumak, Vadim V; Zakhartseva, Liubov M; Bakhanova, Elena V; Walch, Axel K; Selmansberger, Martin; Samaga, Daniel; Weber, Peter; Schneider, Ludmila; Fend, Falko; Bösmüller, Hans C; Zitzelsberger, Horst; Unger, Kristian

    2018-04-16

    Breast cancer is the second leading cause of cancer death among women worldwide and besides life style, age and genetic risk factors, exposure to ionizing radiation is known to increase the risk for breast cancer. Further, DNA copy number alterations (CNAs), which can result from radiation-induced double-strand breaks, are frequently occurring in breast cancer cells. We set out to identify a signature of CNAs discriminating breast cancers from radiation-exposed and non-exposed female patients. We analyzed resected breast cancer tissues from 68 exposed female Chernobyl clean-up workers and evacuees and 68 matched non-exposed control patients for CNAs by array comparative genomic hybridization analysis (aCGH). Using a stepwise forward-backward selection approach a non-complex CNA signature, that is, less than ten features, was identified in the training data set, which could be subsequently validated in the validation data set (p value < 0.05). The signature consisted of nine copy number regions located on chromosomal bands 7q11.22-11.23, 7q21.3, 16q24.3, 17q21.31, 20p11.23-11.21, 1p21.1, 2q35, 2q35, 6p22.2. The signature was independent of any clinical characteristics of the patients. In all, we identified a CNA signature that has the potential to allow identification of radiation-associated breast cancer at the individual level. © 2018 UICC.

  17. Effect of BRCA germline mutations on breast cancer prognosis

    Science.gov (United States)

    Baretta, Zora; Mocellin, Simone; Goldin, Elena; Olopade, Olufunmilayo I.; Huo, Dezheng

    2016-01-01

    Abstract Background: The contribution of BRCA germline mutational status to breast cancer patients’ prognosis is unclear. We aimed to systematically review and perform meta-analysis of the available evidence of effects of BRCA germline mutations on multiple survival outcomes of breast cancer patients as a whole and in specific subgroups of interest, including those with triple negative breast cancer, those with Ashkenazi Jewish ancestry, and patients with stage I–III disease. Methods: Sixty studies met all inclusion criteria and were considered for this meta-analysis. These studies involved 105,220 breast cancer patients, whose 3588 (3.4%) were BRCA mutations carriers. The associations between BRCA genes mutational status and overall survival (OS), breast cancer-specific survival (BCSS), recurrence-free survival (RFS), and distant metastasis-free survival (DMFS) were evaluated using random-effect models. Results: BRCA1 mutation carriers have worse OS than BRCA-negative/sporadic cases (hazard ratio, HR 1.30, 95% CI: 1.11–1.52) and worse BCSS than sporadic/BRCA-negative cases among patients with stage I–III breast cancer (HR 1.45, 95% CI: 1.01–2.07). BRCA2 mutation carriers have worse BCSS than sporadic/BRCA-negative cases (HR 1.29, 95% CI: 1.03–1.62), although they have similar OS. Among triple negative breast cancer, BRCA1/2 mutations carriers had better OS than BRCA-negative counterpart (HR 0.49, 95% CI: 0.26–0.92). Among Ashkenazi Jewish women, BRCA1/2 mutations carriers presented higher risk of death from breast cancer (HR 1.44, 95% CI: 1.05–1.97) and of distant metastases (HR 1.82, 95% CI: 1.05–3.16) than sporadic/BRCA-negative patients. Conclusion: Our results support the evaluation of BRCA mutational status in patients with high risk of harboring BRCA germline mutations to better define the prognosis of breast cancer in these patients. PMID:27749552

  18. Loss of function JAK1 mutations occur at high frequency in cancers with microsatellite instability and are suggestive of immune evasion.

    Science.gov (United States)

    Albacker, Lee A; Wu, Jeremy; Smith, Peter; Warmuth, Markus; Stephens, Philip J; Zhu, Ping; Yu, Lihua; Chmielecki, Juliann

    2017-01-01

    Immune evasion is a well-recognized hallmark of cancer and recent studies with immunotherapy agents have suggested that tumors with increased numbers of neoantigens elicit greater immune responses. We hypothesized that the immune system presents a common selective pressure on high mutation burden tumors and therefore immune evasion mutations would be enriched in high mutation burden tumors. The JAK family of kinases is required for the signaling of a host of immune modulators in tumor, stromal, and immune cells. Therefore, we analyzed alterations in this family for the hypothesized signature of an immune evasion mutation. Here, we searched a database of 61,704 unique solid tumors for alterations in the JAK family kinases (JAK1/2/3, TYK2). We used The Cancer Genome Atlas and Cancer Cell Line Encyclopedia data to confirm and extend our findings by analyzing gene expression patterns. Recurrent frameshift mutations in JAK1 were associated with high mutation burden and microsatellite instability. These mutations occurred in multiple tumor types including endometrial, colorectal, stomach, and prostate carcinomas. Analyzing gene expression signatures in endometrial and stomach adenocarcinomas revealed that tumors with a JAK1 frameshift exhibited reduced expression of interferon response signatures and multiple anti-tumor immune signatures. Importantly, endometrial cancer cell lines exhibited similar gene expression changes that were expected to be tumor cell intrinsic (e.g. interferon response) but not those expected to be tumor cell extrinsic (e.g. NK cells). From these data, we derive two primary conclusions: 1) JAK1 frameshifts are loss of function alterations that represent a potential pan-cancer adaptation to immune responses against tumors with microsatellite instability; 2) The mechanism by which JAK1 loss of function contributes to tumor immune evasion is likely associated with loss of the JAK1-mediated interferon response.

  19. Identification of Constrained Cancer Driver Genes Based on Mutation Timing

    Science.gov (United States)

    Sakoparnig, Thomas; Fried, Patrick; Beerenwinkel, Niko

    2015-01-01

    Cancer drivers are genomic alterations that provide cells containing them with a selective advantage over their local competitors, whereas neutral passengers do not change the somatic fitness of cells. Cancer-driving mutations are usually discriminated from passenger mutations by their higher degree of recurrence in tumor samples. However, there is increasing evidence that many additional driver mutations may exist that occur at very low frequencies among tumors. This observation has prompted alternative methods for driver detection, including finding groups of mutually exclusive mutations and incorporating prior biological knowledge about gene function or network structure. Dependencies among drivers due to epistatic interactions can also result in low mutation frequencies, but this effect has been ignored in driver detection so far. Here, we present a new computational approach for identifying genomic alterations that occur at low frequencies because they depend on other events. Unlike passengers, these constrained mutations display punctuated patterns of occurrence in time. We test this driver–passenger discrimination approach based on mutation timing in extensive simulation studies, and we apply it to cross-sectional copy number alteration (CNA) data from ovarian cancer, CNA and single-nucleotide variant (SNV) data from breast tumors and SNV data from colorectal cancer. Among the top ranked predicted drivers, we find low-frequency genes that have already been shown to be involved in carcinogenesis, as well as many new candidate drivers. The mutation timing approach is orthogonal and complementary to existing driver prediction methods. It will help identifying from cancer genome data the alterations that drive tumor progression. PMID:25569148

  20. Gene signature of the post-Chernobyl papillary thyroid cancer

    Energy Technology Data Exchange (ETDEWEB)

    Handkiewicz-Junak, Daria; Rusinek, Dagmara; Oczko-Wojciechowska, Malgorzata; Kowalska, Malgorzata; Jarzab, Barbara [Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Department of Nuclear Medicine and Endocrine Oncology, Gliwice (Poland); Swierniak, Michal [Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Department of Nuclear Medicine and Endocrine Oncology, Gliwice (Poland); Medical University of Warsaw, Genomic Medicine, Department of General, Transplant and Liver Surgery, Warsaw (Poland); Dom, Genevieve; Maenhaut, Carine; Detours, Vincent [Universite libre de Bruxelles (ULB), Institute of Interdisciplinary Research, Bruxelles (Belgium); Unger, Kristian [Imperial College London Hammersmith Hospital, Human Cancer Studies Group, Division of Surgery and Cancer, London (United Kingdom); Helmholtz-Zentrum, Research Unit Radiation Cytogenetics, Munich (Germany); Bogdanova, Tetiana [Institute of Endocrinology and Metabolism, Kiev (Ukraine); Thomas, Geraldine [Imperial College London Hammersmith Hospital, Human Cancer Studies Group, Division of Surgery and Cancer, London (United Kingdom); Likhtarov, Ilya [Academy of Technological Sciences of Ukraine, Radiation Protection Institute, Kiev (Ukraine); Jaksik, Roman [Silesian University of Technology, Systems Engineering Group, Faculty of Automatic Control, Electronics and Informatics, Gliwice (Poland); Chmielik, Ewa [Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Department of Tumour Pathology, Gliwice (Poland); Jarzab, Michal [Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, IIIrd Department of Radiation Therapy, Gliwice (Poland); Swierniak, Andrzej [Silesian University of Technology, Department of Automatic Control, Gliwice (Poland)

    2016-07-15

    Following the nuclear accidents in Chernobyl and later in Fukushima, the nuclear community has been faced with important issues concerning how to search for and diagnose biological consequences of low-dose internal radiation contamination. Although after the Chernobyl accident an increase in childhood papillary thyroid cancer (PTC) was observed, it is still not clear whether the molecular biology of PTCs associated with low-dose radiation exposure differs from that of sporadic PTC. We investigated tissue samples from 65 children/young adults with PTC using DNA microarray (Affymetrix, Human Genome U133 2.0 Plus) with the aim of identifying molecular differences between radiation-induced (exposed to Chernobyl radiation, ECR) and sporadic PTC. All participants were resident in the same region so that confounding factors related to genetics or environment were minimized. There were small but significant differences in the gene expression profiles between ECR and non-ECR PTC (global test, p < 0.01), with 300 differently expressed probe sets (p < 0.001) corresponding to 239 genes. Multifactorial analysis of variance showed that besides radiation exposure history, the BRAF mutation exhibited independent effects on the PTC expression profile; the histological subset and patient age at diagnosis had negligible effects. Ten genes (PPME1, HDAC11, SOCS7, CIC, THRA, ERBB2, PPP1R9A, HDGF, RAD51AP1, and CDK1) from the 19 investigated with quantitative RT-PCR were confirmed as being associated with radiation exposure in an independent, validation set of samples. Significant, but subtle, differences in gene expression in the post-Chernobyl PTC are associated with previous low-dose radiation exposure. (orig.)

  1. Epitopes of MUC1 Tandem Repeats in Cancer as Revealed by Antibody Crystallography: Toward Glycopeptide Signature-Guided Therapy

    Directory of Open Access Journals (Sweden)

    Dapeng Zhou

    2018-05-01

    Full Text Available Abnormally O-glycosylated MUC1 tandem repeat glycopeptide epitopes expressed by multiple types of cancer have long been attractive targets for therapy in the race against genetic mutations of tumor cells. Glycopeptide signature-guided therapy might be a more promising avenue than mutation signature-guided therapy. Three O-glycosylated peptide motifs, PDTR, GSTA, and GVTS, exist in a tandem repeat HGVTSAPDTRPAPGSTAPPA, containing five O-glycosylation sites. The exact peptide and sugar residues involved in antibody binding are poorly defined. Co-crystal structures of glycopeptides and respective monoclonal antibodies are very few. Here we review 3 groups of monoclonal antibodies: antibodies which only bind to peptide portion, antibodies which only bind to sugar portion, and antibodies which bind to both peptide and sugar portions. The antigenicity of peptide and sugar portions of glyco-MUC1 tandem repeat were analyzed according to available biochemical and structural data, especially the GSTA and GVTS motifs independent from the most studied PDTR. Tn is focused as a peptide-modifying residue in vaccine design, to induce glycopeptide-binding antibodies with cross reactivity to Tn-related tumor glycans, but not glycans of healthy cells. The unique requirement for the designs of antibody in antibody-drug conjugate, bi-specific antibodies, and chimeric antigen receptors are also discussed.

  2. B-Raf mutation: a key player in molecular biology of cancer.

    Science.gov (United States)

    Rahman, M A; Salajegheh, A; Smith, R A; Lam, A K-Y

    2013-12-01

    B-Raf is one of the more commonly mutated proto-oncogenes implicated in the development of cancers. In this review, we consider the mechanisms and clinical impacts of B-Raf mutations in cancer and discuss the implications for the patient in melanoma, thyroid cancer and colorectal cancer, where B-Raf mutations are particularly common. © 2013.

  3. Identification of a Genomic Signature Predicting for Recurrence in Early Stage Ovarian Cancer

    Science.gov (United States)

    2015-12-01

    do it. Thus, instead of simply sequencing all the FFPE samples, we used 10 tumor samples (5 recurrent and 5 non recurrent ) to test sequencing and...Award Number: W81XWH-12-1-0521 TITLE: Identification of a Genomic Signature Predicting for Recurrence in Early-Stage Ovarian Cancer PRINCIPAL...4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-12-1-0521 Identification of a Genomic Signature Predicting for Recurrence in

  4. Polymorphism and mutation analysis of genomic DNA on cancer

    International Nuclear Information System (INIS)

    Ohta, Tsutomu

    2003-01-01

    DNA repair is a universal process in living cells that maintains the structural integrity of chromosomal DNA molecules in face of damage. A deficiency in DNA damage repair is associated with an increased cancer risk by increasing a mutation frequency of cancer-related genes. Variation in DNA repair capacity may be genetically determined. Therefore, we searched single-nucleotide polymorphisms (SNPs) in major DNA repair genes. This led to the finding of 600 SNPs and mutations including many novel SNPs in Japanese population. Case-control studies to explore the contribution of the SNPs in DNA repair genes to the risk of lung cancer revealed that five SNPs are associated with lung carcinogenesis. One of these SNPs is found in RAD54L gene, which is involved in double-strand DNA repair. We analyzed and reported activities of Rad54L protein with SNP and mutations. (authors)

  5. A prognostic gene signature for metastasis-free survival of triple negative breast cancer patients.

    Science.gov (United States)

    Lee, Unjin; Frankenberger, Casey; Yun, Jieun; Bevilacqua, Elena; Caldas, Carlos; Chin, Suet-Feung; Rueda, Oscar M; Reinitz, John; Rosner, Marsha Rich

    2013-01-01

    Although triple negative breast cancers (TNBC) are the most aggressive subtype of breast cancer, they currently lack targeted therapies. Because this classification still includes a heterogeneous collection of tumors, new tools to classify TNBCs are urgently required in order to improve our prognostic capability for high risk patients and predict response to therapy. We previously defined a gene expression signature, RKIP Pathway Metastasis Signature (RPMS), based upon a metastasis-suppressive signaling pathway initiated by Raf Kinase Inhibitory Protein (RKIP). We have now generated a new BACH1 Pathway Metastasis gene signature (BPMS) that utilizes targets of the metastasis regulator BACH1. Specifically, we substituted experimentally validated target genes to generate a new BACH1 metagene, developed an approach to optimize patient tumor stratification, and reduced the number of signature genes to 30. The BPMS significantly and selectively stratified metastasis-free survival in basal-like and, in particular, TNBC patients. In addition, the BPMS further stratified patients identified as having a good or poor prognosis by other signatures including the Mammaprint® and Oncotype® clinical tests. The BPMS is thus complementary to existing signatures and is a prognostic tool for high risk ER-HER2- patients. We also demonstrate the potential clinical applicability of the BPMS as a single sample predictor. Together, these results reveal the potential of this pathway-based BPMS gene signature to identify high risk TNBC patients that can respond effectively to targeted therapy, and highlight BPMS genes as novel drug targets for therapeutic development.

  6. Age-related cancer mutations associated with clonal hematopoietic expansion

    Science.gov (United States)

    Xie, Mingchao; Lu, Charles; Wang, Jiayin; McLellan, Michael D.; Johnson, Kimberly J.; Wendl, Michael C.; McMichael, Joshua F.; Schmidt, Heather K.; Yellapantula, Venkata; Miller, Christopher A.; Ozenberger, Bradley A.; Welch, John S.; Link, Daniel C.; Walter, Matthew J.; Mardis, Elaine R.; Dipersio, John F.; Chen, Feng; Wilson, Richard K.; Ley, Timothy J.; Ding, Li

    2015-01-01

    Several genetic alterations characteristic of leukemia and lymphoma have been detected in the blood of individuals without apparent hematological malignancies. We analyzed blood-derived sequence data from 2,728 individuals within The Cancer Genome Atlas, and discovered 77 blood-specific mutations in cancer-associated genes, the majority being associated with advanced age. Remarkably, 83% of these mutations were from 19 leukemia/lymphoma-associated genes, and nine were recurrently mutated (DNMT3A, TET2, JAK2, ASXL1, TP53, GNAS, PPM1D, BCORL1 and SF3B1). We identified 14 additional mutations in a very small fraction of blood cells, possibly representing the earliest stages of clonal expansion in hematopoietic stem cells. Comparison of these findings to mutations in hematological malignancies identified several recurrently mutated genes that may be disease initiators. Our analyses show that the blood cells of more than 2% of individuals (5–6% of people older than 70 years) contain mutations that may represent premalignant, initiating events that cause clonal hematopoietic expansion. PMID:25326804

  7. Germline Mutations in PALB2, BRCA1, and RAD51C, Which Regulate DNA Recombination Repair, in Patients with Gastric Cancer

    Science.gov (United States)

    Sahasrabudhe, Ruta; Lott, Paul; Bohorquez, Mabel; Toal, Ted; Estrada, Ana P.; Suarez, John J.; Brea-Fernández, Alejandro; Cameselle-Teijeiro, José; Pinto, Carla; Ramos, Irma; Mantilla, Alejandra; Prieto, Rodrigo; Corvalan, Alejandro; Norero, Enrique; Alvarez, Carolina; Tapia, Teresa; Carvallo, Pilar; Gonzalez, Luz M.; Cock-Rada, Alicia; Solano, Angela; Neffa, Florencia; Valle, Adriana Della; Yau, Chris; Soares, Gabriela; Borowsky, Alexander; Hu, Nan; He, Li-Ji; Han, Xiao-You; Taylor, Philip R.; Goldstein, Alisa M.; Torres, Javier; Echeverry, Magdalena; Ruiz-Ponte, Clara; Teixeira, Manuel R.; Carvajal Carmona, Luis G.

    2016-01-01

    Up to 10% of cases of gastric cancer are familial, but so far, only mutations in CDH1 have been associated with gastric cancer risk. To identify genetic variants that affect risk for gastric cancer, we collected blood samples from 28 patients with hereditary diffuse gastric cancer (HDGC) not associated with mutations in CDH1 and performed whole-exome sequence analysis. We then analyzed sequences of candidate genes in 333 independent HDGC and non-HDGC cases. We identified 11 cases with mutations in PALB2, BRCA1, or RAD51C genes, which regulate homologous DNA recombination. We found these mutations in 2 of 31 patients with HDGC (6.5%) and 9 of 331 patients with sporadic gastric cancer (2.8%). Most of these mutations had been previously associated with other types of tumors and partially co-segregated with gastric cancer in our study. Tumors that developed in patients with these mutations had a mutation signature associated with somatic homologous recombination deficiency. Our findings indicate that defects in homologous recombination increase risk for gastric cancer. PMID:28024868

  8. Population-based statistical inference for temporal sequence of somatic mutations in cancer genomes.

    Science.gov (United States)

    Rhee, Je-Keun; Kim, Tae-Min

    2018-04-20

    It is well recognized that accumulation of somatic mutations in cancer genomes plays a role in carcinogenesis; however, the temporal sequence and evolutionary relationship of somatic mutations remain largely unknown. In this study, we built a population-based statistical framework to infer the temporal sequence of acquisition of somatic mutations. Using the model, we analyzed the mutation profiles of 1954 tumor specimens across eight tumor types. As a result, we identified tumor type-specific directed networks composed of 2-15 cancer-related genes (nodes) and their mutational orders (edges). The most common ancestors identified in pairwise comparison of somatic mutations were TP53 mutations in breast, head/neck, and lung cancers. The known relationship of KRAS to TP53 mutations in colorectal cancers was identified, as well as potential ancestors of TP53 mutation such as NOTCH1, EGFR, and PTEN mutations in head/neck, lung and endometrial cancers, respectively. We also identified apoptosis-related genes enriched with ancestor mutations in lung cancers and a relationship between APC hotspot mutations and TP53 mutations in colorectal cancers. While evolutionary analysis of cancers has focused on clonal versus subclonal mutations identified in individual genomes, our analysis aims to further discriminate ancestor versus descendant mutations in population-scale mutation profiles that may help select cancer drivers with clinical relevance.

  9. Comprehensive Molecular Characterization of Muscle-Invasive Bladder Cancer. | Office of Cancer Genomics

    Science.gov (United States)

    We report a comprehensive analysis of 412 muscle-invasive bladder cancers characterized by multiple TCGA analytical platforms. Fifty-eight genes were significantly mutated, and the overall mutational load was associated with APOBEC-signature mutagenesis. Clustering by mutation signature identified a high-mutation subset with 75% 5-year survival.

  10. lncRNA Gene Signatures for Prediction of Breast Cancer Intrinsic Subtypes and Prognosis

    Directory of Open Access Journals (Sweden)

    Silu Zhang

    2018-01-01

    Full Text Available Background: Breast cancer is intrinsically heterogeneous and is commonly classified into four main subtypes associated with distinct biological features and clinical outcomes. However, currently available data resources and methods are limited in identifying molecular subtyping on protein-coding genes, and little is known about the roles of long non-coding RNAs (lncRNAs, which occupies 98% of the whole genome. lncRNAs may also play important roles in subgrouping cancer patients and are associated with clinical phenotypes. Methods: The purpose of this project was to identify lncRNA gene signatures that are associated with breast cancer subtypes and clinical outcomes. We identified lncRNA gene signatures from The Cancer Genome Atlas (TCGA RNAseq data that are associated with breast cancer subtypes by an optimized 1-Norm SVM feature selection algorithm. We evaluated the prognostic performance of these gene signatures with a semi-supervised principal component (superPC method. Results: Although lncRNAs can independently predict breast cancer subtypes with satisfactory accuracy, a combined gene signature including both coding and non-coding genes will give the best clinically relevant prediction performance. We highlighted eight potential biomarkers (three from coding genes and five from non-coding genes that are significantly associated with survival outcomes. Conclusion: Our proposed methods are a novel means of identifying subtype-specific coding and non-coding potential biomarkers that are both clinically relevant and biologically significant.

  11. Prognostic signature and clonality pattern of recurrently mutated genes in inactive chronic lymphocytic leukemia

    International Nuclear Information System (INIS)

    Hurtado, A M; Chen-Liang, T-H; Przychodzen, B; Hamedi, C; Muñoz-Ballester, J; Dienes, B; García-Malo, M D; Antón, A I; Arriba, F de; Teruel-Montoya, R; Ortuño, F J; Vicente, V; Maciejewski, J P; Jerez, A

    2015-01-01

    An increasing numbers of patients are being diagnosed with asymptomatic early-stage chronic lymphocytic leukemia (CLL), with no treatment indication at baseline. We applied a high-throughput deep-targeted analysis, especially designed for covering widely TP53 and ATM genes, in 180 patients with inactive disease at diagnosis, to test the independent prognostic value of CLL somatic recurrent mutations. We found that 40/180 patients harbored at least one acquired variant with ATM (n=17, 9.4%), NOTCH1 (n=14, 7.7%), TP53 (n=14, 7.7%) and SF3B1 (n=10, 5.5%) as most prevalent mutated genes. Harboring one ‘sub-Sanger' TP53 mutation granted an independent 3.5-fold increase of probability of needing treatment. Those patients with a double-hit ATM lesion (mutation+11q deletion) had the shorter median time to first treatment (17 months). We found that a genomic variable: TP53 mutations, most of them under the sensitivity of conventional techniques; a cell phenotypic factor: CD38-positive expression; and a classical marker as β2-microglobulin, remained as the unique independent predictors of outcome. The high-throughput determination of TP53 status, particularly in this set of patients frequently lacking high-risk chromosomal aberrations, emerges as a key step, not only for prediction modeling, but also for exploring mutation-specific therapeutic approaches and minimal residual disease monitoring

  12. DNA methylation–based immune response signature improves patient diagnosis in multiple cancers

    Science.gov (United States)

    Jeschke, Jana; Bizet, Martin; Calonne, Emilie; Dedeurwaerder, Sarah; Garaud, Soizic; Koch, Alexander; Larsimont, Denis; Salgado, Roberto; Van den Eynden, Gert; Willard Gallo, Karen; Defrance, Matthieu; Sotiriou, Christos

    2017-01-01

    BACKGROUND. The tumor immune response is increasingly associated with better clinical outcomes in breast and other cancers. However, the evaluation of tumor-infiltrating lymphocytes (TILs) relies on histopathological measurements with limited accuracy and reproducibility. Here, we profiled DNA methylation markers to identify a methylation of TIL (MeTIL) signature that recapitulates TIL evaluations and their prognostic value for long-term outcomes in breast cancer (BC). METHODS. MeTIL signature scores were correlated with clinical endpoints reflecting overall or disease-free survival and a pathologic complete response to preoperative anthracycline therapy in 3 BC cohorts from the Jules Bordet Institute in Brussels and in other cancer types from The Cancer Genome Atlas. RESULTS. The MeTIL signature measured TIL distributions in a sensitive manner and predicted survival and response to chemotherapy in BC better than did histopathological assessment of TILs or gene expression–based immune markers, respectively. The MeTIL signature also improved the prediction of survival in other malignancies, including melanoma and lung cancer. Furthermore, the MeTIL signature predicted differences in survival for malignancies in which TILs were not known to have a prognostic value. Finally, we showed that MeTIL markers can be determined by bisulfite pyrosequencing of small amounts of DNA from formalin-fixed, paraffin-embedded tumor tissue, supporting clinical applications for this methodology. CONCLUSIONS. This study highlights the power of DNA methylation to evaluate tumor immune responses and the potential of this approach to improve the diagnosis and treatment of breast and other cancers. FUNDING. This work was funded by the Fonds National de la Recherche Scientifique (FNRS) and Télévie, the INNOVIRIS Brussels Region BRUBREAST Project, the IUAP P7/03 program, the Belgian “Foundation against Cancer,” the Breast Cancer Research Foundation (BCRF), and the Fonds Gaston Ithier

  13. Direct Transcriptional Consequences of Somatic Mutation in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Adam Shlien

    2016-08-01

    Full Text Available Disordered transcriptomes of cancer encompass direct effects of somatic mutation on transcription, coordinated secondary pathway alterations, and increased transcriptional noise. To catalog the rules governing how somatic mutation exerts direct transcriptional effects, we developed an exhaustive pipeline for analyzing RNA sequencing data, which we integrated with whole genomes from 23 breast cancers. Using X-inactivation analyses, we found that cancer cells are more transcriptionally active than intermixed stromal cells. This is especially true in estrogen receptor (ER-negative tumors. Overall, 59% of substitutions were expressed. Nonsense mutations showed lower expression levels than expected, with patterns characteristic of nonsense-mediated decay. 14% of 4,234 rearrangements caused transcriptional abnormalities, including exon skips, exon reusage, fusions, and premature polyadenylation. We found productive, stable transcription from sense-to-antisense gene fusions and gene-to-intergenic rearrangements, suggesting that these mutation classes drive more transcriptional disruption than previously suspected. Systematic integration of transcriptome with genome data reveals the rules by which transcriptional machinery interprets somatic mutation.

  14. Integrative ChIP-seq/microarray analysis identifies a CTNNB1 target signature enriched in intestinal stem cells and colon cancer.

    Science.gov (United States)

    Watanabe, Kazuhide; Biesinger, Jacob; Salmans, Michael L; Roberts, Brian S; Arthur, William T; Cleary, Michele; Andersen, Bogi; Xie, Xiaohui; Dai, Xing

    2014-01-01

    Deregulation of canonical Wnt/CTNNB1 (beta-catenin) pathway is one of the earliest events in the pathogenesis of colon cancer. Mutations in APC or CTNNB1 are highly frequent in colon cancer and cause aberrant stabilization of CTNNB1, which activates the transcription of Wnt target genes by binding to chromatin via the TCF/LEF transcription factors. Here we report an integrative analysis of genome-wide chromatin occupancy of CTNNB1 by chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-seq) and gene expression profiling by microarray analysis upon RNAi-mediated knockdown of CTNNB1 in colon cancer cells. We observed 3629 CTNNB1 binding peaks across the genome and a significant correlation between CTNNB1 binding and knockdown-induced gene expression change. Our integrative analysis led to the discovery of a direct Wnt target signature composed of 162 genes. Gene ontology analysis of this signature revealed a significant enrichment of Wnt pathway genes, suggesting multiple feedback regulations of the pathway. We provide evidence that this gene signature partially overlaps with the Lgr5+ intestinal stem cell signature, and is significantly enriched in normal intestinal stem cells as well as in clinical colorectal cancer samples. Interestingly, while the expression of the CTNNB1 target gene set does not correlate with survival, elevated expression of negative feedback regulators within the signature predicts better prognosis. Our data provide a genome-wide view of chromatin occupancy and gene regulation of Wnt/CTNNB1 signaling in colon cancer cells.

  15. Integrative ChIP-seq/microarray analysis identifies a CTNNB1 target signature enriched in intestinal stem cells and colon cancer.

    Directory of Open Access Journals (Sweden)

    Kazuhide Watanabe

    Full Text Available Deregulation of canonical Wnt/CTNNB1 (beta-catenin pathway is one of the earliest events in the pathogenesis of colon cancer. Mutations in APC or CTNNB1 are highly frequent in colon cancer and cause aberrant stabilization of CTNNB1, which activates the transcription of Wnt target genes by binding to chromatin via the TCF/LEF transcription factors. Here we report an integrative analysis of genome-wide chromatin occupancy of CTNNB1 by chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-seq and gene expression profiling by microarray analysis upon RNAi-mediated knockdown of CTNNB1 in colon cancer cells.We observed 3629 CTNNB1 binding peaks across the genome and a significant correlation between CTNNB1 binding and knockdown-induced gene expression change. Our integrative analysis led to the discovery of a direct Wnt target signature composed of 162 genes. Gene ontology analysis of this signature revealed a significant enrichment of Wnt pathway genes, suggesting multiple feedback regulations of the pathway. We provide evidence that this gene signature partially overlaps with the Lgr5+ intestinal stem cell signature, and is significantly enriched in normal intestinal stem cells as well as in clinical colorectal cancer samples. Interestingly, while the expression of the CTNNB1 target gene set does not correlate with survival, elevated expression of negative feedback regulators within the signature predicts better prognosis.Our data provide a genome-wide view of chromatin occupancy and gene regulation of Wnt/CTNNB1 signaling in colon cancer cells.

  16. CRC-113 gene expression signature for predicting prognosis in patients with colorectal cancer.

    Science.gov (United States)

    Nguyen, Minh Nam; Choi, Tae Gyu; Nguyen, Dinh Truong; Kim, Jin-Hwan; Jo, Yong Hwa; Shahid, Muhammad; Akter, Salima; Aryal, Saurav Nath; Yoo, Ji Youn; Ahn, Yong-Joo; Cho, Kyoung Min; Lee, Ju-Seog; Choe, Wonchae; Kang, Insug; Ha, Joohun; Kim, Sung Soo

    2015-10-13

    Colorectal cancer (CRC) is the third leading cause of global cancer mortality. Recent studies have proposed several gene signatures to predict CRC prognosis, but none of those have proven reliable for predicting prognosis in clinical practice yet due to poor reproducibility and molecular heterogeneity. Here, we have established a prognostic signature of 113 probe sets (CRC-113) that include potential biomarkers and reflect the biological and clinical characteristics. Robustness and accuracy were significantly validated in external data sets from 19 centers in five countries. In multivariate analysis, CRC-113 gene signature showed a stronger prognostic value for survival and disease recurrence in CRC patients than current clinicopathological risk factors and molecular alterations. We also demonstrated that the CRC-113 gene signature reflected both genetic and epigenetic molecular heterogeneity in CRC patients. Furthermore, incorporation of the CRC-113 gene signature into a clinical context and molecular markers further refined the selection of the CRC patients who might benefit from postoperative chemotherapy. Conclusively, CRC-113 gene signature provides new possibilities for improving prognostic models and personalized therapeutic strategies.

  17. Pathway analysis of gene signatures predicting metastasis of node-negative primary breast cancer

    International Nuclear Information System (INIS)

    Yu, Jack X; Sieuwerts, Anieta M; Zhang, Yi; Martens, John WM; Smid, Marcel; Klijn, Jan GM; Wang, Yixin; Foekens, John A

    2007-01-01

    Published prognostic gene signatures in breast cancer have few genes in common. Here we provide a rationale for this observation by studying the prognostic power and the underlying biological pathways of different gene signatures. Gene signatures to predict the development of metastases in estrogen receptor-positive and estrogen receptor-negative tumors were identified using 500 re-sampled training sets and mapping to Gene Ontology Biological Process to identify over-represented pathways. The Global Test program confirmed that gene expression profilings in the common pathways were associated with the metastasis of the patients. The apoptotic pathway and cell division, or cell growth regulation and G-protein coupled receptor signal transduction, were most significantly associated with the metastatic capability of estrogen receptor-positive or estrogen-negative tumors, respectively. A gene signature derived of the common pathways predicted metastasis in an independent cohort. Mapping of the pathways represented by different published prognostic signatures showed that they share 53% of the identified pathways. We show that divergent gene sets classifying patients for the same clinical endpoint represent similar biological processes and that pathway-derived signatures can be used to predict prognosis. Furthermore, our study reveals that the underlying biology related to aggressiveness of estrogen receptor subgroups of breast cancer is quite different

  18. Olaparib Approved for Breast Cancers with BRCA Gene Mutations

    Science.gov (United States)

    The Food and Drug Administration has approved olaparib (Lynparza®) to treat metastatic breast cancers that have inherited mutations in the BRCA1 or BRCA2 genes as well as a companion diagnostic test for selecting candidates for the therapy.

  19. Mutations in the AXIN1 gene in advanced prostate cancer

    DEFF Research Database (Denmark)

    Yardy, George W; Bicknell, David C; Wilding, Jennifer L

    2009-01-01

    The Wnt signalling pathway directs aspects of embryogenesis and is thought to contribute to maintenance of certain stem cell populations. Disruption of the pathway has been observed in many different tumour types. In bowel, stomach, and endometrial cancer, this is usually due to mutation of genes...

  20. Population genetic testing for cancer susceptibility: founder mutations to genomes.

    Science.gov (United States)

    Foulkes, William D; Knoppers, Bartha Maria; Turnbull, Clare

    2016-01-01

    The current standard model for identifying carriers of high-risk mutations in cancer-susceptibility genes (CSGs) generally involves a process that is not amenable to population-based testing: access to genetic tests is typically regulated by health-care providers on the basis of a labour-intensive assessment of an individual's personal and family history of cancer, with face-to-face genetic counselling performed before mutation testing. Several studies have shown that application of these selection criteria results in a substantial proportion of mutation carriers being missed. Population-based genetic testing has been proposed as an alternative approach to determining cancer susceptibility, and aims for a more-comprehensive detection of mutation carriers. Herein, we review the existing data on population-based genetic testing, and consider some of the barriers, pitfalls, and challenges related to the possible expansion of this approach. We consider mechanisms by which population-based genetic testing for cancer susceptibility could be delivered, and suggest how such genetic testing might be integrated into existing and emerging health-care structures. The existing models of genetic testing (including issues relating to informed consent) will very likely require considerable alteration if the potential benefits of population-based genetic testing are to be fully realized.

  1. Activating mutation in MET oncogene in familial colorectal cancer

    Directory of Open Access Journals (Sweden)

    Schildkraut Joellen M

    2011-10-01

    Full Text Available Abstract Background In developed countries, the lifetime risk of developing colorectal cancer (CRC is 5%, and it is the second leading cause of death from cancer. The presence of family history is a well established risk factor with 25-35% of CRCs attributable to inherited and/or familial factors. The highly penetrant inherited colon cancer syndromes account for approximately 5%, leaving greater than 20% without clear genetic definition. Familial colorectal cancer has been linked to chromosome 7q31 by multiple affected relative pair studies. The MET proto-oncogene which resides in this chromosomal region is considered a candidate for genetic susceptibility. Methods MET exons were amplified by PCR from germline DNA of 148 affected sibling pairs with colorectal cancer. Amplicons with altered sequence were detected with high-resolution melt-curve analysis using a LightScanner (Idaho Technologies. Samples demonstrating alternative melt curves were sequenced. A TaqMan assay for the specific c.2975C >T change was used to confirm this mutation in a cohort of 299 colorectal cancer cases and to look for allelic amplification in tumors. Results Here we report a germline non-synonymous change in the MET proto-oncogene at amino acid position T992I (also reported as MET p.T1010I in 5.2% of a cohort of sibling pairs affected with CRC. This genetic variant was then confirmed in a second cohort of individuals diagnosed with CRC and having a first degree relative with CRC at prevalence of 4.1%. This mutation has been reported in cancer cells of multiple origins, including 2.5% of colon cancers, and in Conclusions Although the MET p.T992I genetic mutation is commonly found in somatic colorectal cancer tissues, this is the first report also implicating this MET genetic mutation as a germline inherited risk factor for familial colorectal cancer. Future studies on the cancer risks associated with this mutation and the prevalence in different at-risk populations will

  2. Sentinel and other mutational effects in offspring of cancer survivors

    International Nuclear Information System (INIS)

    Mulvihill, J.J.

    1990-01-01

    To date, no agent has been documented to cause germ cell mutation in human beings, with the possible exception of radiation causing abnormal meiotic chromosomes in testes. For studies in humans, mutation epidemiologists prefer the cohort approach, starting with an exposed population and looking for mutations that may be expressed in offspring as variants in health, chromosomes, proteins, or nucleic acids. Currently patients with cancer are the cohort exposed to the largest doses of potential mutagens, i.e., radiotherapy and drugs. In 12 large studies with over 825 patients and 1573 pregnancies, 46 (4%) of 1240 liveborns had a major birth defect, a rate comparable to that in the general population. One of these was a classic sentinel phenotype, i.e., a new sporadic case of a dominant mendelian syndrome. In collaboration with 5 U.S. cancer registries, we interviewed a retrospective cohort of 2383 patients diagnosed with cancer under age 20 years, from 1945 through 1975. Records were sought to verify major genetic disease, defined as a cytogenetic or single gene disorder or 1 of 15 isolated birth defects. In 2308 offspring of survivors, 5 had a chromosomal syndrome, 11 had a single gene disorder, and 62 had at least one major malformation. Among 4722 offspring of sibling controls, the respective numbers were 7, 12, and 127, nonsignificant differences. 7% of the parents of the offspring with possibly new mutations received potentially mutagenic therapy, compared with 12% of parents of normal children. Since pregnancy in or by cancer survivors is still a rare event, future efforts to document germ cell mutation may be best studied through international cooperation coupled with diverse laboratory measures of mutation

  3. Signatures derived from increase in SHARPIN gene copy number are associated with poor prognosis in patients with breast cancer

    Directory of Open Access Journals (Sweden)

    Diane Ojo

    2017-12-01

    Full Text Available We report three signatures produced from SHARPIN gene copy number increase (GCN-Increase and their effects on patients with breast cancer (BC. In the Metabric dataset (n = 2059, cBioPortal, SHARPIN GCN-Increase occurs preferentially or mutual exclusively with mutations in TP53, PIK3CA, and CDH1. These genomic alterations constitute a signature (SigMut that significantly correlates with reductions in overall survival (OS in BC patients (n = 1980; p = 1.081e−6. Additionally, SHARPIN GCN-Increase is associated with 4220 differentially expressed genes (DEGs. These DEGs are enriched in activation of the pathways regulating cell cycle progression, RNA transport, ribosome biosynthesis, DNA replication, and in downregulation of the pathways related to extracellular matrix. These DEGs are thus likely to facilitate the proliferation and metastasis of BC cells. Additionally, through forward (FWD and backward (BWD stepwise variate selections among the top 160 downregulated and top 200 upregulated DEGs using the Cox regression model, a 6-gene (SigFWD and a 50-gene (SigBWD signature were derived. Both signatures robustly associate with decreases in OS in BC patients within the Curtis (n = 1980; p = 6.16e−11 for SigFWD; p = 1.06e−10, for SigBWD and TCGA cohort (n = 817; p = 4.53e−4 for SigFWD and p = 0.00525 for SigBWD. After adjusting for known clinical factors, SigMut (HR 1.21, p = 0.0297, SigBWD (HR 1.25, p = 0.0263, and likely SigFWD (HR 1.17, p = 0.062 remain independent risk factors of BC deaths. Furthermore, the proportion of patients positive for these signatures is significantly increased in ER−, Her2-enriched, basal-like, and claudin-low BCs compared to ER+ and luminal BCs. Collectively, these SHARPIN GCN-Increase-derived signatures may have clinical applications in management of patients with BC.

  4. POLE proofreading mutations elicit an anti-tumor immune response in endometrial cancer

    Science.gov (United States)

    van Gool, Inge C; Eggink, Florine A; Freeman-Mills, Luke; Stelloo, Ellen; Marchi, Emanuele; de Bruyn, Marco; Palles, Claire; Nout, Remi A; de Kroon, Cor D; Osse, Elisabeth M; Klenerman, Paul; Creutzberg, Carien L; Tomlinson, Ian PM; Smit, Vincent THBM; Nijman, Hans W

    2015-01-01

    Purpose Recent studies have shown that 7-12% of endometrial cancers (ECs) are ultramutated due to somatic mutation in the proofreading exonuclease domain of the DNA replicase POLE. Interestingly, these tumors have an excellent prognosis. In view of the emerging data linking mutation burden, immune response and clinical outcome in cancer, we investigated whether POLE-mutant ECs showed evidence of increased immunogenicity. Experimental design We examined immune infiltration and activation according to tumor POLE proofreading mutation in a molecularly defined EC cohort including 47 POLE-mutant tumors. We sought to confirm our results by analysis of RNAseq data from the TCGA EC series and used the same series to examine whether differences in immune infiltration could be explained by an enrichment of immunogenic neoepitopes in POLE-mutant ECs. Results Compared to other ECs, POLE-mutants displayed an enhanced cytotoxic T cell response, evidenced by increased numbers of CD8+ tumor infiltrating lymphocytes and CD8A expression, enrichment for a tumor-infiltrating T cell gene signature, and strong upregulation of the T cell cytotoxic differentiation and effector markers T-bet, Eomes, IFNG, PRF and granzyme B. This was accompanied by upregulation of T cell exhaustion markers, consistent with chronic antigen exposure. In-silico analysis confirmed that POLE-mutant cancers are predicted to display more antigenic neo-epitopes than other ECs, providing a potential explanation for our findings. Conclusions Ultramutated POLE proofreading-mutant ECs are characterized by a robust intratumoral T cell response, which correlates with, and may be caused by an enrichment of antigenic neo-peptides. Our study provides a plausible mechanism for the excellent prognosis of these cancers. PMID:25878334

  5. Genetic signatures from amplification profiles characterize DNA mutation in somatic and radiation-induced sports of chrysanthemum

    International Nuclear Information System (INIS)

    Trigiano, R.N.; Scott, M.C.; Caetano-Anolles, G.

    1998-01-01

    The chrysanthemum (Dendranthema grandiflora Tzvelev.) cultivars 'Dark Charm', 'Salmon Charm', 'Coral Charm' and 'Dark Bronze Charm' are either radiation-induced mutants or spontaneous sports of 'Charm' and constitute a family or series of plants that primarily differ in flower color. These cultivars, which were difficult to differentiate genetically by DNA amplification fingerprinting (DAF), were easily identified by using arbitrary signatures from amplification profiles (ASAP). Genomic DNA was first amplified with three standard octamer arbitrary primers, all of which produced monomorphic profiles. Products from each of these DNA fingerprints were subsequently reamplified using four minihairpin decamer primers. The 12 primer combinations produced signatures containing approximately 37% polymorphic character loci, which were used to estimate genetic relationships between cultivars. Forty-six (32%) unique amplification products were associated with individual cultivars. The number of ASAP polymorphisms detected provided an estimate of the mutation rate in the mutant cultivars, ranging from 0.03% to 1.6% of nucleotide changes within an average of 18 kb of arbitrary amplified DAF sequence. The ASAP technique permits the clear genetic identification of somatic mutants and radiation-induced sports that are genetically highly homogeneous and should facilitate marker assisted breeding and protection of plant breeders rights of varieties or cultivars

  6. The intestinal stem cell signature identifies colorectal cancer stem cells and predicts disease relapse

    NARCIS (Netherlands)

    Merlos-Suarez, A.; Barriga, F.M.; Jung, P.; Iglesias, M.; Cespedes, M.V.; Rossell, D.; Sevillano, M.; Hernando-Momblona, X.; da Silva-Diz, V.; Munoz, P.; Clevers, H.; Sancho, E.; Mangues, R.; Batlle, E.

    2011-01-01

    A frequent complication in colorectal cancer (CRC) is regeneration of the tumor after therapy. Here, we report that a gene signature specific for adult intestinal stem cells (ISCs) predicts disease relapse in CRC patients. ISCs are marked by high expression of the EphB2 receptor, which becomes

  7. The predictive value of the 70-gene signature for adjuvant chemotherapy in early breast cancer

    NARCIS (Netherlands)

    Knauer, Michael; Mook, Stella; Rutgers, Emiel J. T.; Bender, Richard A.; Hauptmann, Michael; van de Vijver, Marc J.; Koornstra, Rutger H. T.; Bueno-de-Mesquita, Jolien M.; Linn, Sabine C.; van 't Veer, Laura J.

    2010-01-01

    Multigene assays have been developed and validated to determine the prognosis of breast cancer. In this study, we assessed the additional predictive value of the 70-gene MammaPrint signature for chemotherapy (CT) benefit in addition to endocrine therapy (ET) from pooled study series. For 541

  8. TP53 Mutations in Nonsmall Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Akira Mogi

    2011-01-01

    Full Text Available The tumor suppressor gene TP53 is frequently mutated in human cancers. Abnormality of the TP53 gene is one of the most significant events in lung cancers and plays an important role in the tumorigenesis of lung epithelial cells. Human lung cancers are classified into two major types, small cell lung cancer (SCLC and nonsmall cell lung cancer (NSCLC. The latter accounts for approximately 80% of all primary lung cancers, and the incidence of NSCLC is increasing yearly. Most clinical studies suggest that NSCLC with TP53 alterations carries a worse prognosis and may be relatively more resistant to chemotherapy and radiation. A deep understanding of the role of TP53 in lung carcinogenesis may lead to a more reasonably targeted clinical approach, which should be exploited to enhance the survival rates of patients with lung cancer. This paper will focus on the role of TP53 in the molecular pathogenesis, epidemiology, and therapeutic strategies of TP53 mutation in NSCLC.

  9. Human cancer cells express Slug-based epithelial-mesenchymal transition gene expression signature obtained in vivo

    International Nuclear Information System (INIS)

    Anastassiou, Dimitris; Rumjantseva, Viktoria; Cheng, Weiyi; Huang, Jianzhong; Canoll, Peter D; Yamashiro, Darrell J; Kandel, Jessica J

    2011-01-01

    The biological mechanisms underlying cancer cell motility and invasiveness remain unclear, although it has been hypothesized that they involve some type of epithelial-mesenchymal transition (EMT). We used xenograft models of human cancer cells in immunocompromised mice, profiling the harvested tumors separately with species-specific probes and computationally analyzing the results. Here we show that human cancer cells express in vivo a precise multi-cancer invasion-associated gene expression signature that prominently includes many EMT markers, among them the transcription factor Slug, fibronectin, and α-SMA. We found that human, but not mouse, cells express the signature and Slug is the only upregulated EMT-inducing transcription factor. The signature is also present in samples from many publicly available cancer gene expression datasets, suggesting that it is produced by the cancer cells themselves in multiple cancer types, including nonepithelial cancers such as neuroblastoma. Furthermore, we found that the presence of the signature in human xenografted cells was associated with a downregulation of adipocyte markers in the mouse tissue adjacent to the invasive tumor, suggesting that the signature is triggered by contextual microenvironmental interactions when the cancer cells encounter adipocytes, as previously reported. The known, precise and consistent gene composition of this cancer mesenchymal transition signature, particularly when combined with simultaneous analysis of the adjacent microenvironment, provides unique opportunities for shedding light on the underlying mechanisms of cancer invasiveness as well as identifying potential diagnostic markers and targets for metastasis-inhibiting therapeutics

  10. Targeted cancer exome sequencing reveals recurrent mutations in myeloproliferative neoplasms

    Science.gov (United States)

    Tenedini, E; Bernardis, I; Artusi, V; Artuso, L; Roncaglia, E; Guglielmelli, P; Pieri, L; Bogani, C; Biamonte, F; Rotunno, G; Mannarelli, C; Bianchi, E; Pancrazzi, A; Fanelli, T; Malagoli Tagliazucchi, G; Ferrari, S; Manfredini, R; Vannucchi, A M; Tagliafico, E

    2014-01-01

    With the intent of dissecting the molecular complexity of Philadelphia-negative myeloproliferative neoplasms (MPN), we designed a target enrichment panel to explore, using next-generation sequencing (NGS), the mutational status of an extensive list of 2000 cancer-associated genes and microRNAs. The genomic DNA of granulocytes and in vitro-expanded CD3+T-lymphocytes, as a germline control, was target-enriched and sequenced in a learning cohort of 20 MPN patients using Roche 454 technology. We identified 141 genuine somatic mutations, most of which were not previously described. To test the frequency of the identified variants, a larger validation cohort of 189 MPN patients was additionally screened for these mutations using Ion Torrent AmpliSeq NGS. Excluding the genes already described in MPN, for 8 genes (SCRIB, MIR662, BARD1, TCF12, FAT4, DAP3, POLG and NRAS), we demonstrated a mutation frequency between 3 and 8%. We also found that mutations at codon 12 of NRAS (NRASG12V and NRASG12D) were significantly associated, for primary myelofibrosis (PMF), with highest dynamic international prognostic scoring system (DIPSS)-plus score categories. This association was then confirmed in 66 additional PMF patients composing a final dataset of 168 PMF showing a NRAS mutation frequency of 4.7%, which was associated with a worse outcome, as defined by the DIPSS plus score. PMID:24150215

  11. Systematic Analysis of Splice-Site-Creating Mutations in Cancer.

    Science.gov (United States)

    Jayasinghe, Reyka G; Cao, Song; Gao, Qingsong; Wendl, Michael C; Vo, Nam Sy; Reynolds, Sheila M; Zhao, Yanyan; Climente-González, Héctor; Chai, Shengjie; Wang, Fang; Varghese, Rajees; Huang, Mo; Liang, Wen-Wei; Wyczalkowski, Matthew A; Sengupta, Sohini; Li, Zhi; Payne, Samuel H; Fenyö, David; Miner, Jeffrey H; Walter, Matthew J; Vincent, Benjamin; Eyras, Eduardo; Chen, Ken; Shmulevich, Ilya; Chen, Feng; Ding, Li

    2018-04-03

    For the past decade, cancer genomic studies have focused on mutations leading to splice-site disruption, overlooking those having splice-creating potential. Here, we applied a bioinformatic tool, MiSplice, for the large-scale discovery of splice-site-creating mutations (SCMs) across 8,656 TCGA tumors. We report 1,964 originally mis-annotated mutations having clear evidence of creating alternative splice junctions. TP53 and GATA3 have 26 and 18 SCMs, respectively, and ATRX has 5 from lower-grade gliomas. Mutations in 11 genes, including PARP1, BRCA1, and BAP1, were experimentally validated for splice-site-creating function. Notably, we found that neoantigens induced by SCMs are likely several folds more immunogenic compared to missense mutations, exemplified by the recurrent GATA3 SCM. Further, high expression of PD-1 and PD-L1 was observed in tumors with SCMs, suggesting candidates for immune blockade therapy. Our work highlights the importance of integrating DNA and RNA data for understanding the functional and the clinical implications of mutations in human diseases. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  12. p53 gene mutation hotspots in skin cancer and ultraviolet induced mutation

    International Nuclear Information System (INIS)

    Ikehata, Hironobu

    1998-01-01

    Presence of certain hotspots is known in the mutation of p53 gene in skin cancer, which are codons 177, 196, 245, 248, 278 and 282 located in the exon 5-8. In these regions, mutations like C to T and CC to TT are frequent and thereby suggest that they are resulted from pyrimidine-dimers produced by ultraviolet light (UV). In cyclobutane pyrimidine dimerization (CPD), conversion of cytosine to thymine by deamination is suggested to be the primary reaction. Although studies using UVC (254 nm) suggesting that the mutation hotspots are low repair efficiency regions could not completely explain the all hotspots, those using UVB and sunlight (UVB and UVA) revealed that CPD was efficiently produced even in such regions as not explained by studies with UVC alone. Therefore, the latter studies are conceivably reasonable since the skin cancer is induced by natural sunlight. Exon 5-8 DNA is completely methylated and the absorption coefficient of 5-methylcytosine is 5-6 times as large as that of cytosine at wavelength around 290 nm. These indicate the importance of UVB in mutation of mammalian cells possessing the ability to methylate DNA. (K.H.)

  13. Calorimetric signatures of human cancer cells and their nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Todinova, S. [Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, Sofia 1113 (Bulgaria); Stoyanova, E. [Department of Molecular Immunology, Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Tzarigradsko shose Blvd. 73, Sofia 1113 (Bulgaria); Krumova, S., E-mail: sakrumo@gmail.com [Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, Sofia 1113 (Bulgaria); Iliev, I. [Institute of Experimental Morphology, Pathology and Anthropology with Museum, Acad. G. Bonchev Str., Bl. 25, Sofia 1113 (Bulgaria); Taneva, S.G. [Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, Sofia 1113 (Bulgaria)

    2016-01-10

    Graphical abstract: - Highlights: • Two temperature ranges are distinguished in the thermograms of cells/nuclei. • Different thermodynamic properties of cancer and normal human cells/nuclei. • Dramatic reduction of the enthalpy of the low-temperature range in cancer cells. • Oxaliplatin and 5-FU affect the nuclear matrix proteins and the DNA stability. - Abstract: The human cancer cell lines HeLa, JEG-3, Hep G2, SSC-9, PC-3, HT-29, MCF7 and their isolated nuclei were characterized by differential scanning calorimetry. The calorimetric profiles differed from normal human fibroblast (BJ) cells in the two well distinguished temperature ranges—the high-temperature range (H{sub T}, due to DNA-containing structures) and the low-temperature range (L{sub T}, assigned to the nuclear matrix and cellular proteins). The enthalpy of the L{sub T} range, and, respectively the ratio of the enthalpies of the L{sub T}- vs. H{sub T}-range, ΔH{sub L}/ΔH{sub H}, is strongly reduced for all cancer cells compared to normal fibroblasts. On the contrary, for most of the cancer nuclei this ratio is higher compared to normal nuclei. The HT-29 human colorectal cancer cells/nuclei differed most drastically from normal human fibroblast cells/nuclei. Our data also reveal that the treatment of HT-29 cancer cells with cytostatic drugs affects not only the DNA replication but also the cellular proteome.

  14. Mesotrypsin Signature Mutation in a Chymotrypsin C (CTRC) Variant Associated with Chronic Pancreatitis.

    Science.gov (United States)

    Szabó, András; Ludwig, Maren; Hegyi, Eszter; Szépeová, Renata; Witt, Heiko; Sahin-Tóth, Miklós

    2015-07-10

    Human chymotrypsin C (CTRC) protects against pancreatitis by degrading trypsinogen and thereby curtailing harmful intra-pancreatic trypsinogen activation. Loss-of-function mutations in CTRC increase the risk for chronic pancreatitis. Here we describe functional analysis of eight previously uncharacterized natural CTRC variants tested for potential defects in secretion, proteolytic stability, and catalytic activity. We found that all variants were secreted from transfected cells normally, and none suffered proteolytic degradation by trypsin. Five variants had normal enzymatic activity, whereas variant p.R29Q was catalytically inactive due to loss of activation by trypsin and variant p.S239C exhibited impaired activity possibly caused by disulfide mispairing. Surprisingly, variant p.G214R had increased activity on a small chromogenic peptide substrate but was markedly defective in cleaving bovine β-casein or the natural CTRC substrates human cationic trypsinogen and procarboxypeptidase A1. Mutation p.G214R is analogous to the evolutionary mutation in human mesotrypsin, which rendered this trypsin isoform resistant to proteinaceous inhibitors and conferred its ability to cleave these inhibitors. Similarly to the mesotrypsin phenotype, CTRC variant p.G214R was inhibited poorly by eglin C, ecotin, or a CTRC-specific variant of SGPI-2, and it readily cleaved the reactive-site peptide bonds in eglin C and ecotin. We conclude that CTRC variants p.R29Q, p.G214R, and p.S239C are risk factors for chronic pancreatitis. Furthermore, the mesotrypsin-like CTRC variant highlights how the same natural mutation in homologous pancreatic serine proteases can evolve a new physiological role or lead to pathology, determined by the biological context of protease function. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Biochemical signatures mimicking multiple carboxylase deficiency in children with mutations in MT-ATP6.

    Science.gov (United States)

    Larson, Austin A; Balasubramaniam, Shanti; Christodoulou, John; Burrage, Lindsay C; Marom, Ronit; Graham, Brett H; Diaz, George A; Glamuzina, Emma; Hauser, Natalie; Heese, Bryce; Horvath, Gabriella; Mattman, Andre; van Karnebeek, Clara; Lane Rutledge, S; Williamson, Amy; Estrella, Lissette; Van Hove, Johan K L; Weisfeld-Adams, James D

    2018-01-04

    Elevations of specific acylcarnitines in blood reflect carboxylase deficiencies, and have utility in newborn screening for life-threatening organic acidemias and other inherited metabolic diseases. In this report, we describe a newly-identified association of biochemical features of multiple carboxylase deficiency in individuals harboring mitochondrial DNA (mtDNA) mutations in MT-ATP6 and in whom organic acidemias and multiple carboxylase deficiencies were excluded. Using retrospective chart review, we identified eleven individuals with abnormally elevated propionylcarnitine (C3) or hydroxyisovalerylcarnitine (C5OH) with mutations in MT-ATP6, most commonly m.8993T>G in high heteroplasmy or homoplasmy. Most patients were ascertained on newborn screening; most had normal enzymatic or molecular genetic testing to exclude biotinidase and holocarboxylase synthetase deficiencies. MT-ATP6 is associated with some cases of Leigh disease; clinical outcomes in our cohort ranged from death from neurodegenerative disease in early childhood to clinically and developmentally normal after several years of follow-up. These cases expand the biochemical phenotype associated with MT-ATP6 mutations, especially m.8993T>G, to include acylcarnitine abnormalities mimicking carboxylase deficiency states. Clinicians should be aware of this association and its implications for newborn screening, and consider mtDNA sequencing in patients exhibiting similar acylcarnitine abnormalities that are biotin-unresponsive and in whom other enzymatic deficiencies have been excluded. Copyright © 2018 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  16. Identification of Germline Genetic Mutations in Pancreatic Cancer Patients

    Science.gov (United States)

    Salo-Mullen, Erin E.; O’Reilly, Eileen; Kelsen, David; Ashraf, Asad M.; Lowery, Maeve; Yu, Kenneth; Reidy, Diane; Epstein, Andrew S.; Lincoln, Anne; Saldia, Amethyst; Jacobs, Lauren M.; Rau-Murthy, Rohini; Zhang, Liying; Kurtz, Robert; Saltz, Leonard; Offit, Kenneth; Robson, Mark; Stadler, Zsofia K.

    2016-01-01

    Background Pancreatic adenocarcinoma (PAC) is part of several cancer predisposition syndromes; however, indications for genetic counseling/testing are not well-defined. We sought to determine mutation prevalence and characteristics that predict for inherited predisposition to PAC. Methods We identified 175 consecutive PAC patients who underwent clinical genetics assessment at Memorial Sloan Kettering between 2011–2014. Clinical data, family history, and germline results were evaluated. Results Among 159 PAC patients who pursued genetic testing, 24 pathogenic mutations were identified (15.1%; 95%CI, 9.5%–20.7%), including BRCA2(n=13), BRCA1(n=4), p16(n=2), PALB2(n=1), and Lynch syndrome(n=4). BRCA1/BRCA2 prevalence was 13.7% in Ashkenazi Jewish(AJ) (n=95) and 7.1% in non-AJ(n=56) patients. In AJ patients with strong, weak, or absent family history of BRCA-associated cancers, mutation prevalence was 16.7%, 15.8%, and 7.4%, respectively. Mean age at diagnosis in all mutation carriers was 58.5y(range 45–75y) compared to 64y(range 27–87y) in non-mutation carriers(P=0.02). Although BRCA2 was the most common mutation identified, no patients with early-onset PAC(≤50y) harbored a BRCA2 mutation and the mean age at diagnosis in BRCA2 carriers was equivalent to non-mutation carriers(P=0.34). Mutation prevalence in early-onset patients(n=21) was 28.6%, including BRCA1(n=2), p16(n=2), MSH2(n=1) and MLH1(n=1). Conclusion Mutations in BRCA2 account for over 50% of PAC patients with an identified susceptibility syndrome. AJ patients had high BRCA1/BRCA2 prevalence regardless of personal/family history, suggesting that ancestry alone indicates a need for genetic evaluation. With the exception of BRCA2-associated PAC, inherited predisposition to PAC is associated with earlier age at PAC diagnosis suggesting that this subset of patients may also represent a population warranting further evaluation. PMID:26440929

  17. A prognostic gene signature for metastasis-free survival of triple negative breast cancer patients.

    Directory of Open Access Journals (Sweden)

    Unjin Lee

    Full Text Available Although triple negative breast cancers (TNBC are the most aggressive subtype of breast cancer, they currently lack targeted therapies. Because this classification still includes a heterogeneous collection of tumors, new tools to classify TNBCs are urgently required in order to improve our prognostic capability for high risk patients and predict response to therapy. We previously defined a gene expression signature, RKIP Pathway Metastasis Signature (RPMS, based upon a metastasis-suppressive signaling pathway initiated by Raf Kinase Inhibitory Protein (RKIP. We have now generated a new BACH1 Pathway Metastasis gene signature (BPMS that utilizes targets of the metastasis regulator BACH1. Specifically, we substituted experimentally validated target genes to generate a new BACH1 metagene, developed an approach to optimize patient tumor stratification, and reduced the number of signature genes to 30. The BPMS significantly and selectively stratified metastasis-free survival in basal-like and, in particular, TNBC patients. In addition, the BPMS further stratified patients identified as having a good or poor prognosis by other signatures including the Mammaprint® and Oncotype® clinical tests. The BPMS is thus complementary to existing signatures and is a prognostic tool for high risk ER-HER2- patients. We also demonstrate the potential clinical applicability of the BPMS as a single sample predictor. Together, these results reveal the potential of this pathway-based BPMS gene signature to identify high risk TNBC patients that can respond effectively to targeted therapy, and highlight BPMS genes as novel drug targets for therapeutic development.

  18. MSH6 and PMS2 mutation positive Australian Lynch syndrome families: novel mutations, cancer risk and age of diagnosis of colorectal cancer.

    Science.gov (United States)

    Talseth-Palmer, Bente A; McPhillips, Mary; Groombridge, Claire; Spigelman, Allan; Scott, Rodney J

    2010-05-21

    Approximately 10% of Lynch syndrome families have a mutation in MSH6 and fewer families have a mutation in PMS2. It is assumed that the cancer incidence is the same in families with mutations in MSH6 as in families with mutations in MLH1/MSH2 but that the disease tends to occur later in life, little is known about families with PMS2 mutations. This study reports on our findings on mutation type, cancer risk and age of diagnosis in MSH6 and PMS2 families. A total of 78 participants (from 29 families) with a mutation in MSH6 and 7 participants (from 6 families) with a mutation in PMS2 were included in the current study. A database of de-identified patient information was analysed to extract all relevant information such as mutation type, cancer incidence, age of diagnosis and cancer type in this Lynch syndrome cohort. Cumulative lifetime risk was calculated utilising Kaplan-Meier survival analysis. MSH6 and PMS2 mutations represent 10.3% and 1.9%, respectively, of the pathogenic mutations in our Australian Lynch syndrome families. We identified 26 different MSH6 and 4 different PMS2 mutations in the 35 families studied. We report 15 novel MSH6 and 1 novel PMS2 mutations. The estimated cumulative risk of CRC at age 70 years was 61% (similar in males and females) and 65% for endometrial cancer in MSH6 mutation carriers. The risk of developing CRC is different between males and females at age 50 years, which is 34% for males and 21% for females. Novel MSH6 and PMS2 mutations are being reported and submitted to the current databases for identified Lynch syndrome mutations. Our data provides additional information to add to the genotype-phenotype spectrum for both MSH6 and PMS2 mutations.

  19. MSH6 and PMS2 mutation positive Australian Lynch syndrome families: novel mutations, cancer risk and age of diagnosis of colorectal cancer

    Directory of Open Access Journals (Sweden)

    Talseth-Palmer Bente A

    2010-05-01

    Full Text Available Abstract Background Approximately 10% of Lynch syndrome families have a mutation in MSH6 and fewer families have a mutation in PMS2. It is assumed that the cancer incidence is the same in families with mutations in MSH6 as in families with mutations in MLH1/MSH2 but that the disease tends to occur later in life, little is known about families with PMS2 mutations. This study reports on our findings on mutation type, cancer risk and age of diagnosis in MSH6 and PMS2 families. Methods A total of 78 participants (from 29 families with a mutation in MSH6 and 7 participants (from 6 families with a mutation in PMS2 were included in the current study. A database of de-identified patient information was analysed to extract all relevant information such as mutation type, cancer incidence, age of diagnosis and cancer type in this Lynch syndrome cohort. Cumulative lifetime risk was calculated utilising Kaplan-Meier survival analysis. Results MSH6 and PMS2 mutations represent 10.3% and 1.9%, respectively, of the pathogenic mutations in our Australian Lynch syndrome families. We identified 26 different MSH6 and 4 different PMS2 mutations in the 35 families studied. We report 15 novel MSH6 and 1 novel PMS2 mutations. The estimated cumulative risk of CRC at age 70 years was 61% (similar in males and females and 65% for endometrial cancer in MSH6 mutation carriers. The risk of developing CRC is different between males and females at age 50 years, which is 34% for males and 21% for females. Conclusion Novel MSH6 and PMS2 mutations are being reported and submitted to the current databases for identified Lynch syndrome mutations. Our data provides additional information to add to the genotype-phenotype spectrum for both MSH6 and PMS2 mutations.

  20. Assessment of SLX4 Mutations in Hereditary Breast Cancers.

    Directory of Open Access Journals (Sweden)

    Sohela Shah

    Full Text Available SLX4 encodes a DNA repair protein that regulates three structure-specific endonucleases and is necessary for resistance to DNA crosslinking agents, topoisomerase I and poly (ADP-ribose polymerase (PARP inhibitors. Recent studies have reported mutations in SLX4 in a new subtype of Fanconi anemia (FA, FA-P. Monoallelic defects in several FA genes are known to confer susceptibility to breast and ovarian cancers.To determine if SLX4 is involved in breast cancer susceptibility, we sequenced the entire SLX4 coding region in 738 (270 Jewish and 468 non-Jewish breast cancer patients with 2 or more family members affected by breast cancer and no known BRCA1 or BRCA2 mutations. We found a novel nonsense (c.2469G>A, p.W823* mutation in one patient. In addition, we also found 51 missense variants [13 novel, 23 rare (MAF1%], of which 22 (5 novel and 17 rare were predicted to be damaging by Polyphen2 (score = 0.65-1. We performed functional complementation studies using p.W823* and 5 SLX4 variants (4 novel and 1 rare cDNAs in a human SLX4-null fibroblast cell line, RA3331. While wild type SLX4 and all the other variants fully rescued the sensitivity to mitomycin C (MMC, campthothecin (CPT, and PARP inhibitor (Olaparib the p.W823* SLX4 mutant failed to do so.Loss-of-function mutations in SLX4 may contribute to the development of breast cancer in very rare cases.

  1. Positive signature-tagged mutagenesis in Pseudomonas aeruginosa: tracking patho-adaptive mutations promoting airways chronic infection.

    Directory of Open Access Journals (Sweden)

    Irene Bianconi

    2011-02-01

    Full Text Available The opportunistic pathogen Pseudomonas aeruginosa can establish life-long chronic infections in the airways of cystic fibrosis (CF patients. Persistent lifestyle is established with P. aeruginosa patho-adaptive variants, which are clonal with the initially-acquired strains. Several reports indicated that P. aeruginosa adapts by loss-of-function mutations which enhance fitness in CF airways and sustain its clonal expansion during chronic infection. To validate this model of P. aeruginosa adaptation to CF airways and to identify novel genes involved in this microevolution, we designed a novel approach of positive-selection screening by PCR-based signature-tagged mutagenesis (Pos-STM in a murine model of chronic airways infection. A systematic positive-selection scheme using sequential rounds of in vivo screenings for bacterial maintenance, as opposed to elimination, generated a list of genes whose inactivation increased the colonization and persistence in chronic airways infection. The phenotypes associated to these Pos-STM mutations reflect alterations in diverse aspects of P. aeruginosa biology which include lack of swimming and twitching motility, lack of production of the virulence factors such as pyocyanin, biofilm formation, and metabolic functions. In addition, Pos-STM mutants showed altered invasion and stimulation of immune response when tested in human respiratory epithelial cells, indicating that P. aeruginosa is prone to revise the interaction with its host during persistent lifestyle. Finally, sequence analysis of Pos-STM genes in longitudinally P. aeruginosa isolates from CF patients identified signs of patho-adaptive mutations within the genome. This novel Pos-STM approach identified bacterial functions that can have important clinical implications for the persistent lifestyle and disease progression of the airway chronic infection.

  2. Clinical value of prognosis gene expression signatures in colorectal cancer: a systematic review.

    Directory of Open Access Journals (Sweden)

    Rebeca Sanz-Pamplona

    Full Text Available INTRODUCTION: The traditional staging system is inadequate to identify those patients with stage II colorectal cancer (CRC at high risk of recurrence or with stage III CRC at low risk. A number of gene expression signatures to predict CRC prognosis have been proposed, but none is routinely used in the clinic. The aim of this work was to assess the prediction ability and potential clinical usefulness of these signatures in a series of independent datasets. METHODS: A literature review identified 31 gene expression signatures that used gene expression data to predict prognosis in CRC tissue. The search was based on the PubMed database and was restricted to papers published from January 2004 to December 2011. Eleven CRC gene expression datasets with outcome information were identified and downloaded from public repositories. Random Forest classifier was used to build predictors from the gene lists. Matthews correlation coefficient was chosen as a measure of classification accuracy and its associated p-value was used to assess association with prognosis. For clinical usefulness evaluation, positive and negative post-tests probabilities were computed in stage II and III samples. RESULTS: Five gene signatures showed significant association with prognosis and provided reasonable prediction accuracy in their own training datasets. Nevertheless, all signatures showed low reproducibility in independent data. Stratified analyses by stage or microsatellite instability status showed significant association but limited discrimination ability, especially in stage II tumors. From a clinical perspective, the most predictive signatures showed a minor but significant improvement over the classical staging system. CONCLUSIONS: The published signatures show low prediction accuracy but moderate clinical usefulness. Although gene expression data may inform prognosis, better strategies for signature validation are needed to encourage their widespread use in the clinic.

  3. Leptin’s Pro-Angiogenic Signature in Breast Cancer

    International Nuclear Information System (INIS)

    Gonzalez-Perez, Ruben Rene; Lanier, Viola; Newman, Gale

    2013-01-01

    Obesity is linked to increased incidence of breast cancer. The precise causes and mechanisms of these morbid relationships are unknown. Contradictory data on leptin angiogenic actions have been published. However, accumulating evidence would suggest that leptin’s pro-angiogenic effects in cancer play an essential role in the disease. Leptin, the main adipokine secreted by adipose tissue, is also abnormally expressed together with its receptor (OB-R) by breast cancer cells. Leptin induces proliferation and angiogenic differentiation of endothelial cells upregulates VEGF/VEGFR2 and transactivates VEGFR2 independent of VEGF. Leptin induces two angiogenic factors: IL-1 and Notch that can increase VEGF expression. Additionally, leptin induces the secretion and synthesis of proteases and adhesion molecules needed for the development of angiogenesis. Leptin’s paracrine actions can further affect stromal cells and tumor associated macrophages, which express OB-R and secrete VEGF and IL-1, respectively. A complex crosstalk between leptin, Notch and IL-1 (NILCO) that induces VEGF/VEGFR2 is found in breast cancer. Leptin actions in tumor angiogenesis could amplify, be redundant and/or compensatory to VEGF signaling. Current failure of breast cancer anti-angiogenic therapies emphasizes the necessity of targeting the contribution of other pro-angiogenic factors in breast cancer. Leptin’s impact on tumor angiogenesis could be a novel target for breast cancer, especially in obese patients. However, more research is needed to establish the importance of leptin in tumor angiogenesis. This review is focused on updated information on how leptin could contribute to tumor angiogenesis

  4. Statistical method on nonrandom clustering with application to somatic mutations in cancer

    Directory of Open Access Journals (Sweden)

    Rejto Paul A

    2010-01-01

    Full Text Available Abstract Background Human cancer is caused by the accumulation of tumor-specific mutations in oncogenes and tumor suppressors that confer a selective growth advantage to cells. As a consequence of genomic instability and high levels of proliferation, many passenger mutations that do not contribute to the cancer phenotype arise alongside mutations that drive oncogenesis. While several approaches have been developed to separate driver mutations from passengers, few approaches can specifically identify activating driver mutations in oncogenes, which are more amenable for pharmacological intervention. Results We propose a new statistical method for detecting activating mutations in cancer by identifying nonrandom clusters of amino acid mutations in protein sequences. A probability model is derived using order statistics assuming that the location of amino acid mutations on a protein follows a uniform distribution. Our statistical measure is the differences between pair-wise order statistics, which is equivalent to the size of an amino acid mutation cluster, and the probabilities are derived from exact and approximate distributions of the statistical measure. Using data in the Catalog of Somatic Mutations in Cancer (COSMIC database, we have demonstrated that our method detects well-known clusters of activating mutations in KRAS, BRAF, PI3K, and β-catenin. The method can also identify new cancer targets as well as gain-of-function mutations in tumor suppressors. Conclusions Our proposed method is useful to discover activating driver mutations in cancer by identifying nonrandom clusters of somatic amino acid mutations in protein sequences.

  5. A breast cancer gene signature for indolent disease

    NARCIS (Netherlands)

    Delahaye, Leonie J. M. J.; Drukker, Caroline A.; Dreezen, Christa; Witteveen, Anke; Chan, Bob; Snel, Mireille; Beumer, Inès J.; Bernards, Rene; Audeh, M. William; van't Veer, Laura J.; Glas, Annuska M.

    2017-01-01

    Early-stage hormone-receptor positive breast cancer is treated with endocrine therapy and the recommended duration of these treatments has increased over time. While endocrine therapy is considered less of a burden to patients compared to chemotherapy, long-term adherence may be low due to potential

  6. Risk of metachronous colon cancer following surgery for rectal cancer in mismatch repair gene mutation carriers.

    Science.gov (United States)

    Win, Aung Ko; Parry, Susan; Parry, Bryan; Kalady, Matthew F; Macrae, Finlay A; Ahnen, Dennis J; Young, Graeme P; Lipton, Lara; Winship, Ingrid; Boussioutas, Alex; Young, Joanne P; Buchanan, Daniel D; Arnold, Julie; Le Marchand, Loïc; Newcomb, Polly A; Haile, Robert W; Lindor, Noralane M; Gallinger, Steven; Hopper, John L; Jenkins, Mark A

    2013-06-01

    Despite regular surveillance colonoscopy, the metachronous colorectal cancer risk for mismatch repair (MMR) gene mutation carriers after segmental resection for colon cancer is high and total or subtotal colectomy is the preferred option. However, if the index cancer is in the rectum, management decisions are complicated by considerations of impaired bowel function. We aimed to estimate the risk of metachronous colon cancer for MMR gene mutation carriers who underwent a proctectomy for index rectal cancer. This retrospective cohort study comprised 79 carriers of germline mutation in a MMR gene (18 MLH1, 55 MSH2, 4 MSH6, and 2 PMS2) from the Colon Cancer Family Registry who had had a proctectomy for index rectal cancer. Cumulative risks of metachronous colon cancer were calculated using the Kaplan-Meier method. During median 9 years (range 1-32 years) of observation since the first diagnosis of rectal cancer, 21 carriers (27 %) were diagnosed with metachronous colon cancer (incidence 24.25, 95 % confidence interval [CI] 15.81-37.19 per 1,000 person-years). Cumulative risk of metachronous colon cancer was 19 % (95 % CI 9-31 %) at 10 years, 47 (95 % CI 31-68 %) at 20 years, and 69 % (95 % CI 45-89 %) at 30 years after surgical resection. The frequency of surveillance colonoscopy was 1 colonoscopy per 1.16 years (95 % CI 1.01-1.31 years). The AJCC stages of the metachronous cancers, where available, were 72 % stage I, 22 % stage II, and 6 % stage III. Given the high metachronous colon cancer risk for MMR gene mutation carriers diagnosed with an index rectal cancer, proctocolectomy may need to be considered.

  7. Hot spot mutations in Finnish non-small cell lung cancers.

    Science.gov (United States)

    Mäki-Nevala, Satu; Sarhadi, Virinder Kaur; Rönty, Mikko; Kettunen, Eeva; Husgafvel-Pursiainen, Kirsti; Wolff, Henrik; Knuuttila, Aija; Knuutila, Sakari

    2016-09-01

    Non-small cell lung cancer (NSCLC) is a common cancer with a poor prognosis. The aim of this study was to screen Finnish NSCLC tumor samples for common cancer-related mutations by targeted next generation sequencing and to determine their concurrences and associations with clinical features. Sequencing libraries were prepared from DNA isolated from formalin-fixed, paraffin-embedded tumor material of 425 patients using the AmpliSeq Colon and Lung panel covering mutational hot spot regions of 22 cancer genes. Sequencing was performed with the Ion Torrent Personal Genome Machine (PGM). Data analysis of the hot spot mutations revealed mutations in 77% of the patients, with 7% having 3 or more mutations reported in the Catalogue of Somatic Mutations in Cancer (COSMIC) database. Two of the most frequently mutated genes were TP53 (46%) and KRAS (25%). KRAS codon 12 mutations were the most recurrently occurring mutations. EGFR mutations were significantly associated with adenocarcinoma, female gender and never/light-smoking history; CTNNB1 mutations with light ex-smokers, PIK3CA and TP53 mutations with squamous cell carcinoma, and KRAS with adenocarcinoma. TP53 mutations were most prevalent in current smokers and ERBB2, ERBB4, PIK3CA, NRAS, NOTCH1, FBWX7, PTEN and STK11 mutations occurred exclusively in a group of ever-smokers, however the association was not statistically significant. No mutation was found that associated with asbestos exposure. Finnish NSCLC patients have a similar mutation profile as other Western patients, however with a higher frequency of BRAF mutations but a lower frequency of STK11 and ERBB2 mutations. Moreover, TP53 mutations occurred frequently with other gene mutations, most commonly with KRAS, MET, EGFR and PIK3CA mutations. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Biology of lung cancer: genetic mutation, epithelial-mesenchymal transition, and cancer stem cells.

    Science.gov (United States)

    Aoi, Takashi

    2016-09-01

    At present, most cases of unresectable cancer cannot be cured. Genetic mutations, EMT, and cancer stem cells are three major issues linked to poor prognosis in such cases, all connected by inter- and intra-tumor heterogeneity. Issues on inter-/intra-tumor heterogeneity of genetic mutation could be resolved with recent and future technologies of deep sequencers, whereas, regarding such issues as the "same genome, different epigenome/phenotype", we expect to solve many of these problems in the future through further research in stem cell biology. We herein review and discuss the three major issues in the biology of cancers, especially from the standpoint of stem cell biology.

  9. MSH2 mutation carriers are at higher risk of cancer than MLH1 mutation carriers : A study of hereditary nonpolyposis colorectal cancer families

    NARCIS (Netherlands)

    Vasen, HFA; Stormorken, A; Menko, FH; Nagengast, FM; Kleibeuker, JH; Griffioen, G; Taal, BG; Moller, P; Wijnen, JT

    2001-01-01

    Purpose: Hereditary nonpolyposis colorectal cancer (HNPCC) is an autosomal dominant disease characterized by the clustering of colorectal cancer, endometrial cancer, and various other cancers. The disease is caused by mutations in DNA-mismatch-repair (MMR) genes, most frequently in MLH1, MSH2, and

  10. MSH2 mutation carriers are at higher risk of cancer than MLH1 mutation carriers: a study of hereditary nonpolyposis colorectal cancer families.

    NARCIS (Netherlands)

    Vasen, H.F.; Stormorken, A.; Menko, F.H.; Nagengast, F.M.; Kleibeuker, J.H.; Griffioen, G.; Taal, B.G.; Moller, P.; Wijnen, J.T.

    2001-01-01

    PURPOSE: Hereditary nonpolyposis colorectal cancer (HNPCC) is an autosomal dominant disease characterized by the clustering of colorectal cancer, endometrial cancer, and various other cancers. The disease is caused by mutations in DNA-mismatch-repair (MMR) genes, most frequently in MLH1, MSH2, and

  11. Ensemble of gene signatures identifies novel biomarkers in colorectal cancer activated through PPARγ and TNFα signaling.

    Directory of Open Access Journals (Sweden)

    Stefano Maria Pagnotta

    Full Text Available We describe a novel bioinformatic and translational pathology approach, gene Signature Finder Algorithm (gSFA to identify biomarkers associated with Colorectal Cancer (CRC survival. Here a robust set of CRC markers is selected by an ensemble method. By using a dataset of 232 gene expression profiles, gSFA discovers 16 highly significant small gene signatures. Analysis of dichotomies generated by the signatures results in a set of 133 samples stably classified in good prognosis group and 56 samples in poor prognosis group, whereas 43 remain unreliably classified. AKAP12, DCBLD2, NT5E and SPON1 are particularly represented in the signatures and selected for validation in vivo on two independent patients cohorts comprising 140 tumor tissues and 60 matched normal tissues. Their expression and regulatory programs are investigated in vitro. We show that the coupled expression of NT5E and DCBLD2 robustly stratifies our patients in two groups (one of which with 100% survival at five years. We show that NT5E is a target of the TNF-α signaling in vitro; the tumor suppressor PPARγ acts as a novel NT5E antagonist that positively and concomitantly regulates DCBLD2 in a cancer cell context-dependent manner.

  12. Precision diagnostics: moving towards protein biomarker signatures of clinical utility in cancer.

    Science.gov (United States)

    Borrebaeck, Carl A K

    2017-03-01

    Interest in precision diagnostics has been fuelled by the concept that early detection of cancer would benefit patients; that is, if detected early, more tumours should be resectable and treatment more efficacious. Serum contains massive amounts of potentially diagnostic information, and affinity proteomics has risen as an accurate approach to decipher this, to generate actionable information that should result in more precise and evidence-based options to manage cancer. To achieve this, we need to move from single to multiplex biomarkers, a so-called signature, that can provide significantly increased diagnostic accuracy. This Opinion article focuses on the progress being made in identifying protein biomarker signatures of clinical utility, using blood-based proteomics.

  13. Electrical signatures of single-stranded DNA with single base mutations in a nanopore capacitor

    International Nuclear Information System (INIS)

    Gracheva, Maria E; Aksimentiev, Aleksei; Leburton, Jean-Pierre

    2006-01-01

    In this paper, we evaluate the magnitude of the electrical signals produced by DNA translocation through a 1 nm diameter nanopore in a capacitor membrane with a numerical multi-scale approach, and assess the possibility of resolving individual nucleotides as well as their types in the absence of conformational disorder. We show that the maximum recorded voltage caused by the DNA translocation is about 35 mV, while the maximum voltage signal due to the DNA backbone is about 30 mV, and the maximum voltage of a DNA base is about 8 mV. Signals from individual nucleotides can be identified in the recorded voltage traces, suggesting a 1 nm diameter pore in a capacitor can be used to accurately count the number of nucleotides in a DNA strand. Furthermore, we study the effect of a single base substitution on the voltage trace, and calculate the differences among the voltage traces due to a single base mutation for the sequences C 3 AC 7 , C 3 CC 7 , C 3 GC 7 and C 3 TC 7 . The calculated voltage differences are in the 5-10 mV range. The calculated maximum voltage caused by the translocation of individual bases varies from 2 to 9 mV, which is experimentally detectable

  14. BRCA2, EGFR, and NTRK mutations in mismatch repair-deficient colorectal cancers with MSH2 or MLH1 mutations.

    Science.gov (United States)

    Deihimi, Safoora; Lev, Avital; Slifker, Michael; Shagisultanova, Elena; Xu, Qifang; Jung, Kyungsuk; Vijayvergia, Namrata; Ross, Eric A; Xiu, Joanne; Swensen, Jeffrey; Gatalica, Zoran; Andrake, Mark; Dunbrack, Roland L; El-Deiry, Wafik S

    2017-06-20

    Deficient mismatch repair (MMR) and microsatellite instability (MSI) contribute to ~15% of colorectal cancer (CRCs). We hypothesized MSI leads to mutations in DNA repair proteins including BRCA2 and cancer drivers including EGFR. We analyzed mutations among a discovery cohort of 26 MSI-High (MSI-H) and 558 non-MSI-H CRCs profiled at Caris Life Sciences. Caris-profiled MSI-H CRCs had high mutation rates (50% vs 14% in non-MSI-H, P MLH1-mutant CRCs showed higher mutation rates in BRCA2 compared to non-MSH2/MLH1-mutant tumors (38% vs 6%, P MLH1-mutant CRCs included 75 unique mutations not known to occur in breast or pancreatic cancer per COSMIC v73. Only 5 deleterious BRCA2 mutations in CRC were previously reported in the BIC database as germ-line mutations in breast cancer. Some BRCA2 mutations were predicted to disrupt interactions with partner proteins DSS1 and RAD51. Some CRCs harbored multiple BRCA2 mutations. EGFR was mutated in 45.5% of MSH2/MLH1-mutant and 6.5% of non-MSH2/MLH1-mutant tumors (P MLH1-mutant CRC including NTRK1 I699V, NTRK2 P716S, and NTRK3 R745L. Our findings have clinical relevance regarding therapeutic targeting of BRCA2 vulnerabilities, EGFR mutations or other identified oncogenic drivers such as NTRK in MSH2/MLH1-mutant CRCs or other tumors with mismatch repair deficiency.

  15. A Site Specific Model And Analysis Of The Neutral Somatic Mutation Rate In Whole-Genome Cancer Data

    DEFF Research Database (Denmark)

    Bertl, Johanna; Guo, Qianyun; Rasmussen, Malene Juul

    2017-01-01

    Detailed modelling of the neutral mutational process in cancer cells is crucial for identifying driver mutations and understanding the mutational mechanisms that act during cancer development. The neutral mutational process is very complex: whole-genome analyses have revealed that the mutation ra...

  16. Rank-Based miRNA Signatures for Early Cancer Detection

    Directory of Open Access Journals (Sweden)

    Mario Lauria

    2014-01-01

    Full Text Available We describe a new signature definition and analysis method to be used as biomarker for early cancer detection. Our new approach is based on the construction of a reference map of transcriptional signatures of both healthy and cancer affected individuals using circulating miRNA from a large number of subjects. Once such a map is available, the diagnosis for a new patient can be performed by observing the relative position on the map of his/her transcriptional signature. To demonstrate its efficacy for this specific application we report the results of the application of our method to published datasets of circulating miRNA, and we quantify its performance compared to current state-of-the-art methods. A number of additional features make this method an ideal candidate for large-scale use, for example, as a mass screening tool for early cancer detection or for at-home diagnostics. Specifically, our method is minimally invasive (because it works well with circulating miRNA, it is robust with respect to lab-to-lab protocol variability and batch effects (it requires that only the relative ranking of expression value of miRNA in a profile be accurate not their absolute values, and it is scalable to a large number of subjects. Finally we discuss the need for HPC capability in a widespread application of our or similar methods.

  17. Single-gene prognostic signatures for advanced stage serous ovarian cancer based on 1257 patient samples.

    Science.gov (United States)

    Zhang, Fan; Yang, Kai; Deng, Kui; Zhang, Yuanyuan; Zhao, Weiwei; Xu, Huan; Rong, Zhiwei; Li, Kang

    2018-04-16

    We sought to identify stable single-gene prognostic signatures based on a large collection of advanced stage serous ovarian cancer (AS-OvCa) gene expression data and explore their functions. The empirical Bayes (EB) method was used to remove the batch effect and integrate 8 ovarian cancer datasets. Univariate Cox regression was used to evaluate the association between gene and overall survival (OS). The Database for Annotation, Visualization and Integrated Discovery (DAVID) tool was used for the functional annotation of genes for Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The batch effect was removed by the EB method, and 1257 patient samples were used for further analysis. We selected 341 single-gene prognostic signatures with FDR matrix organization, focal adhesion and DNA replication which are closely associated with cancer. We used the EB method to remove the batch effect of 8 datasets, integrated these datasets and identified stable prognosis signatures for AS-OvCa.

  18. Transcriptional blood signatures distinguish pulmonary tuberculosis, pulmonary sarcoidosis, pneumonias and lung cancers.

    Science.gov (United States)

    Bloom, Chloe I; Graham, Christine M; Berry, Matthew P R; Rozakeas, Fotini; Redford, Paul S; Wang, Yuanyuan; Xu, Zhaohui; Wilkinson, Katalin A; Wilkinson, Robert J; Kendrick, Yvonne; Devouassoux, Gilles; Ferry, Tristan; Miyara, Makoto; Bouvry, Diane; Valeyre, Dominique; Dominique, Valeyre; Gorochov, Guy; Blankenship, Derek; Saadatian, Mitra; Vanhems, Phillip; Beynon, Huw; Vancheeswaran, Rama; Wickremasinghe, Melissa; Chaussabel, Damien; Banchereau, Jacques; Pascual, Virginia; Ho, Ling-Pei; Lipman, Marc; O'Garra, Anne

    2013-01-01

    New approaches to define factors underlying the immunopathogenesis of pulmonary diseases including sarcoidosis and tuberculosis are needed to develop new treatments and biomarkers. Comparing the blood transcriptional response of tuberculosis to other similar pulmonary diseases will advance knowledge of disease pathways and help distinguish diseases with similar clinical presentations. To determine the factors underlying the immunopathogenesis of the granulomatous diseases, sarcoidosis and tuberculosis, by comparing the blood transcriptional responses in these and other pulmonary diseases. We compared whole blood genome-wide transcriptional profiles in pulmonary sarcoidosis, pulmonary tuberculosis, to community acquired pneumonia and primary lung cancer and healthy controls, before and after treatment, and in purified leucocyte populations. An Interferon-inducible neutrophil-driven blood transcriptional signature was present in both sarcoidosis and tuberculosis, with a higher abundance and expression in tuberculosis. Heterogeneity of the sarcoidosis signature correlated significantly with disease activity. Transcriptional profiles in pneumonia and lung cancer revealed an over-abundance of inflammatory transcripts. After successful treatment the transcriptional activity in tuberculosis and pneumonia patients was significantly reduced. However the glucocorticoid-responsive sarcoidosis patients showed a significant increase in transcriptional activity. 144-blood transcripts were able to distinguish tuberculosis from other lung diseases and controls. Tuberculosis and sarcoidosis revealed similar blood transcriptional profiles, dominated by interferon-inducible transcripts, while pneumonia and lung cancer showed distinct signatures, dominated by inflammatory genes. There were also significant differences between tuberculosis and sarcoidosis in the degree of their transcriptional activity, the heterogeneity of their profiles and their transcriptional response to treatment.

  19. The rapamycin-regulated gene expression signature determines prognosis for breast cancer

    Directory of Open Access Journals (Sweden)

    Tsavachidis Spiridon

    2009-09-01

    Full Text Available Abstract Background Mammalian target of rapamycin (mTOR is a serine/threonine kinase involved in multiple intracellular signaling pathways promoting tumor growth. mTOR is aberrantly activated in a significant portion of breast cancers and is a promising target for treatment. Rapamycin and its analogues are in clinical trials for breast cancer treatment. Patterns of gene expression (metagenes may also be used to simulate a biologic process or effects of a drug treatment. In this study, we tested the hypothesis that the gene-expression signature regulated by rapamycin could predict disease outcome for patients with breast cancer. Results Colony formation and sulforhodamine B (IC50 in vitro and in vivo gene expression data identified a signature, termed rapamycin metagene index (RMI, of 31 genes upregulated by rapamycin treatment in vitro as well as in vivo (false discovery rate of 10%. In the Miller dataset, RMI did not correlate with tumor size or lymph node status. High (>75th percentile RMI was significantly associated with longer survival (P = 0.015. On multivariate analysis, RMI (P = 0.029, tumor size (P = 0.015 and lymph node status (P = 0.001 were prognostic. In van 't Veer study, RMI was not associated with the time to develop distant metastasis (P = 0.41. In the Wang dataset, RMI predicted time to disease relapse (P = 0.009. Conclusion Rapamycin-regulated gene expression signature predicts clinical outcome in breast cancer. This supports the central role of mTOR signaling in breast cancer biology and provides further impetus to pursue mTOR-targeted therapies for breast cancer treatment.

  20. Establishment of a 12-gene expression signature to predict colon cancer prognosis

    Directory of Open Access Journals (Sweden)

    Dalong Sun

    2018-06-01

    Full Text Available A robust and accurate gene expression signature is essential to assist oncologists to determine which subset of patients at similar Tumor-Lymph Node-Metastasis (TNM stage has high recurrence risk and could benefit from adjuvant therapies. Here we applied a two-step supervised machine-learning method and established a 12-gene expression signature to precisely predict colon adenocarcinoma (COAD prognosis by using COAD RNA-seq transcriptome data from The Cancer Genome Atlas (TCGA. The predictive performance of the 12-gene signature was validated with two independent gene expression microarray datasets: GSE39582 includes 566 COAD cases for the development of six molecular subtypes with distinct clinical, molecular and survival characteristics; GSE17538 is a dataset containing 232 colon cancer patients for the generation of a metastasis gene expression profile to predict recurrence and death in COAD patients. The signature could effectively separate the poor prognosis patients from good prognosis group (disease specific survival (DSS: Kaplan Meier (KM Log Rank p = 0.0034; overall survival (OS: KM Log Rank p = 0.0336 in GSE17538. For patients with proficient mismatch repair system (pMMR in GSE39582, the signature could also effectively distinguish high risk group from low risk group (OS: KM Log Rank p = 0.005; Relapse free survival (RFS: KM Log Rank p = 0.022. Interestingly, advanced stage patients were significantly enriched in high 12-gene score group (Fisher’s exact test p = 0.0003. After stage stratification, the signature could still distinguish poor prognosis patients in GSE17538 from good prognosis within stage II (Log Rank p = 0.01 and stage II & III (Log Rank p = 0.017 in the outcome of DFS. Within stage III or II/III pMMR patients treated with Adjuvant Chemotherapies (ACT and patients with higher 12-gene score showed poorer prognosis (III, OS: KM Log Rank p = 0.046; III & II, OS: KM Log Rank p = 0.041. Among stage II/III pMMR patients

  1. Methylation signature of lymph node metastases in breast cancer patients

    International Nuclear Information System (INIS)

    Barekati, Zeinab; Radpour, Ramin; Lu, Qing; Bitzer, Johannes; Zheng, Hong; Toniolo, Paolo; Lenner, Per; Zhong, Xiao Yan

    2012-01-01

    Invasion and metastasis are two important hallmarks of malignant tumors caused by complex genetic and epigenetic alterations. The present study investigated the contribution of aberrant methylation profiles of cancer related genes, APC, BIN1, BMP6, BRCA1, CST6, ESR-b, GSTP1, P14 (ARF), P16 (CDKN2A), P21 (CDKN1A), PTEN, and TIMP3, in the matched axillary lymph node metastasis in comparison to the primary tumor tissue and the adjacent normal tissue from the same breast cancer patients to identify the potential of candidate genes methylation as metastatic markers. The quantitative methylation analysis was performed using the SEQUENOM’s EpiTYPER™ assay which relies on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The quantitative DNA methylation analysis of the candidate genes showed higher methylation proportion in the primary tumor tissue than that of the matched normal tissue and the differences were significant for the APC, BIN1, BMP6, BRCA1, CST6, ESR-b, P16, PTEN and TIMP3 promoter regions (P<0.05). Among those candidate methylated genes, APC, BMP6, BRCA1 and P16 displayed higher methylation proportion in the matched lymph node metastasis than that found in the normal tissue (P<0.05). The pathway analysis revealed that BMP6, BRCA1 and P16 have a role in prevention of neoplasm metastasis. The results of the present study showed methylation heterogeneity between primary tumors and metastatic lesion. The contribution of aberrant methylation alterations of BMP6, BRCA1 and P16 genes in lymph node metastasis might provide a further clue to establish useful biomarkers for screening metastasis

  2. Activating HER2 mutations in HER2 gene amplification negative breast cancer.

    Science.gov (United States)

    Bose, Ron; Kavuri, Shyam M; Searleman, Adam C; Shen, Wei; Shen, Dong; Koboldt, Daniel C; Monsey, John; Goel, Nicholas; Aronson, Adam B; Li, Shunqiang; Ma, Cynthia X; Ding, Li; Mardis, Elaine R; Ellis, Matthew J

    2013-02-01

    Data from 8 breast cancer genome-sequencing projects identified 25 patients with HER2 somatic mutations in cancers lacking HER2 gene amplification. To determine the phenotype of these mutations, we functionally characterized 13 HER2 mutations using in vitro kinase assays, protein structure analysis, cell culture, and xenograft experiments. Seven of these mutations are activating mutations, including G309A, D769H, D769Y, V777L, P780ins, V842I, and R896C. HER2 in-frame deletion 755-759, which is homologous to EGF receptor (EGFR) exon 19 in-frame deletions, had a neomorphic phenotype with increased phosphorylation of EGFR or HER3. L755S produced lapatinib resistance, but was not an activating mutation in our experimental systems. All of these mutations were sensitive to the irreversible kinase inhibitor, neratinib. These findings show that HER2 somatic mutation is an alternative mechanism to activate HER2 in breast cancer and they validate HER2 somatic mutations as drug targets for breast cancer treatment. We show that the majority of HER2 somatic mutations in breast cancer patients are activating mutations that likely drive tumorigenesis. Several patients had mutations that are resistant to the reversible HER2 inhibitor lapatinib, but are sensitive to the irreversible HER2 inhibitor, neratinib. Our results suggest that patients with HER2 mutation–positive breast cancers could benefit from existing HER2-targeted drugs.

  3. Germline mutations in 40 cancer susceptibility genes among Chinese patients with high hereditary risk breast cancer.

    Science.gov (United States)

    Li, Junyan; Jing, Ruilin; Wei, Hongyi; Wang, Minghao; Qi, Xiaowei; Liu, Haoxi; Liu, Jian; Ou, Jianghua; Jiang, Weihua; Tian, Fuguo; Sheng, Yuan; Li, Hengyu; Xu, Hong; Zhang, Ruishan; Guan, Aihua; Liu, Ke; Jiang, Hongchuan; Ren, Yu; He, Jianjun; Huang, Weiwei; Liao, Ning; Cai, Xiangjun; Ming, Jia; Ling, Rui; Xu, Yan; Hu, Chunyan; Zhang, Jianguo; Guo, Baoliang; Ouyang, Lizhi; Shuai, Ping; Liu, Zhenzhen; Zhong, Ling; Zeng, Zhen; Zhang, Ting; Xuan, Zhaoling; Tan, Xuanni; Liang, Junbin; Pan, Qinwen; Chen, Li; Zhang, Fan; Fan, Linjun; Zhang, Yi; Yang, Xinhua; Li, Jingbo; Chen, Chongjian; Jiang, Jun

    2018-05-12

    Multigene panel testing of breast cancer predisposition genes have been extensively conducted in Europe and America, which is relatively rare in Asia however. In this study, we assessed the frequency of germline mutations in 40 cancer predisposition genes, including BRCA1 and BRCA2, among a large cohort of Chinese patients with high hereditary risk of BC. From 2015 to 2016, consecutive BC patients from 26 centers of China with high hereditary risk were recruited (n=937). Clinical information was collected and next-generation sequencing (NGS) was performed using blood samples of participants to identify germline mutations. In total, we acquired 223 patients with putative germline mutations, including 159 in BRCA1/2, 61 in 15 other BC susceptibility genes and 3 in both BRCA1/2 and non-BRCA1/2 gene. Major mutant non-BRCA1/2 genes were TP53 (n=18), PALB2 (n=11), CHEK2 (n=6), ATM (n=6), and BARD1 (n=5). No factors predicted pathologic mutations in non-BRCA1/2 genes when treated as a whole. TP53 mutations were associated with HER-2 positive BC and younger age at diagnosis; and CHEK2 and PALB2 mutations were enriched in patients with luminal BC. Among high hereditary risk Chinese BC patients, 23.8% contained germline mutations, including 6.8% in non-BRCA1/2 genes. TP53 and PALB2 had a relatively high mutation rates (1.9% and 1.2%). Although no factors predicted for detrimental mutations in non-BRCA1/2 genes, some clinical features were associated with mutations of several particular genes. This article is protected by copyright. All rights reserved. © 2018 UICC.

  4. Gene signature of the post-Chernobyl papillary thyroid cancer.

    Science.gov (United States)

    Handkiewicz-Junak, Daria; Swierniak, Michal; Rusinek, Dagmara; Oczko-Wojciechowska, Małgorzata; Dom, Genevieve; Maenhaut, Carine; Unger, Kristian; Detours, Vincent; Bogdanova, Tetiana; Thomas, Geraldine; Likhtarov, Ilya; Jaksik, Roman; Kowalska, Malgorzata; Chmielik, Ewa; Jarzab, Michal; Swierniak, Andrzej; Jarzab, Barbara

    2016-07-01

    Following the nuclear accidents in Chernobyl and later in Fukushima, the nuclear community has been faced with important issues concerning how to search for and diagnose biological consequences of low-dose internal radiation contamination. Although after the Chernobyl accident an increase in childhood papillary thyroid cancer (PTC) was observed, it is still not clear whether the molecular biology of PTCs associated with low-dose radiation exposure differs from that of sporadic PTC. We investigated tissue samples from 65 children/young adults with PTC using DNA microarray (Affymetrix, Human Genome U133 2.0 Plus) with the aim of identifying molecular differences between radiation-induced (exposed to Chernobyl radiation, ECR) and sporadic PTC. All participants were resident in the same region so that confounding factors related to genetics or environment were minimized. There were small but significant differences in the gene expression profiles between ECR and non-ECR PTC (global test, p Chernobyl PTC are associated with previous low-dose radiation exposure.

  5. Detection of EGFR mutations with mutation-specific antibodies in stage IV non-small-cell lung cancer

    Directory of Open Access Journals (Sweden)

    Viteri Santiago

    2010-12-01

    Full Text Available Abstract Background Immunohistochemistry (IHC with mutation-specific antibodies may be an ancillary method of detecting EGFR mutations in lung cancer patients. Methods EGFR mutation status was analyzed by DNA assays, and compared with IHC results in five non-small-cell lung cancer (NSCLC cell lines and tumor samples from 78 stage IV NSCLC patients. Results IHC correctly identified del 19 in the H1650 and PC9 cell lines, L858R in H1975, and wild-type EGFR in H460 and A549, as well as wild-type EGFR in tumor samples from 22 patients. IHC with the mAb against EGFR with del 19 was highly positive for the protein in all 17 patients with a 15-bp (ELREA deletion in exon 19, whereas in patients with other deletions, IHC was weakly positive in 3 cases and negative in 9 cases. IHC with the mAb against the L858R mutation showed high positivity for the protein in 25/27 (93% patients with exon 21 EGFR mutations (all with L858R but did not identify the L861Q mutation in the remaining two patients. Conclusions IHC with mutation-specific mAbs against EGFR is a promising method for detecting EGFR mutations in NSCLC patients. However these mAbs should be validated with additional studies to clarify their possible role in routine clinical practice for screening EGFR mutations in NSCLC patients.

  6. TP53 mutation spectrum in smokers and never smoking lung cancer patients

    Directory of Open Access Journals (Sweden)

    Ann Rita Halvorsen

    2016-05-01

    Full Text Available AbstractBackground: TP53 mutations are among the most common mutations found in lung cancers, identified as an independent prognostic factor in many types of cancers. The purpose of this study was to investigate the frequency and prognostic impact of TP53 mutations in never-smokers and in different histological subtypes of lung cancer.Methods: We analysed tumour tissue from 394 non-small cell carcinomas including adenocarcinomas (n=229, squamous cell carcinomas (n=112, large cell carcinomas (n=30 and others (n=23 for mutations in TP53 by the use of Sanger sequencing (n=394 and next generation sequencing (n=100. Results: TP53 mutations were identified in 47.2% of the samples, with the highest frequency (65% of mutations among squamous cell carcinomas. Among never-smokers, 36% carried a TP53 mutation, identified as a significant independent negative prognostic factor in this subgroup. For large cell carcinomas, a significantly prolonged progression free survival was found for those carrying a TP53 mutation. In addition, the frequency of frameshift mutations was doubled in squamous cell carcinomas (20.3% compared to adenocarcinomas (9.1%.Conclusion: TP53 mutation patterns differ between the histological subgroups of lung cancers, as also influenced by smoking history. This indicates that the histological subtypes in lung cancer are genetically different, and that smoking-induced TP53 mutations may have a different biological impact than TP53 mutations occurring in never-smokers.

  7. The biochemical, nanomechanical and chemometric signatures of brain cancer

    Science.gov (United States)

    Abramczyk, Halina; Imiela, Anna

    2018-01-01

    % for cross-validation, respectively. The high sensitivity and specificity demonstrates usefulness for a proper decision for a Raman diagnostic test on biochemical alterations monitored by Raman spectroscopy related to brain cancer development.

  8. Gene expression signature analysis identifies vorinostat as a candidate therapy for gastric cancer.

    Directory of Open Access Journals (Sweden)

    Sofie Claerhout

    Full Text Available Gastric cancer continues to be one of the deadliest cancers in the world and therefore identification of new drugs targeting this type of cancer is thus of significant importance. The purpose of this study was to identify and validate a therapeutic agent which might improve the outcomes for gastric cancer patients in the future.Using microarray technology, we generated a gene expression profile of human gastric cancer-specific genes from human gastric cancer tissue samples. We used this profile in the Broad Institute's Connectivity Map analysis to identify candidate therapeutic compounds for gastric cancer. We found the histone deacetylase inhibitor vorinostat as the lead compound and thus a potential therapeutic drug for gastric cancer. Vorinostat induced both apoptosis and autophagy in gastric cancer cell lines. Pharmacological and genetic inhibition of autophagy however, increased the therapeutic efficacy of vorinostat, indicating that a combination of vorinostat with autophagy inhibitors may therapeutically be more beneficial. Moreover, gene expression analysis of gastric cancer identified a collection of genes (ITGB5, TYMS, MYB, APOC1, CBX5, PLA2G2A, and KIF20A whose expression was elevated in gastric tumor tissue and downregulated more than 2-fold by vorinostat treatment in gastric cancer cell lines. In contrast, SCGB2A1, TCN1, CFD, APLP1, and NQO1 manifested a reversed pattern.We showed that analysis of gene expression signature may represent an emerging approach to discover therapeutic agents for gastric cancer, such as vorinostat. The observation of altered gene expression after vorinostat treatment may provide the clue to identify the molecular mechanism of vorinostat and those patients likely to benefit from vorinostat treatment.

  9. Inhibition of Mutation: A Novel Approach to Preventing and Treating Cancer

    National Research Council Canada - National Science Library

    Romesberg, Floyd E

    2007-01-01

    .... Specific biochemical pathways are responsible for introducing mutation to the genome. Using drug(s) to inhibit one or more of these proteins and thereby prevent cancer is a novel and unique cancer prevention approach...

  10. Mutations in ATM, Radiation Exposure and Breast Cancer Risk Among Black and White Women

    National Research Council Canada - National Science Library

    Schubert, Elizabeth

    1998-01-01

    .... An important and unresolved question of breast cancer etiology is whether there are other genes which have a more moderate effect on breast cancer risk, possibly involving more women than do other inherited mutations...

  11. Mutations in ATM, Radiation Exposure and Breast Cancer Risk Among Black and White Women

    National Research Council Canada - National Science Library

    King, Mary

    1997-01-01

    .... An important and unresolved question of breast cancer etiology is whether there are other genes which have a more moderate effect on breast cancer risk, possibly involving more women than do other inherited mutations...

  12. Mutations in ATM, Radiation Exposure and Breast Cancer Risk Among Black and White Women

    National Research Council Canada - National Science Library

    Schubert, Elizabeth

    1999-01-01

    .... An important and unresolved question of breast cancer etiology is whether there are other genes which have a more moderate effect on breast cancer risk, possibly involving more women than do other inherited mutations...

  13. Identification of coding and non-coding mutational hotspots in cancer genomes.

    Science.gov (United States)

    Piraino, Scott W; Furney, Simon J

    2017-01-05

    The identification of mutations that play a causal role in tumour development, so called "driver" mutations, is of critical importance for understanding how cancers form and how they might be treated. Several large cancer sequencing projects have identified genes that are recurrently mutated in cancer patients, suggesting a role in tumourigenesis. While the landscape of coding drivers has been extensively studied and many of the most prominent driver genes are well characterised, comparatively less is known about the role of mutations in the non-coding regions of the genome in cancer development. The continuing fall in genome sequencing costs has resulted in a concomitant increase in the number of cancer whole genome sequences being produced, facilitating systematic interrogation of both the coding and non-coding regions of cancer genomes. To examine the mutational landscapes of tumour genomes we have developed a novel method to identify mutational hotspots in tumour genomes using both mutational data and information on evolutionary conservation. We have applied our methodology to over 1300 whole cancer genomes and show that it identifies prominent coding and non-coding regions that are known or highly suspected to play a role in cancer. Importantly, we applied our method to the entire genome, rather than relying on predefined annotations (e.g. promoter regions) and we highlight recurrently mutated regions that may have resulted from increased exposure to mutational processes rather than selection, some of which have been identified previously as targets of selection. Finally, we implicate several pan-cancer and cancer-specific candidate non-coding regions, which could be involved in tumourigenesis. We have developed a framework to identify mutational hotspots in cancer genomes, which is applicable to the entire genome. This framework identifies known and novel coding and non-coding mutional hotspots and can be used to differentiate candidate driver regions from

  14. MicroRNA meta-signature of oral cancer: evidence from a meta-analysis.

    Science.gov (United States)

    Zeljic, Katarina; Jovanovic, Ivan; Jovanovic, Jasmina; Magic, Zvonko; Stankovic, Aleksandra; Supic, Gordana

    2018-03-01

    It was the aim of the study to identify commonly deregulated miRNAs in oral cancer patients by performing a meta-analysis of previously published miRNA expression profiles in cancer and matched normal non-cancerous tissue in such patients. Meta-analysis included seven independent studies analyzed by a vote-counting method followed by bioinformatic enrichment analysis. Amongst seven independent studies included in the meta-analysis, 20 miRNAs were found to be deregulated in oral cancer when compared with non-cancerous tissue. Eleven miRNAs were consistently up-regulated in three or more studies (miR-21-5p, miR-31-5p, miR-135b-5p, miR-31-3p, miR-93-5p, miR-34b-5p, miR-424-5p, miR-18a-5p, miR-455-3p, miR-450a-5p, miR-21-3p), and nine were down-regulated (miR-139-5p, miR-30a-3p, miR-376c-3p, miR-885-5p, miR-375, miR-486-5p, miR-411-5p, miR-133a-3p, miR-30a-5p). The meta-signature of identified miRNAs was functionally characterized by KEGG enrichment analysis. Twenty-four KEGG pathways were significantly enriched, and TGF-beta signaling was the most enriched signaling pathway. The highest number of meta-signature miRNAs was involved in the sphingolipid signaling pathway. Natural killer cell-mediated cytotoxicity was the pathway with most genes regulated by identified miRNAs. The rest of the enriched pathways in our miRNA list describe different malignancies and signaling. The identified miRNA meta-signature might be considered as a potential battery of biomarkers when distinguishing oral cancer tissue from normal, non-cancerous tissue. Further mechanistic studies are warranted in order to confirm and fully elucidate the role of deregulated miRNAs in oral cancer.

  15. Cancer risk in hereditary nonpolyposis colorectal cancer due to MSH6 mutations: impact on counseling and surveillance

    NARCIS (Netherlands)

    Hendriks, Yvonne M. C.; Wagner, Anja; Morreau, Hans; Menko, Fred; Stormorken, Astrid; Quehenberger, Franz; Sandkuijl, Lodewijk; Møller, Pal; Genuardi, Maurizio; van Houwelingen, Hans; Tops, Carli; van Puijenbroek, Marjo; Verkuijlen, Paul; Kenter, Gemma; van Mil, Anneke; Meijers-Heijboer, Hanne; Tan, Gita B.; Breuning, Martijn H.; Fodde, Riccardo; Wijnen, Juul Th; Bröcker-Vriends, Annette H. J. T.; Vasen, Hans

    2004-01-01

    BACKGROUND & AIMS: Hereditary nonpolyposis colorectal carcinoma (HNPCC) is caused by a mutated mismatch repair (MMR) gene. The aim of our study was to determine the cumulative risk of developing cancer in a large series of MSH6 mutation carriers. METHODS: Mutation analysis was performed in 20

  16. Challenging a dogma: co-mutations exist in MAPK pathway genes in colorectal cancer.

    Science.gov (United States)

    Grellety, Thomas; Gros, Audrey; Pedeutour, Florence; Merlio, Jean-Philippe; Duranton-Tanneur, Valerie; Italiano, Antoine; Soubeyran, Isabelle

    2016-10-01

    Sequencing of genes encoding mitogen-activated protein kinase (MAPK) pathway proteins in colorectal cancer (CRC) has established as dogma that of the genes in a pathway only a single one is ever mutated. We searched for cases with a mutation in more than one MAPK pathway gene (co-mutations). Tumor tissue samples of all patients presenting with CRC, and referred between 01/01/2008 and 01/06/2015 to three French cancer centers for determination of mutation status of RAS/RAF+/-PIK3CA, were retrospectively screened for co-mutations using Sanger sequencing or next-generation sequencing. We found that of 1791 colorectal patients with mutations in the MAPK pathway, 20 had a co-mutation, 8 of KRAS/NRAS, and some even with a third mutation. More than half of the mutations were in codons 12 and 13. We also found 3 cases with a co-mutation of NRAS/BRAF and 9 with a co-mutation of KRAS/BRAF. In 2 patients with a co-mutation of KRAS/NRAS, the co-mutation existed in the primary as well as in a metastasis, which suggests that co-mutations occur early during carcinogenesis and are maintained when a tumor disseminates. We conclude that co-mutations exist in the MAPK genes but with low frequency and as yet with unknown outcome implications.

  17. Gene Expression Signature Analysis Identifies Vorinostat as a Candidate Therapy for Gastric Cancer

    Science.gov (United States)

    Choi, Woonyoung; Park, Yun-Yong; Kim, KyoungHyun; Kim, Sang-Bae; Lee, Ju-Seog; Mills, Gordon B.; Cho, Jae Yong

    2011-01-01

    Background Gastric cancer continues to be one of the deadliest cancers in the world and therefore identification of new drugs targeting this type of cancer is thus of significant importance. The purpose of this study was to identify and validate a therapeutic agent which might improve the outcomes for gastric cancer patients in the future. Methodology/Principal Findings Using microarray technology, we generated a gene expression profile of human gastric cancer–specific genes from human gastric cancer tissue samples. We used this profile in the Broad Institute's Connectivity Map analysis to identify candidate therapeutic compounds for gastric cancer. We found the histone deacetylase inhibitor vorinostat as the lead compound and thus a potential therapeutic drug for gastric cancer. Vorinostat induced both apoptosis and autophagy in gastric cancer cell lines. Pharmacological and genetic inhibition of autophagy however, increased the therapeutic efficacy of vorinostat, indicating that a combination of vorinostat with autophagy inhibitors may therapeutically be more beneficial. Moreover, gene expression analysis of gastric cancer identified a collection of genes (ITGB5, TYMS, MYB, APOC1, CBX5, PLA2G2A, and KIF20A) whose expression was elevated in gastric tumor tissue and downregulated more than 2-fold by vorinostat treatment in gastric cancer cell lines. In contrast, SCGB2A1, TCN1, CFD, APLP1, and NQO1 manifested a reversed pattern. Conclusions/Significance We showed that analysis of gene expression signature may represent an emerging approach to discover therapeutic agents for gastric cancer, such as vorinostat. The observation of altered gene expression after vorinostat treatment may provide the clue to identify the molecular mechanism of vorinostat and those patients likely to benefit from vorinostat treatment. PMID:21931799

  18. The prognostic value of temporal in vitro and in vivo derived hypoxia gene-expression signatures in breast cancer

    International Nuclear Information System (INIS)

    Starmans, Maud H.W.; Chu, Kenneth C.; Haider, Syed; Nguyen, Francis; Seigneuric, Renaud; Magagnin, Michael G.; Koritzinsky, Marianne; Kasprzyk, Arek; Boutros, Paul C.; Wouters, Bradly G.

    2012-01-01

    Background and purpose: Recent data suggest that in vitro and in vivo derived hypoxia gene-expression signatures have prognostic power in breast and possibly other cancers. However, both tumour hypoxia and the biological adaptation to this stress are highly dynamic. Assessment of time-dependent gene-expression changes in response to hypoxia may thus provide additional biological insights and assist in predicting the impact of hypoxia on patient prognosis. Materials and methods: Transcriptome profiling was performed for three cell lines derived from diverse tumour-types after hypoxic exposure at eight time-points, which include a normoxic time-point. Time-dependent sets of co-regulated genes were identified from these data. Subsequently, gene ontology (GO) and pathway analyses were performed. The prognostic power of these novel signatures was assessed in parallel with previous in vitro and in vivo derived hypoxia signatures in a large breast cancer microarray meta-dataset (n = 2312). Results: We identified seven recurrent temporal and two general hypoxia signatures. GO and pathway analyses revealed regulation of both common and unique underlying biological processes within these signatures. None of the new or previously published in vitro signatures consisting of hypoxia-induced genes were prognostic in the large breast cancer dataset. In contrast, signatures of repressed genes, as well as the in vivo derived signatures of hypoxia-induced genes showed clear prognostic power. Conclusions: Only a subset of hypoxia-induced genes in vitro demonstrates prognostic value when evaluated in a large clinical dataset. Despite clear evidence of temporal patterns of gene-expression in vitro, the subset of prognostic hypoxia regulated genes cannot be identified based on temporal pattern alone. In vivo derived signatures appear to identify the prognostic hypoxia induced genes. The prognostic value of hypoxia-repressed genes is likely a surrogate for the known importance of

  19. Phosphoproteomics of Primary Cells Reveals Druggable Kinase Signatures in Ovarian Cancer.

    Science.gov (United States)

    Francavilla, Chiara; Lupia, Michela; Tsafou, Kalliopi; Villa, Alessandra; Kowalczyk, Katarzyna; Rakownikow Jersie-Christensen, Rosa; Bertalot, Giovanni; Confalonieri, Stefano; Brunak, Søren; Jensen, Lars J; Cavallaro, Ugo; Olsen, Jesper V

    2017-03-28

    Our understanding of the molecular determinants of cancer is still inadequate because of cancer heterogeneity. Here, using epithelial ovarian cancer (EOC) as a model system, we analyzed a minute amount of patient-derived epithelial cells from either healthy or cancerous tissues by single-shot mass-spectrometry-based phosphoproteomics. Using a multi-disciplinary approach, we demonstrated that primary cells recapitulate tissue complexity and represent a valuable source of differentially expressed proteins and phosphorylation sites that discriminate cancer from healthy cells. Furthermore, we uncovered kinase signatures associated with EOC. In particular, CDK7 targets were characterized in both EOC primary cells and ovarian cancer cell lines. We showed that CDK7 controls cell proliferation and that pharmacological inhibition of CDK7 selectively represses EOC cell proliferation. Our approach defines the molecular landscape of EOC, paving the way for efficient therapeutic approaches for patients. Finally, we highlight the potential of phosphoproteomics to identify clinically relevant and druggable pathways in cancer. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  20. Phosphoproteomics of Primary Cells Reveals Druggable Kinase Signatures in Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Chiara Francavilla

    2017-03-01

    Full Text Available Our understanding of the molecular determinants of cancer is still inadequate because of cancer heterogeneity. Here, using epithelial ovarian cancer (EOC as a model system, we analyzed a minute amount of patient-derived epithelial cells from either healthy or cancerous tissues by single-shot mass-spectrometry-based phosphoproteomics. Using a multi-disciplinary approach, we demonstrated that primary cells recapitulate tissue complexity and represent a valuable source of differentially expressed proteins and phosphorylation sites that discriminate cancer from healthy cells. Furthermore, we uncovered kinase signatures associated with EOC. In particular, CDK7 targets were characterized in both EOC primary cells and ovarian cancer cell lines. We showed that CDK7 controls cell proliferation and that pharmacological inhibition of CDK7 selectively represses EOC cell proliferation. Our approach defines the molecular landscape of EOC, paving the way for efficient therapeutic approaches for patients. Finally, we highlight the potential of phosphoproteomics to identify clinically relevant and druggable pathways in cancer.

  1. Lynch syndrome caused by germline PMS2 mutations: delineating the cancer risk

    NARCIS (Netherlands)

    Broeke, S.W. ten; Brohet, R.M.; Tops, C.M.; Klift, H.M. van der; Velthuizen, M.E.; Bernstein, I.; Capella Munar, G.; Garcia, E.; Hoogerbrugge, N.; Letteboer, T.G.; Menko, F.H.; Lindblom, A.; Mensenkamp, A.R.; Moller, P.; Os, T.A. van; Rahner, N.; Redeker, B.J.; Sijmons, R.H.; Spruijt, L.; Suerink, M.; Vos, Y.J.; Wagner, A.; Hes, F.J.; Vasen, H.F.A.; Nielsen, M.; Wijnen, J.T.

    2015-01-01

    PURPOSE: The clinical consequences of PMS2 germline mutations are poorly understood compared with other Lynch-associated mismatch repair gene (MMR) mutations. The aim of this European cohort study was to define the cancer risk faced by PMS2 mutation carriers. METHODS: Data were collected from 98

  2. Lynch Syndrome Caused by Germline PMS2 Mutations: Delineating the Cancer Risk

    NARCIS (Netherlands)

    ten Broeke, Sanne W.; Brohet, Richard M.; Tops, Carli M.; van der Klift, Heleen M.; Velthuizen, Mary E.; Bernstein, Inge; Capellá Munar, Gabriel; Gomez Garcia, Encarna; Hoogerbrugge, Nicoline; Letteboer, Tom G. W.; Menko, Fred H.; Lindblom, Annika; Mensenkamp, Arjen R.; Moller, Pal; van Os, Theo A.; Rahner, Nils; Redeker, Bert J. W.; Sijmons, Rolf H.; Spruijt, Liesbeth; Suerink, Manon; Vos, Yvonne J.; Wagner, Anja; Hes, Frederik J.; Vasen, Hans F.; Nielsen, Maartje; Wijnen, Juul T.

    2015-01-01

    Purpose The clinical consequences of PMS2 germline mutations are poorly understood compared with other Lynch-associated mismatch repair gene (MMR) mutations. The aim of this European cohort study was to define the cancer risk faced by PMS2 mutation carriers. Methods Data were collected from 98 PMS2

  3. Lynch Syndrome Caused by Germline PMS2 Mutations : Delineating the Cancer Risk

    NARCIS (Netherlands)

    ten Broeke, Sanne W.; Brohet, Richard M.; Tops, Carli M.; van der Klift, Heleen M.; Velthuizen, Mary E.; Bernstein, Inge; Capella Munar, Gabriel; Garcia, Encarna Gomez; Hoogerbrugge, Nicoline; Letteboer, Tom G. W.; Menko, Fred H.; Lindblom, Annika; Mensenkamp, Arjen R.; Moller, Pal; Van Os, Theo A.; Rahner, Nils; Redeker, Bert J. W.; Sijmons, Rolf H.; Spruijt, Liesbeth; Suerink, Manon; Vos, Yvonne J.; Wagner, Anja; Hes, Frederik J.; Vasen, Hans F.; Nielsen, Maartje; Wijnen, Juul T.

    2015-01-01

    Purpose The clinical consequences of PMS2 germline mutations are poorly understood compared with other Lynch-associated mismatch repair gene (MMR) mutations. The aim of this European cohort study was to define the cancer risk faced by PMS2 mutation carriers. Methods Data were collected from 98 PMS2

  4. Radiation signatures in childhood thyroid cancers after the Chernobyl accident: Possible roles of radiation in carcinogenesis

    Science.gov (United States)

    Suzuki, Keiji; Mitsutake, Norisato; Saenko, Vladimir; Yamashita, Shunichi

    2015-01-01

    After the Tokyo Electric Power Company Fukushima Daiichi nuclear power plant accident, cancer risk from low-dose radiation exposure has been deeply concerning. The linear no-threshold model is applied for the purpose of radiation protection, but it is a model based on the concept that ionizing radiation induces stochastic oncogenic alterations in the target cells. As the elucidation of the mechanism of radiation-induced carcinogenesis is indispensable to justify the concept, studies aimed at the determination of molecular changes associated with thyroid cancers among children who suffered effects from the Chernobyl nuclear accident will be overviewed. We intend to discuss whether any radiation signatures are associated with radiation-induced childhood thyroid cancers. PMID:25483826

  5. Diagnostic and prognostic signatures from the small non-coding RNA transcriptome in prostate cancer

    DEFF Research Database (Denmark)

    Martens-Uzunova, E S; Jalava, S E; Dits, N F

    2011-01-01

    Prostate cancer (PCa) is the most frequent male malignancy and the second most common cause of cancer-related death in Western countries. Current clinical and pathological methods are limited in the prediction of postoperative outcome. It is becoming increasingly evident that small non-coding RNA...... signatures of 102 fresh-frozen patient samples during PCa progression by miRNA microarrays. Both platforms were cross-validated by quantitative reverse transcriptase-PCR. Besides the altered expression of several miRNAs, our deep sequencing analyses revealed strong differential expression of small nucleolar...... RNAs (snoRNAs) and transfer RNAs (tRNAs). From microarray analysis, we derived a miRNA diagnostic classifier that accurately distinguishes normal from cancer samples. Furthermore, we were able to construct a PCa prognostic predictor that independently forecasts postoperative outcome. Importantly...

  6. OGG1 Mutations and Risk of Female Breast Cancer: Meta-Analysis and Experimental Data

    Directory of Open Access Journals (Sweden)

    Kashif Ali

    2015-01-01

    Full Text Available In first part of this study association between OGG1 polymorphisms and breast cancer susceptibility was explored by meta-analysis. Second part of the study involved 925 subjects, used for mutational analysis of OGG1 gene using PCR-SSCP and sequencing. Fifteen mutations were observed, which included five intronic mutations, four splice site mutations, two 3′UTR mutations, three missense mutations, and a nonsense mutation. Significantly (pG and 3′UTR variant g.9798848G>A. Among intronic mutations, highest (~15 fold increase in breast cancer risk was associated with g.9793680G>A (p<0.009. Similarly ~14-fold increased risk was associated with Val159Gly (p<0.01, ~17-fold with Gly221Arg (p<0.005, and ~18-fold with Ser326Cys (p<0.004 in breast cancer patients compared with controls, whereas analysis of nonsense mutation showed that ~13-fold (p<0.01 increased breast cancer risk was associated with Trp375STOP in patients compared to controls. In conclusion, a significant association was observed between OGG1 germ line mutations and breast cancer risk. These findings provide evidence that OGG1 may prove to be a good candidate of better diagnosis, treatment, and prevention of breast cancer.

  7. Pancreatic cancer circulating tumour cells express a cell motility gene signature that predicts survival after surgery

    International Nuclear Information System (INIS)

    Sergeant, Gregory; Eijsden, Rudy van; Roskams, Tania; Van Duppen, Victor; Topal, Baki

    2012-01-01

    Most cancer deaths are caused by metastases, resulting from circulating tumor cells (CTC) that detach from the primary cancer and survive in distant organs. The aim of the present study was to develop a CTC gene signature and to assess its prognostic relevance after surgery for pancreatic ductal adenocarcinoma (PDAC). Negative depletion fluorescence activated cell sorting (FACS) was developed and validated with spiking experiments using cancer cell lines in whole human blood samples. This FACS-based method was used to enrich for CTC from the blood of 10 patients who underwent surgery for PDAC. Total RNA was isolated from 4 subgroup samples, i.e. CTC, haematological cells (G), original tumour (T), and non-tumoural pancreatic control tissue (P). After RNA quality control, samples of 6 patients were eligible for further analysis. Whole genome microarray analysis was performed after double linear amplification of RNA. ‘Ingenuity Pathway Analysis’ software and AmiGO were used for functional data analyses. A CTC gene signature was developed and validated with the nCounter system on expression data of 78 primary PDAC using Cox regression analysis for disease-free (DFS) and overall survival (OS). Using stringent statistical analysis, we retained 8,152 genes to compare expression profiles of CTC vs. other subgroups, and found 1,059 genes to be differentially expressed. The pathway with the highest expression ratio in CTC was p38 mitogen-activated protein kinase (p38 MAPK) signaling, known to be involved in cancer cell migration. In the p38 MAPK pathway, TGF-β1, cPLA2, and MAX were significantly upregulated. In addition, 9 other genes associated with both p38 MAPK signaling and cell motility were overexpressed in CTC. High co-expression of TGF-β1 and our cell motility panel (≥ 4 out of 9 genes for DFS and ≥ 6 out of 9 genes for OS) in primary PDAC was identified as an independent predictor of DFS (p=0.041, HR (95% CI) = 1.885 (1.025 – 3.559)) and OS (p=0.047, HR

  8. LGR5 and Nanog identify stem cell signature of pancreas beta cells which initiate pancreatic cancer.

    Science.gov (United States)

    Amsterdam, Abraham; Raanan, Calanit; Schreiber, Letizia; Polin, Nava; Givol, David

    2013-04-05

    Pancreas cancer, is the fourth leading cause of cancer death but its cell of origin is controversial. We compared the localization of stem cells in normal and cancerous pancreas using antibodies to the stem cell markers Nanog and LGR5. Here we show, for the first time, that LGR5 is expressed in normal pancreas, exclusively in the islets of Langerhans and it is co-localized, surprisingly, with Nanog and insulin in clusters of beta cells. In cancerous pancreas Nanog and LGR5 are expressed in the remaining islets and in all ductal cancer cells. We observed insulin staining among the ductal cancer cells, but not in metastases. This indicates that the islet's beta cells, expressing LGR5 and Nanog markers are the initiating cells of pancreas cancer, which migrated from the islets to form the ductal cancerous tissue, probably after mutation and de-differentiation. This discovery may facilitate treatment of this devastating cancer. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Systematic assessment of prognostic gene signatures for breast cancer shows distinct influence of time and ER status

    International Nuclear Information System (INIS)

    Zhao, Xi; Rødland, Einar Andreas; Sørlie, Therese; Vollan, Hans Kristian Moen; Russnes, Hege G; Kristensen, Vessela N; Lingjærde, Ole Christian; Børresen-Dale, Anne-Lise

    2014-01-01

    The aim was to assess and compare prognostic power of nine breast cancer gene signatures (Intrinsic, PAM50, 70-gene, 76-gene, Genomic-Grade-Index, 21-gene-Recurrence-Score, EndoPredict, Wound-Response and Hypoxia) in relation to ER status and follow-up time. A gene expression dataset from 947 breast tumors was used to evaluate the signatures for prediction of Distant Metastasis Free Survival (DMFS). A total of 912 patients had available DMFS status. The recently published METABRIC cohort was used as an additional validation set. Survival predictions were fairly concordant across most signatures. Prognostic power declined with follow-up time. During the first 5 years of followup, all signatures except for Hypoxia were predictive for DMFS in ER-positive disease, and 76-gene, Hypoxia and Wound-Response were prognostic in ER-negative disease. After 5 years, the signatures had little prognostic power. Gene signatures provide significant prognostic information beyond tumor size, node status and histological grade. Generally, these signatures performed better for ER-positive disease, indicating that risk within each ER stratum is driven by distinct underlying biology. Most of the signatures were strong risk predictors for DMFS during the first 5 years of follow-up. Combining gene signatures with histological grade or tumor size, could improve the prognostic power, perhaps also of long-term survival

  10. Risk of breast cancer after a diagnosis of ovarian cancer in BRCA mutation carriers: Is preventive mastectomy warranted?

    Science.gov (United States)

    McGee, Jacob; Giannakeas, Vasily; Karlan, Beth; Lubinski, Jan; Gronwald, Jacek; Rosen, Barry; McLaughlin, John; Risch, Harvey; Sun, Ping; Foulkes, William D; Neuhausen, Susan L; Kotsopoulos, Joanne; Narod, Steven A

    2017-05-01

    Preventive breast surgery and MRI screening are offered to unaffected BRCA mutation carriers. The clinical benefit of these two modalities has not been evaluated among mutation carriers with a history of ovarian cancer. Thus, we sought to determine whether or not BRCA mutation carriers with ovarian cancer would benefit from preventive mastectomy or from MRI screening. First, the annual mortality rate for ovarian cancer patients was estimated for a cohort of 178 BRCA mutation carriers from Ontario, Canada. Next, the actuarial risk of developing breast cancer was estimated using an international registry of 509 BRCA mutation carriers with ovarian cancer. A series of simulations was conducted to evaluate the reduction in the probability of death (from all causes) associated with mastectomy and with MRI-based breast surveillance. Cox proportional hazards models were used to evaluate the impacts of mastectomy and MRI screening on breast cancer incidence as well as on all-cause mortality. Twenty (3.9%) of the 509 patients developed breast cancer within ten years following ovarian cancer diagnosis. The actuarial risk of developing breast cancer at ten years post-diagnosis, conditional on survival from ovarian cancer and other causes of mortality was 7.8%. Based on our simulation results, among all BRCA mutation-carrying patients diagnosed with stage III/IV ovarian cancer at age 50, the chance of dying before age 80 was reduced by less than 1% with MRI and by less than 2% with mastectomy. Greater improvements in survival with MRI or mastectomy were observed for women who had already survived 10years after ovarian cancer, and for women with stage I or II ovarian cancer. Among BRCA mutation-carrying ovarian cancer patients without a personal history of breast cancer, neither preventive mastectomy nor MRI screening is warranted, except for those who have survived ovarian cancer without recurrence for ten years and for those with early stage ovarian cancer. Copyright © 2017

  11. Cancer risks and immunohistochemical profiles linked to the Danish MLH1 Lynch syndrome founder mutation

    DEFF Research Database (Denmark)

    Therkildsen, Christina; Isinger-Ekstrand, Anna; Ladelund, Steen

    2012-01-01

    Founder mutations with a large impact in distinct populations have been described in Lynch syndrome. In Denmark, the MLH1 c.1667+2_1667_+8TAAATCAdelinsATTT mutation accounts for 25 % of the MLH1 mutant families. We used the national Danish hereditary nonpolyposis colorectal cancer register...... to estimate the cumulative lifetime risks for Lynch syndrome-associated cancer in 16 founder mutation families with comparison to 47 other MLH1 mutant families. The founder mutation conferred comparable risks for colorectal cancer (relative risks, RR, of 0.99 for males and 0.79 for females) and lower risks...... in 68 % with extensive inter-tumor variability despite the same underlying germline mutation. In conclusion, the Danish MLH1 founder mutation that accounts for a significant proportion of Lynch syndrome and is associated with a lower risk for extracolonic cancers....

  12. Mutations in TP53 tumor suppressor gene in wood dust-related sinonasal cancer

    DEFF Research Database (Denmark)

    Holmila, Reetta; Bornholdt, Jette; Heikkilä, Pirjo

    2010-01-01

    The causal role of work-related exposure to wood dust in the development of sinonasal cancer has long been established by numerous epidemiologic studies. To study molecular changes in these tumors, we analyzed TP53 gene mutations in 358 sinonasal cancer cases with or without occupational exposure...... affected the ORs only slightly. Smoking did not influence the occurrence of TP53 mutation; however, it was associated with multiple mutations (p = 0.03). As far as we are aware, this is the first study to demonstrate a high prevalence of TP53 mutation-positive cases in a large collection of sinonasal...... cancers with data on occupational exposure. Our results indicate that mutational mechanisms, in particular TP53 mutations, are associated with work-related exposure to wood dust in sinonasal cancer....

  13. Decrease in specific micronutrient intake in colorectal cancer patients with tumors presenting Ki-ras mutation

    OpenAIRE

    JORDI SALAS; NURIA LASO; SERGI MAS; M. JOSE LAFUENTE; XAVIER CASTERAD; MANUEL TRIAS; ANTONIO BALLESTA; RAFAEL MOLINA; CARLOS ASCASO; SHICHUN ZHENG; JOHN K. WIENCKE; AMALIA LAFUENTE

    2004-01-01

    Decrease in specific micronutrient intake in colorectal cancer patients with tumors presenting Ki-ras mutation BACKGROUND: The diversity of the Mediterranean diet and the heterogeneity of acquired genetic alterations in colorectal cancer (CRC) led us to examine the possible association between dietary factors and mutations, such as Ki-ras mutations, in genes implicated in the pathogenesis of these neoplasms. PATIENTS AND METHODS: The study was based on 246 cases and 296 controls. For th...

  14. The Potential Contribution of BRCA Mutations to Early Onset and Familial Breast Cancer in Uzbekistan

    Directory of Open Access Journals (Sweden)

    Abdulla Abdikhakimov

    2016-12-01

    Conclusion: This preliminary evidence suggests a potential contribution of BRCA1 5382insC mutation to breast cancer development in Uzbek population. Taking into account a high disease penetrance in carriers of BRCA1 mutation, it seems reasonable to recommend inclusion of the 5382insC mutation test in future research on the development of screening programs for breast cancer prevention in Uzbekistan.

  15. Autoantibody signatures as biomarkers to distinguish prostate cancer from benign prostatic hyperplasia in patients with increased serum prostate specific antigen.

    Science.gov (United States)

    O'Rourke, Dennis J; DiJohnson, Daniel A; Caiazzo, Robert J; Nelson, James C; Ure, David; O'Leary, Michael P; Richie, Jerome P; Liu, Brian C-S

    2012-03-22

    Serum prostate specific antigen (PSA) concentrations lack the specificity to differentiate prostate cancer from benign prostate hyperplasia (BPH), resulting in unnecessary biopsies. We identified 5 autoantibody signatures to specific cancer targets which might be able to differentiate prostate cancer from BPH in patients with increased serum PSA. To identify autoantibody signatures as biomarkers, a native antigen reverse capture microarray platform was used. Briefly, well-characterized monoclonal antibodies were arrayed onto nanoparticle slides to capture native antigens from prostate cancer cells. Prostate cancer patient serum samples (n=41) and BPH patient samples (collected starting at the time of initial diagnosis) with a mean follow-up of 6.56 y without the diagnosis of cancer (n=39) were obtained. One hundred micrograms of IgGs were purified and labeled with a Cy3 dye and incubated on the arrays. The arrays were scanned for fluorescence and the intensity was quantified. Receiver operating characteristic curves were produced and the area under the curve (AUC) was determined. Using our microarray platform, we identified autoantibody signatures capable of distinguishing between prostate cancer and BPH. The top 5 autoantibody signatures were TARDBP, TLN1, PARK7, LEDGF/PSIP1, and CALD1. Combining these signatures resulted in an AUC of 0.95 (sensitivity of 95% at 80% specificity) compared to AUC of 0.5 for serum concentration PSA (sensitivity of 12.2% at 80% specificity). Our preliminary results showed that we were able to identify specific autoantibody signatures that can differentiate prostate cancer from BPH, and may result in the reduction of unnecessary biopsies in patients with increased serum PSA. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Circulating mutational portrait of cancer: manifestation of aggressive clonal events in both early and late stages

    Directory of Open Access Journals (Sweden)

    Meng Yang

    2017-05-01

    Full Text Available Abstract Background Solid tumors residing in tissues and organs leave footprints in circulation through circulating tumor cells (CTCs and circulating tumor DNAs (ctDNA. Characterization of the ctDNA portraits and comparison with tumor DNA mutational portraits may reveal clinically actionable information on solid tumors that is traditionally achieved through more invasive approaches. Methods We isolated ctDNAs from plasma of patients of 103 lung cancer and 74 other solid tumors of different tissue origins. Deep sequencing using the Guardant360 test was performed to identify mutations in 73 clinically actionable genes, and the results were associated with clinical characteristics of the patient. The mutation profiles of 37 lung cancer cases with paired ctDNA and tumor genomic DNA sequencing were used to evaluate clonal representation of tumor in circulation. Five lung cancer cases with longitudinal ctDNA sampling were monitored for cancer progression or response to treatments. Results Mutations in TP53, EGFR, and KRAS genes are most prevalent in our cohort. Mutation rates of ctDNA are similar in early (I and II and late stage (III and IV cancers. Mutation in DNA repair genes BRCA1, BRCA2, and ATM are found in 18.1% (32/177 of cases. Patients with higher mutation rates had significantly higher mortality rates. Lung cancer of never smokers exhibited significantly higher ctDNA mutation rates as well as higher EGFR and ERBB2 mutations than ever smokers. Comparative analysis of ctDNA and tumor DNA mutation data from the same patients showed that key driver mutations could be detected in plasma even when they were present at a minor clonal population in the tumor. Mutations of key genes found in the tumor tissue could remain in circulation even after frontline radiotherapy and chemotherapy suggesting these mutations represented resistance mechanisms. Longitudinal sampling of five lung cancer cases showed distinct changes in ctDNA mutation portraits that

  17. Association of Mismatch Repair Mutation With Age at Cancer Onset in Lynch Syndrome: Implications for Stratified Surveillance Strategies.

    Science.gov (United States)

    Ryan, Neil A J; Morris, Julie; Green, Kate; Lalloo, Fiona; Woodward, Emma R; Hill, James; Crosbie, Emma J; Evans, D Gareth

    2017-12-01

    Lynch syndrome is caused by dominantly inherited germline mutations that predispose individuals to colorectal, endometrial, ovarian, and other cancers through inactivation of the cellular mismatch repair system. Lynch syndrome–associated cancers are amenable to surveillance strategies that may improve survival. The age at which surveillance should start is disputed. To determine whether mutated gene and type of mutation influence age at onset of Lynch syndrome–associated cancers. A retrospective cohort study of individuals with Lynch syndrome–associated colorectal, endometrial, and/or ovarian cancers whose medical records were included in the clinical database of a large quaternary referral center for genomic medicine in the Northwest of England. Mutated gene (MLH1, MSH2, MSH6, and/or PMS2) and type of mutation (truncating, splicing, or large rearrangement). Age at cancer diagnosis. A total of 1063 individuals with proven Lynch syndrome were included, 495 male and 568 female (mean age 52 years; age range, 10-93 years [children were included in the database, but no children developed cancer]). There were 546 men and women with colorectal cancer, 162 women with endometrial cancer, and 49 women with ovarian cancer; mean follow-up was 68.2 months. Among MLH1 mutation carriers, mutations in MLH1 were associated with colorectal cancer in 249 (61%) of 409 men and women; endometrial cancer in 53 of 196 (27%) women; and ovarian cancer in 15 (8%) of 196 women. Among MSH2 mutation carriers, mutations in MSH2 (the most prevalent mutations overall) were most commonly associated with female-specific cancers: endometrial cancer in 83 (30%) of 279 women; ovarian cancer in 28 (10%) of 279 women; and colorectal cancer in 239 (50%) 479 men and women. Mutations in MSH6 were less prevalent, and MSH6 mutation carriers presented with colorectal and endometrial cancer at later ages than carriers of mutations in MSH2 or MLH1. When stratified by mutation type, women with truncating

  18. Detection of p53 gene mutations in bronchial biopsy samples of patients with lung cancer

    International Nuclear Information System (INIS)

    Irshad, S.; Nawaz, T.

    2008-01-01

    Lung cancer is the malignant transformation and expansion of lung tissue. It is the most lethal of all cancers worldwide, responsible for 1.2 million deaths annually. The goal of this study was to detect the p53 gene mutations in lung cancer, in local population of Lahore, Pakistan. These mutations were screened in the bronchial biopsy lung cancer tissue samples. For this purpose microtomed tissue sections were collected. Following DNA extraction from tissue sections, the p53 mutations were detected by amplifying Exon 7 (145 bp) and Exon 8 (152 bp) of the p53 gene. PCR then followed by single-strand conformation polymorphism analysis for screening the p53 gene mutations. This results of SSCP were visualized of silver staining. The results showed different banding pattern indicating the presence of mutation. Majority of the mutations were found in Exon 7. Exon 7 of p53 gene may be the mutation hotspot in lung cancer. In lung cancer, the most prevalent mutations of p53 gene are G -> T transversions; other types of insertions and deletions are also expected, however, the exact nature of mutations in presented work could be confirmed by direct sequencing. (author)

  19. Prognostic breast cancer signature identified from 3D culture model accurately predicts clinical outcome across independent datasets

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Katherine J.; Patrick, Denis R.; Bissell, Mina J.; Fournier, Marcia V.

    2008-10-20

    One of the major tenets in breast cancer research is that early detection is vital for patient survival by increasing treatment options. To that end, we have previously used a novel unsupervised approach to identify a set of genes whose expression predicts prognosis of breast cancer patients. The predictive genes were selected in a well-defined three dimensional (3D) cell culture model of non-malignant human mammary epithelial cell morphogenesis as down-regulated during breast epithelial cell acinar formation and cell cycle arrest. Here we examine the ability of this gene signature (3D-signature) to predict prognosis in three independent breast cancer microarray datasets having 295, 286, and 118 samples, respectively. Our results show that the 3D-signature accurately predicts prognosis in three unrelated patient datasets. At 10 years, the probability of positive outcome was 52, 51, and 47 percent in the group with a poor-prognosis signature and 91, 75, and 71 percent in the group with a good-prognosis signature for the three datasets, respectively (Kaplan-Meier survival analysis, p<0.05). Hazard ratios for poor outcome were 5.5 (95% CI 3.0 to 12.2, p<0.0001), 2.4 (95% CI 1.6 to 3.6, p<0.0001) and 1.9 (95% CI 1.1 to 3.2, p = 0.016) and remained significant for the two larger datasets when corrected for estrogen receptor (ER) status. Hence the 3D-signature accurately predicts breast cancer outcome in both ER-positive and ER-negative tumors, though individual genes differed in their prognostic ability in the two subtypes. Genes that were prognostic in ER+ patients are AURKA, CEP55, RRM2, EPHA2, FGFBP1, and VRK1, while genes prognostic in ER patients include ACTB, FOXM1 and SERPINE2 (Kaplan-Meier p<0.05). Multivariable Cox regression analysis in the largest dataset showed that the 3D-signature was a strong independent factor in predicting breast cancer outcome. The 3D-signature accurately predicts breast cancer outcome across multiple datasets and holds prognostic

  20. Somatic mutation analysis of MYH11 in breast and prostate cancer

    International Nuclear Information System (INIS)

    Alhopuro, Pia; Karhu, Auli; Winqvist, Robert; Waltering, Kati; Visakorpi, Tapio; Aaltonen, Lauri A

    2008-01-01

    MYH11 (also known as SMMHC) encodes the smooth-muscle myosin heavy chain, which has a key role in smooth muscle contraction. Inversion at the MYH11 locus is one of the most frequent chromosomal aberrations found in acute myeloid leukemia. We have previously shown that MYH11 mutations occur in human colorectal cancer, and may also be associated with Peutz-Jeghers syndrome. The mutations found in human intestinal neoplasia result in unregulated proteins with constitutive motor activity, similar to the mutant myh11 underlying the zebrafish meltdown phenotype characterized by disrupted intestinal architecture. Recently, MYH1 and MYH9 have been identified as candidate breast cancer genes in a systematic analysis of the breast cancer genome. The aim of this study was to investigate the role of somatic MYH11 mutations in two common tumor types; breast and prostate cancers. A total of 155 breast cancer and 71 prostate cancer samples were analyzed for those regions in MYH11 (altogether 8 exons out of 42 coding exons) that harboured mutations in colorectal cancer in our previous study. In breast cancer samples only germline alterations were observed. One prostate cancer sample harbored a frameshift mutation c.5798delC, which we have previously shown to result in a protein with unregulated motor activity. Little evidence for a role of somatic MYH11 mutations in the formation of breast or prostate cancers was obtained in this study

  1. Identification of Variant-Specific Functions of PIK3CA by Rapid Phenotyping of Rare Mutations | Office of Cancer Genomics

    Science.gov (United States)

    Large-scale sequencing efforts are uncovering the complexity of cancer genomes, which are composed of causal "driver" mutations that promote tumor progression along with many more pathologically neutral "passenger" events. The majority of mutations, both in known cancer drivers and uncharacterized genes, are generally of low occurrence, highlighting the need to functionally annotate the long tail of infrequent mutations present in heterogeneous cancers.

  2. Exosomes Derived From Pancreatic Stellate Cells: MicroRNA Signature and Effects on Pancreatic Cancer Cells.

    Science.gov (United States)

    Takikawa, Tetsuya; Masamune, Atsushi; Yoshida, Naoki; Hamada, Shin; Kogure, Takayuki; Shimosegawa, Tooru

    2017-01-01

    Pancreatic stellate cells (PSCs) interact with pancreatic cancer cells in the tumor microenvironment. Cell constituents including microRNAs may be exported from cells within membranous nanovesicles termed exosomes. Exosomes might play a pivotal role in intercellular communication. This study aimed to clarify the microRNA signature of PSC-derived exosomes and their effects on pancreatic cancer cells. Exosomes were prepared from the conditioned medium of immortalized human PSCs. MicroRNAs were prepared from the exosomes and their source PSCs, and the microRNA expression profiles were compared by microarray. The effects of PSC-derived exosomes on proliferation, migration, and the mRNA expression profiles were examined in pancreatic cancer cells. Pancreatic stellate cell-derived exosomes contained a variety of microRNAs including miR-21-5p. Several microRNAs such as miR-451a were enriched in exosomes compared to their source PSCs. Pancreatic stellate cell-derived exosomes stimulated the proliferation, migration and expression of mRNAs for chemokine (C - X - C motif) ligands 1 and 2 in pancreatic cancer cells. The stimulation of proliferation, migration, and chemokine gene expression by the conditioned medium of PSCs was suppressed by GW4869, an exosome inhibitor. We clarified the microRNA expression profile in PSC-derived exosomes. Pancreatic stellate cell-derived exosomes might play a role in the interactions between PSCs and pancreatic cancer cells.

  3. Molecular Signature for Lymphatic Invasion Associated with Survival of Epithelial Ovarian Cancer.

    Science.gov (United States)

    Paik, E Sun; Choi, Hyun Jin; Kim, Tae-Joong; Lee, Jeong-Won; Kim, Byoung-Gie; Bae, Duk-Soo; Choi, Chel Hun

    2018-04-01

    We aimed to develop molecular classifier that can predict lymphatic invasion and their clinical significance in epithelial ovarian cancer (EOC) patients. We analyzed gene expression (mRNA, methylated DNA) in data from The Cancer Genome Atlas. To identify molecular signatures for lymphatic invasion, we found differentially expressed genes. The performance of classifier was validated by receiver operating characteristics analysis, logistic regression, linear discriminant analysis (LDA), and support vector machine (SVM). We assessed prognostic role of classifier using random survival forest (RSF) model and pathway deregulation score (PDS). For external validation,we analyzed microarray data from 26 EOC samples of Samsung Medical Center and curatedOvarianData database. We identified 21 mRNAs, and seven methylated DNAs from primary EOC tissues that predicted lymphatic invasion and created prognostic models. The classifier predicted lymphatic invasion well, which was validated by logistic regression, LDA, and SVM algorithm (C-index of 0.90, 0.71, and 0.74 for mRNA and C-index of 0.64, 0.68, and 0.69 for DNA methylation). Using RSF model, incorporating molecular data with clinical variables improved prediction of progression-free survival compared with using only clinical variables (p < 0.001 and p=0.008). Similarly, PDS enabled us to classify patients into high-risk and low-risk group, which resulted in survival difference in mRNA profiles (log-rank p-value=0.011). In external validation, gene signature was well correlated with prediction of lymphatic invasion and patients' survival. Molecular signature model predicting lymphatic invasion was well performed and also associated with survival of EOC patients.

  4. Hypermutation in pancreatic cancer

    OpenAIRE

    Humphris, Jeremy L.; Patch, Ann-Marie; Nones, Katia; Bailey, Peter J.; Johns, Amber L.; McKay, Skye; Chang, David K.; Miller, David K.; Pajic, Marina; Kassahn, Karin S.; Quinn, Michael C.J.; Bruxner, Timothy J.C.; Christ, Angelika N.; Harliwong, Ivon; Idrisoglu, Senel

    2017-01-01

    Pancreatic cancer is molecularly diverse, with few effective therapies. Increased mutation burden and defective DNA repair are associated with response to immune checkpoint inhibitors in several other cancer types. We interrogated 385 pancreatic cancer genomes to define hypermutation and its causes. Mutational signatures inferring defects in DNA repair were enriched in those with the highest mutation burdens. Mismatch repair deficiency was identified in 1% of tumors harboring different mechan...

  5. Prevalence of BRCA1 mutations in familial and sporadic greek ovarian cancer cases.

    Directory of Open Access Journals (Sweden)

    Alexandra V Stavropoulou

    Full Text Available Germline mutations in the BRCA1 and BRCA2 genes contribute to approximately 18% of hereditary ovarian cancers conferring an estimated lifetime risk from 15% to 50%. A variable incidence of mutations has been reported for these genes in ovarian cancer cases from different populations. In Greece, six mutations in BRCA1 account for 63% of all mutations detected in both BRCA1 and BRCA2 genes. This study aimed to determine the prevalence of BRCA1 mutations in a Greek cohort of 106 familial ovarian cancer patients that had strong family history or metachronous breast cancer and 592 sporadic ovarian cancer cases. All 698 patients were screened for the six recurrent Greek mutations (including founder mutations c.5266dupC, p.G1738R and the three large deletions of exon 20, exons 23-24 and exon 24. In familial cases, the BRCA1 gene was consequently screened for exons 5, 11, 12, 20, 21, 22, 23, 24. A deleterious BRCA1 mutation was found in 43/106 (40.6% of familial cancer cases and in 27/592 (4.6% of sporadic cases. The variant of unknown clinical significance p.V1833M was identified in 9/698 patients (1.3%. The majority of BRCA1 carriers (71.2% presented a high-grade serous phenotype. Identifying a mutation in the BRCA1 gene among breast and/or ovarian cancer families is important, as it enables carriers to take preventive measures. All ovarian cancer patients with a serous phenotype should be considered for genetic testing. Further studies are warranted to determine the prevalence of mutations in the rest of the BRCA1 gene, in the BRCA2 gene, and other novel predisposing genes for breast and ovarian cancer.

  6. Comprehensive spectrum of BRCA1 and BRCA2 deleterious mutations in breast cancer in Asian countries

    Science.gov (United States)

    Kwong, Ava; Shin, Vivian Y; Ho, John C W; Kang, Eunyoung; Nakamura, Seigo; Teo, Soo-Hwang; Lee, Ann S G; Sng, Jen-Hwei; Ginsburg, Ophira M; Kurian, Allison W; Weitzel, Jeffrey N; Siu, Man-Ting; Law, Fian B F; Chan, Tsun-Leung; Narod, Steven A; Ford, James M; Ma, Edmond S K; Kim, Sung-Won

    2015-01-01

    Approximately 5%–10% of breast cancers are due to genetic predisposition caused by germline mutations; the most commonly tested genes are BRCA1 and BRCA2 mutations. Some mutations are unique to one family and others are recurrent; the spectrum of BRCA1/BRCA2 mutations varies depending on the geographical origins, populations or ethnic groups. In this review, we compiled data from 11 participating Asian countries (Bangladesh, Mainland China, Hong Kong SAR, Indonesia, Japan, Korea, Malaysia, Philippines, Singapore, Thailand and Vietnam), and from ethnic Asians residing in Canada and the USA. We have additionally conducted a literature review to include other Asian countries mainly in Central and Western Asia. We present the current pathogenic mutation spectrum of BRCA1/BRCA2 genes in patients with breast cancer in various Asian populations. Understanding BRCA1/BRCA2 mutations in Asians will help provide better risk assessment and clinical management of breast cancer. PMID:26187060

  7. Association of tRNA methyltransferase NSUN2/IGF-II molecular signature with ovarian cancer survival.

    Science.gov (United States)

    Yang, Jia-Cheng; Risch, Eric; Zhang, Meiqin; Huang, Chan; Huang, Huatian; Lu, Lingeng

    2017-09-01

    To investigate the association between NSUN2/IGF-II signature and ovarian cancer survival. Using a publicly accessible dataset of RNA sequencing and clinical follow-up data, we performed Classification and Regression Tree and survival analyses. Patients with NSUN2 high IGF-II low had significantly superior overall and disease progression-free survival, followed by NSUN2 low IGF-II low , NSUN2 high IGF-II high and NSUN2 low IGF-II high (p IGF-II signature with the risks of death and relapse remained significant in multivariate Cox regression models. Random-effects meta-analyses show the upregulated NSUN2 and IGF-II expression in ovarian cancer versus normal tissues. The NSUN2/IGF-II signature associates with heterogeneous outcome and may have clinical implications in managing ovarian cancer.

  8. Somatic Mutational Landscape of Splicing Factor Genes and Their Functional Consequences across 33 Cancer Types

    Directory of Open Access Journals (Sweden)

    Michael Seiler

    2018-04-01

    Full Text Available Summary: Hotspot mutations in splicing factor genes have been recently reported at high frequency in hematological malignancies, suggesting the importance of RNA splicing in cancer. We analyzed whole-exome sequencing data across 33 tumor types in The Cancer Genome Atlas (TCGA, and we identified 119 splicing factor genes with significant non-silent mutation patterns, including mutation over-representation, recurrent loss of function (tumor suppressor-like, or hotspot mutation profile (oncogene-like. Furthermore, RNA sequencing analysis revealed altered splicing events associated with selected splicing factor mutations. In addition, we were able to identify common gene pathway profiles associated with the presence of these mutations. Our analysis suggests that somatic alteration of genes involved in the RNA-splicing process is common in cancer and may represent an underappreciated hallmark of tumorigenesis. : Seiler et al. report that 119 splicing factor genes carry putative driver mutations over 33 tumor types in TCGA. The most common mutations appear to be mutually exclusive and are associated with lineage-independent altered splicing. Samples with these mutations show deregulation of cell-autonomous pathways and immune infiltration. Keywords: splicing, SF3B1, U2AF1, SRSF2, RBM10, FUBP1, cancer, mutation

  9. Synthetic Lethal Therapeutic Approaches for ARID1A-Mutated Ovarian Cancer

    Science.gov (United States)

    2017-10-01

    Award Number: W81XWH-16-1-0496 TITLE: Synthetic lethal therapeutic approaches for ARID1A-mutated ovarian cancer PRINCIPAL INVESTIGATOR: Rugang...AND SUBTITLE Synthetic lethal therapeutic approaches for ARID1A-mutated ovarian cancer 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-16-1-0496 5c...Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Epithelial ovarian cancer (EOC) is the leading cause of death among gynecological

  10. Somatic mutations of the histone H3K27 demethylase, UTX, in human cancer

    Science.gov (United States)

    van Haaften, Gijs; Dalgliesh, Gillian L; Davies, Helen; Chen, Lina; Bignell, Graham; Greenman, Chris; Edkins, Sarah; Hardy, Claire; O’Meara, Sarah; Teague, Jon; Butler, Adam; Hinton, Jonathan; Latimer, Calli; Andrews, Jenny; Barthorpe, Syd; Beare, Dave; Buck, Gemma; Campbell, Peter J; Cole, Jennifer; Dunmore, Rebecca; Forbes, Simon; Jia, Mingming; Jones, David; Kok, Chai Yin; Leroy, Catherine; Lin, Meng-Lay; McBride, David J; Maddison, Mark; Maquire, Simon; McLay, Kirsten; Menzies, Andrew; Mironenko, Tatiana; Lee, Mulderrig; Mudie, Laura; Pleasance, Erin; Shepherd, Rebecca; Smith, Raffaella; Stebbings, Lucy; Stephens, Philip; Tang, Gurpreet; Tarpey, Patrick S; Turner, Rachel; Turrell, Kelly; Varian, Jennifer; West, Sofie; Widaa, Sara; Wray, Paul; Collins, V Peter; Ichimura, Koichi; Law, Simon; Wong, John; Yuen, Siu Tsan; Leung, Suet Yi; Tonon, Giovanni; DePinho, Ronald A; Tai, Yu-Tzu; Anderson, Kenneth C; Kahnoski, Richard J.; Massie, Aaron; Khoo, Sok Kean; Teh, Bin Tean; Stratton, Michael R; Futreal, P Andrew

    2010-01-01

    Somatically acquired epigenetic changes are present in many cancers. Epigenetic regulation is maintained via post-translational modifications of core histones. Here, we describe inactivating somatic mutations in the histone lysine demethylase, UTX, pointing to histone H3 lysine methylation deregulation in multiple tumour types. UTX reintroduction into cancer cells with inactivating UTX mutations resulted in slowing of proliferation and marked transcriptional changes. These data identify UTX as a new human cancer gene. PMID:19330029

  11. The IARC TP53 mutation database: a resource for studying the significance of TP53 mutations in human cancers

    Directory of Open Access Journals (Sweden)

    Magali Olivier

    2007-02-01

    Full Text Available

    The tumor suppressor gene TP53 is frequently inactivated by gene mutations in many types of human sporadic cancers, and inherited TP53 mutations predispose to a wide spectrum of early-onset tumors (Li-Fraumeni et Li-Fraumenilike Syndromes. All TP53 gene variations (somatic and germline mutations, as well as polymorphisms that are reported in the scientific literature or in SNP databases are compiled in the IARC TP53 Database. This database provides structured data and analysis tools to study mutation patterns in human cancers and cell-lines and to investigate the clinical impact of mutations. It contains annotations related to the clinical and pathological characteristics of tumors, as well as the demographics and carcinogen exposure of patients. The IARC TP53 web site (http://www-p53.iarc.fr/ provides a search interface for the core database and includes a comprehensive user guide, a slideshow on TP53 mutations in human cancer, protocols and references for sequencing TP53 gene, and links to relevant publications and bioinformatics databases. The database interface allows download of entire data sets and propose various tools for the selection, analysis and downloads of specific sets of data according to user's query.

    Recently, new annotations on the functional properties of mutant p53 proteins have been integrated in this database. Indeed, the most frequent TP53 alterations observed in cancers (75% are missense mutations that result in the production of a mutant protein that differ from the wildtype by one single amino-acid. The characterization of the biological activities of these mutant proteins is thus very important. Over the last ten years, a great amount of systematic data has been generated from experimental assays performed in

  12. Prognostic meta-signature of breast cancer developed by two-stage mixture modeling of microarray data

    Directory of Open Access Journals (Sweden)

    Ghosh Debashis

    2004-12-01

    Full Text Available Abstract Background An increasing number of studies have profiled tumor specimens using distinct microarray platforms and analysis techniques. With the accumulating amount of microarray data, one of the most intriguing yet challenging tasks is to develop robust statistical models to integrate the findings. Results By applying a two-stage Bayesian mixture modeling strategy, we were able to assimilate and analyze four independent microarray studies to derive an inter-study validated "meta-signature" associated with breast cancer prognosis. Combining multiple studies (n = 305 samples on a common probability scale, we developed a 90-gene meta-signature, which strongly associated with survival in breast cancer patients. Given the set of independent studies using different microarray platforms which included spotted cDNAs, Affymetrix GeneChip, and inkjet oligonucleotides, the individually identified classifiers yielded gene sets predictive of survival in each study cohort. The study-specific gene signatures, however, had minimal overlap with each other, and performed poorly in pairwise cross-validation. The meta-signature, on the other hand, accommodated such heterogeneity and achieved comparable or better prognostic performance when compared with the individual signatures. Further by comparing to a global standardization method, the mixture model based data transformation demonstrated superior properties for data integration and provided solid basis for building classifiers at the second stage. Functional annotation revealed that genes involved in cell cycle and signal transduction activities were over-represented in the meta-signature. Conclusion The mixture modeling approach unifies disparate gene expression data on a common probability scale allowing for robust, inter-study validated prognostic signatures to be obtained. With the emerging utility of microarrays for cancer prognosis, it will be important to establish paradigms to meta

  13. cDNA sequencing improves the detection of P53 missense mutations in colorectal cancer

    International Nuclear Information System (INIS)

    Szybka, Malgorzata; Kordek, Radzislaw; Zakrzewska, Magdalena; Rieske, Piotr; Pasz-Walczak, Grazyna; Kulczycka-Wojdala, Dominika; Zawlik, Izabela; Stawski, Robert; Jesionek-Kupnicka, Dorota; Liberski, Pawel P

    2009-01-01

    Recently published data showed discrepancies beteween P53 cDNA and DNA sequencing in glioblastomas. We hypothesised that similar discrepancies may be observed in other human cancers. To this end, we analyzed 23 colorectal cancers for P53 mutations and gene expression using both DNA and cDNA sequencing, real-time PCR and immunohistochemistry. We found P53 gene mutations in 16 cases (15 missense and 1 nonsense). Two of the 15 cases with missense mutations showed alterations based only on cDNA, and not DNA sequencing. Moreover, in 6 of the 15 cases with a cDNA mutation those mutations were difficult to detect in the DNA sequencing, so the results of DNA analysis alone could be misinterpreted if the cDNA sequencing results had not also been available. In all those 15 cases, we observed a higher ratio of the mutated to the wild type template by cDNA analysis, but not by the DNA analysis. Interestingly, a similar overexpression of P53 mRNA was present in samples with and without P53 mutations. In terms of colorectal cancer, those discrepancies might be explained under three conditions: 1, overexpression of mutated P53 mRNA in cancer cells as compared with normal cells; 2, a higher content of cells without P53 mutation (normal cells and cells showing K-RAS and/or APC but not P53 mutation) in samples presenting P53 mutation; 3, heterozygous or hemizygous mutations of P53 gene. Additionally, for heterozygous mutations unknown mechanism(s) causing selective overproduction of mutated allele should also be considered. Our data offer new clues for studying discrepancy in P53 cDNA and DNA sequencing analysis

  14. Association of a novel point mutation in MSH2 gene with familial multiple primary cancers

    Directory of Open Access Journals (Sweden)

    Hai Hu

    2017-10-01

    Full Text Available Abstract Background Multiple primary cancers (MPC have been identified as two or more cancers without any subordinate relationship that occur either simultaneously or metachronously in the same or different organs of an individual. Lynch syndrome is an autosomal dominant genetic disorder that increases the risk of many types of cancers. Lynch syndrome patients who suffer more than two cancers can also be considered as MPC; patients of this kind provide unique resources to learn how genetic mutation causes MPC in different tissues. Methods We performed a whole genome sequencing on blood cells and two tumor samples of a Lynch syndrome patient who was diagnosed with five primary cancers. The mutational landscape of the tumors, including somatic point mutations and copy number alternations, was characterized. We also compared Lynch syndrome with sporadic cancers and proposed a model to illustrate the mutational process by which Lynch syndrome progresses to MPC. Results We revealed a novel pathologic mutation on the MSH2 gene (G504 splicing that associates with Lynch syndrome. Systematical comparison of the mutation landscape revealed that multiple cancers in the proband were evolutionarily independent. Integrative analysis showed that truncating mutations of DNA mismatch repair (MMR genes were significantly enriched in the patient. A mutation progress model that included germline mutations of MMR genes, double hits of MMR system, mutations in tissue-specific driver genes, and rapid accumulation of additional passenger mutations was proposed to illustrate how MPC occurs in Lynch syndrome patients. Conclusion Our findings demonstrate that both germline and somatic alterations are driving forces of carcinogenesis, which may resolve the carcinogenic theory of Lynch syndrome.

  15. Lung Cancer Signature Biomarkers: tissue specific semantic similarity based clustering of Digital Differential Display (DDD data

    Directory of Open Access Journals (Sweden)

    Srivastava Mousami

    2012-11-01

    Full Text Available Abstract Background The tissue-specific Unigene Sets derived from more than one million expressed sequence tags (ESTs in the NCBI, GenBank database offers a platform for identifying significantly and differentially expressed tissue-specific genes by in-silico methods. Digital differential display (DDD rapidly creates transcription profiles based on EST comparisons and numerically calculates, as a fraction of the pool of ESTs, the relative sequence abundance of known and novel genes. However, the process of identifying the most likely tissue for a specific disease in which to search for candidate genes from the pool of differentially expressed genes remains difficult. Therefore, we have used ‘Gene Ontology semantic similarity score’ to measure the GO similarity between gene products of lung tissue-specific candidate genes from control (normal and disease (cancer sets. This semantic similarity score matrix based on hierarchical clustering represents in the form of a dendrogram. The dendrogram cluster stability was assessed by multiple bootstrapping. Multiple bootstrapping also computes a p-value for each cluster and corrects the bias of the bootstrap probability. Results Subsequent hierarchical clustering by the multiple bootstrapping method (α = 0.95 identified seven clusters. The comparative, as well as subtractive, approach revealed a set of 38 biomarkers comprising four distinct lung cancer signature biomarker clusters (panel 1–4. Further gene enrichment analysis of the four panels revealed that each panel represents a set of lung cancer linked metastasis diagnostic biomarkers (panel 1, chemotherapy/drug resistance biomarkers (panel 2, hypoxia regulated biomarkers (panel 3 and lung extra cellular matrix biomarkers (panel 4. Conclusions Expression analysis reveals that hypoxia induced lung cancer related biomarkers (panel 3, HIF and its modulating proteins (TGM2, CSNK1A1, CTNNA1, NAMPT/Visfatin, TNFRSF1A, ETS1, SRC-1, FN1, APLP2, DMBT1

  16. The Potential Contribution of BRCA Mutations to Early Onset and Familial Breast Cancer in Uzbekistan.

    Science.gov (United States)

    Abdikhakimov, Abdulla; Tukhtaboeva, Mukaddas; Adilov, Bakhtiyar; Turdikulova, Shahlo

    2016-01-01

    Breast cancer is the most common malignancy in women and affects approximately 1 out of 8 females in the US. Risk of developing breast cancer is strongly influenced by genetic factors. Germ-line mutations in BRCA1 and BRCA2 genes are associated with 5-10% of breast cancer incidence. To reduce the risk of developing cancer and to increase the likelihood of early detection, carriers of BRCA1 or BRCA2 mutations are offered surveillance programs and effective preventive medical interventions. Identification of founder mutations of BRCA1/2 in high risk communities can have a significant impact on the management of hereditary cancer at the level of the national healthcare systems, making genetic testing more affordable and cost-effective. BRCA1 and BRCA2 mutations in breast cancer patients have not been characterized in the Uzbek population. This pilot study aimed to investigate the contribution of BRCA1 and BRCA2 mutation to early onset and familial cases of breast cancer in Uzbekistan. A total of 67 patients with breast cancer and 103 age-matched disease free controls were included in this study. Utilizing SYBR Green based real-time allele-specific PCR, we have analyzed DNA samples of patients with breast cancer and disease free controls to identify the following BRCA1 and BRCA2 mutations: BRCA1 5382insC, BRCA1 4153delA, BRCA1 185delAG, BRCA1 300T>G, BRCA2 6174delT. Three unrelated samples (4.5%) were found to be positive for the heterozygous 5382insCBRCA1 mutation, representing a possible founder mutation in the Uzbek population, supporting the need for larger studies examining the contribution of this mutation to breast cancer incidence in Uzbekistan. We did not find BRCA1 4153delA, BRCA1 185delAG, BRCA1 300T>G, and BRCA2 6174delT mutations. This preliminary evidence suggests a potential contribution of BRCA1 5382insC mutation to breast cancer development in Uzbek population. Taking into account a high disease penetrance in carriers of BRCA1 mutation, it seems

  17. Utilizing Biomarker Signature Pairs To Develop Gene Therapeutic Viral Delivery Platforms For Treating Prostate Cancer

    Science.gov (United States)

    Dr. Tamaro Hudson is currently an Assistant Professor at Howard University in the Department of Pharmacology and holds an appointment as a Health Research Specialist at the Washington VA Medical Center. Dr. Hudson received his Bachelor of Science from Iowa State University in Biology in 1994 and went on to receive a Master of Science in Preventive Medicine from Ohio State University in 2007. Afterwards, he received a Ph.D. from Ohio State University in 2002 where he focused on evaluating the functional differences among isothiocyanates in the rat esophageal tumor model. Following his Ph.D., Dr. Hudson was selected to complete a prestigious Cancer Prevention Fellowship Program at the National Institute of Health, National Cancer Institute, where he focused on utilizing in vitro and in vivo cancer models to assess the biological activity of bioactive compounds on prostate cancer molecular pathways. Concurrently, he completed a Master of Public Health degree from George Washington University in 2003 where he focused on assessing the degree of agreement between a food frequency questionnaire and a 4-day food record as it related to dietary fiber intake. Upon completion of his MPH and Fellowship, he was recruited by Howard University Cancer Center in 2007 as an Assistant Professor. Since joining the Howard faculty, Dr. Hudson has integrated his research focus by identifying novel signature biomarkers – that could have a significant impact on both the diagnosis and targeted treatment of prostate cancer – with the evaluation of new chemopreventive strategies, which have been evaluated in Phase I and Phase II clinical trials. Dr. Hudson received the first five-year VA-HBCU Research, Scientist, and Training grant that focuses on developing a biomarker-based risk prediction model for prostate cancer. Dr. Hudson serves on several Howard University committees and has many peer-reviewed publications. Dr. Hudson's research interests continue to expand as he tries to build

  18. Integrated microRNA and mRNA signatures associated with survival in triple negative breast cancer.

    Science.gov (United States)

    Cascione, Luciano; Gasparini, Pierluigi; Lovat, Francesca; Carasi, Stefania; Pulvirenti, Alfredo; Ferro, Alfredo; Alder, Hansjuerg; He, Gang; Vecchione, Andrea; Croce, Carlo M; Shapiro, Charles L; Huebner, Kay

    2013-01-01

    Triple negative breast cancer (TNBC) is a heterogeneous disease at the molecular, pathologic and clinical levels. To stratify TNBCs, we determined microRNA (miRNA) expression profiles, as well as expression profiles of a cancer-focused mRNA panel, in tumor, adjacent non-tumor (normal) and lymph node metastatic lesion (mets) tissues, from 173 women with TNBCs; we linked specific miRNA signatures to patient survival and used miRNA/mRNA anti-correlations to identify clinically and genetically different TNBC subclasses. We also assessed miRNA signatures as potential regulators of TNBC subclass-specific gene expression networks defined by expression of canonical signal pathways.Tissue specific miRNAs and mRNAs were identified for normal vs tumor vs mets comparisons. miRNA signatures correlated with prognosis were identified and predicted anti-correlated targets within the mRNA profile were defined. Two miRNA signatures (miR-16, 155, 125b, 374a and miR-16, 125b, 374a, 374b, 421, 655, 497) predictive of overall survival (P = 0.05) and distant-disease free survival (P = 0.009), respectively, were identified for patients 50 yrs of age or younger. By multivariate analysis the risk signatures were independent predictors for overall survival and distant-disease free survival. mRNA expression profiling, using the cancer-focused mRNA panel, resulted in clustering of TNBCs into 4 molecular subclasses with different expression signatures anti-correlated with the prognostic miRNAs. Our findings suggest that miRNAs play a key role in triple negative breast cancer through their ability to regulate fundamental pathways such as: cellular growth and proliferation, cellular movement and migration, Extra Cellular Matrix degradation. The results define miRNA expression signatures that characterize and contribute to the phenotypic diversity of TNBC and its metastasis.

  19. Lynch syndrome caused by germline PMS2 mutations: delineating the cancer risk.

    Science.gov (United States)

    ten Broeke, Sanne W; Brohet, Richard M; Tops, Carli M; van der Klift, Heleen M; Velthuizen, Mary E; Bernstein, Inge; Capellá Munar, Gabriel; Gomez Garcia, Encarna; Hoogerbrugge, Nicoline; Letteboer, Tom G W; Menko, Fred H; Lindblom, Annika; Mensenkamp, Arjen R; Moller, Pal; van Os, Theo A; Rahner, Nils; Redeker, Bert J W; Sijmons, Rolf H; Spruijt, Liesbeth; Suerink, Manon; Vos, Yvonne J; Wagner, Anja; Hes, Frederik J; Vasen, Hans F; Nielsen, Maartje; Wijnen, Juul T

    2015-02-01

    The clinical consequences of PMS2 germline mutations are poorly understood compared with other Lynch-associated mismatch repair gene (MMR) mutations. The aim of this European cohort study was to define the cancer risk faced by PMS2 mutation carriers. Data were collected from 98 PMS2 families ascertained from family cancer clinics that included a total of 2,548 family members and 377 proven mutation carriers. To adjust for potential ascertainment bias, a modified segregation analysis model was used to calculate colorectal cancer (CRC) and endometrial cancer (EC) risks. Standardized incidence ratios (SIRs) were calculated to estimate risks for other Lynch syndrome-associated cancers. The cumulative risk (CR) of CRC for male mutation carriers by age 70 years was 19%. The CR among female carriers was 11% for CRC and 12% for EC. The mean age of CRC development was 52 years, and there was a significant difference in mean age of CRC between the probands (mean, 47 years; range, 26 to 68 years) and other family members with a PMS2 mutation (mean, 58 years; range, 31 to 86 years; P PMS2 mutation, and it should be noted that we observed a substantial variation in cancer phenotype within and between families, suggesting the influence of genetic modifiers and lifestyle factors on cancer risks. © 2014 by American Society of Clinical Oncology.

  20. Chromosomal radiosensitivity in breast cancer patients and BRCA1 and 2 mutation carriers

    International Nuclear Information System (INIS)

    Vral, Anne

    2004-01-01

    Enhanced chromosomal radiosensitivity is observed in significant proportions of cancer patients. In breast cancer patients, this elevated sensitivity is confirmed in several independent studies with the G2 assay as well as with the GO micronucleus (MN) assay for peripheral blood lymphocytes (PBL). Enhanced chromosomal radiosensitivity is a common feature of sporadic breast cancer patients as well as breast cancer patients with a family history of the disease. Segregation analysis showed Mendelian heritability of chromosomal radiosensitivity. As mutations in the highly penetrant breast cancer predisposing genes, BRCA1 and 2, are only present in about 3-5 % of familial breast cancer patients, they cannot solely account for the high proportion of radiosensitive cases found among all breast cancer patients. A review on chromosomal radiosensitivity in BRCA1 and 2 mutation carriers shows that breast cancer patients with a BRCAl or 2 mutation are on the average more radiosensitive than healthy individuals, but not different from breast cancer patients without a BRCA mutation. The radiation response of healthy BRCA1/2 mutation carriers, on the contrary, is not significantly different from controls. Most studies performed on wild type and BRCA +/- EBV lymphoblastoid cell lines also could not demonstrate any differences in MN response between both groups. These findings suggest that mutations in BRCA 1 and 2 are not playing a major role in chromosomal radiosensitivity as measured by G2 and MN assay. The enhanced sensitivity observed in a substantial proportion of breast cancer patients, irrespective of a BRCA1/2 mutation or not, suggests that this feature may be related to the presence of other mutations in low penetrance breast cancer predisposing genes, which may be involved in the process of DNA damage. (author)

  1. RNF43 is mutated less frequently in Lynch Syndrome compared with sporadic microsatellite unstable colorectal cancers.

    Science.gov (United States)

    Fennell, Lochlan J; Clendenning, Mark; McKeone, Diane M; Jamieson, Saara H; Balachandran, Samanthy; Borowsky, Jennifer; Liu, John; Kawamata, Futoshi; Bond, Catherine E; Rosty, Christophe; Burge, Matthew E; Buchanan, Daniel D; Leggett, Barbara A; Whitehall, Vicki L J

    2018-01-01

    The WNT signaling pathway is commonly altered during colorectal cancer development. The E3 ubiquitin ligase, RNF43, negatively regulates the WNT signal through increased ubiquitination and subsequent degradation of the Frizzled receptor. RNF43 has recently been reported to harbor frequent truncating frameshift mutations in sporadic microsatellite unstable (MSI) colorectal cancers. This study assesses the relative frequency of RNF43 mutations in hereditary colorectal cancers arising in the setting of Lynch syndrome. The entire coding region of RNF43 was Sanger sequenced in 24 colorectal cancers from 23 patients who either (i) carried a germline mutation in one of the DNA mismatch repair genes (MLH1, MSH6, MSH2, PMS2), or (ii) showed immunohistochemical loss of expression of one or more of the DNA mismatch repair proteins, was BRAF wild type at V600E, were under 60 years of age at diagnosis, and demonstrated no promoter region methylation for MLH1 in tumor DNA. A validation cohort of 44 colorectal cancers from mismatch repair germline mutation carriers from the Australasian Colorectal Cancer Family Registry (ACCFR) were sequenced for the most common truncating mutation hotspots (X117 and X659). RNF43 mutations were found in 9 of 24 (37.5%) Lynch syndrome colorectal cancers. The majority of mutations were frameshift deletions in the G659 G7 repeat tract (29%); 2 cancers (2/24, 8%) from the one patient harbored frameshift mutations at codon R117 (C6 repeat tract) within exon 3. In the ACCFR validation cohort, RNF43 hotspot mutations were identified in 19/44 (43.2%) of samples, which was not significantly different to the initial series. The proportion of mutant RNF43 in Lynch syndrome related colorectal cancers is significantly lower than the previously reported mutation rate found in sporadic MSI colorectal cancers. These findings identify further genetic differences between sporadic and hereditary colorectal cancers. This may be because Lynch Syndrome cancers

  2. BRCA1 and BRCA2 Gene Mutations Screening In Sporadic Breast Cancer Patients In Kazakhstan.

    Directory of Open Access Journals (Sweden)

    Ainur R. Akilzhanova

    2013-05-01

    Full Text Available Background: A large number of distinct mutations in the BRCA1 and BRCA2 genes have been reported worldwide, but little is known regarding the role of these inherited susceptibility genes in breast cancer risk among Kazakhstan women. Aim: To evaluate the role of BRCA1/2 mutations in Kazakhstan women presenting with sporadic breast cancer. Methods: We investigated the distribution and nature of polymorphisms in BRCA1 and BRCA2 entire coding regions in 156 Kazakhstan sporadic breast cancer cases and 112 age-matched controls using automatic direct sequencing. Results: We identified 22 distinct variants, including 16 missense mutations and 6 polymorphisms in BRCA1/2 genes. In BRCA1, 9 missense mutations and 3 synonymous polymorphisms were observed. In BRCA2, 7 missense mutations and 3 polymorphisms were detected. There was a higher prevalence of observed mutations in Caucasian breast cancer cases compared to Asian cases (p<0.05; higher frequencies of sequence variants were observed in Asian controls. No recurrent or founder mutations were observed in BRCA1/2 genes. There were no statistically significant differences in age at diagnosis, tumor histology, size of tumor, and lymph node involvement between women with breast cancer with or without the BRCA sequence alterations. Conclusions: Considering the majority of breast cancer cases are sporadic, the present study will be helpful in the evaluation of the need for the genetic screening of BRCA1/2 mutations and reliable genetic counseling for Kazakhstan sporadic breast cancer patients. Evaluation of common polymorphisms and mutations and breast cancer risk in families with genetic predisposition to breast cancer is ongoing in another current investigation. 

  3. Ancient genes establish stress-induced mutation as a hallmark of cancer.

    Science.gov (United States)

    Cisneros, Luis; Bussey, Kimberly J; Orr, Adam J; Miočević, Milica; Lineweaver, Charles H; Davies, Paul

    2017-01-01

    Cancer is sometimes depicted as a reversion to single cell behavior in cells adapted to live in a multicellular assembly. If this is the case, one would expect that mutation in cancer disrupts functional mechanisms that suppress cell-level traits detrimental to multicellularity. Such mechanisms should have evolved with or after the emergence of multicellularity. This leads to two related, but distinct hypotheses: 1) Somatic mutations in cancer will occur in genes that are younger than the emergence of multicellularity (1000 million years [MY]); and 2) genes that are frequently mutated in cancer and whose mutations are functionally important for the emergence of the cancer phenotype evolved within the past 1000 million years, and thus would exhibit an age distribution that is skewed to younger genes. In order to investigate these hypotheses we estimated the evolutionary ages of all human genes and then studied the probability of mutation and their biological function in relation to their age and genomic location for both normal germline and cancer contexts. We observed that under a model of uniform random mutation across the genome, controlled for gene size, genes less than 500 MY were more frequently mutated in both cases. Paradoxically, causal genes, defined in the COSMIC Cancer Gene Census, were depleted in this age group. When we used functional enrichment analysis to explain this unexpected result we discovered that COSMIC genes with recessive disease phenotypes were enriched for DNA repair and cell cycle control. The non-mutated genes in these pathways are orthologous to those underlying stress-induced mutation in bacteria, which results in the clustering of single nucleotide variations. COSMIC genes were less common in regions where the probability of observing mutational clusters is high, although they are approximately 2-fold more likely to harbor mutational clusters compared to other human genes. Our results suggest this ancient mutational response to

  4. Meta-analysis of gene expression signatures defining the epithelial to mesenchymal transition during cancer progression.

    Directory of Open Access Journals (Sweden)

    Christian J Gröger

    Full Text Available The epithelial to mesenchymal transition (EMT represents a crucial event during cancer progression and dissemination. EMT is the conversion of carcinoma cells from an epithelial to a mesenchymal phenotype that associates with a higher cell motility as well as enhanced chemoresistance and cancer stemness. Notably, EMT has been increasingly recognized as an early event of metastasis. Numerous gene expression studies (GES have been conducted to obtain transcriptome signatures and marker genes to understand the regulatory mechanisms underlying EMT. Yet, no meta-analysis considering the multitude of GES of EMT has been performed to comprehensively elaborate the core genes in this process. Here we report the meta-analysis of 18 independent and published GES of EMT which focused on different cell types and treatment modalities. Computational analysis revealed clustering of GES according to the type of treatment rather than to cell type. GES of EMT induced via transforming growth factor-β and tumor necrosis factor-α treatment yielded uniformly defined clusters while GES of models with alternative EMT induction clustered in a more complex fashion. In addition, we identified those up- and downregulated genes which were shared between the multitude of GES. This core gene list includes well known EMT markers as well as novel genes so far not described in this process. Furthermore, several genes of the EMT-core gene list significantly correlated with impaired pathological complete response in breast cancer patients. In conclusion, this meta-analysis provides a comprehensive survey of available EMT expression signatures and shows fundamental insights into the mechanisms that are governing carcinoma progression.

  5. Complex MSH2 and MSH6 mutations in hypermutated microsatellite unstable advanced prostate cancer.

    Science.gov (United States)

    Pritchard, Colin C; Morrissey, Colm; Kumar, Akash; Zhang, Xiaotun; Smith, Christina; Coleman, Ilsa; Salipante, Stephen J; Milbank, Jennifer; Yu, Ming; Grady, William M; Tait, Jonathan F; Corey, Eva; Vessella, Robert L; Walsh, Tom; Shendure, Jay; Nelson, Peter S

    2014-09-25

    A hypermutated subtype of advanced prostate cancer was recently described, but prevalence and mechanisms have not been well-characterized. Here we find that 12% (7 of 60) of advanced prostate cancers are hypermutated, and that all hypermutated cancers have mismatch repair gene mutations and microsatellite instability (MSI). Mutations are frequently complex MSH2 or MSH6 structural rearrangements rather than MLH1 epigenetic silencing. Our findings identify parallels and differences in the mechanisms of hypermutation in prostate cancer compared with other MSI-associated cancers.

  6. Distinct pattern of p53 mutations in bladder cancer

    DEFF Research Database (Denmark)

    Spruck, C H; Rideout, W M; Olumi, A F

    1993-01-01

    A distinct mutational spectrum for the p53 tumor suppressor gene in bladder carcinomas was established in patients with known exposures to cigarette smoke. Single-strand conformational polymorphism analysis of exons 5 through 8 of the p53 gene showed inactivating mutations in 16 of 40 (40%) bladder...... tumors from smokers and 13 of 40 (33%) tumors from lifetime nonsmokers. Overall, 13 of the 50 (26%) total point mutations discovered in this and previous work were G:C-->C:G transversions, a relatively rare mutational type in human tumors. In six tumors, identical AGA (Arg)-->ACA (Thr) point mutations...... double mutations, four of which were tandem mutations on the same allele. No double mutations were found in tumors from nonsmoking patients. None of the mutations in smokers were G:C-->T:A transversions, which would be anticipated for exposure to the suspected cigarette smoke carcinogen 4-aminobiphenyl...

  7. Mutation and Methylation Analysis of the Chromodomain-Helicase-DNA Binding 5 Gene in Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Kylie L. Gorringe

    2008-11-01

    Full Text Available Chromodomain, helicase, DNA binding 5 (CHD5 is a member of a subclass of the chromatin remodeling Swi/Snf proteins and has recently been proposed as a tumor suppressor in a diverse range of human cancers. We analyzed all 41 coding exons of CHD5 for somatic mutations in 123 primary ovarian cancers as well as 60 primary breast cancers using high-resolution melt analysis. We also examined methylation of the CHD5 promoter in 48 ovarian cancer samples by methylation-specific single-stranded conformation polymorphism and bisulfite sequencing. In contrast to previous studies, no mutations were identified in the breast cancers, but somatic heterozygous missense mutations were identified in 3 of 123 ovarian cancers. We identified promoter methylation in 3 of 45 samples with normal CHD5 and in 2 of 3 samples with CHD5 mutation, suggesting these tumors may have biallelic inactivation of CHD5. Hemizygous copy number loss at CHD5 occurred in 6 of 85 samples as assessed by single nucleotide polymorphism array. Tumors with CHD5 mutation or methylation were more likely to have mutation of KRAS or BRAF (P = .04. The aggregate frequency of CHD5 haploinsufficiency or inactivation is 16.2% in ovarian cancer. Thus, CHD5 may play a role as a tumor suppressor gene in ovarian cancer; however, it is likely that there is another target of the frequent copy number neutral loss of heterozygosity observed at 1p36.

  8. Finnish Fanconi anemia mutations and hereditary predisposition to breast and prostate cancer.

    Science.gov (United States)

    Mantere, T; Haanpää, M; Hanenberg, H; Schleutker, J; Kallioniemi, A; Kähkönen, M; Parto, K; Avela, K; Aittomäki, K; von Koskull, H; Hartikainen, J M; Kosma, V-M; Laasanen, S-L; Mannermaa, A; Pylkäs, K; Winqvist, R

    2015-07-01

    Mutations in downstream Fanconi anemia (FA) pathway genes, BRCA2, PALB2, BRIP1 and RAD51C, explain part of the hereditary breast cancer susceptibility, but the contribution of other FA genes has remained questionable. Due to FA's rarity, the finding of recurrent deleterious FA mutations among breast cancer families is challenging. The use of founder populations, such as the Finns, could provide some advantage in this. Here, we have resolved complementation groups and causative mutations of five FA patients, representing the first mutation confirmed FA cases in Finland. These patients belonged to complementation groups FA-A (n = 3), FA-G (n = 1) and FA-I (n = 1). The prevalence of the six FA causing mutations was then studied in breast (n = 1840) and prostate (n = 565) cancer cohorts, and in matched controls (n = 1176 females, n = 469 males). All mutations were recurrent, but no significant association with cancer susceptibility was observed for any: the prevalence of FANCI c.2957_2969del and c.3041G>A mutations was even highest in healthy males (1.7%). This strengthens the exclusive role of downstream genes in cancer predisposition. From a clinical point of view, current results provide fundamental information of the mutations to be tested first in all suspected FA cases in Finland. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Determinants of adherence to recommendations for cancer prevention among Lynch Syndrome mutation carriers : A qualitative exploration

    NARCIS (Netherlands)

    Visser, Annemiek; Vrieling, Alina; Murugesu, Laxsini; Hoogerbrugge, Nicoline; Kampman, Ellen; Hoedjes, Meeke

    2017-01-01

    Background: Lynch Syndrome (LS) mutation carriers are at high risk for various cancer types, particularly colorectal cancer. Adherence to lifestyle and body weight recommendations for cancer prevention may lower this risk. To promote adherence to these recommendations, knowledge on determinants of

  10. Determinants of adherence to recommendations for cancer prevention among Lynch Syndrome mutation carriers: a qualitative exploration.

    NARCIS (Netherlands)

    Visser, A.; Vrieling, A.; Murugesu, L.; Hoogerbrugge, N.; Kampman, E.; Hoedjes, M.

    2017-01-01

    Background: Lynch Syndrome (LS) mutation carriers are at high risk for various cancer types, particularly colorectal cancer. Adherence to lifestyle and body weight recommendations for cancer prevention may lower this risk. To promote adherence to these recommendations, knowledge on determinants of

  11. Functional heterogeneity of cancer-associated fibroblasts from human colon tumors shows specific prognostic gene expression signature.

    Science.gov (United States)

    Herrera, Mercedes; Islam, Abul B M M K; Herrera, Alberto; Martín, Paloma; García, Vanesa; Silva, Javier; Garcia, Jose M; Salas, Clara; Casal, Ignacio; de Herreros, Antonio García; Bonilla, Félix; Peña, Cristina

    2013-11-01

    Cancer-associated fibroblasts (CAF) actively participate in reciprocal communication with tumor cells and with other cell types in the microenvironment, contributing to a tumor-permissive neighborhood and promoting tumor progression. The aim of this study is the characterization of how CAFs from primary human colon tumors promote migration of colon cancer cells. Primary CAF cultures from 15 primary human colon tumors were established. Their enrichment in CAFs was evaluated by the expression of various epithelial and myofibroblast specific markers. Coculture assays of primary CAFs with different colon tumor cells were performed to evaluate promigratory CAF-derived effects on cancer cells. Gene expression profiles were developed to further investigate CAF characteristics. Coculture assays showed significant differences in fibroblast-derived paracrine promigratory effects on cancer cells. Moreover, the association between CAFs' promigratory effects on cancer cells and classic fibroblast activation or stemness markers was observed. CAF gene expression profiles were analyzed by microarray to identify deregulated genes in different promigratory CAFs. The gene expression signature, derived from the most protumorogenic CAFs, was identified. Interestingly, this "CAF signature" showed a remarkable prognostic value for the clinical outcome of patients with colon cancer. Moreover, this prognostic value was validated in an independent series of 142 patients with colon cancer, by quantitative real-time PCR (qRT-PCR), with a set of four genes included in the "CAF signature." In summary, these studies show for the first time the heterogeneity of primary CAFs' effect on colon cancer cell migration. A CAF gene expression signature able to classify patients with colon cancer into high- and low-risk groups was identified.

  12. Five recurrent BRCA1/2 mutations are responsible for cancer predisposition in the majority of Slovenian breast cancer families

    Directory of Open Access Journals (Sweden)

    Novakovic Srdjan

    2008-09-01

    Full Text Available Abstract Background Both recurrent and population specific mutations have been found in different areas of the world and more specifically in ethnically defined or isolated populations. The population of Slovenia has over several centuries undergone limited mixing with surrounding populations. The current study was aimed at establishing the mutation spectrum of BRCA1/2 in the Slovenian breast/ovarian cancer families taking advantage of a complete cancer registration database. A second objective was to determine the cancer phenotype of these families. Methods The original population database was composed of cancer patients from the Institute of Oncology Ljubljana in Slovenia which also includes current follow-up status on these patients. The inclusion criteria for the BRCA1/2 screening were: (i probands with at least two first degree relatives with breast and ovarian cancer; (ii probands with only two first degree relatives of breast cancer where one must be diagnosed less than 50 years of age; and (iii individual patients with breast and ovarian cancer, bilateral breast cancer, breast cancer diagnosed before the age of 40 and male breast cancer without any other cancer in the family. Results Probands from 150 different families met the inclusion criteria for mutation analysis of which 145 consented to testing. A BRCA1/2 mutation was found in 56 (39%. Two novel large deletions covering consecutive exons of BRCA1 were found. Five highly recurrent specific mutations were identified (1806C>T, 300T>G, 300T>A, 5382insC in the BRCA1 gene and IVS16-2A>G in the BRCA2 gene. The IVS16-2A>G in the BRCA2 gene appears to be a unique founder mutation in the Slovenian population. A practical implication is that only 4 PCR fragments can be used in a first screen and reveal the cancer predisposing mutation in 67% of the BRCA1/2 positive families. We also observed an exceptionally high frequency of 4 different pathogenic missense mutations, all affecting one of

  13. Do two machine-learning based prognostic signatures for breast cancer capture the same biological processes?

    Science.gov (United States)

    Drier, Yotam; Domany, Eytan

    2011-03-14

    The fact that there is very little if any overlap between the genes of different prognostic signatures for early-discovery breast cancer is well documented. The reasons for this apparent discrepancy have been explained by the limits of simple machine-learning identification and ranking techniques, and the biological relevance and meaning of the prognostic gene lists was questioned. Subsequently, proponents of the prognostic gene lists claimed that different lists do capture similar underlying biological processes and pathways. The present study places under scrutiny the validity of this claim, for two important gene lists that are at the focus of current large-scale validation efforts. We performed careful enrichment analysis, controlling the effects of multiple testing in a manner which takes into account the nested dependent structure of gene ontologies. In contradiction to several previous publications, we find that the only biological process or pathway for which statistically significant concordance can be claimed is cell proliferation, a process whose relevance and prognostic value was well known long before gene expression profiling. We found that the claims reported by others, of wider concordance between the biological processes captured by the two prognostic signatures studied, were found either to be lacking statistical rigor or were in fact based on addressing some other question.

  14. Do two machine-learning based prognostic signatures for breast cancer capture the same biological processes?

    Directory of Open Access Journals (Sweden)

    Yotam Drier

    2011-03-01

    Full Text Available The fact that there is very little if any overlap between the genes of different prognostic signatures for early-discovery breast cancer is well documented. The reasons for this apparent discrepancy have been explained by the limits of simple machine-learning identification and ranking techniques, and the biological relevance and meaning of the prognostic gene lists was questioned. Subsequently, proponents of the prognostic gene lists claimed that different lists do capture similar underlying biological processes and pathways. The present study places under scrutiny the validity of this claim, for two important gene lists that are at the focus of current large-scale validation efforts. We performed careful enrichment analysis, controlling the effects of multiple testing in a manner which takes into account the nested dependent structure of gene ontologies. In contradiction to several previous publications, we find that the only biological process or pathway for which statistically significant concordance can be claimed is cell proliferation, a process whose relevance and prognostic value was well known long before gene expression profiling. We found that the claims reported by others, of wider concordance between the biological processes captured by the two prognostic signatures studied, were found either to be lacking statistical rigor or were in fact based on addressing some other question.

  15. Metformin induces a Senescence-associated gene Signature in Breast Cancer Cells

    Science.gov (United States)

    Williams, Christopher C.; Singleton, Brittany A.; Llopis, Shawn D.; Skripnikova, Elena V.

    2013-01-01

    Diabetic patients taking metformin have lower incidence of breast cancer than those taking other anti-diabetic medications. Additionally, triple negative breast cancer (TNBC), a form of breast cancer disproportionately afflicting premenopausal African American women, shows atypical susceptibility to metformin’s antiproliferative effect. The mechanisms involved in metformin’s function in TNBC has not yet been fully elucidated. Therefore, we sought to identify pathways regulated by metformin in using the MDA-MB-468 TNBC cell model. Metformin dose-dependently caused apoptosis, decreased cell viability, and induced cell morphology/chromatin condensation consistent with the permanent proliferative arrest. Furthermore, gene expression arrays revealed that metformin caused expression of stress markers DDIT3, CYP1A1, and GDF-15 and a concomitant reduction in PTGS1 expression. Our findings show that metformin may affect the viability and proliferative capacity of TNBC by inducing an antiproliferative gene signature, and that metformin may be effective in the treatment/prevention of TNBC. PMID:23395946

  16. Systematic profiling of alternative splicing signature reveals prognostic predictor for ovarian cancer.

    Science.gov (United States)

    Zhu, Junyong; Chen, Zuhua; Yong, Lei

    2018-02-01

    The majority of genes are alternatively spliced and growing evidence suggests that alternative splicing is modified in cancer and is associated with cancer progression. Systematic analysis of alternative splicing signature in ovarian cancer is lacking and greatly needed. We profiled genome-wide alternative splicing events in 408 ovarian serous cystadenocarcinoma (OV) patients in TCGA. Seven types of alternative splicing events were curated and prognostic analyses were performed with predictive models and splicing network built for OV patients. Among 48,049 mRNA splicing events in 10,582 genes, we detected 2,611 alternative splicing events in 2,036 genes which were significant associated with overall survival of OV patients. Exon skip events were the most powerful prognostic factors among the seven types. The area under the curve of the receiver-operator characteristic curve for prognostic predictor, which was built with top significant alternative splicing events, was 0.937 at 2,000 days of overall survival, indicating powerful efficiency in distinguishing patient outcome. Interestingly, splicing correlation network suggested obvious trends in the role of splicing factors in OV. In summary, we built powerful prognostic predictors for OV patients and uncovered interesting splicing networks which could be underlying mechanisms. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. DNA methylation signatures for prediction of biochemical recurrence after radical prostatectomy of clinically localized prostate cancer

    DEFF Research Database (Denmark)

    Haldrup, Christa; Mundbjerg, Kamilla; Vestergaard, Else Marie

    2013-01-01

    Purpose Diagnostic and prognostic tools for prostate cancer (PC) are suboptimal, causing overtreatment of indolent PC and risk of delayed treatment of aggressive PC. Here, we identify six novel candidate DNA methylation markers for PC with promising diagnostic and prognostic potential. Methods...... Microarray-based screening and bisulfite sequencing of 20 nonmalignant and 29 PC tissue specimens were used to identify new candidate DNA hypermethylation markers for PC. Diagnostic and prognostic potential was evaluated in 35 nonmalignant prostate tissue samples, 293 radical prostatectomy (RP) samples...... into low- and high-methylation subgroups, was trained in cohort 1 (HR, 1.91; 95% CI, 1.26 to 2.90) and validated in cohort 2 (HR, 2.33; 95% CI, 1.31 to 4.13). Conclusion We identified six novel candidate DNA methylation markers for PC. C1orf114 hypermethylation and a three-gene methylation signature were...

  18. Strong Signature of Natural Selection within an FHIT Intron Implicated in Prostate Cancer Risk

    Science.gov (United States)

    Ding, Yan; Larson, Garrett; Rivas, Guillermo; Lundberg, Cathryn; Geller, Louis; Ouyang, Ching; Weitzel, Jeffrey; Archambeau, John; Slater, Jerry; Daly, Mary B.; Benson, Al B.; Kirkwood, John M.; O'Dwyer, Peter J.; Sutphen, Rebecca; Stewart, James A.; Johnson, David; Nordborg, Magnus; Krontiris, Theodore G.

    2008-01-01

    Previously, a candidate gene linkage approach on brother pairs affected with prostate cancer identified a locus of prostate cancer susceptibility at D3S1234 within the fragile histidine triad gene (FHIT), a tumor suppressor that induces apoptosis. Subsequent association tests on 16 SNPs spanning approximately 381 kb surrounding D3S1234 in Americans of European descent revealed significant evidence of association for a single SNP within intron 5 of FHIT. In the current study, re-sequencing and genotyping within a 28.5 kb region surrounding this SNP further delineated the association with prostate cancer risk to a 15 kb region. Multiple SNPs in sequences under evolutionary constraint within intron 5 of FHIT defined several related haplotypes with an increased risk of prostate cancer in European-Americans. Strong associations were detected for a risk haplotype defined by SNPs 138543, 142413, and 152494 in all cases (Pearson's χ2 = 12.34, df 1, P = 0.00045) and for the homozygous risk haplotype defined by SNPs 144716, 142413, and 148444 in cases that shared 2 alleles identical by descent with their affected brothers (Pearson's χ2 = 11.50, df 1, P = 0.00070). In addition to highly conserved sequences encompassing SNPs 148444 and 152413, population studies revealed strong signatures of natural selection for a 1 kb window covering the SNP 144716 in two human populations, the European American (π = 0.0072, Tajima's D = 3.31, 14 SNPs) and the Japanese (π = 0.0049, Fay & Wu's H = 8.05, 14 SNPs), as well as in chimpanzees (Fay & Wu's H = 8.62, 12 SNPs). These results strongly support the involvement of the FHIT intronic region in an increased risk of prostate cancer. PMID:18953408

  19. Optimized outcome prediction in breast cancer by combining the 70-gene signature with clinical risk prediction algorithms

    NARCIS (Netherlands)

    Drukker, C.A.; Nijenhuis, M.V.; Bueno de Mesquita, J.M.; Retel, V.P.; Retel, Valesca; van Harten, Willem H.; van Tinteren, H.; Wesseling, J.; Schmidt, M.K.; van 't Veer, L.J.; Sonke, G.S.; Rutgers, E.J.T.; van de Vijver, M.J.; Linn, S.C.

    2014-01-01

    Clinical guidelines for breast cancer treatment differ in their selection of patients at a high risk of recurrence who are eligible to receive adjuvant systemic treatment (AST). The 70-gene signature is a molecular tool to better guide AST decisions. The aim of this study was to evaluate whether

  20. Robustness, scalability, and integration of a wound-response gene expression signature in predicting breast cancer survival

    NARCIS (Netherlands)

    Chang, Howard Y.; Nuyten, Dimitry S. A.; Sneddon, Julie B.; Hastie, Trevor; Tibshirani, Robert; Sørlie, Therese; Dai, Hongyue; He, Yudong D.; van't Veer, Laura J.; Bartelink, Harry; van de Rijn, Matt; Brown, Patrick O.; van de Vijver, Marc J.

    2005-01-01

    Based on the hypothesis that features of the molecular program of normal wound healing might play an important role in cancer metastasis, we previously identified consistent features in the transcriptional response of normal fibroblasts to serum, and used this "wound-response signature" to reveal

  1. Significance of somatic mutations and content alteration of mitochondrial DNA in esophageal cancer

    Directory of Open Access Journals (Sweden)

    Wang Yu-Fen

    2006-04-01

    Full Text Available Abstract Background The roles of mitochondria in energy metabolism, the generation of ROS, aging, and the initiation of apoptosis have implicated their importance in tumorigenesis. In this study we aim to establish the mutation spectrum and to understand the role of somatic mtDNA mutations in esophageal cancer. Methods The entire mitochondrial genome was screened for somatic mutations in 20 pairs (18 esophageal squamous cell carcinomas, one adenosquamous carcinoma and one adenocarcinoma of tumor/surrounding normal tissue of esophageal cancers, using temporal temperature gradient gel electrophoresis (TTGE, followed by direct DNA sequencing to identify the mutations. Results Fourteen somatic mtDNA mutations were identified in 55% (11/20 of tumors analyzed, including 2 novel missense mutations and a frameshift mutation in ND4L, ATP6 subunit, and ND4 genes respectively. Nine mutations (64% were in the D-loop region. Numerous germline variations were found, at least 10 of them were novel and five were missense mutations, some of them occurred in evolutionarily conserved domains. Using real-time quantitative PCR analysis, the mtDNA content was found to increase in some tumors and decrease in others. Analysis of molecular and other clinicopathological findings does not reveal significant correlation between somatic mtDNA mutations and mtDNA content, or between mtDNA content and metastatic status. Conclusion Our results demonstrate that somatic mtDNA mutations in esophageal cancers are frequent. Some missense and frameshift mutations may play an important role in the tumorigenesis of esophageal carcinoma. More extensive biochemical and molecular studies will be necessary to determine the pathological significance of these somatic mutations.

  2. Novel immunohistochemistry-based signatures to predict metastatic site of triple-negative breast cancers.

    Science.gov (United States)

    Klimov, Sergey; Rida, Padmashree Cg; Aleskandarany, Mohammed A; Green, Andrew R; Ellis, Ian O; Janssen, Emiel Am; Rakha, Emad A; Aneja, Ritu

    2017-09-05

    Although distant metastasis (DM) in breast cancer (BC) is the most lethal form of recurrence and the most common underlying cause of cancer related deaths, the outcome following the development of DM is related to the site of metastasis. Triple negative BC (TNBC) is an aggressive form of BC characterised by early recurrences and high mortality. Athough multiple variables can be used to predict the risk of metastasis, few markers can predict the specific site of metastasis. This study aimed at identifying a biomarker signature to predict particular sites of DM in TNBC. A clinically annotated series of 322 TNBC were immunohistochemically stained with 133 biomarkers relevant to BC, to develop multibiomarker models for predicting metastasis to the bone, liver, lung and brain. Patients who experienced metastasis to each site were compared with those who did not, by gradually filtering the biomarker set via a two-tailed t-test and Cox univariate analyses. Biomarker combinations were finally ranked based on statistical significance, and evaluated in multivariable analyses. Our final models were able to stratify TNBC patients into high risk groups that showed over 5, 6, 7 and 8 times higher risk of developing metastasis to the bone, liver, lung and brain, respectively, than low-risk subgroups. These models for predicting site-specific metastasis retained significance following adjustment for tumour size, patient age and chemotherapy status. Our novel IHC-based biomarkers signatures, when assessed in primary TNBC tumours, enable prediction of specific sites of metastasis, and potentially unravel biomarkers previously unknown in site tropism.

  3. Role of BRCA2 mutation status on overall survival among breast cancer patients from Sardinia

    International Nuclear Information System (INIS)

    Budroni, Mario; Palmieri, Giuseppe; Cesaraccio, Rosaria; Coviello, Vincenzo; Sechi, Ornelia; Pirino, Daniela; Cossu, Antonio; Tanda, Francesco; Pisano, Marina; Palomba, Grazia

    2009-01-01

    Germline mutations in BRCA1 or BRCA2 genes have been demonstrated to increase the risk of developing breast cancer. Conversely, the impact of BRCA mutations on prognosis and survival of breast cancer patients is still debated. In this study, we investigated the role of such mutations on breast cancer-specific survival among patients from North Sardinia. Among incident cases during the period 1997–2002, a total of 512 breast cancer patients gave their consent to undergo BRCA mutation screening by DHPLC analysis and automated DNA sequencing. The Hakulinen, Kaplan-Meier, and Cox regression methods were used for both relative survival assessment and statistical analysis. In our series, patients carrying a germline mutation in coding regions and splice boundaries of BRCA1 and BRCA2 genes were 48/512 (9%). Effect on overall survival was evaluated taking into consideration BRCA2 carriers, who represented the vast majority (44/48; 92%) of mutation-positive patients. A lower breast cancer-specific overall survival rate was observed in BRCA2 mutation carriers after the first two years from diagnosis. However, survival rates were similar in both groups after five years from diagnosis. No significant difference was found for age of onset, disease stage, and primary tumour histopathology between the two subsets. In Sardinian breast cancer population, BRCA2 was the most affected gene and the effects of BRCA2 germline mutations on patients' survival were demonstrated to vary within the first two years from diagnosis. After a longer follow-up observation, breast cancer-specific rates of death were instead similar for BRCA2 mutation carriers and non-carriers

  4. Mutation analysis of the negative regulator cyclin G2 in gastric cancer

    African Journals Online (AJOL)

    Jane

    2011-10-24

    Oct 24, 2011 ... Key words: Cyclin G2, gastric cancer, negative regulator, mutation screen. INTRODUCTION ... cerebellum, thymus, spleen, prostate, kidney and the immune ..... and B cell antigen receptor-mediated cell cycle arrest. J. Biol.

  5. Hereditary Breast Cancer: Mutations Within BRCA1 and BRCA2 with Phenotypic Responses

    National Research Council Canada - National Science Library

    Lynch, Henry T

    2000-01-01

    To date we have seventy-three Hereditary Breast/Ovarian Cancer families with identified BRCA1 or BRCA2 genetic mutations, wherein 24 additional cases of slides and tissue blocks have been retrieved...

  6. Analysis of SLX4/FANCP in non-BRCA1/2-mutated breast cancer families

    Directory of Open Access Journals (Sweden)

    Fernández-Rodríguez Juana

    2012-03-01

    Full Text Available Abstract Background Genes that, when mutated, cause Fanconi anemia or greatly increase breast cancer risk encode for proteins that converge on a homology-directed DNA damage repair process. Mutations in the SLX4 gene, which encodes for a scaffold protein involved in the repair of interstrand cross-links, have recently been identified in unclassified Fanconi anemia patients. A mutation analysis of SLX4 in German or Byelorussian familial cases of breast cancer without detected mutations in BRCA1 or BRCA2 has been completed, with globally negative results. Methods The genomic region of SLX4, comprising all exons and exon-intron boundaries, was sequenced in 94 Spanish familial breast cancer cases that match a criterion indicating the potential presence of a highly-penetrant germline mutation, following exclusion of BRCA1 or BRCA2 mutations. Results This mutational analysis revealed extensive genetic variation of SLX4, with 21 novel single nucleotide variants; however, none could be linked to a clear alteration of the protein function. Nonetheless, genotyping 10 variants (nine novel, all missense amino acid changes in a set of controls (138 women and 146 men did not detect seven of them. Conclusions Overall, while the results of this study do not identify clearly pathogenic mutations of SLX4 contributing to breast cancer risk, further genetic analysis, combined with functional assays of the identified rare variants, may be warranted to conclusively assess the potential link with the disease.

  7. Analysis of SLX4/FANCP in non-BRCA1/2-mutated breast cancer families

    International Nuclear Information System (INIS)

    Fernández-Rodríguez, Juana; Schindler, Detlev; Capellá, Gabriel; Brunet, Joan; Lázaro, Conxi; Pujana, Miguel Angel; Quiles, Francisco; Blanco, Ignacio; Teulé, Alex; Feliubadaló, Lídia; Valle, Jesús del; Salinas, Mónica; Izquierdo, Àngel; Darder, Esther

    2012-01-01

    Genes that, when mutated, cause Fanconi anemia or greatly increase breast cancer risk encode for proteins that converge on a homology-directed DNA damage repair process. Mutations in the SLX4 gene, which encodes for a scaffold protein involved in the repair of interstrand cross-links, have recently been identified in unclassified Fanconi anemia patients. A mutation analysis of SLX4 in German or Byelorussian familial cases of breast cancer without detected mutations in BRCA1 or BRCA2 has been completed, with globally negative results. The genomic region of SLX4, comprising all exons and exon-intron boundaries, was sequenced in 94 Spanish familial breast cancer cases that match a criterion indicating the potential presence of a highly-penetrant germline mutation, following exclusion of BRCA1 or BRCA2 mutations. This mutational analysis revealed extensive genetic variation of SLX4, with 21 novel single nucleotide variants; however, none could be linked to a clear alteration of the protein function. Nonetheless, genotyping 10 variants (nine novel, all missense amino acid changes) in a set of controls (138 women and 146 men) did not detect seven of them. Overall, while the results of this study do not identify clearly pathogenic mutations of SLX4 contributing to breast cancer risk, further genetic analysis, combined with functional assays of the identified rare variants, may be warranted to conclusively assess the potential link with the disease

  8. Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer

    NARCIS (Netherlands)

    Peifer, Martin; Fernandez-Cuesta, Lynnette; Sos, Martin L.; George, Julie; Seidel, Danila; Kasper, Lawryn H.; Plenker, Dennis; Leenders, Frauke; Sun, Ruping; Zander, Thomas; Menon, Roopika; Koker, Mirjam; Dahmen, Ilona; Mueller, Christian; Di Cerbo, Vincenzo; Schildhaus, Hans-Ulrich; Altmueller, Janine; Baessmann, Ingelore; Becker, Christian; de Wilde, Bram; Vandesompele, Jo; Boehm, Diana; Ansen, Sascha; Gabler, Franziska; Wilkening, Ines; Heynck, Stefanie; Heuckmann, Johannes M.; Lu, Xin; Carter, Scott L.; Cibulskis, Kristian; Banerji, Shantanu; Getz, Gad; Park, Kwon-Sik; Rauh, Daniel; Gruetter, Christian; Fischer, Matthias; Pasqualucci, Laura; Wright, Gavin; Wainer, Zoe; Russell, Prudence; Petersen, Iver; Chen, Yuan; Stoelben, Erich; Ludwig, Corinna; Schnabel, Philipp; Hoffmann, Hans; Muley, Thomas; Brockmann, Michael; Engel-Riedel, Walburga; Muscarella, Lucia A.; Fazio, Vito M.; Groen, Harry; Timens, Wim; Sietsma, Hannie; Thunnissen, Erik; Smit, Egbert; Heideman, Danielle A. M.; Snijders, Peter J. F.; Cappuzzo, Federico; Ligorio, Claudia; Damiani, Stefania; Field, John; Solberg, Steinar; Brustugun, Odd Terje; Lund-Iversen, Marius; Saenger, Joerg; Clement, Joachim H.; Soltermann, Alex; Moch, Holger; Weder, Walter; Solomon, Benjamin; Soria, Jean-Charles; Validire, Pierre; Besse, Benjamin; Brambilla, Elisabeth; Brambilla, Christian; Lantuejoul, Sylvie; Lorimier, Philippe; Schneider, Peter M.; Hallek, Michael; Pao, William; Meyerson, Matthew; Sage, Julien; Shendure, Jay; Schneider, Robert; Buettner, Reinhard; Wolf, Juergen; Nuernberg, Peter; Perner, Sven; Heukamp, Lukas C.; Brindle, Paul K.; Haas, Stefan; Thomas, Roman K.

    2012-01-01

    Small-cell lung cancer (SCLC) is an aggressive lung tumor subtype with poor prognosis(1-3). We sequenced 29 SCLC exomes, 2 genomes and 15 transcriptomes and found an extremely high mutation rate of 7.4 +/- 1 protein-changing mutations per million base pairs. Therefore, we conducted integrated

  9. The association between smoking and cancer incidence in BRCA1 and BRCA2 mutation carriers.

    Science.gov (United States)

    Ko, Kwang-Pil; Kim, Shana J; Huzarski, Tomasz; Gronwald, Jacek; Lubinski, Jan; Lynch, Henry T; Armel, Susan; Park, Sue K; Karlan, Beth; Singer, Christian F; Neuhausen, Susan L; Narod, Steven A; Kotsopoulos, Joanne

    2018-06-01

    Tobacco smoke is an established carcinogen, but the association between tobacco smoking and cancer risk in BRCA mutation carriers is not clear. The aim of this study was to evaluate prospectively the association between tobacco smoking and cancer incidence in a cohort of BRCA1 and BRCA2 mutation carriers. The study population consisted of unaffected BRCA mutation carriers. Information on lifestyle including smoking histories, reproductive factors, and past medical histories was obtained through questionnaires. Incident cancers were updated biennially via follow-up questionnaires. Hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated using time-dependent Cox regression models. There were 700 incident cancers diagnosed over 26,711 person-years of follow-up. The most frequent cancers seen in BRCA mutation carriers were breast (n = 428; 61%) and ovarian (n = 109; 15%) cancer. Compared to nonsmokers, (ever) smoking was associated with a modest increased risk of all cancers combined (HR = 1.17; 95%CI 1.01-1.37). Women in the highest group of total pack-years (4.3-9.8) had an increased risk of developing any cancer (HR = 1.27; 95%CI 1.04-1.56), breast cancer (HR = 1.33, 95%CI 1.02-1.75), and ovarian cancer (HR = 1.68; 95%CI 1.06-2.67) compared to never smokers. The associations between tobacco smoking and cancer did not differ by BRCA mutation type or by age at diagnosis. This prospective study suggests that tobacco smoking is associated with a modest increase in the risks of breast and ovarian cancer among women with BRCA1 or BRCA2 mutation. © 2018 UICC.

  10. Novel de novo BRCA2 mutation in a patient with a family history of breast cancer

    DEFF Research Database (Denmark)

    Hansen, Thomas V O; Bisgaard, Marie Luise; Jønson, Lars

    2008-01-01

    whole blood. The paternity was determined by single nucleotide polymorphism (SNP) microarray analysis. Parental origin of the de novo mutation was determined by establishing mutation-SNP haplotypes by variant specific PCR, while de novo and mosaic status was investigated by sequencing of DNA from......BACKGROUND: BRCA2 germ-line mutations predispose to breast and ovarian cancer. Mutations are widespread and unclassified splice variants are frequently encountered. We describe the parental origin and functional characterization of a novel de novo BRCA2 splice site mutation found in a patient...... and synthesis of a truncated BRCA2 protein. The aberrant splicing was verified by RT-PCR analysis on RNA isolated from whole blood of the affected patient. The mutation was not found in any of the patient's parents or in the mother's carcinoma, showing it is a de novo mutation. Variant specific PCR indicates...

  11. The Impact of ESR1 Mutations on the Treatment of Metastatic Breast Cancer.

    Science.gov (United States)

    Pejerrey, Sasha M; Dustin, Derek; Kim, Jin-Ah; Gu, Guowei; Rechoum, Yassine; Fuqua, Suzanne A W

    2018-05-07

    After nearly 20 years of research, it is now established that mutations within the estrogen receptor (ER) gene, ESR1, frequently occur in metastatic breast cancer and influence response to hormone therapy. Though early studies presented differing results, sensitive sequencing techniques now show that ESR1 mutations occur at a frequency between 20 and 40% depending on the assay method. Recent studies have focused on several "hot spot mutations," a cluster of mutations found in the hormone-binding domain of the ESR1 gene. Throughout the course of treatment, tumor evolution can occur, and ESR1 mutations emerge and become enriched in the metastatic setting. Sensitive techniques to continually monitor mutant burden in vivo are needed to effectively treat patients with mutant ESR1. The full impact of these mutations on tumor response to different therapies remains to be determined. However, recent studies indicate that mutant-bearing tumors may be less responsive to specific hormonal therapies, and suggest that aromatase inhibitor (AI) therapy may select for the emergence of ESR1 mutations. Additionally, different mutations may respond discretely to targeted therapies. The need for more preclinical mechanistic studies on ESR1 mutations and the development of better agents to target these mutations are urgently needed. In the future, sequential monitoring of ESR1 mutational status will likely direct personalized therapeutic regimens appropriate to each tumor's unique mutational landscape.

  12. Prevalence of BRCA1 and BRCA2 mutations in unselected breast cancer patients from Peru.

    Science.gov (United States)

    Abugattas, J; Llacuachaqui, M; Allende, Y Sullcahuaman; Velásquez, A Arias; Velarde, R; Cotrina, J; Garcés, M; León, M; Calderón, G; de la Cruz, M; Mora, P; Royer, R; Herzog, J; Weitzel, J N; Narod, S A

    2015-10-01

    The prevalence of BRCA1 and BRCA2 mutations among breast cancer patients in Peru has not yet been explored. We enrolled 266 women with breast cancer from a National cancer hospital in Lima, Peru, unselected for age or family history. DNA was screened with a panel of 114 recurrent Hispanic BRCA mutations (HISPANEL). Among the 266 cases, 13 deleterious mutations were identified (11 in BRCA1 and 2 in BRCA2), representing 5% of the total. The average age of breast cancer in the mutation-positive cases was 44 years. BRCA1 185delAG represented 7 of 11 mutations in BRCA1. Other mutations detected in BRCA1 included: two 2080delA, one 943ins10, and one 3878delTA. The BRCA2 3036del4 mutation was seen in two patients. Given the relatively low cost of the HISPANEL test, one should consider offering this test to all Peruvian women with breast or ovarian cancer. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Unambiguous detection of multiple TP53 gene mutations in AAN-associated urothelial cancer in Belgium using laser capture microdissection.

    Directory of Open Access Journals (Sweden)

    Selda Aydin

    Full Text Available In the Balkan and Taiwan, the relationship between exposure to aristolochic acid and risk of urothelial neoplasms was inferred from the A>T genetic hallmark in TP53 gene from malignant cells. This study aimed to characterize the TP53 mutational spectrum in urothelial cancers consecutive to Aristolochic Acid Nephropathy in Belgium. Serial frozen tumor sections from female patients (n=5 exposed to aristolochic acid during weight-loss regimen were alternatively used either for p53 immunostaining or laser microdissection. Tissue areas with at least 60% p53-positive nuclei were selected for microdissecting sections according to p53-positive matching areas. All areas appeared to be carcinoma in situ. After DNA extraction, mutations in the TP53 hot spot region (exons 5-8 were identified using nested-PCR and sequencing. False-negative controls consisted in microdissecting fresh-frozen tumor tissues both from a patient with a Li-Fraumeni syndrome who carried a p53 constitutional mutation, and from KRas mutated adenocarcinomas. To rule out false-positive results potentially generated by microdissection and nested-PCR, a phenacetin-associated urothelial carcinoma and normal fresh ureteral tissues (n=4 were processed with high laser power. No unexpected results being identified, molecular analysis was pursued on malignant tissues, showing at least one mutation in all (six different mutations in two patients, with 13/16 exonic (nonsense, 2; missense, 11 and 3/16 intronic (one splice site mutations. They were distributed as transitions (n=7 or transversions (n=9, with an equal prevalence of A>T and G>T (3/16 each. While current results are in line with A>T prevalence previously reported in Balkan and Taiwan studies, they also demonstrate that multiple mutations in the TP53 hot spot region and a high frequency of G>T transversion appear as a complementary signature reflecting the toxicity of a cumulative dose of aristolochic acid ingested over a short period

  14. A truncating mutation of HDAC2 in human cancers confers resistance to histone deacetylase inhibition

    DEFF Research Database (Denmark)

    Ropero, S; Fraga, MF; Ballestar, E

    2006-01-01

    Disruption of histone acetylation patterns is a common feature of cancer cells, but very little is known about its genetic basis. We have identified truncating mutations in one of the primary human histone deacetylases, HDAC2, in sporadic carcinomas with microsatellite instability and in tumors a...... deacetylase inhibitors. As such drugs may serve as therapeutic agents for cancer, our findings support the use of HDAC2 mutational status in future pharmacogenetic treatment of these individuals....

  15. A novel gene signature for molecular diagnosis of human prostate cancer by RT-qPCR.

    Directory of Open Access Journals (Sweden)

    Federica Rizzi

    Full Text Available Prostate cancer (CaP is one of the most relevant causes of cancer death in Western Countries. Although detection of CaP at early curable stage is highly desirable, actual screening methods present limitations and new molecular approaches are needed. Gene expression analysis increases our knowledge about the biology of CaP and may render novel molecular tools, but the identification of accurate biomarkers for reliable molecular diagnosis is a real challenge. We describe here the diagnostic power of a novel 8-genes signature: ornithine decarboxylase (ODC, ornithine decarboxylase antizyme (OAZ, adenosylmethionine decarboxylase (AdoMetDC, spermidine/spermine N(1-acetyltransferase (SSAT, histone H3 (H3, growth arrest specific gene (GAS1, glyceraldehyde 3-phosphate dehydrogenase (GAPDH and Clusterin (CLU in tumour detection/classification of human CaP.The 8-gene signature was detected by retrotranscription real-time quantitative PCR (RT-qPCR in frozen prostate surgical specimens obtained from 41 patients diagnosed with CaP and recommended to undergo radical prostatectomy (RP. No therapy was given to patients at any time before RP. The bio-bank used for the study consisted of 66 specimens: 44 were benign-CaP paired from the same patient. Thirty-five were classified as benign and 31 as CaP after final pathological examination. Only molecular data were used for classification of specimens. The Nearest Neighbour (NN classifier was used in order to discriminate CaP from benign tissue. Validation of final results was obtained with 10-fold cross-validation procedure. CaP versus benign specimens were discriminated with (80+/-5% accuracy, (81+/-6% sensitivity and (78+/-7% specificity. The method also correctly classified 71% of patients with Gleason score or =7, an important predictor of final outcome.The method showed high sensitivity in a collection of specimens in which a significant portion of the total (13/31, equal to 42% was considered CaP on the basis

  16. Functional examination of MLH1, MSH2, and MSH6 intronic mutations identified in Danish colorectal cancer patients

    DEFF Research Database (Denmark)

    Petersen, Sanne M; Dandanell, Mette; Rasmussen, Lene J

    2013-01-01

    Germ-line mutations in the DNA mismatch repair genes MLH1, MSH2, and MSH6 predispose to the development of colorectal cancer (Lynch syndrome or hereditary nonpolyposis colorectal cancer). These mutations include disease-causing frame-shift, nonsense, and splicing mutations as well as large genomi...

  17. Urinary Tract Cancer in Lynch Syndrome; Increased Risk in Carriers of MSH2 Mutations

    DEFF Research Database (Denmark)

    Joost, Patrick; Therkildsen, Christina; Dominguez-Valentin, Mev

    2015-01-01

    and microsatellite instability in 23% of the tumors. Mutations in MSH2 were overrepresented (73%), and MSH2 mutation carriers were at a significantly increased risk of developing urinary tract cancer compared with individuals with mutations in MLH1 or MSH6. CONCLUSION: Cancers of the upper urinary tract...

  18. Suppression of Cancer Stemness p21-regulating mRNA and microRNA Signatures in Recurrent Ovarian Cancer Patient Samples

    LENUS (Irish Health Repository)

    Gallagher, Michael F

    2012-01-19

    Abstract Background Malignant ovarian disease is characterised by high rates of mortality due to high rates of recurrent chemoresistant disease. Anecdotal evidence indicates this may be due to chemoresistant properties of cancer stem cells (CSCs). However, our understanding of the role of CSCs in recurrent ovarian disease remains sparse. In this study we used gene microarrays and meta-analysis of our previously published microRNA (miRNA) data to assess the involvement of cancer stemness signatures in recurrent ovarian disease. Methods Microarray analysis was used to characterise early regulation events in an embryonal carcinoma (EC) model of cancer stemness. This was then compared to our previously published microarray data from a study of primary versus recurrent ovarian disease. In parallel, meta-analysis was used to identify cancer stemness miRNA signatures in tumor patient samples. Results Microarray analysis demonstrated a 90% difference between gene expression events involved in early regulation of differentiation in murine EC (mEC) and embryonic stem (mES) cells. This contrasts the known parallels between mEC and mES cells in the undifferentiated and well-differentiated states. Genelist comparisons identified a cancer stemness signature set of genes in primary versus recurrent data, a subset of which are known p53-p21 regulators. This signature is present in primary and recurrent or in primary alone but essentially never in recurrent tumors specifically. Meta-analysis of miRNA expression showed a much stronger cancer stemness signature within tumor samples. This miRNA signature again related to p53-p21 regulation and was expressed prominently in recurrent tumors. Our data indicate that the regulation of p53-p21 in ovarian cancer involves, at least partially, a cancer stemness component. Conclusion We present a p53-p21 cancer stemness signature model for ovarian cancer. We propose that this may, at least partially, differentially regulate the p53-p21

  19. Suppression of cancer stemness p21-regulating mRNA and microRNA signatures in recurrent ovarian cancer patient samples

    Directory of Open Access Journals (Sweden)

    Gallagher Michael F

    2012-01-01

    Full Text Available Abstract Background Malignant ovarian disease is characterised by high rates of mortality due to high rates of recurrent chemoresistant disease. Anecdotal evidence indicates this may be due to chemoresistant properties of cancer stem cells (CSCs. However, our understanding of the role of CSCs in recurrent ovarian disease remains sparse. In this study we used gene microarrays and meta-analysis of our previously published microRNA (miRNA data to assess the involvement of cancer stemness signatures in recurrent ovarian disease. Methods Microarray analysis was used to characterise early regulation events in an embryonal carcinoma (EC model of cancer stemness. This was then compared to our previously published microarray data from a study of primary versus recurrent ovarian disease. In parallel, meta-analysis was used to identify cancer stemness miRNA signatures in tumor patient samples. Results Microarray analysis demonstrated a 90% difference between gene expression events involved in early regulation of differentiation in murine EC (mEC and embryonic stem (mES cells. This contrasts the known parallels between mEC and mES cells in the undifferentiated and well-differentiated states. Genelist comparisons identified a cancer stemness signature set of genes in primary versus recurrent data, a subset of which are known p53-p21 regulators. This signature is present in primary and recurrent or in primary alone but essentially never in recurrent tumors specifically. Meta-analysis of miRNA expression showed a much stronger cancer stemness signature within tumor samples. This miRNA signature again related to p53-p21 regulation and was expressed prominently in recurrent tumors. Our data indicate that the regulation of p53-p21 in ovarian cancer involves, at least partially, a cancer stemness component. Conclusion We present a p53-p21 cancer stemness signature model for ovarian cancer. We propose that this may, at least partially, differentially regulate the p

  20. Risk of breast cancer in women with a CHEK2 mutation with and without a family history of breast cancer.

    Science.gov (United States)

    Cybulski, Cezary; Wokołorczyk, Dominika; Jakubowska, Anna; Huzarski, Tomasz; Byrski, Tomasz; Gronwald, Jacek; Masojć, Bartłomiej; Deebniak, Tadeusz; Górski, Bohdan; Blecharz, Paweł; Narod, Steven A; Lubiński, Jan

    2011-10-01

    To estimate the risk of breast cancer in a woman who has a CHEK2 mutation depending on her family history of breast cancer. Seven thousand four hundred ninety-four BRCA1 mutation-negative patients with breast cancer and 4,346 control women were genotyped for four founder mutations in CHEK2 (del5395, IVS2+1G>A, 1100delC, and I157T). A truncating mutation (IVS2+1G>A, 1100delC, or del5395) was present in 227 patients (3.0%) and in 37 female controls (0.8%; odds ratio [OR], 3.6; 95% CI, 2.6 to 5.1). The OR was higher for women with a first- or second-degree relative with breast cancer (OR, 5.0; 95% CI, 3.3 to 7.6) than for women with no family history (OR, 3.3; 95% CI, 2.3 to 4.7). If both a first- and second-degree relative were affected with breast cancer, the OR was 7.3 (95% CI, 3.2 to 16.8). Assuming a baseline risk of 6%, we estimate the lifetime risks for carriers of CHEK2 truncating mutations to be 20% for a woman with no affected relative, 28% for a woman with one second-degree relative affected, 34% for a woman with one first-degree relative affected, and 44% for a woman with both a first- and second-degree relative affected. CHEK2 mutation screening detects a clinically meaningful risk of breast cancer and should be considered in all women with a family history of breast cancer. Women with a truncating mutation in CHEK2 and a positive family history of breast cancer have a lifetime risk of breast cancer of greater than 25% and are candidates for magnetic resonance imaging screening and for tamoxifen chemoprevention.

  1. PIK3CA Mutation in Colorectal Cancer: Relationship with Genetic and Epigenetic Alterations

    Directory of Open Access Journals (Sweden)

    Katsuhiko Nosho

    2008-06-01

    Full Text Available Somatic PIK3CA mutations are often present in colorectal cancer. Mutant PIK3CA activates AKT signaling, which up-regulates fatty acid synthase (FASN. Microsatellite instability (MSI and CpG island methylator phenotype (CIMP are important molecular classifiers in colorectal cancer. However, the relationship between PIK3CA mutation, MSI and CIMP remains uncertain. Using Pyrosequencing technology, we detected PIK3CA mutations in 91 (15% of 590 population-based colorectal cancers. To determine CIMP status, we quantified DNA methylation in eight CIMP-specific promoters [CACNA1G, CDKN2A (p16, CRABP1, IGF2, MLH1, NEUROG1, RUNX3, and SOCS1] by real-time polymerase chain reaction (MethyLight. PIK3CA mutation was significantly associated with mucinous tumors [P = .0002; odds ratio (OR = 2.44], KRAS mutation (P < .0001; OR = 2.68, CIMP-high (P = .03; OR = 2.08, phospho–ribosomal protein S6 expression (P = .002; OR = 2.19, and FASN expression (P = .02; OR = 1.85 and inversely with p53 expression (P = .01; OR = 0.54 and β-catenin (CTNNB1 alteration (P = .004; OR = 0.43. In addition, PIK3CA G-to-A mutations were associated with MGMT loss (P = .001; OR = 3.24 but not with MGMT promoter methylation. In conclusion, PIK3CA mutation is significantly associated with other key molecular events in colorectal cancer, and MGMT loss likely contributes to the development of PIK3CA G>A mutation. In addition, Pyrosequencing is useful in detecting PIK3CA mutation in archival paraffin tumor tissue. PIK3CA mutational data further emphasize heterogeneity of colorectal cancer at the molecular level.

  2. Colorectal cancer patients with low abundance of KRAS mutation may benefit from EGFR antibody therapy.

    Directory of Open Access Journals (Sweden)

    Shaorong Yu

    Full Text Available Epidermal growth factor receptor monoclonal antibody was approved for treatment of metastatic colorectal cancer patients carrying KRAS wild type DNA. However, recent studies showed that patients with KRAS G13D mutation may benefit from EGFR antibody therapy. In this study we tried to explore whether the abundance of KRAS mutation could affect the efficacy of EGFR antibody therapy. We firstly established a PNA-PCR method which could calculate the percentage of KRAS mutation in total DNA and proved its ability on 47 colorectal cancer samples bearing KRAS mutations. Then we analyzed the correlation between the abundance of KRAS mutations and efficacy of EGFR antibody therapy in another 35 metastatic colorectal cancer patients. We proved that PNA-PCR assay could calculate the abundance of KRAS mutation and the percentage of mutant DNA in tumor cells varied a lot (10.8%∼98.3% on the 47 colorectal cancer patients. The efficacy of EGFR antibody correlated with the abundance of KRAS mutations: in the KRAS mutation less than 30% group, the disease control rate was 44.4% (4/9; the disease control rate of 30∼80% group was 5.6% (1/18 and the >80% group was 12.5% (1/8 (P = 0.038. In summary, our study showed that PNA-PCR method could easily detect the percentage of KRAS mutation in tumor cells and colorectal cancer patients with low abundance of KRAS mutation might benefit from EGFR antibody therapy.

  3. Cancer risk and clinicopathological characteristics of thyroid nodules harboring thyroid-stimulating hormone receptor gene mutations.

    Science.gov (United States)

    Mon, Sann Y; Riedlinger, Gregory; Abbott, Collette E; Seethala, Raja; Ohori, N Paul; Nikiforova, Marina N; Nikiforov, Yuri E; Hodak, Steven P

    2018-05-01

    Thyroid-stimulating hormone receptor (TSHR) gene mutations play a critical role in thyroid cell proliferation and function. They are found in 20%-82% of hyperfunctioning nodules, hyperfunctioning follicular thyroid cancers (FTC), and papillary thyroid cancers (PTC). The diagnostic importance of TSHR mutation testing in fine needle aspiration (FNA) specimens remains unstudied. To examine the association of TSHR mutations with the functional status and surgical outcomes of thyroid nodules, we evaluated 703 consecutive thyroid FNA samples with indeterminate cytology for TSHR mutations using next-generation sequencing. Testing for EZH1 mutations was performed in selected cases. The molecular diagnostic testing was done as part of standard of care treatment, and did not require informed consent. TSHR mutations were detected in 31 (4.4%) nodules and were located in exons 281-640, with codon 486 being the most common. Allelic frequency ranged from 3% to 45%. Of 16 cases (12 benign, 3 FTC, 1 PTC) with surgical correlation, 15 had solitary TSHR mutations and 1 PTC had comutation with BRAF V600E. Hyperthyroidism was confirmed in all 3 FTC (2 overt, 1 subclinical). Of 5 nodules with solitary TSHR mutations detected at high allelic frequency, 3 (60%) were FTC. Those at low allelic frequency (3%-22%) were benign. EZH1 mutations were detected in 2 of 4 TSHR-mutant malignant nodules and neither of 2 benign nodules. We report that TSHR mutations occur in ∼5% thyroid nodules in a large consecutive series with indeterminate cytology. TSHR mutations may be associated with an increased cancer risk when present at high allelic frequency, even when the nodule is hyperfunctioning. Benign nodules were however most strongly correlated with TSHR mutations at low allelic frequency. © 2018 Wiley Periodicals, Inc.

  4. The Effect of Reproductive Factors on Breast Cancer Presentation in Women Who Are BRCA Mutation Carrier.

    Science.gov (United States)

    Kim, Ju-Yeon; Moon, Hyeong-Gon; Kang, Young-Joon; Han, Wonshik; Noh, Woo-Chul; Jung, Yongsik; Moon, Byung-In; Kang, Eunyoung; Park, Sung-Shin; Lee, Min Hyuk; Park, Bo Young; Lee, Jong Won; Noh, Dong-Young

    2017-09-01

    Germline mutations in the BRCA1 and BRCA2 genes confer increased risks for breast cancers. However, the clinical presentation of breast cancer among women who are carriers of the BRCA1 or BRCA2 ( BRCA1/2 carriers) mutations is heterogenous. We aimed to identify the effects of the reproductive histories of women with the BRCA1/2 mutations on the clinical presentation of breast cancer. We retrospectively analyzed clinical data on women with proven BRCA1 and BRCA2 mutations who were recruited to the Korean Hereditary Breast Cancer study, from 2007 to 2014. Among the 736 women who were BRCA1/2 mutation carriers, a total of 483 women had breast cancers. Breast cancer diagnosis occurred at significantly younger ages in women who experienced menarche at ≤14 years of age, compared to those who experienced menarche at >14 years of age (37.38±7.60 and 43.30±10.11, respectively, p women with the BRCA2 mutation. The prevalence of advanced stages (stage II or III vs. stage I) of disease in parous women was higher than in nulliparous women (68.5% vs. 55.2%, p =0.043). This association was more pronounced in women with the BRCA2 mutation (hazard ratio, 2.67; p =0.014). Our results suggest that reproductive factors, such as the age of onset of menarche and the presence of parity, are associated with the clinical presentation patterns of breast cancer in BRCA1/2 mutation carriers.

  5. Male breast cancer in BRCA1 and BRCA2 mutation carriers

    DEFF Research Database (Denmark)

    Silvestri, Valentina; Barrowdale, Daniel; Mulligan, Anna Marie

    2016-01-01

    BACKGROUND: BRCA1 and, more commonly, BRCA2 mutations are associated with increased risk of male breast cancer (MBC). However, only a paucity of data exists on the pathology of breast cancers (BCs) in men with BRCA1/2 mutations. Using the largest available dataset, we determined whether MBCs...... arising in BRCA1/2 mutation carriers display specific pathologic features and whether these features differ from those of BRCA1/2 female BCs (FBCs). METHODS: We characterised the pathologic features of 419 BRCA1/2 MBCs and, using logistic regression analysis, contrasted those with data from 9675 BRCA1...

  6. Incidence and Outcome of BRCA Mutations in Unselected Patients with Triple Receptor-Negative Breast Cancer.

    LENUS (Irish Health Repository)

    Gonzalez-Angulo, Ana M

    2011-03-01

    To investigate the incidence of germline and somatic BRCA1\\/2 mutations in unselected patients with triple-negative breast cancer (TNBC) and determine the prognostic significance of carrying a mutation. Methods: DNA was obtained from 77 TNBC and normal tissues. BRCA1\\/2 exons\\/flanking regions were sequenced from tumor and patients classified as mutant or wild type (WT). Sequencing was repeated from normal tissue to identify germline and somatic mutations. Patient characteristics were compared with chi-square. Survival was estimated by Kaplan-Meier method and compared with log-rank. Cox proportional hazards models were fit to determine the independent association of mutation status with outcome.

  7. ATM/RB1 mutations predict shorter overall survival in urothelial cancer.

    Science.gov (United States)

    Yin, Ming; Grivas, Petros; Emamekhoo, Hamid; Mendiratta, Prateek; Ali, Siraj; Hsu, JoAnn; Vasekar, Monali; Drabick, Joseph J; Pal, Sumanta; Joshi, Monika

    2018-03-30

    Mutations of DNA repair genes, e.g. ATM/RB1 , are frequently found in urothelial cancer (UC) and have been associated with better response to cisplatin-based chemotherapy. Further external validation of the prognostic value of ATM/RB1 mutations in UC can inform clinical decision making and trial designs. In the discovery dataset, ATM/RB1 mutations were present in 24% of patients and were associated with shorter OS (adjusted HR 2.67, 95% CI, 1.45-4.92, p = 0.002). There was a higher mutation load in patients carrying ATM/RB1 mutations (median mutation load: 6.7 versus 5.5 per Mb, p = 0.072). In the validation dataset, ATM/RB1 mutations were present in 22.2% of patients and were non-significantly associated with shorter OS (adjusted HR 1.87, 95% CI, 0.97-3.59, p = 0.06) and higher mutation load (median mutation load: 8.1 versus 7.2 per Mb, p = 0.126). Exome sequencing data of 130 bladder UC patients from The Cancer Genome Atlas (TCGA) dataset were analyzed as a discovery cohort to determine the prognostic value of ATM/RB1 mutations. Results were validated in an independent cohort of 81 advanced UC patients. Cox proportional hazard regression analysis was performed to calculate the hazard ratio (HR) and 95% confidence interval (CI) to compare overall survival (OS). ATM/RB1 mutations may be a biomarker of poor prognosis in unselected UC patients and may correlate with higher mutational load. Further studies are required to determine factors that can further stratify prognosis and evaluate predictive role of ATM/RB1 mutation status to immunotherapy and platinum-based chemotherapy.

  8. Concurrent mutation in exons 1 and 2 of the K-ras oncogene in colorectal cancer

    Directory of Open Access Journals (Sweden)

    Fiorella Guadagni

    2012-01-01

    Full Text Available The K-ras gene is frequently mutated in colorectal cancer and has been associated with tumor initiation and progression; approximately 90% of the activating mutations are found in codons 12 and 13 of exon 1 and just under 5% in codon 61 located in exon 2. These mutations determine single aminoacidic substitutions in the GTPase pocket leading to a block of the GTP hydrolytic activity of the K-ras p21 protein, and therefore to its constitutive activation. Point mutations in sites of the K-ras gene, other than codons 12, 13 and 61, and other types of genetic alterations, may occur in a minority of cases, such as in the less frequent cases of double mutations in the K-ras gene. However, all mutations in this gene, even those which occur in non-canonical sites or double mutations, are relevant oncogenic alterations in colorectal cancer and may underlie K-ras pathway hyperactivation. In the present study, we report the case of a patient with colorectal cancer presenting a concurrent point mutation in exons 1 and 2 of the K-ras gene, a GGT to TGT substitution (Glycine to Cysteine at codon 12, and a GAC to AAC substitution (Aspartic Acid to Asparagine at codon 57. In addition, we found in the same patient’s sample a silent polymorphism at codon 11 (Ala11Ala of exon 1. (Folia Histochemica et Cytobiologica 2011; Vol. 49, No. 4, pp. 729–733

  9. Coexistence of K-ras mutations and HPV infection in colon cancer

    Directory of Open Access Journals (Sweden)

    Tezol Ayda

    2006-05-01

    Full Text Available Abstract Background Activation of the ras genes or association with human papillomavirus infection have been extensively studied in colorectal cancer. However, the correlation between K-ras mutations and HPV in colorectal cancer has not been investigated yet. In this study we aimed to investigate the presence of K-ras mutations and their correlation with HPV infection in colon cancer. Methods K-ras mutations were analyzed by a mutagenic PCR assay and digestion with specific restriction enzymes to distinguish the wild-type and mutant codons. HPV infection was analyzed by PCR amplification and hybridization with specific probes by Southern blotting. Stattistical analyses were performed by the chi-square and Fisher's exact tests Results HPV gene fragments were detected in 43 tumors and 17 normal tissue samples. HPV 18 was the prevalent type in the tumor tissue. A mutation at codon 12 of the K-ras gene was present in 31 patients. 56% of the HPV-positive tumors also harbored a K-ras mutation. Codon 13 mutations were not observed. These data indicate that infection with high risk HPV types and mutational activation of the K-ras gene are frequent events in colorectal carcinogenesis. Conclusion Our findings suggest that mutational activation of the K-ras gene is a common event in colon carcinogenesis and that HPV infection may represent an important factor in the development of the premalignant lesions leading to the neoplastic phenotype.

  10. Screening of 1331 Danish breast and/or ovarian cancer families identified 40 novel BRCA1 and BRCA2 mutations

    DEFF Research Database (Denmark)

    Hansen, Thomas V O; Jønson, Lars; Steffensen, Ane Y

    2011-01-01

    Germ-line mutations in the tumour suppressor genes BRCA1 and BRCA2 predispose to breast and ovarian cancer. Since 1999 we have performed mutational screening of breast and/or ovarian cancer patients in East Denmark. During this period we have identified 40 novel sequence variations in BRCA1...... and BRCA2 in high risk breast and/or ovarian cancer families. The mutations were detected via pre-screening using dHPLC or high-resolution melting and direct sequencing. We identified 16 variants in BRCA1, including 9 deleterious frame-shift mutations, 2 intronic variants, 4 missense mutations, and 1......, the presumed significance of the missense mutations was predicted in silico using the align GVGD algorithm. In conclusion, the mutation screening identified 40 novel variants in the BRCA1 and BRCA2 genes and thereby extends the knowledge of the BRCA1/BRCA2 mutation spectrum. Nineteen of the mutations were...

  11. Uncommon EGFR mutations in cytological specimens of 1,874 newly diagnosed Indonesian lung cancer patients

    Science.gov (United States)

    Syahruddin, Elisna; Wulandari, Laksmi; Sri Muktiati, Nunuk; Rima, Ana; Soeroso, Noni; Ermayanti, Sabrina; Levi, Michael; Hidajat, Heriawaty; Widjajahakim, Grace; Utomo, Ahmad Rusdan Handoyo

    2018-01-01

    Purpose We aimed to evaluate the distribution of individual epidermal growth factor receptor (EGFR) mutation subtypes found in routine cytological specimens. Patients and methods A retrospective audit was performed on EGFR testing results of 1,874 consecutive cytological samples of newly diagnosed or treatment-naïve Indonesian lung cancer patients (years 2015–2016). Testing was performed by ISO15189 accredited central laboratory. Results Overall test failure rate was 5.1%, with the highest failure (7.1%) observed in pleural effusion and lowest (1.6%) in needle aspiration samples. EGFR mutation frequency was 44.4%. Tyrosine kinase inhibitor (TKI)-sensitive common EGFR mutations (ins/dels exon 19, L858R) and uncommon mutations (G719X, T790M, L861Q) contributed 57.1% and 29%, respectively. Approximately 13.9% of mutation-positive patients carried a mixture of common and uncommon mutations. Women had higher EGFR mutation rate (52.9%) vs men (39.1%; pcytological techniques yielded similar success rate to detect EGFR mutations. Uncommon EGFR mutations were frequent events in Indonesian lung cancer patients. PMID:29615847

  12. NMD Microarray Analysis for Rapid Genome-Wide Screen of Mutated Genes in Cancer

    Directory of Open Access Journals (Sweden)

    Maija Wolf

    2005-01-01

    Full Text Available Gene mutations play a critical role in cancer development and progression, and their identification offers possibilities for accurate diagnostics and therapeutic targeting. Finding genes undergoing mutations is challenging and slow, even in the post-genomic era. A new approach was recently developed by Noensie and Dietz to prioritize and focus the search, making use of nonsense-mediated mRNA decay (NMD inhibition and microarray analysis (NMD microarrays in the identification of transcripts containing nonsense mutations. We combined NMD microarrays with array-based CGH (comparative genomic hybridization in order to identify inactivation of tumor suppressor genes in cancer. Such a “mutatomics” screening of prostate cancer cell lines led to the identification of inactivating mutations in the EPHB2 gene. Up to 8% of metastatic uncultured prostate cancers also showed mutations of this gene whose loss of function may confer loss of tissue architecture. NMD microarray analysis could turn out to be a powerful research method to identify novel mutated genes in cancer cell lines, providing targets that could then be further investigated for their clinical relevance and therapeutic potential.

  13. PSA response signatures - a powerful new prognostic indicator after radiation for prostate cancer?

    International Nuclear Information System (INIS)

    Denham, James W.; Lamb, David S.; Joseph, David; Matthews, John; Atkinson, Chris; Spry, Nigel A.; Duchesne, Gillian; Ebert, Martin; Steigler, Allison; D'Este, Catherine

    2009-01-01

    Background: We sought to determine whether inter-patient variations in pattern of PSA changes after radiation exist and, if so, are they prognostically significant. Methods: In the Trans-Tasman Radiation Oncology Group (TROG) 96.01 randomized controlled trial, patients with T2b,c,3,4 N0 prostate cancer (PC) were randomised to 0, 3 or 6 months maximal androgen deprivation prior to 66 Gy to the prostate and seminal vesicles (XRT). Patterns of anatomical site of failure were one of the trial endpoints. Serial serum PSA's were mandated at all follow-up visits. Pattern recognition software was developed to characterize PSA response 'signatures' (PRS) after therapy in individual patients. Results: By 2000, 270 eligible patients were randomised to radiation alone. Individual patient PSA values were observed to descend after radiation according to one of two characteristic 'signatures': single exponential (PRS Type 1), non-exponential (PRS Type 2). Compared to PRS Type 1, men with PRS Type 2 (50% of the group) had lower PSA nadir (nPSA) levels (p < .0001), longer doubling times on relapse (p = .006) and significantly lower rates of local (hazard ratio [HR]: 0.47, 95% confidence interval [0.30-0.75], p = .0014) and distant failure (HR: 0.25[0.13-0.46], p < .0001), death due to PC (HR: 0.20[0.10-0.42], p < .0001) and death due to any cause (HR: 0.37 [0.23-0.60], p < .0001). PRS retained its powerful prognostic significance in Cox models that incorporated all key pre-treatment covariates and nPSA. Conclusions: PRS reflect the presence of tumor phenotypes that vary substantially in their clinical behavior and response to XRT. Molecular characterization is now necessary

  14. Guanine holes are prominent targets for mutation in cancer and inherited disease.

    Directory of Open Access Journals (Sweden)

    Albino Bacolla

    Full Text Available Single base substitutions constitute the most frequent type of human gene mutation and are a leading cause of cancer and inherited disease. These alterations occur non-randomly in DNA, being strongly influenced by the local nucleotide sequence context. However, the molecular mechanisms underlying such sequence context-dependent mutagenesis are not fully understood. Using bioinformatics, computational and molecular modeling analyses, we have determined the frequencies of mutation at G • C bp in the context of all 64 5'-NGNN-3' motifs that contain the mutation at the second position. Twenty-four datasets were employed, comprising >530,000 somatic single base substitutions from 21 cancer genomes, >77,000 germline single-base substitutions causing or associated with human inherited disease and 16.7 million benign germline single-nucleotide variants. In several cancer types, the number of mutated motifs correlated both with the free energies of base stacking and the energies required for abstracting an electron from the target guanines (ionization potentials. Similar correlations were also evident for the pathological missense and nonsense germline mutations, but only when the target guanines were located on the non-transcribed DNA strand. Likewise, pathogenic splicing mutations predominantly affected positions in which a purine was located on the non-transcribed DNA strand. Novel candidate driver mutations and tissue-specific mutational patterns were also identified in the cancer datasets. We conclude that electron transfer reactions within the DNA molecule contribute to sequence context-dependent mutagenesis, involving both somatic driver and passenger mutations in cancer, as well as germline alterations causing or associated with inherited disease.

  15. Experiences from treatment-predictive KRAS testing; high mutation frequency in rectal cancers from females and concurrent mutations in the same tumor

    DEFF Research Database (Denmark)

    Jönsson, Mats; Ekstrand, Anna; Edekling, Thomas

    2009-01-01

    . METHODS: We used a real-time PCR based method to determine KRAS mutations in 136 colorectal cancers with mutations identified in 53 (39%) tumors. RESULTS: KRAS mutations were significantly more often found in rectal cancer (21/38, 55%) than in colon cancer (32/98, 33%) (P = 0.02). This finding...... was explained by marked differences mutation rates in female patients who showed mutations in 33% of the colon cancers and in 67% of the rectal cancers (P = 0.01). Concurrent KRAS mutations were identified in three tumors; two colorectal cancers harbored Gly12Asp/Gly13Asp and Gly12Cys/Gly13Asp and a third tumor...... carried Gly12Cys/Gly12Asp in an adenomatous component and additionally acquired Gly12Val in the invasive component. CONCLUSION: The demonstration of a particularly high KRAS mutation frequency among female rectal cancer patients suggests that this subset is the least likely to respond to anti...

  16. Ovarian cancer susceptibility alleles and risk of ovarian cancer in BRCA1 and BRCA2 mutation carriers

    DEFF Research Database (Denmark)

    Ramus, Susan J; Antoniou, Antonis C; Kuchenbaecker, Karoline B

    2012-01-01

    Germline mutations in BRCA1 and BRCA2 are associated with increased risks of breast and ovarian cancer. A genome-wide association study (GWAS) identified six alleles associated with risk of ovarian cancer for women in the general population. We evaluated four of these loci as potential modifiers ...

  17. Ovarian cancer susceptibility alleles and risk of ovarian cancer in BRCA1 and BRCA2 mutation carriers

    NARCIS (Netherlands)

    Ramus, Susan J.; Antoniou, Antonis C.; Kuchenbaecker, Karoline B.; Soucy, Penny; Beesley, Jonathan; Chen, Xiaoqing; McGuffog, Lesley; Sinilnikova, Olga M.; Healey, Sue; Barrowdale, Daniel; Lee, Andrew; Thomassen, Mads; Gerdes, Anne-Marie; Kruse, Torben A.; Jensen, Uffe Birk; Skytte, Anne-Bine; Caligo, Maria A.; Liljegren, Annelie; Lindblom, Annika; Olsson, Håkan; Kristoffersson, Ulf; Stenmark-Askmalm, Marie; Melin, Beatrice; Domchek, Susan M.; Nathanson, Katherine L.; Rebbeck, Timothy R.; Jakubowska, Anna; Lubinski, Jan; Jaworska, Katarzyna; Durda, Katarzyna; Złowocka, Elżbieta; Gronwald, Jacek; Huzarski, Tomasz; Byrski, Tomasz; Cybulski, Cezary; Toloczko-Grabarek, Aleksandra; Osorio, Ana; Benitez, Javier; Duran, Mercedes; Tejada, Maria-Isabel; Hamann, Ute; Rookus, Matti; van Leeuwen, Flora E.; Aalfs, Cora M.; Meijers-Heijboer, Hanne E. J.; van Asperen, Christi J.; van Roozendaal, K. E. P.; Hoogerbrugge, Nicoline; Collée, J. Margriet; Kriege, Mieke; van der Luijt, Rob B.; Peock, Susan; Frost, Debra; Ellis, Steve D.; Platte, Radka; Fineberg, Elena; Evans, D. Gareth; Lalloo, Fiona; Jacobs, Chris; Eeles, Ros; Adlard, Julian; Davidson, Rosemarie; Eccles, Diana; Cole, Trevor; Cook, Jackie; Paterson, Joan; Douglas, Fiona; Brewer, Carole; Hodgson, Shirley; Morrison, Patrick J.; Walker, Lisa; Porteous, Mary E.; Kennedy, M. John; Pathak, Harsh; Godwin, Andrew K.; Stoppa-Lyonnet, Dominique; Caux-Moncoutier, Virginie; de Pauw, Antoine; Gauthier-Villars, Marion; Mazoyer, Sylvie; Léoné, Mélanie; Calender, Alain; Lasset, Christine; Bonadona, Valérie; Hardouin, Agnès; Berthet, Pascaline; Bignon, Yves-Jean; Uhrhammer, Nancy; Faivre, Laurence; Loustalot, Catherine; Buys, Saundra; Daly, Mary; Miron, Alex; Terry, Mary Beth; Chung, Wendy K.; John, Esther M.; Southey, Melissa; Goldgar, David; Singer, Christian F.; tea, Muy-Kheng; Pfeiler, Georg; Fink-Retter, Anneliese; Hansen, Thomas v O.; Ejlertsen, Bent; Johannsson, Oskar Th; Offit, Kenneth; Kirchhoff, Tomas; Gaudet, Mia M.; Vijai, Joseph; Robson, Mark; Piedmonte, Marion; Phillips, Kelly-Anne; van Le, Linda; Hoffman, James S.; Ewart Toland, Amanda; Montagna, Marco; Tognazzo, Silvia; Imyanitov, Evgeny; Issacs, Claudine; Janavicius, Ramunas; Lazaro, Conxi; Blanco, Iganacio; Tornero, Eva; Navarro, Matilde; Moysich, Kirsten B.; Karlan, Beth Y.; Gross, Jenny; Olah, Edith; Vaszko, Tibor; teo, Soo-Hwang; Ganz, Patricia A.; Beattie, Mary S.; Dorfling, Cecelia M.; van Rensburg, Elizabeth J.; Diez, Orland; Kwong, Ava; Schmutzler, Rita K.; Wappenschmidt, Barbara; Engel, Christoph; Meindl, Alfons; Ditsch, Nina; Arnold, Norbert; Heidemann, Simone; Niederacher, Dieter; Preisler-Adams, Sabine; Gadzicki, Dorotehea; Varon-Mateeva, Raymonda; Deissler, Helmut; Gehrig, Andrea; Sutter, Christian; Kast, Karin; Fiebig, Britta; Schäfer, Dieter; Caldes, Trinidad; de la Hoya, Miguel; Nevanlinna, Heli; Aittomäki, Kristiina; Plante, Marie; Spurdle, Amanda B.; Neuhausen, Susan L.; Ding, Yuan Chun; Wang, Xianshu; Lindor, Noralane; Fredericksen, Zachary; Pankratz, V. Shane; Peterlongo, Paolo; Manoukian, Siranoush; Peissel, Bernard; Zaffaroni, Daniela; Bonanni, Bernardo; Bernard, Loris; Dolcetti, Riccardo; Papi, Laura; Ottini, Laura; Radice, Paolo; Greene, Mark H.; Mai, Phuong L.; Andrulis, Irene L.; Glendon, Gord; Ozcelik, Hilmi; Pharoah, Paul D. P.; Gayther, Simon A.; Simard, Jacques; Easton, Douglas F.; Couch, Fergus J.; Chenevix-Trench, Georgia; Miedzybrodzka, Zosia; Gregory, Helen; Morrison, Patrick; Jeffers, Lisa; Ong, Kai-Ren; Hoffman, Jonathan; Donaldson, Alan; James, Margaret; Downing, Sarah; Taylor, Amy; Murray, Alexandra; Rogers, Mark T.; McCann, Emma; Barton, David; Porteous, Mary; Drummond, Sarah; Kivuva, Emma; Searle, Anne; Goodman, Selina; Hill, Kathryn; Murday, Victoria; Bradshaw, Nicola; Snadden, Lesley; Longmuir, Mark; Watt, Catherine; Gibson, Sarah; Haque, Eshika; Tobias, Ed; Duncan, Alexis; Izatt, Louise; Langman, Caroline; Whaite, Anna; Dorkins, Huw; Barwell, Julian; Serra-Feliu, Gemma; Ellis, Ian; Houghton, Catherine; Taylor, Jane; Side, Lucy; Male, Alison; Berlin, Cheryl; Eason, Jacqueline; Collier, Rebecca; Claber, Oonagh; Jobson, Irene; McLeod, Diane; Halliday, Dorothy; Durell, Sarah; Stayner, Barbara; Shanley, Susan; Rahman, Nazneen; Houlston, Richard; Bancroft, Elizabeth; D'Mello, Lucia; Page, Elizabeth; Ardern-Jones, Audrey; Kohut, Kelly; Wiggins, Jennifer; Castro, Elena; Mitra, Anita; Robertson, Lisa; Quarrell, Oliver; Bardsley, Cathryn; Goff, Sheila; Brice, Glen; Winchester, Lizzie; Eddy, Charlotte; Tripathi, Vishakha; Attard, Virginia; Lucassen, Anneke; Crawford, Gillian; McBride, Donna; Smalley, Sarah; Sinilnikova, Olga; Barjhoux, Laure; Verny-Pierre, Carole; Giraud, Sophie; Léone, Mélanie; Buecher, Bruno; Houdayer, Claude; Moncoutier, Virginie; Belotti, Muriel; Tirapo, Carole; Bressac-de-Paillerets, Brigitte; Remenieras, Audrey; Byrede, Véronique; Caron, Olivier; Lenoir, Gilbert; Urhammer, Nancy; Sobol, Hagay; Bourdon, Violaine; Noguchi, Tetsuro; Eisinger, François; Coulet, Florence; Colas, Chrystelle; Soubrier, Florent; Coupier, Isabelle; Pujol, Pascal; Peyrat, Jean-Philippe; Fournier, Joëlle; Révilliion, Françoise; Vennin, Philippe; Adenis, Claude; Rouleau, Etienne; Lidereau, Rosette; Demange, Liliane; Nogues, Catherine; Muller, Danièle; Fricker, Jean-Pierre; Barouk-Simonet, Emmanuelle; Bonnet, Françoise; Bubien, Virginie; Sevenet, Nicolas; Longy, Michel; Toulas, Christine; Guimbaud, Rosine; Gladieff, Laurence; Feillel, Viviane; Leroux, Dominique; Dreyfus, Hélène; Rebischung, Christine; Peysselon, Megalie; Coron, Fanny; Prieur, Fabienne; Lebrun, Marine; Kientz, Caroline; Frénay, Marc; Vénat-Bouvet, Laurence; Delnatte, Capucine; Mortemousque, Isabelle; Lynch, Henry T.; Snyder, Carrie L.; Hogervorst, F. B. L.; Verhoef, S.; Verheus, M.; van't Veer, L. J.; van Leeuwen, F. E.; Collée, M.; van den Ouweland, A. M. W.; Jager, A.; Hooning, M. J.; Tilanus-Linthorst, M. M. A.; Seynaeve, C.; van Asperen, C. J.; Wijnen, J. T.; Vreeswijk, M. P.; Tollenaar, R. A.; Devilee, P.; Ligtenberg, M. J.; Hoogerbrugge, N.; Ausems, M. G.; van der Luijt, R. B.; van Os, T. A.; Gille, J. J. P.; Waisfisz, Q.; Gomez-Garcia, E. B.; van Roozendaal, C. E.; Blok, Marinus J.; Caanen, B.; Oosterwijk, J. C.; van der Hout, A. H.; Mourits, M. J.; Vasen, H. F.; Thorne, Heather; Niedermayr, Eveline; Gill, Mona; Collins, Lucine; Gokgoz, Nalan; Selander, Teresa; Weerasooriya, Nayana; Karlsson, Per; Nordlilng, Margareta; Bergman, Annika; Einbeigi, Zakaria; Liedgren, Sigrun; Borg, Åke; Loman, Niklas; Soller, Maria; Jernström, Helena; Harbst, Katja; Henriksson, Karin; Arver, Brita; von Wachenfeldt, Anna; Barbany-Bustinza, Gisela; Rantala, Johanna; Grönberg, Henrik; Stattin, Eva-Lena; Emanuelsson, Monica; Ehrencrona, Hans; Rosenquist, Richard; Dahl, Niklas

    2012-01-01

    Germline mutations in BRCA1 and BRCA2 are associated with increased risks of breast and ovarian cancer. A genome-wide association study (GWAS) identified six alleles associated with risk of ovarian cancer for women in the general population. We evaluated four of these loci as potential modifiers of

  18. High Yield of Pathogenic Germline Mutations Causative or Likely Causative of the Cancer Phenotype in Selected Children with Cancer

    NARCIS (Netherlands)

    Diets, Illja J.; Waanders, Esme; Ligtenberg, Marjolijn J.; van Bladel, Diede A. G.; Kamping, Eveline J.; Hoogerbrugge, Peter M.; Hopman, Saskia; Olderode-Berends, Maran J.; Gerkes, Erica H.; Koolen, David A.; Marcelis, Carlo; Santen, Gijs W.; van Belzen, Martine J.; Mordaunt, Dylan; McGregor, Lesley; Thompson, Elizabeth; Kattamis, Antonis; Pastorczak, Agata; Mlynarski, Wojciech; Ilencikova, Denisa; Vulto-van Silfhout, Anneke; Gardeitchik, Thatjana; de Bont, Eveline S.; Loeffen, Jan; Wagner, Anja; Mensenkamp, Arjen R.; Kuiper, Roland P.; Hoogerbrugge, Nicoline; Jongmans, Marjolijn C.

    2018-01-01

    Purpose: In many children with cancer and characteristics suggestive of a genetic predisposition syndrome, the genetic cause is still unknown. We studied the yield of pathogenic mutations by applying whole-exome sequencing on a selected cohort of children with cancer. Experimental Design: To

  19. High Yield of Pathogenic Germline Mutations Causative or Likely Causative of the Cancer Phenotype in Selected Children with Cancer

    NARCIS (Netherlands)

    Diets, I.J.; Waanders, E.; Ligtenberg, M.J.L.; Bladel, D.A.G. van; Kamping, E.J.; Hoogerbrugge, P.M.; Hopman, S.; Olderode-Berends, M.J.; Gerkes, E.H.; Koolen, D.A.; Marcelis, C.L.; Santen, G.W.E.; Belzen, M.J. van; Mordaunt, D.; McGregor, L.; Thompson, E.; Kattamis, A.; Pastorczak, A.; Mlynarski, W.; Ilencikova, D.; Vulto-van Silfhout, A.T.; Gardeitchik, T.; Bont, E.S. de; Loeffen, J.; Wagner, A.; Mensenkamp, A.R.; Kuiper, R.P.; Hoogerbrugge, N.; Jongmans, M.C.

    2018-01-01

    Purpose: In many children with cancer and characteristics suggestive of a genetic predisposition syndrome, the genetic cause is still unknown. We studied the yield of pathogenic mutations by applying whole-exome sequencing on a selected cohort of children with cancer.Experimental Design: To identify

  20. TGFBR2 and BAX mononucleotide tract mutations, microsatellite instability, and prognosis in 1072 colorectal cancers.

    Directory of Open Access Journals (Sweden)

    Kaori Shima

    Full Text Available Mononucleotide tracts in the coding regions of the TGFBR2 and BAX genes are commonly mutated in microsatellite instability-high (MSI-high colon cancers. The receptor TGFBR2 plays an important role in the TGFB1 (transforming growth factor-β, TGF-β signaling pathway, and BAX plays a key role in apoptosis. However, a role of TGFBR2 or BAX mononucleotide mutation in colorectal cancer as a prognostic biomarker remains uncertain.We utilized a database of 1072 rectal and colon cancers in two prospective cohort studies (the Nurses' Health Study and the Health Professionals Follow-up Study. Cox proportional hazards model was used to compute mortality hazard ratio (HR, adjusted for clinical, pathological and molecular features including the CpG island methylator phenotype (CIMP, LINE-1 methylation, and KRAS, BRAF and PIK3CA mutations. MSI-high was observed in 15% (162/1072 of all colorectal cancers. TGFBR2 and BAX mononucleotide mutations were detected in 74% (117/159 and 30% (48/158 of MSI-high tumors, respectively. In Kaplan-Meier analysis as well as univariate and multivariate Cox regression analyses, compared to microsatellite stable (MSS/MSI-low cases, MSI-high cases were associated with superior colorectal cancer-specific survival [adjusted HR, 0.34; 95% confidence interval (CI, 0.20-0.57] regardless of TGFBR2 or BAX mutation status. Among MSI-high tumors, TGFBR2 mononucleotide mutation was associated with CIMP-high independent of other variables [multivariate odds ratio, 3.57; 95% CI, 1.66-7.66; p = 0.0011].TGFBR2 or BAX mononucleotide mutations are not associated with the patient survival outcome in MSI-high colorectal cancer. Our data do not support those mutations as prognostic biomarkers (beyond MSI in colorectal carcinoma.

  1. Prediction of Breast and Prostate Cancer Risks in Male BRCA1 and BRCA2 Mutation Carriers Using Polygenic Risk Scores

    DEFF Research Database (Denmark)

    Lecarpentier, Julie; Silvestri, Valentina; Kuchenbaecker, Karoline B.

    2017-01-01

    Purpose BRCA1/2 mutations increase the risk of breast and prostate cancer in men. Common genetic variants modify cancer risks for female carriers of BRCA1/2 mutations. We investigated-for the first time to our knowledge-associations of common genetic variants with breast and prostate cancer risks...

  2. Genetic variation at 9p22.2 and ovarian cancer risk for BRCA1 and BRCA2 mutation carriers

    DEFF Research Database (Denmark)

    Ramus, Susan J; Kartsonaki, Christiana; Gayther, Simon A

    2011-01-01

    Background Germline mutations in the BRCA1 and BRCA2 genes are associated with increased risks of breast and ovarian cancers. Although several common variants have been associated with breast cancer susceptibility in mutation carriers, none have been associated with ovarian cancer susceptibility....

  3. Genetic variation at 9p22.2 and ovarian cancer risk for BRCA1 and BRCA2 mutation carriers

    DEFF Research Database (Denmark)

    Ramus, Susan J; Kartsonaki, Christiana; Gayther, Simon A

    2011-01-01

    Germline mutations in the BRCA1 and BRCA2 genes are associated with increased risks of breast and ovarian cancers. Although several common variants have been associated with breast cancer susceptibility in mutation carriers, none have been associated with ovarian cancer susceptibility. A genome-w...

  4. Fat and K-ras mutations in sporadic colorectal cancer in The Netherlands Cohort Study

    NARCIS (Netherlands)

    Brink, M.; Weijenberg, M.P.; Goeij, A.F.P.M. de; Schouten, L.J.; Koedijk, F.D.H.; Roemen, G.M.J.M.; Lentjes, M.H.F.M.; Bruïne, A.P. de; Goldbohm, R.A.; Brandt, P.A. van den

    2004-01-01

    Associations between dietary intake of various fats and specific K-ras mutations in colorectal cancer (CRC) were investigated within the framework of The Netherlands Cohort Study on diet and cancer (NLCS). After 7.3 years of follow-up and with exclusion of the first 2.3 years, 448 colon and 160

  5. The Splicing Efficiency of Activating HRAS Mutations Can Determine Costello Syndrome Phenotype and Frequency in Cancer

    DEFF Research Database (Denmark)

    Hartung, Anne-Mette; Swensen, Jeff; Uriz, Inaki E

    2016-01-01

    by the efficiency of exon 2 inclusion resulting from the different HRAS mutations. Finally, we show that a splice switching oligonucleotide (SSO) that blocks access to the critical ESE causes exon 2 skipping and halts proliferation of cancer cells. This unravels a potential for development of new anti......-cancer therapies based on SSO-mediated HRAS exon 2 skipping....

  6. Reproductive and hormonal factors, and ovarian cancer risk for BRCA1 and BRCA2 mutation carriers:

    DEFF Research Database (Denmark)

    Antoniou, Antonis C; Rookus, Matti; Andrieu, Nadine

    2009-01-01

    carriers seemed to be greater among more recent users. Tubal ligation was associated with a reduced risk of ovarian cancer for BRCA1 carriers (hazard ratio, 0.42; 95% confidence intervals, 0.22-0.80; P = 0.008). The number of ovarian cancer cases in BRCA2 mutation carriers was too small to draw definitive...

  7. Ancient Genes Establish Stress-Induced Mutation as a Hallmark of Cancer

    NARCIS (Netherlands)

    Cisneros, L; Bussey, K; Orr, A; Miočević, M.; Lineweaver, C; Davies, Paul

    2017-01-01

    Cancer is sometimes depicted as a reversion to single cell behavior in cells adapted to live in a multicellular assembly. If this is the case, one would expect that mutation in cancer disrupts functional mechanisms that suppress cell-level traits detrimental to multicellularity. Such mechanisms

  8. An oligonucleotide-tagged microarray for routine diagnostics of colon cancer by genotyping KRAS mutations

    DEFF Research Database (Denmark)

    Liu, Yuliang; Guðnason, Haukur; Li, Yiping

    2014-01-01

    Colorectal cancer (CRC) is one of the most prevalent types of cancer, causing significant morbidity and mortality worldwide. CRC is curable if diagnosed at an early stage. Mutations in the oncogene KRAS play a critical role in early development of CRC. Detection of activated KRAS is of diagnostic...

  9. Mutational analysis of the BRCA1 gene in 30 Czech ovarian cancer ...

    Indian Academy of Sciences (India)

    Ovarian cancer is one of the most severe of oncological diseases. Inherited mutations in cancer susceptibility genes play a causal role in 5–10% of newly diagnosed tumours. BRCA1 and BRCA2 gene alterations are found in the majority of these cases. The aim of this study was to analyse the BRCA1 gene in the ovarian ...

  10. BRAF mutation-specific promoter methylation of FOX genes in colorectal cancer

    NARCIS (Netherlands)

    E.H.J. van Roon (Eddy); A. Boot (Arnoud); A.A. Dihal (Ashwin); R.F. Ernst (Robert); T. van Wezel (Tom); H. Morreau (Hans); J.M. Boer (Judith)

    2013-01-01

    textabstractBackground: Cancer-specific hypermethylation of (promoter) CpG islands is common during the tumorigenesis of colon cancer. Although associations between certain genetic aberrations, such as BRAF mutation and microsatellite instability, and the CpG island methylator phenotype (CIMP), have

  11. Profile of TP53 gene mutations in sinonasal cancer

    DEFF Research Database (Denmark)

    Holmila, Reetta; Bornholdt, Jette; Suitiala, Tuula

    2010-01-01

    databases for head and neck squamous cell carcinoma (24%). Characteristically, in our SNC series, the mutations were scattered over a large number of codons, codon 248 being the most frequent target of base substitution. Codon 135 was the second most frequently mutated codon; this nucleotide position has...

  12. Spectrum of EGFR gene mutations in Vietnamese patients with non-small cell lung cancer.

    Science.gov (United States)

    Vu, Hoang Anh; Xinh, Phan Thi; Ha, Hua Thi Ngoc; Hanh, Ngo Thi Tuyet; Bach, Nguyen Duc; Thao, Doan Thi Phuong; Dat, Ngo Quoc; Trung, Nguyen Sao

    2016-03-01

    Epidermal growth factor receptor (EGFR) mutational status is a crucial biomarker for prediction of response to tyrosine kinase inhibitors in patients with non-small cell lung cancer (NSCLC). Although these mutations have been well characterized in other countries, little is known about the frequency or spectrum of EGFR mutations in Vietnamese NSCLC patients. Using Sanger DNA sequencing, we investigated mutations in EGFR exons 18-21 from 332 patients diagnosed with NSCLC at University of Medicine and Pharmacy, Ho Chi Minh City, Vietnam. DNA was extracted from formalin-fixed, paraffin-embedded tissues, followed by PCR amplification and sequencing. EGFR mutations were detected in 135 samples (40.7%), of which eight samples carried double mutations. In total, 46 different types of EGFR mutations were found, including six novel mutations (p.K713E, p.K714R, p.P794S, p.R803W, p.P848S, and p.K867E). Among the four exons investigated, exon 19 was most frequently mutated (63 out of 332 patients, 19%), with the p.E746_A750del appearing in 43 samples. Exon 21 was mutated in 56 samples (16.9%), of which 47 were p.L858R. Each of exons 18 and 20 was mutated in 12 samples (3.6%). The frequency of EGFR mutations was higher in females than in males (48.9% vs 35%, P = 0.012), but not statistically different between adenocarcinomas and other histological types of NSCLC (41.3% vs 34.5%, P = 0.478). DNA sequencing detected EGFR mutations with high frequency and revealed a broad spectrum of mutation type in Vietnamese patients with NSCLC. © 2015 Wiley Publishing Asia Pty Ltd.

  13. Radioprotection of IDH1-Mutated Cancer Cells by the IDH1-Mutant Inhibitor AGI-5198.

    Science.gov (United States)

    Molenaar, Remco J; Botman, Dennis; Smits, Myrthe A; Hira, Vashendriya V; van Lith, Sanne A; Stap, Jan; Henneman, Peter; Khurshed, Mohammed; Lenting, Krissie; Mul, Adri N; Dimitrakopoulou, Dionysia; van Drunen, Cornelis M; Hoebe, Ron A; Radivoyevitch, Tomas; Wilmink, Johanna W; Maciejewski, Jaroslaw P; Vandertop, W Peter; Leenders, William P; Bleeker, Fonnet E; van Noorden, Cornelis J

    2015-11-15

    Isocitrate dehydrogenase 1 (IDH1) is mutated in various types of human cancer to IDH1(R132H), a structural alteration that leads to catalysis of α-ketoglutarate to the oncometabolite D-2-hydroxyglutarate. In this study, we present evidence that small-molecule inhibitors of IDH1(R132H) that are being developed for cancer therapy may pose risks with coadministration of radiotherapy. Cancer cells heterozygous for the IDH1(R132H) mutation exhibited less IDH-mediated production of NADPH, such that after exposure to ionizing radiation (IR), there were higher levels of reactive oxygen species, DNA double-strand breaks, and cell death compared with IDH1 wild-type cells. These effects were reversed by the IDH1(R132H) inhibitor AGI-5198. Exposure of IDH1 wild-type cells to D-2-hydroxyglutarate was sufficient to reduce IDH-mediated NADPH production and increase IR sensitivity. Mechanistic investigations revealed that the radiosensitivity of heterozygous cells was independent of the well-described DNA hypermethylation phenotype in IDH1-mutated cancers. Thus, our results argue that altered oxidative stress responses are a plausible mechanism to understand the radiosensitivity of IDH1-mutated cancer cells. Further, they offer an explanation for the relatively longer survival of patients with IDH1-mutated tumors, and they imply that administration of IDH1(R132H) inhibitors in these patients may limit irradiation efficacy in this setting. ©2015 American Association for Cancer Research.

  14. Identification of mutated driver pathways in cancer using a multi-objective optimization model.

    Science.gov (United States)

    Zheng, Chun-Hou; Yang, Wu; Chong, Yan-Wen; Xia, Jun-Feng

    2016-05-01

    New-generation high-throughput technologies, including next-generation sequencing technology, have been extensively applied to solve biological problems. As a result, large cancer genomics projects such as the Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium are producing large amount of rich and diverse data in multiple cancer types. The identification of mutated driver genes and driver pathways from these data is a significant challenge. Genome aberrations in cancer cells can be divided into two types: random 'passenger mutation' and functional 'driver mutation'. In this paper, we introduced a Multi-objective Optimization model based on a Genetic Algorithm (MOGA) to solve the maximum weight submatrix problem, which can be employed to identify driver genes and driver pathways promoting cancer proliferation. The maximum weight submatrix problem defined to find mutated driver pathways is based on two specific properties, i.e., high coverage and high exclusivity. The multi-objective optimization model can adjust the trade-off between high coverage and high exclusivity. We proposed an integrative model by combining gene expression data and mutation data to improve the performance of the MOGA algorithm in a biological context. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Targeted prostate cancer screening in BRCA1 and BRCA2 mutation carriers

    DEFF Research Database (Denmark)

    Bancroft, Elizabeth K; Page, Elizabeth C; Castro, Elena

    2014-01-01

    AND PARTICIPANTS: We recruited men aged 40-69 yr with germline BRCA1/2 mutations and a control group of men who have tested negative for a pathogenic BRCA1 or BRCA2 mutation known to be present in their families. All men underwent prostate-specific antigen (PSA) testing at enrollment, and those men with PSA >3 ng......BACKGROUND: Men with germline breast cancer 1, early onset (BRCA1) or breast cancer 2, early onset (BRCA2) gene mutations have a higher risk of developing prostate cancer (PCa) than noncarriers. IMPACT (Identification of Men with a genetic predisposition to ProstAte Cancer: Targeted screening....../ml were offered prostate biopsy. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: PSA levels, PCa incidence, and tumour characteristics were evaluated. The Fisher exact test was used to compare the number of PCa cases among groups and the differences among disease types. RESULTS AND LIMITATIONS: We...

  16. Distinct effects of the recurrent Mlh1G67R mutation on MMR functions, cancer, and meiosis

    OpenAIRE

    Avdievich, Elena; Reiss, Cora; Scherer, Stefan J.; Zhang, Yongwei; Maier, Sandra M.; Jin, Bo; Hou, Harry; Rosenwald, Andreas; Riedmiller, Hubertus; Kucherlapati, Raju; Cohen, Paula E.; Edelmann, Winfried; Kneitz, Burkhard

    2008-01-01

    Mutations in the human DNA mismatch repair (MMR) gene MLH1 are associated with hereditary nonpolyposis colorectal cancer (Lynch syndrome, HNPCC) and a significant proportion of sporadic colorectal cancer. The inactivation of MLH1 results in the accumulation of somatic mutations in the genome of tumor cells and resistance to the genotoxic effects of a variety of DNA damaging agents. To study the effect of MLH1 missense mutations on cancer susceptibility, we generated a mouse line carrying the ...

  17. Comprehensive Genomic Profiling of 282 Pediatric Low- and High-Grade Gliomas Reveals Genomic Drivers, Tumor Mutational Burden, and Hypermutation Signatures.

    Science.gov (United States)

    Johnson, Adrienne; Severson, Eric; Gay, Laurie; Vergilio, Jo-Anne; Elvin, Julia; Suh, James; Daniel, Sugganth; Covert, Mandy; Frampton, Garrett M; Hsu, Sigmund; Lesser, Glenn J; Stogner-Underwood, Kimberly; Mott, Ryan T; Rush, Sarah Z; Stanke, Jennifer J; Dahiya, Sonika; Sun, James; Reddy, Prasanth; Chalmers, Zachary R; Erlich, Rachel; Chudnovsky, Yakov; Fabrizio, David; Schrock, Alexa B; Ali, Siraj; Miller, Vincent; Stephens, Philip J; Ross, Jeffrey; Crawford, John R; Ramkissoon, Shakti H

    2017-12-01

    Pediatric brain tumors are the leading cause of death for children with cancer in the U.S. Incorporating next-generation sequencing data for both pediatric low-grade (pLGGs) and high-grade gliomas (pHGGs) can inform diagnostic, prognostic, and therapeutic decision-making. We performed comprehensive genomic profiling on 282 pediatric gliomas (157 pHGGs, 125 pLGGs), sequencing 315 cancer-related genes and calculating the tumor mutational burden (TMB; mutations per megabase [Mb]). In pLGGs, we detected genomic alterations (GA) in 95.2% (119/125) of tumors. BRAF was most frequently altered (48%; 60/125), and FGFR1 missense (17.6%; 22/125), NF1 loss of function (8.8%; 11/125), and TP53 (5.6%; 7/125) mutations were also detected. Rearrangements were identified in 35% of pLGGs, including KIAA1549-BRAF , QKI-RAF1 , FGFR3-TACC3 , CEP85L-ROS1 , and GOPC-ROS1 fusions. Among pHGGs, GA were identified in 96.8% (152/157). The genes most frequently mutated were TP53 (49%; 77/157), H3F3A (37.6%; 59/157), ATRX (24.2%; 38/157), NF1 (22.2%; 35/157), and PDGFRA (21.7%; 34/157). Interestingly, most H3F3A mutations (81.4%; 35/43) were the variant K28M. Midline tumor analysis revealed H3F3A mutations (40%; 40/100) consisted solely of the K28M variant. Pediatric high-grade gliomas harbored oncogenic EML4-ALK , DGKB-ETV1 , ATG7-RAF1 , and EWSR1-PATZ1 fusions. Six percent (9/157) of pHGGs were hypermutated (TMB >20 mutations per Mb; range 43-581 mutations per Mb), harboring mutations deleterious for DNA repair in MSH6, MSH2, MLH1, PMS2, POLE , and POLD1 genes (78% of cases). Comprehensive genomic profiling of pediatric gliomas provides objective data that promote diagnostic accuracy and enhance clinical decision-making. Additionally, TMB could be a biomarker to identify pediatric glioblastoma (GBM) patients who may benefit from immunotherapy. By providing objective data to support diagnostic, prognostic, and therapeutic decision-making, comprehensive genomic profiling is necessary for

  18. A novel BRCA-1 mutation in Arab kindred from east Jerusalem with breast and ovarian cancer

    Directory of Open Access Journals (Sweden)

    Nissan Aviram

    2007-01-01

    Full Text Available Abstract Background The incidence of breast cancer (BC in Arab women is lower compared to the incidence in the Jewish population in Israel; still, it is the most common malignancy among Arab women. There is a steep rise in breast cancer incidence in the Arab population in Israel over the last 10 years that can be attributed to life style changes. But, the younger age of BC onset in Arab women compared with that of the Jewish population is suggestive of a genetic component in BC occurrence in that population. Methods We studied the family history of 31 women of Palestinian Arab (PA origin affected with breast (n = 28, ovarian (n = 3 cancer. We used denaturing high performance liquid chromatography (DHPLC to screen for mutations of BRCA1/2 in 4 women with a personal and family history highly suggestive of genetic predisposition. Results A novel BRCA1 mutation, E1373X in exon 12, was found in a patient affected with ovarian cancer. Four of her family members, 3 BC patients and a healthy individual were consequently also found to carry this mutation. Of the other 27 patients, which were screened for this specific mutation none was found to carry it. Conclusion We found a novel BRCA1 mutation in a family of PA origin with a history highly compatible with BRCA1 phenotype. This mutation was not found in additional 30 PA women affected with BC or OC. Therefore full BRCA1/2 screening should be offered to patients with characteristic family history. The significance of the novel BRCA1 mutation we identified should be studied in larger population. However, it is likely that the E1373X mutation is not a founder frequent mutation in the PA population.

  19. Identification of a Variety of Mutations in Cancer Predisposition Genes in Patients With Suspected Lynch Syndrome.

    Science.gov (United States)

    Yurgelun, Matthew B; Allen, Brian; Kaldate, Rajesh R; Bowles, Karla R; Judkins, Thaddeus; Kaushik, Praveen; Roa, Benjamin B; Wenstrup, Richard J; Hartman, Anne-Renee; Syngal, Sapna

    2015-09-01

    Multigene panels are commercially available tools for hereditary cancer risk assessment that allow for next-generation sequencing of numerous genes in parallel. However, it is not clear if these panels offer advantages over traditional genetic testing. We investigated the number of cancer predisposition gene mutations identified by parallel sequencing in individuals with suspected Lynch syndrome. We performed germline analysis with a 25-gene, next-generation sequencing panel using DNA from 1260 individuals who underwent clinical genetic testing for Lynch syndrome from 2012 through 2013. All patients had a history of Lynch syndrome-associated cancer and/or polyps. We classified all identified germline alterations for pathogenicity and calculated the frequencies of pathogenic mutations and variants of uncertain clinical significance (VUS). We also analyzed data on patients' personal and family history of cancer, including fulfillment of clinical guidelines for genetic testing. Of the 1260 patients, 1112 met National Comprehensive Cancer Network (NCCN) criteria for Lynch syndrome testing (88%; 95% confidence interval [CI], 86%-90%). Multigene panel testing identified 114 probands with Lynch syndrome mutations (9.0%; 95% CI, 7.6%-10.8%) and 71 with mutations in other cancer predisposition genes (5.6%; 95% CI, 4.4%-7.1%). Fifteen individuals had mutations in BRCA1 or BRCA2; 93% of these met the NCCN criteria for Lynch syndrome testing and 33% met NCCN criteria for BRCA1 and BRCA2 analysis (P = .0017). An additional 9 individuals carried mutations in other genes linked to high lifetime risks of cancer (5 had mutations in APC, 3 had bi-allelic mutations in MUTYH, and 1 had a mutation in STK11); all of these patients met NCCN criteria for Lynch syndrome testing. A total of 479 individuals had 1 or more VUS (38%; 95% CI, 35%-41%). In individuals with suspected Lynch syndrome, multigene panel testing identified high-penetrance mutations in cancer predisposition genes, many

  20. Epidermal growth factor receptor (EGFR) mutations in lung cancer: preclinical and clinical data

    Energy Technology Data Exchange (ETDEWEB)

    Jorge, S.E.D.C.; Kobayashi, S.S.; Costa, D.B. [Harvard Medical School, Beth Israel Deaconess Medical Center, Department of Medicine, Division of Hematology/Oncology, Boston, MA (United States)

    2014-09-05

    Lung cancer leads cancer-related mortality worldwide. Non-small-cell lung cancer (NSCLC), the most prevalent subtype of this recalcitrant cancer, is usually diagnosed at advanced stages, and available systemic therapies are mostly palliative. The probing of the NSCLC kinome has identified numerous nonoverlapping driver genomic events, including epidermal growth factor receptor (EGFR) gene mutations. This review provides a synopsis of preclinical and clinical data on EGFR mutated NSCLC and EGFR tyrosine kinase inhibitors (TKIs). Classic somatic EGFR kinase domain mutations (such as L858R and exon 19 deletions) make tumors addicted to their signaling cascades and generate a therapeutic window for the use of ATP-mimetic EGFR TKIs. The latter inhibit these kinases and their downstream effectors, and induce apoptosis in preclinical models. The aforementioned EGFR mutations are stout predictors of response and augmentation of progression-free survival when gefitinib, erlotinib, and afatinib are used for patients with advanced NSCLC. The benefits associated with these EGFR TKIs are limited by the mechanisms of tumor resistance, such as the gatekeeper EGFR-T790M mutation, and bypass activation of signaling cascades. Ongoing preclinical efforts for treating resistance have started to translate into patient care (including clinical trials of the covalent EGFR-T790M TKIs AZD9291 and CO-1686) and hold promise to further boost the median survival of patients with EGFR mutated NSCLC.

  1. Epidermal growth factor receptor (EGFR) mutations in lung cancer: preclinical and clinical data

    International Nuclear Information System (INIS)

    Jorge, S.E.D.C.; Kobayashi, S.S.; Costa, D.B.

    2014-01-01

    Lung cancer leads cancer-related mortality worldwide. Non-small-cell lung cancer (NSCLC), the most prevalent subtype of this recalcitrant cancer, is usually diagnosed at advanced stages, and available systemic therapies are mostly palliative. The probing of the NSCLC kinome has identified numerous nonoverlapping driver genomic events, including epidermal growth factor receptor (EGFR) gene mutations. This review provides a synopsis of preclinical and clinical data on EGFR mutated NSCLC and EGFR tyrosine kinase inhibitors (TKIs). Classic somatic EGFR kinase domain mutations (such as L858R and exon 19 deletions) make tumors addicted to their signaling cascades and generate a therapeutic window for the use of ATP-mimetic EGFR TKIs. The latter inhibit these kinases and their downstream effectors, and induce apoptosis in preclinical models. The aforementioned EGFR mutations are stout predictors of response and augmentation of progression-free survival when gefitinib, erlotinib, and afatinib are used for patients with advanced NSCLC. The benefits associated with these EGFR TKIs are limited by the mechanisms of tumor resistance, such as the gatekeeper EGFR-T790M mutation, and bypass activation of signaling cascades. Ongoing preclinical efforts for treating resistance have started to translate into patient care (including clinical trials of the covalent EGFR-T790M TKIs AZD9291 and CO-1686) and hold promise to further boost the median survival of patients with EGFR mutated NSCLC

  2. Germline mutation in RNASEL predicts increased risk of head and neck, uterine cervix and breast cancer.

    Directory of Open Access Journals (Sweden)

    Bo Eskerod Madsen

    Full Text Available UNLABELLED: THE BACKGROUND: Ribonuclease L (RNASEL, encoding the 2'-5'-oligoadenylate (2-5A-dependent RNase L, is a key enzyme in the interferon induced antiviral and anti-proliferate pathway. Mutations in RNASEL segregate with the disease in prostate cancer families and specific genotypes are associated with an increased risk of prostate cancer. Infection by human papillomavirus (HPV is the major risk factor for uterine cervix cancer and for a subset of head and neck squamous cell carcinomas (HNSCC. HPV, Epstein Barr virus (EBV and sequences from mouse mammary tumor virus (MMTV have been detected in breast tumors, and the presence of integrated SV40 T/t antigen in breast carcinomas correlates with an aggressive phenotype and poor prognosis. A genetic predisposition could explain why some viral infections persist and induce cancer, while others disappear spontaneously. This points at RNASEL as a strong susceptibility gene. METHODOLOGY/PRINCIPAL FINDINGS: To evaluate the implication of an abnormal activity of RNase L in the onset and development of viral induced cancers, the study was initiated by searching for germline mutations in patients diagnosed with uterine cervix cancer. The rationale behind is that close to 100% of the cervix cancer patients have a persistent HPV infection, and if a defective RNase L were responsible for the lack of ability to clear the HPV infection, we would expect to find a wide spectrum of mutations in these patients, leading to a decreased RNase L activity. The HPV genotype was established in tumor DNA from 42 patients diagnosed with carcinoma of the uterine cervix and somatic tissue from these patients was analyzed for mutations by direct sequencing of all coding and regulatory regions of RNASEL. Fifteen mutations, including still uncharacterized, were identified. The genotype frequencies of selected single nucleotide polymorphisms (SNPs established in the cervix cancer patients were compared between 382 patients

  3. Prediction of the prognosis of breast cancer in routine histologic specimens using a simplified, low-cost gene expression signature

    DEFF Research Database (Denmark)

    Marcell, S.A.; Balazs, A.; Emese, A.

    2013-01-01

    Prediction of the prognosis of breast cancer in routine histologic specimens using a simplified, low-cost gene expression signature Background: Grade 2 breast carcinomas do not form a uniform prognostic group. Aim: To extend the number of patients and the investigated genes of a previously...... grade 2 breast carcinomas into prognostic groups. Gene expression was investigated by polymerase chain reaction in 249 formalin-fixed, paraffin-embedded breast tumors. The results were correlated with relapse-free survival. Results: Histologically grade 2 carcinomas were split into good and a poor...... identified prognostic signature described by the authors that reflect chromosomal instability in order to refine characterization of grade 2 breast cancers and identify driver genes. Methods: Using publicly available databases, the authors selected 9 target and 3 housekeeping genes that are capable to divide...

  4. K-ras mutations in sinonasal cancers in relation to wood dust exposure

    International Nuclear Information System (INIS)

    Bornholdt, Jette; Vogel, Ulla; Husgafvel-Pursiainen, Kirsti; Wallin, Håkan; Hansen, Johnni; Steiniche, Torben; Dictor, Michael; Antonsen, Annemarie; Wolff, Henrik; Schlünssen, Vivi; Holmila, Reetta; Luce, Danièle

    2008-01-01

    Cancer in the sinonasal tract is rare, but persons who have been occupationally exposed to wood dust have a substantially increased risk. It has been estimated that approximately 3.6 million workers are exposed to inhalable wood dust in EU. In previous small studies of this cancer, ras mutations were suggested to be related to wood dust exposure, but these studies were too limited to detect statistically significant associations. We examined 174 cases of sinonasal cancer diagnosed in Denmark in the period from 1991 to 2001. To ensure uniformity, all histological diagnoses were carefully reviewed pathologically before inclusion. Paraffin embedded tumour samples from 58 adenocarcinomas, 109 squamous cell carcinomas and 7 other carcinomas were analysed for K-ras codon 12, 13 and 61 point mutations by restriction fragment length polymorphisms and direct sequencing. Information on occupational exposure to wood dust and to potential confounders was obtained from telephone interviews and from registry data. Among the patients in this study, exposure to wood dust was associated with a 21-fold increased risk of having an adenocarcinoma than a squamous cell carcinoma compared to unexposed [OR = 21.0, CI = 8.0–55.0]. K-ras was mutated in 13% of the adenocarcinomas (seven patients) and in 1% of squamous cell carcinomas (one patient). Of these eight mutations, five mutations were located in the codon 12. The exact sequence change of remaining three could not be identified unambiguously. Among the five identified mutations, the G→A transition was the most common, and it was present in tumour tissue from two wood dust exposed adenocarcinoma patients and one patient with unknown exposure. Previously published studies of sinonasal cancer also identify the GGT → GAT transition as the most common and often related to wood dust exposure. Patients exposed to wood dust seemed more likely to develop adenocarcinoma compared to squamous cell carcinomas. K-ras mutations were detected

  5. Plasma circulating tumor DNA as an alternative to metastatic biopsies for mutational analysis in breast cancer.

    Science.gov (United States)

    Rothé, F; Laes, J-F; Lambrechts, D; Smeets, D; Vincent, D; Maetens, M; Fumagalli, D; Michiels, S; Drisis, S; Moerman, C; Detiffe, J-P; Larsimont, D; Awada, A; Piccart, M; Sotiriou, C; Ignatiadis, M

    2014-10-01

    Molecular screening programs use next-generation sequencing (NGS) of cancer gene panels to analyze metastatic biopsies. We interrogated whether plasma could be used as an alternative to metastatic biopsies. The Ion AmpliSeq™ Cancer Hotspot Panel v2 (Ion Torrent), covering 2800 COSMIC mutations from 50 cancer genes was used to analyze 69 tumor (primary/metastases) and 31 plasma samples from 17 metastatic breast cancer patients. The targeted coverage for tumor DNA was ×1000 and for plasma cell-free DNA ×25 000. Whole blood normal DNA was used to exclude germline variants. The Illumina technology was used to confirm observed mutations. Evaluable NGS results were obtained for 60 tumor and 31 plasma samples from 17 patients. When tumor samples were analyzed, 12 of 17 (71%, 95% confidence interval (CI) 44% to 90%) patients had ≥1 mutation (median 1 mutation per patient, range 0-2 mutations) in either p53, PIK3CA, PTEN, AKT1 or IDH2 gene. When plasma samples were analyzed, 12 of 17 (71%, 95% CI: 44-90%) patients had ≥1 mutation (median 1 mutation per patient, range 0-2 mutations) in either p53, PIK3CA, PTEN, AKT1, IDH2 and SMAD4. All mutations were confirmed. When we focused on tumor and plasma samples collected at the same time-point, we observed that, in four patients, no mutation was identified in either tumor or plasma; in nine patients, the same mutations was identified in tumor and plasma; in two patients, a mutation was identified in tumor but not in plasma; in two patients, a mutation was identified in plasma but not in tumor. Thus, in 13 of 17 (76%, 95% CI 50% to 93%) patients, tumor and plasma provided concordant results whereas in 4 of 17 (24%, 95% CI 7% to 50%) patients, the results were discordant, providing complementary information. Plasma can be prospectively tested as an alternative to metastatic biopsies in molecular screening programs. © The Author 2014. Published by Oxford University Press on behalf of the European Society for Medical Oncology

  6. A mutational comparison of adult and adolescent and young adult (AYA) colon cancer.

    Science.gov (United States)

    Tricoli, James V; Boardman, Lisa A; Patidar, Rajesh; Sindiri, Sivasish; Jang, Jin S; Walsh, William D; McGregor, Paul M; Camalier, Corinne E; Mehaffey, Michele G; Furman, Wayne L; Bahrami, Armita; Williams, P Mickey; Lih, Chih-Jian; Conley, Barbara A; Khan, Javed

    2018-03-01

    It is possible that the relative lack of progress in treatment outcomes among adolescent and young adult (AYA) patients with cancer is caused by a difference in disease biology compared with the corresponding diseases in younger and older individuals. There is evidence that colon cancer is more aggressive and has a poorer prognosis in AYA patients than in older adult patients. To further understand the molecular basis for this difference, whole-exome sequencing was conducted on a cohort of 30 adult, 30 AYA, and 2 pediatric colon cancers. A statistically significant difference in mutational frequency was observed between AYA and adult samples in 43 genes, including ROBO1, MYC binding protein 2 (MYCBP2), breast cancer 2 (early onset) (BRCA2), MAP3K3, MCPH1, RASGRP3, PTCH1, RAD9B, CTNND1, ATM, NF1; KIT, PTEN, and FBXW7. Many of these mutations were nonsynonymous, missense, stop-gain, or frameshift mutations that were damaging. Next, RNA sequencing was performed on a subset of the samples to confirm the mutations identified by exome sequencing. This confirmation study verified the presence of a significantly greater frequency of damaging mutations in AYA compared with adult colon cancers for 5 of the 43 genes (MYCBP2, BRCA2, PHLPP1, TOPORS, and ATR). The current results provide the rationale for a more comprehensive study with a larger sample set and experimental validation of the functional impact of the identified variants along with their contribution to the biologic and clinical characteristics of AYA colon cancer. Cancer 2018;124:1070-82. © 2017 American Cancer Society. © 2017 American Cancer Society.

  7. Classification of breast cancer patients using somatic mutation profiles and machine learning approaches.

    Science.gov (United States)

    Vural, Suleyman; Wang, Xiaosheng; Guda, Chittibabu

    2016-08-26

    The high degree of heterogeneity observed in breast cancers makes it very difficult to classify the cancer patients into distinct clinical subgroups and consequently limits the ability to devise effective therapeutic strategies. Several classification strategies based on ER/PR/HER2 expression or the expression profiles of a panel of genes have helped, but such methods often produce misleading results due to their dynamic nature. In contrast, somatic DNA mutations are relatively stable and lead to initiation and progression of many sporadic cancers. Hence in this study, we explore the use of gene mutation profiles to classify, characterize and predict the subgroups of breast cancers. We analyzed the whole exome sequencing data from 358 ethnically similar breast cancer patients in The Cancer Genome Atlas (TCGA) project. Somatic and non-synonymous single nucleotide variants identified from each patient were assigned a quantitative score (C-score) that represents the extent of negative impact on the gene function. Using these scores with non-negative matrix factorization method, we clustered the patients into three subgroups. By comparing the clinical stage of patients, we identified an early-stage-enriched and a late-stage-enriched subgroup. Comparison of the mutation scores of early and late-stage-enriched subgroups identified 358 genes that carry significantly higher mutations rates in the late stage subgroup. Functional characterization of these genes revealed important functional gene families that carry a heavy mutational load in the late state rich subgroup of patients. Finally, using the identified subgroups, we also developed a supervised classification model to predict the stage of the patients. This study demonstrates that gene mutation profiles can be effectively used with unsupervised machine-learning methods to identify clinically distinguishable breast cancer subgroups. The classification model developed in this method could provide a reasonable

  8. DETECTION OF K-RAS AND P53 MUTATIONS IN SPUTUM SAMPLES OF LUNG CANCER PATIENTS USING LASER CAPTURE MICRODISSECTION MICROSCOPE AND MUTATION ANALYSIS

    Science.gov (United States)

    Detection of K-ras and p53 Mutations in Sputum Samples of Lung Cancer Patients Using Laser Capture Microdissection Microscope and Mutation AnalysisPhouthone Keohavong a,*, Wei-Min Gao a, Kui-Cheng Zheng a, Hussam Mady b, Qing Lan c, Mona Melhem b, and Judy Mumford d.<...

  9. TP53 germline mutation testing in 180 families suspected of Li-Fraumeni syndrome: mutation detection rate and relative frequency of cancers in different familial phenotypes

    NARCIS (Netherlands)

    Ruijs, M.W.G.; Verhoef, S.; Rookus, M.A.; Pruntel, R.; van der Hout, A.H.; Hogervorst, F.B.L.; Kluijt, I.; Sijmons, R.H.; Aalfs, C.M.; Wagner, A.; Ausems, M.G.E.M.; Hoogerbrugge, N.; van Asperen, C.J.; Gómez García, E.B.; Meijers-Heijboer, H.; ten Kate, L.P.; Menko, F.H.; van 't Veer, L.J.

    2010-01-01

    Background Li-Fraumeni syndrome (LFS) is a rare autosomal dominant cancer predisposition syndrome. Most families fulfilling the classical diagnostic criteria harbour TP53 germline mutations. However, TP53 germline mutations may also occur in less obvious phenotypes. As a result, different criteria

  10. A multigene mutation classification of 468 colorectal cancers reveals a prognostic role for APC

    Science.gov (United States)

    Schell, Michael J.; Yang, Mingli; Teer, Jamie K.; Lo, Fang Yin; Madan, Anup; Coppola, Domenico; Monteiro, Alvaro N. A.; Nebozhyn, Michael V.; Yue, Binglin; Loboda, Andrey; Bien-Willner, Gabriel A.; Greenawalt, Danielle M.; Yeatman, Timothy J.

    2016-01-01

    Colorectal cancer (CRC) is a highly heterogeneous disease, for which prognosis has been relegated to clinicopathologic staging for decades. There is a need to stratify subpopulations of CRC on a molecular basis to better predict outcome and assign therapies. Here we report targeted exome-sequencing of 1,321 cancer-related genes on 468 tumour specimens, which identified a subset of 17 genes that best classify CRC, with APC playing a central role in predicting overall survival. APC may assume 0, 1 or 2 truncating mutations, each with a striking differential impact on survival. Tumours lacking any APC mutation carry a worse prognosis than single APC mutation tumours; however, two APC mutation tumours with mutant KRAS and TP53 confer the poorest survival among all the subgroups examined. Our study demonstrates a prognostic role for APC and suggests that sequencing of APC may have clinical utility in the routine staging and potential therapeutic assignment for CRC. PMID:27302369

  11. Small RNA sequencing reveals a comprehensive miRNA signature of BRCA1-associated high-grade serous ovarian cancer

    NARCIS (Netherlands)

    Brouwer, Jan; Kluiver, Joost; de Almeida, Rodrigo C.; Modderman, Rutger; Terpstra, Martijn; Kok, Klaas; Withoff, Sebo; Hollema, Harry; Reitsma, Welmoed; de Bock, Geertruida H.; Mourits, Marian J. E.; van den Berg, Anke

    2016-01-01

    AimsBRCA1 mutation carriers are at increased risk of developing high-grade serous ovarian cancer (HGSOC), a malignancy that originates from fallopian tube epithelium. We aimed to identify differentially expressed known and novel miRNAs in BRCA1-associated HGSOC. Methods Small RNA sequencing was

  12. Analysis of PIK3CA Mutations and Activation Pathways in Triple Negative Breast Cancer.

    Directory of Open Access Journals (Sweden)

    Paolo Cossu-Rocca

    Full Text Available Triple Negative Breast Cancer (TNBC accounts for 12-24% of all breast carcinomas, and shows worse prognosis compared to other breast cancer subtypes. Molecular studies demonstrated that TNBCs are a heterogeneous group of tumors with different clinical and pathologic features, prognosis, genetic-molecular alterations and treatment responsivity. The PI3K/AKT is a major pathway involved in the regulation of cell survival and proliferation, and is the most frequently altered pathway in breast cancer, apparently with different biologic impact on specific cancer subtypes. The most common genetic abnormality is represented by PIK3CA gene activating mutations, with an overall frequency of 20-40%. The aims of our study were to investigate PIK3CA gene mutations on a large series of TNBC, to perform a wider analysis on genetic alterations involving PI3K/AKT and BRAF/RAS/MAPK pathways and to correlate the results with clinical-pathologic data.PIK3CA mutation analysis was performed by using cobas® PIK3CA Mutation Test. EGFR, AKT1, BRAF, and KRAS genes were analyzed by sequencing. Immunohistochemistry was carried out to identify PTEN loss and to investigate for PI3K/AKT pathways components.PIK3CA mutations were detected in 23.7% of TNBC, whereas no mutations were identified in EGFR, AKT1, BRAF, and KRAS genes. Moreover, we observed PTEN loss in 11.3% of tumors. Deregulation of PI3K/AKT pathways was revealed by consistent activation of pAKT and p-p44/42 MAPK in all PIK3CA mutated TNBC.Our data shows that PIK3CA mutations and PI3K/AKT pathway activation are common events in TNBC. A deeper investigation on specific TNBC genomic abnormalities might be helpful in order to select patients who would benefit from current targeted therapy strategies.

  13. Analysis of PIK3CA Mutations and Activation Pathways in Triple Negative Breast Cancer.

    Science.gov (United States)

    Cossu-Rocca, Paolo; Orrù, Sandra; Muroni, Maria Rosaria; Sanges, Francesca; Sotgiu, Giovanni; Ena, Sara; Pira, Giovanna; Murgia, Luciano; Manca, Alessandra; Uras, Maria Gabriela; Sarobba, Maria Giuseppina; Urru, Silvana; De Miglio, Maria Rosaria

    2015-01-01

    Triple Negative Breast Cancer (TNBC) accounts for 12-24% of all breast carcinomas, and shows worse prognosis compared to other breast cancer subtypes. Molecular studies demonstrated that TNBCs are a heterogeneous group of tumors with different clinical and pathologic features, prognosis, genetic-molecular alterations and treatment responsivity. The PI3K/AKT is a major pathway involved in the regulation of cell survival and proliferation, and is the most frequently altered pathway in breast cancer, apparently with different biologic impact on specific cancer subtypes. The most common genetic abnormality is represented by PIK3CA gene activating mutations, with an overall frequency of 20-40%. The aims of our study were to investigate PIK3CA gene mutations on a large series of TNBC, to perform a wider analysis on genetic alterations involving PI3K/AKT and BRAF/RAS/MAPK pathways and to correlate the results with clinical-pathologic data. PIK3CA mutation analysis was performed by using cobas® PIK3CA Mutation Test. EGFR, AKT1, BRAF, and KRAS genes were analyzed by sequencing. Immunohistochemistry was carried out to identify PTEN loss and to investigate for PI3K/AKT pathways components. PIK3CA mutations were detected in 23.7% of TNBC, whereas no mutations were identified in EGFR, AKT1, BRAF, and KRAS genes. Moreover, we observed PTEN loss in 11.3% of tumors. Deregulation of PI3K/AKT pathways was revealed by consistent activation of pAKT and p-p44/42 MAPK in all PIK3CA mutated TNBC. Our data shows that PIK3CA mutations and PI3K/AKT pathway activation are common events in TNBC. A deeper investigation on specific TNBC genomic abnormalities might be helpful in order to select patients who would benefit from current targeted therapy strategies.

  14. Determining the Location of DNA Modification and Mutation Caused by UVB Light in Skin Cancer

    Science.gov (United States)

    2015-09-01

    Award Number: W81XWH-12-1-0333 TITLE: Determining the Location of DNA Modification and Mutation Caused by UVB Light in Skin Cancer PRINCIPAL...COVERED 15 Aug 2012 – 14 Aug 2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER W81XWH-12-1-0333 Determining the Location of DNA Modification and Mutation ...sequencing libraries generated for both yeast and human cells show pyrimidine bias on the 5’ end, indicating that we are sequencing the dimers

  15. Parity and the risk of breast and ovarian cancer in and mutation carriers

    OpenAIRE

    Milne , Roger L.; Osorio , Ana; Ramón Y Cajal , Teresa; Baiget , Montserrat; Lasa , Adriana; Diaz-Rubio , Eduardo; Hoya , Miguel; Caldés , Trinidad; Teulé , Alex; Lázaro , Conxi; Blanco , Ignacio; Balmaña , Judith; Sánchez-Ollé , Gessamí; Vega , Ana; Blanco , Ana

    2009-01-01

    Abstract Environmental or lifestyle factors are likely to explain part of the heterogeneity in breast and ovarian cancer risk among BRCA1 and BRCA2 mutation carriers. We assessed parity as a risk modifier in 515 and 503 Spanish female carriers of mutations in BRCA1 and BRCA2, respectively. Hazard ratios (HR) and their corresponding 95% confidence intervals (CI) were estimated using weighted Cox proportional hazards regression, adjusted for year of birth and study centre. The result...

  16. De novo activating epidermal growth factor mutations (EGFR) in small-cell lung cancer.

    Science.gov (United States)

    Thai, Alesha; Chia, Puey L; Russell, Prudence A; Do, Hongdo; Dobrovic, Alex; Mitchell, Paul; John, Thomas

    2017-09-01

    In Australia, mutations in epidermal growth factor mutations (EGFR) occur in 15% of patients diagnosed with non-small-cell lung cancer and are found with higher frequency in female, non-smokers of Asian ethnicity. Activating mutations in the EGFR gene are rarely described in SCLC. We present two cases of de novo EGFR mutations in patients with SCLC detected in tissue and in plasma cell free DNA, both of whom were of Asian ethnicity and never-smokers. These two cases add to the growing body of evidence suggesting that screening for EGFR mutations in SCLC should be considered in patients with specific clinical features. © 2017 Royal Australasian College of Physicians.

  17. Biochip-Based Detection of KRAS Mutation in Non-Small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Barbara Ziegler

    2011-11-01

    Full Text Available This study is aimed at evaluating the potential of a biochip assay to sensitively detect KRAS mutation in DNA from non-small cell lung cancer (NSCLC tissue samples. The assay covers 10 mutations in codons 12 and 13 of the KRAS gene, and is based on mutant-enriched PCR followed by reverse-hybridization of biotinylated amplification products to an array of sequence-specific probes immobilized on the tip of a rectangular plastic stick (biochip. Biochip hybridization identified 17 (21% samples to carry a KRAS mutation of which 16 (33% were adenocarcinomas and 1 (3% was a squamous cell carcinoma. All mutations were confirmed by DNA sequencing. Using 10 ng of starting DNA, the biochip assay demonstrated a detection limit of 1% mutant sequence in a background of wild-type DNA. Our results suggest that the biochip assay is a sensitive alternative to protocols currently in use for KRAS mutation testing on limited quantity samples.

  18. Prevalance of BRCA1 and BRCA2 mutations in familial breast cancer patients in Lebanon

    Directory of Open Access Journals (Sweden)

    Jalkh Nadine

    2012-06-01

    Full Text Available Abstract Breast cancer is the most prevalent malignancy in women in Western countries, currently accounting for one third of all female cancers. Familial aggregation is thought to account for 5–10 % of all BC cases, and germline mutations in BRCA1 and BRCA2 account for less of the half of these inherited cases. In Lebanon, breast cancer represents the principal death-causing malignancy among women, with 50 % of the cases diagnosed before the age of 50 years. In order to study BRCA1/2 mutation spectra in the Lebanese population, 72 unrelated patients with a reported family history of breast and/or ovarian cancers or with an early onset breast cancer were tested. Fluorescent direct sequencing of the entire coding region and intronic sequences flanking each exon was performed. A total of 38 BRCA1 and 40 BRCA2 sequence variants were found. Seventeen of them were novel. Seven confirmed deleterious mutations were identified in 9 subjects providing a frequency of mutations of 12.5 %. Fifteen variants were considered of unknown clinical significance according to BIC and UMD-BRCA1/BRCA2 databases. In conclusion, this study represents the first evaluation of the deleterious and unclassified genetic variants in the BRCA1/2 genes found in a Lebanese population with a relatively high risk of breast cancer.

  19. Pan-Cancer Mutational and Transcriptional Analysis of the Integrator Complex

    Directory of Open Access Journals (Sweden)

    Antonio Federico

    2017-04-01

    Full Text Available The integrator complex has been recently identified as a key regulator of RNA Polymerase II-mediated transcription, with many functions including the processing of small nuclear RNAs, the pause-release and elongation of polymerase during the transcription of protein coding genes, and the biogenesis of enhancer derived transcripts. Moreover, some of its components also play a role in genome maintenance. Thus, it is reasonable to hypothesize that their functional impairment or altered expression can contribute to malignancies. Indeed, several studies have described the mutations or transcriptional alteration of some Integrator genes in different cancers. Here, to draw a comprehensive pan-cancer picture of the genomic and transcriptomic alterations for the members of the complex, we reanalyzed public data from The Cancer Genome Atlas. Somatic mutations affecting Integrator subunit genes and their transcriptional profiles have been investigated in about 11,000 patients and 31 tumor types. A general heterogeneity in the mutation frequencies was observed, mostly depending on tumor type. Despite the fact that we could not establish them as cancer drivers, INTS7 and INTS8 genes were highly mutated in specific cancers. A transcriptome analysis of paired (normal and tumor samples revealed that the transcription of INTS7, INTS8, and INTS13 is significantly altered in several cancers. Experimental validation performed on primary tumors confirmed these findings.

  20. Aberrant signature methylome by DNMT1 hot spot mutation in hereditary sensory and autonomic neuropathy 1E.

    Science.gov (United States)

    Sun, Zhifu; Wu, Yanhong; Ordog, Tamas; Baheti, Saurabh; Nie, Jinfu; Duan, Xiaohui; Hojo, Kaori; Kocher, Jean-Pierre; Dyck, Peter J; Klein, Christopher J

    2014-08-01

    DNA methyltransferase 1 (DNMT1) is essential for DNA methylation, gene regulation and chromatin stability. We previously discovered DNMT1 mutations cause hereditary sensory and autonomic neuropathy type 1 with dementia and hearing loss (HSAN1E; OMIM 614116). HSAN1E is the first adult-onset neurodegenerative disorder caused by a defect in a methyltransferase gene. HSAN1E patients appear clinically normal until young adulthood, then begin developing the characteristic symptoms involving central and peripheral nervous systems. Some HSAN1E patients also develop narcolepsy and it has recently been suggested that HSAN1E is allelic to autosomal dominant cerebellar ataxia, deafness, with narcolepsy (ADCA-DN; OMIM 604121), which is also caused by mutations in DNMT1. A hotspot mutation Y495C within the targeting sequence domain of DNMT1 has been identified among HSAN1E patients. The mutant DNMT1 protein shows premature degradation and reduced DNA methyltransferase activity. Herein, we investigate genome-wide DNA methylation at single-base resolution through whole-genome bisulfite sequencing of germline DNA in 3 pairs of HSAN1E patients and their gender- and age-matched siblings. Over 1 billion 75-bp single-end reads were generated for each sample. In the 3 affected siblings, overall methylation loss was consistently found in all chromosomes with X and 18 being most affected. Paired sample analysis identified 564,218 differentially methylated CpG sites (DMCs; P<0.05), of which 300 134 were intergenic and 264 084 genic CpGs. Hypomethylation was predominant in both genic and intergenic regions, including promoters, exons, most CpG islands, L1, L2, Alu, and satellite repeats and simple repeat sequences. In some CpG islands, hypermethylated CpGs outnumbered hypomethylated CpGs. In 201 imprinted genes, there were more DMCs than in non-imprinted genes and most were hypomethylated. Differentially methylated region (DMR) analysis identified 5649 hypomethylated and 1872

  1. Clinical, pathologic, and biologic features associated with BRAF mutations in non-small cell lung cancer.

    Science.gov (United States)

    Cardarella, Stephanie; Ogino, Atsuko; Nishino, Mizuki; Butaney, Mohit; Shen, Jeanne; Lydon, Christine; Yeap, Beow Y; Sholl, Lynette M; Johnson, Bruce E; Jänne, Pasi A

    2013-08-15

    BRAF mutations are found in a subset of non-small cell lung cancers (NSCLC). We examined the clinical characteristics and treatment outcomes of patients with NSCLC harboring BRAF mutations. Using DNA sequencing, we successfully screened 883 patients with NSCLC for BRAF mutations between July 1, 2009 and July 16, 2012. Baseline characteristics and treatment outcomes were compared between patients with and without BRAF mutations. Wild-type controls consisted of patients with NSCLC without a somatic alteration in BRAF, KRAS, EGFR, and ALK. In vitro studies assessed the biologic properties of selected non-V600E BRAF mutations identified from patients with NSCLC. Of 883 tumors screened, 36 (4%) harbored BRAF mutations (V600E, 18; non-V600E, 18) and 257 were wild-type for BRAF, EGFR, KRAS, and ALK negative. Twenty-nine of 36 patients with BRAF mutations were smokers. There were no distinguishing clinical features between BRAF-mutant and wild-type patients. Patients with advanced NSCLC with BRAF mutations and wild-type tumors showed similar response rates and progression-free survival (PFS) to platinum-based combination chemotherapy and no difference in overall survival. Within the BRAF cohort, patients with V600E-mutated tumors had a shorter PFS to platinum-based chemotherapy compared with those with non-V600E mutations, although this did not reach statistical significance (4.1 vs. 8.9 months; P = 0.297). We identified five BRAF mutations not previously reported in NSCLC; two of five were associated with increased BRAF kinase activity. BRAF mutations occur in 4% of NSCLCs and half are non-V600E. Prospective trials are ongoing to validate BRAF as a therapeutic target in NSCLC. ©2013 AACR.

  2. Germline PMS2 mutation screened by mismatch repair protein immunohistochemistry of colorectal cancer in Japan.

    Science.gov (United States)

    Sugano, Kokichi; Nakajima, Takeshi; Sekine, Shigeki; Taniguchi, Hirokazu; Saito, Shinya; Takahashi, Masahiro; Ushiama, Mineko; Sakamoto, Hiromi; Yoshida, Teruhiko

    2016-11-01

    Germline PMS2 gene mutations were detected by RT-PCR/direct sequencing of total RNA extracted from puromycin-treated peripheral blood lymphocytes (PBL) and multiplex ligation-dependent probe amplification (MLPA) analyses of Japanese patients with colorectal cancer (CRC) fulfilling either the revised Bethesda Guidelines or being an age at disease onset of younger than 70 years, and screened by mismatch repair protein immunohistochemistry of formalin-fixed paraffin embedded sections. Of the 501 subjects examined, 7 (1.40%) showed the downregulated expression of the PMS2 protein alone and were referred to the genetic counseling clinic. Germline PMS2 mutations were detected in 6 (85.7%), including 3 nonsense and 1 frameshift mutations by RT-PCR/direct sequencing and 2 genomic deletions by MLPA. No mutations were identified in the other MMR genes (i.e. MSH2, MLH1 and MSH6). The prevalence of the downregulated expression of the PMS2 protein alone was 1.40% among the subjects examined and IHC results predicted the presence of PMS2 germline mutations. RT-PCR from puromycin-treated PBL and MLPA may be employed as the first screening step to detect PMS2 mutations without pseudogene interference, followed by the long-range PCR/nested PCR validation using genomic DNA. © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  3. Clinical significance of the BRAFV600E mutation in Asian patients with colorectal cancer.

    Science.gov (United States)

    Cheng, Hou-Hsuan; Lin, Jen-Kou; Chen, Wei-Shone; Jiang, Jeng-Kai; Yang, Shung-Haur; Chang, Shih-Ching

    2018-06-04

    To investigate the clinicopathological features and prognostic significance of the BRAFV600E mutation in Asian patients with colorectal cancer. We retrospectively reviewed the medical records of 1969 patients with colorectal cancer admitted to Taipei Veterans General Hospital for surgical treatment between 2000 and 2013. The measured endpoint was overall survival after surgery. The prognostic value of the BRAFV600E mutation was analyzed using the log-rank test and Cox regression analysis. The BRAFV600E mutation was detected in 106 (5.4%) patients and associated with female gender, abnormal cancer antigen (CA)19-9 at diagnosis, microsatellite status, right-sided primary tumors, mucinous histology, poor differentiation, and lymphovascular invasion. Metastatic patterns were more common in non-regional lymph node metastasis (20.8 vs. 7.4%, p = 0.06) and peritoneal seeding (41. vs. 21.2%, p = 0.04). Mutations were not prognostic in the overall survival of the entire study group but only in specific patients: age < 65, normal carcinoembryonic antigen at diagnosis, and stage IV disease. The BRAFV600E mutation was associated with distinct clinicopathological features and metastatic patterns. The overall survival rate was lower in selected colorectal patients with the BRAFV600E mutation.

  4. Detection of somatic mutations by high-resolution DNA melting (HRM) analysis in multiple cancers.

    Science.gov (United States)

    Gonzalez-Bosquet, Jesus; Calcei, Jacob; Wei, Jun S; Garcia-Closas, Montserrat; Sherman, Mark E; Hewitt, Stephen; Vockley, Joseph; Lissowska, Jolanta; Yang, Hannah P; Khan, Javed; Chanock, Stephen

    2011-01-17

    Identification of somatic mutations in cancer is a major goal for understanding and monitoring the events related to cancer initiation and progression. High resolution melting (HRM) curve analysis represents a fast, post-PCR high-throughput method for scanning somatic sequence alterations in target genes. The aim of this study was to assess the sensitivity and specificity of HRM analysis for tumor mutation screening in a range of tumor samples, which included 216 frozen pediatric small rounded blue-cell tumors as well as 180 paraffin-embedded tumors from breast, endometrial and ovarian cancers (60 of each). HRM analysis was performed in exons of the following candidate genes known to harbor established commonly observed mutations: PIK3CA, ERBB2, KRAS, TP53, EGFR, BRAF, GATA3, and FGFR3. Bi-directional sequencing analysis was used to determine the accuracy of the HRM analysis. For the 39 mutations observed in frozen samples, the sensitivity and specificity of HRM analysis were 97% and 87%, respectively. There were 67 mutation/variants in the paraffin-embedded samples, and the sensitivity and specificity for the HRM analysis were 88% and 80%, respectively. Paraffin-embedded samples require higher quantity of purified DNA for high performance. In summary, HRM analysis is a promising moderate-throughput screening test for mutations among known candidate genomic regions. Although the overall accuracy appears to be better in frozen specimens, somatic alterations were detected in DNA extracted from paraffin-embedded samples.

  5. Detection of somatic mutations by high-resolution DNA melting (HRM analysis in multiple cancers.

    Directory of Open Access Journals (Sweden)

    Jesus Gonzalez-Bosquet

    Full Text Available Identification of somatic mutations in cancer is a major goal for understanding and monitoring the events related to cancer initiation and progression. High resolution melting (HRM curve analysis represents a fast, post-PCR high-throughput method for scanning somatic sequence alterations in target genes. The aim of this study was to assess the sensitivity and specificity of HRM analysis for tumor mutation screening in a range of tumor samples, which included 216 frozen pediatric small rounded blue-cell tumors as well as 180 paraffin-embedded tumors from breast, endometrial and ovarian cancers (60 of each. HRM analysis was performed in exons of the following candidate genes known to harbor established commonly observed mutations: PIK3CA, ERBB2, KRAS, TP53, EGFR, BRAF, GATA3, and FGFR3. Bi-directional sequencing analysis was used to determine the accuracy of the HRM analysis. For the 39 mutations observed in frozen samples, the sensitivity and specificity of HRM analysis were 97% and 87%, respectively. There were 67 mutation/variants in the paraffin-embedded samples, and the sensitivity and specificity for the HRM analysis were 88% and 80%, respectively. Paraffin-embedded samples require higher quantity of purified DNA for high performance. In summary, HRM analysis is a promising moderate-throughput screening test for mutations among known candidate genomic regions. Although the overall accuracy appears to be better in frozen specimens, somatic alterations were detected in DNA extracted from paraffin-embedded samples.

  6. Breast and Ovarian Cancer Risk and Risk Reduction in Jewish BRCA1/2 Mutation Carriers

    Science.gov (United States)

    Finkelman, Brian S.; Rubinstein, Wendy S.; Friedman, Sue; Friebel, Tara M.; Dubitsky, Shera; Schonberger, Niecee Singer; Shoretz, Rochelle; Singer, Christian F.; Blum, Joanne L.; Tung, Nadine; Olopade, Olufunmilayo I.; Weitzel, Jeffrey N.; Lynch, Henry T.; Snyder, Carrie; Garber, Judy E.; Schildkraut, Joellen; Daly, Mary B.; Isaacs, Claudine; Pichert, Gabrielle; Neuhausen, Susan L.; Couch, Fergus J.; van't Veer, Laura; Eeles, Rosalind; Bancroft, Elizabeth; Evans, D. Gareth; Ganz, Patricia A.; Tomlinson, Gail E.; Narod, Steven A.; Matloff, Ellen; Domchek, Susan; Rebbeck, Timothy R.

    2012-01-01

    Purpose Mutations in BRCA1/2 dramatically increase the risk of both breast and ovarian cancers. Three mutations in these genes (185delAG, 5382insC, and 6174delT) occur at high frequency in Ashkenazi Jews. We evaluated how these common Jewish mutations (CJMs) affect cancer risks and risk reduction. Methods Our cohort comprised 4,649 women with disease-associated BRCA1/2 mutations from 22 centers in the Prevention and Observation of Surgical End Points Consortium. Of these women, 969 were self-identified Jewish women. Cox proportional hazards models were used to estimate breast and ovarian cancer risks, as well as risk reduction from risk-reducing salpingo-oophorectomy (RRSO), by CJM and self-identified Jewish status. Results Ninety-one percent of Jewish BRCA1/2-positive women carried a CJM. Jewish women were significantly more likely to undergo RRSO than non-Jewish women (54% v 41%, respectively; odds ratio, 1.87; 95% CI, 1.44 to 2.42). Relative risks of cancer varied by CJM, with the relative risk of breast cancer being significantly lower in 6174delT mutation carriers than in non-CJM BRCA2 carriers (hazard ratio, 0.35; 95% CI, 0.18 to 0.69). No significant difference was seen in cancer risk reduction after RRSO among subgroups. Conclusion Consistent with previous results, risks for breast and ovarian cancer varied by CJM in BRCA1/2 carriers. In particular, 6174delT carriers had a lower risk of breast cancer. This finding requires additional confirmation in larger prospective and population-based cohort studies before being integrated into clinical care. PMID:22430266

  7. Correlation between 18F Fluorodeoxyglucose uptake and epidermal growth factor receptor mutations in advanced lung cancer

    International Nuclear Information System (INIS)

    Choi, Yun Jung; Cho, Byoung Chul; Jeong, Youg Hyu; Seo, Hyo Jung; Kim, Hyun Jeong; Cho, Arthur; Lee, Jae Hoon; Yun, Mi Jin; Jeon, Tae Joo; Lee, Jong Doo; Kang, Won Jun

    2012-01-01

    Mutations in the epidermal growth factor receptor (EGFR)gene have been identified as potential targets for the treatment and prognostic factors for non small cell lung cancer (NSCLC). We assessed the correlation between fluorodeoxyglucose (FDG) uptake and EGFR mutations, as well as their prognostic implications. A total of 163 patients with pathologically confirmed NSCLC were enrolled (99 males and 64 females; median age, 60 years). All patients underwent FDG positron emission tomography before treatment, and genetic studies of EGFR mutations were performed. The maximum standardized uptake value (SUVmax)of the primary lung cancer was measured and normalized with regard to liver uptake. The SUVmax between the wild type and EGFR mutant groups was compared. Survival was evaluated according to SUVmax and EGFR mutation status. EGFR mutations were found in 57 patients (60.8%). The SUVmax tended to be higher in wild type than mutant tumors, but was not significantly different (11.1±5.7 vs. 9.8±4.4, P=0.103). The SUVmax was significantly lower in patients with an exon 19 mutation than in those with either an exon 21 mutation or wild type (P=0.003 and 0.009, respectively). The EGFR mutation showed prolonged overall survival (OS) compared to wild type tumors (P=0.004). There was no significant difference in survival according to SUVmax. Both OS and progression free survival of patients with a mutation in exon 19 were significant longer than in patients with wild type tumors. In patients with NSCLC, a mutation in exon 19 was associated with a lower SUVmax and is a reliable predictor for good survival

  8. Domain-restricted mutation analysis to identify novel driver events in human cancer

    Directory of Open Access Journals (Sweden)

    Sanket Desai

    2017-10-01

    Full Text Available Analysis of mutational spectra across various cancer types has given valuable insights into tumorigenesis. Different approaches have been used to identify novel drivers from the set of somatic mutations, including the methods which use sequence conservation, geometric localization and pathway information. Recent computational methods suggest use of protein domain information for analysis and understanding of the functional consequence of non-synonymous mutations. Similarly, evidence suggests recurrence at specific position in proteins is robust indicators of its functional impact. Building on this, we performed a systematic analysis of TCGA exome derived somatic mutations across 6089 PFAM domains and significantly mutated domains were identified using randomization approach. Multiple alignment of individual domain allowed us to prioritize for conserved residues mutated at analogous positions across different proteins in a statistically disciplined manner. In addition to the known frequently mutated genes, this analysis independently identifies low frequency Meprin and TRAF-Homology (MATH domain in Speckle Type BTB/POZ (SPOP protein, in prostate adenocarcinoma. Results from this analysis will help generate hypotheses about the downstream molecular mechanism resulting in cancer phenotypes.

  9. KRAS and BRAF Mutation Detection: Is Immunohistochemistry a Possible Alternative to Molecular Biology in Colorectal Cancer?

    Directory of Open Access Journals (Sweden)

    Nicolas Piton

    2015-01-01

    Full Text Available KRAS genotyping is mandatory in metastatic colorectal cancer treatment prior to undertaking antiepidermal growth factor receptor (EGFR monoclonal antibody therapy. BRAF V600E mutation is often present in colorectal carcinoma with CpG island methylator phenotype and microsatellite instability. Currently, KRAS and BRAF evaluation is based on molecular biology techniques such as SNaPshot or Sanger sequencing. As molecular testing is performed on formalin-fixed paraffin-embedded (FFPE samples, immunodetection would appear to be an attractive alternative for detecting mutations. Thus, our objective was to assess the validity of KRAS and BRAF immunodetection of mutations compared with the genotyping reference method in colorectal adenocarcinoma. KRAS and BRAF genotyping was assessed by SNaPshot. A rabbit anti-human KRAS polyclonal antibody was tested on 33 FFPE colorectal tumor samples with known KRAS status. Additionally, a mouse anti-human BRAF monoclonal antibody was tested on 30 FFPE tumor samples with known BRAF status. KRAS immunostaining demonstrated both poor sensitivity (27% and specificity (64% in detecting KRAS mutation. Conversely, BRAF immunohistochemistry showed perfect sensitivity (100% and specificity (100% in detecting V600E mutation. Although molecular biology remains the reference method for detecting KRAS mutation, immunohistochemistry could be an attractive method for detecting BRAF V600E mutation in colorectal cancer.

  10. KRAS and BRAF Mutation Detection: Is Immunohistochemistry a Possible Alternative to Molecular Biology in Colorectal Cancer?

    Science.gov (United States)

    Borrini, Francesco; Bolognese, Antonio; Lamy, Aude; Sabourin, Jean-Christophe

    2015-01-01

    KRAS genotyping is mandatory in metastatic colorectal cancer treatment prior to undertaking antiepidermal growth factor receptor (EGFR) monoclonal antibody therapy. BRAF V600E mutation is often present in colorectal carcinoma with CpG island methylator phenotype and microsatellite instability. Currently, KRAS and BRAF evaluation is based on molecular biology techniques such as SNaPshot or Sanger sequencing. As molecular testing is performed on formalin-fixed paraffin-embedded (FFPE) samples, immunodetection would appear to be an attractive alternative for detecting mutations. Thus, our objective was to assess the validity of KRAS and BRAF immunodetection of mutations compared with the genotyping reference method in colorectal adenocarcinoma. KRAS and BRAF genotyping was assessed by SNaPshot. A rabbit anti-human KRAS polyclonal antibody was tested on 33 FFPE colorectal tumor samples with known KRAS status. Additionally, a mouse anti-human BRAF monoclonal antibody was tested on 30 FFPE tumor samples with known BRAF status. KRAS immunostaining demonstrated both poor sensitivity (27%) and specificity (64%) in detecting KRAS mutation. Conversely, BRAF immunohistochemistry showed perfect sensitivity (100%) and specificity (100%) in detecting V600E mutation. Although molecular biology remains the reference method for detecting KRAS mutation, immunohistochemistry could be an attractive method for detecting BRAF V600E mutation in colorectal cancer. PMID:25983749

  11. The prevalence of BRCA1 mutations among young women with triple-negative breast cancer

    International Nuclear Information System (INIS)

    Young, SR; DeSai, Damini; Zandvakili, Inuk; Royer, Robert; Li, Song; Narod, Steven A; Pilarski, Robert T; Donenberg, Talia; Shapiro, Charles; Hammond, Lyn S; Miller, Judith; Brooks, Karen A; Cohen, Stephanie; Tenenholz, Beverly

    2009-01-01

    Molecular screening for BRCA1 and BRCA2 mutations is now an established component of risk evaluation and management of familial breast cancer. Features of hereditary breast cancer include an early age-of-onset and over-representation of the 'triple-negative' phenotype (negative for estrogen-receptor, progesterone-receptor and HER2). The decision to offer genetic testing to a breast cancer patient is usually based on her family history, but in the absence of a family history of cancer, some women may qualify for testing based on the age-of-onset and/or the pathologic features of the breast cancer. We studied 54 women who were diagnosed with high-grade, triple-negative invasive breast cancer at or before age 40. These women were selected for study because they had little or no family history of breast or ovarian cancer and they did not qualify for genetic testing using conventional family history criteria. BRCA1 screening was performed using a combination of fluorescent multiplexed-PCR analysis, BRCA1 exon-13 6 kb duplication screening, the protein truncation test (PTT) and fluorescent multiplexed denaturing gradient gel electrophoresis (DGGE). All coding exons of BRCA1 were screened. The two large exons of BRCA2 were also screened using PTT. All mutations were confirmed with direct sequencing. Five deleterious BRCA1 mutations and one deleterious BRCA2 mutation were identified in the 54 patients with early-onset, triple-negative breast cancer (11%). Women with early-onset triple-negative breast cancer are candidates for genetic testing for BRCA1, even in the absence of a family history of breast or ovarian cancer

  12. VarWalker: personalized mutation network analysis of putative cancer genes from next-generation sequencing data.

    Science.gov (United States)

    Jia, Peilin; Zhao, Zhongming

    2014-02-01

    A major challenge in interpreting the large volume of mutation data identified by next-generation sequencing (NGS) is to distinguish driver mutations from neutral passenger mutations to facilitate the identification of targetable genes and new drugs. Current approaches are primarily based on mutation frequencies of single-genes, which lack the power to detect infrequently mutated driver genes and ignore functional interconnection and regulation among cancer genes. We propose a novel mutation network method, VarWalker, to prioritize driver genes in large scale cancer mutation data. VarWalker fits generalized additive models for each sample based on sample-specific mutation profiles and builds on the joint frequency of both mutation genes and their close interactors. These interactors are selected and optimized using the Random Walk with Restart algorithm in a protein-protein interaction network. We applied the method in >300 tumor genomes in two large-scale NGS benchmark datasets: 183 lung adenocarcinoma samples and 121 melanoma samples. In each cancer, we derived a consensus mutation subnetwork containing significantly enriched consensus cancer genes and cancer-related functional pathways. These cancer-specific mutation networks were then validated using independent datasets for each cancer. Importantly, VarWalker prioritizes well-known, infrequently mutated genes, which are shown to interact with highly recurrently mutated genes yet have been ignored by conventional single-gene-based approaches. Utilizing VarWalker, we demonstrated that network-assisted approaches can be effectively adapted to facilitate the detection of cancer driver genes in NGS data.

  13. Mutation analysis of the CHK2 gene in breast carcinoma and other cancers

    International Nuclear Information System (INIS)

    Ingvarsson, Sigurdur; Sigbjornsdottir, Bjarnveig I; Huiping, Chen; Hafsteinsdottir, Sigridur H; Ragnarsson, Gisli; Barkardottir, Rosa B; Arason, Adalgeir; Egilsson, Valgardur; Bergthorsson, Jon TH

    2002-01-01

    Mutations in the CHK2 gene at chromosome 22q12.1 have been reported in families with Li-Fraumeni syndrome. Chk2 is an effector kinase that is activated in response to DNA damage and is involved in cell-cycle pathways and p53 pathways. We screened 139 breast tumors for loss of heterozygosity at chromosome 22q, using seven microsatellite markers, and screened 119 breast tumors with single-strand conformation polymorphism and DNA sequencing for mutations in the CHK2 gene. Seventy-four of 139 sporadic breast tumors (53%) show loss of heterozygosity with at least one marker. These samples and 45 tumors from individuals carrying the BRCA2 999del5 mutation were screened for mutations in the CHK2 gene. In addition to putative polymorphic regions in short mononucleotide repeats in a non-coding exon and intron 2, a germ line variant (T59K) in the first coding exon was detected. On screening 1172 cancer patients for the T59K sequence variant, it was detected in a total of four breast-cancer patients, two colon-cancer patients, one stomach-cancer patient and one ovary-cancer patient, but not in 452 healthy individuals. A tumor-specific 5' splice site mutation at site +3 in intron 8 (TTgt [a → c]atg) was also detected. We conclude that somatic CHK2 mutations are rare in breast cancer, but our results suggest a tumor suppressor function for CHK2 in a small proportion of breast tumors. Furthermore, our results suggest that the T59K CHK2 sequence variant is a low-penetrance allele with respect to tumor growth

  14. Nanolock-Nanopore Facilitated Digital Diagnostics of Cancer Driver Mutation in Tumor Tissue.

    Science.gov (United States)

    Wang, Yong; Tian, Kai; Shi, Ruicheng; Gu, Amy; Pennella, Michael; Alberts, Lindsey; Gates, Kent S; Li, Guangfu; Fan, Hongxin; Wang, Michael X; Gu, Li-Qun

    2017-07-28

    Cancer driver mutations are clinically significant biomarkers. In precision medicine, accurate detection of these oncogenic changes in patients would enable early diagnostics of cancer, individually tailored targeted therapy, and precise monitoring of treatment response. Here we investigated a novel nanolock-nanopore method for single-molecule detection of a serine/threonine protein kinase gene BRAF V600E mutation in tumor tissues of thyroid cancer patients. The method lies in a noncovalent, mutation sequence-specific nanolock. We found that the nanolock formed on the mutant allele/probe duplex can separate the duplex dehybridization procedure into two sequential steps in the nanopore. Remarkably, this stepwise unzipping kinetics can produce a unique nanopore electric marker, with which a single DNA molecule of the cancer mutant allele can be unmistakably identified in various backgrounds of the normal wild-type allele. The single-molecule sensitivity for mutant allele enables both binary diagnostics and quantitative analysis of mutation occurrence. In the current configuration, the method can detect the BRAF V600E mutant DNA lower than 1% in the tumor tissues. The nanolock-nanopore method can be adapted to detect a broad spectrum of both transversion and transition DNA mutations, with applications from diagnostics to targeted therapy.

  15. Prevalence of PALB2 mutations in breast cancer patients in multi-ethnic Asian population in Malaysia and Singapore.

    Science.gov (United States)

    Phuah, Sze Yee; Lee, Sheau Yee; Kang, Peter; Kang, In Nee; Yoon, Sook-Yee; Thong, Meow Keong; Hartman, Mikael; Sng, Jen-Hwei; Yip, Cheng Har; Taib, Nur Aishah Mohd; Teo, Soo-Hwang

    2013-01-01

    The partner and localizer of breast cancer 2 (PALB2) is responsible for facilitating BRCA2-mediated DNA repair by serving as a bridging molecule, acting as the physical and functional link between the breast cancer 1 (BRCA1) and breast cancer 2 (BRCA2) proteins. Truncating mutations in the PALB2 gene are rare but are thought to be associated with increased risks of developing breast cancer in various populations. We evaluated the contribution of PALB2 germline mutations in 122 Asian women with breast cancer, all of whom had significant family history of breast and other cancers. Further screening for nine PALB2 mutations was conducted in 874 Malaysian and 532 Singaporean breast cancer patients, and in 1342 unaffected Malaysian and 541 unaffected Singaporean women. By analyzing the entire coding region of PALB2, we found two novel truncating mutations and ten missense mutations in families tested negative for BRCA1/2-mutations. One additional novel truncating PALB2 mutation was identified in one patient through genotyping analysis. Our results indicate a low prevalence of deleterious PALB2 mutations and a specific mutation profile within the Malaysian and Singaporean populations.

  16. Male breast cancer in BRCA1 and BRCA2 mutation carriers

    DEFF Research Database (Denmark)

    Silvestri, Valentina; Barrowdale, Daniel; Mulligan, Anna Marie

    2016-01-01

    BACKGROUND: BRCA1 and, more commonly, BRCA2 mutations are associated with increased risk of male breast cancer (MBC). However, only a paucity of data exists on the pathology of breast cancers (BCs) in men with BRCA1/2 mutations. Using the largest available dataset, we determined whether MBCs....../2 FBCs and with population-based data from 6351 MBCs in the Surveillance, Epidemiology, and End Results (SEER) database. RESULTS: Among BRCA2 MBCs, grade significantly decreased with increasing age at diagnosis (P = 0.005). Compared with BRCA2 FBCs, BRCA2 MBCs were of significantly higher stage (P...

  17. Characterization of cancer-associated missense mutations in MDM2

    OpenAIRE

    Chauhan, Krishna M.; Ramakrishnan, Gopalakrishnan; Kollareddy, Madhusudhan; Martinez, Luis A.

    2015-01-01

    MDM2 is an E3 ubiquitin ligase that binds the N-terminus of p53 and promotes its ubiquitin-dependent degradation. Elevated levels of MDM2 due to overexpression or gene amplification can contribute to tumor development by suppressing p53 activity. Since MDM2 is an oncogene, we explored the possibility that other genetic lesions, namely missense mutations, might alter its activities. We selected mutations in MDM2 that reside in one of the 4 key regions of the protein: p53 binding domain, acidic...

  18. MUTATIONS OF THE SMARCB1 GENE IN HUMAN CANCERS

    Directory of Open Access Journals (Sweden)

    D. S. Mikhaylenko

    2016-01-01

    Full Text Available In the recent years, the full exome sequencing helped to reveal a  set of mutations in the genes that are not oncogenes or tumor suppressor genes by definition, but play an important role in carcinogenesis and encode proteins involved in chromatin remodeling. Among chromatin remodeling systems, which operate through the ATP-dependent mechanism, the complex SWI/ SNF attracts the great attention. The complex consists of the catalytic ATPase (SMARCA2/4, a group of conservative core subunits (SMARCB1, SMARCC1/2, and variant subunits. Abnormalities in the genes coding for each of these components have been identified as driver mutations in various human tumors. The SMARCB1 gene is of interest for practical oncogenetics, with its typical genotype-phenotype correlations. Germinal inactivating mutations (frameshift insertions/deletions, full deletions of the gene, nonsense mutations lead to development of rhabdoid tumors in the kidneys and the brain in children in their first years of life, or even in utero. These tumors are highly malignant (Rhabdoid Tumor Predisposition Syndrome 1 – RTPS1. If a mutation carrier survives his/hers four years of life without manifestation RTPS1 with a missense mutation or has the mutation in the "hot spot" of the first or the last exon, then he/she will not develop rhabdoid tumors, but after 20 years of life, shwannomatosis may develop as multiple benign tumors of peripheral nerves. Finally, some point mutations in the exons 8–9 can result in Coffin-Siris syndrome characterized by mental retardation and developmental disorders, but no neoplasms. In this regard, rational referral of patients for direct DNA diagnostics of each of the described disease entities plays an important role, based on respective minimal criteria, as well as necessity of further development of NGS technologies (full genome and full exome sequencing that are able to sequence not only individual exons, but all candidate genes of the

  19. Genomic signatures for paclitaxel and gemcitabine resistance in breast cancer derived by machine learning.

    Science.gov (United States)

    Dorman, Stephanie N; Baranova, Katherina; Knoll, Joan H M; Urquhart, Brad L; Mariani, Gabriella; Carcangiu, Maria Luisa; Rogan, Peter K

    2016-01-01

    Increasingly, the effectiveness of adjuvant chemotherapy agents for breast cancer has been related to changes in the genomic profile of tumors. We investigated correspondence between growth inhibitory concentrations of paclitaxel and gemcitabine (GI50) and gene copy number, mutation, and expression first in breast cancer cell lines and then in patients. Genes encoding direct targets of these drugs, metabolizing enzymes, transporters, and those previously associated with chemoresistance to paclitaxel (n = 31 genes) or gemcitabine (n = 18) were analyzed. A multi-factorial, principal component analysis (MFA) indicated expression was the strongest indicator of sensitivity for paclitaxel, and copy number and expression were informative for gemcitabine. The factors were combined using support vector machines (SVM). Expression of 15 genes (ABCC10, BCL2, BCL2L1, BIRC5, BMF, FGF2, FN1, MAP4, MAPT, NFKB2, SLCO1B3, TLR6, TMEM243, TWIST1, and CSAG2) predicted cell line sensitivity to paclitaxel with 82% accuracy. Copy number profiles of 3 genes (ABCC10, NT5C, TYMS) together with expression of 7 genes (ABCB1, ABCC10, CMPK1, DCTD, NME1, RRM1, RRM2B), predicted gemcitabine response with 85% accuracy. Expression and copy number studies of two independent sets of patients with known responses were then analyzed with these models. These included tumor blocks from 21 patients that were treated with both paclitaxel and gemcitabine, and 319 patients on paclitaxel and anthracycline therapy. A new paclitaxel SVM was derived from an 11-gene subset since data for 4 of the original genes was unavailable. The accuracy of this SVM was similar in cell lines and tumor blocks (70-71%). The gemcitabine SVM exhibited 62% prediction accuracy for the tumor blocks due to the presence of samples with poor nucleic acid integrity. Nevertheless, the paclitaxel SVM predicted sensitivity in 84% of patients with no or minimal residual disease. Copyright © 2015 Federation of European Biochemical Societies

  20. The Role of BRCA2 Mutation Status as Diagnostic, Predictive, and Prognosis Biomarker for Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Javier Martinez-Useros

    2016-01-01

    Full Text Available Pancreatic cancer is one of the deadliest cancers worldwide, and life expectancy after diagnosis is often short. Most pancreatic tumours appear sporadically and have been highly related to habits such as cigarette smoking, high alcohol intake, high carbohydrate, and sugar consumption. Other observational studies have suggested the association between pancreatic cancer and exposure to arsenic, lead, or cadmium. Aside from these factors, chronic pancreatitis and diabetes have also come to be considered as risk factors for these kinds of tumours. Studies have found that 10% of pancreatic cancer cases arise from an inherited syndrome related to some genetic alterations. One of these alterations includes mutation in BRCA2 gene. BRCA2 mutations impair DNA damage response and homologous recombination by direct regulation of RAD51. In light of these findings that link genetic factors to tumour development, DNA damage agents have been proposed as target therapies for pancreatic cancer patients carrying BRCA2 mutations. Some of these drugs include platinum-based agents and PARP inhibitors. However, the acquired resistance to PARP inhibitors has created a need for new chemotherapeutic strategies to target BRCA2. The present systematic review collects and analyses the role of BRCA2 alterations to be used in early diagnosis of an inherited syndrome associated with familiar cancer and as a prognostic and predictive biomarker for the management of pancreatic cancer patients.

  1. Association of Type and Location of BRCA1 and BRCA2 Mutations With Risk of Breast and Ovarian Cancer

    NARCIS (Netherlands)

    Rebbeck, Timothy R.; Mitra, Nandita; Wan, Fei; Sinilnikova, Olga M.; Healey, Sue; McGuffog, Lesley; Mazoyer, Sylvie; Chenevix-Trench, Georgia; Easton, Douglas F.; Antoniou, Antonis C.; Nathanson, Katherine L.; Laitman, Yael; Kushnir, Anya; Paluch-Shimon, Shani; Berger, Raanan; Zidan, Jamal; Friedman, Eitan; Ehrencrona, Hans; Stenmark-Askmalm, Marie; Einbeigi, Zakaria; Loman, Niklas; Harbst, Katja; Rantala, Johanna; Melin, Beatrice; Huo, Dezheng; Olopade, Olufunmilayo I.; Seldon, Joyce; Ganz, Patricia A.; Nussbaum, Robert L.; Chan, Salina B.; Odunsi, Kunle; Gayther, Simon A.; Domchek, Susan M.; Arun, Banu K.; Lu, Karen H.; Mitchell, Gillian; Karlan, Beth Y.; Walsh, Christine; Lester, Jenny; Godwin, Andrew K.; Pathak, Harsh; Ross, Eric; Daly, Mary B.; Whittemore, Alice S.; John, Esther M.; Miron, Alexander; Terry, Mary Beth; Chung, Wendy K.; Goldgar, David E.; Buys, Saundra S.; Janavicius, Ramunas; Tihomirova, Laima; Tung, Nadine; Dorfling, Cecilia M.; van Rensburg, Elizabeth J.; Steele, Linda; Neuhausen, Susan L.; Ding, Yuan Chun; Ejlertsen, Bent; Gerdes, Anne-Marie; Hansen, Thomas v O.; Ramón Y Cajal, Teresa; Osorio, Ana; Benitez, Javier; Godino, Javier; Tejada, Maria-Isabel; Duran, Mercedes; Weitzel, Jeffrey N.; Bobolis, Kristie A.; Sand, Sharon R.; Fontaine, Annette; Savarese, Antonella; Pasini, Barbara; Peissel, Bernard; Bonanni, Bernardo; Zaffaroni, Daniela; Vignolo-Lutati, Francesca; Scuvera, Giulietta; Giannini, Giuseppe; Bernard, Loris; Genuardi, Maurizio; Radice, Paolo; Dolcetti, Riccardo; Manoukian, Siranoush; Pensotti, Valeria; Gismondi, Viviana; Yannoukakos, Drakoulis; Fostira, Florentia; Garber, Judy; Torres, Diana; Rashid, Muhammad Usman; Hamann, Ute; Peock, Susan; Frost, Debra; Platte, Radka; Evans, D. Gareth; Eeles, Rosalind; Davidson, Rosemarie; Eccles, Diana; Cole, Trevor; Cook, Jackie; Brewer, Carole; Hodgson, Shirley; Morrison, Patrick J.; Walker, Lisa; Porteous, Mary E.; Kennedy, M. John; Izatt, Louise; Adlard, Julian; Donaldson, Alan; Ellis, Steve; Sharma, Priyanka; Schmutzler, Rita Katharina; Wappenschmidt, Barbara; Becker, Alexandra; Rhiem, Kerstin; Hahnen, Eric; Engel, Christoph; Meindl, Alfons; Engert, Stefanie; Ditsch, Nina; Arnold, Norbert; Plendl, Hans Jörg; Mundhenke, Christoph; Niederacher, Dieter; Fleisch, Markus; Sutter, Christian; Bartram, C. R.; Dikow, Nicola; Wang-Gohrke, Shan; Gadzicki, Dorothea; Steinemann, Doris; Kast, Karin; Beer, Marit; Varon-Mateeva, Raymonda; Gehrig, Andrea; Weber, Bernhard H.; Stoppa-Lyonnet, Dominique; Houdayer, Claude; Belotti, Muriel; Gauthier-Villars, Marion; Damiola, Francesca; Boutry-Kryza, Nadia; Lasset, Christine; Sobol, Hagay; Peyrat, Jean-Philippe; Muller, Danièle; Fricker, Jean-Pierre; Collonge-Rame, Marie-Agnès; Mortemousque, Isabelle; Nogues, Catherine; Rouleau, Etienne; Isaacs, Claudine; de Paepe, Anne; Poppe, Bruce; Claes, Kathleen; de Leeneer, Kim; Piedmonte, Marion; Rodriguez, Gustavo; Wakely, Katie; Boggess, John; Blank, Stephanie V.; Basil, Jack; Azodi, Masoud; Phillips, Kelly-Anne; Caldes, Trinidad; de la Hoya, Miguel; Romero, Atocha; Nevanlinna, Heli; Aittomäki, Kristiina; van der Hout, Annemarie H.; Hogervorst, Frans B. L.; Verhoef, Senno; Collée, J. Margriet; Seynaeve, Caroline; Oosterwijk, Jan C.; Gille, Johannes J. P.; Wijnen, Juul T.; Gómez Garcia, Encarna B.; Kets, Carolien M.; Ausems, Margreet G. E. M.; Aalfs, Cora M.; Devilee, Peter; Mensenkamp, Arjen R.; Kwong, Ava; Olah, Edith; Papp, Janos; Diez, Orland; Lazaro, Conxi; Darder, Esther; Blanco, Ignacio; Salinas, Mónica; Jakubowska, Anna; Lubinski, Jan; Gronwald, Jacek; Jaworska-Bieniek, Katarzyna; Durda, Katarzyna; Sukiennicki, Grzegorz; Huzarski, Tomasz; Byrski, Tomasz; Cybulski, Cezary; Toloczko-Grabarek, Aleksandra; Złowocka-Perłowska, Elżbieta; Menkiszak, Janusz; Arason, Adalgeir; Barkardottir, Rosa B.; Simard, Jacques; Laframboise, Rachel; Montagna, Marco; Agata, Simona; Alducci, Elisa; Peixoto, Ana; Teixeira, Manuel R.; Spurdle, Amanda B.; Lee, Min Hyuk; Park, Sue K.; Kim, Sung-Won; Friebel, Tara M.; Couch, Fergus J.; Lindor, Noralane M.; Pankratz, Vernon S.; Guidugli, Lucia; Wang, Xianshu; Tischkowitz, Marc; Foretova, Lenka; Vijai, Joseph; Offit, Kenneth; Robson, Mark; Rau-Murthy, Rohini; Kauff, Noah; Fink-Retter, Anneliese; Singer, Christian F.; Rappaport, Christine; Gschwantler-Kaulich, Daphne; Pfeiler, Georg; tea, Muy-Kheng; Berger, Andreas; Greene, Mark H.; Mai, Phuong L.; Imyanitov, Evgeny N.; Toland, Amanda Ewart; Senter, Leigha; Bojesen, Anders; Pedersen, Inge Sokilde; Skytte, Anne-Bine; Sunde, Lone; Thomassen, Mads; Moeller, Sanne Traasdahl; Kruse, Torben A.; Jensen, Uffe Birk; Caligo, Maria Adelaide; Aretini, Paolo; teo, Soo-Hwang; Selkirk, Christina G.; Hulick, Peter J.; Andrulis, Irene

    2015-01-01

    IMPORTANCE Limited information about the relationship between specific mutations in BRCA1 or BRCA2 (BRCA1/2) and cancer risk exists. OBJECTIVE To identify mutation-specific cancer risks for carriers of BRCA1/2. DESIGN, SETTING, AND PARTICIPANTS Observational study of women who were ascertained

  2. Association of type and location of BRCA1 and BRCA2 mutations with risk of breast and ovarian cancer

    NARCIS (Netherlands)

    R. Rebbeck (Timothy); N. Mitra (Nandita); F. Wan (Fei); O. Sinilnikova (Olga); S. Healey (Sue); L. McGuffog (Lesley); G. Chenevix-Trench (Georgia); D.F. Easton (Douglas); A.C. Antoniou (Antonis C.); K.L. Nathanson (Katherine); Y. Laitman (Yael); A. Kushnir (Anya); S. Paluch-Shimon (Shani); R. Berger (Raanan); J. Zidan (Jamal); E. Friedman (Eitan); H. Ehrencrona (Hans); M. Stenmark-Askmalm (Marie); Z. Einbeigi (Zakaria); N. Loman (Niklas); K. Harbst (Katja); J. Rantala (Johanna); B. Melin (Beatrice); D. Huo (Dezheng); O.I. Olopade (Olofunmilayo); J.L. Seldon (Joyce); P.A. Ganz (Patricia); R.L. Nussbaum (Robert L.); S. Chan (Salina); K. Odunsi (Kunle); S.A. Gayther (Simon); S.M. Domchek (Susan); B.K. Arun (Banu); K.H. Lu (Karen); G. Mitchell (Gillian); B.Y. Karlan (Beth); C.S. Walsh (Christine); K.J. Lester (Kathryn); A.K. Godwin (Andrew); S.S. Pathak; E.B. Ross (Eric); M.J. Daly (Mark); A.S. Whittemore (Alice); E.M. John (Esther); A. Miron (Alexander); M.B. Terry (Mary Beth); W.K. Chung (Wendy K.); D. Goldgar (David); S.S. Buys (Saundra); R. Janavicius (Ramunas); L. Tihomirova (Laima); N. Tung (Nadine); C.M. Dorfling (Cecilia); E.J. van Rensburg (Elizabeth); L. Steele (Linda); S.L. Neuhausen (Susan); Y.C. Ding (Yuan); B. Ejlertsen (Bent); A-M. Gerdes (Anne-Marie); T.V.O. Hansen (Thomas); T. Ramon Y Cajal; A. Osorio (Ana); J. Benítez (Javier); J. Godino (Javier); M.I. Tejada; M. Duran (Mercedes); J.N. Weitzel (Jeffrey); K.A. Bobolis (Kristie A.); S.R. Sand (Sharon); A. Fontaine (Annette); A. Savarese (Antonella); B. Pasini (Barbara); B. Peissel (Bernard); B. Bonnani (Bernardo); D. Zaffaroni (Daniela); F. Vignolo-Lutati (Francesca); G. Scuvera (Giulietta); G. Giannini (Giuseppe); L. Bernard (Loris); M. Genuardi (Maurizio); P. Radice (Paolo); R. Dolcetti (Riccardo); S. Manoukian (Siranoush); V. Pensotti (Valeria); V. Gismondi (Viviana); D. Yannoukakos (Drakoulis); F. Fostira (Florentia); J. Garber (Judy); D. Torres (Diana); M.U. Rashid (Muhammad); U. Hamann (Ute); S. Peock (Susan); D. Frost (Debra); R. Platte (Radka); D.G. Evans (Gareth); R. Eeles (Rosalind); R. Davidson (Rosemarie); D. Eccles (Diana); T. Cole (Trevor); J. Cook (Jackie); C. Brewer (Carole); S. Hodgson (Shirley); P.J. Morrison (Patrick); L.J. Walker (Lisa); M.E. Porteous (Mary); M.J. Kennedy (John); L. Izatt (Louise); L. Adlard; A. Donaldson (Alan); S.D. Ellis (Steve); P. Sharma (Priyanka); R.K. Schmutzler (Rita); B. Wapenschmidt (Barbara); A. Becker (Alexandra); K. Rhiem (Kerstin); E. Hahnen (Eric); C.W. Engel (Christoph); A. Meindl (Alfons); S. Engert (Stefanie); N. Ditsch (Nina); N. Arnold (Norbert); H. Plendl (Hansjoerg); C. Mundhenke (Christoph); D. Niederacher (Dieter); M.C. Fleisch (Markus); C. Sutter (Christian); C.R. Bartram (Claus); N. Dikow (Nicola); S. Wang-Gohrke (Shan); D. Gadzicki (Dorothea); D. Steinemann (Doris); K. Kast (Karin); M. Beer (Marit); R. Varon-Mateeva (Raymonda); P.A. Gehrig (Paola A.); B.H.F. Weber (Bernhard); D. Stoppa-Lyonnet (Dominique); M. Belotti (Muriel); M. Gauthier-Villars (Marion); F. Damiola (Francesca); N. Boutry-Kryza (N.); C. Lasset (Christine); H. Sobol (Hagay); J.-P. Peyrat; D.W. Muller (Danièle); J.P. Fricker (Jean Pierre); M.-A. Collonge-Rame; I. Mortemousque (Isabelle); C. Nogues (Catherine); E. Rouleau (Etienne); C. Isaacs (Claudine); A. de Paepe (Anne); B. Poppe (Bruce); K. Claes (Kathleen); K. De Leeneer (Kim); M. Piedmonte (Marion); G. Rodriguez (Gustavo); K. Wakely (Katie); J.F. Boggess (John); S.V. Blank (Stephanie); J. Basil (Jack); M. Azodi (Masoud); K.-A. Phillips (Kelly-Anne); T. Caldes (Trinidad); M. de La Hoya (Miguel); A. Romero (Atocha); H. Nevanlinna (Heli); K. Aittomäki (Kristiina); A.H. van der Hout (Annemarie); F.B.L. Hogervorst (Frans); S. Verhoef; J.M. Collée (Margriet); C.M. Seynaeve (Caroline); J.C. Oosterwijk (Jan); J.J. Gille (Johan); J.T. Wijnen (Juul); E.B. Gómez García (Encarna); C.M. Kets; M.G.E.M. Ausems (Margreet); C.M. Aalfs (Cora); P. Devilee (Peter); A.R. Mensenkamp (Arjen); A. Kwong (Ava); E. Olah; J. Papp (Janos); O. Díez (Orland); C. Lazaro (Conxi); E. Darder (Esther); I. Blanco (Ignacio); M. Salinas; A. Jakubowska (Anna); J. Lubinski (Jan); J. Gronwald (Jacek); K. Jaworska-Bieniek (Katarzyna); K. Durda (Katarzyna); G. Sukiennicki (Grzegorz); T. Huzarski (Tomasz); T. Byrski (Tomasz); C. Cybulski (Cezary); A. Toloczko-Grabarek (Aleksandra); E. Złowocka-Perłowska (Elzbieta); J. Menkiszak (Janusz); A. Arason (Adalgeir); R.B. Barkardottir (Rosa); J. Simard (Jacques); R. Laframboise (Rachel); M. Montagna (Marco); S. Agata (Simona); E. Alducci (Elisa); A. Peixoto (Ana); P.J. Teixeira; A.B. Spurdle (Amanda); M.H. Lee (Min Hyuk); S.K. Park (Sue); S.-W. Kim (Sung-Won); M.O.W. Friebel (Mark ); F.J. Couch (Fergus); N.M. Lindor (Noralane); V.S. Pankratz (Shane); L. Guidugli (Lucia); X. Wang (Xianshu); M. Tischkowitz (Marc); L. Foretova (Lenka); J. Vijai (Joseph); K. Offit (Kenneth); M. Robson (Mark); R. Rau-Murthy (Rohini); N. Kauff (Noah); A. Fink-Retter (Anneliese); C.F. Singer (Christian); C. Rappaport (Christine); D. Gschwantler-Kaulich (Daphne); G. Pfeiler (Georg); M.-K. Tea; A. Berger (Andreas); M.H. Greene (Mark); P.L. Mai (Phuong); E.N. Imyanitov (Evgeny); A.E. Toland (Amanda); L. Senter (Leigha); A. Bojesen (Anders); I.S. Pedersen (Inge Sokilde); A.-B. Skytte (Anne-Bine); L. Sunde (Lone); M. Thomassen (Mads); S.T. Moeller (Sanne Traasdahl); T.A. Kruse (Torben); U.B. Jensen; M.A. Caligo (Maria); P. Aretini (Paolo); S.-H. Teo (Soo-Hwang); C.G. Selkirk (Christina); P.J. Hulick (Peter); I.L. Andrulis (Irene)

    2015-01-01

    textabstractImportance: Limited information about the relationship between specific mutations in BRCA1 or BRCA2 (BRCA1/2) and cancer risk exists. Objective: To identify mutation-specific cancer risks for carriers of BRCA1/2. Design, Setting, and Participants: Observational study ofwomen whowere

  3. Somatic mutations in breast and serous ovarian cancer young patients : a systematic review and meta-analysis

    NARCIS (Netherlands)

    Encinas, Giselly; Maistro, Simone; Pasini, Fatima Solange; Hirata Katayama, Maria Lucia; Brentani, Maria Mitzi; de Bock, Geertruida Hendrika; Azevedo Koike Folgueira, Maria Aparecida

    2015-01-01

    Objective: our aim was to evaluate whether somatic mutations in five genes were associated with an early age at presentation of breast cancer (BC) or serous ovarian cancer (SOC). Methods: COSMIC database was searched for the five most frequent somatic mutations in BC and SOC. A systematic review of

  4. Association of type and location of BRCA1 and BRCA2 mutations with risk of breast and ovarian cancer

    NARCIS (Netherlands)

    Rebbeck, T.R.; Mitra, N.; Wan, F.; Sinilnikova, O.M.; Healey, S.; McGuffog, L.; Mazoyer, S.; Chenevix-Trench, G.; Easton, D.F.; Antoniou, A.C.; Nathanson, K.L.; Laitman, Y.; Kushnir, A.; Paluch-Shimon, S.; Berger, R.; Zidan, J.; Friedman, E.; Ehrencrona, H.; Stenmark-Askmalm, M.; Einbeigi, Z.; Loman, N.; Harbst, K.; Rantala, J.; Melin, B.; Huo, D.; Olopade, O.I.; Seldon, J.; Ganz, P.A.; Nussbaum, R.L.; Chan, S.B.; Odunsi, K.; Gayther, S.A.; Domchek, S.M.; Arun, B.K.; Lu, K.H.; Mitchell, G.; Karlan, B.Y.; Walsh, C.; Lester, J.; Godwin, A.K.; Pathak, H.; Ross, E.; Daly, M.B.; Whittemore, A.S.; John, E.M.; Miron, A.; Terry, M.B.; Chung, W.K.; Goldgar, D.E.; Buys, S.S.; Janavicius, R.; Tihomirova, L.; Tung, N.; Dorfling, C.M.; Rensburg, E.J. van; Steele, L.; Neuhausen, S.L.; Ding, Y.C.; Ejlertsen, B.; Gerdes, A.M.; Hansen, T.; Ramon Y Cajal, T.; Osorio, A.; Benitez, J.; Godino, J.; Tejada, M.I.; Duran, M.; Weitzel, J.N.; Bobolis, K.A.; Sand, S.R.; Fontaine, A.; Savarese, A.; Pasini, B.; Peissel, B.; Bonanni, B.; Zaffaroni, D.; Vignolo-Lutati, F.; Scuvera, G.; Giannini, G.; Bernard, L.; Genuardi, M.; Radice, P.; Dolcetti, R.; Manoukian, S.; Pensotti, V.; Gismondi, V.; Yannoukakos, D.; Fostira, F.; Garber, J.; Torres, D.; Rashid, M.U.; Hamann, U.; Peock, S.; Frost, D.; Platte, R.; Evans, D.G.; Eeles, R.; Davidson, R.; Eccles, D.; Cole, T.; Kets, M.; Mensenkamp, A.R.; et al.,

    2015-01-01

    IMPORTANCE: Limited information about the relationship between specific mutations in BRCA1 or BRCA2 (BRCA1/2) and cancer risk exists. OBJECTIVE: To identify mutation-specific cancer risks for carriers of BRCA1/2. DESIGN, SETTING, AND PARTICIPANTS: Observational study of women who were ascertained

  5. Association of type and location of BRCA1 and BRCA2 mutations with risk of breast and ovarian cancer

    DEFF Research Database (Denmark)

    Rebbeck, Timothy R; Mitra, Nandita; Wan, Fei

    2015-01-01

    IMPORTANCE: Limited information about the relationship between specific mutations in BRCA1 or BRCA2 (BRCA1/2) and cancer risk exists. OBJECTIVE: To identify mutation-specific cancer risks for carriers of BRCA1/2. DESIGN, SETTING, AND PARTICIPANTS: Observational study of women who were ascertained...

  6. BRCA1 and BRCA2mutations in breast cancer patients from Venezuela

    Directory of Open Access Journals (Sweden)

    Karlena Lara

    2012-01-01

    Full Text Available A sample of 58 familial breast cancer patients from Venezuela were screened for germline mutations in the coding sequences and exon-intron boundaries of BRCA1 (MIM no. 113705 and BRCA2 (MIM no. 600185 genes by using conformation-sensitive gel electrophoresis. Ashkenazi Jewish founder mutations were not found in any of the samples. We identified 6 (10.3% and 4 (6.9% patients carrying germline mutations in BRCA1 and BRCA2, respectively. Four pathogenic mutations were found in BRCA1, one is a novel mutation (c.951_952insA, while the other three had been previously reported (c.1129_1135insA, c.4603G>T and IVS20+1G>A. We also found 4 pathogenic mutations in BRCA2, two novel mutations (c.2732_2733insA and c.3870_3873delG and two that have been already reported (c.3036_3039delACAA and c.6024_6025_delTA. In addition, 17 variants of unknown significance (6 BRCA1 variants and 11 BRCA2 variants, 5 BRCA2 variants with no clinical importance and 22 polymorphisms (12 in BRCA1 and10 in BRCA2 were also identified. This is the first genetic study on BRCA gene mutations conducted in breast cancer patients from Venezuela. The ethnicity of our population, as well as the heterogeneous and broad spectrum of BRCA genes mutations, must be considered to optimize genetic counseling and disease prevention in affected families.

  7. E-cadherin destabilization accounts for the pathogenicity of missense mutations in hereditary diffuse gastric cancer.

    Directory of Open Access Journals (Sweden)

    Joana Simões-Correia

    Full Text Available E-cadherin is critical for the maintenance of tissue architecture due to its role in cell-cell adhesion. E-cadherin mutations are the genetic cause of Hereditary Diffuse Gastric Cancer (HDGC and missense mutations represent a clinical burden, due to the uncertainty of their pathogenic role. In vitro and in vivo, most mutations lead to loss-of-function, although the causal factor is unknown for the majority. We hypothesized that destabilization could account for the pathogenicity of E-cadherin missense mutations in HDGC, and tested our hypothesis using in silico and in vitro tools. FoldX algorithm was used to calculate the impact of each mutation in E-cadherin native-state stability, and the analysis was complemented with evolutionary conservation, by SIFT. Interestingly, HDGC patients harbouring germline E-cadherin destabilizing mutants present a younger age at diagnosis or death, suggesting that the loss of native-state stability of E-cadherin accounts for the disease phenotype. To elucidate the biological relevance of E-cadherin destabilization in HDGC, we investigated a group of newly identified HDGC-associated mutations (E185V, S232C and L583R, of which L583R is predicted to be destabilizing. We show that this mutation is not functional in vitro, exhibits shorter half-life and is unable to mature, due to premature proteasome-dependent degradation, a phenotype reverted by stabilization with the artificial mutation L583I (structurally tolerated. Herein we report E-cadherin structural models suitable to predict the impact of the majority of cancer-associated missense mutations and we show that E-cadherin destabilization leads to loss-of-function in vitro and increased pathogenicity in vivo.

  8. Evaluation and identification of factors related to KRAS and BRAF gene mutations in colorectal cancer: A meta-analysis

    Directory of Open Access Journals (Sweden)

    Li Lin

    2016-01-01

    Conclusion: The meta-analysis reveals that KRAS has a slightly higher mutation rate in MSI-L/MSS tumors. Moreover, BRAF mutations have higher detection rates in right-sided colorectal cancer, which suggests that BRAF mutations are likely in CIMP-H tumors. Therefore, based on these findings, the molecular diagnostic tests to be conducted in colorectal cancer patients can be determined according to the location/clinical features of the tumor.

  9. Competitive amplification of differentially melting amplicons (CADMA improves KRAS hotspot mutation testing in colorectal cancer

    Directory of Open Access Journals (Sweden)

    Kristensen Lasse

    2012-11-01

    Full Text Available Abstract Background Cancer is an extremely heterogeneous group of diseases traditionally categorized according to tissue of origin. However, even among patients with the same cancer subtype the cellular alterations at the molecular level are often very different. Several new therapies targeting specific molecular changes found in individual patients have initiated the era of personalized therapy and significantly improved patient care. In metastatic colorectal cancer (mCRC a selected group of patients with wild-type KRAS respond to antibodies against the epidermal growth factor receptor (EGFR. Testing for KRAS mutations is now required prior to anti-EGFR treatment, however, less sensitive methods based on conventional PCR regularly fail to detect KRAS mutations in clinical samples. Methods We have developed sensitive and specific assays for detection of the seven most common KRAS mutations based on a novel methodology named Competitive Amplification of Differentially Melting Amplicons (CADMA. The clinical applicability of these assays was assessed by analyzing 100 colorectal cancer samples, for which KRAS mutation status has been evaluated by the commercially available TheraScreen® KRAS mutation kit. Results The CADMA assays were sensitive to at least 0.5% mutant alleles in a wild-type background when using 50 nanograms of DNA in the reactions. Consensus between CADMA and the TheraScreen kit was observed in 96% of the colorectal cancer samples. In cases where disagreement was observed the CADMA result could be confirmed by a previously published assay based on TaqMan probes and by fast COLD-PCR followed by Sanger sequencing. Conclusions The high analytical sensitivity and specificity of CADMA may increase diagnostic sensitivity and specificity of KRAS mutation testing in mCRC patients.

  10. Novel BRCA1 splice-site mutation in ovarian cancer patients of Slavic origin.

    Science.gov (United States)

    Krivokuca, Ana; Dragos, Vita Setrajcic; Stamatovic, Ljiljana; Blatnik, Ana; Boljevic, Ivana; Stegel, Vida; Rakobradovic, Jelena; Skerl, Petra; Jovandic, Stevo; Krajc, Mateja; Magic, Mirjana Brankovic; Novakovic, Srdjan

    2018-04-01

    Mutations in breast cancer susceptibility gene 1 (BRCA1) lead to defects in a number of cellular pathways including DNA damage repair and transcriptional regulation, resulting in the elevated genome instability and predisposing to breast and ovarian cancers. We report a novel mutation LRG_292t1:c.4356delA,p.(Ala1453Glnfs*3) in the 12th exon of BRCA1, in the splice site region near the donor site of intron 12. It is a frameshift mutation with the termination codon generated on the third amino acid position from the site of deletion. Human Splice Finder 3.0 and MutationTaster have assessed this variation as disease causing, based on the alteration of splicing, creation of premature stop codon and other potential alterations initiated by nucleotide deletion. Among the most important alterations are frameshift and splice site changes (score of the newly created donor splice site: 0.82). c.4356delA was associated with two ovarian cancer cases in two families of Slavic origin. It was detected by next generation sequencing, and confirmed with Sanger sequencing in both cases. Because of the fact that it changes the reading frame of the protein, novel mutation c.4356delA p.(Ala1453Glnfs*3) in BRCA1 gene might be of clinical significance for hereditary ovarian cancer. Further functional as well as segregation analyses within the families are necessary for appropriate clinical classification of this variant. Since it has been detected in two ovarian cancer patients of Slavic origin, it is worth investigating founder effect of this mutation in Slavic populations.

  11. Low prevalence of CHEK2 gene mutations in multiethnic cohorts of breast cancer patients in Malaysia.

    Science.gov (United States)

    Mohamad, Suriati; Isa, Nurismah Md; Muhammad, Rohaizak; Emran, Nor Aina; Kitan, Nor Mayah; Kang, Peter; Kang, In Nee; Taib, Nur Aishah Mohd; Teo, Soo Hwang; Akmal, Sharifah Noor

    2015-01-01

    CHEK2 is a protein kinase that is involved in cell-cycle checkpoint control after DNA damage. Germline mutations in CHEK2 gene have been associated with increase in breast cancer risk. The aim of this study is to identify the CHEK2 gene germline mutations among high-risk breast cancer patients and its contribution to the multiethnic population in Malaysia. We screened the entire coding region of CHEK2 gene on 59 high-risk breast cancer patients who tested negative for BRCA1/2 germline mutations from UKM Medical Centre (UKMMC), Hospital Kuala Lumpur (HKL) and Hospital Putrajaya (HPJ). Sequence variants identified were screened further in case-control cohorts consisting of 878 unselected invasive breast cancer patients (180 Malays, 526 Chinese and 172 Indian) and 270 healthy individuals (90 Malays, 90 Chinese and 90 Indian). By screening the entire coding region of the CHEK2 gene, two missense mutations, c.480A>G (p.I160M) and c.538C>T (p.R180C) were identified in two unrelated patients (3.4%). Further screening of these missense mutations on the case-control cohorts unveiled the variant p.I160M in 2/172 (1.1%) Indian cases and 1/90 (1.1%) Indian control, variant p.R180C in 2/526 (0.38%) Chinese cases and 0/90 Chinese control, and in 2/180 (1.1%) of Malay cases and 1/90 (1.1%) of Malay control. The results of this study suggest that CHEK2 mutations are rare among high-risk breast cancer patients and may play a minor contributing role in breast carcinogenesis among Malaysian population.

  12. Integration of a Radiosensitivity Molecular Signature Into the Assessment of Local Recurrence Risk in Breast Cancer

    International Nuclear Information System (INIS)

    Torres-Roca, Javier F.; Fulp, William J.; Caudell, Jimmy J.; Servant, Nicolas; Bollet, Marc A.; Vijver, Marc van de; Naghavi, Arash O.; Harris, Eleanor E.; Eschrich, Steven A.

    2015-01-01

    Purpose: Recently, we developed radiosensitivity (RSI), a clinically validated molecular signature that estimates tumor radiosensitivity. In the present study, we tested whether integrating RSI with the molecular subtype refines the classification of local recurrence (LR) risk in breast cancer. Methods and Materials: RSI and molecular subtype were evaluated in 343 patients treated with breast-conserving therapy that included whole-breast radiation therapy with or without a tumor bed boost (dose range 45-72 Gy). The follow-up period for patients without recurrence was 10 years. The clinical endpoint was LR-free survival. Results: Although RSI did not uniformly predict for LR across the entire cohort, combining RSI and the molecular subtype identified a subpopulation with an increased risk of LR: triple negative (TN) and radioresistant (reference TN-radioresistant, hazard ratio [HR] 0.37, 95% confidence interval [CI] 0.15-0.92, P=.02). TN patients who were RSI-sensitive/intermediate had LR rates similar to those of luminal (LUM) patients (HR 0.86, 95% CI 0.47-1.57, P=.63). On multivariate analysis, combined RSI and molecular subtype (P=.004) and age (P=.001) were the most significant predictors of LR. In contrast, integrating RSI into the LUM subtype did not identify additional risk groups. We hypothesized that radiation dose escalation was affecting radioresistance in the LUM subtype and serving as a confounder. An increased radiation dose decreased LR only in the luminal-resistant (LUM-R) subset (HR 0.23, 95% CI 0.05-0.98, P=.03). On multivariate analysis, the radiation dose was an independent variable only in the LUMA/B-RR subset (HR 0.025, 95% CI 0.001-0.946, P=.046), along with age (P=.008), T stage (P=.004), and chemotherapy (P=.008). Conclusions: The combined molecular subtype–RSI identified a novel molecular subpopulation (TN and radioresistant) with an increased risk of LR after breast-conserving therapy. We propose that the combination of RSI and

  13. Integration of a Radiosensitivity Molecular Signature Into the Assessment of Local Recurrence Risk in Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Torres-Roca, Javier F., E-mail: javier.torresroca@moffitt.org [Department of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida (United States); Department of Chemical Biology and Molecular Medicine, Moffitt Cancer Center, Tampa, Florida (United States); Fulp, William J. [Department of Bioinformatics, Moffitt Cancer Center, Tampa, Florida (United States); Department of Biostatistics, Moffitt Cancer Center, Tampa, Florida (United States); Caudell, Jimmy J. [Department of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida (United States); Servant, Nicolas [Institut Curie, INSERM U900, Paris (France); Mines ParisTech, Paris (France); Bollet, Marc A. [Institut Curie, INSERM U900, Paris (France); Vijver, Marc van de [Netherlands Cancer Institute, Amsterdam (Netherlands); Naghavi, Arash O. [Department of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida (United States); Harris, Eleanor E. [East Carolina University, Greensborough, North Carolina (United States); Eschrich, Steven A. [Department of Bioinformatics, Moffitt Cancer Center, Tampa, Florida (United States)

    2015-11-01

    Purpose: Recently, we developed radiosensitivity (RSI), a clinically validated molecular signature that estimates tumor radiosensitivity. In the present study, we tested whether integrating RSI with the molecular subtype refines the classification of local recurrence (LR) risk in breast cancer. Methods and Materials: RSI and molecular subtype were evaluated in 343 patients treated with breast-conserving therapy that included whole-breast radiation therapy with or without a tumor bed boost (dose range 45-72 Gy). The follow-up period for patients without recurrence was 10 years. The clinical endpoint was LR-free survival. Results: Although RSI did not uniformly predict for LR across the entire cohort, combining RSI and the molecular subtype identified a subpopulation with an increased risk of LR: triple negative (TN) and radioresistant (reference TN-radioresistant, hazard ratio [HR] 0.37, 95% confidence interval [CI] 0.15-0.92, P=.02). TN patients who were RSI-sensitive/intermediate had LR rates similar to those of luminal (LUM) patients (HR 0.86, 95% CI 0.47-1.57, P=.63). On multivariate analysis, combined RSI and molecular subtype (P=.004) and age (P=.001) were the most significant predictors of LR. In contrast, integrating RSI into the LUM subtype did not identify additional risk groups. We hypothesized that radiation dose escalation was affecting radioresistance in the LUM subtype and serving as a confounder. An increased radiation dose decreased LR only in the luminal-resistant (LUM-R) subset (HR 0.23, 95% CI 0.05-0.98, P=.03). On multivariate analysis, the radiation dose was an independent variable only in the LUMA/B-RR subset (HR 0.025, 95% CI 0.001-0.946, P=.046), along with age (P=.008), T stage (P=.004), and chemotherapy (P=.008). Conclusions: The combined molecular subtype–RSI identified a novel molecular subpopulation (TN and radioresistant) with an increased risk of LR after breast-conserving therapy. We propose that the combination of RSI and

  14. Rare mutations in RINT1 predispose carriers to breast and Lynch Syndrome-spectrum cancers

    Science.gov (United States)

    Park, Daniel J.; Tao, Kayoko; Le Calvez-Kelm, Florence; Nguyen-Dumont, Tu; Robinot, Nivonirina; Hammet, Fleur; Odefrey, Fabrice; Tsimiklis, Helen; Teo, Zhi L.; Thingholm, Louise B.; Young, Erin L.; Voegele, Catherine; Lonie, Andrew; Pope, Bernard J.; Roane, Terrell C.; Bell, Russell; Hu, Hao; Shankaracharya; Huff, Chad D.; Ellis, Jonathan; Li, Jun; Makunin, Igor V.; John, Esther M.; Andrulis, Irene L.; Terry, Mary B.; Daly, Mary; Buys, Saundra S.; Snyder, Carrie; Lynch, Henry T.; Devilee, Peter; Giles, Graham G.; Hopper, John L.; Feng, Bing J.; Lesueur, Fabienne; Tavtigian, Sean V.; Southey, Melissa C.; Goldgar, David E.

    2014-01-01

    Approximately half of the familial aggregation of breast cancer remains unexplained. A multiple-case breast cancer family exome sequencing study identified three likely pathogenic mutations in RINT1 (NM_021930.4) not present in public sequencing databases: RINT1 c.343C>T (p.Q115X), c.1132_1134del (p.M378del) and c.1207G>T (p.D403Y). Based on this finding, a population-based case-control mutation-screening study was conducted and identified 29 carriers of rare (MAF Lynch syndrome-spectrum cancers (SIR 3.35, 95% CI 1.7-6.0; P=0.005), particularly for relatives diagnosed with cancer under age 60 years (SIR 10.9, 95%CI 4.7-21; P=0.0003). PMID:25050558

  15. Risk of colorectal cancer for people with a mutation in both a MUTYH and a DNA mismatch repair gene

    Science.gov (United States)

    Win, Aung Ko; Reece, Jeanette C.; Buchanan, Daniel D.; Clendenning, Mark; Young, Joanne P.; Cleary, Sean P.; Kim, Hyeja; Cotterchio, Michelle; Dowty, James G.; MacInnis, Robert J.; Tucker, Katherine M.; Winship, Ingrid M.; Macrae, Finlay A.; Burnett, Terrilea; Le Marchand, Loïc; Casey, Graham; Haile, Robert W.; Newcomb, Polly A.; Thibodeau, Stephen N.; Lindor, Noralane M.; Hopper, John L.; Gallinger, Steven; Jenkins, Mark A.

    2015-01-01

    The base excision repair protein, MUTYH, functionally interacts with the DNA mismatch repair (MMR) system. As genetic testing moves from testing one gene at a time, to gene panel and whole exome next generation sequencing approaches, understanding the risk associated with co-existence of germline mutations in these genes will be important for clinical interpretation and management. From the Colon Cancer Family Registry, we identified 10 carriers who had both a MUTYH mutation (6 with c.1187G>A p.(Gly396Asp), 3 with c.821G>A p.(Arg274Gln), and 1 with c.536A>G p.(Tyr179Cys)) and a MMR gene mutation (3 in MLH1, 6 in MSH2, and 1 in PMS2), 375 carriers of a single (monoallelic) MUTYH mutation alone, and 469 carriers of a MMR gene mutation alone. Of the 10 carriers of both gene mutations, 8 were diagnosed with colorectal cancer. Using a weighted cohort analysis, we estimated that risk of colorectal cancer for carriers of both a MUTYH and a MMR gene mutation was substantially higher than that for carriers of a MUTYH mutation alone [hazard ratio (HR) 21.5, 95 % confidence interval (CI) 9.19–50.1; p colorectal cancer for carriers of a MMR gene mutation alone. Our finding suggests MUTYH mutation testing in MMR gene mutation carriers is not clinically informative. PMID:26202870

  16. Cancer Risks Associated with Inherited Mutations in Ovarian Cancer Susceptibility Genes Beyond BRCA1 and BRCA2

    Science.gov (United States)

    2016-05-01

    25 other candidate genes in the Fanconi anemia-BRCA pathway: ATR, BABAM1, BAP1, BLM, BRCC3, BRE, CHEK1, ERCC1, ERCC4 (FANCQ), FANCA , FANCB, FANCC...AWARD NUMBER: W81XWH-13-1-0484 TITLE: Cancer Risks Associated with Inherited Mutations in Ovarian Cancer Susceptibility Genes Beyond BRCA1 and...DNA repair genes on small core biopsy specimens iv) begun accessioning samples from the phase 2 rucaparib trial (Ariel 2, NCT01891344). 15

  17. Determination of EGFR and KRAS mutational status in Greek non-small-cell lung cancer patients.

    Science.gov (United States)

    Papadopoulou, Eirini; Tsoulos, Nikolaos; Tsirigoti, Angeliki; Apessos, Angela; Agiannitopoulos, Konstantinos; Metaxa-Mariatou, Vasiliki; Zarogoulidis, Konstantinos; Zarogoulidis, Pavlos; Kasarakis, Dimitrios; Kakolyris, Stylianos; Dahabreh, Jubrail; Vlastos, Fotis; Zoublios, Charalampos; Rapti, Aggeliki; Papageorgiou, Niki Georgatou; Veldekis, Dimitrios; Gaga, Mina; Aravantinos, Gerasimos; Karavasilis, Vasileios; Karagiannidis, Napoleon; Nasioulas, George

    2015-10-01

    It has been reported that certain patients with non-small-cell lung cancer (NSCLC) that harbor activating somatic mutations within the tyrosine kinase domain of the epidermal growth factor receptor ( EGFR ) gene may be effectively treated using targeted therapy. The use of EGFR inhibitors in patient therapy has been demonstrated to improve response and survival rates; therefore, it was suggested that clinical screening for EGFR mutations should be performed for all patients. Numerous clinicopathological factors have been associated with EGFR and Kirsten-rat sarcoma oncogene homolog (KRAS) mutational status including gender, smoking history and histology. In addition, it was reported that EGFR mutation frequency in NSCLC patients was ethnicity-dependent, with an incidence rate of ~30% in Asian populations and ~15% in Caucasian populations. However, limited data has been reported on intra-ethnic differences throughout Europe. The present study aimed to investigate the frequency and spectrum of EGFR mutations in 1,472 Greek NSCLC patients. In addition, KRAS mutation analysis was performed in patients with known smoking history in order to determine the correlation of type and mutation frequency with smoking. High-resolution melting curve (HRM) analysis followed by Sanger sequencing was used to identify mutations in exons 18-21 of the EGFR gene and in exon 2 of the KRAS gene. A sensitive next-generation sequencing (NGS) technology was also employed to classify samples with equivocal results. The use of sensitive mutation detection techniques in a large study population of Greek NSCLC patients in routine diagnostic practice revealed an overall EGFR mutation frequency of 15.83%. This mutation frequency was comparable to that previously reported in other European populations. Of note, there was a 99.8% concordance between the HRM method and Sanger sequencing. NGS was found to be the most sensitive method. In addition, female non-smokers demonstrated a high prevalence of

  18. Frequent mutations in EGFR, KRAS and TP53 genes in human lung cancer tumors detected by ion torrent DNA sequencing.

    Directory of Open Access Journals (Sweden)

    Xin Cai

    Full Text Available Lung cancer is the most common malignancy and the leading cause of cancer deaths worldwide. While smoking is by far the leading cause of lung cancer, other environmental and genetic factors influence the development and progression of the cancer. Since unique mutations patterns have been observed in individual cancer samples, identification and characterization of the distinctive lung cancer molecular profile is essential for developing more effective, tailored therapies. Until recently, personalized DNA sequencing to identify genetic mutations in cancer was impractical and expensive. The recent technological advancements in next-generation DNA sequencing, such as the semiconductor-based Ion Torrent sequencing platform, has made DNA sequencing cost and time effective with more reliable results. Using the Ion Torrent Ampliseq Cancer Panel, we sequenced 737 loci from 45 cancer-related genes to identify genetic mutations in 76 human lung cancer samples. The sequencing analysis revealed missense mutations in KRAS, EGFR, and TP53 genes in the breast cancer samples of various histologic types. Thus, this study demonstrates the necessity of sequencing individual human cancers in order to develop personalized drugs or combination therapies to effectively target individual, breast cancer-specific mutations.

  19. Identification of Two Novel HOXB13 Germline Mutations in Portuguese Prostate Cancer Patients

    Science.gov (United States)

    Maia, Sofia; Cardoso, Marta; Pinto, Pedro; Pinheiro, Manuela; Santos, Catarina; Peixoto, Ana; Bento, Maria José; Oliveira, Jorge; Henrique, Rui; Jerónimo, Carmen; Teixeira, Manuel R.

    2015-01-01

    The HOXB13 germline variant G84E (rs138213197) was recently described in men of European descent, with the highest prevalence in Northern Europe. The G84E mutation has not been found in patients of African or Asian ancestry, which may carry other HOXB13 variants, indicating allelic heterogeneity depending on the population. In order to gain insight into the full scope of coding HOXB13 mutations in Portuguese prostate cancer patients, we decided to sequence the entire coding region of the HOXB13 gene in 462 early-onset or familial/hereditary cases. Additionally, we searched for somatic HOXB13 mutations in 178 prostate carcinomas to evaluate their prevalence in prostate carcinogenesis. Three different patients were found to carry in their germline DNA two novel missense variants, which were not identified in 132 control subjects. Both variants are predicted to be deleterious by different in silico tools. No somatic mutations were found. These findings further support the hypothesis that different rare HOXB13 mutations may be found in different ethnic groups. Detection of mutations predisposing to prostate cancer may require re-sequencing rather than genotyping, as appropriate to the population under investigation. PMID:26176944

  20. IDH2 Mutations Define a Unique Subtype of Breast Cancer with Altered Nuclear Polarity

    Science.gov (United States)

    Chiang, Sarah; Weigelt, Britta; Wen, Huei-Chi; Pareja, Fresia; Raghavendra, Ashwini; Martelotto, Luciano G.; Burke, Kathleen A.; Basili, Thais; Li, Anqi; Geyer, Felipe C.; Piscuoglio, Salvatore; Ng, Charlotte K.Y.; Jungbluth, Achim A.; Balss, Jörg; Pusch, Stefan; Baker, Gabrielle M.; Cole, Kimberly S.; von Deimling, Andreas; Batten, Julie M.; Marotti, Jonathan D.; Soh, Hwei-Choo; McCalip, Benjamin L.; Serrano, Jonathan; Lim, Raymond S.; Siziopikou, Kalliopi P.; Lu, Song; Liu, Xiaolong; Hammour, Tarek; Brogi, Edi; Snuderl, Matija; Iafrate, A. John; Reis-Filho, Jorge S.; Schnitt, Stuart J.

    2017-01-01

    Solid papillary carcinoma with reverse polarity (SPCRP) is a rare breast cancer subtype with an obscure etiology. In this study, we sought to describe its unique histopathologic features and to identify the genetic alterations that underpin SPCRP using massively parallel whole-exome and targeted sequencing. The morphologic and immunohistochemical features of SPCRP support the invasive nature of this subtype. Ten of 13 (77%) SPCRPs harbored hotspot mutations at R172 of the isocitrate dehydrogenase IDH2, of which 8 of 10 displayed concurrent pathogenic mutations affecting PIK3CA or PIK3R1. One of the IDH2 wild-type SPCRPs harbored a TET2 Q548* truncating mutation coupled with a PIK3CA H1047R mutation. Functional studies demonstrated that IDH2 and PIK3CA hotspot mutations are likely drivers of SPCRP, resulting in its reversed nuclear polarization phenotype. Our results offer a molecular definition of SPCRP as a distinct breast cancer subtype. Concurrent IDH2 and PIK3CA mutations may help diagnose SPCRP and possibly direct effective treatment. PMID:27913435

  1. High Intra- and Inter-Tumoral Heterogeneity of RAS Mutations in Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Marion Jeantet

    2016-12-01

    Full Text Available Approximately 30% of patients with wild type RAS metastatic colorectal cancer are non-responders to anti-epidermal growth factor receptor monoclonal antibodies (anti-EGFR mAbs, possibly due to undetected tumoral subclones harboring RAS mutations. The aim of this study was to analyze the distribution of RAS mutations in different areas of the primary tumor, metastatic lymph nodes and distant metastasis. A retrospective cohort of 18 patients with a colorectal cancer (CRC was included in the study. Multiregion analysis was performed in 60 spatially separated tumor areas according to the pathological tumor node metastasis (pTNM staging and KRAS, NRAS and BRAF mutations were tested using pyrosequencing. In primary tumors, intra-tumoral heterogeneity for RAS mutation was found in 33% of cases. Inter-tumoral heterogeneity for RAS mutation between primary tumors and metastatic lymph nodes or distant metastasis was found in 36% of cases. Moreover, 28% of tumors had multiple RAS mutated subclones in the same tumor. A high proportion of CRCs presented intra- and/or inter-tumoral heterogeneity, which has relevant clinical implications for anti-EGFR mAbs prescription. These results suggest the need for multiple RAS testing in different parts of the same tumor and/or more sensitive techniques.

  2. Molecular Biology In Young Women With Breast Cancer: From Tumor Gene Expression To DNA Mutations.

    Science.gov (United States)

    Gómez-Flores-Ramos, Liliana; Castro-Sánchez, Andrea; Peña-Curiel, Omar; Mohar-Betancourt, Alejandro

    2017-01-01

    Young women with breast cancer (YWBC) represent roughly 15% of breast cancer (BC) cases in Latin America and other developing regions. Breast tumors occurring at an early age are more aggressive and have an overall worse prognosis compared to breast tumors in postmenopausal women. The expression of relevant proliferation biomarkers such as endocrine receptors and human epidermal growth factor receptor 2 appears to be unique in YWBC. Moreover, histopathological, molecular, genetic, and genomic studies have shown that YWBC exhibit a higher frequency of aggressive subtypes, differential tumor gene expression, increased genetic susceptibility, and specific genomic signatures, compared to older women with BC. This article reviews the current knowledge on tumor biology and genomic signatures in YWBC.

  3. Novel PMS2 Pseudogenes Can Conceal Recessive Mutations Causing a Distinctive Childhood Cancer Syndrome

    OpenAIRE

    De Vos, Michel; Hayward, Bruce E.; Picton, Susan; Sheridan, Eamonn; Bonthron, David T.

    2004-01-01

    We investigated a family with an autosomal recessive syndrome of café-au-lait patches and childhood malignancy, notably supratentorial primitive neuroectodermal tumor. There was no cancer predisposition in heterozygotes; nor was there bowel cancer in any individual. However, autozygosity mapping indicated linkage to a region of 7p22 surrounding the PMS2 mismatch-repair gene. Sequencing of genomic PCR products initially failed to identify a PMS2 mutation. Genome searches then revealed a previo...

  4. Association of two mutations in the CHEK2 gene with breast cancer

    International Nuclear Information System (INIS)

    Bogdanova, N.; Enben-Dubrowinskaja, N.; Doerk, T.; Feshchenko, S.; Lazyuk, G.I.; Rogov, Yu.I.

    2005-01-01

    Cell-cycle checkpoint kinase 2 (CHEK2) is a central mediator of cellular responses to DNA damage. Ionizing radiation activates the CHEK2 protein via ATM-mediated phosphorylation and activated CHEK2 kinase can phosphorylate several substrates, including Cdc25A, p53 and E2F1, which mediate cell cycle arrest and apoptosis. CHEK2 phosphorylation of the breast cancer susceptibility protein BRCA1 regulates DNA double-strand break repair, and deletion of CHEK2 potentiate the incidence of mammary carcinomas in BRCA1 conditional mutant mice. A truncating variant of CHEK2, the 1100 delC mutation, has been identified as a low-penetrance breast-cancer susceptibility allele. Heterozygous 1100 delC carriers have an approximately 2-fold increased risk for breast cancer. The role of variants in CHEK2 other than 1100 delC is less clear. To assess the role of these CHEK2 variants in breast cancer, we conducted an association study of the I157T and IVS211G>A mutations in breast cancer case-control settings from the Belarus populations. Our series consisted of 424 breast cancer patients and 307 population controls. The missense substitution I157T was identified in 24/424 cases (5.7%) vs. 4/307 controls (1.3%; OR 54.5, 95% CI 1.6-13.2, p 5 0.005) in investigated cohorts. The splicing mutation IVS211G > A was infrequent, being observed 4/424 patients (0.9%). Heterozygous CHEK2 mutation carriers tended to be diagnosed at an earlier age, but these differences did not reach statistical significance. Family history of breast cancer did not differ between carriers and non carriers. Our data indicate that the I157T allele, and possibly the IVS211G > A allele, of the CHEK2 gene contribute to inherited breast cancer susceptibility. (authors)

  5. Germline Mutations in Cancer Predisposition Genes are Frequent in Sporadic Sarcomas

    OpenAIRE

    Chan, Sock Hoai; Lim, Weng Khong; Ishak, Nur Diana Binte; Li, Shao-Tzu; Goh, Wei Lin; Tan, Gek San; Lim, Kiat Hon; Teo, Melissa; Young, Cedric Ng Chuan; Malik, Simeen; Tan, Mann Hong; Teh, Jonathan Yi Hui; Chin, Francis Kuok Choon; Kesavan, Sittampalam; Selvarajan, Sathiyamoorthy

    2017-01-01

    Associations of sarcoma with inherited cancer syndromes implicate genetic predisposition in sarcoma development. However, due to the apparently sporadic nature of sarcomas, little attention has been paid to the role genetic susceptibility in sporadic sarcoma. To address this, we performed targeted-genomic sequencing to investigate the prevalence of germline mutations in known cancer-associated genes within an Asian cohort of sporadic sarcoma patients younger than 50 years old. We observed 13....

  6. Comprehensive Characterization of Cancer Driver Genes and Mutations

    NARCIS (Netherlands)

    Bailey, Matthew H.; Tokheim, Collin; Porta-Pardo, Eduard; Sengupta, Sohini; Bertrand, Denis; Weerasinghe, Amila; Colaprico, Antonio; Wendl, Michael C.; Kim, Jaegil; Reardon, Brendan; Ng, Patrick Kwok Shing; Jeong, Kang Jin; Cao, Song; Wang, Zixing; Gao, Jianjiong; Gao, Qingsong; Wang, Fang; Liu, Eric Minwei; Mularoni, Loris; Rubio-Perez, Carlota; Nagarajan, Niranjan; Cortés-Ciriano, Isidro; Zhou, Daniel Cui; Liang, Wen Wei; Hess, Julian M.; Yellapantula, Venkata D.; Tamborero, David; Gonzalez-Perez, Abel; Suphavilai, Chayaporn; Ko, Jia Yu; Khurana, Ekta; Park, Peter J.; Van Allen, Eliezer M.; Liang, Han; Caesar-Johnson, Samantha J.; Demchok, John A.; Felau, Ina; Kasapi, Melpomeni; Ferguson, Martin L.; Hutter, Carolyn M.; Sofia, Heidi J.; Tarnuzzer, Roy; Wang, Zhining; Yang, Liming; Zenklusen, Jean C.; Zhang, Jiashan (Julia); Chudamani, Sudha; Liu, Jia; Lolla, Laxmi; Naresh, Rashi; Pihl, Todd; Sun, Qiang; Wan, Yunhu; Wu, Ye; Cho, Juok; DeFreitas, Timothy; Frazer, Scott; Gehlenborg, Nils; Getz, Gad; Heiman, David I.; Kim, Jaegil; Lawrence, Michael S.; Lin, Pei; Meier, Sam; Noble, Michael S.; Saksena, Gordon; Voet, Doug; Zhang, Hailei; Bernard, Brady; Chambwe, Nyasha; Dhankani, Varsha; Knijnenburg, Theo; Kramer, Roger; Leinonen, Kalle; Liu, Yuexin; Miller, Michael; Reynolds, Sheila; Shmulevich, Ilya; Thorsson, Vesteinn; Zhang, Wei; Akbani, Rehan; Broom, Bradley M.; Hegde, Apurva M.; Ju, Zhenlin; Kanchi, Rupa S.; Korkut, Anil; Li, Jun; Liang, Han; Ling, Shiyun; Liu, Wenbin; Lu, Yiling; Mills, Gordon B.; Ng, Kwok Shing; Rao, Arvind; Ryan, Michael; Wang, Jing; Weinstein, John N.; Zhang, Jiexin; Abeshouse, Adam; Armenia, Joshua; Chakravarty, Debyani; Chatila, Walid K.; de Bruijn, Ino; Gao, Jianjiong; Gross, Benjamin E.; Heins, Zachary J.; Kundra, Ritika; La, Konnor; Ladanyi, Marc; Luna, Augustin; Nissan, Moriah G.; Ochoa, Angelica; Phillips, Sarah M.; Reznik, Ed; Sanchez-Vega, Francisco; Sander, Chris; Schultz, Nikolaus; Sheridan, Robert; Sumer, S. Onur; Sun, Yichao; Taylor, Barry S.; Wang, Jioajiao; Zhang, Hongxin; Anur, Pavana; Peto, Myron; Spellman, Paul; Benz, Christopher; Stuart, Joshua M.; Wong, Christopher K.; Yau, Christina; Hayes, D. Neil; Parker, Joel S.; Wilkerson, Matthew D.; Ally, Adrian; Balasundaram, Miruna; Bowlby, Reanne; Brooks, Denise; Carlsen, Rebecca; Chuah, Eric; Dhalla, Noreen; Holt, Robert; Jones, Steven J.M.; Kasaian, Katayoon; Lee, Darlene; Ma, Yussanne; Marra, Marco A.; Mayo, Michael; Moore, Richard A.; Mungall, Andrew J.; Mungall, Karen; Robertson, A. Gordon; Sadeghi, Sara; Schein, Jacqueline E.; Sipahimalani, Payal; Tam, Angela; Thiessen, Nina; Tse, Kane; Wong, Tina; Berger, Ashton C.; Beroukhim, Rameen; Cherniack, Andrew D.; Cibulskis, Carrie; Gabriel, Stacey B.; Gao, Galen F.; Ha, Gavin; Meyerson, Matthew; Schumacher, Steven E.; Shih, Juliann; Kucherlapati, Melanie H.; Kucherlapati, Raju S.; Baylin, Stephen; Cope, Leslie; Danilova, Ludmila; Bootwalla, Moiz S.; Lai, Phillip H.; Maglinte, Dennis T.; Van Den Berg, David J.; Weisenberger, Daniel J.; Auman, J. Todd; Balu, Saianand; Bodenheimer, Tom; Fan, Cheng; Hoadley, Katherine A.; Hoyle, Alan P.; Jefferys, Stuart R.; Jones, Corbin D.; Meng, Shaowu; Mieczkowski, Piotr A.; Mose, Lisle E.; Perou, Amy H.; Perou, Charles M.; Roach, Jeffrey; Shi, Yan; Simons, Janae V.; Skelly, Tara; Soloway, Matthew G.; Tan, Donghui; Veluvolu, Umadevi; Fan, Huihui; Hinoue, Toshinori; Laird, Peter W.; Shen, Hui; Zhou, Wanding; Bellair, Michelle; Chang, Kyle; Covington, Kyle; Creighton, Chad J.; Dinh, Huyen; Doddapaneni, Harsha Vardhan; Donehower, Lawrence A.; Drummond, Jennifer; Gibbs, Richard A.; Glenn, Robert; Hale, Walker; Han, Yi; Hu, Jianhong; Korchina, Viktoriya; Lee, Sandra; Lewis, Lora; Li, Wei; Liu, Xiuping; Morgan, Margaret; Morton, Donna; Muzny, Donna; Santibanez, Jireh; Sheth, Margi; Shinbrot, Eve; Wang, Linghua; Wang, Min; Wheeler, David; Xi, Liu; Zhao, Fengmei; Hess, Julian; Appelbaum, Elizabeth L.; Bailey, Matthew; Cordes, Matthew G.; Ding, Li; Fronick, Catrina C.; Fulton, Lucinda A.; Fulton, Robert S.; Kandoth, Cyriac; Mardis, Elaine R.; McLellan, Michael D.; Miller, Christopher A.; Schmidt, Heather K.; Wilson, Richard K.; Crain, Daniel; Curley, Erin; Gardner, Johanna; Lau, Kevin; Mallery, David; Morris, Scott; Paulauskis, Joseph; Penny, Robert; Shelton, Candace; Shelton, Troy; Sherman, Mark; Thompson, Eric; Yena, Peggy; Bowen, Jay; Gastier-Foster, Julie M.; Gerken, Mark; Leraas, Kristen M.; Lichtenberg, Tara M.; Ramirez, Nilsa C.; Wise, Lisa; Zmuda, Erik; Corcoran, Niall; Costello, Tony; Hovens, Christopher; Carvalho, Andre L.; de Carvalho, Ana C.; Fregnani, José H.; Longatto-Filho, Adhemar; Reis, Rui M.; Scapulatempo-Neto, Cristovam; Silveira, Henrique C.S.; Vidal, Daniel O.; Burnette, Andrew; Eschbacher, Jennifer; Hermes, Beth; Noss, Ardene; Singh, Rosy; Anderson, Matthew L.; Castro, Patricia D.; Ittmann, Michael; Huntsman, David; Kohl, Bernard; Le, Xuan; Thorp, Richard; Andry, Chris; Duffy, Elizabeth R.; Lyadov, Vladimir; Paklina, Oxana; Setdikova, Galiya; Shabunin, Alexey; Tavobilov, Mikhail; McPherson, Christopher; Warnick, Ronald; Berkowitz, Ross; Cramer, Daniel; Feltmate, Colleen; Horowitz, Neil; Kibel, Adam; Muto, Michael; Raut, Chandrajit P.; Malykh, Andrei; Barnholtz-Sloan, Jill S.; Barrett, Wendi; Devine, Karen; Fulop, Jordonna; Ostrom, Quinn T.; Shimmel, Kristen; Wolinsky, Yingli; Sloan, Andrew E.; De Rose, Agostino; Giuliante, Felice; Goodman, Marc; Karlan, Beth Y.; Hagedorn, Curt H.; Eckman, John; Harr, Jodi; Myers, Jerome; Tucker, Kelinda; Zach, Leigh Anne; Deyarmin, Brenda; Hu, Hai; Kvecher, Leonid; Larson, Caroline; Mural, Richard J.; Somiari, Stella; Vicha, Ales; Zelinka, Tomas; Bennett, Joseph; Iacocca, Mary; Rabeno, Brenda; Swanson, Patricia; Latour, Mathieu; Lacombe, Louis; Têtu, Bernard; Bergeron, Alain; McGraw, Mary; Staugaitis, Susan M.; Chabot, John; Hibshoosh, Hanina; Sepulveda, Antonia; Su, Tao; Wang, Timothy; Potapova, Olga; Voronina, Olga; Desjardins, Laurence; Mariani, Odette; Roman-Roman, Sergio; Sastre, Xavier; Stern, Marc Henri; Cheng, Feixiong; Signoretti, Sabina; Berchuck, Andrew; Bigner, Darell; Lipp, Eric; Marks, Jeffrey; McCall, Shannon; McLendon, Roger; Secord, Angeles; Sharp, Alexis; Behera, Madhusmita; Brat, Daniel J.; Chen, Amy; Delman, Keith; Force, Seth; Khuri, Fadlo; Magliocca, Kelly; Maithel, Shishir; Olson, Jeffrey J.; Owonikoko, Taofeek; Pickens, Alan; Ramalingam, Suresh; Shin, Dong M.; Sica, Gabriel; Van Meir, Erwin G.; Zhang, Hongzheng; Eijckenboom, Wil; Gillis, Ad; Korpershoek, Esther; Looijenga, Leendert; Oosterhuis, Wolter; Stoop, Hans; van Kessel, Kim E.; Zwarthoff, Ellen C.; Calatozzolo, Chiara; Cuppini, Lucia; Cuzzubbo, Stefania; DiMeco, Francesco; Finocchiaro, Gaetano; Mattei, Luca; Perin, Alessandro; Pollo, Bianca; Chen, Chu; Houck, John; Lohavanichbutr, Pawadee; Hartmann, Arndt; Stoehr, Christine; Stoehr, Robert; Taubert, Helge; Wach, Sven; Wullich, Bernd; Kycler, Witold; Murawa, Dawid; Wiznerowicz, Maciej; Chung, Ki; Edenfield, W. Jeffrey; Martin, Julie; Baudin, Eric; Bubley, Glenn; Bueno, Raphael; De Rienzo, Assunta; Richards, William G.; Kalkanis, Steven; Mikkelsen, Tom; Noushmehr, Houtan; Scarpace, Lisa; Girard, Nicolas; Aymerich, Marta; Campo, Elias; Giné, Eva; Guillermo, Armando López; Van Bang, Nguyen; Hanh, Phan Thi; Phu, Bui Duc; Tang, Yufang; Colman, Howard; Evason, Kimberley; Dottino, Peter R.; Martignetti, John A.; Gabra, Hani; Juhl, Hartmut; Akeredolu, Teniola; Stepa, Serghei; Hoon, Dave; Ahn, Keunsoo; Kang, Koo Jeong; Beuschlein, Felix; Breggia, Anne; Birrer, Michael; Bell, Debra; Borad, Mitesh; Bryce, Alan H.; Castle, Erik; Chandan, Vishal; Cheville, John; Copland, John A.; Farnell, Michael; Flotte, Thomas; Giama, Nasra; Ho, Thai; Kendrick, Michael; Kocher, Jean Pierre; Kopp, Karla; Moser, Catherine; Nagorney, David; O'Brien, Daniel; O'Neill, Brian Patrick; Patel, Tushar; Petersen, Gloria; Que, Florencia; Rivera, Michael; Roberts, Lewis; Smallridge, Robert; Smyrk, Thomas; Stanton, Melissa; Thompson, R. Houston; Torbenson, Michael; Yang, Ju Dong; Zhang, Lizhi; Brimo, Fadi; Ajani, Jaffer A.; Gonzalez, Ana Maria Angulo; Behrens, Carmen; Bondaruk, Jolanta; Broaddus, Russell; Czerniak, Bogdan; Esmaeli, Bita; Fujimoto, Junya; Gershenwald, Jeffrey; Guo, Charles; Lazar, Alexander J.; Logothetis, Christopher; Meric-Bernstam, Funda; Moran, Cesar; Ramondetta, Lois; Rice, David; Sood, Anil; Tamboli, Pheroze; Thompson, Timothy; Troncoso, Patricia; Tsao, Anne; Wistuba, Ignacio; Carter, Candace; Haydu, Lauren; Hersey, Peter; Jakrot, Valerie; Kakavand, Hojabr; Kefford, Richard; Lee, Kenneth; Long, Georgina; Mann, Graham; Quinn, Michael; Saw, Robyn; Scolyer, Richard; Shannon, Kerwin; Spillane, Andrew; Stretch, Jonathan; Synott, Maria; Thompson, John; Wilmott, James; Al-Ahmadie, Hikmat; Chan, Timothy A.; Ghossein, Ronald; Gopalan, Anuradha; Levine, Douglas A.; Reuter, Victor; Singer, Samuel; Singh, Bhuvanesh; Tien, Nguyen Viet; Broudy, Thomas; Mirsaidi, Cyrus; Nair, Praveen; Drwiega, Paul; Miller, Judy; Smith, Jennifer; Zaren, Howard; Park, Joong Won; Hung, Nguyen Phi; Kebebew, Electron; Linehan, W. Marston; Metwalli, Adam R.; Pacak, Karel; Pinto, Peter A.; Schiffman, Mark; Schmidt, Laura S.; Vocke, Cathy D.; Wentzensen, Nicolas; Worrell, Robert; Yang, Hannah; Moncrieff, Marc; Goparaju, Chandra; Melamed, Jonathan; Pass, Harvey; Botnariuc, Natalia; Caraman, Irina; Cernat, Mircea; Chemencedji, Inga; Clipca, Adrian; Doruc, Serghei; Gorincioi, Ghenadie; Mura, Sergiu; Pirtac, Maria; Stancul, Irina; Tcaciuc, Diana; Albert, Monique; Alexopoulou, Iakovina; Arnaout, Angel; Bartlett, John; Engel, Jay; Gilbert, Sebastien; Parfitt, Jeremy; Sekhon, Harman; Thomas, George; Rassl, Doris M.; Rintoul, Robert C.; Bifulco, Carlo; Tamakawa, Raina; Urba, Walter; Hayward, Nicholas; Timmers, Henri; Antenucci, Anna; Facciolo, Francesco; Grazi, Gianluca; Marino, Mirella; Merola, Roberta; de Krijger, Ronald; Gimenez-Roqueplo, Anne Paule; Piché, Alain; Chevalier, Simone; McKercher, Ginette; Birsoy, Kivanc; Barnett, Gene; Brewer, Cathy; Farver, Carol; Naska, Theresa; Pennell, Nathan A.; Raymond, Daniel; Schilero, Cathy; Smolenski, Kathy; Williams, Felicia; Morrison, Carl; Borgia, Jeffrey A.; Liptay, Michael J.; Pool, Mark; Seder, Christopher W.; Junker, Kerstin; Omberg, Larsson; Dinkin, Mikhail; Manikhas, George; Alvaro, Domenico; Bragazzi, Maria Consiglia; Cardinale, Vincenzo; Carpino, Guido; Gaudio, Eugenio; Chesla, David; Cottingham, Sandra; Dubina, Michael; Moiseenko, Fedor; Dhanasekaran, Renumathy; Becker, Karl Friedrich; Janssen, Klaus Peter; Slotta-Huspenina, Julia; Abdel-Rahman, Mohamed H.; Aziz, Dina; Bell, Sue; Cebulla, Colleen M.; Davis, Amy; Duell, Rebecca; Elder, J. Bradley; Hilty, Joe; Kumar, Bahavna; Lang, James; Lehman, Norman L.; Mandt, Randy; Nguyen, Phuong; Pilarski, Robert; Rai, Karan; Schoenfield, Lynn; Senecal, Kelly; Wakely, Paul; Hansen, Paul; Lechan, Ronald; Powers, James; Tischler, Arthur; Grizzle, William E.; Sexton, Katherine C.; Kastl, Alison; Henderson, Joel; Porten, Sima; Waldmann, Jens; Fassnacht, Martin; Asa, Sylvia L.; Schadendorf, Dirk; Couce, Marta; Graefen, Markus; Huland, Hartwig; Sauter, Guido; Schlomm, Thorsten; Simon, Ronald; Tennstedt, Pierre; Olabode, Oluwole; Nelson, Mark; Bathe, Oliver; Carroll, Peter R.; Chan, June M.; Disaia, Philip; Glenn, Pat; Kelley, Robin K.; Landen, Charles N.; Phillips, Joanna; Prados, Michael; Simko, Jeffry; Smith-McCune, Karen; VandenBerg, Scott; Roggin, Kevin; Fehrenbach, Ashley; Kendler, Ady; Sifri, Suzanne; Steele, Ruth; Jimeno, Antonio; Carey, Francis; Forgie, Ian; Mannelli, Massimo; Carney, Michael; Hernandez, Brenda; Campos, Benito; Herold-Mende, Christel; Jungk, Christin; Unterberg, Andreas; von Deimling, Andreas; Bossler, Aaron; Galbraith, Joseph; Jacobus, Laura; Knudson, Michael; Knutson, Tina; Ma, Deqin; Milhem, Mohammed; Sigmund, Rita; Godwin, Andrew K.; Madan, Rashna; Rosenthal, Howard G.; Adebamowo, Clement; Adebamowo, Sally N.; Boussioutas, Alex; Beer, David; Giordano, Thomas; Mes-Masson, Anne Marie; Saad, Fred; Bocklage, Therese; Landrum, Lisa; Mannel, Robert; Moore, Kathleen; Moxley, Katherine; Postier, Russel; Walker, Joan; Zuna, Rosemary; Feldman, Michael; Valdivieso, Federico; Dhir, Rajiv; Luketich, James; Pinero, Edna M.Mora; Quintero-Aguilo, Mario; Carlotti, Carlos Gilberto; Dos Santos, Jose Sebastião; Kemp, Rafael; Sankarankuty, Ajith; Tirapelli, Daniela; Catto, James; Agnew, Kathy; Swisher, Elizabeth; Creaney, Jenette; Robinson, Bruce; Shelley, Carl Simon; Godwin, Eryn M.; Kendall, Sara; Shipman, Cassaundra; Bradford, Carol; Carey, Thomas; Haddad, Andrea; Moyer, Jeffey; Peterson, Lisa; Prince, Mark; Rozek, Laura; Wolf, Gregory; Bowman, Rayleen; Fong, Kwun M.; Yang, Ian; Korst, Robert; Rathmell, W. Kimryn; Fantacone-Campbell, J. Leigh; Hooke, Jeffrey A.; Kovatich, Albert J.; Shriver, Craig D.; DiPersio, John; Drake, Bettina; Govindan, Ramaswamy; Heath, Sharon; Ley, Timothy; Van Tine, Brian; Westervelt, Peter; Rubin, Mark A.; Lee, Jung Il; Aredes, Natália D.; Mariamidze, Armaz; Lawrence, Michael S.; Godzik, Adam; Lopez-Bigas, Nuria; Stuart, Josh; Wheeler, David; Getz, Gad; Chen, Ken; Lazar, Alexander J.; Mills, Gordon B.; Karchin, Rachel; Ding, Li

    2018-01-01

    Identifying molecular cancer drivers is critical for precision oncology. Multiple advanced algorithms to identify drivers now exist, but systematic attempts to combine and optimize them on large datasets are few. We report a PanCancer and PanSoftware analysis spanning 9,423 tumor exomes (comprising

  7. Systematic Analysis Reveals that Cancer Mutations Converge on Deregulated Metabolism of Arachidonate and Xenobiotics

    Directory of Open Access Journals (Sweden)

    Francesco Gatto

    2016-07-01

    Full Text Available Mutations are the basis of the clonal evolution of most cancers. Nevertheless, a systematic analysis of whether mutations are selected in cancer because they lead to the deregulation of specific biological processes independent of the type of cancer is still lacking. In this study, we correlated the genome and transcriptome of 1,082 tumors. We found that nine commonly mutated genes correlated with substantial changes in gene expression, which primarily converged on metabolism. Further network analyses circumscribed the convergence to a network of reactions, termed AraX, that involves the glutathione- and oxygen-mediated metabolism of arachidonic acid and xenobiotics. In an independent cohort of 4,462 samples, all nine mutated genes were consistently correlated with the deregulation of AraX. Among all of the metabolic pathways, AraX deregulation represented the strongest predictor of patient survival. These findings suggest that oncogenic mutations drive a selection process that converges on the deregulation of the AraX network.

  8. Context-dependent interpretation of the prognostic value of BRAF and KRAS mutations in colorectal cancer

    International Nuclear Information System (INIS)

    Popovici, Vlad; Budinska, Eva; Bosman, Fred T; Tejpar, Sabine; Roth, Arnaud D; Delorenzi, Mauro

    2013-01-01

    The mutation status of the BRAF and KRAS genes has been proposed as prognostic biomarker in colorectal cancer. Of them, only the BRAF V600E mutation has been validated independently as prognostic for overall survival and survival after relapse, while the prognostic value of KRAS mutation is still unclear. We investigated the prognostic value of BRAF and KRAS mutations in various contexts defined by stratifications of the patient population. We retrospectively analyzed a cohort of patients with stage II and III colorectal cancer from the PETACC-3 clinical trial (N = 1,423), by assessing the prognostic value of the BRAF and KRAS mutations in subpopulations defined by all possible combinations of the following clinico-pathological variables: T stage, N stage, tumor site, tumor grade and microsatellite instability status. In each such subpopulation, the prognostic value was assessed by log rank test for three endpoints: overall survival, relapse-free survival, and survival after relapse. The significance level was set to 0.01 for Bonferroni-adjusted p-values, and a second threshold for a trend towards statistical significance was set at 0.05 for unadjusted p-values. The significance of the interactions was tested by Wald test, with significance level of 0.05. In stage II-III colorectal cancer, BRAF mutation was confirmed a marker of poor survival only in subpopulations involving microsatellite stable and left-sided tumors, with higher effects than in the whole population. There was no evidence for prognostic value in microsatellite instable or right-sided tumor groups. We found that BRAF was also prognostic for relapse-free survival in some subpopulations. We found no evidence that KRAS mutations had prognostic value, although a trend was observed in some stratifications. We also show evidence of heterogeneity in survival of patients with BRAF V600E mutation. The BRAF mutation represents an additional risk factor only in some subpopulations of colorectal cancers, in

  9. A non-synonymous polymorphism in IRS1 modifies risk of developing breast and ovarian cancers in BRCA1 and ovarian cancer in BRCA2 mutation carriers

    Science.gov (United States)

    Ding, Yuan C.; McGuffog, Lesley; Healey, Sue; Friedman, Eitan; Laitman, Yael; Shani-Shimon–Paluch; Kaufman, Bella; Liljegren, Annelie; Lindblom, Annika; Olsson, Håkan; Kristoffersson, Ulf; Stenmark-Askmalm, Marie; Melin, Beatrice; Domchek, Susan M.; Nathanson, Katherine L.; Rebbeck, Timothy R.; Jakubowska, Anna; Lubinski, Jan; Jaworska, Katarzyna; Durda, Katarzyna; Gronwald, Jacek; Huzarski, Tomasz; Cybulski, Cezary; Byrski, Tomasz; Osorio, Ana; Cajal, Teresa Ramóny; Stavropoulou, Alexandra V; Benítez, Javier; Hamann, Ute; Rookus, Matti; Aalfs, Cora M.; de Lange, Judith L.; Meijers-Heijboer, Hanne E.J.; Oosterwijk, Jan C.; van Asperen, Christi J.; García, Encarna B. Gómez; Hoogerbrugge, Nicoline; Jager, Agnes; van der Luijt, Rob B.; Easton, Douglas F.; Peock, Susan; Frost, Debra; Ellis, Steve D.; Platte, Radka; Fineberg, Elena; Evans, D. Gareth; Lalloo, Fiona; Izatt, Louise; Eeles, Ros; Adlard, Julian; Davidson, Rosemarie; Eccles, Diana; Cole, Trevor; Cook, Jackie; Brewer, Carole; Tischkowitz, Marc; Godwin, Andrew K.; Pathak, Harsh; Stoppa-Lyonnet, Dominique; Sinilnikova, Olga M.; Mazoyer, Sylvie; Barjhoux, Laure; Léoné, Mélanie; Gauthier-Villars, Marion; Caux-Moncoutier, Virginie; de Pauw, Antoine; Hardouin, Agnès; Berthet, Pascaline; Dreyfus, Hélène; Ferrer, Sandra Fert; Collonge-Rame, Marie-Agnès; Sokolowska, Johanna; Buys, Saundra; Daly, Mary; Miron, Alex; Terry, Mary Beth; Chung, Wendy; John, Esther M; Southey, Melissa; Goldgar, David; Singer, Christian F; Maria, Muy-Kheng Tea; Gschwantler-Kaulich, Daphne; Fink-Retter, Anneliese; Hansen, Thomas v. O.; Ejlertsen, Bent; Johannsson, Oskar Th.; Offit, Kenneth; Sarrel, Kara; Gaudet, Mia M.; Vijai, Joseph; Robson, Mark; Piedmonte, Marion R; Andrews, Lesley; Cohn, David; DeMars, Leslie R.; DiSilvestro, Paul; Rodriguez, Gustavo; Toland, Amanda Ewart; Montagna, Marco; Agata, Simona; Imyanitov, Evgeny; Isaacs, Claudine; Janavicius, Ramunas; Lazaro, Conxi; Blanco, Ignacio; Ramus, Susan J; Sucheston, Lara; Karlan, Beth Y.; Gross, Jenny; Ganz, Patricia A.; Beattie, Mary S.; Schmutzler, Rita K.; Wappenschmidt, Barbara; Meindl, Alfons; Arnold, Norbert; Niederacher, Dieter; Preisler-Adams, Sabine; Gadzicki, Dorotehea; Varon-Mateeva, Raymonda; Deissler, Helmut; Gehrig, Andrea; Sutter, Christian; Kast, Karin; Nevanlinna, Heli; Aittomäki, Kristiina; Simard, Jacques; Spurdle, Amanda B.; Beesley, Jonathan; Chen, Xiaoqing; Tomlinson, Gail E.; Weitzel, Jeffrey; Garber, Judy E.; Olopade, Olufunmilayo I.; Rubinstein, Wendy S.; Tung, Nadine; Blum, Joanne L.; Narod, Steven A.; Brummel, Sean; Gillen, Daniel L.; Lindor, Noralane; Fredericksen, Zachary; Pankratz, Vernon S.; Couch, Fergus J.; Radice, Paolo; Peterlongo, Paolo; Greene, Mark H.; Loud, Jennifer T.; Mai, Phuong L.; Andrulis, Irene L.; Glendon, Gord; Ozcelik, Hilmi; Gerdes, Anne-Marie; Thomassen, Mads; Jensen, Uffe Birk; Skytte, Anne-Bine; Caligo, Maria A.; Lee, Andrew; Chenevix-Trench, Georgia; Antoniou, Antonis C; Neuhausen, Susan L.

    2012-01-01

    Background We previously reported significant associations between genetic variants in insulin receptor substrate 1 (IRS1) and breast cancer risk in women carrying BRCA1 mutations. The objectives of this study were to investigate whether the IRS1 variants modified ovarian cancer risk and were associated with breast cancer risk in a larger cohort of BRCA1 and BRCA2 mutation carriers. Methods IRS1 rs1801123, rs1330645, and rs1801278 were genotyped in samples from 36 centers in the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). Data were analyzed by a retrospective cohort approach modeling the associations with breast and ovarian cancer risks simultaneously. Analyses were stratified by BRCA1 and BRCA2 status and mutation class in BRCA1 carriers. Results Rs1801278 (Gly972Arg) was associated with ovarian cancer risk for both BRCA1 [Hazard ratio (HR) = 1.43; 95% CI: 1.06–1.92; p = 0.019] and BRCA2 mutation carriers (HR=2.21; 95% CI: 1.39–3.52, p=0.0008). For BRCA1 mutation carriers, the breast cancer risk was higher in carriers with class 2 mutations than class 1 (mutations (class 2 HR=1.86, 95% CI: 1.28–2.70; class 1 HR=0.86, 95%CI:0.69–1.09; p-for difference=0.0006). Rs13306465 was associated with ovarian cancer risk in BRCA1 class 2 mutation carriers (HR = 2.42; p = 0.03). Conclusion The IRS1 Gly972Arg SNP, which affects insulin-like growth factor and insulin signaling, modifies ovarian cancer risk in BRCA1 and BRCA2 mutation carriers and breast cancer risk in BRCA1 class 2 mutation carriers. Impact These findings may prove useful for risk prediction for breast and ovarian cancers in BRCA1 and BRCA2 mutation carriers. PMID:22729394

  10. High Resolution Melting (HRM) analysis for mutation screening of RGSL1,RGS16 and RGS8 in breast cancer

    DEFF Research Database (Denmark)

    Wiechec, Emilia; Wiuf, Carsten Henrik; Overgaard, Jens

    2011-01-01

    coding exons of RGSL1, RGS16, and RGS8 in tumors from 200 breast cancer patients. All sequence variants detected by HRM resulted in abnormal shape of the melting curves. The identified mutations and known single nucleotide polymorphisms (SNP) were subsequently confirmed by sequencing, and distribution...... cancer patients. In addition, a total of seven known SNPs were identified in this study. Genotype distributions were not significantly different between breast cancer patients and controls. CONCLUSIONS AND IMPACT: Identification of novel mutations within RGSL1 provides a new insight...... into the pathophysiology of breast cancer. Moreover, the HRM analysis represents a reliable and highly sensitive method for mutation scanning of multiple exons....

  11. Exome sequencing identifies rare deleterious mutations in DNA repair genes FANCC and BLM as potential breast cancer susceptibility alleles.

    Directory of Open Access Journals (Sweden)

    Ella R Thompson

    2012-09-01

    Full Text Available Despite intensive efforts using linkage and candidate gene approaches, the genetic etiology for the majority of families with a multi-generational breast cancer predisposition is unknown. In this study, we used whole-exome sequencing of thirty-three individuals from 15 breast cancer families to identify potential predisposing genes. Our analysis identified families with heterozygous, deleterious mutations in the DNA repair genes FANCC and BLM, which are responsible for the autosomal recessive disorders Fanconi Anemia and Bloom syndrome. In total, screening of all exons in these genes in 438 breast cancer families identified three with truncating mutations in FANCC and two with truncating mutations in BLM. Additional screening of FANCC mutation hotspot exons identified one pathogenic mutation among an additional 957 breast cancer families. Importantly, none of the deleterious mutations were identified among 464 healthy controls and are not reported in the 1,000 Genomes data. Given the rarity of Fanconi Anemia and Bloom syndrome disorders among Caucasian populations, the finding of multiple deleterious mutations in these critical DNA repair genes among high-risk breast cancer families is intriguing and suggestive of a predisposing role. Our data demonstrate the utility of intra-family exome-sequencing approaches to uncover cancer predisposition genes, but highlight the major challenge of definitively validating candidates where the incidence of sporadic disease is high, germline mutations are not fully penetrant, and individual predisposition genes may only account for a tiny proportion of breast cancer families.

  12. Correlation between familial cancer history and epidermal growth factor receptor mutations in Taiwanese never smokers with non-small cell lung cancer: a case-control study.

    Science.gov (United States)

    Cheng, Po-Chung; Cheng, Yun-Chung

    2015-03-01

    Lung cancer is a leading cause of cancer deaths in the world. Cigarette smoking remains a prominent risk factor, but lung cancer incidence has been increasing in never smokers. Genetic abnormalities including epidermal growth factor receptor (EGFR) mutations predominate in never smoking lung cancer patients. Furthermore, familial aggregations of patients with these mutations reflect heritable susceptibility to lung cancer. The correlation between familial cancer history and EGFR mutations in never smokers with lung cancer requires investigation. This was a retrospective case-control study that evaluated the prevalence of EGFR mutations in lung cancer patients with familial cancer history. Never smokers with lung cancer treated at a hospital in Taiwan between April 2012 and May 2014 were evaluated. Inclusion criteria were never smokers with non-small cell lung cancer (NSCLC). Exclusion criteria involved patients without records of familial cancer history or tumor genotype. This study included 246 never smokers with lung cancer. The study population mainly involved never smoking women with a mean age of 60 years, and the predominant tumor histology was adenocarcinoma. Lung cancer patients with familial cancer history had an increased prevalence of EGFR mutations compared to patients without family history [odds ratio (OR): 5.9; 95% confidence interval (CI): 3.3-10.6; Pnon-pulmonary cancers (OR: 5.0; 95% CI: 2.5-10.0; Pnever smoking lung cancer patients with familial cancer history. Moreover, a sizable proportion of never smoking cancer patients harbored these mutations. These observations have implications for the treatment of lung cancer in never smokers.

  13. Common breast cancer-predisposition alleles are associated with breast cancer risk in BRCA1 and BRCA2 mutation carriers

    DEFF Research Database (Denmark)

    Antoniou, Antonis C; Spurdle, Amanda B; Sinilnikova, Olga M

    2008-01-01

    Germline mutations in BRCA1 and BRCA2 confer high risks of breast cancer. However, evidence suggests that these risks are modified by other genetic or environmental factors that cluster in families. A recent genome-wide association study has shown that common alleles at single nucleotide polymorp...

  14. Common ataxia telangiectasia mutated haplotypes and risk of breast cancer: a nested case–control study

    International Nuclear Information System (INIS)

    Tamimi, Rulla M; Hankinson, Susan E; Spiegelman, Donna; Kraft, Peter; Colditz, Graham A; Hunter, David J

    2004-01-01

    The ataxia telangiectasia mutated (ATM) gene is a tumor suppressor gene with functions in cell cycle arrest, apoptosis, and repair of DNA double-strand breaks. Based on family studies, women heterozygous for mutations in the ATM gene are reported to have a fourfold to fivefold increased risk of breast cancer compared with noncarriers of the mutations, although not all studies have confirmed this association. Haplotype analysis has been suggested as an efficient method for investigating the role of common variation in the ATM gene and breast cancer. Five biallelic haplotype tagging single nucleotide polymorphisms are estimated to capture 99% of the haplotype diversity in Caucasian populations. We conducted a nested case–control study of breast cancer within the Nurses' Health Study cohort to address the role of common ATM haplotypes and breast cancer. Cases and controls were genotyped for five haplotype tagging single nucleotide polymorphisms. Haplotypes were predicted for 1309 cases and 1761 controls for which genotype information was available. Six unique haplotypes were predicted in this study, five of which occur at a frequency of 5% or greater. The overall distribution of haplotypes was not significantly different between cases and controls (χ 2 = 3.43, five degrees of freedom, P = 0.63). There was no evidence that common haplotypes of ATM are associated with breast cancer risk. Extensive single nucleotide polymorphism detection using the entire genomic sequence of ATM will be necessary to rule out less common variation in ATM and sporadic breast cancer risk

  15. HFE H63D mutation frequency shows an increase in Turkish women with breast cancer

    Directory of Open Access Journals (Sweden)

    Guler Emine

    2006-02-01

    Full Text Available Abstract Background The hereditary hemochromatosis gene HFE plays a pivotal role in iron homeostasis. The association between cancer and HFE hetero- or homozygosity has previously been shown including hepatocellular and nonhepatocellular malignancies. This study was performed to compare frequencies of HFE C282Y and H63D variants in Turkish women with breast cancer and healthy controls. Methods Archived DNA samples of Hacettepe University Oncology Institute were used in this study. The HFE gene was investigated by PCR-RFLP. Results All subjects studied were free from C282Y mutation. Thirty-nine patients had H63D mutation and were all heterozygous. H63D allele frequency was 22.2% (39/176 in the breast cancer patients, and 14% (28/200 in the healthy volunteers. Statistical analysis of cases with HFE H63D phenotype showed significant difference between breast cancer and healthy volunteers (P = 0.02. Conclusion Our results suggest that HFE H63D mutation frequencies were increased in the breast cancer patients in comparison to those in the general population. Also, odds ratios (odds ratio = 2.05 computed in this study suggest that H63D has a positive association with breast cancer.

  16. Distinct Clinicopathological Patterns of Mismatch Repair Status in Colorectal Cancer Stratified by KRAS Mutations.

    Directory of Open Access Journals (Sweden)

    Wenbin Li

    Full Text Available In sporadic colorectal cancer (CRC, the BRAFV600E mutation is associated with deficient mismatch repair (MMR status and inversely associated with to KRAS mutations. In contrast to deficient MMR (dMMR CRC, data on the presence of KRAS oncogenic mutations in proficient MMR (pMMR CRC and their relationship with tumor progression are scarce. We therefore examined the MMR status in combination with KRAS mutations in 913 Chinese patients and correlated the findings obtained with clinical and pathological features. The MMR status was determined based on detection of MLH1, MSH2, MSH6 and PMS2 expression. KRAS mutation and dMMR status were detected in 36.9% and 7.5% of cases, respectively. Four subtypes were determined by MMR and KRAS mutation status: KRAS (+/pMMR (34.0%, KRAS (+/dMMR (2.9%, KRAS (-/pMMR (58.5% and KRAS (-/dMMR (4.6%. A higher percentage of pMMR tumors with KRAS mutation were most likely to be female (49.0%, proximal located (45.5%, a mucinous histology (38.4%, and to have increased lymph node metastasis (60.3%, compared with pMMR tumors without BRAFV600E and KRAS mutations (36.0%, 29.3%, 29.4% and 50.7%, respectively; all P < 0.01. To the contrary, compared with those with KRAS(-/dMMR tumors, patients with KRAS(+/dMMR tumors demonstrated no statistically significant differences in gender, tumor location, pT depth of invasion, lymph node metastasis, pTNM stage, and histologic grade. This study revealed that specific epidemiologic and clinicopathologic characteristics are associated with MMR status stratified by KRAS mutation. Knowledge of MMR and KRAS mutation status may enhance molecular pathologic staging of CRC patients and metastatic progression in CRC can be estimated based on the combination of these biomarkers.

  17. Mutation spectrum and risk of colorectal cancer in African American families with Lynch syndrome.

    Science.gov (United States)

    Guindalini, Rodrigo Santa Cruz; Win, Aung Ko; Gulden, Cassandra; Lindor, Noralane M; Newcomb, Polly A; Haile, Robert W; Raymond, Victoria; Stoffel, Elena; Hall, Michael; Llor, Xavier; Ukaegbu, Chinedu I; Solomon, Ilana; Weitzel, Jeffrey; Kalady, Matthew; Blanco, Amie; Terdiman, Jonathan; Shuttlesworth, Gladis A; Lynch, Patrick M; Hampel, Heather; Lynch, Henry T; Jenkins, Mark A; Olopade, Olufunmilayo I; Kupfer, Sonia S

    2015-11-01

    African Americans (AAs) have the highest incidence of and mortality resulting from colorectal cancer (CRC) in the United States. Few data are available on genetic and nongenetic risk factors for CRC among AAs. Little is known about cancer risks and mutations in mismatch repair (MMR) genes in AAs with the most common inherited CRC condition, Lynch syndrome. We aimed to characterize phenotype, mutation spectrum, and risk of CRC in AAs with Lynch syndrome. We performed a retrospective study of AAs with mutations in MMR genes (MLH1, MSH2, MSH6, and PMS2) using databases from 13 US referral centers. We analyzed data on personal and family histories of cancer. Modified segregation analysis conditioned on ascertainment criteria was used to estimate age- and sex-specific CRC cumulative risk, studying members of the mutation-carrying families. We identified 51 AA families with deleterious mutations that disrupt function of the MMR gene product: 31 in MLH1 (61%), 11 in MSH2 (21%), 3 in MSH6 (6%), and 6 in PMS2 (12%); 8 mutations were detected in more than 1 individual, and 11 have not been previously reported. In the 920 members of the 51 families with deleterious mutations, the cumulative risks of CRC at 80 years of age were estimated to be 36.2% (95% confidence interval [CI], 10.5%-83.9%) for men and 29.7% (95% CI, 8.31%-76.1%) for women. CRC risk was significantly higher among individuals with mutations in MLH1 or MSH2 (hazard ratio, 13.9; 95% CI, 3.44-56.5). We estimate the cumulative risk for CRC in AAs with MMR gene mutations to be similar to that of individuals of European descent with Lynch syndrome. Two-thirds of mutations were found in MLH1, some of which were found in multiple individuals and some that have not been previously reported. Differences in mutation spectrum are likely to reflect the genetic diversity of this population. Copyright © 2015 AGA Institute. Published by Elsevier Inc. All rights reserved.

  18. RAD50 germline mutations are associated with poor survival in BRCA1/2-negative breast cancer patients.

    Science.gov (United States)

    Fan, Cong; Zhang, Juan; Ouyang, Tao; Li, Jinfeng; Wang, Tianfeng; Fan, Zhaoqing; Fan, Tie; Lin, Benyao; Xie, Yuntao

    2018-05-04

    RAD50 is a highly conserved DNA double-strand break (DSB) repair gene. However, the associations between RAD50 germline mutations and the survival and risk of breast cancer have not been fully elucidated. Here, we aimed to investigate the clinical impact of RAD50 germline mutations in a large cohort of unselected breast cancer patients. In this study, RAD50 germline mutations were determined using next-generation sequencing in 7657 consecutive unselected breast cancer patients without BRCA1/2 mutations. We also screened for RAD50 recurrent mutations (L719fs, K994fs, and H1269fs) in 5000 healthy controls using Sanger sequencing. We found that 26 out of 7657 (0.34%) patients had RAD50 pathogenic mutations, and 16 patients carried one of the three recurrent mutations (L719fs, n=6 cases; K994fs, n=5 cases; and H1269fs, n=5 cases); the recurrent mutation rate was 0.21%. The frequency of the three recurrent mutations in the 5000 healthy controls was 0.18% (9/5000). These mutations did not confer an increased risk of breast cancer in the studied patients [odds ratios (OR), 1.16; 95% confidence interval (CI), 0.51-2.63; P = 0.72]. Nevertheless, multivariate analysis revealed that RAD50 pathogenic mutations were an independent unfavourable predictor of recurrence-free survival (RFS) [adjusted hazard ratio (HR) 2.66; 95% CI, 1.18-5.98; P=0.018] and disease-specific survival (DSS) (adjusted HR 4.36; 95% CI, 1.58-12.03; P=0.004) in the entire study cohort. Our study suggested that RAD50 germline mutations are not associated with an increased risk of breast cancer, but patients with RAD50 germline mutations have unfavourable survival compared with patients without these mutations. This article is protected by copyright. All rights reserved. © 2018 UICC.

  19. Expression profiling of cervical cancers in Indian women at different stages to identify gene signatures during progression of the disease

    International Nuclear Information System (INIS)

    Thomas, Asha; Mahantshetty, Umesh; Kannan, Sadhana; Deodhar, Kedar; Shrivastava, Shyam K; Kumar-Sinha, Chandan; Mulherkar, Rita

    2013-01-01

    Cervical cancer is the second most common cancer among women worldwide, with developing countries accounting for >80% of the disease burden. Although in the West, active screening has been instrumental in reducing the incidence of cervical cancer, disease management is hampered due to lack of biomarkers for disease progression and defined therapeutic targets. Here we carried out gene expression profiling of 29 cervical cancer tissues from Indian women, spanning International Federation of Gynaecology and Obstetrics (FIGO) stages of the disease from early lesion (IA and IIA) to progressive stages (IIB and IIIA–B), and identified distinct gene expression signatures. Overall, metabolic pathways, pathways in cancer and signaling pathways were found to be significantly upregulated, while focal adhesion, cytokine–cytokine receptor interaction and WNT signaling were downregulated. Additionally, we identified candidate biomarkers of disease progression such as SPP1, proliferating cell nuclear antigen (PCNA), STK17A, and DUSP1 among others that were validated by quantitative real-time polymerase chain reaction (qRT-PCR) in the samples used for microarray studies as well in an independent set of 34 additional samples. Integrative analysis of our results with other cervical cancer profiling studies could facilitate the development of multiplex diagnostic markers of cervical cancer progression

  20. An integrative genomic and proteomic analysis of PIK3CA, PTEN and AKT mutations in breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Stemke-Hale, Katherine; Gonzalez-Angulo, Ana Maria; Lluch, Ana; Neve, Richard M.; Kuo, Wen-Lin; Davies, Michael; Carey, Mark; Hu, Zhi; Guan, Yinghui; Sahin, Aysegul; Symmans, W. Fraser; Pusztai, Lajos; Nolden, Laura K.; Horlings, Hugo; Berns, Katrien; Hung, Mien-Chie; van de Vijver, Marc J.; Valero, Vicente; Gray, Joe W.; Bernards, Rene; Mills, Gordon B.; Hennessy, Bryan T.

    2008-05-06

    Phosphatidylinositol-3-kinase (PI3K)/AKT pathway aberrations are common in cancer. By applying mass spectroscopy-based sequencing and reverse phase protein arrays to 547 human breast cancers and 41 cell lines, we determined the subtype specificity and signaling effects of PIK3CA, AKT and PTEN mutations, and the effects of PIK3CA mutations on responsiveness to PI3K inhibition in-vitro and on outcome after adjuvant tamoxifen. PIK3CA mutations were more common in hormone receptor positive (33.8%) and HER2-positive (24.6%) than in basal-like tumors (8.3%). AKT1 (1.4%) and PTEN (2.3%) mutations were restricted to hormone receptor-positive cancers with PTEN protein levels also being significantly lower in hormone receptor-positive cancers. Unlike AKT1 mutations, PIK3CA (39%) and PTEN (20%) mutations were more common in cell lines than tumors, suggesting a selection for these but not AKT1 mutations during adaptation to culture. PIK3CA mutations did not have a significant impact on outcome in 166 hormone receptor-positive breast cancer patients after adjuvant tamoxifen. PIK3CA mutations, in comparison with PTEN loss and AKT1 mutations, were associated with significantly less and indeed inconsistent activation of AKT and of downstream PI3K/AKT signaling in tumors and cell lines, and PTEN loss and PIK3CA mutation were frequently concordant, suggesting different contributions to pathophysiology. PTEN loss but not PIK3CA mutations rendered cells sensitive to growth inhibition by the PI3K inhibitor LY294002. Thus, PI3K pathway aberrations likely play a distinct role in the pathogenesis of different breast cancer subtypes. The specific aberration may have implications for the selection of PI3K-targeted therapies in hormone receptor-positive breast cancer.

  1. A Semantic Web-based System for Mining Genetic Mutations in Cancer Clinical Trials.

    Science.gov (United States)

    Priya, Sambhawa; Jiang, Guoqian; Dasari, Surendra; Zimmermann, Michael T; Wang, Chen; Heflin, Jeff; Chute, Christopher G

    2015-01-01

    Textual eligibility criteria in clinical trial protocols contain important information about potential clinically relevant pharmacogenomic events. Manual curation for harvesting this evidence is intractable as it is error prone and time consuming. In this paper, we develop and evaluate a Semantic Web-based system that captures and manages mutation evidences and related contextual information from cancer clinical trials. The system has 2 main components: an NLP-based annotator and a Semantic Web ontology-based annotation manager. We evaluated the performance of the annotator in terms of precision and recall. We demonstrated the usefulness of the system by conducting case studies in retrieving relevant clinical trials using a collection of mutations identified from TCGA Leukemia patients and Atlas of Genetics and Cytogenetics in Oncology and Haematology. In conclusion, our system using Semantic Web technologies provides an effective framework for extraction, annotation, standardization and management of genetic mutations in cancer clinical trials.

  2. The prognostic value of KRAS mutated plasma DNA in advanced non-small cell lung cancer

    DEFF Research Database (Denmark)

    Nygaard, Anneli Dowler; Garm Spindler, Karen-Lise; Pallisgaard, Niels

    2013-01-01

    BACKGROUND: Lung cancer is one of the most common malignant diseases worldwide and associated with considerable morbidity and mortality. New agents targeting the epidermal growth factor system are emerging, but only a subgroup of the patients will benefit from the therapy. Cell free DNA (cf......DNA) in the blood allows for tumour specific analyses, including KRAS-mutations, and the aim of the study was to investigate the possible prognostic value of plasma mutated KRAS (pmKRAS) in patients with non-small cell lung cancer (NSCLC). MATERIAL AND METHODS: Patients with newly diagnosed, advanced NSCLC eligible....... RESULTS: The study included 246 patients receiving a minimum of 1 treatment cycle, and all but four were evaluable for response according to RECIST. Forty-three patients (17.5%) presented with a KRAS mutation. OS was 8.9 months and PFS by intention to treat 5.4 months. Patients with a detectable plasma...

  3. Plac8 Links Oncogenic Mutations to Regulation of Autophagy and Is Critical to Pancreatic Cancer Progression

    Directory of Open Access Journals (Sweden)

    Conan Kinsey

    2014-05-01

    Full Text Available Mutations in p53 and RAS potently cooperate in oncogenic transformation, and correspondingly, these genetic alterations frequently coexist in pancreatic ductal adenocarcinoma (PDA and other human cancers. Previously, we identified a set of genes synergistically activated by combined RAS and p53 mutations as frequent downstream mediators of tumorigenesis. Here, we show that the synergistically activated gene Plac8 is critical for pancreatic cancer growth. Silencing of Plac8 in cell lines suppresses tumor formation by blocking autophagy, a process essential for maintaining metabolic homeostasis in PDA, and genetic inactivation in an engineered mouse model inhibits PDA progression. We show that Plac8 is a critical regulator of the autophagic machinery, localizing to the lysosomal compartment and facilitating lysosome-autophagosome fusion. Plac8 thus provides a mechanistic link between primary oncogenic mutations and the induction of autophagy, a central mechanism of metabolic reprogramming, during PDA progression.

  4. Endocrine metabolic disorders in patients with breast cancer, carriers of BRCA1 gene mutations.

    Science.gov (United States)

    Berstein, L M; Boyarkina, M P; Vasilyev, D A; Poroshina, T E; Kovalenko, I G; Imyanitov, E N; Semiglazov, V F

    2012-03-01

    Two groups of breast cancer patients (53±2 years) in clinical remission receiving no specific therapy were examined: group 1, with BRCA1 gene mutations (N=11) and group 2, without mutations of this kind (N=11). The two groups did not differ by insulinemia and glycemia, insulin resistance index, blood levels of thyrotropic hormone, sex hormone-binding globulin, insulin-like growth factor-1, triglycerides, or lipoproteins. In group 1, blood estradiol level was higher. Intensive glucose-induced generation of reactive oxygen species in these patients was associated with a decrease of cholesterolemia, of the C-peptide/insulin proportion, and a trend to higher urinary excretion of 4-hydroxyestrone, one of the most genotoxic catecholestrogens. BRCA1 gene mutations in breast cancer patients were associated with signs of estrogenization and a pro-genotoxic shift in the estrogen and glucose system, which could modulate the disease course and requires correction.

  5. The prognostic value of simultaneous tumor and serum RAS/RAF mutations in localized colon cancer

    DEFF Research Database (Denmark)

    Brenner Thomsen, Caroline Emilie; Appelt, Ane Lindegaard; Andersen, Rikke Fredslund

    2017-01-01

    The impact of RAS/RAF mutations in localized colon cancer needs clarification. Based on analysis of tumor-specific DNA, this study aimed at elucidating the prognostic influence of mutational status in tumor and serum using an extended panel of mutations. The study retrospectively included 294.......0057), and disease-free survival (DFS) (HR = 2.18, 95%CI = 1.26-3.77, P = 0.0053). BRAF mutation in the serum and proficient mismatch repair (pMMR) protein in tumor also indicated significantly worse prognosis, OS (HR = 3.45, 95% CI = 1.52-7.85, P = 0.0032) and DFS (HR = 3.61, 95% CI = 1.70-7.67, P = 0...

  6. Characterization of a novel oncogenic K-ras mutation in colon cancer

    International Nuclear Information System (INIS)

    Akagi, Kiwamu; Uchibori, Ryosuke; Yamaguchi, Kensei; Kurosawa, Keiko; Tanaka, Yoichiro; Kozu, Tomoko

    2007-01-01

    Activating mutations of RAS are frequently observed in subsets of human cancers, indicating that RAS activation is involved in tumorigenesis. Here, we identified and characterized a novel G to T transversion mutation of the K-ras gene at the third position of codon 19 (TTG) which substituted phenylalanine for leucine in 3 primary colon carcinomas. Biological and biochemical activity was examined using transformed NIH3T3 cells expressing mutant or wild-type K-ras. Transformants harboring the K-ras mutation at codon 19 showed proliferative capacity under serum-starved conditions, less contact inhibition, anchorage-independent growth, tumorigenicity in nude mice and elevation of active Ras-GTP levels. These results indicated that this novel mutation possesses high oncogenic activity

  7. Mutation analysis of the negative regulator cyclin G2 in gastric cancer

    African Journals Online (AJOL)

    Cyclin G2 is an unconventional cyclin which might have a potential negative role in carcinogenesis. In this study, the effect of cyclin G2 overexpression on gastric cell proliferation and expression levels of cyclin G2 in normal gastric cells and gastric cancer cells were investigated. Moreover, mutation analysis was performed ...

  8. An effect from anticipation also in hereditary nonpolyposis colorectal cancer families without identified mutations

    DEFF Research Database (Denmark)

    Timshel, Susanne; Therkildsen, Christina; Bendahl, Pär-Ola

    2009-01-01

    the Amsterdam criteria for HNPCC and showed normal MMR function and/or lack of disease-predisposing MMR gene mutation. In total, 319 cancers from 212 parent-child pairs in 99 families were identified. A paired t-test and a bivariate statistical model were used to assess anticipation. Both methods demonstrated...

  9. Mutation and Expression of the DCC Gene in Human Lung Cancer

    Directory of Open Access Journals (Sweden)

    Takashi Kohno

    2000-07-01

    Full Text Available Chromosome 18q is frequently deleted in lung cancers, a common region of 18q deletions was mapped to chromosome 18g21. Since the DCC candidate tumor suppressor gene has been mapped in this region, mutation and expression of the DCC gene were examined in 46 lung cancer cell lines, consisting of 14 small cell lung carcinomas (SCLCs and 32 non-small cell lung carcinomas (NSCLCs, to elucidate the pathogenetic significance of DCC alterations in human lung carcinogenesis. A heterozygous missense mutation was detected in a NSCLC cell line, Ma26, while homozygous deletion was not detected in any of the cell lines. The DCC gene was expressed in 11 (24% of the 46 cell lines, the incidence of DCC expression was significantly higher in SCLCs (7/14, 50% than in NSCLCs (4/32, 13% (P = .01, Fisher's exact test. Therefore, genetic alterations of DCC are infrequent; however, the levels of DCC expression vary among lung cancer cells, in particular, between SCLCs and NSCLCs. The present result does not implicate DCC as a specific mutational target of 18q deletions in human lung cancer; however, it suggests that DCC is a potential target of inactivation by genetic defects including intron or promoter mutations and/or epigenetic alterations. The present result also suggests that DCC expression is associated with some properties of SCLCs, such as a neuroendocrine (NE feature.

  10. p53 oncogene mutations in head and neck cancer based on the ...

    African Journals Online (AJOL)

    Yomi

    2012-01-26

    Jan 26, 2012 ... In order to study the p53 mutations in head and neck cancer, we explored the relationship between the different positions of the bases and the amino acids' physical and chemical properties. In this paper, the Euclidean distance (d) was defined. Furthermore, by using improved variation coefficient method,.

  11. Analysis of P53 mutations and their expression in 56 colorectal cancer cell lines

    DEFF Research Database (Denmark)

    Liu, Ying; Bodmer, Walter F

    2006-01-01

    A comprehensive analysis of the TP53 gene and its protein status was carried out on a panel of 56 colorectal cancer cell lines. This analysis was based on a combination of denaturing HPLC mutation screening of all exons of the p53 gene, sequencing the cDNA, and assessing the function of the p53 p...

  12. Mutations in p53, p53 protein overexpression and breast cancer survival

    Czech Academy of Sciences Publication Activity Database

    Rössner ml., Pavel; Gammon, M. D.; Zhang, Y.J.; Terry, M. B.; Hibshoosh, H.; Memeo, L.; Mansukhani, M.; Long, CH.M.; Gabrowski, G.; Agrawal, M.; Kalra, T.S.; Teitelbaum, S. L.; Neugut, A. I.; Santella, R. M.

    2009-01-01

    Roč. 13, č. 9B (2009), s. 3847-3857 ISSN 1582-1838 Institutional research plan: CEZ:AV0Z50390512 Keywords : Breast cancer * p53 mutations * Survival Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 5.228, year: 2009

  13. Genetic etiology of hereditary colorectal cancer: new mechanisms and advanced mutation detection techniques

    NARCIS (Netherlands)

    Gazzoli, I.

    2006-01-01

    The human DNA mismatch repair (MMR) system functions to repair mispaired bases in DNA that result from DNA replication errors and thereby prevents the accumulation of mutations due to such replication errors. Hereditary nonpolyposis colorectal cancer (HNPCC), the most common form of inherited colon

  14. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms.

    Science.gov (United States)

    Malkin, D; Li, F P; Strong, L C; Fraumeni, J F; Nelson, C E; Kim, D H; Kassel, J; Gryka, M A; Bischoff, F Z; Tainsky, M A

    1990-11-30

    Familial cancer syndromes have helped to define the role of tumor suppressor genes in the development of cancer. The dominantly inherited Li-Fraumeni syndrome (LFS) is of particular interest because of the diversity of childhood and adult tumors that occur in affected individuals. The rarity and high mortality of LFS precluded formal linkage analysis. The alternative approach was to select the most plausible candidate gene. The tumor suppressor gene, p53, was studied because of previous indications that this gene is inactivated in the sporadic (nonfamilial) forms of most cancers that are associated with LFS. Germ line p53 mutations have been detected in all five LFS families analyzed. These mutations do not produce amounts of mutant p53 protein expected to exert a trans-dominant loss of function effect on wild-type p53 protein. The frequency of germ line p53 mutations can now be examined in additional families with LFS, and in other cancer patients and families with clinical features that might be attributed to the mutation.

  15. Telomere length, ATM mutation status and cancer risk in Ataxia-Telangiectasia families.

    Science.gov (United States)

    Renault, Anne-Laure; Mebirouk, Noura; Cavaciuti, Eve; Le Gal, Dorothée; Lecarpentier, Julie; d'Enghien, Catherine Dubois; Laugé, Anthony; Dondon, Marie-Gabrielle; Labbé, Martine; Lesca, Gaetan; Leroux, Dominique; Gladieff, Laurence; Adenis, Claude; Faivre, Laurence; Gilbert-Dussardier, Brigitte; Lortholary, Alain; Fricker, Jean-Pierre; Dahan, Karin; Bay, Jacques-Olivier; Longy, Michel; Buecher, Bruno; Janin, Nicolas; Zattara, Hélène; Berthet, Pascaline; Combès, Audrey; Coupier, Isabelle; Hall, Janet; Stoppa-Lyonnet, Dominique; Andrieu, Nadine; Lesueur, Fabienne

    2017-10-01

    Recent studies have linked constitutive telomere length (TL) to aging-related diseases including cancer at different sites. ATM participates in the signaling of telomere erosion, and inherited mutations in ATM have been associated with increased risk of cancer, particularly breast cancer. The goal of this study was to investigate whether carriage of an ATM mutation and TL interplay to modify cancer risk in ataxia-telangiectasia (A-T) families.The study population consisted of 284 heterozygous ATM mutation carriers (HetAT) and 174 non-carriers (non-HetAT) from 103 A-T families. Forty-eight HetAT and 14 non-HetAT individuals had cancer, among them 25 HetAT and 6 non-HetAT were diagnosed after blood sample collection. We measured mean TL using a quantitative PCR assay and genotyped seven single-nucleotide polymorphisms (SNPs) recurrently associated with TL in large population-based studies.HetAT individuals were at increased risk of cancer (OR = 2.3, 95%CI = 1.2-4.4, P = 0.01), and particularly of breast cancer for women (OR = 2.9, 95%CI = 1.2-7.1, P = 0.02), in comparison to their non-HetAT relatives. HetAT individuals had longer telomeres than non-HetAT individuals (P = 0.0008) but TL was not associated with cancer risk, and no significant interaction was observed between ATM mutation status and TL. Furthermore, rs9257445 (ZNF311) was associated with TL in HetAT subjects and rs6060627 (BCL2L1) modified cancer risk in HetAT and non-HetAT women.Our findings suggest that carriage of an ATM mutation impacts on the age-related TL shortening and that TL per se is not related to cancer risk in ATM carriers. TL measurement alone is not a good marker for predicting cancer risk in A-T families. © The Author 2017. Published by Oxford University Press.

  16. Aberrantly methylated genes in human papillary thyroid cancer and their association with BRAF/RAS mutation.

    Directory of Open Access Journals (Sweden)

    Yasuko eKikuchi

    2013-12-01

    Full Text Available Cancer arises through accumulation of epigenetic and genetic alteration. Aberrant promoter methylation is a common epigenetic mechanism of gene silencing in cancer cells. We here performed genome-wide analysis of DNA methylation of promoter regions by Infinium HumanMethylation27 BeadChip, using 14 clinical papillary thyroid cancer samples and 10 normal thyroid samples. Among the 14 papillary cancer cases, 11 showed frequent aberrant methylation, but the other three cases showed no aberrant methylation at all. Distribution of the hypermethylation among cancer samples was non-random, which implied existence of a subset of preferentially methylated papillary thyroid cancer. Among 25 frequently methylated genes, methylation status of six genes (HIST1H3J, POU4F2, SHOX2, PHKG2, TLX3, HOXA7 was validated quantitatively by pyrosequencing. Epigenetic silencing of these genes in methylated papillary thyroid cancer cell lines was confirmed by gene re-expression following treatment with 5-aza-2'-deoxycytidine and trichostatin A, and detected by real-time RT-PCR. Methylation of these six genes was validated by analysis of additional 20 papillary thyroid cancer and 10 normal samples. Among the 34 cancer samples in total, 26 cancer samples with preferential methylation were significantly associated with mutation of BRAF/RAS oncogene (P=0.04, Fisher’s exact test. Thus we identified new genes with frequent epigenetic hypermethylation in papillary thyroid cancer, two subsets of either preferentially methylated or hardly methylated papillary thyroid cancer, with a concomitant occurrence of oncogene mutation and gene methylation. These hypermethylated genes may constitute potential biomarkers for papillary thyroid cancer.

  17. Pathway-Enriched Gene Signature Associated with 53BP1 Response to PARP Inhibition in Triple-Negative Breast Cancer.

    Science.gov (United States)

    Hassan, Saima; Esch, Amanda; Liby, Tiera; Gray, Joe W; Heiser, Laura M

    2017-12-01

    Effective treatment of patients with triple-negative (ER-negative, PR-negative, HER2-negative) breast cancer remains a challenge. Although PARP inhibitors are being evaluated in clinical trials, biomarkers are needed to identify patients who will most benefit from anti-PARP therapy. We determined the responses of three PARP inhibitors (veliparib, olaparib, and talazoparib) in a panel of eight triple-negative breast cancer cell lines. Therapeutic responses and cellular phenotypes were elucidated using high-content imaging and quantitative immunofluorescence to assess markers of DNA damage (53BP1) and apoptosis (cleaved PARP). We determined the pharmacodynamic changes as percentage of cells positive for 53BP1, mean number of 53BP1 foci per cell, and percentage of cells positive for cleaved PARP. Inspired by traditional dose-response measures of cell viability, an EC 50 value was calculated for each cellular phenotype and each PARP inhibitor. The EC 50 values for both 53BP1 metrics strongly correlated with IC 50 values for each PARP inhibitor. Pathway enrichment analysis identified a set of DNA repair and cell cycle-associated genes that were associated with 53BP1 response following PARP inhibition. The overall accuracy of our 63 gene set in predicting response to olaparib in seven breast cancer patient-derived xenograft tumors was 86%. In triple-negative breast cancer patients who had not received anti-PARP therapy, the predicted response rate of our gene signature was 45%. These results indicate that 53BP1 is a biomarker of response to anti-PARP therapy in the laboratory, and our DNA damage response gene signature may be used to identify patients who are most likely to respond to PARP inhibition. Mol Cancer Ther; 16(12); 2892-901. ©2017 AACR . ©2017 American Association for Cancer Research.

  18. Mutational analysis of circulating tumor cells from colorectal cancer patients and correlation with primary tumor tissue.

    Directory of Open Access Journals (Sweden)

    Anna Lyberopoulou

    Full Text Available Circulating tumor cells (CTCs provide a non-invasive accessible source of tumor material from patients with cancer. The cellular heterogeneity within CTC populations is of great clinical importance regarding the increasing number of adjuvant treatment options for patients with metastatic carcinomas, in order to eliminate residual disease. Moreover, the molecular profiling of these rare cells might lead to insight on disease progression and therapeutic strategies than simple CTCs counting. In the present study we investigated the feasibility to detect KRAS, BRAF, CD133 and Plastin3 (PLS3 mutations in an enriched CTCs cell suspension from patients with colorectal cancer, with the hypothesis that these genes` mutations are of great importance regarding the generation of CTCs subpopulations. Subsequently, we compared CTCs mutational status with that of the corresponding primary tumor, in order to access the possibility of tumor cells characterization without biopsy. CTCs were detected and isolated from blood drawn from 52 colorectal cancer (CRC patients using a quantum-dot-labelled magnetic immunoassay method. Mutations were detected by PCR-RFLP or allele-specific PCR and confirmed by direct sequencing. In 52 patients, discordance between primary tumor and CTCs was 5.77% for KRAS, 3.85% for BRAF, 11.54% for CD133 rs3130, 7.69% for CD133 rs2286455 and 11.54% for PLS3 rs6643869 mutations. Our results support that DNA mutational analysis of CTCs may enable non-invasive, specific biomarker diagnostics and expand the scope of personalized medicine for cancer patients.

  19. Detection of mismatch repair gene germline mutation carrier among Chinese population with colorectal cancer

    International Nuclear Information System (INIS)

    Jin, Hei-Ying; Zhao, Ronghua; Liu, Xiufang; Li, Vicky Ka Ming; Ding, Yijiang; Yang, Bolin; Geng, Jianxiang; Lai, Rensheng; Ding, Shuqing; Ni, Min

    2008-01-01

    Hereditary nonpolyposis colorectal cancer (HNPCC) is an autosomal dominant syndrome. The National Cancer Institute (NCI) has recommended the Revised Bethesda guidelines for screening HNPCC. There has been a great deal of research on the value of these tests in other countries. However, literature about the Chinese population is scarce. Our objective is to detect and study microsatellite instability (MSI) and mismatch repair (MMR) gene germline mutation carriers among a Chinese population with colorectal cancer. In 146 prospectively recruited consecutive patients with clinically proven colorectal cancer, MSI carriers were identified by analysis of tumor tissue using multiplex fluorescence polymerase chain reaction (PCR) using the NCI recommended panel and classified into microsatellite instability-low (MSI-L), microsatellite instability-high (MSI-H) and microsatellite stable (MSS) groups. Immunohistochemical staining for MSH2, MSH6 and MLH1 on tissue microarrays (TMAs) was performed, and methylation of the MLH1 promoter was analyzed by quantitative methylation specific PCR (MSP). Germline mutation analysis of blood samples was performed for MSH2, MSH6 and MLH1 genes. Thirty-four out of the 146 colorectal cancers (CRCs, 23.2%) were MSI, including 19 MSI-H CRCs and 15 MSI-L CRCS. Negative staining for MSH2 was found in 8 CRCs, negative staining for MSH6 was found in 6 CRCs. One MSI-H CRC was negative for both MSH6 and MSH2. Seventeen CRCs stained negatively for MLH1. MLH1 promoter methylation was determined in 34 MSI CRCs. Hypermethylation of the MLH1 promoter occurred in 14 (73.7%) out of 19 MSI-H CRCs and 5 (33.3%) out of 15 MSI-L CRCs. Among the 34 MSI carriers and one MSS CRC with MLH1 negative staining, 8 had a MMR gene germline mutation, which accounted for 23.5% of all MSI colorectal cancers and 5.5% of all the colorectal cancers. Five patients harbored MSH2 germline mutations, and three patients harbored MSH6 germline mutations. None of the patients had an MLH

  20. Lack of evidence for KRAS oncogenic mutations in triple-negative breast cancer

    International Nuclear Information System (INIS)

    Sánchez-Muñoz, Alfonso; Gallego, Elena; Luque, Vanessa de; Pérez-Rivas, Luís G; Vicioso, Luís; Ribelles, Nuria; Lozano, José; Alba, Emilio

    2010-01-01

    Mutational analysis of the KRAS gene has recently been established as a complementary in vitro diagnostic tool for the identification of patients with colorectal cancer who will not benefit from anti-epidermal growth factor receptor (EGFR) therapies. Assessment of the mutation status of KRAS might also be of potential relevance in other EGFR-overexpressing tumors, such as those occurring in breast cancer. Although KRAS is mutated in only a minor fraction of breast tumors (5%), about 60% of the basal-like subtype express EGFR and, therefore could be targeted by EGFR inhibitors. We aimed to study the mutation frequency of KRAS in that subtype of breast tumors to provide a molecular basis for the evaluation of anti-EGFR therapies. Total, genomic DNA was obtained from a group of 35 formalin-fixed paraffin-embedded, triple-negative breast tumor samples. Among these, 77.1% (27/35) were defined as basal-like by immunostaining specific for the established surrogate markers cytokeratin (CK) 5/6 and/or EGFR. KRAS mutational status was determined in the purified DNA samples by Real Time (RT)-PCR using primers specific for the detection of wild-type KRAS or the following seven oncogenic somatic mutations: Gly12Ala, Gly12Asp, Gly12Arg, Gly12Cys, Gly12Ser, Gly12Val and Gly13Asp. We found no evidence of KRAS oncogenic mutations in all analyzed tumors. This study indicates that KRAS mutations are very infrequent in triple-negative breast tumors and that EGFR inhibitors may be of potential benefit in the treatment of basal-like breast tumors, which overexpress EGFR in about 60% of all cases

  1. Survival analysis of cancer risk reduction strategies for BRCA1/2 mutation carriers.

    Science.gov (United States)

    Kurian, Allison W; Sigal, Bronislava M; Plevritis, Sylvia K

    2010-01-10

    Women with BRCA1/2 mutations inherit high risks of breast and ovarian cancer; options to reduce cancer mortality include prophylactic surgery or breast screening, but their efficacy has never been empirically compared. We used decision analysis to simulate risk-reducing strategies in BRCA1/2 mutation carriers and to compare resulting survival probability and causes of death. We developed a Monte Carlo model of breast screening with annual mammography plus magnetic resonance imaging (MRI) from ages 25 to 69 years, prophylactic mastectomy (PM) at various ages, and/or prophylactic oophorectomy (PO) at ages 40 or 50 years in 25-year-old BRCA1/2 mutation carriers. With no intervention, survival probability by age 70 is 53% for BRCA1 and 71% for BRCA2 mutation carriers. The most effective single intervention for BRCA1 mutation carriers is PO at age 40, yielding a 15% absolute survival gain; for BRCA2 mutation carriers, the most effective single intervention is PM, yielding a 7% survival gain if performed at age 40 years. The combination of PM and PO at age 40 improves survival more than any single intervention, yielding 24% survival gain for BRCA1 and 11% for BRCA2 mutation carriers. PM at age 25 instead of age 40 offers minimal incremental benefit (1% to 2%); substituting screening for PM yields a similarly minimal decrement in survival (2% to 3%). Although PM at age 25 plus PO at age 40 years maximizes survival probability, substituting mammography plus MRI screening for PM seems to offer comparable survival. These results may guide women with BRCA1/2 mutations in their choices between prophylactic surgery and breast screening.

  2. Whole-exome sequencing of muscle-invasive bladder cancer identifies recurrent mutations of UNC5C and prognostic importance of DNA repair gene mutations on survival.

    Science.gov (United States)

    Yap, Kai Lee; Kiyotani, Kazuma; Tamura, Kenji; Antic, Tatjana; Jang, Miran; Montoya, Magdeline; Campanile, Alexa; Yew, Poh Yin; Ganshert, Cory; Fujioka, Tomoaki; Steinberg, Gary D; O'Donnell, Peter H; Nakamura, Yusuke

    2014-12-15

    Because of suboptimal outcomes in muscle-invasive bladder cancer even with multimodality therapy, determination of potential genetic drivers offers the possibility of improving therapeutic approaches and discovering novel prognostic indicators. Using pTN staging, we case-matched 81 patients with resected ≥pT2 bladder cancers for whom perioperative chemotherapy use and disease recurrence status were known. Whole-exome sequencing was conducted in 43 cases to identify recurrent somatic mutations and targeted sequencing of 10 genes selected from the initial screening in an additional 38 cases was completed. Mutational profiles along with clinicopathologic information were correlated with recurrence-free survival (RFS) in the patients. We identified recurrent novel somatic mutations in the gene UNC5C (9.9%), in addition to TP53 (40.7%), KDM6A (21.0%), and TSC1 (12.3%). Patients who were carriers of somatic mutations in DNA repair genes (one or more of ATM, ERCC2, FANCD2, PALB2, BRCA1, or BRCA2) had a higher overall number of somatic mutations (P = 0.011). Importantly, after a median follow-up of 40.4 months, carriers of somatic mutations (n = 25) in any of these six DNA repair genes had significantly enhanced RFS compared with noncarriers [median, 32.4 vs. 14.8 months; hazard ratio of 0.46, 95% confidence interval (CI), 0.22-0.98; P = 0.0435], after adjustment for pathologic pTN staging and independent of adjuvant chemotherapy usage. Better prognostic outcomes of individuals carrying somatic mutations in DNA repair genes suggest these mutations as favorable prognostic events in muscle-invasive bladder cancer. Additional mechanistic investigation into the previously undiscovered role of UNC5C in bladder cancer is warranted. ©2014 American Association for Cancer Research.

  3. An overview about mitochondrial DNA mutations in ovarian cancer

    African Journals Online (AJOL)

    Iyer Mahalaxmi

    2017-07-29

    Jul 29, 2017 ... which ends up as a global increase in incidence rates. There are 2 per cent ... In ovarian cancer follicle-stimulating hormone receptor gene poly- morphism is ... of respiratory deficit in dividing cells which were characterised by.

  4. Whole genomes redefine the mutational landscape of pancreatic cancer

    OpenAIRE

    Waddell, Nicola; Pajic, Marina; Patch, Ann-Marie; Chang, David K.; Kassahn, Karin S.; Bailey, Peter; Johns, Amber L.; Miller, David; Nones, Katia; Quek, Kelly; Quinn, Michael C. J.; Robertson, Alan J.; Fadlullah, Muhammad Z. H.; Bruxner, Tim J. C.; Christ, Angelika N.

    2015-01-01

    Pancreatic cancer remains one of the most lethal of malignancies and a major health burden. We performed whole-genome sequencing and copy number variation (CNV) analysis of 100 pancreatic ductal adenocarcinomas (PDACs). Chromosomal rearrangements leading to gene disruption were prevalent, affecting genes known to be important in pancreatic cancer (TP53, SMAD4, CDKN2A, ARID1A and ROBO2) and new candidate drivers of pancreatic carcinogenesis (KDM6A and PREX2). Patterns of structural variation (...

  5. A gene expression signature of RAS pathway dependence predicts response to PI3K and RAS pathway inhibitors and expands the population of RAS pathway activated tumors.

    Science.gov (United States)

    Loboda, Andrey; Nebozhyn, Michael; Klinghoffer, Rich; Frazier, Jason; Chastain, Michael; Arthur, William; Roberts, Brian; Zhang, Theresa; Chenard, Melissa; Haines, Brian; Andersen, Jannik; Nagashima, Kumiko; Paweletz, Cloud; Lynch, Bethany; Feldman, Igor; Dai, Hongyue; Huang, Pearl; Watters, James

    2010-06-30

    Hyperactivation of the Ras signaling pathway is a driver of many cancers, and RAS pathway activation can predict response to targeted therapies. Therefore, optimal methods for measuring Ras pathway activation are critical. The main focus of our work was to develop a gene expression signature that is predictive of RAS pathway dependence. We used the coherent expression of RAS pathway-related genes across multiple datasets to derive a RAS pathway gene expression signature and generate RAS pathway activation scores in pre-clinical cancer models and human tumors. We then related this signature to KRAS mutation status and drug response data in pre-clinical and clinical datasets. The RAS signature score is predictive of KRAS mutation status in lung tumors and cell lines with high (> 90%) sensitivity but relatively low (50%) specificity due to samples that have apparent RAS pathway activation in the absence of a KRAS mutation. In lung and breast cancer cell line panels, the RAS pathway signature score correlates with pMEK and pERK expression, and predicts resistance to AKT inhibition and sensitivity to MEK inhibition within both KRAS mutant and KRAS wild-type groups. The RAS pathway signature is upregulated in breast cancer cell lines that have acquired resistance to AKT inhibition, and is downregulated by inhibition of MEK. In lung cancer cell lines knockdown of KRAS using siRNA demonstrates that the RAS pathway signature is a better measure of dependence on RAS compared to KRAS mutation status. In human tumors, the RAS pathway signature is elevated in ER negative breast tumors and lung adenocarcinomas, and predicts resistance to cetuximab in metastatic colorectal cancer. These data demonstrate that the RAS pathway signature is superior to KRAS mutation status for the prediction of dependence on RAS signaling, can predict response to PI3K and RAS pathway inhibitors, and is likely to have the most clinical utility in lung and breast tumors.

  6. A gene expression signature of RAS pathway dependence predicts response to PI3K and RAS pathway inhibitors and expands the population of RAS pathway activated tumors

    Directory of Open Access Journals (Sweden)

    Paweletz Cloud

    2010-06-01

    Full Text Available Abstract Background Hyperactivation of the Ras signaling pathway is a driver of many cancers, and RAS pathway activation can predict response to targeted therapies. Therefore, optimal methods for measuring Ras pathway activation are critical. The main focus of our work was to develop a gene expression signature that is predictive of RAS pathway dependence. Methods We used the coherent expression of RAS pathway-related genes across multiple datasets to derive a RAS pathway gene expression signature and generate RAS pathway activation scores in pre-clinical cancer models and human tumors. We then related this signature to KRAS mutation status and drug response data in pre-clinical and clinical datasets. Results The RAS signature score is predictive of KRAS mutation status in lung tumors and cell lines with high (> 90% sensitivity but relatively low (50% specificity due to samples that have apparent RAS pathway activation in the absence of a KRAS mutation. In lung and breast cancer cell line panels, the RAS pathway signature score correlates with pMEK and pERK expression, and predicts resistance to AKT inhibition and sensitivity to MEK inhibition within both KRAS mutant and KRAS wild-type groups. The RAS pathway signature is upregulated in breast cancer cell lines that have acquired resistance to AKT inhibition, and is downregulated by inhibition of MEK. In lung cancer cell lines knockdown of KRAS using siRNA demonstrates that the RAS pathway signature is a better measure of dependence on RAS compared to KRAS mutation status. In human tumors, the RAS pathway signature is elevated in ER negative breast tumors and lung adenocarcinomas, and predicts resistance to cetuximab in metastatic colorectal cancer. Conclusions These data demonstrate that the RAS pathway signature is superior to KRAS mutation status for the prediction of dependence on RAS signaling, can predict response to PI3K and RAS pathway inhibitors, and is likely to have the most clinical

  7. The Splicing Efficiency of Activating HRAS Mutations Can Determine Costello Syndrome Phenotype and Frequency in Cancer.

    Directory of Open Access Journals (Sweden)

    Anne-Mette Hartung

    2016-05-01

    Full Text Available Costello syndrome (CS may be caused by activating mutations in codon 12/13 of the HRAS proto-oncogene. HRAS p.Gly12Val mutations have the highest transforming activity, are very frequent in cancers, but very rare in CS, where they are reported to cause a severe, early lethal, phenotype. We identified an unusual, new germline p.Gly12Val mutation, c.35_36GC>TG, in a 12-year-old boy with attenuated CS. Analysis of his HRAS cDNA showed high levels of exon 2 skipping. Using wild type and mutant HRAS minigenes, we confirmed that c.35_36GC>TG results in exon 2 skipping by simultaneously disrupting the function of a critical Exonic Splicing Enhancer (ESE and creation of an Exonic Splicing Silencer (ESS. We show that this vulnerability of HRAS exon 2 is caused by a weak 3' splice site, which makes exon 2 inclusion dependent on binding of splicing stimulatory proteins, like SRSF2, to the critical ESE. Because the majority of cancer- and CS- causing mutations are located here, they affect splicing differently. Therefore, our results also demonstrate that the phenotype in CS and somatic cancers is not only determined by the different transforming potentials of mutant HRAS proteins, but also by the efficiency of exon 2 inclusion resulting from the different HRAS mutations. Finally, we show that a splice switching oligonucleotide (SSO that blocks access to the critical ESE causes exon 2 skipping and halts proliferation of cancer cells. This unravels a potential for development of new anti-cancer therapies based on SSO-mediated HRAS exon 2 skipping.

  8. Germline mutations in MAP3K6 are associated with familial gastric cancer.

    Directory of Open Access Journals (Sweden)

    Daniel Gaston

    2014-10-01

    Full Text Available Gastric cancer is among the leading causes of cancer-related deaths worldwide. While heritable forms of gastric cancer are relatively rare, identifying the genes responsible for such cases can inform diagnosis and treatment for both hereditary and sporadic cases of gastric cancer. Mutations in the E-cadherin gene, CDH1, account for 40% of the most common form of familial gastric cancer (FGC, hereditary diffuse gastric cancer (HDGC. The genes responsible for the remaining forms of FGC are currently unknown. Here we examined a large family from Maritime Canada with FGC without CDH1 mutations, and identified a germline coding variant (p.P946L in mitogen-activated protein kinase kinase kinase 6 (MAP3K6. Based on conservation, predicted pathogenicity and a known role of the gene in cancer predisposition, MAP3K6 was considered a strong candidate and was investigated further. Screening of an additional 115 unrelated individuals with non-CDH1 FGC identified the p.P946L MAP3K6 variant, as well as four additional coding variants in MAP3K6 (p.F849Sfs*142, p.P958T, p.D200Y and p.V207G. A somatic second-hit variant (p.H506Y was present in DNA obtained from one of the tumor specimens, and evidence of DNA hypermethylation within the MAP3K6 gene was observed in DNA from the tumor of another affected individual. These findings, together with previous evidence from mouse models that MAP3K6 acts as a tumor suppressor, and studies showing the presence of somatic mutations in MAP3K6 in non-hereditary gastric cancers and gastric cancer cell lines, point towards MAP3K6 variants as a predisposing factor for FGC.

  9. Mutations in TGFbeta-RII and BAX mediate tumor progression in the later stages of colorectal cancer with microsatellite instability

    International Nuclear Information System (INIS)

    Yashiro, Masakazu; Hirakawa, Kosei; Boland, C Richard

    2010-01-01

    Microsatellite instability (MSI) occurs in 15% of colorectal cancers (CRC). The genetic targets for mutation in the MSI phenotype include somatic mutations in the transforming growth factor beta receptor typeII (TGFbetaRII), BAX, hMSH3 and hMSH6. It is not clear how mutations of these genes mediate tumor progression in the MSI pathway, and the temporal sequence of these mutations remains uncertain. In this study, early stage CRCs were examined for frameshift mutations in these target genes, and compared with late stage tumors and CRC cell lines. We investigated 6 CRC cell lines and 71 sporadic CRCs, including 61 early stage cancers and 10 late stage cancers. Mutations of repetitive mononucleotide tracts in the coding regions of TGFbetaRII, BAX, hMSH3, hMSH6, IGFIIR and Fas antigen were identified by direct sequencing. Thirteen (18.3%) of 71 CRC, including 9/61 (14.7%) early stage cancers and 4/10 (40%) late stage cancers, were identified as MSI and analyzed for frameshift mutations. No mutation in the target genes was observed in any of the 9 early stage MSI CRCs. In contrast, frameshift mutations of TGFbetaRII, BAX, hMSH3 and hMSH6 were present in 3/4 late stage MSI tumors. There is a statistical association (p = 0.014) between mutation in any one gene and tumor stage. TGFbetaRII, BAX, hMSH3 and hMSH6 mutations are relatively late events in the genesis of MSI CRCs. The frameshift mutations in these target genes might mediate progression from early to late stage cancer, rather than mediating the adenoma to carcinoma transition

  10. Tumour-derived exosomes as a signature of pancreatic cancer - liquid biopsies as indicators of tumour progression.

    Science.gov (United States)

    Nuzhat, Zarin; Kinhal, Vyjayanthi; Sharma, Shayna; Rice, Gregory E; Joshi, Virendra; Salomon, Carlos

    2017-03-07

    Pancreatic cancer is the fourth most common cause of death due to cancer in the world. It is known to have a poor prognosis, mostly because early stages of the disease are generally asymptomatic. Progress in pancreatic cancer research has been slow, leaving several fundamental questions pertaining to diagnosis and treatment unanswered. Recent studies highlight the putative utility of tissue-specific vesicles (i.e. extracellular vesicles) in the diagnosis of disease onset and treatment monitoring in pancreatic cancer. Extracellular vesicles are membrane-limited structures derived from the cell membrane. They contain specific molecules including proteins, mRNA, microRNAs and non-coding RNAs that are secreted in the extracellular space. Extracellular vesicles can be classified according to their size and/or origin into microvesicles (~150-1000 nm) and exosomes (~40-120 nm). Microvesicles are released by budding from the plasmatic membrane, whereas exosomes are released via the endocytic pathway by fusion of multivesicular bodies with the plasmatic membrane. This endosomal origin means that exosomes contain an abundance of cell-specific biomolecules which may act as a 'fingerprint' of the cell of origin. In this review, we discuss our current knowledge in the diagnosis and treatment of pancreatic cancer, particularly the potential role of EVs in these facets of disease management. In particular, we suggest that as exosomes contain cellular protein and RNA molecules in a cell type-specific manner, they may provide extensive information about the signature of the tumour and pancreatic cancer progression.

  11. Identifying the Gene Signatures from Gene-Pathway Bipartite Network Guarantees the Robust Model Performance on Predicting the Cancer Prognosis

    Directory of Open Access Journals (Sweden)

    Li He

    2014-01-01

    Full Text Available For the purpose of improving the prediction of cancer prognosis in the clinical researches, various algorithms have been developed to construct the predictive models with the gene signatures detected by DNA microarrays. Due to the heterogeneity of the clinical samples, the list of differentially expressed genes (DEGs generated by the statistical methods or the machine learning algorithms often involves a number of false positive genes, which are not associated with the phenotypic differences between the compared clinical conditions, and subsequently impacts the reliability of the predictive models. In this study, we proposed a strategy, which combined the statistical algorithm with the gene-pathway bipartite networks, to generate the reliable lists of cancer-related DEGs and constructed the models by using support vector machine for predicting the prognosis of three types of cancers, namely, breast cancer, acute myeloma leukemia, and glioblastoma. Our results demonstrated that, combined with the gene-pathway bipartite networks, our proposed strategy can efficiently generate the reliable cancer-related DEG lists for constructing the predictive models. In addition, the model performance in the swap analysis was similar to that in the original analysis, indicating the robustness of the models in predicting the cancer outcomes.

  12. Specific and Efficient Regression of Cancers Harboring KRAS Mutation by Targeted RNA Replacement.

    Science.gov (United States)

    Kim, Sung Jin; Kim, Ju Hyun; Yang, Bitna; Jeong, Jin-Sook; Lee, Seong-Wook

    2017-02-01

    Mutations in the KRAS gene, which persistently activate RAS function, are most frequently found in many types of human cancers. Here, we proposed and verified a new approach against cancers harboring the KRAS mutation with high cancer selectivity and efficient anti-cancer effects based on targeted RNA replacement. To this end, trans-splicing ribozymes from Tetrahymena group I intron were developed, which can specifically target and reprogram the mutant KRAS G12V transcript to induce therapeutic gene activity in cells. Adenoviral vectors containing the specific ribozymes with downstream suicide gene were constructed and then infection with the adenoviruses specifically downregulated KRAS G12V expression and killed KRAS G12V-harboring cancer cells additively upon pro-drug treatment, but it did not affect the growth of wild-type KRAS-expressing cells. Minimal liver toxicity was noted when the adenoviruses were administered systemically in vivo. Importantly, intratumoral injection of the adenoviruses with pro-drug treatment specifically and significantly impeded the growth of xenografted tumors harboring KRAS G12V through a trans-splicing reaction with the target RNA. In contrast, xenografted tumors harboring wild-type KRAS were not affected by the adenoviruses. Therefore, RNA replacement with a mutant KRAS-targeting trans-splicing ribozyme is a potentially useful therapeutic strategy to combat tumors harboring KRAS mutation. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  13. Novel germline MSH2 mutation in lynch syndrome patient surviving multiple cancers

    Directory of Open Access Journals (Sweden)

    Janavicius Ramunas

    2012-01-01

    Full Text Available Abstract Lynch syndrome (LS individuals are predisposed to a variety of cancers, most commonly colorectal, uterine, urinary tract, ovarian, small bowel, stomach and biliary tract cancers. The risk of extracolonic manifestations appears to be highest in MSH2 mutations carriers. We present a carrier case with a novel MSH2 gene mutation that clearly demonstrates the broad extent of LS phenotypic expression and highlights several important clinical aspects. Current evidence suggests that colorectal tumors from LS patients tend to have better prognoses than their sporadic counterparts, however survival benefits for other cancers encountered in LS are unclear. In this article we describe a family with a novel protein truncating mutation of c.2388delT in the MSH2 gene, particularly focusing on one individual carrier affected with multiple primary cancers who is surviving 25 years on. Our report of multiple primary tumors occurring in the 12-25 years interval might suggest these patients do not succumb to other extracolonic cancers, provided they are regularly followed-up.

  14. Simple mathematical method to quantify p53 mutations in occupational lung cancer

    International Nuclear Information System (INIS)

    Helal, N.L.

    2005-01-01

    Radon-222, a decay product of uranium-238 and a source of high linear energy transfer (LET) alpha -particles, has been implicated in the increase risk of lung cancer in uranium miners as well as non-miners. The p53 gene mutational spectrum reveals evidence for a direct causal effect of radon inhalation in lung cancer. This mutation has been proposed as a marker of radon exposure. The development of such markers may ultimately be of benefit in the reduction of occupational morbidity and mortality from occupational cancer. One of the tasks in risk assessment of genotoxic occupational radiation exposure is to devise a simple numerical method. This method may be used to quantify the relationship between radiation dose and the effect on the genetic sequences. The tumor suppressor gene (TSG) p53 is an ideal bio marker addressing questions of exposure and risk. These proteins may be suitable for the design of more effective or less invasive cancer therapies. The clinical outcome of lung cancer patients may correlate with the normal regulation of these patients and, therefore, their identification may be used as a guideline for future therapy modalities. To investigate the association between radon exposure and p53 mutations in lung tumors, we have implied a mathematical method. This method has been developed from a 2-D graphical representational technique that enables easy visualization of base distributions. This is of special relevance to libraries of single nucleotide polymorphic (SNP) genes

  15. Impact of Emergent Circulating Tumor DNA RAS Mutation in Panitumumab-Treated Chemoresistant Metastatic Colorectal Cancer.

    Science.gov (United States)

    Kim, Tae Won; Peeters, Marc; Thomas, Anne L; Gibbs, Peter; Hool, Kristina; Zhang, Jianqi; Ang, Agnes; Bach, Bruce Allen; Price, Timothy

    2018-06-13

    The accumulation of emergent RAS mutations during anti-epidermal growth factor receptor (EGFR) therapy is of interest as a mechanism for acquired resistance to anti-EGFR treatment. Plasma analysis of circulating tumor (ct) DNA is a minimally invasive and highly sensitive method to determine RAS mutational status. This biomarker analysis of the global phase III ASPECCT study used next-generation sequencing to detect expanded RAS ctDNA mutations in panitumumab-treated patients. Plasma samples collected at baseline and posttreatment were analyzed categorically for the presence of RAS mutations by the Plasma Select -R™ 64-gene panel at 0.1% sensitivity. Among panitumumab-treated patients with evaluable plasma samples at baseline (n = 238), 188 (79%) were wild-type (WT) RAS, and 50 (21%) were mutant RAS Of the 188 patients with baseline ctDNA WT RAS status, 164 had evaluable posttreatment results with a 32% rate of emergent RAS mutations. The median overall survival (OS) for WT and RAS mutant status by ctDNA at baseline was 13.7 (95% confidence interval: 11.5-15.4) and 7.9 months (6.4-9.6), respectively ( P < 0.0001). Clinical outcomes were not significantly different between patients with and without emergent ctDNA RAS mutations. Although patients with baseline ctDNA RAS mutations had worse outcomes than patients who were WT RAS before initiating treatment, emergent ctDNA RAS mutations were not associated with less favorable patient outcomes in panitumumab-treated patients. Further research is needed to determine a clinically relevant threshold for baseline and emergent ctDNA RAS mutations. Copyright ©2018, American Association for Cancer Research.

  16. Distinct Gene Expression Signatures in Lynch Syndrome and Familial Colorectal Cancer Type X

    DEFF Research Database (Denmark)

    Valentin, Mev; Therkildsen, Christina; Veerla, Srinivas

    2013-01-01

    Heredity is estimated to cause at least 20% of colorectal cancer. The hereditary nonpolyposis colorectal cancer subset is divided into Lynch syndrome and familial colorectal cancer type X (FCCTX) based on presence of mismatch repair (MMR) gene defects.......Heredity is estimated to cause at least 20% of colorectal cancer. The hereditary nonpolyposis colorectal cancer subset is divided into Lynch syndrome and familial colorectal cancer type X (FCCTX) based on presence of mismatch repair (MMR) gene defects....

  17. Exploring gene expression signatures for predicting disease free survival after resection of colorectal cancer liver metastases.

    Directory of Open Access Journals (Sweden)

    Nikol Snoeren

    Full Text Available BACKGROUND AND OBJECTIVES: This study was designed to identify and validate gene signatures that can predict disease free survival (DFS in patients undergoing a radical resection for their colorectal liver metastases (CRLM. METHODS: Tumor gene expression profiles were collected from 119 patients undergoing surgery for their CRLM in the Paul Brousse Hospital (France and the University Medical Center Utrecht (The Netherlands. Patients were divided into high and low risk groups. A randomly selected training set was used to find predictive gene signatures. The ability of these gene signatures to predict DFS was tested in an independent validation set comprising the remaining patients. Furthermore, 5 known clinical risk scores were tested in our complete patient cohort. RESULT: No gene signature was found that significantly predicted DFS in the validation set. In contrast, three out of five clinical risk scores were able to predict DFS in our patient cohort. CONCLUSIONS: No gene signature was found that could predict DFS in patients undergoing CRLM resection. Three out of five clinical risk scores were able to predict DFS in our patient cohort. These results emphasize the need for validating risk scores in independent patient groups and suggest improved designs for future studies.

  18. A novel fully automated molecular diagnostic system (AMDS for colorectal cancer mutation detection.

    Directory of Open Access Journals (Sweden)

    Shiro Kitano

    Full Text Available BACKGROUND: KRAS, BRAF and PIK3CA mutations are frequently observed in colorectal cancer (CRC. In particular, KRAS mutations are strong predictors for clinical outcomes of EGFR-targeted treatments such as cetuximab and panitumumab in metastatic colorectal cancer (mCRC. For mutation analysis, the current methods are time-consuming, and not readily available to all oncologists and pathologists. We have developed a novel, simple, sensitive and fully automated molecular diagnostic system (AMDS for point of care testing (POCT. Here we report the results of a comparison study between AMDS and direct sequencing (DS in the detection of KRAS, BRAF and PI3KCA somatic mutations. METHODOLOGY/PRINCIPAL FINDING: DNA was extracted from a slice of either frozen (n = 89 or formalin-fixed and paraffin-embedded (FFPE CRC tissue (n = 70, and then used for mutation analysis by AMDS and DS. All mutations (n = 41 among frozen and 27 among FFPE samples detected by DS were also successfully (100% detected by the AMDS. However, 8 frozen and 6 FFPE samples detected as wild-type in the DS analysis were shown as mutants in the AMDS analysis. By cloning-sequencing assays, these discordant samples were confirmed as true mutants. One sample had simultaneous "hot spot" mutations of KRAS and PIK3CA, and cloning assay comfirmed that E542K and E545K were not on the same allele. Genotyping call rates for DS were 100.0% (89/89 and 74.3% (52/70 in frozen and FFPE samples, respectively, for the first attempt; whereas that of AMDS was 100.0% for both sample sets. For automated DNA extraction and mutation detection by AMDS, frozen tissues (n = 41 were successfully detected all mutations within 70 minutes. CONCLUSIONS/SIGNIFICANCE: AMDS has superior sensitivity and accuracy over DS, and is much easier to execute than conventional labor intensive manual mutation analysis. AMDS has great potential for POCT equipment for mutation analysis.

  19. An expression meta-analysis of predicted microRNA targets identifies a diagnostic signature for lung cancer

    Directory of Open Access Journals (Sweden)

    Liang Yu

    2008-12-01

    Full Text Available Abstract Background Patients diagnosed with lung adenocarcinoma (AD and squamous cell carcinoma (SCC, two major histologic subtypes of lung cancer, currently receive similar standard treatments, but resistance to adjuvant chemotherapy is prevalent. Identification of differentially expressed genes marking AD and SCC may prove to be of diagnostic value and help unravel molecular basis of their histogenesis and biologies, and deliver more effective and specific systemic therapy. Methods MiRNA target genes were predicted by union of miRanda, TargetScan, and PicTar, followed by screening for matched gene symbols in NCBI human sequences and Gene Ontology (GO terms using the PANTHER database that was also used for analyzing the significance of biological processes and pathways within each ontology term. Microarray data were extracted from Gene Expression Omnibus repository, and tumor subtype prediction by gene expression used Prediction Analysis of Microarrays. Results Computationally predicted target genes of three microRNAs, miR-34b/34c/449, that were detected in human lung, testis, and fallopian tubes but not in other normal tissues, were filtered by representation of GO terms and their ability to classify lung cancer subtypes, followed by a meta-analysis of microarray data to classify AD and SCC. Expression of a minimal set of 17 predicted miR-34b/34c/449 target genes derived from the developmental process GO category was identified from a training set to classify 41 AD and 17 SCC, and correctly predicted in average 87% of 354 AD and 82% of 282 SCC specimens from total 9 independent published datasets. The accuracy of prediction still remains comparable when classifying 103 AD and 79 SCC samples from another 4 published datasets that have only 14 to 16 of the 17 genes available for prediction (84% and 85% for AD and SCC, respectively. Expression of this signature in two published datasets of epithelial cells obtained at bronchoscopy from cigarette

  20. FBXW7 mutations in patients with advanced cancers: clinical and molecular characteristics and outcomes with mTOR inhibitors.

    Directory of Open Access Journals (Sweden)

    Denis L Jardim

    Full Text Available FBXW7 is a tumor suppressor gene responsible for the degradation of several proto-oncogenes. Preclinical data suggest that FBXW7 mutations sensitize cells to mTOR inhibitors. Clinicopathologic characteristics of cancer patients with FBXW7 mutations and their responses to mTOR inhibitors remain unknown.Using multiplex gene panels we evaluated how the FBXW7 mutation affected the cancer phenotype of patients referred to a phase I clinic starting January 2012. Whenever possible patients positive for FBXW7 mutation were treated with regimens containing an mTOR inhibitors and their outcomes were reviewed.FBXW7 mutations were detected in 17 of 418 patients (4.0%. Among tumor types with more than 10 patients tested, FBXW7 mutations occurred in colorectal cancer (7/49; 14.3%, squamous cell cancer of head and neck (2/18; 11.1%, liver (1/13; 7.7%, and ovarian cancers (1/40; 2.5%. No one clinical, pathological or demographic feature was characteristic of the FBXW7-mutated patient population. The mutation occurred in isolation in only 2/17 (12% patients, and KRAS was frequently found as a concomitant mutation, especially in patients with colorectal cancer (6/7; 86%. Ten patients were treated on a protocol containing an mTOR inhibitor, with a median time to treatment failure of 2.8 months (range, 1.3-6.8. One patient with liver cancer (fibrolamellar subtype continues to have a prolonged stable disease for 6.8+ months.In patients with advanced cancers, somatic mutations in FBXW7 usually occur with other simultaneous molecular aberrations, which can contribute to limited therapeutic efficacy of mTOR inhibitors.

  1. ColoFinder: a prognostic 9-gene signature improves prognosis for 871 stage II and III colorectal cancer patients

    Directory of Open Access Journals (Sweden)

    Mingguang Shi

    2016-03-01

    Full Text Available Colorectal cancer (CRC is a heterogeneous disease with a high mortality rate and is still lacking an effective treatment. Our goal is to develop a robust prognosis model for predicting the prognosis in CRC patients. In this study, 871 stage II and III CRC samples were collected from six gene expression profilings. ColoFinder was developed using a 9-gene signature based Random Survival Forest (RSF prognosis model. The 9-gene signature recurrence score was derived with a 5-fold cross validation to test the association with relapse-free survival, and the value of AUC was gained with 0.87 in GSE39582(95% CI [0.83–0.91]. The low-risk group had a significantly better relapse-free survival (HR, 14.8; 95% CI [8.17–26.8]; P < 0.001 than the high-risk group. We also found that the 9-gene signature recurrence score contributed more information about recurrence than standard clinical and pathological variables in univariate and multivariate Cox analyses when applied to GSE17536(p = 0.03 and p = 0.01 respectively. Furthermore, ColoFinder improved the predictive ability and better stratified the risk subgroups when applied to CRC gene expression datasets GSE14333, GSE17537, GSE12945and GSE24551. In summary, ColoFinder significantly improves the risk assessment in stage II and III CRC patients. The 9-gene prognostic classifier informs patient prognosis and treatment response.

  2. Endometrial cancer and somatic G>T KRAS transversion in patients with constitutional MUTYH biallelic mutations.

    Science.gov (United States)

    Tricarico, Rossella; Bet, Paola; Ciambotti, Benedetta; Di Gregorio, Carmela; Gatteschi, Beatrice; Gismondi, Viviana; Toschi, Benedetta; Tonelli, Francesco; Varesco, Liliana; Genuardi, Maurizio

    2009-02-18

    MUTYH-associated polyposis (MAP) is an autosomal recessive condition predisposing to colorectal cancer, caused by constitutional biallelic mutations in the base excision repair (BER) gene MUTYH. Colorectal tumours from MAP patients display an excess of somatic G>T mutations in the APC and KRAS genes due to defective BER function. To date, few extracolonic manifestations have been observed in MAP patients, and the clinical spectrum of this condition is not yet fully established. Recently, one patient with a diagnosis of endometrial cancer and biallelic MUTYH mutations has been described. We here report on two additional unrelated MAP patients with biallelic MUTYH germline mutations who developed endometrioid endometrial carcinoma. The endometrial tumours were evaluated for PTEN, PIK3CA, KRAS, BRAF and CTNNB1 mutations. A G>T transversion at codon 12 of the KRAS gene was observed in one tumour. A single 1bp frameshift deletion of PTEN was observed in the same sample. Overall, these findings suggest that endometrial carcinoma is a phenotypic manifestations of MAP and that inefficient repair of oxidative damage can be involved in its pathogenesis.

  3. Colorectal cancer mutational profiles correlate with defined microbial communities in the tumor microenvironment.

    Science.gov (United States)

    Burns, Michael B; Montassier, Emmanuel; Abrahante, Juan; Priya, Sambhawa; Niccum, David E; Khoruts, Alexander; Starr, Timothy K; Knights, Dan; Blekhman, Ran

    2018-06-20

    Variation in the gut microbiome has been linked to colorectal cancer (CRC), as well as to host genetic variation. However, we do not know whether, in addition to baseline host genetics, somatic mutational profiles in CRC tumors interact with the surrounding tumor microbiome, and if so, whether these changes can be used to understand microbe-host interactions with potential functional biological relevance. Here, we characterized the association between CRC microbial communities and tumor mutations using microbiome profiling and whole-exome sequencing in 44 pairs of tumors and matched normal tissues. We found statistically significant associations between loss-of-function mutations in tumor genes and shifts in the abundances of specific sets of bacterial taxa, suggestive of potential functional interaction. This correlation allows us to statistically predict interactions between loss-of-function tumor mutations in cancer-related genes and pathways, including MAPK and Wnt signaling, solely based on the composition of the microbiome. In conclusion, our study shows that CRC microbiomes are correlated with tumor mutational profiles, pointing towards possible mechanisms of molecular interaction.

  4. Genotyping of K-ras codons 12 and 13 mutations in colorectal cancer by capillary electrophoresis.

    Science.gov (United States)

    Chen, Yen-Ling; Chang, Ya-Sian; Chang, Jan-Gowth; Wu, Shou-Mei

    2009-06-26

    Point mutations of the K-ras gene located in codons 12 and 13 cause poor responses to the anti-epidermal growth factor receptor (anti-EGFR) therapy of colorectal cancer (CRC) patients. Besides, mutations of K-ras gene have also been proven to play an important role in human tumor progression. We established a simple and effective capillary electrophoresis (CE) method for simultaneous point mutation detection in codons 12 and 13 of K-ras gene. We combined one universal fluorescence-based nonhuman-sequence primer and two fragment-oriented primers in one tube, and performed this two-in-one polymerase chain reaction (PCR). PCR fragments included wild type and seven point mutations at codons 12 and 13 of K-ras gene. The amplicons were analyzed by single-strand conformation polymorphism (SSCP)-CE method. The CE analysis was performed by using a 1x Tris-borate-EDTA (TBE) buffer containing 1.5% (w/v) hydroxyethylcellulose (HEC) (MW 250,000) under reverse polarity with 15 degrees C and 30 degrees C. Ninety colorectal cancer patients were blindly genotyped using this developed method. The results showed good agreement with those of DNA sequencing method. The SSCP-CE was feasible for mutation screening of K-ras gene in populations.

  5. Novel homozygous VHL mutation in exon 2 is associated with congenital polycythemia but not with cancer.

    Science.gov (United States)

    Lanikova, Lucie; Lorenzo, Felipe; Yang, Chunzhang; Vankayalapati, Hari; Drachtman, Richard; Divoky, Vladimir; Prchal, Josef T

    2013-05-09

    Germline von Hippel-Lindau (VHL) gene mutations underlie dominantly inherited familial VHL tumor syndrome comprising a predisposition for renal cell carcinoma, pheochromocytoma/paraganglioma, cerebral hemangioblastoma, and endolymphatic sac tumors. However, recessively inherited congenital polycythemia, exemplified by Chuvash polycythemia, has been associated with 2 separate 3' VHL gene mutations in exon 3. It was proposed that different positions of loss-of-function VHL mutations are associated with VHL syndrome cancer predisposition and only C-terminal domain-encoding VHL mutations would cause polycythemia. However, now we describe a new homozygous VHL exon 2 mutation of the VHL gene:(c.413C>T):P138L, which is associated in the affected homozygote with congenital polycythemia but not in her, or her-heterozygous relatives, with cancer or other VHL syndrome tumors. We show that VHL(P138L) has perturbed interaction with hypoxia-inducible transcription factor (HIF)1α. Further, VHL(P138L) protein has decreased stability in vitro. Similarly to what was reported in Chuvash polycythemia and some other instances of HIFs upregulation, VHL(P138L) erythroid progenitors are hypersensitive to erythropoietin. Interestingly, the level of RUNX1/AML1 and NF-E2 transcripts that are specifically upregulated in acquired polycythemia vera were also upregulated in VHL(P138L) granulocytes.

  6. Adverse Clinical Outcome Associated With Mutations That Typify African American Colorectal Cancers.

    Science.gov (United States)

    Wang, Zhenghe; Li, Li; Guda, Kishore; Chen, Zhengyi; Barnholtz-Sloan, Jill; Park, Young Soo; Markowitz, Sanford D; Willis, Joseph

    2016-12-01

    African Americans have the highest incidence and mortality from colorectal cancer (CRC) of any US racial group. We recently described a panel of 15 genes that are statistically significantly more likely to be mutated in CRCs from African Americans than in Caucasians (AA-CRC genes). The current study investigated the outcomes associated with these mutations in African American CRCs (AA-CRCs). In a cohort of 66 patients with stage I-III CRCs, eight of 27 CRCs with AA-CRC gene mutations (Mut+) developed metastatic disease vs only four of 39 mutation-negative (Mut-) cases (P = .03, Cox regression model with two-sided Wald test). Moreover, among stage III cases (n = 33), Mut+ cancers were nearly three times more likely to relapse as Mut- cases (7 of 15 Mut+ vs 3 of 18 Mut-; P = .03, Cox regression model with two-sided Wald test). AA-CRC mutations may thus define a high-risk subset of CRCs that contributes to the overall disparity in CRC outcomes observed in African Americans. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Lung cancer mutation profile of EGFR, ALK, and KRAS: Meta-analysis and comparison of never and ever smokers.

    Science.gov (United States)

    Chapman, Aaron M; Sun, Kathie Y; Ruestow, Peter; Cowan, Dallas M; Madl, Amy K

    2016-12-01

    Lung cancer is the leading cause of cancer-related mortality. While the majority of lung cancers are associated with tobacco smoke, approximately 10-15% of U.S. lung cancers occur in never smokers. Evidence suggests that lung cancer in never smokers appears to be a distinct disease caused by driver mutations which are different than the genetic pathways observed with lung cancer in smokers. A meta-analysis of human epidemiologic data was conducted to evaluate the profile of common or therapy-targetable mutations in lung cancers of never and ever smokers. Epidemiologic studies (N=167) representing over 63,000 lung cancer cases were identified and used to calculate summary odds ratio