Kocherlakota, Narayana R.
2007-01-01
This paper uses an example to show that a model that fits the available data perfectly may provide worse answers to policy questions than an alternative, imperfectly fitting model. The author argues that, in the context of Bayesian estimation, this result can be interpreted as being due to the use of an inappropriate prior over the parameters of shock processes. He urges the use of priors that are obtained from explicit auxiliary information, not from the desire to obtain identification.
Krueger, Andre
2004-01-01
The status of the electroweak precision measurements as of winter 2004 and the global test of the Standard Model are discussed. Important input data are the precision variables measured on the Z resonance at LEP and SLC and the measurements of the W mass at LEP~2 and Tevatron. A new combination of Tevatron experiments CDF and D0 on the top mass allows to set constraints on the radiative corrections and therefore to put improved limits on the mass of the Higgs boson. Additionally the impact of...
Fitting and Interpreting Occupancy Models
Welsh, Alan H.; Lindenmayer, David B; Donnelly, Christine F.
2013-01-01
We show that occupancy models are more difficult to fit than is generally appreciated because the estimating equations often have multiple solutions, including boundary estimates which produce fitted probabilities of zero or one. The estimates are unstable when the data are sparse, making them difficult to interpret, and, even in ideal situations, highly variable. As a consequence, making accurate inference is difficult. When abundance varies over sites (which is the general rule in ecology b...
Fitting and interpreting occupancy models.
Welsh, Alan H; Lindenmayer, David B; Donnelly, Christine F
2013-01-01
We show that occupancy models are more difficult to fit than is generally appreciated because the estimating equations often have multiple solutions, including boundary estimates which produce fitted probabilities of zero or one. The estimates are unstable when the data are sparse, making them difficult to interpret, and, even in ideal situations, highly variable. As a consequence, making accurate inference is difficult. When abundance varies over sites (which is the general rule in ecology because we expect spatial variance in abundance) and detection depends on abundance, the standard analysis suffers bias (attenuation in detection, biased estimates of occupancy and potentially finding misleading relationships between occupancy and other covariates), asymmetric sampling distributions, and slow convergence of the sampling distributions to normality. The key result of this paper is that the biases are of similar magnitude to those obtained when we ignore non-detection entirely. The fact that abundance is subject to detection error and hence is not directly observable, means that we cannot tell when bias is present (or, equivalently, how large it is) and we cannot adjust for it. This implies that we cannot tell which fit is better: the fit from the occupancy model or the fit ignoring the possibility of detection error. Therefore trying to adjust occupancy models for non-detection can be as misleading as ignoring non-detection completely. Ignoring non-detection can actually be better than trying to adjust for it. PMID:23326323
Fitting and interpreting occupancy models.
Directory of Open Access Journals (Sweden)
Alan H Welsh
Full Text Available We show that occupancy models are more difficult to fit than is generally appreciated because the estimating equations often have multiple solutions, including boundary estimates which produce fitted probabilities of zero or one. The estimates are unstable when the data are sparse, making them difficult to interpret, and, even in ideal situations, highly variable. As a consequence, making accurate inference is difficult. When abundance varies over sites (which is the general rule in ecology because we expect spatial variance in abundance and detection depends on abundance, the standard analysis suffers bias (attenuation in detection, biased estimates of occupancy and potentially finding misleading relationships between occupancy and other covariates, asymmetric sampling distributions, and slow convergence of the sampling distributions to normality. The key result of this paper is that the biases are of similar magnitude to those obtained when we ignore non-detection entirely. The fact that abundance is subject to detection error and hence is not directly observable, means that we cannot tell when bias is present (or, equivalently, how large it is and we cannot adjust for it. This implies that we cannot tell which fit is better: the fit from the occupancy model or the fit ignoring the possibility of detection error. Therefore trying to adjust occupancy models for non-detection can be as misleading as ignoring non-detection completely. Ignoring non-detection can actually be better than trying to adjust for it.
Valind, Anders; Jin, Yuesheng; Gisselsson, David
2013-01-01
An unbalanced chromosome number (aneuploidy) is present in most malignant tumours and has been attributed to mitotic mis-segregation of chromosomes. However, recent studies have shown a relatively high rate of chromosomal mis-segregation also in non-neoplastic human cells, while the frequency of aneuploid cells remains low throughout life in most normal tissues. This implies that newly formed aneuploid cells are subject to negative selection in healthy tissues and that attenuation of this selection could contribute to aneuploidy in cancer. To test this, we modelled cellular growth as discrete time branching processes, during which chromosome gains and losses were generated and their host cells subjected to selection pressures of various magnitudes. We then assessed experimentally the frequency of chromosomal mis-segregation as well as the prevalence of aneuploid cells in human non-neoplastic cells and in cancer cells. Integrating these data into our models allowed estimation of the fitness reduction resulting from a single chromosome copy number change to an average of ≈30% in normal cells. In comparison, cancer cells showed an average fitness reduction of only 6% (p = 0.0008), indicative of aneuploidy tolerance. Simulations based on the combined presence of chromosomal mis-segregation and aneuploidy tolerance reproduced distributions of chromosome aberrations in >400 cancer cases with higher fidelity than models based on chromosomal mis-segregation alone. Reverse engineering of aneuploid cancer cell development in silico predicted that aneuploidy intolerance is a stronger limiting factor for clonal expansion of aneuploid cells than chromosomal mis-segregation rate. In conclusion, our findings indicate that not only an elevated chromosomal mis-segregation rate, but also a generalised tolerance to novel chromosomal imbalances contribute to the genomic landscape of human tumours. PMID:23894657
Measured, modeled, and causal conceptions of fitness
Abrams, Marshall
2012-01-01
This paper proposes partial answers to the following questions: in what senses can fitness differences plausibly be considered causes of evolution?What relationships are there between fitness concepts used in empirical research, modeling, and abstract theoretical proposals? How does the relevance of different fitness concepts depend on research questions and methodological constraints? The paper develops a novel taxonomy of fitness concepts, beginning with type fitness (a property of a genoty...
Measured, Modeled, and Causal Conceptions of Fitness
Marshall eAbrams
2012-01-01
This paper proposes partial answers to the following questions: In what senses can fitness differences plausibly be considered causes of evolution? What relationships are there between fitness concepts used in empirical research, modeling, and abstract theoretical proposals? How does the relevance of different fitness concepts depend on research questions and methodological constraints? The paper develops a novel taxonomy of fitness concepts, beginning with type fitness (a property of a ge...
The Model Characteristics of Physical Fitness in CrossFit
Vasilii V. Volkov; Viktor N. Seluyanov
2014-01-01
The aim of the study is to work out the model characteristics of the physical fitness of CrossFit athletes based on laboratory functional testing (n=10). The analysis of the body composition was conducted using the dual-energy absorptiometry method. The morpho-functional characteristics of the heart were explored using a high-resolution ultrasound scanner. Oxygen consumption at the aerobic-anaerobic threshold and maximum oxygen consumption were determined in a step test on arm and leg cycle e...
The Model Characteristics of Physical Fitness in CrossFit
Directory of Open Access Journals (Sweden)
Vasilii V. Volkov
2014-06-01
Full Text Available The aim of the study is to work out the model characteristics of the physical fitness of CrossFit athletes based on laboratory functional testing (n=10. The analysis of the body composition was conducted using the dual-energy absorptiometry method. The morpho-functional characteristics of the heart were explored using a high-resolution ultrasound scanner. Oxygen consumption at the aerobic-anaerobic threshold and maximum oxygen consumption were determined in a step test on arm and leg cycle ergometers using a gas-analyzer. The level of the physical fitness of leg muscles in the males and females who took part in the study was satisfactory. However, it was considerably higher than the norm for untrained people. The level of the physical fitness of arm muscles was higher than the average and matched the Master of Sport of International Class standards. The productivity of the cardio-vascular system was much higher than in healthy males and females who do not work out and comparable to the standards for advanced soccer players.
Evaluation of Model Fit in Cognitive Diagnosis Models
Hu, Jinxiang; Miller, M. David; Huggins-Manley, Anne Corinne; Chen, Yi-Hsin
2016-01-01
Cognitive diagnosis models (CDMs) estimate student ability profiles using latent attributes. Model fit to the data needs to be ascertained in order to determine whether inferences from CDMs are valid. This study investigated the usefulness of some popular model fit statistics to detect CDM fit including relative fit indices (AIC, BIC, and CAIC),…
Evaluating Model Fit for Growth Curve Models: Integration of Fit Indices from SEM and MLM Frameworks
Wu, Wei; West, Stephen G.; Taylor, Aaron B.
2009-01-01
Evaluating overall model fit for growth curve models involves 3 challenging issues. (a) Three types of longitudinal data with different implications for model fit may be distinguished: balanced on time with complete data, balanced on time with data missing at random, and unbalanced on time. (b) Traditional work on fit from the structural equation…
Are Physical Education Majors Models for Fitness?
Kamla, James; Snyder, Ben; Tanner, Lori; Wash, Pamela
2012-01-01
The National Association of Sport and Physical Education (NASPE) (2002) has taken a firm stance on the importance of adequate fitness levels of physical education teachers stating that they have the responsibility to model an active lifestyle and to promote fitness behaviors. Since the NASPE declaration, national initiatives like Let's Move…
Fitting Neuron Models to Spike Trains
Rossant, Cyrille; Goodman, Dan F. M.; Fontaine, Bertrand; Platkiewicz, Jonathan; Magnusson, Anna K.; Brette, Romain
2011-01-01
Computational modeling is increasingly used to understand the function of neural circuits in systems neuroscience. These studies require models of individual neurons with realistic input–output properties. Recently, it was found that spiking models can accurately predict the precisely timed spike trains produced by cortical neurons in response to somatically injected currents, if properly fitted. This requires fitting techniques that are efficient and flexible enough to easily test different candidate models. We present a generic solution, based on the Brian simulator (a neural network simulator in Python), which allows the user to define and fit arbitrary neuron models to electrophysiological recordings. It relies on vectorization and parallel computing techniques to achieve efficiency. We demonstrate its use on neural recordings in the barrel cortex and in the auditory brainstem, and confirm that simple adaptive spiking models can accurately predict the response of cortical neurons. Finally, we show how a complex multicompartmental model can be reduced to a simple effective spiking model. PMID:21415925
Screening for colorectal cancer: what fits best?
LENUS (Irish Health Repository)
Lee, Chun Seng
2012-06-01
Colorectal cancer (CRC) screening has been shown to be effective in reducing CRC incidence and mortality. There are currently a number of screening modalities available for implementation into a population-based CRC screening program. Each screening method offers different strengths but also possesses its own limitations as a population-based screening strategy. We review the current evidence base for accepted CRC screening tools and evaluate their merits alongside their challenges in fulfilling their role in the detection of CRC. We also aim to provide an outlook on the demands of a low-risk population-based CRC screening program with a view to providing insight as to which modality would best suit current and future needs.
... gov home http://www.girlshealth.gov/ Home Fitness Fitness Want to look and feel your best? Physical ... are? Check out this info: What is physical fitness? top Physical fitness means you can do everyday ...
A predictive fitness model for influenza
Łuksza, Marta; Lässig, Michael
2014-03-01
The seasonal human influenza A/H3N2 virus undergoes rapid evolution, which produces significant year-to-year sequence turnover in the population of circulating strains. Adaptive mutations respond to human immune challenge and occur primarily in antigenic epitopes, the antibody-binding domains of the viral surface protein haemagglutinin. Here we develop a fitness model for haemagglutinin that predicts the evolution of the viral population from one year to the next. Two factors are shown to determine the fitness of a strain: adaptive epitope changes and deleterious mutations outside the epitopes. We infer both fitness components for the strains circulating in a given year, using population-genetic data of all previous strains. From fitness and frequency of each strain, we predict the frequency of its descendent strains in the following year. This fitness model maps the adaptive history of influenza A and suggests a principled method for vaccine selection. Our results call for a more comprehensive epidemiology of influenza and other fast-evolving pathogens that integrates antigenic phenotypes with other viral functions coupled by genetic linkage.
Model Fit after Pairwise Maximum Likelihood.
Barendse, M T; Ligtvoet, R; Timmerman, M E; Oort, F J
2016-01-01
Maximum likelihood factor analysis of discrete data within the structural equation modeling framework rests on the assumption that the observed discrete responses are manifestations of underlying continuous scores that are normally distributed. As maximizing the likelihood of multivariate response patterns is computationally very intensive, the sum of the log-likelihoods of the bivariate response patterns is maximized instead. Little is yet known about how to assess model fit when the analysis is based on such a pairwise maximum likelihood (PML) of two-way contingency tables. We propose new fit criteria for the PML method and conduct a simulation study to evaluate their performance in model selection. With large sample sizes (500 or more), PML performs as well the robust weighted least squares analysis of polychoric correlations. PMID:27148136
Fitting and Modeling of AXAF Data with the ASC Fitting Application
Doe, S.; Ljungberg, M.; Siemiginowska, A.; Joye, W.
The AXAF mission will provide X-ray data with unprecedented spatial and spectral resolution. Because of the high quality of these data, the AXAF Science Center will provide a new data analysis system--including a new fitting application. Our intent is to enable users to do fitting that is too awkward with, or beyond, the scope of existing astronomical fitting software. Our main goals are: 1) to take advantage of the full capabilities of the AXAF, we intend to provide a more sophisticated modeling capability (i.e., models that are $f(x,y,E,t)$, models to simulate the response of AXAF instruments, and models that enable ``joint-mode'' fitting, i.e., combined spatial-spectral or spectral-temporal fitting); and 2) to provide users with a wide variety of models, optimization methods, and fit statistics. In this paper, we discuss the use of an object-oriented approach in our implementation, the current features of the fitting application, and the features scheduled to be added in the coming year of development. Current features include: an interactive, command-line interface; a modeling language, which allows users to build models from arithmetic combinations of base functions; a suite of optimization and fit statistics; the ability to perform fits to multiple data sets simultaneously; and, an interface with SM and SAOtng to plot or image data, models, and/or residuals from a fit. We currently provide a modeling capability in one or two dimensions, and have recently made an effort to perform spectral fitting in a manner similar to XSPEC. We also allow users to dynamically link the fitting application to their own algorithms. Our goals for the coming year include incorporating the XSPEC model library as a subset of models available in the application, enabling ``joint-mode'' analysis and adding support for new algorithms.
Evaluating Latent Growth Curve Models Using Individual Fit Statistics
Coffman, Donna L.; Millsap, Roger E.
2006-01-01
The usefulness of assessing individual fit in latent growth curve models was examined. The study used simulated data based on an unconditional and a conditional latent growth curve model with a linear component and a small quadratic component and a linear model was fit to the data. Then the overall fit of linear and quadratic models to these data…
Cardiorespiratory Fitness in Women with and without Lymphedema following Breast Cancer Treatment
2012-01-01
Following breast cancer (BC) treatment, many women develop impairments that may impact cardiorespiratory (CR) fitness. The aims of this study were to 1) evaluate CR fitness in women following BC treatment, 2) evaluate differences in CR fitness in those with and without breast cancer-related lymphedema (BCRL) and compare these to age-matched norms, and 3) evaluate the contribution of predictor variables to CR fitness. 136 women post-BC treatment completed testing: 67 with BCRL, and 69 without....
Curve fitting methods for solar radiation data modeling
Energy Technology Data Exchange (ETDEWEB)
Karim, Samsul Ariffin Abdul, E-mail: samsul-ariffin@petronas.com.my, E-mail: balbir@petronas.com.my; Singh, Balbir Singh Mahinder, E-mail: samsul-ariffin@petronas.com.my, E-mail: balbir@petronas.com.my [Department of Fundamental and Applied Sciences, Faculty of Sciences and Information Technology, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak Darul Ridzuan (Malaysia)
2014-10-24
This paper studies the use of several type of curve fitting method to smooth the global solar radiation data. After the data have been fitted by using curve fitting method, the mathematical model of global solar radiation will be developed. The error measurement was calculated by using goodness-fit statistics such as root mean square error (RMSE) and the value of R{sup 2}. The best fitting methods will be used as a starting point for the construction of mathematical modeling of solar radiation received in Universiti Teknologi PETRONAS (UTP) Malaysia. Numerical results indicated that Gaussian fitting and sine fitting (both with two terms) gives better results as compare with the other fitting methods.
Curve fitting methods for solar radiation data modeling
Karim, Samsul Ariffin Abdul; Singh, Balbir Singh Mahinder
2014-10-01
This paper studies the use of several type of curve fitting method to smooth the global solar radiation data. After the data have been fitted by using curve fitting method, the mathematical model of global solar radiation will be developed. The error measurement was calculated by using goodness-fit statistics such as root mean square error (RMSE) and the value of R2. The best fitting methods will be used as a starting point for the construction of mathematical modeling of solar radiation received in Universiti Teknologi PETRONAS (UTP) Malaysia. Numerical results indicated that Gaussian fitting and sine fitting (both with two terms) gives better results as compare with the other fitting methods.
Curve fitting methods for solar radiation data modeling
International Nuclear Information System (INIS)
This paper studies the use of several type of curve fitting method to smooth the global solar radiation data. After the data have been fitted by using curve fitting method, the mathematical model of global solar radiation will be developed. The error measurement was calculated by using goodness-fit statistics such as root mean square error (RMSE) and the value of R2. The best fitting methods will be used as a starting point for the construction of mathematical modeling of solar radiation received in Universiti Teknologi PETRONAS (UTP) Malaysia. Numerical results indicated that Gaussian fitting and sine fitting (both with two terms) gives better results as compare with the other fitting methods
On the Fitting of Non-Linear, Empirical Functions for the Fitting of Model Crater Ages
Weaver, B. P.; Hilbe, J. M.; Robbins, S. J.; Plesko, C. S.; Riggs, J. D.
2015-05-01
Fitting model crater production functions to observed crater data is considered an "art" by many, and there is no standard in the field for how best to do it. We will discuss mathematical techniques' pros and cons and make recommendations.
Hyper-Fit: Fitting Linear Models to Multidimensional Data with Multivariate Gaussian Uncertainties
Robotham, A S G
2015-01-01
Astronomical data is often uncertain with errors that are heteroscedastic (different for each data point) and covariant between different dimensions. Assuming that a set of D-dimensional data points can be described by a (D - 1)-dimensional plane with intrinsic scatter, we derive the general likelihood function to be maximised to recover the best fitting model. Alongside the mathematical description, we also release the hyper-fit package for the R statistical language (github.com/asgr/hyper.fit) and a user-friendly web interface for online fitting (hyperfit.icrar.org). The hyper-fit package offers access to a large number of fitting routines, includes visualisation tools, and is fully documented in an extensive user manual. Most of the hyper-fit functionality is accessible via the web interface. In this paper we include applications to toy examples and to real astronomical data from the literature: the mass-size, Tully-Fisher, Fundamental Plane, and mass-spin-morphology relations. In most cases the hyper-fit ...
Sensitivity of Fit Indices to Misspecification in Growth Curve Models
Wu, Wei; West, Stephen G.
2010-01-01
This study investigated the sensitivity of fit indices to model misspecification in within-individual covariance structure, between-individual covariance structure, and marginal mean structure in growth curve models. Five commonly used fit indices were examined, including the likelihood ratio test statistic, root mean square error of…
topicmodels: An R Package for Fitting Topic Models
Directory of Open Access Journals (Sweden)
Bettina Grun
2011-05-01
Full Text Available Topic models allow the probabilistic modeling of term frequency occurrences in documents. The fitted model can be used to estimate the similarity between documents as well as between a set of specified keywords using an additional layer of latent variables which are referred to as topics. The R package topicmodels provides basic infrastructure for fitting topic models based on data structures from the text mining package tm. The package includes interfaces to two algorithms for fitting topic models: the variational expectation-maximization algorithm provided by David M. Blei and co-authors and an algorithm using Gibbs sampling by Xuan-Hieu Phan and co-authors.
Laura Chaddock-Heyman
2015-01-01
As breast cancer treatment is associated with declines in brain and cognitive health, it is important to identify strategies to enhance the cognitive vitality of cancer survivors. In particular, the hippocampus is known to play an important role in brain and memory declines following cancer treatment. The hippocampus is also known for its plasticity and positive association with cardiorespiratory fitness. The present study explores whether cardiorespiratory fitness may hold promise for lesse...
An R package for fitting age, period and cohort models
Directory of Open Access Journals (Sweden)
Adriano Decarli
2014-11-01
Full Text Available In this paper we present the R implementation of a GLIM macro which fits age-period-cohort model following Osmond and Gardner. In addition to the estimates of the corresponding model, owing to the programming capability of R as an object oriented language, methods for printing, plotting and summarizing the results are provided. Furthermore, the researcher has fully access to the output of the main function (apc which returns all the models fitted within the function. It is so possible to critically evaluate the goodness of fit of the resulting model.
Taylor, Deborah L.; Nichols, Jeanne F.; Pakiz, Bilgé; Bardwell, Wayne A.; Flatt, Shirley W.; Rock, Cheryl L.
2010-01-01
Background Breast cancer survivors not only experience distressing physical symptoms associated with treatments, but also are faced with psychosocial challenges. Despite growing scientific evidence that physical activity (PA) may mitigate psychosocial distress experienced by women treated for breast cancer, the literature is equivocal. Purpose This study investigated the relationships between cardiorespiratory fitness (CRF), PA, and psychosocial factors in breast cancer survivors. Method Data...
Person-fit to the Five Factor Model of personality
Allik, J.; Realo, A; Mõttus, R.; Borkenau, P.; Kuppens, P.; Hřebíčková, M.
2012-01-01
The Five Factor Model (FFM), a valid model of interindividual differences in the personality of a group of people, reportedly does not always provide a good fit for the individuals of that group. In addition to intraindividual variation across a considerable period of time, meaningful intraindividual variation can be observed within a single test administration. Two person-fit indices showed that the FFM is an adequate model for 95% of the 1,765 target-judge pairs in four different countries ...
Tainted Evidence: Cosmological Model Selection vs. Fitting
Linder, E V; Linder, Eric V.; Miquel, Ramon
2007-01-01
Interpretation of cosmological data to determine the number and values of parameters describing the universe must not rely solely on statistics but involve physical insight. Statistical techniques such as "model selection" or "integrated survey optimization" blindly apply Occam's Razor - this can lead to painful results. We emphasize that the sensitivity to prior probabilities and to the number of models compared can lead to "prior selection" rather than robust model selection. A concrete example demonstrates that Information Criteria can in fact misinform over a large region of parameter space.
FITTING PHOTOIONIZATION MODELS TO PLANETARY NEBULAE
Directory of Open Access Journals (Sweden)
J. Bohigas
2009-01-01
Full Text Available Good to excellent photoionization models based on the Cloudy code were obtained for 13 out of 19 spectra of planetary nebulae. The two most important assumptions are that the photoionizing continuum is a Rauch model star, with gravity set by the condition that the stellar mass must be 1 M , and density is constant and determined from the observed [S II]6717/6731 ratio. The temperature and luminosity of the central star, the inner radius of the nebula and the abundance of carbon are treated as free parameters in each model run, destined to obtain the best possible t to the relative intensities of He II 4686, [O III]5007 and [N II]6584. Observed and modeled nebular temperatures derived from [N II] (6548+6584 /5755 agree within 10%, but models usually underestimate temperatures found from [O III] (4959+5007 /4363, more so when the slit does not cover the in-depth extent of the ionized region. Helium, nitrogen, oxygen, neon, sulfur and argon model abundances are uncertain at the 15%, 15%, 10%, 7%, 30% and 7% level. It is shown that neon abundance in PNe has been consistently overestimated, and an alternative ionization correction factor is recommended.
How Good Are Statistical Models at Approximating Complex Fitness Landscapes?
du Plessis, Louis; Leventhal, Gabriel E; Bonhoeffer, Sebastian
2016-09-01
Fitness landscapes determine the course of adaptation by constraining and shaping evolutionary trajectories. Knowledge of the structure of a fitness landscape can thus predict evolutionary outcomes. Empirical fitness landscapes, however, have so far only offered limited insight into real-world questions, as the high dimensionality of sequence spaces makes it impossible to exhaustively measure the fitness of all variants of biologically meaningful sequences. We must therefore revert to statistical descriptions of fitness landscapes that are based on a sparse sample of fitness measurements. It remains unclear, however, how much data are required for such statistical descriptions to be useful. Here, we assess the ability of regression models accounting for single and pairwise mutations to correctly approximate a complex quasi-empirical fitness landscape. We compare approximations based on various sampling regimes of an RNA landscape and find that the sampling regime strongly influences the quality of the regression. On the one hand it is generally impossible to generate sufficient samples to achieve a good approximation of the complete fitness landscape, and on the other hand systematic sampling schemes can only provide a good description of the immediate neighborhood of a sequence of interest. Nevertheless, we obtain a remarkably good and unbiased fit to the local landscape when using sequences from a population that has evolved under strong selection. Thus, current statistical methods can provide a good approximation to the landscape of naturally evolving populations. PMID:27189564
MAPCLUS: A Mathematical Programming Approach to Fitting the ADCLUS Model.
Arabie, Phipps
1980-01-01
A new computing algorithm, MAPCLUS (Mathematical Programming Clustering), for fitting the Shephard-Arabie ADCLUS (Additive Clustering) model is presented. Details and benefits of the algorithm are discussed. (Author/JKS)
Fitting polytomous Rasch models in SAS
DEFF Research Database (Denmark)
Christensen, Karl Bang
2006-01-01
The item parameters of a polytomous Rasch model can be estimated using marginal and conditional approaches. This paper describes how this can be done in SAS (V8.2) for three item parameter estimation procedures: marginal maximum likelihood estimation, conditional maximum likelihood estimation, an...
Relative and Absolute Fit Evaluation in Cognitive Diagnosis Modeling
Chen, Jinsong; de la Torre, Jimmy; Zhang, Zao
2013-01-01
As with any psychometric models, the validity of inferences from cognitive diagnosis models (CDMs) determines the extent to which these models can be useful. For inferences from CDMs to be valid, it is crucial that the fit of the model to the data is ascertained. Based on a simulation study, this study investigated the sensitivity of various fit…
Goodness-of-fit methods for nonparametric IRT models
K. Sijtsma; J.H. Straat; L.A. van der Ark
2014-01-01
This chapter has three sections. The first section introduces the unidimensionalmonotone latent variable model for data collected by means of a test or a questionnaire. The second section discusses the use of goodness-of-fit methods for statistical models, in particular, item response models such as
Akaike information criterion to select well-fit resist models
Burbine, Andrew; Fryer, David; Sturtevant, John
2015-03-01
In the field of model design and selection, there is always a risk that a model is over-fit to the data used to train the model. A model is well suited when it describes the physical system and not the stochastic behavior of the particular data collected. K-fold cross validation is a method to check this potential over-fitting to the data by calibrating with k-number of folds in the data, typically between 4 and 10. Model training is a computationally expensive operation, however, and given a wide choice of candidate models, calibrating each one repeatedly becomes prohibitively time consuming. Akaike information criterion (AIC) is an information-theoretic approach to model selection based on the maximized log-likelihood for a given model that only needs a single calibration per model. It is used in this study to demonstrate model ranking and selection among compact resist modelforms that have various numbers and types of terms to describe photoresist behavior. It is shown that there is a good correspondence of AIC to K-fold cross validation in selecting the best modelform, and it is further shown that over-fitting is, in most cases, not indicated. In modelforms with more than 40 fitting parameters, the size of the calibration data set benefits from additional parameters, statistically validating the model complexity.
Automatic fitting of spiking neuron models to electrophysiological recordings
Directory of Open Access Journals (Sweden)
Cyrille Rossant
2010-03-01
Full Text Available Spiking models can accurately predict the spike trains produced by cortical neurons in response to somatically injected currents. Since the specific characteristics of the model depend on the neuron, a computational method is required to fit models to electrophysiological recordings. The fitting procedure can be very time consuming both in terms of computer simulations and in terms of code writing. We present algorithms to fit spiking models to electrophysiological data (time-varying input and spike trains that can run in parallel on graphics processing units (GPUs. The model fitting library is interfaced with Brian, a neural network simulator in Python. If a GPU is present it uses just-in-time compilation to translate model equations into optimized code. Arbitrary models can then be defined at script level and run on the graphics card. This tool can be used to obtain empirically validated spiking models of neurons in various systems. We demonstrate its use on public data from the INCF Quantitative Single-Neuron Modeling 2009 competition by comparing the performance of a number of neuron spiking models.
HDFITS: porting the FITS data model to HDF5
Price, D C; Greenhill, L J
2015-01-01
The FITS (Flexible Image Transport System) data format has been the de facto data format for astronomy-related data products since its inception in the late 1970s. While the FITS file format is widely supported, it lacks many of the features of more modern data serialization, such as the Hierarchical Data Format (HDF5). The HDF5 file format offers considerable advantages over FITS, such as improved I/O speed and compression, but has yet to gain widespread adoption within astronomy. One of the major holdbacks is that HDF5 is not well supported by data reduction software packages and image viewers. Here, we present a comparison of FITS and HDF5 as a format for storage of astronomy datasets. We show that the underlying data model of FITS can be ported to HDF5 in a straightforward manner, and that by doing so the advantages of the HDF5 file format can be leveraged immediately. In addition, we present a software tool, fits2hdf, for converting between FITS and a new `HDFITS' format, where data are stored in HDF5 in...
Mouse models of pancreatic cancer
Institute of Scientific and Technical Information of China (English)
Marta Herreros-Villanueva; Elizabeth Hijona; Angel Cosme; Luis Bujanda
2012-01-01
Pancreatic cancer is one of the most lethal of human malignancies ranking 4th among cancer-related death in the western world and in the United States,and potent therapeutic options are lacking.Although during the last few years there have been important advances in the understanding of the molecular events responsible for the development of pancreatic cancer,currently specific mechanisms of treatment resistance remain poorly understood and new effective systemic drugs need to be developed and probed.In vivo models to study pancreatic cancer and approach this issue remain limited and present different molecular features that must be considered in the studies depending on the purpose to fit special research themes.In the last few years,several genetically engineered mouse models of pancreatic exocrine neoplasia have been developed.These models mimic the disease as they reproduce genetic alterations implicated in the progression of pancreatic cancer.Genetic alterations such as activating mutations in KRas,or TGFb and/or inactivation of tumoral suppressors such as p53,INK4A/ARF BRCA2 and Smad4 are the most common drivers to pancreatic carcinogenesis and have been used to create transgenic mice.These mouse models have a spectrum of pathologic changes,from pancreatic intraepithelial neoplasia to lesions that progress histologically culminating in fully invasive and metastatic disease and represent the most useful preclinical model system.These models can characterize the cellular and molecular pathology of pancreatic neoplasia and cancer and constitute the best tool to investigate new therapeutic approaches,chemopreventive and/or anticancer treatments.Here,we review and update the current mouse models that reproduce different stages of human pancreatic ductal adenocarcinoma and will have clinical relevance in future pancreatic cancer developments.
Detailed Atmosphere Model Fits to Disk-Dominated ULX Spectra
Hui, Y; Krolik, Julian H.
2008-01-01
We have chosen 6 Ultra-Luminous X-ray sources from the {\\it XMM-Newton} archive whose spectra have high signal-to-noise and can be fitted solely with a disk model without requiring any power-law component. To estimate systematic errors in the inferred parameters, we fit every spectrum to two different disk models, one based on local blackbody emission (KERRBB) and one based on detailed atmosphere modelling (BHSPEC). Both incorporate full general relativistic treatment of the disk surface brig...
Curve Fitting And Interpolation Model Applied In Nonel Dosage Detection
Directory of Open Access Journals (Sweden)
Jiuling Li
2013-06-01
Full Text Available The Curve Fitting and Interpolation Model are applied in Nonel dosage detection in this paper firstly, and the gray of continuous explosive in the Nonel has been forecasted. Although the traditional infrared equipment establishes the relationship of explosive dosage and light intensity, but the forecast accuracy is very low. Therefore, gray prediction models based on curve fitting and interpolation are framed separately, and the deviations from the different models are compared. Simultaneously, combining on the sample library features, the cubic polynomial fitting curve of the higher precision is used to predict grays, and 5mg-28mg Nonel gray values are calculated by MATLAB. Through the predictive values, the dosage detection operations are simplified, and the defect missing rate of the Nonel are reduced. Finally, the quality of Nonel is improved.
Flexible competing risks regression modeling and goodness-of-fit
DEFF Research Database (Denmark)
Scheike, Thomas; Zhang, Mei-Jie
2008-01-01
In this paper we consider different approaches for estimation and assessment of covariate effects for the cumulative incidence curve in the competing risks model. The classic approach is to model all cause-specific hazards and then estimate the cumulative incidence curve based on these cause......-specific hazards. Another recent approach is to directly model the cumulative incidence by a proportional model (Fine and Gray, J Am Stat Assoc 94:496-509, 1999), and then obtain direct estimates of how covariates influences the cumulative incidence curve. We consider a simple and flexible class of regression...... models that is easy to fit and contains the Fine-Gray model as a special case. One advantage of this approach is that our regression modeling allows for non-proportional hazards. This leads to a new simple goodness-of-fit procedure for the proportional subdistribution hazards assumption that is very easy...
Directory of Open Access Journals (Sweden)
Mumtaz Ali Memon
2014-12-01
Full Text Available Past studies revealed that the existence of congruence between employees and their job as well as organisation produces more favourable attitudes and behaviours. Although considerable research has been conducted on the person-job (P-J fit and person-organization (P-O fit, an in depth review of the literature identifies several research gaps. First, studies have largely focused on examining P-J fit and P-O fit separately. In addition, the relationship of P-J fit and P-O fit, and employee engagement has been less discussed. Lastly, most often studies investigated how antecedents predict outcomes but minimal effort has been made to explore the consequences of these outcomes. This paper makes a twofold contribution. First, it conceptually integrates both P-O fit and P-J fit into a single model. Second, the paper proposes a three-step model that theoretically links P-J fit and P-O fit (antecedents to employee engagement (outcome and turnover intention (consequence. The addition of a third-step would support the evaluation of the outcomes (in terms of the consequences of the overall model and extend the overall scope of the framework. Social exchange theory, Lewin’s field theory, multidimensional model of employee engagement and self-concept-job fit theory are adopted in developing the theoretical linkages among the constructs. Recommendations for future studies are proposed.
Time-domain fitting of battery electrochemical impedance models
Alavi, S. M. M.; Birkl, C. R.; Howey, D. A.
2015-08-01
Electrochemical impedance spectroscopy (EIS) is an effective technique for diagnosing the behaviour of electrochemical devices such as batteries and fuel cells, usually by fitting data to an equivalent circuit model (ECM). The common approach in the laboratory is to measure the impedance spectrum of a cell in the frequency domain using a single sine sweep signal, then fit the ECM parameters in the frequency domain. This paper focuses instead on estimation of the ECM parameters directly from time-domain data. This may be advantageous for parameter estimation in practical applications such as automotive systems including battery-powered vehicles, where the data may be heavily corrupted by noise. The proposed methodology is based on the simplified refined instrumental variable for continuous-time fractional systems method ('srivcf'), provided by the Crone toolbox [1,2], combined with gradient-based optimisation to estimate the order of the fractional term in the ECM. The approach was tested first on synthetic data and then on real data measured from a 26650 lithium-ion iron phosphate cell with low-cost equipment. The resulting Nyquist plots from the time-domain fitted models match the impedance spectrum closely (much more accurately than when a Randles model is assumed), and the fitted parameters as separately determined through a laboratory potentiostat with frequency domain fitting match to within 13%.
Evolution in random fitness landscapes: the infinite sites model
International Nuclear Information System (INIS)
We consider the evolution of an asexually reproducing population in an uncorrelated random fitness landscape in the limit of infinite genome size, which implies that each mutation generates a new fitness value drawn from a probability distribution g(w). This is the finite population version of Kingman's house of cards model (Kingman 1978 J. Appl. Probab. 15 1). In contrast to Kingman's work, the focus here is on unbounded distributions g(w) which lead to an indefinite growth of the population fitness. The model is solved analytically in the limit of infinite population size N→∞ and simulated numerically for finite N. When the genome-wide mutation probability U is small, the long-time behavior of the model reduces to a point process of fixation events, which is referred to as a diluted record process (DRP). The DRP is similar to the standard record process except that a new record candidate (a number that exceeds all previous entries in the sequence) is accepted only with a certain probability that depends on the values of the current record and the candidate. We develop a systematic analytic approximation scheme for the DRP. At finite U the fitness frequency distribution of the population decomposes into a stationary part due to mutations and a traveling wave component due to selection, which is shown to imply a reduction of the mean fitness by a factor of 1−U compared to the U→0 limit
A Unified, Hardware-Fitted, Cross-GPU Performance Model
Stevens, James; Klöckner, Andreas
2016-01-01
We present a mechanism to symbolically gather performance-relevant operation counts from numerically-oriented subprograms (`kernels') expressed in the Loopy programming system, and apply these counts in a simple, linear model of kernel run time. We use a series of `performance-instructive' kernels to fit the parameters of a unified model to the performance characteristics of GPU hardware from multiple hardware generations and vendors. We evaluate the predictive power of the model on a broad a...
Ongoing Processes in a Fitness Network Model under Restricted Resources.
Directory of Open Access Journals (Sweden)
Takayuki Niizato
Full Text Available In real networks, the resources that make up the nodes and edges are finite. This constraint poses a serious problem for network modeling, namely, the compatibility between robustness and efficiency. However, these concepts are generally in conflict with each other. In this study, we propose a new fitness-driven network model for finite resources. In our model, each individual has its own fitness, which it tries to increase. The main assumption in fitness-driven networks is that incomplete estimation of fitness results in a dynamical growing network. By taking into account these internal dynamics, nodes and edges emerge as a result of exchanges between finite resources. We show that our network model exhibits exponential distributions in the in- and out-degree distributions and a power law distribution of edge weights. Furthermore, our network model resolves the trade-off relationship between robustness and efficiency. Our result suggests that growing and anti-growing networks are the result of resolving the trade-off problem itself.
Person-fit to the Five Factor Model of personality
Czech Academy of Sciences Publication Activity Database
Allik, J.; Realo, A.; Mõttus, R.; Borkenau, P.; Kuppens, P.; Hřebíčková, Martina
2012-01-01
Roč. 71, č. 1 (2012), s. 35-45. ISSN 1421-0185 R&D Projects: GA ČR GAP407/10/2394 Institutional research plan: CEZ:AV0Z70250504 Keywords : Five Factor Model * cross-cultural comparison * person-fit Subject RIV: AN - Psychology Impact factor: 0.638, year: 2012
Assessing fit in Bayesian models for spatial processes
Jun, M.
2014-09-16
© 2014 John Wiley & Sons, Ltd. Gaussian random fields are frequently used to model spatial and spatial-temporal data, particularly in geostatistical settings. As much of the attention of the statistics community has been focused on defining and estimating the mean and covariance functions of these processes, little effort has been devoted to developing goodness-of-fit tests to allow users to assess the models\\' adequacy. We describe a general goodness-of-fit test and related graphical diagnostics for assessing the fit of Bayesian Gaussian process models using pivotal discrepancy measures. Our method is applicable for both regularly and irregularly spaced observation locations on planar and spherical domains. The essential idea behind our method is to evaluate pivotal quantities defined for a realization of a Gaussian random field at parameter values drawn from the posterior distribution. Because the nominal distribution of the resulting pivotal discrepancy measures is known, it is possible to quantitatively assess model fit directly from the output of Markov chain Monte Carlo algorithms used to sample from the posterior distribution on the parameter space. We illustrate our method in a simulation study and in two applications.
The global electroweak Standard Model fit after the Higgs discovery
Baak, Max
2013-01-01
We present an update of the global Standard Model (SM) fit to electroweak precision data under the assumption that the new particle discovered at the LHC is the SM Higgs boson. In this scenario all parameters entering the calculations of electroweak precision observalbes are known, allowing, for the first time, to over-constrain the SM at the electroweak scale and assert its validity. Within the SM the W boson mass and the effective weak mixing angle can be accurately predicted from the global fit. The results are compatible with, and exceed in precision, the direct measurements. An updated determination of the S, T and U parameters, which parametrize the oblique vacuum corrections, is given. The obtained values show good consistency with the SM expectation and no direct signs of new physics are seen. We conclude with an outlook to the global electroweak fit for a future e+e- collider.
Fit & Strong! Promotes Physical Activity and Well-Being in Older Cancer Survivors
Reynolds, Jana; Thibodeaux, Lorie; Jiang, Luohua; Francis, Kevin; Hochhalter, Angie
2015-01-01
Introduction Physical activity reduces fatigue and depression while improving quality of life in cancer survivors. Exercise is generally considered safe and is recommended to survivors of all ages. Despite the high prevalence of cancer in the elderly, few studies address physical activity interventions targeting this older population. Fit & Strong! is an evidence-based physical activity program shown to improve level of physical activity, exercise-self-efficacy, and mood in older adults wi...
Peel, J. Brent; Sui, Xuemei; Matthews, Charles E.; Adams, Swann A; Hébert, James R; Hardin, James W.; Timothy S Church; Blair, Steven N.
2009-01-01
Although higher levels of physical activity are inversely associated with risk of colon cancer, few prospective studies have evaluated overall digestive system cancer mortality in relation to cardiorespiratory fitness (CRF). The authors examined this association among 38,801 men aged 20−88 years and who performed a maximal treadmill exercise test at baseline in the Aerobics Center Longitudinal Study (Dallas, Texas) during 1974−2003. Mortality was assessed over 29 years of follow-up (1974−2003...
Strategies for fitting nonlinear ecological models in R, AD Model Builder, and BUGS
DEFF Research Database (Denmark)
Bolker, B.M.; Gardner, B.; Maunder, M.;
2013-01-01
Ecologists often use nonlinear fitting techniques to estimate the parameters of complex ecological models, with attendant frustration. This paper compares three open-source model fitting tools and discusses general strategies for defining and fitting models. R is convenient and (relatively) easy to...... learn, AD Model Builder is fast and robust but comes with a steep learning curve, while BUGS provides the greatest flexibility at the price of speed. Our model-fitting suggestions range from general cultural advice (where possible, use the tools and models that are most common in your subfield) to...
Accumulation and modeling of particles in drinking water pipe fittings
Directory of Open Access Journals (Sweden)
K. Neilands
2012-09-01
Full Text Available The effect of pipe fittings (mainly T-pieces on particle accumulation in drinking water distribution networks were shown in this work. The online measurements of flow and turbidity for cast iron, polyethylene and polyvinyl chloride pipe sections were linked with analysis of pipe geometry. Up to 0.29 kg of the total amount mobilized in T-pieces ranging from DN 100/100–DN 250/250. The accumulated amount of particles in fittings was defined as J and introduced into the existing turbidity model PODDS (prediction of discoloration in distribution systems proposed by Boxall et al. (2001 which describes the erosion of particles leading to discoloration events in drinking water network viz sections of straight pipes. However, this work does not interpret mobilization of particles in pipe fittings which have been considered in this article. T-pieces were the object of this study and depending of the diameter or daily flow velocity, the coefficient J varied from 1.16 to 8.02. The study showed that pipe fittings act as catchment areas for particle accumulation in drinking water networks.
Error propagation with R-matrix model fitting
Institute of Scientific and Technical Information of China (English)
CHEN; Zhenpeng(陈振鹏); ZHANG; Rui(张瑞); SUN; Yeying(孙业英); LIU; Tingjin(刘廷进)
2003-01-01
The error propagation features with R-matrix model fitting 7Li, 11B and 17O systems have been researched systematically. Some laws of error propagation have been revealed, an experience formula for describing standard error propagation has been established, and the most possible error range for evaluated standard cross section of 6Li (n, α), 10B (n, α) and 10B (n, α1) has been determined.
Broadband distortion modeling in Lyman-$\\alpha$ forest BAO fitting
Blomqvist, Michael; Bautista, Julian E; Ariño, Andreu; Busca, Nicolás G; Miralda-Escudé, Jordi; Slosar, Anže; Font-Ribera, Andreu; Margala, Daniel; Schneider, Donald P; Vazquez, Jose A
2015-01-01
In recent years, the Lyman-$\\alpha$ absorption observed in the spectra of high-redshift quasars has been used as a tracer of large-scale structure by means of the three-dimensional Lyman-$\\alpha$ forest auto-correlation function at redshift $z\\simeq 2.3$, but the need to fit the quasar continuum in every absorption spectrum introduces a broadband distortion that is difficult to correct and causes a systematic error for measuring any broadband properties. We describe a $k$-space model for this broadband distortion based on a multiplicative correction to the power spectrum of the transmitted flux fraction that suppresses power on scales corresponding to the typical length of a Lyman-$\\alpha$ forest spectrum. Implementing the distortion model in fits for the baryon acoustic oscillation (BAO) peak position in the Lyman-$\\alpha$ forest auto-correlation, we find that the fitting method recovers the input values of the linear bias parameter $b_{F}$ and the redshift-space distortion parameter $\\beta_{F}$ for mock dat...
Bosone, Lucia; Martinez, Frédéric; Kalampalikis, Nikos
2015-04-01
In health-promotional campaigns, positive and negative role models can be deployed to illustrate the benefits or costs of certain behaviors. The main purpose of this article is to investigate why, how, and when exposure to role models strengthens the persuasiveness of a message, according to regulatory fit theory. We argue that exposure to a positive versus a negative model activates individuals' goals toward promotion rather than prevention. By means of two experiments, we demonstrate that high levels of persuasion occur when a message advertising healthy dietary habits offers a regulatory fit between its framing and the described role model. Our data also establish that the effects of such internal regulatory fit by vicarious experience depend on individuals' perceptions of response-efficacy and self-efficacy. Our findings constitute a significant theoretical complement to previous research on regulatory fit and contain valuable practical implications for health-promotional campaigns. PMID:25680684
Accumulation and modeling of particles in drinking water pipe fittings
Directory of Open Access Journals (Sweden)
K. Neilands
2012-04-01
Full Text Available The effect of pipe fittings – mainly T-pieces – on particle accumulation in drinking water distribution networks is shown in this work. The online measurements of flow and turbidity for cast iron, polyethylene and polyvinylchloride pipe sections have been linked with the analysis of pipe geometry. Up to 0.29 kg of the total mass of particles was found to be accumulated in T-pieces ranging from DN 100/100–DN 250/250. The accumulated amount of particles in the fittings was defined as J and introduced into the existing turbidity model PODDS (Prediction of Discolouration in Distribution Systems proposed by Boxall et al. (2001, which describes the erosion of particles leading to discoloration events in drinking water networks, viz. sections, of straight pipes. It does not interpret the mobilization of particles in pipe fittings, however, which have been considered in this article. T-pieces were the object of this study and depending on the diameter or daily flow velocity, the coefficient J varied from 1.16 to 8.02.
Rapid world modeling: Fitting range data to geometric primitives
International Nuclear Information System (INIS)
For the past seven years, Sandia National Laboratories has been active in the development of robotic systems to help remediate DOE's waste sites and decommissioned facilities. Some of these facilities have high levels of radioactivity which prevent manual clean-up. Tele-operated and autonomous robotic systems have been envisioned as the only suitable means of removing the radioactive elements. World modeling is defined as the process of creating a numerical geometric model of a real world environment or workspace. This model is often used in robotics to plan robot motions which perform a task while avoiding obstacles. In many applications where the world model does not exist ahead of time, structured lighting, laser range finders, and even acoustical sensors have been used to create three dimensional maps of the environment. These maps consist of thousands of range points which are difficult to handle and interpret. This paper presents a least squares technique for fitting range data to planar and quadric surfaces, including cylinders and ellipsoids. Once fit to these primitive surfaces, the amount of data associated with a surface is greatly reduced up to three orders of magnitude, thus allowing for more rapid handling and analysis of world data
Directory of Open Access Journals (Sweden)
Stegeman Inge
2012-06-01
Full Text Available Abstract Background Colorectal cancer (CRC is the most common cancer in Europe with a mortality rate of almost 50%. The prognosis of patients is largely determined by the clinical and pathological stage at the time of diagnosis. Population screening has been shown to reduce CRC-related mortality rate. Most screening programs worldwide rely on fecal immunochemical testing (FIT. The effectiveness of a FIT screening program is not only influenced by initial participation rate, but also by program adherence during consecutive screening rounds. We aim to evaluate the participation rate in and yield of a third CRC screening round using FIT. Methods and design Four years after the first screening round and two years after the second round, a total number of approximately 11,000 average risk individuals (50 to 75 years of age will be invited to participate in a third round of FIT-based CRC screening. We will select individuals in the same target area as in the previous screening rounds, using the electronic database of the regional municipal administration registrations. We will invite all FIT-negatives and all non-participants in previous screening rounds, as well as eligible first time invitees who have moved into the area or have become 50 years of age. FITs will be analyzed in the special technique laboratory of the Academic Medical Center of the University of Amsterdam. All FIT-positives will be invited for a consultation at the outpatient clinic. In the absence of contra-indications, a colonoscopy will follow at the Academic Medical Center or at the Flevohospital. The primary outcome measures are the participation rate, defined as the proportion of invitees that return a FIT in this third round of FIT-screening, and the diagnostic yield of the program. Implications This study will provide precise data on the participation in later FIT screening rounds. This enables to estimate the effectiveness of CRC screening programs that rely on repeated
Cavity approach for modeling and fitting polymer stretching
Massucci, Francesco Alessandro; Vicente, Conrad J Pérez
2014-01-01
The mechanical properties of molecules are today captured by single molecule manipulation experiments, so that polymer features are tested at a nanometric scale. Yet devising mathematical models to get further insight beyond the commonly studied force--elongation relation is typically hard. Here we draw from techniques developed in the context of disordered systems to solve models for single and double--stranded DNA stretching in the limit of a long polymeric chain. Since we directly derive the marginals for the molecule local orientation, our approach allows us to readily calculate the experimental elongation as well as other observables at wish. As an example, we evaluate the correlation length as a function of the stretching force. Furthermore, we are able to fit successfully our solution to real experimental data. Although the model is admittedly phenomenological, our findings are very sound. For single--stranded DNA our solution yields the correct (monomer) scale and, yet more importantly, the right pers...
Empirical fitness models for hepatitis C virus immunogen design
Hart, Gregory R.; Ferguson, Andrew L.
2015-12-01
Hepatitis C virus (HCV) afflicts 170 million people worldwide, 2%-3% of the global population, and kills 350 000 each year. Prophylactic vaccination offers the most realistic and cost effective hope of controlling this epidemic in the developing world where expensive drug therapies are not available. Despite 20 years of research, the high mutability of the virus and lack of knowledge of what constitutes effective immune responses have impeded development of an effective vaccine. Coupling data mining of sequence databases with spin glass models from statistical physics, we have developed a computational approach to translate clinical sequence databases into empirical fitness landscapes quantifying the replicative capacity of the virus as a function of its amino acid sequence. These landscapes explicitly connect viral genotype to phenotypic fitness, and reveal vulnerable immunological targets within the viral proteome that can be exploited to rationally design vaccine immunogens. We have recovered the empirical fitness landscape for the HCV RNA-dependent RNA polymerase (protein NS5B) responsible for viral genome replication, and validated the predictions of our model by demonstrating excellent accord with experimental measurements and clinical observations. We have used our landscapes to perform exhaustive in silico screening of 16.8 million T-cell immunogen candidates to identify 86 optimal formulations. By reducing the search space of immunogen candidates by over five orders of magnitude, our approach can offer valuable savings in time, expense, and labor for experimental vaccine development and accelerate the search for a HCV vaccine. Abbreviations: HCV—hepatitis C virus, HLA—human leukocyte antigen, CTL—cytotoxic T lymphocyte, NS5B—nonstructural protein 5B, MSA—multiple sequence alignment, PEG-IFN—pegylated interferon.
Peel, J Brent; Sui, Xuemei; Matthews, Charles E; Adams, Swann A; Hébert, James R; Hardin, James W; Church, Timothy S; Blair, Steven N
2009-04-01
Although higher levels of physical activity are inversely associated with risk of colon cancer, few prospective studies have evaluated overall digestive system cancer mortality in relation to cardiorespiratory fitness (CRF). The authors examined this association among 38,801 men ages 20 to 88 years who performed a maximal treadmill exercise test at baseline in the Aerobics Center Longitudinal Study (Dallas, TX) during 1974 to 2003. Mortality was assessed over 29 years of follow-up (1974-2003). Two hundred eighty-three digestive system cancer deaths occurred during a mean 17 years of observation. Age-adjusted mortality rates per 10,000 person-years according to low, moderate, and high CRF groups were 6.8, 4.0, and 3.3 for digestive system cancer (P(trend) < 0.001). After adjustment for age, examination year, body mass index, smoking, drinking, family history of cancer, personal history of diabetes, hazard ratios (95% confidence intervals) for overall digestive cancer deaths for those in the middle and upper 40% of the distribution of CRF relative to those in the lowest 20% were 0.66 (0.49-0.88) and 0.56 (0.40-0.80), respectively. Being fit (the upper 80% of CRF) was associated with a lower risk of mortality from colon [0.61 (0.37-1.00)], colorectal [0.58 (0.37-0.92)], and liver cancer [0.28 (0.11-0.72)] compared with being unfit (the lowest 20% of CRF). These findings support a protective role of CRF against total digestive tract, colorectal, and liver cancer deaths in men. PMID:19293313
Peel, J. Brent; Sui, Xuemei; Matthews, Charles E.; Adams, Swann A.; Hébert, James R.; Hardin, James W.; Church, Timothy S.; Blair, Steven N.
2009-01-01
Although higher levels of physical activity are inversely associated with risk of colon cancer, few prospective studies have evaluated overall digestive system cancer mortality in relation to cardiorespiratory fitness (CRF). The authors examined this association among 38,801 men aged 20−88 years and who performed a maximal treadmill exercise test at baseline in the Aerobics Center Longitudinal Study (Dallas, Texas) during 1974−2003. Mortality was assessed over 29 years of follow-up (1974−2003). 283 digestive system cancer deaths occurred during a mean 17-year of observation. Age-adjusted mortality rates per 10,000 person-yrs according to low, moderate, and high CRF groups were 6.8, 4.0, and 3.3 for digestive system cancer (trend p < 0.001). After adjustment for age, examination year, body mass index, smoking, drinking, family history of cancer, personal history of diabetes, hazard ratios for overall digestive cancer deaths (95% confidence interval) for those in the middle and upper 40% of the distribution of CRF relative to those in the lowest 20% were 0.66 (0.49, 0.88) and 0.56 (0.40, 0.80), respectively. Being fit (the upper 80% of CRF) was associated with a lower risk of mortality from colon (0.61 [0.37, 1.00]), colorectal (0.58 [0.37, 0.92]), and liver cancer (0.28 [0.11, 0.72]), compared with being unfit (the lowest 20% of CRF). These findings support a protective role of CRF against total digestive tract, colorectal, and liver cancer deaths in men. PMID:19293313
High-Resolution CRISPR Screens Reveal Fitness Genes and Genotype-Specific Cancer Liabilities.
Hart, Traver; Chandrashekhar, Megha; Aregger, Michael; Steinhart, Zachary; Brown, Kevin R; MacLeod, Graham; Mis, Monika; Zimmermann, Michal; Fradet-Turcotte, Amelie; Sun, Song; Mero, Patricia; Dirks, Peter; Sidhu, Sachdev; Roth, Frederick P; Rissland, Olivia S; Durocher, Daniel; Angers, Stephane; Moffat, Jason
2015-12-01
The ability to perturb genes in human cells is crucial for elucidating gene function and holds great potential for finding therapeutic targets for diseases such as cancer. To extend the catalog of human core and context-dependent fitness genes, we have developed a high-complexity second-generation genome-scale CRISPR-Cas9 gRNA library and applied it to fitness screens in five human cell lines. Using an improved Bayesian analytical approach, we consistently discover 5-fold more fitness genes than were previously observed. We present a list of 1,580 human core fitness genes and describe their general properties. Moreover, we demonstrate that context-dependent fitness genes accurately recapitulate pathway-specific genetic vulnerabilities induced by known oncogenes and reveal cell-type-specific dependencies for specific receptor tyrosine kinases, even in oncogenic KRAS backgrounds. Thus, rigorous identification of human cell line fitness genes using a high-complexity CRISPR-Cas9 library affords a high-resolution view of the genetic vulnerabilities of a cell. PMID:26627737
A neutrino model fit to the CMB power spectrum
Shanks, T; Schewtschenko, J A; Whitbourn, J R
2014-01-01
The current standard cosmological model, LCDM, provides an excellent fit to the WMAP and Planck CMB data. However, the model has well known problems. For example, the cosmological constant is fine tuned to 1 part in 10^100 and the cold dark matter (CDM) particle is not yet detected in the laboratory. Here we seek an alternative model to LCDM which makes minimal assumptions about new physics. This is based on previous work by Shanks who investigated a model which assumed neither exotic particles nor a cosmological constant but instead postulated a low Hubble constant (H_0) to help allow a baryon density which was compatible with an inflationary model with zero spatial curvature. However, the recent Planck results make it more difficult to reconcile such a model with the cosmic microwave background (CMB) temperature fluctuations. Here we relax the previous assumptions to assess the effects of assuming standard model neutrinos of moderate mass (~5eV) but with no CDM and no cosmological constant. If we assume a l...
The FIT Model - Fuel-cycle Integration and Tradeoffs
Energy Technology Data Exchange (ETDEWEB)
Steven J. Piet; Nick R. Soelberg; Samuel E. Bays; Candido Pereira; Layne F. Pincock; Eric L. Shaber; Meliisa C Teague; Gregory M Teske; Kurt G Vedros
2010-09-01
All mass streams from fuel separation and fabrication are products that must meet some set of product criteria – fuel feedstock impurity limits, waste acceptance criteria (WAC), material storage (if any), or recycle material purity requirements such as zirconium for cladding or lanthanides for industrial use. These must be considered in a systematic and comprehensive way. The FIT model and the “system losses study” team that developed it [Shropshire2009, Piet2010] are an initial step by the FCR&D program toward a global analysis that accounts for the requirements and capabilities of each component, as well as major material flows within an integrated fuel cycle. This will help the program identify near-term R&D needs and set longer-term goals. The question originally posed to the “system losses study” was the cost of separation, fuel fabrication, waste management, etc. versus the separation efficiency. In other words, are the costs associated with marginal reductions in separations losses (or improvements in product recovery) justified by the gains in the performance of other systems? We have learned that that is the wrong question. The right question is: how does one adjust the compositions and quantities of all mass streams, given uncertain product criteria, to balance competing objectives including cost? FIT is a method to analyze different fuel cycles using common bases to determine how chemical performance changes in one part of a fuel cycle (say used fuel cooling times or separation efficiencies) affect other parts of the fuel cycle. FIT estimates impurities in fuel and waste via a rough estimate of physics and mass balance for a set of technologies. If feasibility is an issue for a set, as it is for “minimum fuel treatment” approaches such as melt refining and AIROX, it can help to make an estimate of how performances would have to change to achieve feasibility.
Research on Recruitment Model Based on Person-Organization Fit
Zhen Cheng
2014-01-01
Person-organization fit is a hot problem in the study on human resource management and organizational behavior. To recruit and keep talents who fit company's development will be key to maintain sustainable development and competitiveness and origin.Traditional human resource management focus on person-position fit.People carry out a large number of person-position fit study and apply it to practice. In recent years, researchers begin to realize, in order to achieve the ideal effect, not only ...
Fitting of Parametric Building Models to Oblique Aerial Images
Panday, U. S.; Gerke, M.
2011-09-01
In literature and in photogrammetric workstations many approaches and systems to automatically reconstruct buildings from remote sensing data are described and available. Those building models are being used for instance in city modeling or in cadastre context. If a roof overhang is present, the building walls cannot be estimated correctly from nadir-view aerial images or airborne laser scanning (ALS) data. This leads to inconsistent building outlines, which has a negative influence on visual impression, but more seriously also represents a wrong legal boundary in the cadaster. Oblique aerial images as opposed to nadir-view images reveal greater detail, enabling to see different views of an object taken from different directions. Building walls are visible from oblique images directly and those images are used for automated roof overhang estimation in this research. A fitting algorithm is employed to find roof parameters of simple buildings. It uses a least squares algorithm to fit projected wire frames to their corresponding edge lines extracted from the images. Self-occlusion is detected based on intersection result of viewing ray and the planes formed by the building whereas occlusion from other objects is detected using an ALS point cloud. Overhang and ground height are obtained by sweeping vertical and horizontal planes respectively. Experimental results are verified with high resolution ortho-images, field survey, and ALS data. Planimetric accuracy of 1cm mean and 5cm standard deviation was obtained, while buildings' orientation were accurate to mean of 0.23° and standard deviation of 0.96° with ortho-image. Overhang parameters were aligned to approximately 10cm with field survey. The ground and roof heights were accurate to mean of - 9cm and 8cm with standard deviations of 16cm and 8cm with ALS respectively. The developed approach reconstructs 3D building models well in cases of sufficient texture. More images should be acquired for completeness of
Mouse models of colorectal cancer
Institute of Scientific and Technical Information of China (English)
Yunguang Tong; Wancai Yang; H. Phillip Koeffler
2011-01-01
Colorectal cancer is one of the most common malignancies in the world. Many mouse models have been developed to evaluate features of colorectal cancer in humans. These can be grouped into genetically-engineered, chemically-induced, and inoculated models. However, none recapitulates all of the characteristics of human colorectal cancer. It is critical to use a specific mouse model to address a particular research question. Here, we review commonly used mouse models for human colorectal cancer.
Nguyen, Alexander; Yoshida, Mitsukuni; Goodarzi, Hani; Tavazoie, Sohail F
2016-01-01
Individual cells within a tumour can exhibit distinct genetic and molecular features. The impact of such diversification on metastatic potential is unknown. Here we identify clonal human breast cancer subpopulations that display different levels of morphological and molecular diversity. Highly variable subpopulations are more proficient at metastatic colonization and chemotherapeutic survival. Through single-cell RNA-sequencing, inter-cell transcript expression variability is identified as a defining feature of the highly variable subpopulations that leads to protein-level variation. Furthermore, we identify high variability in the spliceosomal machinery gene set. Engineered variable expression of the spliceosomal gene SNRNP40 promotes metastasis, attributable to cells with low expression. Clinically, low SNRNP40 expression is associated with metastatic relapse. Our findings reveal transcriptomic variability generation as a mechanism by which cancer subpopulations can diversify gene expression states, which may allow for enhanced fitness under changing environmental pressures encountered during cancer progression. PMID:27138336
Rogers, Laura Q.; Courneya, Kerry S.; Anton, Philip M.; Hopkins-Price, Patricia; Verhulst, Steven; Vicari, Sandra K.; Robbs, Randall S.; Mocharnuk, Robert; McAuley, Edward
2014-01-01
Most breast cancer survivors (BCS) are not meeting recommended physical activity guidelines. Here, we report the effects of the Better Exercise Adherence after Treatment for Cancer (BEAT Cancer) behavior change intervention on physical activity, aerobic fitness, and quality of life (QoL). We randomized 222 post-primary treatment BCS to the 3-month intervention (BEAT Cancer) or usual care (UC). BEAT Cancer combined supervised exercise, face-to-face counseling, and group discussions with taperi...
Melbourne, Andrew; Toussaint, Nicolas; Owen, David; Simpson, Ivor; Anthopoulos, Thanasis; De Vita, Enrico; Atkinson, David; Ourselin, Sebastien
2016-07-01
Multi-modal, multi-parametric Magnetic Resonance (MR) Imaging is becoming an increasingly sophisticated tool for neuroimaging. The relationships between parameters estimated from different individual MR modalities have the potential to transform our understanding of brain function, structure, development and disease. This article describes a new software package for such multi-contrast Magnetic Resonance Imaging that provides a unified model-fitting framework. We describe model-fitting functionality for Arterial Spin Labeled MRI, T1 Relaxometry, T2 relaxometry and Diffusion Weighted imaging, providing command line documentation to generate the figures in the manuscript. Software and data (using the nifti file format) used in this article are simultaneously provided for download. We also present some extended applications of the joint model fitting framework applied to diffusion weighted imaging and T2 relaxometry, in order to both improve parameter estimation in these models and generate new parameters that link different MR modalities. NiftyFit is intended as a clear and open-source educational release so that the user may adapt and develop their own functionality as they require. PMID:26972806
Animal Models of Colorectal Cancer
Johnson, Robert L.; Fleet, James C.
2012-01-01
Colorectal cancer is a heterogeneous disease that afflicts a large number of people in the United States. The use of animal models has the potential to increase our understanding of carcinogenesis, tumor biology, and the impact of specific molecular events on colon biology. In addition, animal models with features of specific human colorectal cancers can be used to test strategies for cancer prevention and treatment. In this review we provide an overview of the mechanisms driving human cancer, we discuss the approaches one can take to model colon cancer in animals, and we describe a number of specific animal models that have been developed for the study of colon cancer. We believe that there are many valuable animal models to study various aspects of human colorectal cancer. However, opportunities for improving upon these models exist. PMID:23076650
Wang, Qiaosong; Jagadeesh, Vignesh; Ressler, Bryan; Piramuthu, Robinson
2014-01-01
Recent advances in consumer depth sensors have created many opportunities for human body measurement and modeling. Estimation of 3D body shape is particularly useful for fashion e-commerce applications such as virtual try-on or fit personalization. In this paper, we propose a method for capturing accurate human body shape and anthropometrics from a single consumer grade depth sensor. We first generate a large dataset of synthetic 3D human body models using real-world body size distributions. ...
A New Finite Interval Lifetime Distribution Model for Fitting Bathtub-Shaped Failure Rate Curve
2015-01-01
This paper raised a new four-parameter fitting model to describe bathtub curve, which is widely used in research on components’ life analysis, then gave explanation of model parameters, and provided parameter estimation method as well as application examples utilizing some well-known lifetime data. By comparative analysis between the new model and some existing bathtub curve fitting model, we can find that the new fitting model is very convenient and its parameters are clear; moreover, this m...
Lazarević Ljiljana
2008-01-01
This paper deals with the fit indices used in Structural Equation Modelling (SEM) for testing theoretical models and the difficulties that can occur during the testing of theoretical models in different fields of psychology. The paper discusses the basic assumptions of SEM and presents the indices used for assessing the fit of theoretical models. This paper also presents the procedures for calculating the basic statistic for assessing the fit of models (χ2), as well as for calculating the mos...
A versatile curve-fit model for linear to deeply concave rank abundance curves
Neuteboom, J.H.; Struik, P.C.
2005-01-01
A new, flexible curve-fit model for linear to concave rank abundance curves was conceptualized and validated using observational data. The model links the geometric-series model and log-series model and can also fit deeply concave rank abundance curves. The model is based ¿ in an unconventional way
May, Anne M.; Van Weert, Ellen; Korstjens, Irene; Hoekstra-Weebers, Josette E. H. M.; Van Der Schans, Cees P.; Zonderland, Maria L.; Mesters, Ilse; Van Den Borne, Bart; Ros, Wynand J. G.
2008-01-01
We compared the effect of a group-based 12-week supervised exercise programme, i.e. aerobic and resistance exercise, and group sports, with that of the same programme combined with cognitive-behavioural training on physical fitness and activity of cancer survivors. One hundred and forty seven cancer
Engineered Swine Models of Cancer.
Watson, Adrienne L; Carlson, Daniel F; Largaespada, David A; Hackett, Perry B; Fahrenkrug, Scott C
2016-01-01
Over the past decade, the technology to engineer genetically modified swine has seen many advancements, and because their physiology is remarkably similar to that of humans, swine models of cancer may be extremely valuable for preclinical safety studies as well as toxicity testing of pharmaceuticals prior to the start of human clinical trials. Hence, the benefits of using swine as a large animal model in cancer research and the potential applications and future opportunities of utilizing pigs in cancer modeling are immense. In this review, we discuss how pigs have been and can be used as a biomedical models for cancer research, with an emphasis on current technologies. We have focused on applications of precision genetics that can provide models that mimic human cancer predisposition syndromes. In particular, we describe the advantages of targeted gene-editing using custom endonucleases, specifically TALENs and CRISPRs, and transposon systems, to make novel pig models of cancer with broad preclinical applications. PMID:27242889
Engineered Swine Models of Cancer
Watson, Adrienne L.; Carlson, Daniel F.; Largaespada, David A.; Hackett, Perry B.; Fahrenkrug, Scott C.
2016-01-01
Over the past decade, the technology to engineer genetically modified swine has seen many advancements, and because their physiology is remarkably similar to that of humans, swine models of cancer may be extremely valuable for preclinical safety studies as well as toxicity testing of pharmaceuticals prior to the start of human clinical trials. Hence, the benefits of using swine as a large animal model in cancer research and the potential applications and future opportunities of utilizing pigs in cancer modeling are immense. In this review, we discuss how pigs have been and can be used as a biomedical models for cancer research, with an emphasis on current technologies. We have focused on applications of precision genetics that can provide models that mimic human cancer predisposition syndromes. In particular, we describe the advantages of targeted gene-editing using custom endonucleases, specifically TALENs and CRISPRs, and transposon systems, to make novel pig models of cancer with broad preclinical applications.
Engineered Swine Models of Cancer
Directory of Open Access Journals (Sweden)
Adrienne L. Watson
2016-05-01
Full Text Available Over the past decade, the technology to engineer genetically modified swine has seen many advancements, and because their physiology is remarkably similar to that of humans, swine models of cancer may be extremely valuable for preclinical safety studies as well as toxicity testing of pharmaceuticals prior to the start of human clinical trials. Hence, the benefits of using swine as a large animal model in cancer research and the potential applications and future opportunities of utilizing pigs in cancer modeling are immense. In this review, we discuss how pigs have been and can be used as a biomedical models for cancer research, with an emphasis on current technologies. We have focused on applications of precision genetics that can provide models that mimic human cancer predisposition syndromes. In particular, we describe the advantages of targeted gene-editing using custom endonucleases, specifically TALENs and CRISPRs, and transposon systems, to make novel pig models of cancer with broad preclinical applications.
Tøndel, Kristin; Niederer, Steven A.; Land, Sander; Smith, Nicolas P
2014-01-01
Background Striking a balance between the degree of model complexity and parameter identifiability, while still producing biologically feasible simulations using modelling is a major challenge in computational biology. While these two elements of model development are closely coupled, parameter fitting from measured data and analysis of model mechanisms have traditionally been performed separately and sequentially. This process produces potential mismatches between model and data complexities...
NUTRITION AND FITNESS (PART 1: OBESITY, THE METABOLIC SYNDROME, CARDIOVASCULAR DISEASE, AND CANCER
Directory of Open Access Journals (Sweden)
Artemis P. Simopoulos
2005-12-01
Full Text Available The proceedings of the Fifth International Conference on Nutrition and Fitness held in Athens, Greece, on June 91-2, 2004 are presented in the book as the first volume of the series. The objectives of the book are to review/discuss the latest information on nutrition and fitness by taking into consideration i genetic endowment, ii adaptation to the nutritional factors and the effect of various resources of energy on exercise and performance, iii the epidemiology of obesity, iv the relationship of nutrition and fitness to chronic diseases (cardiovascular diseases, syndrome X, obesity, osteoporosis, diabetes, cancer. The book also discusses the classification system of obesity in several countries and compares the diets used in several regions/countries. FEATURES A common, uniform strategy and evidence-based approach to organizing and interpreting the literature is used in all chapters. This textbook is composed of three parts with sub-sections in three of them. The topics of the parts are: i Obesity and Metabolic Syndrome, ii Coronary Heart Disease and iii Cancer. In each specific chapter, an epidemiological picture has been systematically developed from the data available in prospective, retrospective, case-control, and cross-sectional studies. The tables and figures are numerous, helpful and very useful. AUDIENCE This book is almost a compulsory reading for anyone interested in cardiovascular system, nutrition, metabolism, social and preventive medicine, clinical nutrition, diabetics, genetics, obesity, public health, sports medicine and for those wishing to run comprehensive research in this and relevant areas. The fact that the contributors are leading international researchers in this field makes this book more welcome. ASSESSMENT This book is almost a compulsory reading for anyone interested in pediatric injuries and for those wishing to run comprehensive research in this and relevant areas. The fact that the contributors are leading
MASSONNET, Goele; Janssen, Paul; Burzykowski, Tomasz
2008-01-01
Frailty models are widely used to model clustered survival data. Classical ways to fit frailty models are likelihood-based. We propose an alternative approach in which the original problem of "fitting a frailty model" is reformulated into the problem of "fitting a linear mixed model" using model transformation. We show that the transformation idea also works for multivariate proportional odds models and for multivariate additive risks models. It therefore bridges segregated methodologies as i...
An Application of M[subscript 2] Statistic to Evaluate the Fit of Cognitive Diagnostic Models
Liu, Yanlou; Tian, Wei; Xin, Tao
2016-01-01
The fit of cognitive diagnostic models (CDMs) to response data needs to be evaluated, since CDMs might yield misleading results when they do not fit the data well. Limited-information statistic M[subscript 2] and the associated root mean square error of approximation (RMSEA[subscript 2]) in item factor analysis were extended to evaluate the fit of…
Convergence, Admissibility, and Fit of Alternative Confirmatory Factor Analysis Models for MTMM Data
Lance, Charles E.; Fan, Yi
2016-01-01
We compared six different analytic models for multitrait-multimethod (MTMM) data in terms of convergence, admissibility, and model fit to 258 samples of previously reported data. Two well-known models, the correlated trait-correlated method (CTCM) and the correlated trait-correlated uniqueness (CTCU) models, were fit for reference purposes in…
Finch, W. Holmes; Finch, Maria E. Hernandez
2016-01-01
Researchers and data analysts are sometimes faced with the problem of very small samples, where the number of variables approaches or exceeds the overall sample size; i.e. high dimensional data. In such cases, standard statistical models such as regression or analysis of variance cannot be used, either because the resulting parameter estimates…
Mouse models for cancer research
Institute of Scientific and Technical Information of China (English)
Wei Zhang; Lynette Moore; Ping Ji
2011-01-01
Mouse models of cancer enable researchers to leamn about tumor biology in complicated and dynamic physiological systems. Since the development of gene targeting in mice, cancer biologists have been among the most frequent users of transgenic mouse models, which have dramatically increased knowledge about how cancers form and grow. The Chinese Joumnal of Cancer will publish a series of papers reporting the use of mouse models in studying genetic events in cancer cases. This editorial is an overview of the development and applications of mouse models of cancer and directs the reader to upcoming papers describing the use of these models to be published in coming issues, beginning with three articles in the current issue.
Accumulation and modeling of particles in drinking water pipe fittings
K. Neilands; M. Bernats; J. Rubulis
2012-01-01
The effect of pipe fittings (mainly T-pieces) on particle accumulation in drinking water distribution networks were shown in this work. The online measurements of flow and turbidity for cast iron, polyethylene and polyvinyl chloride pipe sections were linked with analysis of pipe geometry. Up to 0.29 kg of the total amount mobilized in T-pieces ranging from DN 100/100–DN 250/250. The accumulated amount of particles in fittings was defined as J and introduced into ...
International Nuclear Information System (INIS)
Among the many models developed for monitoring the infiltration process those of Philip and Kostiakov have been studied in detail because of their simplicity and the ease of estimating their fitting parameters. The important soil physical factors influencing the fitting parameters in these infiltration models are reported in this study. The results of the study show that the single most important soil property affecting the fitting parameters in these models is the effective porosity. 36 refs, 2 figs, 5 tabs
Multiplex networks with intrinsic fitness: Modeling the merit-fame interplay via latent layers
Fotouhi, Babak; Momeni, Naghmeh
2015-11-01
We consider the problem of growing multiplex networks with intrinsic fitness and inter-layer coupling. The model comprises two layers; one that incorporates fitness and another in which attachments are preferential. In the first layer, attachment probabilities are proportional to fitness values, and in the second layer, proportional to the sum of degrees in both layers. We provide analytical closed-form solutions for the joint distributions of fitness and degrees. We also derive closed-form expressions for the expected value of the degree as a function of fitness. The model alleviates two shortcomings that are present in the current models of growing multiplex networks: homogeneity of connections, and homogeneity of fitness. In this paper, we posit and analyze a growth model that is heterogeneous in both senses.
Revisiting the Global Electroweak Fit of the Standard Model and Beyond with Gfitter
Flächer, Henning; Haller, J; Höcker, A; Mönig, K; Stelzer, J
2009-01-01
The global fit of the Standard Model to electroweak precision data, routinely performed by the LEP electroweak working group and others, demonstrated impressively the predictive power of electroweak unification and quantum loop corrections. We have revisited this fit in view of (i) the development of the new generic fitting package, Gfitter, allowing flexible and efficient model testing in high-energy physics, (ii) the insertion of constraints from direct Higgs searches at LEP and the Tevatron, and (iii) a more thorough statistical interpretation of the results. Gfitter is a modular fitting toolkit, which features predictive theoretical models as independent plugins, and a statistical analysis of the fit results using toy Monte Carlo techniques. The state-of-the-art electroweak Standard Model is fully implemented, as well as generic extensions to it. Theoretical uncertainties are explicitly included in the fit through scale parameters varying within given error ranges. This paper introduces the Gfitter projec...
Numerical model of induction shrink fits in monolithic formulation
Czech Academy of Sciences Publication Activity Database
Karban, P.; Kotlan, V.; Doležel, Ivo
Sydney: International COMPUMAG Society, 2011, s. 1-2. ISBN -. [International Conference on the Computation of Electromagnetic s Fields /18./. Sydney (AU), 12.07.2011-15.07.2011] R&D Projects: GA ČR(CZ) GAP102/11/0498; GA AV ČR IAA100760702 Institutional research plan: CEZ:AV0Z20570509 Keywords : coupled problem * shrink fit * magnetic field Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering http://www.compumag2011.com/
Mead, Alexander; Heymans, Catherine; Joudaki, Shahab; Heavens, Alan
2015-01-01
We present an optimised variant of the halo model, designed to produce accurate matter power spectra well into the non-linear regime for a wide range of cosmological models. To do this, we introduce physically-motivated free parameters into the halo-model formalism and fit these to data from high-resolution N-body simulations. For a variety of $\\Lambda$CDM and $w$CDM models the halo-model power is accurate to $\\simeq 5$ per cent for $k\\leq 10h\\,\\mathrm{Mpc}^{-1}$ and $z\\leq 2$. We compare our results with recent revisions of the popular HALOFIT model and show that our predictions are more accurate. An advantage of our new halo model is that it can be adapted to account for the effects of baryonic feedback on the power spectrum. We demonstrate this by fitting the halo model to power spectra from the OWLS hydrodynamical simulation suite via parameters that govern halo internal structure. We are able to fit all feedback models investigated at the 5 per cent level using only two free parameters, and we place limi...
Model-fitting approach to kinetic analysis of non-isothermal oxidation of molybdenite
International Nuclear Information System (INIS)
The kinetics of molybdenite oxidation was studied by non-isothermal TGA-DTA with heating rate 5degC.min-1. The model-fitting kinetic approach applied to TGA data. The Coats-Redfern method used of model fitting. The popular model-fitting gives excellent fit non-isothermal data in chemically controlled regime. The apparent activation energy was determined to be about 34.2 kcalmol-1 With pre-exponential factor about 108 sec-1 for extent of reaction less than 0.5
Modelling population dynamics model formulation, fitting and assessment using state-space methods
Newman, K B; Morgan, B J T; King, R; Borchers, D L; Cole, D J; Besbeas, P; Gimenez, O; Thomas, L
2014-01-01
This book gives a unifying framework for estimating the abundance of open populations: populations subject to births, deaths and movement, given imperfect measurements or samples of the populations. The focus is primarily on populations of vertebrates for which dynamics are typically modelled within the framework of an annual cycle, and for which stochastic variability in the demographic processes is usually modest. Discrete-time models are developed in which animals can be assigned to discrete states such as age class, gender, maturity, population (within a metapopulation), or species (for multi-species models). The book goes well beyond estimation of abundance, allowing inference on underlying population processes such as birth or recruitment, survival and movement. This requires the formulation and fitting of population dynamics models. The resulting fitted models yield both estimates of abundance and estimates of parameters characterizing the underlying processes.
Model Fitting for Predicted Precipitation in Darwin: Some Issues with Model Choice
Farmer, Jim
2010-01-01
In Volume 23(2) of the "Australian Senior Mathematics Journal," Boncek and Harden present an exercise in fitting a Markov chain model to rainfall data for Darwin Airport (Boncek & Harden, 2009). Days are subdivided into those with precipitation and precipitation-free days. The author abbreviates these labels to wet days and dry days. It is…
A New Finite Interval Lifetime Distribution Model for Fitting Bathtub-Shaped Failure Rate Curve
Directory of Open Access Journals (Sweden)
Xiaohong Wang
2015-01-01
Full Text Available This paper raised a new four-parameter fitting model to describe bathtub curve, which is widely used in research on components’ life analysis, then gave explanation of model parameters, and provided parameter estimation method as well as application examples utilizing some well-known lifetime data. By comparative analysis between the new model and some existing bathtub curve fitting model, we can find that the new fitting model is very convenient and its parameters are clear; moreover, this model is of universal applicability which is not only suitable for bathtub-shaped failure rate curves but also applicable for the constant, increasing, and decreasing failure rate curves.
The Model 80 face mask fit-tester
Energy Technology Data Exchange (ETDEWEB)
Pasternack, A.
1978-06-01
Leakage from a face mask can be measured quantitatively using ethylene or sulphur hexafluoride as tracer gas. Either ethylene detector tubes or a leak detector are used with a hood which fits over the head of the person tested. The tester can be used for training, to give the wearer a feeling for the correct placement of the face mask and for tightening the straps. It can also be used to check tightness when the hair-style or shape of beard is changed.
TRANSIT MODEL FITTING IN THE KEPLER SCIENCE OPERATIONS CENTER PIPELINE: NEW FEATURES AND PERFORMANCE
Li, Jie; Burke, C. J.; Jenkins, J. M.; Quintana, E. V.; Rowe, J. F.; Seader, S. E.; Tenenbaum, P.; Twicken, J. D.
2013-10-01
We describe new transit model fitting features and performance of the latest release (9.1, July 2013) of the Kepler Science Operations Center (SOC) Pipeline. The targets for which a Threshold Crossing Event (TCE) is generated in the Transiting Planet Search (TPS) component of the pipeline are subsequently processed in the Data Validation (DV) component. Transit model parameters are fitted in DV to transit-like signatures in the light curves of the targets with TCEs. The transit model fitting results are used in diagnostic tests in DV, which help to validate planet candidates and identify false positive detections. The standard transit model includes five fit parameters: transit epoch time (i.e. central time of first transit), orbital period, impact parameter, ratio of planet radius to star radius and ratio of semi-major axis to star radius. Light curves for many targets do not contain enough information to uniquely determine the impact parameter, which results in poor convergence performance of the fitter. In the latest release of the Kepler SOC pipeline, a reduced parameter fit is included in DV: the impact parameter is set to a fixed value and the four remaining parameters are fitted. The standard transit model fit is implemented after a series of reduced parameter fits in which the impact parameter is varied between 0 and 1. Initial values for the standard transit model fit parameters are determined by the reduced parameter fit with the minimum chi-square metric. With reduced parameter fits, the robustness of the transit model fit is improved significantly. Diagnostic plots of the chi-square metrics and reduced parameter fit results illustrate how the fitted parameters vary as a function of impact parameter. Essentially, a family of transiting planet characteristics is determined in DV for each Pipeline TCE. Transit model fitting performance of release 9.1 of the Kepler SOC pipeline is demonstrated with the results of the processing of 16 quarters of flight data
Mumtaz Ali Memon; Rohani Salleh; Mohamed Noor Rosli Baharom
2014-01-01
Past studies revealed that the existence of congruence between employees and their job as well as organisation produces more favourable attitudes and behaviours. Although considerable research has been conducted on the person-job (P-J) fit and person-organization (P-O) fit, an in depth review of the literature identifies several research gaps. First, studies have largely focused on examining P-J fit and P-O fit separately. In addition, the relationship of P-J fit and P-O fit, and employee eng...
Why the Bass Model Fits without Decision Variables
Frank M. Bass; Trichy V. Krishnan; Dipak C. Jain
1994-01-01
Over a large number of new products and technological innovations, the Bass diffusion model (Bass 1969) describes the empirical adoption curve quite well. In this study, we generalize the Bass model to include decision variables such as price and advertising. The generalized model reduces to the Bass model as a special case and explains why the Bass model works so well without including decision variables. We compare our generalized Bass model to other approaches from the literature for inclu...
Mead, A. J.; Peacock, J. A.; Heymans, C.; Joudaki, S.; Heavens, A. F.
2015-12-01
We present an optimized variant of the halo model, designed to produce accurate matter power spectra well into the non-linear regime for a wide range of cosmological models. To do this, we introduce physically motivated free parameters into the halo-model formalism and fit these to data from high-resolution N-body simulations. For a variety of Λ cold dark matter (ΛCDM) and wCDM models, the halo-model power is accurate to ≃ 5 per cent for k ≤ 10h Mpc-1 and z ≤ 2. An advantage of our new halo model is that it can be adapted to account for the effects of baryonic feedback on the power spectrum. We demonstrate this by fitting the halo model to power spectra from the OWLS (OverWhelmingly Large Simulations) hydrodynamical simulation suite via parameters that govern halo internal structure. We are able to fit all feedback models investigated at the 5 per cent level using only two free parameters, and we place limits on the range of these halo parameters for feedback models investigated by the OWLS simulations. Accurate predictions to high k are vital for weak-lensing surveys, and these halo parameters could be considered nuisance parameters to marginalize over in future analyses to mitigate uncertainty regarding the details of feedback. Finally, we investigate how lensing observables predicted by our model compare to those from simulations and from HALOFIT for a range of k-cuts and feedback models and quantify the angular scales at which these effects become important. Code to calculate power spectra from the model presented in this paper can be found at https://github.com/alexander-mead/hmcode.
Lung Cancer Risk Prediction Models
Developing statistical models that estimate the probability of developing lung cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.
Prostate Cancer Risk Prediction Models
Developing statistical models that estimate the probability of developing prostate cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.
Breast Cancer Risk Prediction Models
Developing statistical models that estimate the probability of developing breast cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.
Ovarian Cancer Risk Prediction Models
Developing statistical models that estimate the probability of developing ovarian cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.
Cervical Cancer Risk Prediction Models
Developing statistical models that estimate the probability of developing cervical cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.
Liver Cancer Risk Prediction Models
Developing statistical models that estimate the probability of developing liver cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.
Pancreatic Cancer Risk Prediction Models
Developing statistical models that estimate the probability of developing pancreatic cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.
Colorectal Cancer Risk Prediction Models
Developing statistical models that estimate the probability of developing colorectal cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.
Envelope: interactive software for modeling and fitting complex isotope distributions
Directory of Open Access Journals (Sweden)
Sykes Michael T
2008-10-01
Full Text Available Abstract Background An important aspect of proteomic mass spectrometry involves quantifying and interpreting the isotope distributions arising from mixtures of macromolecules with different isotope labeling patterns. These patterns can be quite complex, in particular with in vivo metabolic labeling experiments producing fractional atomic labeling or fractional residue labeling of peptides or other macromolecules. In general, it can be difficult to distinguish the contributions of species with different labeling patterns to an experimental spectrum and difficult to calculate a theoretical isotope distribution to fit such data. There is a need for interactive and user-friendly software that can calculate and fit the entire isotope distribution of a complex mixture while comparing these calculations with experimental data and extracting the contributions from the differently labeled species. Results Envelope has been developed to be user-friendly while still being as flexible and powerful as possible. Envelope can simultaneously calculate the isotope distributions for any number of different labeling patterns for a given peptide or oligonucleotide, while automatically summing these into a single overall isotope distribution. Envelope can handle fractional or complete atom or residue-based labeling, and the contribution from each different user-defined labeling pattern is clearly illustrated in the interactive display and is individually adjustable. At present, Envelope supports labeling with 2H, 13C, and 15N, and supports adjustments for baseline correction, an instrument accuracy offset in the m/z domain, and peak width. Furthermore, Envelope can display experimental data superimposed on calculated isotope distributions, and calculate a least-squares goodness of fit between the two. All of this information is displayed on the screen in a single graphical user interface. Envelope supports high-quality output of experimental and calculated
Gfitter - Revisiting the global electroweak fit of the Standard Model and beyond
International Nuclear Information System (INIS)
The global fit of the Standard Model to electroweak precision data, routinely performed by the LEP electroweak working group and others, demonstrated impressively the predictive power of electroweak unification and quantum loop corrections. We have revisited this fit in view of (i) the development of the new generic fitting package, Gfitter, allowing flexible and efficient model testing in high-energy physics, (ii) the insertion of constraints from direct Higgs searches at LEP and the Tevatron, and (iii) a more thorough statistical interpretation of the results. Gfitter is a modular fitting toolkit, which features predictive theoretical models as independent plugins, and a statistical analysis of the fit results using toy Monte Carlo techniques. The state-of-the-art electroweak Standard Model is fully implemented, as well as generic extensions to it. Theoretical uncertainties are explicitly included in the fit through scale parameters varying within given error ranges. This paper introduces the Gfitter project, and presents state-of-the-art results for the global electroweak fit in the Standard Model, and for a model with an extended Higgs sector (2HDM). Numerical and graphical results for fits with and without including the constraints from the direct Higgs searches at LEP and Tevatron are given. Perspectives for future colliders are analysed and discussed. Including the direct Higgs searches, we find MH=116.4+18.3-1.3 GeV, and the 2σ and 3σ allowed regions [114,145] GeV and [[113,168] and [180,225
Target Fitting and Robustness Analysis in CGE Models
Gabriel Garber; Haddad, Eduardo A.
2012-01-01
This paper proposes a methodology to integrate econometric models with Johansen-type computable general equilibrium (CGE) models in instances when it is necessary to generate results consistent with a subset of variables that are endogenous to both models. Results for a subset of the CGE endogenous variables are generated from econometric models, and set as targets to be replicated by the CGE model. The methodology is further extended for robustness testing of the outcomes in cases which the ...
The issue of statistical power for overall model fit in evaluating structural equation models
Directory of Open Access Journals (Sweden)
Richard HERMIDA
2015-06-01
Full Text Available Statistical power is an important concept for psychological research. However, examining the power of a structural equation model (SEM is rare in practice. This article provides an accessible review of the concept of statistical power for the Root Mean Square Error of Approximation (RMSEA index of overall model fit in structural equation modeling. By way of example, we examine the current state of power in the literature by reviewing studies in top Industrial-Organizational (I/O Psychology journals using SEMs. Results indicate that in many studies, power is very low, which implies acceptance of invalid models. Additionally, we examined methodological situations which may have an influence on statistical power of SEMs. Results showed that power varies significantly as a function of model type and whether or not the model is the main model for the study. Finally, results indicated that power is significantly related to model fit statistics used in evaluating SEMs. The results from this quantitative review imply that researchers should be more vigilant with respect to power in structural equation modeling. We therefore conclude by offering methodological best practices to increase confidence in the interpretation of structural equation modeling results with respect to statistical power issues.
Checking the Adequacy of Fit of Models from Split-Plot Designs
DEFF Research Database (Denmark)
Almini, A. A.; Kulahci, Murat; Montgomery, D. C.
2009-01-01
-plot models. In this article, we propose the computation of two R-2, R-2-adjusted, prediction error sums of squares (PRESS), and R-2-prediction statistics to measure the adequacy of fit for the WP and the SP submodels in a split-plot design. This is complemented with the graphical analysis of the two types...... of errors to check for any violation of the underlying assumptions and the adequacy of fit of split-plot models. Using examples, we show how computing two measures of model adequacy of fit for each split-plot design model is appropriate and useful as they reveal whether the correct WP and SP effects have...
Directory of Open Access Journals (Sweden)
Lazarević Ljiljana
2008-01-01
Full Text Available This paper deals with the fit indices used in Structural Equation Modelling (SEM for testing theoretical models and the difficulties that can occur during the testing of theoretical models in different fields of psychology. The paper discusses the basic assumptions of SEM and presents the indices used for assessing the fit of theoretical models. This paper also presents the procedures for calculating the basic statistic for assessing the fit of models (χ2, as well as for calculating the most commonly used fit indices, in order to gain a better insight into the advantages and potential difficulties that can occur during their usage. We mention the difficulties regarding the assessment of fit of the model based on χ2 and the discussed fit indices stemming from the sample size, data distribution and assessment methods, wrong specification of model and disturbance of normality and independence of latent variables, as well as the ways in which these difficulties can be overcome. This paper provides a proposal for the approach to presenting the fit indices in reports on studies where theoretical models were tested via SEM.
Gompertzian stochastic model with delay effect to cervical cancer growth
International Nuclear Information System (INIS)
In this paper, a Gompertzian stochastic model with time delay is introduced to describe the cervical cancer growth. The parameters values of the mathematical model are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic model numerically. The efficiency of mathematical model is measured by comparing the simulated result and the clinical data of cervical cancer growth. Low values of Mean-Square Error (MSE) of Gompertzian stochastic model with delay effect indicate good fits
Gompertzian stochastic model with delay effect to cervical cancer growth
Energy Technology Data Exchange (ETDEWEB)
Mazlan, Mazma Syahidatul Ayuni binti; Rosli, Norhayati binti [Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Pahang (Malaysia); Bahar, Arifah [Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor and UTM Centre for Industrial and Applied Mathematics (UTM-CIAM), Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia)
2015-02-03
In this paper, a Gompertzian stochastic model with time delay is introduced to describe the cervical cancer growth. The parameters values of the mathematical model are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic model numerically. The efficiency of mathematical model is measured by comparing the simulated result and the clinical data of cervical cancer growth. Low values of Mean-Square Error (MSE) of Gompertzian stochastic model with delay effect indicate good fits.
A Gompertzian model with random effects to cervical cancer growth
Energy Technology Data Exchange (ETDEWEB)
Mazlan, Mazma Syahidatul Ayuni; Rosli, Norhayati [Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Pahang (Malaysia)
2015-05-15
In this paper, a Gompertzian model with random effects is introduced to describe the cervical cancer growth. The parameters values of the mathematical model are estimated via maximum likehood estimation. We apply 4-stage Runge-Kutta (SRK4) for solving the stochastic model numerically. The efficiency of mathematical model is measured by comparing the simulated result and the clinical data of the cervical cancer growth. Low values of root mean-square error (RMSE) of Gompertzian model with random effect indicate good fits.
Flexible competing risks regression modeling and goodness-of-fit
Thomas H. Scheike; Zhang, Mei-Jie
2008-01-01
In this paper we consider different approaches for estimation and assessment of covariate effects for the cumulative incidence curve in the competing risks model. The classic approach is to model all cause-specific hazards and then estimate the cumulative incidence curve based on these cause-specific hazards. Another recent approach is to directly model the cumulative incidence by a proportional model (Fine and Gray, J Am Stat Assoc 94:496-509, 1999), and then obtain direct estimates of how c...
Engineered Swine Models of Cancer
Watson, Adrienne L; Carlson, Daniel F.; Largaespada, David A; Hackett, Perry B; Fahrenkrug, Scott C.
2016-01-01
Over the past decade, the technology to engineer genetically modified swine has seen many advancements, and because their physiology is remarkably similar to that of humans, swine models of cancer may be extremely valuable for preclinical safety studies as well as toxicity testing of pharmaceuticals prior to the start of human clinical trials. Hence, the benefits of using swine as a large animal model in cancer research and the potential applications and future opportunities of utilizing pigs...
Directory of Open Access Journals (Sweden)
Courneya Kerry S
2012-11-01
Full Text Available Abstract Background Limited research has examined the association between physical activity, health-related fitness, and disease outcomes in breast cancer survivors. Here, we present the rationale and design of the Alberta Moving Beyond Breast Cancer (AMBER Study, a prospective cohort study designed specifically to examine the role of physical activity and health-related fitness in breast cancer survivorship from the time of diagnosis and for the balance of life. The AMBER Study will examine the role of physical activity and health-related fitness in facilitating treatment completion, alleviating treatment side effects, hastening recovery after treatments, improving long term quality of life, and reducing the risks of disease recurrence, other chronic diseases, and premature death. Methods/Design The AMBER Study will enroll 1500 newly diagnosed, incident, stage I-IIIc breast cancer survivors in Alberta, Canada over a 5 year period. Assessments will be made at baseline (within 90 days of surgery, 1 year, and 3 years consisting of objective and self-reported measurements of physical activity, health-related fitness, blood collection, lymphedema, patient-reported outcomes, and determinants of physical activity. A final assessment at 5 years will measure patient-reported data only. The cohort members will be followed for an additional 5 years for disease outcomes. Discussion The AMBER cohort will answer key questions related to physical activity and health-related fitness in breast cancer survivors including: (1 the independent and interactive associations of physical activity and health-related fitness with disease outcomes (e.g., recurrence, breast cancer-specific mortality, overall survival, treatment completion rates, symptoms and side effects (e.g., pain, lymphedema, fatigue, neuropathy, quality of life, and psychosocial functioning (e.g., anxiety, depression, self-esteem, happiness, (2 the determinants of physical activity and
Lee, Young-Sun; Wollack, James A.; Douglas, Jeffrey
2009-01-01
The purpose of this study was to assess the model fit of a 2PL through comparison with the nonparametric item characteristic curve (ICC) estimation procedures. Results indicate that three nonparametric procedures implemented produced ICCs that are similar to that of the 2PL for items simulated to fit the 2PL. However for misfitting items,…
Diploid biological evolution models with general smooth fitness landscapes and recombination.
Saakian, David B; Kirakosyan, Zara; Hu, Chin-Kun
2008-06-01
Using a Hamilton-Jacobi equation approach, we obtain analytic equations for steady-state population distributions and mean fitness functions for Crow-Kimura and Eigen-type diploid biological evolution models with general smooth hypergeometric fitness landscapes. Our numerical solutions of diploid biological evolution models confirm the analytic equations obtained. We also study the parallel diploid model for the simple case of recombination and calculate the variance of distribution, which is consistent with numerical results. PMID:18643300
Ideland, Malin; Andrée, Maria; Arvola-Orlander, Auli; Hillbur, Per; Jobér, Anna; Lundegård, Iann; Loken, Marianne; Malmberg, Claes; Serder, Margareta
2012-01-01
This mini-symposium aims to stress issues about how pedagogical models like e.g. SSI, science for girls and ESD construct who fits in or not in the science classroom. These models are developed from a good intention of including "all" students, opening up possibilities for them who often are seen as outsiders in science culture. But we claim that these seemingly democratic pedagogical models fabricate desirable and undesirable subjects. Often, the norms for fitting in can be understood in ter...
Directory of Open Access Journals (Sweden)
Tengiz Mdzinarishvili
Full Text Available At present, carcinogenic models imply that all individuals in a population are susceptible to cancer. These models either ignore a fall of the cancer incidence rate at old ages, or use some poorly identifiable parameters for its accounting. In this work, a new heuristic model is proposed. The model assumes that, in a population, only a small fraction (pool of individuals is susceptible to cancer and decomposes the problem of the carcinogenic modeling on two sequentially solvable problems: (i determination of the age-specific hazard rate in individuals susceptible to cancer (individual hazard rate from the observed hazard rate in the population (population hazard rate; and (ii modelling of the individual hazard rate by a chosen "up" of the theoretical hazard function describing cancer occurrence in individuals in time (age. The model considers carcinogenesis as a failure of individuals susceptible to cancer to resist cancer occurrence in aging and uses, as the theoretical hazard function, the three-parameter Weibull hazard function, often utilized in a failure analysis. The parameters of this function, providing the best fit of the modeled and observed individual hazard rates (determined from the population hazard rates, are the outcomes of the modeling. The model was applied to the pancreatic cancer data. It was shown that, in the populations stratified by gender, race and the geographic area of living, the modeled and observed population hazard rates of pancreatic cancer occurrence have similar turnovers at old ages. The sizes of the pools of individuals susceptible to this cancer: (i depend on gender, race and the geographic area of living; (ii proportionally influence the corresponding population hazard rates; and (iii do not influence the individual hazard rates. The model should be further tested using data on other types of cancer and for the populations stratified by different categorical variables.
A No-Scale Inflationary Model to Fit Them All
Ellis, John; Nanopoulos, Dimitri; Olive, Keith
2014-01-01
The magnitude of B-mode polarization in the cosmic microwave background as measured by BICEP2 favours models of chaotic inflation with a quadratic $m^2 \\phi^2/2$ potential, whereas data from the Planck satellite favour a small value of the tensor-to-scalar perturbation ratio $r$ that is highly consistent with the Starobinsky $R + R^2$ model. Reality may lie somewhere between these two scenarios. In this paper we propose a minimal two-field no-scale supergravity model that interpolates between quadratic and Starobinsky-like inflation as limiting cases, while retaining the successful prediction $n_s \\simeq 0.96$.
Fitting Equilibrium Search Models to Labour Market Data
DEFF Research Database (Denmark)
Bowlus, Audra J.; Kiefer, Nicholas M.; Neumann, George R.
1996-01-01
Specification and estimation of a Burdett-Mortensen type equilibrium search model is considered. The estimation is nonstandard. An estimation strategy asymptotically equivalent to maximum likelihood is proposed and applied. The results indicate that specifications with a small number of...
Fitting vast dimensional time-varying covariance models
2008-01-01
Building models for high dimensional portfolios is important in risk management and asset allocation. Here we propose a novel and fast way of estimating models of time-varying covariances that overcome an undiagnosed incidental parameter problem which has troubled existing methods when applied to hundreds or even thousands of assets. Indeed we can handle the case where the cross-sectional dimension is larger than the time series one. The theory of this new strategy is developed in some detail...
Use of genetic algorithm for fitting Sovova's mass transfer model:
Hrnčič, Dejan; Mernik, Marjan; Knez Hrnčič, Maša
2010-01-01
A genetic algorithm with resizable population has been applied to the estimation of parameters for Sovovaćs mass transfer model. The comparison of results between a genetic algorithm and a global optimizer from the literatureshows that a genetic algorithm performs as good as or better than a global optimizer on a given set of problems. Other benefits of the genetic algorithm, for mass transfer modeling, are simplicity, robustness and efficiency.
Atmospheric Turbulence Modeling for Aero Vehicles: Fractional Order Fits
Kopasakis, George
2015-01-01
Atmospheric turbulence models are necessary for the design of both inlet/engine and flight controls, as well as for studying coupling between the propulsion and the vehicle structural dynamics for supersonic vehicles. Models based on the Kolmogorov spectrum have been previously utilized to model atmospheric turbulence. In this paper, a more accurate model is developed in its representative fractional order form, typical of atmospheric disturbances. This is accomplished by first scaling the Kolmogorov spectral to convert them into finite energy von Karman forms and then by deriving an explicit fractional circuit-filter type analog for this model. This circuit model is utilized to develop a generalized formulation in frequency domain to approximate the fractional order with the products of first order transfer functions, which enables accurate time domain simulations. The objective of this work is as follows. Given the parameters describing the conditions of atmospheric disturbances, and utilizing the derived formulations, directly compute the transfer function poles and zeros describing these disturbances for acoustic velocity, temperature, pressure, and density. Time domain simulations of representative atmospheric turbulence can then be developed by utilizing these computed transfer functions together with the disturbance frequencies of interest.
A fitness model for the Italian Interbank Money Market
De Masi, G; Iori, G
2006-01-01
We use the theory of complex networks in order to quantitatively characterize the formation of communities in a particular financial market. The system is composed by different banks exchanging on a daily basis loans and debts of liquidity. Through topological analysis and by means of a model of network growth we can determine the formation of different group of banks characterized by different business strategy. The model based on Pareto's Law makes no use of growth or preferential attachment and it reproduces correctly all the various statistical properties of the system. We believe that this network modeling of the market could be an efficient way to evaluate the impact of different policies in the market of liquidity.
A versatile curve-fit model for linear to deeply concave rank abundance curves
Neuteboom, J.H.; Struik, P. C.
2005-01-01
A new, flexible curve-fit model for linear to concave rank abundance curves was conceptualized and validated using observational data. The model links the geometric-series model and log-series model and can also fit deeply concave rank abundance curves. The model is based ¿ in an unconventional way ¿ on the negative- binomial distribution and calculates (like the log-series model) a species-diversity index. The index is defined as the expected number of singleton species (species present with...
Fit of different linear models to the lactation curve of Italian water buffalo
N. P.P. Macciotta; N. Bacciu; Catillo, G; C. Dimauro
2005-01-01
Mathematical modelling of lactation curve by suitable functions of time, widely used in the dairy cattle industry, can represent also for buffaloes a fundamental tool for management and breeding decision, where average curves are considered, and for genetic evaluation by random regression models, where individual patterns are fitted. Average lactation curves of Italian Buffalo cows have been fitted with good results (Catillo et al., 2002) whereas there is a lack of information on ...
The empirical likelihood goodness-of-fit test for regression model
Institute of Scientific and Technical Information of China (English)
Li-xing ZHU; Yong-song QIN; Wang-li XU
2007-01-01
Goodness-of-fit test for regression modes has received much attention in literature. In this paper, empirical likelihood (EL) goodness-of-fit tests for regression models including classical parametric and autoregressive (AR) time series models are proposed. Unlike the existing locally smoothing and globally smoothing methodologies, the new method has the advantage that the tests are self-scale invariant and that the asymptotic null distribution is chi-squared. Simulations are carried out to illustrate the methodology.
Mouse models for colorectal cancer
KARIM, BAKTIAR O.; Huso, David L.
2013-01-01
Colorectal cancer (CRC) is the third leading cause of cancer-related death in the United States, with the number of affected people increasing. There are many risk factors that increase CRC risk, including family or personal history of CRC, smoking, consumption of red meat, obesity, and alcohol consumption. Conversely, increased screening, maintaining healthy body weight, not smoking, and limiting intake of red meat are all associated with reduced CRC morbidity and mortality. Mouse models of ...
Fitting the Balding-Nichols model to forensic databases.
Rohlfs, Rori V; Aguiar, Vitor R C; Lohmueller, Kirk E; Castro, Amanda M; Ferreira, Alessandro C S; Almeida, Vanessa C O; Louro, Iuri D; Nielsen, Rasmus
2015-11-01
Large forensic databases provide an opportunity to compare observed empirical rates of genotype matching with those expected under forensic genetic models. A number of researchers have taken advantage of this opportunity to validate some forensic genetic approaches, particularly to ensure that estimated rates of genotype matching between unrelated individuals are indeed slight overestimates of those observed. However, these studies have also revealed systematic error trends in genotype probability estimates. In this analysis, we investigate these error trends and show how they result from inappropriate implementation of the Balding-Nichols model in the context of database-wide matching. Specifically, we show that in addition to accounting for increased allelic matching between individuals with recent shared ancestry, studies must account for relatively decreased allelic matching between individuals with more ancient shared ancestry. PMID:26186694
Goodness-of-fit tests in mixed models
Claeskens, Gerda
2009-05-12
Mixed models, with both random and fixed effects, are most often estimated on the assumption that the random effects are normally distributed. In this paper we propose several formal tests of the hypothesis that the random effects and/or errors are normally distributed. Most of the proposed methods can be extended to generalized linear models where tests for non-normal distributions are of interest. Our tests are nonparametric in the sense that they are designed to detect virtually any alternative to normality. In case of rejection of the null hypothesis, the nonparametric estimation method that is used to construct a test provides an estimator of the alternative distribution. © 2009 Sociedad de Estadística e Investigación Operativa.
Fitting dynamic fator models to nonstationary time series
Eichler, M.; Motta, Giovanni; Von Sachs, Rainer
2008-01-01
Factor modelling of a large time series panel has widely proven useful to reduce its cross-sectional dimensionality. This is done by explaining common co-movements in the panel through the existence of a small number of common components, up to some idiosyncratic behaviour of each individual series. To capture serial correlation in the common components, a dynamic structure is used as in traditional (uni- or multivariate) time series analysis of second order structure,i.e. allowing f...
Fitting dynamic factor models to non-stationary time series
Eichler Michael; Motta Giovanni; Sachs Rainer von
2009-01-01
Factor modelling of a large time series panel has widely proven useful to reduce its cross-sectional dimensionality. This is done by explaining common co-movements in the panel through the existence of a small number of common components, up to some idiosyncratic behaviour of each individual series. To capture serial correlation in the common components, a dynamic structure is used as in traditional (uni- or multivariate) time series analysis of second order structure, i.e. allowing for infin...
CPOPT : optimization for fitting CANDECOMP/PARAFAC models.
Energy Technology Data Exchange (ETDEWEB)
Dunlavy, Daniel M.; Kolda, Tamara Gibson; Acar, Evrim
2008-10-01
Tensor decompositions (e.g., higher-order analogues of matrix decompositions) are powerful tools for data analysis. In particular, the CANDECOMP/PARAFAC (CP) model has proved useful in many applications such chemometrics, signal processing, and web analysis; see for details. The problem of computing the CP decomposition is typically solved using an alternating least squares (ALS) approach. We discuss the use of optimization-based algorithms for CP, including how to efficiently compute the derivatives necessary for the optimization methods. Numerical studies highlight the positive features of our CPOPT algorithms, as compared with ALS and Gauss-Newton approaches.
Model-independent analysis of dark energy: supernova fitting result
International Nuclear Information System (INIS)
This paper uses supernova data to explore the property of dark energy by some model-independent methods. We first Taylor expand the scale factor a(t) and the luminosity distance dL to the fifth order to find that the deceleration parameter q0 DE0 is less than -1 almost at 1σ level from all the parametrizations used in this paper. We also find that the transition redshift from deceleration phase to acceleration phase is zT ∼ 0.3
Haslinger, Robert; Pipa, Gordon; Brown, Emery
2010-10-01
One approach for understanding the encoding of information by spike trains is to fit statistical models and then test their goodness of fit. The time-rescaling theorem provides a goodness-of-fit test consistent with the point process nature of spike trains. The interspike intervals (ISIs) are rescaled (as a function of the model's spike probability) to be independent and exponentially distributed if the model is accurate. A Kolmogorov-Smirnov (KS) test between the rescaled ISIs and the exponential distribution is then used to check goodness of fit. This rescaling relies on assumptions of continuously defined time and instantaneous events. However, spikes have finite width, and statistical models of spike trains almost always discretize time into bins. Here we demonstrate that finite temporal resolution of discrete time models prevents their rescaled ISIs from being exponentially distributed. Poor goodness of fit may be erroneously indicated even if the model is exactly correct. We present two adaptations of the time-rescaling theorem to discrete time models. In the first we propose that instead of assuming the rescaled times to be exponential, the reference distribution be estimated through direct simulation by the fitted model. In the second, we prove a discrete time version of the time-rescaling theorem that analytically corrects for the effects of finite resolution. This allows us to define a rescaled time that is exponentially distributed, even at arbitrary temporal discretizations. We demonstrate the efficacy of both techniques by fitting generalized linear models to both simulated spike trains and spike trains recorded experimentally in monkey V1 cortex. Both techniques give nearly identical results, reducing the false-positive rate of the KS test and greatly increasing the reliability of model evaluation based on the time-rescaling theorem. PMID:20608868
Structural model of in-group dynamic of 6-10 years old boys’ motor fitness
Directory of Open Access Journals (Sweden)
Ivashchenko O.V.
2015-10-01
Full Text Available Purpose: to determine structural model of in-group dynamic of 6-10 years old boys’ motor fitness. Material: in the research 6 years old boys (n=48, 7 years old (n=45, 8 years old (n=60, 9 years’ age (n=47 and10 years’ age (n=40 participated. We carried out analysis of factorial model of schoolchildren’s motor fitness. Results: we received information for taking decisions in monitoring of physical education. This information is also necessary for working out of effective programs of children’s and adolescents’ physical training. We determined model of motor fitness and specified informative tests for pedagogic control in every age group. In factorial model of boys’ motor fitness the following factor is the most significant: for 6 years - complex development of motor skills; for 7 years - also complex development of motor skills; for 8 years - strength and coordination; for 9 years - complex development of motor skills; for 10 years - complex development of motor skills. Conclusions: In factorial model of 6-10 years old boys’ motor fitness the most significant are backbone and shoulder joints’ mobility, complex manifestation of motor skills, motor coordination. The most informative tests for assessment of different age boys’ motor fitness have been determined.
Marsh, Rebeccah E; Riauka, Terence A; McQuarrie, Steve A
2007-01-01
Increasingly, fractals are being incorporated into pharmacokinetic models to describe transport and chemical kinetic processes occurring in confined and heterogeneous spaces. However, fractal compartmental models lead to differential equations with power-law time-dependent kinetic rate coefficients that currently are not accommodated by common commercial software programs. This paper describes a parameter optimization method for fitting individual pharmacokinetic curves based on a simulated annealing (SA) algorithm, which always converged towards the global minimum and was independent of the initial parameter values and parameter bounds. In a comparison using a classical compartmental model, similar fits by the Gauss-Newton and Nelder-Mead simplex algorithms required stringent initial estimates and ranges for the model parameters. The SA algorithm is ideal for fitting a wide variety of pharmacokinetic models to clinical data, especially those for which there is weak prior knowledge of the parameter values, such as the fractal models. PMID:17706176
Nonlinear models for fitting growth curves of Nellore cows reared in the Amazon Biome
Directory of Open Access Journals (Sweden)
Kedma Nayra da Silva Marinho
2013-09-01
Full Text Available Growth curves of Nellore cows were estimated by comparing six nonlinear models: Brody, Logistic, two alternatives by Gompertz, Richards and Von Bertalanffy. The models were fitted to weight-age data, from birth to 750 days of age of 29,221 cows, born between 1976 and 2006 in the Brazilian states of Acre, Amapá, Amazonas, Pará, Rondônia, Roraima and Tocantins. The models were fitted by the Gauss-Newton method. The goodness of fit of the models was evaluated by using mean square error, adjusted coefficient of determination, prediction error and mean absolute error. Biological interpretation of parameters was accomplished by plotting estimated weights versus the observed weight means, instantaneous growth rate, absolute maturity rate, relative instantaneous growth rate, inflection point and magnitude of the parameters A (asymptotic weight and K (maturing rate. The Brody and Von Bertalanffy models fitted the weight-age data but the other models did not. The average weight (A and growth rate (K were: 384.6±1.63 kg and 0.0022±0.00002 (Brody and 313.40±0.70 kg and 0.0045±0.00002 (Von Bertalanffy. The Brody model provides better goodness of fit than the Von Bertalanffy model.
International Nuclear Information System (INIS)
Generalisations of the two-mutation carcinogenesis model of Moolgavkar, Venzon and Knudson (to allow for an arbitrary number of mutational stages), and of the model of Armitage and Doll, are fitted to the Japanese atomic bomb survivor mortality data. Models with two or three mutations give adequate descriptions of the excess mortality of solid cancers. For leukaemia the fit of the three-mutation model is preferable to that of the two-mutation model. The optimal three-mutation leukaemia model provides a satisfactory fit only when both first and second mutation rates are radiation-affected. Examination of other epidemiological data leads to the conclusion that without some extra stochastic 'stage' appended (such as might be provided by consideration of the process of development of a malignant clone from a single malignant cell) the two-mutation model is perhaps not well able to describe the pattern of excess risk for solid cancers that is often seen after exposure to radiation. The optimal three-mutation models predict low-dose population risks for a current UK population of 5.5-8.0 x 10-2 excess cancer deaths Sv-1, 6.8-9.8 x 10-2 radiation-induced cancer deaths Sv-1 or 1.0-1.4 years of life lost Sv-1. Risks for a current Japanese population are 6.8 x 10-2 excess cancer deaths Sv-1, 8.0 x 10-2 radiation-induced cancer deaths Sv-1, or 1.2 years of life lost Sv-1. (author)
DEFF Research Database (Denmark)
Nielsen, Karen L.; Pedersen, Thomas M.; Udekwu, Klas I.;
2012-01-01
phage types, predominantly only penicillin resistant. We investigated whether isolates of this epidemic were associated with a fitness cost, and we employed a mathematical model to ask whether these fitness costs could have led to the observed reduction in frequency. Bacteraemia isolates of S. aureus...... of each isolate was determined in a growth competition assay with a reference isolate. Significant fitness costs of 215 were determined for the MRSA isolates studied. There was a significant negative correlation between number of antibiotic resistances and relative fitness. Multiple regression analysis...... found significantly independent negative correlations between fitness and the presence of mecA or streptomycin resistance. Mathematical modelling confirmed that fitness costs of the magnitude carried by these isolates could result in the disappearance of MRSA prevalence during a time span similar...
Asymptotic Fitness Distribution in the Bak-Sneppen Model of Biological Evolution with Four Species
Schlemm, Eckhard
2012-08-01
We suggest a new method to compute the asymptotic fitness distribution in the Bak-Sneppen model of biological evolution. As applications we derive the full asymptotic distribution in the four-species model, and give an explicit linear recurrence relation for a set of coefficients determining the asymptotic distribution in the five-species model.
Asymptotic fitness distribution in the Bak-Sneppen model of biological evolution with four species
Schlemm, Eckhard
2012-01-01
We suggest a new method to compute the asymptotic fitness distribution in the Bak-Sneppen model of biological evolution. As applications we derive the full asymptotic distribution in the four-species model, and give an explicit linear recurrence relation for a set of coefficients determining the asymptotic distribution in the five-species model.
Directory of Open Access Journals (Sweden)
Grant B. Morgan
2015-02-01
Full Text Available Bi-factor confirmatory factor models have been influential in research on cognitive abilities because they often better fit the data than correlated factors and higher-order models. They also instantiate a perspective that differs from that offered by other models. Motivated by previous work that hypothesized an inherent statistical bias of fit indices favoring the bi-factor model, we compared the fit of correlated factors, higher-order, and bi-factor models via Monte Carlo methods. When data were sampled from a true bi-factor structure, each of the approximate fit indices was more likely than not to identify the bi-factor solution as the best fitting. When samples were selected from a true multiple correlated factors structure, approximate fit indices were more likely overall to identify the correlated factors solution as the best fitting. In contrast, when samples were generated from a true higher-order structure, approximate fit indices tended to identify the bi-factor solution as best fitting. There was extensive overlap of fit values across the models regardless of true structure. Although one model may fit a given dataset best relative to the other models, each of the models tended to fit the data well in absolute terms. Given this variability, models must also be judged on substantive and conceptual grounds.
International Nuclear Information System (INIS)
In inspecting the detailed performance results of surface precision modeling in different external parameter conditions, the integrated chip surfaces should be evaluated and assessed during topographic spatial modeling processes. The application of surface fitting algorithms exerts a considerable influence on topographic mathematical features. The influence mechanisms caused by different surface fitting algorithms on the integrated chip surface facilitate the quantitative analysis of different external parameter conditions. By extracting the coordinate information from the selected physical control points and using a set of precise spatial coordinate measuring apparatus, several typical surface fitting algorithms are used for constructing micro topographic models with the obtained point cloud. In computing for the newly proposed mathematical features on surface models, we construct the fuzzy evaluating data sequence and present a new three dimensional fuzzy quantitative evaluating method. Through this method, the value variation tendencies of topographic features can be clearly quantified. The fuzzy influence discipline among different surface fitting algorithms, topography spatial features, and the external science parameter conditions can be analyzed quantitatively and in detail. In addition, quantitative analysis can provide final conclusions on the inherent influence mechanism and internal mathematical relation in the performance results of different surface fitting algorithms, topographic spatial features, and their scientific parameter conditions in the case of surface micro modeling. The performance inspection of surface precision modeling will be facilitated and optimized as a new research idea for micro-surface reconstruction that will be monitored in a modeling process
An examination of disparities in cancer incidence in Texas using Bayesian random coefficient models
Sparks, Corey
2015-01-01
Disparities in cancer risk exist between ethnic groups in the United States. These disparities often result from differential access to healthcare, differences in socioeconomic status and differential exposure to carcinogens. This study uses cancer incidence data from the population based Texas Cancer Registry to investigate the disparities in digestive and respiratory cancers from 2000 to 2008. A Bayesian hierarchical regression approach is used. All models are fit using the INLA method of B...
Shekhar, Karthik; Ferguson, Andrew L; Barton, John P; Kardar, Mehran; Chakraborty, Arup K
2013-01-01
Mutational escape from vaccine induced immune responses has thwarted the development of a successful vaccine against AIDS, whose causative agent is HIV, a highly mutable virus. Knowing the virus' fitness as a function of its proteomic sequence can enable rational design of potent vaccines, as this information can focus vaccine induced immune responses to target mutational vulnerabilities of the virus. Spin models have been proposed as a means to infer intrinsic fitness landscapes of HIV proteins from patient-derived viral protein sequences. These sequences are the product of non-equilibrium viral evolution driven by patient-specific immune responses, and are subject to phylogenetic constraints. How can such sequence data allow inference of intrinsic fitness landscapes? We combined computer simulations and variational theory \\'{a} la Feynman to show that, in most circumstances, spin models inferred from patient-derived viral sequences reflect the correct rank order of the fitness of mutant viral strains. Our f...
Efficient Constrained Local Model Fitting for Non-Rigid Face Alignment
Lucey, Simon; Wang, Yang; Cox, Mark; Sridharan, Sridha; Cohn, Jeffery F.
2009-01-01
Active appearance models (AAMs) have demonstrated great utility when being employed for non-rigid face alignment/tracking. The “simultaneous” algorithm for fitting an AAM achieves good non-rigid face registration performance, but has poor real time performance (2-3 fps). The “project-out” algorithm for fitting an AAM achieves faster than real time performance (> 200 fps) but suffers from poor generic alignment performance. In this paper we introduce an extension to a discriminative method for...
Training evaluation models: The experience of the European project ADAPT-FIT
V. Carbone; MORVILLO,A
2003-01-01
This article illustrates the experience gained in relation to training evaluation models at the institute for services industry research (IRAT) of the national research council of Italy and the university of Naples 'Parthenope', through an intensive training and research activity implemented as part of the transnational integrated training project (FIT - formazione integrata transnazionale). The fit project, funded by the European programme adapt, is a joint action implemented by the academic...
Optimisation of Ionic Models to Fit Tissue Action Potentials: Application to 3D Atrial Modelling
Directory of Open Access Journals (Sweden)
Amr Al Abed
2013-01-01
Full Text Available A 3D model of atrial electrical activity has been developed with spatially heterogeneous electrophysiological properties. The atrial geometry, reconstructed from the male Visible Human dataset, included gross anatomical features such as the central and peripheral sinoatrial node (SAN, intra-atrial connections, pulmonary veins, inferior and superior vena cava, and the coronary sinus. Membrane potentials of myocytes from spontaneously active or electrically paced in vitro rabbit cardiac tissue preparations were recorded using intracellular glass microelectrodes. Action potentials of central and peripheral SAN, right and left atrial, and pulmonary vein myocytes were each fitted using a generic ionic model having three phenomenological ionic current components: one time-dependent inward, one time-dependent outward, and one leakage current. To bridge the gap between the single-cell ionic models and the gross electrical behaviour of the 3D whole-atrial model, a simplified 2D tissue disc with heterogeneous regions was optimised to arrive at parameters for each cell type under electrotonic load. Parameters were then incorporated into the 3D atrial model, which as a result exhibited a spontaneously active SAN able to rhythmically excite the atria. The tissue-based optimisation of ionic models and the modelling process outlined are generic and applicable to image-based computer reconstruction and simulation of excitable tissue.
Use of posterior predictive assessments to evaluate model fit in multilevel logistic regression
Green, Martin J.; Medley, Graham F; Browne, William J.
2009-01-01
Assessing the fit of a model is an important final step in any statistical analysis, but this is not straightforward when complex discrete response models are used. Cross validation and posterior predictions have been suggested as methods to aid model criticism. In this paper a comparison is made between four methods of model predictive assessment in the context of a three level logistic regression model for clinical mastitis in dairy cattle; cross validation, a prediction using the full post...
Soft X-ray spectral fits of Geminga with model neutron star atmospheres
Meyer, R. D.; Pavlov, G. G.; Meszaros, P.
1994-01-01
The spectrum of the soft X-ray pulsar Geminga consists of two components, a softer one which can be interpreted as thermal-like radiation from the surface of the neutron star, and a harder one interpreted as radiation from a polar cap heated by relativistic particles. We have fitted the soft spectrum using a detailed magnetized hydrogen atmosphere model. The fitting parameters are the hydrogen column density, the effective temperature T(sub eff), the gravitational redshift z, and the distance to radius ratio, for different values of the magnetic field B. The best fits for this model are obtained when B less than or approximately 1 x 10(exp 12) G and z lies on the upper boundary of the explored range (z = 0.45). The values of T(sub eff) approximately = (2-3) x 10(exp 5) K are a factor of 2-3 times lower than the value of T(sub eff) obtained for blackbody fits with the same z. The lower T(sub eff) increases the compatibility with some proposed schemes for fast neutrino cooling of neutron stars (NSs) by the direct Urca process or by exotic matter, but conventional cooling cannot be excluded. The hydrogen atmosphere fits also imply a smaller distance to Geminga than that inferred from a blackbody fit. An accurate evaluation of the distance would require a better knowledge of the ROSAT Position Sensitive Proportional Counter (PSPC) response to the low-energy region of the incident spectrum. Our modeling of the soft component with a cooler magnetized atmosphere also implies that the hard-component fit requires a characteristic temperature which is higher (by a factor of approximately 2-3) and a surface area which is smaller (by a factor of 10(exp 3), compared to previous blackbody fits.
Is Model Fitting Necessary for Model-Based fMRI?
Wilson, Robert C; Niv, Yael
2015-06-01
Model-based analysis of fMRI data is an important tool for investigating the computational role of different brain regions. With this method, theoretical models of behavior can be leveraged to find the brain structures underlying variables from specific algorithms, such as prediction errors in reinforcement learning. One potential weakness with this approach is that models often have free parameters and thus the results of the analysis may depend on how these free parameters are set. In this work we asked whether this hypothetical weakness is a problem in practice. We first developed general closed-form expressions for the relationship between results of fMRI analyses using different regressors, e.g., one corresponding to the true process underlying the measured data and one a model-derived approximation of the true generative regressor. Then, as a specific test case, we examined the sensitivity of model-based fMRI to the learning rate parameter in reinforcement learning, both in theory and in two previously-published datasets. We found that even gross errors in the learning rate lead to only minute changes in the neural results. Our findings thus suggest that precise model fitting is not always necessary for model-based fMRI. They also highlight the difficulty in using fMRI data for arbitrating between different models or model parameters. While these specific results pertain only to the effect of learning rate in simple reinforcement learning models, we provide a template for testing for effects of different parameters in other models. PMID:26086934
Walsh, Linda; Zhang, Wei
2016-03-01
In the assessment of health risks after nuclear accidents, some health consequences require special attention. For example, in their 2013 report on health risk assessment after the Fukushima nuclear accident, the World Health Organisation (WHO) panel of experts considered risks of breast cancer, thyroid cancer and leukaemia. For these specific cancer types, use was made of already published excess relative risk (ERR) and excess absolute risk (EAR) models for radiation-related cancer incidence fitted to the epidemiological data from the Japanese A-bomb Life Span Study (LSS). However, it was also considered important to assess all other types of solid cancer together and the WHO, in their above-mentioned report, stated "No model to calculate the risk for all other solid cancer excluding breast and thyroid cancer risks is available from the LSS data". Applying the LSS models for all solid cancers along with the models for the specific sites means that some cancers have an overlap in the risk evaluations. Thus, calculating the total solid cancer risk plus the breast cancer risk plus the thyroid cancer risk can overestimate the total risk by several per cent. Therefore, the purpose of this paper was to publish the required models for all other solid cancers, i.e. all solid cancers other than those types of cancer requiring special attention after a nuclear accident. The new models presented here have been fitted to the same LSS data set from which the risks provided by the WHO were derived. Although it is known already that the EAR and ERR effect modifications by sex are statistically significant for the outcome "all solid cancer", it is shown here that sex modification is not statistically significant for the outcome "all solid cancer other than thyroid and breast cancer". It is also shown here that the sex-averaged solid cancer risks with and without the sex modification are very similar once breast and thyroid cancers are factored out. Some other notable model
Improved fitting of PIXE spectra: the Voigt profile and Si(Li) detector modeling
Energy Technology Data Exchange (ETDEWEB)
Hildner, M.L. [Sandia National Labs., Livermore, CA (United States); Antolak, A.J. [Sandia National Labs., Livermore, CA (United States); Bench, G.S. [Lawrence Livermore National Lab., CA (United States)
1996-04-11
The true emitted X-ray lineshape as measured by a Si(Li) detector is the convolution of the intrinsic Lorentzian X-ray lineshape and the detector response function. We demonstrate the necessity of using the Voigt profile -the convolution of a Lorentzian and a Gaussian - to fit the full-energy peak portion of directly measured X-ray lines. By incorporating the Voigtian in our PIXE spectrum fitting code, PIXEF, we have found consistent improvement in the quality of fit and calculated elemental yields. We have also found that the Voigtian fit is required to give an accurate ratio of tail to peak intensity. We attribute the tail to a surface layer of incomplete charge collection (ICC) at the front of the detector. Although this model is improved by appropriately accounting for the loss of photoelectrons that travel back to the ICC layer after being emitted from the intrinsic region, it appears to fail when the full-energy peak is fit to a Gaussian. On the other hand, excellent agreement between the improved model and experiment is found when the full-energy peak is fit to a Voigtian. (orig.).
Optimization-Based Model Fitting for Latent Class and Latent Profile Analyses
Huang, Guan-Hua; Wang, Su-Mei; Hsu, Chung-Chu
2011-01-01
Statisticians typically estimate the parameters of latent class and latent profile models using the Expectation-Maximization algorithm. This paper proposes an alternative two-stage approach to model fitting. The first stage uses the modified k-means and hierarchical clustering algorithms to identify the latent classes that best satisfy the…
ANIMAL MODELS OF CANCER: A REVIEW
Archana M Navale
2013-01-01
Cancer is the second leading cause of death worldwide. In USA three persons out of five will develop some type of cancer. Beyond these statistics of mortality, the morbidity due to cancer presents a real scary picture. Last 50 years of research has rendered some types of cancer curable, but still the major fear factor associated with this disease is unchanged. Animal models are classified according to the method of induction of cancer in the animal. Spontaneous tumor models are the most primi...
The Predicting Model of E-commerce Site Based on the Ideas of Curve Fitting
Tao, Zhang; Li, Zhang; Dingjun, Chen
On the basis of the idea of the second multiplication curve fitting, the number and scale of Chinese E-commerce site is analyzed. A preventing increase model is introduced in this paper, and the model parameters are solved by the software of Matlab. The validity of the preventing increase model is confirmed though the numerical experiment. The experimental results show that the precision of preventing increase model is ideal.
Optimization of Active Muscle Force-Length Models Using Least Squares Curve Fitting.
Mohammed, Goran Abdulrahman; Hou, Ming
2016-03-01
The objective of this paper is to propose an asymmetric Gaussian function as an alternative to the existing active force-length models, and to optimize this model along with several other existing models by using the least squares curve fitting method. The minimal set of coefficients is identified for each of these models to facilitate the least squares curve fitting. Sarcomere simulated data and one set of rabbits extensor digitorum II experimental data are used to illustrate optimal curve fitting of the selected force-length functions. The results shows that all the curves fit reasonably well with the simulated and experimental data, while the Gordon-Huxley-Julian model and asymmetric Gaussian function are better than other functions in terms of statistical test scores root mean squared error and R-squared. However, the differences in RMSE scores are insignificant (0.3-6%) for simulated data and (0.2-5%) for experimental data. The proposed asymmetric Gaussian model and the method of parametrization of this and the other force-length models mentioned above can be used in the studies on active force-length relationships of skeletal muscles that generate forces to cause movements of human and animal bodies. PMID:26276984
A goodness-of-fit test for occupancy models with correlated within-season revisits
Wright, Wilson; Irvine, Kathryn M.; Rodhouse, Thomas J.
2016-01-01
Occupancy modeling is important for exploring species distribution patterns and for conservation monitoring. Within this framework, explicit attention is given to species detection probabilities estimated from replicate surveys to sample units. A central assumption is that replicate surveys are independent Bernoulli trials, but this assumption becomes untenable when ecologists serially deploy remote cameras and acoustic recording devices over days and weeks to survey rare and elusive animals. Proposed solutions involve modifying the detection-level component of the model (e.g., first-order Markov covariate). Evaluating whether a model sufficiently accounts for correlation is imperative, but clear guidance for practitioners is lacking. Currently, an omnibus goodnessof- fit test using a chi-square discrepancy measure on unique detection histories is available for occupancy models (MacKenzie and Bailey, Journal of Agricultural, Biological, and Environmental Statistics, 9, 2004, 300; hereafter, MacKenzie– Bailey test). We propose a join count summary measure adapted from spatial statistics to directly assess correlation after fitting a model. We motivate our work with a dataset of multinight bat call recordings from a pilot study for the North American Bat Monitoring Program. We found in simulations that our join count test was more reliable than the MacKenzie–Bailey test for detecting inadequacy of a model that assumed independence, particularly when serial correlation was low to moderate. A model that included a Markov-structured detection-level covariate produced unbiased occupancy estimates except in the presence of strong serial correlation and a revisit design consisting only of temporal replicates. When applied to two common bat species, our approach illustrates that sophisticated models do not guarantee adequate fit to real data, underscoring the importance of model assessment. Our join count test provides a widely applicable goodness-of-fit test and
13A. Integrative Cancer Care: The Life Over Cancer Model
Block, Keith; Block, Penny; Gyllenhaal, Charlotte; Shoham, Jacob
2013-01-01
Focus Areas: Integrative Algorithms of Care Integrative cancer treatment fully blends conventional cancer treatment with integrative therapies such as diet, supplements, exercise and biobehavioral approaches. The Life Over Cancer model comprises three spheres of intervention: improving lifestyle, improving biochemical environment (terrain), and improving tolerance of conventional treatment. These levels are applied within the context of a life-affirming approach to cancer patients and treatme...
Directory of Open Access Journals (Sweden)
Thomas J Matthews
2014-06-01
Full Text Available A species abundance distribution (SAD characterises patterns in the commonness and rarity of all species within an ecological community. As such, the SAD provides the theoretical foundation for a number of other biogeographical and macroecological patterns, such as the species–area relationship, as well as being an interesting pattern in its own right. While there has been resurgence in the study of SADs in the last decade, less focus has been placed on methodology in SAD research, and few attempts have been made to synthesise the vast array of methods which have been employed in SAD model evaluation. As such, our review has two aims. First, we provide a general overview of SADs, including descriptions of the commonly used distributions, plotting methods and issues with evaluating SAD models. Second, we review a number of recent advances in SAD model fitting and comparison. We conclude by providing a list of recommendations for fitting and evaluating SAD models. We argue that it is time for SAD studies to move away from many of the traditional methods available for fitting and evaluating models, such as sole reliance on the visual examination of plots, and embrace statistically rigorous techniques. In particular, we recommend the use of both goodness-of-fit tests and model-comparison analyses because each provides unique information which one can use to draw inferences.
Local and omnibus goodness-of-fit tests in classical measurement error models
Ma, Yanyuan
2010-09-14
We consider functional measurement error models, i.e. models where covariates are measured with error and yet no distributional assumptions are made about the mismeasured variable. We propose and study a score-type local test and an orthogonal series-based, omnibus goodness-of-fit test in this context, where no likelihood function is available or calculated-i.e. all the tests are proposed in the semiparametric model framework. We demonstrate that our tests have optimality properties and computational advantages that are similar to those of the classical score tests in the parametric model framework. The test procedures are applicable to several semiparametric extensions of measurement error models, including when the measurement error distribution is estimated non-parametrically as well as for generalized partially linear models. The performance of the local score-type and omnibus goodness-of-fit tests is demonstrated through simulation studies and analysis of a nutrition data set.
Polytropic model fits to the globular cluster NGC 2419 in Modified Newtonian Dynamics
Ibata, Rodrigo; Sollima, Antonio; Nipoti, Carlo; Bellazzini, Michele; Chapman, Scott; Dalessandro, Emanuele
2011-01-01
We present an analysis of the globular cluster NGC 2419, using a polytropic model in Modified Newtonian Dynamics (MOND) to reproduce recently published high quality data of the structure and kinematics of the system. We show that a specific MOND polytropic model of NGC 2419 suggested by a previous study can be completely ruled out by the data. Furthermore, the highest likelihood fit polytrope in MOND is a substantially worse model (by a factor of approximately 5000) than a Newtonian Michie mo...
Goodness-of- fit tests for multivariate copula-based time series models
Berghaus, Betina; Bücher, Axel
2014-01-01
In recent years, stationary time series models based on copula functions became increasingly popular in econometrics to model nonlinear temporal and cross-sectional dependencies. Within these models, we consider the problem of testing the goodness-of-fit of the parametric form of the underlying copula. Our approach is based on a dependent multiplier bootstrap and it can be applied to any stationary, strongly mixing time series. The method extends recent i.i.d. results by Koj...
Simbolon, Ratna Wati
2016-01-01
This study aimed to evaluate the academic information system implementation using the development of the model HOT (Human Organization Technology) Fit. Development model applied is to use the model TUTO (Top-User Management-Technology-Organization). This study has four independent variables are the Top Management (Top Management) as X1, User (User) as X2, Technology (Technology) as X3 and Organization (Organization) as X4, and one dependent variable is the Academic Information System Services...
International Nuclear Information System (INIS)
Background: In radioactive nuclides atmospheric diffusion models, the empirical dispersion coefficients were deduced under certain experiment conditions, whose difference with nuclear accident conditions is a source of deviation. A better estimation of the radioactive nuclide's actual dispersion process could be done by correcting dispersion coefficients with observation data, and Genetic Algorithm (GA) is an appropriate method for this correction procedure. Purpose: This study is to analyze the fitness functions' influence on the correction procedure and the forecast ability of diffusion model. Methods: GA, coupled with Lagrange dispersion model, was used in a numerical simulation to compare 4 fitness functions' impact on the correction result. Results: In the numerical simulation, the fitness function with observation deviation taken into consideration stands out when significant deviation exists in the observed data. After performing the correction procedure on the Kincaid experiment data, a significant boost was observed in the diffusion model's forecast ability. Conclusion: As the result shows, in order to improve dispersion models' forecast ability using GA, observation data should be given different weight in the fitness function corresponding to their error. (authors)
The FIT 2.0 Model - Fuel-cycle Integration and Tradeoffs
Energy Technology Data Exchange (ETDEWEB)
Steven J. Piet; Nick R. Soelberg; Layne F. Pincock; Eric L. Shaber; Gregory M Teske
2011-06-01
All mass streams from fuel separation and fabrication are products that must meet some set of product criteria – fuel feedstock impurity limits, waste acceptance criteria (WAC), material storage (if any), or recycle material purity requirements such as zirconium for cladding or lanthanides for industrial use. These must be considered in a systematic and comprehensive way. The FIT model and the “system losses study” team that developed it [Shropshire2009, Piet2010b] are steps by the Fuel Cycle Technology program toward an analysis that accounts for the requirements and capabilities of each fuel cycle component, as well as major material flows within an integrated fuel cycle. This will help the program identify near-term R&D needs and set longer-term goals. This report describes FIT 2, an update of the original FIT model.[Piet2010c] FIT is a method to analyze different fuel cycles; in particular, to determine how changes in one part of a fuel cycle (say, fuel burnup, cooling, or separation efficiencies) chemically affect other parts of the fuel cycle. FIT provides the following: Rough estimate of physics and mass balance feasibility of combinations of technologies. If feasibility is an issue, it provides an estimate of how performance would have to change to achieve feasibility. Estimate of impurities in fuel and impurities in waste as function of separation performance, fuel fabrication, reactor, uranium source, etc.
Directory of Open Access Journals (Sweden)
Javier Macias-Guarasa
2012-10-01
Full Text Available This paper presents a novel approach for indoor acoustic source localization using sensor arrays. The proposed solution starts by defining a generative model, designed to explain the acoustic power maps obtained by Steered Response Power (SRP strategies. An optimization approach is then proposed to fit the model to real input SRP data and estimate the position of the acoustic source. Adequately fitting the model to real SRP data, where noise and other unmodelled effects distort the ideal signal, is the core contribution of the paper. Two basic strategies in the optimization are proposed. First, sparse constraints in the parameters of the model are included, enforcing the number of simultaneous active sources to be limited. Second, subspace analysis is used to filter out portions of the input signal that cannot be explained by the model. Experimental results on a realistic speech database show statistically significant localization error reductions of up to 30% when compared with the SRP-PHAT strategies.
IRT Model Fit Evaluation from Theory to Practice: Progress and Some Unanswered Questions
Cai, Li; Monroe, Scott
2013-01-01
In this commentary, the authors congratulate Professor Alberto Maydeu-Olivares on his article [EJ1023617: "Goodness-of-Fit Assessment of Item Response Theory Models, Measurement: Interdisciplinary Research and Perspectives," this issue] as it provides a much needed overview on the mathematical underpinnings of the theory behind the…
Fit Gap Analysis – The Role of Business Process Reference Models
Directory of Open Access Journals (Sweden)
Dejan Pajk
2013-12-01
Full Text Available Enterprise resource planning (ERP systems support solutions for standard business processes such as financial, sales, procurement and warehouse. In order to improve the understandability and efficiency of their implementation, ERP vendors have introduced reference models that describe the processes and underlying structure of an ERP system. To select and successfully implement an ERP system, the capabilities of that system have to be compared with a company’s business needs. Based on a comparison, all of the fits and gaps must be identified and further analysed. This step usually forms part of ERP implementation methodologies and is called fit gap analysis. The paper theoretically overviews methods for applying reference models and describes fit gap analysis processes in detail. The paper’s first contribution is its presentation of a fit gap analysis using standard business process modelling notation. The second contribution is the demonstration of a process-based comparison approach between a supply chain process and an ERP system process reference model. In addition to its theoretical contributions, the results can also be practically applied to projects involving the selection and implementation of ERP systems.
Universal Screening for Emotional and Behavioral Problems: Fitting a Population-Based Model
Schanding, G. Thomas, Jr.; Nowell, Kerri P.
2013-01-01
Schools have begun to adopt a population-based method to conceptualizing assessment and intervention of students; however, little empirical evidence has been gathered to support this shift in service delivery. The present study examined the fit of a population-based model in identifying students' behavioral and emotional functioning using a…
Haberman, Shelby J; Sinharay, Sandip; Chon, Kyong Hee
2013-07-01
Residual analysis (e.g. Hambleton & Swaminathan, Item response theory: principles and applications, Kluwer Academic, Boston, 1985; Hambleton, Swaminathan, & Rogers, Fundamentals of item response theory, Sage, Newbury Park, 1991) is a popular method to assess fit of item response theory (IRT) models. We suggest a form of residual analysis that may be applied to assess item fit for unidimensional IRT models. The residual analysis consists of a comparison of the maximum-likelihood estimate of the item characteristic curve with an alternative ratio estimate of the item characteristic curve. The large sample distribution of the residual is proved to be standardized normal when the IRT model fits the data. We compare the performance of our suggested residual to the standardized residual of Hambleton et al. (Fundamentals of item response theory, Sage, Newbury Park, 1991) in a detailed simulation study. We then calculate our suggested residuals using data from an operational test. The residuals appear to be useful in assessing the item fit for unidimensional IRT models. PMID:25106393
McCluskey, Ken W.
2010-01-01
This article presents the author's comments on Hisham B. Ghassib's "Where Does Creativity Fit into a Productivist Industrial Model of Knowledge Production?" Ghassib's article focuses on the transformation of science from pre-modern times to the present. Ghassib (2010) notes that, unlike in an earlier era when the economy depended on static…
Harris, Carole Ruth
2010-01-01
This article presents the author's comments on Hisham Ghassib's article entitled "Where Does Creativity Fit into a Productivist Industrial Model of Knowledge Production?" In his article, Ghassib (2010) provides an overview of the philosophical foundations that led to exact science, its role in what was later to become a driving force in the modern…
Wang, Chee Keng John; Pyun, Do Young; Liu, Woon Chia; Lim, Boon San Coral; Li, Fuzhong
2013-01-01
Using a multilevel latent growth curve modeling (LGCM) approach, this study examined longitudinal change in levels of physical fitness performance over time (i.e. four years) in young adolescents aged from 12-13 years. The sample consisted of 6622 students from 138 secondary schools in Singapore. Initial analyses found between-school variation on…
Flipo, N.; Monteil, C.; Poulin, M.; de Fouquet, C.; Krimissa, M.
2012-05-01
This study aims at analyzing the water budget of the unconfined Beauce aquifer (8000 km2) over a 35 year period, by modeling the hydrological functioning and quantifying exchanged water fluxes inside the system. A distributed process-based model (DPBM) is implemented to model the surface, the unsaturated zone and the aquifer subsystems. Based on an extensive literature review on multiparameter optimization and inverse problem, a pragmatic hybrid fitting method that couples manual and automatic calibration is developed. Three data subsets are used for calibration (10 year), validation (10 year) and test (35 year). The global piezometric head root-mean-square error is around 2.5 m for the three subsets and is rather uniformly spatially distributed over 78 piezometers. The sensitivity of the simulation to the different steps of the calibration process is investigated. The transmissivity field permits the fitting of the low-frequency signal for long-term filtering of the recharge signal, whereas the storage coefficient filters the signal with a higher frequency. For long-term insight into aquifer system functioning, the priority is thus to first fit the transmissivity field and to assess the distributed aquifer recharge accurately. The fitted DPBM, coupled with a linear model of coregionalization, is then used to quantify the hydrosystem water mass balance between 1974 and 2009, indicating that there is yet no trend of water resources decrease neither due to climate nor to human activities.
Bootstrapping topology and systemic risk of complex network using the fitness model
Musmeci N.; Battiston S.; Caldarelli G.; Puliga M.; Gabrielli A.
2012-01-01
We present a novel method to reconstruct complex network from partial information. We assume to know the links only for a subset of the nodes and to know some non-topological quantity (fitness) characterising every node. The missing links are generated on the basis of the latter quan- tity according to a fitness model calibrated on the subset of nodes for which links are known. We measure the quality of the reconstruction of several topological properties, such as the network density and the ...
Wadehn, Federico; Carnal, David; Loeliger, Hans-Andrea
2015-08-01
Heart rate variability is one of the key parameters for assessing the health status of a subject's cardiovascular system. This paper presents a local model fitting algorithm used for finding single heart beats in photoplethysmogram recordings. The local fit of exponentially decaying cosines of frequencies within the physiological range is used to detect the presence of a heart beat. Using 42 subjects from the CapnoBase database, the average heart rate error was 0.16 BPM and the standard deviation of the absolute estimation error was 0.24 BPM. PMID:26737125
Model-based fit procedure for power-law-like spectra
Milotti, E
2005-01-01
$1/f^\\alpha$ noises are ubiquitous and affect many measurements. These noises are both a nuisance and a peculiarity of several physical systems; in dielectrics, glasses and networked liquids it is very common to study this noise to gather useful information. Sometimes it happens that the noise has a power-law shape only in a certain frequency range, and contains other important features, that are however difficult to study because simple fits often fail. Here I propose a model-based fit procedure that performs well on spectra obtained in a molecular dynamics simulation.
Model-based fit procedure for power-law-like spectra
Milotti, Edoardo
2005-01-01
$1/f^\\alpha$ noises are ubiquitous and affect many measurements. These noises are both a nuisance and a peculiarity of several physical systems; in dielectrics, glasses and networked liquids it is very common to study this noise to gather useful information. Sometimes it happens that the noise has a power-law shape only in a certain frequency range, and contains other important features, that are however difficult to study because simple fits often fail. Here I propose a model-based fit proce...
A Mouse Model for Human Anal Cancer
Stelzer, Marie K.; Pitot, Henry C.; Liem, Amy; Schweizer, Johannes; Mahoney, Charles; Lambert, Paul F.
2010-01-01
Human anal cancers are associated with high-risk human papillomaviruses (HPVs) that cause other anogenital cancers and head and neck cancers. As with other cancers, HPV16 is the most common high-risk HPV in anal cancers. We describe the generation and characterization of a mouse model for human anal cancer. This model makes use of K14E6 and K14E7 transgenic mice in which the HPV16 E6 and E7 genes are directed in their expression to stratified squamous epithelia. HPV16 E6 and E7 possess oncoge...
Comparison and fitting of several Global-to_beam irradiance models in Spain
Pagola, Íñigo; Gastón, Martín; Fernández-Peruchena, Carlos M.; Torres, Jose Luis; Silva, Manuel; Ramírez, Lourdes
2009-01-01
In this paper, a comparison of different global to beam irradiance models has been performed. In a first step, five global-to-beam irradiance models are compared against ground measurements from three sites in Spain. Four of these existing models have also been fitted in the selected sites, and the results are presented as well. Finally, one new model (fully described in paper 11693) is also compared with the same ground measurements. The model comparison has been made by means of first and s...
Estimation of high-resolution dust column density maps: Empirical model fits
Juvela, M
2013-01-01
Sub-millimetre dust emission is an important tracer of density N of dense interstellar clouds. One has to combine surface brightness information at different spatial resolutions, and specific methods are needed to derive N at a resolution higher than the lowest resolution of the observations. Some methods have been discussed in the literature, including a method (in the following, method B) that constructs the N estimate in stages, where the smallest spatial scales being derived only use the shortest wavelength maps. We propose simple model fitting as a flexible way to estimate high-resolution column density maps. Our goal is to evaluate the accuracy of this procedure and to determine whether it is a viable alternative for making these maps. The new method consists of model maps of column density (or intensity at a reference wavelength) and colour temperature. The model is fitted using Markov chain Monte Carlo (MCMC) methods, comparing model predictions with observations at their native resolution. We analyse...
Rather, Manzoor A; Bhat, Bilal A; Qurishi, Mushtaq A
2013-12-15
Natural product based drugs constitute a substantial proportion of the pharmaceutical market particularly in the therapeutic areas of infectious diseases and oncology. The primary focus of any drug development program so far has been to design selective ligands (drugs) that act on single selective disease targets to obtain highly efficacious and safe drugs with minimal side effects. Although this approach has been successful for many diseases, yet there is a significant decline in the number of new drug candidates being introduced into clinical practice over the past few decades. This serious innovation deficit that the pharmaceutical industries are facing is due primarily to the post-marketing failures of blockbuster drugs. Many analysts believe that the current capital-intensive model-"the one drug to fit all" approach will be unsustainable in future and that a new "less investment, more drugs" model is necessary for further scientific growth. It is now well established that many diseases are multi-factorial in nature and that cellular pathways operate more like webs than highways. There are often multiple ways or alternate routes that may be switched on in response to the inhibition of a specific target. This gives rise to the resistant cells or resistant organisms under the specific pressure of a targeted agent, resulting in drug resistance and clinical failure of the drug. Drugs designed to act against individual molecular targets cannot usually combat multifactorial diseases like cancer, or diseases that affect multiple tissues or cell types such as diabetes and immunoinflammatory diseases. Combination drugs that affect multiple targets simultaneously are better at controlling complex disease systems and are less prone to drug resistance. This multicomponent therapy forms the basis of phytotherapy or phytomedicine where the holistic therapeutic effect arises as a result of complex positive (synergistic) or negative (antagonistic) interactions between
Directory of Open Access Journals (Sweden)
Rita Yi Man Li
2012-03-01
Full Text Available Entrepreneurs have always born the risk of running their business. They reap a profit in return for their risk taking and work. Housing developers are no different. In many countries, such as Australia, the United Kingdom and the United States, they interpret the tastes of the buyers and provide the dwellings they develop with basic fittings such as floor and wall coverings, bathroom fittings and kitchen cupboards. In mainland China, however, in most of the developments, units or houses are sold without floor or wall coverings, kitchen or bathroom fittings. What is the motive behind this choice? This paper analyses the factors affecting housing developers’ decisions to provide fittings based on 1701 housing developments in Hangzhou, Chongqing and Hangzhou using a Probit model. The results show that developers build a higher proportion of bare units in mainland China when: 1 there is shortage of housing; 2 land costs are high so that the comparative costs of providing fittings become relatively low.
Fitting the distribution of dry and wet spells with alternative probability models
Deni, Sayang Mohd; Jemain, Abdul Aziz
2009-06-01
The development of the rainfall occurrence model is greatly important not only for data-generation purposes, but also in providing informative resources for future advancements in water-related sectors, such as water resource management and the hydrological and agricultural sectors. Various kinds of probability models had been introduced to a sequence of dry (wet) days by previous researchers in the field. Based on the probability models developed previously, the present study is aimed to propose three types of mixture distributions, namely, the mixture of two log series distributions (LSD), the mixture of the log series Poisson distribution (MLPD), and the mixture of the log series and geometric distributions (MLGD), as the alternative probability models to describe the distribution of dry (wet) spells in daily rainfall events. In order to test the performance of the proposed new models with the other nine existing probability models, 54 data sets which had been published by several authors were reanalyzed in this study. Also, the new data sets of daily observations from the six selected rainfall stations in Peninsular Malaysia for the period 1975-2004 were used. In determining the best fitting distribution to describe the observed distribution of dry (wet) spells, a Chi-square goodness-of-fit test was considered. The results revealed that the new method proposed that MLGD and MLPD showed a better fit as more than half of the data sets successfully fitted the distribution of dry and wet spells. However, the existing models, such as the truncated negative binomial and the modified LSD, were also among the successful probability models to represent the sequence of dry (wet) days in daily rainfall occurrence.
Mustonen, Ville; Kinney, Justin; Callan, Curtis G.; Lässig, Michael
2008-01-01
We present a genomewide cross-species analysis of regulation for broad-acting transcription factors in yeast. Our model for binding site evolution is founded on biophysics: the binding energy between transcription factor and site is a quantitative phenotype of regulatory function, and selection is given by a fitness landscape that depends on this phenotype. The model quantifies conservation, as well as loss and gain, of functional binding sites in a coherent way. Its predictions are supported...
Fitting General Relative Risk Models for Survival Time and Matched Case-Control Analysis
Langholz, Bryan; Richardson, David B.
2009-01-01
Cox proportional hazards regression analysis of survival data and conditional logistic regression analysis of matched case-control data are methods that are widely used by epidemiologists. Standard statistical software packages accommodate only log-linear model forms, which imply exponential exposure-response functions and multiplicative interactions. In this paper, the authors describe methods for fitting non-log-linear Cox and conditional logistic regression models. The authors use data fro...
Modeling epidemics of multidrug-resistant M. tuberculosis of heterogeneous fitness
Cohen, Ted; Murray, Megan
2004-01-01
Mathematical models have recently been used to predict the future burden of multidrug-resistant tuberculosis (MDRTB)1-3. These models suggest the threat of multidrug resistance to TB control will depend on the relative ‘fitness’ of MDR strains and imply that if the average fitness of MDR strains is considerably less than that of drug-sensitive strains, the emergence of resistance will not jeopardize the success of tuberculosis control efforts. Multidrug resistance in M. tuberculosis is confer...
Fitting complex population models by combining particle filters with Markov chain Monte Carlo.
Knape, Jonas; de Valpine, Perry
2012-02-01
We show how a recent framework combining Markov chain Monte Carlo (MCMC) with particle filters (PFMCMC) may be used to estimate population state-space models. With the purpose of utilizing the strengths of each method, PFMCMC explores hidden states by particle filters, while process and observation parameters are estimated using an MCMC algorithm. PFMCMC is exemplified by analyzing time series data on a red kangaroo (Macropus rufus) population in New South Wales, Australia, using MCMC over model parameters based on an adaptive Metropolis-Hastings algorithm. We fit three population models to these data; a density-dependent logistic diffusion model with environmental variance, an unregulated stochastic exponential growth model, and a random-walk model. Bayes factors and posterior model probabilities show that there is little support for density dependence and that the random-walk model is the most parsimonious model. The particle filter Metropolis-Hastings algorithm is a brute-force method that may be used to fit a range of complex population models. Implementation is straightforward and less involved than standard MCMC for many models, and marginal densities for model selection can be obtained with little additional effort. The cost is mainly computational, resulting in long running times that may be improved by parallelizing the algorithm. PMID:22624307
Fitting parametric models of diffusion MRI in regions of partial volume
Eaton-Rosen, Zach; Cardoso, M. J.; Melbourne, Andrew; Orasanu, Eliza; Bainbridge, Alan; Kendall, Giles S.; Robertson, Nicola J.; Marlow, Neil; Ourselin, Sebastien
2016-03-01
Regional analysis is normally done by fitting models per voxel and then averaging over a region, accounting for partial volume (PV) only to some degree. In thin, folded regions such as the cerebral cortex, such methods do not work well, as the partial volume confounds parameter estimation. Instead, we propose to fit the models per region directly with explicit PV modeling. In this work we robustly estimate region-wise parameters whilst explicitly accounting for partial volume effects. We use a high-resolution segmentation from a T1 scan to assign each voxel in the diffusion image a probabilistic membership to each of k tissue classes. We rotate the DW signal at each voxel so that it aligns with the z-axis, then model the signal at each voxel as a linear superposition of a representative signal from each of the k tissue types. Fitting involves optimising these representative signals to best match the data, given the known probabilities of belonging to each tissue type that we obtained from the segmentation. We demonstrate this method improves parameter estimation in digital phantoms for the diffusion tensor (DT) and `Neurite Orientation Dispersion and Density Imaging' (NODDI) models. The method provides accurate parameter estimates even in regions where the normal approach fails completely, for example where partial volume is present in every voxel. Finally, we apply this model to brain data from preterm infants, where the thin, convoluted, maturing cortex necessitates such an approach.
A flexible, interactive software tool for fitting the parameters of neuronal models
Directory of Open Access Journals (Sweden)
Péter eFriedrich
2014-07-01
Full Text Available The construction of biologically relevant neuronal models as well as model-based analysis of experimental data often requires the simultaneous fitting of multiple model parameters, so that the behavior of the model in a certain paradigm matches (as closely as possible the corresponding output of a real neuron according to some predefined criterion. Although the task of model optimization is often computationally hard, and the quality of the results depends heavily on technical issues such as the appropriate choice (and implementation of cost functions and optimization algorithms, no existing program provides access to the best available methods while also guiding the user through the process effectively. Our software, called Optimizer, implements a modular and extensible framework for the optimization of neuronal models, and also features a graphical interface which makes it easy for even non-expert users to handle many commonly occurring scenarios. Meanwhile, educated users can extend the capabilities of the program and customize it according to their needs with relatively little effort. Optimizer has been developed in Python, takes advantage of open-source Python modules for nonlinear optimization, and interfaces directly with the NEURON simulator to run the models. Other simulators are supported through an external interface. We have tested the program on several different types of problem of varying complexity, using different model classes. As targets, we used simulated traces from the same or a more complex model class, as well as experimental data. We successfully used Optimizer to determine passive parameters and conductance densities in compartmental models, and to fit simple (adaptive exponential integrate-and-fire neuronal models to complex biological data. Our detailed comparisons show that Optimizer can handle a wider range of problems, and delivers equally good or better performance than any other existing neuronal model fitting
Application of random walk model to fit temperature in 46 gamma world cities from 1901 to 1998
Shaomin Yan; Guang Wu
2010-01-01
Very recently, we have applied the random walk model to fit the global temperature anomaly, CRUTEM3. With encouraging results, we apply the random walk model to fit the temperature walk that is the conversion of recorded tem-perature and real recorded temperature in 46 gamma world cities from 1901 to 1998 in this study. The results show that the random walk model can fit both temperature walk and real recorded temperature although the fitted results from other climate models are unavailable f...
The Beta Problem: The Incompatibility of X-ray and Sunyaev-Zeldovich Model Fitting
Burns, Jack O.; Hallman, E.; Motl, P.; Norman, M.
2006-12-01
We describe an analysis of a large sample of numerically simulated clusters which demonstrates the effects of using X-ray fitted beta-model parameters with Sunyaev-Zeldovich effect (SZE) data. There is a fundamental incompatibility between beta-model fits to X-ray surface brightness profiles and those done with SZE profiles. Since observational SZE radial profiles are in short supply, the X-ray parameters are often used in SZE analysis. We show that this leads to biased estimates of the integrated Compton y-parameter inside r500 and the value of the Hubble constant calculated from clusters. We suggest a simple scaling of the X-ray beta-model parameters which brings these calculated quantities into close agreement with the true values.
Kompaneets Model Fitting of the Orion-Eridanus Superbubble II: Thinking Outside of Barnard's Loop
Pon, Andy; Alves, Joao; Bally, John; Basu, Shantanu; Tielens, Alexander G G M
2016-01-01
The Orion star-forming region is the nearest active high-mass star-forming region and has created a large superbubble, the Orion-Eridanus superbubble. Recent work by Ochsendorf et al. (2015) has extended the accepted boundary of the superbubble. We fit Kompaneets models of superbubbles expanding in exponential atmospheres to the new, larger shape of the Orion-Eridanus superbubble. We find that this larger morphology of the superbubble is consistent with the evolution of the superbubble being primarily controlled by expansion into the exponential Galactic disk ISM if the superbubble is oriented with the Eridanus side farther from the Sun than the Orion side. Unlike previous Kompaneets model fits that required abnormally small scale heights for the Galactic disk (<40 pc), we find morphologically consistent models with scale heights of 80 pc, similar to that expected for the Galactic disk.
POLYTROPIC MODEL FITS TO THE GLOBULAR CLUSTER NGC 2419 IN MODIFIED NEWTONIAN DYNAMICS
International Nuclear Information System (INIS)
We present an analysis of the globular cluster NGC 2419, using a polytropic model in modified Newtonian dynamics (MOND) to reproduce recently published high-quality data on the structure and kinematics of the system. We show that a specific MOND polytropic model of NGC 2419 suggested by a previous study can be completely ruled out by the data. Furthermore, the highest likelihood fit polytrope in MOND is a substantially worse model (by a factor of ∼5000) than a Newtonian Michie model we studied previously. We conclude that the structure and dynamics of NGC 2419 favor Newtonian dynamics and do indeed challenge the MOND theory.
unmarked: An R Package for Fitting Hierarchical Models of Wildlife Occurrence and Abundance
Directory of Open Access Journals (Sweden)
Ian J. Fiske
2011-08-01
Full Text Available Ecological research uses data collection techniques that are prone to substantial and unique types of measurement error to address scientific questions about species abundance and distribution. These data collection schemes include a number of survey methods in which unmarked individuals are counted, or determined to be present, at spatially- referenced sites. Examples include site occupancy sampling, repeated counts, distance sampling, removal sampling, and double observer sampling. To appropriately analyze these data, hierarchical models have been developed to separately model explanatory variables of both a latent abundance or occurrence process and a conditional detection process. Because these models have a straightforward interpretation paralleling mechanisms under which the data arose, they have recently gained immense popularity. The common hierarchical structure of these models is well-suited for a unified modeling interface. The R package unmarked provides such a unified modeling framework, including tools for data exploration, model fitting, model criticism, post-hoc analysis, and model comparison.
Fitness, inclusive fitness, and optimization
Lehmann L.; Rousset F
2014-01-01
Individual-as-maximizing agent analogies result in a simple understanding of the functioning of the biological world. Identifying the conditions under which individuals can be regarded as fitness maximizing agents is thus of considerable interest to biologists. Here, we compare different concepts of fitness maximization, and discuss within a single framework the relationship between Hamilton's (J Theor Biol 7: 1-16, 1964) model of social interactions, Grafen's (J Evol Biol 20: 1243-1254, 2007...
Correlated Parameter Fit of Arrhenius Model for Thermal Denaturation of Proteins and Cells
Qin, Zhenpeng; Balasubramanian, Saravana Kumar; Wolkers, Willem F.; Pearce, John A.; Bischof, John C.
2014-01-01
Thermal denaturation of proteins is critical to cell injury, food science and other biomaterial processing. For example protein denaturation correlates strongly with cell death by heating, and is increasingly of interest in focal thermal therapies of cancer and other diseases at temperatures which often exceed 50 °C. The Arrhenius model is a simple yet widely used model for both protein denaturation and cell injury. To establish the utility of the Arrhenius model for protein denaturation at 5...
Fitting a Bivariate Measurement Error Model for Episodically Consumed Dietary Components
Zhang, Saijuan
2011-01-06
There has been great public health interest in estimating usual, i.e., long-term average, intake of episodically consumed dietary components that are not consumed daily by everyone, e.g., fish, red meat and whole grains. Short-term measurements of episodically consumed dietary components have zero-inflated skewed distributions. So-called two-part models have been developed for such data in order to correct for measurement error due to within-person variation and to estimate the distribution of usual intake of the dietary component in the univariate case. However, there is arguably much greater public health interest in the usual intake of an episodically consumed dietary component adjusted for energy (caloric) intake, e.g., ounces of whole grains per 1000 kilo-calories, which reflects usual dietary composition and adjusts for different total amounts of caloric intake. Because of this public health interest, it is important to have models to fit such data, and it is important that the model-fitting methods can be applied to all episodically consumed dietary components.We have recently developed a nonlinear mixed effects model (Kipnis, et al., 2010), and have fit it by maximum likelihood using nonlinear mixed effects programs and methodology (the SAS NLMIXED procedure). Maximum likelihood fitting of such a nonlinear mixed model is generally slow because of 3-dimensional adaptive Gaussian quadrature, and there are times when the programs either fail to converge or converge to models with a singular covariance matrix. For these reasons, we develop a Monte-Carlo (MCMC) computation of fitting this model, which allows for both frequentist and Bayesian inference. There are technical challenges to developing this solution because one of the covariance matrices in the model is patterned. Our main application is to the National Institutes of Health (NIH)-AARP Diet and Health Study, where we illustrate our methods for modeling the energy-adjusted usual intake of fish and whole
Optimizing mouse models for precision cancer prevention.
Le Magnen, Clémentine; Dutta, Aditya; Abate-Shen, Cory
2016-03-01
As cancer has become increasingly prevalent, cancer prevention research has evolved towards placing a greater emphasis on reducing cancer deaths and minimizing the adverse consequences of having cancer. 'Precision cancer prevention' takes into account the collaboration of intrinsic and extrinsic factors in influencing cancer incidence and aggressiveness in the context of the individual, as well as recognizing that such knowledge can improve early detection and enable more accurate discrimination of cancerous lesions. However, mouse models, and particularly genetically engineered mouse (GEM) models, have yet to be fully integrated into prevention research. In this Opinion article, we discuss opportunities and challenges for precision mouse modelling, including the essential criteria of mouse models for prevention research, representative success stories and opportunities for more refined analyses in future studies. PMID:26893066
Furlan, E.; Fischer, W. J.; Ali, B.; Stutz, A. M.; Stanke, T.; Tobin, J. J.; Megeath, S. T.; Osorio, M.; Hartmann, L.; Calvet, N.; Poteet, C. A.; Booker, J.; Manoj, P.; Watson, D. M.; Allen, L.
2016-05-01
We present key results from the Herschel Orion Protostar Survey: spectral energy distributions (SEDs) and model fits of 330 young stellar objects, predominantly protostars, in the Orion molecular clouds. This is the largest sample of protostars studied in a single, nearby star formation complex. With near-infrared photometry from 2MASS, mid- and far-infrared data from Spitzer and Herschel, and submillimeter photometry from APEX, our SEDs cover 1.2-870 μm and sample the peak of the protostellar envelope emission at ˜100 μm. Using mid-IR spectral indices and bolometric temperatures, we classify our sample into 92 Class 0 protostars, 125 Class I protostars, 102 flat-spectrum sources, and 11 Class II pre-main-sequence stars. We implement a simple protostellar model (including a disk in an infalling envelope with outflow cavities) to generate a grid of 30,400 model SEDs and use it to determine the best-fit model parameters for each protostar. We argue that far-IR data are essential for accurate constraints on protostellar envelope properties. We find that most protostars, and in particular the flat-spectrum sources, are well fit. The median envelope density and median inclination angle decrease from Class 0 to Class I to flat-spectrum protostars, despite the broad range in best-fit parameters in each of the three categories. We also discuss degeneracies in our model parameters. Our results confirm that the different protostellar classes generally correspond to an evolutionary sequence with a decreasing envelope infall rate, but the inclination angle also plays a role in the appearance, and thus interpretation, of the SEDs.
A fit to the simultaneous broadband spectrum of Cygnus X-1 using the transition disk model
Misra, R; Melia, F
1997-01-01
We have used the transition disk model to fit the simultaneous broad band ($2-500$ keV) spectrum of Cygnus X-1 from OSSE and Ginga observations. In this model, the spectrum is produced by saturated Comptonization within the inner region of the accretion disk, where the temperature varies rapidly with radius. In an earlier attempt, we demonstrated the viability of this model by fitting the data from EXOSAT, XMPC balloon and OSSE observations, though these were not made simultaneously. Since the source is known to be variable, however, the results of this fit were not conclusive. In addition, since only once set of observations was used, the good agreement with the data could have been a chance occurrence. Here, we improve considerably upon our earlier analysis by considering four sets of simultaneous observations of Cygnus X-1, using an empirical model to obtain the disk temperature profile. The vertical structure is then obtained using this profile and we show that the analysis is self- consistent. We demonst...
Ritter, Axel; Muñoz-Carpena, Rafael
2013-02-01
SummarySuccess in the use of computer models for simulating environmental variables and processes requires objective model calibration and verification procedures. Several methods for quantifying the goodness-of-fit of observations against model-calculated values have been proposed but none of them is free of limitations and are often ambiguous. When a single indicator is used it may lead to incorrect verification of the model. Instead, a combination of graphical results, absolute value error statistics (i.e. root mean square error), and normalized goodness-of-fit statistics (i.e. Nash-Sutcliffe Efficiency coefficient, NSE) is currently recommended. Interpretation of NSE values is often subjective, and may be biased by the magnitude and number of data points, data outliers and repeated data. The statistical significance of the performance statistics is an aspect generally ignored that helps in reducing subjectivity in the proper interpretation of the model performance. In this work, approximated probability distributions for two common indicators (NSE and root mean square error) are derived with bootstrapping (block bootstrapping when dealing with time series), followed by bias corrected and accelerated calculation of confidence intervals. Hypothesis testing of the indicators exceeding threshold values is proposed in a unified framework for statistically accepting or rejecting the model performance. It is illustrated how model performance is not linearly related with NSE, which is critical for its proper interpretation. Additionally, the sensitivity of the indicators to model bias, outliers and repeated data is evaluated. The potential of the difference between root mean square error and mean absolute error for detecting outliers is explored, showing that this may be considered a necessary but not a sufficient condition of outlier presence. The usefulness of the approach for the evaluation of model performance is illustrated with case studies including those with
Kinetic modelling of RDF pyrolysis: Model-fitting and model-free approaches.
Çepelioğullar, Özge; Haykırı-Açma, Hanzade; Yaman, Serdar
2016-02-01
In this study, refuse derived fuel (RDF) was selected as solid fuel and it was pyrolyzed in a thermal analyzer from room temperature to 900°C at heating rates of 5, 10, 20, and 50°C/min in N2 atmosphere. The obtained thermal data was used to calculate the kinetic parameters using Coats-Redfern, Friedman, Flylnn-Wall-Ozawa (FWO) and Kissinger-Akahira-Sunose (KAS) methods. As a result of Coats-Redfern model, decomposition process was assumed to be four independent reactions with different reaction orders. On the other hand, model free methods demonstrated that activation energy trend had similarities for the reaction progresses of 0.1, 0.2-0.7 and 0.8-0.9. The average activation energies were found between 73-161kJ/mol and it is possible to say that FWO and KAS models produced closer results to the average activation energies compared to Friedman model. Experimental studies showed that RDF may be a sustainable and promising feedstock for alternative processes in terms of waste management strategies. PMID:26613830
Efficient Constrained Local Model Fitting for Non-Rigid Face Alignment
Wang, Yang; Cox, Mark; Sridharan, Sridha; Cohn, Jeffery F.
2009-01-01
Active appearance models (AAMs) have demonstrated great utility when being employed for non-rigid face alignment/tracking. The “simultaneous” algorithm for fitting an AAM achieves good non-rigid face registration performance, but has poor real time performance (2-3 fps). The “project-out” algorithm for fitting an AAM achieves faster than real time performance (> 200 fps) but suffers from poor generic alignment performance. In this paper we introduce an extension to a discriminative method for non-rigid face registration/tracking referred to as a constrained local model (CLM). Our proposed method is able to achieve superior performance to the “simultaneous” AAM algorithm along with real time fitting speeds (35 fps). We improve upon the canonical CLM formulation, to gain this performance, in a number of ways by employing: (i) linear SVMs as patch-experts, (ii) a simplified optimization criteria, and (iii) a composite rather than additive warp update step. Most notably, our simplified optimization criteria for fitting the CLM divides the problem of finding a single complex registration/warp displacement into that of finding N simple warp displacements. From these N simple warp displacements, a single complex warp displacement is estimated using a weighted least-squares constraint. Another major advantage of this simplified optimization lends from its ability to be parallelized, a step which we also theoretically explore in this paper. We refer to our approach for fitting the CLM as the “exhaustive local search” (ELS) algorithm. Experiments were conducted on the CMU Multi-PIE database. PMID:20046797
Mandal, S.; Choudhury, B. U.
2015-07-01
Sagar Island, setting on the continental shelf of Bay of Bengal, is one of the most vulnerable deltas to the occurrence of extreme rainfall-driven climatic hazards. Information on probability of occurrence of maximum daily rainfall will be useful in devising risk management for sustaining rainfed agrarian economy vis-a-vis food and livelihood security. Using six probability distribution models and long-term (1982-2010) daily rainfall data, we studied the probability of occurrence of annual, seasonal and monthly maximum daily rainfall (MDR) in the island. To select the best fit distribution models for annual, seasonal and monthly time series based on maximum rank with minimum value of test statistics, three statistical goodness of fit tests, viz. Kolmogorove-Smirnov test (K-S), Anderson Darling test ( A 2 ) and Chi-Square test ( X 2) were employed. The fourth probability distribution was identified from the highest overall score obtained from the three goodness of fit tests. Results revealed that normal probability distribution was best fitted for annual, post-monsoon and summer seasons MDR, while Lognormal, Weibull and Pearson 5 were best fitted for pre-monsoon, monsoon and winter seasons, respectively. The estimated annual MDR were 50, 69, 86, 106 and 114 mm for return periods of 2, 5, 10, 20 and 25 years, respectively. The probability of getting an annual MDR of >50, >100, >150, >200 and >250 mm were estimated as 99, 85, 40, 12 and 03 % level of exceedance, respectively. The monsoon, summer and winter seasons exhibited comparatively higher probabilities (78 to 85 %) for MDR of >100 mm and moderate probabilities (37 to 46 %) for >150 mm. For different recurrence intervals, the percent probability of MDR varied widely across intra- and inter-annual periods. In the island, rainfall anomaly can pose a climatic threat to the sustainability of agricultural production and thus needs adequate adaptation and mitigation measures.
International Nuclear Information System (INIS)
Six infiltration models, some obtained by reformulating the fitting parameters of the classical Kostiakov (1932) and Philip (1957) equations, were investigated for their ability to describe water infiltration into highly permeable sandy soils from the Nsukka plains of SE Nigeria. The models were Kostiakov, Modified Kostiakov (A), Modified Kostiakov (B), Philip, Modified Philip (A) and Modified Philip (B). Infiltration data were obtained from double ring infiltrometers on field plots established on a Knadic Paleustult (Nkpologu series) to investigate the effects of land use on soil properties and maize yield. The treatments were; (i) tilled-mulched (TM), (ii) tilled-unmulched (TU), (iii) untilled-mulched (UM), (iv) untilled-unmulched (UU) and (v) continuous pasture (CP). Cumulative infiltration was highest on the TM and lowest on the CP plots. All estimated model parameters obtained by the best fit of measured data differed significantly among the treatments. Based on the magnitude of R2 values, the Kostiakov, Modified Kostiakov (A), Philip and Modified Philip (A) models provided best predictions of cumulative infiltration as a function of time. Comparing experimental with model-predicted cumulative infiltration showed, however, that on all treatments the values predicted by the classical Kostiakov, Philip and Modified Philip (A) models deviated most from experimental data. The other models produced values that agreed very well with measured data. Considering the eases of determining the fitting parameters it is proposed that on soils with high infiltration rates, either Modified Kostiakov model (I = Kta + Ict) or Modified Philip model (I St1/2 + Ict), (where I is cumulative infiltration, K, the time coefficient, t, time elapsed, 'a' the time exponent, Ic the equilibrium infiltration rate and S, the soil water sorptivity), be used for routine characterization of the infiltration process. (author). 33 refs, 3 figs 6 tabs
Tectonic plate under a localized boundary stress: fitting of a zero-range solvable model
Petrova, L
2008-01-01
We suggest a method of fitting of a zero-range model of a tectonic plate under a boundary stress on the basis of comparison of the theoretical formulae for the corresponding eigenfunctions/eigenvalues with the results extraction under monitoring, in the remote zone, of non-random (regular) oscillations of the Earth with periods 0.2-6 hours, on the background seismic process, in case of low seismic activity. Observations of changes of the characteristics of the oscillations (frequency, amplitude and polarization) in course of time, together with the theoretical analysis of the fitted model, would enable us to localize the stressed zone on the boundary of the plate and estimate the risk of a powerful earthquake at the zone.
Tectonic plate under a localized boundary stress: fitting of a zero-range solvable model
International Nuclear Information System (INIS)
We suggest a method of fitting of a zero-range model of a tectonic plate under a boundary stress on the basis of comparison of the theoretical formulae for the corresponding eigenfunctions/eigenvalues with the results extraction under monitoring, in the remote zone, of non-random (regular) oscillations of the Earth with periods 0.2-6 h, on the background seismic process, in case of low seismic activity. Observations of changes of the characteristics of the oscillations (frequency, amplitude and polarization) in course of time, together with the theoretical analysis of the fitted model, would enable us to localize the stressed zone on the boundary of the plate and estimate the risk of a powerful earthquake at the zone
Wu, L.; Chow, D. S-L.; Tam, V.; Putcha, L.
2015-01-01
An intranasal gel formulation of scopolamine (INSCOP) was developed for the treatment of Motion Sickness. Bioavailability and pharmacokinetics (PK) were determined per Investigative New Drug (IND) evaluation guidance by the Food and Drug Administration. Earlier, we reported the development of a PK model that can predict the relationship between plasma, saliva and urinary scopolamine (SCOP) concentrations using data collected from an IND clinical trial with INSCOP. This data analysis project is designed to validate the reported best fit PK model for SCOP by comparing observed and model predicted SCOP concentration-time profiles after administration of INSCOP.
Lee, Chaohong; Zhu, Xiwen; Gao, Kelin
2001-01-01
We introduce the standard distribution width of fitness to characterize the global and individual features of a ecosystem in the Bak-Sneppen evolution model. Through tracking this quantity in evolution, a different hierarchy of avalanche dynamics, $w_{0}$ avalanche is observed. The corresponding gap equation and the self-organized threshold $w_{c}$ are obtained. The critical exponents $\\tau ,$ $\\gamma $and $\\rho $, which describe the behavior of the avalanche size distribution, the average av...
Goodness-of-fit test in a multivariate errors-in-variables model $AX = B$
Kukush, Alexander; Tsaregorodtsev, Yaroslav
2016-01-01
A multivariable functional errors-in-variables model $AX \\approx B$ is considered, where the data matrices $A$ and $B$ are observed with errors and a matrix parameter $X$ is to be estimated. A goodness-of-fit test is constructed based on the total least squares estimator. The proposed test is asymptotically chi-squared under null hypothesis. The power of the test under local alternatives is discussed.
Yunyun Yang; Boying Wu
2012-01-01
We propose a convex image segmentation model in a variational level set formulation. Both the local information and the global information are taken into consideration to get better segmentation results. We first propose a globally convex energy functional to combine the local and global intensity fitting terms. The proposed energy functional is then modified by adding an edge detector to force the active contour to the boundary more easily. We then apply the split Bregman method to minimize ...
Model fitting of kink waves in the solar atmosphere: Gaussian damping and time-dependence
Morton, R J
2016-01-01
{Observations of the solar atmosphere have shown that magnetohydrodynamic waves are ubiquitous throughout. Improvements in instrumentation and the techniques used for measurement of the waves now enables subtleties of competing theoretical models to be compared with the observed waves behaviour. Some studies have already begun to undertake this process. However, the techniques employed for model comparison have generally been unsuitable and can lead to erroneous conclusions about the best model. The aim here is to introduce some robust statistical techniques for model comparison to the solar waves community, drawing on the experiences from other areas of astrophysics. In the process, we also aim to investigate the physics of coronal loop oscillations. } {The methodology exploits least-squares fitting to compare models to observational data. We demonstrate that the residuals between the model and observations contain significant information about the ability for the model to describe the observations, and show...
Building a better model of cancer
Directory of Open Access Journals (Sweden)
DeGregori James
2006-10-01
Full Text Available Abstract The 2006 Cold Spring Harbor Laboratory meeting on the Mechanisms and Models of Cancer was held August 16–20. The meeting featured several hundred presentations of many short talks (mostly selected from the abstracts and posters, with the airing of a number of exciting new discoveries. We will focus this meeting review on models of cancer (primarily mouse models, highlighting recent advances in new mouse models that better recapitulate sporadic tumorigenesis, demonstrations of tumor addiction to tumor suppressor inactivation, new insight into senescence as a tumor barrier, improved understanding of the evolutionary paths of cancer development, and environmental/immunological influences on cancer.
Institute of Scientific and Technical Information of China (English)
Xin; YAO; Min; ZHANG
2014-01-01
The mathematical model is often used for fitting the trend of changes in cultivated land resources in the land use planning,but the fitting effect is different in different study areas. In this paper,we take two geographically adjacent cities with great differences in the economic development model,Xinghua City and Jingjiang City,as the research object. Using logarithmic model( M1),Kuznets model( M2),logistic model( M3) and multivariate linear model( M4),we fit the process of changes in cultivated land resources during the period 1980- 2009,and compare the differences in the fitting effect between different models. In terms of the model fitting effect in Xinghua City,it is in the order of M3 > M4 > M1 > M2,which is related to the fact that the local areas lay great emphasis on agricultural development,and pay close attention to ensuring the cultivated land area; in terms of the model fitting effect in Jingjiang City,it is in the order of M1 > M3 > M4 > M2,and the deep-seated cause is that its development model is dominated by extended trade expansion,and the level of intensive land use is constantly improved. In addition,we discuss the multi-stage characteristics of changes in cultivated land resources,and propose a solution of using the same model to simulate in various phases. The research results in Jingjiang City show that the coefficient of determination in the first phase( R2=0. 958) and the standard error( SE = 0. 261) are both better than those of the original model( R2= 0. 945,SE = 0. 312); the coefficient of determination in the second phase is slightly low( R2= 0. 851),but the standard error is greatly improved( SE = 0. 137). Compared with the research conclusions of other scholars,it can be believed that this method can better solve the problems that the scatter plot of logistic model presents wave-shape and the scatter plot of Kuznets model presents " M"-shape,in order to improve the applicability of mathematical models.
Cheng, Yuan-Chieh; Chen, Jia-Hong; Chang, Rong-Jie; Wang, Chung-Yen; Hsu, Wei-Yao; Wang, Pei-Jen
2015-09-01
Contact lenses are typically measured by the wet-box method because of the high optical power resulting from the anterior central curvature of cornea, even though the back vertex power of the lenses are small. In this study, an optical measurement system based on the Shack-Hartmann wavefront principle was established to investigate the aberrations of soft contact lenses. Fitting conditions were micmicked to study the optical design of an eye model with various topographical shapes in the anterior cornea. Initially, the contact lenses were measured by the wet-box method, and then by fitting the various topographical shapes of cornea to the eye model. In addition, an optics simulation program was employed to determine the sources of errors and assess the accuracy of the system. Finally, samples of soft contact lenses with various Diopters were measured; and, both simulations and experimental results were compared for resolving the controversies of fitting contact lenses to an eye model for optical measurements. More importantly, the results show that the proposed system can be employed for study of primary aberrations in contact lenses.
Model fitting of the kinematics of ten superluminal components in blazar 3C 279
Institute of Scientific and Technical Information of China (English)
Shan-Jie Qian
2013-01-01
The kinematics of ten superluminal components (C11-C16,C18,C20,C21 and C24) of blazar 3C 279 are studied from VLBI observations.It is shown that their initial trajectory,distance from the core and apparent speed can be well fitted by the precession model proposed by Qian.Combined with the results of the model fit for the six superluminal components (C3,C4,C7a,C8,C9 and C10) already published,the kinematics of sixteen superluminal components can now be consistently interpreted in the precession scenario with their ejection times spanning more than 25 yr (or more than one precession period).The results from model fitting show the possible existence of a common precessing trajectory for these knots within a projected core distance of ～0.2-0.4 mas.In the framework of the jet-precession scenario,we can,for the first time,identify three classes of trajectories which are characterized by their collimation parameters.These different trajectories could be related to the helical structure of magnetic fields in the jet.Through fitting the model,the bulk Lorentz factor,Doppler factor and viewing angle of these knots are derived.It is found that there is no evidence for any correlation between the bulk Lorentz factor of the components and their precession phase (or ejection time).In a companion paper,the kinematics of another seven components (C5a,C6,C7,C17,C19,C22 and C23) have been derived from model fitting,and a binary black-hole/jet scenario was envisaged.The precession model proposed by Qian would be useful for understanding the kinematics of superluminal components in blazar 3C 279 derived from VLBI observations,by disentangling different mechanisms and ingredients.More generally,it might also be helpful for studying the mechanism of jet swing (wobbling) in other blazars.
On the use of the ratio of small to large separations in asteroseismic model fitting
Roxburgh, Ian W
2013-01-01
Context. The use of ratios of small to large separations as a diagnostic of stellar interiors. Aims. To demonstrate that model fitting by comparing observed and model separation ratios at the same n values is in error, and to present a correct procedure. Methods. Theoretical analysis using phase shifts and numerical models. Results. We show that the separation ratios of stellar models with the same interior structure, but different outer layers, are not the same when compared at the same n values, but are the same when evaluated at the same frequencies by interpolation. The separation ratios trace the phase shift differences as a function of frequency not of n. We give examples from model fitting where the ratios at the same n values agree within the error estimates, but do not agree when evaluated at the same frequencies and the models do not have the same interior structure. The correct procedure is to compare observed ratios with those of models interpolated to the observed frequencies.
UROX 2.0: an interactive tool for fitting atomic models into electron-microscopy reconstructions
International Nuclear Information System (INIS)
UROX is software designed for the interactive fitting of atomic models into electron-microscopy reconstructions. The main features of the software are presented, along with a few examples. Electron microscopy of a macromolecular structure can lead to three-dimensional reconstructions with resolutions that are typically in the 30–10 Å range and sometimes even beyond 10 Å. Fitting atomic models of the individual components of the macromolecular structure (e.g. those obtained by X-ray crystallography or nuclear magnetic resonance) into an electron-microscopy map allows the interpretation of the latter at near-atomic resolution, providing insight into the interactions between the components. Graphical software is presented that was designed for the interactive fitting and refinement of atomic models into electron-microscopy reconstructions. Several characteristics enable it to be applied over a wide range of cases and resolutions. Firstly, calculations are performed in reciprocal space, which results in fast algorithms. This allows the entire reconstruction (or at least a sizeable portion of it) to be used by taking into account the symmetry of the reconstruction both in the calculations and in the graphical display. Secondly, atomic models can be placed graphically in the map while the correlation between the model-based electron density and the electron-microscopy reconstruction is computed and displayed in real time. The positions and orientations of the models are refined by a least-squares minimization. Thirdly, normal-mode calculations can be used to simulate conformational changes between the atomic model of an individual component and its corresponding density within a macromolecular complex determined by electron microscopy. These features are illustrated using three practical cases with different symmetries and resolutions. The software, together with examples and user instructions, is available free of charge at http://mem.ibs.fr/UROX/
Fitting a Two-Component Scattering Model to Polarimetric SAR Data from Forests
Freeman, Anthony
2007-01-01
Two simple scattering mechanisms are fitted to polarimetric synthetic aperture radar (SAR) observations of forests. The mechanisms are canopy scatter from a reciprocal medium with azimuthal symmetry and a ground scatter term that can represent double-bounce scatter from a pair of orthogonal surfaces with different dielectric constants or Bragg scatter from a moderately rough surface, which is seen through a layer of vertically oriented scatterers. The model is shown to represent the behavior of polarimetric backscatter from a tropical forest and two temperate forest sites by applying it to data from the National Aeronautic and Space Agency/Jet Propulsion Laboratory's Airborne SAR (AIRSAR) system. Scattering contributions from the two basic scattering mechanisms are estimated for clusters of pixels in polarimetric SAR images. The solution involves the estimation of four parameters from four separate equations. This model fit approach is justified as a simplification of more complicated scattering models, which require many inputs to solve the forward scattering problem. The model is used to develop an understanding of the ground-trunk double-bounce scattering that is present in the data, which is seen to vary considerably as a function of incidence angle. Two parameters in the model fit appear to exhibit sensitivity to vegetation canopy structure, which is worth further exploration. Results from the model fit for the ground scattering term are compared with estimates from a forward model and shown to be in good agreement. The behavior of the scattering from the ground-trunk interaction is consistent with the presence of a pseudo-Brewster angle effect for the air-trunk scattering interface. If the Brewster angle is known, it is possible to directly estimate the real part of the dielectric constant of the trunks, a key variable in forward modeling of backscatter from forests. It is also shown how, with a priori knowledge of the forest height, an estimate for the
Computational Software for Fitting Seismic Data to Epidemic-Type Aftershock Sequence Models
Chu, A.
2014-12-01
Modern earthquake catalogs are often analyzed using spatial-temporal point process models such as the epidemic-type aftershock sequence (ETAS) models of Ogata (1998). My work introduces software to implement two of ETAS models described in Ogata (1998). To find the Maximum-Likelihood Estimates (MLEs), my software provides estimates of the homogeneous background rate parameter and the temporal and spatial parameters that govern triggering effects by applying the Expectation-Maximization (EM) algorithm introduced in Veen and Schoenberg (2008). Despite other computer programs exist for similar data modeling purpose, using EM-algorithm has the benefits of stability and robustness (Veen and Schoenberg, 2008). Spatial shapes that are very long and narrow cause difficulties in optimization convergence and problems with flat or multi-modal log-likelihood functions encounter similar issues. My program uses a robust method to preset a parameter to overcome the non-convergence computational issue. In addition to model fitting, the software is equipped with useful tools for examining modeling fitting results, for example, visualization of estimated conditional intensity, and estimation of expected number of triggered aftershocks. A simulation generator is also given with flexible spatial shapes that may be defined by the user. This open-source software has a very simple user interface. The user may execute it on a local computer, and the program also has potential to be hosted online. Java language is used for the software's core computing part and an optional interface to the statistical package R is provided.
A NON-UNIFORM SEDIMENT TRANSPORT MODEL WITH THE BOUNDARY-FITTING ORTHOGONAL COORDINATE SYSTEM
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
A 2-D non-uniform sediment mathmatical model in the boundary-fitting orthogonal coordinate system was developed in this paper. The governing equations, the numerical scheme, the boundary conditions, the movable boundary technique and the numerical solutions were presented. The model was verified by the data of the reach 25km upstream the Jialingjiang estuary and the 44km long main stream of the Chongqing reach of the Yangtze river. The calculated results show that, the water elevation, the velocity distribution and the river bed deformation are in agreement with the measured data.
Directory of Open Access Journals (Sweden)
Riionheimo Janne
2003-01-01
Full Text Available We describe a technique for estimating control parameters for a plucked string synthesis model using a genetic algorithm. The model has been intensively used for sound synthesis of various string instruments but the fine tuning of the parameters has been carried out with a semiautomatic method that requires some hand adjustment with human listening. An automated method for extracting the parameters from recorded tones is described in this paper. The calculation of the fitness function utilizes knowledge of the properties of human hearing.
GPfit: An R Package for Fitting a Gaussian Process Model to Deterministic Simulator Outputs
Directory of Open Access Journals (Sweden)
Blake MacDonald
2015-04-01
Full Text Available Gaussian process (GP models are commonly used statistical metamodels for emulating expensive computer simulators. Fitting a GP model can be numerically unstable if any pair of design points in the input space are close together. Ranjan, Haynes, and Karsten (2011 proposed a computationally stable approach for fitting GP models to deterministic computer simulators. They used a genetic algorithm based approach that is robust but computationally intensive for maximizing the likelihood. This paper implements a slightly modified version ofthe model proposed by Ranjan et al. (2011 in the R package GPfit. A novel parameterization of the spatial correlation function and a clustering based multi-start gradient based optimization algorithm yield robust optimization that is typically faster than the genetic algorithm based approach. We present two examples with R codes to illustrate the usage of the main functions in GPfit . Several test functions are used for performance comparison with the popular R package mlegp . We also use GPfit for a real application, i.e., for emulating the tidal kinetic energy model for the Bay of Fundy, Nova Scotia, Canada. GPfit is free software and distributed under the General Public License and available from the Comprehensive R Archive Network.
Animal models of ovarian cancer
Shaw Tanya J; Vanderhyden Barbara C; Ethier Jean-François
2003-01-01
Abstract Ovarian cancer is the most lethal of all of the gynecological cancers and can arise from any cell type of the ovary, including germ cells, granulosa or stromal cells. However, the majority of ovarian cancers arise from the surface epithelium, a single layer of cells that covers the surface of the ovary. The lack of a reliable and specific method for the early detection of epithelial ovarian cancer results in diagnosis occurring most commonly at late clinical stages, when treatment is...
Schlemm, Eckhard
2015-01-01
The Bak--Sneppen model is an abstract representation of a biological system that evolves according to the Darwinian principles of random mutation and selection. The species in the system are characterized by a numerical fitness value between zero and one. We show that in the case of five species the steady-state fitness distribution can be obtained as a solution to a linear differential equation of order five with hypergeometric coefficients. Similar representations for the asymptotic fitness...
Model-fitting of the kinematics of superluminal components in blazar 3C 279
Institute of Scientific and Technical Information of China (English)
Shan-Jie Qian
2012-01-01
A precessing jet-nozzle model with a precession period of about 25 yr has been proposed by Qian to interpret the change with time of the ejection position angle of the superluminal components observed using very long baseline interferometry (VLBI) in the blazar 3C 279.We discuss the kinematic properties of six superluminal knots (C3,C4,C7a,C8,C9 and C10) and show that their trajectory,core-distance and apparent speed,derived from VLBI observations,can be consistently well fitted by the model.Their intrinsic Lorentz factors of bulk superluminal motion are thus derived,and the evidence shows no relation between Lorentz factor and the precession phase.Interestingly,for the C7a and C8 knots,the fitted core-distance ranges from ～0.1 mas to ～0.4mas and for knots C9 and C10 from ～0.2mas to ～1.0-1.5mas.For knot C4,its trajectory and apparent velocity are well fitted in the core-distance range from ～1 mas to ～5 mas,taking into account a curvature of the trajectory at core-distance larger than ～3 mas.The consistent fitting of the kinematics of these components clearly demonstrates that the amplitude function and collimation parameter adopted in the precession model are appropriate and applicable for both the inner and outer parts of the jet in 3C 279,but in some cases the jet curvature in the outer parts (or deviation from the model trajectory) needs to be seriously taken into consideration.With the exception of C4,the ejection position angles derived from the precession model are consistent with the values measured by VLBI observations (within about 3° - 6°).Undoubtedly,the consistent interpretation of the kinematics in terms of the precession model for these superluminal components,with their ejection time spanning ～24 yr,significantly expands its applicability and implies that regular pattems of trajectories (or rotating channels) could exist in some periods.
A Parametric Model of Shoulder Articulation for Virtual Assessment of Space Suit Fit
Kim, K. Han; Young, Karen S.; Bernal, Yaritza; Boppana, Abhishektha; Vu, Linh Q.; Benson, Elizabeth A.; Jarvis, Sarah; Rajulu, Sudhakar L.
2016-01-01
Shoulder injury is one of the most severe risks that have the potential to impair crewmembers' performance and health in long duration space flight. Overall, 64% of crewmembers experience shoulder pain after extra-vehicular training in a space suit, and 14% of symptomatic crewmembers require surgical repair (Williams & Johnson, 2003). Suboptimal suit fit, in particular at the shoulder region, has been identified as one of the predominant risk factors. However, traditional suit fit assessments and laser scans represent only a single person's data, and thus may not be generalized across wide variations of body shapes and poses. The aim of this work is to develop a software tool based on a statistical analysis of a large dataset of crewmember body shapes. This tool can accurately predict the skin deformation and shape variations for any body size and shoulder pose for a target population, from which the geometry can be exported and evaluated against suit models in commercial CAD software. A preliminary software tool was developed by statistically analyzing 150 body shapes matched with body dimension ranges specified in the Human-Systems Integration Requirements of NASA ("baseline model"). Further, the baseline model was incorporated with shoulder joint articulation ("articulation model"), using additional subjects scanned in a variety of shoulder poses across a pre-specified range of motion. Scan data was cleaned and aligned using body landmarks. The skin deformation patterns were dimensionally reduced and the co-variation with shoulder angles was analyzed. A software tool is currently in development and will be presented in the final proceeding. This tool would allow suit engineers to parametrically generate body shapes in strategically targeted anthropometry dimensions and shoulder poses. This would also enable virtual fit assessments, with which the contact volume and clearance between the suit and body surface can be predictively quantified at reduced time and
Atmospheric Properties of T Dwarfs Inferred from Model Fits at Low Spectral Resolution
Godfrey, Paige A.; Rice, Emily L.; Filippazzo, Joe; Douglas, Stephanie; BDNYC
2016-01-01
Brown dwarfs are substellar objects that cool over time because they are not massive enough to sustain hydrogen fusion at their cores. While spectral types (M, L, T, Y) generally correlate with decreasing temperature, spectral subclasses (T0, T1, T2, etc.) do not, suggesting that secondary parameters (gravity, metallicity, dust) play a role in the spectral type-temperature relationship. We investigate this relationship for T dwarfs, which make up the coolest fully-populated spectral class of substellar objects. Our sample consists of 154 T dwarfs with low resolution (R~75-100) near-infrared (~0.8-2.5 micron) spectra from the SpeX Prism Library and the literature. We compare each observed spectrum to synthetic spectra from four model grids using a Markov-Chain Monte Carlo analysis to determine robust best-fit parameters and uncertainties. We evaluate the best fit parameters from each model grid per object to constrain how spectral type relates to decreasing temperature and increasing surface gravity and to compare the consistency of each model grid. To test for discrepant results when fitting to relatively narrow wavelength ranges, this analysis is performed on the full spectrum of the Y, J, H, and K bands and on each band separately. New detections of cooler objects extending into the Y dwarf and exoplanet regimes motivate our model comparisons and search for trends with spectral type and other observational properties across the decreasing temperatures in order to better understand the atmospheres of substellar objects, including cool gas giant exoplanets.
Maximum likelihood fitting of FROC curves under an initial-detection-and-candidate-analysis model
International Nuclear Information System (INIS)
We have developed a model for FROC curve fitting that relates the observer's FROC performance not to the ROC performance that would be obtained if the observer's responses were scored on a per image basis, but rather to a hypothesized ROC performance that the observer would obtain in the task of classifying a set of 'candidate detections' as positive or negative. We adopt the assumptions of the Bunch FROC model, namely that the observer's detections are all mutually independent, as well as assumptions qualitatively similar to, but different in nature from, those made by Chakraborty in his AFROC scoring methodology. Under the assumptions of our model, we show that the observer's FROC performance is a linearly scaled version of the candidate analysis ROC curve, where the scaling factors are just given by the FROC operating point coordinates for detecting initial candidates. Further, we show that the likelihood function of the model parameters given observational data takes on a simple form, and we develop a maximum likelihood method for fitting a FROC curve to this data. FROC and AFROC curves are produced for computer vision observer datasets and compared with the results of the AFROC scoring method. Although developed primarily with computer vision schemes in mind, we hope that the methodology presented here will prove worthy of further study in other applications as well
Furlan, E; Ali, B; Stutz, A M; Stanke, T; Tobin, J J; Megeath, S T; Osorio, M; Hartmann, L; Calvet, N; Poteet, C A; Booker, J; Manoj, P; Watson, D M; Allen, L
2016-01-01
We present key results from the Herschel Orion Protostar Survey (HOPS): spectral energy distributions (SEDs) and model fits of 330 young stellar objects, predominantly protostars, in the Orion molecular clouds. This is the largest sample of protostars studied in a single, nearby star-formation complex. With near-infrared photometry from 2MASS, mid- and far-infrared data from Spitzer and Herschel, and sub-millimeter photometry from APEX, our SEDs cover 1.2-870 $\\mu$m and sample the peak of the protostellar envelope emission at ~100 $\\mu$m. Using mid-IR spectral indices and bolometric temperatures, we classify our sample into 92 Class 0 protostars, 125 Class I protostars, 102 flat-spectrum sources, and 11 Class II pre-main-sequence stars. We implement a simple protostellar model (including a disk in an infalling envelope with outflow cavities) to generate a grid of 30400 model SEDs and use it to determine the best-fit model parameters for each protostar. We argue that far-IR data are essential for accurate cons...
Jochens, Arne; Caliebe, Amke; Rösler, Uwe; Krawczak, Michael
2011-12-01
The rate of microsatellite mutation is dependent upon both the allele length and the repeat motif, but the exact nature of this relationship is still unknown. We analyzed data on the inheritance of human Y-chromosomal microsatellites in father-son duos, taken from 24 published reports and comprising 15,285 directly observable meioses. At the six microsatellites analyzed (DYS19, DYS389I, DYS390, DYS391, DYS392, and DYS393), a total of 162 mutations were observed. For each locus, we employed a maximum-likelihood approach to evaluate one of several single-step mutation models on the basis of the data. For five of the six loci considered, a novel logistic mutation model was found to provide the best fit according to Akaike's information criterion. This implies that the mutation probability at the loci increases (nonlinearly) with allele length at a rate that differs between upward and downward mutations. For DYS392, the best fit was provided by a linear model in which upward and downward mutation probabilities increase equally with allele length. This is the first study to empirically compare different microsatellite mutation models in a locus-specific fashion. PMID:21968190
Adapted strategic plannig model applied to small business: a case study in the fitness area
Directory of Open Access Journals (Sweden)
Eduarda Tirelli Hennig
2012-06-01
Full Text Available The strategic planning is an important management tool in the corporate scenario and shall not be restricted to big Companies. However, this kind of planning process in small business may need special adaptations due to their own characteristics. This paper aims to identify and adapt the existent models of strategic planning to the scenario of a small business in the fitness area. Initially, it is accomplished a comparative study among models of different authors to identify theirs phases and activities. Then, it is defined which of these phases and activities should be present in a model that will be utilized in a small business. That model was applied to a Pilates studio; it involves the establishment of an organizational identity, an environmental analysis as well as the definition of strategic goals, strategies and actions to reach them. Finally, benefits to the organization could be identified, as well as hurdles in the implementation of the tool.
The Shape of Dark Matter Haloes II. The Galactus HI Modelling & Fitting Tool
Peters, S P C; Allen, R J; Freeman, K C
2016-01-01
We present a new HI modelling tool called \\textsc{Galactus}. The program has been designed to perform automated fits of disc-galaxy models to observations. It includes a treatment for the self-absorption of the gas. The software has been released into the public domain. We describe the design philosophy and inner workings of the program. After this, we model the face-on galaxy NGC2403, using both self-absorption and optically thin models, showing that self-absorption occurs even in face-on galaxies. It is shown that the maximum surface brightness plateaus seen in Paper I of this series are indeed signs of self-absorption. The apparent HI mass of an edge-on galaxy can be drastically lower compared to that same galaxy seen face-on. The Tully-Fisher relation is found to be relatively free from self-absorption issues.
Fractional Differentiation-Based Active Contour Model Driven by Local Intensity Fitting Energy
Directory of Open Access Journals (Sweden)
Ming Gu
2016-01-01
Full Text Available A novel active contour model is proposed for segmentation images with inhomogeneity. Firstly, fractional order filter is defined by eight convolution masks corresponding to the image orientation in the eight compass directions. Then, the fractional order differentiation image is obtained and applied to the level set method. Secondly, we defined a new energy functional based on local image information and fractional order differentiation image; the proposed model not only can describe the input image more accurately but also can deal with intensity inhomogeneity. Local fitting term can enhance the ability of the model to deal with intensity inhomogeneity. The defined penalty term is used to reduce the occurrence of false boundaries. Finally, in order to eliminate the time-consuming step of reinitialization and ensure stable evolution of level set function, the Gaussian filtering method is used. Experiments on synthetic and real images show that the proposed model is efficient for images with intensity inhomogeneity and flexible to initial contour.
Liver cancer mortality rate model in Thailand
Sriwattanapongse, Wattanavadee; Prasitwattanaseree, Sukon
2013-09-01
Liver Cancer has been a leading cause of death in Thailand. The purpose of this study was to model and forecast liver cancer mortality rate in Thailand using death certificate reports. A retrospective analysis of the liver cancer mortality rate was conducted. Numbering of 123,280 liver cancer causes of death cases were obtained from the national vital registration database for the 10-year period from 2000 to 2009, provided by the Ministry of Interior and coded as cause-of-death using ICD-10 by the Ministry of Public Health. Multivariate regression model was used for modeling and forecasting age-specific liver cancer mortality rates in Thailand. Liver cancer mortality increased with increasing age for each sex and was also higher in the North East provinces. The trends of liver cancer mortality remained stable in most age groups with increases during ten-year period (2000 to 2009) in the Northern and Southern. Liver cancer mortality was higher in males and increase with increasing age. There is need of liver cancer control measures to remain on a sustained and long-term basis for the high liver cancer burden rate of Thailand.
Crowgey, Theresa; Peters, Katherine B.; HORNSBY, Whitney E.; Lane, Amy; McSherry, Frances; Herndon, James E.; West, Miranda J.; Williams, Christina L.; Jones, Lee W.
2013-01-01
The purpose of this study was to examine the relationship between self-reported exercise behavior, cardiorespiratory fitness (CRF), and cognitive function in early breast cancer patients. Thirty-seven breast cancer patients following completion of chemotherapy (median 16 months) and 14 controls were studied. Cognitive function was assessed using the Central Nervous System (CNS) Vital Signs software (CNS Vital Signs, LLC, Morrisville, N.C., USA), a computerized test battery consisting of 9 cog...
Fitting a Two- Component Scattering Model to Polarimetric SAR Data from Forests
Freeman, A.
2007-03-01
Two simple scattering mechanisms are f itted to polarimetric SAR observations of forests. The mechanisms are canopy scatter from a reciprocal medium with azimuthal symmetry, and a ground scatter term, which can represent double-bounce scatter from a pair of orthogonal surfaces with different d ielectric constants or Bragg scatter from a moderately rough surface, seen through a layer of vertically oriented scatterers. The model is shown to represent the behavior of polarimetric backscatter from a tropical forest and two temperate forest sites, by applying it to data from NASA/JPL's AIRSAR system. Scattering contributions from the two basic scattering mechanisms are estimated for clusters of pixels in polarimetric SAR images. The solution involves the estimation of four parameters from four separate equations. This model fit approach is justified as a simplification of more complicated scattering models, which require many inputs to solve the forward scattering problem. The model is used to develop an understanding of the ground-trunk, double-bounce scattering present in the data, which is seen to vary considerably as a function of incidence angle. Two parameters in the model fit appear to exhibit sensitivity to vegetation canopy structure, which is worth further exploration. Results from the model fit for the ground scattering term are compared with estimates from a forward model and shown to be in good agreement. The behavior of the scattering from the ground-trunk interaction is consistent with the presence of a pseudo-Brewster angle effect for the air- trunk scattering interface. If the Brewster angle is known, it is possible to directly estimate the real part of the dielectric constant of the trunks, a key variable in forward modeling of backscatter from forests. It is also shown how, with a priori knowledge of the forest height, an estimate for the attenuation coefficient of the canopy can be obtained directly from the multi-incidence angle, polarimetric
Fitting model of ABR age dependency in a clinical population of normal hearing children
Coenraad, Saskia; Immerzeel, Tabitha; Hoeve, Hans; Goedegebure, Andre
2010-01-01
textabstractThe purpose of this study was to present a simple and powerful fitting model that describes age-dependent changes of auditory brainstem responses (ABR) in a clinical population of normal hearing children. A total of 175 children (younger than 200 weeks postconceptional age) were referred for audiologic assessment with normal ABR results. ABR parameters of normal hearing children between 2003 and 2008 were included. The results of the right ears recorded at 90 dB nHL were analyzed....
Inverse problem theory methods for data fitting and model parameter estimation
Tarantola, A
2002-01-01
Inverse Problem Theory is written for physicists, geophysicists and all scientists facing the problem of quantitative interpretation of experimental data. Although it contains a lot of mathematics, it is not intended as a mathematical book, but rather tries to explain how a method of acquisition of information can be applied to the actual world.The book provides a comprehensive, up-to-date description of the methods to be used for fitting experimental data, or to estimate model parameters, and to unify these methods into the Inverse Problem Theory. The first part of the book deals wi
Mouse models of anemia of cancer.
Directory of Open Access Journals (Sweden)
Airie Kim
Full Text Available Anemia of cancer (AC may contribute to cancer-related fatigue and impair quality of life. Improved understanding of the pathogenesis of AC could facilitate better treatment, but animal models to study AC are lacking. We characterized four syngeneic C57BL/6 mouse cancers that cause AC. Mice with two different rapidly-growing metastatic lung cancers developed the characteristic findings of anemia of inflammation (AI, with dramatically different degrees of anemia. Mice with rapidly-growing metastatic melanoma also developed a severe anemia by 14 days, with hematologic and inflammatory parameters similar to AI. Mice with a slow-growing peritoneal ovarian cancer developed an iron-deficiency anemia, likely secondary to chronically impaired nutrition and bleeding into the peritoneal cavity. Of the four models, hepcidin mRNA levels were increased only in the milder lung cancer model. Unlike in our model of systemic inflammation induced by heat-killed Brucella abortus, ablation of hepcidin in the ovarian cancer and the milder lung cancer mouse models did not affect the severity of anemia. Hepcidin-independent mechanisms play an important role in these murine models of AC.
Fitting optimum order of Markov chain models for daily rainfall occurrences in Peninsular Malaysia
Deni, Sayang Mohd; Jemain, Abdul Aziz; Ibrahim, Kamarulzaman
2009-06-01
The analysis of the daily rainfall occurrence behavior is becoming more important, particularly in water-related sectors. Many studies have identified a more comprehensive pattern of the daily rainfall behavior based on the Markov chain models. One of the aims in fitting the Markov chain models of various orders to the daily rainfall occurrence is to determine the optimum order. In this study, the optimum order of the Markov chain models for a 5-day sequence will be examined in each of the 18 rainfall stations in Peninsular Malaysia, which have been selected based on the availability of the data, using the Akaike’s (AIC) and Bayesian information criteria (BIC). The identification of the most appropriate order in describing the distribution of the wet (dry) spells for each of the rainfall stations is obtained using the Kolmogorov-Smirnov goodness-of-fit test. It is found that the optimum order varies according to the levels of threshold used (e.g., either 0.1 or 10.0 mm), the locations of the region and the types of monsoon seasons. At most stations, the Markov chain models of a higher order are found to be optimum for rainfall occurrence during the northeast monsoon season for both levels of threshold. However, it is generally found that regardless of the monsoon seasons, the first-order model is optimum for the northwestern and eastern regions of the peninsula when the level of thresholds of 10.0 mm is considered. The analysis indicates that the first order of the Markov chain model is found to be most appropriate for describing the distribution of wet spells, whereas the higher-order models are found to be adequate for the dry spells in most of the rainfall stations for both threshold levels and monsoon seasons.
Limited-information goodness-of-fit testing of hierarchical item factor models.
Cai, Li; Hansen, Mark
2013-05-01
In applications of item response theory, assessment of model fit is a critical issue. Recently, limited-information goodness-of-fit testing has received increased attention in the psychometrics literature. In contrast to full-information test statistics such as Pearson's X(2) or the likelihood ratio G(2) , these limited-information tests utilize lower-order marginal tables rather than the full contingency table. A notable example is Maydeu-Olivares and colleagues'M2 family of statistics based on univariate and bivariate margins. When the contingency table is sparse, tests based on M2 retain better Type I error rate control than the full-information tests and can be more powerful. While in principle the M2 statistic can be extended to test hierarchical multidimensional item factor models (e.g., bifactor and testlet models), the computation is non-trivial. To obtain M2 , a researcher often has to obtain (many thousands of) marginal probabilities, derivatives, and weights. Each of these must be approximated with high-dimensional numerical integration. We propose a dimension reduction method that can take advantage of the hierarchical factor structure so that the integrals can be approximated far more efficiently. We also propose a new test statistic that can be substantially better calibrated and more powerful than the original M2 statistic when the test is long and the items are polytomous. We use simulations to demonstrate the performance of our new methods and illustrate their effectiveness with applications to real data. PMID:22642552
Fitting mathematical models to describe the rheological behaviour of chocolate pastes
Barbosa, Carla; Diogo, Filipa; Alves, M. Rui
2016-06-01
The flow behavior is of utmost importance for the chocolate industry. The objective of this work was to study two mathematical models, Casson and Windhab models that can be used to fit chocolate rheological data and evaluate which better infers or previews the rheological behaviour of different chocolate pastes. Rheological properties (viscosity, shear stress and shear rates) were obtained with a rotational viscometer equipped with a concentric cylinder. The chocolate samples were white chocolate and chocolate with varying percentages in cacao (55%, 70% and 83%). The results showed that the Windhab model was the best to describe the flow behaviour of all the studied samples with higher determination coefficients (r2 > 0.9).
GRace: a MATLAB-based application for fitting the discrimination-association model.
Stefanutti, Luca; Vianello, Michelangelo; Anselmi, Pasquale; Robusto, Egidio
2014-01-01
The Implicit Association Test (IAT) is a computerized two-choice discrimination task in which stimuli have to be categorized as belonging to target categories or attribute categories by pressing, as quickly and accurately as possible, one of two response keys. The discrimination association model has been recently proposed for the analysis of reaction time and accuracy of an individual respondent to the IAT. The model disentangles the influences of three qualitatively different components on the responses to the IAT: stimuli discrimination, automatic association, and termination criterion. The article presents General Race (GRace), a MATLAB-based application for fitting the discrimination association model to IAT data. GRace has been developed for Windows as a standalone application. It is user-friendly and does not require any programming experience. The use of GRace is illustrated on the data of a Coca Cola-Pepsi Cola IAT, and the results of the analysis are interpreted and discussed. PMID:26054728
Pacharinsak, Cholawat; Beitz, Alvin
2008-01-01
Modern cancer therapies have significantly increased patient survival rates in both human and veterinary medicine. Since cancer patients live longer they now face new challenges resulting from severe, chronic tumor-induced pain. Unrelieved cancer pain significantly decreases the quality of life of such patients; thus the goal of pain management is to not only to alleviate pain, but also to maintain the patient's physiological and psychological well-being. The major impediment for developing n...
ANIMAL MODELS OF CANCER: A REVIEW
Directory of Open Access Journals (Sweden)
Archana M. Navale
2013-01-01
Full Text Available Cancer is the second leading cause of death worldwide. In USA three persons out of five will develop some type of cancer. Beyond these statistics of mortality, the morbidity due to cancer presents a real scary picture. Last 50 years of research has rendered some types of cancer curable, but still the major fear factor associated with this disease is unchanged. Animal models are classified according to the method of induction of cancer in the animal. Spontaneous tumor models are the most primitive models. Although these models show good resemblance to the natural disease in humans, they were not capable of keeping pace with developing experimental therapeutics programs. It has therefore been necessary to take a further step towards artificiality, away from the clinical problem in the search for satisfactory testing method. From this step, the journey of artificially induced tumor models started. It is possible to induce cancer reproducibly in animals by exposing them to various agents and now, by transplanting tumor cells or tissue. The development of Genetically Engineered Animal models has provided a great help in knowing the disease. This article takes a review of present animal models used in anti-cancer drug discovery.
A History of Regression and Related Model-Fitting in the Earth Sciences (1636?-2000)
International Nuclear Information System (INIS)
The (statistical) modeling of the behavior of a dependent variate as a function of one or more predictors provides examples of model-fitting which span the development of the earth sciences from the 17th Century to the present. The historical development of these methods and their subsequent application is reviewed. Bond's predictions (c. 1636 and 1668) of change in the magnetic declination at London may be the earliest attempt to fit such models to geophysical data. Following publication of Newton's theory of gravitation in 1726, analysis of data on the length of a 1o meridian arc, and the length of a pendulum beating seconds, as a function of sin2(latitude), was used to determine the ellipticity of the oblate spheroid defining the Figure of the Earth. The pioneering computational methods of Mayer in 1750, Boscovich in 1755, and Lambert in 1765, and the subsequent independent discoveries of the principle of least squares by Gauss in 1799, Legendre in 1805, and Adrain in 1808, and its later substantiation on the basis of probability theory by Gauss in 1809 were all applied to the analysis of such geodetic and geophysical data. Notable later applications include: the geomagnetic survey of Ireland by Lloyd, Sabine, and Ross in 1836, Gauss's model of the terrestrial magnetic field in 1838, and Airy's 1845 analysis of the residuals from a fit to pendulum lengths, from which he recognized the anomalous character of measurements of gravitational force which had been made on islands. In the early 20th Century applications to geological topics proliferated, but the computational burden effectively held back applications of multivariate analysis. Following World War II, the arrival of digital computers in universities in the 1950s facilitated computation, and fitting linear or polynomial models as a function of geographic coordinates, trend surface analysis, became popular during the 1950-60s. The inception of geostatistics in France at this time by Matheron had its roots
Holleczek, Bernd; Brenner, Hermann
2013-05-01
Period analysis is increasingly employed in analyses of long-term survival of patients with chronic diseases such as cancer, as it derives more up-to-date survival estimates than traditional cohort based approaches. It has recently been extended with regression modelling using generalized linear models, which increases the precision of the survival estimates and enables to assess and account for effects of additional covariates. This paper provides a detailed presentation how model based period analysis may be used to derive population-based absolute and relative survival estimates using the freely available R language and statistical environment and already available R programs for period analysis. After an introduction of the underlying regression model and a description of the software tools we provide a step-by-step implementation of two regression models in R and illustrate how estimates and a test for trend over time in relative survival may be derived using data from a population based cancer registry. PMID:23116692
Bootstrapping topology and systemic risk of complex network using the fitness model
Musmeci, Nicoló; Caldarelli, Guido; Puliga, Michelangelo; Gabrielli, Andrea
2012-01-01
We present a novel method to reconstruct complex network from partial information. We assume to know the links only for a subset of the nodes and to know some non-topological quantity (fitness) characterising every node. The missing links are generated on the basis of the latter quan- tity according to a fitness model calibrated on the subset of nodes for which links are known. We measure the quality of the reconstruction of several topological properties, such as the network density and the degree distri- bution as a function of the size of the initial subset of nodes. Moreover, we also study the resilience of the network to distress propagation. We first test the method on ensembles of synthetic networks generated with the Exponential Random Graph model which allows to apply common tools from statistical mechanics. We then test it on the empirical case of the World Trade Web. In both cases, we find that a subset of 10 % of nodes is enough to reconstruct the main features of the network along with its resili...
Total Force Fitness in units part 1: military demand-resource model.
Bates, Mark J; Fallesen, Jon J; Huey, Wesley S; Packard, Gary A; Ryan, Diane M; Burke, C Shawn; Smith, David G; Watola, Daniel J; Pinder, Evette D; Yosick, Todd M; Estrada, Armando X; Crepeau, Loring; Bowles, Stephen V
2013-11-01
The military unit is a critical center of gravity in the military's efforts to enhance resilience and the health of the force. The purpose of this article is to augment the military's Total Force Fitness (TFF) guidance with a framework of TFF in units. The framework is based on a Military Demand-Resource model that highlights the dynamic interactions across demands, resources, and outcomes. A joint team of subject-matter experts identified key variables representing unit fitness demands, resources, and outcomes. The resulting framework informs and supports leaders, support agencies, and enterprise efforts to strengthen TFF in units by (1) identifying TFF unit variables aligned with current evidence and operational practices, (2) standardizing communication about TFF in units across the Department of Defense enterprise in a variety of military organizational contexts, (3) improving current resources including evidence-based actions for leaders, (4) identifying and addressing of gaps, and (5) directing future research for enhancing TFF in units. These goals are intended to inform and enhance Service efforts to develop Service-specific TFF models, as well as provide the conceptual foundation for a follow-on article about TFF metrics for units. PMID:24183762
Levy flights and self-similar exploratory behaviour of termite workers: beyond model fitting.
Directory of Open Access Journals (Sweden)
Octavio Miramontes
Full Text Available Animal movements have been related to optimal foraging strategies where self-similar trajectories are central. Most of the experimental studies done so far have focused mainly on fitting statistical models to data in order to test for movement patterns described by power-laws. Here we show by analyzing over half a million movement displacements that isolated termite workers actually exhibit a range of very interesting dynamical properties--including Lévy flights--in their exploratory behaviour. Going beyond the current trend of statistical model fitting alone, our study analyses anomalous diffusion and structure functions to estimate values of the scaling exponents describing displacement statistics. We evince the fractal nature of the movement patterns and show how the scaling exponents describing termite space exploration intriguingly comply with mathematical relations found in the physics of transport phenomena. By doing this, we rescue a rich variety of physical and biological phenomenology that can be potentially important and meaningful for the study of complex animal behavior and, in particular, for the study of how patterns of exploratory behaviour of individual social insects may impact not only their feeding demands but also nestmate encounter patterns and, hence, their dynamics at the social scale.
Spectral observations of Ellerman bombs and fitting with a two-cloud model
Hong, Jie; Li, Ying; Fang, Cheng; Cao, Wenda
2014-01-01
We study the H$\\alpha$ and Ca II 8542 \\r{A} line spectra of four typical Ellerman bombs (EBs) in active region NOAA 11765 on 2013 June 6, observed with the Fast Imaging Solar Spectrograph installed at the 1.6 meter New Solar Telescope at Big Bear Solar Observatory. Considering that EBs may occur in a restricted region in the lower atmosphere, and that their spectral lines show particular features, we propose a two-cloud model to fit the observed line profiles. The lower cloud can account for the wing emission, and the upper cloud is mainly responsible for the absorption at line center. After choosing carefully the free parameters, we get satisfactory fitting results. As expected, the lower cloud shows an increase of the source function, corresponding to a temperature increase of 400--1000 K in EBs relative to the quiet Sun. This is consistent with previous results deduced from semi-empirical models and confirms that a local heating occurs in the lower atmosphere during the appearance of EBs. We also find that...
Modeling the Time Evolution of QSH Equilibria in MST Plasmas Using V3FIT
Boguski, J.; Nornberg, M.; Munaretto, S.; Chapman, B. E.; Cianciosa, M.; Terry, P. W.; Hanson, J.
2015-11-01
High current and low density RFP plasmas tend towards a 3D configuration, called Quasi-Single Helicity (QSH), characterized by a dominant core helical mode. V3FIT utilizes multiple internal and edge diagnostics to reconstruct the non-axisymmetric magnetic equilibrium of the QSH state. Performing multiple reconstructions at different stages in the QSH cycle is used to learn about the time dynamics of the QSH state. Recent work on modeling a shear-suppression mechanism for QSH formation has produced a predator-prey model of the time dynamics that reproduces the observed behavior, in particular the increased persistence of the QSH state with increased plasma current. Either magnetic or flow shear can facilitate QSH formation. The magnetic shear dependence of QSH is analyzed using V3FIT reconstructions of magnetic equilibrium constrained by internal measurements of density and temperature as well as soft x-ray emission. Fluctuations in the flux surface structure are compared against the measured temperature and density fluctuations and the reconstructed temperature and density profiles are examined to look for evidence of barriers to particle and heat transport. This material is based upon work supported by the U.S. DOE.
Observations from using models to fit the gas production of varying volume test cells and landfills.
Lamborn, Julia
2012-12-01
Landfill operators are looking for more accurate models to predict waste degradation and landfill gas production. The simple microbial growth and decay models, whilst being easy to use, have been shown to be inaccurate. Many of the newer and more complex (component) models are highly parameter hungry and many of the required parameters have not been collected or measured at full-scale landfills. This paper compares the results of using different models (LANDGEM, HBM, and two Monod models developed by the author) to fit the gas production of laboratory scale, field test cell and full-scale landfills and discusses some observations that can be made regarding the scalability of gas generation rates. The comparison of these results show that the fast degradation rate that occurs at laboratory scale is not replicated at field-test cell and full-scale landfills. At small scale, all the models predict a slower rate of gas generation than actually occurs. At field test cell and full-scale a number of models predict a faster gas generation than actually occurs. Areas for future work have been identified, which include investigations into the capture efficiency of gas extraction systems and into the parameter sensitivity and identification of the critical parameters for field-test cell and full-scale landfill predication. PMID:22796013
A Model for Counselling Cancer Patients.
Jevne, Ronna F.; Nekolaichuk, Cheryl L.; Williamson, F. Helen A.
1998-01-01
Describes a model for counseling cancer patients that integrates the unique features of the cancer experience within a basic counseling framework. It combines a nine-step problem-solving approach with a biopsychosocial perspective, placing greater emphasis on the person than the problem. Utilizes innovative questioning techniques and strategies.…
Directory of Open Access Journals (Sweden)
Matthew R Nassar
2013-04-01
Full Text Available Fitting models to behavior is commonly used to infer the latent computational factors responsible for generating behavior. However, the complexity of many behaviors can handicap the interpretation of such models. Here we provide perspectives on problems that can arise when interpreting parameter fits from models that provide incomplete descriptions of behavior. We illustrate these problems by fitting commonly used and neurophysiologically motivated reinforcement-learning models to simulated behavioral data sets from learning tasks. These model fits can pass a host of standard goodness-of-fit tests and other model-selection diagnostics even when the models do not provide a complete description of the behavioral data. We show that such incomplete models can be misleading by yielding biased estimates of the parameters explicitly included in the models. This problem is particularly pernicious when the neglected factors are unknown and therefore not easily identified by model comparisons and similar methods. An obvious conclusion is that a parsimonious description of behavioral data does not necessarily imply an accurate description of the underlying computations. Moreover, general goodness-of-fit measures are not a strong basis to support claims that a particular model can provide a generalized understanding of the computations that govern behavior. To help overcome these challenges, we advocate the design of tasks that provide direct reports of the computational variables of interest. Such direct reports complement model-fitting approaches by providing a more complete, albeit possibly more task-specific, representation of the factors that drive behavior. Computational models then provide a means to connect such task-specific results to a more general algorithmic understanding of the brain.
Cancer Metabolism: A Modeling Perspective
DEFF Research Database (Denmark)
Ghaffari, Pouyan; Mardinoglu, Adil; Nielsen, Jens
2015-01-01
. Cancer cells present in complex tumor tissues communicate with the surrounding microenvironment and develop traits which promote their growth, survival, and metastasis. Decoding the full scope and targeting dysregulated metabolic pathways that support neoplastic transformations and their preservation...... suggest that utilization of amino acids and lipids contributes significantly to cancer cell metabolism. Also recent progresses in our understanding of carcinogenesis have revealed that cancer is a complex disease and cannot be understood through simple investigation of genetic mutations of cancerous cells...... requires both the advancement of experimental technologies for more comprehensive measurement of omics as well as the advancement of robust computational methods for accurate analysis of the generated data. Here, we review cancer-associated reprogramming of metabolism and highlight the capability of genome...
AN EFFICIENT BOUNDARY FITTED NON-HYDROSTATIC MODEL FOR FREE-SURFACE FLOWS
Directory of Open Access Journals (Sweden)
A. AHMADI
2007-12-01
Full Text Available A boundary fitted non-hydrostatic finite volume model is presented to simulate two dimensional vertical free surface flows effectively deploying only 2-4 vertical layers. The algorithm is based on a projection method which results in a block tri-diagonal system of equation with pressure as the unknown. This system can be solved by a direct matrix solver without iteration. To purpose of minimise the computational cost, a new top-layer pressure treatment is proposed which enables the model to simulate relatively short wave motion with very small vertical layers accurately. The test of linear and nonlinear sinusoidal short wave propagation with significant vertical accelerations is applied correctly using a small number of layers.
Goodness of fit assessment for a fractal model of stock markets
International Nuclear Information System (INIS)
An assessment of the goodness of fit of a new stochastic model of stock dynamics is investigated. The model is the multifractional Brownian motion (mBm), introduced independently by Péltier and Lévy Véhel (1995) [2] and Benassi (1997) [3]. The analysis concerns the (un)conditional distributions of log-variations of the Dow Jones Industrial Average (DJIA). By comparing the performance of mBm with respect to a Garch (1,1), we argue that the former captures the distributional features as well as the pathwise empirical ones displayed by the U.S. Dow Jones index, while the Garch (1,1) works better in global terms
International Nuclear Information System (INIS)
The use of curve-fitting and compartmental modelling for calculating physiological parameters from measured data has increased in popularity in recent years. Finding the 'best fit' of a model to data involves the minimization of a merit function. An example of a merit function is the sum of the squares of the differences between the data points and the model estimated points. This is facilitated by curve-fitting algorithms. Two curve-fitting methods, Levenberg-Marquardt and MINPACK-1, are investigated with respect to the search start points that they require and the accuracy of the returned fits. We have simulated one million dynamic contrast enhanced MRI curves using a range of parameters and investigated the use of single and multiple search starting points. We found that both algorithms, when used with a single starting point, return unreliable fits. When multiple start points are used, we found that both algorithms returned reliable parameters. However the MINPACK-1 method generally outperformed the Levenberg-Marquardt method. We conclude that the use of a single starting point when fitting compartmental modelling data such as this produces unsafe results and we recommend the use of multiple start points in order to find the global minima. (note)
Directory of Open Access Journals (Sweden)
Cristina García Magro
2015-06-01
Full Text Available Purpose: The aims of the paper is offers a model of analysis which allows to measure the impact on the performance of fairs, as well as the knowledge or not of the motives of participation of the visitors on the part of the exhibitors. Design/methodology: A review of the literature is established concerning two of the principal interested agents, exhibitors and visitors, focusing. The study is focused on the line of investigation referred to the motives of participation or not in a trade show. According to the information thrown by each perspectives of study, a comparative analysis is carried out in order to determine the degree of existing understanding between both. Findings: The trade shows allow to be studied from an integrated strategic marketing approach. The fit model between the reasons for participation of exhibitors and visitors offer information on the lack of an understanding between exhibitors and visitors, leading to dissatisfaction with the participation, a fact that is reflected in the fair success. The model identified shows that a strategic plan must be designed in which the reason for participation of visitor was incorporated as moderating variable of the reason for participation of exhibitors. The article concludes with the contribution of a series of proposals for the improvement of fairground results. Social implications: The fit model that improve the performance of trade shows, implicitly leads to successful achievement of targets for multiple stakeholders beyond the consideration of visitors and exhibitors. Originality/value: The integrated perspective of stakeholders allows the study of the existing relationships between the principal groups of interest, in such a way that, having knowledge on the condition of the question of the trade shows facilitates the task of the investigator in future academic works and allows that the interested groups obtain a better performance to the participation in fairs, as visitor or as
Rodrigue, Nicolas; Philippe, Hervé; Lartillot, Nicolas
2010-03-01
Modeling the interplay between mutation and selection at the molecular level is key to evolutionary studies. To this end, codon-based evolutionary models have been proposed as pertinent means of studying long-range evolutionary patterns and are widely used. However, these approaches have not yet consolidated results from amino acid level phylogenetic studies showing that selection acting on proteins displays strong site-specific effects, which translate into heterogeneous amino acid propensities across the columns of alignments; related codon-level studies have instead focused on either modeling a single selective context for all codon columns, or a separate selective context for each codon column, with the former strategy deemed too simplistic and the latter deemed overparameterized. Here, we integrate recent developments in nonparametric statistical approaches to propose a probabilistic model that accounts for the heterogeneity of amino acid fitness profiles across the coding positions of a gene. We apply the model to a dozen real protein-coding gene alignments and find it to produce biologically plausible inferences, for instance, as pertaining to site-specific amino acid constraints, as well as distributions of scaled selection coefficients. In their account of mutational features as well as the heterogeneous regimes of selection at the amino acid level, the modeling approaches studied here can form a backdrop for several extensions, accounting for other selective features, for variable population size, or for subtleties of mutational features, all with parameterizations couched within population-genetic theory. PMID:20176949
Improving the Fit of a Land-Surface Model to Data Using its Adjoint
Raoult, Nina; Jupp, Tim; Cox, Peter; Luke, Catherine
2016-04-01
Land-surface models (LSMs) are crucial components of the Earth System Models (ESMs) which are used to make coupled climate-carbon cycle projections for the 21st century. The Joint UK Land Environment Simulator (JULES) is the land-surface model used in the climate and weather forecast models of the UK Met Office. In this study, JULES is automatically differentiated using commercial software from FastOpt, resulting in an analytical gradient, or adjoint, of the model. Using this adjoint, the adJULES parameter estimation system has been developed, to search for locally optimum parameter sets by calibrating against observations. We present an introduction to the adJULES system and demonstrate its ability to improve the model-data fit using eddy covariance measurements of gross primary production (GPP) and latent heat (LE) fluxes. adJULES also has the ability to calibrate over multiple sites simultaneously. This feature is used to define new optimised parameter values for the 5 Plant Functional Types (PFTS) in JULES. The optimised PFT-specific parameters improve the performance of JULES over 90% of the FLUXNET sites used in the study. These reductions in error are shown and compared to reductions found due to site-specific optimisations. Finally, we show that calculation of the 2nd derivative of JULES allows us to produce posterior probability density functions of the parameters and how knowledge of parameter values is constrained by observations.
Explicit finite element modelling of the impaction of metal press-fit acetabular components.
Hothi, H S; Busfield, J J C; Shelton, J C
2011-03-01
Metal press-fit cups and shells are widely used in hip resurfacing and total hip replacement procedures. These acetabular components are inserted into a reamed acetabula cavity by either impacting their inner polar surface (shells) or outer rim (cups). Two-dimensional explicit dynamics axisymmetric finite element models were developed to simulate these impaction methods. Greater impact velocities were needed to insert the components when the interference fit was increased; a minimum velocity of 2 m/s was required to fully seat a component with a 2 mm interference between the bone and outer diameter. Changing the component material from cobalt-chromium to titanium alloy resulted in a reduction in the number of impacts on the pole to seat it from 14 to nine. Of greatest significance, it was found that locking a rigid cap to the cup or shell rim resulted in up to nine fewer impactions being necessary to seat it than impacting directly on the polar surface or using a cap free from the rim of the component, as is the case with many commercial resurfacing cup impaction devices currently used. This is important to impactor design and could make insertion easier and also reduce acetabula bone damage. PMID:21485331
Spectral observations of Ellerman bombs and fitting with a two-cloud model
Energy Technology Data Exchange (ETDEWEB)
Hong, Jie; Ding, M. D.; Li, Ying; Fang, Cheng [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Cao, Wenda, E-mail: dmd@nju.edu.cn [Big Bear Solar Observatory, New Jersey Institute of Technology, 40386 North Shore Lane, Big Bear City, CA 92314-9672 (United States)
2014-09-01
We study the Hα and Ca II 8542 Å line spectra of four typical Ellerman bombs (EBs) in the active region NOAA 11765 on 2013 June 6, observed with the Fast Imaging Solar Spectrograph installed at the 1.6 m New Solar Telescope at Big Bear Solar Observatory. Considering that EBs may occur in a restricted region in the lower atmosphere, and that their spectral lines show particular features, we propose a two-cloud model to fit the observed line profiles. The lower cloud can account for the wing emission, and the upper cloud is mainly responsible for the absorption at line center. After choosing carefully the free parameters, we get satisfactory fitting results. As expected, the lower cloud shows an increase of the source function, corresponding to a temperature increase of 400-1000 K in EBs relative to the quiet Sun. This is consistent with previous results deduced from semi-empirical models and confirms that local heating occurs in the lower atmosphere during the appearance of EBs. We also find that the optical depths can increase to some extent in both the lower and upper clouds, which may result from either direct heating in the lower cloud, or illumination by an enhanced radiation on the upper cloud. The velocities derived from this method, however, are different from those obtained using the traditional bisector method, implying that one should be cautious when interpreting this parameter. The two-cloud model can thus be used as an efficient method to deduce the basic physical parameters of EBs.
Electrically detected magnetic resonance modeling and fitting: An equivalent circuit approach
International Nuclear Information System (INIS)
The physics of electrically detected magnetic resonance (EDMR) quadrature spectra is investigated. An equivalent circuit model is proposed in order to retrieve crucial information in a variety of different situations. This model allows the discrimination and determination of spectroscopic parameters associated to distinct resonant spin lines responsible for the total signal. The model considers not just the electrical response of the sample but also features of the measuring circuit and their influence on the resulting spectral lines. As a consequence, from our model, it is possible to separate different regimes, which depend basically on the modulation frequency and the RC constant of the circuit. In what is called the high frequency regime, it is shown that the sign of the signal can be determined. Recent EDMR spectra from Alq3 based organic light emitting diodes, as well as from a-Si:H reported in the literature, were successfully fitted by the model. Accurate values of g-factor and linewidth of the resonant lines were obtained
FIT ANALYSIS OF INDOSAT DOMPETKU BUSINESS MODEL USING A STRATEGIC DIAGNOSIS APPROACH
Directory of Open Access Journals (Sweden)
Fauzi Ridwansyah
2015-09-01
Full Text Available Mobile payment is an industry's response to global and regional technological-driven, as well as national social-economical driven in less cash society development. The purposes of this study were 1 identifying positioning of PT. Indosat in providing a response to Indonesian mobile payment market, 2 analyzing Indosat’s internal capabilities and business model fit with environment turbulence, and 3 formulating the optimum mobile payment business model development design for Indosat. The method used in this study was a combination of qualitative and quantitative analysis through in-depth interviews with purposive judgment sampling. The analysis tools used in this study were Business Model Canvas (MBC and Ansoff’s Strategic Diagnosis. The interviewees were the representatives of PT. Indosat internal management and mobile payment business value chain stakeholders. Based on BMC mapping which is then analyzed by strategic diagnosis model, a considerable gap (>1 between the current market environment and Indosat strategy of aggressiveness with the expected future of environment turbulence level was obtained. Therefore, changes in the competitive strategy that need to be conducted include 1 developing a new customer segment, 2 shifting the value proposition that leads to the extensification of mobile payment, 3 monetizing effective value proposition, and 4 integrating effective collaboration for harmonizing company’s objective with the government's vision. Keywords: business model canvas, Indosat, mobile payment, less cash society, strategic diagnosis
Statistics of dark matter substructure - I. Model and universal fitting functions
Jiang, Fangzhou; van den Bosch, Frank C.
2016-05-01
We present a new, semi-analytical model describing the evolution of dark matter subhaloes. The model uses merger trees constructed using the method of Parkinson et al. to describe the masses and redshifts of subhaloes at accretion, which are subsequently evolved using a simple model for the orbit-averaged mass-loss rates. The model is extremely fast, treats subhaloes of all orders, accounts for scatter in orbital properties and halo concentrations, uses a simple recipe to convert subhalo mass to maximum circular velocity, and considers subhalo disruption. The model is calibrated to accurately reproduce the average subhalo mass and velocity functions in numerical simulations. We demonstrate that, on average, the mass fraction in subhaloes is tightly correlated with the `dynamical age' of the host halo, defined as the number of halo dynamical times that have elapsed since its formation. Using this relation, we present universal fitting functions for the evolved and unevolved subhalo mass and velocity functions that are valid for a broad range in host halo mass, redshift and Λ cold dark matter cosmology.
Comparing Smoothing Techniques for Fitting the Nonlinear Effect of Covariate in Cox Models
Roshani, Daem; Ghaderi, Ebrahim
2016-01-01
Background and Objective: Cox model is a popular model in survival analysis, which assumes linearity of the covariate on the log hazard function, While continuous covariates can affect the hazard through more complicated nonlinear functional forms and therefore, Cox models with continuous covariates are prone to misspecification due to not fitting the correct functional form for continuous covariates. In this study, a smooth nonlinear covariate effect would be approximated by different spline functions. Material and Methods: We applied three flexible nonparametric smoothing techniques for nonlinear covariate effect in the Cox models: penalized splines, restricted cubic splines and natural splines. Akaike information criterion (AIC) and degrees of freedom were used to smoothing parameter selection in penalized splines model. The ability of nonparametric methods was evaluated to recover the true functional form of linear, quadratic and nonlinear functions, using different simulated sample sizes. Data analysis was carried out using R 2.11.0 software and significant levels were considered 0.05. Results: Based on AIC, the penalized spline method had consistently lower mean square error compared to others to selection of smoothed parameter. The same result was obtained with real data. Conclusion: Penalized spline smoothing method, with AIC to smoothing parameter selection, was more accurate in evaluate of relation between covariate and log hazard function than other methods. PMID:27041809
Fitting Data to Model: Structural Equation Modeling Diagnosis Using Two Scatter Plots
Yuan, Ke-Hai; Hayashi, Kentaro
2010-01-01
This article introduces two simple scatter plots for model diagnosis in structural equation modeling. One plot contrasts a residual-based M-distance of the structural model with the M-distance for the factor score. It contains information on outliers, good leverage observations, bad leverage observations, and normal cases. The other plot contrasts…
Fast fitting of non-Gaussian state-space models to animal movement data via Template Model Builder
DEFF Research Database (Denmark)
Albertsen, Christoffer Moesgaard; Whoriskey, Kim; Yurkowski, David;
2015-01-01
State-space models (SSM) are often used for analyzing complex ecological processes that are not observed directly, such as marine animal movement. When outliers are present in the measurements, special care is needed in the analysis to obtain reliable location and process estimates. Here we...... recommend using the Laplace approximation combined with automatic differentiation (as implemented in the novel R package Template Model Builder; TMB) for the fast fitting of continuous-time multivariate non-Gaussian SSMs. Through Argos satellite tracking data, we demonstrate that the use of continuous...
A new fit-for-purpose model testing framework: Decision Crash Tests
Tolson, Bryan; Craig, James
2016-04-01
Decision-makers in water resources are often burdened with selecting appropriate multi-million dollar strategies to mitigate the impacts of climate or land use change. Unfortunately, the suitability of existing hydrologic simulation models to accurately inform decision-making is in doubt because the testing procedures used to evaluate model utility (i.e., model validation) are insufficient. For example, many authors have identified that a good standard framework for model testing called the Klemes Crash Tests (KCTs), which are the classic model validation procedures from Klemeš (1986) that Andréassian et al. (2009) rename as KCTs, have yet to become common practice in hydrology. Furthermore, Andréassian et al. (2009) claim that the progression of hydrological science requires widespread use of KCT and the development of new crash tests. Existing simulation (not forecasting) model testing procedures such as KCTs look backwards (checking for consistency between simulations and past observations) rather than forwards (explicitly assessing if the model is likely to support future decisions). We propose a fundamentally different, forward-looking, decision-oriented hydrologic model testing framework based upon the concept of fit-for-purpose model testing that we call Decision Crash Tests or DCTs. Key DCT elements are i) the model purpose (i.e., decision the model is meant to support) must be identified so that model outputs can be mapped to management decisions ii) the framework evaluates not just the selected hydrologic model but the entire suite of model-building decisions associated with model discretization, calibration etc. The framework is constructed to directly and quantitatively evaluate model suitability. The DCT framework is applied to a model building case study on the Grand River in Ontario, Canada. A hypothetical binary decision scenario is analysed (upgrade or not upgrade the existing flood control structure) under two different sets of model building
Directory of Open Access Journals (Sweden)
Jian SHEN
2015-10-01
Full Text Available In order to dismantle non-destructively the impeller and shaft under interference fit, the loaded temperature is planned reasonably for the temperature difference dismantling process. Through selecting suitable loaded temperature parameters, the desired dismantling effect can be acquired. Through theoretical analysis and FEM calculation with ANSYS, the loose volume model of the mating surfaces between the impeller and the shaft during the temperature difference dismantling process is built. Besides, through changing relevant parameters, the influence of the temperature heating location and the heating time on the loose amount between the shaft and hole is analyzed, and the reasonable heating temperature, heating location and heating time are obtained. The results show: when the other factors are constant, the temperature loading on the impeller hub is better than on the flow channel, and when the heating time is 1 400 s, the loose amount between the shaft and hole is the largest.
Goodness-of-fit tests for vector autoregressive models in time series
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
The paper proposes and studies some diagnostic tools for checking the goodness-of-fit of general parametric vector autoregressive models in time series. The resulted tests are asymptotically chi-squared under the null hypothesis and can detect the alternatives converging to the null at a parametric rate. The tests involve weight functions,which provides us with the flexibility to choose scores for enhancing power performance,especially under directional alternatives. When the alternatives are not directional,we construct asymptotically distribution-free maximin tests for a large class of alternatives. A possibility to construct score-based omnibus tests is discussed when the alternative is saturated. The power performance is also investigated. In addition,when the sample size is small,a nonparametric Monte Carlo test approach for dependent data is proposed to improve the performance of the tests. The algorithm is easy to implement. Simulation studies and real applications are carried out for illustration.
Molecular mechanisms of protein aggregation from global fitting of kinetic models.
Meisl, Georg; Kirkegaard, Julius B; Arosio, Paolo; Michaels, Thomas C T; Vendruscolo, Michele; Dobson, Christopher M; Linse, Sara; Knowles, Tuomas P J
2016-02-01
The elucidation of the molecular mechanisms by which soluble proteins convert into their amyloid forms is a fundamental prerequisite for understanding and controlling disorders that are linked to protein aggregation, such as Alzheimer's and Parkinson's diseases. However, because of the complexity associated with aggregation reaction networks, the analysis of kinetic data of protein aggregation to obtain the underlying mechanisms represents a complex task. Here we describe a framework, using quantitative kinetic assays and global fitting, to determine and to verify a molecular mechanism for aggregation reactions that is compatible with experimental kinetic data. We implement this approach in a web-based software, AmyloFit. Our procedure starts from the results of kinetic experiments that measure the concentration of aggregate mass as a function of time. We illustrate the approach with results from the aggregation of the β-amyloid (Aβ) peptides measured using thioflavin T, but the method is suitable for data from any similar kinetic experiment measuring the accumulation of aggregate mass as a function of time; the input data are in the form of a tab-separated text file. We also outline general experimental strategies and practical considerations for obtaining kinetic data of sufficient quality to draw detailed mechanistic conclusions, and the procedure starts with instructions for extensive data quality control. For the core part of the analysis, we provide an online platform (http://www.amylofit.ch.cam.ac.uk) that enables robust global analysis of kinetic data without the need for extensive programming or detailed mathematical knowledge. The software automates repetitive tasks and guides users through the key steps of kinetic analysis: determination of constraints to be placed on the aggregation mechanism based on the concentration dependence of the aggregation reaction, choosing from several fundamental models describing assembly into linear aggregates and
Comparative model accuracy of a data-fitted generalized Aw-Rascle-Zhang model
Fan, Shimao; Herty, Michael; Seibold, Benjamin
2013-01-01
The Aw-Rascle-Zhang (ARZ) model can be interpreted as a generalization of the Lighthill-Whitham-Richards (LWR) model, possessing a family of fundamental diagram curves, each of which represents a class of drivers with a different empty road velocity. A weakness of this approach is that different drivers possess vastly different densities at which traffic flow stagnates. This drawback can be overcome by modifying the pressure relation in the ARZ model, leading to the generalized Aw-Rascle-Zhan...
The Kunming CalFit study: modeling dietary behavioral patterns using smartphone data.
Seto, Edmund; Hua, Jenna; Wu, Lemuel; Bestick, Aaron; Shia, Victor; Eom, Sue; Han, Jay; Wang, May; Li, Yan
2014-01-01
Human behavioral interventions aimed at improving health can benefit from objective wearable sensor data and mathematical models. Smartphone-based sensing is particularly practical for monitoring behavioral patterns because smartphones are fairly common, are carried by individuals throughout their daily lives, offer a variety of sensing modalities, and can facilitate various forms of user feedback for intervention studies. We describe our findings from a smartphone-based study, in which an Android-based application we developed called CalFit was used to collect information related to young adults' dietary behaviors. In addition to monitoring dietary patterns, we were interested in understanding contextual factors related to when and where an individual eats, as well as how their dietary intake relates to physical activity (which creates energy demand) and psychosocial stress. 12 participants were asked to use CalFit to record videos of their meals over two 1-week periods, which were translated into nutrient intake by trained dietitians. During this same period, triaxial accelerometry was used to assess each subject's energy expenditure, and GPS was used to record time-location patterns. Ecological momentary assessment was also used to prompt subjects to respond to questions on their phone about their psychological state. The GPS data were processed through a web service we developed called Foodscoremap that is based on the Google Places API to characterize food environments that subjects were exposed to, which may explain and influence dietary patterns. Furthermore, we describe a modeling framework that incorporates all of these information to dynamically infer behavioral patterns that may be used for future intervention studies. PMID:25571578
On the Model-Based Bootstrap with Missing Data: Obtaining a "P"-Value for a Test of Exact Fit
Savalei, Victoria; Yuan, Ke-Hai
2009-01-01
Evaluating the fit of a structural equation model via bootstrap requires a transformation of the data so that the null hypothesis holds exactly in the sample. For complete data, such a transformation was proposed by Beran and Srivastava (1985) for general covariance structure models and applied to structural equation modeling by Bollen and Stine…
A Cautionary Note on Using G[squared](dif) to Assess Relative Model Fit in Categorical Data Analysis
Maydeu-Olivares, Albert; Cai, Li
2006-01-01
The likelihood ratio test statistic G[squared](dif) is widely used for comparing the fit of nested models in categorical data analysis. In large samples, this statistic is distributed as a chi-square with degrees of freedom equal to the difference in degrees of freedom between the tested models, but only if the least restrictive model is correctly…
Guillera-Arroita, Gurutzeta; Lahoz-Monfort, José J; MacKenzie, Darryl I; Wintle, Brendan A; McCarthy, Michael A
2014-01-01
In a recent paper, Welsh, Lindenmayer and Donnelly (WLD) question the usefulness of models that estimate species occupancy while accounting for detectability. WLD claim that these models are difficult to fit and argue that disregarding detectability can be better than trying to adjust for it. We think that this conclusion and subsequent recommendations are not well founded and may negatively impact the quality of statistical inference in ecology and related management decisions. Here we respond to WLD's claims, evaluating in detail their arguments, using simulations and/or theory to support our points. In particular, WLD argue that both disregarding and accounting for imperfect detection lead to the same estimator performance regardless of sample size when detectability is a function of abundance. We show that this, the key result of their paper, only holds for cases of extreme heterogeneity like the single scenario they considered. Our results illustrate the dangers of disregarding imperfect detection. When ignored, occupancy and detection are confounded: the same naïve occupancy estimates can be obtained for very different true levels of occupancy so the size of the bias is unknowable. Hierarchical occupancy models separate occupancy and detection, and imprecise estimates simply indicate that more data are required for robust inference about the system in question. As for any statistical method, when underlying assumptions of simple hierarchical models are violated, their reliability is reduced. Resorting in those instances where hierarchical occupancy models do no perform well to the naïve occupancy estimator does not provide a satisfactory solution. The aim should instead be to achieve better estimation, by minimizing the effect of these issues during design, data collection and analysis, ensuring that the right amount of data is collected and model assumptions are met, considering model extensions where appropriate. PMID:25075615
Directory of Open Access Journals (Sweden)
Gurutzeta Guillera-Arroita
Full Text Available In a recent paper, Welsh, Lindenmayer and Donnelly (WLD question the usefulness of models that estimate species occupancy while accounting for detectability. WLD claim that these models are difficult to fit and argue that disregarding detectability can be better than trying to adjust for it. We think that this conclusion and subsequent recommendations are not well founded and may negatively impact the quality of statistical inference in ecology and related management decisions. Here we respond to WLD's claims, evaluating in detail their arguments, using simulations and/or theory to support our points. In particular, WLD argue that both disregarding and accounting for imperfect detection lead to the same estimator performance regardless of sample size when detectability is a function of abundance. We show that this, the key result of their paper, only holds for cases of extreme heterogeneity like the single scenario they considered. Our results illustrate the dangers of disregarding imperfect detection. When ignored, occupancy and detection are confounded: the same naïve occupancy estimates can be obtained for very different true levels of occupancy so the size of the bias is unknowable. Hierarchical occupancy models separate occupancy and detection, and imprecise estimates simply indicate that more data are required for robust inference about the system in question. As for any statistical method, when underlying assumptions of simple hierarchical models are violated, their reliability is reduced. Resorting in those instances where hierarchical occupancy models do no perform well to the naïve occupancy estimator does not provide a satisfactory solution. The aim should instead be to achieve better estimation, by minimizing the effect of these issues during design, data collection and analysis, ensuring that the right amount of data is collected and model assumptions are met, considering model extensions where appropriate.
Computer model challenges breast cancer treatment strategy.
Retsky, M W; Swartzendruber, D E; Bame, P D; Wardwell, R H
1994-01-01
The breast cancer treatment failure rate remains unacceptably high. The current breast cancer treatment paradigm, based primarily on Gompertzian kinetics and animal models, advocates short-course, intensive chemotherapy subsequent to tumor debulking, citing drug resistance and host toxicity as the primary reasons for treatment failure. To better understand treatment failure, we have studied breast cancer from the perspective of computer modeling. Our results demonstrate breast cancers grow in an irregular fashion; this differs from the Gompertzian mode of animal models and thus challenges the validity of the current paradigm. Clinical and laboratory data support the concept of irregular growth rather than the common claim that human tumors grow in a Gompertzian fashion. Treatment failure mechanisms for breast cancer appear to differ from those for animal models, and thus treatments optimize on animal models may not be optimal for breast cancer. A failure mechanism consistent with our results involves temporarily dormant tumor cells in anatomical or pharmacological sanctuary, which eventually result in aggressive metastatic disease. PMID:7994590
On the impact of missing values on item fit and the model validness of the Rasch model
Directory of Open Access Journals (Sweden)
Klaus D. Kubinger
2011-09-01
Full Text Available A crucial point regarding the development and calibration of an aptitude test is the presence of missing values. In most test administrations, examinees omit individual items even in high-stakes tests. The most common procedure for treating these missing values in data analysis is to score these responses as incorrect; however, an alternative would be to consider omitted responses as if they were not administered to the examinee in question. Previous research has found that both procedures for dealing with missing values result in bias in item and person parameter estimation. Regarding test construction, not only is there an interest in item parameter estimation, but also in global and item-specific model tests as well as goodness-of-fit indices. On the basis of such statistics, it will be decided which items constitute the final item pool of a test. The present study therefore investigates the influence of two different procedures for dealing with missing values on model and item-specific tests as well as item fit indices for the Rasch model. The impact of these different treatment alternatives is shown for an empirical example and, furthermore, for simulated data. Simulations reveal that the global model test, as well as the item test, is affected by the procedures used to deal with missing values. To summarize, the results indicate that scoring omitted items as incorrect leads to seriously biased results.
Modeling of physical fitness of young karatyst on the pre basic training
Directory of Open Access Journals (Sweden)
Galimskyi V.A.
2014-05-01
Full Text Available Purpose : to develop a program of physical fitness for the correction of the pre basic training on the basis of model performance. Material: 57 young karate sportsmen of 9-11 years old took part in the research. Results : the level of general and special physical preparedness of young karate 9-11 years old was determined. Classes in the control group occurred in the existing program for yous sports school Muay Thai (Thailand boxing. For the experimental group has developed a program of selective development of general and special physical qualities of model-based training sessions. Special program contains 6 direction: 1. Development of static and dynamic balance; 2. Development of vestibular stability (precision movements after rotation; 3. Development rate movements; 4. The development of the capacity for rapid restructuring movements; 5. Development capabilities to differentiate power and spatial parameters of movement; 6. Development of the ability to perform jumping movements of rotation. Development of special physical qualities continued to work to improve engineering complex shock motions on the place and with movement. Conclusions : the use of selective development of special physical qualities based models of training sessions has a significant performance advantage over the control group.
Supersymmetric Fits after the Higgs Discovery and Implications for Model Building
Ellis, John
2014-01-01
The data from the first run of the LHC at 7 and 8 TeV, together with the information provided by other experiments such as precision electroweak measurements, flavour measurements, the cosmological density of cold dark matter and the direct search for the scattering of dark matter particles in the LUX experiment, provide important constraints on supersymmetric models. Important information is provided by the ATLAS and CMS measurements of the mass of the Higgs boson, as well as the negative results of searches at the LHC for events with missing transverse energy accompanied by jets, and the LHCb and CMS measurements off BR($B_s \\to \\mu^+ \\mu^-$). Results are presented from frequentist analyses of the parameter spaces of the CMSSM and NUHM1. The global $\\chi^2$ functions for the supersymmetric models vary slowly over most of the parameter spaces allowed by the Higgs mass and the missing transverse energy search, with best-fit values that are comparable to the $\\chi^2$ for the Standard Model. The $95\\%$ CL lower...
Modeling the Aneuploidy Control of Cancer
Directory of Open Access Journals (Sweden)
Wang Zhong
2010-07-01
Full Text Available Abstract Background Aneuploidy has long been recognized to be associated with cancer. A growing body of evidence suggests that tumorigenesis, the formation of new tumors, can be attributed to some extent to errors occurring at the mitotic checkpoint, a major cell cycle control mechanism that acts to prevent chromosome missegregation. However, so far no statistical model has been available quantify the role aneuploidy plays in determining cancer. Methods We develop a statistical model for testing the association between aneuploidy loci and cancer risk in a genome-wide association study. The model incorporates quantitative genetic principles into a mixture-model framework in which various genetic effects, including additive, dominant, imprinting, and their interactions, are estimated by implementing the EM algorithm. Results Under the new model, a series of hypotheses tests are formulated to explain the pattern of the genetic control of cancer through aneuploid loci. Simulation studies were performed to investigate the statistical behavior of the model. Conclusions The model will provide a tool for estimating the effects of genetic loci on aneuploidy abnormality in genome-wide studies of cancer cells.
Mathematical Modeling of Allelopathy. III. A Model for Curve-Fitting Allelochemical Dose Responses
Liu, Li; An, Min; Johnson, Ian R.; Lovett, John V.
2003-01-01
Bioassay techniques are often used to study the effects of allelochemicals on plant processes, and it is generally observed that the processes are stimulated at low allelochemical concentrations and inhibited as the concentrations increase. A simple empirical model is presented to analyze this type of response. The stimulation-inhibition properties of allelochemical-dose responses can be described by the parameters in the model. The indices, p% reductions, are calculated to assess the alleloc...
Public Health Action Model for Cancer Survivorship.
Moore, Angela R; Buchanan, Natasha D; Fairley, Temeika L; Lee Smith, Judith
2015-12-01
Long-term objectives associated with cancer survivors have been suggested by Healthy People 2020, including increasing the proportion of survivors living beyond 5 years after diagnosis and improving survivors' mental and physical health-related quality of life. Prior to reaching these objectives, several intermediate steps must be taken to improve the physical, social, emotional, and financial well-being of cancer survivors. Public health has a role in developing strategic, actionable, and measurable approaches to facilitate change at multiple levels to improve the lives of survivors and their families. The social ecological model has been used by the public health community as the foundation of multilevel intervention design and implementation, encouraging researchers and practitioners to explore methods that promote internal and external changes at the individual, interpersonal, organizational, community, and policy levels. The survivorship community, including public health professionals, providers, policymakers, survivors, advocates, and caregivers, must work collaboratively to identify, develop, and implement interventions that benefit cancer survivors. The National Action Plan for Cancer Survivorship highlights public health domains and associated strategies that can be the impetus for collaboration between and among the levels in the social ecological model and are integral to improving survivor outcomes. This paper describes the Public Health Action Model for Cancer Survivorship, an integrative framework that combines the National Action Plan for Cancer Survivorship with the social ecological model to demonstrate how interaction among the various levels may promote better outcomes for survivors. PMID:26590641
Forecasting Age-Specific Brain Cancer Mortality Rates Using Functional Data Analysis Models
Pokhrel, Keshav P.; Tsokos, Chris P.
2015-01-01
Incidence and mortality rates are considered as a guideline for planning public health strategies and allocating resources. We apply functional data analysis techniques to model age-specific brain cancer mortality trend and forecast entire age-specific functions using exponential smoothing state-space models. The age-specific mortality curves are decomposed using principal component analysis and fit functional time series model with basis functions. Nonparametric smoothing methods are used to...
Chadeau-Hyam, Marc; Tubert-Bitter, Pascale; Guihenneuc-Jouyaux, Chantal; Campanella, Gianluca; Richardson, Sylvia; Vermeulen, Roel; De Iorio, Maria; Galea, Sandro; Vineis, Paolo
2014-01-01
BACKGROUND:: To account for the dynamic aspects of carcinogenesis, we propose a compartmental hidden Markov model in which each person is healthy, asymptomatically affected, diagnosed, or deceased. Our model is illustrated using the example of smoking-induced lung cancer. METHODS:: The model was fit
Hypoxia in models of lung cancer
DEFF Research Database (Denmark)
Graves, Edward E; Vilalta, Marta; Cecic, Ivana K;
2010-01-01
PURPOSE: To efficiently translate experimental methods from bench to bedside, it is imperative that laboratory models of cancer mimic human disease as closely as possible. In this study, we sought to compare patterns of hypoxia in several standard and emerging mouse models of lung cancer to...... establish the appropriateness of each for evaluating the role of oxygen in lung cancer progression and therapeutic response. EXPERIMENTAL DESIGN: Subcutaneous and orthotopic human A549 lung carcinomas growing in nude mice as well as spontaneous K-ras or Myc-induced lung tumors grown in situ or......H2AX foci in vitro and in vivo. Finally, our findings were compared with oxygen electrode measurements of human lung cancers. RESULTS: Minimal fluoroazomycin arabinoside and pimonidazole accumulation was seen in tumors growing within the lungs, whereas subcutaneous tumors showed substantial trapping...
Ovarian Cancer Pathogenesis: A Model in Evolution
Directory of Open Access Journals (Sweden)
Alison M. Karst
2010-01-01
Full Text Available Ovarian cancer is a deadly disease for which there is no effective means of early detection. Ovarian carcinomas comprise a diverse group of neoplasms, exhibiting a wide range of morphological characteristics, clinical manifestations, genetic alterations, and tumor behaviors. This high degree of heterogeneity presents a major clinical challenge in both diagnosing and treating ovarian cancer. Furthermore, the early events leading to ovarian carcinoma development are poorly understood, thus complicating efforts to develop screening modalities for this disease. Here, we provide an overview of the current models of ovarian cancer pathogenesis, highlighting recent findings implicating the fallopian tube fimbria as a possible site of origin of ovarian carcinomas. The ovarian cancer model will continue to evolve as we learn more about the genetics and etiology of this disease.
Evapotranspiration measurement and modeling without fitting parameters in high-altitude grasslands
Ferraris, Stefano; Previati, Maurizio; Canone, Davide; Dematteis, Niccolò; Boetti, Marco; Balocco, Jacopo; Bechis, Stefano
2016-04-01
Mountain grasslands are important, also because one sixth of the world population lives inside watershed dominated by snowmelt. Also, grasslands provide food to both domestic and selvatic animals. The global warming will probably accelerate the hydrological cycle and increase the drought risk. The combination of measurements, modeling and remote sensing can furnish knowledge in such faraway areas (e.g.: Brocca et al., 2013). A better knowledge of water balance can also allow to optimize the irrigation (e.g.: Canone et al., 2015). This work is meant to build a model of water balance in mountain grasslands, ranging between 1500 and 2300 meters asl. The main input is the Digital Terrain Model, which is more reliable in grasslands than both in the woods and in the built environment. It drives the spatial variability of shortwave solar radiation. The other atmospheric forcings are more problematic to estimate, namely air temperature, wind and longwave radiation. Ad hoc routines have been written, in order to interpolate in space the meteorological hourly time variability. The soil hydraulic properties are less variable than in the plains, but the soil depth estimation is still an open issue. The soil vertical variability has been modeled taking into account the main processes: soil evaporation, root uptake, and fractured bedrock percolation. The time variability latent heat flux and soil moisture results have been compared with the data measured in an eddy covariance station. The results are very good, given the fact that the model has no fitting parameters. The space variability results have been compared with the results of a model based on Landsat 7 and 8 data, applied over an area of about 200 square kilometers. The spatial correlation is quite in agreement between the two models. Brocca et al. (2013). "Soil moisture estimation in alpine catchments through modelling and satellite observations". Vadose Zone Journal, 12(3), 10 pp. Canone et al. (2015). "Field
Emerging and Evolving Ovarian Cancer Animal Models
Bobbs, Alexander S; Jennifer M. Cole; Cowden Dahl, Karen D.
2015-01-01
Ovarian cancer (OC) is the leading cause of death from a gynecological malignancy in the United States. By the time a woman is diagnosed with OC, the tumor has usually metastasized. Mouse models that are used to recapitulate different aspects of human OC have been evolving for nearly 40 years. Xenograft studies in immunocompromised and immunocompetent mice have enhanced our knowledge of metastasis and immune cell involvement in cancer. Patient-derived xenografts (PDXs) can accurately reflect ...
International Nuclear Information System (INIS)
We suggest a procedure for estimating uncertainties in neutron cross sections calculated with a nuclear model descriptive of a specific mass region. It applies standard error propagation techniques, using a model-parameter covariance matrix. Generally, available codes do not generate covariance information in conjunction with their fitting algorithms. Therefore, we resort to estimating a relative covariance matrix a posteriori from a statistical examination of the scatter of elemental parameter values about the regional representation. We numerically demonstrate our method by considering an optical-statistical model analysis of a body of total and elastic scattering data for the light fission-fragment mass region. In this example, strong uncertainty correlations emerge and they conspire to reduce estimated errors to some 50% of those obtained from a naive uncorrelated summation in quadrature. 37 references
Lower radiation weighting factor for radon indicated in mechanistic modelling of human lung cancer
International Nuclear Information System (INIS)
A two-mutation carcinogenesis (TMC) model was fitted to the age-dependent lung cancer incidence in a cohort of Dutch Hodgkin patients treated with radiotherapy. Employing the results of previous TMC analyses of lung cancer due to smoking (by British doctors) and due to exposure to radon (for Colorado miners) a model fit was obtained with an estimate for the low LET radiation effect at the cellular level. This allows risk calculations for lung cancer from low LET radiation. The excess absolute risks are in tune with the values reported in the literature, the excess relative risks differ among the exposed groups. Comparing the cellular radiation coefficients for radon and for low LET radiation leads to an estimated radiation weighting factor for radon of 3 (0.1-6). (author)
Model fitting using RANSAC for surgical tool localization in 3-D ultrasound images.
Uhercík, Marián; Kybic, Jan; Liebgott, Hervé; Cachard, Christian
2010-08-01
Ultrasound guidance is used for many surgical interventions such as biopsy and electrode insertion. We present a method to localize a thin surgical tool such as a biopsy needle or a microelectrode in a 3-D ultrasound image. The proposed method starts with thresholding and model fitting using random sample consensus for robust localization of the axis. Subsequent local optimization refines its position. Two different tool image models are presented: one is simple and fast and the second uses learned a priori information about the tool's voxel intensities and the background. Finally, the tip of the tool is localized by finding an intensity drop along the axis. The simulation study shows that our algorithm can localize the tool at nearly real-time speed, even using a MATLAB implementation, with accuracy better than 1 mm. In an experimental comparison with several alternative localization methods, our method appears to be the fastest and the most robust one. We also show the results on real 3-D ultrasound data from a PVA cryogel phantom, turkey breast, and breast biopsy. PMID:20483680
Fitness for duty: A tried-and-true model for decision making
International Nuclear Information System (INIS)
The US Nuclear Regulatory Commission (NRC) rules and regulations pertaining to fitness for duty specify development of programs designed to ensure that nuclear power plant personnel are not under the influence of legal or illegal substances that cause mental or physical impairment of work performance such that public safety is compromised. These regulations specify the type of decision loop to employ in determining the employee's movement through the process of initial restriction of access to the point at which his access authorization is restores. Suggestions are also offered to determine the roles that various components of the organization should take in the decision loop. This paper discusses some implications and labor concerns arising from the suggested role of employee assistance programs (EAPs) in the decision loop for clinical assessment and return-to-work evaluation of chemical testing failures. A model for a decision loop addressing some of the issues raised is presented. The proposed model has been implemented in one nuclear facility and has withstood the scrutiny of an NRC audit
Model Order Selection for Short Data: An Exponential Fitting Test (EFT
Directory of Open Access Journals (Sweden)
Barbot Jean-Pierre
2007-01-01
Full Text Available High-resolution methods for estimating signal processing parameters such as bearing angles in array processing or frequencies in spectral analysis may be hampered by the model order if poorly selected. As classical model order selection methods fail when the number of snapshots available is small, this paper proposes a method for noncoherent sources, which continues to work under such conditions, while maintaining low computational complexity. For white Gaussian noise and short data we show that the profile of the ordered noise eigenvalues is seen to approximately fit an exponential law. This fact is used to provide a recursive algorithm which detects a mismatch between the observed eigenvalue profile and the theoretical noise-only eigenvalue profile, as such a mismatch indicates the presence of a source. Moreover this proposed method allows the probability of false alarm to be controlled and predefined, which is a crucial point for systems such as RADARs. Results of simulations are provided in order to show the capabilities of the algorithm.
Model Order Selection for Short Data: An Exponential Fitting Test (EFT)
Quinlan, Angela; Barbot, Jean-Pierre; Larzabal, Pascal; Haardt, Martin
2006-12-01
High-resolution methods for estimating signal processing parameters such as bearing angles in array processing or frequencies in spectral analysis may be hampered by the model order if poorly selected. As classical model order selection methods fail when the number of snapshots available is small, this paper proposes a method for noncoherent sources, which continues to work under such conditions, while maintaining low computational complexity. For white Gaussian noise and short data we show that the profile of the ordered noise eigenvalues is seen to approximately fit an exponential law. This fact is used to provide a recursive algorithm which detects a mismatch between the observed eigenvalue profile and the theoretical noise-only eigenvalue profile, as such a mismatch indicates the presence of a source. Moreover this proposed method allows the probability of false alarm to be controlled and predefined, which is a crucial point for systems such as RADARs. Results of simulations are provided in order to show the capabilities of the algorithm.
Asymptotic distribution for goodness-of-fit statistics in a sequence of multinomial models
Czech Academy of Sciences Publication Activity Database
Vajda, Igor; Gyorfi, L.
2002-01-01
Roč. 56, č. 1 (2002), s. 57-67. ISSN 0167-7152 R&D Projects: GA AV ČR IAA1075101 Institutional research plan: CEZ:AV0Z1075907 Keywords : goodness-of-fit statistics * disparity statistics * goodnes-of-fit tests Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.364, year: 2002
Remark on statistical model fits to particle ratios in relativistic heavy ion collisions
Becattini, F.
2007-01-01
In order to determine the chemical freeze-out parameters of the hadron-emitting source in relativistic heavy ion collisions some studies in literature perform fits by using as data input a subsample of ratios calculated out of experimentally measured hadron yields instead of yields themselves. We show that this is a statistically incorrect method fit, implying a bias in the extracted parameters.
Schlemm, Eckhard
2015-09-01
The Bak-Sneppen model is an abstract representation of a biological system that evolves according to the Darwinian principles of random mutation and selection. The species in the system are characterized by a numerical fitness value between zero and one. We show that in the case of five species the steady-state fitness distribution can be obtained as a solution to a linear differential equation of order five with hypergeometric coefficients. Similar representations for the asymptotic fitness distribution in larger systems may help pave the way towards a resolution of the question of whether or not, in the limit of infinitely many species, the fitness is asymptotically uniformly distributed on the interval [fc, 1] with fc ≳ 2/3. PMID:26144945
DEFF Research Database (Denmark)
Vang, Jakob Rabjerg; Zhou, Fan; Andreasen, Søren Juhl; Kær, Søren Knudsen
2015-01-01
A high temperature PEM (HTPEM) fuel cell model capable of simulating both steady state and dynamic operation is presented. The purpose is to enable extraction of unknown parameters from sets of impedance spectra and polarisation curves. The model is fitted to two polarisation curves and four...
Pulmonary lobe segmentation based on ridge surface sampling and shape model fitting
International Nuclear Information System (INIS)
Purpose: Performing lobe-based quantitative analysis of the lung in computed tomography (CT) scans can assist in efforts to better characterize complex diseases such as chronic obstructive pulmonary disease (COPD). While airways and vessels can help to indicate the location of lobe boundaries, segmentations of these structures are not always available, so methods to define the lobes in the absence of these structures are desirable. Methods: The authors present a fully automatic lung lobe segmentation algorithm that is effective in volumetric inspiratory and expiratory computed tomography (CT) datasets. The authors rely on ridge surface image features indicating fissure locations and a novel approach to modeling shape variation in the surfaces defining the lobe boundaries. The authors employ a particle system that efficiently samples ridge surfaces in the image domain and provides a set of candidate fissure locations based on the Hessian matrix. Following this, lobe boundary shape models generated from principal component analysis (PCA) are fit to the particles data to discriminate between fissure and nonfissure candidates. The resulting set of particle points are used to fit thin plate spline (TPS) interpolating surfaces to form the final boundaries between the lung lobes. Results: The authors tested algorithm performance on 50 inspiratory and 50 expiratory CT scans taken from the COPDGene study. Results indicate that the authors' algorithm performs comparably to pulmonologist-generated lung lobe segmentations and can produce good results in cases with accessory fissures, incomplete fissures, advanced emphysema, and low dose acquisition protocols. Dice scores indicate that only 29 out of 500 (5.85%) lobes showed Dice scores lower than 0.9. Two different approaches for evaluating lobe boundary surface discrepancies were applied and indicate that algorithm boundary identification is most accurate in the vicinity of fissures detectable on CT. Conclusions: The proposed
Pulmonary lobe segmentation based on ridge surface sampling and shape model fitting
Energy Technology Data Exchange (ETDEWEB)
Ross, James C., E-mail: jross@bwh.harvard.edu [Channing Laboratory, Brigham and Women' s Hospital, Boston, Massachusetts 02215 (United States); Surgical Planning Lab, Brigham and Women' s Hospital, Boston, Massachusetts 02215 (United States); Laboratory of Mathematics in Imaging, Brigham and Women' s Hospital, Boston, Massachusetts 02126 (United States); Kindlmann, Gordon L. [Computer Science Department and Computation Institute, University of Chicago, Chicago, Illinois 60637 (United States); Okajima, Yuka; Hatabu, Hiroto [Department of Radiology, Brigham and Women' s Hospital, Boston, Massachusetts 02215 (United States); Díaz, Alejandro A. [Pulmonary and Critical Care Division, Brigham and Women' s Hospital and Harvard Medical School, Boston, Massachusetts 02215 and Department of Pulmonary Diseases, Pontificia Universidad Católica de Chile, Santiago (Chile); Silverman, Edwin K. [Channing Laboratory, Brigham and Women' s Hospital, Boston, Massachusetts 02215 and Pulmonary and Critical Care Division, Brigham and Women' s Hospital and Harvard Medical School, Boston, Massachusetts 02215 (United States); Washko, George R. [Pulmonary and Critical Care Division, Brigham and Women' s Hospital and Harvard Medical School, Boston, Massachusetts 02215 (United States); Dy, Jennifer [ECE Department, Northeastern University, Boston, Massachusetts 02115 (United States); Estépar, Raúl San José [Department of Radiology, Brigham and Women' s Hospital, Boston, Massachusetts 02215 (United States); Surgical Planning Lab, Brigham and Women' s Hospital, Boston, Massachusetts 02215 (United States); Laboratory of Mathematics in Imaging, Brigham and Women' s Hospital, Boston, Massachusetts 02126 (United States)
2013-12-15
Purpose: Performing lobe-based quantitative analysis of the lung in computed tomography (CT) scans can assist in efforts to better characterize complex diseases such as chronic obstructive pulmonary disease (COPD). While airways and vessels can help to indicate the location of lobe boundaries, segmentations of these structures are not always available, so methods to define the lobes in the absence of these structures are desirable. Methods: The authors present a fully automatic lung lobe segmentation algorithm that is effective in volumetric inspiratory and expiratory computed tomography (CT) datasets. The authors rely on ridge surface image features indicating fissure locations and a novel approach to modeling shape variation in the surfaces defining the lobe boundaries. The authors employ a particle system that efficiently samples ridge surfaces in the image domain and provides a set of candidate fissure locations based on the Hessian matrix. Following this, lobe boundary shape models generated from principal component analysis (PCA) are fit to the particles data to discriminate between fissure and nonfissure candidates. The resulting set of particle points are used to fit thin plate spline (TPS) interpolating surfaces to form the final boundaries between the lung lobes. Results: The authors tested algorithm performance on 50 inspiratory and 50 expiratory CT scans taken from the COPDGene study. Results indicate that the authors' algorithm performs comparably to pulmonologist-generated lung lobe segmentations and can produce good results in cases with accessory fissures, incomplete fissures, advanced emphysema, and low dose acquisition protocols. Dice scores indicate that only 29 out of 500 (5.85%) lobes showed Dice scores lower than 0.9. Two different approaches for evaluating lobe boundary surface discrepancies were applied and indicate that algorithm boundary identification is most accurate in the vicinity of fissures detectable on CT. Conclusions: The
Branching process models of cancer
Durrett, Richard
2015-01-01
This volume develops results on continuous time branching processes and applies them to study rate of tumor growth, extending classic work on the Luria-Delbruck distribution. As a consequence, the authors calculate the probability that mutations that confer resistance to treatment are present at detection and quantify the extent of tumor heterogeneity. As applications, the authors evaluate ovarian cancer screening strategies and give rigorous proofs for results of Heano and Michor concerning tumor metastasis. These notes should be accessible to students who are familiar with Poisson processes and continuous time. Richard Durrett is mathematics professor at Duke University, USA. He is the author of 8 books, over 200 journal articles, and has supervised more than 40 Ph.D. students. Most of his current research concerns the applications of probability to biology: ecology, genetics, and most recently cancer.
Mathematical models of breast and ovarian cancers.
Botesteanu, Dana-Adriana; Lipkowitz, Stanley; Lee, Jung-Min; Levy, Doron
2016-07-01
Women constitute the majority of the aging United States (US) population, and this has substantial implications on cancer population patterns and management practices. Breast cancer is the most common women's malignancy, while ovarian cancer is the most fatal gynecological malignancy in the US. In this review, we focus on these subsets of women's cancers, seen more commonly in postmenopausal and elderly women. In order to systematically investigate the complexity of cancer progression and response to treatment in breast and ovarian malignancies, we assert that integrated mathematical modeling frameworks viewed from a systems biology perspective are needed. Such integrated frameworks could offer innovative contributions to the clinical women's cancers community, as answers to clinical questions cannot always be reached with contemporary clinical and experimental tools. Here, we recapitulate clinically known data regarding the progression and treatment of the breast and ovarian cancers. We compare and contrast the two malignancies whenever possible in order to emphasize areas where substantial contributions could be made by clinically inspired and validated mathematical modeling. We show how current paradigms in the mathematical oncology community focusing on the two malignancies do not make comprehensive use of, nor substantially reflect existing clinical data, and we highlight the modeling areas in most critical need of clinical data integration. We emphasize that the primary goal of any mathematical study of women's cancers should be to address clinically relevant questions. WIREs Syst Biol Med 2016, 8:337-362. doi: 10.1002/wsbm.1343 For further resources related to this article, please visit the WIREs website. PMID:27259061
A Multivariate Fit Luminosity Function and World Model for Long GRBs
Shahmoradi, Amir
2012-01-01
It is proposed that the luminosity function, the comoving-frame spectral correlations and distributions of cosmological Long-duration Gamma-Ray Bursts (LGRBs) may be very well described as multivariate log-normal distribution. This result is based on careful selection, analysis and modeling of the spectral parameters of LGRBs in the largest catalog of Gamma-Ray Bursts available to date: 2130 BATSE GRBs, while taking into account the detection threshold and possible selection effects on observational data. Constraints on the joint quadru-variate distribution of the isotropic peak luminosity, the total isotropic emission, the comoving-frame time-integrated spectral peak energy and the comoving-frame duration of LGRBs are derived. Extensive goodness-of-fit tests are performed. The presented analysis provides evidence for a relatively large fraction of LGRBs that have been missed by BATSE detector with total isotropic emissions extending down to 10^49 [erg] and observed spectral peak energies as low as 5 [KeV]. T...
In Silico Experimental Modeling of Cancer Treatment
Trisilowati; D. G. Mallet
2012-01-01
In silico experimental modeling of cancer involves combining findings from biological literature with computer-based models of biological systems in order to conduct investigations of hypotheses entirely in the computer laboratory. In this paper, we discuss the use of in silico modeling as a precursor to traditional clinical and laboratory research, allowing researchers to refine their experimental programs with an aim to reducing costs and increasing research efficiency. We explain the metho...
A Novel Bioluminescence Orthotopic Mouse Model for Advanced Lung Cancer
Li, Bo; Torossian, Artour; Li, Wenyan; Schleicher, Stephen; Niu, Kathy; Giacalone, Nicholas J; Kim, Sung June; Chen, Heidi; Gonzalez, Adriana; Moretti, Luigi; Lu, Bo
2011-01-01
Lung cancer is the leading cause of cancer-related death in the United States despite recent advances in our understanding of this challenging disease. An animal model for high-throughput screening of therapeutic agents for advanced lung cancer could help promote the development of more successful treatment interventions. To develop our orthotopic lung cancer model, luciferase-expressing A549 cancer cells were injected into the mediastinum of athymic nude mice. To determine whether the model ...
A simulation model of the natural history of human breast cancer.
Koscielny, S; Tubiana, M; Valleron, A J
1985-01-01
In order to assess the time at which the distant metastases were initiated, a model has been developed to simulate the natural history of human breast cancer. The metastasis appearance curves were fitted to those observed for tumours of various sizes among the 2648 patients treated at the Institut Gustave Roussy from 1954 to 1972. The model assumes that metastases are initiated when the tumour reaches a threshold volume (distribution of this volume was estimated in a previous article). Two pa...
Model Checking of a Diabetes-Cancer Model
Gong, Haijun; Zuliani, Paolo; Clarke, Edmund M.
2011-06-01
Accumulating evidence suggests that cancer incidence might be associated with diabetes mellitus, especially Type II diabetes which is characterized by hyperinsulinaemia, hyperglycaemia, obesity, and overexpression of multiple WNT pathway components. These diabetes risk factors can activate a number of signaling pathways that are important in the development of different cancers. To systematically understand the signaling components that link diabetes and cancer risk, we have constructed a single-cell, Boolean network model by integrating the signaling pathways that are influenced by these risk factors to study insulin resistance, cancer cell proliferation and apoptosis. Then, we introduce and apply the Symbolic Model Verifier (SMV), a formal verification tool, to qualitatively study some temporal logic properties of our diabetes-cancer model. The verification results show that the diabetes risk factors might not increase cancer risk in normal cells, but they will promote cell proliferation if the cell is in a precancerous or cancerous stage characterized by losses of the tumor-suppressor proteins ARF and INK4a.
Portz, Travis; Kuang, Yang; Nagy, John D.
2012-03-01
Prostate cancer is commonly treated by a form of hormone therapy called androgen suppression. This form of treatment, while successful at reducing the cancer cell population, adversely affects quality of life and typically leads to a recurrence of the cancer in an androgen-independent form. Intermittent androgen suppression aims to alleviate some of these adverse affects by cycling the patient on and off treatment. Clinical studies have suggested that intermittent therapy is capable of maintaining androgen dependence over multiple treatment cycles while increasing quality of life during off-treatment periods. This paper presents a mathematical model of prostate cancer to study the dynamics of androgen suppression therapy and the production of prostate-specific antigen (PSA), a clinical marker for prostate cancer. Preliminary models were based on the assumption of an androgen-independent (AI) cell population with constant net growth rate. These models gave poor accuracy when fitting clinical data during simulation. The final model presented hypothesizes an AI population with increased sensitivity to low levels of androgen. It also hypothesizes that PSA production is heavily dependent on androgen. The high level of accuracy in fitting clinical data with this model appears to confirm these hypotheses, which are also consistent with biological evidence.
Directory of Open Access Journals (Sweden)
Eloranta Sandra
2011-06-01
Full Text Available Abstract Background When the mortality among a cancer patient group returns to the same level as in the general population, that is, the patients no longer experience excess mortality, the patients still alive are considered "statistically cured". Cure models can be used to estimate the cure proportion as well as the survival function of the "uncured". One limitation of parametric cure models is that the functional form of the survival of the "uncured" has to be specified. It can sometimes be hard to find a survival function flexible enough to fit the observed data, for example, when there is high excess hazard within a few months from diagnosis, which is common among older age groups. This has led to the exclusion of older age groups in population-based cancer studies using cure models. Methods Here we have extended the flexible parametric survival model to incorporate cure as a special case to estimate the cure proportion and the survival of the "uncured". Flexible parametric survival models use splines to model the underlying hazard function, and therefore no parametric distribution has to be specified. Results We have compared the fit from standard cure models to our flexible cure model, using data on colon cancer patients in Finland. This new method gives similar results to a standard cure model, when it is reliable, and better fit when the standard cure model gives biased estimates. Conclusions Cure models within the framework of flexible parametric models enables cure modelling when standard models give biased estimates. These flexible cure models enable inclusion of older age groups and can give stage-specific estimates, which is not always possible from parametric cure models.
Halliday A Idikio
2011-01-01
Human cancer classification is currently based on the idea of cell of origin, light and electron microscopic attributes of the cancer. What is not yet integrated into cancer classification are the functional attributes of these cancer cells. Recent innovative techniques in biology have provided a wealth of information on the genomic, transcriptomic and proteomic changes in cancer cells. The emergence of the concept of cancer stem cells needs to be included in a classification model to capture...
Lung cancer mortality trends in Chile and six-year projections using Bayesian dynamic linear models.
Torres-Avilés, Francisco; Moraga, Tomás; Núñez, Loreto; Icaza, Gloria
2015-09-01
The objectives were to analyze lung cancer mortality trends in Chile from 1990 to 2009, and to project the rates six years forward. Lung cancer mortality data were obtained from the Chilean Ministry of Health. To obtain mortality rates, population projections were used, based on the 2002 National Census. Rates were adjusted using the world standard population as reference. Bayesian dynamic linear models were fitted to estimate trends from 1990 to 2009 and to obtain projections for 2010-2015. During the period under study, there was a 19.9% reduction in the lung cancer mortality rate in men. In women, there was increase of 28.4%. The second-order model showed a better fit for men, and the first-order model a better fit for women. Between 2010 and 2015 the downward trend continued in men, while a trend to stabilization was projected for lung cancer mortality in women in Chile. This analytical approach could be useful implement surveillance systems for chronic non-communicable disease and to evaluate preventive strategies. PMID:26578021
Fitness club
2011-01-01
General fitness Classes Enrolments are open for general fitness classes at CERN taking place on Monday, Wednesday, and Friday lunchtimes in the Pump Hall (building 216). There are shower facilities for both men and women. It is possible to pay for 1, 2 or 3 classes per week for a minimum of 1 month and up to 6 months. Check out our rates and enrol at: http://cern.ch/club-fitness Hope to see you among us! CERN Fitness Club fitness.club@cern.ch
Quasi – biological model of radiogenic cancer morbidity
Directory of Open Access Journals (Sweden)
A. T. Gubin
2016-01-01
Full Text Available The methods: Linear differential equations were used to formalize contemporary assumptions of self –sustaining tissue cell kinetics under the impact of adverse factors, on the formation and repairing of cell “pre-cancer” defects, on inheritance and retaining such defects in daughter cells which results in malignant neoplasms, on age-dependent impairment of human body’s function to eliminate such cells.The results: The model reproduces the well-known regularities of radiogenic cancer morbidity increase depending on instantaneous radiation exposure age and on attained age: the relative reduction at increased radiation age which the model attributes to age decrease of stem cells, relative reduction at increased time after radiation induced by “sorting out” of cells with “pre-cancer” defects, absolute increase with age proportional to natural cause mortality rate.The relevance of the developed quasi-biological model is displayed via comparison to the ICRP model for radiogenic increase of solid carcinomas’ morbidity after single radiation exposure. The latter model had been developed after Japanese cohort observations. For both genders high goodness-of-fit was achieved between the models at values of Gompertz’ law factor which had been defined for men and women in this cohort via selecting the value of the only free parameter indicating age-dependent exponential retardation of stem cells’ division.The conclusion: The proposed model suggests that the estimation of radiogenic risk inter-population transfer can be done on the basis of the data on age-dependent mortality intensity increase from all natural causes. The model also creates the premises for inter-species transfer of risk following the well-known parameters of cell populations’ kinetics in animal’s organs and tissues and Gompertz’s law parameters. This model is applicable also for analyses of age-dependent changes of background cancer morbidity.
International Nuclear Information System (INIS)
We present an estimation procedure of the error components in a linear regression model with multiple independent stochastic error contributions. After solving the general problem we apply the results to the estimation of the actual trajectory in track fitting with multiple scattering. (orig.)
O'Neill, James M.; Clark, Jeffrey K.; Jones, James A.
2016-01-01
Background: In elementary grades, comprehensive health education curricula have demonstrated effectiveness in addressing singular health issues. The Michigan Model for Health (MMH) was implemented and evaluated to determine its impact on nutrition, physical fitness, and safety knowledge and skills. Methods: Schools (N = 52) were randomly assigned…
Mouse models of intestinal inflammation and cancer.
Westbrook, Aya M; Szakmary, Akos; Schiestl, Robert H
2016-09-01
Chronic inflammation is strongly associated with approximately one-fifth of all human cancers. Arising from combinations of factors such as environmental exposures, diet, inherited gene polymorphisms, infections, or from dysfunctions of the immune response, chronic inflammation begins as an attempt of the body to remove injurious stimuli; however, over time, this results in continuous tissue destruction and promotion and maintenance of carcinogenesis. Here, we focus on intestinal inflammation and its associated cancers, a group of diseases on the rise and affecting millions of people worldwide. Intestinal inflammation can be widely grouped into inflammatory bowel diseases (ulcerative colitis and Crohn's disease) and celiac disease. Long-standing intestinal inflammation is associated with colorectal cancer and small-bowel adenocarcinoma, as well as extraintestinal manifestations, including lymphomas and autoimmune diseases. This article highlights potential mechanisms of pathogenesis in inflammatory bowel diseases and celiac disease, as well as those involved in the progression to associated cancers, most of which have been identified from studies utilizing mouse models of intestinal inflammation. Mouse models of intestinal inflammation can be widely grouped into chemically induced models; genetic models, which make up the bulk of the studied models; adoptive transfer models; and spontaneous models. Studies in these models have lead to the understanding that persistent antigen exposure in the intestinal lumen, in combination with loss of epithelial barrier function, and dysfunction and dysregulation of the innate and adaptive immune responses lead to chronic intestinal inflammation. Transcriptional changes in this environment leading to cell survival, hyperplasia, promotion of angiogenesis, persistent DNA damage, or insufficient repair of DNA damage due to an excess of proinflammatory mediators are then thought to lead to sustained malignant transformation. With
Directory of Open Access Journals (Sweden)
Jesús Aguirre-Gutiérrez
Full Text Available Understanding species distributions and the factors limiting them is an important topic in ecology and conservation, including in nature reserve selection and predicting climate change impacts. While Species Distribution Models (SDM are the main tool used for these purposes, choosing the best SDM algorithm is not straightforward as these are plentiful and can be applied in many different ways. SDM are used mainly to gain insight in 1 overall species distributions, 2 their past-present-future probability of occurrence and/or 3 to understand their ecological niche limits (also referred to as ecological niche modelling. The fact that these three aims may require different models and outputs is, however, rarely considered and has not been evaluated consistently. Here we use data from a systematically sampled set of species occurrences to specifically test the performance of Species Distribution Models across several commonly used algorithms. Species range in distribution patterns from rare to common and from local to widespread. We compare overall model fit (representing species distribution, the accuracy of the predictions at multiple spatial scales, and the consistency in selection of environmental correlations all across multiple modelling runs. As expected, the choice of modelling algorithm determines model outcome. However, model quality depends not only on the algorithm, but also on the measure of model fit used and the scale at which it is used. Although model fit was higher for the consensus approach and Maxent, Maxent and GAM models were more consistent in estimating local occurrence, while RF and GBM showed higher consistency in environmental variables selection. Model outcomes diverged more for narrowly distributed species than for widespread species. We suggest that matching study aims with modelling approach is essential in Species Distribution Models, and provide suggestions how to do this for different modelling aims and species' data
Antiangiogenic cancer drug using the zebrafish model.
Santoro, Massimo M
2014-09-01
The process of de novo vessel formation, called angiogenesis, is essential for tumor progression and spreading. Targeting of molecular pathways involved in such tumor angiogenetic processes by using specific drugs or inhibitors is important for developing new anticancer therapies. Drug discovery remains to be the main focus for biomedical research and represents the essence of antiangiogenesis cancer research. To pursue these molecular and pharmacological goals, researchers need to use animal models that facilitate the elucidation of tumor angiogenesis mechanisms and the testing of antiangiogenic therapies. The past few years have seen the zebrafish system emerge as a valid model organism to study developmental angiogenesis and, more recently, as an alternative vertebrate model for cancer research. In this review, we will discuss why the zebrafish model system has the advantage of being a vertebrate model equipped with easy and powerful transgenesis as well as imaging tools to investigate not only physiological angiogenesis but also tumor angiogenesis. We will also highlight the potential of zebrafish for identifying antitumor angiogenesis drugs to block tumor development and progression. We foresee the zebrafish model as an important system that can possibly complement well-established mouse models in cancer research to generate novel insights into the molecular mechanism of the tumor angiogenesis. PMID:24903092
Meijer, Rob R.; Tendeiro, Jorge N.
2012-01-01
We extend a recent didactic by Magis, Raiche, and Beland on the use of the l[subscript z] and l[subscript z]* person-fit statistics. We discuss a number of possibly confusing details and show that it is important to first investigate item response theory model fit before assessing person fit. Furthermore, it is argued that appropriate…
DEFF Research Database (Denmark)
Midtgaard, J; Christensen, Jesper Frank; Tolver, Anders;
2013-01-01
Sedentary behavior and impaired cardiovascular reserve capacity are common late effects of cancer therapy emphasizing the need for effective strategies to increase physical activity (PA) in cancer survivors. We examined the efficacy of a 12-month exercise-based rehabilitation program on self...
Fast fitting of non-Gaussian state-space models to animal movement data via Template Model Builder.
Albertsen, Christoffer Moesgaard; Whoriskey, Kim; Yurkowski, David; Nielsen, Anders; Mills, Joanna
2015-10-01
State-space models (SSM) are often used for analyzing complex ecological processes that are not observed directly, such as marine animal movement. When outliers are present in the measurements, special care is needed in the analysis to obtain reliable location and process estimates. Here we recommend using the Laplace approximation combined with automatic differentiation (as implemented in the novel R package Template Model Builder; TMB) for the fast fitting of continuous-time multivariate non-Gaussian SSMs. Through Argos satellite tracking data, we demonstrate that the use of continuous-time t-distributed measurement errors for error-prone data is more robust to outliers and improves the location estimation compared to using discretized-time t-distributed errors (implemented with a Gibbs sampler) or using continuous-time Gaussian errors (as with the Kalman filter). Using TMB, we are able to estimate additional parameters compared to previous methods, all without requiring a substantial increase in computational time. The model implementation is made available through the R package argosTrack. PMID:26649381
Directory of Open Access Journals (Sweden)
Dayane Rosalyn Izidoro
2009-12-01
Full Text Available In this work, the rheological behaviour of emulsions (mayonnaises stabilized by green banana pulp using the response surface methodology was studied. In addition, the emulsions stability was investigated. Five formulations were developed, according to design for constrained surfaces and mixtures, with the proportion, respectively: water/soy oil/green banana pulp: F1 (0.10/0.20/0.70, F2 (0.20/0.20/0.60, F3 (0.10/0.25/0.65, F4 (0.20/0.25/0.55 and F5 (0.15/0.225/0.625 .Emulsions rheological properties were performed with a rotational Haake Rheostress 600 rheometer and a cone and plate geometry sensor (60-mm diameter, 2º cone angle, using a gap distance of 1mm. The emulsions showed pseudoplastic behaviour and were adequately described by the Power Law model. The rheological responses were influenced by the difference in green banana pulp proportions and also by the temperatures (10 and 25ºC. The formulations with high pulp content (F1 and F3 presented higher shear stress and apparent viscosity. Response surface methodology, described by the quadratic model,showed that the consistency coefficient (K increased with the interaction between green banana pulp and soy oil concentration and the water fraction contributed to the flow behaviour index increase for all emulsions samples. Analysis of variance showed that the second-order model had not significant lack-of-fit and a significant F-value, indicating that quadratic model fitted well into the experimental data. The emulsions that presented better stability were the formulations F4 (0.20/0.25/0.55 and F5 (0.15/0.225/0.625.No presente trabalho, foi estudado o comportamento reológico de emulsões adicionadas de polpa de banana verde utilizando a metodologia de superfície de resposta e também foram investigadas a estabilidade das emulsões. Foram desenvolvidas cinco formulações, de acordo com o delineamento para superfícies limitadas e misturas, com as proporções respectivamente: água/óleo de
Testing the Youth Physical Activity Promotion Model: Fatness and Fitness as Enabling Factors
Chen, Senlin; Welk, Gregory J.; Joens-Matre, Roxane R.
2014-01-01
As the prevalence of childhood obesity increases, it is important to examine possible differences in psychosocial correlates of physical activity between normal weight and overweight children. The study examined fatness (weight status) and (aerobic) fitness as Enabling factors related to youth physical activity within the Youth Physical Activity…
van der Niet, Anneke G.; Hartman, Esther; Smith, Joanne; Visscher, Chris
2014-01-01
Objectives: The relationship between physical fitness and academic achievement in children has received much attention, however, whether executive functioning plays a mediating role in this relationship is unclear. The aim of this study therefore was to investigate the relationships between physical
Gray Matter Correlates of Fluid, Crystallized, and Spatial Intelligence: Testing the P-FIT Model
Colom, Roberto; Haier, Richard J.; Head, Kevin; Alvarez-Linera, Juan; Quiroga, Maria Angeles; Shih, Pei Chun; Jung, Rex E.
2009-01-01
The parieto-frontal integration theory (P-FIT) nominates several areas distributed throughout the brain as relevant for intelligence. This theory was derived from previously published studies using a variety of both imaging methods and tests of cognitive ability. Here we test this theory in a new sample of young healthy adults (N = 100) using a…
Fitness Club
2011-01-01
The CERN Fitness Club is organising Zumba Classes on the first Wednesday of each month, starting 7 September (19.00 – 20.00). What is Zumba®? It’s an exhilarating, effective, easy-to-follow, Latin-inspired, calorie-burning dance fitness-party™ that’s moving millions of people toward joy and health. Above all it’s great fun and an excellent work out. Price: 22 CHF/person Sign-up via the following form: https://espace.cern.ch/club-fitness/Lists/Zumba%20Subscription/NewForm.aspx For more info: fitness.club@cern.ch
Modeling pancreatic cancer with organoids
Baker, Lindsey A; Tiriac, Hervé; Clevers, Hans; Tuveson, David A
2016-01-01
Pancreatic ductal adenocarcinoma (PDA) is a highly lethal malignancy for which new treatment and diagnostic approaches are urgently needed. In order for such breakthroughs to be discovered, researchers require systems that accurately model the development and biology of PDA. While cell lines, geneti
Directory of Open Access Journals (Sweden)
Somboon PORNPINATEPONG
2006-01-01
Full Text Available A 2-D vertically averaged boundary-fitted coordinate hydrodynamic model was employed to simulate circulation in Thale Sap Songkhla due to tides in the Gulf of Thailand. The model was calibrated against a set of current velocity data collected between June and July 1997. The best fit for observations at Ko Yo and Pak Ro was achieved. To comprehend the hydrodynamic in the lake, the current vectors were illustrated for both the flood and ebb stages. Detailed analysis indicated that there existed a turning current at the northern tip of Ko Yo Island, which induced a significant current along its northern shoreline. The calculations show the current was stronger in the deep channel north of Ko Yo than in the southern circuit. The model also predicted a gyre near the deep channel of the lake entrance, which persisted for some time during the changing direction of the flood and ebb currents.
Kompaneets Model Fitting of the Orion-Eridanus Superbubble. II. Thinking Outside of Barnard’s Loop
Pon, Andy; Ochsendorf, Bram B.; Alves, João; Bally, John; Basu, Shantanu; Tielens, Alexander G. G. M.
2016-08-01
The Orion star-forming region is the nearest active high-mass star-forming region and has created a large superbubble, the Orion–Eridanus superbubble. Recent work by Ochsendorf et al. has extended the accepted boundary of the superbubble. We fit Kompaneets models of superbubbles expanding in exponential atmospheres to the new larger shape of the Orion–Eridanus superbubble. We find that this larger morphology of the superbubble is consistent with the evolution of the superbubble being primarily controlled by expansion into the exponential Galactic disk ISM if the superbubble is oriented with the Eridanus side farther from the Sun than the Orion side. Unlike previous Kompaneets model fits that required abnormally small scale heights for the Galactic disk (<40 pc), we find morphologically consistent models with scale heights of 80 pc, similar to that expected for the Galactic disk.
Debnath, Dipak; Sarathi Pal, Partha; Chakrabarti, Sandip Kumar; Mondal, Santanu; Jana, Arghajit; Chatterjee, Debjit; Molla, Aslam Ali
2016-07-01
There are many theoretical and phenomenological models in the literature which explain physics of accretion around black holes (BHs). Some of these models assume ad hoc components to explain different timing and spectral aspects of black hole candidates (BHCs) which no necessarily follow from physical equations. Chakrabarti and his collaborators, on the other hand claim in the last two decades that the spectral and timing properties of BHCs must not be treated separately since variation of these properties happens due to variation of two component (Keplerian and sub-Keplerian) accretion flow rates, and the Compton cloud parameters only. Recently after the inclusion of Two-component advective flow (TCAF) model in to HEASARC's spectral analysis software package XSPEC as an additive local model, we found that TCAF is quite capable to describe the underlying accretion flow dynamics around BHs with spectral fitted physical parameters. Properties of different spectral states and their transitions during an outburst of a transient BHC are more clear. A strong correlation between spectral and timing properties could also be seen in Accretion Rate Ratio Intensity Diagram (ARRID), where transitions between different spectral states are prominent. One can also predict frequency of the dominating quasi-periodic oscillation (QPO) from TCAF model fitted shock parameters and even predict the most probable mass range of an unknown BHC from TCAF fits. This gives us a confidence that the description of accretion process is more clear than ever before.
Models of breast cancer: quo vadis, animal modeling?
International Nuclear Information System (INIS)
Rodent models for breast cancer have for many decades provided unparalleled insights into cellular and molecular aspects of neoplastic transformation and tumorigenesis. Despite recent improvements in the fidelity of genetically engineered mice, rodent models are still being criticized by many colleagues for not being 'authentic' enough to the human disease. Motives for this criticism are manifold and range from a very general antipathy against the rodent model system to well-founded arguments that highlight physiological variations between species. Newly proposed differences in genetic pathways that cause cancer in humans and mice invigorated the ongoing discussion about the legitimacy of the murine system to model the human disease. The present commentary intends to stimulate a debate on this subject by providing the background about new developments in animal modeling, by disputing suggested limitations of genetically engineered mice, and by discussing improvements but also ambiguous expectations on the authenticity of xenograft models to faithfully mimic the human disease
DEFF Research Database (Denmark)
Møller, Tom; Lillelund, Christian; Andersen, Christina;
2015-01-01
Introduction Anti-neoplastic treatment is synonymous with an inactive daily life for a substantial number of patients. It remains unclear what is the optimal setting, dosage and combination of exercise and health promoting components that best facilitate patient adherence and symptom management...... in order to support cardio-respiratory fitness and lifestyle changes in an at-risk population of pre-illness physically inactive cancer patients.Methods Patients with breast or colon cancer referred to adjuvant chemotherapy and by the oncologists pre-screening verified as physically inactive were eligible...... to enter a randomised three-armed feasibility study comparing a 12-week supervised hospital-based moderate to high intensity exercise intervention or alternate an instructive home-based12-week pedometer intervention, with usual care.Results Using a recommendation based physical activity screening...
International Nuclear Information System (INIS)
Women with cancer are significantly more likely to fall than women without cancer placing them at higher risk of fall-related fractures, other injuries and disability. Currently, no evidence-based fall prevention strategies exist that specifically target female cancer survivors. The purpose of the GET FIT (Group Exercise Training for Functional Improvement after Treatment) trial is to compare the efficacy of two distinct types of exercise, tai chi versus strength training, to prevent falls in women who have completed treatment for cancer. The specific aims of this study are to: 1) Determine and compare the efficacy of both tai chi training and strength training to reduce falls in older female cancer survivors, 2) Determine the mechanism(s) by which tai chi and strength training each reduces falls and, 3) Determine whether or not the benefits of each intervention last after structured training stops. We will conduct a three-group, single-blind, parallel design, randomized controlled trial in women, aged 50–75 years old, who have completed chemotherapy for cancer comparing 1) tai chi 2) strength training and 3) a placebo control group of seated stretching exercise. Women will participate in supervised study programs twice per week for six months and will be followed for an additional six months after formal training stops. The primary outcome in this study is falls, which will be prospectively tracked by monthly self-report. Secondary outcomes are maximal leg strength measured by isokinetic dynamometry, postural stability measured by computerized dynamic posturography and physical function measured by the Physical Performance Battery, all measured at baseline, 3, 6 and 12 months. The sample for this trial (N=429, assuming 25% attrition) will provide adequate statistical power to detect at least a 47% reduction in the fall rate over 1 year by being in either of the 2 exercise groups versus the control group. The GET FIT trial will provide important new knowledge
Directory of Open Access Journals (Sweden)
Winters-Stone Kerri M
2012-12-01
Full Text Available Abstract Background Women with cancer are significantly more likely to fall than women without cancer placing them at higher risk of fall-related fractures, other injuries and disability. Currently, no evidence-based fall prevention strategies exist that specifically target female cancer survivors. The purpose of the GET FIT (Group Exercise Training for Functional Improvement after Treatment trial is to compare the efficacy of two distinct types of exercise, tai chi versus strength training, to prevent falls in women who have completed treatment for cancer. The specific aims of this study are to: 1 Determine and compare the efficacy of both tai chi training and strength training to reduce falls in older female cancer survivors, 2 Determine the mechanism(s by which tai chi and strength training each reduces falls and, 3 Determine whether or not the benefits of each intervention last after structured training stops. Methods/Design We will conduct a three-group, single-blind, parallel design, randomized controlled trial in women, aged 50–75 years old, who have completed chemotherapy for cancer comparing 1 tai chi 2 strength training and 3 a placebo control group of seated stretching exercise. Women will participate in supervised study programs twice per week for six months and will be followed for an additional six months after formal training stops. The primary outcome in this study is falls, which will be prospectively tracked by monthly self-report. Secondary outcomes are maximal leg strength measured by isokinetic dynamometry, postural stability measured by computerized dynamic posturography and physical function measured by the Physical Performance Battery, all measured at baseline, 3, 6 and 12 months. The sample for this trial (N=429, assuming 25% attrition will provide adequate statistical power to detect at least a 47% reduction in the fall rate over 1 year by being in either of the 2 exercise groups versus the control group. Discussion
DEFF Research Database (Denmark)
Bennike, Søren
Samfundet forandrer sig og ligeså gør danskernes idrætsmønstre. Fodbold Fitness, der er afhandlingens omdrejningspunkt, kan iagttages som en reaktion på disse forandringer. Afhandlingen ser nærmere på Fodbold Fitness og implementeringen af dette, der ingenlunde er nogen let opgave. Bennike bidrager...
Implementation of the Iterative Proportion Fitting Algorithm for Geostatistical Facies Modeling
Energy Technology Data Exchange (ETDEWEB)
Li Yupeng, E-mail: yupeng@ualberta.ca; Deutsch, Clayton V. [University of Alberta (Canada)
2012-06-15
In geostatistics, most stochastic algorithm for simulation of categorical variables such as facies or rock types require a conditional probability distribution. The multivariate probability distribution of all the grouped locations including the unsampled location permits calculation of the conditional probability directly based on its definition. In this article, the iterative proportion fitting (IPF) algorithm is implemented to infer this multivariate probability. Using the IPF algorithm, the multivariate probability is obtained by iterative modification to an initial estimated multivariate probability using lower order bivariate probabilities as constraints. The imposed bivariate marginal probabilities are inferred from profiles along drill holes or wells. In the IPF process, a sparse matrix is used to calculate the marginal probabilities from the multivariate probability, which makes the iterative fitting more tractable and practical. This algorithm can be extended to higher order marginal probability constraints as used in multiple point statistics. The theoretical framework is developed and illustrated with estimation and simulation example.
Implementation of the Iterative Proportion Fitting Algorithm for Geostatistical Facies Modeling
International Nuclear Information System (INIS)
In geostatistics, most stochastic algorithm for simulation of categorical variables such as facies or rock types require a conditional probability distribution. The multivariate probability distribution of all the grouped locations including the unsampled location permits calculation of the conditional probability directly based on its definition. In this article, the iterative proportion fitting (IPF) algorithm is implemented to infer this multivariate probability. Using the IPF algorithm, the multivariate probability is obtained by iterative modification to an initial estimated multivariate probability using lower order bivariate probabilities as constraints. The imposed bivariate marginal probabilities are inferred from profiles along drill holes or wells. In the IPF process, a sparse matrix is used to calculate the marginal probabilities from the multivariate probability, which makes the iterative fitting more tractable and practical. This algorithm can be extended to higher order marginal probability constraints as used in multiple point statistics. The theoretical framework is developed and illustrated with estimation and simulation example.
Modeling of Induction Shrink Fit of Action Wheel in Gas Turbine
Czech Academy of Sciences Publication Activity Database
Doležel, Ivo; Kotlan, V.; Ulrych, B.
Ponta Delgada: APDEE, 2011, s. 1-6. ISBN 978-972-8822-23-1. [Portuguese- Spanish Conference on Electrical Engineering, XIICLEEE /12./. Ponta Delgada (PT), 30.06.2011-02.07.2011] R&D Projects: GA ČR GA102/09/1305 Institutional research plan: CEZ:AV0Z20570509 Keywords : induction shrink fit * coupled problem * magnetic field Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering http://www.apdee.org/index.php?pageid=1462&page_langid=0
Al-Kasadi, Mohammed Saleh Salim
2014-01-01
In recent years there has emerged a new trend focused on the body image in the Western countries. Our society is concerned with people's physical appearance and ideal body image. As consequence of this trend, two businesses emerge: fitness centers and plastic surgery clinics. Traditionally the consumers' expenditure in these services and goods has been considered a luxury especially during the economic slowdown. However, in the recent times, (at end of 2000s both service sectors are showi...
Curve fitting and error modeling for the digitization process near the Nyquist rate
Energy Technology Data Exchange (ETDEWEB)
Baumgart, C.W. (EG and G Energy Measurements, Inc., Los Alamos, NM (USA). Los Alamos Operations); Moses, J.D.; Dunham, M.E. (Los Alamos National Lab., NM (USA))
1990-01-01
The Shannon/Nyquist sampling theorems were derived for time-quantized signals which did not include simultaneous amplitude quantization. In addition, underlying assumptions on which these theorems were based are violated in typical use. Therefore, actual practice in data acquisition has been two to three times oversampling of signal bandwidth to conserve accuracy. We report a numerical investigation of digitization process accuracy versus sample rate, sample amplitude resolution, and record length. This investigation is based on the use of curve fitting and Monte Carlo techniques to reconstruct original analog test signals from their ideally digitized representations. Fit sensitivity with respect to each digitization variable is derived from the Monte Carlo analysis. We find that although no specific Nyquist limit exists for a known wave shape, parameter errors vary continuously with respect to the aforementioned variables, and critical sample densities of two to four sample periods per risetime are seen. Plots of curve-fitted parameter error versus fundamental digitization variables are useful in specifying experimental tasks and indicate new directions for reconstruction algorithm development. 15 refs., 18 figs.
Formal Modeling and Analysis of Pancreatic Cancer Microenvironment
Wang, Qinsi; Miskov-Zivanov, Natasa; Liu, Bing; Faeder, James R.; Lotze, Michael; Clarke, Edmund M
2016-01-01
The focus of pancreatic cancer research has been shifted from pancreatic cancer cells towards their microenvironment, involving pancreatic stellate cells that interact with cancer cells and influence tumor progression. To quantitatively understand the pancreatic cancer microenvironment, we construct a computational model for intracellular signaling networks of cancer cells and stellate cells as well as their intercellular communication. We extend the rule-based BioNetGen language to depict in...
Fit of the mixing angles in the six quark model and predictions on the B meson lifetime
International Nuclear Information System (INIS)
Experimental data are used to constrain the parameters of the six quark mixing model and of a composite quark model. A combined fit of the mixing angles in the Kobayashi-Maskawa scheme gives sintheta1=0.228+-0.011 and error contours around the best values sintheta2=0.12 and sintheta3=0. From this, a limit of tausub(B)>0.35x10-13 s for the mean lifetime of bottom-flavoured hadrons is obtained. For the composite quark model of Katsumata and Tomozawa, a value of tausub(B)=(0.22-0.23)10-13 s is derived. (orig.)
José Fabio Camolesi; José Roberto Soares Scolforo; Antonio Donizette de Oliveira; Fausto Weimar Acerbi Júnior; Ana Luiza Rufini; José Márcio de Mello
2010-01-01
The objectives of this study were: to fit and select statistical models for estimating the total volume, with and without bark, and number of fence posts in three counties of Minas Gerais State, as well as, to define the stack factor per diameter class and to evaluate, by means of the identity model test, the possibility of using the same mathematical model for all regions. Data base were obtained from a scaling of 174 trees grouped in six diameter classes within the three study regions. The ...
Lomon, Earle L.
2006-01-01
The extended Gari-Krumpelmann (GK) model of nucleon electromagnetic form factors, in which the $\\rho$, $\\rho'$, $\\omega$, $\\omega'$ and $\\phi$ vector meson pole contributions evolve at high momentum transfer to conform to the predictions of perturbative QCD (pQCD), was recently shown to provide a very good overall fit to all the nucleon electromagnetic form factor (emff) data, including the preliminary $R_p$ and $R_n$ polarization data available in 2002, but excluding the older $G_{Ep}$ and $...
A stochastic model for immunotherapy of cancer.
Baar, Martina; Coquille, Loren; Mayer, Hannah; Hölzel, Michael; Rogava, Meri; Tüting, Thomas; Bovier, Anton
2016-01-01
We propose an extension of a standard stochastic individual-based model in population dynamics which broadens the range of biological applications. Our primary motivation is modelling of immunotherapy of malignant tumours. In this context the different actors, T-cells, cytokines or cancer cells, are modelled as single particles (individuals) in the stochastic system. The main expansions of the model are distinguishing cancer cells by phenotype and genotype, including environment-dependent phenotypic plasticity that does not affect the genotype, taking into account the effects of therapy and introducing a competition term which lowers the reproduction rate of an individual in addition to the usual term that increases its death rate. We illustrate the new setup by using it to model various phenomena arising in immunotherapy. Our aim is twofold: on the one hand, we show that the interplay of genetic mutations and phenotypic switches on different timescales as well as the occurrence of metastability phenomena raise new mathematical challenges. On the other hand, we argue why understanding purely stochastic events (which cannot be obtained with deterministic models) may help to understand the resistance of tumours to therapeutic approaches and may have non-trivial consequences on tumour treatment protocols. This is supported through numerical simulations. PMID:27063839
Analysis of the lung cancer mortality in Mayak worker cohort with a model of carcinogenesis
International Nuclear Information System (INIS)
Lung cancer mortality in the Mayak worker cohort is analysed with the two stage clonal expansion (TSCE) model of carcinogenesis. Reactor workers in Mayak facilities were exposed to external γ-ray and neutron exposures, and workers in the radiochemical and plutonium facilities additionally to internal exposures due to plutonium inhalation. The cohort used in this study involves male nuclear workers for whom plutonium measurements and smoking information (smoker/non-smoker) exists and with health follow-up to the end of 1999. A subcohort with 5421 workers and 274 lung cancer deaths is analysed. Specific emphasis was given to the distinction of the effects of external and internal exposures. Within the TSCE model, an action of radiation was assumed both in initiation and promotion. The baseline lung cancer mortality rate was derived from the cohort itself. The model which gives the best fit of the data has a linear dose dependence in TSCE-model parameters for both external and internal radiation. Using the smoking information significantly increased the quality of the fit. Analysis showed no effect of radiation on transformation. It is found that most of the lung cancer cases are due to plutonium inhalation. The estimated excess relative risk per unit dose due to the plutonium αparticles is 0.13/Sv. For the γ-ray component, the present analysis gives an excess relative risk for lung cancer mortality of 0.05/Sv. Lung cancer mortality among Mayak workers is analysed within two step clonal expansion model. Models of carcinogenesis are well suited for analysing data with complex exposure scenario. Resulting risk for plutonium exposures is compatible with the radiation weighting factor 20. In general no strong dose or dose-rate effects were observed within the cohort
McFee, J. E.; Mosquera, C. M.; Faust, A. A.
2016-08-01
An analysis of digitized pulse waveforms from experiments with LaBr3(Ce) and LaCl3(Ce) detectors is presented. Pulse waveforms from both scintillator types were captured in the presence of 22Na and 60Co sources and also background alone. Two methods to extract pulse shape discrimination (PSD) parameters and estimate energy spectra were compared. The first involved least squares fitting of the pulse waveforms to a physics-based model of one or two exponentially modified Gaussian functions. The second was the conventional gated integration method. The model fitting method produced better PSD than gated integration for LaCl3(Ce) and higher resolution energy spectra for both scintillator types. A disadvantage to the model fitting approach is that it is more computationally complex and about 5 times slower. LaBr3(Ce) waveforms had a single decay component and showed no ability for alpha/electron PSD. LaCl3(Ce) was observed to have short and long decay components and alpha/electron discrimination was observed.
Kampshoff, C.S.; Chinapaw, M.J.; Brug, J.; Twisk, J.W.R.; Schep, G.; Nijziel, M.R.; van Mechelen, W; Buffart, L.M.
2015-01-01
BACKGROUND: International evidence-based guidelines recommend physical exercise to form part of standard care for all cancer survivors. However, at present, the optimum exercise intensity is unclear. Therefore, we aimed to evaluate the effectiveness of a high intensity (HI) and low-to-moderate intensity (LMI) resistance and endurance exercise program compared with a wait list control (WLC) group on physical fitness and fatigue in a mixed group of cancer survivors who completed primary cancer ...
Evolutionary dynamics of tumor progression with random fitness values
Durrett, Rick; Leder, Kevin; Mayberry, John; Michor, Franziska
2010-01-01
Most human tumors result from the accumulation of multiple genetic and epigenetic alterations in a single cell. Mutations that confer a fitness advantage to the cell are known as driver mutations and are causally related to tumorigenesis. Other mutations, however, do not change the phenotype of the cell or even decrease cellular fitness. While much experimental effort is being devoted to the identification of the different functional effects of individual mutations, mathematical modeling of tumor progression generally considers constant fitness increments as mutations are accumulated. In this paper we study a mathematical model of tumor progression with random fitness increments. We analyze a multi-type branching process in which cells accumulate mutations whose fitness effects are chosen from a distribution. We determine the effect of the fitness distribution on the growth kinetics of the tumor. This work contributes to a quantitative understanding of the accumulation of mutations leading to cancer phenotype...
Breast Cancer Risk Assessment SAS Macro (Gail Model)
A SAS macro (commonly referred to as the Gail Model) that projects absolute risk of invasive breast cancer according to NCI’s Breast Cancer Risk Assessment Tool (BCRAT) algorithm for specified race/ethnic groups and age intervals.
Hard-Coupled Modeling of Induction Shrink Fit of Gas-Turbine Active Wheel
Czech Academy of Sciences Publication Activity Database
Kotlan, V.; Karban, P.; Ulrych, B.; Doležel, Ivo; Kůs, Pavel
Heidelberg: Springer, 2012 - (Kyamakya, K.; Halang, W.; Mathis, W.; Chedjou, J.; Li, Z.), s. 287-301. (Studies in Computational Intelligence. 459). ISBN 978-3-642-34559-3 R&D Projects: GA ČR(CZ) GAP102/11/0498; GA ČR GA102/09/1305 Institutional research plan: CEZ:AV0Z20570509 Keywords : induction shrink fit * finite element methods of higher order of accuracy * coupled problem Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering http://www.springer.com/series/7092
Elghafghuf, Adel; Dufour, Simon; Reyher, Kristen; Dohoo, Ian; Stryhn, Henrik
2014-12-01
Mastitis is a complex disease affecting dairy cows and is considered to be the most costly disease of dairy herds. The hazard of mastitis is a function of many factors, both managerial and environmental, making its control a difficult issue to milk producers. Observational studies of clinical mastitis (CM) often generate datasets with a number of characteristics which influence the analysis of those data: the outcome of interest may be the time to occurrence of a case of mastitis, predictors may change over time (time-dependent predictors), the effects of factors may change over time (time-dependent effects), there are usually multiple hierarchical levels, and datasets may be very large. Analysis of such data often requires expansion of the data into the counting-process format - leading to larger datasets - thus complicating the analysis and requiring excessive computing time. In this study, a nested frailty Cox model with time-dependent predictors and effects was applied to Canadian Bovine Mastitis Research Network data in which 10,831 lactations of 8035 cows from 69 herds were followed through lactation until the first occurrence of CM. The model was fit to the data as a Poisson model with nested normally distributed random effects at the cow and herd levels. Risk factors associated with the hazard of CM during the lactation were identified, such as parity, calving season, herd somatic cell score, pasture access, fore-stripping, and proportion of treated cases of CM in a herd. The analysis showed that most of the predictors had a strong effect early in lactation and also demonstrated substantial variation in the baseline hazard among cows and between herds. A small simulation study for a setting similar to the real data was conducted to evaluate the Poisson maximum likelihood estimation approach with both Gaussian quadrature method and Laplace approximation. Further, the performance of the two methods was compared with the performance of a widely used estimation
A prediction model for colon cancer surveillance data.
Good, Norm M; Suresh, Krithika; Young, Graeme P; Lockett, Trevor J; Macrae, Finlay A; Taylor, Jeremy M G
2015-08-15
Dynamic prediction models make use of patient-specific longitudinal data to update individualized survival probability predictions based on current and past information. Colonoscopy (COL) and fecal occult blood test (FOBT) results were collected from two Australian surveillance studies on individuals characterized as high-risk based on a personal or family history of colorectal cancer. Motivated by a Poisson process, this paper proposes a generalized nonlinear model with a complementary log-log link as a dynamic prediction tool that produces individualized probabilities for the risk of developing advanced adenoma or colorectal cancer (AAC). This model allows predicted risk to depend on a patient's baseline characteristics and time-dependent covariates. Information on the dates and results of COLs and FOBTs were incorporated using time-dependent covariates that contributed to patient risk of AAC for a specified period following the test result. These covariates serve to update a person's risk as additional COL, and FOBT test information becomes available. Model selection was conducted systematically through the comparison of Akaike information criterion. Goodness-of-fit was assessed with the use of calibration plots to compare the predicted probability of event occurrence with the proportion of events observed. Abnormal COL results were found to significantly increase risk of AAC for 1 year following the test. Positive FOBTs were found to significantly increase the risk of AAC for 3 months following the result. The covariates that incorporated the updated test results were of greater significance and had a larger effect on risk than the baseline variables. PMID:25851283
Ismail, A.; Hassan, Noor I.
2013-09-01
Cancer is one of the principal causes of death in Malaysia. This study was performed to determine the pattern of rate of cancer deaths at a public hospital in Malaysia over an 11 year period from year 2001 to 2011, to determine the best fitted model of forecasting the rate of cancer deaths using Univariate Modeling and to forecast the rates for the next two years (2012 to 2013). The medical records of the death of patients with cancer admitted at this Hospital over 11 year's period were reviewed, with a total of 663 cases. The cancers were classified according to 10th Revision International Classification of Diseases (ICD-10). Data collected include socio-demographic background of patients such as registration number, age, gender, ethnicity, ward and diagnosis. Data entry and analysis was accomplished using SPSS 19.0 and Minitab 16.0. The five Univariate Models used were Naïve with Trend Model, Average Percent Change Model (ACPM), Single Exponential Smoothing, Double Exponential Smoothing and Holt's Method. The overall 11 years rate of cancer deaths showed that at this hospital, Malay patients have the highest percentage (88.10%) compared to other ethnic groups with males (51.30%) higher than females. Lung and breast cancer have the most number of cancer deaths among gender. About 29.60% of the patients who died due to cancer were aged 61 years old and above. The best Univariate Model used for forecasting the rate of cancer deaths is Single Exponential Smoothing Technique with alpha of 0.10. The forecast for the rate of cancer deaths shows a horizontally or flat value. The forecasted mortality trend remains at 6.84% from January 2012 to December 2013. All the government and private sectors and non-governmental organizations need to highlight issues on cancer especially lung and breast cancers to the public through campaigns using mass media, media electronics, posters and pamphlets in the attempt to decrease the rate of cancer deaths in Malaysia.
Henson, James M.; Reise, Steven P.; Kim, Kevin H.
2007-01-01
The accuracy of structural model parameter estimates in latent variable mixture modeling was explored with a 3 (sample size) [times] 3 (exogenous latent mean difference) [times] 3 (endogenous latent mean difference) [times] 3 (correlation between factors) [times] 3 (mixture proportions) factorial design. In addition, the efficacy of several…
Prediction Model for Gastric Cancer Incidence in Korean Population
Eom, Bang Wool; Joo, Jungnam; Kim, Sohee; Shin, Aesun; Yang, Hye-Ryung; Park, Junghyun; Choi, Il Ju; Kim, Young-Woo; Kim, Jeongseon; Nam, Byung-Ho
2015-01-01
Background Predicting high risk groups for gastric cancer and motivating these groups to receive regular checkups is required for the early detection of gastric cancer. The aim of this study is was to develop a prediction model for gastric cancer incidence based on a large population-based cohort in Korea. Method Based on the National Health Insurance Corporation data, we analyzed 10 major risk factors for gastric cancer. The Cox proportional hazards model was used to develop gender specific ...
Analysis of the lung cancer mortality in Mayak worker cohort with a model of carcinogenesis
International Nuclear Information System (INIS)
Lung cancer mortality in the Mayak worker cohort is analysed with the two stage clonal expansion (TSCE) model of carcinogenesis. Mayak production association includes a nuclear reactor, radiochemical plant and plutonium production plant. Reactor workers were exposed to external g-ray and neutron exposures, and workers in the radiochemical and plutonium facilities additionally to internal exposures due to plutonium inhalant ion. the cohort used in this study involves male nuclear workers for whom plutonium measurements and smoking information (smoker/non-smoker) exists and with health follow-up to the end of 1999. A Subcohort with 5421 workers and 274 lung cancer deaths is analysed. Within the TSCE model, an action of radiation was assumed both in initiation and promotion. specific emphasis was given to the distinction of the effects of external and internal exposures. The baseline lung cancer mortality rate was derived from the cohort itself. Using the smoking information significantly increased the quality of the fit. Analysis showed no effect of radiation on transformation. Two models are found to five equally good fit of the data. Both models have a linear dose dependence in TSCE-model parameters for external and internal radiation. Both models have linear dependence either initiation or promotion on birth year effect. It is found that most of the lung cancer cases are due to plutonium inhalation. The estimated excess relative risk per unit dose due to the plutonium a particles is 0.13/Sv, in both models. For the g-ray component, the present analysis gives an excess relative risk for lung cancer mortality of 0.02/Sv, in both models. Resulting risk for plutonium exposures is compatible with the radiation weighting factor 20. In general no strong dose or dose-rate effects were observed within the cohort. (Author)
Fitness Club
2012-01-01
Open to All: http://cern.ch/club-fitness fitness.club@cern.ch Boxing Your supervisor makes your life too tough ! You really need to release the pressure you've been building up ! Come and join the fit-boxers. We train three times a week in Bd 216, classes for beginners and advanced available. Visit our website cern.ch/Boxing General Fitness Escape from your desk with our general fitness classes, to strengthen your heart, muscles and bones, improve you stamina, balance and flexibility, achieve new goals, be more productive and experience a sense of well-being, every Monday, Wednesday and Friday lunchtime, Tuesday mornings before work and Thursday evenings after work – join us for one of our monthly fitness workshops. Nordic Walking Enjoy the great outdoors; Nordic Walking is a great way to get your whole body moving and to significantly improve the condition of your muscles, heart and lungs. It will boost your energy levels no end. Pilates A body-conditioning technique de...
International Nuclear Information System (INIS)
Bone and head sinus cancer incidence after ingestion of 226Ra and 228Ra by radium dial painters is analysed using a two-mutation clonal expansion model for radiation carcinogenesis, taking into account the retention and radiation patterns of these nuclides in the body. The best fit is obtained for compact bone retention and efficient diffusion of 222Rn to the bone cavities and radiation action on both mutation rates of the cancer model, as found in a similar analysis of bone sarcomas after 226Ra injection in beagles. The model parameters of the best fit are consistent with cellular radiobiological data and a previous analysis of lung cancer in uranium miners. Due to the low background incidence of bone and head sinus cancer, the resulting dose-effect relationships for these cancers are linear-quadratic with radium ingestion and alpha radiation dose. These results do not support a threshold dose concept, but the risks at low doses calculated by the model come out to about a factor 10 lower than using a linear extrapolation of the data to low doses, a procedure currently applied by ICRP and EPA. Furthermore, the model results indicate radiation risks at low doses to be related with background cancer incidence between relative and absolute radiation risk projections. The results, which are dependent on the model assumptions, might be more generally applicable for bone seekers and will therefore need further study to arrive at better radiation risk estimations. (abstract)
Hallman, Eric J.; Burns, Jack O.; Motl, Patrick M; Michael L. Norman
2007-01-01
We have analyzed a large sample of numerically simulated clusters to demonstrate the adverse effects resulting from use of X-ray fitted beta-model parameters with Sunyaev-Zeldovich effect (SZE) data. There is a fundamental incompatibility between model fits to X-ray surface brightness profiles and those done with SZE profiles. Since observational SZE radial profiles are in short supply, the X-ray parameters are often used in SZE analysis. We show that this leads to biased estimates of the int...
Models for prevention and treatment of cancer: problems vs promises.
Aggarwal, Bharat B; Danda, Divya; Gupta, Shan; Gehlot, Prashasnika
2009-11-01
Current estimates from the American Cancer Society and from the International Union Against Cancer indicate that 12 million cases of cancer were diagnosed last year, with 7 million deaths worldwide; these numbers are expected to double by 2030 (27 million cases with 17 million deaths). Despite tremendous technological developments in all areas, and President Richard Nixon's initiative in the 1974 "War against Cancer", the US cancer incidence is the highest in the world and the cancer death rate has not significantly changed in the last 50 years (193.9 per 100,000 in 1950 vs 193.4 per 100,000 in 2002). Extensive research during the same time, however, has revealed that cancer is a preventable disease that requires major changes in life style; with one third of all cancers assigned to Tobacco, one third to diet, and remaining one third to the environment. Approximately 20 billion dollars are spent annually to find a cure for cancer. We propose that our inability to find a cure to cancer lies in the models used. Whether cell culture or animal studies, no model has yet been found that can reproduce the pathogenesis of the disease in the laboratory. Mono-targeted therapies, till know in most cases, have done a little to make a difference in cancer treatment. Similarly, molecular signatures/predictors of the diagnosis of the disease and response are also lacking. This review discusses the pros and cons of current cancer models based on cancer genetics, cell culture, animal models, cancer biomarkers/signature, cancer stem cells, cancer cell signaling, targeted therapies, therapeutic targets, clinical trials, cancer prevention, personalized medicine, and off-label uses to find a cure for cancer and demonstrates an urgent need for "out of the box" approaches. PMID:19481061
Next-to-leading order unitarity fits in Two-Higgs-Doublet models with soft $\\mathbb{Z}_2$ breaking
Cacchio, Vincenzo; Eberhardt, Otto; Murphy, Christopher W
2016-01-01
We fit the next-to-leading order unitarity conditions to the Two-Higgs-Doublet model with a softly broken $\\mathbb{Z}_2$ symmetry. In doing so, we alleviate the existing uncertainty on how to treat higher order corrections to quartic couplings of its Higgs potential. A simplified approach to implementing the next-to-leading order unitarity conditions is presented. These new bounds are then combined with all other relevant constraints, including the complete set of LHC Run I data. The upper $95\\%$ bounds we find are $4.2$ on the absolute values of the quartic couplings, and $235$ GeV ($100$ GeV) for the mass degeneracies between the heavy Higgs particles in the type I (type II) scenario. In type II, we exclude an unbroken $\\mathbb{Z}_2$ symmetry with a probability of $95\\%$. All fits are performed using the open-source code HEPfit.
Abrahart, R. J.; Dawson, C. W.; Heppenstall, A. J.; See, L. M.
2009-04-01
The most critical issue in developing a neural network model is generalisation: how well will the preferred solution perform when it is applied to unseen datasets? The reported experiments used far-reaching sequences of model architectures and training periods to investigate the potential damage that could result from the impact of several interrelated items: (i) over-fitting - a machine learning concept related to exceeding some optimal architectural size; (ii) over-training - a machine learning concept related to the amount of adjustment that is applied to a specific model - based on the understanding that too much fine-tuning might result in a model that had accommodated random aspects of its training dataset - items that had no causal relationship to the target function; and (iii) over-parameterisation - a statistical modelling concept that is used to restrict the number of parameters in a model so as to match the information content of its calibration dataset. The last item in this triplet stems from an understanding that excessive computational complexities might permit an absurd and false solution to be fitted to the available material. Numerous feedforward multilayered perceptrons were trialled and tested. Two different methods of model construction were also compared and contrasted: (i) traditional Backpropagation of Error; and (ii) state-of-the-art Symbiotic Adaptive Neuro-Evolution. Modelling solutions were developed using the reported experimental set ups of Gaume & Gosset (2003). The models were applied to a near-linear hydrological modelling scenario in which past upstream and past downstream discharge records were used to forecast current discharge at the downstream gauging station [CS1: River Marne]; and a non-linear hydrological modelling scenario in which past river discharge measurements and past local meteorological records (precipitation and evaporation) were used to forecast current discharge at the river gauging station [CS2: Le Sauzay].
Modelling lung cancer due to radon and smoking in WISMUT miners: Preliminary results
International Nuclear Information System (INIS)
A mechanistic two-stage carcinogenesis model has been applied to model lung-cancer mortality in the largest uranium-miner cohort available. Models with and without smoking action both fit the data well. As smoking information is largely missing from the cohort data, a method has been devised to project this information from a case-control study onto the cohort. Model calculations using 256 projections show that the method works well. Preliminary results show that if an explicit smoking action is absent in the model, this is compensated by the values of the baseline parameters. This indicates that in earlier studies performed without smoking information, the results obtained for the radiation parameters are still valid. More importantly, the inclusion of smoking-related parameters shows that these mainly influence the later stages of lung-cancer development. (authors)
Brodie, E.; King, E.; Molins, S.; Karaoz, U.; Steefel, C. I.; Banfield, J. F.; Beller, H. R.; Anantharaman, K.; Ligocki, T. J.; Trebotich, D.
2015-12-01
Pore-scale processes mediated by microorganisms underlie a range of critical ecosystem services, regulating carbon stability, nutrient flux, and the purification of water. Advances in cultivation-independent approaches now provide us with the ability to reconstruct thousands of genomes from microbial populations from which functional roles may be assigned. With this capability to reveal microbial metabolic potential, the next step is to put these microbes back where they belong to interact with their natural environment, i.e. the pore scale. At this scale, microorganisms communicate, cooperate and compete across their fitness landscapes with communities emerging that feedback on the physical and chemical properties of their environment, ultimately altering the fitness landscape and selecting for new microbial communities with new properties and so on. We have developed a trait-based model of microbial activity that simulates coupled functional guilds that are parameterized with unique combinations of traits that govern fitness under dynamic conditions. Using a reactive transport framework, we simulate the thermodynamics of coupled electron donor-acceptor reactions to predict energy available for cellular maintenance, respiration, biomass development, and enzyme production. From metagenomics, we directly estimate some trait values related to growth and identify the linkage of key traits associated with respiration and fermentation, macromolecule depolymerizing enzymes, and other key functions such as nitrogen fixation. Our simulations were carried out to explore abiotic controls on community emergence such as seasonally fluctuating water table regimes across floodplain organic matter hotspots. Simulations and metagenomic/metatranscriptomic observations highlighted the many dependencies connecting the relative fitness of functional guilds and the importance of chemolithoautotrophic lifestyles. Using an X-Ray microCT-derived soil microaggregate physical model combined
Crowgey, Theresa; Peters, Katherine B; Hornsby, Whitney E; Lane, Amy; McSherry, Frances; Herndon, James E; West, Miranda J; Williams, Christina L; Jones, Lee W
2014-06-01
The purpose of this study was to examine the relationship between self-reported exercise behavior, cardiorespiratory fitness (CRF), and cognitive function in early breast cancer patients. Thirty-seven breast cancer patients following completion of chemotherapy (median 16 months) and 14 controls were studied. Cognitive function was assessed using the Central Nervous System (CNS) Vital Signs software (CNS Vital Signs, LLC, Morrisville, N.C., USA), a computerized test battery consisting of 9 cognitive subtests. Exercise behavior was evaluated using the Godin Leisure Time Exercise Questionnaire, and CRF was assessed via a cardiopulmonary exercise test to assess peak oxygen consumption. Patients' mean total exercise was 184 ± 141 min·week(-1) compared with 442 ± 315 min·week(-1) in controls (p r = 0.47, p = 0.004). In conclusion, breast cancer patients following the completion of primary adjuvant chemotherapy exhibit, in general, worse cognitive performance than healthy women from the general population, and such performance may be related to their level of exercise behavior. PMID:24869976
Crowgey, Theresa; Peters, Katherine B.; Hornsby, Whitney E.; Lane, Amy; McSherry, Frances; Herndon, James E.; West, Miranda J.; Williams, Christina L.; Jones, Lee W.
2015-01-01
The purpose of this study was to examine the relationship between self-reported exercise behavior, cardiorespiratory fitness (CRF), and cognitive function in early breast cancer patients. Thirty-seven breast cancer patients following completion of chemotherapy (median 16 months) and 14 controls were studied. Cognitive function was assessed using the Central Nervous System (CNS) Vital Signs software (CNS Vital Signs, LLC, Morrisville, N.C., USA), a computerized test battery consisting of 9 cognitive subtests. Exercise behavior was evaluated using the Godin Leisure Time Exercise Questionnaire, and CRF was assessed via a cardiopulmonary exercise test to assess peak oxygen consumption. Patients’ mean total exercise was 184 ± 141 min·week−1 compared with 442 ± 315 min·week−1 in controls (p r = 0.47, p = 0.004). In conclusion, breast cancer patients following the completion of primary adjuvant chemotherapy exhibit, in general, worse cognitive performance than healthy women from the general population, and such performance may be related to their level of exercise behavior. PMID:24869976
Pier Paolo Giardino; Kristjan Kannike(Scuola Normale Superiore and INFN, Piazza dei Cavalieri 7, 56126 Pisa, Italy); Isabella Masina(Dipartimento di Fisica e Scienze della Terra dell’Università di Ferrara and INFN, Italy); Martti Raidal; Alessandro Strumia(Dipartimento di Fisica, Università di Pisa and INFN, Italy)
2014-01-01
We perform a state-of-the-art global fit to all Higgs data. We synthesise them into a ‘universal’ form, which allows to easily test any desired model. We apply the proposed methodology to extract from data the Higgs branching ratios, production cross sections, couplings and to analyse composite Higgs models, models with extra Higgs doublets, supersymmetry, extra particles in the loops, anomalous top couplings, and invisible Higgs decays into Dark Matter. Best fit regions lie around the Standa...
Seeking for Spin-Opposite-Scaled Double-Hybrid Models Free of Fitted Parameters.
Alipour, Mojtaba
2016-05-26
On the basis of theoretical arguments, a new exchange-correlation energy expression free of any fitted parameter has been proposed for spin-opposite-scaled double-hybrid density functionals (SOS0-DHs). Employing the recently presented DHs, the working expressions for SOS0-DH functionals are obtained and benchmarked numerically against several standard databases. Our test calculations show that for some cases such as interaction energies and barrier heights the SOS0-DHs without dispersion corrections perform better than their non-SOS counterparts. On the other hand, for other properties like atomization energies, the conventional DHs provide reliable results. We hope that the findings of this work can excite further developments of DH functionals in the framework of SOS scheme for a wide variety of applications resolving the failures at a reasonable computational cost. It seems that a bright future lies ahead in this arena. PMID:27163506
Tabatabai Mohammad A; Eby Wayne M; Nimeh Nadim; Li Hong; Singh Karan P
2012-01-01
Abstract Background We explore the benefits of applying a new proportional hazard model to analyze survival of breast cancer patients. As a parametric model, the hypertabastic survival model offers a closer fit to experimental data than Cox regression, and furthermore provides explicit survival and hazard functions which can be used as additional tools in the survival analysis. In addition, one of our main concerns is utilization of multiple gene expression variables. Our analysis treats the ...
Unmarked: An R package for fitting hierarchical models of wildlife occurrence and abundance
Fiske, I.J.; Chandler, R.B.
2011-01-01
Ecological research uses data collection techniques that are prone to substantial and unique types of measurement error to address scientic questions about species abundance and distribution. These data collection schemes include a number of survey methods in which unmarked individuals are counted, or determined to be present, at spatially- referenced sites. Examples include site occupancy sampling, repeated counts, distance sampling, removal sampling, and double observer sampling. To appropriately analyze these data, hierarchical models have been developed to separately model explanatory variables of both a latent abundance or occurrence process and a conditional detection process. Because these models have a straightforward interpretation paralleling mecha- nisms under which the data arose, they have recently gained immense popularity. The common hierarchical structure of these models is well-suited for a unied modeling in- terface. The R package unmarked provides such a unied modeling framework, including tools for data exploration, model tting, model criticism, post-hoc analysis, and model comparison.
Directory of Open Access Journals (Sweden)
Rebecca Lee Smith
Full Text Available Hansen's disease (leprosy elimination has proven difficult in several countries, including Brazil, and there is a need for a mathematical model that can predict control program efficacy. This study applied the Approximate Bayesian Computation algorithm to fit 6 different proposed models to each of the 5 regions of Brazil, then fitted hierarchical models based on the best-fit regional models to the entire country. The best model proposed for most regions was a simple model. Posterior checks found that the model results were more similar to the observed incidence after fitting than before, and that parameters varied slightly by region. Current control programs were predicted to require additional measures to eliminate Hansen's Disease as a public health problem in Brazil.
Smith, Rebecca Lee; Gröhn, Yrjö Tapio
2015-01-01
Hansen's disease (leprosy) elimination has proven difficult in several countries, including Brazil, and there is a need for a mathematical model that can predict control program efficacy. This study applied the Approximate Bayesian Computation algorithm to fit 6 different proposed models to each of the 5 regions of Brazil, then fitted hierarchical models based on the best-fit regional models to the entire country. The best model proposed for most regions was a simple model. Posterior checks found that the model results were more similar to the observed incidence after fitting than before, and that parameters varied slightly by region. Current control programs were predicted to require additional measures to eliminate Hansen's Disease as a public health problem in Brazil. PMID:26107951
The Electroweak Fit of the Standard Model after the Discovery of a New Boson at the LHC
Baak, M
2012-01-01
In view of the discovery of a new boson by the ATLAS and CMS Collaborations at the LHC, we present an update of the global Standard Model (SM) fit to electroweak precision data. Assuming the new particle to be the SM Higgs boson, all fundamental parameters of the SM are known allowing, for the first time, to overconstrain the SM at the electroweak scale and assert its validity. Including the effects of radiative corrections and the experimental and theoretical uncertainties, the global fit exhibits a p-value of 0.07. The mass measurements by ATLAS and CMS agree within 1.3sigma with the indirect determination M_H=(94 +25 -22) GeV. Within the SM the W boson mass and the effective weak mixing angle can be accurately predicted to be M_W=(80.359 +- 0.011) GeV and sin^2(theta_eff^ell)=(0.23150 +- 0.00010) from the global fit. These results are compatible with, and exceed in precision, the direct measurements. For the indirect determination of the top quark mass we find m_t=(175.8 +2.7 -2.4) GeV, in agreement with t...
Parameter Estimation and Measures of Fit in A Global, General Equilibrium Model
Liu, Jing; Arndt, Channing; Hertel, Thomas
2001-01-01
Computable General Equilibrium (CGE) models have been widely used for quantitative analysis of global economic issues. However, CGE models are frequently criticized for resting on weak empirical foundations. This paper builds on recent work in macro-econometric estimation, developing an approach to parameter estimation for a widely employed global CGE model, the Global Trade Analysis Project (GTAP) model. An approximate likelihood function is developed and the set of optimum elasticity values...
Modelling breast cancer in a TB fluoroscopy cohort: Implications for the Dutch mammography screening
International Nuclear Information System (INIS)
Breast cancer incidence in a tuberculosis fluoroscopy cohort has been modelled with a two-stage carcinogenesis model. The relatively simple model, in which hormonal influences only affect the number of sensitive target cells, fits the data very well. Under the assumption that individual hormonal differences average out, and with a relative biological effectiveness for mammographic X rays of 1, the model yields ∼10 fatal breast cancer cases induced by the entire Dutch screening programme over a period of 25 y. This is much lower than derived from standard ICRP risk estimates and should be compared with the number of lives saved, which is estimated at ∼350 y-1. As the extent of screening is currently being reconsidered in the Netherlands and elsewhere, this is an important result. (authors)
Yu, Tai-Kuei; Yu, Tai-Yi
2010-01-01
Understanding learners' behaviour, perceptions and influence in terms of learner performance is crucial to predict the use of electronic learning systems. By integrating the task-technology fit (TTF) model and the theory of planned behaviour (TPB), this paper investigates the online learning utilisation of Taiwanese students. This paper provides a…
International Nuclear Information System (INIS)
The Bay of Bengal is surrounded by the coasts from all sides except in the south where there is open sea. The coasts are curvilinear in nature and the bending is very high along the coast of Bangladesh. Moreover, there are many small and big islands in the offshore region of the Bangladesh coast. In order to incorporate the island boundaries and the coastlines properly in the numerical scheme it is necessary to consider a very fine grid resolution along the coastal belts, whereas this is unnecessary away from the coasts. Consideration of very fine resolution involves, unnecessarily, more memory and more CPU time in the solution process and invites problem of numerical instability. In hydrodynamic models for coastal seas, bays, and estuaries the use of boundary-fitted curvilinear grids not only makes the model grids fit to the coastline, but also make the finite difference scheme simple and more accurate. In this study we use the boundary-fitted curvilinear grids where the complete boundary of the analysis area is represented by four curves and they are defined by four functions. Based on them, the four boundaries of each island are represented approximately by two generalized functions. Appropriate transformations of independent coordinates are considered so that the curvilinear physical domain transforms to a square one and also each island boundary transforms to a rectangle within this square domain. The vertically integrated shallow water equations are transformed to the new space domain. In the transformed domain, the regular explicit finite difference scheme is used to solve the shallow water equations. The model is applied to compute the water levels due to astronomical tide and surges associated with a few tropical storms that hit the coast of Bangladesh. (author)
A superstatistical model of metastasis and cancer survival
Chen, L Leon
2007-01-01
We introduce a superstatistical model for the progression statistics of malignant cancer cells. The metastatic cascade is modeled as a complex nonequilibrium system with several macroscopic pathways and inverse-chi-square distributed parameters of the underlying Poisson processes. The predictions of the model are in excellent agreement with observed survival time probability distributions of breast cancer patients.
Indian Academy of Sciences (India)
O Scholten; A Usov
2010-08-01
To describe photo- and meson-induced reactions on the nucleon, one is faced with a rather extensive coupled-channel problem. Ignoring the effects of channel coupling, as one would do in describing a certain reaction at the tree level, invariably creates a large inconsistency between the different reactions that are described. In addition, the imaginary parts of the amplitude, which are related through the optical theorem, to total cross-sections, are directly reflected in certain polarization observables. Performing a full coupled-channel calculation thus offers the possibility to implement the maximum number of constraints. The drawback one is faced with is to arrive at a simultaneous fit of a large number of reaction channels. While some of the parameters are common to many reactions, one is still faced with the challenge to optimize a large number of parameters in a highly non-linear calculation. Here we show that such an approach is possible and present some results for photoinduced strangeness production.
Curve fitting and error modeling for the digitization process near the Nyquist rate
Energy Technology Data Exchange (ETDEWEB)
Baumgart, C.W.; Dunham, M.E. (EG and G Energy Measurements, Inc., Las Vegas, NV (United States)); Moses, J.D. (Los Alamos National Lab., NM (United States))
1992-03-01
The Nyquist and Shannon theorems originated the concept of sampling a band-limited signal at a minimum rate. By sampling at this minimum rate, enough information is gathered to allow an accurate reconstruction of the original analog signal. These theorems were derived for time-quantized signals and did not include simultaneous amplitude quantization. In addition, the underlying assumptions on which these theorems were based are violated in typical use. Therefore, actual practice in data acquisition has been to oversample signal bandwidth by two to three times to conserve accuracy. We report a new numerical investigation of digitization process accuracy,with respect to sample rate, sample amplitude resolution, and record length. This investigation is based on the use of a computer algorithm that reconstructs original analog test signals from their ideally digitized representations. A Monte Carlo technique is used to simulate simultaneous time and amplitude quantization of the test signals, followed by an optimal least-squares curvefit routine which reconstructs the input signal from the digitized data.In this way, we examine the error sensitivity to the digitization process in each reconstructed signal parameter. We find that although no specific Nyquist limit exists for a known wave shape, the parameter errors vary continuously with respect to the aforementioned variables, and critical sample densities of two to four sample periods per risetime are seen. Plots of curve-fitted parameter error versus fundamental digitization variables are useful in specifying experimental tasks and indicate further directions for reconstruction algorithm development. 12 refs.
Lee, Chaohong; Zhu, Xiwen; Gao, Kelin
2003-01-01
We introduce the standard distribution width of fitness to characterize the global and individual features of an ecosystem described by the Bak-Sneppen evolution model. Through tracking this quantity in evolution, a different hierarchy of avalanche dynamics, the w0 avalanche, is observed. The corresponding gap equation and the self-organized threshold wc are obtained. The critical exponents τ, γ and ρ, which describe the behaviour of the avalanche size distribution, the average avalanche size and the relaxation to attractor, respectively, are calculated by numerical simulation. The exact master equation and γ equation are derived, and the scaling relations are established among the critical exponents of this new avalanche.
Fitness Club
2012-01-01
The CERN Fitness Club is pleased to announce its new early morning class which will be taking place on: Tuesdays from 24th April 07:30 to 08:15 216 (Pump Hall, close to entrance C) – Facilities include changing rooms and showers. The Classes: The early morning classes will focus on workouts which will help you build not only strength and stamina, but will also improve your balance, and coordination. Our qualified instructor Germana will accompany you throughout the workout to ensure you stay motivated so you achieve the best results. Sign up and discover the best way to start your working day full of energy! How to subscribe? We invite you along to a FREE trial session, if you enjoy the activity, please sign up via our website: https://espace.cern.ch/club-fitness/Activities/SUBSCRIBE.aspx. * * * * * * * * Saturday 28th April Get in shape for the summer at our fitness workshop and zumba dance party: Fitness workshop with Germana 13:00 to 14:30 - 216 (Pump Hall) Price...
... that gets your heart pumping, such as dancing, running, or swimming laps. How hard you exercise matters, too. You can learn how to measure your workout to see if it is light, medium, or intense. Fitness for all Do you have an illness or ...
Fitness club
2013-01-01
Nordic Walking Classes Come join the Nordic walking classes and outings offered by the CERN Fitness Club starting September 2013. Our licensed instructor Christine offers classes for people who’ve never tried Nordic Walking and who would like to learn the technique, and outings for people who have completed the classes and enjoy going out as a group. Course 1: Tuesdays 12:30 - 13:30 24 September, 1 October, 8 October, 15 October Course 2: Tuesdays 12:30 - 13:30 5 November, 12 November, 19 November, 26 November Outings will take place on Thursdays (12:30 to 13:30) from 12 September 2013. We meet at the CERN Club Barracks car park (close to Entrance A) 10 minutes before departure. Prices: 50 CHF for 4 classes, including the 10 CHF Club membership. Payments made directly to instructor. Renting Poles: Poles can be rented from Christine at 5 CHF / hour. Subscription: Please subscribe at: http://cern.ch/club-fitness Looking forward to seeing you among us! Fitness Club FitnessClub@c...
Fitness Club
2010-01-01
Nordic Walking Please note that the subscriptions for the general fitness classes from July to December are open: Subscriptions general fitness classes Jul-Dec 2010 Sign-up to the Fitness Club mailing list here Nordic Walking: Sign-up to the Nordic Walking mailing list here Beginners Nordic walking lessons Monday Lunchtimes (rdv 12:20 for 12:30 departure) 13.09/20.09/27.09/04.10 11.10/18.10/08.11/15.11 22.11/29.11/06.12/20.12 Nordic walking lessons Tuesday evenings (rdv 17:50 for 18:00 departure) 07.09/14.09/21.09/28.09 05.10/12.10/19.10/26.10 Intermediate/Advanced Nordic walking outings (follow the nordic walking lessons before signing up for the outings) every Thursday from 16.09 - 16.12, excluding 28.10 and 09.12 Subscriptions and info: fitness.club@cern.ch
Fitness Club
2012-01-01
Get in Shape for Summer with the CERN Fitness Club Saturday 23 June 2012 from 14:30 to 16.30 (doors open at 14.00) Germana’s Fitness Workshop. Build strength and stamina, sculpt and tone your body and get your heart pumping with Germana’s workout mixture of Cardio Attack, Power Pump, Power Step, Cardio Combat and Cross-Training. Where: 216 (Pump room – equipped with changing rooms and showers). What to wear: comfortable clothes and indoor sports shoes + bring a drink! How much: 15 chf Sign up here: https://espace.cern.ch/club-fitness/Lists/Test_Subscription/NewForm.aspx? Join the Party and dance yourself into shape at Marco + Marials Zumba Masterclass. Saturday 30 June 2012 from 15:00 to 16:30 Marco + Mariel’s Zumba Masterclass Where: 216 (Pump room – equipped with changing rooms and showers). What to wear: comfortable clothes and indoor sports shoes + bring a drink! How much: 25 chf Sign up here: https://espace.cern.ch/club-fitness/Lists/Zumba%20...
Directory of Open Access Journals (Sweden)
Sigrid Hatse
Full Text Available Circulating microRNAs (miRNAs hold great promise as easily accessible biomarkers for diverse (pathophysiological processes, including aging. We have compared miRNA expression profiles in cell-free blood from older versus young breast cancer patients, in order to identify "aging miRNAs" that can be used in the future to monitor the impact of chemotherapy on the patient's biological age. First, we assessed 175 miRNAs that may possibly be present in serum/plasma in an exploratory screening in 10 young and 10 older patients. The top-15 ranking miRNAs showing differential expression between young and older subjects were further investigated in an independent cohort consisting of another 10 young and 20 older subjects. Plasma levels of miR-20a-3p, miR-30b-5p, miR106b, miR191 and miR-301a were confirmed to show significant age-related decreases (all p≤0.004. The remaining miRNAs included in the validation study (miR-21, miR-210, miR-320b, miR-378, miR-423-5p, let-7d, miR-140-5p, miR-200c, miR-374a, miR376a all showed similar trends as observed in the exploratory screening but these differences did not reach statistical significance. Interestingly, the age-associated miRNAs did not show differential expression between fit/healthy and non-fit/frail subjects within the older breast cancer cohort of the validation study and thus merit further investigation as true aging markers that not merely reflect frailty.
Mouse models for cancer stem cell research
Cheng, Le; Ramesh, Anirudh V.; Flesken-Nikitin, Andrea; Choi, Jinhyang; Nikitin, Alexander Yu.
2009-01-01
Cancer stem cell concept assumes that cancers are mainly sustained by a small pool of neoplastic cells, known as cancer stem cells or tumor initiating cells, which are able to reproduce themselves and produce phenotypically heterogeneous cells with lesser tumorigenic potential. Cancer stem cells represent an appealing target for development of more selective and efficient therapies. However, direct testing of the cancer stem cell concept and assessment of its therapeutic implications in human...
Vovchenko, Volodymyr
2016-01-01
The hadron-resonance gas (HRG) model with eigenvolume corrections is employed to fit the hadron yield data of the NA49 collaboration for central Pb+Pb collisions at $\\sqrt{s_{NN}}$ = 6.3, 7.6, 8.8, 12.3, and 17.3 GeV, the hadron midrapidity yield data of the STAR collaboration for Au+Au collisions at $\\sqrt{s_{NN}}$ = 200 GeV, and the hadron midrapidity yield data of the ALICE collaboration for Pb+Pb collisions at $\\sqrt{s_{NN}}$ = 2760 GeV. The influence of the EV corrections is studied within two different formulations of the EV HRG model. For the case of the point-particle HRG the extracted values of temperature and chemical potential are consistent with previous findings. The situation is very different when we apply the eigenvolume corrections with mass-proportional eigenvolumes $v_i \\sim m_i$, fixed to different values of the proton hard-core radius of $r_p$. At given bombarding energy the EV HRG model fits do not just yield a single $T-\\mu_B$ pair, but a whole range of $T-\\mu_B$ pairs. These pairs form...
Entropy, complexity, and Markov diagrams for random walk cancer models
Newton, Paul K.; Mason, Jeremy; Hurt, Brian; Bethel, Kelly; Bazhenova, Lyudmila; Nieva, Jorge; Kuhn, Peter
2014-12-01
The notion of entropy is used to compare the complexity associated with 12 common cancers based on metastatic tumor distribution autopsy data. We characterize power-law distributions, entropy, and Kullback-Liebler divergence associated with each primary cancer as compared with data for all cancer types aggregated. We then correlate entropy values with other measures of complexity associated with Markov chain dynamical systems models of progression. The Markov transition matrix associated with each cancer is associated with a directed graph model where nodes are anatomical locations where a metastatic tumor could develop, and edge weightings are transition probabilities of progression from site to site. The steady-state distribution corresponds to the autopsy data distribution. Entropy correlates well with the overall complexity of the reduced directed graph structure for each cancer and with a measure of systemic interconnectedness of the graph, called graph conductance. The models suggest that grouping cancers according to their entropy values, with skin, breast, kidney, and lung cancers being prototypical high entropy cancers, stomach, uterine, pancreatic and ovarian being mid-level entropy cancers, and colorectal, cervical, bladder, and prostate cancers being prototypical low entropy cancers, provides a potentially useful framework for viewing metastatic cancer in terms of predictability, complexity, and metastatic potential.
Does the first chaotic inflation model in supergravity provide the best fit to the Planck data?
International Nuclear Information System (INIS)
I describe the first model of chaotic inflation in supergravity, which was proposed by Goncharov and the present author in 1983. The inflaton potential of this model has a plateau-type behavior V0(1−(8/3) e−√6|ϕ|) at large values of the inflaton field. This model predicts ns=1−(2/N)≈0.967 and r=(4/(3N2))≈4×10−4, in good agreement with the Planck data. I propose a slight generalization of this model, which allows to describe not only inflation but also dark energy and supersymmetry breaking
Does the first chaotic inflation model in supergravity provide the best fit to the Planck data?
Linde, Andrei
2014-01-01
I describe the first model of chaotic inflation in supergravity, which was proposed by Goncharov and the present author in 1983. The inflaton potential of this model has a plateau-type behavior $V_{0} (1- {8\\over 3}\\, e^{-\\sqrt 6 |\\phi|})$ at large values of the inflaton field. This model predicts $n_{s} = 1-{2\\over N} \\approx 0.967$ and $r = {4\\over 3 N^{2}} \\approx 4 \\times 10^{{-4}}$, in good agreement with the Planck data. I propose a slight generalization of this model, which allows to describe not only inflation but also dark energy and supersymmetry breaking.
The PX-EM algorithm for fast stable fitting of Henderson's mixed model
Directory of Open Access Journals (Sweden)
Van Dyk David A
2000-03-01
Full Text Available Abstract This paper presents procedures for implementing the PX-EM algorithm of Liu, Rubin and Wu to compute REML estimates of variance covariance components in Henderson's linear mixed models. The class of models considered encompasses several correlated random factors having the same vector length e.g., as in random regression models for longitudinal data analysis and in sire-maternal grandsire models for genetic evaluation. Numerical examples are presented to illustrate the procedures. Much better results in terms of convergence characteristics (number of iterations and time required for convergence are obtained for PX-EM relative to the basic EM algorithm in the random regression.
Gilkey, Roderick; Kilts, Clint
2007-11-01
Recent neuroscientific research shows that the health of your brain isn't, as experts once thought, just the product of childhood experiences and genetics; it reflects your adult choices and experiences as well. Professors Gilkey and Kilts of Emory University's medical and business schools explain how you can strengthen your brain's anatomy, neural networks, and cognitive abilities, and prevent functions such as memory from deteriorating as you age. The brain's alertness is the result of what the authors call cognitive fitness -a state of optimized ability to reason, remember, learn, plan, and adapt. Certain attitudes, lifestyle choices, and exercises enhance cognitive fitness. Mental workouts are the key. Brain-imaging studies indicate that acquiring expertise in areas as diverse as playing a cello, juggling, speaking a foreign language, and driving a taxicab expands your neural systems and makes them more communicative. In other words, you can alter the physical makeup of your brain by learning new skills. The more cognitively fit you are, the better equipped you are to make decisions, solve problems, and deal with stress and change. Cognitive fitness will help you be more open to new ideas and alternative perspectives. It will give you the capacity to change your behavior and realize your goals. You can delay senescence for years and even enjoy a second career. Drawing from the rapidly expanding body of neuroscience research as well as from well-established research in psychology and other mental health fields, the authors have identified four steps you can take to become cognitively fit: understand how experience makes the brain grow, work hard at play, search for patterns, and seek novelty and innovation. Together these steps capture some of the key opportunities for maintaining an engaged, creative brain. PMID:18159786
Behringer, Bruce; Lofton, Staci; Knight, Margaret L
2010-12-01
The comprehensive cancer control approach is used by state, tribes, tribal organizations, territorial and Pacific Island Jurisdiction cancer coalitions to spur local implementation of cancer plans to reduce the burden of cancer in jurisdictions across the country. There is a rich diversity of models and approaches to the development of relationships and scope of planning for cancer control activities between coalitions and advocates in local communities. The national comprehensive cancer control philosophy provides an operational framework while support from the Centers for Disease Control and Prevention enables coalitions to act as catalysts to bring local partners together to combat cancer in communities. This manuscript describes multiple characteristics of cancer coalitions and how they are organized. Two models of how coalitions and local partners collaborate are described. A case study method was used to identify how five different state and tribal coalitions use the two models to organize their collaborations with local communities that result in local implementation of cancer plan priorities. Conclusions support the use of multiple organizing models to ensure involvement of diverse interests and sensitivity to local cancer issues that encourages implementation of cancer control activities. PMID:20938731
Loughney, Lisa; West, Malcolm A.; Kemp, Graham J.; Rossiter, Harry B.; Burke, Shaunna M.; Cox, Trevor; Barben, Christopher P.; Mythen, Michael G; Calverley, Peter; Palmer, Daniel H.; Grocott, Michael P. W.; Jack, Sandy
2016-01-01
Background The standard treatment pathway for locally advanced rectal cancer is neoadjuvant chemoradiotherapy (CRT) followed by surgery. Neoadjuvant CRT has been shown to decrease physical fitness, and this decrease is associated with increased post-operative morbidity. Exercise training can stimulate skeletal muscle adaptations such as increased mitochondrial content and improved oxygen uptake capacity, both of which are contributors to physical fitness. The aims of the EMPOWER trial are to ...
de Vries, SO; Fidler, [No Value; Kuipers, WD; Hunink, MGM
1998-01-01
The purpose of this study was to develop a model that predicts the outcome of supervised exercise for intermittent claudication. The authors present an example of the use of autoregressive logistic regression for modeling observed longitudinal data. Data were collected from 329 participants in a six
de Vries, S.O.; Fidler, V.; Kuipers, W.D.; Hunink, M.G.
1998-01-01
The purpose of this study was to develop a model that predicts the outcome of supervised exercise for intermittent claudication. The authors present an example of the use of autoregressive logistic regression for modeling observed longitudinal data. Data were collected from 329 participants in a six
Dauenhauer, Brian; Keating, Xiaofen; Lambdin, Dolly
2016-08-01
Response to intervention (RtI) models are frequently used in schools to tailor academic instruction to the needs of students. The purpose of this study was to examine the effects of using RtI to promote physical activity (PA) and fitness in one urban elementary school. Ninety-nine students in grades 2-5 participated in up to three tiers of intervention throughout the course of one school year. Tier one included 150 min/week of physical education (increased from 90 min/week the previous year) and coordinated efforts to improve school health. Tier two consisted of 30 min/week of small group instruction based on goal setting and social support. Tier three included an after-school program for parents and children focused on healthy living. PA, cardiovascular fitness, and body composition were assessed before and after the interventions using pedometers, a 20-m shuttle run, and height/weight measurements. From pre- to post-testing, PA remained relatively stable in tier one and increased by 2349 steps/day in tier two. Cardiovascular fitness increased in tiers one and two by 1.17 and 1.35 ml/kg/min, respectively. Although body mass index did not change, 17 of the 99 students improved their weight status over the course of the school year, resulting in an overall decline in the prevalence of overweight/obesity from 59.6 to 53.5 %. Preliminary results suggest that the RtI model can be an effective way to structure PA/health interventions in an elementary school setting. PMID:27059849
Fu, W.; Gu, L.; Hoffman, F. M.
2013-12-01
The photosynthesis model of Farquhar, von Caemmerer & Berry (1980) is an important tool for predicting the response of plants to climate change. So far, the critical parameters required by the model have been obtained from the leaf-level measurements of gas exchange, namely the net assimilation of CO2 against intercellular CO2 concentration (A-Ci) curves, made at saturating light conditions. With such measurements, most points are likely in the Rubisco-limited state for which the model is structurally overparameterized (the model is also overparameterized in the TPU-limited state). In order to reliably estimate photosynthetic parameters, there must be sufficient number of points in the RuBP regeneration-limited state, which has no structural over-parameterization. To improve the accuracy of A-Ci data analysis, we investigate the potential of using multiple A-Ci curves at subsaturating light intensities to generate some important parameter estimates more accurately. Using subsaturating light intensities allow more RuBp regeneration-limited points to be obtained. In this study, simulated examples are used to demonstrate how this method can eliminate the errors of conventional A-Ci curve fitting methods. Some fitted parameters like the photocompensation point and day respiration impose a significant limitation on modeling leaf CO2 exchange. The multiple A-Ci curves fitting can also improve over the so-called Laisk (1977) method, which was shown by some recent publication to produce incorrect estimates of photocompensation point and day respiration. We also test the approach with actual measurements, along with suggested measurement conditions to constrain measured A-Ci points to maximize the occurrence of RuBP regeneration-limited photosynthesis. Finally, we use our measured gas exchange datasets to quantify the magnitude of resistance of chloroplast and cell wall-plasmalemma and explore the effect of variable mesophyll conductance. The variable mesophyll conductance
FITTING A THREE DIMENSIONAL PEM FUEL CELL MODEL TO MEASUREMENTS BY TUNING THE POROSITY AND
DEFF Research Database (Denmark)
Bang, Mads; Odgaard, Madeleine; Condra, Thomas Joseph;
2004-01-01
.The current density dependency on the gas concentration andactivation overpotential can thereby be addressed. The proposedmodel makes it possible to predict the effect of geometrical andmaterial properties on the fuel cell?s performance. It is shownhow the ionic conductivity and porosity of the catalyst......A three-dimensional, computational fluid dynamics (CFD) model of a PEM fuel cell is presented. The model consists ofstraight channels, porous gas diffusion layers, porous catalystlayers and a membrane. In this computational domain, most ofthe transport phenomena which govern the performance of the......PEM fuel cell are dealt with in detail.The model solves the convective and diffusive transport of thegaseous phase in the fuel cell and allows prediction of theconcentration of the species present. A special feature of themodel is a method that allows detailed modelling and predictionof electrode kinetics...
Some Properties of A Lack-of-Fit Test for a Linear Errors in Variables Model
Institute of Scientific and Technical Information of China (English)
Li-xing Zhu; Heng-jian Cui; K.W.Ng
2004-01-01
The relationship between the linear errors-in-variables model and the corresponding ordinary linear model in statistical inference is studied.It is shown that normality of the distribution of covariate is a necessary and su cient condition for the equivalence.Therefore,testing for lack-of-t in linear errors-in-variables model can be converted into testing for it in the corresponding ordinary linear model under normality assumption.A test of score type is constructed and the limiting chi-squared distribution is derived under the null hypothesis.Furthermore,we discuss the power of the test and the choice of the weight function involved in the test statistic.
Czech Academy of Sciences Publication Activity Database
Suda, Jan; Herben, Tomáš
2013-01-01
Roč. 280, č. 1751 (2013), no.20122387. ISSN 0962-8452 Institutional support: RVO:67985939 Keywords : cytometry * statiscical modelling * polyploidy Subject RIV: EF - Botanics Impact factor: 5.292, year: 2013
Do telemonitoring projects of heart failure fit the Chronic Care Model?
Willemse, Evi; Adriaenssens, Jef; Dilles, Tinne; Remmen, Roy
2014-01-01
This study describes the characteristics of extramural and transmural telemonitoring projects on chronic heart failure in Belgium. It describes to what extent these telemonitoring projects coincide with the Chronic Care Model of Wagner.Background: The Chronic Care Model describes essential components for high-quality health care. Telemonitoring can be used to optimise home care for chronic heart failure. It provides a potential prospective to change the current care organisation.Methods: This...
Fitted HBT radii versus space-time variances in flow-dominated models
Frodermann, Evan; Heinz, Ulrich; Lisa, Michael Annan
2006-01-01
The inability of otherwise successful dynamical models to reproduce the ``HBT radii'' extracted from two-particle correlations measured at the Relativistic Heavy Ion Collider (RHIC) is known as the ``RHIC HBT Puzzle.'' Most comparisons between models and experiment exploit the fact that for Gaussian sources the HBT radii agree with certain combinations of the space-time widths of the source which can be directly computed from the emission function, without having to evaluate, at significant e...
Fractional Differentiation-Based Active Contour Model Driven by Local Intensity Fitting Energy
Ming Gu; Renfang Wang
2016-01-01
A novel active contour model is proposed for segmentation images with inhomogeneity. Firstly, fractional order filter is defined by eight convolution masks corresponding to the image orientation in the eight compass directions. Then, the fractional order differentiation image is obtained and applied to the level set method. Secondly, we defined a new energy functional based on local image information and fractional order differentiation image; the proposed model not only can describe the inpu...
Fitting a Turbulent Cloud Model to CO Observations of Starless Bok Globules
Hegmann, M.; Hengel, C.; Röllig, M.; Kegel, W. H.
We present observations of five starless Bok globules in transitions of 12CO (J=2-1 and {J=3-2}), 13CO (J=2-1), and C18O (J=2-1) which have been obtained at the Heinrich-Hertz-Telescope. For an analysis of the data we use the model of Kegel et al. (see e.g. Piehler & Kegel 1995, A&A 297, 841; Hegmann & Kegel 2000, A&A 359, 405) which describes an isothermal sphere stabilized by turbulent and thermal pressure. This approach deals with the full NLTE radiative transfer problem and accounts for a turbulent velocity field with finite correlation length. By a comparison of observed and calculated line profiles we are able not only to determine the kinetic temperature, hydrogen density and CO coloumn density of the globules, but also to study the properties of the turbulent velocity field, i.e. the variance of its one-point-distribution and its correlation length. We consider our model to be an alternative tool for the evaluation of molecular lines emitted by molecular clouds. The model assumptions are certainly closer to reality than the assumptions behind the standard evaluation models, as for example the LVG model. Our current study shows that that the results obtained from our model can differ significantly from those obtained from a LVG analysis.
Fitness Club
2012-01-01
Nordic Walking Classes Sessions of four classes of one hour each are held on Tuesdays. RDV barracks parking at Entrance A, 10 minutes before class time. Session 1 = 11.09 / 18.09 / 25.09 / 02.10, 18:15 - 19:15 Session 2 = 25.09 / 02.10 / 09.10 / 16.10, 12:30 - 13:30 Session 3 = 23.10 / 30.10 / 06.11 / 13.11, 12:30 - 13:30 Session 4 = 20.11 / 27.11 / 04.12 / 11.12, 12:30 - 13:30 Prices 40 CHF per session + 10 CHF club membership 5 CHF/hour pole rental Check out our schedule and enroll at http://cern.ch/club-fitness Hope to see you among us! fitness.club@cern.ch In spring 2012 there was a long-awaited progress in CERN Fitness club. We have officially opened a Powerlifting @ CERN, and the number of members of the new section has been increasing since then reaching 70+ people in less than 4 months. Powerlifting is a strength sport, which is simple as 1-2-3 and efficient. The "1-2-3" are the three basic lifts (bench press...
Three-dimensional in vitro cancer models: a short review
International Nuclear Information System (INIS)
The re-creation of the tumor microenvironment including tumor–stromal interactions, cell–cell adhesion and cellular signaling is essential in cancer-related studies. Traditional two-dimensional (2D) cell culture and animal models have been proven to be valid in some areas of explaining cancerous cell behavior and interpreting hypotheses of possible mechanisms. However, a well-defined three-dimensional (3D) in vitro cancer model, which mimics tumor structures found in vivo and allows cell–cell and cell–matrix interactions, has gained strong interest for a wide variety of diagnostic and therapeutic applications. This communication attempts to provide a representative overview of applying 3D in vitro biological model systems for cancer related studies. The review compares and comments on the differences in using 2D models, animal models and 3D in vitro models for cancer research. Recent technologies to construct and develop 3D in vitro cancer models are summarized in aspects of modeling design, fabrication technique and potential application to biology, pathogenesis study and drug testing. With the help of advanced engineering techniques, the development of a novel complex 3D in vitro cancer model system will provide a better opportunity to understand crucial cancer mechanisms and to develop new clinical therapies. (topical review)
Guo, Qian; Lu, Zhichang; Hirata, Yoshito; Aihara, Kazuyuki
2013-12-01
We propose an algorithm based on cross-entropy to determine parameters of a piecewise linear model, which describes intermittent androgen suppression therapy for prostate cancer. By comparing with clinical data, the parameter estimation for the switched system shows good fitting accuracy and efficiency. We further optimize switching time points for the piecewise linear model to obtain a feasible therapeutic schedule. The simulation results of therapeutic effect are superior to those of previous strategy.
Hallman, Eric J.; Burns, Jack O.; Motl, Patrick M.; Norman, Michael L.
2007-08-01
We have analyzed a large sample of numerically simulated clusters to demonstrate the adverse effects resulting from the use of X-ray-fitted β-model parameters with Sunyaev-Zeldovich effect (SZE) data. There is a fundamental incompatibility between β-model fits to X-ray surface brightness profiles and those done with SZE profiles. Since observational SZE radial profiles are in short supply, the X-ray parameters are often used in SZE analysis. We show that this leads to biased estimates of the integrated Compton y-parameter inside r500 calculated from clusters. We suggest a simple correction of the method, using a nonisothermal β-model modified by a universal temperature profile, which brings these calculated quantities into closer agreement with the true values.
Hallman, Eric J; Motl, Patrick M; Norman, Michael L
2007-01-01
We have analyzed a large sample of numerically simulated clusters to demonstrate the adverse effects resulting from use of X-ray fitted beta-model parameters with Sunyaev-Zeldovich effect (SZE) data. There is a fundamental incompatibility between model fits to X-ray surface brightness profiles and those done with SZE profiles. Since observational SZE radial profiles are in short supply, the X-ray parameters are often used in SZE analysis. We show that this leads to biased estimates of the integrated Compton y-parameter inside r_{500} calculated from clusters. We suggest a simple correction of the method, using a non-isothermal beta-model modified by a universal temperature profile, which brings these calculated quantities into closer agreement with the true values.
Calculating Model of Interference Amount for Miniaturized Gear and Shaft Shrink Fit
Institute of Scientific and Technical Information of China (English)
JIN Xin; ZHANG Zhi-jing; YE Xin; LI Zhong-xin
2006-01-01
Based on miniaturized components' characteristics, the method of assembling miniaturized gear and shaft together with corresponding calculating model of the interference amount are proposed. On the basis of main effecting factors analysis on the gear and shaft assembling interference amount, calculating formula including all factors effective on the interference amount necessary for reliable system running was built up. The methods of reverse calculating theoretical model was used to build up the equivalent simulation model of the theoretical one, together with simulation verification and case study for calculating formula. The results show that the cold assembling method is applicable for miniaturized gear and shaft, but in the assembling process,the interference amount compensating the shape error of contacting surfaces takes a large proportion, which is the main cause of stress variance on contacting surfaces.
Does model fit matter for hedging? Evidence from FTSE 100 options
Carol Alexander; Andreas Kaeck
2010-01-01
This paper implements a variety of different calibration methods applied to the Heston model and examines their effect on the performance of standard and minimum-variance hedging of vanilla options on the FTSE 100 index. Simple adjustments to the Black-Scholes-Merton model are used as a benchmark. Our empirical findings apply to delta, delta-gamma or delta-vega hedging and they are robust to varying the option maturities and moneyness, and to different market regimes. On the methodological si...
Fitting inverse power-law quintessence models using the SNAP satellite
Eriksson, Martin; Amanullah, Rahman
2002-01-01
We investigate the possibility of using the proposed SNAP satellite in combination with low-z supernova searches to distinguish between different inverse power-law quintessence models. If the true model is that of a cosmological constant, we determine the prospects of ruling out the inverse power-law potential. We show that SNAP combined with e.g. the SNfactory and an independent measurement of the mass energy density to 17% accuracy can distinguish between an inverse power-law potential and ...
A mathematical model of cancer cells with phenotypic plasticity
Directory of Open Access Journals (Sweden)
Da Zhou
2015-08-01
Full Text Available Purpose: The phenotypic plasticity of cancer cells is recently becoming a cutting-edge research area in cancer, which challenges the cellular hierarchy proposed by the conventional cancer stem cell theory. In this study, we establish a mathematical model for describing the phenotypic plasticity of cancer cells, based on which we try to find some salient features that can characterize the dynamic behavior of the phenotypic plasticity especially in comparison to the hierarchical model of cancer cells. Methods: We model cancer as population dynamics composed of different phenotypes of cancer cells. In this model, not only can cancer cells divide (symmetrically and asymmetrically and die, but they can also convert into other cellular phenotypes. According to the Law of Mass Action, the cellular processes can be captured by a system of ordinary differential equations (ODEs. On one hand, we can analyze the long-term stability of the model by applying qualitative method of ODEs. On the other hand, we are also concerned about the short-term behavior of the model by studying its transient dynamics. Meanwhile, we validate our model to the cell-state dynamics in published experimental data.Results: Our results show that the phenotypic plasticity plays important roles in both stabilizing the distribution of different phenotypic mixture and maintaining the cancer stem cells proportion. In particular, the phenotypic plasticity model shows decided advantages over the hierarchical model in predicting the phenotypic equilibrium and cancer stem cells’ overshoot reported in previous biological experiments in cancer cell lines.Conclusion: Since the validity of the phenotypic plasticity paradigm and the conventional cancer stem cell theory is still debated in experimental biology, it is worthy of theoretically searching for good indicators to distinguish the two models through quantitative methods. According to our study, the phenotypic equilibrium and overshoot
“Psychosocial Interventions for Cancer Survivors, Caregivers and Family Members—One Size Does Not Fit All: My Perspective as a Young Adult Survivor, Advocate and Oncology Social Worker” a personal reflection by Mary Grace Bontempo page
Quantification of mouse pulmonary cancer models by microcomputed tomography imaging
International Nuclear Information System (INIS)
The advances in preclinical cancer models, including orthotopic implantation models or genetically engineered mouse models of cancer, enable pursuing the molecular mechanism of cancer disease that might mimic genetic and biological processes in humans. Lung cancer is the major cause of cancer deaths; therefore, the treatment and prevention of lung cancer are expected to be improved by a better understanding of the complex mechanism of disease. In this study, we have examined the quantification of two distinct mouse lung cancer models by utilizing imaging modalities for monitoring tumor progression and drug efficacy evaluation. The utility of microcomputed tomography (micro-CT) for real-time/non-invasive monitoring of lung cancer progression has been confirmed by combining bioluminescent imaging and histopathological analyses. Further, we have developed a more clinically relevant lung cancer model by utilizing K-rasLSL-G12D/p53LSL-R270H mutant mice. Using micro-CT imaging, we monitored the development and progression of solitary lung tumor in K-rasLSL-G12D/p53LSL-R270H mutant mouse, and further demonstrated tumor growth inhibition by anticancer drug treatment. These results clearly indicate that imaging-guided evaluation of more clinically relevant tumor models would improve the process of new drug discovery and increase the probability of success in subsequent clinical studies. (author)
Fitting a linear regression model by combining least squares and least absolute value estimation
Allende, Sira; Bouza, Carlos; Romero, Isidro
1995-01-01
Robust estimation of the multiple regression is modeled by using a convex combination of Least Squares and Least Absolute Value criterions. A Bicriterion Parametric algorithm is developed for computing the corresponding estimates. The proposed procedure should be specially useful when outliers are expected. Its behavior is analyzed using some examples.
Heliospheric Propagation of Coronal Mass Ejections: Drag-Based Model Fitting
Žic, T; Temmer, M
2015-01-01
The so-called drag-based model (DBM) simulates analytically the propagation of coronal mass ejections (CMEs) in interplanetary space and allows the prediction of their arrival times and impact speeds at any point in the heliosphere ("target"). The DBM is based on the assumption that beyond a distance of about 20 solar radii from the Sun, the dominant force acting on CMEs is the "aerodynamic" drag force. In the standard form of DBM, the user provisionally chooses values for the model input parameters, by which the kinematics of the CME over the entire Sun--"target" distance range is defined. The choice of model input parameters is usually based on several previously undertaken statistical studies. In other words, the model is used by ad hoc implementation of statistics-based values of the input parameters, which are not necessarily appropriate for the CME under study. Furthermore, such a procedure lacks quantitative information on how well the simulation reproduces the coronagraphically observed kinematics of ...
Where Does Creativity Fit into a Productivist Industrial Model of Knowledge Production?
Ghassib, Hisham B.
2010-01-01
The basic premise of this paper is the fact that science has become a major industry: the knowledge industry. The paper throws some light on the reasons for the transformation of science from a limited, constrained and marginal craft into a major industry. It, then, presents a productivist industrial model of knowledge production, which shows its…
Using the SPSS Mixed Procedure to Fit Cross-Sectional and Longitudinal Multilevel Models
Peugh, James L.; Enders, Craig K.
2005-01-01
Beginning with Version 11, SPSS implemented the MIXED procedure, which is capable of performing many common hierarchical linear model analyses. The purpose of this article was to provide a tutorial for performing cross-sectional and longitudinal analyses using this popular software platform. In doing so, the authors borrowed heavily from Singer's…
Fitting the Mixed Rasch Model to a Reading Comprehension Test: Identifying Reader Types
Baghaei, Purya; Carstensen, Claus H.
2013-01-01
Standard unidimensional Rasch models assume that persons with the same ability parameters are comparable. That is, the same interpretation applies to persons with identical ability estimates as regards the underlying mental processes triggered by the test. However, research in cognitive psychology shows that persons at the same trait level may…
Understanding the Listening Process: Rethinking the "One Size Fits All" Model
Wolvin, Andrew
2013-01-01
Robert Bostrom's seminal contributions to listening theory and research represent an impressive legacy and provide listening scholars with important perspectives on the complexities of listening cognition and behavior. Bostrom's work provides a solid foundation on which to build models that more realistically explain how listeners function…
Fitting Social Network Models Using Varying Truncation Stochastic Approximation MCMC Algorithm
Jin, Ick Hoon
2013-10-01
The exponential random graph model (ERGM) plays a major role in social network analysis. However, parameter estimation for the ERGM is a hard problem due to the intractability of its normalizing constant and the model degeneracy. The existing algorithms, such as Monte Carlo maximum likelihood estimation (MCMLE) and stochastic approximation, often fail for this problem in the presence of model degeneracy. In this article, we introduce the varying truncation stochastic approximation Markov chain Monte Carlo (SAMCMC) algorithm to tackle this problem. The varying truncation mechanism enables the algorithm to choose an appropriate starting point and an appropriate gain factor sequence, and thus to produce a reasonable parameter estimate for the ERGM even in the presence of model degeneracy. The numerical results indicate that the varying truncation SAMCMC algorithm can significantly outperform the MCMLE and stochastic approximation algorithms: for degenerate ERGMs, MCMLE and stochastic approximation often fail to produce any reasonable parameter estimates, while SAMCMC can do; for nondegenerate ERGMs, SAMCMC can work as well as or better than MCMLE and stochastic approximation. The data and source codes used for this article are available online as supplementary materials. © 2013 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America.
Directory of Open Access Journals (Sweden)
James M McCaw
2011-04-01
Full Text Available We present a method to measure the relative transmissibility ("transmission fitness" of one strain of a pathogen compared to another. The model is applied to data from "competitive mixtures" experiments in which animals are co-infected with a mixture of two strains. We observe the mixture in each animal over time and over multiple generations of transmission. We use data from influenza experiments in ferrets to demonstrate the approach. Assessment of the relative transmissibility between two strains of influenza is important in at least three contexts: 1 Within the human population antigenically novel strains of influenza arise and compete for susceptible hosts. 2 During a pandemic event, a novel sub-type of influenza competes with the existing seasonal strain(s. The unfolding epidemiological dynamics are dependent upon both the population's susceptibility profile and the inherent transmissibility of the novel strain compared to the existing strain(s. 3 Neuraminidase inhibitors (NAIs, while providing significant potential to reduce transmission of influenza, exert selective pressure on the virus and so promote the emergence of drug-resistant strains. Any adverse outcome due to selection and subsequent spread of an NAI-resistant strain is exquisitely dependent upon the transmission fitness of that strain. Measurement of the transmission fitness of two competing strains of influenza is thus of critical importance in determining the likely time-course and epidemiology of an influenza outbreak, or the potential impact of an intervention measure such as NAI distribution. The mathematical framework introduced here also provides an estimate for the size of the transmitted inoculum. We demonstrate the framework's behaviour using data from ferret transmission studies, and through simulation suggest how to optimise experimental design for assessment of transmissibility. The method introduced here for assessment of mixed transmission events has
Tobita, Mikio
2016-03-01
The time series of a postseismic deformation is commonly fitted by a logarithmic or exponential decay function. However, the high-quality postseismic Global Navigation Satellite System (GNSS) time series of the 2011 Mw 9 Tohoku-Oki earthquake indicates that a single decay function cannot be used to represent the postseismic behaviour. We therefore combined the logarithmic (log) and exponential (exp) decay functions and developed methods for obtaining global solutions using nonlinear least squares calculations for such complex functions. Our models significantly improved the fitting performance of the postseismic time series and the prediction performance of the evolution of postseismic deformation. The solutions obtained by the proposed models and methods enabled distinction between the contributions of the log and exp functions, and explanation of characteristic phenomena such as the subsidence that occurs immediately after an earthquake is reversed to an uplift. The analysis of the solutions may suggest that there has been a continuous increase in the contribution of viscoelastic relaxation to postseismic deformation in eastern Japan, whereas the contribution of afterslip has rapidly decreased. The short-term prediction performance and the universal applicability of the proposed models to the Tohoku-Oki earthquake have contributed to the detection of a slow-slip event in the Tokai region. Rather than the existence of a unique single relaxation time for each surface site, our results suggest a unique single relaxation time for each postseismic deformation mechanism at a given subsurface location. Although the predictions were highly dependent on the assigned steady velocities and the long-term relaxation time constants, they indicate that the coseismic subsidence of the Yamoto station in Miyagi prefecture will recover around the year 2020. The estimated relaxation time constants of the present models appeared to be uniform throughout eastern Japan.
Review of Animal Models of Prostate Cancer Bone Metastasis
Directory of Open Access Journals (Sweden)
Jessica K. Simmons
2014-06-01
Full Text Available Prostate cancer bone metastases are associated with a poor prognosis and are considered incurable. Insight into the formation and growth of prostate cancer bone metastasis is required for development of new imaging and therapeutic strategies to combat this devastating disease. Animal models are indispensable in investigating cancer pathogenesis and evaluating therapeutics. Multiple animal models of prostate cancer bone metastasis have been developed, but few effectively model prostatic neoplasms and osteoblastic bone metastases as they occur in men. This review discusses the animal models that have been developed to investigate prostate cancer bone metastasis, with a focus on canine models and also includes human xenograft and rodent models. Adult dogs spontaneously develop benign prostatic hyperplasia and prostate cancer with osteoblastic bone metastases. Large animal models, such as dogs, are needed to develop new molecular imaging tools and effective focal intraprostatic therapy. None of the available models fully reflect the metastatic disease seen in men, although the various models have provided important insight into the metastatic process. As additional models are developed and knowledge from the different models is combined, the molecular mechanisms of prostate cancer bone metastasis can be deciphered and targeted for development of novel therapies and molecular diagnostic imaging.
Directory of Open Access Journals (Sweden)
José Fabio Camolesi
2010-12-01
Full Text Available The objectives of this study were: to fit and select statistical models for estimating the total volume, with and without bark, and number of fence posts in three counties of Minas Gerais State, as well as, to define the stack factor per diameter class and to evaluate, by means of the identity model test, the possibility of using the same mathematical model for all regions. Data base were obtained from a scaling of 174 trees grouped in six diameter classes within the three study regions. The scaling was carried out using the xylometer method (water displacement technique. The accuracy of the models was evaluated using the coefficient of determination, the mean standard error of estimate, and the graphical analysis of residuals. The Spurr logarithm model was selected as the best one for all tested variables. Considering the variables total volume, with and without bark, the identity test showed the possibility of using the same model for Aiuruoca and Ouro Preto counties whereas for the variable number of fence posts, the identity test showed that there is no possibility of grouping for any combination among the counties.
A CONTRASTIVE ANALYSIS OF THE FACTORIAL STRUCTURE OF THE PCL-R: WHICH MODEL FITS BEST THE DATA?
Directory of Open Access Journals (Sweden)
Beatriz Pérez
2015-01-01
Full Text Available The aim of this study was to determine which of the factorial solutions proposed for the Hare Psychopathy Checklist-Revised (PCL-R of two, three, four factors, and unidimensional fitted best the data. Two trained and experienced independent raters scored 197 prisoners from the Villabona Penitentiary (Asturias, Spain, age range 21 to 73 years (M = 36.0, SD = 9.7, of whom 60.12% were reoffenders and 73% had committed violent crimes. The results revealed that the two-factor correlational, three-factor hierarchical without testlets, four-factor correlational and hierarchical, and unidimensional models were a poor fit for the data (CFI ≤ .86, and the three-factor model with testlets was a reasonable fit for the data (CFI = .93. The scale resulting from the three-factor hierarchical model with testlets (13 items classified psychopathy significantly higher than the original 20-item scale. The results are discussed in terms of their implications for theoretical models of psychopathy, decision-making, prison classification and intervention, and prevention. Se diseñó un estudio con el objetivo de conocer cuál de las soluciones factoriales propuestas para la Hare Psychopathy Checklist-Revised (PCL-R de dos, tres y cuatro factores y unidimensional era la que presentaba mejor ajuste a los datos. Para ello, dos evaluadores entrenados y con experiencia evaluaron de forma independiente a 197 internos en la prisión Villabona (Asturias, España, con edades comprendidas entre los 21 y los 73 años (M = 36.0, DT = 9.7, de los cuales el 60.12% eran reincidentes y el 73% había cometido delitos violentos. Los resultados mostraron que los modelos unidimensional, correlacional de 2 factores, jerárquico de 3 factores sin testlest y correlacional y jerárquico de 4 factores, presentaban un pobre ajuste con los datos (CFI ≤ .86 y un ajuste razonable del modelo jerárquico de tres factores con testlets (CFI = .93. La escala resultante del modelo de tres factores
Effect of tectonic setting on the fit and performance of a long-range earthquake forecasting model
Directory of Open Access Journals (Sweden)
David Alan Rhoades
2012-02-01
Full Text Available The Every Earthquake a Precursor According to Scale (EEPAS long-range earthquake forecasting model has been shown to be informative in several seismically active regions, including New Zealand, California and Japan. In previous applications of the model, the tectonic setting of earthquakes has been ignored. Here we distinguish crustal, plate interface, and slab earthquakes and apply the model to earthquakes with magnitude M≥4 in the Japan region from 1926 onwards. The target magnitude range is M≥ 6; the fitting period is 1966-1995; and the testing period is 1996-2005. In forecasting major slab earthquakes, it is optimal to use only slab and interface events as precursors. In forecasting major interface events, it is optimal to use only interface events as precursors. In forecasting major crustal events, it is optimal to use only crustal events as precursors. For the smoothed-seismicity component of the EEPAS model, it is optimal to use slab and interface events for earthquakes in the slab, interface events only for earthquakes on the interface, and crustal and interface events for crustal earthquakes. The optimal model parameters indicate that the precursor areas for slab earthquakes are relatively small compared to those for earthquakes in other tectonic categories, and that the precursor times and precursory earthquake magnitudes for crustal earthquakes are relatively large. The optimal models fit the learning data sets better than the raw EEPAS model, with an average information gain per earthquake of about 0.4. The average information gain is similar in the testing period, although it is higher for crustal earthquakes and lower for slab and interface earthquakes than in the learning period. These results show that earthquake interactions are stronger between earthquakes of similar tectonic types and that distinguishing tectonic types improves forecasts by enhancing the depth resolution where tectonic categories of earthquakes are
Araujo Pimentel, Guilherme; Rapaport, Alain; Vande Wouwer, Alain
2015-01-01
Submerged membrane bioreactors are increasingly applied for wastewater treamentbut requires a tight control of the membrane fouling so as to ensure safe and efficient operation.The objective of this paper is to design a nonlinear model predictive control to minimize theirreversible resistance while keeping the trans-membrane pressure, which is a good indicatorof membrane fouling, at an acceptable level. To this end, the manipulated variables are thepermeate flow and the air scouring flow, whi...
The fitness of drug-resistant malaria parasites in a rodent model: multiplicity of infection
Huijben, Silvie; Sim, Derek G.; Nelson, William; Read, Andrew F.
2011-01-01
Malaria infections normally consist of more than one clonally-replicating lineage. Within-host interactions between sensitive and resistant parasites can have profound effects on the evolution of drug resistance. Here, using the Plasmodium chabaudi mouse malaria model, we ask whether the costs and benefits of resistance are affected by the number of co-infecting strains competing with a resistant clone. We found strong competitive suppression of resistant parasites in untreated infections and...
DEFF Research Database (Denmark)
Madsen, Jonas Stenløkke; Lin, Yu Cheng; Squyres, Georgia R.;
2015-01-01
to the colony edge produced mutants with clear competitive advantages against the wild type in this O2-replete niche. In general, the structurally heterogeneous colony environment promoted more diversification than the more homogeneous pellicle. These results suggest that the role of Pel in community structure...... formation in response to electron acceptor limitation is unique to specific biofilm models and that the facultative control of Pel production is required for PA14 to maintain optimum benefit in different types of communities....
Slater, Megan E; Steinberger, Julia; Ross, Julie A; Kelly, Aaron S; Chow, Eric J; Koves, Ildiko H; Hoffmeister, Paul; Sinaiko, Alan R; Petryk, Anna; Moran, Antoinette; Lee, Jill; Chow, Lisa S; Baker, K Scott
2015-07-01
Along with other childhood cancer survivors (CCS), hematopoietic cell transplantation (HCT) survivors are at high risk of treatment-related late effects, including cardiovascular disease and diabetes. Cardiometabolic risk factor abnormalities may be exacerbated by inadequate physical activity (PA). Relationships between PA and cardiometabolic risk factors have not been well described in CCS with HCT. PA (self reported), mobility (timed up and go test), endurance (6-minute walk test), handgrip strength, and cardiometabolic risk factors were measured in 119 HCT survivors and 66 sibling controls ages ≥18 years. Adjusted comparisons between HCT survivors and controls and between categories of low and high PA, mobility, endurance, and strength were performed with linear regression. Among HCT survivors, the high PA group had lower waist circumference (WC) (81.9 ± 2.5 versus 88.6 ± 3.1 cm ± standard error (SE), P = .009) than the low PA group, whereas the high endurance group had lower WC (77.8 ± 2.6 versus 87.8 ± 2.5 cm ± SE, P = .0001) and percent fat mass (33.6 ± 1.8 versus 39.4 ± 1.7% ± SE, P = .0008) and greater insulin sensitivity (IS) (10.9 ± 1.0 versus 7.42 ± 1.14 mg/kg/min ± SE via euglycemic insulin clamp, P = .001) than the low endurance group. Differences were greater in HCT survivors than in controls for WC between low and high PA groups, triglycerides between low and high mobility groups, and WC, systolic blood pressure, and IS between low and high endurance groups (all Pinteraction HCT survivors, suggesting that interventions directed to increase endurance in survivors may reduce the risk of future cardiovascular disease. PMID:25865649
International Nuclear Information System (INIS)
An idealized mathematical model for carcinogenesis is proposed, based on age-time patterns of excess solid cancer risk seen in the Radiation Effects Research Foundation data on A-bomb survivors. The primary component is similar to the Armitage-Doll multistage model, with the interpretation that the events in that model are somatic mutations. The manner of extending this model to incorporate effects of a specific carcinogen, here an acute irradiation, is novel in the sense that the irradiation can cause any one of the mutations in the multi-event process. The motivation for this formulation is the observation that the excess solid cancer rate associated with radiation exposure appears largely to depend only on attained age, rather than on age at exposure and time since exposure. The model is fitted to the A-bomb survivor data on a class of cancers consisting of the major non-sex-specific types. (author)
Bayesian spatio-temporal modelling of tobacco-related cancer mortality in Switzerland
Directory of Open Access Journals (Sweden)
Verena Jürgens
2013-05-01
Full Text Available Tobacco smoking is a main cause of disease in Switzerland; lung cancer being the most common cancer mortality in men and the second most common in women. Although disease-specific mortality is decreasing in men, it is steadily increasing in women. The four language regions in this country might play a role in this context as they are influenced in different ways by the cultural and social behaviour of neighbouring countries. Bayesian hierarchical spatio-temporal, negative binomial models were fitted on subgroup-specific death rates indirectly standardized by national references to explore age- and gender-specific spatio-temporal patterns of mortality due to lung cancer and other tobacco-related cancers in Switzerland for the time period 1969-2002. Differences influenced by linguistic region and life in rural or urban areas were also accounted for. Male lung cancer mortality was found to be rather homogeneous in space, whereas women were confirmed to be more affected in urban regions. Compared to the German-speaking part, female mortality was higher in the French-speaking part of the country, a result contradicting other reports of similar comparisons between France and Germany. The spatio-temporal patterns of mortality were similar for lung cancer and other tobacco-related cancers. The estimated mortality maps can support the planning in health care services and evaluation of a national tobacco control programme. Better understanding of spatial and temporal variation of cancer of the lung and other tobacco-related cancers may help in allocating resources for more effective screening, diagnosis and therapy. The methodology can be applied to similar studies in other settings.
The hamster cheek pouch model for field cancerization studies.
Monti-Hughes, Andrea; Aromando, Romina F; Pérez, Miguel A; Schwint, Amanda E; Itoiz, Maria E
2015-02-01
External carcinogens, such as tobacco and alcohol, induce molecular changes in large areas of oral mucosa, which increase the risk of malignant transformation. This condition, known as 'field cancerization', can be detected in biopsy specimens using histochemical techniques, even before histological alterations are identified. The efficacy of these histochemical techniques as biomarkers of early cancerization must be demonstrated in appropriate models. The hamster cheek pouch oral cancer model, universally employed in biological studies and in studies for the prevention and treatment of oral cancer, is also an excellent model of field cancerization. The carcinogen is applied in solution to the surface of the mucosa and induces alterations that recapitulate the stages of cancerization in human oral mucosa. We have demonstrated that the following can be used for the early detection of cancerized tissue: silver staining of nucleolar organizer regions; the Feulgen reaction to stain DNA followed by ploidy analysis; immunohistochemical analysis of fibroblast growth factor-2, immunohistochemical labeling of proliferating cells to demonstrate an increase of epithelial cell proliferation in the absence of inflammation; and changes in markers of angiogenesis (i.e. those indicating vascular endothelial growth factor activity, endothelial cell proliferation and vascular density). The hamster cheek pouch model of oral cancer was also proposed and validated by our group for boron neutron capture therapy studies for the treatment of oral cancer. Clinical trials of this novel treatment modality have been performed and are underway for certain tumor types and localizations. Having demonstrated the efficacy of boron neutron capture therapy to control tumors in the hamster cheek pouch oral cancer model, we adapted the model for the long-term study of field cancerized tissue. We demonstrated the inhibitory effect of boron neutron capture therapy on tumor development in field
Urrialde, Verónica; Prieto, Daniel; Pla, Jesús; Alonso-Monge, Rebeca
2016-01-01
The Pho4 transcription factor is required for growth under low environmental phosphate concentrations in Saccharomyces cerevisiae. A characterization of Candida albicans pho4 mutants revealed that these cells are more susceptible to both osmotic and oxidative stress and that this effect is diminished in the presence of 5% CO2 or anaerobiosis, reflecting the relevance of oxygen metabolism in the Pho4-mediated response. A pho4 mutant was as virulent as wild type strain when assayed in the Galleria mellonella infection model and was even more resistant to murine macrophages in ex vivo killing assays. The lack of Pho4 neither impairs the ability to colonize the murine gut nor alters the localization in the gastrointestinal tract. However, we found that Pho4 influenced the colonization of C. albicans in the mouse gut in competition assays; pho4 mutants were unable to attain high colonization levels when inoculated simultaneously with an isogenic wild type strain. Moreover, pho4 mutants displayed a reduced adherence to the intestinal mucosa in a competitive ex vivo assays with wild type cells. In vitro competitive assays also revealed defects in fitness for this mutant compared to the wild type strain. Thus, Pho4, a transcription factor involved in phosphate metabolism, is required for adaptation to stress and fitness in C. albicans.
A Hierarchical Probability Model of Colon Cancer
Kelly, Michael
2010-01-01
We consider a model of fixed size $N = 2^l$ in which there are $l$ generations of daughter cells and a stem cell. In each generation $i$ there are $2^{i-1}$ daughter cells. At each integral time unit the cells split so that the stem cell splits into a stem cell and generation 1 daughter cell and the generation $i$ daughter cells become two cells of generation $i+1$. The last generation is removed from the population. The stem cell gets first and second mutations at rates $u_1$ and $u_2$ and the daughter cells get first and second mutations at rates $v_1$ and $v_2$. We find the distribution for the time it takes to get two mutations as $N$ goes to infinity and the mutation rates go to 0. We also find the distribution for the location of the mutations. Several outcomes are possible depending on how fast the rates go to 0. The model considered has been proposed by Komarova (2007) as a model for colon cancer.
A fully Bayesian method for jointly fitting instrumental calibration and X-ray spectral models
Energy Technology Data Exchange (ETDEWEB)
Xu, Jin; Yu, Yaming [Department of Statistics, University of California, Irvine, Irvine, CA 92697-1250 (United States); Van Dyk, David A. [Statistics Section, Imperial College London, Huxley Building, South Kensington Campus, London SW7 2AZ (United Kingdom); Kashyap, Vinay L.; Siemiginowska, Aneta; Drake, Jeremy; Ratzlaff, Pete [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Connors, Alanna; Meng, Xiao-Li, E-mail: jinx@uci.edu, E-mail: yamingy@ics.uci.edu, E-mail: dvandyk@imperial.ac.uk, E-mail: vkashyap@cfa.harvard.edu, E-mail: asiemiginowska@cfa.harvard.edu, E-mail: jdrake@cfa.harvard.edu, E-mail: pratzlaff@cfa.harvard.edu, E-mail: meng@stat.harvard.edu [Department of Statistics, Harvard University, 1 Oxford Street, Cambridge, MA 02138 (United States)
2014-10-20
Owing to a lack of robust principled methods, systematic instrumental uncertainties have generally been ignored in astrophysical data analysis despite wide recognition of the importance of including them. Ignoring calibration uncertainty can cause bias in the estimation of source model parameters and can lead to underestimation of the variance of these estimates. We previously introduced a pragmatic Bayesian method to address this problem. The method is 'pragmatic' in that it introduced an ad hoc technique that simplified computation by neglecting the potential information in the data for narrowing the uncertainty for the calibration product. Following that work, we use a principal component analysis to efficiently represent the uncertainty of the effective area of an X-ray (or γ-ray) telescope. Here, however, we leverage this representation to enable a principled, fully Bayesian method that coherently accounts for the calibration uncertainty in high-energy spectral analysis. In this setting, the method is compared with standard analysis techniques and the pragmatic Bayesian method. The advantage of the fully Bayesian method is that it allows the data to provide information not only for estimation of the source parameters but also for the calibration product—here the effective area, conditional on the adopted spectral model. In this way, it can yield more accurate and efficient estimates of the source parameters along with valid estimates of their uncertainty. Provided that the source spectrum can be accurately described by a parameterized model, this method allows rigorous inference about the effective area by quantifying which possible curves are most consistent with the data.
Experimentally fitted biodynamic models for pedestrian-structure interaction in walking situations
Toso, Marcelo André; Gomes, Herbert Martins; da Silva, Felipe Tavares; Pimentel, Roberto Leal
2016-05-01
The interaction between moving humans and structures usually occurs in slender structures in which the level of vibration is potentially high. Furthermore, there is the addition of mass to the structural system due to the presence of people and an increase in damping due to the human body´s ability to absorb vibrational energy. In this paper, a test campaign is presented to obtain parameters for a single degree of freedom (SDOF) biodynamic model that represents the action of a walking pedestrian in the vertical direction. The parameters of this model are the mass (m), damping (c) and stiffness (k). The measurements were performed on a force platform, and the inputs were the spectral acceleration amplitudes of the first three harmonics at the waist level of the test subjects and the corresponding amplitudes of the first three harmonics of the vertical ground reaction force. This leads to a system of nonlinear equations that is solved using a gradient-based optimization algorithm. A set of individuals took part in the tests to ensure inter-subject variability, and, regression expressions and an artificial neural network (ANN) were used to relate the biodynamic parameters to the pacing rate and the body mass of the pedestrians. The results showed some scatter in damping and stiffness that could not be precisely correlated with the masses and pacing rates of the subjects. The use of the ANN resulted in significant improvements in the parameter expressions with a low uncertainty. Finally, the measured vertical accelerations on a prototype footbridge show the adequacy of the numerical model for the representation of the effects of walking pedestrians on a structure. The results are consistent for many crowd densities.
A fully Bayesian method for jointly fitting instrumental calibration and X-ray spectral models
International Nuclear Information System (INIS)
Owing to a lack of robust principled methods, systematic instrumental uncertainties have generally been ignored in astrophysical data analysis despite wide recognition of the importance of including them. Ignoring calibration uncertainty can cause bias in the estimation of source model parameters and can lead to underestimation of the variance of these estimates. We previously introduced a pragmatic Bayesian method to address this problem. The method is 'pragmatic' in that it introduced an ad hoc technique that simplified computation by neglecting the potential information in the data for narrowing the uncertainty for the calibration product. Following that work, we use a principal component analysis to efficiently represent the uncertainty of the effective area of an X-ray (or γ-ray) telescope. Here, however, we leverage this representation to enable a principled, fully Bayesian method that coherently accounts for the calibration uncertainty in high-energy spectral analysis. In this setting, the method is compared with standard analysis techniques and the pragmatic Bayesian method. The advantage of the fully Bayesian method is that it allows the data to provide information not only for estimation of the source parameters but also for the calibration product—here the effective area, conditional on the adopted spectral model. In this way, it can yield more accurate and efficient estimates of the source parameters along with valid estimates of their uncertainty. Provided that the source spectrum can be accurately described by a parameterized model, this method allows rigorous inference about the effective area by quantifying which possible curves are most consistent with the data.
Fitness club
2013-01-01
Nordic Walking Classes New session of 4 classes of 1 hour each will be held on Tuesdays in May 2013. Meet at the CERN barracks parking at Entrance A, 10 minutes before class time. Dates and time: 07.05, 14.05, 21.05 and 28.05, fom 12 h 30 to 13 h 30 Prices: 40 CHF per session + 10 CHF club membership – 5 CHF / hour pole rental Check out our schedule and enroll at http://cern.ch/club-fitness Hope to see you among us!
Fitting the CDO correlation skew: a tractable structural jump-diffusion model
DEFF Research Database (Denmark)
Willemann, Søren
2007-01-01
We extend a well-known structural jump-diffusion model for credit risk to handle both correlations through diffusion of asset values and common jumps in asset value. Through a simplifying assumption on the default timing and efficient numerical techniques, we develop a semi-analytic framework all...... crash of roughly 0.1% within five years. In the European market, the implied effect from a crash is that all companies come very close to defaulting while the implied effect in the US market is an average loss of 78% in asset value....
Cristina García Magro; Luisa Eugenia Reyes Recio
2015-01-01
Purpose: The aims of the paper is offers a model of analysis which allows to measure the impact on the performance of fairs, as well as the knowledge or not of the motives of participation of the visitors on the part of the exhibitors. Design/methodology: A review of the literature is established concerning two of the principal interested agents, exhibitors and visitors, focusing. The study is focused on the line of investigation referred to the motives of participation or not in a trade show...
ESTIMATE OF THE HYPSOMETRIC RELATIONSHIP WITH NONLINEAR MODELS FITTED BY EMPIRICAL BAYESIAN METHODS
Directory of Open Access Journals (Sweden)
Monica Fabiana Bento Moreira
2015-09-01
Full Text Available In this paper we propose a Bayesian approach to solve the inference problem with restriction on parameters, regarding to nonlinear models used to represent the hypsometric relationship in clones of Eucalyptus sp. The Bayesian estimates are calculated using Monte Carlo Markov Chain (MCMC method. The proposed method was applied to different groups of actual data from which two were selected to show the results. These results were compared to the results achieved by the minimum square method, highlighting the superiority of the Bayesian approach, since this approach always generate the biologically consistent results for hipsometric relationship.
A Monte Carlo-adjusted goodness-of-fit test for parametric models describing spatial point patterns
Dao, Ngocanh
2014-04-03
Assessing the goodness-of-fit (GOF) for intricate parametric spatial point process models is important for many application fields. When the probability density of the statistic of the GOF test is intractable, a commonly used procedure is the Monte Carlo GOF test. Additionally, if the data comprise a single dataset, a popular version of the test plugs a parameter estimate in the hypothesized parametric model to generate data for theMonte Carlo GOF test. In this case, the test is invalid because the resulting empirical level does not reach the nominal level. In this article, we propose a method consisting of nested Monte Carlo simulations which has the following advantages: the bias of the resulting empirical level of the test is eliminated, hence the empirical levels can always reach the nominal level, and information about inhomogeneity of the data can be provided.We theoretically justify our testing procedure using Taylor expansions and demonstrate that it is correctly sized through various simulation studies. In our first data application, we discover, in agreement with Illian et al., that Phlebocarya filifolia plants near Perth, Australia, can follow a homogeneous Poisson clustered process that provides insight into the propagation mechanism of these plants. In our second data application, we find, in contrast to Diggle, that a pairwise interaction model provides a good fit to the micro-anatomy data of amacrine cells designed for analyzing the developmental growth of immature retina cells in rabbits. This article has supplementary material online. © 2013 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America.
Assessing the fit of biotic ligand model validation data in a risk management decision context.
McLaughlin, Douglas B
2015-10-01
Biotic ligand models (BLMs) have advanced the ability to predict the concentrations of metals in surface waters likely to harm aquatic organisms. BLMs have been developed for several metals including Cu, Zn, Cd, and Ag. Additionally, the US Environmental Protection Agency has published guidance on the use of a BLM to develop water quality criteria for Cu. To validate the predictive performance of many BLMs, model predictions based on test water quality have been compared with corresponding laboratory toxicity measurements. Validation results are typically described in the published literature in terms of the proportion of predicted effect concentrations that fall within a factor of 2 of measured values. In this article, an alternative is presented using a receiver operating characteristics approach and regression prediction limit analyses, quantifying the probabilities of true and false predictions of excess toxicity risk based on toxic unit calculations and a risk management threshold of 1. The approaches are applied to a published Zn BLM and 3 simulated data sets that reflect attributes of other published BLM validation data. The overall accuracy of the unified Zn BLM is estimated to be 80% to 90%, and analyses of simulated data suggest a similar level of accuracy for other published BLMs. Further application of these validation methods to other BLMs may provide more complete and transparent information on their possible predictive value when used in the management of risks due to aqueous metals. PMID:25779880
International Nuclear Information System (INIS)
Highlights: • We suggest a simple way for wind direction modeling using the mixture of von Mises distribution. • We determine the most suitable probability model for wind direction regime in Malaysia. • We provide the circular density plots to show the most prominent directions of wind blows. - Abstract: A statistical distribution for describing wind direction provides information about the wind regime at a particular location. In addition, this information complements knowledge of wind speed, which allows researchers to draw some conclusions about the energy potential of wind and aids the development of efficient wind energy generation. This study focuses on modeling the frequency distribution of wind direction, including some characteristics of wind regime that cannot be represented by a unimodal distribution. To identify the most suitable model, a finite mixture of von Mises distributions were fitted to the average hourly wind direction data for nine wind stations located in Peninsular Malaysia. The data used were from the years 2000 to 2009. The suitability of each mixture distribution was judged based on the R2 coefficient and the histogram plot with a density line. The results showed that the finite mixture of the von Mises distribution with H number of components was the best distribution to describe the wind direction distributions in Malaysia. In addition, the circular density plots of the suitable model clearly showed the most prominent directions of wind blows than the other directions
Bonomo, A S
2008-01-01
We present a comparison of two methods of fitting solar-like variability to increase the efficiency of detection of Earth-like planetary transits across the disk of a Sun-like star. One of them is the harmonic fitting method that coupled with the BLS detection algorithm demonstrated the best performance during the first CoRoT blind test. We apply a Monte Carlo approach by simulating a large number of light curves of duration 150 days for different values of planetary radius, orbital period, epoch of the first transit, and standard deviation of the photon shot noise. Stellar variability is assumed in all the cases to be given by the Total Solar Irradiance variations as observed close to the maximum of solar cycle 23. After fitting solar variability, transits are searched for by means of the BLS algorithm. We find that a model based on three point-like active regions is better suited than a best fit with a linear combination of 200 harmonic functions to reduce the impact of stellar microvariability provided tha...
STATISTICAL EVALUATION OF FITTING ACCURACY OF GLOBAL AND LOCAL DIGITAL ELEVATION MODELS IN IRAN
Directory of Open Access Journals (Sweden)
F. Alidoost
2013-09-01
Full Text Available Digital Elevation Models (DEMs are one of the most important data for various applications such as hydrological studies, topography mapping and ortho image generation. There are well-known DEMs of the whole world that represent the terrain's surface at variable resolution and they are also freely available for 99% of the globe. However, it is necessary to assess the quality of the global DEMs for the regional scale applications.These models are evaluated by differencing with other reference DEMs or ground control points (GCPs in order to estimate the quality and accuracy parameters over different land cover types. In this paper, a comparison of ASTER GDEM ver2, SRTM DEM with more than 800 reference GCPs and also with a local elevation model over the area of Iran is presented. This study investigates DEM’s characteristics such as systematic error (bias, vertical accuracy and outliers for DEMs using both the usual (Mean error, Root Mean Square Error, Standard Deviation and the robust (Median, Normalized Median Absolute Deviation, Sample Quantiles descriptors. Also, the visual assessment tools are used to illustrate the quality of DEMs, such as normalized histograms and Q-Q plots. The results of the study confirmed that there is a negative elevation bias of approximately 5 meters of GDEM ver2. The measured RMSE and NMAD for elevation differences of GDEM-GCPs are 7.1 m and 3.2 m, respectively, while these values for SRTM and GCPs are 9.0 m and 4.4 m. On the other hand, in comparison with the local DEM, GDEM ver2 exhibits the RMSE of about 6.7 m, a little higher than the RMSE of SRTM (5.1 m.The results of height difference classification and other statistical analysis of GDEM ver2-local DEM and SRTM-local DEM reveal that SRTM is slightly more accurate than GDEM ver2. Accordingly, SRTM has no noticeable bias and shift from Local DEM and they have more consistency to each other, while GDEM ver2 has always a negative bias.
Model of Care for Adolescents and Young Adults with Cancer: The Youth Project in Milan.
Magni, Chiara; Veneroni, Laura; Silva, Matteo; Casanova, Michela; Chiaravalli, Stefano; Massimino, Maura; Clerici, Carlo Alfredo; Ferrari, Andrea
2016-01-01
Adolescents and young adults (AYA) with cancer form a particular group of patients with unique characteristics, who inhabit a so-called "no man's land" between pediatric and adult services. In the last 10 years, the scientific oncology community has started to pay attention to these patients, implementing dedicated programs. A standardized model of care directed toward patients in this age range has yet to be developed and neither the pediatric nor the adult oncologic systems perfectly fit these patients' needs. The Youth Project of the Istituto Nazionale Tumori in Milan, dedicated to AYA with pediatric-type solid tumors, can be seen as a model of care for AYA patients, with its heterogeneous multidisciplinary staff and close cooperation with adult medical oncologists and surgeons. Further progress in the care of AYA cancer patients is still needed to improve their outcomes. PMID:27606308
Model of Care for Adolescents and Young Adults with Cancer: The Youth Project in Milan
Magni, Chiara; Veneroni, Laura; Silva, Matteo; Casanova, Michela; Chiaravalli, Stefano; Massimino, Maura; Clerici, Carlo Alfredo; Ferrari, Andrea
2016-01-01
Adolescents and young adults (AYA) with cancer form a particular group of patients with unique characteristics, who inhabit a so-called “no man’s land” between pediatric and adult services. In the last 10 years, the scientific oncology community has started to pay attention to these patients, implementing dedicated programs. A standardized model of care directed toward patients in this age range has yet to be developed and neither the pediatric nor the adult oncologic systems perfectly fit these patients’ needs. The Youth Project of the Istituto Nazionale Tumori in Milan, dedicated to AYA with pediatric-type solid tumors, can be seen as a model of care for AYA patients, with its heterogeneous multidisciplinary staff and close cooperation with adult medical oncologists and surgeons. Further progress in the care of AYA cancer patients is still needed to improve their outcomes. PMID:27606308
Establishing of the Transplanted Animal Models for Human Lung Cancer
Institute of Scientific and Technical Information of China (English)
Xingli Zhang; Jinchang Wu
2009-01-01
Lung cancer is the leading cause of cancer mortality worldwide.Even with the applications of excision,radiotherapy,chemotherapy,and gene therapy,the 5 year survival rate is only 15% in the USA.Clinically relevant laboratory animal models of the disease could greatly facilitate understanding of the pathogenesis of lung cancer,its progression,invasion and metastasis.Transplanted lung cancer models are of special interest and are widely used today.Such models are essential tools in accelerating development of new therapies for lung cancer.In this communication we will present a brief overview of the hosts,sites and pathways used to establish transplanted animal lung tumor models.
Hameeteman, K.; van't Klooster, R.; Selwaness, M.; van der Lugt, A.; Witteman, J. C. M.; Niessen, W. J.; Klein, S.
2013-03-01
We present a method for carotid vessel wall volume quantification from magnetic resonance imaging (MRI). The method combines lumen and outer wall segmentation based on deformable model fitting with a learning-based segmentation correction step. After selecting two initialization points, the vessel wall volume in a region around the bifurcation is automatically determined. The method was trained on eight datasets (16 carotids) from a population-based study in the elderly for which one observer manually annotated both the lumen and outer wall. An evaluation was carried out on a separate set of 19 datasets (38 carotids) from the same study for which two observers made annotations. Wall volume and normalized wall index measurements resulting from the manual annotations were compared to the automatic measurements. Our experiments show that the automatic method performs comparably to the manual measurements. All image data and annotations used in this study together with the measurements are made available through the website http://ergocar.bigr.nl.
Jain, Jalaj; Prakash, Ram; Vyas, Gheesa Lal; Pal, Udit Narayan; Chowdhuri, Malay Bikas; Manchanda, Ranjana; Halder, Nilanjan; Choyal, Yaduvendra
2015-12-01
In the present work an effort has been made to estimate the plasma parameters simultaneously like—electron density, electron temperature, ground state atom density, ground state ion density and metastable state density from the observed visible spectra of penning plasma discharge (PPD) source using least square fitting. The analysis is performed for the prominently observed neutral helium lines. The atomic data and analysis structure (ADAS) database is used to provide the required collisional-radiative (CR) photon emissivity coefficients (PECs) values under the optical thin plasma condition in the analysis. With this condition the estimated plasma temperature from the PPD is found rather high. It is seen that the inclusion of opacity in the observed spectral lines through PECs and addition of diffusion of neutrals and metastable state species in the CR-model code analysis improves the electron temperature estimation in the simultaneous measurement.
International Nuclear Information System (INIS)
Self-consistent mean-field models are able to reproduce well the overall properties of nuclei for a wide range of masses. Nevertheless, they are intrinsically unsuitable for the description of some important observables like the single-particle strength distribution or, in connection with collective states, their damping width and their gamma decay to the ground state or to low lying states. For this reason, a completely microscopic approach beyond mean- field has been implemented recently, based on the Skyrme functional. When beyond mean-field theories are handled, the mean-field-fitted effective interaction should be refitted at the desired level of approximation. If zero-range interactions are used, divergences arise. We present some steps towards the refitting of Skyrme interactions, for its application in finite nuclei.
DEFF Research Database (Denmark)
Giardino, P. P.; Kannike, K.; Masina, I.;
2014-01-01
We perform a state-of-the-art global fit to all Higgs data. We synthesise them into a 'universal' form, which allows to easily test any desired model. We apply the proposed methodology to extract from data the Higgs branching ratios, production cross sections, couplings and to analyse composite H...... as an alternative to the Higgs, and disfavour fits with negative Yukawa couplings. We derive for the first time the SM Higgs boson mass from the measured rates, rather than from the peak positions, obtaining M-h = 124.4 +/- 1.6 GeV.......We perform a state-of-the-art global fit to all Higgs data. We synthesise them into a 'universal' form, which allows to easily test any desired model. We apply the proposed methodology to extract from data the Higgs branching ratios, production cross sections, couplings and to analyse composite...... Higgs models, models with extra Higgs doublets, supersymmetry, extra particles in the loops, anomalous top couplings, and invisible Higgs decays into Dark Matter. Best fit regions lie around the Standard Model predictions and are well approximated by our 'universal' fit. Latest data exclude the dilaton...
Lee, Tsair-Fwu; Lin, Wei-Chun; Wang, Hung-Yu; Lin, Shu-Yuan; Wu, Li-Fu; Guo, Shih-Sian; Huang, Hsiang-Jui; Ting, Hui-Min; Chao, Pei-Ju
2015-01-01
To develop the logistic and the probit models to analyse electromyographic (EMG) equivalent uniform voltage- (EUV-) response for the tenderness of tennis elbow. In total, 78 hands from 39 subjects were enrolled. In this study, surface EMG (sEMG) signal is obtained by an innovative device with electrodes over forearm region. The analytical endpoint was defined as Visual Analog Score (VAS) 3+ tenderness of tennis elbow. The logistic and the probit diseased probability (DP) models were established for the VAS score and EMG absolute voltage-time histograms (AVTH). TV50 is the threshold equivalent uniform voltage predicting a 50% risk of disease. Twenty-one out of 78 samples (27%) developed VAS 3+ tenderness of tennis elbow reported by the subject and confirmed by the physician. The fitted DP parameters were TV50 = 153.0 mV (CI: 136.3–169.7 mV), γ50 = 0.84 (CI: 0.78–0.90) and TV50 = 155.6 mV (CI: 138.9–172.4 mV), m = 0.54 (CI: 0.49–0.59) for logistic and probit models, respectively. When the EUV ≥ 153 mV, the DP of the patient is greater than 50% and vice versa. The logistic and the probit models are valuable tools to predict the DP of VAS 3+ tenderness of tennis elbow. PMID:26380281
Öhrn, Anders; Hermida-Ramon, Jose M; Karlström, Gunnar
2016-05-10
The effects of charge overlap, or charge penetration, are neglected in most force fields and interaction terms in QM/MM methods. The effects are however significant at intermolecular distances near the van der Waals minimum. In the present study, we propose a method to evaluate the intermolecular Coloumb interaction using Slater-type functions, thus explicitly modeling the charge overlap. The computational cost of the method is low, which allows it to be used in large systems with most force fields as well as in QM/MM schemes. The charge distribution is modeled as a distributed multipole expansion up to quadrupole and Slater-type functions of angular momentum up to L = 1. The exponents of the Slater-type functions are obtained using a divide-and-conquer method to avoid the curse of dimensionality that otherwise is present for large nonlinear optimizations. A Levenberg-Marquardt algorithm is applied in the fitting process. A set of parameters is obtained for each molecule, and the process is fully automated. Calculations have been performed in the carbon monoxide and the water dimers to illustrate the model. Results show a very good accuracy of the model with relative errors in the electrostatic potential lower than 3% over all reasonable separations. At very short distances where the charge overlaps is the most significant, errors are lower than 8% and lower than 3.5% at distances near the van der Waals minimum. PMID:27015000
Chow, Sy-Miin; Bendezú, Jason J; Cole, Pamela M; Ram, Nilam
2016-01-01
Several approaches exist for estimating the derivatives of observed data for model exploration purposes, including functional data analysis (FDA; Ramsay & Silverman, 2005 ), generalized local linear approximation (GLLA; Boker, Deboeck, Edler, & Peel, 2010 ), and generalized orthogonal local derivative approximation (GOLD; Deboeck, 2010 ). These derivative estimation procedures can be used in a two-stage process to fit mixed effects ordinary differential equation (ODE) models. While the performance and utility of these routines for estimating linear ODEs have been established, they have not yet been evaluated in the context of nonlinear ODEs with mixed effects. We compared properties of the GLLA and GOLD to an FDA-based two-stage approach denoted herein as functional ordinary differential equation with mixed effects (FODEmixed) in a Monte Carlo (MC) study using a nonlinear coupled oscillators model with mixed effects. Simulation results showed that overall, the FODEmixed outperformed both the GLLA and GOLD across all the embedding dimensions considered, but a novel use of a fourth-order GLLA approach combined with very high embedding dimensions yielded estimation results that almost paralleled those from the FODEmixed. We discuss the strengths and limitations of each approach and demonstrate how output from each stage of FODEmixed may be used to inform empirical modeling of young children's self-regulation. PMID:27391255
Comprehensive copy number profiles of breast cancer cell model genomes
Shadeo, Ashleen; Lam, Wan L.
2006-01-01
Introduction Breast cancer is the most commonly diagnosed cancer in women worldwide and consequently has been extensively investigated in terms of histopathology, immunochemistry and familial history. Advances in genome-wide approaches have contributed to molecular classification with respect to genomic changes and their subsequent effects on gene expression. Cell lines have provided a renewable resource that is readily used as model systems for breast cancer cell biology. A thorough characte...
Dietary Zinc and Prostate Cancer in the TRAMP Mouse Model
Prasad, Ananda S; Mukhtar, Hasan; Beck, Frances W.J.; Adhami, Vaqar M.; Siddiqui, Imtiaz A.; Din, Maria; Hafeez, Bilal B.; KUCUK, Omer
2010-01-01
Circumstantial evidence indicates that zinc may have an important role in the prostate. Total zinc levels in the prostate are 10 times higher than in other soft tissues. Zinc concentrations in prostate epithethial cancer cells are decreased significantly. Zinc supplementation for prevention and treatment of prostate cancer in humans has yielded controversial results. No studies have been reported in animal models to show the effect of zinc supplementation on prevention of prostate cancer, thu...
Guillera-Arroita, Gurutzeta; Lahoz-Monfort, José J.; MacKenzie, Darryl I.; Wintle, Brendan A.; McCarthy, Michael A.
2014-01-01
In a recent paper, Welsh, Lindenmayer and Donnelly (WLD) question the usefulness of models that estimate species occupancy while accounting for detectability. WLD claim that these models are difficult to fit and argue that disregarding detectability can be better than trying to adjust for it. We think that this conclusion and subsequent recommendations are not well founded and may negatively impact the quality of statistical inference in ecology and related management decisions. Here we respond to WLD's claims, evaluating in detail their arguments, using simulations and/or theory to support our points. In particular, WLD argue that both disregarding and accounting for imperfect detection lead to the same estimator performance regardless of sample size when detectability is a function of abundance. We show that this, the key result of their paper, only holds for cases of extreme heterogeneity like the single scenario they considered. Our results illustrate the dangers of disregarding imperfect detection. When ignored, occupancy and detection are confounded: the same naïve occupancy estimates can be obtained for very different true levels of occupancy so the size of the bias is unknowable. Hierarchical occupancy models separate occupancy and detection, and imprecise estimates simply indicate that more data are required for robust inference about the system in question. As for any statistical method, when underlying assumptions of simple hierarchical models are violated, their reliability is reduced. Resorting in those instances where hierarchical occupancy models do no perform well to the naïve occupancy estimator does not provide a satisfactory solution. The aim should instead be to achieve better estimation, by minimizing the effect of these issues during design, data collection and analysis, ensuring that the right amount of data is collected and model assumptions are met, considering model extensions where appropriate. PMID:25075615
Energy Technology Data Exchange (ETDEWEB)
Tshering Vogel, Dechen W.; Vermathen, Peter; Thoeny, Harriet C. [University of Bern, Department of Diagnostic, Interventional and Paediatric Radiology, Inselspital, Bern (Switzerland); Zbaeren, Peter [University of Bern, Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Inselspital, Bern (Switzerland); Geretschlaeger, Andreas [University of Bern, Department of Radiation Oncology, Inselspital, Bern (Switzerland); Keyzer, Frederik de [University Hospitals Leuven, Department of Radiology, Leuven (Belgium)
2013-02-15
To assess whether diffusion-weighted magnetic resonance imaging (DW-MRI) including bi-exponential fitting helps to detect residual/recurrent tumours after (chemo)radiotherapy of laryngeal and hypopharyngeal carcinoma. Forty-six patients with newly-developed/worsening symptoms after (chemo)radiotherapy for laryngeal/hypopharyngeal cancers were prospectively imaged using conventional MRI and axial DW-MRI. Qualitative (visual assessment) and quantitative analysis (mono-exponentially: total apparent diffusion coefficient [ADC{sub T}], and bi-exponentially: perfusion fraction [F{sub P}] and true diffusion coefficient [ADC{sub D}]) were performed. Diffusion parameters of tumour versus post-therapeutic changes were compared, with final diagnosis based on histopathology and follow-up. Mann-Whitney U test was used for statistical analysis. Qualitative DW-MRI combined with morphological images allowed the detection of tumour with a sensitivity of 94% and specificity 100%. ADC{sub T} and ADC{sub D} values were lower in tumour with values 120 {+-} 49 x 10{sup -5} mm{sup 2}/s and 113 {+-} 50 x 10{sup -5} mm{sup 2}/s, respectively, compared with post-therapeutic changes with values 182 {+-} 41 x 10{sup -5} mm{sup 2}/s (P < 0.0002) and 160 {+-} 47 x 10{sup -5} mm{sup 2}/s (P < 0.003), respectively. F{sub P} values were significantly lower in tumours than in non-tumours (13 {+-} 9% versus 31 {+-} 16%, P < 0.0002), with F{sub P} being the best quantitative parameter for differentiation between post-therapeutic changes and recurrence. DW-MRI in combination with conventional MRI substantially improves detection and exclusion of tumour in patients with laryngeal and hypopharyngeal cancers after treatment with (chemo)radiotherapy on both qualitative and quantitative analysis, with F{sub P} being the best quantitative parameter in this context. (orig.)
Extinction Models for Cancer Stem Cell Therapy
Sehl, Mary; Zhou, Hua; Sinsheimer, Janet ,; Lange, Kenneth
2009-01-01
Cells with stem cell-like properties are now viewed as initiating and sustaining many cancers. This suggests that cancer can be cured by driving these cancer stem cells to extinction. The problem with this strategy is that ordinary stem cells are apt to be killed in the process. This paper sets bounds on the killing differential (difference between death rates of cancer stem cells and normal stem cells) that must exist for the survival of an adequate number of normal stem cells. Our main tool...
How to measure inclusive fitness.
Creel, S
1990-09-22
Although inclusive fitness (Hamilton 1964) is regarded as the basic currency of natural selection, difficulty in applying inclusive fitness theory to field studies persists, a quarter-century after its introduction (Grafen 1982, 1984; Brown 1987). For instance, strict application of the original (and currently accepted) definition of inclusive fitness predicts that no one should ever attempt to breed among obligately cooperative breeders. Much of this confusion may have arisen because Hamilton's (1964) original verbal definition of inclusive fitness was not in complete accord with his justifying model. By re-examining Hamilton's original model, a modified verbal definition of inclusive fitness can be justified. PMID:1979447
Zhao, Hong; Jin, Guangxu; Cui, Kemi; Ren, Ding; Liu, Timothy; Chen, Peikai; Wong, Solomon; Li, Fuhai; Fan, Yubo; Rodriguez, Angel; Chang, Jenny; Wong, Stephen TC.
2013-01-01
A new type of signaling network element, called cancer signaling bridges (CSB), has been shown to have the potential for systematic and fast-tracked drug repositioning. On the basis of CSBs, we developed a computational model to derive specific downstream signaling pathways that reveal previously unknown target-disease connections and new mechanisms for specific cancer subtypes. The model enables us to reposition drugs based on available patient gene expression data. We applied this model to ...
DEFF Research Database (Denmark)
Stein, Wilfred D; Litman, Thomas
2006-01-01
appears to be a random event. Inasmuch as the kinetics of cancer recurrence in published data sets closely follows the model found for the appearance of sporadic retinoblastoma, tumor recurrence could be triggered by mutations in awakening- suppressor mechanisms. The retinoblastoma tumor suppressor gene...... was identified by tracing its occurrence in familial retinoblastoma pedigrees. Will it be possible to track the postulated cancer recurrence, awakening suppressor gene(s) in early recurrence breast cancer patients?...
Ozone depletion and skin cancer incidence: an integrated modelling approach
Slaper H; den Elzen MGJ; de Woerd HJ; Greef J de
1992-01-01
A decrease in stratospheric ozone, probably caused by chlorofluorocarbon (CFC) emissions, has been observed over large parts of the globe. The incidence of skin cancer is expected to increase due to ozone depletion. An integrated source-risk model is developed and applied to evaluate the increased skin cancer incidence related to various CFC emission scenarios. The source-risk model is an independent submodule within the framework of IMAGE, an integrated source-effect-model for climate change...
Cancer susceptibility and reproductive trade-offs: a model of the evolution of cancer defences.
Boddy, Amy M; Kokko, Hanna; Breden, Felix; Wilkinson, Gerald S; Aktipis, C Athena
2015-07-19
The factors influencing cancer susceptibility and why it varies across species are major open questions in the field of cancer biology. One underexplored source of variation in cancer susceptibility may arise from trade-offs between reproductive competitiveness (e.g. sexually selected traits, earlier reproduction and higher fertility) and cancer defence. We build a model that contrasts the probabilistic onset of cancer with other, extrinsic causes of mortality and use it to predict that intense reproductive competition will lower cancer defences and increase cancer incidence. We explore the trade-off between cancer defences and intraspecific competition across different extrinsic mortality conditions and different levels of trade-off intensity, and find the largest effect of competition on cancer in species where low extrinsic mortality combines with strong trade-offs. In such species, selection to delay cancer and selection to outcompete conspecifics are both strong, and the latter conflicts with the former. We discuss evidence for the assumed trade-off between reproductive competitiveness and cancer susceptibility. Sexually selected traits such as ornaments or large body size require high levels of cell proliferation and appear to be associated with greater cancer susceptibility. Similar associations exist for female traits such as continuous egg-laying in domestic hens and earlier reproductive maturity. Trade-offs between reproduction and cancer defences may be instantiated by a variety of mechanisms, including higher levels of growth factors and hormones, less efficient cell-cycle control and less DNA repair, or simply a larger number of cell divisions (relevant when reproductive success requires large body size or rapid reproductive cycles). These mechanisms can affect intra- and interspecific variation in cancer susceptibility arising from rapid cell proliferation during reproductive maturation, intrasexual competition and reproduction. PMID:26056364
Cuoco, Alessandro; Heisig, Jan; Krämer, Michael
2016-01-01
We analyse the excess in the $\\gamma$-ray emission from the center of our galaxy observed by Fermi-LAT in terms of dark matter annihilation within the scalar Higgs portal model. In particular, we include the astrophysical uncertainties from the dark matter distribution and allow for unspecified additional dark matter components. We demonstrate through a detailed numerical fit that the strength and shape of the $\\gamma$-ray spectrum can indeed be described by the model in various regions of dark matter masses and couplings. Constraints from invisible Higgs decays, direct dark matter searches, indirect searches in dwarf galaxies and for $\\gamma$-ray lines, and constraints from the dark matter relic density reduce the parameter space to dark matter masses near the Higgs resonance. We find two viable regions: one where the Higgs-dark matter coupling is of ${\\cal O}(10^{-2})$, and an additional dark matter component beyond the scalar WIMP of our model is preferred, and one region where the Higgs-dark matter coupli...
Directory of Open Access Journals (Sweden)
Erida Gjini
2016-03-01
Full Text Available The efficacy of vaccines is typically estimated prior to implementation, on the basis of randomized controlled trials. This does not preclude, however, subsequent assessment post-licensure, while mass-immunization and nonlinear transmission feedbacks are in place. In this paper we show how cross-sectional prevalence data post-vaccination can be interpreted in terms of pathogen transmission processes and vaccine parameters, using a dynamic epidemiological model. We advocate the use of such frameworks for model-based vaccine evaluation in the field, fitting trajectories of cross-sectional prevalence of pathogen strains before and after intervention. Using SI and SIS models, we illustrate how prevalence ratios in vaccinated and non-vaccinated hosts depend on true vaccine efficacy, the absolute and relative strength of competition between target and non-target strains, the time post follow-up, and transmission intensity. We argue that a mechanistic approach should be added to vaccine efficacy estimation against multi-type pathogens, because it naturally accounts for inter-strain competition and indirect effects, leading to a robust measure of individual protection per contact. Our study calls for systematic attention to epidemiological feedbacks when interpreting population level impact. At a broader level, our parameter estimation procedure provides a promising proof of principle for a generalizable framework to infer vaccine efficacy post-licensure.
Risk Prediction Model for Colorectal Cancer: National Health Insurance Corporation Study, Korea
Shin, Aesun; Joo, Jungnam; Yang, Hye-Ryung; Bak, Jeongin; Park, Yunjin; Kim, Jeongseon; Oh, Jae Hwan; Nam, Byung-Ho
2014-01-01
Purpose Incidence and mortality rates of colorectal cancer have been rapidly increasing in Korea during last few decades. Development of risk prediction models for colorectal cancer in Korean men and women is urgently needed to enhance its prevention and early detection. Methods Gender specific five-year risk prediction models were developed for overall colorectal cancer, proximal colon cancer, distal colon cancer, colon cancer and rectal cancer. The model was developed using data from a popu...
Asymptotics of the goodness-of-fit test for a partial linear model with randomly censored data
Institute of Scientific and Technical Information of China (English)
CHEN; Min(
2003-01-01
(semiparametric) partial and generalized spline models, Ann. Statist., 1988, 16: 113.［16］Eubank, R. L., Spiegeman, C. H., Testing the goodness of fit of a linear model via nonparametric regression techniques, J. Amer. Statist. Assoc., 1990, 85: 387.［17］Hardle, W., Mammen, E., Comparing non-parametric versus parametric regression fits, Ann. Statist., 1993,21: 1926.［18］Hardle, W., Mammen, E., Müller, M., Testing parametric versus semiparametric modeling in generalized linear models, J. Amer. Statist. Assoc., 1998, 93: 1461.［19］Hardle, W., Marron, J. S., Semiparametric comparison of regression curves, Ann. Statist., 1990, 18: 63.［20］King, G., Testing the equality of two regression curves using linear smoothers, Statist. & Probab. Lett., 1991,12: 239.［21］Miiller, H. G., Goodness-of-fit diagnostic for regression models, Sand. J. Statist., 1993, 19: 157.［22］Stute, W., Nonparametric model checks for regression, Ann. Statist., 1997, 25: 613.［23］Stute, W., Mantetga, G., Quindimil, M. P., Bootstrap approximations in model cheeks for regression, J. Amer.Statist. Assoc., 1998, 93: 141.［24］Stute, W., Thies, S., Zhu, L. X., Model checks for regression: An innovation process approach, Ann. Statist.,1998, 26: 1916.［25］Stute, W., Nonlinear censored regression, Statistica Sinica, 1999, 9:1089.［26］Wang, Q. H., Zhu, L. X., Estimation in partial linear error-in-variables models with censored data, Commun.in Statist. The. and Meth., 2001, .［27］Lo, S. H., Singh, K., The product-limit estimator and the bootstrap: some asymptotic representations, Probab.Theory and Related Fields, 1986, 71: 455.［28］Zhou, M., Some properties of the Kaplan-Meier estimator for independent, nonidentically distributed random variables, Ann. Statist., 1991, 19: 2266.［29］Hall, P., Heyde, C. C., Martingale Limit Theory and Its Applications, New York: Academic Press, 1980.［30］Pollard, D., Convergence of Stochastic Processes, New York: Springer-Verlag, 1984.［31