WorldWideScience

Sample records for cancer molecular genetics

  1. Molecular genetics of colorectal cancer.

    Science.gov (United States)

    Bogaert, Julie; Prenen, Hans

    2014-01-01

    Approximately 90% of colorectal cancer cases are sporadic without family history or genetic predisposition, while in less than 10% a causative genetic event has been identified. Historically, colorectal cancer classification was only based on clinical and pathological features. Many efforts have been made to discover the genetic and molecular features of colorectal cancer, and there is more and more evidence that these features determine the prognosis and response to (targeted) treatment. Colorectal cancer is a heterogeneous disease, with three known major molecular groups. The most common is the chromosomal instable group, characterized by an accumulation of mutations in specific oncogenes and tumor suppressor genes. The second is the microsatellite instable group, caused by dysfunction of DNA mismatch repair genes leading to genetic hypermutability. The CpG Island Methylation phenotype is the third group, distinguished by hypermethylation. Colorectal cancer subtyping has also been addressed using genome-wide gene expression profiling in large patient cohorts and recently several molecular classification systems have been proposed. In this review we would like to provide an up-to-date overview of the genetic aspects of colorectal cancer. PMID:24714764

  2. Genetics and molecular biology of breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    King, M.C. [California Univ., Berkeley, CA (United States); Lippman, M. [Georgetown Univ. Medical Center, Washington, DC (United States)] [comps.

    1992-12-31

    This volume contains the abstracts of oral presentations and poster sessions presented at the Cold Springs Harbor Meeting on Cancer Cells, this meeting entitled Genetics and Molecular Biology of Breast Cancer.

  3. Genetic and molecular changes in ovarian cancer

    Science.gov (United States)

    Hollis, Robert L; Gourley, Charlie

    2016-01-01

    Epithelial ovarian cancer represents the most lethal gynecological malignancy in the developed world, and can be divided into five main histological subtypes: high grade serous, endometrioid, clear cell, mucinous and low grade serous. These subtypes represent distinct disease entities, both clinically and at the molecular level. Molecular analysis has revealed significant genetic heterogeneity in ovarian cancer, particularly within the high grade serous subtype. As such, this subtype has been the focus of much research effort to date, revealing molecular subgroups at both the genomic and transcriptomic level that have clinical implications. However, stratification of ovarian cancer patients based on the underlying biology of their disease remains in its infancy. Here, we summarize the molecular changes that characterize the five main ovarian cancer subtypes, highlight potential opportunities for targeted therapeutic intervention and outline priorities for future research.

  4. [Colorectal cancer (CCR): genetic and molecular alterations].

    Science.gov (United States)

    Juárez-Vázquez, Clara Ibet; Rosales-Reynoso, Mónica Alejandra

    2014-01-01

    The aim of this review is to present a genetic and molecular overview of colorectal carcinogenesis (sporadic and hereditary origin) as a multistage process, where there are a number of molecular mechanisms associated with the development of colorectal cancer and genomic instability that allows the accumulation of mutations in proto-oncogenes and tumor suppressor genes, chromosomal instability, and methylation and microsatellite instability, and the involvement of altered expression of microRNAs' prognosis factors.

  5. Endometrial cancer : from a molecular genetic perspective

    NARCIS (Netherlands)

    E. Smid-Koopman (Ellen)

    2002-01-01

    textabstractThe first observations indicative of a role of genetic factors in carcinogenesis were made as early as 1912, when Rous demonstrated that a filterable agent (i.e. virus) could induce cancer in chicken (Rous 1965). In 1914, Boveri postulated a "genetic" theory on carcinogenesis by hypothes

  6. Molecular and genetic bases of pancreatic cancer.

    Science.gov (United States)

    Vaccaro, Vanja; Gelibter, Alain; Bria, Emilio; Iapicca, Pierluigi; Cappello, Paola; Di Modugno, Francesca; Pino, Maria Simona; Nuzzo, Carmen; Cognetti, Francesco; Novelli, Francesco; Nistico, Paola; Milella, Michele

    2012-06-01

    Pancreatic cancer remains a formidable challenge for oncologists and patients alike. Despite intensive efforts, attempts at improving survival in the past 15 years, particularly in advanced disease, have failed. This is true even with the introduction of molecularly targeted agents, chosen on the basis of their action on pathways that were supposedly important in pancreatic cancer development and progression: indeed, with the notable exception of the epidermal growth factor receptor (EGFR) inhibitor erlotinib, that has provided a minimal survival improvement when added to gemcitabine, other agents targeting EGFR, matrix metallo-proteases, farnesyl transferase, or vascular endothelial growth factor have not succeeded in improving outcomes over standard gemcitabine monotherapy for a variety of different reasons. However, recent developments in the molecular epidemiology of pancreatic cancer and an ever evolving understanding of the molecular mechanisms underlying pancreatic cancer initiation and progression raise renewed hope to find novel, relevant therapeutic targets that could be pursued in the clinical setting. In this review we focus on molecular epidemiology of pancreatic cancer, epithelial-to-mesenchymal transition and its influence on sensitivity to EGFR-targeted approaches, apoptotic pathways, hypoxia-related pathways, developmental pathways (such as the hedgehog and Notch pathways), and proteomic analysis as keys to a better understanding of pancreatic cancer biology and, most importantly, as a source of novel molecular targets to be exploited therapeutically.

  7. Molecular-Genetic Aspects of Breast Cancer

    Directory of Open Access Journals (Sweden)

    Krasteva M.

    2014-12-01

    Full Text Available Breast cancer is the most frequent malignancy among women. Advances in breast cancer knowledge have deciphered the involvement of a number of tumor suppressor genes and proto-oncogenes in disease pathogenesis. These genes are part of the complex biochemical pathways, which enable cell cycle control and maintenance of genome integrity. Their function may be disrupted as a result of alterations in gene sequence or misregulation of gene expression including alterations in DNA methylation pattern. The present review summarizes the main findings on major breast cancer related genes BRCA1/2, p53, ATM, CHEK2, HER2, PIK3CA and their tumorigenic inactivation/activation. The potential clinical importance of these genes with respect to patients’ prognosis and therapy are also discussed. The possible implication of other putative breast cancer related genes is also outlined. The first elaborate data on the genetic and epigenetic status of the above mentioned genes concerning Bulgarian patients with the sporadic form of the disease are presented. The studies indicate for a characteristic mutational spectrum in some of the genes for the Bulgarian patients and specific correlation between the status of different genes and clinicopathological characteristics.

  8. Molecular genetics of breast cancer progression

    OpenAIRE

    Sigurður Ingvarsson 1956

    1999-01-01

    Somatic changes in the genome of breast cancer cells include amplifications, deletions and gene mutations. Several chromosome regions harboring known oncogenes are found amplified in breast tumors. Despite the high number of chromosome regions deleted in breast tumors the functional relationship to known genes at these locations and cancer growth is mainly undiscovered. Mutations in two tumor suppressor genes (TSG) have been described in a subset of breast carcinomas. These TSG are the TP53, ...

  9. AN EPIDEMIOLOGY AND MOLECULAR GENETIC STUDY ON BREAST CANCER SUSCEPTIBILITY

    Institute of Scientific and Technical Information of China (English)

    贾卫华; 王继先; 李本孝; 李征

    2000-01-01

    Objectives. To investigate the genetic susceptibility for breast cancer of Chinese, a hospital-based case-control study, pedigree survey and molecular genetic study were conducted. Methods. Logistic regression model and stratification methods were used in the risk factors analysis. Li-Mantel art and Falconer methods were used to analyze the segregation ratio and heritability. Polymerase chain reaction (PCR) and polyacrylamide gel electrophoresis were used to detect AI, G-banding technique was used to detect the chromosome aberration of peripheral blood lymphocyte. Results. Family history of breast cancer is related to enhanced breast cancer risk significartly, OR is 3.905 ( 95 % CI = 1.079 ~ 14.13), and it widely interacts with other risk factors. Accumulative incidence of breast cancer in first degree relatives is 9.99%, which is larger than that in second, third degree and non-blood relatives. Segregation ratio is 0.021, heritability among first degree relatives is 35.6 ± 5.8%. Frequencies of LOH at BRCA1 and BRCA2 loci in sporadic breast cancer are 6.12% and 5.77% respectively. In the sibs, both of them show LOH at D13S173 locus, and high frequencies of chromosome aberrations were observed. Conclusions. Genetic susceptibility contributes to breast cancer occurrence of Chinese, and its racial variation may be one of the important reasons for the large difference of incidence between western and eastern countries.

  10. AN EPIDEMIOLOGY AND MOLECULAR GENETIC STUDY ON BREAST CANCER SUSCEPTIBILITY

    Institute of Scientific and Technical Information of China (English)

    贾卫华; 王继先; 李本孝; 李征

    2000-01-01

    Obieaites. To investigate the genetic susceptibility for breast cancer of Chinese, a hospital-besed case-control study, pedigree survey and molecular genetic study were conducted. Methods. Logistic regression model and stratification methods were used in the risk factors analysis. Li-Mantel-Gart and Falconer methods were used to analyze the segregation ratio and heritability. Polymemse chain reaction (PCR) and polyacrylamide gel electrophoresis were used to detect AI, G-banding technique was used to detect the chromosome aberration of peripheral blood lymphocyte. Results. Family history of breast cancer is related to enhanced breast cancer risk significantly, OR is 3.905(95% CI = 1.079—14.13), and it widely interacts with other risk factors. Accumulative incidence of breast cancer in first degree relatives is 9.99%, which is larger than that in second, third degree and non-blnod relatives. Segregation ratio is 0.021, heritability among first degree relatives is 35.6 ± 5.8%. Frequencies of LDH at BRCA1 and BRCA2 loci in sporadic breast cancer are 6.12% and 5.77% respectively. In the sibs, both of them show LOH at D13S173 locus, and high frequencies of chromosome abermtions were observed.Condusions. Genetic susceptibility contributes to breast cancer occurrence of Chinese, and its racial variation may be one of the important reasons for the large difference of incidence between western and eastern countries.

  11. MOLECULAR GENETIC MARKERS AS PREDICTORS OF SUPERFICIAL BLADDER CANCER

    Directory of Open Access Journals (Sweden)

    A. Yu. Babayan

    2009-01-01

    Full Text Available A system of clinical and morphological criteria is currently used to determine the pattern of superficial bladder cancer (SBC. However, this system does not completely reflect the clinical potential of SBC and needs additional markers. The purpose of this study was to search for and evaluate molecular genetic disorders as additional markers of the course of SBC. The diagnostic panel included the deletion of the loci 3р14, 9р21, 9q34, 17р13 (ТР53, mutations of exon 7 of the FGFR3 gene, and hypermethylation of the promoter regions of the RASSF1, RARB, p16, p14, CDH1 genes. The study was made on 108 matched samples (tumor/peripheral blood obtained from patients with SBC. The deletions of the loci 3р14, 9р21 and anomalous methylation of the RARb and p16 genes are markers of the worse course of SBC while FGFR3 gene mutation is a marker of better prognosis. In the context of estimation of the relapsing potential of a primary tumor, the 9p21 locus deletion is a marker associated with recurrence within the first year after malignancy resection. The group of molecular genetic markers determined by the authors for poor prognosis in combination with classical clinical and morphological criteria will specify the pattern of the course of the disease and its prognosis.

  12. Molecular genetics of cancer and tumorigenesis: Drosophila models

    Institute of Scientific and Technical Information of China (English)

    Wu-Min Deng

    2011-01-01

    Why do some cells not respond to normal control of cell division and become tumorous? Which signals trigger some tumor cells to migrate and colonize other tissues? What genetic factors are responsible for tumorigenesis and cancer development? What environmental factors play a role in cancer formation and progression? In how many ways can our bodies prevent and restrict the growth of cancerous cells?How can we identify and deliver effective drugs to fight cancer? In the fight against cancer,which kills more people than any other disease,these and other questions have long interested researchers from a diverse range of fields.To answer these questions and to fight cancer more effectively,we must increase our understanding of basic cancer biology.Model organisms,including the fruit fly Drosophila melanogaster,have played instrumental roles in our understanding of this devastating disease and the search for effective cures.Drosophila and its highly effective,easy-touse,and ever-expanding genetic tools have contributed toand enriched our knowledge of cancer and tumor formation tremendously.

  13. Targeted Cancer Therapy: Vital Oncogenes and a New Molecular Genetic Paradigm for Cancer Initiation Progression and Treatment

    Science.gov (United States)

    Willis, Rudolph E.

    2016-01-01

    It has been declared repeatedly that cancer is a result of molecular genetic abnormalities. However, there has been no working model describing the specific functional consequences of the deranged genomic processes that result in the initiation and propagation of the cancer process during carcinogenesis. We no longer need to question whether or not cancer arises as a result of a molecular genetic defect within the cancer cell. The legitimate questions are: how and why? This article reviews the preeminent data on cancer molecular genetics and subsequently proposes that the sentinel event in cancer initiation is the aberrant production of fused transcription activators with new molecular properties within normal tissue stem cells. This results in the production of vital oncogenes with dysfunctional gene activation transcription properties, which leads to dysfunctional gene regulation, the aberrant activation of transduction pathways, chromosomal breakage, activation of driver oncogenes, reactivation of stem cell transduction pathways and the activation of genes that result in the hallmarks of cancer. Furthermore, a novel holistic molecular genetic model of cancer initiation and progression is presented along with a new paradigm for the approach to personalized targeted cancer therapy, clinical monitoring and cancer diagnosis. PMID:27649156

  14. Molecular genetic, diagnosis, prevention and gene therapy in prostatic cancer: review article

    Directory of Open Access Journals (Sweden)

    Noori Daloii MR

    2009-04-01

    Full Text Available "nThe prostate is a small gland located below the bladder and upper part of the urethra. In developed countries prostate cancer is the second common cancer (after skin cancer, and also the second leading cause of cancer death (after lung cancer among men. The several studies have been shown prostate cancer familial aggregation. The main reason for this aggregation is inheritance included genes. The family history is an important risk factor for developing the disease. The genes AR, CYP17, SRD5A2, HSD3B1 and HSD3B2 are all intimately involved in androgen metabolism and cell proliferation in the prostate. Each shows intraspecific polymorphism and variation among racial-ethnic groups that is associated with the risk of prostate cancer. Some of genes expressed in the prostate are in association with the production of seminal fluid and also with prostate cancer. Epigenetic modifications, specifically DNA hypermethylation, are believed to play an important role in the down-regulation of genes important for protection against prostate cancer. In prostate cancer numerous molecular and genetic aberrations have been described. It is now well established that cancer cells exhibit a number of genetic defects in apoptotic pathways. In this review article, the most recent data in molecular genetic, prevention and especially gene therapy in prostate cancer are introduced.

  15. [Molecular biology of renal cancer: bases for genetic directed therapy in advanced disease].

    Science.gov (United States)

    Maroto Rey, José Pablo; Cillán Narvaez, Elena

    2013-06-01

    There has been expansion of therapeutic options in the management of metastatic renal cell carcinoma due to a better knowledge of the molecular biology of kidney cancers. There are different tumors grouped under the term renal cell carcinoma, being clear cell cancer the most frequent and accounting for 80% of kidney tumors. Mutations in the Von Hippel-Lindau gene can be identified in up to 80% of sporadic clear cell cancer, linking a genetically inheritable disease where vascular tumors are frequent, with renal cell cancer. Other histologic types present specific alterations in molecular pathways, like c-MET in papillary type I tumors, and Fumarase Hydratase in papillary type II tumors. Identification of the molecular alteration for a specific tumor may offer an opportunity for treatment selection based on biomarkers, and, in the future, for developing an engineering designed genetic treatment.

  16. Update on Anaplastic Thyroid Carcinoma: Morphological, Molecular, and Genetic Features of the Most Aggressive Thyroid Cancer

    Directory of Open Access Journals (Sweden)

    Moira Ragazzi

    2014-01-01

    Full Text Available Anaplastic thyroid carcinoma (ATC is the most aggressive form of thyroid cancer. It shows a wide spectrum of morphological presentations and the diagnosis could be challenging due to its high degree of dedifferentiation. Molecular and genetic features of ATC are widely heterogeneous as well and many efforts have been made to find a common profile in order to clarify its cancerogenetic process. A comprehensive review of the current literature is here performed, focusing on histopathological and genetic features.

  17. The Genetics and Molecular Alterations of Pancreatic Cancer

    NARCIS (Netherlands)

    Wilde, R.F. de

    2015-01-01

    The prospect that pancreatic cancer will be the second most common cause of cancer death by 2030 is worrisome. Considering that the approximate 6% overall 5-year survival has not merely changed in the past decades illustrates the need to revert the bleak prognosis. Centralization of surgery (pancr

  18. Molecular Genetics Techniques to Develop New Treatments for Brain Cancers

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Jacob; Fathallan-Shaykh, Hassan

    2006-09-22

    The objectives of this report are: (1) to devise novel molecular gene therapies for malignant brain tumors, (2) advance our understanding of the immune system in the central nervous system; and (3) apply genomics to find molecular probes to diagnose brain tumors, predict prognosis, biological behavior and their response to treatment.

  19. 59. Cold Spring Harbor symposium on quantitative biology: Molecular genetics of cancer

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    Investigation of the mechanistic aspects of cancer has its roots in the studies on tumor viruses and their effects on cell proliferation, function, and growth. This outstanding progress was well documented in previous Cold Spring Harbor Symposia on Quantitative Biology. In the early to mid 1980s, progress on the development of chromosome mapping strategies and the accumulation of DNA probes that identified polymorphisms, encouraged by the international Human Genome Project, enabled the identification of other genes that contributed to familial inheritance of high susceptibility to specific cancers. This approach was very successful and led to a degree of optimism that one aspect of cancer, the multistep genetic process from early neoplasia to metastatic tumors, was beginning to be understood. It therefore seemed appropriate that the 59th Symposium on Quantitative Biology focus attention on the Molecular Genetics of Cancer. The concept was to combine the exciting progress on the identification of new genetic alterations in human tumor cells with studies on the function of the cancer gene products and how they go awry in tumor cells.

  20. Cancer Genetics Services Directory

    Science.gov (United States)

    ... Prevention Overview–for health professionals Research NCI Cancer Genetics Services Directory This directory lists professionals who provide services related to cancer genetics (cancer risk assessment, genetic counseling, genetic susceptibility testing, ...

  1. Molecular approach to genetic and epigenetic pathogenesisof early-onset colorectal cancer

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    Colorectal cancer (CRC) is the third most frequent cancertype and the incidence of this disease is increasinggradually per year in individuals younger than 50 yearsold. The current knowledge is that early-onset CRC(EOCRC) cases are heterogeneous population thatincludes both hereditary and sporadic forms of theCRC. Although EOCRC cases have some distinguishingclinical and pathological features than elder age CRC,the molecular mechanism underlying the EOCRC ispoorly clarified. Given the significance of CRC in theworld of medicine, the present review will focus on therecent knowledge in the molecular basis of genetic andepigenetic mechanism of the hereditary forms of EOCRC,which includes Lynch syndrome, Familial CRC type X,Familial adenomatous polyposis, MutYH-associatedpolyposis, Juvenile polyposis syndrome, Peutz-JeghersSyndrome and sporadic forms of EOCRC. Recent findingsabout molecular genetics and epigenetic basis of EOCRCgave rise to new alternative therapy protocols. Althoughexact diagnosis of these cases still remains complicated,the present review paves way for better predictions andcontributes to more accurate diagnostic and therapeuticstrategies into clinical approach.

  2. Molecular genetics of ependymoma

    Institute of Scientific and Technical Information of China (English)

    Yuan Yao; Stephen C.Mack; Michael D.Taylor

    2011-01-01

    Brain tumors are the leading cause of cancer death in children,with ependymoma being the third most common and posing a significant clinical burden.Its mechanism of pathogenesis,reliable prognostic indicators,and effective treatments other than surgical resection have all remained elusive.Until recently,cytogenetic techniques,and lack of cell lines and animal models.Ependymoma heterogeneity,which manifests as variations in tumor location,patient age,histological grade,and clinical behavior,together with the observation of a balanced genomic profile in up to 50% of cases,presents additional challenges in understanding the development and progression of this disease.Despite these difficulties,we have made significant headway in the past decade in identifying the genetic alterations and pathways involved in ependymoma tumorigenesis through collaborative efforts and the application of microarray-based genetic (copy number) and transcriptome profiling platforms.Genetic characterization of ependymoma unraveled distinct mRNA-defined subclasses and led to the identification of radial glial cells as its cell type of origin.This review summarizes our current knowledge in the molecular genetics of ependymoma and proposesfuture research directions necessary to further advance this field.

  3. Molecular biology of breast cancer metastasis: Genetic regulation of human breast carcinoma metastasis

    International Nuclear Information System (INIS)

    The present is an overview of recent data that describes the genetic underpinnings of the suppression of cancer metastasis. Despite the explosion of new information about the genetics of cancer, only six human genes have thus far been shown to suppress metastasis functionally. Not all have been shown to be functional in breast carcinoma. Several additional genes inhibit various steps of the metastatic cascade, but do not necessarily block metastasis when tested using in vivo assays. The implications of this are discussed. Two recently discovered metastasis suppressor genes block proliferation of tumor cells at a secondary site, offering a new target for therapeutic intervention

  4. Report: Human cancer genetics

    Institute of Scientific and Technical Information of China (English)

    LI Marilyn; ALBERTSON Donna

    2006-01-01

    The short report will be focused on the genetic basis and possible mechanisms of tumorigenesis, common types of cancer, the importance of genetic diagnosis of cancer, and the methodology of cancer genetic diagnosis. They will also review presymptomatic testing of hereditary cancers, and the application of expression profiling to identify patients likely to benefit from particular therapeutic approaches.

  5. Molecular genetic analysis of hereditary non-polyposis colorectal cancer syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Froggatt, N.J. [Cambridge Univ. (United Kingdom)]|[Addenbrooke`s Hospital, Cambridge (United Kingdom); Koch, D.J.; Barton, D.E. [Addenbrooke`s Hospital, Cambridge (United Kingdom)] [and others

    1994-09-01

    HNPCC is estimated to account for 5-10% of all cases of colorectal cancer. Recently genes for HNPCC have been mapped to chromosomes 2p and 3p and candidate genes (hMSH2 and hMLH1) have been identified. We have investigated the molecular pathology of HNPCC by linkage analysis and direct mutation analysis. 14 HNPCC families were investigated for linkage to hMSH2 and hMLH1 with microsatellite markers at D2S119, D2S123, D2S136, D2S391, D2S378 and D3S1007, D3S1029, D3S1076, D3S1298, D3S1611, respectively. Overall the only significant linkage was obtained with D2S123 (Zmax=3.77 at {theta}=0.0), but locus heterogeneity was confirmed: linkage to hMSH2 and hMLH1 was excluded in 6 and 5 families, respectively. 3 families were uniformative for linkage/exclusion to either candidate gene, but no evidence for a third HNPCC locus could be detected. There was no correlation between clinical phenotype (Lynch type I or II) and the results of linkage analysis. No individual family gave a lod score of >3 with any marker, and only a minority of our HNPCC families have been suitable for genetic linkage analysis. We therefore screened affected individuals from 37 unrelated kindreds for mutations in hMSH2 and exons 3 and 4 of the APC gene. Mutation screening was performed using exon specific primers and SSCP analysis. No abnormalities were found in the APC exons suggesting that mutations in these APC 5{prime} exons are not a common cause of HNPCC. hMSH2 screening is continuing, and one missense mutation in a highly conserved codon 322 in exon 6 has been identified.

  6. Molecular Detection of Bladder Cancer by Fluorescence Microsatellite Analysis and an Automated Genetic Analyzing System

    Directory of Open Access Journals (Sweden)

    Sarel Halachmi

    2007-01-01

    Full Text Available To investigate the ability of an automated fluorescent analyzing system to detect microsatellite alterations, in patients with bladder cancer. We investigated 11 with pathology proven bladder Transitional Cell Carcinoma (TCC for microsatellite alterations in blood, urine, and tumor biopsies. DNA was prepared by standard methods from blood, urine and resected tumor specimens, and was used for microsatellite analysis. After the primers were fluorescent labeled, amplification of the DNA was performed with PCR. The PCR products were placed into the automated genetic analyser (ABI Prism 310, Perkin Elmer, USA and were subjected to fluorescent scanning with argon ion laser beams. The fluorescent signal intensity measured by the genetic analyzer measured the product size in terms of base pairs. We found loss of heterozygocity (LOH or microsatellite alterations (a loss or gain of nucleotides, which alter the original normal locus size in all the patients by using fluorescent microsatellite analysis and an automated analyzing system. In each case the genetic changes found in urine samples were identical to those found in the resected tumor sample. The studies demonstrated the ability to detect bladder tumor non-invasively by fluorescent microsatellite analysis of urine samples. Our study supports the worldwide trend for the search of non-invasive methods to detect bladder cancer. We have overcome major obstacles that prevented the clinical use of an experimental system. With our new tested system microsatellite analysis can be done cheaper, faster, easier and with higher scientific accuracy.

  7. Breast Cancer Genetic and Molecular Subtype Impacts Response to Omega-3 Fatty Acid Ethyl Esters.

    Science.gov (United States)

    Chen, Ching Hui; Fabian, Carol; Hursting, Stephen; deGraffenried, Linda A

    2016-01-01

    Epidemiological studies have correlated frequent omega-3 (n-3) fatty acid consumption with a lower risk for breast cancer; however, recent prospective studies have been less conclusive. Efforts in the preventive setting have focused on the use of n-3 fatty acids, and the pharmaceutical ethyl esters (EE) of these natural compounds, for high-risk patient populations. Limited understanding of specific mechanisms by which these agents function has hampered identification of the cancer subtype(s) that would gain the greatest therapeutic benefit. In this study, we investigated the in vitro effects of n-3 EEs in four distinct breast cancer subtypes and explored how they affect not only breast cancer cell survival but also modulate the nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB) and peroxisome proliferator-activated receptor gamma signaling pathways. Similar to the high variance in response observed in human studies, we found that the effectiveness of n-3 EEs depends on the molecular characteristics of the MCF-7, CAMA-1, MDA-MB-231, and SKBR3 breast cancer cell lines and is closely associated with the suppression of NF-κB. These data strongly suggest that the use of n-3 fatty acids and their pharmaceutical ether esters in the prevention and therapeutic setting should be guided by specific tumor characteristics. PMID:27367296

  8. Clinical and Molecular Features of Laron Syndrome, A Genetic Disorder Protecting from Cancer.

    Science.gov (United States)

    Janecka, Anna; Kołodziej-Rzepa, Marta; Biesaga, Beata

    2016-01-01

    Laron syndrome (LS) is a rare, genetic disorder inherited in an autosomal recessive manner. The disease is caused by mutations of the growth hormone (GH) gene, leading to GH/insulin-like growth factor type 1 (IGF1) signalling pathway defect. Patients with LS have characteristic biochemical features, such as a high serum level of GH and low IGF1 concentration. Laron syndrome was first described by the Israeli physician Zvi Laron in 1966. Globally, around 350 people are affected by this syndrome and there are two large groups living in separate geographic regions: Israel (69 individuals) and Ecuador (90 individuals). They are all characterized by typical appearance such as dwarfism, facial phenotype, obesity and hypogenitalism. Additionally, they suffer from hypoglycemia, hypercholesterolemia and sleep disorders, but surprisingly have a very low cancer risk. Therefore, studies on LS offer a unique opportunity to better understand carcinogenesis and develop new strategies of cancer treatment. PMID:27381597

  9. Genetic and Epigenetic Tumor Suppressor Gene Silencing Are Distinct Molecular Phenotypes Driven by Growth Promoting Mutations in Nonsmall Cell Lung Cancer

    OpenAIRE

    MARSIT, CARMEN J.; E. Andres Houseman; Nelson, Heather H; Karl T Kelsey

    2008-01-01

    Both genetic and epigenetic alterations characterize human nonsmall cell lung cancer (NSCLC), but the biological processes that create or select these alterations remain incompletely investigated. Our hypothesis posits that a roughly reciprocal relationship between the propensity for promoter hypermethylation and a propensity for genetic deletion leads to distinct molecular phenotypes of lung cancer. To test this hypothesis, we examined promoter hypermethylation of 17 tumor suppressor genes, ...

  10. Genetic Counseling and Testing for Common Hereditary Breast Cancer Syndromes: A Paper from the 2007 William Beaumont Hospital Symposium on Molecular Pathology

    OpenAIRE

    Allain, Dawn C.

    2008-01-01

    Throughout the past 15 years, the identification of several genes associated with hereditary breast cancer has fueled the growth of clinical genetic counseling and testing services. In addition, increased knowledge of the genetic and molecular pathways of the known hereditary breast cancer genes, as well as an increased understanding of the impact of testing on individuals has added to the ability to identify, manage, and provide psychosocial support for mutation carriers. This review provide...

  11. Molecular genetics analysis of hereditary breast and ovarian cancer patients in India

    Directory of Open Access Journals (Sweden)

    Soumittra Nagasamy

    2009-08-01

    Full Text Available Abstract Background Hereditary cancers account for 5–10% of cancers. In this study BRCA1, BRCA2 and CHEK2*(1100delC were analyzed for mutations in 91 HBOC/HBC/HOC families and early onset breast and early onset ovarian cancer cases. Methods PCR-DHPLC was used for mutation screening followed by DNA sequencing for identification and confirmation of mutations. Kaplan-Meier survival probabilities were computed for five-year survival data on Breast and Ovarian cancer cases separately, and differences were tested using the Log-rank test. Results Fifteen (16% pathogenic mutations (12 in BRCA1 and 3 in BRCA2, of which six were novel BRCA1 mutations were identified. None of the cases showed CHEK2*1100delC mutation. Many reported polymorphisms in the exonic and intronic regions of BRCA1 and BRCA2 were also seen. The mutation status and the polymorphisms were analyzed for association with the clinico-pathological features like age, stage, grade, histology, disease status, survival (overall and disease free and with prognostic molecular markers (ER, PR, c-erbB2 and p53. Conclusion The stage of the disease at diagnosis was the only statistically significant (p

  12. BRCA-Associated Ovarian Cancer: From Molecular Genetics to Risk Management

    Directory of Open Access Journals (Sweden)

    Giulia Girolimetti

    2014-01-01

    Full Text Available Ovarian cancer (OC mostly arises sporadically, but a fraction of cases are associated with mutations in BRCA1 and BRCA2 genes. The presence of a BRCA mutation in OC patients has been suggested as a prognostic and predictive factor. In addition, the identification of asymptomatic carriers of such mutations offers an unprecedented opportunity for OC prevention. This review is aimed at exploring the current knowledge on epidemiological and molecular aspects of BRCA-associated OC predisposition, on pathology and clinical behavior of OC occurring in BRCA mutation carriers, and on the available options for managing asymptomatic carriers.

  13. Primer on molecular genetics

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    This report is taken from the April 1992 draft of the DOE Human Genome 1991--1992 Program Report, which is expected to be published in May 1992. The primer is intended to be an introduction to basic principles of molecular genetics pertaining to the genome project. The material contained herein is not final and may be incomplete. Techniques of genetic mapping and DNA sequencing are described.

  14. Molecular genetic, diagnosis, prevention and gene therapy in prostatic cancer: review article

    OpenAIRE

    Noori Daloii MR; Ebrahimzadeh Vesal E

    2009-01-01

    "nThe prostate is a small gland located below the bladder and upper part of the urethra. In developed countries prostate cancer is the second common cancer (after skin cancer), and also the second leading cause of cancer death (after lung cancer) among men. The several studies have been shown prostate cancer familial aggregation. The main reason for this aggregation is inheritance included genes. The family history is an important risk factor for developing the disease. The genes AR, CYP...

  15. Descriptive Epidemiology, Molecular Biology and Genetics of Hereditary Prostate Cancer in Denmark

    DEFF Research Database (Denmark)

    Bentzon, Diem Nguyen

    2012-01-01

    A search for markers that can differentiate indolent prostate cancers from more aggressive forms. Assessment of clinical differences between hereditary and sporadicc prostate cancer.......A search for markers that can differentiate indolent prostate cancers from more aggressive forms. Assessment of clinical differences between hereditary and sporadicc prostate cancer....

  16. Molecular biology from bench-to-bedside - which colorectal cancer patients should be referred for genetic counselling and risk assessment

    DEFF Research Database (Denmark)

    Jensen, Lars Henrik; Dysager, Lars; Lindebjerg, Jan;

    2010-01-01

    Lynch syndrome is associated with deficiency of the mismatch repair genes MLH1, MSH2, MSH6 or PMS2. However, most MLH1 deficient tumours are sporadic in origin, and they can be identified if harbouring a BRAF V600E mutation or hypermethylation of the MLH1 gene promoter. The aim of this study...... was to validate our previously suggested clinically applicable strategy based on molecular characteristics for identifying which patients to refer for genetic counselling. The strategy was validated in an unselected cohort of 287 colorectal cancer patients. All tumours were tested for MLH1, PMS2, MSH2 and MSH6...... protein expression with immunohistochemistry. DNA from MLH1 negative tumours was sequenced for BRAF mutations. If BRAF was wild-type, MLH1 promoter was subsequently analyzed for promoter hypermethylation. Most tumours, 251 (88%), stained positive for all four proteins. Six (2%) had negative MSH2 and one...

  17. Genetic abnormalities in pancreatic cancer

    Directory of Open Access Journals (Sweden)

    Zamboni Giuseppe

    2003-01-01

    Full Text Available Abstract The incidence and mortality of pancreatic adenocarcinoma are nearly coincident having a five-year survival of less than 5%. Enormous advances have been made in our knowledge of the molecular alterations commonly present in ductal cancer and other pancreatic malignancies. One significant outcome of these studies is the recognition that common ductal cancers have a distinct molecular fingerprint compared to other nonductal or endocrine tumors. Ductal carcinomas typically show alteration of K-ras, p53, p16INK4, DPC4 and FHIT, while other pancreatic tumor types show different aberrations. Among those tumors arising from the exocrine pancreas, only ampullary cancers have a molecular fingerprint that may involve some of the same genes most frequently altered in common ductal cancers. Significant molecular heterogeneity also exists among pancreatic endocrine tumors. Nonfunctioning pancreatic endocrine tumors have frequent mutations in MEN-1 and may be further subdivided into two clinically relevant subgroups based on the amount of chromosomal alterations. The present review will provide a brief overview of the genetic alterations that have been identified in the various subgroups of pancreatic tumors. These results have important implications for the development of genetic screening tests, early diagnosis, and prognostic genetic markers.

  18. Genetic alterations in pancreatic cancer

    Institute of Scientific and Technical Information of China (English)

    Muhammad Wasif Saif; Lena Karapanagiotou; Kostas Syrigos

    2007-01-01

    The diagnosis of pancreatic cancer is devastating for patients and their relatives as the incidence rate is approximately the same as mortality rate. Only a small percentage, which ranges from 0.4% to 4% of patients who have been given this diagnosis, will be alive at five years. At the time of diagnosis, 80% of pancreatic cancer patients have unresectable or metastatic disease.Moreover, the therapeutic alternatives offered by chemotherapy or radiotherapy are few, if not zero. For all these reasons, there is an imperative need of analyzing and understanding the primitive lesions that lead to invasive pancreatic adenocarcinoma. Molecular pathology of these lesions is the key of our understanding of the mechanisms underlying the development of this cancer and will probably help us in earlier diagnosis and better therapeutic results. This review focuses on medical research on pancreatic cancer models and the underlying genetic alterations.

  19. Implementation of next-generation sequencing for molecular diagnosis of hereditary breast and ovarian cancer highlights its genetic heterogeneity.

    Science.gov (United States)

    Pinto, Pedro; Paulo, Paula; Santos, Catarina; Rocha, Patrícia; Pinto, Carla; Veiga, Isabel; Pinheiro, Manuela; Peixoto, Ana; Teixeira, Manuel R

    2016-09-01

    Molecular diagnosis of hereditary breast and ovarian cancer (HBOC) by standard methodologies has been limited to the BRCA1 and BRCA2 genes. With the recent development of new sequencing methodologies, the speed and efficiency of DNA testing have dramatically improved. The aim of this work was to validate the use of next-generation sequencing (NGS) for the detection of BRCA1/BRCA2 point mutations in a diagnostic setting and to study the role of other genes associated with HBOC in Portuguese families. A cohort of 94 high-risk families was included in the study, and they were initially screened for the two common founder mutations with variant-specific methods. Fourteen index patients were shown to carry the Portuguese founder mutation BRCA2 c.156_157insAlu, and the remaining 80 were analyzed in parallel by Sanger sequencing for the BRCA1/BRCA2 genes and by NGS for a panel of 17 genes that have been described as involved in predisposition to breast and/or ovarian cancer. A total of 506 variants in the BRCA1/BRCA2 genes were detected by both methodologies, with a 100 % concordance between them. This strategy allowed the detection of a total of 39 deleterious mutations in the 94 index patients, namely 10 in BRCA1 (25.6 %), 21 in BRCA2 (53.8 %), four in PALB2 (10.3 %), two in ATM (5.1 %), one in CHEK2 (2.6 %), and one in TP53 (2.6 %), with 20.5 % of the deleterious mutations being found in genes other than BRCA1/BRCA2. These results demonstrate the efficiency of NGS for the detection of BRCA1/BRCA2 point mutations and highlight the genetic heterogeneity of HBOC. PMID:27553368

  20. The molecular genetic makeup of acute lymphoblastic leukemia | Office of Cancer Genomics

    Science.gov (United States)

    Abstract: Genomic profiling has transformed our understanding of the genetic basis of acute lymphoblastic leukemia (ALL). Recent years have seen a shift from microarray analysis and candidate gene sequencing to next-generation sequencing. Together, these approaches have shown that many ALL subtypes are characterized by constellations of structural rearrangements, submicroscopic DNA copy number alterations, and sequence mutations, several of which have clear implications for risk stratification and targeted therapeutic intervention.

  1. Familial pancreatic cancer: genetic advances

    OpenAIRE

    Rustgi, Anil K.

    2014-01-01

    This review by Rustgi elaborates on the known genetic syndromes that underlie familial pancreatic cancer. It aims to delineate the subtypes of syndromic hereditary pancreatic cancer in which germline genetic mutations have been identified and nonsyndromic familial pancreatic cancer in which genetic information is emerging.

  2. Inflammatory Genetic Markers of Prostate Cancer Risk

    Energy Technology Data Exchange (ETDEWEB)

    Tindall, Elizabeth A.; Hayes, Vanessa M. [Cancer Genetics Group, Children’s Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, University of New South Wales, PO Box 81, Randwick, NSW 2031 (Australia); University of New South Wales, Kensington Campus, Sydney, NSW 2052 (Australia); Petersen, Desiree C., E-mail: dpetersen@ccia.unsw.edu.au [Cancer Genetics Group, Children’s Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, University of New South Wales, PO Box 81, Randwick, NSW 2031 (Australia)

    2010-06-08

    Prostate cancer is the most common cancer in Western society males, with incidence rates predicted to rise with global aging. Etiology of prostate cancer is however poorly understood, while current diagnostic tools can be invasive (digital rectal exam or biopsy) and/or lack specificity for the disease (prostate-specific antigen (PSA) testing). Substantial histological, epidemiological and molecular genetic evidence indicates that inflammation is important in prostate cancer pathogenesis. In this review, we summarize the current status of inflammatory genetic markers influencing susceptibility to prostate cancer. The focus will be on inflammatory cytokines regulating T-helper cell and chemokine homeostasis, together with the Toll-like receptors as key players in the host innate immune system. Although association studies indicating a genetic basis for prostate cancer are presently limited mainly due to lack of replication, larger and more ethnically and clinically defined study populations may help elucidate the true contribution of inflammatory gene variants to prostate cancer risk.

  3. Inflammatory Genetic Markers of Prostate Cancer Risk

    International Nuclear Information System (INIS)

    Prostate cancer is the most common cancer in Western society males, with incidence rates predicted to rise with global aging. Etiology of prostate cancer is however poorly understood, while current diagnostic tools can be invasive (digital rectal exam or biopsy) and/or lack specificity for the disease (prostate-specific antigen (PSA) testing). Substantial histological, epidemiological and molecular genetic evidence indicates that inflammation is important in prostate cancer pathogenesis. In this review, we summarize the current status of inflammatory genetic markers influencing susceptibility to prostate cancer. The focus will be on inflammatory cytokines regulating T-helper cell and chemokine homeostasis, together with the Toll-like receptors as key players in the host innate immune system. Although association studies indicating a genetic basis for prostate cancer are presently limited mainly due to lack of replication, larger and more ethnically and clinically defined study populations may help elucidate the true contribution of inflammatory gene variants to prostate cancer risk

  4. Molecular genetics made simple

    Directory of Open Access Journals (Sweden)

    Heba Sh. Kassem

    2012-07-01

    Full Text Available Genetics have undoubtedly become an integral part of biomedical science and clinical practice, with important implications in deciphering disease pathogenesis and progression, identifying diagnostic and prognostic markers, as well as designing better targeted treatments. The exponential growth of our understanding of different genetic concepts is paralleled by a growing list of genetic terminology that can easily intimidate the unfamiliar reader. Rendering genetics incomprehensible to the clinician however, defeats the very essence of genetic research: its utilization for combating disease and improving quality of life. Herein we attempt to correct this notion by presenting the basic genetic concepts along with their usefulness in the cardiology clinic. Bringing genetics closer to the clinician will enable its harmonious incorporation into clinical care, thus not only restoring our perception of its simple and elegant nature, but importantly ensuring the maximal benefit for our patients.

  5. Genetic and Epigenetic Tumor Suppressor Gene Silencing Are Distinct Molecular Phenotypes Driven by Growth Promoting Mutations in Nonsmall Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Carmen J. Marsit

    2008-01-01

    Full Text Available Both genetic and epigenetic alterations characterize human nonsmall cell lung cancer (NSCLC, but the biological processes that create or select these alterations remain incompletely investigated. Our hypothesis posits that a roughly reciprocal relationship between the propensity for promoter hypermethylation and a propensity for genetic deletion leads to distinct molecular phenotypes of lung cancer. To test this hypothesis, we examined promoter hypermethylation of 17 tumor suppressor genes, as a marker of epigenetic alteration propensity, and deletion events at the 3p21 region, as a marker of genetic alteration. To model the complex biology between these somatic alterations, we utilized an item response theory model. We demonstrated that tumors exhibiting LOH at greater than 30% of informative alleles in the 3p21 region have a significantly reduced propensity for hypermethylation. At the same time, tumors with activating KRAS mutations showed a significantly increased propensity for hypermethylation of the loci examined, a result similar to what has been observed in colon cancer. These data suggest that NSCLCs have distinct epigenetic or genetic alteration phenotypes acting upon tumor suppressor genes and that mutation of oncogenic growth promoting genes, such as KRAS, is associated with the epigenetic phenotype.

  6. Molecular oncology of lung cancer.

    Science.gov (United States)

    Toyooka, Shinichi; Mitsudomi, Tetsuya; Soh, Junichi; Aokage, Keiju; Yamane, Masaomi; Oto, Takahiro; Kiura, Katsuyuki; Miyoshi, Shinichiro

    2011-08-01

    Progress in genetic engineering has made it possible to elucidate the molecular biological abnormalities in lung cancer. Mutations in KRAS and P53 genes, loss of specific alleles, and DNA methylation of the tumor suppressor genes were the major abnormalities investigated between 1980 and the 2000s. In 2004, mutations in the epidermal growth factor receptor (EGFR) gene that cause oncogene addiction were discovered in non-small-cell lung cancers (NSCLCs), especially in adenocarcinomas. Because they are strongly associated with sensitivity to EGFR-tyrosine kinase inhibitors (EGFR-TKIs), a great deal of knowledge has been acquired in regard to both EGFR and other genes in the EGFR family and their downstream genes. Moreover, in 2007 the existence of the echinoderm microtubule-associated protein-like 4 (EML4)-anaplastic lymphoma kinase (ALK) fusion gene was discovered in NSCLC; and the same as EGFR-TKIs, ALK inhibitors are being found to be highly effective in lung cancers that have this translocation. These discoveries graphically illustrate that molecular biological findings are directly linked to the development of clinical oncology and to improving the survival rates of lung cancer patients. Here, we review the remarkable progress in molecular biological knowledge acquired thus far in regard to lung cancer, especially NSCLC, and the future possibilities. PMID:21850578

  7. Molecular classification of gastric cancer.

    Science.gov (United States)

    Chia, N-Y; Tan, P

    2016-05-01

    Gastric cancer (GC), a heterogeneous disease characterized by epidemiologic and histopathologic differences across countries, is a leading cause of cancer-related death. Treatment of GC patients is currently suboptimal due to patients being commonly treated in a uniform fashion irrespective of disease subtype. With the advent of next-generation sequencing and other genomic technologies, GCs are now being investigated in great detail at the molecular level. High-throughput technologies now allow a comprehensive study of genomic and epigenomic alterations associated with GC. Gene mutations, chromosomal aberrations, differential gene expression and epigenetic alterations are some of the genetic/epigenetic influences on GC pathogenesis. In addition, integrative analyses of molecular profiling data have led to the identification of key dysregulated pathways and importantly, the establishment of GC molecular classifiers. Recently, The Cancer Genome Atlas (TCGA) network proposed a four subtype classification scheme for GC based on the underlying tumor molecular biology of each subtype. This landmark study, together with other studies, has expanded our understanding on the characteristics of GC at the molecular level. Such knowledge may improve the medical management of GC in the future. PMID:26861606

  8. Genetic epidemiology of prostate cancer

    OpenAIRE

    Wiklund, Fredrik

    2004-01-01

    Prostate cancer is a major health burden throughout the world, yet the etiology of prostate cancer is poorly understood. Evidence has accumulated supporting the existence of a hereditary form of this disease. Improved understanding of the genetic mechanisms underlying the development and progression of prostate cancer would be a major advance for improved prevention, detection and treatment strategies. This thesis evaluates different aspects of the genetic epidemiology of prostate cancer. In ...

  9. Molecular Genetics of Analbuminaemia

    DEFF Research Database (Denmark)

    Minchiotti, Lorenzo; Caridi, Gianluca; Campagnoli, Monica;

    2014-01-01

    the perinatal and childhood period. Twenty-one different molecular lesions in the ALB are now known as cause of the trait. These include one mutation in the start codon, one frameshift/insertion, five frameshift/deletions, seven nonsense mutations and seven mutations affecting splicing. Thus, nonsense mutations......, mutations affecting splicing and frameshift/deletions seem to be the most common causes of CAA. These results indicate that the trait is an allelic heterogeneous disorder caused by homozygous or, in a single case, compound heterozygous inheritance of defects. Most mutations are unique, but one, named...

  10. Molecular biology of pancreatic cancer

    Institute of Scientific and Technical Information of China (English)

    Miroslav Zavoral; Petra Minarikova; Filip Zavada; Cyril Salek; Marek Minarik

    2011-01-01

    In spite of continuous research efforts directed at early detection and treatment of pancreatic cancer, the outlook for patients affected by the disease remains dismal. With most cases still being diagnosed at advanced stages, no improvement in survival prognosis is achieved with current diagnostic imaging approaches. In the absence of a dominant precancerous condition, several risk factors have been identified including family history, chronic pancreatitis, smoking, diabetes mellitus, as well as certain genetic disorders such as hereditary pancreatitis, cystic fibrosis, familial atypical multiple Most pancreatic carcinomas, however, remain sporadic. Current progress in experimental molecular techniques has enabled detailed understanding of the molecular processes of pancreatic cancer development. According to the latest information, malignant pancreatic transformation involves multiple oncogenes and tumor-suppressor genes that are involved in a variety of signaling pathways. The most characteristic aberrations (somatic point mutations and allelic losses) affect oncogenes and tumor-suppressor genes within RAS, AKT and Wnt signaling, and have a key role in transcription and proliferation, as well as systems that regulate the cell cycle (SMAD/DPC, CDKN2A/p16) and apoptosis (TP53). Understanding of the underlying molecular mechanisms should promote development of new methodology for early diagnosis and facilitate improvement in current approaches for pancreatic cancer treatment.

  11. Evolving Molecular Genetics of Glioblastoma

    Institute of Scientific and Technical Information of China (English)

    Qiu-Ju Li; Jin-Quan Cai; Cheng-Yin Liu

    2016-01-01

    Objective: To summary the recent advances in molecular research of glioblastoma (GBM) and current trends in personalized therapy of this disease.Data Sources: Data cited in this review were obtained mainly from PubMed in English up to 2015, with keywords "molecular", "genetics", "GBM", "isocitrate dehydrogenase", "telomerase reverse transcriptase", "epidermal growth factor receptor", "PTPRZ1-MET", and "clinical treatment".Study Selection: Articles regarding the morphological pathology of GBM, the epidemiology of GBM, genetic alteration of GBM, and the development of treatment for GBM patients were identified, retrieved, and reviewed.Results: There is a large amount of data supporting the view that these recurrent genetic aberrations occur in a specific context of cellular origin, co-oncogenic hits and are present in distinct patient populations.Primary and secondary GBMs are distinct disease entities that affect different age groups of patients and develop through distinct genetic aberrations.These differences are important, especially because they may affect sensitivity to radio-and chemo-therapy and should thus be considered in the identification of targets for novel therapeutic approaches.Conclusion: This review highlights the molecular and genetic alterations of GBM, indicating that they are of potential value in the diagnosis and treatment for patients with GBM.

  12. Molecular biology of the lung cancer

    International Nuclear Information System (INIS)

    Background. Lung cancer is one of the most common malignant diseases and leading cause of cancer death worldwide. The advances in molecular biology and genetics, including the modern microarray technology and rapid sequencing techniques, have enabled a remarkable progress into elucidating the lung cancer ethiopathogenesis. Numerous studies suggest that more than 20 different genetic and epigenetic alterations are accumulating during the pathogenesis of clinically evident pulmonary cancers as a clonal, multistep process. Thus far, the most investigated alterations are the inactivational mutations and losses of tumour suppressor genes and the overexpression of growth-promoting oncogenes. More recently, the acquired epigenetic inactivation of tumour suppressor genes by promoter hypermethylation has been recognized. The early clonal genetic abnormalities that occur in preneoplastic bronchial epithelium damaged by smoking or other carcinogenes are being identified. The molecular distinctions between small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC), as well as between tumors with different clinical outcomes have been described. These investigations lead to the hallmarks of lung cancer. Conclusions. It is realistic to expect that the molecular and cell culture-based investigations will lead to discoveries of new clinical applications with the potential to provide new avenues for early diagnosis, risk assessment, prevention, and most important, new more effective treatment approaches for the lung cancer patients. (author)

  13. CPFP Summer Curriculum: Molecular Prevention Course | Division of Cancer Prevention

    Science.gov (United States)

    This Cancer Prevention Fellowship Program (CPFP) one-week course on molecular aspects of cancer prevention follows the Principles and Practice of Cancer Prevention and Control course. It provides a strong background about molecular biology and genetics of cancer, and an overview of cutting-edge research and techniques in the fields of molecular epidemiology, biomarkers, multi-omic, and translational research. The following topics will be typically presented: |

  14. Genetics and Breast Cancer - Oncologists Perspectives.

    Science.gov (United States)

    Naik, Radheshyam; Veldore, Vidya Harini; Gopinath, Kodaganur S

    2015-12-01

    Breast cancer is the most common cancer in women worldwide. The clinical outcomes of which, have improved in the past decade, primarily due early diagnosis and multimodal management. Understanding of the disease biology with findings from omics-based research and molecular genetic characterization of the disease has been an important component of the therapy in the past 10 years. There is a need to understand the variations in individuals at the molecular level to enable in sub-classification of the different disease phenotypes and if possible to tailor the treatment to the patient. This article attempts to review the beneficial role of genetics in various facets of breast cancer management, in modern scientific medicine. PMID:27065667

  15. Cancer Genetics Services Directory

    Science.gov (United States)

    ... content 1-800-4-CANCER Live Chat Publications Dictionary Menu Contact Dictionary Search About Cancer Causes and Prevention Risk Factors ... Contacts Other Funding Find NCI funding for small business innovation, technology transfer, and contracts Training Cancer Training ...

  16. The molecular biology of cancer.

    Science.gov (United States)

    Bertram, J S

    2000-12-01

    identifies key genes directly involved in carcinogenesis and demonstrates how mutations in these genes allow cells to circumvent cellular controls. This detailed understanding of the process of carcinogenesis at the molecular level has only been possible because of the advent of modern molecular biology. This new discipline, by precisely identifying the molecular basis of the differences between normal and malignant cells, has created novel opportunities and provided the means to specifically target these modified genes. Whenever possible this review highlights these opportunities and the attempts being made to generate novel, molecular based therapies against cancer. Successful use of these new therapies will rely upon a detailed knowledge of the genetic defects in individual tumors. The review concludes with a discussion of how the use of high throughput molecular arrays will allow the molecular pathologist/therapist to identify these defects and direct specific therapies to specific mutations.

  17. Prostate Cancer Genetics: A Review

    Science.gov (United States)

    Wallis, Christopher J.D.

    2015-01-01

    Over the past decades, research has focussed on identifying the genetic underpinnings of prostate cancer. It has been recognized that a number of forms of genetic changes coupled with epigenetic and gene expression changes can increase the prediction to develop prostate cancer. This review outlines the role of somatic copy number alterations (SCNAs), structural rearrangements, point mutations, and single nucleotide polymorphisms (SNPs) as well as miRNAs. Identifying relevant genetic changes offers the ability to develop novel biomarkers to allow early and accurate detection of prostate cancer as well as provide risk stratification of patients following their diagnosis. The concept of personalized or individualized medicine has gained significant attention. Therefore, a better understanding of the genetic and metabolic pathways underlying prostate cancer development offers the opportunity to explore new therapeutic interventions with the possibility of offering patient-specific targeted therapy.

  18. Genetics Home Reference: breast cancer

    Science.gov (United States)

    ... Jewish heritage and people of Norwegian, Icelandic, or Dutch ancestry. Related Information What information about a genetic ... an increased likelihood of developing cancer, not the disease itself. Not all people who inherit mutations in ...

  19. Molecular therapeutics in pancreas cancer.

    Science.gov (United States)

    Narayanan, Vignesh; Weekes, Colin D

    2016-04-15

    The emergence of the "precision-medicine" paradigm in oncology has ushered in tremendous improvements in patient outcomes in a wide variety of malignancies. However, pancreas ductal adenocarcinoma (PDAC) has remained an obstinate challenge to the oncology community and continues to be associated with a dismal prognosis with 5-year survival rates consistently less than 5%. Cytotoxic chemotherapy with gemcitabine-based regimens has been the cornerstone of treatment in PDAC especially because most patients present with inoperable disease. But in recent years remarkable basic science research has improved our understanding of the molecular and genetic basis of PDAC. Whole genomic analysis has exemplified the genetic heterogeneity of pancreas cancer and has led to ingenious efforts to target oncogenes and their downstream signaling cascades. Novel stromal depletion strategies have been devised based on our enhanced recognition of the complex architecture of the tumor stroma and the various mechanisms in the tumor microenvironment that sustain tumorigenesis. Immunotherapy using vaccines and immune checkpoint inhibitors has also risen to the forefront of therapeutic strategies against PDAC. Furthermore, adoptive T cell transfer and strategies to target epigenetic regulators are being explored with enthusiasm. This review will focus on the recent advances in molecularly targeted therapies in PDAC and offer future perspectives to tackle this lethal disease. PMID:27096032

  20. Genetic architecture of colorectal cancer.

    Science.gov (United States)

    Peters, Ulrike; Bien, Stephanie; Zubair, Niha

    2015-10-01

    Colorectal cancer (CRC) is a complex disease that develops as a consequence of both genetic and environmental risk factors. A small proportion (3-5%) of cases arise from hereditary syndromes predisposing to early onset CRC as a result of mutations in over a dozen well defined genes. In contrast, CRC is predominantly a late onset 'sporadic' disease, developing in individuals with no obvious hereditary syndrome. In recent years, genome wide association studies have discovered that over 40 genetic regions are associated with weak effects on sporadic CRC, and it has been estimated that increasingly large genome wide scans will identify many additional novel genetic regions. Subsequent experimental validations have identified the causally related variant(s) in a limited number of these genetic regions. Further biological insight could be obtained through ethnically diverse study populations, larger genetic sequencing studies and development of higher throughput functional experiments. Along with inherited variation, integration of the tumour genome may shed light on the carcinogenic processes in CRC. In addition to summarising the genetic architecture of CRC, this review discusses genetic factors that modify environmental predictors of CRC, as well as examples of how genetic insight has improved clinical surveillance, prevention and treatment strategies. In summary, substantial progress has been made in uncovering the genetic architecture of CRC, and continued research efforts are expected to identify additional genetic risk factors that further our biological understanding of this disease. Subsequently these new insights will lead to improved treatment and prevention of colorectal cancer. PMID:26187503

  1. Early-onset gastric cancers have a different molecular expression profile than conventional gastric cancers

    NARCIS (Netherlands)

    A.N.A. Milne; R. Carvalho; F.M. Morsink; A.R. Musler; W.W.J. de Leng; A. Ristimaki; G.J.A. Offerhaus

    2006-01-01

    Many studies examine the molecular genetics of gastric cancer, but few look at young patients in particular and there is no comparison of molecular expression between early-onset gastric cancer (<= 45 years old) and conventional gastric cancers. Expression of cycloxygenase-2 (COX-2) is elevated in g

  2. Molecular genetic studies on obligate anaerobic bacteria

    International Nuclear Information System (INIS)

    Molecular genetic studies on obligate anaerobic bacteria have lagged behind similar studies in aerobes. However, the current interest in biotechnology, the involvement of anaerobes in disease and the emergence of antibioticresistant strains have focused attention on the genetics of anaerobes. This article reviews molecular genetic studies in Bacteroides spp., Clostridium spp. and methanogens. Certain genetic systems in some anaerobes differ from those in aerobes and illustrate the genetic diversity among bacteria

  3. Breast cancer. From molecular biology to personified therapy

    Directory of Open Access Journals (Sweden)

    Bondarenko I.N.

    2016-03-01

    Full Text Available Advances in molecular biology had changed approaches to systemic treatment of breast cancer. Clinical decisions on the choice of optimal treatment regimens are performing on the basis of immunohistochemical and molecular genetic classifications. Their increasing uses have contributed changes of paradigm for cancer treatment - from the empirical to the individualized and personalized. The basis for such approaches is knowledge of molecular epidemiology, heterogeneity of expression of molecular subtypes, prognostic and predictive biomarkers of breast cancer. Breast cancer is a widely heterogeneous disease with 20 histological types, 8, molecular-genetic, 6 genomic subtypes, which are characterized by specific molecular and biochemical properties, different clinical course and different outcomes. Molecular genetic classification, created not on the basis of clinical, anatomical and morphological heterogeneity of tumor cells, and on the basis of their molecular-genetic heterogeneity is widely used in clinical practice. This allowed to separate the patients with breast cancer to molecular 4 subtypes - luminal A, luminal B, HER / 2 positive and triple-negative. The significant role of immunohistochemical tissue tumor markers, estrogen and progesterone receptors, HER / 2-neu, Ki-67, p53 for selection the optimal treatment strategy is analyzing in this review. To increase the effectiveness of breast cancer treatment is possible, using a differentiated and personalized approach based on new molecular genetic classification of breast cancer (gene profiling or to its analogue - expression classification of breast cancer, based on the principle of diversity of immunohistochemical tumor tissue. Personification of cancer treatment involves a therapy based on the study of individual characteristics of tissue is not only the primary tumor but also its metastases. Citation: Bondarenko IN, Elhajj Mohammad H, Prokhach AV, Zavizion VF, Chebanov KO. [Breast cancer

  4. Molecular genetic medicine. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Friedmann, T. (ed.)

    1992-01-01

    Theodore Friedmann has put together an interesting spectrum of articles for volume 2 of Molecular Genetic Medicine. Perhaps related to his own interest in the X chromosome, three articles deal with X-chromosomal topics, while two deal with autosomal disorders and two treat viral disorders. The fragile-X syndrome is thoroughly covered by Brown and Jenkins with an article that is heavily weighted to clinical aspects and now out-of-date RFLP approaches. The timeliness of the volume is insured by the coverage (albeit brief) that they give to the cloning of FMR-1. Gartler et al. present a balanced review of X inactivation - the oft-surveyed subject was comprehensively covered in a manner that provided new perspectives. Lambert et al. provide an exhaustive review of natural and induced mutation of hypoxanthine phosphoribosyltransferase. For autosomal disorders, an excellent review of the molecular genetics of hemoglobin syntheses and their alterations in disease is provided by Berg and Schecter. The level of detail presented seemed just right to this reviewer. A concise review of recent advances in the study of Down syndrome and its animal model, trisomy 16 mice, is provided by Holtzman and Epstein. With regard to viral topics, Chisari thoughtfully reviews hepatitis B virus structure and function and the possible pathogenic mechanisms involved in its induction of hepatocellular carcinoma. Wong-Staal and Haseltine's up-to-date review of the increasingly complex regulatory genes of HIV is marred by a mix-up in figure legends - an exception to an otherwise well-proofread book. In summary, this is a good volume of its type and is recommended for those who might benefit from reading such review articles.

  5. Genetic predisposition for cancer : genes and genetic counseling

    OpenAIRE

    Rantala, Johanna

    2012-01-01

    Breast cancer accounts for one third of all female cancer cases worldwide. A hereditary component accounts for 10-15% of all breast and ovarian cancer cases. The overall aim of this thesis is to evaluate and improve genetic diagnostic and genetic counseling in hereditary cancer patients. A total of 215 counselees were enrolled to a questionnaire study which aimed to conceptualize risk perception and worry for cancer before and one week after initial oncogenetic counseling and one year a...

  6. Histopathological, Molecular, and Genetic Profile of Hereditary Diffuse Gastric Cancer: Current Knowledge and Challenges for the Future.

    Science.gov (United States)

    van der Post, Rachel S; Gullo, Irene; Oliveira, Carla; Tang, Laura H; Grabsch, Heike I; O'Donovan, Maria; Fitzgerald, Rebecca C; van Krieken, Han; Carneiro, Fátima

    2016-01-01

    Familial clustering is seen in 10 % of gastric cancer cases and approximately 1-3 % of gastric cancer arises in the setting of hereditary diffuse gastric cancer (HDGC). In families with HDGC, gastric cancer presents at young age. HDGC is predominantly caused by germline mutations in CDH1 and in a minority by mutations in other genes, including CTNNA1. Early stage HDGC is characterized by a few, up to dozens of intramucosal foci of signet ring cell carcinoma and its precursor lesions. These include in situ signet ring cell carcinoma and pagetoid spread of signet ring cells. Advanced HDGC presents as poorly cohesive/diffuse type carcinoma, normally with very few typical signet ring cells, and has a poor prognosis. Currently, it is unknown which factors drive the progression towards aggressive disease, but it is clear that most intramucosal lesions will not have such progression.Immunohistochemical profile of early and advanced HDGC is often characterized by abnormal E-cadherin immunoexpression, including absent or reduced membranous expression, as well as "dotted" or cytoplasmic expression. However, membranous expression of E-cadherin does not exclude HDGC. Intramucosal HDGC (pT1a) presents with an "indolent" phenotype, characterized by typical signet ring cells without immunoexpression of Ki-67 and p53, while advanced carcinomas (pT > 1) display an "aggressive" phenotype with pleomorphic cells, that are immunoreactive for Ki-67 and p53. These features show that the IHC profile is different between intramucosal and more advanced HDGC, providing evidence of phenotypic heterogeneity, and may help to define predictive biomarkers of progression from indolent to aggressive, widely invasive carcinomas.

  7. Bladder cancer: molecular determinants of personalized therapy.

    Science.gov (United States)

    Lopez-Beltran, Antonio; Santoni, Matteo; Massari, Francesco; Ciccarese, Chiara; Tortora, Giampaolo; Cheng, Liang; Moch, Holger; Scarpelli, Marina; Reymundo, Carlos; Montironi, Rodolfo

    2015-01-01

    Several molecular and genetic studies have provided new perspectives on the histologic classification of bladder tumors. Recent developments in the field of molecular mutational pathway analyses based on next generation sequencing technology together with classic data derived from the description of mutations in the FGFR3 (fibroblast growth factor receptor 3) gene, mutations on TP53 gene, and cDNA technology profiling data gives support to a differentiated taxonomy of bladder cancer. All these changes are behind the use of non-traditional approach to therapy of bladder cancer patients and are ready to change our daily practice of uro-oncology. The observed correlation of some molecular alterations with tumor behavior and the identification of their targets at cellular level might support the use of molecular changes together with morphological data to develop new clinical and biological strategies to manage patients with urothelial cancer. The current review provides comprehensive data to support personalized therapy for bladder cancer based on an integrated approach including pathologic and clinical features and molecular biology.

  8. (-)-Menthol biosynthesis and molecular genetics

    Science.gov (United States)

    Croteau, Rodney B.; Davis, Edward M.; Ringer, Kerry L.; Wildung, Mark R.

    2005-12-01

    (-)-Menthol is the most familiar of the monoterpenes as both a pure natural product and as the principal and characteristic constituent of the essential oil of peppermint ( Mentha x piperita). In this paper, we review the biosynthesis and molecular genetics of (-)-menthol production in peppermint. In Mentha species, essential oil biosynthesis and storage is restricted to the peltate glandular trichomes (oil glands) on the aerial surfaces of the plant. A mechanical method for the isolation of metabolically functional oil glands, has provided a system for precursor feeding studies to elucidate pathway steps, as well as a highly enriched source of the relevant biosynthetic enzymes and of their corresponding transcripts with which cDNA libraries have been constructed to permit cloning and characterization of key structural genes. The biosynthesis of (-)-menthol from primary metabolism requires eight enzymatic steps, and involves the formation and subsequent cyclization of the universal monoterpene precursor geranyl diphosphate to the parent olefin (-)-(4 S)-limonene as the first committed reaction of the sequence. Following hydroxylation at C3, a series of four redox transformations and an isomerization occur in a general “allylic oxidation-conjugate reduction” scheme that installs three chiral centers on the substituted cyclohexanoid ring to yield (-)-(1 R, 3 R, 4 S)-menthol. The properties of each enzyme and gene of menthol biosynthesis are described, as are their probable evolutionary origins in primary metabolism. The organization of menthol biosynthesis is complex in involving four subcellular compartments, and regulation of the pathway appears to reside largely at the level of gene expression. Genetic engineering to up-regulate a flux-limiting step and down-regulate a side route reaction has led to improvement in the composition and yield of peppermint oil.

  9. Advances in breast cancer molecular genetics%乳腺癌分子遗传学研究进展

    Institute of Scientific and Technical Information of China (English)

    孟旭莉

    2010-01-01

    乳腺癌易感基因的研究对有乳腺癌家族史的个体进行早诊和预防、阐明散发性乳腺癌发病机制、早诊、判断药物敏感性和预后、鉴别诊断良恶性疾病等均有重要意义.BRCA1和BRCA2是乳腺癌主要易感基因.其他易感基因诸如TP53能增加BRCA1、BRCA2的乳腺癌患病风险.%The study on susceptibility genes play an important role in early diagnosis and prevention for the individuals with family history of breast carcinoma,elucidation of pathologic mechanism of sporadic breast carcinoma,early diagnosis and adjudging prognosis,research on drug sensitivity,differential diagnosis of benign and malignant disease,etc.Two major susceptibility genes for breast cancer,BRCA1 and BRCA2,are identified,respectively.Other tumor susceptibility genes such as TP53 are known to increase breast cancer risk of BRCA1 and BRCA2.

  10. Genetic tagging : Contemporary molecular ecology

    NARCIS (Netherlands)

    Palsboll, PJ

    1999-01-01

    Population generic analyses have been highly successful in deciphering inter- and intraspecific evolutionary relationships, levels of gene flow, genetic divergence and effective population sizes. Parameters estimated by traditional population genetic analyses are evolutionary averages and thus not n

  11. Update on clinical trials: genetic targets in breast cancer.

    Science.gov (United States)

    Lim, Bora; Cream, Leah V; Harvey, Harold A

    2013-01-01

    Breast cancer is the most commonly diagnosed cancer in women in United States. From data of American Cancer Society from 2007 reported total of 178,480 women diagnosed with breast cancer. The death rate from breast cancer has decreased in North America over time, but still accounts for second highest cancer death, following lung cancer. Breast cancer is staged based on tumor size, nodal involvement, and distant metastasis like any other solid tumors. However clinical staging is not the only important factor in management of breast cancer. Various molecular features divides breast cancer into many subgroups - that act differently, and respond differently from therapy. Thus the focus of breast cancer treatment has evolved focusing on specific targets. The most important biologic markers in subtyping of breast cancer so far are hormone receptor positivity and HER2/neu protein expression. Five molecular subtypes using intrinsic gene set include Basal mRNA, HER2 + mRNA, Luminal AmRNA, Luminal B mRNA, and Normal-like mRNA. In addition, better understanding of genetic target of breast cancer has given us arsenal of personalized, and more effective treatment approach.This review will focus on examples that highlight several mechanism of tumorigenesis, giving us not just understanding of gene pathways and the molecular biology, that could lead us to therapeutic target. Several important molecular targets have been investigated in preclinical and clinical trials, others are yet to be explored. We will also describe genetic mechanisms discovery related to overcoming resistance to current targeted therapies in breast cancer, including hormone receptor expression and HER 2- neu amplification. We will also review other exciting developments in understanding of breast cancer, the tumor microenvironment and cancer stem cells, and targeting agents in that area. PMID:23288634

  12. Molecular imaging in ovarian cancer.

    Science.gov (United States)

    Reyners, A K L; Broekman, K E; Glaudemans, A W J M; Brouwers, A H; Arts, H J G; van der Zee, A G J; de Vries, E G E; Jalving, M

    2016-04-01

    Ovarian cancer has a high mortality and novel-targeted treatment strategies have not resulted in breakthroughs for this disease. Insight into the molecular characteristics of ovarian tumors may improve diagnosis and selection of patients for treatment with targeted therapies. A potential way to achieve this is by means of molecular imaging. Generic tumor processes, such as glucose metabolism ((18)F-fluorodeoxyglucose) and DNA synthesis ((18)F-fluorodeoxythymidine), can be visualized non-invasively. More specific targets, such as hormone receptors, growth factor receptors, growth factors and targets of immunotherapy, can also be visualized. Molecular imaging can capture data on intra-patient tumor heterogeneity and is of potential value for individualized, target-guided treatment selection. Early changes in molecular characteristics during therapy may serve as early predictors of response. In this review, we describe the current knowledge on molecular imaging in the diagnosis and as an upfront or early predictive biomarker in patients with ovarian cancer. PMID:27141066

  13. Molecular imaging in cancer treatment

    Energy Technology Data Exchange (ETDEWEB)

    Michalski, Mark H. [Stanford University School of Medicine, Stanford, CA (United States); Chen, Xiaoyuan [National Institutes of Health (NIH), Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), Bethesda, MD (United States)

    2011-02-15

    The success of cancer therapy can be difficult to predict, as its efficacy is often predicated upon characteristics of the cancer, treatment, and individual that are not fully understood or are difficult to ascertain. Monitoring the response of disease to treatment is therefore essential and has traditionally been characterized by changes in tumor volume. However, in many instances, this singular measure is insufficient for predicting treatment effects on patient survival. Molecular imaging allows repeated in vivo measurement of many critical molecular features of neoplasm, such as metabolism, proliferation, angiogenesis, hypoxia, and apoptosis, which can be employed for monitoring therapeutic response. In this review, we examine the current methods for evaluating response to treatment and provide an overview of emerging PET molecular imaging methods that will help guide future cancer therapies. (orig.)

  14. Genetic factors affecting patient responses to pancreatic cancer treatment

    Science.gov (United States)

    Fotopoulos, George; Syrigos, Konstantinos; Saif, Muhammad Wasif

    2016-01-01

    Cancer of the exocrine pancreas is a malignancy with a high lethal rate. Surgical resection is the only possible curative mode of treatment. Metastatic pancreatic cancer is incurable with modest results from the current treatment options. New genomic information could prove treatment efficacy. An independent review of PubMed and ScienceDirect databases was performed up to March 2016, using combinations of terms such pancreatic exocrine cancer, chemotherapy, genomic profile, pancreatic cancer pharmacogenomics, genomics, molecular pancreatic pathogenesis, and targeted therapy. Recent genetic studies have identified new markers and therapeutic targets. Our current knowledge of pancreatic cancer genetics must be further advanced to elucidate the molecular basis and pathogenesis of the disease, improve the accuracy of diagnosis, and guide tailor-made therapies. PMID:27708512

  15. Molecular markers for detection, surveillance and prognostication of bladder cancer.

    NARCIS (Netherlands)

    Vrooman, O.P.; Witjes, J.A.

    2009-01-01

    Many markers for the detection of bladder cancers have been tested and almost all urinary markers reported are better than cytology with regard to sensitivity, but they score lower in specificity. Currently molecular and genetic changes play an important role in the discovery of new molecular marker

  16. Genetic testing and your cancer risk

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000842.htm Genetic testing and your cancer risk To use the sharing ... with one or more of the above About Genetic Testing You may first have a an assessment to ...

  17. Genetically Engineered Immunotherapy for Advanced Cancer

    Science.gov (United States)

    In this trial, doctors will collect T lymphocytes from patients with advanced mesothelin-expressing cancer and genetically engineer them to recognize mesothelin. The gene-engineered cells will be multiplied and infused into the patient to fight the cancer

  18. Molecular Dimensions of Gastric Cancer: Translational and Clinical Perspectives.

    Science.gov (United States)

    Choi, Yoon Young; Noh, Sung Hoon; Cheong, Jae-Ho

    2016-01-01

    Gastric cancer is a global health burden and has the highest incidence in East Asia. This disease is complex in nature because it arises from multiple interactions of genetic, local environmental, and host factors, resulting in biological heterogeneity. This genetic intricacy converges on molecular characteristics reflecting the pathophysiology, tumor biology, and clinical outcome. Therefore, understanding the molecular characteristics at a genomic level is pivotal to improving the clinical care of patients with gastric cancer. A recent landmark study, The Cancer Genome Atlas (TCGA) project, showed the molecular landscape of gastric cancer through a comprehensive molecular evaluation of 295 primary gastric cancers. The proposed molecular classification divided gastric cancer into four subtypes: Epstein-Barr virus-positive, microsatellite unstable, genomic stable, and chromosomal instability. This information will be taken into account in future clinical trials and will be translated into clinical therapeutic decisions. To fully realize the clinical benefit, many challenges must be overcome. Rapid growth of high-throughput biology and functional validation of molecular targets will further deepen our knowledge of molecular dimensions of this cancer, allowing for personalized precision medicine. PMID:26498010

  19. Molecular genetics of intellectual disability

    OpenAIRE

    Bessa, C.; Lopes, F.; Maciel, P.

    2012-01-01

    The goal of this chapter is to review the current knowledge of the genetic causes of intellectual disability, focusing on alterations at the chromosomal and single gene level, with particular mention to the new technological developments, including array technologies and next-generation sequencing, which allowed an enormous increase in yield from genetic studies. The cellular and physiological pathways that seem to be most affected in intellectual disability will also be addressed. Fina...

  20. The Clinical Genetics of Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Kommu Sashi

    2004-07-01

    Full Text Available Abstract Prostate cancer is the most common cancer in men and the second highest cause of cancer-related mortality in the U.K. A genetic component in predisposition to prostate cancer has been recognized for decades. One of the strongest epidemiological risk factors for prostate cancer is a positive family history. The hunt for the genes that predispose to prostate cancer in families has been the focus of many research groups worldwide for the past 10 years. Both epidemiological and twin studies support a role for genetic predisposition to prostate cancer. Familial cancer loci have been found, but the genes that cause familial prostate cancer remain largely elusive. Unravelling the genetics of prostate cancer is challenging and is likely to involve the analysis of numerous predisposition genes. Current evidence supports the hypothesis that excess familial risk of prostate cancer could be due to the inheritance of multiple moderate-risk genetic variants. Although research on hereditary prostate cancer has improved our knowledge of the genetic aetiology of the disease, a lot of questions still remain unanswered. This article explores the current evidence that there is a genetic component to the aetiology of prostate cancer and attempts to put into context the diverse findings that have been shown to be possibly associated with the development of hereditary prostate cancer. Linkage searches over the last decade are summarised. It explores issues as to why understanding the genetics of prostate cancer has been so difficult and why despite this, it is still a major focus of research. Finally, current and future management strategies of men with Hereditary Prostate Cancer (HPC are discussed.

  1. Cellular and molecular aspects of gastric cancer

    Institute of Scientific and Technical Information of China (English)

    Malcolm G Smith; Georgina L Hold; Eiichi Tahara; Emad M El-Omar

    2006-01-01

    Gastric cancer remains a global killer with a shifting burden from the developed to the developing world.The cancer develops along a multistage process that is defined by distinct histological and pathophysiological phases. Several genetic and epigenetic alterations mediate the transition from one stage to another and these include mutations in oncogenes, tumour suppressor genes and cell cycle and mismatch repair genes. The most significant advance in the fight against gastric caner came with the recognition of the role of Helicobacter pylori (H pylori) as the most important acquired aetiological agent for this cancer. Recent work has focussed on elucidating the complex host/microbial interactions that underlie the neoplastic process. There is now considerable insight into the pathogenesis of this cancer and the prospect of preventing and eradicating the disease has become a reality. Perhaps more importantly, the study of H pylori-induced gastric carcinogenesis offers a paradigm for understanding more complex human cancers. In this review, we examine the molecular and cellular events that underlie H pyloriinduced gastric cancer.

  2. Alport syndrome. Molecular genetic aspects

    DEFF Research Database (Denmark)

    Hertz, Jens Michael

    2009-01-01

    Alport syndrome (AS) is a progressive renal disease that is characterised by hematuria and progressive renal failure, and often accompanied by progressive high-tone sensorineural hearing loss and ocular changes in form of macular flecks and lenticonus. AS is a genetic heterogenous disease, and X-...

  3. The molecular genetics of holoprosencephaly.

    Science.gov (United States)

    Roessler, Erich; Muenke, Maximilian

    2010-02-15

    Holoprosencephaly (HPE) has captivated the imagination of Man for millennia because its most extreme manifestation, the single-eyed cyclopic newborn infant, brings to mind the fantastical creature Cyclops from Greek mythology. Attempting to understand this common malformation of the forebrain in modern medical terms requires a systematic synthesis of genetic, cytogenetic, and environmental information typical for studies of a complex disorder. However, even with the advances in our understanding of HPE in recent years, there are significant obstacles remaining to fully understand its heterogeneity and extensive variability in phenotype. General lessons learned from HPE will likely be applicable to other malformation syndromes. Here we outline the common, and rare, genetic and environmental influences on this conserved developmental program of forebrain development and illustrate the similarities and differences between these malformations in humans and those of animal models. PMID:20104595

  4. [Molecular diagnostics of lung cancer].

    Science.gov (United States)

    Ryska, A; Dziadziuszko, R; Olszewski, W; Berzinec, P; Öz, B; Gottfried, M; Cufer, T; Samarzija, M; Plank, L; Ostoros, Gy; Tímár, J

    2015-09-01

    Development of the target therapies of lung cancer was a rapid process which fundamentally changed the pathological diagnosis as well. Furthermore, molecular pathology became essential part of the routine diagnostics of lung cancer. These changes generated several practical problems and in underdeveloped countries or in those with reimbursement problems have been combined with further challenges. The central and eastern region of Europe are characterized by similar problems in this respect which promoted the foundation of NSCLC Working Group to provide up to date protocols or guidelines. This present paper is a summary of the molecular pathology and target therapy guidelines written with the notion that it has to be upgraded continuously according to the development of the field.

  5. Molecular genetics of cutaneous lymphomas.

    Science.gov (United States)

    Whittaker, S

    2001-09-01

    The underlying molecular basis of primary cutaneous lymphomas has not yet been clarified. However, abnormalities of cell cycle control genes and well-defined tumor suppressor genes such as p53 are common and may contribute to disease progression and treatment resistance. Biallelic inactivation of tumor suppressor genes usually occurs by a combination of deletion, point mutation, and/or promotor hypermethylation. The detection of UVB-specific mutations of p53 requires confirmation but may have important implications for the management of patients with mycosis fungoides. Molecular cytogenetic studies have identified common regions of chromosomal deletion and amplification, which suggests the presence and location of genes that are of critical importance in the pathogenesis of cutaneous lymphoma.

  6. Fecal Molecular Markers for Colorectal Cancer Screening

    Directory of Open Access Journals (Sweden)

    Rani Kanthan

    2012-01-01

    Full Text Available Despite multiple screening techniques, including colonoscopy, flexible sigmoidoscopy, radiological imaging, and fecal occult blood testing, colorectal cancer remains a leading cause of death. As these techniques improve, their sensitivity to detect malignant lesions is increasing; however, detection of precursor lesions remains problematic and has generated a lack of general acceptance for their widespread usage. Early detection by an accurate, noninvasive, cost-effective, simple-to-use screening technique is central to decreasing the incidence and mortality of this disease. Recent advances in the development of molecular markers in faecal specimens are encouraging for its use as a screening tool. Genetic mutations and epigenetic alterations that result from the carcinogenetic process can be detected by coprocytobiology in the colonocytes exfoliated from the lesion into the fecal matter. These markers have shown promising sensitivity and specificity in the detection of both malignant and premalignant lesions and are gaining popularity as a noninvasive technique that is representative of the entire colon. In this paper, we summarize the genetic and epigenetic fecal molecular markers that have been identified as potential targets in the screening of colorectal cancer.

  7. Genetic evidence linking lung cancer and COPD: a new perspective

    Directory of Open Access Journals (Sweden)

    Crapo JD

    2011-07-01

    Full Text Available Robert P Young1,4, Raewyn J Hopkins1, Gregory D Gamble1, Carol Etzel2, Randa El-Zein2, James D Crapo31Department of Medicine and School of Biological Sciences, University of Auckland, Auckland, New Zealand; 2Department of Epidemiology, UT MD Anderson Cancer Center, Houston, TX, USA; 3National Jewish Health, Denver, CO, USA; 4Synergenz Biosciences Ltd, Auckland, New ZealandAbstract: Epidemiological studies indicate that tobacco smoke exposure accounts for nearly 90% of cases of chronic obstructive pulmonary disease (COPD and lung cancer. However, genetic factors may explain why 10%–30% of smokers develop these complications. This perspective reviews the evidence suggesting that COPD is closely linked to susceptibility to lung cancer and outlines the potential relevance of this observation. Epidemiological studies show that COPD is the single most important risk factor for lung cancer among smokers and predates lung cancer in up to 80% of cases. Genome-wide association studies of lung cancer, lung function, and COPD have identified a number of overlapping “susceptibility” loci. With stringent phenotyping, it has recently been shown that several of these overlapping loci are independently associated with both COPD and lung cancer. These loci implicate genes underlying pulmonary inflammation and apoptotic processes mediated by the bronchial epithelium, and link COPD with lung cancer at a molecular genetic level. It is currently possible to derive risk models for lung cancer that incorporate lung cancer-specific genetic variants, recently identified “COPD-related” genetic variants, and clinical variables. Early studies suggest that single nucleotide polymorphism-based risk stratification of smokers might help better target novel prevention and early diagnostic strategies in lung cancer.Keywords: lung cancer, chronic obstructive pulmonary disease, association study, single nucleotide polymorphism, risk model

  8. Molecular pathogenesis ofsporadic colorectal cancers

    Institute of Scientific and Technical Information of China (English)

    HidetsuguYamagishi; HajimeKuroda; YasuoImai; HideyukiHiraishi

    2016-01-01

    Colorectal cancer (CRC) results from the progressive accumulation of genetic and epigenetic alterations that lead to the transformation of normal colonic mucosa to adenocarcinoma. Approximately 75% of CRCs are sporadic and occur in people without genetic predisposition or family history of CRC. During the past two decades, sporadic CRCs were classiifed into three major groups according to frequently altered/mutated genes. These genes have been identiifed by linkage analyses of cancer-prone families and by individual mutation analyses of candidate genes selected on the basis of functional data. In the ifrst half of this review, we describe the genetic pathways of sporadic CRCs and their clinicopathologic features. Recently, large-scale genome analyses have detected many infrequently mutated genes as well as a small number of frequently mutated genes. These infrequently mutated genes are likely described in a lim-ited number of pathways. Gene-oriented models of CRC progression are being replaced by pathway-oriented models. In the second half of this review, we summarize the present knowledge of this research ifeld and discuss its prospects.

  9. Evolving Molecular Genetics of Glioblastoma

    OpenAIRE

    Qiu-Ju Li; Jin-Quan Cai; Cheng-Yin Liu

    2016-01-01

    Objective: To summary the recent advances in molecular research of glioblastoma (GBM) and current trends in personalized therapy of this disease. Data Sources: Data cited in this review were obtained mainly from PubMed in English up to 2015, with keywords “molecular”, “genetics”, “GBM”, “isocitrate dehydrogenase”, “telomerase reverse transcriptase”, “epidermal growth factor receptor”, “PTPRZ1-MET”, and “clinical treatment”. Study Selection: Articles regarding the morphological pathology of GB...

  10. Prognostic significance of clinical, morphological and molecular-genetic characteristics of larynx cancer, medic rehabilitation, quantitative estimation of the functional impairments extent for the purposes of expert-rehabilitative diagnostics

    Directory of Open Access Journals (Sweden)

    S. B. Shakhsuvaryan

    2016-01-01

    Full Text Available There have been presented a morphological classification and TNM international classification of a larynx cancer, distribution of malignant neoplasms of a given localization by stages considering the TNM parameters. There has been given a clinical characteristic of the disease depending on the process localization. There have been described the peculiarities of diagnostics and treatment as well as clinical, morphological and molecular-genetic prognostic factors. The main tasks and possibilities of medical rehabilitation of a given patients’ contingent have been shown including preservation of the larynx functions by means of reconstructive-restorative operations and the methods of the voice functions restoration after laryngectomia performing as well. There have been established the criteria of the functional impairments manifestation extent evaluation and there has been given stage-by-stage assessment of an extent of the body functions impairment in the larynx cancer in percent.

  11. The Utility of Molecular Imaging in Prostate Cancer.

    Science.gov (United States)

    Leiblich, Aaron; Stevens, Daniel; Sooriakumaran, Prasanna

    2016-03-01

    Prostate cancer is the commonest solid-organ cancer diagnosed in males and represents an important source of morbidity and mortality worldwide. Imaging plays a crucial role in diagnosing prostate cancer and informs the ongoing management of the disease at all stages. Several novel molecular imaging technologies have been developed recently that have the potential to revolutionise disease diagnosis and the surveillance of patients living with prostate cancer. These innovations include hyperpolarised MRI, choline PET/CT and PSMA PET/CT. The major utility of choline and PSMA PET/CT currently lies in their sensitivity for detecting early recurrence after radical treatment for prostate cancer and identifying discrete lesions that may be amenable to salvage therapy. Molecular imaging is likely to play a future role in characterising genetic and biochemical signatures in individual tumours, which may be of particular significance as cancer therapies move into an era of precision medicine. PMID:26894753

  12. Molecular genetics in affective illness

    Energy Technology Data Exchange (ETDEWEB)

    Mendlewicz, J.; Sevy, S.; Mendelbaum, K. (Erasme Univ. Hospital, Brussels (Belgium))

    1993-01-01

    Genetic transmission in manic depressive illness (MDI) has been explored in twins, adoption, association, and linkage studies. The X-linked transmission hypothesis has been tested by using several markers on chromosome X: Xg blood group, color blindness, glucose-6-phosphate dehydrogenase (G6PD), factor IX (hemophilia B), and DNA probes such as DXS15, DXS52, F8C, ST14. The hypothesis of autosomal transmission has been tested by association studies with the O blood group located on chromosome 9, as well as linkage studies on chromosome 6 with the Human Leucocyte Antigens (HLA) haplotypes and on Chromosome 11 with DNA markers for the following genes: D2 dopamine receptor, tyrosinase, C-Harvey-Ras-A (HRAS) oncogene, insuline (ins), and tyrosine hydroxylase (TH). Although linkage studies support the hypothesis of a major locus for the transmission of MDI in the Xq27-28 region, several factors are limiting the results, and are discussed in the present review. 105 refs., 1 fig., 2 tabs.

  13. Molecular genetics of dyslexia: an overview.

    Science.gov (United States)

    Carrion-Castillo, Amaia; Franke, Barbara; Fisher, Simon E

    2013-11-01

    Dyslexia is a highly heritable learning disorder with a complex underlying genetic architecture. Over the past decade, researchers have pinpointed a number of candidate genes that may contribute to dyslexia susceptibility. Here, we provide an overview of the state of the art, describing how studies have moved from mapping potential risk loci, through identification of associated gene variants, to characterization of gene function in cellular and animal model systems. Work thus far has highlighted some intriguing mechanistic pathways, such as neuronal migration, axon guidance, and ciliary biology, but it is clear that we still have much to learn about the molecular networks that are involved. We end the review by highlighting the past, present, and future contributions of the Dutch Dyslexia Programme to studies of genetic factors. In particular, we emphasize the importance of relating genetic information to intermediate neurobiological measures, as well as the value of incorporating longitudinal and developmental data into molecular designs.

  14. Molecular Epidemiology of Female Lung Cancer

    OpenAIRE

    Seon-Hee Yim; Yeun-Jun Chung

    2011-01-01

    Lung cancer is still a leading cause of cancer mortality in the world. The incidence of lung cancer in developed countries started to decrease mainly due to global anti-smoking campaigns. However, the incidence of lung cancer in women has been increasing in recent decades for various reasons. Furthermore, since the screening of lung cancer is not as yet very effective, clinically applicable molecular markers for early diagnosis are much required. Lung cancer in women appears to have differenc...

  15. [Genetic cancer syndromes and reproductive choice: dialogue between parents and politicians on preimplantation genetic diagnosis

    NARCIS (Netherlands)

    Niermeijer, M.F.; Die-Smulders, C.E.M. de; Page-Christiaens, G.C.; Wert, G.M.W.R. de

    2008-01-01

    Genetic cancer syndromes have identical clinical severity, limited therapeutic options, reduced life expectancy, and risks of genetic transmission, as do other genetic or congenital diseases for which prenatal genetic diagnosis or preimplantation genetic diagnosis (PGD) is allowed in the Netherlands

  16. Intention to seek information on cancer genetics

    Directory of Open Access Journals (Sweden)

    J.E. Andrews

    2005-01-01

    Full Text Available Objective. The public has a high interest in seeking personal genetic information, which holds implications for health information seeking research and health care policy. Rapid advances in cancer genetics research promise early detection, prevention and treatment, yet consumers may have greater difficulty finding and using the information they may need to make informed decisions regarding their personal health and the future of their families. Design. A statewide telephone survey was conducted of non-institutionalized Kentucky residents 18 years of age or older to investigate factors associated with the intention to seek cancer genetics information, including the need for such information seeking help. Results. The results show that intention to seek cancer genetics information, if testing were readily available, is moderately high (62.5% of those responding; n=835, and that status as a racial minority, the perception that cancer runs in one's family, and frequent worrying about cancer risk are statistically significant predictors of intent to seek genetics information. Conclusion. . We argue that an already complex health information environment will be even more difficult for individuals to navigate as genetic research becomes more ubiquitous in health care. An increase in demand for genetics information in various forms, as suggested by these results and those of other studies, implies that enduring intervention strategies are needed to help individuals acquire necessary health information literacy skills, with special attention given to racial minorities.

  17. Genetics of asthma: a molecular biologist perspective

    Directory of Open Access Journals (Sweden)

    Ghosh Balaram

    2009-05-01

    Full Text Available Abstract Asthma belongs to the category of classical allergic diseases which generally arise due to IgE mediated hypersensitivity to environmental triggers. Since its prevalence is very high in developed or urbanized societies it is also referred to as "disease of civilizations". Due to its increased prevalence among related individuals, it was understood quite long back that it is a genetic disorder. Well designed epidemiological studies reinforced these views. The advent of modern biological technology saw further refinements in our understanding of genetics of asthma and led to the realization that asthma is not a disorder with simple Mendelian mode of inheritance but a multifactorial disorder of the airways brought about by complex interaction between genetic and environmental factors. Current asthma research has witnessed evidences that are compelling researchers to redefine asthma altogether. Although no consensus exists among workers regarding its definition, it seems obvious that several pathologies, all affecting the airways, have been clubbed into one common category called asthma. Needless to say, genetic studies have led from the front in bringing about these transformations. Genomics, molecular biology, immunology and other interrelated disciplines have unearthed data that has changed the way we think about asthma now. In this review, we center our discussions on genetic basis of asthma; the molecular mechanisms involved in its pathogenesis. Taking cue from the existing data we would briefly ponder over the future directions that should improve our understanding of asthma pathogenesis.

  18. Molecular aspects of carcinogenesis in pancreatic cancer

    Institute of Scientific and Technical Information of China (English)

    Alexandros Koliopanos; Constantinos Avgerinos; Constantina Paraskeva; Zisis Touloumis; Dionisisa Kelgiorgi; Christos Dervenis

    2008-01-01

    BACKGROUND: Pancreatic cancer (PCa) is one of the most aggressive human solid tumors, with rapid growth and metastatic spread as well as resistance to chemotherapeutic drugs, leading rapidly to virtually incurable disease. Over the last 20 years, however, signiifcant advances have been made in our understanding of the molecular biology of PCa, with a focus on the cytogenetic abnormalities in PCa cell growth and differentiation. DATA SOURCES: A MEDLINE search and manual cross-referencing were utilized to identify published data for PCa molecular biology studies between 1986 and 2008, with emphasis on genetic alterations and developmental oncology. RESULTS: Activation of oncogenes, deregulation of tumor suppressor and genome maintenance genes, upregulation of growth factors/growth factor receptor signaling cascade systems, and alterations in cytokine expression, have been reported to play important roles in the process of pancreatic carcinogenesis. Alterations in the K-ras proto-oncogene and the p16INK4a, p53, FHIT, and DPC4 tumor suppressor genes occur in a high percentage of tumors. Furthermore, a variety of growth factors are expressed at increased levels. In addition, PCa often exhibits alterations in growth inhibitory pathways and evades apoptosis through p53 mutations and aberrant expression of apoptosis-regulating genes, such as members of the Bcl family. Additional pathways in the development of an aggressive phenotype, local inifltration and metastasis are still under ongoing genetic research. The present paper reviews recent studies on the pathogenesis of PCa, and includes a brief reference to alterations reported for other types of pancreatic tumor. CONCLUSIONS: Advances in molecular genetics and biology have improved our perception of the pathogenesis of PCa. However, further studies are needed to better understand the fundamental changes that occur in PCa, thus leading to better diagnostic and therapeutic management.

  19. Targeted therapy for genetic cancer syndromes: Fanconi anemia, medullary thyroid cancer, tuberous sclerosis, and RASopathies.

    Science.gov (United States)

    Agarwal, Rishi; Liebe, Sarah; Turski, Michelle L; Vidwans, Smruti J; Janku, Filip; Garrido-Laguna, Ignacio; Munoz, Javier; Schwab, Richard; Rodon, Jordi; Kurzrock, Razelle; Subbiah, Vivek

    2015-02-01

    With the advent of genomics-based treatment in recent years, the use of targeted therapies in the treatment of various malignancies has increased exponentially. Though much data is available regarding the efficacy of targeted therapies for common malignancies, genetic cancer syndromes remain a somewhat unexplored topic with comparatively less published literature. This review seeks to characterize targeted therapy options for the following genetic cancer syndromes: Fanconi anemia, inherited medullary thyroid cancer, tuberous sclerosis, and RASopathies. By understanding the pathophysiology of these conditions as well as available molecularly targeted therapies, oncologists, in collaboration with geneticists and genetic counsellors, can begin to develop effective clinical management options and therapy regimens for the patients with these genetic syndromes that they may encounter in their practice. PMID:25725224

  20. Genetically engineered mouse models of prostate cancer

    NARCIS (Netherlands)

    Nawijn, Martijn C.; Bergman, Andreas M.; van der Poel, Henk G.

    2008-01-01

    Objectives: Mouse models of prostate cancer are used to test the contribution of individual genes to the transformation process, evaluate the collaboration between multiple genetic lesions observed in a single tumour, and perform preclinical intervention studies in prostate cancer research. Methods:

  1. A genetic inference on cancer immune responsiveness

    OpenAIRE

    Wang, Ena; Uccellini, Lorenzo; Marincola, Francesco M.

    2012-01-01

    A cancer immune signature implicating good prognosis and responsiveness to immunotherapy was described that is observed also in other aspects of immune-mediated, tissue-specific destruction (TSD). Its determinism remains, however, elusive. Based on limited but unique clinical observations, we propose a multifactorial genetic model of human cancer immune responsiveness.

  2. Genetic susceptibility to breast and endometrial cancer

    OpenAIRE

    Wedrén, Sara

    2004-01-01

    Hormones are central in the carcinogenic process in the breast and in the uterine epithelium. Individual genetically determined variation in the response to hormonal influence may alter susceptibility to breast and endometrial cancers. Many small studies of this hypothesis have generated inconclusive results. Since the effect of any genetic variant is expected to be modest, large studies are needed to draw reliable conclusions. Also, there may be interaction between genetic ...

  3. Genetic changes in nonepithelial ovarian cancer.

    Science.gov (United States)

    Van Nieuwenhuysen, Els; Lambrechts, Sandrina; Lambrechts, Diether; Leunen, Karin; Amant, Frédéric; Vergote, Ignace

    2013-07-01

    Nonepithelial ovarian cancers (OCs), including sex cord-stromal tumors (SCSTs) and germ cell tumors (GCTs), are an uncommon subset of OC, together accounting for 10% of all OCs. The etiology of these tumors remains largely unresolved. It is well established that tumorigenesis is the result of multiple genetic alterations driving a normal cell toward a malignant state. Much effort has been made into researching the molecular mechanisms underlying epithelial OC, but far less is known about the genetic changes in SCSTs and GCTs. Recently, a single point missense mutation (C134W) was found in the FOXL2 gene in approximately 95% of adult-type granulosa cell tumors, suggesting a key role for FOXL2 in these tumors. By contrast, the FOXL2 mutation was not found in the juvenile type. DICER1 somatic missense mutations were found in approximately 60% of Sertoli-Leydig tumors. Ovarian GCTs share many morphological features and a similar pattern of chromosomal alterations with testicular GCTs. In the latter, recent genome-wide association studies have identified seven susceptibility loci near KITLG, SPRY4, UKC2, BAK1, DMRT1, TERT and ATF7IP. All of the susceptibility loci detected thus far are all involved in primordial germ cell function or sex determination. TGF-β/BMP and Wnt/β-catenin signaling was absent in dysgerminomas, but present in yolk sac tumors, suggesting intertumoral heterogeneity. In this article, the authors aim to provide an overview of the current knowledge on the possible molecular changes in SCSTs and GCTs of the ovary. PMID:23875665

  4. Genetics Home Reference: ovarian cancer

    Science.gov (United States)

    ... that form the lining of the abdomen (the peritoneum). This form of cancer, called primary peritoneal cancer, ... that begin in the ovaries, fallopian tubes, and peritoneum are so similar and spread easily from one ...

  5. Genetic Susceptibility to Pancreatic Cancer

    OpenAIRE

    Klein, Alison P

    2012-01-01

    Pancreatic cancer is the fourth leading cause of cancer death in both men and women in the United States. However, it has the poorest prognosis of any major tumor type, with a 5-yr survival rate of approximately 5%. Cigarette smoking, increased body mass index, heavy alcohol consumption, and a diagnosis of diabetes mellitus have all been demonstrated to increase risk of pancreatic cancer. A family history of pancreatic cancer has also been associated with increased risk suggesting inherited g...

  6. Psychobiology and molecular genetics of resilience

    OpenAIRE

    Feder, Adriana; Nestler, Eric J.; Charney, Dennis S.

    2009-01-01

    Every individual experiences stressful life events. In some cases acute or chronic stress leads to depression and other psychiatric disorders, but most people are resilient to such effects. Recent research has begun to identify the environmental, genetic, epigenetic and neural mechanisms that underlie resilience, and has shown that resilience is mediated by adaptive changes in several neural circuits involving numerous neurotransmitter and molecular pathways. These changes shape the functioni...

  7. Circadian molecular clocks and cancer.

    Science.gov (United States)

    Kelleher, Fergal C; Rao, Aparna; Maguire, Anne

    2014-01-01

    Physiological processes such as the sleep-wake cycle, metabolism and hormone secretion are controlled by a circadian rhythm adapted to 24h day-night periodicity. This circadian synchronisation is in part controlled by ambient light decreasing melatonin secretion by the pineal gland and co-ordinated by the suprachiasmatic nucleus of the hypothalamus. Peripheral cell autonomous circadian clocks controlled by the suprachiasmatic nucleus, the master regulator, exist within every cell of the body and are comprised of at least twelve genes. These include the basic helix-loop-helix/PAS domain containing transcription factors; Clock, BMal1 and Npas2 which activate transcription of the periodic genes (Per1 and Per2) and cryptochrome genes (Cry1 and Cry2). Points of coupling exist between the cellular clock and the cell cycle. Cell cycle genes which are affected by the molecular circadian clock include c-Myc, Wee1, cyclin D and p21. Therefore the rhythm of the circadian clock and cancer are interlinked. Molecular examples exist including activation of Per2 leads to c-myc overexpression and an increased tumor incidence. Mice with mutations in Cryptochrome 1 and 2 are arrhythmic (lack a circadian rhythm) and arrhythmic mice have a faster rate of growth of implanted tumors. Epidemiological finding of relevance include 'The Nurses' Health Study' where it was established that women working rotational night shifts have an increased incidence of breast cancer. Compounds that affect circadian rhythm exist with attendant future therapeutic possibilities. These include casein kinase I inhibitors and a candidate small molecule KL001 that affects the degradation of cryptochrome. Theoretically the cell cycle and malignant disease may be targeted vicariously by selective alteration of the cellular molecular clock. PMID:24099911

  8. Advances in molecular genetic systems in malaria.

    Science.gov (United States)

    de Koning-Ward, Tania F; Gilson, Paul R; Crabb, Brendan S

    2015-06-01

    Robust tools for analysing gene function in Plasmodium parasites, which are the causative agents of malaria, are being developed at an accelerating rate. Two decades after genetic technologies for use in Plasmodium spp. were first described, a range of genetic tools are now available. These include conditional systems that can regulate gene expression at the genome, transcriptional or protein level, as well as more sophisticated tools for gene editing that use piggyBac transposases, integrases, zinc-finger nucleases or the CRISPR-Cas9 system. In this Review, we discuss the molecular genetic systems that are currently available for use in Plasmodium falciparum and Plasmodium berghei, and evaluate the advantages and limitations of these tools. We examine the insights that have been gained into the function of genes that are important during the blood stages of the parasites, which may help to guide the development and improvement of drug therapies and vaccines.

  9. [Molecular genetic investigations in muscular diseases].

    Science.gov (United States)

    Burgunder, J M

    2003-08-01

    The last couple of years have witnessed a rapid development in discoveries of the genetic background in myopathies. It is therefore timely to review the impact they have on clinical work. The recognition of a myopathy remains a clinical activity, and biopsy retains a major role. Molecular genetic investigation can be contemplated early in cases with certain typical clinical presentation. In others, the correct indication to such an investigation can only be made based on findings at biopsy. The information of precise mutation can be used for genetic counselling of the family. Knowledge of genes, whose mutations are sufficient to cause certain myopathies, have provided a great amount of knowledge about pathophysiological mechanisms involved. Some are arguably rare diseases, however, this knowledge also helps understand more frequent myopathies, as it has been the case in neurodegenerative disorders.

  10. Hemangiosarcoma after breast-conserving therapy of breast cancer. Report of four cases with molecular genetic diagnosis and literature review; Haemangiosarkom nach brusterhaltender Therapie beim Mammakarzinom. Vier Fallbeispiele mit molekulargenetischer Diagnostik und Literaturuebersicht

    Energy Technology Data Exchange (ETDEWEB)

    Nestle-Kraemling, Carolin [Universitaetsklinikum, Duesseldorf (Germany). Frauenklinik; Boelke, Edwin; Budach, Wilfried [Universitaetsklinikum Duesseldorf (DE). Klinik und Poliklinik fuer Strahlentherapie und radiologische Onkologie] (and others)

    2011-10-15

    Hemangiosarcomas of the breast represent a rare disease of the breast mainly occurring as secondary neoplasias with a latency of 5-10 years after primary treatment of breast cancer and are associated with an unfavourable prognosis. Radiation therapy, which is integrated within the concept of breast conserving therapy ranks as the main risk factor. In this report we describe the clinical course of 4 patients including their molecular genetic pattern and give a summary of the actual literature. Hemangiosarcomas occur as a secondary neoplasm with a latency of 5-10 years after primary treatment of breast cancer and have an unfavorable prognosis. A genetic predisposition is assumed, but we could not find a significant role of tumor suppressor genes BRCA1, BRCA2 or p53 in our patients. Due to limited data available for these tumors, recommendations for therapy include radical tumor resection achieving wide free margins and inconsistent regimens of chemo- and/or immunetherapy modalities. In the majority these are based on systemic therapy regimens for other cutaneous sarcomas, such as Kaposi's sarcoma. Efforts should be taken for a nation-wide systematic registration of all cases of post-irradiation hemangiosarcomas.

  11. [Matrix metalloproteases as molecular markers in gastric cancer].

    Science.gov (United States)

    de la Peña, Sol; Sampieri, Clara L; León-Córdoba, Kenneth

    2010-02-01

    Gastric cancer is the second leading cause of cancer-associated mortality in the world. Prognosis in patients with gastric cancer is difficult to establish because it is commonly diagnosed when gastric wall invasion and metastasis have occurred. Currently, some members of the extracellular matrix metalloproteinases have been identified, whose expression in gastric tumor tissue is significantly elevated compared to healthy gastric tissue. Matrix metalloproteinases are 24 zinc-dependent endopeptidases that catalyze the proteolysis of the extracellular matrix. This degradation allows the cancer cells invade the surrounding stroma and trigger metastasis. Upregulation of certain matrix metalloproteinases in gastric cancer has been associated with a poor prognosis and elevated invasive capacity. This review compiles evidence about the genetic expression of matrix metalloproteinases in gastric cancer and their role in tumour invasion and metastasis, emphasizing their potential as molecular markers of prognosis.

  12. Molecular and pro-inflammatory genetic profile in gastric carcinomas

    NARCIS (Netherlands)

    Sitarz, R.

    2009-01-01

    Gastric cancer is a result from the combination of environmental factors and an accumulation of specific genetic alterations, and affects mainly the older population. It is known that genetic factors play a more important role in early onset gastric cancers than in conventional gastric cancer patien

  13. Molecular Diagnostic Applications in Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Laura Huth

    2014-06-01

    Full Text Available Colorectal cancer, a clinically diverse disease, is a leading cause of cancer-related death worldwide. Application of novel molecular diagnostic tests, which are summarized in this article, may lead to an improved survival of colorectal cancer patients.  Distinction of these applications is based on the different molecular principles found in colorectal cancer (CRC. Strategies for molecular analysis of single genes (as KRAS or TP53 as well as microarray based techniques are discussed. Moreover, in addition to the fecal occult blood testing (FOBT and colonoscopy some novel assays offer approaches for early detection of colorectal cancer like the multitarget stool DNA test or the blood-based Septin 9 DNA methylation test. Liquid biopsy analysis may also exhibit great diagnostic potential in CRC for monitoring developing resistance to treatment. These new diagnostic tools and the definition of molecular biomarkers in CRC will improve early detection and targeted therapy of colorectal cancer.

  14. Genetic Screening for Familial Gastric Cancer

    Directory of Open Access Journals (Sweden)

    Oliveira Carla

    2004-05-01

    Full Text Available Abstract Approximately 10% of gastric cancer cases show familial clustering but only 1-3% of gastric carcinomas arise as a result of inherited gastric cancer predisposition syndromes. Direct proof that Hereditary Gastric Cancer a genetic disease with a germline gene defect has come from the demonstration of co-segregation of germline E-cadherin (CDH1 mutations with early onset diffuse gastric cancer in families with an autosomal dominant pattern of inheritance (HDGC. E-cadherin is a transmembrane calcium-dependent cell-adhesion molecule involved in cell-junction formation and the maintenance of epithelial integrity. In this review, we describe frequency and type of CDH1 mutations in sporadic and familial gastric cancer. Further we demonstrate the functional significance of some CDH1 germline missense mutations found in HDGC. We also discuss the CDH1 polymorphisms that have been associated to gastric cancer. We report other types of malignancies associated to HDGC, besides diffuse gastric cancer. Moreover, we review the data available on putative alternative candidate genes screened in familial gastric cancer. Finally, we briefly discuss the role of low-penetrance genes and Helicobacter pylori in gastric cancer. This knowledge is a fundamental step towards accurate genetic counselling, in which a highly specialised pre-symptomatic therapeutic intervention should be offered.

  15. Molecular genetics of hereditary sensory neuropathies.

    Science.gov (United States)

    Auer-Grumbach, Michaela; Mauko, Barbara; Auer-Grumbach, Piet; Pieber, Thomas R

    2006-01-01

    Hereditary sensory neuropathies (HSN), also known as hereditary sensory and autonomic neuropathies (HSAN), are a clinically and genetically heterogeneous group of disorders. They are caused by neuronal atrophy and degeneration, predominantly affecting peripheral sensory and autonomic neurons. Both congenital and juvenile to adulthood onset is possible. Currently, the classification of the HSN depends on the mode of inheritance, age at onset, and clinical presentation. Hallmark features are progressive sensory loss, chronic skin ulcers, and other skin abnormalities. Spontaneous fractures and neuropathic arthropathy are frequent complications and often necessitate amputations. Autonomic features vary between different subgroups. Distal muscle weakness and wasting may be present and is sometimes so prominent that it becomes difficult to distinguish HSN from Charcot-Marie-Tooth syndrome. Recent major advances in molecular genetics have led to the identification of seven gene loci and six-disease causing genes for autosomal-dominant and autosomal-recessive HSN. These genes have been shown to play roles in lipid metabolism and the regulation of intracellular vesicular transport, but also a presumptive transcriptional regulator, a nerve growth factor receptor, and a nerve growth factor have been described among the causative genes in HSN. Nevertheless, it remains unclear how mutations in the known genes lead to the phenotype of HSN. In this review, we summarize the recent progress of the molecular genetics of the HSN and the implicated genes.

  16. Molecular and genetic mechanisms of environmental mutagens

    International Nuclear Information System (INIS)

    This program is primarily concerned with elucidation of the nature of DNA lesions produced by environmental and energy related mutagens, their mechanisms of action, and their repair. The main focus is on actions of chemical mutagens and electromagnetic radiations. Synergistic interactions between mutagens and the mutational processes that lead to synergism are being investigated. Mutagens are chosen for study on the basis of their potential for analysis of mutation (as genetic probes), for development of procedures for reducing mutational damage, for their potential importance to risk assessment, and for development of improved mutagen testing systems. Bacterial cells are used because of the rapidity and clarity of scientific results that can be obtained, the detailed genetic maps, and the many well-defined mutand strains available. The conventional tools of microbial and molecular genetics are used, along with intercomparison of genetically related strains. Advantage is taken of tcollective dose commitment will result in more attention being paid to potential releases of radionuclides at relatively short times after disposal

  17. Genetic counseling of the cancer survivor

    International Nuclear Information System (INIS)

    Each year, tens of thousands of persons are diagnosed with cancer, are treated, and become survivors while still in their reproductive years. Their concerns about possible germ-cell damage as a result of life-saving radiation, chemotherapy, or both are plausible, based on evidence from animal models and from somatic cell mutations in human beings. A 40-year follow-up of survivors of the atomic bomb blasts in Japan showed no detectable genetic damage and suggested that the human gonad is more resistant to radiogenic mutation than the laboratory mouse. The pooled results of studying 12 series of offspring of cancer patients showed a 4% rate of major birth defects (similar to that of the general population) and an excess of fetal loss and low birth weight in offspring of women who received abdominal radiotherapy. According to preliminary evaluation of a new National Cancer Institute collaboration with five cancer registries, offspring of survivors of childhood cancers had no more birth defects than expected and, beyond an increase in probably familial cancers in children younger than 5, no overall increase in childhood cancer. Ideally, genetic and reproductive counseling should take place as soon as cancer is diagnosed (before therapy starts) and again when pregnancy is contemplated. 28 references

  18. Genetics Home Reference: bladder cancer

    Science.gov (United States)

    ... ND, Rubenstein JN, Eggener SE, Kozlowski JM. The p53 tumor suppressor gene and nuclear protein: basic science review and relevance in the management of bladder cancer. J Urol. 2003 Apr;169(4):1219-28. ...

  19. Testicular germ cell tumors: Molecular genetic and clinicomorphological aspects

    Directory of Open Access Journals (Sweden)

    M. V. Nemtsova

    2015-03-01

    Full Text Available Testicular tumors are the most common form of solid cancer in young men. According to the 2004 WHO classification, testicular germ cell tumors (TGCT may present with different histological types. Embryonic cells of varying grade may be a source of TGCT and the occurrence of this type of tumors is directly related to the formation of a pool of male sex cells and gametogenesis. The paper gives information on mo- lecular stages for the process of formation of male sex cells in health, as well as ways of their impairments leading to TGCT. An investigation of the profiles of gene expression and the spectrum of molecular damages revealed genes responsible for a predisposition to the sporadic and hereditary forms of TGCT. The paper presents the current molecular genetic and clinicomorphological characteristics of TGCT. 

  20. The Cancer Genome Anatomy Project: EST Sequencing and the Genetics of Cancer Progression

    Directory of Open Access Journals (Sweden)

    David B. Krizman

    1999-06-01

    Full Text Available As the process of tumor progression proceeds from the normal cellular state to a preneoplastic condition and finally to the fully invasive form, the molecular characteristics of the cell change as well. These characteristics can be considered a molecular fingerprint of the cell at each stage of progression and, analogous to fingerprinting a criminal, can be used as markers of the progression process. Based on this premise, the Cancer Genome Anatomy Project was initiated with the broad goal of determining the comprehensive molecular characterization of normal, premalignant, and malignant tumor cells, thus making a reality the identification of all major cellular mechanisms leading to tumor initiation and progression ([Strausberg, R.L., Dahl, C.A., and Klausner, R.D. (1997. “New opportunities for uncovering the molecular basis of cancer.” Nat. Genet., 16: 415-516.], www.ncbi.nlm.nih.gov/ncicgap/. The expectation of determining the genetic fingerprints of cancer progression will allow for 1 correlation of disease progression with therapeutic outcome; 2 improved evaluation of disease treatment; 3 stimulation of novel approaches to prevention, detection, and therapy; and 4 enhanced diagnostic tools for clinical applications. Whereas acquiring the comprehensive molecular analysis of cancer progression may take years, results from initial, short-term goals are currently being realized and are proving very fruitful.

  1. Genetic determinants of breast cancer risk

    OpenAIRE

    Li, Jingmei

    2011-01-01

    The main purpose of this thesis was to identify genetic risk factors using both hypothesis-based and hypothesis-free approaches. In an attempt to identify common disease susceptibility alleles for breast cancer, we started off with a hypothesis-free approach, and performed a combined analysis of three genome-wide association studies (GWAS), involving 2,702 women of European ancestry with invasive breast cancer and 5,726 controls. As GWAS has been said to underperform for stu...

  2. Hereditary cancer predisposition in children: genetic basis and clinical implications.

    Science.gov (United States)

    Strahm, Brigitte; Malkin, David

    2006-11-01

    Although cancer predisposition syndromes are rare and malignancies arising in this context account for only 1-10% of childhood tumors, studies performed in affected patients and their families have been of unique value for the understanding of cancer development. Three classes of genes (tumor suppressor genes, oncogenes and stability genes) have been identified and shown to be involved in the pathogenesis of familial, as well as sporadic tumors. Cancer has long been recognized as a genetic disease of somatic cells. Despite improved understanding of the molecular basis of predisposition to cancer and better diagnostic tools, the care of these patients and their families remains a major challenge for the clinician. Medical, psychological, ethical and legal issues have to be considered. This review focuses on examples of each class of inherited cancer predisposition syndromes with special implications for patients in the pediatric age group, including retinoblastoma predisposition, Li-Fraumeni syndrome, multiple endocrine neoplasia disorders and Fanconi anemia. The genetic basis of cancer predisposition is discussed as well as the major concepts and controversies in the clinical management of these patients and their families. PMID:16642469

  3. Cancer Genetics Overview (PDQ®)—Health Professional Version

    Science.gov (United States)

    Expert-reviewed information summary in which the features of hereditary cancer and the structure and content of other PDQ cancer genetics summaries are described. The summary also contains an extensive list of genetics resources available online.

  4. GENETIC OF THYROID CANCER FAMILIAL NON MEDULLARY THYROID CANCER

    Directory of Open Access Journals (Sweden)

    Silvia Cantara

    2012-08-01

    Full Text Available Differentiated non-medullary thyroid cancer (NMTC is mostly sporadic, but the recurrence of familial form of the disease has been reported. Short or dysfunctional telomeres have been associated with familial benign diseases and familial breast cancer. We aimed to study the telomere-telomerase complex in familial NMTC (FNMTC. The genetic analysis included the measurement in the peripheral blood of relative telomere length (RTL, telomerase reverse transcriptase (hTERT gene amplification, hTERT mRNA expression, telomerase protein activity and search of hTERT or TERC (telomerase RNA component gene mutations. We, also, studied telomeric fusions and associations as well as other chromosomal fragility features by conventional and molecular cytogenetic analyses, in phytohemagglutinin stimulated T-lymphocytes from familial patients, unaffected family members, sporadic PTC patients and healthy subjects. We found that, telomere lenght was significantly shorter in the blood of familial patients compared to sporadic PTCs, healthy subjects, nodular goiter and unaffected siblings. hTERT gene amplification was significantly higher in FNMTC patients compared to the other groups and, in particular, it was significantly greater in offspring with respect to parents. hTERT mRNA expression as well as telomerase activity were significantly higher in FNMTC patients compared to sporadic In addition, we demonstrated that familial patients have a significant increase in spontaneous telomeric associations and telomeric fusions compared to healthy subjects and sporadic cases. Q-FISH analysis demonstrated that familial cases display a significant decrease in the telomeric PNA-FISH signal intensity in metaphase chromsome. Our study demonstrates that patients with FNMTC display an imbalance of the telomeretelomerase complex in the peripheral blood.

  5. Molecular diversity and genetic relationships in Secale

    Indian Academy of Sciences (India)

    E. SANTOS; M. MATOS; P. SILVA; A. M. FIGUEIRAS; C. BENITO; O. PINTO-CARNIDE

    2016-06-01

    The objective of this study was to quantify the molecular diversity and to determine the genetic relationships amongSecalespp. and among cultivars ofSecale cerealeusing RAPDs, ISSRs and sequence analysis of six exons ofScMATE1gene.Thirteen ryes (cultivated and wild) were genotyped using 21 RAPD and 16 ISSR primers. A total of 435 markers (242 RAPDsand 193 ISSRs) were obtained, with 293 being polymorphic (146 RAPDs and 147 ISSRs). Two RAPD and nine ISSR primersgenerated more than 80% of polymorphism. The ISSR markers were more polymorphic and informative than RAPDs. Further,69% of the ISSR primers selected achieved at least 70% of DNA polymorphism. The study of six exons of theScMATE1gene also demonstrated a high genetic variability that subsists inSecalegenus. One difference observed in exon 1 sequencesfromS. vaviloviiseems to be correlated with Al sensitivity in this species. The genetic relationships obtained using RAPDs,ISSRs and exons ofScMATE1gene were similar.S. ancestrale ,S. kuprijanoviiandS. cerealewere grouped in the same clusterandS. segetalewas in another cluster.S. vaviloviishowed evidences of not being clearly an isolate species and having greatintraspecific difference

  6. Molecular diversity and genetic relationships in Secale.

    Science.gov (United States)

    Santos, E; Matos, M; Silva, P; Figueiras, A M; Benito, C; Pinto-Carnide, O

    2016-06-01

    The objective of this study was to quantify the molecular diversity and to determine the genetic relationships among Secale spp. and among cultivars of Secale cereale using RAPDs, ISSRs and sequence analysis of six exons of ScMATE1 gene. Thirteen ryes (cultivated and wild) were genotyped using 21 RAPD and 16 ISSR primers. A total of 435 markers (242 RAPDs and 193 ISSRs) were obtained, with 293 being polymorphic (146 RAPDs and 147 ISSRs). Two RAPD and nine ISSR primers generated more than 80% of polymorphism. The ISSR markers were more polymorphic and informative than RAPDs. Further, 69% of the ISSR primers selected achieved at least 70% of DNA polymorphism. The study of six exons of the ScMATE1 gene also demonstrated a high genetic variability that subsists in Secale genus. One difference observed in exon 1 sequences from S. vavilovii seems to be correlated with Al sensitivity in this species. The genetic relationships obtained using RAPDs, ISSRs and exons of ScMATE1 gene were similar. S. ancestrale, S. kuprijanovii and S. cereale were grouped in the same cluster and S. segetale was in another cluster. S. vavilovii showed evidences of not being clearly an isolate species and having great intraspecific differences. PMID:27350669

  7. New genetic variants associated with prostate cancer

    Science.gov (United States)

    Researchers have newly identified 23 common genetic variants -- one-letter changes in DNA known as single-nucleotide polymorphisms or SNPs -- that are associated with risk of prostate cancer. These results come from an analysis of more than 10 million SNP

  8. Molecular Biology of Esophageal Cancer

    Institute of Scientific and Technical Information of China (English)

    HuanXi; JanBrabender; RalfMetzger; PaulM.Schneider

    2004-01-01

    There have been many new developments in our understanding of esophageal carcinoma biology over the past several years. Information regarding both of the major forms of this disease, adenocarcinoma and squamous cell carcinoma, has accumulated in conjunction with data on precursor conditions such as Barrett's esophagus. Interesting and promising findings have included overexpression of proto-oncogenes,loss of heterozygosity at multiple chromosomal loci, tumor suppressor gene inactivation, epigenetic silencing by DNA methylation, and mutations and deletions involving the tumor suppressor gene p53. Important cancer pathways, the cyclin kinase inhibitor cascade and the DNA mismatch repair process, implicated in the genesis of multiple tumor types have also been inculpated in esophageal carcinogenesis. Alterations in the p16 and p15 cyclin kinase inhibitors including point mutations and homozygous deletions have been reported in primary esophageal tumors. Further developments in the field of molecular carcinogenesis of esophageal malignancies promise to yield improvements in prevention, early detection, prognostic categorization, and perhaps gene-based therapy of this deadly disease.

  9. Genetic Determinants of Gastric Cancer

    NARCIS (Netherlands)

    S. Boccia (Stefania)

    2009-01-01

    textabstractResults show that gastric cancer risk is increased by the inheritance of the variant alleles of the metabolic genes SULT1A1 and CYP2E1 *6, especially among smokers and drinkers, respectively. An additional increased risk is conferred by the inheritance of GSTT1 null variant, especially i

  10. Genetics Home Reference: lung cancer

    Science.gov (United States)

    ... on PubMed (1 link) PubMed OMIM (1 link) LUNG CANCER Sources for This Page Berger AH, Imielinski M, Duke F, Wala J, Kaplan N, Shi GX, Andres DA, Meyerson M. Oncogenic RIT1 mutations in lung adenocarcinoma. Oncogene. 2014 Aug 28;33(35):4418- ...

  11. Integrated Molecular Profiling in Advanced Cancers Trial

    Science.gov (United States)

    2016-06-21

    Breast Cancer; Non-small Cell Lung Cancer; Colorectal Cancer; Genitourinary Cancer; Pancreatobiliary Gastrointestinal Cancer; Upper Aerodigestive Tract Cancer; Gynecological Cancers; Melanoma Cancers; Rare Cancers; Unknown Primary Cancers

  12. Genetic factors and breast cancer laterality

    Directory of Open Access Journals (Sweden)

    Amer MH

    2014-04-01

    years (48/166, 28.9%, 6–10 years (34/166, 20.5%, and >11 years (84/166, 50.6%, P=0.12065. Conclusion: High similarities between patients and their first-degree relatives in regards to cancer laterality and possibly age at initial diagnosis of cancer may suggest an underlying inherited genetic predisposition. Keywords: breast neoplasms, genetics, left-right determination factors, cerebral factors, dominance, survival analysis

  13. Molecular imaging of prostate cancer with PET.

    Science.gov (United States)

    Jadvar, Hossein

    2013-10-01

    Molecular imaging is paving the way for precision and personalized medicine. In view of the significant biologic and clinical heterogeneity of prostate cancer, molecular imaging is expected to play an important role in the evaluation of this prevalent disease. The natural history of prostate cancer spans from an indolent localized process to biochemical relapse after radical treatment with curative intent to a lethal castrate-resistant metastatic disease. The ongoing unraveling of the complex tumor biology of prostate cancer uniquely positions molecular imaging with PET to contribute significantly to every clinical phase of prostate cancer evaluation. The purpose of this article was to provide a concise review of the current state of affairs and potential future developments in the diagnostic utility of PET in prostate cancer.

  14. Synthetic Genetic Targeting of Genome Instability in Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Sajesh, Babu V.; Guppy, Brent J.; McManus, Kirk J., E-mail: mcmanusk@cc.umanitoba.ca [Manitoba Institute of Cell Biology, Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba R3E 0V9 (Canada)

    2013-06-24

    Cancer is a leading cause of death throughout the World. A limitation of many current chemotherapeutic approaches is that their cytotoxic effects are not restricted to cancer cells, and adverse side effects can occur within normal tissues. Consequently, novel strategies are urgently needed to better target cancer cells. As we approach the era of personalized medicine, targeting the specific molecular defect(s) within a given patient’s tumor will become a more effective treatment strategy than traditional approaches that often target a given cancer type or sub-type. Synthetic genetic interactions are now being examined for their therapeutic potential and are designed to target the specific genetic and epigenetic phenomena associated with tumor formation, and thus are predicted to be highly selective. In general, two complementary approaches have been employed, including synthetic lethality and synthetic dosage lethality, to target aberrant expression and/or function associated with tumor suppressor genes and oncogenes, respectively. Here we discuss the concepts of synthetic lethality and synthetic dosage lethality, and explain three general experimental approaches designed to identify novel genetic interactors. We present examples and discuss the merits and caveats of each approach. Finally, we provide insight into the subsequent pre-clinical work required to validate novel candidate drug targets.

  15. Synthetic Genetic Targeting of Genome Instability in Cancer

    International Nuclear Information System (INIS)

    Cancer is a leading cause of death throughout the World. A limitation of many current chemotherapeutic approaches is that their cytotoxic effects are not restricted to cancer cells, and adverse side effects can occur within normal tissues. Consequently, novel strategies are urgently needed to better target cancer cells. As we approach the era of personalized medicine, targeting the specific molecular defect(s) within a given patient’s tumor will become a more effective treatment strategy than traditional approaches that often target a given cancer type or sub-type. Synthetic genetic interactions are now being examined for their therapeutic potential and are designed to target the specific genetic and epigenetic phenomena associated with tumor formation, and thus are predicted to be highly selective. In general, two complementary approaches have been employed, including synthetic lethality and synthetic dosage lethality, to target aberrant expression and/or function associated with tumor suppressor genes and oncogenes, respectively. Here we discuss the concepts of synthetic lethality and synthetic dosage lethality, and explain three general experimental approaches designed to identify novel genetic interactors. We present examples and discuss the merits and caveats of each approach. Finally, we provide insight into the subsequent pre-clinical work required to validate novel candidate drug targets

  16. Molecular Genetic Identification Of Some Flax Mutants

    International Nuclear Information System (INIS)

    Five flax genotypes (Linum usitatissimum L.) i.e., commercial cultivar Sakha 2, the mother variety Giza 4 and three mutant types induced by gamma rays, were screened for their salinity tolerance in field experiments (salinity concentration was 8600 and 8300 ppm for soil and irrigation water, respectively). Mutation 6 was the most salt tolerant as compared to the other four genotypes.RAPD technique was used to detect some molecular markers associated with salt tolerance in flax (Mut 6), RAPD-PCR results using 12 random primers exhibited 149 amplified fragments; 91.9% of them were polymorphic and twelve molecular markers (8.1%) for salt tolerant (mutant 6) were identified with molecular size ranged from 191 to 4159 bp and only eight primers successes to amplify these specific markers. Concerning the other mutants, Mut 15 and Mut 25 exhibited 4.3% and 16.2% specific markers, respectively. The induced mutants exhibited genetic similarity to the parent variety were about 51%, 58.3% and 61.1% for Mut 25, Mut 6 and Mut 15, respectively. These specific markers (SM) are used for identification of the induced mutations and it is important for new variety registration.

  17. Molecular Profiling of Prostate Cancer Patients

    OpenAIRE

    Nna, Emmanuel Okechukwu

    2009-01-01

    In the UK, more than 30 000 men are diagnosed annually with prostate cancer (PCa) and about 10 000 men die from it each year. Although several molecular markers have been associated with prostate cancer development and/ or progression, only few of them are used in diagnostic pathology. The current standard tests include serum PSA test, digital rectal examination and histology of prostate biopsy. Recently the PCA-3 molecular test was approved in the European Union, and it is now...

  18. Molecular imaging of breast cancer

    NARCIS (Netherlands)

    Adams, A.L.L.

    2014-01-01

    Breast cancer is the most common type of cancer in women. Imaging techniques play a pivotal role in breast cancer management, especially in lesion detection, treatment planning and evaluation, and prognostication. These imaging techniques have however limitations such as the use of ionizing radiatio

  19. Genetics of Prostate Cancer (PDQ®)—Health Professional Version

    Science.gov (United States)

    Expert-reviewed information summary about the genetics of prostate cancer, including information about specific genes and family cancer syndromes. The summary also contains information about screening for prostate cancer and research aimed at prevention of this disease. Psychosocial issues associated with genetic testing and counseling of individuals who may have hereditary prostate cancer syndrome are also discussed.

  20. Genetics of Colorectal Cancer (PDQ®)—Health Professional Version

    Science.gov (United States)

    Expert-reviewed information summary about the genetics of colorectal cancer, including information about specific genes and family cancer syndromes. The summary also contains information about screening for colorectal cancer and research aimed at prevention of this disease. Psychosocial issues associated with genetic testing and counseling of individuals who may have hereditary colorectal cancer syndrome are also discussed.

  1. Molecular Biology of Pancreatic Cancer: How Useful Is It in Clinical Practice?

    OpenAIRE

    Sakorafas, George H; Vasileios Smyrniotis

    2012-01-01

    Context During the recent two decades dramatic advances of molecular biology allowed an in-depth understanding of pancreatic carcinogenesis. It is currently accepted that pancreatic cancer has a genetic component. The real challenge is now how these impressive advances could be used in clinical practice. Objective To critically present currently available data regarding clinical application of molecular biology in pancreatic cancer. Methods Reports about clinical implications of molecular bio...

  2. Genetic instability in Gynecological Cancer

    Institute of Scientific and Technical Information of China (English)

    ZHAO Qing-hua; ZHOU Hong-lin

    2003-01-01

    Defects of mismatch repair (MMR) genes also have beenidentified in many kinds of tumors. Loss of MMR functionhas been linked to genetic instability especially microsatelliteinstability that results in high mutation rate. In this review, wediscussed the microsatellite instability observed in thegynecological tumors. We also discussed defects in the DNAmismatch repair in these tumors and their correlation to themicrosatellite instability, as well as the gene mutations due tothe microsatellite instability in these tumors. From thesediscussion, we tried to understand the mechanism ofcarcinogenesis in gynecological tumors from the aspect ofgenetic instability due to mismatch repair defects.

  3. Molecular genetics of distal hereditary motor neuropathies.

    Science.gov (United States)

    Irobi, Joy; De Jonghe, Peter; Timmerman, Vincent

    2004-10-01

    Inherited peripheral neuropathies comprise a wide variety of diseases primarily affecting the peripheral nervous system. The best-known peripheral neuropathy is Charcot-Marie-Tooth disease (CMT) described in 1886 by J.-M. Charcot, P. Marie and H.H. Tooth. In 1980, A.E. Harding and P.K. Thomas showed that in a large group of individuals with CMT, several only had motor abnormalities on clinical and electrophysiological examination, whereas sensory abnormalities were absent. This exclusively motor variant of CMT was designated as spinal CMT or hereditary distal spinal muscular atrophy, and included in the distal hereditary motor neuropathies (distal HMN). The distal HMN are clinically and genetically heterogeneous and are subdivided according to the mode of inheritance, age at onset and clinical evolution. Since the introduction of positional cloning, 12 chromosomal loci and seven disease-causing genes have been identified for autosomal dominant and recessive distal HMN. Most of the genes involved have housekeeping functions, as in RNA processing, translation synthesis, glycosylation, stress response, apoptosis, but also axonal trafficking and editing. Functional characterization of the mutations will help to unravel the cellular processes that underlie the specificity of motor neuropathies leading to neurogenic muscular atrophy of distal limb muscles. Here we review the recent progress of the molecular genetics of distal HMN and discuss the genes implicated.

  4. Assessing the genetic architecture of epithelial ovarian cancer histological subtypes.

    Science.gov (United States)

    Cuellar-Partida, Gabriel; Lu, Yi; Dixon, Suzanne C; Fasching, Peter A; Hein, Alexander; Burghaus, Stefanie; Beckmann, Matthias W; Lambrechts, Diether; Van Nieuwenhuysen, Els; Vergote, Ignace; Vanderstichele, Adriaan; Doherty, Jennifer Anne; Rossing, Mary Anne; Chang-Claude, Jenny; Rudolph, Anja; Wang-Gohrke, Shan; Goodman, Marc T; Bogdanova, Natalia; Dörk, Thilo; Dürst, Matthias; Hillemanns, Peter; Runnebaum, Ingo B; Antonenkova, Natalia; Butzow, Ralf; Leminen, Arto; Nevanlinna, Heli; Pelttari, Liisa M; Edwards, Robert P; Kelley, Joseph L; Modugno, Francesmary; Moysich, Kirsten B; Ness, Roberta B; Cannioto, Rikki; Høgdall, Estrid; Høgdall, Claus; Jensen, Allan; Giles, Graham G; Bruinsma, Fiona; Kjaer, Susanne K; Hildebrandt, Michelle A T; Liang, Dong; Lu, Karen H; Wu, Xifeng; Bisogna, Maria; Dao, Fanny; Levine, Douglas A; Cramer, Daniel W; Terry, Kathryn L; Tworoger, Shelley S; Stampfer, Meir; Missmer, Stacey; Bjorge, Line; Salvesen, Helga B; Kopperud, Reidun K; Bischof, Katharina; Aben, Katja K H; Kiemeney, Lambertus A; Massuger, Leon F A G; Brooks-Wilson, Angela; Olson, Sara H; McGuire, Valerie; Rothstein, Joseph H; Sieh, Weiva; Whittemore, Alice S; Cook, Linda S; Le, Nhu D; Blake Gilks, C; Gronwald, Jacek; Jakubowska, Anna; Lubiński, Jan; Kluz, Tomasz; Song, Honglin; Tyrer, Jonathan P; Wentzensen, Nicolas; Brinton, Louise; Trabert, Britton; Lissowska, Jolanta; McLaughlin, John R; Narod, Steven A; Phelan, Catherine; Anton-Culver, Hoda; Ziogas, Argyrios; Eccles, Diana; Campbell, Ian; Gayther, Simon A; Gentry-Maharaj, Aleksandra; Menon, Usha; Ramus, Susan J; Wu, Anna H; Dansonka-Mieszkowska, Agnieszka; Kupryjanczyk, Jolanta; Timorek, Agnieszka; Szafron, Lukasz; Cunningham, Julie M; Fridley, Brooke L; Winham, Stacey J; Bandera, Elisa V; Poole, Elizabeth M; Morgan, Terry K; Goode, Ellen L; Schildkraut, Joellen M; Pearce, Celeste L; Berchuck, Andrew; Pharoah, Paul D P; Webb, Penelope M; Chenevix-Trench, Georgia; Risch, Harvey A; MacGregor, Stuart

    2016-07-01

    Epithelial ovarian cancer (EOC) is one of the deadliest common cancers. The five most common types of disease are high-grade and low-grade serous, endometrioid, mucinous and clear cell carcinoma. Each of these subtypes present distinct molecular pathogeneses and sensitivities to treatments. Recent studies show that certain genetic variants confer susceptibility to all subtypes while other variants are subtype-specific. Here, we perform an extensive analysis of the genetic architecture of EOC subtypes. To this end, we used data of 10,014 invasive EOC patients and 21,233 controls from the Ovarian Cancer Association Consortium genotyped in the iCOGS array (211,155 SNPs). We estimate the array heritability (attributable to variants tagged on arrays) of each subtype and their genetic correlations. We also look for genetic overlaps with factors such as obesity, smoking behaviors, diabetes, age at menarche and height. We estimated the array heritabilities of high-grade serous disease ([Formula: see text] = 8.8 ± 1.1 %), endometrioid ([Formula: see text] = 3.2 ± 1.6 %), clear cell ([Formula: see text] = 6.7 ± 3.3 %) and all EOC ([Formula: see text] = 5.6 ± 0.6 %). Known associated loci contributed approximately 40 % of the total array heritability for each subtype. The contribution of each chromosome to the total heritability was not proportional to chromosome size. Through bivariate and cross-trait LD score regression, we found evidence of shared genetic backgrounds between the three high-grade subtypes: serous, endometrioid and undifferentiated. Finally, we found significant genetic correlations of all EOC with diabetes and obesity using a polygenic prediction approach. PMID:27075448

  5. [Basal cell carcinoma. Molecular genetics and unusual clinical features].

    Science.gov (United States)

    Reifenberger, J

    2007-05-01

    Basal cell carcinoma is the most common human cancer. Its incidence is steadily increasing. The development of basal cell carcinoma is linked to genetic factors, including the individual skin phototype, as well as the cumulative exposure to UVB. The vast majority of basal cell carcinomas are sporadic tumors, while familial cases associated with certain hereditary syndromes are less common. At the molecular level, basal cell carcinomas are characterized by aberrant activation of sonic hedgehog signaling, usually due to mutations either in the ptch or smoh genes. In addition, about half of the cases carry mutations in the tp53 tumor suppressor gene, which are often UVB-associated C-->T transition mutations. Clinically, basal cell carcinomas may show a high degree of phenotypical variability. In particular, tumors occurring in atypical locations, showing an unusual clinical appearance, or imitating other skin diseases may cause diagnostic problems. This review article summarizes the current state of the art concerning the etiology, predisposition and molecular genetics of basal cell carcinoma. In addition, examples of unusual clinical manifestations are illustrated. PMID:17440702

  6. Genetic factors and breast cancer laterality

    International Nuclear Information System (INIS)

    between patients and their first-degree relatives in regards to cancer laterality and possibly age at initial diagnosis of cancer may suggest an underlying inherited genetic predisposition

  7. Genetic and molecular alterations in meningiomas.

    Science.gov (United States)

    Alexiou, George A; Markoula, Sofia; Gogou, Pinelopi; Kyritsis, Athanasios P

    2011-05-01

    Meningiomas are the most common benign intracranial tumors in adults arising from the dura matter. The etiology of meningiomas is mostly unknown, although several risk factors have been described, such as ionizing radiation, head injury, hormones and genetic factors. According to WHO they are classified into 3 grades, grade I, grade II and grade III. Meningiomas express various hormonal and growth factor receptors, such as progesterone, estrogen, somatostatin, transforming growth factor alpha (TGF-alpha) and epidermal growth factor (EGF) receptors, which may be related to their biological behavior and response to treatment. Chromosomal abnormalities linked to meningiomas involve chromosomes 22, 1p, 9p, 10p, 11, 14q, 15, 17, and 18q. In addition, genes that may be involved in the formation of meningiomas include NF2, DAL-1, p14 (ARF), p53, MDM2, Rb, p16 and c-myc. It is likely that detailed molecular information will aid in establishing a molecular grading of these tumors and predict response to treatment and survival. PMID:21227570

  8. Radionuclide molecular target therapy for lung cancer

    International Nuclear Information System (INIS)

    Lung cancer harms people's health or even lives severely. Currently, the morbidity and mortality of lung cancer are ascending all over the world. Accounting for 38.08% of malignant tumor caused death in male and 16% in female in cities,ranking top in both sex. Especially, the therapy of non-small cell lung cancer has not been obviously improved for many years. Recently, sodium/iodide transporter gene transfection and the therapy of molecular target drugs mediated radionuclide are being taken into account and become the new research directions in treatment of advanced lung cancer patients with the development of technology and theory for medical molecular biology and the new knowledge of lung cancer's pathogenesis. (authors)

  9. Exploiting novel molecular targets in gastrointestinal cancers

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Novel molecular targets are being discovered as we learn more about the aberrant processes underlying various cancers. Efforts to translate this knowledge are starting to impact on the care of patients with gastrointestinal cancers. The epidermal growth factor receptor (EGFR) pathway and angiogenesis have been targeted successfully in colorectal cancer with cetuximab, panitunumab and bevacizumab. Similarly, EGFR-targeting with erlotinib yielded significant survival benefit in pancreatic cancer when combined with gemcitabine. The multi-targeting approach with sorafenib has made it the first agent to achieve significant survival benefit in hepatocellular carcinoma. Efforts to exploit the dysregulated Akt/mTOR pathway in GI cancer therapy are ongoing. These molecular targets can be disrupted by various approaches, including the use of monoclonal antibody to intercept extracellular ligands and disrupt receptor-ligand binding, and small molecule inhibitors that interrupt the activation of intracellular kinases.

  10. ENDOCRINE TUMOURS: Advances in the molecular pathogenesis of thyroid cancer: lessons from the cancer genome.

    Science.gov (United States)

    Riesco-Eizaguirre, Garcilaso; Santisteban, Pilar

    2016-11-01

    Thyroid cancer is the most common endocrine malignancy giving rise to one of the most indolent solid cancers, but also one of the most lethal. In recent years, systematic studies of the cancer genome, most importantly those derived from The Cancer Genome Altas (TCGA), have catalogued aberrations in the DNA, chromatin, and RNA of the genomes of thousands of tumors relative to matched normal cellular genomes and have analyzed their epigenetic and protein consequences. Cancer genomics is therefore providing new information on cancer development and behavior, as well as new insights into genetic alterations and molecular pathways. From this genomic perspective, we will review the main advances concerning some essential aspects of the molecular pathogenesis of thyroid cancer such as mutational mechanisms, new cancer genes implicated in tumor initiation and progression, the role of non-coding RNA, and the advent of new susceptibility genes in thyroid cancer predisposition. This look across these genomic and cellular alterations results in the reshaping of the multistep development of thyroid tumors and offers new tools and opportunities for further research and clinical development of novel treatment strategies. PMID:27666535

  11. Zodiac: A Comprehensive Depiction of Genetic Interactions in Cancer by Integrating TCGA Data

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yitan; Xu, Yanxun; Helseth, Donald L.; Gulukota, Kamalakar; Yang, Shengjie; Pesce, Lorenzo L.; Mitra, Riten; Muller, Peter; Sengupta, Subhajit; Guo, Wentian; Foster, Ian; Bullock, JaQuel A.

    2015-08-01

    Background: Genetic interactions play a critical role in cancer development. Existing knowledge about cancer genetic interactions is incomplete, especially lacking evidences derived from large-scale cancer genomics data. The Cancer Genome Atlas (TCGA) produces multimodal measurements across genomics and features of thousands of tumors, which provide an unprecedented opportunity to investigate the interplays of genes in cancer. Methods: We introduce Zodiac, a computational tool and resource to integrate existing knowledge about cancer genetic interactions with new information contained in TCGA data. It is an evolution of existing knowledge by treating it as a prior graph, integrating it with a likelihood model derived by Bayesian graphical model based on TCGA data, and producing a posterior graph as updated and data-enhanced knowledge. In short, Zodiac realizes “Prior interaction map + TCGA data → Posterior interaction map.” Results: Zodiac provides molecular interactions for about 200 million pairs of genes. All the results are generated from a big-data analysis and organized into a comprehensive database allowing customized search. In addition, Zodiac provides data processing and analysis tools that allow users to customize the prior networks and update the genetic pathways of their interest. Zodiac is publicly available at www.compgenome.org/ZODIAC. Conclusions: Zodiac recapitulates and extends existing knowledge of molecular interactions in cancer. It can be used to explore novel gene-gene interactions, transcriptional regulation, and other types of molecular interplays in cancer.

  12. Child Development and Molecular Genetics: 14 Years Later

    Science.gov (United States)

    Plomin, Robert

    2013-01-01

    Fourteen years ago, the first article on molecular genetics was published in this journal: "Child Development, Molecular Genetics, and What to Do With Genes Once They Are Found" (R. Plomin & M. Rutter, 1998). The goal of the article was to outline what developmentalists can do with genes once they are found. These new directions for developmental…

  13. Characterizing genetic syndromes involved in cancer and radiogenic cancer risk

    International Nuclear Information System (INIS)

    The COG project 2806A (1995), reviewed the On-line Mendelian Inheritance in Man (OMIM) database of genetic syndromes to identify those syndromes, genes, and DNA sequences implicated in some way in the cancer process, and especially in radiogenic cancer risk. The current report describes a recent update of the survey in light of two years of further progress in the Human Genome project, and is intended to supply a comprehensive list of those genetic syndromes, genes, DNA sequences and map locations that define genes likely to be involved in cancer risk. Of the 8203 syndromes in OMIM in 1997 June, 814 are associated, even if marginally, with cancer. Of the 814 syndromes so linked, 672 have been mapped to a chromosome, and 476 have been mapped to a chromosome and had a DNA sequence associated with their messenger RNA (or cDNA) sequences. In addition, 35 syndromes have sequences not associated with map locations, and the remaining 107 have neither been mapped nor sequenced. We supply the list of the various genetic syndromes sorted by chromosome location and by OMIM descriptor, together with all the associated but unmapped and unsequenced syndromes. (author)

  14. Cystic fibrosis, molecular genetics for all life

    Directory of Open Access Journals (Sweden)

    Ausilia Elce

    2015-10-01

    Full Text Available Cystic fibrosis (CF is the most frequent lethal autosomal recessive disorder among Caucasians (incidence: 1:2,500 newborn. In the last two decades CF prognosis considerably improved and many patients well survive into their adulthood. Furthermore, milder CF with a late onset was described. CF is a challenge for laboratory of molecular genetics that greatly contributes to the natural history of the disease since fetal age. Carrier screening and prenatal diagnosis, also by non-invasive analysis of maternal blood fetal DNA, are now available, and many labs offer preimplantation diagnosis. The major criticism in prenatal medicine is the lack of an effective multidisciplinary counseling that helps the couples to plan their reasoned reproductive choice. Most countries offer newborn screening that significantly reduce CF morbidity but different protocols based on blood trypsin, molecular analysis and sweat chloride cause a variable efficiency of the screening programs. Again, laboratory is crucial for CF diagnosis in symptomatic patients: sweat chloride is the diagnostic golden standard, but different methodologies and the lack of quality control in most labs reduce its effectiveness. Molecular analysis contributes to confirm diagnosis in symptomatic subjects; furthermore, it helps to predict the disease outcome on the basis of the mutation (genotype-phenotype correlation and mutations in a myriad of genes, inherited independently by CF transmembrane conductance regulator (CFTR, which may modulate the clinical expression of the disease in each single patient (modifier genes. More recently, the search of the CFTR mutations gained a role in selecting CF patients that may benefit from biological therapy based on correctors and potentiators that are effective in patients bearing specific mutations (personalized therapy. All such applications of molecular diagnostics confirm the “uniqueness” of each CF patient, offering to laboratory medicine the

  15. Translating colorectal cancer genetics into clinically useful biomarkers.

    Science.gov (United States)

    Morley-Bunker, A; Walker, L C; Currie, M J; Pearson, J; Eglinton, T

    2016-08-01

    Colorectal cancer (CRC) is a major health problem worldwide accounting for over a million deaths annually. While many patients with Stage II and III CRC can be cured with combinations of surgery, radiotherapy and chemotherapy, this is morbid costly treatment and a significant proportion will suffer recurrence and eventually die of CRC. Increased understanding of the molecular pathogenesis of CRC has the potential to identify high risk patients and target therapy more appropriately. Despite increased understanding of the molecular events underlying CRC development, established molecular techniques have only produced a limited number of biomarkers suitable for use in routine clinical practice to predict risk, prognosis and response to treatment. Recent rapid technological developments, however, have made genomic sequencing of CRC more economical and efficient, creating potential for the discovery of genetic biomarkers that have greater diagnostic, prognostic and therapeutic capabilities for the management of CRC. This paper reviews the current understanding of the molecular pathogenesis of CRC, and summarizes molecular biomarkers that surgeons will encounter in current clinical use as well as those under development in clinical and preclinical trials. New molecular technologies are reviewed together with their potential impact on the understanding of the molecular pathogenesis of CRC and their potential clinical utility in classification, diagnosis, prognosis and targeting of therapy. PMID:26990814

  16. HNPCC (Lynch Syndrome: Differential Diagnosis, Molecular Genetics and Management - a Review

    Directory of Open Access Journals (Sweden)

    Lynch Henry T

    2003-12-01

    Full Text Available Abstract HNPCC (Lynch syndrome is the most common form of hereditary colorectal cancer (CRC, wherein it accounts for between 2-7 percent of the total CRC burden. When considering the large number of extracolonic cancers integral to the syndrome, namely carcinoma of the endometrium, ovary, stomach, hepatobiliary system, pancreas, small bowel, brain tumors, and upper uroepithelial tract, these estimates of its frequency are likely to be conservative. The diagnosis is based upon its natural history in concert with a comprehensive cancer family history inclusive of all anatomic sites. In order for surveillance and management to be effective and, indeed, lifesaving, among these high-risk patients, the linchpin to cancer control would be the physician, who must be knowledgeable about hereditary cancer syndromes, their molecular and medical genetics, genetic counseling, and, most importantly, the natural history of the disorders, so that the entirety of this knowledge can be melded to highly-targeted management.

  17. Molecular genetic studies in flax (Linum usitatissimum L.)

    NARCIS (Netherlands)

    Vromans, J.

    2006-01-01

    In this thesis five molecular genetic studies on flax ( Linum usitatissimum L.) are described, of which two chapters aim to characterize the genetic structure and the amount of genetic diversity in the primary and secondary gene pool of the crop species. Three chapters describe the development of AF

  18. Molecular genetics at the Fort Collins Science Center

    Science.gov (United States)

    Oyler-McCance, S.J.; Stevens, P.D.

    2011-01-01

    The Fort Collins Science Center operates a molecular genetic and systematics research facility (FORT Molecular Ecology Laboratory) that uses molecular genetic tools to provide genetic information needed to inform natural resource management decisions. For many wildlife species, the data generated have become increasingly important in the development of their long-term management strategies, leading to a better understanding of species diversity, population dynamics and ecology, and future conservation and management needs. The Molecular Ecology Lab serves Federal research and resource management agencies by developing scientifically rigorous research programs using nuclear, mitochondrial and chloroplast DNA to help address many of today's conservation biology and natural resource management issues.

  19. Genetic determinants of postmenopausal breast and endometrial cancer

    OpenAIRE

    Kristjana, Einarsdottir

    2007-01-01

    Breast cancer is overall the most common cancer in women worldwide and endometrial cancer is the most common gynaecological cancer in the industrialized world. History of a first-degree relative with breast or endometrial cancer has been related to a twofold increase in risk of the respective diseases. Whilst genetic risk factors for endometrial cancer in general or for breast cancer in women not carrying any high-penetrance mutations are largely unknown, a polygenic model h...

  20. Oncology nurses' knowledge, practice, and educational needs regarding cancer genetics.

    Science.gov (United States)

    Peterson, S K; Rieger, P T; Marani, S K; deMoor, C; Gritz, E R

    2001-01-01

    This study evaluated oncology nurses' knowledge of cancer genetics and related topics, and identified current practice patterns and perceived educational needs in this area. A 54-item study questionnaire was mailed to a random sample of 1,200 Oncology Nursing Society (ONS) members and 75 members of the ONS-Cancer Genetics Special Interest Group; 656 (51%) of those eligible responded. After exclusions, we analyzed 573 responses. Most respondents were Caucasian, female, and worked in hospital or outpatient settings. Half were staff nurses and 8% specialized in cancer genetics. Respondents with higher levels of nursing education or with continuing education in cancer genetics, who worked in positions other than staff nurses, and whose primary practice area was cancer genetics had significantly higher mean scores overall on questions measuring knowledge of cancer genetics and related areas. Higher perceived educational needs to improve knowledge or practice related to cancer genetics at basic, intermediate or advanced levels were associated with all or some of the following variables: lower education; hospital/ outpatient or managed care/private practice settings; lack of continuing education in cancer genetics, and positions other than advanced practice nurses. Although nearly half of the respondents had received patient inquiries regarding cancer genetics, only 35% were aware of referral resources and 26% had made such referrals. These findings may be used to develop targeted educational approaches that prepare oncology nurses to incorporate cancer genetics into any level of practice. PMID:11426452

  1. Genetics of Skin Cancer (PDQ®)—Health Professional Version

    Science.gov (United States)

    Expert-reviewed information summary about the genetics of skin cancer — basal cell carcinoma, squamous cell carcinoma, and melanoma — including information about specific gene mutations and related cancer syndromes. The summary also contains information about interventions that may influence the risk of developing skin cancer in individuals who may be genetically susceptible to these syndromes.

  2. Cancer Hallmarks, Biomarkers and Breast Cancer Molecular Subtypes.

    Science.gov (United States)

    Dai, Xiaofeng; Xiang, Liangjian; Li, Ting; Bai, Zhonghu

    2016-01-01

    Breast cancer is a complex disease encompassing multiple tumor entities, each characterized by distinct morphology, behavior and clinical implications. Besides estrogen receptor, progesterone receptor and human epidermal growth factor receptor 2, novel biomarkers have shown their prognostic and predictive values, complicating our understanding towards to the heterogeneity of such cancers. Ten cancer hallmarks have been proposed by Weinberg to characterize cancer and its carcinogenesis. By reviewing biomarkers and breast cancer molecular subtypes, we propose that the divergent outcome observed from patients stratified by hormone status are driven by different cancer hallmarks. 'Sustaining proliferative signaling' further differentiates cancers with positive hormone receptors. 'Activating invasion and metastasis' and 'evading immune destruction' drive the differentiation of triple negative breast cancers. 'Resisting cell death', 'genome instability and mutation' and 'deregulating cellular energetics' refine breast cancer classification with their predictive values. 'Evading growth suppressors', 'enabling replicative immortality', 'inducing angiogenesis' and 'tumor-promoting inflammation' have not been involved in breast cancer classification which need more focus in the future biomarker-related research. This review novels in its global view on breast cancer heterogeneity, which clarifies many confusions in this field and contributes to precision medicine. PMID:27390604

  3. Molecular genetic strategies for species identification

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper probes into the molecular genetic mechanism of the formation of species, subspecies and variety in evolving progression, and brings forward 5 criteria of an ideal strategy in species identification: stating the specific characteristics at species, subspecies and variety level without any interference of too high polymorphism at individual or population level; keys should be distributed as 0 or 1, e. g. yes or no; satisfying re-peatability and simple operation; high veracity and reliability; adaptability to widely various specimen. Respec-tively, this paper reviews two strategies focusing on detecting the fragment length polymorphism and base re-placement and lays out some detail methods under above strategies. It demonstrates that it is not possible to solve all species problems by pursuing identification with only a single gene or DNA fragment. Only based on thorough consideration of all strategies, a method or combined several methods could bring satisfying reliability. For advanced focuses, it requires not only development and optimization of methods under above strategies, but also new originality of creative strategies.

  4. Molecular genetic studies in flax (Linum usitatissimum L.)

    OpenAIRE

    Vromans, J

    2006-01-01

    In this thesis five molecular genetic studies on flax ( Linum usitatissimum L.) are described, of which two chapters aim to characterize the genetic structure and the amount of genetic diversity in the primary and secondary gene pool of the crop species. Three chapters describe the development of AFLP markers, linkage map construction and QTL analysis of resistance and quality traits.Genetic diversity in the primary gene pool was studied by AFLP fingerprinting 110 varieties representing linse...

  5. Is genetic background important in lung cancer survival?

    Directory of Open Access Journals (Sweden)

    Linda S Lindström

    Full Text Available BACKGROUND: In lung cancer, a patient's survival is poor with a wide variation in survival within the stage of disease. The aim of this study was to investigate the familial concordance in lung cancer survival by means of analyses of pairs with different degrees of familial relationships. METHODS: Our population-based Swedish family database included three million families and over 58,100 lung cancer patients. We modelled the proband (parent, sibling, spouse survival utilizing a multivariate proportional hazard (Cox model adjusting for possible confounders of survival. Subsequently, the survival in proband's relative (child, sibling, spouse was analysed with a Cox model. FINDINGS: By use of Cox modelling with 5 years follow-up, we noted a decreased hazard ratio for death in children with good parental survival (Hazard Ratio [HR] = 0.71, 95% CI = 0.51 to 0.99, compared to those with poor parental survival. Also for siblings, a very strong protective effect was seen (HR = 0.14, 95% CI = 0.030 to 0.65. Finally, in spouses no correlation in survival was found. INTERPRETATION: Our findings suggest that genetic factors are important in lung cancer survival. In a clinical setting, information on prognosis in a relative may be vital in foreseeing the survival in an individual newly diagnosed with lung cancer. Future molecular studies enhancing the understanding of the underlying mechanisms and pathways are needed.

  6. [Development of molecular targeted therapies in lung cancers].

    Science.gov (United States)

    Suda, Kenichi; Mitsudomi, Tetsuya

    2014-05-01

    Human cancers usually possess cumulative genetic aberrations. However, recent studies have revealed that the proliferation and survival of specific subsets of lung cancer depend on a few somatic mutation(s), so-called driver mutations. Representative driver mutations include the EGFR mutation and ALK translocation identified in about 40% and 3% of lung adenocarcinomas in Japan, respectively. These tumors are extremely sensitive to the respective tyrosine kinase inhibitors. This sensitivity has encouraged researchers and clinicians to explore novel driver mutations in lung cancers as future molecular targets. Driver mutations reported so far include the HER2 mutation, BRAF mutation, ROS1 translocation, RET translocation, and NTRK translocation in lung adenocarcinomas, and FGFR1 amplification, DDR2 mutation, and FGFR3 translocation in lung squamous cell carcinomas. However, despite initial dramatic responses, the acquisition of resistance to molecular targeted drugs is almost inevitable. Overcoming resistance to molecular targeted drugs, the key drugs at this time, is an urgent issue to improve the outcomes of lung cancer patients. PMID:24946519

  7. Molecular markers for prostate cancer.

    NARCIS (Netherlands)

    Reynolds, M.A.; Kastury, K.; Groskopf, J.; Schalken, J.A.; Rittenhouse, H.G.

    2007-01-01

    Serum PSA testing has been used for over 20 years as an aid in the diagnosis and management of prostate cancer. Although highly sensitive, it suffers from a lack of specificity, showing elevated serum levels in a variety of other conditions including prostatitis, benign prostate hyperplasia, and non

  8. Molecular cytogenetic characterization of canine histiocytic sarcoma: A spontaneous model for human histiocytic cancer identifies deletion of tumor suppressor genes and highlights influence of genetic background on tumor behavior

    Directory of Open Access Journals (Sweden)

    Abadie Jerome

    2011-05-01

    Full Text Available Abstract Background Histiocytic malignancies in both humans and dogs are rare and poorly understood. While canine histiocytic sarcoma (HS is uncommon in the general domestic dog population, there is a strikingly high incidence in a subset of breeds, suggesting heritable predisposition. Molecular cytogenetic profiling of canine HS in these breeds would serve to reveal recurrent DNA copy number aberrations (CNAs that are breed and/or tumor associated, as well as defining those shared with human HS. This process would identify evolutionarily conserved cytogenetic changes to highlight regions of particular importance to HS biology. Methods Using genome wide array comparative genomic hybridization we assessed CNAs in 104 spontaneously occurring HS from two breeds of dog exhibiting a particularly elevated incidence of this tumor, the Bernese Mountain Dog and Flat-Coated Retriever. Recurrent CNAs were evaluated further by multicolor fluorescence in situ hybridization and loss of heterozygosity analyses. Statistical analyses were performed to identify CNAs associated with tumor location and breed. Results Almost all recurrent CNAs identified in this study were shared between the two breeds, suggesting that they are associated more with the cancer phenotype than with breed. A subset of recurrent genomic imbalances suggested involvement of known cancer associated genes in HS pathogenesis, including deletions of the tumor suppressor genes CDKN2A/B, RB1 and PTEN. A small number of aberrations were unique to each breed, implying that they may contribute to the major differences in tumor location evident in these two breeds. The most highly recurrent canine CNAs revealed in this study are evolutionarily conserved with those reported in human histiocytic proliferations, suggesting that human and dog HS share a conserved pathogenesis. Conclusions The breed associated clinical features and DNA copy number aberrations exhibited by canine HS offer a valuable model

  9. Molecular cytogenetic characterization of canine histiocytic sarcoma: A spontaneous model for human histiocytic cancer identifies deletion of tumor suppressor genes and highlights influence of genetic background on tumor behavior

    International Nuclear Information System (INIS)

    Histiocytic malignancies in both humans and dogs are rare and poorly understood. While canine histiocytic sarcoma (HS) is uncommon in the general domestic dog population, there is a strikingly high incidence in a subset of breeds, suggesting heritable predisposition. Molecular cytogenetic profiling of canine HS in these breeds would serve to reveal recurrent DNA copy number aberrations (CNAs) that are breed and/or tumor associated, as well as defining those shared with human HS. This process would identify evolutionarily conserved cytogenetic changes to highlight regions of particular importance to HS biology. Using genome wide array comparative genomic hybridization we assessed CNAs in 104 spontaneously occurring HS from two breeds of dog exhibiting a particularly elevated incidence of this tumor, the Bernese Mountain Dog and Flat-Coated Retriever. Recurrent CNAs were evaluated further by multicolor fluorescence in situ hybridization and loss of heterozygosity analyses. Statistical analyses were performed to identify CNAs associated with tumor location and breed. Almost all recurrent CNAs identified in this study were shared between the two breeds, suggesting that they are associated more with the cancer phenotype than with breed. A subset of recurrent genomic imbalances suggested involvement of known cancer associated genes in HS pathogenesis, including deletions of the tumor suppressor genes CDKN2A/B, RB1 and PTEN. A small number of aberrations were unique to each breed, implying that they may contribute to the major differences in tumor location evident in these two breeds. The most highly recurrent canine CNAs revealed in this study are evolutionarily conserved with those reported in human histiocytic proliferations, suggesting that human and dog HS share a conserved pathogenesis. The breed associated clinical features and DNA copy number aberrations exhibited by canine HS offer a valuable model for the human counterpart, providing additional evidence towards

  10. Molecular Mechanisms Underlying Psychological Stress and Cancer.

    Science.gov (United States)

    Shin, Kyeong Jin; Lee, Yu Jin; Yang, Yong Ryoul; Park, Seorim; Suh, Pann-Ghill; Follo, Matilde Yung; Cocco, Lucio; Ryu, Sung Ho

    2016-01-01

    Psychological stress is an emotion experienced when people are under mental pressure or encounter unexpected problems. Extreme or repetitive stress increases the risk of developing human disease, including cardiovascular disease (CVD), immune diseases, mental disorders, and cancer. Several studies have shown an association between psychological stress and cancer growth and metastasis in animal models and case studies of cancer patients. Stress induces the secretion of stress-related mediators, such as catecholamine, cortisol, and oxytocin, via the activation of the hypothalamic-pituitary-adrenocortical (HPA) axis or the sympathetic nervous system (SNS). These stress-related hormones and neurotransmitters adversely affect stress-induced tumor progression and cancer therapy. Catecholamine is the primary factor that influences tumor progression. It can regulate diverse cellular signaling pathways through adrenergic receptors (ADRs), which are expressed by several types of cancer cells. Activated ADRs enhance the proliferation and invasion abilities of cancer cells, alter cell activity in the tumor microenvironment, and regulate the interaction between cancer and its microenvironment to promote tumor progression. Additionally, other stress mediators, such as glucocorticoids and oxytocin, and their cognate receptors are involved in stress-induced cancer growth and metastasis. Here, we will review how each receptor-mediated signal cascade contributes to tumor initiation and progression and discuss how we can use these molecular mechanisms for cancer therapy.

  11. Prevalence and detection of psychosocial problems in cancer genetic counseling

    OpenAIRE

    Eijzenga, W.; Bleiker, E M A; Hahn, D E E; Kolk, van der, J.; Sidharta, G. N.; Aaronson, N K

    2015-01-01

    Only a minority of individuals who undergo cancer genetic counseling experience heightened levels of psychological distress, but many more experience a range of cancer genetic-specific psychosocial problems. The aim of this study was to estimate the prevalence of such psychosocial problems, and to identify possible demographic and clinical variables associated significantly with them. Consenting individuals scheduled to undergo cancer genetic counseling completed the Psychosocial Aspects of H...

  12. Genetics of Kidney Cancer (Renal Cell Cancer) (PDQ®)—Health Professional Version

    Science.gov (United States)

    Expert-reviewed information summary about the genetics of kidney cancer, including information about specific genes and family cancer syndromes. The summary also contains information about screening for kidney cancer and research aimed at prevention of this disease.

  13. Apocalypse... Now? Molecular epidemiology, predictive genetic tests, and social communication of genetic contents

    Directory of Open Access Journals (Sweden)

    Luis David Castiel

    1999-01-01

    Full Text Available The author analyzes the underlying theoretical aspects in the construction of the molecular watershed of epidemiology and the concept of genetic risk, focusing on issues raised by contemporary reality: new technologies, globalization, proliferation of communications strategies, and the dilution of identity matrices. He discusses problems pertaining to the establishment of such new interdisciplinary fields as molecular epidemiology and molecular genetics. Finally, he analyzes the repercussions of the social communication of genetic content, especially as related to predictive genetic tests and cloning of animals, based on triumphal, deterministic metaphors sustaining beliefs relating to the existence and supremacy of concepts such as 'purity', 'essence', and 'unification' of rational, integrated 'I's/egos'.

  14. Apocalypse...now? Molecular epidemiology, predictive genetic tests, and social communication of genetic contents.

    Science.gov (United States)

    Castiel, L D

    1999-01-01

    The author analyzes the underlying theoretical aspects in the construction of the molecular watershed of epidemiology and the concept of genetic risk, focusing on issues raised by contemporary reality: new technologies, globalization, proliferation of communications strategies, and the dilution of identity matrices. He discusses problems pertaining to the establishment of such new interdisciplinary fields as molecular epidemiology and molecular genetics. Finally, he analyzes the repercussions of the social communication of genetic content, especially as related to predictive genetic tests and cloning of animals, based on triumphal, deterministic metaphors sustaining beliefs relating to the existence and supremacy of concepts such as 'purity', 'essence', and 'unification' of rational, integrated 'I's/egos'. PMID:10089550

  15. Molecular genetics of medullary thyroid carcinoma: multistep tumorigenesis

    NARCIS (Netherlands)

    van Veelen, W.

    2008-01-01

    The genetic mechanisms underlying the multistep process of medullary thyroid carcinoma (MTC) development is at present largely unknown. About 60% of all MTCs occur as sporadic cancer and the remaining 40% occur as familial cancer. Activation of RET, a receptor tyrosine kinase, initiates hereditary M

  16. Molecular biology and riddle of cancer: the ‘Tom & Jerry’ show

    Directory of Open Access Journals (Sweden)

    Md. Al Mamun

    2011-11-01

    Full Text Available From the conventional Bird’s eye, cancer initiation and metastasis are generally intended to be understood beneath the light of classical clonal genetic, epigenetic and cancer stem cell model. But inspite decades of investigation, molecular biology has shown hard success to give Eagle’s eye in unraveling the riddle of cancer. And it seems, tiring Tom runs in vague behind naughty Jerry.

  17. Intracellular Trafficking Considerations in the Development of Natural Ligand-Drug Molecular Conjugates for Cancer

    OpenAIRE

    Yoon, Dennis J.; Liu, Christina T.; Quinlan, Devin S.; Nafisi, Parsa M.; Kamei, Daniel T.

    2011-01-01

    Overexpressed receptors, characteristic of many cancers, have been targeted by various researchers to achieve a more specific treatment for cancer. A common approach is to use the natural ligand for the overexpressed receptor as a cancer-targeting agent which can deliver a chemically or genetically conjugated toxic molecule. However, it has been found that the therapeutic efficacy of such ligand-drug molecular conjugates can be limited, since they naturally follow the intracellular traffickin...

  18. Disparities in Cancer Genetic Risk Assessment and Testing.

    Science.gov (United States)

    Underhill, Meghan L; Jones, Tarsha; Habin, Karleen

    2016-07-01

    Scientific and technologic advances in genomics have revolutionized genetic counseling and testing, targeted therapy, and cancer screening and prevention. Among younger women, African American and Hispanic women have a higher rate of cancers that are associated with hereditary cancer risk, such as triple-negative breast cancer, which is linked to poorer outcomes. Therefore, genetic testing is particularly important in diverse populations. Unfortunately, all races and ethnic groups are not well represented in current genetic testing practices, leading to disparities in cancer prevention and early detection. PMID:27314195

  19. New molecular targets against cervical cancer

    Directory of Open Access Journals (Sweden)

    Duenas-Gonzalez A

    2014-12-01

    Full Text Available Alfonso Duenas-Gonzalez,1,2 Alberto Serrano-Olvera,3 Lucely Cetina,4 Jaime Coronel4 1Unit of Biomedical Research in Cancer, Instituto de Investigaciones Biomedicas UNAM/Instituto Nacional de Cancerologia, Mexico City, 2ISSEMyM Cancer Center, Toluca, 3Medical Oncology Service, ABC Medical Center, Mexico City, 4Division of Clinical Research, Instituto Nacional de Cancerologia, Mexico City, Mexico On behalf of the Tumor Study Group Abstract: Cervical cancer is the third most commonly diagnosed cancer worldwide and the fourth leading cause of cancer death in women. Major advances but still insufficient achievements in the treatment of locally advanced and high-risk early stage patients have occurred in the last decade with the incorporation of concurrent cisplatin with radiation and, lately, gemcitabine added to cisplatin chemoradiation. Despite a number of clinical studies incorporating molecular-targeted therapy as radiosensitizers being in progress, so far, only antiangiogenic therapy with bevacizumab added to cisplatin chemoradiation has demonstrated safety and shown encouraging results in a Phase II study. In advanced disease, cisplatin doublets do not have a great impact on the natural history of the disease with median survival rates not exceeding 13 months. The first Phase III study of bevacizumab, added to cisplatin or a non-cisplatin-containing doublet, showed significant increase in both overall survival and progression-free survival. Further studies are needed before bevacizumab plus chemotherapy can be considered the standard of care for advanced disease. Characterization of the mutational landscape of cervical cancer has already been initiated, indicating that, for now, few of these targetable alterations match with available agents. Progress in both the mutational landscape knowledge and developments of novel targeted therapies may result in more effective and individualized treatments for cervical cancer. The potential efficacy of

  20. Workshop on molecular methods for genetic diagnosis. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Rinchik, E.M.

    1997-07-01

    The Sarah Lawrence College Human Genetics Program received Department of Energy funding to offer a continuing medical education workshop for genetic counselors in the New York metropolitan area. According to statistics from the National Society of Genetic Counselors, there are approximately 160 genetic counselors working in the tri-state area (New York, New Jersey, and Connecticut), and many of them had been working in the field for more than 10 years. Thus, there was a real need to offer these counselors an in-depth opportunity to learn the specifics of the major advances in molecular genetics, and, in particular, the new approaches to diagnostic testing for genetic disease. As a result of the DOE Award DE-FG02-95ER62048 ($20,583), in July 1995 we offered the {open_quotes}Workshop on Molecular Methods for Genetic Diagnosis{close_quotes} for 24 genetic counselors in the New York metropolitan area. The workshop included an initial review session on the basics of molecular biology, lectures and discussions on past and current topics in molecular genetics and diagnostic procedures, and, importantly, daily laboratory exercises. Each counselor gained not only background, but also firsthand experience, in the major techniques of biochemical and molecular methods for diagnosing genetic diseases as well as in mathematical and computational techniques involved in human genetics analyses. Our goal in offering this workshop was not to make genetic counselors experts in these laboratory diagnostic techniques, but to acquaint them, by hands-on experience, about some of the techniques currently in use. We also wanted to provide them a technical foundation upon which they can understand and appreciate new technical developments arising in the near future.

  1. Cancer of the Pancreas: Molecular Pathways and Current Advancement in Treatment

    Science.gov (United States)

    Polireddy, Kishore; Chen, Qi

    2016-01-01

    Pancreatic cancer is one of the most lethal cancers among all malignances, with a median overall survival of cancers harbor a variety of genetic alternations that render it difficult to treat even with targeted therapy. Recent studies revealed that pancreatic cancers are highly enriched with a cancer stem cell (CSC) population, which is resistant to chemotherapeutic drugs, and therefore escapes chemotherapy and promotes tumor recurrence. Cancer cell epithelial to mesenchymal transition (EMT) is highly associated with metastasis, generation of CSCs, and treatment resistance in pancreatic cancer. Reviewed here are the molecular biology of pancreatic cancer, the major signaling pathways regulating pancreatic cancer EMT and CSCs, and the advancement in current clinical and experimental treatments for pancreatic cancer.

  2. Molecular genetics of type 2 diabetes

    OpenAIRE

    Luosheng, Li

    2002-01-01

    Type 2 diabetes is a common and chronic disease caused by interactions between genetic and environmental factors. The Goto-Kakizaki (GK) rat is a well-established genetic model of type 2 diabetes. Since several aspects of the pathophysiology of diabetes are shared between human and GK rats, we used this model to perform the first genome-wide scan for quantitative trait locus (QTL) of type 2 diabetes. A genetic linkage map with 530 microsatellite markers was constructed in ...

  3. Molecular markers for thyroid cancer

    International Nuclear Information System (INIS)

    The importance of the study of the thyroid nodule lies in excluding the possibility of a malignant lesion because the majority of lesions are benign but there is a malignancy risk of 5 to 10%. Most of them are well differentiated carcinomas originating in the follicular epithelium. In spite of the fact that the majority are benign lesions, distinguishing them from carcinomas is crucial to treatment and adequate follow-up. Fine-needle biopsy allows making the diagnosis in most of cases. However, this method is restricted, particularly when diagnosing follicular lesions. In an effort to improve the diagnostic accuracy of biopsy and to provide new diagnosing criteria, a number of molecular markers have been put forward, some of which has wide range of approval whereas others still awaits to be validated for further implementation. This article presented an updated review of molecular markers with higher number of evidence, more accessible and potentially usable from a methodological viewpoint for diagnosis of the thyroid nodule before surgery. The importance of the study of the thyroid nodule lies in excluding the possibility of a malignant lesion because the majority of lesions are benign but there is a malignancy risk of 5 to 10%. Most of them are well differentiated carcinomas originating in the follicular epithelium. In spite of the fact that the majority are benign lesions, distinguishing them from carcinomas is crucial to treatment and adequate follow-up. Fine-needle biopsy allows making the diagnosis in most of cases. However, this method is restricted, particularly when diagnosing follicular lesions. In an effort to improve the diagnostic accuracy of biopsy and to provide new diagnosing criteria, a number of molecular markers have been put forward, some of which has wide range of approval whereas others still awaits to be validated for further implementation. This article presented an updated review of molecular markers with higher number of evidence, more

  4. Genetic alterations in sporadic and hereditary colorectal cancer: implementations for screening and follow-up.

    Science.gov (United States)

    Souglakos, John

    2007-01-01

    The genetics underlying an inherited predisposition to cancer are rapidly being uncovered. This fact may ultimately lead to the routine use of molecular tools to diagnose these disorders, and establish interventions to prevent the development of cancer. Among the multiple cancer family syndromes, several are known to be associated with the development of colon cancer. These disorders may be diagnosed during evaluation of the index patient or during screening of family members who are at risk. Although the effectiveness of screening and surveillance strategies is unproven in controlled clinical trials for any of these syndromes, the high cancer risk warrants screening, and reasonable recommendations can be made. Several other genetic syndromes are associated with gastrointestinal polyposis. The risk of colon cancer in these diseases is uncertain, and may not be increased and they are not mentioned in this review. Examples include Cowden disease, intestinal ganglioneuromatosis, Ruvalcaba-Myhre-Smith syndrome, Devon family syndrome, and Cronkite-Canada syndrome. PMID:17384504

  5. A refined molecular taxonomy of breast cancer. : molecular classification of breast cancer

    OpenAIRE

    Guedj, Michael; Marisa, Laëtitia; De Reynies, Aurélien; Orsetti, Béatrice; Schiappa, Renaud; Bibeau, Frédéric; MacGrogan, Gaëtan; Lerebours, Florence; Finetti, Pascal; Longy, Michel; Bertheau, Philippe; Bertrand, Françoise; Bonnet, Françoise; Martin, Anne-Laure; Feugeas, Jean-Paul

    2012-01-01

    International audience; The current histoclinical breast cancer classification is simple but imprecise. Several molecular classifications of breast cancers based on expression profiling have been proposed as alternatives. However, their reliability and clinical utility have been repeatedly questioned, notably because most of them were derived from relatively small initial patient populations. We analyzed the transcriptomes of 537 breast tumors using three unsupervised classification methods. ...

  6. [Molecular bases of cancer immunology].

    Science.gov (United States)

    Barrera-Rodríguez, R; Peralta-Zaragoza, O; Madrid-Marina, V

    1995-01-01

    The immune system is a tight network of different types of cells and molecules. The coordinated action of these elements mounts a precise immune response against tumor cells. However, these cells present several escape mechanisms, leading to tumor progression. This paper shows several cellular and molecular events involved in the regulation of the immune response against tumor cells. The interaction of several molecules such as MHC, TcR, adhesins, tumor antigens and cytokines are discussed, as well as the most recent knowledge about escape mechanisms and immunotherapy. PMID:7502157

  7. Molecular techniques for detection of genetic variation in horticultural crops

    International Nuclear Information System (INIS)

    The application of molecular techniques in cultivar identification and classification of some horticultural fruit crops are briefly reviewed in this paper. Two distinct approaches have been utilized including electrophoresis of polymorphic isozymes and DNA Amplification Fingerprintings; DAFs. Such markers were successfully employed in distinguishing genetic variability and generated genetic relatedness dendrogram among closely related cultivars of Salacca species, and Lansium domesticum Correa. (author)

  8. Gastric cancer-molecular and clinical dimensions.

    Science.gov (United States)

    Wadhwa, Roopma; Song, Shumei; Lee, Ju-Seog; Yao, Yixin; Wei, Qingyi; Ajani, Jaffer A

    2013-11-01

    Gastric cancer imposes a considerable health burden around the globe despite its declining incidence. The disease is often diagnosed in advanced stages and is associated with a poor prognosis for patients. An in-depth understanding of the molecular underpinnings of gastric cancer has lagged behind many other cancers of similar incidence and morbidity, owing to our limited knowledge of germline susceptibility traits for risk and somatic drivers of progression (to identify novel therapeutic targets). A few germline (PLCE1) and somatic (ERBB2, ERBB3, PTEN, PI3K/AKT/mTOR, FGF, TP53, CDH1 and MET) alterations are emerging and some are being pursued clinically. Novel somatic gene targets (ARID1A, FAT4, MLL and KMT2C) have also been identified and are of interest. Variations in the therapeutic approaches dependent on geographical region are evident for localized gastric cancer-differences that are driven by preferences for the adjuvant strategies and the extent of surgery coupled with philosophical divides. However, greater uniformity in approach has been noted in the metastatic cancer setting, an incurable condition. Having realized only modest successes, momentum is building for carrying out more phase III comparative trials, with some using biomarker-based patient selection strategies. Overall, rapid progress in biotechnology is improving our molecular understanding and can help with new drug discovery. The future prospects are excellent for defining biomarker-based subsets of patients and application of specific therapeutics. However, many challenges remain to be tackled. Here, we review representative molecular and clinical dimensions of gastric cancer.

  9. Real world experience with cancer genetic counseling via telephone

    OpenAIRE

    Sutphen, Rebecca; Davila, Barbara; Shappell, Heather; Holtje, Tricia; Vadaparampil, Susan; Friedman, Sue; Toscano, Michele; Armstrong, Joanne

    2010-01-01

    One barrier to genetic testing is the lack of access to genetic counselors. We provided cancer genetic counseling via telephone, through a pilot project for employees of a national health insurer, Aetna, Inc. Knowledge transfer, behavioral intentions, and patient satisfaction were assessed by survey after genetic counseling. Aetna sent an individual email to its employees nationwide notifying them of the availability of a new telephone genetic counseling and testing program and providing a li...

  10. Molecular Biomarkers of Colorectal Cancer: A Review of Published Articles From Iran

    Directory of Open Access Journals (Sweden)

    Geramizadeh

    2015-10-01

    Full Text Available Context Colorectal cancer is one of the most common cancers worldwide (the third most common cancer in the world and is especially more common in Western countries; however, its incidence has been increased significantly during the last few years in Eastern countries such as Iran and considered as one of the five common cancers in this country. According to molecular pathways, numerous biomarkers have been identified for colorectal cancers which help patients’ management. Evidence aquisition In this study, we tried to review published articles about the molecular biomarkers of colorectal cancer from Iran. We searched medical databases such as google scholar, Scopus, PubMed, Magiran, SID and Iran Medex for keywords of “colon cancer, KRAS, BRAF, mismatch repair gene, Microsatellite instability, molecular genetics, molecular pathogenesis, biomarker and Iran” to find studies published about colorectal cancers from Iran regarding molecular biomarkers. Conclusion This study showed that molecular biomarkers in colorectal cancer of Iranian patients are not so different from Western population.

  11. Epstein-Barr virus-positive gastric cancer: a distinct molecular subtype of the disease?

    Directory of Open Access Journals (Sweden)

    Alexandre Andrade dos Anjos Jácome

    2016-04-01

    Full Text Available Abstract: Approximately 90% of the world population is infected by Epstein-Barr virus (EBV. Usually, it infects B lymphocytes, predisposing them to malignant transformation. Infection of epithelial cells occurs rarely, and it is estimated that about to 10% of gastric cancer patients harbor EBV in their malignant cells. Given that gastric cancer is the third leading cause of cancer-related mortality worldwide, with a global annual incidence of over 950,000 cases, EBV-positive gastric cancer is the largest group of EBV-associated malignancies. Based on gene expression profile studies, gastric cancer was recently categorized into four subtypes; EBV-positive, microsatellite unstable, genomically stable and chromosomal instability. Together with previous studies, this report provided a more detailed molecular characterization of gastric cancer, demonstrating that EBV-positive gastric cancer is a distinct molecular subtype of the disease, with unique genetic and epigenetic abnormalities, reflected in a specific phenotype. The recognition of characteristic molecular alterations in gastric cancer allows the identification of molecular pathways involved in cell proliferation and survival, with the potential to identify therapeutic targets. These findings highlight the enormous heterogeneity of gastric cancer, and the complex interplay between genetic and epigenetic alterations in the disease, and provide a roadmap to implementation of genome-guided personalized therapy in gastric cancer. The present review discusses the initial studies describing EBV-positive gastric cancer as a distinct clinical entity, presents recently described genetic and epigenetic alterations, and considers potential therapeutic insights derived from the recognition of this new molecular subtype of gastric adenocarcinoma.

  12. Identification of novel genetic markers of breast cancer survival

    NARCIS (Netherlands)

    Q. Guo (Qi); M.K. Schmidt (Marjanka); P. Kraft (Peter); S. Canisius (Sander); C. Chen (Constance); S. Khan (Sofia); J.P. Tyrer (Jonathan); M.K. Bolla (Manjeet); Q. Wang (Qing); J. Dennis (Joe); K. Michailidou (Kyriaki); M. Lush (Michael); S. Kar (Siddhartha); J. Beesley (Jonathan); A.M. Dunning (Alison); M. Shah (Mitul); K. Czene (Kamila); H. Darabi (Hatef); M. Eriksson (Mikael); D. Lambrechts (Diether); C. Weltens (Caroline); K. Leunen; S.E. Bojesen (Stig); B.G. Nordestgaard (Børge); S.F. Nielsen (Sune); H. Flyger (Henrik); J. Chang-Claude (Jenny); A. Rudolph (Anja); P. Seibold (Petra); D. Flesch-Janys (Dieter); C. Blomqvist (Carl); K. Aittomäki (Kristiina); R. Fagerholm (Rainer); T.A. Muranen (Taru); F.J. Couch (Fergus); J.E. Olson (Janet); C. Vachon (Celine); I.L. Andrulis (Irene); J.A. Knight (Julia); G. Glendon (Gord); A.-M. Mulligan (Anna-Marie); A. Broeks (Annegien); F.B.L. Hogervorst (Frans); C.A. Haiman (Christopher); B.E. Henderson (Brian); F.R. Schumacher (Fredrick); L. Le Marchand (Loic); J. Hopper (John); H. Tsimiklis (Helen); C. Apicella (Carmel); M.C. Southey (Melissa); A. Cox (Angela); S.S. Cross (Simon); M.W.R. Reed (Malcolm); G.G. Giles (Graham G.); R.L. Milne (Roger L.); C.A. McLean (Catriona Ann); R. Winqvist (Robert); K. Pykäs (Katri); A. Jukkola-Vuorinen (Arja); M. Grip (Mervi); M.J. Hooning (Maartje); A. Hollestelle (Antoinette); J.W.M. Martens (John W. M.); A.M.W. van den Ouweland (Ans); F. Marme (Federick); A. Schneeweiss (Andreas); R. Yang (Rongxi); B. Burwinkel (Barbara); J.D. Figueroa (Jonine); S.J. Chanock (Stephen); J. Lissowska (Jolanta); E.J. Sawyer (Elinor); I.P. Tomlinson (Ian); M. Kerin (Michael); N. Miller (Nicola); H. Brenner (Hermann); A.K. Dieffenbach (Aida Karina); V. Arndt (Volker); B. Holleczek (B.); A. Mannermaa (Arto); V. Kataja (Vesa); V-M. Kosma (Veli-Matti); J.M. Hartikainen (J.); J. Li (Jingmei); J.S. Brand (Judith S.); M.K. Humphreys (Manjeet); P. Devilee (Peter); R.A.E.M. Tollenaar (Rob); C.M. Seynaeve (Caroline); P. Radice (Paolo); P. Peterlongo (Paolo); B. Bonnani (Bernardo); P. Mariani (Paolo); P.A. Fasching (Peter); M.W. Beckmann (Matthias); R. Hein (Rebecca); A.B. Ekici (Arif); G. Chenevix-Trench (Georgia); R. Balleine (Rosemary); K.-A. Phillips (Kelly-Anne); J. Benítez (Javier); M.P. Zamora (Pilar); J.I. Arias Pérez (José Ignacio); P. Menéndez (Primitiva); A. Jakubowska (Anna); J. Lubinski (Jan); K. Jaworska-Bieniek (Katarzyna); K. Durda (Katarzyna); U. Hamann (Ute); M. Kabisch (Maria); H.U. Ulmer (Hans); T. Rud̈iger (Thomas); S. Margolin (Sara); V. Kristensen (Vessela); S. Nord (Silje); D.G. Evans (Gareth); J. Abraham (Jean); H. Earl (Helena); L. Hiller (Louise); J.A. Dunn (J.); S. Bowden (Sarah); C.D. Berg (Christine); D. Campa (Daniele); W.R. Diver (Ryan); S.M. Gapstur (Susan M.); M.M. Gaudet (Mia); S.E. Hankinson (Susan); R.N. Hoover (Robert); A. Hüsing (Anika); R. Kaaks (Rudolf); M.J. Machiela (Mitchell J.); W.C. Willett (Walter C.); M. Barrdahl (Myrto); F. Canzian (Federico); S.-F. Chin (Suet-Feung); C. Caldas (Carlos); D. Hunter (David); S. Lindstrom (Stephen); M. García-Closas (Montserrat); P. Hall (Per); D.F. Easton (Douglas); D. Eccles (Diana); N. Rahman (Nazneen); H. Nevanlinna (Heli); P.D.P. Pharoah (Paul)

    2015-01-01

    textabstractBackground: Survival after a diagnosis of breast cancer varies considerably between patients, and some of this variation may be because of germline genetic variation. We aimed to identify genetic markers associated with breast cancer-specific survival. Methods: We conducted a large meta-

  13. Molecular diagnosis of prostate cancer: Topical issues

    Directory of Open Access Journals (Sweden)

    E. N. Knyazev

    2014-01-01

    Full Text Available Prostate cancer (PC is the second most common cancer and the fifth highest malignancy mortality rate in men worldwide. Although PC is detectable in 15-20% of men during life, its death risk is only about 3%. This means that not all PC cases require the same management tactics. The given review analyzes the current investigations searching for molecular biological markers to predict the course of PC and to choose its treatment policy, including that in the development of resistance to androgen-deprivation therapy.

  14. Molecular diagnosis of prostate cancer: Topical issues

    OpenAIRE

    E. N. Knyazev; K. A. Fomicheva; K. M. Nyushko; Kaprin, A. D.; B. Ya. Alekseev; M. Yu. Shkurnikov

    2014-01-01

    Prostate cancer (PC) is the second most common cancer and the fifth highest malignancy mortality rate in men worldwide. Although PC is detectable in 15-20% of men during life, its death risk is only about 3%. This means that not all PC cases require the same management tactics. The given review analyzes the current investigations searching for molecular biological markers to predict the course of PC and to choose its treatment policy, including that in the development of resistance to androge...

  15. Molecular diagnosis of prostate cancer: Topical issues

    Directory of Open Access Journals (Sweden)

    E. N. Knyazev

    2014-12-01

    Full Text Available Prostate cancer (PC is the second most common cancer and the fifth highest malignancy mortality rate in men worldwide. Although PC is detectable in 15-20% of men during life, its death risk is only about 3%. This means that not all PC cases require the same management tactics. The given review analyzes the current investigations searching for molecular biological markers to predict the course of PC and to choose its treatment policy, including that in the development of resistance to androgen-deprivation therapy.

  16. The Relative Contribution of Genetic and Environmental Factors to Cancer Risk and Cancer Mortality in Norway

    OpenAIRE

    Leuven, Edwin; Plug, Erik; Rønning, Marte

    2014-01-01

    Using Norwegian cancer registry data we study twin and non-twin siblings to decompose variation in cancer at most common sites and cancer mortality into a genetic, shared environment and individual (unshared environmental) component. Regardless the source of sibling variation, our findings indicate that genes dominate over shared environment in explaining relatively more of the variation in cancer at most common cancer sites (but lung and skin cancer) and cancer mortality. The vast majority o...

  17. Molecular Imaging of Pulmonary Cancer and Inflammation

    OpenAIRE

    Divgi, Chaitanya R.

    2009-01-01

    Molecular imaging (MI) may be defined as imaging in vivo using molecules that report on biologic function. This review will focus on the clinical use of radioactive tracers (nonpharmacologic amounts of compounds labeled with a radioactive substance) that permit external imaging using single photon emission computed tomography (planar, SPECT) or positron emission tomography (PET) imaging. Imaging of lung cancer has been revolutionized with the use of fluorine-18–labeled fluorodeoxyglucose (18F...

  18. Molecular mechanisms of metastasis in prostate cancer

    Institute of Scientific and Technical Information of China (English)

    Noel W.Clarke; Claire A.Hart; Mick D.Brown

    2009-01-01

    Prostate cancer (PCa) preferentially metastasizes to the bone marrow stroma of the axial skeleton.This activity is the principal cause of PCa morbidity and mortality.The exact mechanism of PCa metastasis is currently unknown,although considerable progress has been made in determining the key players in this process.In this review,we present the current understanding of the molecular processes driving PCa metastasis to the bone.

  19. Cancer genetic association studies in the genome-wide age

    OpenAIRE

    Savage, Sharon A

    2008-01-01

    Genome-wide association studies of hundreds of thousands of SNPs have led to a deluge of studies of genetic variation in cancer and other common diseases. Large case–control and cohort studies have identified novel SNPs as markers of cancer risk. Genome-wide association study SNP data have also advanced understanding of population-specific genetic variation. While studies of risk profiles, combinations of SNPs that may increase cancer risk, are not yet clinically applicable, future, large-sca...

  20. [Usefulness of the oncogenetic molecular counselling in adults whith familial cancer].

    Science.gov (United States)

    Valdespino-Gómez, Víctor M; Valdespino-Castillo, Víctor E

    2016-01-01

    More than 200 cancer susceptibility syndromes (CSS) have been recognized through performing classic epidemiologic studies and genetic linkage analysis. In most CSSs clinical conditions of the patients have been identified as well as their hereditary patterns and the predisponent genes to cancer development. Cancer hereditary identification is a useful condition, since cancer family integrants may benefit of efficient strategies in early screening and in tumor prevention strategies; this consultation is performed by oncogenetic molecular medical consultants who must be scientifically competent for Human Genetics and Cancer molecular biology domains. The oncogenetic molecular consult of patients and family relatives of cancer predisposition families is a medical service in health programs of developed and developing countries; in our country this type of medical service needs to be organized and settled to be part of the integral oncology medical service. The oncogenetic molecular consultation is a structural process of assessment and communication of the associated integral problems of the cancer inherited susceptibility in familial cancer. PMID:27100983

  1. Genetic, functional and molecular features of glucocorticoid receptor binding.

    Directory of Open Access Journals (Sweden)

    Francesca Luca

    Full Text Available Glucocorticoids (GCs are key mediators of stress response and are widely used as pharmacological agents to treat immune diseases, such as asthma and inflammatory bowel disease, and certain types of cancer. GCs act mainly by activating the GC receptor (GR, which interacts with other transcription factors to regulate gene expression. Here, we combined different functional genomics approaches to gain molecular insights into the mechanisms of action of GC. By profiling the transcriptional response to GC over time in 4 Yoruba (YRI and 4 Tuscans (TSI lymphoblastoid cell lines (LCLs, we suggest that the transcriptional response to GC is variable not only in time, but also in direction (positive or negative depending on the presence of specific interacting transcription factors. Accordingly, when we performed ChIP-seq for GR and NF-κB in two YRI LCLs treated with GC or with vehicle control, we observed that features of GR binding sites differ for up- and down-regulated genes. Finally, we show that eQTLs that affect expression patterns only in the presence of GC are 1.9-fold more likely to occur in GR binding sites, compared to eQTLs that affect expression only in its absence. Our results indicate that genetic variation at GR and interacting transcription factors binding sites influences variability in gene expression, and attest to the power of combining different functional genomic approaches.

  2. Genetic profiles distinguish different types of hereditary ovarian cancer

    DEFF Research Database (Denmark)

    Domanska, Katarina; Malander, Susanne; Staaf, Johan;

    2010-01-01

    Heredity represents the strongest risk factor for ovarian cancer with disease predisposing mutations identified in 15% of the tumors. With the aim to identify genetic classifiers for hereditary ovarian cancer, we profiled hereditary ovarian cancers linked to the hereditary breast and ovarian canc...

  3. Cancer Research from Molecular Discovery to Global Health

    Science.gov (United States)

    A science writers' seminar to discuss the latest research in cancer genetics and global health efforts, including talks from leaders of NCI’s new centers of cancer genomics and global health will be held Dec. 13, 2011, at NCI.

  4. Molecular basis of the triple negative breast cancer

    OpenAIRE

    Ayse Feyda Nursal

    2015-01-01

    Breast cancer is the most common type of cancer in women and more than 1 million breast cancer cases are diagnosed each year all over the world. Breast cancer is a complex and heterogeneous disease in terms of its molecular structure, mutation type, metastase properties, clinical course and therapeutic response. Breast cancer is divided into subtypes based on expression properties of molecular markers as estrogen receptor, progestron receptor, human epidermal growth factor receptor 2. Triple-...

  5. Molecular genetics of dyslexia: an overview

    NARCIS (Netherlands)

    Carrion-Castillo, A.; Franke, B.; Fisher, S.E.

    2013-01-01

    Dyslexia is a highly heritable learning disorder with a complex underlying genetic architecture. Over the past decade, researchers have pinpointed a number of candidate genes that may contribute to dyslexia susceptibility. Here, we provide an overview of the state of the art, describing how studies

  6. Fetal radiation exposure induces testicular cancer in genetically susceptible mice.

    Directory of Open Access Journals (Sweden)

    Gunapala Shetty

    Full Text Available The prevalence of testicular germ cell tumors (TGCT, a common solid tissue malignancy in young men, has been annually increasing at an alarming rate of 3%. Since the majority of testicular cancers are derived from germ cells at the stage of transformation of primordial germ cell (PGC into gonocytes, the increase has been attributed to maternal/fetal exposures to environmental factors. We examined the effects of an estrogen (diethylstilbestrol, DES, an antiandrogen (flutamide, or radiation on the incidence of testicular germ cell tumors in genetically predisposed 129.MOLF-L1 (L1 congenic mice by exposing them to these agents on days 10.5 and 11.5 of pregnancy. Neither flutamide nor DES produced noticeable increases in testis cancer incidence at 4 weeks of age. In contrast, two doses of 0.8-Gy radiation increased the incidence of TGCT from 45% to 100% in the offspring. The percentage of mice with bilateral tumors, weights of testes with TGCT, and the percentage of tumors that were clearly teratomas were higher in the irradiated mice than in controls, indicating that irradiation induced more aggressive tumors and/or more foci of initiation sites in each testis. This radiation dose did not disrupt spermatogenesis, which was qualitatively normal in tumor-free testes although they were reduced in size. This is the first proof of induction of testicular cancer by an environmental agent and suggests that the male fetus of women exposed to radiation at about 5-6 weeks of pregnancy might have an increased risk of developing testicular cancer. Furthermore, it provides a novel tool for studying the molecular and cellular events of testicular cancer pathogenesis.

  7. Molecular Biology of Pancreatic Cancer: How Useful Is It in Clinical Practice?

    Directory of Open Access Journals (Sweden)

    George H Sakorafas

    2012-07-01

    Full Text Available Context During the recent two decades dramatic advances of molecular biology allowed an in-depth understanding of pancreatic carcinogenesis. It is currently accepted that pancreatic cancer has a genetic component. The real challenge is now how these impressive advances could be used in clinical practice. Objective To critically present currently available data regarding clinical application of molecular biology in pancreatic cancer. Methods Reports about clinical implications of molecular biology in patients with pancreatic cancer were retrieved from PubMed. These reports were selected on the basis of their clinical relevance, and the data of their publication (preferentially within the last 5 years. Emphasis was placed on reports investigating diagnostic, prognostic, and therapeutic implications. Results Molecular biology can be used to identify individuals at high-risk for pancreatic cancer development. Intensive surveillance is indicated in these patients to detect pancreatic neoplasia ideally at a preinvasive stage, when curative resection is still possible. Molecular biology can also be used in the diagnosis of pancreatic cancer, with molecular analysis on samples of biologic material, such as serum or plasma, duodenal fluid or preferentially pure pancreatic juice, pancreatic cells or tissue, and stools. Molecular indices have also prognostic significance. Finally, molecular biology may have therapeutic implications by using various therapeutic approaches, such as antiangiogenic factors, purine synthesis inhibitors, matrix metalloproteinase inhibitors, factors modulating tumor-stroma interaction, inactivation of the hedgehog pathway, gene therapy, oncolytic viral therapy, immunotherapy (both passive as well as active etc. Conclusion Molecular biology may have important clinical implications in patients with pancreatic cancer and represents one of the most active areas on cancer research. Hopefully clinical applications of molecular biology

  8. Rett syndrome molecular diagnosis and implications in genetic counseling

    Directory of Open Access Journals (Sweden)

    Noruzinia M

    2007-01-01

    Full Text Available Rett syndrome is a rare genetic X-linked dominant disorder. This syndrome is the most frequent cause of mental retardation in girls. In the classical form of the disease, the presenting signs and the course of development are characteristic. However clinical diagnosis can be very difficult when the expression is not in the classical form. Mutations in MeCP2 are responsible for 80% of cases. When MeCP2 mutation is found in an index case, genetic counseling is similar to that in other X-linked dominant genetic diseases. However, mutations in this gene can cause a spectrum of atypical forms. On the other hand, other genetic conditions like translocations, sex chromosome numerical anomalies, and mutations in other genes can complicate genetic counseling in this syndrome. We present the first case of molecular diagnosis of Rett syndrome in Iran and discuss the recent developments in its genetic counseling.

  9. Genetic variants in Alzheimer disease - molecular and brain network approaches.

    Science.gov (United States)

    Gaiteri, Chris; Mostafavi, Sara; Honey, Christopher J; De Jager, Philip L; Bennett, David A

    2016-07-01

    Genetic studies in late-onset Alzheimer disease (LOAD) are aimed at identifying core disease mechanisms and providing potential biomarkers and drug candidates to improve clinical care of AD. However, owing to the complexity of LOAD, including pathological heterogeneity and disease polygenicity, extraction of actionable guidance from LOAD genetics has been challenging. Past attempts to summarize the effects of LOAD-associated genetic variants have used pathway analysis and collections of small-scale experiments to hypothesize functional convergence across several variants. In this Review, we discuss how the study of molecular, cellular and brain networks provides additional information on the effects of LOAD-associated genetic variants. We then discuss emerging combinations of these omic data sets into multiscale models, which provide a more comprehensive representation of the effects of LOAD-associated genetic variants at multiple biophysical scales. Furthermore, we highlight the clinical potential of mechanistically coupling genetic variants and disease phenotypes with multiscale brain models. PMID:27282653

  10. Quantitative Genetics in the Era of Molecular Genetics: Learning Abilities and Disabilities as an Example

    Science.gov (United States)

    Haworth, Claire M. A.; Plomin, Robert

    2010-01-01

    Objective: To consider recent findings from quantitative genetic research in the context of molecular genetic research, especially genome-wide association studies. We focus on findings that go beyond merely estimating heritability. We use learning abilities and disabilities as examples. Method: Recent twin research in the area of learning…

  11. Identifying molecular targets of lifestyle modifications in colon cancer prevention

    Directory of Open Access Journals (Sweden)

    Molly Marie Derry

    2013-05-01

    Full Text Available One in four deaths in the United States is cancer-related, and colorectal cancer (CRC is the second leading cause of cancer-associated deaths. Screening strategies are utilized but have not reduced disease incidence or mortality. In this regard, there is an interest in cancer preventive strategies focusing on lifestyle intervention, where specific etiologic factors involved in cancer initiation, promotion, and progression could be targeted. For example, exposure to dietary carcinogens, such as nitrosamines and polycyclic aromatic hydrocarbons influences colon carcinogenesis. Furthermore, dietary deficiencies could alter sensitivity to genetic damage and influence carcinogen metabolism contributing to CRC. High alcohol consumption increases the risk of mutations including the fact that acetaldehyde, an ethanol metabolite, is classified as a group 1 carcinogen. Tobacco smoke exposure is also a risk factor for cancer development; ~20% of CRCs are associated with smoking. Additionally, obese patients have a higher risk of cancer development, which is further supported by the fact that physical activity decreases CRC risk by 55%. Similarly, chronic inflammatory conditions also increase the risk of CRC development. Moreover, the circadian clock alters digestion and regulates other biochemical, physiological and behavioral processes that could positively influence CRC. Taken together, colon carcinogenesis involves a number of etiological factors, and therefore, to create effective preventive strategies, molecular targets need to be identified and beleaguered prior to disease progression. With this in mind, the following is a comprehensive review identifying downstream target proteins of the above lifestyle risk factors, which are modulated during colon carcinogenesis and could be targeted for CRC prevention by novel agents including phytochemicals.

  12. A discrete choice experiment of preferences for genetic counselling among Jewish women seeking cancer genetics services

    OpenAIRE

    Peacock, S.; Apicella, C; Andrews, L; Tucker, K.; Bankier, A; Daly, M. B.; Hopper, J L

    2006-01-01

    To determine which aspects of breast cancer genetic counselling are important to Ashkenazi Jewish women, a discrete choice experiment was conducted. Participants consisted of 339 Australian Ashkenazi Jewish women who provided a blood sample for research used to test for Ashkenazi Jewish ancestral mutations in the genes BRCA1 and BRCA2, and were offered their genetic test result through a cancer genetics service. Main outcome measures were women's preferences for, and trade-offs between, the g...

  13. Molecular Population Genetics of Rice Domestication

    Institute of Scientific and Technical Information of China (English)

    Tian Tang; Suhua Shi

    2007-01-01

    Domestication is a selection process that genetically modifies species to meet human needs. A most intriguing feature of domestication is the extreme phenotypic diversification among breeds. What could be the ultimate source of such genetic variations? Another notable outcome of artificial selection is the reduction in the fitness of domesticated species when they live in the wild without human assistance. The complete sequences of the two subspecies of rice cultivars provide an opportunity to address these questions. Between the two subspecies, we found much higher rates of non-synonymous (N) than synonymous (S) substitutions and the N/S ratios are higher between cultivars than between wild species. Most interestingly, substitutions of highly dissimilar amino acids that are deleterious and uncommon between natural species are disproportionately common between the two subspecies of rice. We suggest strong selection in the absence of effective recombination may be the driving force, which we called the domestication-associated Hill-Robertson effect. These hitchhiking mutations may contribute to some fitness reduction in cultivars. Comparisons of the two genomes also reveal the existence of highly divergent regions in the genomes. Haplotypes in these regions often form highly polymorphic linkage blocks that are much older than speciation between wild species. Genes from such regions could contribute to the differences between indica and japonica and are likely to be involved in the diversifying selection under domestication. Their existence suggests that the amount of genetic variation within the single progenitor species Oryza ruflpogon may be insufficient to account for the variation among rice cultivars, which may come from a more inclusive gene pool comprising most of the A-genome wild species. Genes from the highly polymorphic regions also provide strong support for the independent domestication of the two subspecies. The genomic variation in rice has revealing

  14. Advances in Genetic Testing for Hereditary Cancer Syndromes.

    Science.gov (United States)

    Thomas, Ellen; Mohammed, Shehla

    2016-01-01

    The ability to identify genetic mutations causing an increased risk of cancer represents the first widespread example of personalised medicine, in which genetic information is used to inform patients of their cancer risks and direct an appropriate strategy to minimise those risks. Increasingly, an understanding of the genetic basis of many cancers also facilitates selection of the most effective therapeutic options. The technology underlying genetic testing has been revolutionised in the years since the completion of the Human Genome Project in 2001. This has advanced knowledge of the genetic factors underlying familial cancer risk, and has also improved genetic testing capacity allowing a larger number of patients to be tested for a constitutional cancer predisposition. To use these tests safely and effectively, they must be assessed for their ability to provide accurate and useful results, and be requested and interpreted by health professionals with an understanding of their strengths and limitations. Genetic testing is increasing in its scope and ambition with each year that passes, requiring a greater proportion of the healthcare workforce to acquire a working knowledge of genetics and genetic testing to manage their patients safely and sensitively. PMID:27075345

  15. [Research progress on molecular genetics of forest musk deer].

    Science.gov (United States)

    Jie, Hang; Zheng, Cheng-li; Wang, Jian-ming; Feng, Xiao-lan; Zeng, De-jun; Zhao, Gui-jun

    2015-11-01

    Forest musk deer is one of the large-scale farming musk deer animals with the largest population at the same time. The male musk deer can secrete valuable medicines, which has high medicinal and economic value. Due to the loss of habitat and indiscriminate hunting, the numbers of wild population specie and the distribution have been drastically reduced. Therefore, in-depth understanding of the molecular genetics progress of forest musk deer will pave a way for musk deer protection and breeding. In this review, the progress associated with the molecular marker, genetic classification, artificial breeding, musk secretion and disease in past decades were reviewed, in order to provide a theoretical basis for subsequent molecular genetic researches in forest musk deer. PMID:27097400

  16. Molecular epidemiology, and possible real-world applications in breast cancer.

    Science.gov (United States)

    Ito, Hidemi; Matsuo, Keitaro

    2016-01-01

    Gene-environment interaction, a key idea in molecular epidemiology, has enabled the development of personalized medicine. This concept includes personalized prevention. While genome-wide association studies have identified a number of genetic susceptibility loci in breast cancer risk, however, the application of this knowledge to practical prevention is still underway. Here, we briefly review the history of molecular epidemiology and its progress in breast cancer epidemiology. We then introduce our experience with the trial combination of GWAS-identified loci and well-established lifestyle and reproductive risk factors in the risk prediction of breast cancer. Finally, we report our exploration of the cumulative risk of breast cancer based on this risk prediction model as a potential tool for individual risk communication, including genetic risk factors and gene-environment interaction with obesity.

  17. Genetic background may contribute to PAM50 gene expression breast cancer subtype assignments.

    Directory of Open Access Journals (Sweden)

    Ying Hu

    Full Text Available Recent advances in genome wide transcriptional analysis have provided greater insights into the etiology and heterogeneity of breast cancer. Molecular signatures have been developed that stratify the conventional estrogen receptor positive or negative categories into subtypes that are associated with differing clinical outcomes. It is thought that the expression patterns of the molecular subtypes primarily reflect cell-of-origin or tumor driver mutations. In this study however, using a genetically engineered mouse mammary tumor model we demonstrate that the PAM50 subtype signature of tumors driven by a common oncogenic event can be significantly influenced by the genetic background on which the tumor arises. These results have important implications for interpretation of "snapshot" expression profiles, as well as suggesting that incorporation of genetic background effects may allow investigation into phenotypes not initially anticipated in individual mouse models of cancer.

  18. Genomic and genetic alterations influence the progression of gastric cancer

    Institute of Scientific and Technical Information of China (English)

    Stefania Nobili; Lorenzo Bruno; Ida Landini; Cristina Napoli; Paolo Bechi; Francesco Tonelli; Carlos A Rubio; Enrico Mini; Gabriella Nesi

    2011-01-01

    Gastric cancer is one of the leading causes of cancerrelated deaths worldwide, although the incidence has gradually decreased in many Western countries. Twomain gastric cancer histotypes, intestinal and diffuse, are recognised. Although most of the described genetic alterations have been observed in both types, different genetic pathways have been hypothesized. Genetic and epigenetic events, including 1q loss of heterozygosity (LOH), microsatellite instability and hypermethylation, have mostly been reported in intestinal-type gastric carcinoma and its precursor lesions, whereas 17p LOH, mutation or loss of E-cadherin are more often implicated in the development of diffuse-type gastric cancer.

  19. Primer on Molecular Genetics; DOE Human Genome Program

    Science.gov (United States)

    1992-04-01

    This report is taken from the April 1992 draft of the DOE Human Genome 1991--1992 Program Report, which is expected to be published in May 1992. The primer is intended to be an introduction to basic principles of molecular genetics pertaining to the genome project. The material contained herein is not final and may be incomplete. Techniques of genetic mapping and DNA sequencing are described.

  20. Primer on molecular genetics. DOE Human Genome Program

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    This report is taken from the April 1992 draft of the DOE Human Genome 1991--1992 Program Report, which is expected to be published in May 1992. The primer is intended to be an introduction to basic principles of molecular genetics pertaining to the genome project. The material contained herein is not final and may be incomplete. Techniques of genetic mapping and DNA sequencing are described.

  1. Molecular genetics of pancreatic carcinogenesis and their clinical significance

    NARCIS (Netherlands)

    Ottenhof, N.A.

    2012-01-01

    Like all types of cancer, pancreatic ductal adenocarcinoma (PDAC), the most common pancreatic malignancy, is a disease of the genes and the genetic alterations that are involved in the development of PDAC have been under investigation for many years. The research described in this thesis focuses on

  2. Genetic classification and molecular mechanisms of primary dystonia

    Institute of Scientific and Technical Information of China (English)

    Xueping Chen; Huifang Shang; Zuming Luo

    2008-01-01

    BACKGROUND: Primary dystonia is a heterogeneous disease, with a complex genetic basis. In previous studies, primary dystonia was classified according to age of onset, involved regions, and other clinical characteristics. With the development of molecular genetics, new virulence genes and sites have been discovered. Therefore, there is a gradual understanding of the various forms of dystonia, based on new viewpoints. There are 15 subtypes of dystonia, based on the molecular level, i.e., DYT1 to DYT15. OBJECTIVE: To analyze the genetic development of dystonia in detail, and to further investigate molecular mechanisms of dystonia. RETRIEVAL STRATEGY: A computer-based online search was conducted in PubMed for English language publications containing the keywords "dystonia and genetic" from January 1980 to March 2007. There were 105 articles in total. Inclusion criteria: ① the contents of the articles should closely address genetic classification and molecular mechanisms of primary dystonia; ② the articles published in recent years or in high-impact journals took preference. Exclusion criteria: duplicated articles. LITERATURE EVALUATION: The selected articles were on genetic classification and molecular genetics mechanism of primary dystonia. Of those, 27 were basic or clinical studies. DATA SYNTHESIS: ① Dystonia is a heterogeneous disease, with a complex genetic basis. According to the classification of the Human Genome Organization, there are 15 dystonia subtypes, based on genetics, i.e., DYT1-DYT15,including primary dystonia, dystonia plus syndrome, degeneration plus dystonia, and paroxysmal dyskinesia plus dystonia. ② To date, the chromosomes of 13 subtypes have been localized; however, DYT2 and DYT4 remain unclear. Six subtypes have been located within virulence genes. Specifically, torsinA gene expression results in the DYT1 genotype; autosomal dominant GTP cyclohydrolase I gene expression and recessive tyrosine hydroxylase expression result in the DYT5

  3. The Molecular Genetics of Restless Legs Syndrome.

    Science.gov (United States)

    Rye, David B

    2015-09-01

    Restless legs syndrome (RLS) is a common sensorimotor trait defined by symptoms that interfere with sleep onset and maintenance in a clinically meaningful way. Nonvolitional myoclonus while awake and asleep is a sign of the disorder and an informative endophenotype. The genetic contributions to RLS/periodic leg movements are substantial, are among the most robust defined to date for a common disease, and account for much of the variance in disease expressivity. The disorder is polygenic, as revealed by recent genome-wide association studies. Experimental studies are revealing mechanistic details of how these common variants might influence RLS expressivity.

  4. Advances in molecular genetic studies of primary dystonia

    Directory of Open Access Journals (Sweden)

    MA Ling-yan

    2013-07-01

    Full Text Available Dystonias are heterogeneous hyperkinetic movement disorders characterized by involuntary muscle contractions which result in twisting, repetitive movements and abnormal postures. In recent years, there was a great advance in molecular genetic studies of primary dystonia. This paper will review the clinical characteristics and molecular genetic studies of primary dystonia, including early-onset generalized torsion dystonia (DYT1, whispering dysphonia (DYT4, dopa-responsive dystonia (DYT5, mixed-type dystonia (DYT6, paroxysmal kinesigenic dyskinesia (DYT10, myoclonus-dystonia syndrome (DYT11, rapid-onset dystonia parkinsonism (DYT12, adult-onset cervical dystonia (DYT23, craniocervical dystonia (DYT24 and primary torsion dystonia (DYT25.

  5. Molecular and genetic basis of depression.

    Science.gov (United States)

    Roy, Madhumita; Tapadia, Madhu G; Joshi, Shobhna; Koch, Biplob

    2014-12-01

    Joyousness or sadness is normal reaction to state of life. If any of these lead to certain semi-permanent changes in daily life, then it is termed as mental disorder. Depression is one of the mental disorders with a state of low mood and aversion to activities that exerts a negative effect on a person's thoughts and behaviour. Adolescent group is probably the world's largest active group of people, who are getting prone to this state of mind leading to their diminished mental and physical abilities. Depression is closely linked to stress and thus a chronic stressful life can increase the risk of depression. Depression is a complex disease having both genetic and environmental components as contributing factors. In this study an attempt has been made to put forward the understanding of the known genes and their functional relationships with depression and stress with special reference to BDNF and 5-HTTLPR. Analysis of common genetic variants associated with depression, especially in the members of a family who had a previous history, might help in identifying the individuals at risk prior to the onset of depression. PMID:25572252

  6. Molecular and genetic basis of depression

    Indian Academy of Sciences (India)

    Madhumita Roy; Madhu G. Tapadia; Shobhna Joshi; Biplob Koch

    2014-12-01

    Joyousness or sadness is normal reaction to state of life. If any of these lead to certain semi-permanent changes in daily life, then it is termed as mental disorder. Depression is one of the mental disorders with a state of low mood and aversion to activities that exerts a negative effect on a person’s thoughts and behaviour. Adolescent group is probably the world’s largest active group of people, who are getting prone to this state of mind leading to their diminished mental and physical abilities. Depression is closely linked to stress and thus a chronic stressful life can increase the risk of depression. Depression is a complex disease having both genetic and environmental components as contributing factors. In this study an attempt has been made to put forward the understanding of the known genes and their functional relationships with depression and stress with special reference to BDNF and 5-HTTLPR. Analysis of common genetic variants associated with depression, especially in the members of a family who had a previous history, might help in identifying the individuals at risk prior to the onset of depression.

  7. Molecular genetics and epigenetics of CACTA elements

    KAUST Repository

    Fedoroff, Nina V.

    2013-08-21

    The CACTA transposons, so named for a highly conserved motif at element ends, comprise one of the most abundant superfamilies of Class 2 (cut-and-paste) plant transposons. CACTA transposons characteristically include subterminal sequences of several hundred nucleotides containing closely spaced direct and inverted repeats of a short, conserved sequence of 14-15 bp. The Supressor-mutator (Spm) transposon, identified and subjected to detailed genetic analysis by Barbara McClintock, remains the paradigmatic element of the CACTA family. The Spm transposon encodes two proteins required for transposition, the transposase (TnpD) and a regulatory protein (TnpA) that binds to the subterminal repeats. Spm expression is subject to both genetic and epigenetic regulation. The Spm-encoded TnpA serves as an activator of the epigenetically inactivated, methylated Spm, stimulating both transient and heritable activation of the transposon. TnpA also serves as a negative regulator of the demethylated active element promoter and is required, in addition to the TnpD, for transposition. © Springer Science+Business Media, New York 2013.

  8. Molecular imaging of apoptosis in cancer

    Energy Technology Data Exchange (ETDEWEB)

    Hakumaeki, Juhana M. [Cellular and Molecular Imaging Group, Department of Biomedical NMR, A.I. Virtanen Institute for Molecular Sciences, University of Kuopio, P.O. Box 1627, FI-70211 Kuopio (Finland) and Department of Clinical Radiology, Kuopio University Hospital, P.O. Box 1777, FI-70211 Kuopio (Finland)]. E-mail: juhana.hakumaki@uku.fi; Liimatainen, Timo [Cellular and Molecular Imaging Group, Department of Biomedical NMR, A.I. Virtanen Institute for Molecular Sciences, University of Kuopio, P.O. Box 1627, FI-70211 Kuopio (Finland)

    2005-11-01

    Apoptosis plays an important role in cancer. Mechanisms hindering its action are implicated in a number of malignancies. Also, the induction of apoptosis plays a pivotal role in non-surgical cancer treatment regimes such as irradiation, chemotherapy, or hormones. Recent advanced in imaging science have made it now possible for us to detect and visualize previously inaccessible and even unrecognized biological phenomena in cells and tissue undergoing apoptosis in vivo. Not only are these imaging techniques painting an intriguing picture of the spatiotemporal characteristics and metabolic and biophysical of apoptosis in situ, but they are expected to have an ever increasing impact in preclinical testing and design of new anticancer agents as well. Rapid and accurate visualization of apoptotic response in the clinical settings can also be of significant diagnostic and prognostic worth. With the advent of molecular medicine and patient-tailored treatment options and therapeutic agents, such monitoring techniques are becoming paramount.

  9. Molecular Taxonomy and Tumourigenesis of Colorectal Cancer.

    Science.gov (United States)

    Biswas, S; Holyoake, D; Maughan, T S

    2016-02-01

    Over the last 5 years there has been a surge in interest in the molecular classification of colorectal cancer. The effect of molecular subtyping on current treatment decisions is limited to avoidance of adjuvant 5-fluorouracil chemotherapy in stage II microsatellite unstable-high disease and avoidance of epidermal growth factor receptor-targeted antibodies in extended RAS mutant tumours. The emergence of specific novel combination therapy for the BRAF-mutant cohort and of the microsatellite unstable-high cohort as a responsive group to immune checkpoint inhibition shows the growing importance of a clinically relevant molecular taxonomy. Clinical trials such as the Medical Research Council FOCUS4 trial using biomarkers to select patients for specific therapies are currently open and testing such approaches. The integration of mutation, gene expression and pathological analyses is refining our understanding of the biological subtypes within colorectal cancer. Sharing of data sets of parallel sequencing and gene expression of thousands of cancers among independent groups has allowed the description of disease subsets and the need for a validated consensus classification has become apparent. This biological understanding of the disease is a key step forward in developing a stratified approach to patient management. The discovery of stratifiers that predict a response to existing and emerging therapies will enable better use of these treatments. Improved scientific understanding of the biological characteristics of poorly responsive subgroups will facilitate the design of novel biologically rational combinations. Novel treatment regimens, including the combination of new drugs with radiation, and the discovery and validation of their associated predictive biomarkers will gradually lead to improved outcomes from therapy.

  10. Molecular Darwinism: the contingency of spontaneous genetic variation.

    Science.gov (United States)

    Arber, Werner

    2011-01-01

    The availability of spontaneously occurring genetic variants is an important driving force of biological evolution. Largely thanks to experimental investigations by microbial geneticists, we know today that several different molecular mechanisms contribute to the overall genetic variations. These mechanisms can be assigned to three natural strategies to generate genetic variants: 1) local sequence changes, 2) intragenomic reshuffling of DNA segments, and 3) acquisition of a segment of foreign DNA. In these processes, specific gene products are involved in cooperation with different nongenetic elements. Some genetic variations occur fully at random along the DNA filaments, others rather with a statistical reproducibility, although at many possible sites. We have to be aware that evolution in natural ecosystems is of higher complexity than under most laboratory conditions, not at least in view of symbiotic associations and the occurrence of horizontal gene transfer. The encountered contingency of genetic variation can possibly best ensure a long-term persistence of life under steadily changing living conditions.

  11. Prevalence and detection of psychosocial problems in cancer genetic counseling.

    Science.gov (United States)

    Eijzenga, W; Bleiker, E M A; Hahn, D E E; Van der Kolk, L E; Sidharta, G N; Aaronson, N K

    2015-12-01

    Only a minority of individuals who undergo cancer genetic counseling experience heightened levels of psychological distress, but many more experience a range of cancer genetic-specific psychosocial problems. The aim of this study was to estimate the prevalence of such psychosocial problems, and to identify possible demographic and clinical variables associated significantly with them. Consenting individuals scheduled to undergo cancer genetic counseling completed the Psychosocial Aspects of Hereditary Cancer (PAHC) questionnaire, the Hospital Anxiety and Depression Scale (HADS) and the Distress Thermometer (DT) prior to or immediately following their counseling session. More than half of the 137 participants reported problems on three or more domains of the PAHC, most often in the domains 'living with cancer' (84%), 'family issues' (46%), 'hereditary predisposition' (45%), and 'child-related issues' (42%). Correlations between the PAHC, the HADS and the DT were low. Previous contact with a psychosocial worker, and having a personal history of cancer were associated significantly with HADS scores, but explained little variance (9%). No background variables were associated significantly with the DT. Previous contact with a psychosocial worker, and having children were significantly associated with several PAHC domains, again explaining only a small percentage of the variance (2-14%). The majority of counselees experience specific cancer genetic counseling-related psychosocial problems. Only a few background variables are associated significantly with distress or psychosocial problems. Thus we recommend using the PAHC or a similar problem-oriented questionnaire routinely in cancer genetic counseling to identify individuals with such problems. PMID:25968807

  12. A micro costing of NHS cancer genetic services

    Science.gov (United States)

    Griffith, G L; Tudor-Edwards, R; Gray, J; Butler, R; Wilkinson, C; Turner, J; France, B; Bennett, P

    2004-01-01

    This paper presents the first full micro costing of a commonly used cancer genetic counselling and testing protocol used in the UK. Costs were estimated for the Cardiff clinic of the Cancer Genetics Service in Wales by issuing a questionnaire to all staff, conducting an audit of clinic rooms and equipment and obtaining gross unit costs from the finance department. A total of 22 distinct event pathways were identified for patients at risk of developing breast, ovarian, breast and ovarian or colorectal cancer. The mean cost per patient were £97–£151 for patients at moderate risk, £975–£3072 for patients at high risk of developing colorectal cancer and £675–£2909 for patients at high risk of developing breast or ovarian cancer. The most expensive element of cancer genetic services was labour. Labour costs were dependent upon the amount of labour, staff grade, number of counsellors used and the proportion of staff time devoted to indirect patient contact. With the growing demand for cancer genetic services and the growing number of national and regional cancer genetic centers, there is a need for the different protocols being used to be thoroughly evaluated in terms of costs and outcomes. PMID:15583691

  13. Oral cancer: molecular technologies for risk assessment and diagnosis

    Institute of Scientific and Technical Information of China (English)

    Wan Tao Chen

    2008-01-01

    @@ Purpose: The effective biomarkers related to diagnosis, metastasis, drug resistance and irradiation sensitivity of oral cancers will help the pathologist and oncologist to determine the molecular taxonomy diagnosis and design the individualization treatment for the patients with oral cancers.

  14. Molecular Imaging of Biomarkers in Breast Cancer

    Science.gov (United States)

    Ulaner, Gary A.; Riedl, Chris C.; Dickler, Maura N.; Jhaveri, Komal; Pandit-Taskar, Neeta; Weber, Wolfgang

    2016-01-01

    The success of breast cancer therapy is ultimately defined by clinical endpoints such as survival. It is valuable to have biomarkers that can predict the most efficacious therapies or measure response to therapy early in the course of treatment. Molecular imaging has a promising role in complementing and overcoming some of the limitations of traditional biomarkers by providing the ability to perform noninvasive, repeatable whole-body assessments. The potential advantages of imaging biomarkers are obvious and initial clinical studies have been promising, but proof of clinical utility still requires prospective multicenter clinical trials. PMID:26834103

  15. Molecular genetic study of human malignant gliomas

    International Nuclear Information System (INIS)

    Loss of heterozygosity for loci on chromosome 10 were found in four of 9 (44%) informative cases of malignant gliomas. Deletions on RB1 locus were seen in six of 11 (54%) informative glioblastomas. LOH on chromosome 17p was found in eight of 16 (50%) malignant gliomas, including 2 cases of anaplastic oligodendroglioma. On the basis of the data presented here, it is possible to associate certain molecular abnormalities with malignant gliomas, LOH on chromosome 10, RB1 gene, and 17p. (Author)

  16. Animal models and therapeutic molecular targets of cancer: utility and limitations

    Directory of Open Access Journals (Sweden)

    Cekanova M

    2014-10-01

    Full Text Available Maria Cekanova, Kusum Rathore Department of Small Animal Clinical Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN, USA Abstract: Cancer is the term used to describe over 100 diseases that share several common hallmarks. Despite prevention, early detection, and novel therapies, cancer is still the second leading cause of death in the USA. Successful bench-to-bedside translation of basic scientific findings about cancer into therapeutic interventions for patients depends on the selection of appropriate animal experimental models. Cancer research uses animal and human cancer cell lines in vitro to study biochemical pathways in these cancer cells. In this review, we summarize the important animal models of cancer with focus on their advantages and limitations. Mouse cancer models are well known, and are frequently used for cancer research. Rodent models have revolutionized our ability to study gene and protein functions in vivo and to better understand their molecular pathways and mechanisms. Xenograft and chemically or genetically induced mouse cancers are the most commonly used rodent cancer models. Companion animals with spontaneous neoplasms are still an underexploited tool for making rapid advances in human and veterinary cancer therapies by testing new drugs and delivery systems that have shown promise in vitro and in vivo in mouse models. Companion animals have a relatively high incidence of cancers, with biological behavior, response to therapy, and response to cytotoxic agents similar to those in humans. Shorter overall lifespan and more rapid disease progression are factors contributing to the advantages of a companion animal model. In addition, the current focus is on discovering molecular targets for new therapeutic drugs to improve survival and quality of life in cancer patients. Keywords: mouse cancer model, companion animal cancer model, dogs, cats, molecular targets

  17. DataGenno: building a new tool to bridge molecular and clinical genetics

    Directory of Open Access Journals (Sweden)

    Fabricio F Costa

    2011-03-01

    Full Text Available Fabricio F Costa1,2, Luciano S Foly1, Marcelo P Coutinho11DataGenno Interactive Research Ltd., Itaperuna, Rio de Janeiro, Brazil; 2Cancer Biology and Epigenomics Program, Children's Memorial Research Center, Northwestern University's Feinberg School of Medicine, Chicago, IL, USAAbstract: Clinical genetics is one of the most challenging fields in medicine, with thousands of children born every year with congenital defects that have no satisfactory diagnosis. There are more than 6,000 known single-gene disorders that can cause birth defects or diseases in approximately 1 in every 200 births. Clinical and molecular information on genetic diseases and syndromes are widespread in the literature, and there are few databases combining this information. Therefore, it is very challenging for health care professionals and researchers to translate the latest advances in science and medicine into effective clinical interventions and new treatments. In order to overcome this obstacle and promote networking, we are building DataGenno, an online medical and scientific portal. DataGenno has been developed to be a source of information on genetic diseases and syndromes for the needs of all heath care professionals and researchers. Our database will be able to integrate both clinical and molecular aspects of genetic diseases in a fully interactive environment. DataGenno’s system already contains clinical and molecular information for 300 diseases, with approximately 6,000 signs and symptoms of these diseases in a database combined with a search engine. Our main goal is to cover all genetic diseases described to date, providing not only clinical information such as morphological and anatomical features but also the most comprehensive molecular genetics/genomics features and available testing information. We are also developing ways to connect DataGenno’s portal with Electronic Health Records in order to improve the efficiency of patient care. Additionally

  18. Genetics Home Reference: hereditary leiomyomatosis and renal cell cancer

    Science.gov (United States)

    ... Central Sudarshan S, Pinto PA, Neckers L, Linehan WM. Mechanisms of disease: hereditary leiomyomatosis and renal cell cancer-- ... with a qualified healthcare professional . About Genetics Home Reference Site Map Contact Us Selection Criteria for Links ...

  19. Molecular markers′ progress of breast cancer treatment efficacy

    OpenAIRE

    Dan Wang; Jingwei Xu; Guang Shi; Guanghao Yin

    2015-01-01

    Breast cancer is a famous malignant tumor which is caused by varieties of mutation in multiple genes. In order to detect breast cancer in an earlier time and take appropriate treatment which includes  predicting treatment efficacy, we need a more accurate method of discovering the occurrence of breast cancer. With the development of molecular biology and biological detection technologies continue to emerge, molecular markers of breast cancer have gaining more and more widespread attention, an...

  20. Hamartomatous polyps - a clinical and molecular genetic study.

    Science.gov (United States)

    Jelsig, Anne Marie

    2016-08-01

    Hamartomatous polyps (HPs) in the gastrointestinal (GI) tract are rare compared to other types of GI polyps, yet they are the most common type of polyp in children. The symptoms are usually rectal bleeding, abdominal pain, obstipation, anaemia, and/or small bowel obstruction. The polyps are typically removed concurrently with endoscopy when located in the colon, rectum, or stomach, whereas polyps in the small bowel are removed during push-enteroscopy, device-assisted enteroscopy, or by surgery. HPs can be classified as juvenile polyps or Peutz-Jeghers polyps based on their histopathological appearance. Patients with one or a few juvenile polyps are usually not offered clinical follow-up as the polyp(s) are considered not to harbour any malignant potential. Nevertheless, it is important to note that juvenile polyps and HPs are also found in patients with hereditary hamartomatous polyposis syndromes (HPS). Patients with HPS have an increased risk of cancer, recurrences of polyps, and extraintestinal complications. The syndromes are important to diagnose, as patients should be offered surveillance from childhood or early adolescence. The syndromes include juvenile polyposis syndrome, Peutz-Jeghers syndrome, and the PTEN hamartoma tumour syndrome. Currently, the HPS diagnoses are based on clinical criteria and are often assisted with genetic testing as candidate genes have been described for each syndrome. This thesis is based on six scientific papers. The overall aim of the studies was to expand the knowledge on clinical course and molecular genetics in patients with HPs and HPS, and to investigate research participants' attitude towards the results of extensive genetic testing.   Paper I: In the first paper we investigated the occurrence, anatomic distribution, and other demographics of juvenile polyps in the colon and rectum in Denmark in 1995-2014. Based on the Danish Pathology Data Bank we found that 1772 patients had 2108 JPs examined in the period, and we

  1. Lobular breast cancer: Clinical, molecular and morphological characteristics.

    Science.gov (United States)

    Christgen, Matthias; Steinemann, Doris; Kühnle, Elna; Länger, Florian; Gluz, Oleg; Harbeck, Nadia; Kreipe, Hans

    2016-07-01

    Infiltrating lobular breast cancer (ILBC) is the most common special breast cancer subtype. This review provides a comprehensive description of ILBC characteristics, including epidemiology, clinical features, molecular genetics and histomorphology. Twenty detailed supplemental data tables guide through primary data of more than 200 original studies. Meta-analyses indicate that ILBC is at least twice as common in the Western world as it is in other geographic regions. ILBC is over-represented in so-called interval carcinomas and in primary metastatic breast cancer. ILBC is also associated higher age, higher pT stage and hormone receptor (ER/PR) positivity. Pathological complete response rates after neoadjuvant chemotherapy are low, ranging between 0% and 11%. Positive resection margins after breast-conserving surgery are comparatively frequent and 17% to 65% of patients undergo a second surgical intervention. Depending on the morphological stringency in the diagnosis of ILBC, lack of E-cadherin expression is observed in 55% to 100% of cases. CDH1/E-cadherin mutation detection rates vary between 12% and 83%. Various additional molecular factors, including PIK3CA, TP53, FOXA1, FGFR1, ZNF703 and BCAR4, have been implicated in ILBC or progression of lobular carcinoma in situ (LCIS) to invasive cancer and are discussed in detail. Eight instructive figure plates recapitulate the histomorphology of ILBC and its variants. Furthermore, we draw attention to rarely addressed histological details, such as two-sided nuclear compression and fat-avoiding growth at the invasion front. Last but not least, we discuss future translational research directions and emphasize the concept of synthetic lethality, which promises new options for targeted ILBC therapy.

  2. Molecular profiling of childhood cancer: Biomarkers and novel therapies

    Directory of Open Access Journals (Sweden)

    Federica Saletta

    2014-06-01

    General significance: The increasing recognition of the heterogeneity of molecular causes of cancer favors the continued development of molecularly targeted agents, and their transfer to pediatric and adolescent populations.

  3. Molecular Models of Genetic and Organismic Structures

    CERN Document Server

    Baianu, I C

    2004-01-01

    In recent studies we showed that the earlier relational theories of organismic sets (Rashevsky,1967), Metabolic-Replication (M,R)-systems (Rosen,1958)and molecular sets (Bartholomay,1968) share a joint foundation that can be studied within a unified categorical framework of functional organismic structures (Baianu,1980. This is possible because all relational theories have a biomolecular basis, that is, complex structures such as genomes, cells,organs and biological organisms are mathematically represented in terms of biomolecular properties and entities,(that are often implicit in their representation axioms. The definition of organismic sets, for example, requires that certain essential quantities be determined from experiment: these are specified by special sets of values of general observables that are derived from physicochemical measurements(Baianu,1970; Baianu,1980; Baianu et al, 2004a.)Such observables are context-dependent and lead directly to natural transformations in categories and Topoi, that are...

  4. [Hereditary optic neuropathies: clinical and molecular genetic characteristics].

    Science.gov (United States)

    Khanakova, N A; Sheremet, N L; Loginova, A N; Chukhrova, A L; Poliakov, A V

    2013-01-01

    The article presents a review of literature on hereditary optic neuropathies: Leber mitochondrial hereditary optic neuropathy, autosomal dominant and autosomal recessive optic neuropathies, X-linked optic atrophy. Clinical and molecular genetic characteristics are covered. Isolated optic neuropathies, as well as hereditary optic disorders, being a part of a complex syndromic disease are described.

  5. New issues in genetic counseling of hereditary colon cancer.

    Science.gov (United States)

    Lynch, Patrick M

    2007-11-15

    Clinicians face significant challenges in the diagnosis and management of familial colorectal cancer predisposition. Many of the challenges concern the rarity of individual conditions and their unfamiliarity to most clinicians, even those in the subspecialty areas of gastroenterology, colorectal surgery, and medical oncology. Because the World Wide Web now offers a wealth of information, familiarity with available online resources should be a minimal expectation of clinicians. Notably, these same resources are available to the lay public, so a more informed group of patients can be expected and is already being encountered. The web sites noted throughout this article are merely early examples of what should become an opportunity for instant access to the most up-to-date knowledge of rare familial colorectal cancers and their clinical features, molecular diagnostics, and clinical management and prevention. Many professional organizations have produced guidelines (in print and online) for use by practitioners in various specialties. The consistency, growing evidence base, and ready availability of these guidelines to providers and patients alike will likely foster greater recognition of the need to be in compliance with them. Finally, as investigators make progress with the genetics of these rare diseases, one can anticipate a "cooperative group" approach to clinical trials. PMID:18006790

  6. Adverse events in cancer genetic testing: the third case series.

    Science.gov (United States)

    Bonadies, Danielle C; Brierley, Karina L; Barnett, Rachel E; Baxter, Melanie D; Donenberg, Talia; Ducaine, Whitney L; Ernst, Michelle E; Ernstx, Michelle E; Homer, Jeanne; Judkins, Megan; Lovick, Niki M; Powers, Jacquelyn M; Stanislaw, Christine; Stark, Elizabeth; Stenner, Rio C; Matloff, Ellen T

    2014-01-01

    After repeated media attention in 2013 due to the Angelina Jolie disclosure and the Supreme Court decision to ban gene patents, the demand for cancer genetic counseling and testing services has never been greater. Debate has arisen regarding who should provide such services and the quality of genetics services being offered. In this ongoing case series, we document 35 new cases from 7 states (California, Connecticut, Florida, Georgia, Missouri, Pennsylvania, and Utah) and the District of Columbia of adverse outcomes in cancer genetic testing when performed without the involvement of a certified genetic counselor. We identified 3 major themes of errors: wrong genetic tests ordered, genetic test results misinterpreted, and inadequate genetic counseling. Patient morbidity and mortality were an issue in several of these cases. The complexity of cancer genetic testing and counseling has grown exponentially with the advent of multigene panels that include rare genes and the potential for more variants of uncertain significance. We conclude that genetic counseling and testing should be offered by certified genetics providers to minimize the risks, maximize the benefits, and utilize health care dollars most efficiently. PMID:25098283

  7. Molecular genetics and pathogenesis of cardiomyopathy.

    Science.gov (United States)

    Kimura, Akinori

    2016-01-01

    Cardiomyopathy is defined as a disease of functional impairment in the cardiac muscle and its etiology includes both extrinsic and intrinsic factors. Cardiomyopathy caused by the intrinsic factors is called as primary cardiomyopathy of which two major clinical phenotypes are hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM). Genetic approaches have revealed the disease genes for hereditary primary cardiomyopathy and functional studies have demonstrated that characteristic functional alterations induced by the disease-associated mutations are closely related to the clinical types, such that increased and decreased Ca(2+) sensitivities of muscle contraction are associated with HCM and DCM, respectively. In addition, recent studies have suggested that mutations in the Z-disc components found in HCM and DCM may result in increased and decreased stiffness of sarcomere, respectively. Moreover, functional analysis of mutations in the other components of cardiac muscle have suggested that the altered response to metabolic stresses is associated with cardiomyopathy, further indicating the heterogeneity in the etiology and pathogenesis of cardiomyopathy. PMID:26178429

  8. Promoting Middle School Students' Understandings of Molecular Genetics

    Science.gov (United States)

    Duncan, Ravit Golan; Freidenreich, Hava Bresler; Chinn, Clark A.; Bausch, Andrew

    2011-03-01

    Genetics is the cornerstone of modern biology and understanding genetics is a critical aspect of scientific literacy. Research has shown, however, that many high school graduates lack fundamental understandings in genetics necessary to make informed decisions or to participate in public debates over emerging technologies in molecular genetics. Currently, much of genetics instruction occurs at the high school level. However, recent policy reports suggest that we may need to begin introducing aspects of core concepts in earlier grades and to successively develop students' understandings of these concepts in subsequent grades. Given the paucity of research about genetics learning at the middle school level, we know very little about what students in earlier grades are capable of reasoning about in this domain. In this paper, we discuss a research study aimed at fostering deeper understandings of molecular genetics at the middle school level. As part of the research we designed a two-week model-based inquiry unit implemented in two 7th grade classrooms ( N = 135). We describe our instructional design and report results based on analysis of pre/post assessments and written artifacts of the unit. Our findings suggest that middle school students can develop: (a) a view of genes as productive instructions for proteins, (b) an understanding of the role of proteins in mediating genetic effects, and (c) can use this knowledge to reason about a novel genetic phenomena. However, there were significant differences in the learning gains in both classrooms and we provide speculative explanations of what may have caused these differences.

  9. Intelligent DNA-based molecular diagnostics using linked genetic markers

    Energy Technology Data Exchange (ETDEWEB)

    Pathak, D.K.; Perlin, M.W.; Hoffman, E.P.

    1994-12-31

    This paper describes a knowledge-based system for molecular diagnostics, and its application to fully automated diagnosis of X-linked genetic disorders. Molecular diagnostic information is used in clinical practice for determining genetic risks, such as carrier determination and prenatal diagnosis. Initially, blood samples are obtained from related individuals, and PCR amplification is performed. Linkage-based molecular diagnosis then entails three data analysis steps. First, for every individual, the alleles (i.e., DNA composition) are determined at specified chromosomal locations. Second, the flow of genetic material among the individuals is established. Third, the probability that a given individual is either a carrier of the disease or affected by the disease is determined. The current practice is to perform each of these three steps manually, which is costly, time consuming, labor-intensive, and error-prone. As such, the knowledge-intensive data analysis and interpretation supersede the actual experimentation effort as the major bottleneck in molecular diagnostics. By examining the human problem solving for the task, we have designed and implemented a prototype knowledge-based system capable of fully automating linkage-based molecular diagnostics in X-linked genetic disorders, including Duchenne Muscular Dystrophy (DMD). Our system uses knowledge-based interpretation of gel electrophoresis images to determine individual DNA marker labels, a constraint satisfaction search for consistent genetic flow among individuals, and a blackboard-style problem solver for risk assessment. We describe the system`s successful diagnosis of DMD carrier and affected individuals from raw clinical data.

  10. Psychological Issues in Cancer Genetics: Current Research and Future Priorities.

    Science.gov (United States)

    Hopwood, Penelope

    1997-01-01

    Data concerning the psychological impact of high risk of cancer are reviewed, including implications of genetic testing, breast screening,and accuracy of women's risk estimates. Work in progress on prophylactic mastectomy and chemoprevention is reviewed. Research on cancer families, and interventions and prevention strategies for high-risk…

  11. BRCA1 and BRCA2: Cancer Risk and Genetic Testing

    Science.gov (United States)

    ... BP. Fanconi anemia and the development of leukemia. Best practice & research. Clinical Haematology 2014; 27(3-4):214- ... 2007; 39(2):165–167. [PubMed Abstract] Related Resources Cancer Genetics Risk ... and Human Services National Institutes of Health National Cancer Institute ...

  12. Breast Cancer Genetic Counseling: A Surgeon’s Perspective

    Directory of Open Access Journals (Sweden)

    Doreen Marie Agnese

    2016-01-01

    Full Text Available As surgeons who care for patients with breast cancer, the possibility of a cancer diagnosis being related to a hereditary predisposition is always a consideration. Not only are we as surgeons always trying to identify these patients and families, but also we are often asked about a potential hereditary component by the patients and their family members. It is therefore critical that we accurately assess patients to determine who may benefit from genetic testing. Importantly, the potential benefit for identifying a hereditary breast cancer extends beyond the patient to other family members and the risk may not be only for the development of breast cancers, but for other cancers as well. As a surgeon with additional training in clinical cancer genetics, I have perhaps a unique perspective on the issue and feel that a review of some of the more practical considerations is important.

  13. Molecular genetic studies on irradiated wheat plants

    International Nuclear Information System (INIS)

    Composite genotype(octamer hybrid) was obtained from crossing among eight Egyptian hexaploid wheat cultivars differing in their tolerance to drought stress to produce a genotype, which can economize on the irrigation water requirements or can tolerate drought stress. Gamma irradiation with 10-Krad was used to induce mutations, which could improve drought tolerance for this composite. From eight Egyptian wheat cultivars, two were chosen as drought tolerant and drought sensitive genotypes (G-160 and Sk-61, respectively. They were evaluated along with their F1 and F2 for their relative drought tolerance for some yield-related traits. Bulked segregating analysis developed some RAPD and SSR markers with different primers, which were considered as molecular for drought tolerance in wheat. Hal 2-like gene was introduced into Egyptian wheat cultivar G-164 via micro projectile bombardment. Two putative transgenic plants were successfully detected by leaf painting with the herbicide basta. PCR/ Southern blotting analysis indicated the presence of both/either bar and/or Hal 2-like genes in the genomic background of the two transgenic plants

  14. Prognostic Factors for Distress After Genetic Testing for Hereditary Cancer.

    Science.gov (United States)

    Voorwinden, Jan S; Jaspers, Jan P C

    2016-06-01

    The psychological impact of an unfavorable genetic test result for counselees at risk for hereditary cancer seems to be limited: only 10-20 % of counselees have psychological problems after testing positive for a known familial mutation. The objective of this study was to find prognostic factors that can predict which counselees are most likely to develop psychological problems after presymptomatic genetic testing. Counselees with a 50 % risk of BRCA1/2 or Lynch syndrome completed questionnaires at three time-points: after receiving a written invitation for a genetic counseling intake (T1), 2-3 days after receiving their DNA test result (T2), and 4-6 weeks later (T3). The psychological impact of the genetic test result was examined shortly and 4-6 weeks after learning their test result. Subsequently, the influence of various potentially prognostic factors on psychological impact were examined in the whole group. Data from 165 counselees were analyzed. Counselees with an unfavorable outcome did not have more emotional distress, but showed significantly more cancer worries 4-6 weeks after learning their test result. Prognostic factors for cancer worries after genetic testing were pre-existing cancer worries, being single, a high risk perception of getting cancer, and an unfavorable test result. Emotional distress was best predicted by pre-existing cancer worries and pre-existing emotional distress. The psychological impact of an unfavorable genetic test result appears considerable if it is measured as "worries about cancer." Genetic counselors should provide additional guidance to counselees with many cancer worries, emotional distress, a high risk perception or a weak social network. PMID:26475052

  15. Prognostic Factors for Distress After Genetic Testing for Hereditary Cancer.

    Science.gov (United States)

    Voorwinden, Jan S; Jaspers, Jan P C

    2016-06-01

    The psychological impact of an unfavorable genetic test result for counselees at risk for hereditary cancer seems to be limited: only 10-20 % of counselees have psychological problems after testing positive for a known familial mutation. The objective of this study was to find prognostic factors that can predict which counselees are most likely to develop psychological problems after presymptomatic genetic testing. Counselees with a 50 % risk of BRCA1/2 or Lynch syndrome completed questionnaires at three time-points: after receiving a written invitation for a genetic counseling intake (T1), 2-3 days after receiving their DNA test result (T2), and 4-6 weeks later (T3). The psychological impact of the genetic test result was examined shortly and 4-6 weeks after learning their test result. Subsequently, the influence of various potentially prognostic factors on psychological impact were examined in the whole group. Data from 165 counselees were analyzed. Counselees with an unfavorable outcome did not have more emotional distress, but showed significantly more cancer worries 4-6 weeks after learning their test result. Prognostic factors for cancer worries after genetic testing were pre-existing cancer worries, being single, a high risk perception of getting cancer, and an unfavorable test result. Emotional distress was best predicted by pre-existing cancer worries and pre-existing emotional distress. The psychological impact of an unfavorable genetic test result appears considerable if it is measured as "worries about cancer." Genetic counselors should provide additional guidance to counselees with many cancer worries, emotional distress, a high risk perception or a weak social network.

  16. Breast cancer, genetics, and age at first pregnancy.

    OpenAIRE

    Lynch, H.T.; Albano, W. A.; Layton, M A; Kimberling, W J; Lynch, J. F.

    1984-01-01

    Hereditary breast cancer shows a distinctive natural history characterised by an earlier age of onset, excess bilaterality, vertical transmission, heterogeneous tumour associations, and improved survival when compared to its sporadic counterpart. To date, very little attention has been given to interrelationships between breast cancer risk factors and genetics. In the general population, early age of first term pregnancy has been generally accepted as protective against breast cancer. In addi...

  17. Corn Storage Protein - A Molecular Genetic Model

    Energy Technology Data Exchange (ETDEWEB)

    Messing, Joachim [Rutgers, The State University of New Jersey

    2013-05-31

    Corn is the highest yielding crop on earth and probably the most valuable agricultural product of the United States. Because it converts sun energy through photosynthesis into starch and proteins, we addressed energy savings by focusing on protein quality. People and animals require essential amino acids derived from the digestion of proteins. If proteins are relatively low in certain essential amino acids, the crop becomes nutritionally defective and has to be supplemented. Such deficiency affects meat and fish production and countries where corn is a staple. Because corn seed proteins have relatively low levels of lysine and methionine, a diet has to be supplemented with soybeans for the missing lysine and with chemically synthesized methionine. We therefore have studied genes expressed during maize seed development and their chromosomal organization. A critical technical requirement for the understanding of the molecular structure of genes and their positional information was DNA sequencing. Because of the length of sequences, DNA sequencing methods themselves were insufficient for this type of analysis. We therefore developed the so-called “DNA shotgun sequencing” strategy, where overlapping DNA fragments were sequenced in parallel and used to reconstruct large DNA molecules via overlaps. Our publications became the most frequently cited ones during the decade of 1981-1990 and former Associate Director of Science for the Office of Basic Energy Sciences Patricia M. Dehmer presented our work as one of the great successes of this program. A major component of the sequencing strategy was the development of bacterial strains and vectors, which were also used to develop the first biotechnology crops. These crops possessed new traits thanks to the expression of foreign genes in plants. To enable such expression, chimeric genes had to be constructed using our materials and methods by the industry. Because we made our materials and methods freely available to

  18. Molecular diagnosis for personalized target therapy in gastric cancer.

    Science.gov (United States)

    Cho, Jae Yong

    2013-09-01

    Gastric cancer is the second leading cause of cancer-related deaths worldwide. In advanced and metastatic gastric cancer, the conventional chemotherapy with limited efficacy shows an overall survival period of about 10 months. Patient specific and effective treatments known as personalized cancer therapy is of significant importance. Advances in high-throughput technologies such as microarray and next generation sequencing for genes, protein expression profiles and oncogenic signaling pathways have reinforced the discovery of treatment targets and personalized treatments. However, there are numerous challenges from cancer target discoveries to practical clinical benefits. Although there is a flood of biomarkers and target agents, only a minority of patients are tested and treated accordingly. Numerous molecular target agents have been under investigation for gastric cancer. Currently, targets for gastric cancer include the epidermal growth factor receptor family, mesenchymal-epithelial transition factor axis, and the phosphatidylinositol 3-kinase-AKT-mammalian target of rapamycin pathways. Deeper insights of molecular characteristics for gastric cancer has enabled the molecular classification of gastric cancer, the diagnosis of gastric cancer, the prediction of prognosis, the recognition of gastric cancer driver genes, and the discovery of potential therapeutic targets. Not only have we deeper insights for the molecular diversity of gastric cancer, but we have also prospected both affirmative potentials and hurdles to molecular diagnostics. New paradigm of transdisciplinary team science, which is composed of innovative explorations and clinical investigations of oncologists, geneticists, pathologists, biologists, and bio-informaticians, is mandatory to recognize personalized target therapy. PMID:24156032

  19. Genetic diversity analysis of common beans based on molecular markers

    Directory of Open Access Journals (Sweden)

    Homar R. Gill-Langarica

    2011-01-01

    Full Text Available A core collection of the common bean (Phaseolus vulgaris L., representing genetic diversity in the entire Mexican holding, is kept at the INIFAP (Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias, Mexico Germplasm Bank. After evaluation, the genetic structure of this collection (200 accessions was compared with that of landraces from the states of Oaxaca, Chiapas and Veracruz (10 genotypes from each, as well as a further 10 cultivars, by means of four amplified fragment length polymorphisms (AFLP +3/+3 primer combinations and seven simple sequence repeats (SSR loci, in order to define genetic diversity, variability and mutual relationships. Data underwent cluster (UPGMA and molecular variance (AMOVA analyses. AFLP analysis produced 530 bands (88.5% polymorphic while SSR primers amplified 174 alleles, all polymorphic (8.2 alleles per locus. AFLP indicated that the highest genetic diversity was to be found in ten commercial-seed classes from two major groups of accessions from Central Mexico and Chiapas, which seems to be an important center of diversity in the south. A third group included genotypes from Nueva Granada, Mesoamerica, Jalisco and Durango races. Here, SSR analysis indicated a reduced number of shared haplotypes among accessions, whereas the highest genetic components of AMOVA variation were found within accessions. Genetic diversity observed in the common-bean core collection represents an important sample of the total Phaseolus genetic variability at the main Germplasm Bank of INIFAP. Molecular marker strategies could contribute to a better understanding of the genetic structure of the core collection as well as to its improvement and validation.

  20. Genetic diversity analysis of common beans based on molecular markers.

    Science.gov (United States)

    Gill-Langarica, Homar R; Muruaga-Martínez, José S; Vargas-Vázquez, M L Patricia; Rosales-Serna, Rigoberto; Mayek-Pérez, Netzahualcoyotl

    2011-10-01

    A core collection of the common bean (Phaseolus vulgaris L.), representing genetic diversity in the entire Mexican holding, is kept at the INIFAP (Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias, Mexico) Germplasm Bank. After evaluation, the genetic structure of this collection (200 accessions) was compared with that of landraces from the states of Oaxaca, Chiapas and Veracruz (10 genotypes from each), as well as a further 10 cultivars, by means of four amplified fragment length polymorphisms (AFLP) +3/+3 primer combinations and seven simple sequence repeats (SSR) loci, in order to define genetic diversity, variability and mutual relationships. Data underwent cluster (UPGMA) and molecular variance (AMOVA) analyses. AFLP analysis produced 530 bands (88.5% polymorphic) while SSR primers amplified 174 alleles, all polymorphic (8.2 alleles per locus). AFLP indicated that the highest genetic diversity was to be found in ten commercial-seed classes from two major groups of accessions from Central Mexico and Chiapas, which seems to be an important center of diversity in the south. A third group included genotypes from Nueva Granada, Mesoamerica, Jalisco and Durango races. Here, SSR analysis indicated a reduced number of shared haplotypes among accessions, whereas the highest genetic components of AMOVA variation were found within accessions. Genetic diversity observed in the common-bean core collection represents an important sample of the total Phaseolus genetic variability at the main Germplasm Bank of INIFAP. Molecular marker strategies could contribute to a better understanding of the genetic structure of the core collection as well as to its improvement and validation.

  1. Genetic and environmental factors in experimental and human cancer

    Energy Technology Data Exchange (ETDEWEB)

    Takayama, S.; Takebe, H.; Gelboin, H.V.; MaChahon, B.; Matsushima, T.; Sugimura, T.

    1980-01-01

    Recently technological advances in assaying mutagenic principles have revealed that there are many mutagens in the environment, some of which might be carcinogenic to human beings. Other advances in genetics have shown that genetic factors might play an important role in the induction of cancer in human beings, e.g., the high incidence of skin cancers in patients with xeroderma pigmentosum. These proceedings deal with the relationships between genetic and environmental factors in carcinogenesis. The contributors cover mixed-function oxidases, pharmacogenetics, twin studies, DNA repair, immunology, and epidemiology.

  2. Combinations of genetic data in a study of oral cancer

    DEFF Research Database (Denmark)

    Mellerup, Erling Thyge; Møller, Gert Lykke; Mondal, Pinaki;

    2015-01-01

    for a polygenic disorder will not occur in in control persons genetically unrelated to patients, so the strategy is to analyze combinations of genetic variants present exclusively in patients. In a previous study of oral cancer and leukoplakia 325 SNPs were analyzed. This study has been supplemented...... with an analysis of combinations of two SNP genotypes from among the 325 SNPs. Two clusters of combinations containing 95 patient specific combinations were significantly associated with oral cancer or leukoplakia. Of 373 patients with oral cancer 205 patients had a number of these 95 combinations in their genome......, whereas none of 535 control persons had any of these combinations in their genome....

  3. Comparison of morphological and molecular genetic distances of maize inbreds

    Directory of Open Access Journals (Sweden)

    Babić Milosav

    2012-01-01

    Full Text Available Due to an unknown mechanism of genetic control and great environmental effects in the process of trait expression, morphological markers are often considered unreliable indicators of genetic relationships. Morphological characterization of 19 maize inbreds was done according to the UPOV descriptor, while molecular characterization was performed with RAPD markers. Based on the estimation of phenotypes according to the UPOV descriptor, the squared Euclidean distance was calculated and then, on the basis of this distance, a morphological similarity matrix was formed. Jaccard similarity coefficients were calculated on the basis of presence absence of bands on gels in the RAPD analysis. When data were standardized, the comparison between morphological and genetic similarity of observed maize inbreds was done. The correlations varied from 0.47 (inbred L 217 to 0.76 (inbred L 86. The average value of correlations for all studied inbreds amounted to 0.64. Furthermore, the results of the cluster analysis for both markers, molecular and morphological, had high concordance with pedigree data. Environmental effects were decreased in morphological markers (according to the UPOV descriptor by rescaling a measurement scale from a scale to an ordinal level of measurement and in such a way results of morphological markers approached results of molecular markers in the estimation of the genetic distance (GD of maize inbred lines.

  4. Genetic tests to identify risk for breast cancer

    Science.gov (United States)

    Lynch, Julie; Venne, Vickie; Berse, Brygida

    2016-01-01

    Objectives To describe the currently available genetic tests that identify hereditary risk for breast cancer. Data sources Systematic review of scientific literature, clinical practice guidelines, and data published by test manufacturers. Conclusion Changes in gene patent laws and advances in sequencing technologies have resulted in rapid expansion of genetic testing. While BRCA1/2 are the most recognized genes linked to breast cancer, several laboratories now offer multi-gene panels to detect many risk-related mutations. Implication for Nursing Practice Genetic testing will be increasingly important in the prevention, diagnosis, and treatment of breast cancer. Oncology and advanced practice nurses need to understand risk factors, significance of various genetic tests, and patient counseling. PMID:25951739

  5. Clinical applications of schizophrenia genetics: genetic diagnosis, risk, and counseling in the molecular era

    Directory of Open Access Journals (Sweden)

    Costain G

    2012-02-01

    Full Text Available Gregory Costain1,2, Anne S Bassett1–41Clinical Genetics Research Program, Centre for Addiction and Mental Health, 2Institute of Medical Science, University of Toronto, 3Division of Cardiology, Department of Medicine and Department of Psychiatry, University Health Network, 4Department of Psychiatry, University of Toronto, Toronto, Ontario, CanadaAbstract: Schizophrenia is a complex neuropsychiatric disease with documented clinical and genetic heterogeneity, and evidence for neurodevelopmental origins. Driven by new genetic technologies and advances in molecular medicine, there has recently been concrete progress in understanding some of the specific genetic causes of this serious psychiatric illness. In particular, several large rare structural variants have been convincingly associated with schizophrenia, in targeted studies over two decades with respect to 22q11.2 microdeletions, and more recently in large-scale, genome-wide case-control studies. These advances promise to help many families afflicted with this disease. In this review, we critically appraise recent developments in the field of schizophrenia genetics through the lens of immediate clinical applicability. Much work remains in translating the recent surge of genetic research discoveries into the clinic. The epidemiology and basic genetic parameters (such as penetrance and expression of most genomic disorders associated with schizophrenia are not yet well characterized. To date, 22q11.2 deletion syndrome is the only established genetic subtype of schizophrenia of proven clinical relevance. We use this well-established association as a model to chart the pathway for translating emerging genetic discoveries into clinical practice. We also propose new directions for research involving general genetic risk prediction and counseling in schizophrenia.Keywords: schizophrenia, genetics, 22q11 deletion syndrome, copy number variation, genetic counseling, genetic predisposition to disease

  6. American Society of Clinical Oncology policy statement update: genetic testing for cancer susceptibility.

    Science.gov (United States)

    2003-06-15

    As the leading organization representing cancer specialists involved in patient care and clinical research, the American Society of Clinical Oncology (ASCO) reaffirms its commitment to integrating cancer risk assessment and management, including molecular analysis of cancer predisposition genes, into the practice of oncology and preventive medicine. The primary goal of this effort is to foster expanded access to, and continued advances in, medical care provided to patients and families affected by hereditary cancer syndromes. The 1996 ASCO Statement on Genetic Testing for Cancer Susceptibility set forth specific recommendations relating to clinical practice, research needs, educational opportunities, requirement for informed consent, indications for genetic testing, regulation of laboratories, and protection from discrimination, as well as access to and reimbursement for cancer genetics services. In updating this Statement, ASCO endorses the following principles: Indications for Genetic Testing: ASCO recommends that genetic testing be offered when 1) the individual has personal or family history features suggestive of a genetic cancer susceptibility condition, 2) the test can be adequately interpreted, and 3) the results will aid in diagnosis or influence the medical or surgical management of the patient or family members at hereditary risk of cancer. ASCO recommends that genetic testing only be done in the setting of pre- and post-test counseling, which should include discussion of possible risks and benefits of cancer early detection and prevention modalities. Special Issues in Testing Children for Cancer Susceptibility: ASCO recommends that the decision to offer testing to potentially affected children should take into account the availability of evidence-based risk-reduction strategies and the probability of developing a malignancy during childhood. Where risk-reduction strategies are available or cancer predominantly develops in childhood, ASCO believes that

  7. Genetics and Personal Insurance: the Perspectives of Canadian Cancer Genetic Counselors.

    Science.gov (United States)

    Lane, Michelle; Ngueng Feze, Ida; Joly, Yann

    2015-12-01

    Genetic discrimination in the context of genetic testing has been identified as a concern for symptomatic and asymptomatic individuals for more than three decades. Genetic counselors are often the health care professionals who discuss risks and benefits of genetic testing with patients, thereby making them most appropriate to address patient concerns about genetics and personal insurance (i.e., life, life as related to mortgage or group insurance, disability, critical illness and travel). A pilot study was conducted to ascertain the current practices of Canadian cancer genetic counselors in regard to their discussions with patients about genetic testing and access to personal insurance. Among the 36 counselors surveyed, 100 % reported discussing the issue of genetic testing and personal insurance with their patients. Several factors influenced the content, depth and length of these discussions including age, cancer status, family members, and patients' current and future insurance needs. Counselors reported discussing with patients the possible impact of genetic test results on access to personal insurance, possible access and use of patient genetic information by insurance companies, and whom patients should contact if they have additional questions. The most commonly reported inquiries from patients included questions about the possible impact of genetic testing on their ability to obtain insurance, and the insurability of family members. While 28 % of counselors reported having been contacted by an insurer requesting access to patient information, only one counselor was aware of or could recall the outcome of such a request. This pilot study revealed that issues concerning genetics and personal insurance are commonly discussed in Canadian cancer genetic counseling sessions. Counselors furthermore expressed a need for additional educational resources on the topic of genetics and personal insurance for themselves and their patients.

  8. Genetics and Personal Insurance: the Perspectives of Canadian Cancer Genetic Counselors.

    Science.gov (United States)

    Lane, Michelle; Ngueng Feze, Ida; Joly, Yann

    2015-12-01

    Genetic discrimination in the context of genetic testing has been identified as a concern for symptomatic and asymptomatic individuals for more than three decades. Genetic counselors are often the health care professionals who discuss risks and benefits of genetic testing with patients, thereby making them most appropriate to address patient concerns about genetics and personal insurance (i.e., life, life as related to mortgage or group insurance, disability, critical illness and travel). A pilot study was conducted to ascertain the current practices of Canadian cancer genetic counselors in regard to their discussions with patients about genetic testing and access to personal insurance. Among the 36 counselors surveyed, 100 % reported discussing the issue of genetic testing and personal insurance with their patients. Several factors influenced the content, depth and length of these discussions including age, cancer status, family members, and patients' current and future insurance needs. Counselors reported discussing with patients the possible impact of genetic test results on access to personal insurance, possible access and use of patient genetic information by insurance companies, and whom patients should contact if they have additional questions. The most commonly reported inquiries from patients included questions about the possible impact of genetic testing on their ability to obtain insurance, and the insurability of family members. While 28 % of counselors reported having been contacted by an insurer requesting access to patient information, only one counselor was aware of or could recall the outcome of such a request. This pilot study revealed that issues concerning genetics and personal insurance are commonly discussed in Canadian cancer genetic counseling sessions. Counselors furthermore expressed a need for additional educational resources on the topic of genetics and personal insurance for themselves and their patients. PMID:25925606

  9. The consensus molecular subtypes of colorectal cancer.

    Science.gov (United States)

    Guinney, Justin; Dienstmann, Rodrigo; Wang, Xin; de Reyniès, Aurélien; Schlicker, Andreas; Soneson, Charlotte; Marisa, Laetitia; Roepman, Paul; Nyamundanda, Gift; Angelino, Paolo; Bot, Brian M; Morris, Jeffrey S; Simon, Iris M; Gerster, Sarah; Fessler, Evelyn; De Sousa E Melo, Felipe; Missiaglia, Edoardo; Ramay, Hena; Barras, David; Homicsko, Krisztian; Maru, Dipen; Manyam, Ganiraju C; Broom, Bradley; Boige, Valerie; Perez-Villamil, Beatriz; Laderas, Ted; Salazar, Ramon; Gray, Joe W; Hanahan, Douglas; Tabernero, Josep; Bernards, Rene; Friend, Stephen H; Laurent-Puig, Pierre; Medema, Jan Paul; Sadanandam, Anguraj; Wessels, Lodewyk; Delorenzi, Mauro; Kopetz, Scott; Vermeulen, Louis; Tejpar, Sabine

    2015-11-01

    Colorectal cancer (CRC) is a frequently lethal disease with heterogeneous outcomes and drug responses. To resolve inconsistencies among the reported gene expression-based CRC classifications and facilitate clinical translation, we formed an international consortium dedicated to large-scale data sharing and analytics across expert groups. We show marked interconnectivity between six independent classification systems coalescing into four consensus molecular subtypes (CMSs) with distinguishing features: CMS1 (microsatellite instability immune, 14%), hypermutated, microsatellite unstable and strong immune activation; CMS2 (canonical, 37%), epithelial, marked WNT and MYC signaling activation; CMS3 (metabolic, 13%), epithelial and evident metabolic dysregulation; and CMS4 (mesenchymal, 23%), prominent transforming growth factor-β activation, stromal invasion and angiogenesis. Samples with mixed features (13%) possibly represent a transition phenotype or intratumoral heterogeneity. We consider the CMS groups the most robust classification system currently available for CRC-with clear biological interpretability-and the basis for future clinical stratification and subtype-based targeted interventions.

  10. Genetic diversity of popcorn genotypes using molecular analysis.

    Science.gov (United States)

    Resh, F S; Scapim, C A; Mangolin, C A; Machado, M F P S; do Amaral, A T; Ramos, H C C; Vivas, M

    2015-01-01

    In this study, we analyzed dominant molecular markers to estimate the genetic divergence of 26 popcorn genotypes and evaluate whether using various dissimilarity coefficients with these dominant markers influences the results of cluster analysis. Fifteen random amplification of polymorphic DNA primers produced 157 amplified fragments, of which 65 were monomorphic and 92 were polymorphic. To calculate the genetic distances among the 26 genotypes, the complements of the Jaccard, Dice, and Rogers and Tanimoto similarity coefficients were used. A matrix of Dij values (dissimilarity matrix) was constructed, from which the genetic distances among genotypes were represented in a more simplified manner as a dendrogram generated using the unweighted pair-group method with arithmetic average. Clusters determined by molecular analysis generally did not group material from the same parental origin together. The largest genetic distance was between varieties 17 (UNB-2) and 18 (PA-091). In the identification of genotypes with the smallest genetic distance, the 3 coefficients showed no agreement. The 3 dissimilarity coefficients showed no major differences among their grouping patterns because agreement in determining the genotypes with large, medium, and small genetic distances was high. The largest genetic distances were observed for the Rogers and Tanimoto dissimilarity coefficient (0.74), followed by the Jaccard coefficient (0.65) and the Dice coefficient (0.48). The 3 coefficients showed similar estimations for the cophenetic correlation coefficient. Correlations among the matrices generated using the 3 coefficients were positive and had high magnitudes, reflecting strong agreement among the results obtained using the 3 evaluated dissimilarity coefficients. PMID:26345916

  11. Hormonal and molecular aspects of endometrioid endometrial cancer

    NARCIS (Netherlands)

    Jongen, Vincentius Hubertus Willibrordus Maria

    2008-01-01

    This thesis concerns the expression and prognostic value of various hormones and molecular markers playing a role n endometrioid endometrial cancer. Especially we were interested in the enzyme aromatase, its expression and (prognostic) role in endometrioid endometrial cancer. Endometrial cancer is t

  12. [Genetic basis of head and neck cancers and gene therapy].

    Science.gov (United States)

    Özel, Halil Erdem; Özkırış, Mahmut; Gencer, Zeliha Kapusuz; Saydam, Levent

    2013-01-01

    Surgery and combinations of traditional treatments are not successful enough particularly for advanced stage head and neck cancer. The major disadvantages of chemotherapy and radiation therapy are the lack of specificity for the target tissue and toxicity to the patient. As a result, gene therapy may offer a more specific approach. The aim of gene therapy is to present therapeutic genes into cancer cells which selectively eliminate malignant cells with no systemic toxicity to the patient. This article reviews the genetic basis of head and neck cancers and important concepts in cancer gene therapy: (i) inhibition of oncogenes; (ii) tumor suppressor gene replacement; (iii) regulation of immune response against malignant cells; (iv) genetic prodrug activation; and (v) antiangiogenic gene therapy. Currently, gene therapy is not sufficient to replace the traditional treatments of head and neck cancers, however there is no doubt that it will have an important role in the near future.

  13. Molecular Markers with Predictive and Prognostic Relevance in Lung Cancer

    Directory of Open Access Journals (Sweden)

    Alphy Rose-James

    2012-01-01

    Full Text Available Lung cancer accounts for the majority of cancer-related deaths worldwide of which non-small-cell lung carcinoma alone takes a toll of around 85%. Platinum-based therapy is the stronghold for lung cancer at present. The discovery of various molecular alterations that underlie lung cancer has contributed to the development of specifically targeted therapies employing specific mutation inhibitors. Targeted chemotherapy based on molecular profiling has shown great promise in lung cancer treatment. Various molecular markers with predictive and prognostic significance in lung cancer have evolved as a result of advanced research. Testing of EGFR and Kras mutations is now a common practice among community oncologists, and more recently, ALK rearrangements have been added to this group. This paper discusses various predictive and prognostic markers that are being investigated and have shown significant relevance which can be exploited for targeted treatment in lung cancer.

  14. Integration of molecular genetic technology with quantitative genetic technology for maximizing the speed of genetic improvement

    Institute of Scientific and Technical Information of China (English)

    Jack; C.M.; DEKKERS

    2005-01-01

    To date,most genetic progress for quantita-tive traits in livestock has been made by selec-tion on phenotype or on estimates of breedingvalues(BBV)derived from phenotype,withoutknowledge of the number of genes that affect thetrait or the effects of each gene.In this quantita-tive genetic approach to genetic improvement,the genetic architecture of traits of interest hasessentially been treated as a‘black box’.De-spite this,the substantial rates of genetic im-provement that have been and continue to be a-chie...

  15. Molecular Pathways: Estrogen Pathway in Colorectal Cancer

    Science.gov (United States)

    Barzi, Afsaneh; Lenz, Annika Medea; Labonte, Melissa J.; Lenz, Heinz-Josef

    2013-01-01

    Worldwide colorectal cancer (CRC) has a higher incidence rate in men than in women, suggesting a protective role for sex hormones in the development of the disease. Preclinical data supports a role for estrogen and its receptors in the initiation and progression of CRC and establishes that protective effects of estrogen are exerted through ERβ. Hormone replacement therapy (HRT) in postmenopausal women as well as consumption of soy reduces the incidence of CRC. In the Women’s Health Initiative (WHI) trial use of HRT in postmenopausal women reduced the risk of colon cancer by 56% (95% CI, 0.38 to 0.81; P=0.003). A recent meta-analysis showed that in females, consumption of soy reduced the risk of colon cancer by 21% (95% CI, 0.03 to 0.35; P=0.026). In this review, utilizing the preclinical data, we translate the findings in the clinical trials and observational studies to define the role of estrogen in the prevention of CRC. We hypothesize that sometime during the tumorigenesis process ERβ expression in colonocytes is lost and the estrogen ligand, HRT or soy products, exerts its effects through preventing this loss. Thus in the adenoma to carcinoma continuum, timing of HRT is a significant determinant of the observed benefit from this intervention. We further argue that the protective effects of estrogen are limited to certain molecular subtypes. Successful development of estrogen modulators for prevention of CRC depends on identification of susceptible CRC population(s). Thus research to better understand the estrogen pathway is fundamental for clinical delivery of these agents. PMID:23965904

  16. Genetic characterization of fig tree mutants with molecular markers.

    Science.gov (United States)

    Rodrigues, M G F; Martins, A B G; Desidério, J A; Bertoni, B W; Alves, M C

    2012-01-01

    The fig (Ficus carica L.) is a fruit tree of great world importance and, therefore, the genetic improvement becomes an important field of research for better crops, being necessary to gather information on this species, mainly regarding its genetic variability so that appropriate propagation projects and management are made. The improvement programs of fig trees using conventional procedures in order to obtain new cultivars are rare in many countries, such as Brazil, especially due to the little genetic variability and to the difficulties in obtaining plants from gamete fusion once the wasp Blastophaga psenes, responsible for the natural pollinating, is not found in Brazil. In this way, the mutagenic genetic improvement becomes a solution of it. For this reason, in an experiment conducted earlier, fig plants formed by cuttings treated with gamma ray were selected based on their agronomic characteristics of interest. We determined the genetic variability in these fig tree selections, using RAPD and AFLP molecular markers, comparing them to each other and to the Roxo-de-Valinhos, used as the standard. For the reactions of DNA amplification, 140 RAPD primers and 12 primer combinations for AFLP analysis were used. The selections did not differ genetically between themselves and between them and the Roxo-de-Valinhos cultivar. Techniques that can detect polymorphism between treatments, such as DNA sequencing, must be tested. The phenotypic variation of plants may be due to epigenetic variation, necessitating the use of techniques with methylation-sensitive restriction enzymes.

  17. The Genetic and Molecular Basis of Plant Resistance to Pathogens

    Institute of Scientific and Technical Information of China (English)

    Yan Zhang; Thomas Lubberstedt; Mingliang Xu

    2013-01-01

    Plant pathogens have evolved numerous strategies to obtain nutritive materials from their host,and plants in turn have evolved the preformed physical and chemical barriers as well as sophisticated two-tiered immune system to combat pathogen attacks.Genetically,plant resistance to pathogens can be divided into qualitative and quantitative disease resistance,conditioned by major gene(s) and multiple genes with minor effects,respectively.Qualitative disease resistance has been mostly detected in plant defense against biotrophic pathogens,whereas quantitative disease resistance is involved in defense response to all plant pathogens,from biotrophs,hemibiotrophs to necrotrophs.Plant resistance is achieved through interception of pathogen-derived effectors and elicitation of defense response.In recent years,great progress has been made related to the molecular basis underlying host-pathogen interactions.In this review,we would like to provide an update on genetic and molecular aspects of plant resistance to pathogens.

  18. Indian studies on genetic polymorphisms and cancer risk

    Directory of Open Access Journals (Sweden)

    A Bag

    2012-01-01

    Full Text Available Genetic influences on cancer development have been extensively investigated during the last decade following publication of human genome sequence. The present review summarizes case-control studies on genetic polymorphisms and cancer risk in Indians. It is observed that the most commonly studied genes in the Indian population included members of phase I and phase II metabolic enzymes. Other than these genes, genetic polymorphisms for cell cycle and apoptosis-related factors, DNA repair enzymes, immune response elements, growth factors, folate metabolizing enzymes, vitamin/hormone receptors, etc., were investigated. Several studies also evidenced a stronger risk for combined genotypes rather than a single polymorphism. Gene-environment interaction was also found to be a determining factor for cancer development in some experiments. Data for single polymorphism and single cancer type, however, was insufficient to validate an association. It appears that much more experiments involving larger sample size, cross-tabulating genetic polymorphisms and environmental factors are required in order to identify genetic markers for different cancers in Indian populations.

  19. Optimization of a genetic algorithm for searching molecular conformer space

    Science.gov (United States)

    Brain, Zoe E.; Addicoat, Matthew A.

    2011-11-01

    We present two sets of tunings that are broadly applicable to conformer searches of isolated molecules using a genetic algorithm (GA). In order to find the most efficient tunings for the GA, a second GA - a meta-genetic algorithm - was used to tune the first genetic algorithm to reliably find the already known a priori correct answer with minimum computational resources. It is shown that these tunings are appropriate for a variety of molecules with different characteristics, and most importantly that the tunings are independent of the underlying model chemistry but that the tunings for rigid and relaxed surfaces differ slightly. It is shown that for the problem of molecular conformational search, the most efficient GA actually reduces to an evolutionary algorithm.

  20. Human fertility, molecular genetics, and natural selection in modern societies.

    Directory of Open Access Journals (Sweden)

    Felix C Tropf

    Full Text Available Research on genetic influences on human fertility outcomes such as number of children ever born (NEB or the age at first childbirth (AFB has been solely based on twin and family-designs that suffer from problematic assumptions and practical limitations. The current study exploits recent advances in the field of molecular genetics by applying the genomic-relationship-matrix based restricted maximum likelihood (GREML methods to quantify for the first time the extent to which common genetic variants influence the NEB and the AFB of women. Using data from the UK and the Netherlands (N = 6,758, results show significant additive genetic effects on both traits explaining 10% (SE = 5 of the variance in the NEB and 15% (SE = 4 in the AFB. We further find a significant negative genetic correlation between AFB and NEB in the pooled sample of -0.62 (SE = 0.27, p-value = 0.02. This finding implies that individuals with genetic predispositions for an earlier AFB had a reproductive advantage and that natural selection operated not only in historical, but also in contemporary populations. The observed postponement in the AFB across the past century in Europe contrasts with these findings, suggesting an evolutionary override by environmental effects and underscoring that evolutionary predictions in modern human societies are not straight forward. It emphasizes the necessity for an integrative research design from the fields of genetics and social sciences in order to understand and predict fertility outcomes. Finally, our results suggest that we may be able to find genetic variants associated with human fertility when conducting GWAS-meta analyses with sufficient sample size.

  1. Update on the Cytogenetics and Molecular Genetics of Chordoma

    Directory of Open Access Journals (Sweden)

    Larizza Lidia

    2005-02-01

    Full Text Available Abstract Chordoma is a rare mesenchymal tumour of complex biology for which only histologic and immunohistochemical criteria have been defined, but no biomarkers predicting the clinical outcome and response to treatment have yet been recognised. We herein review the interdisciplinary information achieved by epidemiologists, neurosurgeons and basic scientists on chordoma, usually a sporadic tumour, which also includes a small fraction of familial cases. Main focus is on the current knowledge of the genetic alterations which might pinpoint candidate genes and molecular mechanisms shared by sporadic and familiar chordomas. Due to the scarcity of the investigated tumour specimens and the multiple chromosome abnormalities found in tumours with aberrant karyotypes, conventional cytogenetics and Fluorescence In Situ Hybridization failed to detect recurrent chordoma-specific chromosomal rearrangements. Genome-wide approaches such as Comparative Genomic Hybridization (CGH are yet at an initial stage of application and should be implemented using BAC arrays either genome-wide or targeting selected genomic regions, disclosed by Loss of Heterozygosity (LOH studies. An LOH region was shown by a systematic study on a consistent number of chordomas to encompass 1p36, a genomic interval where a candidate gene was suggested to reside. Despite the rarity of multiplex families with chordoma impaired linkage studies, a chordoma locus could be mapped to chromosome 7q33 by positive lod score in three independent families. The role in chordomagenesis of the Tuberous Sclerosis Complex (TSC genes has been proved, but the extent of involvement of TSC1 and TSC2 oncosuppressors in chordoma remains to be assessed. In spite of the scarce knowledge on the genetics and molecular biology of chordoma, recent initiation of clinical trials using molecular-targeted therapy, should validate new molecular targets and predict the efficacy of a given therapy. Comparative genetic and

  2. Lung cancer in never smokers: change of a mindset in the molecular era.

    Science.gov (United States)

    Lee, Young Joo; Kim, Joo-Hang; Kim, Se Kyu; Ha, Sang-Jun; Mok, Tony S; Mitsudomi, Tetsuya; Cho, Byoung Chul

    2011-04-01

    Lung cancer is a leading cause of cancer-related mortality across the world. Although the majority of lung cancer is attributed to tobacco smoke, approximately 25% of lung cancers worldwide occur in lifelong never smokers. Over the past decades, the bulk of research on this disease suggested that several genetic, environmental, hormonal, and viral factors might increase the risk of lung cancer among never smokers. However, there has been no dominant risk factor whose significance has been validated across racial and ethnic groups. However, this subset of lung cancers has received renewed attention due to the introduction of the epidermal growth factor receptor-tyrosine kinase (EGFR-TK) inhibitors showing the dramatic therapeutic response on selected patients with activating EGFR mutations which occur more commonly in never smokers. The treatment strategy blocking EGFR pathway in EGFR-mutant lung cancer represents a remarkable example of molecular targeted therapies which completely repress tumor by inhibition of driving oncogenes. More recently, a surprising positive effect of an ALK inhibitor on EML4-ALK-positive lung cancer has been suggested that lung cancer in never smokers is likely to be an assemblage of molecularly defined subsets which would be a good candidate for personalized diagnostic and therapeutic approaches. PMID:21272954

  3. Pathological Bases for a Robust Application of Cancer Molecular Classification

    Directory of Open Access Journals (Sweden)

    Salvador J. Diaz-Cano

    2015-04-01

    Full Text Available Any robust classification system depends on its purpose and must refer to accepted standards, its strength relying on predictive values and a careful consideration of known factors that can affect its reliability. In this context, a molecular classification of human cancer must refer to the current gold standard (histological classification and try to improve it with key prognosticators for metastatic potential, staging and grading. Although organ-specific examples have been published based on proteomics, transcriptomics and genomics evaluations, the most popular approach uses gene expression analysis as a direct correlate of cellular differentiation, which represents the key feature of the histological classification. RNA is a labile molecule that varies significantly according with the preservation protocol, its transcription reflect the adaptation of the tumor cells to the microenvironment, it can be passed through mechanisms of intercellular transference of genetic information (exosomes, and it is exposed to epigenetic modifications. More robust classifications should be based on stable molecules, at the genetic level represented by DNA to improve reliability, and its analysis must deal with the concept of intratumoral heterogeneity, which is at the origin of tumor progression and is the byproduct of the selection process during the clonal expansion and progression of neoplasms. The simultaneous analysis of multiple DNA targets and next generation sequencing offer the best practical approach for an analytical genomic classification of tumors.

  4. Site-specific recombinases: molecular machines for the Genetic Revolution.

    Science.gov (United States)

    Olorunniji, Femi J; Rosser, Susan J; Stark, W Marshall

    2016-03-15

    The fields of molecular genetics, biotechnology and synthetic biology are demanding ever more sophisticated molecular tools for programmed precise modification of cell genomic DNA and other DNA sequences. This review presents the current state of knowledge and development of one important group of DNA-modifying enzymes, the site-specific recombinases (SSRs). SSRs are Nature's 'molecular machines' for cut-and-paste editing of DNA molecules by inserting, deleting or inverting precisely defined DNA segments. We survey the SSRs that have been put to use, and the types of applications for which they are suitable. We also discuss problems associated with uses of SSRs, how these problems can be minimized, and how recombinases are being re-engineered for improved performance and novel applications. PMID:26965385

  5. Genetics and epidemiology, congenital anomalies and cancer

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, J.M. [Univ. of British Columbia, Vancouver (Canada)

    1997-03-01

    Many of the basic statistical methods used in epidemiology - regression, analysis of variance, and estimation of relative risk, for example - originally were developed for the genetic analysis of biometric data. The familiarity that many geneticists have with this methodology has helped geneticists to understand and accept genetic epidemiology as a scientific discipline. It worth noting, however, that most of the work in genetic epidemiology during the past decade has been devoted to linkage and other family studies, rather than to population-based investigations of the type that characterize much of mainstream epidemiology. 30 refs., 2 tabs.

  6. Classical and Molecular Genetic Research on General Cognitive Ability.

    Science.gov (United States)

    McGue, Matt; Gottesman, Irving I

    2015-01-01

    Arguably, no psychological variable has received more attention from behavioral geneticists than what has been called "general cognitive ability" (as well as "general intelligence" or "g"), and for good reason. GCA has a rich correlational network, implying that it may play an important role in multiple domains of functioning. GCA is highly correlated with various indicators of educational attainment, yet its predictive utility is not limited to academic achievement. It is also correlated with work performance, navigating the complexities of everyday life, the absence of various social pathologies (such as criminal convictions), and even health and mortality. Although the causal basis for these associations is not always known, it is nonetheless the case that research on GCA has the potential to provide insights into the origins of a wide range of important social outcomes. In this essay, our discussion of why GCA is considered a fundamentally important dimension of behavior on which humans differ is followed by a look at behavioral genetics research on CGA. We summarize behavioral genetics research that has sought to identify and quantify the total contributions of genetic and environmental factors to individual differences in GCA as well as molecular genetic research that has sought to identify genetic variants that underlie inherited effects. PMID:26413945

  7. Association between pepsinogen C gene polymorphism and genetic predisposition to gastric cancer

    Institute of Scientific and Technical Information of China (English)

    Hui-Jie Liu; Xiao-Lin Guo; Ming Dong; Lan Wang; Yuan Yuan

    2003-01-01

    AIM: To identify a molecular marker for gastric cancer, andto investigate the relationship between the polymorphismof pepsinogen C (PGC) gene and the genetic predispositionto gastric cancer.METHODS: A total of 289 cases were involved in this study.115 cases came from Shenyang area, a low risk area ofgastric cancer, including 42 unrelated controls and 73 patientswith gastric cancer. 174 cases came from Zhuanghe area, ahigh-risk area of gastric cancer, including 113 unrelatedcontrols, and 61 cases from gastric cancer kindred families.The polymorphism of PGC gene was detected by polymerasechain reaction (PCR) and the relation between the geneticpolymorphism of PGC and gastric cancer was examined.RESULTS: Four alleles, 310bp (allele 1), 400bp (allele 2),450bp (allele 3), and 480bp (allele 4) were detected byPCR. The frequency of allele 1 was higher in patients withgastric cancer than that in controls. Genotypes containinghomogenous allele 1 were significantly more frequent inpatients with gastric cancerthan that in controls (0.33, 0.14,x2=3.86, P<0.05). There was no significant differencebetween the control group of Zhuanghe and the group ofgastric cancer kindred. But the frequency of allele 1 washigher in control group of Zhuanghe area than that in controlgroup of Shenyang area and genotypes containinghomogenous allele 1 were significantly more frequent inthe control group of Zhuanghe area than those in controlgroup of Shenyang area (0.33, 0.14, x2=4.32, P<0.05). Inthe group of gastric cancer kindred the frequency of allele 1was significantly higher than that in control group ofShenyang area (0.5164, 0.3571, x2=4.47, P<0.05).Genotypes containing homogenous allele 1 were significantlymore frequent in the group of gastric cancer kindred thanthose in control group of Shenyang area (0.36, 0.14, x2=4.91,P<0.05).CONCLUSION: These results suggest that there is somerelation between pepsinogen C gene polymorphism andgastric cancer, and the person with

  8. Genetic Testing for Hereditary Cancer Syndromes

    Science.gov (United States)

    ... complaints about false or misleading health claims in advertisements. The American Society of Human Genetics, a membership ... at the National Institutes of Health FOLLOW US Facebook Twitter Instagram YouTube Google+ LinkedIn GovDelivery RSS CONTACT ...

  9. The genetics of nicotine dependence: Relationship to pancreatic cancer

    Institute of Scientific and Technical Information of China (English)

    Stewart L MacLeod; Parimal Chowdhury

    2006-01-01

    Smoking of tobacco products continues to be a major cause of worldwide health problems. Epidemiological studies have shown that tobacco smoking is the greatest risk factor for the development of pancreatic cancer.Smokers who are able to quit smoking can reduce their risk of pancreatic cancer by nearly 50% within two years, however, their risk of developing pancreatic cancer remains higher than that of non-smokers for 10 years. Nicotine is the major psychoactive substance in tobacco, and is responsible for tobacco dependence and addiction. Recent evidence suggests that individuals have genetically based differences in their ability to metabolize nicotine, as well as genetic differences in the psychological reward pathways that may influence individual response to smoking initiation, dependence,addiction and cessation. Numerous associations have been reported between smoking behavior and genetic polymorphisms in genes that are responsible for nicotine metabolism. Tn addition, polymorphisms in genes that encode neurotransmitters and transporters that function in psychological reward pathways have been implicated in differences in smoking behavior. However,there is a large degree of between-study variability that demonstrates the need for larger, well-controlled casecontrol studies to identify target genes and deduce mechanisms that account for the genetic basis of interindividual differences in smoking behavior. Understanding the genetic factors that increase susceptibility to tobacco addiction may result in more effective tobacco cessation programs which will, in turn, reduce the incidence of tobacco related disease, including pancreatic cancer.

  10. Courting the future: cancer and genetics in Cuba.

    Science.gov (United States)

    2014-01-01

    Describing this double issue of MEDICC Review could be an exercise for a first-year philosophy course in logic. It's not about "cancer and genetics" in Cuba. It's about cancer in Cuba and about genetics in Cuba, not about exploring relationships between them. Nevertheless, while the marriage of the two themes was fortuitous, in that the two had long been scheduled for the journal in 2014, there is a certain felicity to their sharing an issue. To date, the outstanding accomplishments of genetics have been most helpful for conditions occurring at the beginning of life and cancer is largely (though not exclusively) a disease related to aging. But the two are intrinsically connected: Although only a few of the more than 100 different diseases grouped under the term cancer are known to be hereditary, every cancer begins with a mutation in one or more genes, whether the mutation is inherited, due to an exposure, or is simply a random error in the millions of cell divisions that are part and parcel of cellular reproduction. Our cover image, a stained-glass window by Cuban artist Rosa María de la Terga at Cuba's National Medical Genetics Center, illustrates the elegance of the DNA molecule, the intricate key to life.

  11. Contribution of environment and genetics to pancreatic cancer susceptibility.

    Directory of Open Access Journals (Sweden)

    Barbara A Hocevar

    Full Text Available Several risk factors have been identified as potential contributors to pancreatic cancer development, including environmental and lifestyle factors, such as smoking, drinking and diet, and medical conditions such as diabetes and pancreatitis, all of which generate oxidative stress and DNA damage. Oxidative stress status can be modified by environmental factors and also by an individual's unique genetic makeup. Here we examined the contribution of environment and genetics to an individual's level of oxidative stress, DNA damage and susceptibility to pancreatic cancer in a pilot study using three groups of subjects: a newly diagnosed pancreatic cancer group, a healthy genetically-unrelated control group living with the case subject, and a healthy genetically-related control group which does not reside with the subject. Oxidative stress and DNA damage was evaluated by measuring total antioxidant capacity, direct and oxidative DNA damage by Comet assay, and malondialdehyde levels. Direct DNA damage was significantly elevated in pancreatic cancer patients (age and sex adjusted mean ± standard error: 1.00 ± 0.05 versus both healthy unrelated and related controls (0.70 ± 0.06, pA and ERCC4 R415Q polymorphisms. These results suggest that measurement of DNA damage, as well as select SNPs, may provide an important screening tool to identify individuals at risk for development of pancreatic cancer.

  12. Molecular biology of cancer-associated fibroblasts: can these cells be targeted in anti-cancer therapy?

    Science.gov (United States)

    Gonda, Tamas A; Varro, Andrea; Wang, Timothy C; Tycko, Benjamin

    2010-02-01

    It is increasingly recognized that the non-neoplastic stromal compartment in most solid cancers plays an active role in tumor proliferation, invasion and metastasis. Cancer-associated fibroblasts (CAFs) are one of the most abundant cell types in the tumor stroma, and these cells are pro-tumorigenic. Evidence that CAFs are epigenetically and possibly also genetically distinct from normal fibroblasts is beginning to define these cells as potential targets of anti-cancer therapy. Here, we review the cell-of-origin and molecular biology of CAFs, arguing that such knowledge provides a rational basis for designing therapeutic strategies to coordinately and synergistically target both the stromal and malignant epithelial component of human cancers.

  13. Genetic association- and linkage studies in colorectal cancer

    OpenAIRE

    Holst, Susanna von

    2014-01-01

    Colorectal cancer (CRC) is the third most common cancer type in the Western world. Over one million patients are diagnosed worldwide yearly. A family history of CRC is a major risk factor for CRC. The total genetic contribution to disease development is estimated to be 35%. High-risk syndromes caused by known genes such as familial adenomatous polyposis (FAP) and Lynch Syndrome (LS) explain less than 5% of that number. Recently, several genome-wide association studies (GWAS) ha...

  14. Breast Cancer Genetic Counseling: A Surgeon’s Perspective

    OpenAIRE

    Agnese, Doreen M.; Pollock, Raphael E

    2016-01-01

    As surgeons who care for patients with breast cancer, the possibility of a cancer diagnosis being related to a hereditary predisposition is always a consideration. Not only are we as surgeons always trying to identify these patients and families but also we are often asked about a potential hereditary component by the patients and their family members. It is therefore critical that we accurately assess patients to determine who may benefit from genetic testing. Importantly, the potential bene...

  15. Genetic aspects of etiology and development of thyroid gland cancer

    Directory of Open Access Journals (Sweden)

    Kovalenko Yu.V.

    2012-09-01

    Full Text Available Recent studies on thyroid gland cancer development and progression have identified new classes of tumor markers, proto-oncogenes, tumor-suppressing genes, cell receptor genes, identified genetic tumor-predisposing polymorphism and some other significantly important segments of genome. The identification has been based mainly on revealing of DNA abnormal consequences, specific for occurrence of thyroid gland cancer and its progression.

  16. [Molecular biological predictors for kidney cancer].

    Science.gov (United States)

    Vtorushin, S V; Tarakanova, V O; Zavyalova, M V

    2016-01-01

    The paper considers the data available in the modern literature on studies of potential molecular predictors for renal cell carcinoma (RCC). Investigations of cell death markers, namely; Bcl-2 as an inhibitor of apoptosis, are of interest. Its high expression correlates with a more favorable prognosis. Inactivation of Berclin 1 that is an authophagy indicator in intact tissues gives rise to t high risk for tumorigenesis. At the same time, high Beclin 1 expression in the tissue of the tumor itself results in the lower efficiency of performed chemotherapy. Excess annexin A2 in the tumor promotes the growth and invasion of cancer cells. Patients with tumor over-expression of SAM68 protein involved in cell proliferation have a lower overall survival rate. The lifespan of patients without distinct metastases survive significantly longer in the overexpression of epithelial cell adhesion molecule (EpCAM). High PD-L1 protein expression on the cell membrane is considered to be a potential marker of effective immunotherapy for RCC. PMID:27077146

  17. The genetics and biology of KRAS in lung cancer

    Institute of Scientific and Technical Information of China (English)

    Peter M.K.Westcott; Minh D.To

    2013-01-01

    Mutational activation of KRAS is a common oncogenic event in lung cancer and other epithelial cancer types.Efforts to develop therapies that counteract the oncogenic effects of mutant KRAS have been largely unsuccessful,and cancers driven by mutant KRAS remain among the most refractory to available treatments.Studies undertaken over the past decades have produced a wealth of information regarding the clinical relevance of KRAS mutations in lung cancer.Mutant Kras-driven mouse models of cancer,together with cellular and molecular studies,have provided a deeper appreciation for the complex functions of KRAS in tumorigenesis.However,a much more thorough understanding of these complexities is needed before clinically effective therapies targeting mutant KRAS-driven cancers can be achieved.

  18. Molecular biology of breast cancer metastasis Molecular expression of vascular markers by aggressive breast cancer cells

    International Nuclear Information System (INIS)

    During embryogenesis, the formation of primary vascular networks occurs via the processes of vasculogenesis and angiogenesis. In uveal melanoma, vasculogenic mimicry describes the 'embryonic-like' ability of aggressive, but not nonaggressive, tumor cells to form networks surrounding spheroids of tumor cells in three-dimensional culture; these recapitulate the patterned networks seen in patients' aggressive tumors and correlates with poor prognosis. The molecular profile of these aggressive tumor cells suggests that they have a deregulated genotype, capable of expressing vascular phenotypes. Similarly, the embryonic-like phenotype expressed by the aggressive human breast cancer cells is associated with their ability to express a variety of vascular markers. These studies may offer new insights for consideration in breast cancer diagnosis and therapeutic intervention strategies

  19. Molecular Pathogenesis and Extraovarian Origin of Epithelial Ovarian Cancer. Shifting the Paradigm

    OpenAIRE

    Kurman, Robert J; Shih, Ie-Ming

    2011-01-01

    Recent morphologic, immunohistochemical and molecular genetic studies have led to the development of a new paradigm for the pathogenesis and origin of epithelial ovarian cancer (EOC) based on a dualistic model of carcinogenesis that divides EOC into two broad categories designated type I and type II. Type I tumors are comprised of low-grade serous, low-grade endometrioid, clear cell and mucinous carcinomas and Brenner tumors. They are generally indolent, present in stage I (tumor confined to ...

  20. Next-Generation Sequencing in Clinical Molecular Diagnostics of Cancer: Advantages and Challenges

    OpenAIRE

    Rajyalakshmi Luthra; Hui Chen; Sinchita Roy-Chowdhuri; R. Rajesh Singh

    2015-01-01

    The application of next-generation sequencing (NGS) to characterize cancer genomes has resulted in the discovery of numerous genetic markers. Consequently, the number of markers that warrant routine screening in molecular diagnostic laboratories, often from limited tumor material, has increased. This increased demand has been difficult to manage by traditional low- and/or medium-throughput sequencing platforms. Massively parallel sequencing capabilities of NGS provide a much-needed alternativ...

  1. Molecular Diversity and Genetic Structure of Durum Wheat Landraces

    Directory of Open Access Journals (Sweden)

    GULNAR SHIKHSEYIDOVA

    2015-06-01

    Full Text Available To determine the genetic diversity of durum wheat, 41 accessions from Morocco, Ethiopia, Turkey, Lebanon, Kazakhstan, China, and Mongolia were analyzed through Inter-Simple Sequence Repeats (ISSR molecular markers. Out of the used twenty primers, 15 primers that included a considerable polymorphism were selected for the analyses. Among the genotypes under study, 163 fragments (73.7% were polymorph. Several indexes were used to determine the most appropriate primers. While UBC812, UBC864, UBC840, and UBC808 primers were among those markers which produced the highest number of bands and polymorphic bands, they also dedicated the highest rate of polymorphic index content (PIC. These primers also possessed the highest amounts of effective multiplex ratio (EMR and marker index (MI. Therefore, these primers can be recommended for genetic evaluation of the durum wheat. The results of cluster analysis and principle component analysis indicated that the observed genetic diversity in wheat materials under study is geographically structured. The results also indicated that the genetic diversity index based on ISSR markers was higher for Turkey, Lebanon, Morocco, and Ethiopia accessions than for other countries. The high level of polymorphism in this collections durum wheat would agree with the suggestion that Fertile Crescent and parts of Africa are first possible diversity center of this crop.

  2. Integrated genetic and pharmacologic interrogation of rare cancers.

    Science.gov (United States)

    Hong, Andrew L; Tseng, Yuen-Yi; Cowley, Glenn S; Jonas, Oliver; Cheah, Jaime H; Kynnap, Bryan D; Doshi, Mihir B; Oh, Coyin; Meyer, Stephanie C; Church, Alanna J; Gill, Shubhroz; Bielski, Craig M; Keskula, Paula; Imamovic, Alma; Howell, Sara; Kryukov, Gregory V; Clemons, Paul A; Tsherniak, Aviad; Vazquez, Francisca; Crompton, Brian D; Shamji, Alykhan F; Rodriguez-Galindo, Carlos; Janeway, Katherine A; Roberts, Charles W M; Stegmaier, Kimberly; van Hummelen, Paul; Cima, Michael J; Langer, Robert S; Garraway, Levi A; Schreiber, Stuart L; Root, David E; Hahn, William C; Boehm, Jesse S

    2016-01-01

    Identifying therapeutic targets in rare cancers remains challenging due to the paucity of established models to perform preclinical studies. As a proof-of-concept, we developed a patient-derived cancer cell line, CLF-PED-015-T, from a paediatric patient with a rare undifferentiated sarcoma. Here, we confirm that this cell line recapitulates the histology and harbours the majority of the somatic genetic alterations found in a metastatic lesion isolated at first relapse. We then perform pooled CRISPR-Cas9 and RNAi loss-of-function screens and a small-molecule screen focused on druggable cancer targets. Integrating these three complementary and orthogonal methods, we identify CDK4 and XPO1 as potential therapeutic targets in this cancer, which has no known alterations in these genes. These observations establish an approach that integrates new patient-derived models, functional genomics and chemical screens to facilitate the discovery of targets in rare cancers. PMID:27329820

  3. GENETIC ALTERRATIONS OF MICROSATELLITE MARKERS AT CHROMOSOME 17 IN NON-SMALL CELL LUNG CANCER

    Institute of Scientific and Technical Information of China (English)

    GUO; Xue-jun

    2001-01-01

    [1]Froudarakis ME, Bouros D, Spandidos DA, et al. Microsatellite instability and loss of heterozygosity at chromosomes 17 in non-small cell lung cancer [J]. Chest 1998; 113:1091.[2]Fong KM, Zimmerman PV, Smith PJ. Microsatellite instability and other molecular abnormalities in non-small cell lung cancer [J]. Cancer Res 1994; 54:2098.[3]Mountain CF. A new international staging system for lung cancer [J]. Chest 1986; 89(suppl):225.[4]Shridhar V, Siegfried J, Hunt J, et al. Genetic instability of microsatellite sequences in many non-small cell lung carcinomas [J]. Cancer Res 1994; 54:2084.[5]Loeb LA. Microsatellite instability: Marker of a mutator phenotype in cancer [J]. Cancer Res 1994; 54:5059.[6]Sanchez CM, Monzo M, Rosell R, et al. Detection of chromosome 3p alterations in serum DNA of non-small cell lung cancer patients [J]. Ann Oncol 1989; 113.

  4. The evolution of personalized cancer genetic counseling in the era of personalized medicine

    OpenAIRE

    Vig, Hetal S; Wang, Catharine

    2012-01-01

    Practice changes in cancer genetic counseling have occurred to meet the demand for cancer genetic services. As cancer genetics continues to impact not only prevention strategies but also treatment decisions, current cancer genetic counseling models will need to be tailored to accommodate emerging clinical indications. These clinical indications include: surgical prophylactic bilateral mastectomy candidates, PARP-inhibitor candidates, patients with abnormal tumor screening results for Lynch sy...

  5. Does and should breast cancer genetic counselling include lifestyle advice?

    NARCIS (Netherlands)

    Albada, A.; Vernooij, M.; Osch, L. van; Pijpe, A.; Dulmen, A.M. van; Ausems, M.G.E.M.

    2014-01-01

    To optimally inform counselees about their and their relatives' risks, information about lifestyle risk factors, e.g. physical activity and alcohol consumption, might be discussed in breast cancer genetic counselling. This study explored whether lifestyle was discussed, on whose initiative, whether

  6. Shared genetics underlying epidemiological association between endometriosis and ovarian cancer

    DEFF Research Database (Denmark)

    Lu, Yi; Cuellar-Partida, Gabriel; Painter, Jodie N;

    2015-01-01

    Epidemiological studies have demonstrated associations between endometriosis and certain histotypes of ovarian cancer, including clear cell, low-grade serous and endometrioid carcinomas. We aimed to determine whether the observed associations might be due to shared genetic aetiology. To address t...

  7. Colorectal Cancer Survivors' Interest in Genetic Testing for Hereditary Cancer: Implications for Universal Tumor Screening

    OpenAIRE

    Cragun, Deborah; Malo, Teri L.; Pal, Tuya; Shibata, David; Vadaparampil, Susan T

    2012-01-01

    Aims: Benefits of universal tumor screening for Lynch syndrome (LS), the most common form of hereditary colorectal cancer (CRC), will be realized only if patients are interested in genetic counseling and testing. This study explores interest in genetic testing for hereditary CRC among CRC patients who have never received genetic counseling or testing. Methods Using results from a cross-sectional survey of CRC patients (n=91) at varying categories of risk for hereditary CRC, bivariate and mult...

  8. Applications of molecular MRI and optical imaging in cancer

    OpenAIRE

    Penet, Marie-France; Mikhaylova, Maria; Li, Cong; Krishnamachary, Balaji; Glunde, Kristine; Pathak, Arvind P.; Bhujwalla, Zaver M.

    2010-01-01

    Some of the most exciting advances in molecular-functional imaging of cancer are occurring at the interface between chemistry and imaging. Several of these advances have occurred through the development of novel imaging probes that report on molecular pathways, the tumor micro-environment and the response of tumors to treatment; as well as through novel image-guided platforms such as nanoparticles and nanovesicles that deliver therapeutic agents against specific targets and pathways. Cancer c...

  9. Molecular karyotyping: array CGH quality criteria for constitutional genetic diagnosis.

    Science.gov (United States)

    Vermeesch, Joris R; Melotte, Cindy; Froyen, Guy; Van Vooren, Steven; Dutta, Binita; Maas, Nicole; Vermeulen, Stefan; Menten, Björn; Speleman, Frank; De Moor, Bart; Van Hummelen, Paul; Marynen, Peter; Fryns, Jean-Pierre; Devriendt, Koen

    2005-03-01

    Array CGH (comparative genomic hybridization) enables the identification of chromosomal copy number changes. The availability of clone sets covering the human genome opens the possibility for the widespread use of array CGH for both research and diagnostic purposes. In this manuscript we report on the parameters that were critical for successful implementation of the technology, assess quality criteria, and discuss the potential benefits and pitfalls of the technology for improved pre- and postnatal constitutional genetic diagnosis. We propose to name the genome-wide array CGH "molecular karyotyping," in analogy with conventional karyotyping that uses staining methods to visualize chromosomes.

  10. Sudden unexpected death in epilepsy genetics: Molecular diagnostics and prevention.

    Science.gov (United States)

    Goldman, Alica M; Behr, Elijah R; Semsarian, Christopher; Bagnall, Richard D; Sisodiya, Sanjay; Cooper, Paul N

    2016-01-01

    Epidemiologic studies clearly document the public health burden of sudden unexpected death in epilepsy (SUDEP). Clinical and experimental studies have uncovered dynamic cardiorespiratory dysfunction, both interictally and at the time of sudden death due to epilepsy. Genetic analyses in humans and in model systems have facilitated our current molecular understanding of SUDEP. Many discoveries have been informed by progress in the field of sudden cardiac death and sudden infant death syndrome. It is becoming apparent that SUDEP genomic complexity parallels that of sudden cardiac death, and that there is a pauci1ty of analytically useful postmortem material. Because many challenges remain, future progress in SUDEP research, molecular diagnostics, and prevention rests in international, collaborative, and transdisciplinary dialogue in human and experimental translational research of sudden death.

  11. Molecular and genetic aspects of odontogenic tumors: a review

    Directory of Open Access Journals (Sweden)

    Kavita Garg

    2015-06-01

    Full Text Available Odontogenic tumors contain a heterogeneous collection of lesions that are categorized from hamartomas to benign and malignant neoplasms of inconstant aggressiveness. Odontogenic tumors are usually extraordinary with assessed frequency of short of 0.5 cases/100,000 population for every year. The lesions such as odontogenic tumors are inferred from the components of the tooth-structuring contraption. They are discovered solely inside the maxillary and mandibular bones. This audit speaks to experiences and cooperation of the molecular and genetic variations connected to the development and movement of odontogenic tumors which incorporate oncogenes, tumor-silencer genes, APC gene, retinoblastoma genes, DNA repair genes, onco-viruses, development components, telomerase, cell cycle controllers, apoptosis-related elements, and regulators/controllers of tooth development. The reasonable and better understanding of the molecular components may prompt new ideas for their detection and administrating a better prognosis of odontogenic tumors.

  12. Genetics of Breast and Gynecologic Cancers (PDQ®)—Health Professional Version

    Science.gov (United States)

    Expert-reviewed information summary about the genetics of breast and gynecologic cancers, including information about specific genes and family cancer syndromes. The summary also contains information about interventions that may influence the risk of developing breast and gynecologic cancers in individuals who may be genetically susceptible to these diseases. Psychosocial issues associated with genetic testing are also discussed.

  13. Non-genetic health professionals’ attitude towards, knowledge of and skills in discussing and ordering genetic testing for hereditary cancer

    OpenAIRE

    Douma, Kirsten F. L.; Smets, Ellen M.A.; Allain, Dawn C.

    2015-01-01

    Non-genetic health professionals (NGHPs) have insufficient knowledge of cancer genetics, express educational needs and are unprepared to counsel their patients regarding their genetic test results. So far, it is unclear how NGHPs perceive their own communication skills. This study was undertaken to gain insight in their perceptions, attitudes and knowledge. Two publically accessible databases were used to invite NGHPs providing cancer genetic services to complete a questionnaire. The survey a...

  14. Molecular mechanisms of tamoxifen-associated endometrial cancer (Review)

    OpenAIRE

    Hu, Rong; Hilakivi-Clarke, Leena; Clarke, Robert

    2015-01-01

    Tamoxifen has been prescribed to millions of females for breast cancer prevention or treatment. However, tamoxifen is known to significantly enhance the risk of developing endometrial lesions, including hyperplasia, polyps, carcinomas, and sarcoma. Notably, tamoxifen-associated endometrial cancer often has a poor clinical outcome. Understanding the molecular mechanism of tamoxifen-induced endometrial cancer is essential for developing strategies that minimize tamoxifen’s effects on the endome...

  15. Association of cancer stem cell markers genetic variants with gallbladder cancer susceptibility, prognosis, and survival.

    Science.gov (United States)

    Yadav, Anu; Gupta, Annapurna; Rastogi, Neeraj; Agrawal, Sushma; Kumar, Ashok; Kumar, Vijay; Mittal, Balraj

    2016-02-01

    Genes important to stem cell progression have been involved in the genetics and clinical outcome of cancers. We investigated germ line variants in cancer stem cell (CSC) genes to predict susceptibility and efficacy of chemoradiotherapy treatment in gallbladder cancer (GBC) patients. In this study, we assessed the effect of SNPs in CSC genes (surface markers CD44, ALCAM, EpCAM, CD133) and (molecular markers NANOG, SOX-2, LIN-28A, ALDH1A1, OCT-4) with GBC susceptibility and prognosis. Total 610 GBC patients and 250 controls were genotyped by using PCR-RFLP, ARMS-PCR, and TaqMan allelic discrimination assays. Chemotoxicity graded 2-4 in 200 patients and tumor response was recorded in 140 patients undergoing neoadjuvant chemotherapy (NACT). Differences in genotype and haplotype frequency distributions were calculated by binary logistic regression. Gene-gene interaction model was analyzed by generalized multifactor dimensionality reduction (GMDR). Overall survival was assessed by Kaplan-Meier survival curve and multivariate Cox-proportional methods. ALCAM Ars1157Crs10511244 (P = 0.0035) haplotype was significantly associated with GBC susceptibility. In GMDR analysis, ALCAM rs1157G>A, EpCAM rs1126497T>C emerged as best significant interaction model with GBC susceptibility and ALDH1A1 rs13959T>G with increased risk of grade 3-4 hematological toxicity. SOX-2 rs11915160A>C, OCT-4 rs3130932T>G, and NANOG rs11055786T>C were found best gene-gene interaction model for predicting response to NACT. In both Cox-proportional and recursive partitioning ALCAM rs1157GA+AA genotype showed higher mortality and hazard ratio. ALCAM gene polymorphisms associated with GBC susceptibility and survival while OCT-4, SOX-2, and NANOG variants showed an interactive role with treatment response. PMID:26318430

  16. Microchip-based Devices for Molecular Diagnosis of Genetic Diseases.

    Science.gov (United States)

    Cheng; Fortina; Surrey; Kricka; Wilding

    1996-09-01

    Microchips, constructed with a variety of microfabrication technologies (photolithography, micropatterning, microjet printing, light-directed chemical synthesis, laser stereochemical etching, and microcontact printing) are being applied to molecular biology. The new microchip-based analytical devices promise to solve the analytical problems faced by many molecular biologists (eg, contamination, low throughput, and high cost). They may revolutionize molecular biology and its application in clinical medicine, forensic science, and environmental monitoring. A typical biochemical analysis involves three main steps: (1) sample preparation, (2) biochemical reaction, and (3) detection (either separation or hybridization may be involved) accompanied by data acquisition and interpretation. The construction of a miniturized analyzer will therefore necessarily entail the miniaturization and integration of all three of these processes. The literature related to the miniaturization of these three processes indicates that the greatest emphasis so far is on the investigation and development of methods for the detection of nucleic acid, followed by the optimization of a biochemical reaction, such as the polymerase chain reaction. The first step involving sample preparation has received little attention. In this review the state of the art of, microchip-based, miniaturized analytical processes (eg, sample preparation, biochemical reaction, and detection of products) are outlined and the applications of microchip-based devices in the molecular diagnosis of genetic diseases are discussed. PMID:10462559

  17. The Important Molecular Markers on Chromosome 17 and Their Clinical Impact in Breast Cancer

    OpenAIRE

    Yingyan Yu; Wei Zhang

    2011-01-01

    Abnormalities of chromosome 17 are important molecular genetic events in human breast cancers. Several famous oncogenes (HER2, TOP2A and TAU), tumor suppressor genes (p53, BRCA1 and HIC-1) or DNA double-strand break repair gene (RDM1) are located on chromosome 17. We searched the literature on HER2, TOP2A, TAU, RDM1, p53, BRCA1 and HIC-1 on the Pubmed database. The association of genes with chromosome 17, biological functions and potential significance are reviewed. In breast cancer, the poly...

  18. Molecular evolutionary genetics of isozymes: pattern, theory, and application.

    Science.gov (United States)

    Nevo, E

    1990-01-01

    Isozyme studies at the population genetics-ecology interface conducted at the Institute of Evolution, University of Haifa, during 15 years, 1974-1989, are reviewed in terms of the evidence, theoretical, and practical implications. These studies involve numerous individuals, populations, species, and higher taxa in nature of plants, animals, and humans tested for variation at 15 to 50 primary isozyme loci. The isozyme studies have been conducted mainly in individuals sampled in natural populations at the local, regional, and global levels. Two of the species studied were wild cereals, the progenitors of wheat and barley in the Near East Fertile Crescent. These studies have been complemented by laboratory controlled a priori experimentation of inorganic and organic pollution biology. The human genetics laboratory compared isozyme structure of Jewish and non-Jewish populations. Our results indicate that: (i) isozyme diversity in nature in abundant, at least partly adaptive, and is oriented and maintained primarily by ecological factors. (ii) Natural selection in action is highlighted by stresses involving among others thermal, chemical, and climatic factors. (iii) Speciation can occur with little change in isozyme diversity. (iv) Jews from diverse countries, and in spite of 2,000 years of Diaspora, retain in the frequencies of some isozymes their Near Eastern origins. (v) Wild cereals harbor rich genetic resources exploitable in breeding either directly as adaptive structures, or indirectly as genetic markers for genotypic production of elite agronomic traits. (vi) Isozymes have been utilized as genetic monitors of marine pollution thereby contributing to environmental quality and conservation. (vii) Isozymes can substantially contribute to conservation biology. (viii) Isozymes have been successfully utilized in constructing molecular phylogenies and in revealing new sibling species. (ix) Future theoretical and practical directions of isozyme studies at the protein

  19. Genetic testing by cancer site: endocrine system.

    Science.gov (United States)

    Pilarski, Robert; Nagy, Rebecca

    2012-01-01

    Numerous hereditary syndromes, caused by mutations in multiple tumor suppressor genes and oncogenes, can cause tumors in organs of the endocrine system. The primary syndromes (and genes) addressed here include multiple endocrine neoplasia types 1 and 2 (MEN1 and RET genes), Cowden syndrome (PTEN), hereditary pheochromocytoma/paraganglioma syndromes (multiple genes), and von Hippel-Lindau disease (VHL). Clinical genetic testing is available for each of these syndromes and is generally directed to individuals with endocrine or other tumors and additional features suggestive of a hereditary syndrome. However, for some endocrine tumors, the proportion because of heredity is so high that genetic testing may be appropriate for all affected individuals. Management for hereditary cases typically involves aggressive screening and/or surgical protocols, starting at young ages to minimize morbidity and mortality. Endocrine tumors can be less commonly seen in a number of other hereditary syndromes (eg, neurofibromatosis), which are not reviewed in this section.

  20. Genetic counselling for hereditary cancer providing counsellors with feedback on their communicative behaviour.

    NARCIS (Netherlands)

    Pieterse, A.; Dulmen, S. van; Ausems, M.; Beemer, F.; Bensing, J.

    2004-01-01

    Background: The uncovering of cancer susceptibility genes has allowed personalized risk assessment through genetic counselling and genetic testing. Testing, however, has a number of limitations and genetic counselling may not provide counselees with the certainty they expected. A correct estimation

  1. Targeted therapies in epithelial ovarian cancer: Molecular mechanisms of action

    Institute of Scientific and Technical Information of China (English)

    Hiroaki; Itamochi

    2010-01-01

    Ovarian cancer is the leading cause of death in women with gynecological cancer. Most patients are diagnosed at an advanced stage and have a poor prognosis.Currently, surgical tumor debulking, followed by platinum- and taxane-based chemotherapy is the standard treatment for advanced ovarian cancer. However, these patients are at great risk of recurrence and emerging drug resistance. Therefore, novel treatment strategies are required to improve outcomes for women with advanced ovarian cancer. A variety of molecular targeted agents, the majority of which are monoclonal antibodies and small-molecule protein-kinase inhibitors, have been explored in the management of ovarian cancer. The targets of these agents include angiogenesis, the human epidermal growth factor receptor family, ubiquitinproteasome pathway, epigenetic modulators, poly(ADPribose) polymerase (PARP), and mammalian target of rapamycin (mTOR) signaling pathway, which are aberrant in tumor tissue. The antiangiogenic agent, bevacizumab, has been reported as the most effective targeted agent and should be included in the standard chemotherapeutic regimen for advanced ovarian cancer. PARP inhibitors, which are mainly used in breast and ovarian cancer susceptibility gene-mutated patients, and mTOR inhibitors are also attractive treatment strategies, either alone or combination with chemotherapy, for ovarian cancer. Understanding the tumor molecular biology and identification of predictive biomarkers are essential steps for selection of the best treatment strategies. This article reviews the molecular mechanisms of the most promising targeted agents that are under early phase clinical evaluation for ovarian cancer.

  2. Emerging Cancer Vaccines: The Promise of Genetic Vectors

    International Nuclear Information System (INIS)

    Therapeutic vaccination against cancer is an important approach which, when combined with other therapies, can improve long-term control of cancer. In fact, the induction of adaptive immune responses against Tumor Associated Antigens (TAAs) as well as innate immunity are important factors for tumor stabilization/eradication. A variety of immunization technologies have been explored in last decades and are currently under active evaluation, such as cell-based, protein, peptide and heat-shock protein-based cancer vaccines. Genetic vaccines are emerging as promising methodologies to elicit immune responses against a wide variety of antigens, including TAAs. Amongst these, Adenovirus (Ad)-based vectors show excellent immunogenicity profile and have achieved immunological proof of concept in humans. In vivo electroporation of plasmid DNA (DNA-EP) is also a desirable vaccine technology for cancer vaccines, as it is repeatable several times, a parameter required for the long-term maintenance of anti-tumor immunity. Recent findings show that combinations of different modalities of immunization (heterologous prime/boost) are able to induce superior immune reactions as compared to single-modality vaccines. In this review, we will discuss the challenges and requirements of emerging cancer vaccines, particularly focusing on the genetic cancer vaccines currently under active development and the promise shown by Ad and DNA-EP heterologous prime-boost

  3. Emerging Cancer Vaccines: The Promise of Genetic Vectors

    Directory of Open Access Journals (Sweden)

    Gennaro Ciliberto

    2011-09-01

    Full Text Available Therapeutic vaccination against cancer is an important approach which, when combined with other therapies, can improve long-term control of cancer. In fact, the induction of adaptive immune responses against Tumor Associated Antigens (TAAs as well as innate immunity are important factors for tumor stabilization/eradication. A variety of immunization technologies have been explored in last decades and are currently under active evaluation, such as cell-based, protein, peptide and heat-shock protein-based cancer vaccines. Genetic vaccines are emerging as promising methodologies to elicit immune responses against a wide variety of antigens, including TAAs. Amongst these, Adenovirus (Ad-based vectors show excellent immunogenicity profile and have achieved immunological proof of concept in humans. In vivo electroporation of plasmid DNA (DNA-EP is also a desirable vaccine technology for cancer vaccines, as it is repeatable several times, a parameter required for the long-term maintenance of anti-tumor immunity. Recent findings show that combinations of different modalities of immunization (heterologous prime/boost are able to induce superior immune reactions as compared to single-modality vaccines. In this review, we will discuss the challenges and requirements of emerging cancer vaccines, particularly focusing on the genetic cancer vaccines currently under active development and the promise shown by Ad and DNA-EP heterologous prime-boost.

  4. Emerging Cancer Vaccines: The Promise of Genetic Vectors

    Energy Technology Data Exchange (ETDEWEB)

    Aurisicchio, Luigi, E-mail: aurisicchio@takis-it.it [Takis, via di Castel Romano 100, 00128 Rome (Italy); BIOGEM scarl, via Camporeale, 83031 Ariano Irpino (AV) (Italy); Ciliberto, Gennaro [Takis, via di Castel Romano 100, 00128 Rome (Italy); Dipartimento di Medicina Sperimentale e Clinica, Università degli studi di Catanzaro “Magna Graecia”, 88100 Catanzaro (Italy)

    2011-09-22

    Therapeutic vaccination against cancer is an important approach which, when combined with other therapies, can improve long-term control of cancer. In fact, the induction of adaptive immune responses against Tumor Associated Antigens (TAAs) as well as innate immunity are important factors for tumor stabilization/eradication. A variety of immunization technologies have been explored in last decades and are currently under active evaluation, such as cell-based, protein, peptide and heat-shock protein-based cancer vaccines. Genetic vaccines are emerging as promising methodologies to elicit immune responses against a wide variety of antigens, including TAAs. Amongst these, Adenovirus (Ad)-based vectors show excellent immunogenicity profile and have achieved immunological proof of concept in humans. In vivo electroporation of plasmid DNA (DNA-EP) is also a desirable vaccine technology for cancer vaccines, as it is repeatable several times, a parameter required for the long-term maintenance of anti-tumor immunity. Recent findings show that combinations of different modalities of immunization (heterologous prime/boost) are able to induce superior immune reactions as compared to single-modality vaccines. In this review, we will discuss the challenges and requirements of emerging cancer vaccines, particularly focusing on the genetic cancer vaccines currently under active development and the promise shown by Ad and DNA-EP heterologous prime-boost.

  5. Translating Population Difference: The Use and Re-Use of Genetic Ancestry in Brazilian Cancer Genetics.

    Science.gov (United States)

    Gibbon, Sahra

    2016-01-01

    In the past ten years, there has been an expansion of scientific interest in population genetics linked to both understanding histories of human migration and the way that population difference and diversity may account for and/or be implicated in health and disease. In this article, I examine how particular aspects of a globalizing research agenda related to population differences and genetic ancestry are taken up in locally variant ways in the nascent field of Brazilian cancer genetics. Drawing on a broad range of ethnographic data from clinical and nonclinical contexts in the south of Brazil, I examine the ambiguities that attention to genetic ancestry generates, so revealing the disjunctured and diverse ways a global research agenda increasingly orientated to questions of population difference and genetic ancestry is being used and reused.

  6. New generation of breast cancer clinical trials implementing molecular profiling

    Institute of Scientific and Technical Information of China (English)

    Dimitrios Zardavas; Martine Piccart-Gebhart

    2016-01-01

    The implementation of molecular profiling technologies in oncology deepens our knowledge for the molecular landscapes of cancer diagnoses, identifying aberrations that could be linked with specific therapeutic vulnerabilities. In particular, there is an increasing list of molecularly targeted anticancer agents undergoing clinical development that aim to block specific molecular aberrations. This leads to a paradigm shift, with an increasing list of specific aberrations dictating the treatment of patients with cancer. This paradigm shift impacts the field of clinical trials, since the classical approach of having clinico-pathological disease characteristics dictating the patients' enrolment in oncology trials shifts towards the implementation of molecular profiling as pre-screening step. In order to facilitate the successful clinical development of these new anticancer drugs within specific molecular niches of cancer diagnoses, there have been developed new, innovative trial designs that could be classified as follows: i) longitudinal cohort studies that implement (or not) "nested" downstream trials, 2) studies that assess the clinical utility of molecular profiling, 3) "master" protocol trials, iv) "basket" trials, v) trials following an adaptive design. In the present article, we review these innovative study designs, providing representative examples from each category and we discuss the challenges that still need to be addressed in this era of new generation oncology trials implementing molecular profiling. Emphasis is put on the field of breast cancer clinical trials.

  7. Molecular imaging of HER2-positive breast cancer

    DEFF Research Database (Denmark)

    Capala, Jacek; Bouchelouche, Kirsten

    2010-01-01

    HER2 overexpression is correlated with aggressive tumor behavior and poor clinical outcome. Therefore, HER2 has become an important prognostic and predictive factor, as well as a target for molecular therapies. The article reviews recent advances in molecular imaging of HER2 that could facilitate...... individual approaches to targeted therapy of HER2-positive breast cancers....

  8. Plant genetic and molecular responses to water deficit

    Directory of Open Access Journals (Sweden)

    Silvio Salvi

    2011-02-01

    Full Text Available Plant productivity is severely affected by unfavourable environmental conditions (biotic and abiotic stresses. Among others, water deficit is the plant stress condition which mostly limits the quality and the quantity of plant products. Tolerance to water deficit is a polygenic trait strictly dependent on the coordinated expression of a large set of genes coding for proteins directly involved in stress-induced protection/repair mechanisms (dehydrins, chaperonins, enzymes for the synthesis of osmoprotectants and detoxifying compounds, and others as well as genes involved in transducing the stress signal and regulating gene expression (transcription factors, kinases, phosphatases. Recently, research activities in the field evolved from the study of single genes directly involved in cellular stress tolerance (functional genes to the identification and characterization of key regulatory genes involved in stress perception and transduction and able to rapidly and efficiently activate the complex gene network involved in the response to stress. The complexity of the events occurring in response to stress have been recently approached by genomics tools; in fact the analysis of transcriptome, proteome and metabolome of a plant tissue/cell in response to stress already allowed to have a global view of the cellular and molecular events occurring in response to water deficit, by the identification of genes activated and co-regulated by the stress conditions and the characterization of new signalling pathways. Moreover the recent application of forward and reverse genetic approaches, trough mutant collection development, screening and characterization, is giving a tremendous impulse to the identification of gene functions with key role in stress tolerance. The integration of data obtained by high-throughput genomic approaches, by means of powerful informatic tools, is allowing nowadays to rapidly identify of major genes/QTLs involved in stress tolerance

  9. Genetic variability and molecular responses of root penetration in cotton.

    Science.gov (United States)

    Klueva; Joshi; Joshi; Wester; Zartman; Cantrell; Nguyen

    2000-06-12

    Compacted soils restrict root penetration hindering productivity. In this paper, genetic variability of cotton (Gossipium spp.) root capacity to penetrate hard soil layers and the patterns of gene expression during penetration event were investigated. To mimic hard soil layers, wax-petrolatum mixtures were used. Genetic variability among 27 cotton genotypes for the root capacity to penetrate wax-petrolatum disks of 500-700 g wax/kg of mixture was high indicating that breeding efforts targeted to improve this trait can be successful. In the root tips of a cotton strain with high root penetrating ability (G. hirsutum HS 200) which penetrated through wax-petrolatum disks (P), quantity of four polypeptides with molecular weights 35-66 kDa increased compared to those root tips which grew in the absence of mechanical impedance (NP). Differential display showed significant differences in the sets of mRNA expressed in P and NP roots. Out of a total of 917 cDNAs scored in the differential display experiment, 118 cDNAs, or 13%, were specific to P roots and hence could be associated with the root penetration event. Further detailed study of gene expression in penetrated roots will pinpoint molecular factors involved in root penetration ability in cotton. PMID:10773338

  10. The Molecular Genetics and Cellular Mechanisms Underlying Pulmonary Arterial Hypertension

    Directory of Open Access Journals (Sweden)

    Rajiv D. Machado

    2012-01-01

    Full Text Available Pulmonary arterial hypertension (PAH is an incurable disorder clinically characterised by a sustained elevation of mean arterial pressure in the absence of systemic involvement. As the adult circulation is a low pressure, low resistance system, PAH represents a reversal to a foetal state. The small pulmonary arteries of patients exhibit luminal occlusion resultant from the uncontrolled growth of endothelial and smooth muscle cells. This vascular remodelling is comprised of hallmark defects, most notably the plexiform lesion. PAH may be familial in nature but the majority of patients present with spontaneous disease or PAH associated with other complications. In this paper, the molecular genetic basis of the disorder is discussed in detail ranging from the original identification of the major genetic contributant to PAH and moving on to current next-generation technologies that have led to the rapid identification of additional genetic risk factors. The impact of identified mutations on the cell is examined, particularly, the determination of pathways disrupted in disease and critical to pulmonary vascular maintenance. Finally, the application of research in this area to the design and development of novel treatment options for patients is addressed along with the future directions PAH research is progressing towards.

  11. [Diagnosis of the peripheral hereditary neuropathies and its molecular genetics].

    Science.gov (United States)

    Hernández-Zamora, Edgar; Arenas-Sordo, María de la Luz

    2008-01-01

    Peripheral neuropathies include a wide range of pathological disorders characterized by damage of peripheral nerves. Among them, peripheral hereditary neuropathies are a group of frequent illnesses and early evolution. They have been named hereditary motor and sensory neuropathy (HMSN) or peripheral hereditary neuropathies type Charcot-Marie-Tooth (CMT). The most frequent types are CMT1, CMT2 and CMTX. Approximately 70% of the cases correspond to subtype CMT1A, associated with tandem duplication of a 1.5 Mb DNA fragment on chromosome 17p11.2-p12 that codifies the peripheral myelin protein PMP22. So far, there five different types of CMT (1,2,3,4,X) with approximately 32 subtypes, associated with more than 30 genes. Have been reported genetic heterogeneity and expression variability of the illness makes it necessary to carry on diagnostic strategies that integrate clinical study for determining genetic clinical history, family history, complete physical exploration, muscular strength, physical deformities, reflexes and sensitivity, and molecular studies allow detection of different types of mutations and help establish a correct diagnosis and an adequate genetic counseling.

  12. Novel approaches for the molecular classification of prostate cancer

    Institute of Scientific and Technical Information of China (English)

    Robert H. Getzenberg

    2010-01-01

    @@ Among the urologic cancers, prostate cancer is by far the most common, and it appears to have the potential to affect almost all men throughout the world as they age. A number of studies have shown that many men with prostate cancer will not die from their disease, but rather with the disease but from other causes. These men have a form of prostate cancer that is de-scribed as "very low risk" and has often been called indolent. There are however a group of men that have a form of prostate cancer that is much more aggressive and life threatening. Unlike other cancer types, we have few tools to provide for the molecular classification of prostate cancer.

  13. CGPD: Cancer Genetics and Proteomics Database - A Dataset for Computational Analysis and Online Cancer Diagnostic Centre

    Directory of Open Access Journals (Sweden)

    Muhammad Rizwan Riaz

    2014-06-01

    Full Text Available Cancer Genetics and Proteomics Database (CGPD is a repository for genetics and proteomics data of those Homo sapiens genes which are involved in Cancer. These genes are categorized in the database on the basis of cancer type. 72 genes of 13 types of cancers are considered in this database yet. Primers, promoters and peptides of these genes are also made available. Primers provided for each gene, with their features and conditions given to facilitate the researchers, are useful in PCR amplification, especially in cloning experiments. CGPD also contains Online Cancer Diagnostic Center (OCDC. It also contains transcription and translation tools to assist research work in progressive manner. The database is publicly available at http://www.cgpd.comyr.com.

  14. Overview of Genetically Engineered Mouse Models of Breast Cancer Used in Translational Biology and Drug Development.

    Science.gov (United States)

    Greenow, Kirsty R; Smalley, Matthew J

    2015-01-01

    Breast cancer is a heterogeneous condition with no single standard of treatment and no definitive method for determining whether a tumor will respond to therapy. The development of murine models that faithfully mimic specific human breast cancer subtypes is critical for the development of patient-specific treatments. While the artificial nature of traditional in vivo xenograft models used to characterize novel anticancer treatments has limited clinical predictive value, the development of genetically engineered mouse models (GEMMs) makes it possible to study the therapeutic responses in an intact microenvironment. GEMMs have proven to be an experimentally tractable platform for evaluating the efficacy of novel therapeutic combinations and for defining the mechanisms of acquired resistance. Described in this overview are several of the more popular breast cancer GEMMs, including details on their value in elucidating the molecular mechanisms of this disorder.

  15. Functional and genetic deconstruction of the cellular origin in liver cancer

    DEFF Research Database (Denmark)

    Marquardt, Jens U; Andersen, Jesper B; Thorgeirsson, Snorri S

    2015-01-01

    During the past decade, research on primary liver cancers has particularly highlighted the uncommon plasticity of differentiated parenchymal liver cells (that is, hepatocytes and cholangiocytes (also known as biliary epithelial cells)), the role of liver progenitor cells in malignant transformation......, the importance of the tumour microenvironment and the molecular complexity of liver tumours. Whereas other reviews have focused on the landscape of genetic alterations that promote development and progression of primary liver cancers and the role of the tumour microenvironment, the crucial importance...... of the cellular origin of liver cancer has been much less explored. Therefore, in this Review, we emphasize the importance and complexity of the cellular origin in tumour initiation and progression, and attempt to integrate this aspect with recent discoveries in tumour genomics and the contribution...

  16. Molecular Concordance Between Primary Breast Cancer and Matched Metastases

    DEFF Research Database (Denmark)

    Krøigård, Anne Bruun; Larsen, Martin Jakob; Thomassen, Mads;

    2016-01-01

    . The purpose of this review is to illuminate the extent of cancer genome evolution through disease progression and the degree of molecular concordance between primary breast cancers and matched metastases. We present an overview of the most prominent studies investigating the expression of endocrine receptors......Clinical management of breast cancer is increasingly personalized and based on molecular profiling. Often, primary tumors are used as proxies for systemic disease at the time of recurrence. However, recent studies have revealed substantial discordances between primary tumors and metastases, both......, transcriptomics, and genome aberrations in primary tumors and metastases. In conclusion, biopsy of metastatic lesions at recurrence of breast cancer is encouraged to provide optimal treatment of the disease. Furthermore, molecular profiling of metastatic tissue provides invaluable mechanistic insight...

  17. Predicting human genetic interactions from cancer genome evolution.

    Directory of Open Access Journals (Sweden)

    Xiaowen Lu

    Full Text Available Synthetic Lethal (SL genetic interactions play a key role in various types of biological research, ranging from understanding genotype-phenotype relationships to identifying drug-targets against cancer. Despite recent advances in empirical measuring SL interactions in human cells, the human genetic interaction map is far from complete. Here, we present a novel approach to predict this map by exploiting patterns in cancer genome evolution. First, we show that empirically determined SL interactions are reflected in various gene presence, absence, and duplication patterns in hundreds of cancer genomes. The most evident pattern that we discovered is that when one member of an SL interaction gene pair is lost, the other gene tends not to be lost, i.e. the absence of co-loss. This observation is in line with expectation, because the loss of an SL interacting pair will be lethal to the cancer cell. SL interactions are also reflected in gene expression profiles, such as an under representation of cases where the genes in an SL pair are both under expressed, and an over representation of cases where one gene of an SL pair is under expressed, while the other one is over expressed. We integrated the various previously unknown cancer genome patterns and the gene expression patterns into a computational model to identify SL pairs. This simple, genome-wide model achieves a high prediction power (AUC = 0.75 for known genetic interactions. It allows us to present for the first time a comprehensive genome-wide list of SL interactions with a high estimated prediction precision, covering up to 591,000 gene pairs. This unique list can potentially be used in various application areas ranging from biotechnology to medical genetics.

  18. Interplay between viral infections and genetic alterations in liver cancer

    Directory of Open Access Journals (Sweden)

    Pierre Hainaut

    2007-02-01

    Full Text Available

    With over 500 000 annual deaths, Hepatocellular carcinoma (HCC is the fifth most common cancer worldwide and a leading cause of death in developing countries where about 80% of the cases arise. Risk factors include chronic hepatitis infections (hepatitis B, (HBV and hepatitis C (HCV viruses, alcohol, dietary contaminants such as falatoxins The incidence shows important geographic variations, accor In southern Asia, HCC development is mainly related to the endemic Hepatitis B Virus (HBV infection, cases with hot spot mutation in codon 249 (249ser of TP53 tumor suppressor gene were also described and associated to a low-intermediate exposure rate to Aflatoxin B1 (AFB1. Presence of Hepatitis C Virus (HCV infection was also detected in 12 - 17% of HCC cases. Despite the increasing number of studies identifying viral/host interactions in viro-induced HCC or describing potential pathways for hepatocarcinogenesis, precise mechanism has not been identified so far. HBV was demonstrated to enhance hepatocarcinogenesis by different manners; HBV chronic infection is associated to active hepatitis (CAH and cirrhosis which are hepatic complications considered as early stage for HCC development. These complications mobilise the host immune response, the resulting inflammation initiates and selects the first genetic alteration at the origin of loss of cell control. Moreover, HBV can also promote carcinogenesis through genetic instability generated by its common integration in host DNA. HBV proteins, as HBx, was proven to interact with a variety of targets in the host cell including protein or host transcription factor such as, in particular, the p53 protein or the transcription factor E4F, which is implicated in growth, differenciation and senescence. Specific HBV mutations or distinct HBV genotypes are associated to higher risks factors for HCC or hepatic complications leading

  19. [Molecular genetics methods in the study of hereditary essential hypertension].

    Science.gov (United States)

    Jindra, A; Horký, K

    1998-01-26

    The main task in hypertension research is to explain genetic causes of a raised blood pressure. It is anticipated that advances in this area will promote not only a better understanding of the pathophysiology of hypertension but will make a more aimed approach to early diagnosis, prevention and therapy of essential hypertension possible. The greatest problems in investigations of the heredity of hypertension are; a) in cardiovascular control mechanisms several genes participate; b) factors of the external environment which act on a long-term basis interfere with the relationship of the genotype and phenotype individually, within the family and regionally; c) the blood pressure is a continuous variable and the definition of the phenotype of hypertension is inaccurate; d) inadequate number of family members where hypertension segregates. New methods in molecular biology and statistical genetics made it possible to assess a number of highly polymorphous genetic signs in several candidate genes and the subsequent investigation of their possible role in the pathogenesis of hypertension. The majority of hitherto accomplished studies was concentrated on genes coding different components of the renin-angiotensin system: renin, ACE, angiotensinogen and angiotensin II receptors. So far the most promising, though not consistent, results were obtained for angiotensinogen and the insulin receptor. Work focused on the relationship of the polymorphism of genes for ANF, growth hormone and kallikrein to essential hypertension is negative. The genetic heterogeneity of the human population, physiological differences in the genesis of high blood pressure in different ethnical groups and inaccurate measurements of specific phenotypes can contribute to different results of different studies.

  20. Validating genetic risk associations for ovarian cancer through the international Ovarian Cancer Association Consortium

    DEFF Research Database (Denmark)

    Pearce, C L; Near, A M; Van Den Berg, D J;

    2009-01-01

    The search for genetic variants associated with ovarian cancer risk has focused on pathways including sex steroid hormones, DNA repair, and cell cycle control. The Ovarian Cancer Association Consortium (OCAC) identified 10 single-nucleotide polymorphisms (SNPs) in genes in these pathways, which had...... been genotyped by Consortium members and a pooled analysis of these data was conducted. Three of the 10 SNPs showed evidence of an association with ovarian cancer at P... and risk of ovarian cancer suggests that this pathway may be involved in ovarian carcinogenesis. Additional follow-up is warranted....

  1. Genetic susceptibility loci, pesticide exposure and prostate cancer risk.

    Directory of Open Access Journals (Sweden)

    Stella Koutros

    Full Text Available Uncovering SNP (single nucleotide polymorphisms-environment interactions can generate new hypotheses about the function of poorly characterized genetic variants and environmental factors, like pesticides. We evaluated SNP-environment interactions between 30 confirmed prostate cancer susceptibility loci and 45 pesticides and prostate cancer risk in 776 cases and 1,444 controls in the Agricultural Health Study. We used unconditional logistic regression to estimate odds ratios (ORs and 95% confidence intervals (CIs. Multiplicative SNP-pesticide interactions were calculated using a likelihood ratio test. After correction for multiple tests using the False Discovery Rate method, two interactions remained noteworthy. Among men carrying two T alleles at rs2710647 in EH domain binding protein 1 (EHBP1 SNP, the risk of prostate cancer in those with high malathion use was 3.43 times those with no use (95% CI: 1.44-8.15 (P-interaction= 0.003. Among men carrying two A alleles at rs7679673 in TET2, the risk of prostate cancer associated with high aldrin use was 3.67 times those with no use (95% CI: 1.43, 9.41 (P-interaction= 0.006. In contrast, associations were null for other genotypes. Although additional studies are needed and the exact mechanisms are unknown, this study suggests known genetic susceptibility loci may modify the risk between pesticide use and prostate cancer.

  2. Molecular, biochemical and genetic characteristics of BSE in Canada.

    Directory of Open Access Journals (Sweden)

    Sandor Dudas

    Full Text Available The epidemiology and possibly the etiology of bovine spongiform encephalopathy (BSE have recently been recognized to be heterogeneous. In particular, three types [classical (C and two atypical (H, L] have been identified, largely on the basis of characteristics of the proteinase K (PK-resistant core of the misfolded prion protein associated with the disease (PrP(res. The present study was conducted to characterize the 17 Canadian BSE cases which occurred prior to November 2009 based on the molecular and biochemical properties of their PrP(res, including immunoreactivity, molecular weight, glycoform profile and relative PK sensitivity. Two cases exhibited molecular weight and glycoform profiles similar to those of previously reported atypical cases, one corresponding to H-type BSE (case 6 and the other to L-type BSE (case 11. All other cases were classified as C-type. PK digestion under mild and stringent conditions revealed a reduced protease resistance in both of these cases compared to the C-type cases. With Western immunoblotting, N-terminal-specific antibodies bound to PrP(res from case 6 but not to that from case 11 or C-type cases. C-terminal-specific antibodies revealed a shift in the glycoform profile and detected a fourth protein fragment in case 6, indicative of two PrP(res subpopulations in H-type BSE. No mutations suggesting a genetic etiology were found in any of the 17 animals by sequencing the full PrP-coding sequence in exon 3 of the PRNP gene. Thus, each of the three known BSE types have been confirmed in Canadian cattle and show molecular characteristics highly similar to those of classical and atypical BSE cases described from Europe, Japan and the USA. The occurrence of atypical cases of BSE in countries such as Canada with low BSE prevalence and transmission risk argues for the occurrence of sporadic forms of BSE worldwide.

  3. BRCA1/2 genetic background-based therapeutic tailoring of human ovarian cancer: hope or reality?

    Directory of Open Access Journals (Sweden)

    Tagliaferri Pierosandro

    2009-10-01

    Full Text Available Abstract Ovarian epithelial tumors are an hallmark of hereditary cancer syndromes which are related to the germ-line inheritance of cancer predisposing mutations in BRCA1 and BRCA2 genes. Although these genes have been associated with multiple different physiologic functions, they share an important role in DNA repair mechanisms and therefore in the whole genomic integrity control. These findings have risen a variety of issues in terms of treatment and prevention of breast and ovarian tumors arising in this context. Enhanced sensitivity to platinum-based anticancer drugs has been related to BRCA1/2 functional loss. Retrospective studies disclosed differential chemosensitivity profiles of BRCA1/2-related as compared to "sporadic" ovarian cancer and led to the identification of a "BRCA-ness" phenotype of ovarian cancer, which includes inherited BRCA1/2 germ-line mutations, a serous high grade histology highly sensitive to platinum derivatives. Molecularly-based tailored treatments of human tumors are an emerging issue in the "era" of molecular targeted drugs and molecular profiling technologies. We will critically discuss if the genetic background of ovarian cancer can indeed represent a determinant issue for decision making in the treatment selection and how the provocative preclinical findings might be translated in the therapeutic scenario. The presently available preclinical and clinical evidence clearly indicates that genetic background has an emerging role in treatment individualization for ovarian cancer patients.

  4. Asymmetry in family history implicates nonstandard genetic mechanisms: application to the genetics of breast cancer.

    Directory of Open Access Journals (Sweden)

    Clarice R Weinberg

    2014-03-01

    Full Text Available Genome-wide association studies typically target inherited autosomal variants, but less studied genetic mechanisms can play a role in complex disease. Sex-linked variants aside, three genetic phenomena can induce differential risk in maternal versus paternal lineages of affected individuals: 1. maternal effects, reflecting the maternal genome's influence on prenatal development; 2. mitochondrial variants, which are inherited maternally; 3. autosomal genes, whose effects depend on parent of origin. We algebraically show that small asymmetries in family histories of affected individuals may reflect much larger genetic risks acting via those mechanisms. We apply these ideas to a study of sisters of women with breast cancer. Among 5,091 distinct families of women reporting that exactly one grandmother had breast cancer, risk was skewed toward maternal grandmothers (p<0.0001, especially if the granddaughter was diagnosed between age 45 and 54. Maternal genetic effects, mitochondrial variants, or variant genes with parent-of-origin effects may influence risk of perimenopausal breast cancer.

  5. Molecular mechanisms in cancer induction and prevention.

    OpenAIRE

    Borek, C

    1993-01-01

    Chemical and physical carcinogens, present in our environment and encountered in a variety of occupations, produce damage to DNA. X-rays produced direct ionizations and indirect hydroxyl radical attack. UV light in the short wavelength is specifically absorbed by unsaturated bonds in DNA, RNA, and proteins. There are a number of genetic sites that are specifically affected by environmental agents, and an increased sensitivity is found in certain genetic diseases. The development of a fully ma...

  6. 2. Molecular Biology as a Tool in Cancer Epidemiology

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@There can be little doubt that we are entering a new era in our understanding of the origins of human cancer. Unfortunately from the point of view of the cancer epidemiology community, some of the more recent advances in the molecular biology of cancer (once fully assimilated) will tend to make the talk of the up-to-date cancer epidemiologist a great deal less straightforward than many of us had previously envisaged it to be, There may still be a few cancers that will prove to result from only a few distinctive types of mutation in a relatively small number of genes, but I strongly suspect that the great majority of human cancers that we wish to study will prove to have their origins in a complex set of DNA changes whose precise

  7. INSIGHT INTO THE MOLECULAR AND GENETIC CHANGES IN HEART FAILURE

    Directory of Open Access Journals (Sweden)

    Sergio Dalla–Volta, MD, PhD

    2010-01-01

    Full Text Available n the last fifteen years much progress has been made on the knowledge of the mechanisms controlling the genetic and molecular activities of the mammalian (with special emphasis on the human heart in chronic cardiac insufficiency.This increased knowledge has greatly influenced the understanding and treatment of heart failure, helping to prolong duration of life; even if clear evidence of a long lasting improvement of the syndrome is lacking.The causes of heart failure are numerous and different, but the common feature depends on the modest regenerative capacity of the human heart after any important injury damaging the myocardium. Therefore, the more frequent consequence is the appearance of scar tissue, with collagen deposition and tissue remodelling. Even is some proliferation of cardiac myocites has been noted, this process is unable to overcome the destruction of normal cells observed in the several cardiac disorders, so that the only efficient response is usually the cellular hypertrophy.

  8. Molecular biology and genetics of embryonic eyelid development.

    Science.gov (United States)

    Rubinstein, Tal J; Weber, Adam C; Traboulsi, Elias I

    2016-09-01

    The embryology of the eyelid is a complex process that includes interactions between the surface ectoderm and mesenchymal tissues. In the mouse and human, the eyelids form and fuse before birth; they open prenatally in the human and postnatally in the mouse. In the mouse, cell migration is stimulated by different growth factors such as FGF10, TGF-α, Activin B, and HB-EGF. These growth factors modulate downstream BMP4 signaling, the ERK cascade, and JNK/c-JUN. Several mechanisms, such as the Wnt/β-catenin signaling pathway, may inhibit and regulate eyelid fusion. Eyelid opening, on the other hand, is driven by the BMP/Smad signaling system. Several human genetic disorders result from dysregulation of the above molecular pathways. PMID:26863902

  9. [Clinical and molecular genetic analysis of hereditary optic neuropathies].

    Science.gov (United States)

    Avetisov, S É; Sheremet, N L; Vorob'eva, O K; Eliseeva, É G; Chukhrova, A L; Loginova, A N; Khanakova, N A; Poliakov, A V

    2013-01-01

    DNA samples of 50 patients with optic neuropathy (ON) associated with congenital cataract were studied to find 3 major mt-DNA mutations (m.11778G>A, m.3460G>A, m.14484T>C), mutations in "hot" regions of OPA 1 gene (exons 8, 14, 15, 16, 18, 27, 28) and in the entire coding sequence of OPA3 gene for molecular genetic confirmation of diagnosis of hereditary Leber and autosomal dominant ON. Primary mutations of mtDNA responsible for hereditary Leber ON were found in 16 patients (32%). Pathogenic mutations of OPAl gene (c.869G>A and c. 2850delT) were identified in 2 patients (4%), these mutations were not found in the literature. OPA3 gene mutations were not revealed.

  10. Genetic diversity assessment of summer squash landraces using molecular markers.

    Science.gov (United States)

    Mady, Emad A; Helaly, Alaa Al-Din; Abu El-Hamd, Abdel Naem; Abdou, Arafa; Shanan, Shamel A; Craker, Lyle E

    2013-07-01

    Plant identification, classification, and genotyping within a germplasm collection are essential elements for establishing a breeding program that enhances the probability of plants with desirable characteristics in the market place. In this study, random amplified polymorphic DNA (RAPD) was used as a molecular tool to assess the diversity and relationship among 20 summer squash (Curcubita pepo L.) landraces traditionally used to treat hypertension and prostate hyperplasia. A total of 10 RAPD primers produced 65 reproducible bands of which 46 (70.77 %) were polymorphic, indicating a large number of genotypes within the summer squash lines. Cluster analysis divided the summer squash germplasm into two groups, one including one landrace and a second containing 19 landraces that could be divided into five sub-groups. Results of this study indicate the potential of RAPD markers for the identification and assessment of genetic variations among squash landraces and provide a number of choices for developing a successful breeding program to improve summer squash.

  11. Genetic Assessment of Breast Cancer Risk in Primary Care Practice

    OpenAIRE

    Burke, Wylie; Culver, Julie; Pinsky, Linda; Hall, Sarah; Reynolds, Susan E; Yasui, Yutaka; Press, Nancy

    2009-01-01

    Family history is increasingly important in primary care as a means to detect candidates for genetic testing or tailored prevention programs. We evaluated primary care physicians’ skills in assessing family history for breast cancer risk, using unannounced standardized patient visits to 86 general internists and family medicine practitioners in King County, WA. Transcripts of clinical encounters were coded to determine ascertainment of family history, risk assessment, and clinical follow-up. ...

  12. Donation Intentions for Cancer Genetics Research Among African Americans

    OpenAIRE

    McDonald, Jasmine A; Weathers, Benita; Barg, Frances K.; Troxel, Andrea B; Shea, Judy A; Bowen, Deborah; Guerra, Carmen E.; Halbert, Chanita Hughes

    2012-01-01

    Aims: Scientific agencies rely on individuals to donate their DNA to support research on chronic conditions that disproportionately affect African Americans; however, donation is variable in this population. The purpose of this study was to identify sociodemographic characteristics, health care variables, and cultural values having significant independent associations with intentions to donate blood or saliva samples for cancer genetics research among African American adults. Method: Cross-se...

  13. Choosing the right molecular genetic markers for studying biodiversity: from molecular evolution to practical aspects.

    Science.gov (United States)

    Chenuil, Anne; Anne, Chenuil

    2006-05-01

    The use of molecular genetic markers (MGMs) has become widespread among evolutionary biologists, and the methods of analysis of genetic data improve rapidly, yet an organized framework in which scientists can work is lacking. Elements of molecular evolution are summarized to explain the origin of variation at the DNA level, its measures, and the relationships linking genetic variability to the biological parameters of the studied organisms. MGM are defined by two components: the DNA region(s) screened, and the technique used to reveal its variation. Criteria of choice belong to three categories: (1) the level of variability, (2) the nature of the information (e.g. dominance vs. codominance, ploidy, ... ) which must be determined according to the biological question and (3) some practical criteria which mainly depend on the equipment of the laboratory and experience of the scientist. A three-step procedure is proposed for drawing up MGMs suitable to answer given biological questions, and compiled data are organized to guide the choice at each step: (1) choice, determined by the biological question, of the level of variability and of the criteria of the nature of information, (2) choice of the DNA region and (3) choice of the technique.

  14. The molecular genetics of the corneal dystrophies--current status.

    Science.gov (United States)

    Klintworth, Gordon K

    2003-05-01

    The pertinent literature on inherited corneal diseases is reviewed in terms of the chromosomal localization and identification of the responsible genes. Disorders affecting the cornea have been mapped to human chromosome 1 (central crystalline corneal dystrophy, familial subepithelial corneal amyloidosis, early onset Fuchs dystrophy, posterior polymorphous corneal dystrophy), chromosome 4 (Bietti marginal crystalline dystrophy), chromosome 5 (lattice dystrophy types 1 and IIIA, granular corneal dystrophy types 1, 2 and 3, Thiel-Behnke corneal dystrophy), chromosome 9 (lattice dystrophy type II), chromosome 10 (Thiel-Behnke corneal dystrophy), chromosome 12 (Meesmann dystrophy), chromosome 16 (macular corneal dystrophy, fish eye disease, LCAT disease, tyrosinemia type II), chromosome 17 (Meesmann dystrophy, Stocker-Holt dystrophy), chromosome 20 (congenital hereditary endothelial corneal dystrophy types I and II, posterior polymorphous corneal dystrophy), chromosome 21 (autosomal dominant keratoconus) and the X chromosome (cornea verticillata, cornea farinata, deep filiform corneal dystrophy, keratosis follicularis spinulosa decalvans, Lisch corneal dystrophy). Mutations in nine genes (ARSC1, CHST6, COL8A2, GLA, GSN, KRT3, KRT12, M1S1and TGFBI [BIGH3]) account for some of the corneal diseases and three of them are associated with amyloid deposition in the cornea (GSN, M1S1, TGFBI) including most of the lattice corneal dystrophies (LCDs) [LCD types I, IA, II, IIIA, IIIB, IV, V, VI and VII] recognized by their lattice pattern of linear opacities. Genetic studies on inherited diseases affecting the cornea have provided insight into some of these disorders at a basic molecular level and it has become recognized that distinct clinicopathologic phenotypes can result from specific mutations in a particular gene, as well as some different mutations in the same gene. A molecular genetic understanding of inherited corneal diseases is leading to a better appreciation of the

  15. Genetics and genomics of prostate cancer

    Institute of Scientific and Technical Information of China (English)

    Michael Dean; Hong Lou

    2013-01-01

    Prostate cancer (PCa) is one of the most common malignancies in the world with over 890 000 cases and over 258 000 deaths worldwide each year.Nearly all mortalities from PCa are due to metastatic disease,typically through tumors that evolve to be hormone-refractory or castrate-resistant.Despite intensive epidemiological study,there are few known environmental risk factors,and age and family history are the major determinants.However,there is extreme heterogeneity in PCa incidence worldwide,suggesting that major determining factors have not been described.Genome-wide association studies have been performed and a considerable number of significant,but low-risk loci have been identified.In addition,several groups have analyzed PCa by determination of genomic copy number,fusion gene generation and targeted resequencing of candidate genes,as well as exome and whole genome sequencing.These initial studies have examined both primary and metastatic tumors as well as murine xenografts and identified somatic alterations in TP53 and other potential driver genes,and the disturbance of androgen response and cell cycle pathways.It is hoped that continued characterization of risk factors as well as gene mutation and misregulation in tumors will aid in understanding,diagnosing and better treating PCa.

  16. Breast and Colon Cancer Family Registries

    Science.gov (United States)

    The Breast Cancer Family Registry and the Colon Cancer Family Registry were established by the National Cancer Institute as a resource for investigators to use in conducting studies on the genetics and molecular epidemiology of breast and colon cancer.

  17. Molecular assessment of genetic diversity in mung bean germplasm

    Indian Academy of Sciences (India)

    G. Roopa Lavanya; Jyoti Srivastava; Shirish A. Ranade

    2008-04-01

    RAPD profiles were used to identify the extent of diversity among 54 accessions of mung bean that included both improved and local land races. Out of the 40 primers screened, seven primers generated 174 amplification products with an average of 24.85 bands per primer. The RAPD profiles were analysed for Jaccard’s similarity coefficients that was found to be in the range from 0 to 0.48, indicating the presence of wide range of genetic diversity at molecular level. Cluster analysis was carried out based on distances (1-similarity coefficient) using neighbour-joining method in Free Tree package. The dendrogram resolved all the accessions into two major clusters, I (with 11 accessions) and II (with 43 accessions). However, the cluster was further divided into four subclusters (II A with six, II B with nine, II C with 15 and II D with 13 accessions). The distribution of the accessions in different clusters and subclusters appeares to be related to their performance in field conditions for 10 morphological traits that were scored. This study indicated that the RAPD profiles provide an easy and simple technique for preliminary genetic diversity assessment of mung bean accessions that may reflect morphological trait differences among them.

  18. Impact of molecular genetics on congenital adrenal hyperplasia management.

    Science.gov (United States)

    Balsamo, A; Baldazzi, L; Menabò, S; Cicognani, A

    2010-09-01

    Congenital adrenal hyperplasia (CAH) is a family of autosomal recessive disorders caused by mutations in genes encoding the enzymes involved in one of the 5 steps of adrenal steroid synthesis or the electron donor P450 oxidoreductase (POR) enzyme. Steroid 21-hydroxylase deficiency (21-OHD), the principal focus of this review, accounts for about 90-95% of all CAH cases, and its biochemical and clinical severity depends on the underlying CYP21A2 gene disruption. Molecular genetic advancements have been achieved in recent years, and the aim of this review is to attempt to highlight its contribution to the comprehension and management of the disease. When possible, we will try to achieve this goal also by providing some results from our personal experience regarding: some aspects of CYP21A2 gene analysis, with basic genotype/phenotype relationships; its crucial role in both genetic counselling and in prenatal diagnosis and treatment in families at risk for 21-OHD; its help in the comprehension of the severity of the disease in patients diagnosed by neonatal screening and possibly treated before an evident salt-loss crisis or before performing adequate blood sampling; its usefulness in the definition of post ACTH 17-hydroxyprogesterone values, discriminating between non-classic, heterozygote and normal subjects; and finally the contribution of genes other than CYP21A2 whose function or dysfunction could influence 21-hydroxylase activity and modify the presentation or management of the disease.

  19. Cancer genetics and the cardiotoxicity of the therapeutics.

    Science.gov (United States)

    Lal, Hind; Kolaja, Kyle L; Force, Thomas

    2013-01-22

    Cancer genomics has focused on the discovery of mutations and chromosomal structural rearrangements that either increase susceptibility to cancer or support the cancer phenotype. Protein kinases are the most frequently mutated genes in the cancer genome, making them attractive therapeutic targets for drug design. However, the use of some of the kinase inhibitors (KIs) has been associated with toxicities to the heart and vasculature, including acute coronary syndromes and heart failure. Herein we discuss the genetic basis of cancer, focusing on mutations in the kinase genome (kinome) that lead to tumorigenesis. This will allow an understanding of the real and potential power of modern cancer therapeutics. The underlying mechanisms that drive the cardiotoxicity of the KIs are also examined. The preclinical models for predicting cardiotoxicity, including induced pluripotent stem cells and zebrafish, are reviewed, with the hope of eventually being able to identify problematic agents before their use in patients. Finally, the use of biomarkers in the clinic is discussed, and newer strategies (i.e., metabolomics and enhanced imaging strategies) that may allow earlier and more accurate detection of cardiotoxicity are reviewed.

  20. Differential expression of immune-related markers in breast cancer by molecular phenotypes.

    Science.gov (United States)

    Choi, Junjeong; Kim, Do Hee; Jung, Woo Hee; Koo, Ja Seung

    2013-01-01

    The purpose of this study is to investigate the relationship between expression of immune-related molecules such as STAT1, CD20, IL-8, IFN-γ, tumor genetic phenotype, and the clinical course of invasive breast cancer. We constructed tissue microarrays from the breast cancers of 727 patients and classified the cases as either luminal A, luminal B, HER-2, or triple negative breast cancer (TNBC) based on standard pathological and clinical classifications using genetic phenotype. Surrogate immunohistochemical stains (STAT1, CD20, IL-8, IFN-γ) and HER-2 FISH were performed on each microarray. Of the 727 patients cases, 303 (41.7 %) were luminal A, 169 (23.2 %) were luminal B, 71 (9.8 %) were HER2+, and 184 (25.3 %) were TNBC. The expression of STAT1 in tumor cells was higher in luminal-type cancers than in HER2+ and TNBC (P IL-8 expression (P = 0.005), and CD20 index (P IL-8 positivity was associated with shorter DFS and OS in ER positive group, HER-2 negative group, and luminal A group (P IL-8, and CD20 are differentially expressed and define particular molecular subtypes which correlate with genetically defined types of tumors. High expression of STAT1 in tumor cells is observed in luminal-type tumors, whereas stromal expression of STAT1, stromal IL-8, and IL-8 in tumor cells is the highest in TNBC-type tumors.

  1. CYP17 genetic polymorphism, breast cancer, and breast cancer risk factors

    OpenAIRE

    Ambrosone, Christine B; Moysich, Kirsten B.; Furberg, Helena; Freudenheim, Jo L.; Bowman, Elise D.; Ahmed, Sabrina; Graham, Saxon; Vena, John E; Shields, Peter G.

    2003-01-01

    Background Findings from previous studies regarding the association between the CYP17 genotype and breast cancer are inconsistent. We investigated the role of the MspAI genetic polymorphism in the 5' region of CYP17 on risk of breast cancer and as a modifier of reproductive risk factors. Methods Questionnaire and genotyping data were obtained from a population-based, case–control study of premenopausal (n = 182) and postmenopausal (n = 214) European-American Caucasian women in western New Yor...

  2. Experience of parental cancer in childhood is a risk factor for psychological distress during genetic cancer susceptibility testing

    NARCIS (Netherlands)

    van Oostrom, I.; Meijers-Heijboer, H.; Duivenvoorden, H. J.; Brocker-Vriends, A. H. J. T.; van Asperen, C. J.; Sijmons, R. H.; Seynaeve, C.; Van Gool, A. R.; Klijn, J. G. M.; Tibben, A.

    2006-01-01

    Background: This study explores the effect of age at the time of parental cancer diagnosis or death on psychological distress and cancer risk perception in individuals undergoing genetic testing for a specific cancer susceptibility. Patients and methods: Cancer-related distress, worry and risk perce

  3. Genetic polymorphisms and metabolism of endocrine disruptors in cancer susceptibility

    Directory of Open Access Journals (Sweden)

    Hatagima Ana

    2002-01-01

    Full Text Available Epidemiological studies have estimated that approximately 80% of all cancers are related to environmental factors. Individual cancer susceptibility can be the result of several host factors, including differences in metabolism, DNA repair, altered expression of tumor suppressor genes and proto-oncogenes, and nutritional status. Xenobiotic metabolism is the principal mechanism for maintaining homeostasis during the body's exposure to xenobiotics. The balance of xenobiotic absorption and elimination rates in metabolism can be important in the prevention of DNA damage by chemical carcinogens. Thus the ability to metabolize and eliminate xenobiotics can be considered one of the body's first protective mechanisms. Variability in individual metabolism has been related to the enzymatic polymorphisms involved in activation and detoxification of chemical carcinogens. This paper is a contemporary literature review on genetic polymorphisms involved in the metabolism of endocrine disruptors potentially related to cancer development.

  4. Genetic polymorphisms and metabolism of endocrine disruptors in cancer susceptibility

    Directory of Open Access Journals (Sweden)

    Ana Hatagima

    2002-04-01

    Full Text Available Epidemiological studies have estimated that approximately 80% of all cancers are related to environmental factors. Individual cancer susceptibility can be the result of several host factors, including differences in metabolism, DNA repair, altered expression of tumor suppressor genes and proto-oncogenes, and nutritional status. Xenobiotic metabolism is the principal mechanism for maintaining homeostasis during the body's exposure to xenobiotics. The balance of xenobiotic absorption and elimination rates in metabolism can be important in the prevention of DNA damage by chemical carcinogens. Thus the ability to metabolize and eliminate xenobiotics can be considered one of the body's first protective mechanisms. Variability in individual metabolism has been related to the enzymatic polymorphisms involved in activation and detoxification of chemical carcinogens. This paper is a contemporary literature review on genetic polymorphisms involved in the metabolism of endocrine disruptors potentially related to cancer development.

  5. Molecular Response to Hypoxia; from C. elegans to cancer

    NARCIS (Netherlands)

    Gort, E.H.

    2008-01-01

    Oncogenesis is governed by genetic and epigenetic events that co-opt to malignant progression. The role of the microenvironment in tumorigenesis and maintenance is increasingly appreciated. Oxygen supply is one of the rate limiting microenvironmental factors. Like healthy cells, cancer cells rely on

  6. Molecular targeted agents for gastric and gastroesophageal junction cancer.

    Science.gov (United States)

    Oshima, Takashi; Masuda, Munetaka

    2012-04-01

    Despite recent improvements in surgical techniques and chemotherapy, advanced cancers of the stomach and gastroesophageal junction (GEJ) continue to have poor clinical outcomes. However, molecules intimately related to cancer cell proliferation, invasion, and metastasis have been studied as candidates for molecular targeted agents. Target molecules, such as the epidermal growth factor receptor, vascular endothelial growth factor receptor, and P13k/Akt/mTor pathway, as well as the insulin-like growth factor receptor, c-Met pathways, fibroblast growth factor receptor, and other pathways are considered to be promising candidates for molecular targeted therapy for gastric and GEJ cancer. In this review we focus on the recent developments in targeting relevant pathways in these types of cancer.

  7. Molecular markers of oral cancer and chemopreventive effects of traditional Chinese medicine

    Institute of Scientific and Technical Information of China (English)

    Wei Wen Jiang; Zeng Tong Zhou

    2008-01-01

    @@ With the arriving of post-transcriptional time, people recognize that cancer is result from genetics and epigenetics. Besides coding genetic information, there is a lot genetic information hiding out of DNA sequence.

  8. Population genetics of cancer cell clones: possible implications of cancer stem cells

    Directory of Open Access Journals (Sweden)

    Naugler Christopher T

    2010-11-01

    Full Text Available Abstract Background The population dynamics of the various clones of cancer cells existing within a tumour is complex and still poorly understood. Cancer cell clones can be conceptualized as sympatric asexual species, and as such, the application of theoretical population genetics as it pertains to asexual species may provide additional insights. Results The number of generations of tumour cells within a cancer has been estimated at a minimum of 40, but high cancer cell mortality rates suggest that the number of cell generations may actually be in the hundreds. Such a large number of generations would easily allow natural selection to drive clonal evolution assuming that selective advantages of individual clones are within the range reported for free-living animal species. Tumour cell clonal evolution could also be driven by variation in the intrinsic rates of increase of different clones or by genetic drift. In every scenario examined, the presence of cancer stem cells would require lower selection pressure or less variation in intrinsic rates of increase. Conclusions The presence of cancer stem cells may result in more rapid clonal evolution. Specific predictions from theoretical population genetics may lead to a greater understanding of this process.

  9. Inherited colour vision deficiencies: From Dalton to molecular genetics

    Directory of Open Access Journals (Sweden)

    Cvetković Dragana

    2005-01-01

    Full Text Available In recent years, great advances have been made in our understanding of the molecular basis of colour vision defects, as well as of the patterns of genetic variation in individuals with normal colour vision. Molecular genetic analyses have explained the diversity of types and degrees of severity in colour vision anomalies, their frequencies, pronounced individual variations in test results, etc. New techniques have even enabled the determination of John Dalton’s real colour vision defect, 150 years after his death. Inherited colour vision deficiencies most often result from the mutations of genes that encode cone opsins. Cone opsin genes are linked to chromosomes 7 (the S or “blue” gene and X (the L or “red” gene and the M or “green” gene. The L and M genes are located on the q arm of the X chromosome in a head-to-tail array, composed of 2 to 6 (typically 3 genes - a single L is followed by one or more M genes. Only the first two genes of the array are expressed and contribute to the colour vision phenotype. The high degree of homology (96% between the L and M genes predisposes them to unequal recombination, leading to gene deletion or the formation of hybrid genes (comprising portions of both the L and M genes, explaining the majority of the common red-green colour vision deficiencies. The severity of any deficiency is influenced by the difference in spectral sensitivity between the opsins encoded by the first two genes of the array. A rare defect, S monochromacy, is caused either by the deletion of the regulatory region of the array or by mutations that inactivate the L and M genes. Most recent research concerns the molecular basis of complete achromatopsia, a rare disorder that involves the complete loss of all cone function. This is not caused by mutations in opsin genes, but in other genes that encode cone-specific proteins, e.g. channel proteins and transducin.

  10. Choline metabolism-based molecular diagnosis of cancer: an update

    OpenAIRE

    Glunde, Kristine; Penet, Marie-France; Jiang, Lu; Jacobs, Michael A.; Zaver M Bhujwalla

    2015-01-01

    Abnormal choline metabolism continues to be identified in multiple cancers. Molecular causes of abnormal choline metabolism are changes in choline kinase-α, ethanolamine kinase-α, phosphatidylcholine-specific phospholipase C and -D and glycerophosphocholine phosphodiesterases, as well as several choline transporters. The net outcome of these enzymatic changes is an increase in phosphocholine and total choline (tCho) and, in some cancers, a relative decrease of glycerophosphocholine. The incre...

  11. Pomegranate Extracts and Cancer Prevention: Molecular and Cellular Activities

    OpenAIRE

    Syed, Deeba N.; Chamcheu, Jean-Christopher; Adhami, Vaqar M.; Mukhtar, Hasan

    2013-01-01

    There is increased appreciation by the scientific community that dietary phytochemicals can be potential weapons in the fight against cancer. Emerging data has provided new insights into the molecular and cellular framework needed to establish novel mechanism-based strategies for cancer prevention by selective bioactive food components. The unique chemical composition of the pomegranate fruit, rich in antioxidant tannins and flavonoids has drawn the attention of many investigators. Polyphenol...

  12. Integrated molecular portrait of non-small cell lung cancers

    OpenAIRE

    Lazar, Vladimir; Suo, Chen; Orear, Cedric; van den Oord, Joost; Balogh, Zsofia; Guegan, Justine; Job, Bastien; Meurice, Guillaume; Ripoche, Hugues; Calza, Stefano; Hasmats, Johanna; Lundeberg, Joakim; Lacroix, Ludovic; Vielh, Philippe; Dufour, Fabienne

    2013-01-01

    Background Non-small cell lung cancer (NSCLC), a leading cause of cancer deaths, represents a heterogeneous group of neoplasms, mostly comprising squamous cell carcinoma (SCC), adenocarcinoma (AC) and large-cell carcinoma (LCC). The objectives of this study were to utilize integrated genomic data including copy-number alteration, mRNA, microRNA expression and candidate-gene full sequencing data to characterize the molecular distinctions between AC and SCC. Methods Comparative genomic hybridiz...

  13. Molecular mechanisms of TRAIL-induced apoptosis of cancer cells

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@Tumor Necrosis Factor-related Apoptosis-inducing Ligand (TRAIL) is a recently identified member of the tumor necrosis factor (TNF) family[1]. Numerous studies indicate that TRAIL can induce apoptosis of cancer cells but not of normal cells, pointing to the possibility of de-veloping TRAIL into a cancer drug[2-4]. This review will summary the molecular mechanisms of TRAIL-induced apoptosis and discuss the questions to be resolved in this field.

  14. Radiation mutagenesis from molecular and genetic points of view

    Energy Technology Data Exchange (ETDEWEB)

    Chen, D.J.C.; Park, M.S.; Okinaka, R.T.; Jaberaboansari, A.

    1993-01-01

    An important biological effect of ionizing radiation on living organisms is mutation induction. Mutation is also a primary event in the etiology of cancer. The chain events, from induction of DNA damage by ionizing radiation to processing of these damages by the cellular repair/replication machinery, that lead to mutation are not well understood. The development of quantitative methods for measuring mutation-induction, such as the HPRT system, in cultured mammalian cells has provided an estimate of the mutagenic effects of x- and [gamma]-rays as wen as of high LET radiation in both rodent and human cells. A major conclusion from these mutagenesis data is that high LET radiation induces mutations more efficiently than g-rays. Molecular analysis of mutations induced by sparsely ionizing radiation have detected major structural alterations at the gene level. Our molecular results based on analysis of human HPRT deficient mutants induced by [gamma]-rays, [alpha]-particles and high energy charged particles indicate that higher LET radiation induce more total and large deletion mutations than [gamma]-rays. Utilizing molecular techniques including polymerase chain reaction (PCR), Single-strand conformation polymorphism (SSCP), denaturing gradient gel electrophoresis (DGGE) and Direct DNA sequencing, mutational spectra induced by ionizing radiation have been compared in different cell systems. Attempts have also been made to determine the mutagenic potential and the nature of mutation induced by low dose rate [gamma]-rays. Defective repair, in the form of either a diminished capability for repair or inaccurate repair, can lead to increased risk of heritable mutations from radiation exposure. Therefore, the effects of DNA repair deficiency on the mutation induction in mammalian cells is reviewed.

  15. Radiation mutagenesis from molecular and genetic points of view

    Energy Technology Data Exchange (ETDEWEB)

    Chen, D.J.C.; Park, M.S.; Okinaka, R.T.; Jaberaboansari, A.

    1993-02-01

    An important biological effect of ionizing radiation on living organisms is mutation induction. Mutation is also a primary event in the etiology of cancer. The chain events, from induction of DNA damage by ionizing radiation to processing of these damages by the cellular repair/replication machinery, that lead to mutation are not well understood. The development of quantitative methods for measuring mutation-induction, such as the HPRT system, in cultured mammalian cells has provided an estimate of the mutagenic effects of x- and {gamma}-rays as wen as of high LET radiation in both rodent and human cells. A major conclusion from these mutagenesis data is that high LET radiation induces mutations more efficiently than g-rays. Molecular analysis of mutations induced by sparsely ionizing radiation have detected major structural alterations at the gene level. Our molecular results based on analysis of human HPRT deficient mutants induced by {gamma}-rays, {alpha}-particles and high energy charged particles indicate that higher LET radiation induce more total and large deletion mutations than {gamma}-rays. Utilizing molecular techniques including polymerase chain reaction (PCR), Single-strand conformation polymorphism (SSCP), denaturing gradient gel electrophoresis (DGGE) and Direct DNA sequencing, mutational spectra induced by ionizing radiation have been compared in different cell systems. Attempts have also been made to determine the mutagenic potential and the nature of mutation induced by low dose rate {gamma}-rays. Defective repair, in the form of either a diminished capability for repair or inaccurate repair, can lead to increased risk of heritable mutations from radiation exposure. Therefore, the effects of DNA repair deficiency on the mutation induction in mammalian cells is reviewed.

  16. Radiation mutagenesis from molecular and genetic points of view

    International Nuclear Information System (INIS)

    An important biological effect of ionizing radiation on living organisms is mutation induction. Mutation is also a primary event in the etiology of cancer. The chain events, from induction of DNA damage by ionizing radiation to processing of these damages by the cellular repair/replication machinery, that lead to mutation are not well understood. The development of quantitative methods for measuring mutation-induction, such as the HPRT system, in cultured mammalian cells has provided an estimate of the mutagenic effects of x- and γ-rays as wen as of high LET radiation in both rodent and human cells. A major conclusion from these mutagenesis data is that high LET radiation induces mutations more efficiently than g-rays. Molecular analysis of mutations induced by sparsely ionizing radiation have detected major structural alterations at the gene level. Our molecular results based on analysis of human HPRT deficient mutants induced by γ-rays, α-particles and high energy charged particles indicate that higher LET radiation induce more total and large deletion mutations than γ-rays. Utilizing molecular techniques including polymerase chain reaction (PCR), Single-strand conformation polymorphism (SSCP), denaturing gradient gel electrophoresis (DGGE) and Direct DNA sequencing, mutational spectra induced by ionizing radiation have been compared in different cell systems. Attempts have also been made to determine the mutagenic potential and the nature of mutation induced by low dose rate γ-rays. Defective repair, in the form of either a diminished capability for repair or inaccurate repair, can lead to increased risk of heritable mutations from radiation exposure. Therefore, the effects of DNA repair deficiency on the mutation induction in mammalian cells is reviewed

  17. DNA aptamers as molecular probes for colorectal cancer study.

    Directory of Open Access Journals (Sweden)

    Kwame Sefah

    Full Text Available BACKGROUND: Understanding the molecular features of specific tumors can increase our knowledge about the mechanism(s underlying disease development and progression. This is particularly significant for colorectal cancer, which is a heterogeneous complex of diseases developed in a sequential manner through a multistep carcinogenic process. As such, it is likely that tumors with similar characteristics might originate in the same manner and have a similar molecular behavior. Therefore, specific mapping of the molecular features can be potentially useful for both tumor classification and the development of appropriate therapeutic regimens. However, this can only be accomplished by developing high-affinity molecular probes with the ability to recognize specific markers associated with different tumors. Aptamers can most easily meet this challenge based on their target diversity, flexible manipulation and ease of development. METHODOLOGY AND RESULTS: Using a method known as cell-based Systematic Evolution of Ligands by Exponential enrichment (cell-SELEX and colorectal cancer cultured cell lines DLD-1 and HCT 116, we selected a panel of target-specific aptamers. Binding studies by flow cytometry and confocal microscopy showed that these aptamers have high affinity and selectivity. Our data further show that these aptamers neither recognize normal colon cells (cultured and fresh, nor do they recognize most other cancer cell lines tested. CONCLUSION/SIGNIFICANCE: The selected aptamers can identify specific biomarkers associated with colorectal cancers. We believe that these probes could be further developed for early disease detection, as well as prognostic markers, of colorectal cancers.

  18. [Molecular classification of bladder cancer. Possible similarities to breast cancer].

    Science.gov (United States)

    Wirtz, R M; Fritz, V; Stöhr, R; Hartmann, A

    2016-02-01

    Therapeutic decisions for breast cancer are increasingly becoming based on subtype-specific gene expression tests. For bladder cancer very similar subtypes have been identified by genome-wide mRNA analysis, which as for breast cancer differ with respect to the prognosis and response to therapy on the basis of their hormone dependency. At the DNA level, however, the type of mutations and their frequencies within the subtypes are strikingly different between bladder and breast cancers. It will be interesting to see whether possible driver mutations can serve as therapeutic targets in both indications. In contrast, the apparent hormone dependency of a substantial number of bladder carcinomas suggests that hormonal and anti-hormonal treatment can be valid therapy options similar to breast cancer. Moreover, gender-specific differences with respect to the incidence and aggressiveness of male compared to female bladder cancers can be explained by hormonal effects. Together with forthcoming immunomodulatory therapies these multiple therapy options raise and give new hope to efficiently combat this aggressive disease. PMID:26780243

  19. Colorectal Cancer & Molecular Mutations and Polymorphism

    Directory of Open Access Journals (Sweden)

    Aga Syed Sameer

    2013-05-01

    Full Text Available Colorectal cancer (CRC is one of the major causes of mortality and morbidity, and is the third most common cancer in men and the second most common cancer in women worldwide. The incidence of CRC shows considerable variation among racially or ethnically defined populations in multiracial/ethnic countries. The tumorigenesis of CRC is either because of the chromosomal instability (CIN or microsatellite instability (MIN or involving various proto-oncogenes, tumor suppressor genes and also epigenetic changes in the DNA. In this review I have focused on the mutations and polymorphisms of various important genes of the CIN and MIN pathways which have been implicated in the development of CRC.

  20. 76 FR 14034 - Proposed Collection; Comment Request; NCI Cancer Genetics Services Directory Web-Based...

    Science.gov (United States)

    2011-03-15

    ... HUMAN SERVICES National Institutes of Health Proposed Collection; Comment Request; NCI Cancer Genetics... Management and Budget (OMB) for review and approval. Proposed Collection: Title: NCI Cancer Genetics Services... application form and the Web-based update mailer is to collect information about genetics professionals to...

  1. Molecular Concordance Between Primary Breast Cancer and Matched Metastases.

    Science.gov (United States)

    Krøigård, Anne Bruun; Larsen, Martin Jakob; Thomassen, Mads; Kruse, Torben A

    2016-07-01

    Clinical management of breast cancer is increasingly personalized and based on molecular profiling. Often, primary tumors are used as proxies for systemic disease at the time of recurrence. However, recent studies have revealed substantial discordances between primary tumors and metastases, both with respect to traditional clinical treatment targets and on the genomic and transcriptomic level. With the increasing use of molecularly targeted therapy, discordance of actionable molecular targets between primary tumors and recurrences can result in nonoptimal treatment or unnecessary side effects. The purpose of this review is to illuminate the extent of cancer genome evolution through disease progression and the degree of molecular concordance between primary breast cancers and matched metastases. We present an overview of the most prominent studies investigating the expression of endocrine receptors, transcriptomics, and genome aberrations in primary tumors and metastases. In conclusion, biopsy of metastatic lesions at recurrence of breast cancer is encouraged to provide optimal treatment of the disease. Furthermore, molecular profiling of metastatic tissue provides invaluable mechanistic insight into the biology underlying metastatic progression and has the potential to identify novel, potentially druggable, drivers of progression. PMID:27089067

  2. Correlation of morphological and molecular parameters for colon cancer

    Science.gov (United States)

    Yuan, Shuai; Roney, Celeste A.; Li, Qian; Jiang, James; Cable, Alex; Summers, Ronald M.; Chen, Yu

    2010-02-01

    Colorectal cancer (CRC) is the second leading cause of cancer death in the United States. There is great interest in studying the relationship among microstructures and molecular processes of colorectal cancer during its progression at early stages. In this study, we use our multi-modality optical system that could obtain co-registered optical coherence tomography (OCT) and fluorescence molecular imaging (FMI) images simultaneously to study CRC. The overexpressed carbohydrate α-L-fucose on the surfaces of polyps facilitates the bond of adenomatous polyps with UEA-1 and is used as biomarker. Tissue scattering coefficient derived from OCT axial scan is used as quantitative value of structural information. Both structural images from OCT and molecular images show spatial heterogeneity of tumors. Correlations between those values are analyzed and demonstrate that scattering coefficients are positively correlated with FMI signals in conjugated. In UEA-1 conjugated samples (8 polyps and 8 control regions), the correlation coefficient is ranged from 0.45 to 0.99. These findings indicate that the microstructure of polyps is changed gradually during cancer progression and the change is well correlated with certain molecular process. Our study demonstrated that multi-parametric imaging is able to simultaneously detect morphology and molecular information and it can enable spatially and temporally correlated studies of structure-function relationships during tumor progression.

  3. Comparative evaluation of genetic assays to identify oral pre-cancerous fields

    NARCIS (Netherlands)

    J.F. Bremmer; B.J. Braakhuis; A. Brink; M.A. Broeckaert; J.A.M. Beliën; G.A. Meijer; D.J. Kuik; C.R. Leemans; E. Bloemena; I. van der Waal; R.H. Brakenhoff

    2008-01-01

    Background: Oral squamous cell carcinomas often develop in a pre-cancerous field, defined as mucosal epithelium with cancer-related genetic alterations, and which may appear as a clinically visible lesion. The test characteristics of three genetic assays that were developed to detect pre-cancerous f

  4. Matrix metalloproteinases and their tissue inhibitors in gastric cancer as molecular markers

    Directory of Open Access Journals (Sweden)

    Clara L Sampieri

    2013-01-01

    Full Text Available Gastric cancer is a complex disease that involves a range of biological individuals and tumors with histopathological features. The pathogenesis of this disease is multi-factorial and includes the interaction of genetic predisposition with environmental factors. Gastric cancer is normally diagnosed in advanced stages where there are few alternatives to offer and the prognosis is difficult to establish. Metastasis is the leading cause of cancer deaths. Identification of key genes and signaling pathways involved in metastasis and recurrence could predict these events and thereby identify therapeutic targets. In this context, the extracellular matrix metalloproteinases (MMPs and their inhibitors (TIMPs represent a potential prognostic tool, because both genetic families regulate growth, angiogenesis, invasion, immune response, epithelial mesenchymal transition and cellular survival. Proteolytic parameters based on MMP/TIMP expression could be useful in the identification of patients with a high probability of developing distant metastases or peritoneal dissemination for each degree of histological malignancy. It is also probable that these parameters can allow improvement in the extent of surgery and dictate the most suitable therapy. We reviewed papers focused on human gastric epithelial cancer as a model and focus on the potential use of MMPs and TIMPs as molecular markers; also we include literature regarding gastric cancer risk factors, classification systems and MMP/TIMP regulation.

  5. Matrix metalloproteinases and their tissue inhibitors in gastric cancer as molecular markers.

    Science.gov (United States)

    Sampieri, Clara L; León-Córdoba, Kenneth; Remes-Troche, Jos Maria

    2013-01-01

    Gastric cancer is a complex disease that involves a range of biological individuals and tumors with histopathological features. The pathogenesis of this disease is multi-factorial and includes the interaction of genetic predisposition with environmental factors. Gastric cancer is normally diagnosed in advanced stages where there are few alternatives to offer and the prognosis is difficult to establish. Metastasis is the leading cause of cancer deaths. Identification of key genes and signaling pathways involved in metastasis and recurrence could predict these events and thereby identify therapeutic targets. In this context, the extracellular matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) represent a potential prognostic tool, because both genetic families regulate growth, angiogenesis, invasion, immune response, epithelial mesenchymal transition and cellular survival. Proteolytic parameters based on MMP/TIMP expression could be useful in the identification of patients with a high probability of developing distant metastases or peritoneal dissemination for each degree of histological malignancy. It is also probable that these parameters can allow improvement in the extent of surgery and dictate the most suitable therapy. We reviewed papers focused on human gastric epithelial cancer as a model and focus on the potential use of MMPs and TIMPs as molecular markers; also we include literature regarding gastric cancer risk factors, classification systems and MMP/TIMP regulation.

  6. A KRAS-variant in Ovarian Cancer Acts as a Genetic Marker of Cancer Risk

    OpenAIRE

    Ratner, Elena; Lu, Lingeng; Boeke, Marta; Barnett, Rachel; Nallur, Sunitha; Chin, Lena J; Pelletier, Cory; Blitzblau, Rachel; Tassi, Renata; Paranjape, Trupti; Hui, Pei; Andrew K Godwin; Yu, Herbert; Risch, Harvey; Rutherford, Thomas

    2010-01-01

    Ovarian cancer is the single most deadly form of women’s cancer, typically presenting as an advanced disease at diagnosis in part due to a lack of known risk factors or genetic markers of risk. The KRAS oncogene and altered levels of the microRNA let-7 are associated with an increased risk of developing solid tumors. In this study, we investigated a hypothesized association between an increased risk of ovarian cancer and a variant allele of KRAS at rs61764370, referred to as the KRAS-variant,...

  7. Genética molecular: avanços e problemas Molecular genetics: advances and problems

    Directory of Open Access Journals (Sweden)

    Eloi S. Garcia

    1996-03-01

    Full Text Available Este artigo traz a discussão sobre genética molecular em saúde ao campo da saúde pública. Com a revolução produzida pela chegada da engenharia genética, é importante discutir alguns dos avanços e problemas desta tecnologia para a sociedade. Está na hora de se fazer uma avaliação clara e bem informada acerca do que já se conseguiu e do que ainda podemos conseguir através desta tecnologia. A sociedade precisa compreender as implicações éticas e práticas de uma tecnologia capaz de produzir drogas milagrosas, dagnósticos modernos e a cura de todas as doenças. Alguns pontos particularmente delicados pertinentes às questões sociais ligadas à biologia molecular e ao projeto genoma humano são discutidos.This article is an attempt to draw the discussion on molecular genetics in health into the public health domain. Now that the genetic engineering revolution has arrived, it is important to point out the advances and problems this technology poses for society. It is time for a clear, informed assessment of what we have already achieved and may soon achieve using this technology. Clearly, society needs to understand the ethical and practical implications of a technology which can produce miracle drugs and modern diagnoses and cure virtually every disease. Important points from sensitive social issues raised by molecular biology and the human genome project are discussed.

  8. Identification of Novel Genetic Markers of Breast Cancer Survival

    Science.gov (United States)

    Guo, Qi; Schmidt, Marjanka K.; Kraft, Peter; Canisius, Sander; Chen, Constance; Khan, Sofia; Tyrer, Jonathan; Bolla, Manjeet K.; Wang, Qin; Dennis, Joe; Michailidou, Kyriaki; Lush, Michael; Kar, Siddhartha; Beesley, Jonathan; Dunning, Alison M.; Shah, Mitul; Czene, Kamila; Darabi, Hatef; Eriksson, Mikael; Lambrechts, Diether; Weltens, Caroline; Leunen, Karin; Bojesen, Stig E.; Nordestgaard, Børge G.; Nielsen, Sune F.; Flyger, Henrik; Chang-Claude, Jenny; Rudolph, Anja; Seibold, Petra; Flesch-Janys, Dieter; Blomqvist, Carl; Aittomäki, Kristiina; Fagerholm, Rainer; Muranen, Taru A.; Couch, Fergus J.; Olson, Janet E.; Vachon, Celine; Andrulis, Irene L.; Knight, Julia A.; Glendon, Gord; Mulligan, Anna Marie; Broeks, Annegien; Hogervorst, Frans B.; Haiman, Christopher A.; Henderson, Brian E.; Schumacher, Fredrick; Le Marchand, Loic; Hopper, John L.; Tsimiklis, Helen; Apicella, Carmel; Southey, Melissa C.; Cox, Angela; Cross, Simon S.; Reed, Malcolm W. R.; Giles, Graham G.; Milne, Roger L.; McLean, Catriona; Winqvist, Robert; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Grip, Mervi; Hooning, Maartje J.; Hollestelle, Antoinette; Martens, John W. M.; van den Ouweland, Ans M. W.; Marme, Federik; Schneeweiss, Andreas; Yang, Rongxi; Burwinkel, Barbara; Figueroa, Jonine; Chanock, Stephen J.; Lissowska, Jolanta; Sawyer, Elinor J.; Tomlinson, Ian; Kerin, Michael J.; Miller, Nicola; Brenner, Hermann; Dieffenbach, Aida Karina; Arndt, Volker; Holleczek, Bernd; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M.; Li, Jingmei; Brand, Judith S.; Humphreys, Keith; Devilee, Peter; Tollenaar, Rob A. E. M.; Seynaeve, Caroline; Radice, Paolo; Peterlongo, Paolo; Bonanni, Bernardo; Mariani, Paolo; Fasching, Peter A.; Beckmann, Matthias W.; Hein, Alexander; Ekici, Arif B.; Chenevix-Trench, Georgia; Balleine, Rosemary; Phillips, Kelly-Anne; Benitez, Javier; Zamora, M. Pilar; Arias Perez, Jose Ignacio; Menéndez, Primitiva; Jakubowska, Anna; Lubinski, Jan; Jaworska-Bieniek, Katarzyna; Durda, Katarzyna; Hamann, Ute; Kabisch, Maria; Ulmer, Hans Ulrich; Rüdiger, Thomas; Margolin, Sara; Kristensen, Vessela; Nord, Silje; Evans, D. Gareth; Abraham, Jean E.; Earl, Helena M.; Hiller, Louise; Dunn, Janet A.; Bowden, Sarah; Berg, Christine; Campa, Daniele; Diver, W. Ryan; Gapstur, Susan M.; Gaudet, Mia M.; Hankinson, Susan E.; Hoover, Robert N.; Hüsing, Anika; Kaaks, Rudolf; Machiela, Mitchell J.; Willett, Walter; Barrdahl, Myrto; Canzian, Federico; Chin, Suet-Feung; Caldas, Carlos; Hunter, David J.; Lindstrom, Sara; García-Closas, Montserrat; Hall, Per; Easton, Douglas F.; Eccles, Diana M.; Rahman, Nazneen; Nevanlinna, Heli; Pharoah, Paul D. P.

    2015-01-01

    Background: Survival after a diagnosis of breast cancer varies considerably between patients, and some of this variation may be because of germline genetic variation. We aimed to identify genetic markers associated with breast cancer–specific survival. Methods: We conducted a large meta-analysis of studies in populations of European ancestry, including 37954 patients with 2900 deaths from breast cancer. Each study had been genotyped for between 200000 and 900000 single nucleotide polymorphisms (SNPs) across the genome; genotypes for nine million common variants were imputed using a common reference panel from the 1000 Genomes Project. We also carried out subtype-specific analyses based on 6881 estrogen receptor (ER)–negative patients (920 events) and 23059 ER-positive patients (1333 events). All statistical tests were two-sided. Results: We identified one new locus (rs2059614 at 11q24.2) associated with survival in ER-negative breast cancer cases (hazard ratio [HR] = 1.95, 95% confidence interval [CI] = 1.55 to 2.47, P = 1.91 x 10–8). Genotyping a subset of 2113 case patients, of which 300 were ER negative, provided supporting evidence for the quality of the imputation. The association in this set of case patients was stronger for the observed genotypes than for the imputed genotypes. A second locus (rs148760487 at 2q24.2) was associated at genome-wide statistical significance in initial analyses; the association was similar in ER-positive and ER-negative case patients. Here the results of genotyping suggested that the finding was less robust. Conclusions: This is currently the largest study investigating genetic variation associated with breast cancer survival. Our results have potential clinical implications, as they confirm that germline genotype can provide prognostic information in addition to standard tumor prognostic factors. PMID:25890600

  9. Fecal DNA testing for colorectal cancer screening: molecular targets and perspectives

    Institute of Scientific and Technical Information of China (English)

    Amaninder; Dhaliwal; Panagiotis; J; Vlachostergios; Katerina; G; Oikonomou; Yitzchak; Moshenyat

    2015-01-01

    The early detection of colorectal cancer with effective screening is essential for reduction of cancer-specific mortality. The addition of fecal DNA testing in the armamentarium of screening methods already in clinical use launches a new era in the noninvasive part of colorectal cancer screening and emanates from a large number of previous and ongoing clinical investigations and technological advancements. In this review, we discuss the molecular rational and most important genetic alterations hallmarking the early colorectal carcinogenesis process. Also, representative DNA targets-markers and key aspects of their testing at the clinical level in comparison or/and association with other screening methods are described. Finally, a critical view of the strengths and limitations of fecal DNA tests is provided, along with anticipated barriers and suggestions for further exploitation of their use.

  10. Molecular pathology of colorectal cancer predisposing syndromes

    NARCIS (Netherlands)

    Puijenbroek, Marjo van

    2008-01-01

    Each year, approximately eleven thousand new colorectal cancer (CRC) patients are registered in the Netherlands. Half of these patients will eventually die of this disease. Consequently, it is of great importance to identify individuals with an increased risk for CRC. In this thesis, we evaluate the

  11. The consensus molecular subtypes of colorectal cancer

    NARCIS (Netherlands)

    Guinney, Justin; Dienstmann, Rodrigo; Wang, Xin; de Reyniès, Aurélien; Schlicker, Andreas; Soneson, Charlotte; Marisa, Laetitia; Roepman, Paul; Nyamundanda, Gift; Angelino, Paolo; Bot, Brian M; Morris, Jeffrey S; Simon, Iris M; Gerster, Sarah; Fessler, Evelyn; De Sousa E Melo, Felipe; Missiaglia, Edoardo; Ramay, Hena; Barras, David; Homicsko, Krisztian; Maru, Dipen; Manyam, Ganiraju C; Broom, Bradley; Boige, Valerie; Perez-Villamil, Beatriz; Laderas, Ted; Salazar, Ramon; Gray, Joe W; Hanahan, Douglas; Tabernero, Josep; Bernards, Rene; Friend, Stephen H; Laurent-Puig, Pierre; Medema, Jan Paul; Sadanandam, Anguraj; Wessels, Lodewyk; Delorenzi, Mauro; Kopetz, Scott; Vermeulen, Louis; Tejpar, Sabine

    2015-01-01

    Colorectal cancer (CRC) is a frequently lethal disease with heterogeneous outcomes and drug responses. To resolve inconsistencies among the reported gene expression-based CRC classifications and facilitate clinical translation, we formed an international consortium dedicated to large-scale data shar

  12. Molecular genetics and livestock selection: Approaches, opportunities and risks

    International Nuclear Information System (INIS)

    Full text: There are over 1,200 million cattle worldwide that provide a source of food, motive power and clothing. Cattle were first domesticated about 12,000 years ago with both the archaeological and molecular evidence suggesting that this occurred in the Near East and that domesticated cattle then spread to Africa and Europe. Traditionally breeding was carried out at a local level, often using a limited number of shared bulls. The selection of individuals with particular characteristics suited to local environments, needs and preferences led to the emergence of distinct breeds with characteristic phenotypes. In 1993 there were 783 cattle breeds worldwide, although the definition of a breed is often vague. With the introduction of artificial insemination (AI) in the more developed countries during 1950s particular bulls with desirable characteristics were more widely used in preference to local bulls. The use of AI, coupled with improvements in management in Europe and North America, allowed rapid progress to be made in the improvement of simple production traits. Breed improvement has been further enhanced by the development of statistical methods to maximize genetic gain achieved by selection on traits that can be readily measured. Consequently, where the economic environment supports high input agriculture, there has been a dramatic increase in milk yield and meat produced from the improved stock. The unfortunate consequence of intensive selection in these areas has been the reduction of genetic diversity, both within the selected breeds, as the superior individuals within these breeds have been used as breeding stock, and also through the replacement of traditional breeds. While the use of improved breeds in areas advantaged by good environmental conditions and a favourable economic climate has allowed the increase in production, all-be-it with the penalty of lost diversity and damage to the environment occasioned by intensive farming practices, in less

  13. The epidemiology and molecular mechanisms linking obesity, diabetes, and cancer.

    Science.gov (United States)

    Ferguson, Rosalyn D; Gallagher, Emily J; Scheinman, Eyal J; Damouni, Rawan; LeRoith, Derek

    2013-01-01

    The worldwide epidemic of obesity is associated with increasing rates of the metabolic syndrome and type 2 diabetes. Epidemiological studies have reported that these conditions are linked to increased rates of cancer incidence and mortality. Obesity, particularly abdominal obesity, is associated with insulin resistance and the development of dyslipidemia, hyperglycemia, and ultimately type 2 diabetes. Although many metabolic abnormalities occur with obesity and type 2 diabetes, insulin resistance and hyperinsulinemia appear to be central to these conditions and may contribute to dyslipidemia and altered levels of circulating estrogens and androgens. In this review, we will discuss the epidemiological and molecular links between obesity, type 2 diabetes, and cancer, and how hyperinsulinemia and dyslipidemia may contribute to cancer development. We will discuss how these metabolic abnormalities may interact with estrogen signaling in breast cancer growth. Finally, we will discuss the effects of type 2 diabetes medications on cancer risk. PMID:23810003

  14. Molecular markers as therapeutic targets in lung cancer

    Institute of Scientific and Technical Information of China (English)

    Hsin-Hui Tseng; Biao He

    2013-01-01

    Lung cancer is responsible for 29% of cancer deaths in the United States and has very low 5-year survival rates of approximately 11% in men and 15% in women.Although the early diagnosis of lung cancer may increase the survival rate with adequate treatment,advanced lung cancers are often metastasized and receive limited benefit from therapeutic regimens.As conventional treatments for lung cancer reach their limitations,researchers have attempted to discover novel drug therapies aimed at specific targets contributing to the progression of tumorigenesis.Recent advances in systems biology have enabled the molecular biology of lung carcinogenesis to be elucidated.Our understanding of the physiologic processes of tumor development provide a means to design more effective and specific drugs with less toxicity,thereby accelerating the delivery of new drug therapies to the patient's bedside.

  15. Combined clinical and genetic testing algorithm for cervical cancer diagnosis

    OpenAIRE

    Liou, Yu-Ligh; Zhang, Tao-Lan; Yan, Tian; Yeh, Ching-Tung; Kang, Ya-Nan; Cao, Lanqin; Wu, Nayiyuan; Chang, Chi-Feng; Wang, Huei-Jen; Yen, Carolyn; Chu, Tang-Yuan; Zhang, Yi; Zhang, Yu; Zhou, Honghao

    2016-01-01

    Background Opportunistic screening in hospitals is widely used to effectively reduce the incidence rate of cervical cancer in China and other developing countries. This study aimed to identify clinical risk factor algorithms that combine gynecologic examination and molecular testing (paired box gene 1 (PAX1) or zinc finger protein 582 (ZNF582) methylation or HPV16/18) results to improve diagnostic accuracy. Methods The delta Cp of methylated PAX1 and ZNF582 was obtained via quantitative methy...

  16. Is there a genetic signature for liver metastasis in colorectal cancer?

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Even though liver metastasis accounts for the vast majority of cancer deaths in patients with colorectal cancer (CRC), fundamental questions about the molecular and cellular mechanisms of liver metastasis still remain unanswered. Determination of gene expression profiles by microarray technology has improved our knowledge of CRC molecular pathways. However, defined gene signatures are highly variable among studies. Expression profiles and molecular markers have been specifically linked to liver metastases mechanistic paths in CRC. However, to date, none of the identified signatures or molecular markers has been successfully validated as a diagnostic or prognostic tool applicable to routine clinical practice. To obtain a genetic signature for liver metastasis in CRC, measures to improve reproducibility, to increase consistency, and to validate results need to be implemented. Alternatives to expression profiling with microarray technology are continuing to be used. In the recent past, many genes codifying for proteins that are directly or indirectly involved in adhesion, invasion, angiogenesis, survival and cell growth have been linked to mechanisms of liver metastases in CRC.

  17. Beliefs about Cancer and Diet among Those Considering Genetic Testing for Colon Cancer

    Science.gov (United States)

    Palmquist, Aunchalee E. L.; Upton, Rachel; Lee, Seungjin; Panter, Abby T.; Hadley, Don W.; Koehly, Laura M.

    2011-01-01

    Objective: To assess beliefs about the role of diet in cancer prevention among individuals considering genetic testing for Lynch Syndrome. Design: Family-centered, cascade recruitment; baseline assessment of a longitudinal study. Setting: Clinical research setting. Participants: Participants were 390 persons, ages 18 and older, including persons…

  18. Genetic profiles of gastroesophageal cancer: combined analysis using expression array and tiling array--comparative genomic hybridization

    DEFF Research Database (Denmark)

    Jönsson, Mats; Isinger-Ekstrand, Anna; Johansson, Jan;

    2010-01-01

    /losses and gene expression profiles show strong similarity between cancers in the distal esophagus and the gastroesophageal junction with frequent upregulation of CDK6 and EGFR, whereas gastric cancer displays distinct genetic changes. These data suggest that molecular diagnostics and targeted therapies can......We aimed to characterize the genomic profiles of adenocarcinomas in the gastroesophageal junction in relation to cancers in the esophagus and the stomach. Profiles of gains/losses as well as gene expression profiles were obtained from 27 gastroesophageal adenocarcinomas by means of 32k high......15, 13q34, and 12q13, whereas different profiles with gains at 5p15, 7p22, 2q35, and 13q34 characterized gastric cancers. CDK6 and EGFR were identified as putative target genes in cancers of the esophagus and the gastroesophageal junction, with upregulation in one quarter of the tumors. Gains...

  19. Improved Student Linkage of Mendelian and Molecular Genetic Concepts through a Yeast-Based Laboratory Module

    Science.gov (United States)

    Wolyniak, Michael J.

    2013-01-01

    A study of modern genetics requires students to successfully unite the principles of Mendelian genetics with the functions of DNA. Traditional means of teaching genetics are often successful in teaching Mendelian and molecular ideas but not in allowing students to see how the two subjects relate. The laboratory module presented here attempts to…

  20. Psychometric precision in phenotype definition is a useful step in molecular genetic investigation of psychiatric disorders

    OpenAIRE

    Xu, M. K.; Gaysina, D; Barnett, J H; Scoriels, L; van de Lagemaat, L. N.; Wong, A.; M. Richards; Croudace, T.J.; Jones, P. B.

    2015-01-01

    Affective disorders are highly heritable, but few genetic risk variants have been consistently replicated in molecular genetic association studies. The common method of defining psychiatric phenotypes in molecular genetic research is either a summation of symptom scores or binary threshold score representing the risk of diagnosis. Psychometric latent variable methods can improve the precision of psychiatric phenotypes, especially when the data structure is not straightforward. Using data from...

  1. Integrating tumor microenvironment with cancer molecular classifications

    OpenAIRE

    Becht, Etienne; De Reyniès, Aurélien; Fridman, Wolf H.

    2015-01-01

    Editorial summary The composition of the tumor microenvironment is associated with a patient's prognosis and can be therapeutically targeted. A link between the cellular composition and genomic features of the tumor and its response to immunotherapy is beginning to emerge. Analyzing the microenvironment of tumor molecular subgroups can be a useful approach to tailor immunotherapies.

  2. Molecular toolbox for the identification of unknown genetically modified organisms.

    Science.gov (United States)

    Ruttink, Tom; Demeyer, Rolinde; Van Gulck, Elke; Van Droogenbroeck, Bart; Querci, Maddalena; Taverniers, Isabel; De Loose, Marc

    2010-03-01

    Competent laboratories monitor genetically modified organisms (GMOs) and products derived thereof in the food and feed chain in the framework of labeling and traceability legislation. In addition, screening is performed to detect the unauthorized presence of GMOs including asynchronously authorized GMOs or GMOs that are not officially registered for commercialization (unknown GMOs). Currently, unauthorized or unknown events are detected by screening blind samples for commonly used transgenic elements, such as p35S or t-nos. If (1) positive detection of such screening elements shows the presence of transgenic material and (2) all known GMOs are tested by event-specific methods but are not detected, then the presence of an unknown GMO is inferred. However, such evidence is indirect because it is based on negative observations and inconclusive because the procedure does not identify the causative event per se. In addition, detection of unknown events is hampered in products that also contain known authorized events. Here, we outline alternative approaches for analytical detection and GMO identification and develop new methods to complement the existing routine screening procedure. We developed a fluorescent anchor-polymerase chain reaction (PCR) method for the identification of the sequences flanking the p35S and t-nos screening elements. Thus, anchor-PCR fingerprinting allows the detection of unique discriminative signals per event. In addition, we established a collection of in silico calculated fingerprints of known events to support interpretation of experimentally generated anchor-PCR GM fingerprints of blind samples. Here, we first describe the molecular characterization of a novel GMO, which expresses recombinant human intrinsic factor in Arabidopsis thaliana. Next, we purposefully treated the novel GMO as a blind sample to simulate how the new methods lead to the molecular identification of a novel unknown event without prior knowledge of its transgene

  3. TCGA divides gastric cancer into four molecular subtypes:implications for individualized therapeutics

    Institute of Scientific and Technical Information of China (English)

    Wei Zhang

    2014-01-01

    Gastric cancer is a leading cause of cancer deaths in the world. The treatment of gastric cancer is chalenging because of its highly heterogeneous etiology and clinical characteristics. Recent genomic and molecular characterization of gastric cancer, especialy the findings reported by the Cancer Genome Atlas (TCGA), have shed light on the heterogeneity and potential targeted therapeutics for four different subtypes of gastric cancer.

  4. Molecular Imaging of Breast Cancer: Present and future directions

    Directory of Open Access Journals (Sweden)

    David eAlcantara

    2014-12-01

    Full Text Available Medical imaging technologies have undergone explosive growth over the past few decades and now play a central role in clinical oncology. But the truly transformative power of imaging in the clinical management of cancer patients lies ahead. Today, imaging is at a crossroads, with molecularly targeted imaging agents expected to broadly expand the capabilities of conventional anatomical imaging methods. Molecular imaging will allow clinicians to not only see where a tumour is located in the body, but also to visualize the expression and activity of specific molecules (e.g. proteases and protein kinases and biological processes (e.g. apoptosis, angiogenesis, and metastasis that influence tumour behavior and/or response to therapy. Breast cancer, the most common cancer among women and a research area where our group is actively involved, is a very heterogeneous disease with diverse patterns of development and response to treatment. Hence, molecular imaging is expected to have a major impact on this type of cancer, leading to important improvements in diagnosis, individualized treatment, and drug development, as well as our understanding of how breast cancer arises.

  5. Molecular Imaging of Breast Cancer: Present and future directions

    Science.gov (United States)

    Alcantara, David; Pernia Leal, Manuel; Garcia, Irene; Garcia-Martin, Maria Luisa

    2014-12-01

    Medical imaging technologies have undergone explosive growth over the past few decades and now play a central role in clinical oncology. But the truly transformative power of imaging in the clinical management of cancer patients lies ahead. Today, imaging is at a crossroads, with molecularly targeted imaging agents expected to broadly expand the capabilities of conventional anatomical imaging methods. Molecular imaging will allow clinicians to not only see where a tumour is located in the body, but also to visualize the expression and activity of specific molecules (e.g. proteases and protein kinases) and biological processes (e.g. apoptosis, angiogenesis, and metastasis) that influence tumour behavior and/or response to therapy. Breast cancer, the most common cancer among women and a research area where our group is actively involved, is a very heterogeneous disease with diverse patterns of development and response to treatment. Hence, molecular imaging is expected to have a major impact on this type of cancer, leading to important improvements in diagnosis, individualized treatment, and drug development, as well as our understanding of how breast cancer arises.

  6. Immunophenotyping invasive breast cancer: paving the road for molecular imaging.

    NARCIS (Netherlands)

    Vermeulen, J.F.; Brussel, A.S. van; Groep, P. van der; Morsink, F.H.; Bult, P.; Wall, E. van der; Diest, P.J. van

    2012-01-01

    ABSTRACT: BACKGROUND: Mammographic population screening in The Netherlands has increased the number of breast cancer patients with small and non-palpable breast tumors. Nevertheless, mammography is not ultimately sensitive and specific for distinct subtypes. Molecular imaging with targeted tracers m

  7. MOLECULAR GENETIC MARKERS AND METHODS OF THEIR IDENTIFICATION IN MODERN FISH-FARMING

    Directory of Open Access Journals (Sweden)

    I. Hrytsyniak

    2014-03-01

    Full Text Available Purpose. The application of molecular genetic markers has been widely used in modern experimental fish-farming in recent years. This methodology is currently presented by a differentiated approach with individual mechanisms and clearly defined possibilities. Numerous publications in the scientific literature that are dedicated to molecular genetic markers for the most part offer purely practical data. Thus, the synthesis and analysis of existing information on the general principles of action and the limits of the main methods of using molecular genetic markers is an actual problem. In particular, such a description will make it possible to plan more effectively the experiment and to obtain the desired results with high reliability. Findings. The main types of variable parts of DNA that can be used as molecular genetic markers in determining the level of stock hybridization, conducting genetic inventory of population and solving other problems in modern fish-farming are described in this paper. Also, the article provides an overview of principal modern methods that can be used to identify molecular genetic markers. Originality. This work is a generalization of modern ideas about the mechanisms of experiments with molecular genetic markers in fish-farming. Information is provided in the form of consistent presentation of the principles and purpose of each method, as well as significant advances during their practical application. Practical value. The proposed review of classic and modern literature data on molecular genetic markers can be used for planning, modernization and correction of research activity in modern fish-farming.

  8. Alternate Service Delivery Models in Cancer Genetic Counseling: A Mini-Review

    OpenAIRE

    Buchanan, Adam Hudson; Rahm, Alanna Kulchak; Williams, Janet L.

    2016-01-01

    Demand for cancer genetic counseling has grown rapidly in recent years as germline genomic information has become increasingly incorporated into cancer care, and the field has entered the public consciousness through high-profile celebrity publications. Increased demand and existing variability in the availability of trained cancer genetics clinicians place a priority on developing and evaluating alternate service delivery models for genetic counseling. This mini-review summarizes the state o...

  9. Counsellee's experience of cancer genetic counselling with pedigrees that automatically incorporate genealogical and cancer database information.

    Science.gov (United States)

    Stefansdottir, Vigdis; Johannsson, Oskar Th; Skirton, Heather; Jonsson, Jon J

    2016-07-01

    While pedigree drawing software is often utilised in genetic services, the use of genealogical databases in genetic counselling is unusual. This is mainly because of the unavailability of such databases in most countries. Electronically generated pedigrees used for cancer genetic counselling in Iceland create pedigrees that automatically incorporate information from a large, comprehensive genealogy database and nation-wide cancer registry. The aim of this descriptive qualitative study was to explore counsellees' experiences of genetic services, including family history taking, using these electronically generated pedigrees. Four online focus groups with 19 participants were formed, using an asynchronous posting method. Participants were encouraged to discuss their responses to questions posted on the website by the researcher. The main themes arising were motivation, information and trust, impact of testing and emotional responses. Most of the participants expressed trust in the method of using electronically generated pedigrees, although some voiced worries about information safety. Many experienced worry and anxiety while waiting for results of genetic testing, but limited survival guilt was noted. Family communication was either unchanged or improved following genetic counselling. The use of electronically generated pedigrees was well received by participants, and they trusted the information obtained via the databases. Age did not seem to influence responses. These results may be indicative of the particular culture in Iceland, where genealogical information is well known and freely shared. Further studies are needed to determine whether use of similar approaches to genealogical information gathering may be acceptable elsewhere. PMID:27372834

  10. Evolving molecularly targeted therapies for advanced-stage thyroid cancers.

    Science.gov (United States)

    Bible, Keith C; Ryder, Mabel

    2016-07-01

    Increased understanding of disease-specific molecular targets of therapy has led to the regulatory approval of two drugs (vandetanib and cabozantinib) for the treatment of medullary thyroid cancer (MTC), and two agents (sorafenib and lenvatinib) for the treatment of radioactive- iodine refractory differentiated thyroid cancer (DTC) in both the USA and in the EU. The effects of these and other therapies on overall survival and quality of life among patients with thyroid cancer, however, remain to be more-clearly defined. When applied early in the disease course, intensive multimodality therapy seems to improve the survival outcomes of patients with anaplastic thyroid cancer (ATC), but salvage therapies for ATC are of uncertain benefit. Additional innovative, rationally designed therapeutic strategies are under active development both for patients with DTC and for patients with ATC, with multiple phase II and phase III randomized clinical trials currently ongoing. Continued effort is being made to identify further signalling pathways with potential therapeutic relevance in thyroid cancers, as well as to elaborate on the complex interactions between signalling pathways, with the intention of translating these discoveries into effective and personalized therapies. Herein, we summarize the progress made in molecular medicine for advanced-stage thyroid cancers of different histotypes, analyse how these developments have altered - and might further refine - patient care, and identify open questions for future research. PMID:26925962

  11. Identification of a novel luminal molecular subtype of breast cancer.

    Directory of Open Access Journals (Sweden)

    Anna Dvorkin-Gheva

    Full Text Available The molecular classification of human breast tumors has afforded insights into subtype specific biological processes, patient prognosis and response to therapies. However, using current methods roughly one quarter of breast tumors cannot be classified into one or another molecular subtype. To explore the possibility that the unclassifiable samples might comprise one or more novel subtypes we employed a collection of publically available breast tumor datasets with accompanying clinical information to assemble 1,593 transcript profiles: 25% of these samples could not be assigned to one of the current molecular subtypes of breast cancer. All of the unclassifiable samples could be grouped into a new molecular subtype, which we termed "luminal-like". We also identified the luminal-like subtype in an independent collection of tumor samples (NKI295. We found that patients harboring tumors of the luminal-like subtype have a better prognosis than those with basal-like breast cancer, a similar prognosis to those with ERBB2+, luminal B or claudin-low tumors, but a worse prognosis than patients with luminal A or normal-like breast tumors. Our findings suggest the occurrence of another molecular subtype of breast cancer that accounts for the vast majority of previously unclassifiable breast tumors.

  12. Cancer Genetics Risk Assessment and Counseling (PDQ®)—Health Professional Version

    Science.gov (United States)

    Expert-reviewed information summary in which cancer risk perception, risk communication, and risk counseling are discussed. The summary also contains information about recording and analyzing a family history of cancer and factors to consider when offering genetic testing.

  13. Genetically Engineered Protein Modules: Development and Applications in Anti-Viral Agent Screening and Cancer Marker Detection

    OpenAIRE

    Biswas, Payal

    2010-01-01

    ABSTRACT OF THE DISSERTATION Genetically Engineered Protein Modules: Development and Applications in Anti-Viral Agent Screening and Cancer Marker Detection byPayal BiswasDoctor of Philosophy Cell Molecular and Developmental Biology Graduate ProgramUniversity of California, Riverside, August 2010Dr. Wilfred Chen, ChairpersonOne of the most critical aspects in drug discovery is the bioactivity screening assay, by which compounds that most effectively inhibit the target are identified. During t...

  14. Telomerase promoter mutations in cancer: an emerging molecular biomarker?

    Science.gov (United States)

    Vinagre, João; Pinto, Vasco; Celestino, Ricardo; Reis, Marta; Pópulo, Helena; Boaventura, Paula; Melo, Miguel; Catarino, Telmo; Lima, Jorge; Lopes, José Manuel; Máximo, Valdemar; Sobrinho-Simões, Manuel; Soares, Paula

    2014-08-01

    Cell immortalization has been considered for a long time as a classic hallmark of cancer cells. Besides telomerase reactivation, such immortalization could be due to telomere maintenance through the "alternative mechanism of telomere lengthening" (ALT) but the mechanisms underlying both forms of reactivation remained elusive. Mutations in the coding region of telomerase gene are very rare in the cancer setting, despite being associated with some degenerative diseases. Recently, mutations in telomerase (TERT) gene promoter were found in sporadic and familial melanoma and subsequently in several cancer models, notably in gliomas, thyroid cancer and bladder cancer. The importance of these findings has been reinforced by the association of TERT mutations in some cancer types with tumour aggressiveness and patient survival. In the first part of this review, we summarize the data on the biology of telomeres and telomerase, available methodological approaches and non-neoplastic diseases associated with telomere dysfunction. In the second part, we review the information on telomerase expression and genetic alterations in the most relevant types of cancer (skin, thyroid, bladder and central nervous system) on record, and discuss the value of telomerase as a new biomarker with impact on the prognosis and survival of the patients and as a putative therapeutic target. PMID:25048572

  15. Gene Co-Expression Analysis Predicts Genetic Variants Associated with Drug Responsiveness in Lung Cancer.

    Science.gov (United States)

    Shroff, Sanaya; Zhang, Jie; Huang, Kun

    2016-01-01

    Responsiveness to drugs is an important concern in designing personalized treatment for cancer patients. Currently genetic markers are often used to guide targeted therapy. However, deeper understanding of the molecular basis for drug responses and discovery of new predictive biomarkers for drug sensitivity are much needed. In this paper, we present a workflow for identifying condition-specific gene co-expression networks associated with responses to the tyrosine kinase inhibitor, Erlotinib, in lung adenocarcinoma cell lines using data from the Cancer Cell Line Encyclopedia by combining network mining and statistical analysis. Particularly, we have identified multiple gene modules specifically co-expressed in the drug responsive cell lines but not in the unresponsive group. Interestingly, most of these modules are enriched on specific cytobands, suggesting potential copy number variation events on these loci. Our results therefore imply that there are multiple genetic loci with copy number variations associated with the Erlotinib responses. The existence of CNVs in these loci is also confirmed in lung cancer tissue samples using the TCGA data. Since these structural variations are inferred from functional genomics data, these CNVs are functional variations. These results suggest the condition specific gene co- expression network mining approach is an effective approach in predicting candidate biomarkers for drug responses. PMID:27570645

  16. Application of Proteomics to Cancer Molecular Diagnostics

    Institute of Scientific and Technical Information of China (English)

    Sam HANASH

    2009-01-01

    @@ Strategies to achieve personalized medicine and improve public health encompass assessment of an individual's risk for disease, early detection and molecular classification of disease resulting in an informed choice of the most appropriate treatment instituted at an early stage of disease develop- ment. A major contribution of proteomics in this field is the development of blood based tests to achieve the goals of personalized medicine.

  17. Genetic polymorphism of matrix metalloproteinases in breast cancer.

    Science.gov (United States)

    Wieczorek, E; Reszka, E; Gromadzinska, J; Wasowicz, W

    2012-01-01

    The family of human matrix metalloproteinases (MMPs) consists of 24 zinc- and calcium-dependent proteolytic enzymes. MMPs are divided into six subgroups, in terms of differences in the substrate specificity with structural domain architecture. These enzymes are involved in many physiological processes, such as skeletal development, wound healing, scar formation, as well as carcinogenesis. MMPs, fulfilling its function of degradation of extracellular matrix components, are involved in one of the stages of angiogenesis enabling the development, growth and spread of the primary tumor. Therefore, the search for the common polymorphic variants of MMPs, new genetic markers as prognostic factors in breast cancer progress seems to be understandable.The minireview presents the results of 19 case-control or prospective studies concerning the association of SNPs of genes encoding nine MMPs: MMP-1, -2, -3, -7, -8, -9, -12, -13, -21 with the breast cancer risk, progression and survival. PMID:22296495

  18. Cancer Regression in Patients After Transfer of Genetically Engineered Lymphocytes

    Science.gov (United States)

    Morgan, Richard A.; Dudley, Mark E.; Wunderlich, John R.; Hughes, Marybeth S.; Yang, James C.; Sherry, Richard M.; Royal, Richard E.; Topalian, Suzanne L.; Kammula, Udai S.; Restifo, Nicholas P.; Zheng, Zhili; Nahvi, Azam; de Vries, Christiaan R.; Rogers-Freezer, Linda J.; Mavroukakis, Sharon A.; Rosenberg, Steven A.

    2006-10-01

    Through the adoptive transfer of lymphocytes after host immunodepletion, it is possible to mediate objective cancer regression in human patients with metastatic melanoma. However, the generation of tumor-specific T cells in this mode of immunotherapy is often limiting. Here we report the ability to specifically confer tumor recognition by autologous lymphocytes from peripheral blood by using a retrovirus that encodes a T cell receptor. Adoptive transfer of these transduced cells in 15 patients resulted in durable engraftment at levels exceeding 10% of peripheral blood lymphocytes for at least 2 months after the infusion. We observed high sustained levels of circulating, engineered cells at 1 year after infusion in two patients who both demonstrated objective regression of metastatic melanoma lesions. This study suggests the therapeutic potential of genetically engineered cells for the biologic therapy of cancer.

  19. Identification of new genetic risk factors for prostate cancer

    Institute of Scientific and Technical Information of China (English)

    Michelle Guy; Helen I.Field; Melissa C.Southey; Gianluca Severi; Jenny L.Donovan; Freddie C.Hamdy; David P.Dearnaley; Kenneth R.Muir; Charmaine Smith; Melisa Bagnato; Audrey T.Ardern-Jones; Zsofia Kote-Jarai; Amanda L.Hall; Lynne T.O'Brien; Beatrice N.Gehr-Swain; Rosemary A.Wilkinson; Angela Cox; Sarah Lewis; Paul M.Brown; Sameer G.Jhavar; Malgorzata Tymrakiewicz; Artitaya Lophatananon; Graham G.Giles; Sarah L.Bryant; The UK Genetic Prostate Cancer Study Collaborators; British Association of Urological Surgeons' Sectio; Alan Horwich; Robert A.Huddart; Vincent S.Khoo; Christopher C.Parker; Christopher J.Woodhouse; Alan Thompson; Tim Christmas; Ali Amin Al Olama; Chris Ogden; Cyril Fisher; Charles Jameson; Colin S.Cooper; Dallas R.English; John L.Hopper; David E.Neal; Douglas E Easton; Rosalind A.Eeles; Sarah K.Jugurnauth; Shani Mulholland; Daniel A.Leongamomlert; Stephen M.Edwards; Jonathan Morrison

    2009-01-01

    There is evidence that a substantial part of genetic predisposition to prostate cancer (PCa) may be due to lower penetrance genes which are found by genome-wide association studies.We have recently conducted such a study and seven new regions of the genome linked to PCa risk have been identified.Three of these loci contain candidate susceptibility genes:MSMB,LMTK2 and KLK2/3.The MSMB and KLK2/3 genes may he useful for PCa screening,and the LMTK2 gene might provide a potential therapeutic target.Together with results from other groups,there are now 23 germline genetic variants which have been reported.These results have the potential to be developed into a genetic test.However,we consider that marketing of tests to the public is premature,as PCa risk can not be evaluated fully at this stage and the appropriate screening protocols need to be developed.Follow-up validation studies,as well as studies to explore the psychological implications of genetic profile testing,will be vital prior to roll out into healthcare.

  20. Colorectal Cancer in the Family: Psychosocial Distress and Social Issues in the Years Following Genetic Counselling

    OpenAIRE

    Bleiker Eveline MA; Menko Fred H; Kluijt Irma; Taal Babs G; Gerritsma Miranda A; Wever Lidwina DV; Aaronson Neil K

    2007-01-01

    Abstract Background This study examined: (1) levels of cancer-specific distress more than one year after genetic counselling for hereditary nonpolyposis colorectal cancer (HNPCC); (2) associations between sociodemographic, clinical and psychosocial factors and levels of distress; (3) the impact of genetic counselling on family relationships, and (4) social consequences of genetic counselling. Methods In this cross-sectional study, individuals who had received genetic counselling for HNPCC dur...

  1. Genetic susceptibility for specific cancers. Medical liability of the clinician.

    Science.gov (United States)

    Severin, M J

    1999-12-01

    The use of genetic profiling techniques to detect individuals with an increased susceptibility to heritable cancers has provoked recent legal interest in the duties of the attending physician and in the rights of patients and their families. In the current study specific prima facie and recently litigated cases are presented and explored to delineate the issues facing physicians and to illustrate the prerogatives of patients who are caught up in a heritable cancer enigma. Various courts have attempted to answer questions involving lawsuits in which incidents of breast/ovarian carcinoma and colon carcinoma have provoked claims of negligence against health care providers. Health care workers involved in the care of these patients have specific duties to these individuals. It would appear that physicians are being forced to assume the additional duty of delving into a patient's family history of cancer through multiple generations. This duty is followed by a responsibility to provide detailed counseling to those patients in whom such activity impacts the diagnosis and management of familial cancer.

  2. Cytochrome P450 2E1 genetic polymorphism and gastric cancer in Changle, Fujian Province

    Institute of Scientific and Technical Information of China (English)

    Lin Cai; Shun-Zhang Yu; Zuo-Feng Zhang

    2001-01-01

    AIM: Genetic polymorphism in enzymes of carcinogen metabolism has been found to have the influence on the susceptibility to cancer. Cytochrome P450 2E1 ( CYP2 E1) is considered to play an important role in the metabolic activation of procarcinogens such as N-nitroscoamines and Iow molecular weight organic compounds. The purpose of this study is to determine whether CYP450 2Elpolymorphisms are associated with risk s of gastric cancer. METHODS: We conducted a population based case-control study in Changle county, Fujian Province, a high-risk region of gastric cancer in China. Ninety-one incident gastric cancer patients and ninety-four healthy controls were included in our study. Datas including dsmographic characteristcs, diet intake, and alcohol and tobacco consumption of indivduals in our study were completed by a standardized questionnaire. PCR-RFLP revealed three genotypes: heterozygote (C1/C2) and two homozygotes (C1/C1 and C2/C2) in CYP2E1. RESULTS: The frequency of variant genotypes (C1/C2 and C2/C2) in gastric cancer cases and controls was 36.3% and 24.5%, respectively. The rare homozygous C2/C2 genotype was found in 6 indivduals in gastric cancer group(6.6%),whereas there was only one in the control group (1.1%).However, there was no statistically significan difference between the two groups (two-tailed Fisher′s exact test, P =0.066). Indivduals in gastric cancer group were more likely to carry genotype C1/C2 (odds ratio, OR = 1.50) and C2/C2(OR = 7.34) than indivduals in control group (X2 = 4.597, for trend P=0.032). The frequencies of genofypes with the C2allele ( C1/C2 and C2/C2 genotypes) were compared with those of genotypes without C2 allele ( C1/C1 genotype )among indivduals in gastric cancer group and control group according to the pattern of gastric cancer risk factors. The results show that indivduals who exposed to these gastric cancer risk factors and carry the C2 allele seemed to have a higher risk of developing gastric cancer. CONCLUSION

  3. Nasopharyngeal carcinoma as a paradigm of cancer genetics

    Institute of Scientific and Technical Information of China (English)

    Malcolm J. Simons

    2011-01-01

    The unusual incidence patterns for nasopharyngeal carcinoma (NPC) in China, Northeast India, Arctic Inuit, Peninsular and island Southeast Asia, Polynesian Islanders, and North Africans indicate a role for NPC risk genes in Chinese, Chinese-related, and not-obviously Chinese-related populations. Renewed interest in NPC genetic risk has been stimulated by a hypothesis that NPC population patterns originated in Bai-Yue / pre-Austronesian-speaking aborigines and were dispersed during the last glacial maximum by Sundaland submersion. Five articles in this issue of the Chinese Journal of Cancer, first presented at a meeting on genetic aspects of NPC [National Cancer Center of Singapore (NCCS), February 20-21, 2010], are directed towards incidence patterns, to early detection of affected individuals within risk populations, and to the application of genetic technology advances to understanding the nature of high risk. Turnbull presents a general framework for understanding population migrations that underlie NPC and similar complex diseases, including other viral cancers. Trejaut et al. apply genetic markers to detail migration from East Asia through Taiwan to the populating of Island Polynesia. Migration dispersal in a westward direction took mongoloid peoples to modem day Northeast India adjacent to Western China (Xinjiang). NPC incidence in mongoloid Nagas ranks amongst the highest in the world, whereas elsewhere in India NPC is uncommon. Cao et al. detail incidence patterns in Southeast China that have occurred over recent decades. Finally, Ji et al. describe the utility of Epstein-Barr virus serostatus in early NPC detection. While genetic risk factors still remain largely unknown, human leukocyte antigen (HLA) genes have been a focus of attention since the discovery of an HLA association with NPC in 1973 and, two years later, that NPC susceptibility in highest-risk Cantonese involved the co-occurrence of multi-HLA locus combinations of HLA genes as chromosome

  4. Progress in the Study of Molecular Genetic Improvements of Poplar in China

    Institute of Scientific and Technical Information of China (English)

    Shan-Zhi Lin; Zhi-Yi Zhang; Qian Zhang; Yuan-Zhen Lin

    2006-01-01

    The poplar is one of the most economically important and intensively studied tree species owing to its wide application in the timber industry and as a model material for the study of woody plants. The natural resource of poplars in China is replete. Over the past 10 years, the application of molecular biological techniques to genetic improvements in poplar species has been widely studied in China. Recent advances in molecular genetic improvements of poplar, including cDNA library construction, gene cloning and identification, genetic engineering, gene expression, genetic linkage map construction, mapping of quantitative trait loci (QTL) and molecular-assisted selection, are reviewed in the present paper. In addition, the application of modern biotechnology to molecular improvements in the genetic traits of the poplar and some unsolved problems are discussed.

  5. Molecular Genetic Variation in a Clonal Plant Population of Leymus chinensis (Trin.) Tzvel.

    Institute of Scientific and Technical Information of China (English)

    Yu-Sheng WANG; Li-Ming ZHAO; Hua WANG; Jie WANG; Da-Ming HUANG; Rui-Min HONG; Xiao-Hua TENG; Nakamura MIKI

    2005-01-01

    Randomly amplified polymorphic DNA (RAPD) analysis was used to investigate the genetic variation among populations, between populations, and within populations, relationships between genetic distance and geographic distance, and the molecular variation and population size. The effects of geographic and genetic distances, as well as of genetic differentiation and population size, on genetic variations of Leymus chinensis (Trin.) Tzvel. are discussed. The present study showed that there was significant RAPD variation between the Baicheng region population and the Daqing region population, with a molecular variance of 6.35% (P < 0.04), and for differentiation among area populations of the Daqing region, with a molecular variance of 8.78% (P < 0.002). A 21.06% RAPD variation among all 16 populations among two regions was found (P < 0.001), as well as 72.59% variation within populations (P < 0.001). Molecular variation within populations was significantly different among 16 populations.

  6. Molecular Signaling Pathways Mediating Osteoclastogenesis Induced by Prostate Cancer Cells

    International Nuclear Information System (INIS)

    Advanced prostate cancer commonly metastasizes to bone leading to osteoblastic and osteolytic lesions. Although an osteolytic component governed by activation of bone resorbing osteoclasts is prominent in prostate cancer metastasis, the molecular mechanisms of prostate cancer-induced osteoclastogenesis are not well-understood. We studied the effect of soluble mediators released from human prostate carcinoma cells on osteoclast formation from mouse bone marrow and RAW 264.7 monocytes. Soluble factors released from human prostate carcinoma cells significantly increased viability of naïve bone marrow monocytes, as well as osteoclastogenesis from precursors primed with receptor activator of nuclear factor κ-B ligand (RANKL). The prostate cancer-induced osteoclastogenesis was not mediated by RANKL as it was not inhibited by osteoprotegerin (OPG). However inhibition of TGFβ receptor I (TβRI), or macrophage-colony stimulating factor (MCSF) resulted in attenuation of prostate cancer-induced osteoclastogenesis. We characterized the signaling pathways induced in osteoclast precursors by soluble mediators released from human prostate carcinoma cells. Prostate cancer factors increased basal calcium levels and calcium fluctuations, induced nuclear localization of nuclear factor of activated t-cells (NFAT)c1, and activated prolonged phosphorylation of ERK1/2 in RANKL-primed osteoclast precursors. Inhibition of calcium signaling, NFATc1 activation, and ERK1/2 phosphorylation significantly reduced the ability of prostate cancer mediators to stimulate osteoclastogenesis. This study reveals the molecular mechanisms underlying the direct osteoclastogenic effect of prostate cancer derived factors, which may be beneficial in developing novel osteoclast-targeting therapeutic approaches

  7. A KRAS-variant in ovarian cancer acts as a genetic marker of cancer risk.

    Science.gov (United States)

    Ratner, Elena; Lu, Lingeng; Boeke, Marta; Barnett, Rachel; Nallur, Sunitha; Chin, Lena J; Pelletier, Cory; Blitzblau, Rachel; Tassi, Renata; Paranjape, Trupti; Hui, Pei; Godwin, Andrew K; Yu, Herbert; Risch, Harvey; Rutherford, Thomas; Schwartz, Peter; Santin, Alessandro; Matloff, Ellen; Zelterman, Daniel; Slack, Frank J; Weidhaas, Joanne B

    2010-08-15

    Ovarian cancer (OC) is the single most deadly form of women's cancer, typically presenting as an advanced disease at diagnosis in part due to a lack of known risk factors or genetic markers of risk. The KRAS oncogene and altered levels of the microRNA (miRNA) let-7 are associated with an increased risk of developing solid tumors. In this study, we investigated a hypothesized association between an increased risk of OC and a variant allele of KRAS at rs61764370, referred to as the KRAS-variant, which disrupts a let-7 miRNA binding site in this oncogene. Specimens obtained were tested for the presence of the KRAS-variant from nonselected OC patients in three independent cohorts, two independent ovarian case-control studies, and OC patients with hereditary breast and ovarian cancer syndrome (HBOC) as well as their family members. Our results indicate that the KRAS-variant is associated with more than 25% of nonselected OC cases. Further, we found that it is a marker for a significant increased risk of developing OC, as confirmed by two independent case-control analyses. Lastly, we determined that the KRAS-variant was present in 61% of HBOC patients without BRCA1 or BRCA2 mutations, previously considered uninformative, as well as in their family members with cancer. Our findings strongly support the hypothesis that the KRAS-variant is a genetic marker for increased risk of developing OC, and they suggest that the KRAS-variant may be a new genetic marker of cancer risk for HBOC families without other known genetic abnormalities. PMID:20647319

  8. Retinoic acid receptors: from molecular mechanisms to cancer therapy.

    Science.gov (United States)

    di Masi, Alessandra; Leboffe, Loris; De Marinis, Elisabetta; Pagano, Francesca; Cicconi, Laura; Rochette-Egly, Cécile; Lo-Coco, Francesco; Ascenzi, Paolo; Nervi, Clara

    2015-02-01

    Retinoic acid (RA), the major bioactive metabolite of retinol or vitamin A, induces a spectrum of pleiotropic effects in cell growth and differentiation that are relevant for embryonic development and adult physiology. The RA activity is mediated primarily by members of the retinoic acid receptor (RAR) subfamily, namely RARα, RARβ and RARγ, which belong to the nuclear receptor (NR) superfamily of transcription factors. RARs form heterodimers with members of the retinoid X receptor (RXR) subfamily and act as ligand-regulated transcription factors through binding specific RA response elements (RAREs) located in target genes promoters. RARs also have non-genomic effects and activate kinase signaling pathways, which fine-tune the transcription of the RA target genes. The disruption of RA signaling pathways is thought to underlie the etiology of a number of hematological and non-hematological malignancies, including leukemias, skin cancer, head/neck cancer, lung cancer, breast cancer, ovarian cancer, prostate cancer, renal cell carcinoma, pancreatic cancer, liver cancer, glioblastoma and neuroblastoma. Of note, RA and its derivatives (retinoids) are employed as potential chemotherapeutic or chemopreventive agents because of their differentiation, anti-proliferative, pro-apoptotic, and anti-oxidant effects. In humans, retinoids reverse premalignant epithelial lesions, induce the differentiation of myeloid normal and leukemic cells, and prevent lung, liver, and breast cancer. Here, we provide an overview of the biochemical and molecular mechanisms that regulate the RA and retinoid signaling pathways. Moreover, mechanisms through which deregulation of RA signaling pathways ultimately impact on cancer are examined. Finally, the therapeutic effects of retinoids are reported. PMID:25543955

  9. Influence from genetic variability on opioid use for cancer pain: a European genetic association study of 2294 cancer pain patients

    DEFF Research Database (Denmark)

    Klepstad, P; Fladvad, T; Skorpen, F;

    2011-01-01

    Cancer pain patients need variable opioid doses. Preclinical and clinical studies suggest that opioid efficacy is related to genetic variability. However, the studies have small samples, findings are not replicated, and several candidate genes have not been studied. Therefore, a study of genetic...... variability with opioid doses in a large population using a confirmatory validation population was warranted. We recruited 2294 adult European patients using a World Health Organization (WHO) step III opioid and analyzed single nucleotide polymorphisms (SNPs) in genes with a putative influence on opioid...... opioid dose and were included as covariates. The patients were randomly divided into 1 development sample and 1 validation sample. None of 112 SNPs in the 25 candidate genes OPRM1, OPRD1, OPRK1, ARRB2, GNAZ, HINT1, Stat6, ABCB1, COMT, HRH1, ADRA2A, MC1R, TACR1, GCH1, DRD2, DRD3, HTR3A, HTR3B, HTR2A, HTR3...

  10. Influence from genetic variability on opioid use for cancer pain: a European genetic association study of 2294 cancer pain patients

    DEFF Research Database (Denmark)

    Klepstad, P; Fladvad, T; Skorpen, F;

    2011-01-01

    Cancer pain patients need variable opioid doses. Preclinical and clinical studies suggest that opioid efficacy is related to genetic variability. However, the studies have small samples, findings are not replicated, and several candidate genes have not been studied. Therefore, a study of genetic...... mechanisms. The patients' mean age was 62.5 years, and the average pain intensity was 3.5. The patients' primary opioids were morphine (n=830), oxycodone (n=446), fentanyl (n=699), or other opioids (n=234). Pain intensity, time on opioids, age, gender, performance status, and bone or CNS metastases predicted......C, HTR3D, HTR3E, HTR1, or CNR1 showed significant associations with opioid dose in both the development and the validation analyzes. These findings do not support the use of pharmacogenetic analyses for the assessed SNPs to guide opioid treatment. The study also demonstrates the importance...

  11. Certified Genetic Counselors: A Crucial Clinical Resource in the Management of Patients with Suspected Hereditary Cancer Syndromes.

    Science.gov (United States)

    Catts, Zohra Ali-Khan; Hampel, Heather

    2015-10-01

    The role of the cancer genetic counselor in the management of patients with cancer is discussed in this article. This includes explaining what a genetic counselor is trained to do and how they are credentialed and licensed. In addition, the article explains who to refer for cancer genetic counseling. Once referred, the article describes what actually happens in a pretest and posttest cancer genetic counseling session. Use of a cancer genetic registry and how it can help in practice is discussed. Finally, several mechanisms for identifying a cancer genetic counselor at one's institution or nearby are outlined.

  12. Predictive value of breast cancer cognitions and attitudes toward genetic testing on women’s interest in genetic testing for breast cancer risk

    OpenAIRE

    Bengel, Jürgen; Barth, Jürgen; Reitz, Frauke

    2004-01-01

    In the past years advances in genetic technologies have led to an increased interest in predictive genetic testing for breast cancer risk. Studies in the US and UK reported an increasing interest among women of the general public in genetic testing for breast cancer risk, although the benefit of such a test is questionable for low risk women. The aim of the present study was to identify factors that predict interest in genetic testing of German women in the general public. Women with neither ...

  13. Non-invasive Optical Molecular Imaging for Cancer Detection

    Science.gov (United States)

    Luo, Zhen

    Cancer is a leading cause of death worldwide. It remains the second most common cause of death in the US, accounting for nearly 1 out of every 4 deaths. Improved fundamental understanding of molecular processes and pathways resulting in cancer development has catalyzed a shift towards molecular analysis of cancer using imaging technologies. It is expected that the non-invasive or minimally invasive molecular imaging analysis of cancer can significantly aid in improving the early detection of cancer and will result in reduced mortality and morbidity associated with the disease. The central hypothesis of the proposed research is that non-invasive imaging of changes in metabolic activity of individual cells, and extracellular pH within a tissue will improve early stage detection of cancer. The specific goals of this research project were to: (a) develop novel optical imaging probes to image changes in choline metabolism and tissue pH as a function of progression of cancer using clinically isolated tissue biopsies; (b) correlate changes in tissue extracellular pH and metabolic activity of tissues as a function of disease state using clinically isolated tissue biopsies; (c) provide fundamental understanding of relationship between tumor hypoxia, acidification of the extracellular space and altered cellular metabolism with progression of cancer. Three novel molecular imaging probes were developed to detect changes in choline and glucose metabolism and extracellular pH in model systems and clinically isolated cells and biopsies. Glucose uptake and metabolism was measured using a fluorescence analog of glucose, 2-NBDG (2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-D-glucose), while choline metabolism was measured using a click chemistry analog of choline, propargyl choline, which can be in-situ labeled with a fluorophore Alexa-488 azide via a click chemistry reaction. Extracellular pH in tissue were measured by Alexa-647 labeled pHLIP (pH low insertion peptide

  14. Genetics and cardiovascular disease: the impact of molecular diagnosis.

    Science.gov (United States)

    Vengoechea, Jaime; McKelvey, Kent D

    2013-04-01

    Information technology is exponentially reducing the cost of genetic testing while multiple clinical applications emerge. Genetic diagnosis increasingly impacts prevention, diagnosis and treatment of disease. In cardiovascular medicine, the establishment of a specific genetic diagnosis may affect management of cardiomyopathy, arrhythmia, connective tissue and metabolic disease. Econometric studies have determined that genetic testing is cost-effective in hypertrophic cardiomyopathy and disease-specific interventions are now available for specific conditions. Identification of a specific genetic disorder now allows for more precise medicine in the affected individual and more accurate preventive care for asymptomatic family members.

  15. Molecular subtyping of breast cancer: opportunities for new therapeutic approaches.

    Science.gov (United States)

    Mullan, P B; Millikan, R C

    2007-12-01

    Evidence is accumulating that breast cancer is not one disease but many separate diseases. DNA microarray-based gene expression profiling has demonstrated subtypes with distinct phenotypic features and clinical responses. Prominent among the new subtypes is 'basal-like' breast cancer, one of the 'intrinsic' subtypes defined by negativity for the estrogen, progesterone, and HER2/neu receptors and positivity for cytokeratins-5/6. Focusing on basal-like breast cancer, we discuss how molecular technologies provide new chemotherapy targets, optimising treatment whilst sparing patients from unnecessary toxicity. Clinical trials are needed that incorporate long-term follow-up of patients with well-characterised tumour markers. Whilst the absence of an obvious dominant oncogene driving basal-like breast cancer and the lack of specific therapeutic agents are serious stumbling blocks, this review will highlight several promising therapeutic candidates currently under evaluation. Thus, new molecular technologies should provide a fundamental foundation for better understanding breast and other cancers which may be exploited to save lives. (Part of a Multi-author Review). PMID:17957336

  16. Molecular markers and targets for colorectal cancer prevention

    Institute of Scientific and Technical Information of China (English)

    Naveena B JANAKIRAM; Chinthalapally V RAO

    2008-01-01

    Colorectal cancer is the third most prevalent cancer in the world. If detected at an early stage, treatment often might lead to cure. As prevention is better than cure, epidemiological studies reveal that having a healthy diet often protects from pro-moting/developing cancer. An important consideration in evaluating new drugs and devices is determining whether a product can effectively treat a targeted disease. There are quite a number of biomarkers making their way into clinical trials and few are awaiting the preclinical efficacy and safety results to enter into clinical trials. Researchers are facing challenges in modifying trial design and defining the right control population, validating biomarker assays from the bio-logical and analytical perspective and using biomarker data as a guideline for decision making. In spite of following all guidelines, the results are disappointing from many of the large clinical trials. To avoid these disappointments, selection of biomarkers and its target drug needs to be evaluated in appropriate animal models for its toxicities and efficacies. The focus of this review is on the few of the potential molecular targets and their biomarkers in colorectal cancers. Strengths and limitations of biomarkers/surrogate endpoints are also discussed. Various pathways involved in tumor cells and the specific agents to target the altered molecular biomarkerin biomolecular pathwayare elucidated. Importance of emerging new platforms siRNAs and miRNAs technology for colorectal cancer therapeutics is reviewed.

  17. Genetics of breast cancer: Applications to the Mexican population

    Directory of Open Access Journals (Sweden)

    Elad Ziv

    2011-10-01

    Full Text Available Breast cancer research has yielded several important results including the strong susceptibility genes,BRCA1 and BRCA2 and more recently 19 genes and genetic loci that confer a more moderate risk.The pace of discovery is accelerating as genetic technology and computational methods improve. These discoveries will change the way that breast cancer risk is understood in Mexico over the next few decades.La investigación en cáncer de mama ha dado varios resultados importantes incluyendo los genes fuertemente susceptibles, BRCA1 y BRCA2, y más recientemente 19 genes y loci genéticos que confieren un riesgo moderado. El ritmo de los descubrimientos se acelera conforme mejora la tecnología y métodos computacionales.Estosdescubrimientoscambiarán la forma en que la investigación del cáncer es comprendida en México en las próximas décadas.

  18. Genetic Polymorphism and Expression of CXCR4 in Breast Cancer

    Science.gov (United States)

    Okuyama Kishima, Marina; Brajão de Oliveira, Karen; Ariza, Carolina Batista; de Oliveira, Carlos Eduardo Coral; Losi Guembarovski, Roberta; Banin Hirata, Bruna Karina; de Almeida, Felipe Campos; Vitiello, Glauco Akelinghton Freire; Trugilo, Kleber Paiva; Guembarovski, Alda Fiorina Maria Losi; Jorge Sobrinho, Walter; Campos, Clodoaldo Zago; Watanabe, Maria Angelica Ehara

    2015-01-01

    CXCR4 genetic polymorphisms, as well as their expression level, have been associated with cancer development and prognosis. The present study aimed to investigate the influence of CXCR4 rs2228014 polymorphism on its mRNA and protein expression in breast cancer samples. It was observed that patients presented higher CXCR4 mRNA relative expression (5.7-fold) than normal mammary gland, but this expression was not correlated with patients clinicopathological features (nuclear grade, nodal status, ER status, PR status, p53 staining, Ki67 index, and HER-2 status). Moreover, CXCR4 mRNA relative expression also did not differ regarding the presence or absence of T allele (p = 0.301). In the immunohistochemical assay, no difference was observed for CXCR4 cytoplasmic protein staining in relation to different genotypes (p = 0.757); however, high cytoplasmic CXCR4 staining was verified in invasive breast carcinoma (p < 0.01). All in all, the results from present study indicated that rs2228014 genetic variant does not alter CXCR4 mRNA or protein expression. However, this receptor was more expressed in tumor compared to normal tissue, in both RNA and protein levels, suggesting its promising applicability in the general context of mammary carcinogenesis. PMID:26576337

  19. Neuroblastoma: morphological pattern, molecular genetic features, and prognostic factors

    Directory of Open Access Journals (Sweden)

    A. M. Stroganova

    2016-01-01

    Full Text Available Neuroblastoma, the most common extracranial tumor of childhood, arises from the developing neurons of the sympathetic nervous system (neural cress stem cells and has various biological and clinical characteristics. The mean age at disease onset is 18 months. Neuroblastoma has a number of unique characteristics: a capacity for spontaneous regression in babies younger than 12 months even in the presence of distant metastases, for differentiation (maturation into ganglioneuroma in infants after the first year of life, and for swift aggressive development and rapid metastasis. There are 2 clinical classifications of neuroblastoma: the International neuroblastoma staging system that is based on surgical results and the International Neuroblastoma Risk Group Staging System. One of the fundamentally important problems for the clinical picture of neuroblastoma is difficulties making its prognosis. Along with clinical parameters (a patient’s age, tumor extent and site, some histological, molecular biochemical (ploidy and genetic (chromosomal aberrations, MYCN gene status, deletion of the locus 1p36 and 11q, the longer arm of chromosome 17, etc. characteristics of tumor cells are of considerable promise. MYCN gene amplification is observed in 20–30 % of primary neuroblastomas and it is one of the major indicators of disease aggressiveness, early chemotherapy resistance, and a poor prognosis. There are 2 types of MYCN gene amplification: extrachromosomal (double acentric chromosomes and intrachromosomal (homogenically painted regions. Examination of double acentric chromosomes revealed an interesting fact that it may be eliminated (removed from the nucleus through the formation of micronuclei. MYCN oncogene amplification is accompanied frequently by 1p36 locus deletion and longer 17q arm and less frequently by 11q23 deletion; these are poor prognostic factors for the disease. The paper considers in detail the specific, unique characteristics of the

  20. Radiation-induced meningioma: a distinct molecular genetic pattern?

    Science.gov (United States)

    Shoshan, Y; Chernova, O; Juen, S S; Somerville, R P; Israel, Z; Barnett, G H; Cowell, J K

    2000-07-01

    Radiation-induced meningiomas arise after low-dose irradiation treatment of certain medical conditions and are recognized as clinically separate from sporadic meningioma. These tumors are often aggressive or malignant, they are likely to be multiple, and they have a high recurrence rate following treatment compared with sporadic meningiomas. To understand the molecular mechanism by which radiation-induced meningioma (RIM) arise, we compared genetic changes in 7 RIM and 8 sporadic meningioma (SM) samples. The presence of mutations in the 17 exons of the neurofibromatosis type 2 (NF2) gene, which has been shown to be inactivated in sporadic meningiomas, was analyzed in RIM and SM using single-strand conformation polymorphism (SSCP) and DNA sequencing. In contrast to SM, which showed NF2 mutations in 50% of specimens, no mutations were found in RIM. In addition, Western blot analysis of schwannomin/merlin protein, the NF2 gene product, demonstrated protein levels comparable to normal brain in 4/4 RIM tumor samples analyzed. Loss of heterozygosity (LOH) of genomic regions, which were reported for SM, was also analyzed in all cases of RIM using 22 polymorphic DNA markers. Allele losses were found on chromosomes 1p (4/7), 9p (2/7), 19q (2/7), 22q (2/7), and 18q (1/7). From these observations we conclude that unlike sporadic meningiomas, NF2 gene inactivation and chromosome 22q deletions are far less frequent in RIM, and their role in meningioma development following low dose irradiation is less significant. Other chromosomal lesions, especially loss of 1p, possibly induced by irradiation, may be more important in the development of these tumors. PMID:10901233

  1. Head and neck paragangliomas: clinical and molecular genetic classification.

    Science.gov (United States)

    Offergeld, Christian; Brase, Christoph; Yaremchuk, Svetlana; Mader, Irina; Rischke, Hans Christian; Gläsker, Sven; Schmid, Kurt W; Wiech, Thorsten; Preuss, Simon F; Suárez, Carlos; Kopeć, Tomasz; Patocs, Attila; Wohllk, Nelson; Malekpour, Mahdi; Boedeker, Carsten C; Neumann, Hartmut P H

    2012-01-01

    Head and neck paragangliomas are tumors arising from specialized neural crest cells. Prominent locations are the carotid body along with the vagal, jugular, and tympanic glomus. Head and neck paragangliomas are slowly growing tumors, with some carotid body tumors being reported to exist for many years as a painless lateral mass on the neck. Symptoms depend on the specific locations. In contrast to paraganglial tumors of the adrenals, abdomen and thorax, head and neck paragangliomas seldom release catecholamines and are hence rarely vasoactive. Petrous bone, jugular, and tympanic head and neck paragangliomas may cause hearing loss. The internationally accepted clinical classifications for carotid body tumors are based on the Shamblin Class I-III stages, which correspond to postoperative permanent side effects. For petrous-bone paragangliomas in the head and neck, the Fisch classification is used. Regarding the molecular genetics, head and neck paragangliomas have been associated with nine susceptibility genes: NF1, RET, VHL, SDHA, SDHB, SDHC, SDHD, SDHAF2 (SDH5), and TMEM127. Hereditary HNPs are mostly caused by mutations of the SDHD gene, but SDHB and SDHC mutations are not uncommon in such patients. Head and neck paragangliomas are rarely associated with mutations of VHL, RET, or NF1. The research on SDHA, SDHAF2 and TMEM127 is ongoing. Multiple head and neck paragangliomas are common in patients with SDHD mutations, while malignant head and neck paraganglioma is mostly seen in patients with SDHB mutations. The treatment of choice is surgical resection. Good postoperative results can be expected in carotid body tumors of Shamblin Class I and II, whereas operations on other carotid body tumors and other head and neck paragangliomas frequently result in deficits of the cranial nerves adjacent to the tumors. Slow growth and the tendency of hereditary head and neck paragangliomas to be multifocal may justify less aggressive treatment strategies. PMID:22584701

  2. Head and neck paragangliomas: clinical and molecular genetic classification

    Directory of Open Access Journals (Sweden)

    Christian Offergeld

    2012-01-01

    Full Text Available Head and neck paragangliomas are tumors arising from specialized neural crest cells. Prominent locations are the carotid body along with the vagal, jugular, and tympanic glomus. Head and neck paragangliomas are slowly growing tumors, with some carotid body tumors being reported to exist for many years as a painless lateral mass on the neck. Symptoms depend on the specific locations. In contrast to paraganglial tumors of the adrenals, abdomen and thorax, head and neck paragangliomas seldom release catecholamines and are hence rarely vasoactive. Petrous bone, jugular, and tympanic head and neck paragangliomas may cause hearing loss. The internationally accepted clinical classifications for carotid body tumors are based on the Shamblin Class I-III stages, which correspond to postoperative permanent side effects. For petrous-bone paragangliomas in the head and neck, the Fisch classification is used. Regarding the molecular genetics, head and neck paragangliomas have been associated with nine susceptibility genes: NF1, RET, VHL, SDHA, SDHB, SDHC, SDHD, SDHAF2 (SDH5, and TMEM127. Hereditary HNPs are mostly caused by mutations of the SDHD gene, but SDHB and SDHC mutations are not uncommon in such patients. Head and neck paragangliomas are rarely associated with mutations of VHL, RET, or NF1. The research on SDHA, SDHAF2 and TMEM127 is ongoing. Multiple head and neck paragangliomas are common in patients with SDHD mutations, while malignant head and neck paraganglioma is mostly seen in patients with SDHB mutations. The treatment of choice is surgical resection. Good postoperative results can be expected in carotid body tumors of Shamblin Class I and II, whereas operations on other carotid body tumors and other head and neck paragangliomas frequently result in deficits of the cranial nerves adjacent to the tumors. Slow growth and the tendency of hereditary head and neck paragangliomas to be multifocal may justify less aggressive treatment strategies.

  3. Molecular profiling of indolent human prostate cancer:tackling technical challenges to achieve high-fidelity genome-wide data

    Institute of Scientific and Technical Information of China (English)

    Thomas A. Dunn; Helen L. Fedor; Angelo M. De Marzo; Jun Luo

    2012-01-01

    The contemporary problem of prostate cancer overtreatment can be partially attributed to the diagnosis of potentially indolent prostate cancers that pose low risk to aged men,and lack of sufficiently accurate risk stratification methods to reliably seek out men with indolent diseases.Since progressive acquisition and accumulation of genomic alterations,both genetic and epigenetic,is a defining feature of all human cancers at different stages of disease progression,it is hypothesized that RNA and DNA alterations characteristic of indolent prostate tumors may be different from those previously characterized in the setting of clinically significant prostate cancer.Approaches capable of detecting such alterations on a genome-wide level are the most promising.Such analysis may uncover molecular events defining early initiating stages along the natural history of prostate cancer progression,and ultimately lead to rational development of risk stratification methods for identification of men who can safely forego treatment.However,defining and characterizing indolent prostate cancer in a clinically relevant context remains a challenge,particularly when genome-wide approaches are employed to profile formalin-fixed paraffin-embedded (FFPE) tissue specimens.Here,we provide the conceptual basis underlying the importance of understanding indolent prostate cancer from molecular profiling studies,identify the key hurdles in sample acquisition and variables that affect molecular data derived from FFPE tissues,and highlight recent progresses in efforts to address these technical challenges.

  4. Genomics and medicine: an anticipation. From Boolean Mendelian genetics to multifactorial molecular medicine.

    Science.gov (United States)

    Kaplan, J C; Junien, C

    2000-12-01

    The major impact of the completion of the human genome sequence will be the understanding of diseases, with deduced therapy. In the field of genetic disorders, we will complete the catalogue of monogenic diseases, also called Mendelian diseases because they obey the Boolean logic of Mendel's laws. The major challenge now is to decipher the polygenic and multifactorial etiology of common diseases, such as cancer, cardio-vascular, nutritional, allergic, auto-immune and degenerative diseases. In fact, every gene, when mutated, is a potential disease gene, and we end up with the new concept of 'reverse medicine'; i.e., deriving new diseases or pathogenic pathways from the knowledge of the structure and function of every gene. By going from sequence to function (functional genomics and proteomics) we will gain insight into basic mechanisms of major functions such as cell proliferation, differentiation and development, which are perturbed in many pathological processes. By learning the meaning of some non-coding and of regulatory sequences our understanding will gain in complexity, generating a molecular and supramolecular integrated physiology, helping to build a molecular patho-physiology of the different syndromes. Besides those cognitive advances, there are also other issues at stake, such as: progress in diagnostic and prediction (predictive medicine); progress in therapy (pharmacogenomics and gene-based therapy); ethical issues; impact on business.

  5. Recent advances in molecular genetics of melanoma progression: implications for diagnosis and treatment

    Science.gov (United States)

    Yeh, Iwei

    2016-01-01

    According to the multi-step carcinogenesis model of cancer, initiation results in a benign tumor and subsequent genetic alterations lead to tumor progression and the acquisition of the hallmarks of cancer. This article will review recent discoveries in our understanding of initiation and progression in melanocytic neoplasia and the impact on diagnostic dermatopathology. PMID:27408703

  6. MicroRNAs as molecular markers in lung cancer

    Directory of Open Access Journals (Sweden)

    Javier Silva

    2013-10-01

    Full Text Available Lung cancer is the most common cause of cancer death in the western world for both men and women. Lung cancer appears to be a perfect candidate for a screening program, since it is the number one cancer killer, it has a long preclinical phase, curative treatment for the minority of patients who are diagnosed early and a target population at risk (smokers and it is also a major economic burden. The earliest approaches to identifying cancer markers were based on preliminary clinical or pathological observations, although molecular biology is a strong candidate for occupying a place among the set of methods. In search of markers, several alterations, such as mutations, loss of heterozygosity, microsatellite instability, DNA methylation, mitochondrial DNA mutations, viral DNA, modified expression of mRNA, miRNA and proteins, and structurally altered proteins have all been analysed. MicroRNAs (miRNA are small RNA molecules, about 19-25 nucleotides long and encoded in genomes of plants, animals, fungi and viruses. It has been reported that miRNAs may have multiple functions in lung development and that aberrant expression of miRNAs could induce lung tumorigenesis. We review here the role of miRNAs in lung tumorigenesis and also as a novel type of biomarker.-----------------------------------Cite this article as:Silva J, Garcia V, Lopez-Gonzalez A, Provencio M. MicroRNAs as molecular markers in lung cancer. Int J Cancer Ther Oncol 2013;1(1:010111. DOI: http://dx.doi.org/10.14319/ijcto.0101.11

  7. Immunophenotyping invasive breast cancer: paving the road for molecular imaging

    Directory of Open Access Journals (Sweden)

    Vermeulen Jeroen F

    2012-06-01

    Full Text Available Abstract Background Mammographic population screening in The Netherlands has increased the number of breast cancer patients with small and non-palpable breast tumors. Nevertheless, mammography is not ultimately sensitive and specific for distinct subtypes. Molecular imaging with targeted tracers might increase specificity and sensitivity of detection. Because development of new tracers is labor-intensive and costly, we searched for the smallest panel of tumor membrane markers that would allow detection of the wide spectrum of invasive breast cancers. Methods Tissue microarrays containing 483 invasive breast cancers were stained by immunohistochemistry for a selected set of membrane proteins known to be expressed in breast cancer. Results The combination of highly tumor-specific markers glucose transporter 1 (GLUT1, epidermal growth factor receptor (EGFR, insulin-like growth factor-1 receptor (IGF1-R, human epidermal growth factor receptor 2 (HER2, hepatocyte growth factor receptor (MET, and carbonic anhydrase 9 (CAIX 'detected' 45.5% of tumors, especially basal/triple negative and HER2-driven ductal cancers. Addition of markers with a 2-fold tumor-to-normal ratio increased the detection rate to 98%. Including only markers with >3 fold tumor-to-normal ratio (CD44v6 resulted in an 80% detection rate. The detection rate of the panel containing both tumor-specific and less tumor-specific markers was not dependent on age, tumor grade, tumor size, or lymph node status. Conclusions In search of the minimal panel of targeted probes needed for the highest possible detection rate, we showed that 80% of all breast cancers express at least one of a panel of membrane markers (CD44v6, GLUT1, EGFR, HER2, and IGF1-R that may therefore be suitable for molecular imaging strategies. This study thereby serves as a starting point for further development of a set of antibody-based optical tracers with a high breast cancer detection rate.

  8. Immunophenotyping invasive breast cancer: paving the road for molecular imaging

    International Nuclear Information System (INIS)

    Mammographic population screening in The Netherlands has increased the number of breast cancer patients with small and non-palpable breast tumors. Nevertheless, mammography is not ultimately sensitive and specific for distinct subtypes. Molecular imaging with targeted tracers might increase specificity and sensitivity of detection. Because development of new tracers is labor-intensive and costly, we searched for the smallest panel of tumor membrane markers that would allow detection of the wide spectrum of invasive breast cancers. Tissue microarrays containing 483 invasive breast cancers were stained by immunohistochemistry for a selected set of membrane proteins known to be expressed in breast cancer. The combination of highly tumor-specific markers glucose transporter 1 (GLUT1), epidermal growth factor receptor (EGFR), insulin-like growth factor-1 receptor (IGF1-R), human epidermal growth factor receptor 2 (HER2), hepatocyte growth factor receptor (MET), and carbonic anhydrase 9 (CAIX) 'detected' 45.5% of tumors, especially basal/triple negative and HER2-driven ductal cancers. Addition of markers with a 2-fold tumor-to-normal ratio increased the detection rate to 98%. Including only markers with >3 fold tumor-to-normal ratio (CD44v6) resulted in an 80% detection rate. The detection rate of the panel containing both tumor-specific and less tumor-specific markers was not dependent on age, tumor grade, tumor size, or lymph node status. In search of the minimal panel of targeted probes needed for the highest possible detection rate, we showed that 80% of all breast cancers express at least one of a panel of membrane markers (CD44v6, GLUT1, EGFR, HER2, and IGF1-R) that may therefore be suitable for molecular imaging strategies. This study thereby serves as a starting point for further development of a set of antibody-based optical tracers with a high breast cancer detection rate

  9. Genetic profiles of gastroesophageal cancer: combined analysis using expression array and tiling array--comparative genomic hybridization

    DEFF Research Database (Denmark)

    Isinger-Ekstrand, Anna; Johansson, Jan; Ohlsson, Mattias;

    2010-01-01

    /losses and gene expression profiles show strong similarity between cancers in the distal esophagus and the gastroesophageal junction with frequent upregulation of CDK6 and EGFR, whereas gastric cancer displays distinct genetic changes. These data suggest that molecular diagnostics and targeted therapies can......15, 13q34, and 12q13, whereas different profiles with gains at 5p15, 7p22, 2q35, and 13q34 characterized gastric cancers. CDK6 and EGFR were identified as putative target genes in cancers of the esophagus and the gastroesophageal junction, with upregulation in one quarter of the tumors. Gains......-resolution array-based comparative genomic hybridization and 27k oligo gene expression arrays, and putative target genes were validated in an extended series. Adenocarcinomas in the distal esophagus and the gastroesophageal junction showed strong similarities with the most common gains at 20q13, 8q24, 1q21-23, 5p...

  10. Molecular aspects of prostate cancer: implications for future directions

    Directory of Open Access Journals (Sweden)

    Etel R. P. Gimba

    2003-10-01

    Full Text Available Many studies have been developed trying to understand the complex molecular mechanisms involved in oncogenesis and progression of prostate cancer (PCa. Current biotechnological methodologies, especially genomic studies, are adding important aspects to this area. The construction of extensive DNA sequence data and gene expression profiles have been intensively explored to search for candidate biomarkers to evaluate PCa. The use of DNA micro-array robotic systems constitutes a powerful approach to simultaneously monitor the expression of a great number of genes. The resulting gene expressing profiles can be used to specifically describe tumor staging and response to cancer therapies. Also, it is possible to follow PCa pathological properties and to identify genes that anticipate the behavior of clinical disease. The molecular pathogenesis of PCa involves many contributing factors, such as alterations in signal transduction pathways, angiogenesis, adhesion molecules expression and cell cycle control. Also, molecular studies are making clear that many genes, scattered through several different chromosomal regions probably cause predisposition to PCa. The discovery of new molecular markers for PCa is another relevant advance resulting from molecular biology studies of prostate tumors. Interesting tissue and serum markers have been reported, resulting in many cases in useful novelties to diagnostic and prognostic approaches to follow-up PCa. Finally, gene therapy comes as an important approach for therapeutic intervention in PCa. Clinical trials for PCa have been demonstrating that gene therapy is relatively safe and well tolerated, although some improvements are yet to be developed.

  11. The genetic alteration of retinoblastoma gene in esophageal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jae Il; Shim, Yung Mok; Kim, Chang Min [Korea Cancer Center Hospital of Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-12-01

    Retinoblastoma(RB) gene is the prototype of tumor suppressor gene and it`s alteration have been frequently observed in a large number of human tumors. To investigate the role of RB in esophageal cancer, we studied 36 esophageal cancer tissues with Southern blot analysis to detect gross LOH and PCR-SSCP method to find minute LOH and mutation, if any. In the cases with abnormalities, the nucleotide sequence analysis was performed. Allelic loss of chromosome 13q14 occurred in 20 out of 32 informative cases (62.5%) by Southern analysis. Furthermore, PCR-LOH added three positive cases. Mobility shift by PCR-SSCP was observed in one case at exon 22, which showed 1 bp deletion in codon 771 of RB gene resulting in frame shift mutation. Besides, nine PCR-band alteration in tumor tissue compared with normal tissue were observed in exon 14 and 22, but mutation was not found on sequencing analysis suggesting the epigenetic alteration in tumor tissue. Analysis of the clinical data did not show any difference depending upon RB alteration. However, the total incidence of RB gene may play an important role in the development of esophageal cancer. The main genetic alteration of RB gene was deletion detected by Southern blot and one bp deletion leading to frame shift was also observed. 8 figs, 5 tabs. (Author).

  12. Guidelines for molecular karyotyping in constitutional genetic diagnosis.

    NARCIS (Netherlands)

    Vermeesch, J.R.; Fiegler, H.; Leeuw, N. de; Szuhai, K.; Schoumans, J.; Ciccone, R.; Speleman, F.; Rauch, A.; Clayton-Smith, J.; Ravenswaaij-Arts, C.M.A. van; Sanlaville, D.; Patsalis, P.C.; Firth, H.; Devriendt, K.; Zuffardi, O.

    2007-01-01

    Array-based whole genome investigation or molecular karyotyping enables the genome-wide detection of submicroscopic imbalances. Proof-of-principle experiments have demonstrated that molecular karyotyping outperforms conventional karyotyping with regard to detection of chromosomal imbalances. This ar

  13. Guidelines for molecular karyotyping in constitutional genetic diagnosis

    NARCIS (Netherlands)

    Vermeesch, Joris Robert; Fiegler, Heike; de Leeuw, Nicole; Szuhai, Karoly; Schoumans, Jacqueline; Ciccone, Roberto; Speleman, Frank; Rauch, Anita; Clayton-Smith, Jill; Van Ravenswaaij, Conny; Sanlaville, Damien; Patsalis, Philippos C.; Firth, Helen; Devriendt, Koen; Zuffardi, Orsetta

    2007-01-01

    Array-based whole genome investigation or molecular karyotyping enables the genome-wide detection of submicroscopic imbalances. Proof-of-principle experiments have demonstrated that molecular karyotyping outperforms conventional karyotyping with regard to detection of chromosomal imbalances. This ar

  14. Molecular genetic contributions to socioeconomic status and intelligence.

    Science.gov (United States)

    Marioni, Riccardo E; Davies, Gail; Hayward, Caroline; Liewald, Dave; Kerr, Shona M; Campbell, Archie; Luciano, Michelle; Smith, Blair H; Padmanabhan, Sandosh; Hocking, Lynne J; Hastie, Nicholas D; Wright, Alan F; Porteous, David J; Visscher, Peter M; Deary, Ian J

    2014-05-01

    Education, socioeconomic status, and intelligence are commonly used as predictors of health outcomes, social environment, and mortality. Education and socioeconomic status are typically viewed as environmental variables although both correlate with intelligence, which has a substantial genetic basis. Using data from 6815 unrelated subjects from the Generation Scotland study, we examined the genetic contributions to these variables and their genetic correlations. Subjects underwent genome-wide testing for common single nucleotide polymorphisms (SNPs). DNA-derived heritability estimates and genetic correlations were calculated using the 'Genome-wide Complex Trait Analyses' (GCTA) procedures. 21% of the variation in education, 18% of the variation in socioeconomic status, and 29% of the variation in general cognitive ability was explained by variation in common SNPs (SEs ~ 5%). The SNP-based genetic correlations of education and socioeconomic status with general intelligence were 0.95 (SE 0.13) and 0.26 (0.16), respectively. There are genetic contributions to intelligence and education with near-complete overlap between common additive SNP effects on these traits (genetic correlation ~ 1). Genetic influences on socioeconomic status are also associated with the genetic foundations of intelligence. The results are also compatible with substantial environmental contributions to socioeconomic status.

  15. Molecular population genetics of Dioscorea tokore, a wild yam species

    International Nuclear Information System (INIS)

    High levels of genetic diversity have been found in natural populations of the wild yam species Dioscorea tokoro. Genetic diversity was measured by investigating: (1) the allozyme allele frequenzies; (2) the nucleotide difference in haplotypes of the Pgi locus; and (3) microsatellite variation. Most of the genetic diversity was found to reside within each population and the diversity caused by population differentiation appeared to be small. The implications of the results for yam genetic conservation are discussed. (author). 21 refs, 1 fig., 3 tabs

  16. Study: Blacks Are Less Likely to Seek Genetic Counseling to Assess Cancer Risk

    Science.gov (United States)

    Black Issues in Higher Education, 2005

    2005-01-01

    Black women with a family history of breast cancer are much less likely than Whites to get genetic counseling, in part because of the mistaken notion that the genetic form of the illness is a White woman's disease, researchers say. While breast cancer generally is more common among White women, some data suggest both races have similar rates of…

  17. Sequence variant classification and reporting: recommendations for improving the interpretation of cancer susceptibility genetic test results.

    NARCIS (Netherlands)

    Plon, S.E.; Eccles, D.M.; Easton, D.; Foulkes, W.D.; Genuardi, M.; Greenblatt, M.S.; Hogervorst, F.B.; Hoogerbrugge, N.; Spurdle, A.B.; Tavtigian, S.V.

    2008-01-01

    Genetic testing of cancer susceptibility genes is now widely applied in clinical practice to predict risk of developing cancer. In general, sequence-based testing of germline DNA is used to determine whether an individual carries a change that is clearly likely to disrupt normal gene function. Genet

  18. Choice of adjuvant drug therapy on the basis of the molecular classification of breast cancer

    Directory of Open Access Journals (Sweden)

    N. S. Besova

    2012-01-01

    Full Text Available Molecular genetic analysis identified some biological subtypes of breast cancer (BC: luminal A, luminal B, HER2 positive, and basal-like (including triple negative. The surrogate clinical and morphological criteria including the immunohistochemical determination of estrogen and progesterone receptors, the hyperexpression and/or amplification of HER2, Ki-67, or tumor grade (G are used to identify the biological subtypes of BC in clinical practice. The biological subtypes are distinguished by their biological course and susceptibility to various systemic treatments, which requires different therapeutic tactics. The paper presents tactics of adjuvant therapy for BC in relation to its biological subtype according to the recommendations of the 12th St. Gallen International Breast Cancer Conference (2011 and considers the place of taxans.

  19. Chemical genetic screening of KRAS-based synthetic lethal inhibitors for pancreatic cancer

    OpenAIRE

    Ji, Zhenyu; Mei, Fang C; Lory, Pedro L.; Gilbertson, Scott R.; Chen, Yijun; Cheng, Xiaodong

    2009-01-01

    Pancreatic cancer is one of the deadliest diseases largely due to difficulty in early diagnosis and the lack of effective treatments. KRAS is mutated in more than 90% of pancreatic cancer patients, and oncogenic KRAS contributes to pancreatic cancer tumorigenesis and progression. In this report, using an oncogenic KRASV12-based pancreatic cancer cell model, we developed a chemical genetic screen to identify small chemical inhibitors that selectively target pancreatic cancer cells with gain-of...

  20. Clinical implications of the intrinsic molecular subtypes of breast cancer.

    Science.gov (United States)

    Prat, Aleix; Pineda, Estela; Adamo, Barbara; Galván, Patricia; Fernández, Aranzazu; Gaba, Lydia; Díez, Marc; Viladot, Margarita; Arance, Ana; Muñoz, Montserrat

    2015-11-01

    Gene-expression profiling has had a considerable impact on our understanding of breast cancer biology. During the last 15 years, 5 intrinsic molecular subtypes of breast cancer (Luminal A, Luminal B, HER2-enriched, Basal-like and Claudin-low) have been identified and intensively studied. In this review, we will focus on the current and future clinical implications of the intrinsic molecular subtypes beyond the current pathological-based classification endorsed by the 2013 St. Gallen Consensus Recommendations. Within hormone receptor-positive and HER2-negative early breast cancer, the Luminal A and B subtypes predict 10-year outcome regardless of systemic treatment administered as well as residual risk of distant recurrence after 5 years of endocrine therapy. Within clinically HER2-positive disease, the 4 main intrinsic subtypes can be identified and dominate the biological and clinical phenotype. From a clinical perspective, patients with HER2+/HER2-enriched disease seem to benefit the most from neoadjuvant trastuzumab, or dual HER2 blockade with trastuzumab/lapatinib, in combination with chemotherapy, and patients with HER2+/Luminal A disease seem to have a relative better outcome compared to the other subtypes. Finally, within triple-negative breast cancer (TNBC), the Basal-like disease predominates (70-80%) and, from a biological perspective, should be considered a cancer-type by itself. Importantly, the distinction between Basal-like versus non-Basal-like within TNBC might predict survival following (neo)adjvuvant multi-agent chemotherapy, bevacizumab benefit in the neoadjuvant setting (CALGB40603), and docetaxel vs. carboplatin benefit in first-line metastatic disease (TNT study). Overall, this data suggests that intrinsic molecular profiling provides clinically relevant information beyond current pathology-based classifications.

  1. Molecular Targeted Therapies Using Botanicals for Prostate Cancer Chemoprevention

    OpenAIRE

    Kumar, Nagi; Chornokur, Ganna

    2012-01-01

    In spite of the large number of botanicals demonstrating promise as potential cancer chemopreventive agents, most have failed to prove effectiveness in clinical trials. Critical requirements for moving botanical agents to recommendation for clinical use include adopting a systematic, molecular-target based approach and utilizing the same ethical and rigorous methods that are used to evaluate other pharmacological agents. Preliminary data on a mechanistic rationale for chemoprevention activity...

  2. Sequencing cDNAs: An Introduction to DNA Sequence Analysis in the Undergraduate Molecular Genetics Course.

    Science.gov (United States)

    Galewsky, Samuel

    2000-01-01

    Introduces a series of molecular genetics laboratories where students pick a single colony from a Drosophila melanogester embryo cDNA library and purify the plasmid, then analyze the insert through restriction digests and gel electrophoresis. (Author/YDS)

  3. Status and Advances of RGD Molecular Imaging in Lung Cancer

    Directory of Open Access Journals (Sweden)

    Ning YUE

    2014-12-01

    Full Text Available Lung cancer has been one of the most common and the highest mortality rates malignant tumors at home and abroad. Sustained angiogenesis was not only the characteristic of malignant tumors, but also the foundation of tumor proliferation, invasion, recurrence and metastasis, it was also one of the hot spots of treatments in lung cancer biology currently. Integrins played an important part in tumor angiogenesis. Arg-Gly-Asp (RGD peptides could combine with integrins specifically, and the application of radionuclide-labeled RGD molecular probes enabled imaging of tumor blood vessels to reflect its changes. The lung cancer imaging of RGD peptides at home and abroad in recent years was reviewed in this article.

  4. Molecular Mechanism Underlying Lymphatic Metastasis in Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Zhiwen Xiao

    2014-01-01

    Full Text Available As the most challenging human malignancies, pancreatic cancer is characterized by its insidious symptoms, low rate of surgical resection, high risk of local invasion, metastasis and recurrence, and overall dismal prognosis. Lymphatic metastasis, above all, is recognized as an early adverse event in progression of pancreatic cancer and has been described to be an independent poor prognostic factor. It should be noted that the occurrence of lymphatic metastasis is not a casual or stochastic but an ineluctable and designed event. Increasing evidences suggest that metastasis-initiating cells (MICs and the microenvironments may act as a double-reed style in this crime. However, the exact mechanisms on how they function synergistically for this dismal clinical course remain largely elusive. Therefore, a better understanding of its molecular and cellular mechanisms involved in pancreatic lymphatic metastasis is urgently required. In this review, we will summarize the latest advances on lymphatic metastasis in pancreatic cancer.

  5. Multifunctional Gold Nanostars for Molecular Imaging and Cancer Therapy

    Science.gov (United States)

    Liu, Yang; Yuan, Hsiangkuo; Fales, Andrew; Register, Janna; Vo-Dinh, Tuan

    2015-08-01

    Plasmonics-active gold nanoparticles offer excellent potential in molecular imaging and cancer therapy. Among them, gold nanostars (AuNS) exhibit cross-platform flexibility as multimodal contrast agents for macroscopic X-ray computer tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), as well as nanoprobes for photoacoustic tomography (PAT), two-photon photoluminescence (TPL) and surface-enhanced Raman spectroscopy (SERS). Their surfactant-free surface enables versatile functionalization to enhance cancer targeting, and allow triggered drug release. AuNS can also be used as an efficient platform for drug carrying, photothermal therapy, and photodynamic therapy. This review paper presents the latest progress regarding AuNS as a promising nanoplatform for cancer nanotheranostics. Future research directions with AuNS for biomedical applications will also be discussed.

  6. Tutorial dialogues and gist explanations of genetic breast cancer risk.

    Science.gov (United States)

    Widmer, Colin L; Wolfe, Christopher R; Reyna, Valerie F; Cedillos-Whynott, Elizabeth M; Brust-Renck, Priscila G; Weil, Audrey M

    2015-09-01

    The intelligent tutoring system (ITS) BRCA Gist is a Web-based tutor developed using the Shareable Knowledge Objects (SKO) platform that uses latent semantic analysis to engage women in natural-language dialogues to teach about breast cancer risk. BRCA Gist appears to be the first ITS designed to assist patients' health decision making. Two studies provide fine-grained analyses of the verbal interactions between BRCA Gist and women responding to five questions pertaining to breast cancer and genetic risk. We examined how "gist explanations" generated by participants during natural-language dialogues related to outcomes. Using reliable rubrics, scripts of the participants' verbal interactions with BRCA Gist were rated for content and for the appropriateness of the tutor's responses. Human researchers' scores for the content covered by the participants were strongly correlated with the coverage scores generated by BRCA Gist, indicating that BRCA Gist accurately assesses the extent to which people respond appropriately. In Study 1, participants' performance during the dialogues was consistently associated with learning outcomes about breast cancer risk. Study 2 was a field study with a more diverse population. Participants with an undergraduate degree or less education who were randomly assigned to BRCA Gist scored higher on tests of knowledge than those assigned to the National Cancer Institute website or than a control group. We replicated findings that the more expected content that participants included in their gist explanations, the better they performed on outcome measures. As fuzzy-trace theory suggests, encouraging people to develop and elaborate upon gist explanations appears to improve learning, comprehension, and decision making. PMID:25921818

  7. Molecular Classification of Gastric Cancer: A new paradigm

    Science.gov (United States)

    Shah, Manish A.; Khanin, Raya; Tang, Laura; Janjigian, Yelena Y.; Klimstra, David S.; Gerdes, Hans; Kelsen, David P.

    2011-01-01

    Purpose Gastric cancer may be subdivided into three distinct subtypes –proximal, diffuse, and distal gastric cancer– based on histopathologic and anatomic criteria. Each subtype is associated with unique epidemiology. Our aim is to test the hypothesis that these distinct gastric cancer subtypes may also be distinguished by gene expression analysis. Experimental Design Patients with localized gastric adenocarcinoma being screened for a phase II preoperative clinical trial (NCI 5917) underwent endoscopic biopsy for fresh tumor procurement. 4–6 targeted biopsies of the primary tumor were obtained. Macrodissection was performed to ensure >80% carcinoma in the sample. HG-U133A GeneChip (Affymetrix) was used for cDNA expression analysis, and all arrays were processed and analyzed using the Bioconductor R-package. Results Between November 2003 and January 2006, 57 patients were screened to identify 36 patients with localized gastric cancer who had adequate RNA for expression analysis. Using supervised analysis, we built a classifier to distinguish the three gastric cancer subtypes, successfully classifying each into tightly grouped clusters. Leave-one-out cross validation error was 0.14, suggesting that >85% of samples were classified correctly. Gene set analysis with the False Discovery Rate set at 0.25 identified several pathways that were differentially regulated when comparing each gastric cancer subtype to adjacent normal stomach. Conclusions Subtypes of gastric cancer that have epidemiologic and histologic distinction are also distinguished by gene expression data. These preliminary data suggest a new classification of gastric cancer with implications for improving our understanding of disease biology and identification of unique molecular drivers for each gastric cancer subtype. PMID:21430069

  8. A theoretical molecular network for dyslexia: integrating available genetic findings

    NARCIS (Netherlands)

    Poelmans, G.J.V.; Buitelaar, J.K.; Pauls, D.L.; Franke, B.

    2011-01-01

    Developmental dyslexia is a common specific childhood learning disorder with a strong heritable component. Previous studies using different genetic approaches have identified several genetic loci and candidate genes for dyslexia. In this article, we have integrated the current knowledge on 14 dyslex

  9. Molecular mechanisms underlying progesterone-enhanced breast cancer cell migration.

    Science.gov (United States)

    Wang, Hui-Chen; Lee, Wen-Sen

    2016-01-01

    Progesterone (P4) was demonstrated to inhibit migration in vascular smooth muscle cells (VSMCs), but to enhance migration in T47D breast cancer cells. To investigate the mechanism responsible for this switch in P4 action, we examined the signaling pathway responsible for the P4-induced migration enhancement in breast cancer cell lines, T47D and MCF-7. Here, we demonstrated that P4 activated the cSrc/AKT signaling pathway, subsequently inducing RSK1 activation, which in turn increased phosphorylation of p27 at T198 and formation of the p27pT198-RhoA complex in the cytosol, thereby preventing RhoA degradation, and eventually enhanced migration in T47D cells. These findings were confirmed in the P4-treated MCF-7. Comparing the P4-induced molecular events in between breast cancer cells and VSMCs, we found that P4 increased p27 phosphorylation at T198 in breast cancer cells through RSK1 activation, while P4 increased p27 phosphorlation at Ser10 in VSMCs through KIS activation. P27pT198 formed the complex with RhoA and prevented RhoA degradation in T47D cells, whereas p-p27Ser10 formed the complex with RhoA and caused RhoA degradation in VSMCs. The results of this study highlight the molecular mechanism underlying P4-enhanced breast cancer cell migration, and suggest that RSK1 activation is responsible for the P4-induced migration enhancement in breast cancer cells. PMID:27510838

  10. MOLECULAR GENETIC MARKERS AND METHODS OF THEIR IDENTIFICATION IN MODERN FISH-FARMING

    OpenAIRE

    I. Hrytsyniak; O. Zaloilo; I. Zaloilo; N. Borysenko

    2014-01-01

    Purpose. The application of molecular genetic markers has been widely used in modern experimental fish-farming in recent years. This methodology is currently presented by a differentiated approach with individual mechanisms and clearly defined possibilities. Numerous publications in the scientific literature that are dedicated to molecular genetic markers for the most part offer purely practical data. Thus, the synthesis and analysis of existing information on the general principles of action...

  11. Integrated screening concept in women with genetic predisposition for breast cancer

    International Nuclear Information System (INIS)

    Breast cancer is in 5% of cases due to a genetic disposition. BRCA1 and BRCA2 are by far the most common breast cancer susceptibility genes. For a woman with a genetic predisposition, the individual risk of developing breast cancer sometime in her life is between 70 and 90%. Compared to the spontaneous forms of breast cancer, woman with a genetic predisposition often develop breast cancer at a much younger age. This is why conventional screening programs on the basis of mammography alone cannot be applied without modification to this high-risk group. In this article, an integrated screening concept for women with genetic prodisposition for breast cancer using breast self-examination, clinical examination, ultrasound, mammography and magnetic resonance imaging is introduced. (orig.)

  12. [Molecular genetic bases of adaptation processes and approaches to their analysis].

    Science.gov (United States)

    Salmenkova, E A

    2013-01-01

    Great interest in studying the molecular genetic bases of the adaptation processes is explained by their importance in understanding evolutionary changes, in the development ofintraspecific and interspecific genetic diversity, and in the creation of approaches and programs for maintaining and restoring the population. The article examines the sources and conditions for generating adaptive genetic variability and contribution of neutral and adaptive genetic variability to the population structure of the species; methods for identifying the adaptive genetic variability on the genome level are also described. Considerable attention is paid to the potential of new technologies of genome analysis, including next-generation sequencing and some accompanying methods. In conclusion, the important role of the joint use of genomics and proteomics approaches in understanding the molecular genetic bases of adaptation is emphasized.

  13. Strategies for integrated analysis of genetic, epigenetic and gene expression variation in cancer: addressing the challenges

    Directory of Open Access Journals (Sweden)

    Louise Bruun Thingholm

    2016-02-01

    Full Text Available The development and progression of cancer, a collection of diseases with complex genetic architectures, is facilitated by the interplay of multiple etiological factors. This complexity challenges the traditional single-platform study design and calls for an integrated approach to data analysis. However, integration of heterogeneous measurements of biological variation is a non-trivial exercise due to the diversity of the human genome and the variety of output data formats and genome coverage obtained from the commonly used molecular platforms. This review article will provide an introduction to integration strategies used for analyzing genetic risk factors for cancer. We critically examine the ability of these strategies to handle the complexity of the human genome and also accommodate information about the biological and functional interactions between the elements that have been measured – making the assessment of disease risk against a composite genomic factor possible. The focus of this review is to provide an overview and introduction to the main strategies and to discuss where there is a need for further development.

  14. Targeted therapy for genetic cancer syndromes: Von Hippel-Lindau disease, Cowden syndrome, and Proteus syndrome.

    Science.gov (United States)

    Agarwal, Rishi; Liebe, Sarah; Turski, Michelle L; Vidwans, Smruti J; Janku, Filip; Garrido-Laguna, Ignacio; Munoz, Javier; Schwab, Richard; Rodon, Jordi; Kurzrock, Razelle; Subbiah, Vivek

    2015-02-01

    Von Hippel-Lindau disease, Cowden syndrome, and Proteus syndrome are cancer syndromes which affect multiple organs and lead to significant decline in quality of life in affected patients. These syndromes are rare and typically affect the adolescent and young adult population, resulting in greater cumulative years of life lost. Improved understanding of the underpinnings of the genetic pathways underlying these syndromes and the rapid evolution of targeted therapies in general have made it possible to develop therapeutic options for these patients and other genetic cancer syndromes. Targeted therapies especially antiangiogenics and inhibitors of the PIK3CA/AKT/mTOR signaling pathway have shown activity in selected group of patients affected by these syndromes or in patients harboring specific sporadic mutations which are otherwise characteristic of these syndromes. Unfortunately due to the rare nature, patients with these syndromes are not the focus of clinical trials and unique results seen in these patients can easily go unnoticed. Most of the data suggesting benefits of targeted therapies are either case reports or small case series. Thus, a literature review was indicated. In this review we explore the use of molecularly targeted therapy options in Von Hippel-Lindau disease, Cowden syndrome, and Proteus syndrome. PMID:25725225

  15. [The development of molecular human genetics and its significance for perspectives of modern medicine].

    Science.gov (United States)

    Coutelle, C; Speer, A; Grade, K; Rosenthal, A; Hunger, H D

    1989-01-01

    The introduction of molecular human genetics has become a paradigma for the application of genetic engineering in medicine. The main principles of this technology are the isolation of molecular probes, their application in hybridization reactions, specific gene-amplification by the polymerase chain reaction, and DNA sequencing reactions. These methods are used for the analysis of monogenic diseases by linkage studies and the elucidation of the molecular defect causing these conditions, respectively. They are also the basis for genomic diagnosis of monogenic diseases, introduced into the health care system of the GDR by a national project on Duchenne/Becker muscular dystrophy, Cystic Fibrosis and Phenylketonuria. The rapid development of basic research on the molecular analysis of the human genome and genomic diagnosis indicates, that human molecular genetics is becoming a decisive basic discipline of modern medicine. PMID:2697834

  16. [The development of molecular human genetics and its significance for perspectives of modern medicine].

    Science.gov (United States)

    Coutelle, C; Speer, A; Grade, K; Rosenthal, A; Hunger, H D

    1989-01-01

    The introduction of molecular human genetics has become a paradigma for the application of genetic engineering in medicine. The main principles of this technology are the isolation of molecular probes, their application in hybridization reactions, specific gene-amplification by the polymerase chain reaction, and DNA sequencing reactions. These methods are used for the analysis of monogenic diseases by linkage studies and the elucidation of the molecular defect causing these conditions, respectively. They are also the basis for genomic diagnosis of monogenic diseases, introduced into the health care system of the GDR by a national project on Duchenne/Becker muscular dystrophy, Cystic Fibrosis and Phenylketonuria. The rapid development of basic research on the molecular analysis of the human genome and genomic diagnosis indicates, that human molecular genetics is becoming a decisive basic discipline of modern medicine.

  17. Development of New Molecular EZH2 on Lung Cancer Invasion and Metastasis

    Directory of Open Access Journals (Sweden)

    Hui XIA

    2016-02-01

    Full Text Available Lung cancer is a serious threat to human health malignancies upward trend in morbidity and mortality. It is hot topic to investigate the molecular mechanisms of lung cancer development and explore the new therapeutic targets. The underlying mechanism of EZH2 on lung cancer development will demonstrate the new pathway of lung cancer development, invasion and metastasis. The exploration and application of new targeted molecular will improve the survival rate and living quality of lung cancer patients in future.

  18. Appraisal of progenitor markers in the context of molecular classification of breast cancers

    OpenAIRE

    Haviv, Izhak

    2011-01-01

    Clinical management of breast cancer relies on case stratification, which increasingly employs molecular markers. The motivation behind delineating breast epithelial differentiation is to better target cancer cases through innate sensitivities bequeathed to the cancer from its normal progenitor state. A combination of histopathological and molecular classification of breast cancer cases suggests a role for progenitors in particular breast cancer cases. Although a remarkable fraction of the re...

  19. Molecular targets for the treatment of pancreatic cancer: Clinical and experimental studies

    OpenAIRE

    Matsuoka, Tasuku; Yashiro, Masakazu

    2016-01-01

    Pancreatic cancer is the fourth most common cause of cancer deaths worldwide. Although recent therapeutic developments for patients with pancreatic cancer have provided survival benefits, the outcomes for patients with pancreatic cancer remain unsatisfactory. Molecularly targeted cancer therapy has advanced in the past decade with the use of a number of pathways as candidates of therapeutic targets. This review summarizes the molecular features of this refractory disease while focusing on the...

  20. Natural and genetically engineered viral agents for oncolysis and gene therapy of human cancers.

    Science.gov (United States)

    Sinkovics, Joseph G; Horvath, Joseph C

    2008-12-01

    Based on personal acquaintances and experience dating back to the early 1950s, the senior author reviews the history of viral therapy of cancer. He points out the difficulties encountered in the treatment of human cancers, as opposed by the highly successful viral therapy of experimentally maintained tumors in laboratory animals, especially that of ascites carcinomas in mice. A detailed account of viral therapy of human tumors with naturally oncolytic viruses follows, emphasizing the first clinical trials with viral oncolysates. The discrepancy between the high success rates, culminating in cures, in the treatment of tumors of laboratory animals, and the moderate results, such as stabilizations of disease, partial responses, very rare complete remissions, and frequent relapses with virally treated human tumors is recognized. The preclinical laboratory testing against established human tumor cell lines that were maintained in tissue cultures for decades, and against human tumors extricated from their natural habitat and grown in xenografts, may not yield valid results predictive of the viral therapy applied against human tumors growing in their natural environment, the human host. Since the recent discovery of the oncosuppressive efficacy of bacteriophages, the colon could be regarded as the battlefield, where incipient tumor cells and bacteriophages vie for dominance. The inner environment of the colon will be the teaching ground providing new knowledge on the value of the anti-tumor efficacy of phage-induced innate anti-tumor immune reactions. Genetically engineered oncolytic viruses are reviewed next. The molecular biology of viral oncolysis is explained in details. Elaborate efforts are presented to elucidate how gene product proteins of oncolytic viruses switch off the oncogenic cascades of cancer cells. The facts strongly support the conclusion that viral therapy of human cancers will remain in the front lines of modern cancer therapeutics. It may be a

  1. Molecular imaging of prostate cancer: translating molecular biology approaches into the clinical realm

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, Hebert Alberto; Sala, Evis; Hricak, Hedvig [Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY (United States); Grimm, Jan [Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY (United States); Program in Molecular Pharmacology and Chemistry, Memorial Sloan Kettering Cancer Center, New York (United States); Donati, Olivio F. [Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY (United States); University Hospital Zurich, Institute of Diagnostic and Interventional Radiology, Zurich (Switzerland)

    2015-05-01

    The epidemiology of prostate cancer has dramatically changed since the introduction of prostate-specific antigen (PSA) screening in the 1980's. Most prostate cancers today are detected at early stages of the disease and are considered 'indolent'; however, some patients' prostate cancers demonstrate a more aggressive behaviour which leads to rapid progression and death. Increasing understanding of the biology underlying the heterogeneity that characterises this disease has led to a continuously evolving role of imaging in the management of prostate cancer. Functional and metabolic imaging techniques are gaining importance as the impact on the therapeutic paradigm has shifted from structural tumour detection alone to distinguishing patients with indolent tumours that can be managed conservatively (e.g., by active surveillance) from patients with more aggressive tumours that may require definitive treatment with surgery or radiation. In this review, we discuss advanced imaging techniques that allow direct visualisation of molecular interactions relevant to prostate cancer and their potential for translation to the clinical setting in the near future. The potential use of imaging to follow molecular events during drug therapy as well as the use of imaging agents for therapeutic purposes will also be discussed. (orig.)

  2. Clusters of Concepts in Molecular Genetics: A Study of Swedish Upper Secondary Science Students' Understanding

    Science.gov (United States)

    Gericke, Niklas; Wahlberg, Sara

    2013-01-01

    To understand genetics, students need to be able to explain and draw connections between a large number of concepts. The purpose of the study reported herein was to explore the way upper secondary science students reason about concepts in molecular genetics in order to understand protein synthesis. Data were collected by group interviews. Concept…

  3. Major Results and Research Challenges in Cotton Molecular Genetics at CIRAD(France)

    Institute of Scientific and Technical Information of China (English)

    LACAPE; Jean-marc; CLAVERIE; M; DESSAUW; D; GIBAND; M; VIOT; C

    2008-01-01

    CIRAD(Montpellier,France) develops research activities centered on tropical and sub-tropical agricultural systems.Among others crops,cotton is the focus of a series of research programs in different disciplines from economics to breeding.Major areas in genetics and breeding relate to(1) genetic diversity,(2) cultivar development through classical and molecular breeding,and(3) applied

  4. Management of insect pests: Nuclear and related molecular and genetic techniques

    International Nuclear Information System (INIS)

    The conference was organized in eight sessions: opening, genetic engineering and molecular biology, genetics, operational programmes, F1 sterility and insect behaviour, biocontrol, research and development on the tsetse fly, and quarantine. The 64 individual contributions have been indexed separately for INIS. Refs, figs and tabs

  5. Molecular targets in urothelial cancer: detection, treatment, and animal models of bladder cancer

    Science.gov (United States)

    Smolensky, Dmitriy; Rathore, Kusum; Cekanova, Maria

    2016-01-01

    Bladder cancer remains one of the most expensive cancers to treat in the United States due to the length of required treatment and degree of recurrence. In order to treat bladder cancer more effectively, targeted therapies are being investigated. In order to use targeted therapy in a patient, it is important to provide a genetic background of the patient. Recent advances in genome sequencing, as well as transcriptome analysis, have identified major pathway components altered in bladder cancer. The purpose of this review is to provide a broad background on bladder cancer, including its causes, diagnosis, stages, treatments, animal models, as well as signaling pathways in bladder cancer. The major focus is given to the PI3K/AKT pathway, p53/pRb signaling pathways, and the histone modification machinery. Because several promising immunological therapies are also emerging in the treatment of bladder cancer, focus is also given on general activation of the immune system for the treatment of bladder cancer. PMID:27784990

  6. Major Results and Research Challenges in Cotton Molecular Genetics at CIRAD (France)

    Institute of Scientific and Technical Information of China (English)

    LACAPE Jean-marc; CLAVERIE M; DESSAUW D; GIBAND M; VIOT C

    2008-01-01

    @@ CIRAD (Montpellier,France) develops research activities centered on tropical and sub-tropical agricultural systems.Among others crops,cotton is the focus of a series of research programs in different disciplines from economics to breeding.Major areas in genetics and breeding relate to (1) genetic diversity,(2) eultivar development through classical and molecular breeding,and (3) applied genomics.An important but under-exploited reservoir of genetic diversity exists within the genus Gossypium.

  7. Strategies to genetically engineer T cells for cancer immunotherapy.

    Science.gov (United States)

    Spear, Timothy T; Nagato, Kaoru; Nishimura, Michael I

    2016-06-01

    Immunotherapy is one of the most promising and innovative approaches to treat cancer, viral infections, and other immune-modulated diseases. Adoptive immunotherapy using gene-modified T cells is an exciting and rapidly evolving field. Exploiting knowledge of basic T cell biology and immune cell receptor function has fostered innovative approaches to modify immune cell function. Highly translatable clinical technologies have been developed to redirect T cell specificity by introducing designed receptors. The ability to engineer T cells to manifest desired phenotypes and functions is now a thrilling reality. In this review, we focus on outlining different varieties of genetically engineered T cells, their respective advantages and disadvantages as tools for immunotherapy, and their promise and drawbacks in the clinic. PMID:27138532

  8. Molecular Biomarkers of Pancreatic Intraepithelial Neoplasia and Their Implications in Early Diagnosis and Therapeutic Intervention of Pancreatic Cancer

    Science.gov (United States)

    Guo, Junli; Xie, Keping; Zheng, Shaojiang

    2016-01-01

    Lack of early detection and effective interventions is a major reason for the poor prognosis and dismal survival rates for pancreatic cancer. Pancreatic intraepithelial neoplasia (PanIN) is the most common precursor of invasive pancreatic ductal adenocarcinoma (PDAC). Each stage in the progression from PanIN to PDAC is well characterized by multiple significant genetic alterations affecting signaling pathways. Understanding the biological behavior and molecular alterations in the progression from PanIN to PDAC is crucial to the identification of noninvasive biomarkers for early detection and diagnosis and the development of preventive and therapeutic strategies for control of pancreatic cancer progression. This review focuses on molecular biomarkers of PanIN and their important roles in early detection and treatment of pancreatic cancer. PMID:26929736

  9. Xenogeneic homologous genes, molecular evolution and cancer therapy

    Institute of Scientific and Technical Information of China (English)

    田聆; 魏于全

    2001-01-01

    Cancer is one of the main causes for death of human beings to date, and cancer biotherapy (mainlyimmunotherapy and gene therapy) has become the most promising approach after surgical therapy, radiotherapy andchemotherapy. However, there are still many limitations on cancer immunotherapy and gene therapy; therefore great ef-fort is being made to develop new strategies. It has been known that, in the process of evolution, a number of genes, theso-called xenogeneic homologous genes, are well-conserved and show the structural and/or functional similarity betweenvarious species to some degree. The nucleotide changes between various xenogeneic homologous genes are derived frommutation, and most of them are neutral mutations. Considering that the subtle differences in xenogeneic homologousgenes can break immune tolerance, enhance the immunogenicity and induce autologous immune response so as to elimi-nate tumor cells, we expect that a strategy of inducing autoimmune response using the property of xenogeneic homologousgenes will become a new therapy for cancer. Moreover, this therapy can also be used in the treatment of other diseases,such as autoimmune diseases and AIDS. This article will discuss the xenogeneic homologous genes, molecular evolutionand cancer therapy.

  10. Epigenetic: a molecular link between testicular cancer and environmental exposures?

    Directory of Open Access Journals (Sweden)

    Aurelie eVega

    2012-11-01

    Full Text Available In the last decades, studies in rodents have highlighted links between in utero and/or neonatal exposures to molecules that alter endocrine functions and the development of genital tract abnormalities, such as cryptorchidism, hypospadias, and impaired spermatogenesis. Most of these molecules, called endocrine disrupters (EDs exert estrogenic and/or antiandrogenic activities. These data led to the hypothesis of the Testicular Dysgenesis Syndrome which postulates that these disorders are one clinical entity and are linked by epidemiological and pathophysiological relations. Futhermore, infertility has been stated as a risk factor for testicular cancer. The incidence of testicular cancer has been increasing over the past decades. Most of testicular germ cell cancers develop through a pre-invasive carcinoma in situ (CIS from fetal germ cells (primordial germ cell or gonocyte. During their development, fetal germ cells undergo epigenetic modifications. Interestingly, several lines of evidence have shown that gene regulation through epigenetic mechanisms (DNA and histone modifications plays an important role in normal development as well as in various diseases, including testicular cancer.Here we will review chromatin modifications which can affect testicular physiology leading to the development of testicular cancer; and highlight potential molecular pathways involved in these alterations in the context of environmental exposures.

  11. Molecular targets of cancer chemoprevention by garlic-derived organosulfides

    Institute of Scientific and Technical Information of China (English)

    Anna HERMAN-ANTOSIEWICZ; Anna A POWOLNY; Shivendra V SINGH

    2007-01-01

    The medicinal benefits of Allium vegetables, especially garlic, have been noted throughout recorded history. The known health benefits of Allium vegetables and their constituents include cardiovascular protective effects, stimulation of immune function, reduction of blood glucose level, radioprotection, improvement of memory loss, protection against microbial, viral and fungal infections, as well as anticancer effects. Population-based case control studies have suggested an inverse correlation between dietary intake of Allium vegetables and the risk of different types of cancers. The anticarcinogenic effect of Allium vegetables in-eluding garlic is attributed to organosulfur compounds (OSC), which are highly effective in affording protection against cancer in animal models induced by a variety of chemical carcinogens. More recent studies have shown that certain naturally occurring OSC analogues can suppress proliferation of cancer cells in culture and in vivo. The OSC-induced changes in the proliferation of cancer Cellsare frequently associated with perturbations in cell cycle progression and induc-tion of G2/M phase arrest. The OSC have also been demonstrated to induce apoptosis via the intrinsic pathway by altering the ratio of the Bc1-2 family of proteins both in cell culture and in in vivo models. Anti-angiogenic activity for garlic-derived OSC has also been documented. This article summarizes current knowledge on molecular targets of cancer chemoprevention by OSC.

  12. Double-hairpin molecular-beacon-based amplification detection for gene diagnosis linked to cancer.

    Science.gov (United States)

    Xu, Huo; Zhang, Rongbo; Li, Feng; Zhou, Yingying; Peng, Ting; Wang, Xuedong; Shen, Zhifa

    2016-09-01

    A powerful double-hairpin molecular beacon (DHMB) was developed for cancer-related KRAS gene detection based on the one-to-two stoichiometry. During target DNA detection, DHMB can execute signal transduction even if no any exogenous element is involved. Unlike the conventional molecular beacon based on the one-to-one interaction, one target DNA not only hybridizes with one DHMB and opens its hairpin but also promotes the interaction between two DHMBs, causing the separation of two fluorophores from quenchers. This leads to an enhanced fluorescence signal. As a result, the target KRAS gene is able to be detected within a wide dynamic range from 0.05 to 200 nM with the detection limit of 50 pM, indicating a dramatic improvement compared with traditional molecular beacons. Moreover, the point mutations existing in target DNAs can be easily screened. The potential application for target species in real samples was indicated by the analysis of PCR amplicons of DNAs from the DNA extracted from SW620 cell. Besides becoming a promising candidate probe for molecular biology research and clinical diagnosis of genetic diseases, the DHMB is expected to provide a significant insight into the design of DNA probe-based homogenous sensing systems. Graphical Abstract A powerful double-hairpin molecular beacon (DHMB) was developed for cancer-related gene KRAS detection based on the one-to-two stoichiometry. Without the help of any exogenous probe, the point mutation is easily screened, and the target DNA can be quantified down to 50 pM, indicating a dramatic improvement compared with traditional molecular beacons.

  13. Double-hairpin molecular-beacon-based amplification detection for gene diagnosis linked to cancer.

    Science.gov (United States)

    Xu, Huo; Zhang, Rongbo; Li, Feng; Zhou, Yingying; Peng, Ting; Wang, Xuedong; Shen, Zhifa

    2016-09-01

    A powerful double-hairpin molecular beacon (DHMB) was developed for cancer-related KRAS gene detection based on the one-to-two stoichiometry. During target DNA detection, DHMB can execute signal transduction even if no any exogenous element is involved. Unlike the conventional molecular beacon based on the one-to-one interaction, one target DNA not only hybridizes with one DHMB and opens its hairpin but also promotes the interaction between two DHMBs, causing the separation of two fluorophores from quenchers. This leads to an enhanced fluorescence signal. As a result, the target KRAS gene is able to be detected within a wide dynamic range from 0.05 to 200 nM with the detection limit of 50 pM, indicating a dramatic improvement compared with traditional molecular beacons. Moreover, the point mutations existing in target DNAs can be easily screened. The potential application for target species in real samples was indicated by the analysis of PCR amplicons of DNAs from the DNA extracted from SW620 cell. Besides becoming a promising candidate probe for molecular biology research and clinical diagnosis of genetic diseases, the DHMB is expected to provide a significant insight into the design of DNA probe-based homogenous sensing systems. Graphical Abstract A powerful double-hairpin molecular beacon (DHMB) was developed for cancer-related gene KRAS detection based on the one-to-two stoichiometry. Without the help of any exogenous probe, the point mutation is easily screened, and the target DNA can be quantified down to 50 pM, indicating a dramatic improvement compared with traditional molecular beacons. PMID:27422649

  14. Chances and changes : psychological impact of genetic counselling and DNA testing for breast cancer.

    NARCIS (Netherlands)

    Dijk, Sandra van

    2006-01-01

    The cumulative lifetime risk of developing breast cancer for a Dutch woman is about 12%. In some families breast cancer seems to occur even more frequently or women fall ill at a relatively young age. Such families may have a genetic susceptibility towards breast cancer. To learn more about the like

  15. Objectives, criteria and methods for using molecular genetic data in priority setting for conservation of animal genetic resources.

    Science.gov (United States)

    Boettcher, P J; Tixier-Boichard, M; Toro, M A; Simianer, H; Eding, H; Gandini, G; Joost, S; Garcia, D; Colli, L; Ajmone-Marsan, P

    2010-05-01

    The genetic diversity of the world's livestock populations is decreasing, both within and across breeds. A wide variety of factors has contributed to the loss, replacement or genetic dilution of many local breeds. Genetic variability within the more common commercial breeds has been greatly decreased by selectively intense breeding programmes. Conservation of livestock genetic variability is thus important, especially when considering possible future changes in production environments. The world has more than 7500 livestock breeds and conservation of all of them is not feasible. Therefore, prioritization is needed. The objective of this article is to review the state of the art in approaches for prioritization of breeds for conservation, particularly those approaches that consider molecular genetic information, and to identify any shortcomings that may restrict their application. The Weitzman method was among the first and most well-known approaches for utilization of molecular genetic information in conservation prioritization. This approach balances diversity and extinction probability to yield an objective measure of conservation potential. However, this approach was designed for decision making across species and measures diversity as distinctiveness. For livestock, prioritization will most commonly be performed among breeds within species, so alternatives that measure diversity as co-ancestry (i.e. also within-breed variability) have been proposed. Although these methods are technically sound, their application has generally been limited to research studies; most existing conservation programmes have effectively primarily based decisions on extinction risk. The development of user-friendly software incorporating these approaches may increase their rate of utilization. PMID:20500756

  16. Helicobacter pylori eradication to prevent gastric cancer:underlying molecular and cellular mechanisms

    Institute of Scientific and Technical Information of China (English)

    Shingo Tsuji; Norio Hayashi; Masahiko Tsujii; Hiroaki Murata; Tsutomu Nishida; Masato Komori; Masakazu Yasumaru; Shuji Ishii; Yoshiaki Sasayama; Sunao Kawano

    2006-01-01

    Numerous cellular and molecular events have been described in development of gastric cancer. In this article,we overviewed roles of Helicobacter pylori(H pylori) infection on some of the important events in gastric carcinogenesis and discussed whether these cellular and molecular events are reversible after cure of the infection. There are several bacterial components affecting gastric epithelial kinetics and promotion of gastric carcinogenesis. The bacterium also increases risks of genetic instability and mutations due to NO and other reactive oxygen species. Epigenetic silencing of tumor suppressor genes such as RUNX3 may alter the frequency of phenotype change of gastric glands to those with intestinal metaplasia. Host factors such as increased expression of growth factors, cytokines and COX-2 have been also reported in non-cancerous tissue in H pylori-positive subjects. It is noteworthy that most of the above phenomena are reversed after the cure of the infection. However,some of them including overexpression of COX-2 continue to exist and may increase risks for carcinogenesis in metaplastic or dysplastic mucosa even after successful H pylori eradication. Thus, H pylori eradication may not completely abolish the risk for gastric carcinogenesis. Efficiency of the cure of the infection in suppressing gastric cancer depends on the timing and the target population,and warrant further investigation.

  17. Genetic variation at 8q24, family history of cancer, and upper gastrointestinal cancers in a Chinese population.

    Science.gov (United States)

    Tarleton, Heather P; Chang, Shen-Chih; Park, Sungshim Lani; Cai, Lin; Ding, Baoguo; He, Na; Hussain, Shehnaz K; Jiang, Qingwu; Mu, Li-Na; Rao, Jianyu; Wang, Hua; You, Nai-Chieh Y; Yu, Shun-Zhang; Zhao, Jin-Kou; Zhang, Zuo-Feng

    2014-03-01

    Genetic variation at 8q24 is associated with prostate, bladder, breast, colorectal, thyroid, lung, ovarian, UADT, liver and stomach cancers. However, a role for variation at 8q24 in familial clustering of upper gastrointestinal cancers has not been studied. In order to explore potential inherited susceptibility, we analyzed epidemiologic data from a population-based case-control study of upper gastrointestinal cancers from Taixing, China. The study population includes 204 liver, 206 stomach, and 218 esophageal cancer cases and 415 controls. Associations between 8q24 rs1447295, rs16901979, rs6983267 and these cancers were stratified by family history of cancer. Odds ratios and 95% confidence intervals were adjusted for potential confounders: age, sex, education, tobacco smoking, alcohol consumption, and BMI at interview. We also adjusted for hepatitis B and aflatoxin (liver cancer) and Helicobacter pylori (stomach cancer). In a dominant model, among those with a family history of cancer, rs1447295 was positively associated with liver cancer (OR(adj) 2.80; 95% CI 1.15-6.80). Heterogeneity was observed (P(heterogeneity) = 0.029) with rs6983267 and liver cancer, with positive association in the dominant model among those with a family history of cancer and positive association in the recessive model among those without a family history of cancer. When considered in a genetic risk score model, each additional 8q24 risk genotype increased the odds of liver cancer by two-fold among those with a family history of cancer (OR(adj) 2.00; 95% CI 1.15-3.47). These findings suggest that inherited susceptibility to liver cancer may exist in the Taixing population and that variation at 8q24 might be a genetic component of that inherited susceptibility. PMID:24030569

  18. Multifunctional nanomaterials for advanced molecular imaging and cancer therapy

    Science.gov (United States)

    Subramaniam, Prasad

    Nanotechnology offers tremendous potential for use in biomedical applications, including cancer and stem cell imaging, disease diagnosis and drug delivery. The development of nanosystems has aided in understanding the molecular mechanisms of many diseases and permitted the controlled nanoscale manipulation of biological phenomena. In recent years, many studies have focused on the use of several kinds of nanomaterials for cancer and stem cell imaging and also for the delivery of anticancer therapeutics to tumor cells. However, the proper diagnosis and treatment of aggressive tumors such as brain and breast cancer requires highly sensitive diagnostic agents, in addition to the ability to deliver multiple therapeutics using a single platform to the target cells. Addressing these challenges, novel multifunctional nanomaterial-based platforms that incorporate multiple therapeutic and diagnostic agents, with superior molecular imaging and targeting capabilities, has been presented in this work. The initial part of this work presents the development of novel nanomaterials with superior optical properties for efficiently delivering soluble cues such as small interfering RNA (siRNA) into brain cancer cells with minimal toxicity. Specifically, this section details the development of non-toxic quantums dots for the imaging and delivery of siRNA into brain cancer and mesenchymal stem cells, with the hope of using these quantum dots as multiplexed imaging and delivery vehicles. The use of these quantum dots could overcome the toxicity issues associated with the use of conventional quantum dots, enabled the imaging of brain cancer and stem cells with high efficiency and allowed for the delivery of siRNA to knockdown the target oncogene in brain cancer cells. The latter part of this thesis details the development of nanomaterial-based drug delivery platforms for the co-delivery of multiple anticancer drugs to brain tumor cells. In particular, this part of the thesis focuses on

  19. Genetic Confirmation of Mungbean (Vigna radiata) and Mashbean (Vigna mungo) Interspecific Recombinants using Molecular Markers

    OpenAIRE

    Abbas, Ghulam; Hameed, Amjad; Rizwan, Muhammad; Ahsan, Muhammad; Asghar, Muhammad J.; Iqbal, Nayyer

    2015-01-01

    Molecular confirmation of interspecific recombinants is essential to overcome the issues like self-pollination, environmental influence, and inadequacy of morphological characteristics during interspecific hybridization. The present study was conducted for genetic confirmation of mungbean (female) and mashbean (male) interspecific crosses using molecular markers. Initially, polymorphic random amplified polymorphic DNA (RAPD), universal rice primers (URP), and simple sequence repeats (SSR) mar...

  20. The molecular and cellular origin of human prostate cancer.

    Science.gov (United States)

    Packer, John R; Maitland, Norman J

    2016-06-01

    Prostate cancer is the most commonly diagnosed male malignancy. Despite compelling epidemiology, there are no definitive aetiological clues linking development to frequency. Pre-malignancies such as proliferative inflammatory atrophy (PIA) and prostatic intraepithelial neoplasia (PIN) yield insights into the initiating events of prostate cancer, as they supply a background "field" for further transformation. An inflammatory aetiology, linked to recurrent prostatitis, and heterologous signalling from reactive stroma and infiltrating immune cells may result in cytokine addiction of cancer cells, including a tumour-initiating population also known as cancer stem cells (CSCs). In prostate tumours, the background mutational rate is rarely exceeded, but genetic change via profound sporadic chromosomal rearrangements results in copy number variations and aberrant gene expression. In cancer, dysfunctional differentiation is imposed upon the normal epithelial lineage, with disruption/disappearance of the basement membrane, loss of the contiguous basal cell layer and expansion of the luminal population. An initiating role for androgen receptor (AR) is attractive, due to the luminal phenotype of the tumours, but alternatively a pool of CSCs, which express little or no AR, has also been demonstrated. Indolent and aggressive tumours may also arise from different stem or progenitor cells. Castrate resistant prostate cancer (CRPC) remains the inevitable final stage of disease following treatment. Time-limited effectiveness of second-generation anti-androgens, and the appearance of an AR-neuroendocrine phenotype imply that metastatic disease is reliant upon the plasticity of the CSC population, and indeed CSC gene expression profiles are most closely related to those identified in CRPCs.