WorldWideScience

Sample records for cancer mda-mb-231 cells

  1. Action and Signaling of Lysophosphatidylethanolamine in MDA-MB-231 Breast Cancer Cells.

    Science.gov (United States)

    Park, Soo-Jin; Lee, Kyoung-Pil; Im, Dong-Soon

    2014-02-01

    Previously, we reported that lysophosphatidylethanolamine (LPE), a lyso-type metabolite of phosphatidylethanolamine, can increase intracellular Ca(2+) ([Ca(2+)]i) via type 1 lysophosphatidic acid (LPA) receptor (LPA1) and CD97, an adhesion G-protein-coupled receptor (GPCR), in MDA-MB-231 breast cancer cells. Furthermore, LPE signaling was suggested as like LPA1/CD97-Gi/o proteins-phospholipase C-IP3-Ca(2+) increase in these cells. In the present study, we further investigated actions of LPE not only in the [Ca(2+)]i increasing effect but also in cell proliferation and migration in MDA-MB-231 breast cancer cells. We utilized chemically different LPEs and a specific inhibitor of LPA1, AM-095 in comparison with responses in SK-OV3 ovarian cancer cells. It was found that LPE-induced Ca(2+) response in MDA-MB-231 cells was evoked in a different manner to that in SK-OV3 cells in terms of structural requirements. AM-095 inhibited LPE-induced Ca(2+) response and cell proliferation in MDA-MB-231 cells, but not in SK-OV3 cells, supporting LPA1 involvement only in MDA-MB-231 cells. LPA had significant effects on cell proliferation and migration in MDA-MB-231 cells, whereas LPE had less or no significant effect. However, LPE modulations of MAPKs (ERK1/2, JNK and p38 MAPK) was not different to those by LPA in the cells. These data support the involvement of LPA1 in LPE-induced Ca(2+) response and cell proliferation in breast MDA-MB-231 cells but unknown GPCRs (not LPA1) in LPE-induced responses in SK-OV3 cells. Furthermore, although LPE and LPA utilized LPA1, LPA utilized more signaling cascades than LPE, resulting in stronger responses by LPA in proliferation and migration than LPE in MDA-MB-231 cells.

  2. [Effect of Aloe emodin on invasion and metastasis of high metastatic breast cancer MDA-MB-231 cells].

    Science.gov (United States)

    He, Zhen-Hui; Huang, Yue-Qun; Weng, Shan-Fan; Tan, Yao-Rong; He, Tai-Ping; Qin, Yan-Mei; Liang, Nian-Ci

    2013-09-01

    To investigate the effect of Aloe emodin (AE) on the invasive and metastatic abilities of human high metastatic breast cancer MDA-MB-231 cells. MTT assay was used to evaluate the viability of MDA-MB-231 cells after treated with AE for 6 h and 24 h. The adhesive potential of MDA-MB-231 cells to FN and LN was tested by cell-matrix adhesion assay. The effect of AE on invasion of MDA-MB-231 cells was measured by Transwell chamber assay. Scratch wound healing assay was applied to determine the effect on migration of MDA-MB-231 cells. The effect of AE on MDA-MB-231 lung metastasis was determined on an experimental metastatic model. 80 micromol/L AE significantly inhibited the invasion, adhesion to FN, LN of MDA-MB-231 cells in vitro, the inhibitory rates were (52.98 +/- 5.46)%, (34.99 +/- 2.63)%, (28.73 +/- 7.00)%, respectively. After 24 h treatment, AE significantly inhibited the migration of MDA-MB-231 cells. The number and volume of lung metastatic nodules formed by MDA-MB-231 cells after 80 micromol/L AE 24 h treatment were decreased compared with control group. AE can suppress the metastasis of MDA-MB-231 cells. Their mechanisms may be related to the inhibition of the capabilities of invasion and migration of MDA-MB-231 cells.

  3. Hypoxia regulates stemness of breast cancer MDA-MB-231 cells.

    Science.gov (United States)

    Xie, Jing; Xiao, Yong; Zhu, Xiao-yan; Ning, Zhou-yu; Xu, Hai-fan; Wu, Hui-min

    2016-05-01

    Human breast cancers include cancer stem cell populations as well as non-tumorigenic cancer cells. Breast cancer stem cells possess self-renewal capability and thus are the root cause of recurrence and metastasis of malignant tumors. Hypoxia is a fundamental pathological feature of solid tumor tissues and exerts a wide range of effects on the biological behavior of cancer cells. However, there is little information on the role of hypoxia in modulating the stemness of breast cancer cells. In the present study, we cultured MDA-MB-231 cells in a hypoxic gas mixture to simulate the hypoxic environment in tissues and to determine how hypoxia conditions could affect the cell proliferation, apoptosis, cytotoxicity, and colony-forming ability. Expression of the stem cell phenotype CD24(-)CD44(+)ESA(+) was analyzed to assess the effects of hypoxia on stemness transformation in MDA-MB-231 cells. Our results found that the cell toxicity of MDA-MB-231 cells was not affected by hypoxia. Hypoxia could slightly inhibit the growth of MDA-MB-231 cells, but the inhibitory effect is not significant when compared with normoxic control. Moreover, hypoxia significantly blocked the apoptosis in MDA-MB-231 cells (P MB-231 cells was increased greatly after they were treated with hypoxia, and cell colony-formation rate of MDA-MB-231 cells also increased significantly in hypoxia-treated cells. These results encourage the exploration of hypoxia as a mechanism which might not be underestimated in chemo-resistant breast cancer treatment.

  4. Protein Profiles Associated with Anoikis Resistance of Metastatic MDA-MB-231 Breast Cancer Cells.

    Science.gov (United States)

    Akekawatchai, Chareeporn; Roytrakul, Sittiruk; Kittisenachai, Suthathip; Isarankura-Na-Ayudhya, Patcharee; Jitrapakdee, Sarawut

    2016-01-01

    Resistance to anoikis, a cell-detachment induced apoptosis, is one of the malignant phenotypes which support tumor metastasis. Molecular mechanisms underlying the establishment of this phenotype require further investigation. This study aimed at exploring protein expression profiles associated with anoikis resistance of a metastatic breast cancer cell. Cell survival of suspension cultures of non-metastatic MCF-7 and metastatic MDA-MB-231 cells were compared with their adherent cultures. Trypan blue exclusion assays demonstrated a significantly higher percentage of viable cells in MDA-MB-231 than MCF-7 cell cultures, consistent with analysis of annexin V-7-AAD stained cells indicating that MDA-MB-231 possess anti-apoptotic ability 1.7 fold higher than MCF-7 cells. GeLC-MS/MS analysis of protein lysates of MDA-MB-231 and MCF-7 cells grown under both culture conditions identified 925 proteins which are differentially expressed, 54 of which were expressed only in suspended and adherent MDA-MB-231 but not in MCF-7 cells. These proteins have been implicated in various cellular processes, including DNA replication and repair, transcription, translation, protein modification, cytoskeleton, transport and cell signaling. Analysis based on the STITCH database predicted the interaction of phospholipases, PLC and PLD, and 14-3-3 beta/alpha, YWHAB, with the intrinsic and extrinsic apoptotic signaling network, suggesting putative roles in controlling anti-anoikis ability. MDA-MB-231 cells grown in the presence of inhibitors of phospholipase C, U73122, and phospholipase D, FIPI, demonstrated reduced ability to survive in suspension culture, indicating functional roles of PLC and PLD in the process of anti-anoikis. Our study identified intracellular mediators potentially associated with establishment of anoikis resistance of metastatic cells. These proteins require further clarification as prognostic and therapeutic targets for advanced breast cancer.

  5. Frankincense derived heavy terpene cocktail boosting breast cancer cell(MDA-MB-231) death in vitro简

    Institute of Scientific and Technical Information of China (English)

    Faruck; Lukmanul; Hakkim; Mohammed; Al-Buloshi; Jamal; Al-Sabahi

    2015-01-01

    Objective: To investigate the anti-cancer effect of frankincense derived heavy oil obtained by Soxhlet extraction method on breast cancer cells(MDA-MB-231), and to study its chemical profile using gas chromatography mass spectrometry analysis.Methods: Hexane was used to extract heavy oil from frankincense resin. Chemical profiling of heavy oil was done using Perkin Elmer Clarus GC system with mass spectrometer. MDA-MB-231 cells were treated with different dilutions(1:1 000, 1:1 500,1:1 750, 1:2 000, 1:2 250, 1:2 500, 1:2 750, 1:3 000, 1:3 250) of heavy oil for 24 h. The cells were observed by using light microscopy. Cell viability was measured by MTT assay.Results: Gas chromatography mass spectrometry chemical profiling of frankincense derived heavy oil revealed the presence of terpenes such as a-pinene(61.56%), a-amyrin(20.6%), b-amyrin(8.1%), b-phellandrene(1.47%) and camphene(1.04%). Heavy terpene cocktail induced significant MDA-MB-231 cell death at each concentration tested. Noticeably, very low concentration of Soxhlet derived heavy terpenes elicits considerable cytotoxicity on MDA-MB-231 cells compared to hydro distillated essential oil derived from frankincense resin.Conclusions: Extracting anti-cancer active principle cocktail by simple Soxhlet method is cost effective and less time consuming. Our in vitro anti-cancer data forms the rationale for us to test heavy terpene complex in breast cancer xenograft model in vivo. Furthermore, fractionation and developing frankincense heavy terpene based breast cancer drug is the major goal of our laboratory.

  6. Frankincense derived heavy terpene cocktail boosting breast cancer cell (MDA-MB-231) deathin vitro

    Institute of Scientific and Technical Information of China (English)

    Faruck Lukmanul Hakkim; Mohammed Al-Buloshi; Jamal Al-Sabahi

    2015-01-01

    Objective:To investigate the anti-cancer effect of frankincense derived heavy oil obtained by Soxhlet extraction method on breast cancer cells (MDA-MB-231), and to study its chemical profile using gas chromatography mass spectrometry analysis. Methods: Hexane was used to extract heavy oil from frankincense resin. Chemical profiling of heavy oil was done using Perkin Elmer Clarus GC system with mass spectrometer.MDA-MB-231 cells were treated with different dilutions (1:1 000, 1:1 500, 1:1 750, 1:2 000, 1:2 250, 1:2 500, 1:2 750, 1:3 000, 1:3 250) of heavy oil for 24 h. The cells were observed by using light microscopy. Cell viability was measured byMTT assay. Results: Gas chromatography mass spectrometry chemical profiling of frankincense derived heavy oil revealed the presence of terpenes such asα-pinene (61.56%),α-amyrin (20.6%),β-amyrin (8.1%),β-phellandrene (1.47%) and camphene (1.04%). Heavy terpene cocktail induced significantMDA-MB-231 cell death at each concentration tested. Noticeably, very low concentration of Soxhlet derived heavy terpenes elicits considerable cytotoxicityon MDA-MB-231cells compared to hydro distillated essential oil derived from frankincense resin. Conclusions: Extracting anti-cancer active principle cocktail by simple Soxhlet method is cost effective and less time consuming. Ourin vitro anti-cancer data forms the rationale for us to test heavy terpene complex in breast cancer xenograft modelin vivo. Furthermore, fractionation and developing frankincense heavy terpene based breast cancer drug is the major goal of our laboratory.

  7. Neem Seed Oil Induces Apoptosis in MCF-7 and MDA MB-231 Human Breast Cancer Cells

    Science.gov (United States)

    Sharma, Ramesh; Kaushik, Shweta; Shyam, Hari; Agarwal, Satish; Balapure, Anil Kumar

    2017-08-27

    Background: In traditional Indian medicine, azadirachta indica (neem) is known for its wide range of medicinal properties. Various parts of neem tree including its fruit, seed, bark, leaves, and root have been shown to possess antiseptic, antiviral, antipyretic, anti-inflammatory, antiulcer, antimalarial, antifungal and anticancer activity. Materials and Methods: MCF-7 and MDA MB-231 cells were exposed to various concentrations of 2% ethanolic solution of NSO (1-30 μl/ml) and further processed for cell viability, cell cycle and apoptosis analysis. In addition, cells were analyzed for alteration in Mitochondrial Membrane Potential (MMP) and generation of Reactive Oxygen Species (ROS) using JC-1 and DCFDA staining respectively. Results: NSO give 50% inhibition at 10 μl/ml and 20 μl/ml concentration in MCF-7 and MDA MB-231 cells respectively and, arrests cells at G0/G1 phase in both the cell types. There was a significant alteration in mitochondrial membrane potential that leads to the generation of ROS and induction of apoptosis in NSO treated MCF-7 and MDA MB-231 cells. Conclusion: The results showed that NSO inhibits the growth of human breast cancer cells via induction of apoptosis and G1 phase arrest. Collectively these results suggest that NSO could potentially be used in the management of breast cancer. Creative Commons Attribution License

  8. Cytotoxicity of Biologically Synthesized Silver Nanoparticles in MDA-MB-231 Human Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Sangiliyandi Gurunathan

    2013-01-01

    Full Text Available Silver nanoparticles (AgNPs have been used as an antimicrobial and disinfectant agents. However, there is limited information about antitumor potential. Therefore, this study focused on determining cytotoxic effects of AgNPs on MDA-MB-231 breast cancer cells and its mechanism of cell death. Herein, we developed a green method for synthesis of AgNPs using culture supernatant of Bacillus funiculus, and synthesized AgNPs were characterized by various analytical techniques such as UV-visible spectrophotometer, particle size analyzer, and transmission electron microscopy (TEM. The toxicity was evaluated using cell viability, metabolic activity, and oxidative stress. MDA-MB-231 breast cancer cells were treated with various concentrations of AgNPs (5 to 25 μg/mL for 24 h. We found that AgNPs inhibited the growth in a dose-dependent manner using MTT assay. AgNPs showed dose-dependent cytotoxicity against MDA-MB-231 cells through activation of the lactate dehydrogenase (LDH, caspase-3, reactive oxygen species (ROS generation, eventually leading to induction of apoptosis which was further confirmed through resulting nuclear fragmentation. The present results showed that AgNPs might be a potential alternative agent for human breast cancer therapy.

  9. Disparate SAR Data of Griseofulvin Analogues for the Dermatophytes Trichophyton mentagrophytes, T. rubrum, and MDA-MB-231 Cancer Cells

    DEFF Research Database (Denmark)

    Rønnest, Mads Holger; Raab, Marc S.; Anderhub, Simon

    2012-01-01

    Griseofulvin and 53 analogues of this compound have been tested against the pathogenic dermatophytes Trichophyton rubrum and Trichophyton mentagrophytes as well as against the breast cancer cell line MDA-MB-231. The modifications to griseofulvin include the 4, 5, 6, 2', 3', and 4' positions...... of analogues showed increased activity against the cancer cell line MDA-MB-231, highlighted by 2'-benzyloxy-2'-demethoxy-griseofulvin, which showed low activity against both fungi but was among the most potent compounds against MDA-MB-231 cancer cells. Tubulin has been proposed as the target of griseofulvin...

  10. Glutamine deprivation sensitizes human breast cancer MDA-MB-231 cells to TRIAL-mediated apoptosis.

    Science.gov (United States)

    Dilshara, Matharage Gayani; Jeong, Jin-Woo; Prasad Tharanga Jayasooriya, Rajapaksha Gedara; Neelaka Molagoda, Ilandarage Menu; Lee, Seungheon; Park, Sang Rul; Choi, Yung Hyun; Kim, Gi-Young

    2017-02-13

    Tumor cell metabolism is a promising target for various cancer treatments. Apart from aerobic glycolysis, cancer cell growth is dependent on glutamine (Gln) supply, leading to their survival and differentiation. Therefore, we examined whether treatment with TNF-related apoptosis-inducing ligand (TRAIL) sensitizes MDA-MB-231 cells to apoptosis under Gln deprivation condition (TRAIL/Gln deprivation). Gln deprivation decreased cell proliferation as expected, but did not induce remarkable cell death. TRAIL/Gln deprivation, however, significantly increased growth inhibition and morphological shrinkage of MDA-MB-231 cells compared to those induced by treatment with either Gln deprivation or TRAIL alone. Moreover, TRAIL/Gln deprivation upregulated the apoptotic sub-G1 phase accompanied with a remarkable decrease of pro-caspase-3, pro-caspase-9, and anti-apoptotic xIAP, and Bcl-2. Increased cleavage of PARP and pro-apoptotic Bid protein expression suggests that TRAIL/Gln deprivation triggers mitochondrion-mediated apoptosis in MDA-MB-231 cells. Additionally, TRAIL/Gln deprivation upregulated the expression of endoplasmic reticulum (ER) stress markers such as ATF4 and phosphorylated eIF2α, thereby enhancing the C/EBP homologous protein (CHOP) protein level. Transient knockdown of CHOP partically reversed TRAIL/Gln deprivation-mediated apoptosis. Accordingly, TRAIL/Gln deprivation enhanced the expression of death receptor 5 (DR5) and transient knockdown of DR5 completely restored TRAIL/Gln deprivation-mediated apoptosis. Taken together, our results suggest that Gln deprivation conditions can be used for the development of new therapies for TRAIL-resistant cancers.

  11. [Effects of mammalian-target-of-rapamycin pathway on lapatinib resistance in breast cancer MDA-MB-231 cells].

    Science.gov (United States)

    Wang, Jian-dong; Wang, Quan-sheng; Bai, Yi-zhou; Kou, De-qiang; Li, Xi-ru; Chen, Lin; Li, Rong

    2013-06-25

    To establish a lapatinib resistance cell line for elucidating the mechanisms of drug resistance of lapatinib in human breast cancer cells. The human breast cancer MDA-MB-231 cells were exposed in an incremental dose of lapatinib to establish a lapatinib resistance rMDA-MB-231 cell line. The assay of methyl thiazolyl tetrazolium (MTT) was used to detect the cytotoxic activity of lapatinib against MDA-MB-231 and rMDA-MB-231 cells. The protein expression was detected by Western blot. Small interfering RNA was used to specifically knock down mammalian-target-of-rapamycin (mTOR) in rMDA-MB-231 cells. Apoptosis was determined by fluorescein isothiocyanate (FITC)-annexin V/PI staining and flow cytometry. The human breast cancer lapatinib resistance cell line rMDA-MB-231 was induced by lapatinib. The half maximal inhibitory concentration (IC50) values of lapatinib against MDA-MB-231 and rMDA-MB-231 cells were (6.1 ± 0.6) and (34.9 ± 2.7) µmol/L respectively (P MB-231 cells, the protein expression of mTOR in rMDA-MB-231 cells was significantly up-regulated. The protein expression of mTOR was significantly down-regulated by specific siRNA duplexes in rMDA-MB-231 cells. After siRNA interference, 20 µmol/L lapatinib was added into control, negative siRNA control and mTOR-targeted siRNA groups respectively. The percents of cell apoptosis in control, negative control and targeted siRNA groups were 13.4% ± 2.5%, 14.2% ± 2.8% and 34.6% ± 5.8% respectively, there was no significance between the first two groups (P > 0.05) , and there was significant difference between the control and targeted siRNA group (P MB-231 cells. And the down-regulation of mTOR increases the apoptotic death of lapatinib against rMDA-MB-231 cells.

  12. Cadmium effects on p38/MAPK isoforms in MDA-MB231 breast cancer cells.

    Science.gov (United States)

    Casano, Caterina; Agnello, Maria; Sirchia, Rosalia; Luparello, Claudio

    2010-02-01

    Emerging evidence seems to indicate that the heavy metal cadmium (Cd) is able to regulate gene expression, drastically affecting the pattern of transcriptional activity in normal and pathological eukaryotic cells, also affecting intracellular signalization events. Human p38 is a family of mitogen-activated protein kinases consisting of four isoforms (alpha, beta, gamma and delta) which mediate signal transduction cascades controlling several aspects of cell physiology. In this study we examined whether exposure of MDA-MB231 tumor cells from the human breast to Cd may exert some effect on p38 isoform expression and accumulation, as well as on p38 activation. Employing a combination of proliferation tests, conventional and semiquantitative multiplex (SM)-polymerase chain reaction (PCR) and Western blot assays, we report that the treatment of breast cancer cells with 5 microM CdCl(2) induces a diversified modulation of the transcription patterns of p38 isoform genes and of the accumulation of the related protein products, which are, on the other hand, also affected by alpha and beta isoform functional inactivation induced by SB203580. Our findings suggest the existence of so far unexplored mechanisms of gene regulation in our model system and validate that MDA-MB231 cell line is a suitable in vitro model for further and more detailed studies on the intracellular mechanisms underlying the control of p38 expression, synthesis and activation in mammary tumor cells exposed to different stresses.

  13. Grape seed extract suppresses MDA-MB231 breast cancer cell migration and invasion.

    Science.gov (United States)

    Dinicola, Simona; Pasqualato, Alessia; Cucina, Alessandra; Coluccia, Pierpaolo; Ferranti, Francesca; Canipari, Rita; Catizone, Angela; Proietti, Sara; D'Anselmi, Fabrizio; Ricci, Giulia; Palombo, Alessandro; Bizzarri, Mariano

    2014-01-01

    Breast cancer remains a leading cause of mortality among women. In metastasis, cascade migration of cancer cells and invasion of extracellular matrix (ECM) represent critical steps. Urokinase-type plasminogen activator (uPA), as well as metalloproteinases MMP-2 and MMP-9, strongly contribute to ECM remodelling, thus becoming associated with tumour migration and invasion. In addition, the high expression of cytoskeletal (CSK) proteins, as fascin, has been correlated with clinically aggressive metastatic tumours, and CSK proteins are thought to affect the migration of cancer cells. Consumption of fruits and vegetables, characterized by high procyanidin content, has been associated to a reduced mortality for breast cancer. Therefore, we investigated the biological effect of grape seed extract (GSE) on the highly metastatic MDA-MB231 breast cancer cell line, focusing on studying GSE ability in inhibiting two main metastatic processes, i.e., cell migration and invasion. After MDA-MB231 breast cancer cells stimulated with GSE migration and invasion were evaluated by means of trans-well assays and uPA as well as MMPs activity was detected by gelatin zymography. Fascin, β-catenin and nuclear factor-κB (NF-κB) expression were determined using western blot technique. β-Catenin localization was observed by confocal microscopy. We observed that high concentrations of GSE inhibited cell proliferation and apoptosis. Conversely, low GSE concentration decreased cell migration and invasion, likely by hampering β-catenin expression and localization, fascin and NF-κB expression, as well as by decreasing the activity of uPA, MMP-2 and MMP-9. These results make GSE a powerful candidate for developing preventive agents against cancer metastasis.

  14. Androstane derivatives induce apoptotic death in MDA-MB-231 breast cancer cells.

    Science.gov (United States)

    Jakimov, Dimitar S; Kojić, Vesna V; Aleksić, Lidija D; Bogdanović, Gordana M; Ajduković, Jovana J; Djurendić, Evgenija A; Penov Gaši, Katarina M; Sakač, Marija N; Jovanović-Šanta, Suzana S

    2015-11-15

    Biological investigation was conducted to study in vitro antiproliferative and pro-apoptotic potential of selected 17α-picolyl and 17(E)-picolinylidene androstane derivatives. The antiproliferative impact was examined on six human tumor cell lines, including two types of breast (MCF-7 and MDA-MB-231), prostate (PC3), cervical (HeLa), colon (HT 29) and lung cancer (A549), as well as one normal fetal lung fibroblasts cell line (MRC-5). All derivatives selectively decreased proliferation of estrogen receptor negative MDA-MB-231 breast cancer cells after 48 h and 72 h treatment and compounds showed time-dependent activity. We used this cell line to investigate cell cycle modulation and apoptotic cell death induction by flow cytometry, expression of apoptotic proteins by Western blot and apoptotic morphology by visual observation. Tested androstane derivatives affected the cell cycle distribution and induced apoptosis and necrosis. Compounds had different and specific mode of action, depending on derivative type and exposure time. Some compounds induced significant apoptosis measured by Annexin V test compared to reference compound formestane. Higher expression of pro-apoptotic BAX, downregulation of anti-apoptotic Bcl-2 and cleavage of PARP protein were confirmed in almost all treated samples, but the lack of caspase-3 activation suggested the induction of apoptosis in caspase-independent manner. More cells with apoptotic morphology were observed in samples after prolonged treatment. Structure-activity relationship analysis was performed to find correlations between the structure variations of investigated derivatives and observed biological effects. Results of this study showed that some of the investigated androstane derivatives have good biomedical potential and could be candidates for anticancer drug development.

  15. Polyphenols from Artemisia annua L Inhibit Adhesion and EMT of Highly Metastatic Breast Cancer Cells MDA-MB-231.

    Science.gov (United States)

    Ko, Young Shin; Lee, Won Sup; Panchanathan, Radha; Joo, Young Nak; Choi, Yung Hyun; Kim, Gon Sup; Jung, Jin-Myung; Ryu, Chung Ho; Shin, Sung Chul; Kim, Hye Jung

    2016-07-01

    Recent evidence suggests that polyphenolic compounds from plants have anti-invasion and anti-metastasis capabilities. The Korean annual weed, Artemisia annua L., has been used as a folk medicine for treatment of various diseases. Here, we isolated and characterized polyphenols from Korean A. annua L (pKAL). We investigated anti-metastatic effects of pKAL on the highly metastatic MDA-MB-231 breast cancer cells especially focusing on cancer cell adhesion to the endothelial cell and epithelial-mesenchymal transition (EMT). Firstly, pKAL inhibited cell viability of MDA-MB-231 cells in a dose-dependent manner, but not that of human umbilical vein endothelial cells (ECs). Polyphenols from Korean A. annua L inhibited the adhesion of MDA-MB-231 cells to ECs through reducing vascular cell adhesion molecule-1 expression of MDA-MB-231 and ECs, but not intracellular adhesion molecule-1 at the concentrations where pKAL did not influence the cell viability of either MDA-MB-231 cells nor EC. Further, pKAL inhibited tumor necrosis factor-activated MDA-MB-231 breast cancer cell invasion through inhibition of matrix metalloproteinase-2 and matrix metalloproteinase-9 and EMT. Moreover, pKAL inhibited phosphorylation of Akt, but not that of protein kinase C. These results suggest that pKAL may serve as a therapeutic agent against cancer metastasis at least in part by inhibiting the cancer cell adhesion to ECs through suppression of vascular cell adhesion molecule-1 and invasion through suppression of EMT. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Effect of Polygonatum odoratum extract on human breast cancer MDA-MB-231 cell proliferation and apoptosis.

    Science.gov (United States)

    Tai, Yu; Sun, Yi-Ming; Zou, Xue; Pan, Qiong; Lan, Ya-Dong; Huo, Qiang; Zhu, Jing-Wen; Guo, Fei; Zheng, Chang-Quan; Wu, Cheng-Zhu; Liu, Hao

    2016-10-01

    Traditional Chinese medicine (TCM) is important in the provision of anti-tumor drugs. Recently, studies have shown that certain types of TCM agents are able to control the growth of tumors, enhance the body's immune function and enhance the therapeutic effect of chemotherapeutic drugs. In women, breast carcinoma is the most common tumor type and the second most common cause of death from cancer. Polygonatum odoratum (P. odoratum) is commonly used in TCM. The aim of the present study was to investigate the effects of P. odoratum extract on the proliferation and apoptosis of MDA-MB-231 breast cancer cells. Cell proliferation was assessed using MTT and colony formation assays. In addition, propidium iodide (PI)/Annexin V-FITC staining was used to investigate the apoptosis of MDA-MB-231 cells following treatment with P. odoratum extract. The protein expression levels of B-cell lymphoma-2 (Bcl-2) and Bcl-2-associated X protein (Bax) were also detected using western blot analysis, while a JC-1 staining assay was used to assess the mitochondrial membrane potential (ΔΨm). The results of the MTT assay showed that the proliferation and colony formation of MDA-MB-231 cells were inhibited following treatment with the extract. Furthermore, the PI/Annexin-V staining showed that the apoptosis of MDA-MB-231 cells was enhanced by the extract, in a concentration-dependent manner. The extract also lowered the ΔΨm of MDA-MB-231 cells, upregulated the expression of Bax and inhibited the expression of Bcl-2. In conclusion, these results showed that the P. odoratum extract inhibited the proliferation and induced apoptosis of breast cancer MDA-MB-231 cells.

  17. Intrinsic Resistance to 5-Fluorouracil in a Brain Metastatic Variant of Human Breast Cancer Cell Line, MDA-MB-231BR.

    Science.gov (United States)

    Sagara, Atsunobu; Igarashi, Katsuhide; Otsuka, Maky; Karasawa, Takeshi; Gotoh, Noriko; Narita, Michiko; Kuzumaki, Naoko; Narita, Minoru; Kato, Yoshinori

    2016-01-01

    Although drug resistance is often observed in metastatic recurrence of breast cancer, little is known about the intrinsic drug resistance in such metastases. In the present study, we found, for the first time, that MDA-MB-231BR, a brain metastatic variant of a human breast cancer cell line, was refractory to treatment with 5-fluorouracil (5-FU) even without chronic drug exposure, compared to its parent cell line, MDA-MB-231, and a bone metastatic variant, MDA-MB-231SCP2. Both the mRNA and protein levels of COX-2 and BCL2A1 in MDA-MB-231BR were significantly higher than those in MDA-MB-231 or MDA-MB-231SCP2. Neither the COX-2 inhibitor celecoxib nor the NF-κB inhibitor BAY11-7082 could sensitize MDA-MB-231BR to 5-FU, indicating that COX-2 plays little, if any, role in the resistance of MDA-MB-231BR to 5-FU. Although BCL2-family inhibitor ABT-263 failed to sensitize MDA-MB-231BR to 5-FU at a dose at which ABT-263 is considered to bind to BCL2, BCL2-xL, and BCL2-w, but not to BCL2A1, ABT-263 did sensitize MDA-MB-231BR to 5-FU to a level comparable to that in MDA-MB-231 at a dose of 5 μM, at which ABT-263 may disrupt intracellular BCL2A1 protein interactions. More importantly, BCL2A1 siRNA sensitized MDA-MB-231BR to 5-FU, whereas the overexpression of BCL2A1 conferred 5-FU-resistance on MDA-MB-231. These results indicate that BCL2A1 is a key contributor to the intrinsic 5-FU-resistance in MDA-MB-231BR. It is interesting to note that the drug sensitivity of MDA-MB-231BR was distinct from that of MDA-MB-231SCP2 even though they have the same origin (MDA-MB-231). Further investigations pertinent to the present findings may provide valuable insight into the breast cancer brain metastasis.

  18. Optimized Method for Untargeted Metabolomics Analysis of MDA-MB-231 Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Amanda L. Peterson

    2016-09-01

    Full Text Available Cancer cells often have dysregulated metabolism, which is largely characterized by the Warburg effect—an increase in glycolytic activity at the expense of oxidative phosphorylation—and increased glutamine utilization. Modern metabolomics tools offer an efficient means to investigate metabolism in cancer cells. Currently, a number of protocols have been described for harvesting adherent cells for metabolomics analysis, but the techniques vary greatly and they lack specificity to particular cancer cell lines with diverse metabolic and structural features. Here we present an optimized method for untargeted metabolomics characterization of MDA-MB-231 triple negative breast cancer cells, which are commonly used to study metastatic breast cancer. We found that an approach that extracted all metabolites in a single step within the culture dish optimally detected both polar and non-polar metabolite classes with higher relative abundance than methods that involved removal of cells from the dish. We show that this method is highly suited to diverse applications, including the characterization of central metabolic flux by stable isotope labelling and differential analysis of cells subjected to specific pharmacological interventions.

  19. Interfering with CXCR4 expression inhibits proliferation, adhesion and migration of breast cancer MDA-MB-231 cells.

    Science.gov (United States)

    Guo, Shanyu; Xiao, Dan; Liu, Huihui; Zheng, Xiao; Liu, Lei; Liu, Shougui

    2014-10-01

    To investigate the effect and mechanism of the CXC chemokine receptor 4 (CXCR4) in the proliferation and migration of breast cancer, a short-hairpin RNA (shRNA) eukaryotic expression vector targeting CXCR4 was constructed, and the impact of such on the proliferation, adhesion and migration of human breast cancer MDA-MB-231 cells was observed. The fragments of CXCR4-shRNA were synthesized and cloned into a pGCsi-U6-Neo-green fluorescent protein vector. The recombinant plasmids were transfected into 293T cells and the most efficacious interfering vector was selected. MDA-MB-231 cells were transfected by liposome assay. The effects of silencing CXCR4 expression by shRNA on the growth, adhesion and migration of MDA-MB-231 cells were determined by Cell Counting Kit-8, cell-matrix adhesion and wound-healing assays. The shRNA eukaryotic expression vectors targeting CXCR4 (CXCR4-shRNA) were successfully constructed and transfected into 293T cells. Quantitative polymerase chain reaction and western blot analysis revealed that the maximum inhibitory rate of CXCR4 expression was 81.3%. CXCR4-shRNA transfection significantly inhibited the proliferation of MDA-MB-231 cells (PMB-231 cells and the extracellular matrix (PMB-231 cells in the CXCR4-shRNA transfection group was significantly smaller than that in the control plasmid and blank control groups (PMB-231 cells.

  20. Potential suppressive effects of gentian violet on human breast cancer MDA-MB-231 cells in vitro: Comparison with gemcitabine.

    Science.gov (United States)

    Yamaguchi, Masayoshi; Murata, Tomiyasu

    2016-08-01

    Gentian violet (GV), a cationic triphenylmethane dye, is used as an antifungal and antibacterial agent. Recently, attention has been focused on GV as a potential chemotherapeutic and antiangiogenic agent. The present study was undertaken to determine the suppressive effects of GV on human breast cancer MDA-MB-231 cells in vitro. The proliferation of MDA-MB-231 cells was suppressed by culture with GV (1-200 nM). The suppressive effects of GV on cell proliferation were not potentiated in the presence of various inhibitors that induce cell cycle arrest in vitro. This finding suggested that GV inhibits G1 and G2/M phase cell cycle arrest in MDA-MB-231 cells. The suppressive effects of GV on proliferation are mediated through the inhibition of various signaling pathways or nuclear transcription in vitro. Moreover, the suppressive effects of GV on cell proliferation were compared with that of gemcitabine, a strong antitumor agent that induces nuclear DNA damage. Notably, the culture with gemcitabine >50 nM suppressed cell proliferation, while the effects of GV were observed at >1 nM. The suppressive effects of gemcitabine on cell proliferation were not potentiated by GV. Overall, the present study demonstrated that GV exhibits a potential suppressive effect on the proliferation of human breast cancer MDA-MB-231 cells in vitro.

  1. [Inhibitory effects of capsaicin on migration and invasion of breast cancer MDA-MB-231 cells and its mechanism].

    Science.gov (United States)

    Li, Bai-He; Yuan, Lei

    2017-04-25

    The aim of this study was to investigate the effects of capsaicin on migration and invasion of breast cancer MDA-MB-231 cells and its possible mechanism. The MDA-MB-231 cells were incubated in the medium containing different concentrations of capsaicin for 24 h. CCK-8 assay was employed to detect the cell viability. The cell migration and invasion were assessed by wound healing assay and transwell invasion assay, respectively. The protein levels of c-Src, p-c-Src (Tyr416), FAK, p-FAK (Tyr576), Paxillin, p-Paxillin (Tyr118), matrix metalloproteinase 2 (MMP2) and MMP9 in the MDA-MB-231 cells were detected by Western blotting. The mRNA expressions of MMP2 and MMP9 were measured by RT-PCR. The result showed that capsaicin (25 and 50 μmol/L) remarkably reduced the abilities of migration and invasion (P MB-231 cells. These effects of capsaicin were all in dose-dependent manners. These results suggest that capsaicin may suppress the migration and invasion of breast cancer MDA-MB-231 cells by inhibiting the phosphorylations of c-Src, FAK and Paxillin, and down-regulating the mRNA and protein levels of MMP2 and MMP9.

  2. Vascular endothelial growth inhibitor affects the invasion, apoptosis and vascularisation in breast cancer cell line MDA-MB-231

    Institute of Scientific and Technical Information of China (English)

    Gao Yinguang; Ge Zhicheng; Zhang Zhongtao; Bai Zhigang; Ma Xuemei; Wang Yu

    2014-01-01

    Background Breast cancer is one of the most common malignant female diseases worldwide.It is a significant threat to every woman's health.Vascular endothelial growth inhibitor (VEGI) is known to be abundant in endothelial cells.According to previous literature,overexpression of VEGI has been shown to inhibit tumor neovascularisation and progression in cellular and animal models,but there has been limited research on the significance of VEGI in the breast cancer.Methods In our study,cell lines MDA-MB-231 were first constructed in which VEGI mediated by lentivirus over-expressed.The effects of VEGI over-expression on MDA-MB-231 cells were investigated both in vitro and in vivo.The expression of VEGI in the MDA-MB-231 cells after infection of lentivirus was analyzed using real-time PCR and Western blotting.The effect of the biological characteristics of MDA-MB-231 cells was assessed by growth,invasion,adhesion,and migration assay with subcutaneous tumor-bearing nude mice models.Then the growth curves of the subcutaneous tumors were studied.Expressions of VEGI,CD31 and CD34 in the tumors were analyzed by immunohistochemistry and apoptosis was detected by flow cytometry and immunohistochemistry.Results Infection of MDA-MB-231 cells within the lentivirus resulted in approximately a 1 000-fold increase in the expression of VEGI.As can be seen in the invasion,adhesion and migration assay,the over-expression of VEGI can inhibit the ability of MDA-MB-231 cells during migration,adhesion and invasion.The volume of the subcutaneous tumor in the over-expression group was distinctly and significantly less than that of the control groups.Immunohistochemistry analysis of the tumor biopsies cleady showed the expression of VEGI in the over-expression group increased while CD31 and CD34 decreased significantly.In vitro and in vivo,the early apoptosis rate and the apoptosis index were increased within the VEGI over-expression group as compared with the control group.Conclusions Taken

  3. Roscovitine regulates invasive breast cancer cell (MDA-MB231) proliferation and survival through cell cycle regulatory protein cdk5.

    Science.gov (United States)

    Goodyear, Shaun; Sharma, Mahesh C

    2007-02-01

    Roscovitine, a purine analogue, has been considered for the treatment of cancer. Anti-cancer therapeutic efficacy is being evaluated in clinical trials. However, the mechanisms remain unclear. In the present study, cyclic-dependent kinase 5 (cdk5) proved to be a molecular target for roscovitine-triggered apoptosis for highly invasive breast cancer cell death. Because our previous studies have shown a potential role of cdk5 in endothelial cell proliferation/apoptosis [Sharma, M.R., Tuszynski, G.P., Sharma, M.C. (2004). Angiostatin-induced inhibition of endothelial cell proliferation/apoptosis is associated with the down-regulation of cell cycle regulatory protein cdk5. J. Cell Biochem. 91, 398-409], here we not only demonstrate first that Cdk5, p35, and p25 proteins were all expressed in invasive breast cancer cells MDA-MB231 but also showed that cdk5 expression regulates MDA-MB231 cell proliferation. In addition, potent mitogen bFGF up-regulates cdk5 expression. Roscovitine specifically inhibits cdk5 expression/activity in a dose-dependent manner with concomitant inhibition of MDA-MB231 cell proliferation and induction of apoptosis. By contrast, the roscovitine analog olomoucine, a specific inhibitor of cdk4, failed to affect MDA-MB231 cell proliferation and apoptosis which implies the specific involvement of cdk5 in roscovitine-triggered cell death/proliferation. Additionally, roscovitine-mediated inhibition of proliferation is irreversible. These data suggest that cdk5 may have a significant role in the regulation of breast cancer cell proliferation and apoptosis and extend beyond its role in neurogenesis. These results suggest that Cdk5 is a novel player in roscovitine-triggered breast cancer cell apoptosis and inhibition of proliferation, therefore, may be a potential therapeutic target.

  4. Dillenia suffruticosa dichloromethane root extract induced apoptosis towards MDA-MB-231 triple-negative breast cancer cells.

    Science.gov (United States)

    Foo, Jhi Biau; Saiful Yazan, Latifah; Tor, Yin Sim; Wibowo, Agustono; Ismail, Norsharina; Armania, Nurdin; Cheah, Yoke Kqueen; Abdullah, Rasedee

    2016-07-01

    Dillenia suffruticosa is traditionally used for treatment of cancerous growth including breast cancer in Malaysia. Dillenia suffruticosa is a well-known medicinal plant in Malaysia for the treatment of cancer. Nevertheless, no study has been reported the cytotoxicity of this plant towards MDA-MB-231 triple-negative breast cancer cells. The present study was designed to investigate the mode of cell death and signalling pathways of MDA-MB-231 cells treated with dichloromethane Dillenia suffruticosa root extract (DCM-DS). Extraction of Dillenia suffruticosa root was performed by the use of sequential solvent procedure. The cytotoxicity of DCM-DS was determined by using MTT assay. The mode of cell death was evaluated by using an inverted light microscope and flow cytometry analysis using Annexin-V/PI. Cell cycle analysis and measurement of reactive oxygen species level were performed by using flow cytometry. The cells were treated with DCM-DS and antioxidants α-tocopherol or ascorbic acid to evaluate the involvement of ROS in the cytotoxicity of DCM-DS. Effect of DCM-DS on the expression of antioxidant, apoptotic, growth, survival genes and proteins were analysed by using GeXP-based multiplex system and Western blot, respectively. The cytotoxicity of compounds isolated from DCM-DS was evaluated towards MDA-MB-231 cells using MTT assay. DCM-DS induced apoptosis, G2/M phase cell cycle arrest and oxidative stress in MDA-MB-231 cells. The induction of apoptosis in MDA-MB-231 cells by DCM-DS is possibly due to the activation of pro-apoptotic JNK1 and down-regulation of anti-apoptotic ERK1, which in turn down-regulates anti-apoptotic BCL-2 to increase the BAX/BCL-2 ratio to initiate the mitochondrial apoptotic pathway. The cell cycle arrest in DCM-DS-treated MDA-MB-231 cells is possibly via p53-independent but p21-dependent pathway. A total of 3 triterpene compounds were isolated from DCM-DS. Betulinic acid appears to be the most major and most cytotoxic compound in DCM

  5. Inhibitory effects of ginseng sapogenins on the proliferation of triple negative breast cancer MDA-MB-231 cells.

    Science.gov (United States)

    Kwak, Jin Ho; Park, Jun Yeon; Lee, Dahae; Kwak, Jae Young; Park, Eun Hwa; Kim, Ki Hyun; Park, Hye-Jin; Kim, Hyun Young; Jang, Hyuk Jai; Ham, Jungyeob; Hwang, Gwi Seo; Yamabe, Noriko; Kang, Ki Sung

    2014-12-01

    Because of poor prognosis, clinical treatment of triple-negative (TN) breast cancer remains the most challenging factor in cancer treatment. Extensive research into alternative cancer therapies includes studying the naturopathic effects of the medicinal herb ginseng. This study investigates the anti-neoplastic properties of ginseng sapogenins and the derivatives: (1) (20(S)-protopanaxadiol (PPD), (2) 20(S)-protopanaxatriol), (3) (20(S)-dihydroprotopanaxadiol, and (4) 20(S)-dihydroprotopanaxatriol). These compounds were found to prevent the proliferation of MDA-MB-231 human breast cancer cells. PPD was the most potent inhibitor, exhibiting an IC₅₀ (5.87 μM) comparable to that of the chemotherapeutic drug taxol. Furthermore, PPD induced dose-dependent cleavage of caspase-8, caspase-3, and PARP in MDA-MB-231 cells. Thus, we propose that PPD acts as anti-cancer agent by stimulating caspase-dependent apoptosis in breast cancer cells.

  6. Combination of cisplatin and bromelain exerts synergistic cytotoxic effects against breast cancer cell line MDA-MB-231 in vitro.

    Science.gov (United States)

    Pauzi, Ahmad Zaim Mat; Yeap, Swee Keong; Abu, Nadiah; Lim, Kian Lam; Omar, Abdul Rahman; Aziz, Suraini Abdul; Chow, Adam Leow Thean; Subramani, Tamilselvan; Tan, Soon Guan; Alitheen, Noorjahan Banu

    2016-01-01

    Bromelain, which is a cysteine endopeptidase commonly found in pineapple stems, has been investigated as a potential anti-cancer agent for the treatment of breast cancer. However, information pertaining to the effects of combining bromelain with existing chemotherapeutic drugs remains scarce. This study aimed to investigate the possible synergistic cytotoxic effects of using bromelain in combination with cisplatin on MDA-MB-231 human breast cancer cells. MDA-MB-231 cells were treated with different concentrations (0.24-9.5 µM) of bromelain or cisplatin alone, as well as four different combinations of these two agents to assess their individual and combination effects after 24 and 48 h. Cell viability was analyzed using an MTT assay. The induction of apoptosis was assessed using cell cycle analysis and an Annexin V-FITC assay. The role of the mitochondrial membrane potential in the apoptotic process was assessed using a JC-1 staining assay. Apoptotic protein levels were assessed by western blot analysis and proteome profiling using an antibody array kit. Single-agent treatment with cisplatin or bromelain led to dose- and time-dependent decreases in the viability of the MDA-MB-231 cells at 24 and 48 h. Furthermore, most of the combinations evaluated in this study displayed synergistic effects against MDA-MB-231 cells at 48 h, with combination 1 (bromelain 2 µM + cisplatin 1.5 µM) exhibiting the greatest synergistic effect (P = 0.000). The results of subsequent assays indicated that combination 1 treatment induced apoptosis via mitochondria-mediated pathway. Combination 1 also resulted in significant decreases in the levels of several apoptotic proteins such as Bcl-x and HSP70, compared with bromelain (P = 0.002 and 0.000, respectively) or cisplatin (P = 0.000 and 0.001, respectively) single treatment. Notably, MDA-MB-231 cells treated with combination 1 showed increased levels of the pro-apoptotic proteins Bax compared with those treated with

  7. PEA3 activates CXCR4 transcription in MDA-MB-231 and MCF7 breast cancer cells

    Institute of Scientific and Technical Information of China (English)

    Shengmei Gu; Li Chen; Qi Hong; Tingting Yan; Zhigang Zhuang; Qiaoqiao wang; Wei Jin; Hua Zhu; Jiong Wu

    2011-01-01

    CXC chemokine receptor 4 (CXCR4) is a cell surface receptor that has been shown to mediate the metastasis of many solid tumors including lung,breast,kidney,and prostate tumors.In this study,we found that overexpression of ets variant gene 4 (PEA3) could elevate CXCR4 mRNA level and CXCR4 promoter activity in human MDA-MB-231 and MCF-7 breast cancer cells.PEA3 promoted CXCR4 expression and breast cancer metastasis.Chromatin immunoprecipitation assay demonstrated that PEA3 could bind to the CXCR4 promoter in the cells transfected with PEA3 expression vector.PEA3 siRNA attenuated CXCR4 promoter activity and the binding of PEA3 to the CXCR4 promoter in MDA-MB-231 and MCF-7 cells.These results indicated that PEA3 could activate CXCR4 promoter transcription and promote breast cancer metastasis.

  8. Stable transfection of estrogen receptor-alpha suppresses expression of cyclooxygenase-2 and vascular endothelial growth factor-C in MDA-MB-231 breast cancer cells

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hui; LIN Ying; XIAO Ying; WANG San-ming; LIU Xiang-xia; WANG Shen-ming

    2010-01-01

    Background Estrogen receptor (ER)-negative breast cancer cells are more aggressive than ER-positive cells. Elevated levels of cyclooxygenase-2 (COX-2) and vascular endothelial growth factor-C (VEGF-C) expression have been detected in cultured human breast cancer cells and are associated with negative hormone receptor status. In this study, we created ERα stable transfectants in MDA-MB-231 cells to explore the effect of ERα on cell growth and COX-2 and VEGF-C expression.Methods The green fluorescent protein (GFP)-ERα plasmids were stably transfected into ER-negative MDA-MB-231 cells. The proliferation and migration of untransfected MDA-MB-231 cells, ERα-transfected MDA-MB-231 cells and ER-positive MCF-7 cells were determined. The expression of COX-2, and the levels of VEGF-C mRNA and the VEGF-C secretion concentration were assayed in these cell lines.Results The proliferation and migration capacities of ERα-tranfected MDA-MB-231 cells were significantly decreased (P <0.05). The expression of COX-2 was significantly lower in ERa-tranfected MDA-MB-231 cells than in untranfected MDA-MB-231 cells. The mRNA and protein levels of VEGF-C were lower in ERa-tranfected MDA-MB-231 cells than in untransfected MDA-MB-231 cells (P<0.05).Conclusions ERα stable transfection inhibits proliferation and migration capacities of MDA-MB-231 cells and decreases expression of COX-2 and VEGF-C. The decreases of proliferation and migration capacities may be related to suppression of COX-2 and VEGF-C expression.

  9. Differential Epigenetic Effects of Atmospheric Cold Plasma on MCF-7 and MDA-MB-231 Breast Cancer Cells.

    Science.gov (United States)

    Park, Sung-Bin; Kim, Byungtak; Bae, Hansol; Lee, Hyunkyung; Lee, Seungyeon; Choi, Eun H; Kim, Sun Jung

    2015-01-01

    Cold atmospheric plasma (plasma) has emerged as a novel tool for a cancer treatment option, having been successfully applied to a few types of cancer cells, as well as tissues. However, to date, no studies have been performed to examine the effect of plasma on epigenetic alterations, including CpG methylation. In this study, the effects of plasma on DNA methylation changes in breast cancer cells were examined by treating cultured MCF-7 and MDA-MB-231 cells, representing estrogen-positive and estrogen-negative cancer cells, respectively, with plasma. A pyrosequencing analysis of Alu indicated that a specific CpG site was induced to be hypomethylated from 23.4 to 20.3% (p plasma treatment in the estrogen-negative MDA-MB-231 cells only. A genome-wide methylation analysis identified "cellular movement, connective tissue development and function, tissue development" and "cell-to-cell signaling and interaction, cell death and survival, cellular development" as the top networks. Of the two cell types, the MDA-MB-231 cells underwent a higher rate of apoptosis and a decreased proliferation rate upon plasma treatment. Taken together, these results indicate that plasma induces epigenetic and cellular changes in a cell type-specific manner, suggesting that a careful screening of target cells and tissues is necessary for the potential application of plasma as a cancer treatment option.

  10. Differential Epigenetic Effects of Atmospheric Cold Plasma on MCF-7 and MDA-MB-231 Breast Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Sung-Bin Park

    Full Text Available Cold atmospheric plasma (plasma has emerged as a novel tool for a cancer treatment option, having been successfully applied to a few types of cancer cells, as well as tissues. However, to date, no studies have been performed to examine the effect of plasma on epigenetic alterations, including CpG methylation. In this study, the effects of plasma on DNA methylation changes in breast cancer cells were examined by treating cultured MCF-7 and MDA-MB-231 cells, representing estrogen-positive and estrogen-negative cancer cells, respectively, with plasma. A pyrosequencing analysis of Alu indicated that a specific CpG site was induced to be hypomethylated from 23.4 to 20.3% (p < 0.05 by plasma treatment in the estrogen-negative MDA-MB-231 cells only. A genome-wide methylation analysis identified "cellular movement, connective tissue development and function, tissue development" and "cell-to-cell signaling and interaction, cell death and survival, cellular development" as the top networks. Of the two cell types, the MDA-MB-231 cells underwent a higher rate of apoptosis and a decreased proliferation rate upon plasma treatment. Taken together, these results indicate that plasma induces epigenetic and cellular changes in a cell type-specific manner, suggesting that a careful screening of target cells and tissues is necessary for the potential application of plasma as a cancer treatment option.

  11. Antitumor Activity of Chinese Propolis in Human Breast Cancer MCF-7 and MDA-MB-231 Cells

    Directory of Open Access Journals (Sweden)

    Hongzhuan Xuan

    2014-01-01

    Full Text Available Chinese propolis has been reported to possess various biological activities such as antitumor. In present study, anticancer activity of ethanol extract of Chinese propolis (EECP at 25, 50, 100, and 200 μg/mL was explored by testing the cytotoxicity in MCF-7 (human breast cancer ER(+ and MDA-MB-231 (human breast cancer ER(− cells. EECP revealed a dose- and time-dependent cytotoxic effect. Furthermore, annexin A7 (ANXA7, p53, nuclear factor-κB p65 (NF-κB p65, reactive oxygen species (ROS levels, and mitochondrial membrane potential were investigated. Our data indicated that treatment of EECP for 24 and 48 h induced both cells apoptosis obviously. Exposure to EECP significantly increased ANXA7 expression and ROS level, and NF-κB p65 level and mitochondrial membrane potential were depressed by EECP dramatically. The effects of EECP on p53 level were different in MCF-7 and MDA-MB-231 cells, which indicated that EECP exerted its antitumor effects in MCF-7 and MDA-MB-231 cells by inducing apoptosis, regulating the levels of ANXA7, p53, and NF-κB p65, upregulating intracellular ROS, and decreasing mitochondrial membrane potential. Interestingly, EECP had little or small cytotoxicity on normal human umbilical vein endothelial cells (HUVECs. These results suggest that EECP is a potential alternative agent on breast cancer treatment.

  12. Medium Renewal Blocks Anti-Proliferative Effects of Metformin in Cultured MDA-MB-231 Breast Cancer Cells.

    Science.gov (United States)

    Rajh, Maruša; Dolinar, Klemen; Miš, Katarina; Pavlin, Mojca; Pirkmajer, Sergej

    2016-01-01

    Epidemiological studies indicate that metformin, a widely used type 2 diabetes drug, might reduce breast cancer risk and mortality in patients with type 2 diabetes. Metformin might protect against breast cancer indirectly by ameliorating systemic glucose homeostasis. Alternatively, it might target breast cancer cells directly. However, experiments using MDA-MB-231 cells, a standard in vitro breast cancer model, produced inconsistent results regarding effectiveness of metformin as a direct anti-cancer agent. Metformin treatments in cultured MDA-MB-231 cells are usually performed for 48-96 hours, but protocols describing renewal of cell culture medium during these prolonged treatments are rarely reported. We determined whether medium renewal protocol might alter sensitivity of MDA-MB-231 cells treated with metformin. Using the MTS assay, BrdU incorporation and Hoechst staining we found that treatment with metformin for 48-72 hours failed to suppress viability and proliferation of MDA-MB-231 cells if low-glucose (1 g/L) medium was renewed every 24 hours. Conversely, metformin suppressed their viability and proliferation if medium was not renewed. Without renewal glucose concentration in the medium was reduced to 0.1 g/L in 72 hours, which likely explains increased sensitivity to metformin under these conditions. We also examined whether 2-deoxy-D-glucose (2-DG) reduces resistance to metformin. In the presence of 2-DG metformin reduced viability and proliferation of MDA-MB-231 cells with or without medium renewal, thus demonstrating that 2-DG reduces their resistance to metformin. In sum, we show that medium renewal blocks anti-proliferative effects of metformin during prolonged treatments in low-glucose medium. Differences in medium renewal protocols during prolonged treatments might therefore lead to apparently inconsistent results as regards effectiveness of metformin as a direct anti-cancer agent. Finally, our results indicate that co-therapy with 2-DG and

  13. Medium Renewal Blocks Anti-Proliferative Effects of Metformin in Cultured MDA-MB-231 Breast Cancer Cells

    Science.gov (United States)

    Rajh, Maruša; Dolinar, Klemen; Miš, Katarina; Pavlin, Mojca; Pirkmajer, Sergej

    2016-01-01

    Epidemiological studies indicate that metformin, a widely used type 2 diabetes drug, might reduce breast cancer risk and mortality in patients with type 2 diabetes. Metformin might protect against breast cancer indirectly by ameliorating systemic glucose homeostasis. Alternatively, it might target breast cancer cells directly. However, experiments using MDA-MB-231 cells, a standard in vitro breast cancer model, produced inconsistent results regarding effectiveness of metformin as a direct anti-cancer agent. Metformin treatments in cultured MDA-MB-231 cells are usually performed for 48–96 hours, but protocols describing renewal of cell culture medium during these prolonged treatments are rarely reported. We determined whether medium renewal protocol might alter sensitivity of MDA-MB-231 cells treated with metformin. Using the MTS assay, BrdU incorporation and Hoechst staining we found that treatment with metformin for 48–72 hours failed to suppress viability and proliferation of MDA-MB-231 cells if low-glucose (1 g/L) medium was renewed every 24 hours. Conversely, metformin suppressed their viability and proliferation if medium was not renewed. Without renewal glucose concentration in the medium was reduced to 0.1 g/L in 72 hours, which likely explains increased sensitivity to metformin under these conditions. We also examined whether 2-deoxy-D-glucose (2-DG) reduces resistance to metformin. In the presence of 2-DG metformin reduced viability and proliferation of MDA-MB-231 cells with or without medium renewal, thus demonstrating that 2-DG reduces their resistance to metformin. In sum, we show that medium renewal blocks anti-proliferative effects of metformin during prolonged treatments in low-glucose medium. Differences in medium renewal protocols during prolonged treatments might therefore lead to apparently inconsistent results as regards effectiveness of metformin as a direct anti-cancer agent. Finally, our results indicate that co-therapy with 2-DG and

  14. Inhibitory effect of emodin on migration, invasion and metastasis of human breast cancer MDA-MB-231 cells in vitro and in vivo.

    Science.gov (United States)

    Sun, Yang; Wang, Xiufeng; Zhou, Qianmei; Lu, Yiyu; Zhang, Hui; Chen, Qilong; Zhao, Ming; Su, Shibing

    2015-01-01

    In breast cancer, metastasis is the main reason for patient mortality. In the present study, we used breast cancer MDA-MB-231 cells and a mouse xenograft model to demonstrate the effect of emodin on the migration, invasion and metastasis of human breast cancer MDA-MB-231 cells and the related mechanisms. In vitro, wound healing and Transwell assays showed that emodin dose-dependently inhibited the migration and invasion of MDA-MB-231 cells. Enzyme-linked immunosorbent assay (ELISA) showed that emodin decreased the secretion of MMP-2 and MMP-9. Western blot analysis showed that emodin downregulated the expression levels of MMP-2, MMP-9, uPA and uPAR as well as p38 inhibitor SB203580 and ERK inhibitor PD980559, even though TIMP-1 and TIMP-2 were not obviously changed in the MDA-MB-231 cells. Furthermore, emodin inhibited the activity of p38 and ERK1/2 in the MDA-MB-231 cells. In vivo, emodin inhibited lung metastasis in mice bearing the breast cancer MDA-MB-231 xenografts with no obvious changes in body weight, liver and kidney functions. These results indicated that emodin inhibited the lung metastasis of human breast cancer in a mouse xenograft model, and inhibited the invasion of MDA-MB-231 cells associated with the downregulation of MMP-2, MMP-9, uPA and uPAR expression as well as decreased activity of p38 and ERK.

  15. Low-dose irradiation promotes proliferation of the human breast cancer MDA-MB-231 cells through accumulation of mutant P53.

    Science.gov (United States)

    Li, Si-Jie; Liang, Xin-Yue; Li, Hai-Jun; Li, Wei; Zhou, Lei; Chen, Hua-Qiu; Ye, Song-Gen; Yu, De-Hai; Cui, Jiu-Wei

    2017-01-01

    Low-dose irradiation (LDIR) has been proven to have differential biological effects on normal mammalian somatic cells and cancer cells. Our previous study showed that p53 gene status is a critical factor regulating the effect of LDIR on cancer cells. We investigated the effect of LDIR on the breast cancer cell line MDA-MB-231 that harbors a mutant p53 gene, and the normal breast fibroblast cell line Hs 578Bst. In the present study, we showed that 150 mGy LDIR pormoted growth of MDA-MB-231 cells but not Hs 578Bst cells. Through cell cycle analyses, we found that LDIR accelerated cell cycle into S phase in MDA-MB-231 cells, but did not affect the cell cycle of Hs 578Bst cells. Using western blotting, we demonstrated that the expression of CDK4, CDK6 and cyclin D1 was upregulated in MDA-MB-231 cells after LDIR. Although LDIR increased ataxia-telangiectasia mutated (ATM) level in both MDA-MB-231 cells and Hs 578Bst cells and activated ATM/p53/p21 pathway, only the mutant type of p53 (mtp53) protein in MDA-MB-231 cells was shown to be accumulated after LDIR. Using ATM inhibitor or lentivirus-mediated small interfering RNA (siRNA) to block the ATM/p53/p21 pathway in MDA-MB-231 cells, the LDIR-induced cell proliferation was abolished. When we introduced wild-type p53 (wtp53) protein into MDA-MB-231 cells, the LDIR-induced cell proliferation was also abolished. These findings suggest that normal p53 function is crucial in ATM/p53/p21 pathway activated by LDIR. The p53 status is the most probable reason leading to differential LDIR biological activities between breast tumor cells and normal breast cells.

  16. Radiosensitizing effect of conjugated linoleic acid in MCF-7 and MDA-MB-231 breast cancer cells; Effet radiosensibilisateur de l'acide linoleique conjugue chez les cellules cancereuses de sein MCF-7 et MDA-MB-231

    Energy Technology Data Exchange (ETDEWEB)

    Drouin, G.; Douillette, A. [Univ. de Sherbrooke, Dept. de medecine nucleaire de radiobiologie, Faculte de medecine, Sherbrooke, Quebec (Canada); Lacasse, P. [Centre de recherche et development sur le bovin laitier et le porc, Lennoxville, Quebec (Canada); Paquette, B. [Univ. de Sherbrooke, Dept. de medecine nucleaire de radiobiologie, Faculte de medecine, Sherbrooke, Quebec (Canada)]. E-mail: benoit.paquette@USherbrooke.ca

    2004-02-01

    Apoptotic pathways in breast cancer cells are frequently altered, reducing the efficiency of radiotherapy. Conjugated linoleic acid (CLA), known to trigger apoptosis, was tested as radiosensitizer in breast cancer cells MCF-7 and MDA-MB-231. The CLA-mix, made up of the isomers CLA-9cis 11trans and CLA-10trans 12cis, was compared to three purified isomers, i.e., the CLA-9cis 11cis, CLA-9cis 11trans, and CLA-10trans 12cis. Using the apoptotic marker YO-PRO-1, the CLA-9cis 11cis at 50 {mu}mol/L turned out to be the best apoptotic inducer leading to a 10-fold increase in MCF-7 cells and a 2,5-fold increase in MDA-MB-231 cells, comparatively to the CLA-mix. Contrary to previous studies on colorectal and prostate cancer cells, CLA-10trans 12cis does not lead to an apoptotic response on breast cancer cell lines MCF-7 and MDA-MB-231. Our results also suggest that the main components of the CLA-mix (CLA-9cis 11trans and CLA-10trans 12cis) are not involved in the induction of apoptosis in the breast cancer cells studied. A dose of 5 Gy did not induce apoptosis in MCF-7 and MDA-MB-231 cells. The addition of CLA-9cis 11cis or CLA-mix has allowed us to observe a radiation-induced apoptosis, with the CLA-9cis 11cis being about 8-fold better than the CLA-mix. CLA-9cis 11cis turned out to be the best radiosensitizer, although the isomers CLA-9cis 11trans and CLA-10trans 12cis have also reduced the cell survival following irradiation, but using a mechanism not related to apoptosis. In conclusion, the radiosensitizing property of CLA-9cis 11cis supports its potential as an agent to improve radiotherapy against breast carcinoma. (author)

  17. Khat promotes human breast cancer MDA-MB-231 cell apoptosis via mitochondria and MAPK-associated pathways.

    Science.gov (United States)

    Lu, Yu; Li, Yanyan; Xiang, Min; Zhou, Jie; Chen, Juan

    2017-10-01

    Khat (Catha edulis Forsk) is a flowering evergreen plant in Eastern Africa and Southwestern Arabia. Consumption of Khat has been associated with the development of oral cancer, but its mechanism of action on the molecular level remains unclear. The present study demonstrated the cytotoxic effect of khat extracts on the human breast cancer cell line MDA-MB-231. Trypan blue exclusion assays, flow cytometry, fluorescent and electron microscopy, as well as western blotting were used to analyze the effects of Khat on the cell viability of breast cancer cells, expression of apoptotic-associated proteins and the levels of reactive oxygen species (ROS). The results of the present study demonstrated that treatment with 400 µg/ml khat was able to induce cell death in breast cancers, with an increase in the protein expression of apoptosis regulator Bax and a decrease in the expression of B-cell lymphoma 2, along with a decrease in ROS levels in a time-dependent manner. Furthermore, the expression of activated c-Jun N-terminal and extracellular regulated protein kinases was increased in khat-treated cells compared with untreated cells. Mitochondria participated in cell apoptosis through the release of apoptogenic proteins to the cytosol and the generation of excess reactive oxygen species. The results of the present study suggest that khat induces MDA-MB-231 cell apoptosis via MAPK activation and mitochondrial-mediated death.

  18. FGFR4 GLY388 isotype suppresses motility of MDA-MB-231 breast cancer cells by EDG-2 gene repression.

    Science.gov (United States)

    Stadler, Christiane Regina; Knyazev, Pjotr; Bange, Johannes; Ullrich, Axel

    2006-06-01

    Clinical investigations of an FGFR4 germline polymorphism, resulting in substitution of glycine by arginine at codon 388 (G388 to R388), have shown a correlation between FGFR4 R388 and aggressive disease progression in cancer patients. Here, we studied the differential effects of the two FGFR4 isotypes on cellular signalling and motility in the MDA-MB-231 human breast cancer cell model. cDNA array analysis showed the ability of FGFR4 G388 to suppress expression of specific genes involved in invasiveness and motility. Further investigations concentrating on cell signalling and motility revealed an abrogation of phosphatidylinositol-3-kinase-dependent LPA-induced Akt activation and cell migration due to downregulation of the LPA receptor Edg-2 in FGFR4 G388-expressing MDA-MB-231 cells. Moreover, FGFR4 G388 expression attenuated the invasivity of the breast cancer cell line and decreased small Rho GTPase activity. We conclude that FGFR4 G388 suppresses cell motility of invasive breast cancer cells by altering signalling pathways and the expression of genes that are required for metastasis. Therefore, the positive effect of FGFR4 R388 on disease progression appears to result from a loss of the tumour suppressor activity displayed by FGFR4 G388 rather than the acquisition or enhancement of oncogenic potential.

  19. Evaluation of the cytotoxic activity of Hypericum spp. on human glioblastoma A1235 and breast cancer MDA MB-231 cells.

    Science.gov (United States)

    Madunić, Josip; Matulić, Maja; Friščić, Maja; Pilepić, Kroata Hazler

    2016-11-01

    Cytotoxic activity of 16 Hypericum ethanolic extracts was evaluated by MTT assay on two human cancer cell lines: glioblastoma A1235 and breast cancer MDA MB-231. Morphology and the type of induced cell death were determined using light and fluorescence microscopy. The majority of Hypericum extracts had no significant cytotoxic effect on MDA MB-231 cells. Eight extracts exhibited mild cytotoxic effect on A1235 cells after 24 h incubation, ranging from 8.0% (H. patulum) to 21.7% (H. oblongifolium). After 72 h of treatment, the strongest inhibition of A1235 viability was observed for extracts of H. androsaemum (26.4-43.9%), H. balearicum (25.8-36.3%), H. delphicum (14.8-27.4%) and H. densiflorum (11.2-24.1%). Micro-scopic examination of cells showed apoptosis as the dominant type of cell death. Due to observed high viability of treated cells, we propose that cytotoxic effects of Hypericum extracts could be related to alternations/interruptions in the cell cycle.

  20. Gene expression profiling and pathway analysis data in MCF-7 and MDA-MB-231 human breast cancer cell lines treated with dioscin.

    Science.gov (United States)

    Aumsuwan, Pranapda; Khan, Shabana I; Khan, Ikhlas A; Walker, Larry A; Dasmahapatra, Asok K

    2016-09-01

    Microarray technology (Human OneArray microarray, phylanxbiotech.com) was used to compare gene expression profiles of non-invasive MCF-7 and invasive MDA-MB-231 breast cancer cells exposed to dioscin (DS), a steroidal saponin isolated from the roots of wild yam, (Dioscorea villosa). Initially the differential expression of genes (DEG) was identified which was followed by pathway enrichment analysis (PEA). Of the genes queried on OneArray, we identified 4641 DEG changed between MCF-7 and MDA-MB-231 cells (vehicle-treated) with cut-off log2 |fold change|≧1. Among these genes, 2439 genes were upregulated and 2002 were downregulated. DS exposure (2.30 μM, 72 h) to these cells identified 801 (MCF-7) and 96 (MDA-MB-231) DEG that showed significant difference when compared with the untreated cells (pMB-231 cells. Further comparison of DEG between MCF-7 and MDA-MB-231 cells exposed to DS identified 3626 DEG of which 1700 were upregulated and 1926 were down-regulated. Regarding to PEA, 12 canonical pathways were significantly altered between these two cell lines. However, there was no alteration in any of these pathways in MCF-7 cells, while in MDA-MB-231 cells only MAPK pathway showed significant alteration. When PEA comparison was made on DS exposed cells, it was observed that only 2 pathways were significantly affected. Further, we identified the shared DEG, which were targeted by DS and overlapped in both MCF-7 and MDA-MB-231 cells, by intersection analysis (Venn diagram). We found that 7 DEG were overlapped of which six are reported in the database. This data highlight the diverse gene networks and pathways in MCF-7 and MDA-MB-231 human breast cancer cell lines treated with dioscin.

  1. [Establishment of breast cancer MDA-MB-231 cell line stably over-expressing human TOX high mobility group box family member 3].

    Science.gov (United States)

    Han, Cuicui; Yue, Liling; Yang, Ying; Jian, Baiyu; Ma, Liwei; Liu, Jicheng

    2014-11-01

    To construct the lentiviral expression vector of human TOX high mobility group box family member 3 (TOX3) gene and the MDA-MB-231 cell line which stably over-expresses TOX3 gene. TOX3 gene was synthesized by the gene synthesis method and amplified by PCR, and then cloned into pLVEF-1a/GFP-Puro vector to construct pLVEF-1a/GFP-Puro-TOX3 lentiviral vector. After restriction enzyme analysis and sequence identification, the lentiviral vector was packaged and the titer was detected. The human breast cancer MDA-MB-231 cells were transfected with the recombinant lentiviral vector and cultured selectively by puromycin to acquire stably transfected cells. MDA-MB-231 cells which expressed GFP were observed by fluorescence microcopy. And the expression levels of TOX3 mRNA and protein in transfected MDA-MB-231 cells were detected by real-time quantitative PCR(qRT-PCR) and Western blotting, respectively. Restriction enzyme digestion and sequence analysis demonstrated that the lentiviral expression vectors of pLVEF-1a/GFP-Puro and pLVEF-1a/GFP-Puro-TOX3 were successfully constructed, and the viral titers were respectively 2×10(8) TU/mL and 1×10(8) TU/mL after lentiviral packaging. And after being transfected, more than 95% cells expressed GFP under a fluorescence microscope. The results of qRT-PCR and Western blotting showed that, when compared with the MDA-MB-231-NC negative control group, the expression of TOX3 mRNA and protein significantly increased in the MDA-MB-231-TOX3 group. The study successfully constructed lentiviral expression vector of TOX3 gene and obtained MDA-MB-231 cell line stably over-expressing TOX3 gene by transfection with the recombinant vector.

  2. Pentamidine reduces expression of hypoxia-inducible factor-1α in DU145 and MDA-MB-231 cancer cells.

    Science.gov (United States)

    Jung, Hui-Jung; Suh, Seong-Il; Suh, Min-Ho; Baek, Won-Ki; Park, Jong-Wook

    2011-04-01

    Pentamidine is an aromatic diamine used for the treatment of human protozoa infections. Recently, pentamidine has been reported to exhibit anticancer properties. In this study, we report that pentamidine inhibits expression of hypoxia-inducible factor (HIF)-1α in cancer cells. Pentamidine decreased HIF-1α protein translation and enhanced its protein degradation in DU145 prostate cancer and MDA-MB-231 breast cancer cells. In parallel with reduction of de novo synthesis of HIF-1α, pentamidine was able to suppress global protein translation, an effect accompanied by the reduction of eIF4F complex formation and also the induction of eIF2α phosphorylation. These results show that pentamidine is a potential inhibitor of HIF-1α and its potential as a cancer therapeutic reagent warrants further study.

  3. Anti-proliferative effect of biogenic gold nanoparticles against breast cancer cell lines (MDA-MB-231 & MCF-7)

    Energy Technology Data Exchange (ETDEWEB)

    Uma Suganya, K.S. [Centre for Ocean Research, Sathyabama University, Chennai 600119 (India); Govindaraju, K., E-mail: govindtu@gmail.com [Centre for Ocean Research, Sathyabama University, Chennai 600119 (India); Ganesh Kumar, V. [Centre for Ocean Research, Sathyabama University, Chennai 600119 (India); Prabhu, D.; Arulvasu, C. [Department of Zoology, University of Madras, Guindy campus, Chennai 600 025 (India); Stalin Dhas, T.; Karthick, V.; Changmai, Niranjan [Centre for Ocean Research, Sathyabama University, Chennai 600119 (India)

    2016-05-15

    Highlights: • Biosynthesis of stable and well dispersed predominantly spherical gold nanoparticles of size around ∼12.5 nm. • Anticancer assessment of gold nanoparticles on MDA-MB-231 and MCF-7 cell lines. • AuNPs were found non toxic to normal HMEC cells. • Flow cytometry results revealed significant arrest in cell proliferation in early G0/G1 to S phase. - Abstract: Breast cancer is a major complication in women and numerous approaches are being developed to overcome this problem. In conventional treatments such as chemotherapy and radiotherapy the post side effects cause an unsuitable effect in treatment of cancer. Hence, it is essential to develop a novel strategy for the treatment of this disease. In the present investigation, a possible route for green synthesis of gold nanoparticles (AuNPs) using leaf extract of Mimosa pudica and its anticancer efficacy in the treatment of breast cancer cell lines is studied. The synthesized nanoparticles were found to be effective in killing cancer cells (MDA-MB-231 & MCF-7) which were studied using various anticancer assays (MTT assay, cell morphology determination, cell cycle analysis, comet assay, Annexin V-FITC/PI staining and DAPI staining). Cell morphological analysis showed the changes occurred in cancer cells during the treatment with AuNPs. Cell cycle analysis revealed apoptosis in G{sub 0}/G{sub 1} to S phase. Similarly in Comet assay, there was an increase in tail length in treated cells in comparison with the control. Annexin V-FITC/PI staining assay showed prompt fluorescence in treated cells indicating the translocation of phosphatidylserine from the inner membrane. PI and DAPI staining showed the DNA damage in treated cells.

  4. Progesterone induces cellular differentiation in MDA-MB-231 breast cancer cells transfected with progesterone receptor complementary DNA.

    Science.gov (United States)

    Lin, Valerie Chun-Ling; Jin, Rongxian; Tan, Puay-Hoon; Aw, Swee-Eng; Woon, Chow-Thai; Bay, Boon-Huat

    2003-06-01

    Progesterone is an important regulator of growth and differentiation in breast tissues. In this study, the effect of progesterone on cell differentiation was evaluated in the estrogen receptor-negative and progesterone receptor (PR)-negative MDA-MB-231 cell line which was transfected with PR-complementary DNA. Morphological changes were analyzed at the ultrastructural level by scanning and transmission electron microscopy. Progesterone-treated PR-transfected cells exhibited a more protracted and well spread morphology with an increase in organelles such as mitochondria and rough endoplasmic reticulum as compared to the rounded form of control vehicle (0.1% ethanol)-treated PR-transfected cells. Vehicle and progesterone-treated MDA-MB-231 cells transfected with the pSG5 plasmid (transfection control cells) had similar rounded morphology as control vehicle-treated PR-transfected cells. Immunofluorescence staining revealed that expression of E-cadherin, a differentiation marker, was more prominent in progesterone-treated cells. Expression of keratin and vimentin but not beta-catenin was up-regulated in progesterone treated cells when evaluated by immunoblotting. As signal transducers and activators of transcription (STAT) molecules have been implicated in mammary differentiation, we analyzed the expression of Stat 1, 3, 5a, and 5b proteins and found a significant up-regulation of the Stat 5b protein in progesterone-treated cells. We have provided in vitro evidence of the close association of PR with differentiation in breast cancer. It is likely that the Stat 5b protein may play a major role in progesterone-induced differentiation in breast cancer cells.

  5. Activity of plasma membrane V-ATPases is critical for the invasion of MDA-MB231 breast cancer cells.

    Science.gov (United States)

    Cotter, Kristina; Capecci, Joseph; Sennoune, Souad; Huss, Markus; Maier, Martin; Martinez-Zaguilan, Raul; Forgac, Michael

    2015-02-06

    The vacuolar (H(+))-ATPases (V-ATPases) are a family of ATP-driven proton pumps that couple ATP hydrolysis with translocation of protons across membranes. Previous studies have implicated V-ATPases in cancer cell invasion. It has been proposed that V-ATPases participate in invasion by localizing to the plasma membrane and causing acidification of the extracellular space. To test this hypothesis, we utilized two separate approaches to specifically inhibit plasma membrane V-ATPases. First, we stably transfected highly invasive MDA-MB231 cells with a V5-tagged construct of the membrane-embedded c subunit of the V-ATPase, allowing for extracellular expression of the V5 epitope. We evaluated the effect of addition of a monoclonal antibody directed against the V5 epitope on both V-ATPase-mediated proton translocation across the plasma membrane and invasion using an in vitro Matrigel assay. The addition of anti-V5 antibody resulted in acidification of the cytosol and a decrease in V-ATPase-dependent proton flux across the plasma membrane in transfected but not control (untransfected) cells. These results demonstrate that the anti-V5 antibody inhibits activity of plasma membrane V-ATPases in transfected cells. Addition of the anti-V5 antibody also inhibited in vitro invasion of transfected (but not untransfected) cells. Second, we utilized a biotin-conjugated form of the specific V-ATPase inhibitor bafilomycin. When bound to streptavidin, this compound cannot cross the plasma membrane. Addition of this compound to MDA-MB231 cells also inhibited in vitro invasion. These studies suggest that plasma membrane V-ATPases play an important role in invasion of breast cancer cells.

  6. Herbal Extract SH003 Suppresses Tumor Growth and Metastasis of MDA-MB-231 Breast Cancer Cells by Inhibiting STAT3-IL-6 Signaling

    Directory of Open Access Journals (Sweden)

    Youn Kyung Choi

    2014-01-01

    Full Text Available Cancer inflammation promotes cancer progression, resulting in a high risk of cancer. Here, we demonstrate that our new herbal extract, SH003, suppresses both tumor growth and metastasis of MDA-MB-231 breast cancer cells via inhibiting STAT3-IL-6 signaling path. Our new herbal formula, SH003, mixed extract from Astragalus membranaceus, Angelica gigas, and Trichosanthes kirilowii Maximowicz, suppressed MDA-MB-231 tumor growth and lung metastasis in vivo and reduced the viability and metastatic abilities of MDA-MB-231 cells in vitro. Furthermore, SH003 inhibited STAT3 activation, which resulted in a reduction of IL-6 production. Therefore, we conclude that SH003 suppresses highly metastatic breast cancer growth and metastasis by inhibiting STAT3-IL-6 signaling path.

  7. Anticancer activity of a monobenzyltin complex C1 against MDA-MB-231 cells through induction of Apoptosis and inhibition of breast cancer stem cells

    Science.gov (United States)

    Fani, Somayeh; Kamalidehghan, Behnam; Lo, Kong Mun; Nigjeh, Siamak Ebrahimi; Keong, Yeap Swee; Dehghan, Firouzeh; Soori, Rahman; Abdulla, Mahmood Ameen; Chow, Kit May; Ali, Hapipah Mohd; Hajiaghaalipour, Fatemeh; Rouhollahi, Elham; Hashim, Najihah Mohd

    2016-01-01

    In the present study, we examined the cytotoxic effects of Schiff base complex, [N-(3,5-dichloro-2-oxidobenzylidene)-4-chlorobenzyhydrazidato](o-methylbenzyl)aquatin(IV) chloride, and C1 on MDA-MB-231 cells and derived breast cancer stem cells from MDA-MB-231 cells. The acute toxicity experiment with compound C1 revealed no cytotoxic effects on rats. Fluorescent microscopic studies using Acridine Orange/Propidium Iodide (AO/PI) staining and flow cytometric analysis using an Annexin V probe confirmed the occurrence of apoptosis in C1-treated MDA-MB-231 cells. Compound C1 triggered intracellular reactive oxygen species (ROS) production and lactate dehydrogenase (LDH) releases in treated MDA-MB-231 cells. The Cellomics High Content Screening (HCS) analysis showed the induction of intrinsic pathways in treated MDA-MB-231 cells, and a luminescence assay revealed significant increases in caspase 9 and 3/7 activity. Furthermore, flow cytometric analysis showed that compound C1 induced G0/G1 arrest in treated MDA-MB-231 cells. Real time PCR and western blot analysis revealed the upregulation of the Bax protein and the downregulation of the Bcl-2 and HSP70 proteins. Additionally, this study revealed the suppressive effect of compound C1 against breast CSCs and its ability to inhibit the Wnt/β-catenin signaling pathways. Our results demonstrate the chemotherapeutic properties of compound C1 against breast cancer cells and derived breast cancer stem cells, suggesting that the anticancer capabilities of this compound should be clinically assessed. PMID:27976692

  8. Anticancer activity of a monobenzyltin complex C1 against MDA-MB-231 cells through induction of Apoptosis and inhibition of breast cancer stem cells.

    Science.gov (United States)

    Fani, Somayeh; Kamalidehghan, Behnam; Lo, Kong Mun; Nigjeh, Siamak Ebrahimi; Keong, Yeap Swee; Dehghan, Firouzeh; Soori, Rahman; Abdulla, Mahmood Ameen; Chow, Kit May; Ali, Hapipah Mohd; Hajiaghaalipour, Fatemeh; Rouhollahi, Elham; Hashim, Najihah Mohd

    2016-12-15

    In the present study, we examined the cytotoxic effects of Schiff base complex, [N-(3,5-dichloro-2-oxidobenzylidene)-4-chlorobenzyhydrazidato](o-methylbenzyl)aquatin(IV) chloride, and C1 on MDA-MB-231 cells and derived breast cancer stem cells from MDA-MB-231 cells. The acute toxicity experiment with compound C1 revealed no cytotoxic effects on rats. Fluorescent microscopic studies using Acridine Orange/Propidium Iodide (AO/PI) staining and flow cytometric analysis using an Annexin V probe confirmed the occurrence of apoptosis in C1-treated MDA-MB-231 cells. Compound C1 triggered intracellular reactive oxygen species (ROS) production and lactate dehydrogenase (LDH) releases in treated MDA-MB-231 cells. The Cellomics High Content Screening (HCS) analysis showed the induction of intrinsic pathways in treated MDA-MB-231 cells, and a luminescence assay revealed significant increases in caspase 9 and 3/7 activity. Furthermore, flow cytometric analysis showed that compound C1 induced G0/G1 arrest in treated MDA-MB-231 cells. Real time PCR and western blot analysis revealed the upregulation of the Bax protein and the downregulation of the Bcl-2 and HSP70 proteins. Additionally, this study revealed the suppressive effect of compound C1 against breast CSCs and its ability to inhibit the Wnt/β-catenin signaling pathways. Our results demonstrate the chemotherapeutic properties of compound C1 against breast cancer cells and derived breast cancer stem cells, suggesting that the anticancer capabilities of this compound should be clinically assessed.

  9. Silencing of DUSP6 gene by RNAi-mediation inhibits proliferation and growth in MDA-MB-231 breast cancer cells: an in vitro study.

    Science.gov (United States)

    Song, Hongming; Wu, Chenyang; Wei, Chuankui; Li, Dengfeng; Hua, Kaiyao; Song, Jialu; Xu, Hui; Chen, Lei; Fang, Lin

    2015-01-01

    Dual-specificity phosphatase 6 (DUSP6) is a negative feedback mechanism of the mitogen-activated protein (MAP) kinase superfamily (MAPK/ERK, SAPK/JNK, p38), that is associated with cellular proliferation and differentiation. It has been reported that the expression of DUSP6 in different types of breast cancer is diverse and therefore it has altered functions in various types of breast cancer. Our aim was to explore the exact function of DUSP6 in triple-negative breast cancer cells (MDA-MB-231 cell) and to determine whether the suppression of DUSP6 by small interfering RNA (siRNA) and mircroRNA (miRNA) inhibits the growth of human MDA-MB-231 breast cancer cells. DUSP6-siRNA was used to inhibit the expression of DUSP6 directly and miR-145 to inhibit the expression of DUSP6 either in MDA-MB-231 breast cancer cells and successful transfection being confirmed by Real-time PCR and Western Blotting. Down regulation of DUSP6 in MDA-MB-231 cells suppressed the cell proliferation as investigated by MTT assay and colony form assay. Transwell test and Scratch assay were conducted to investigate the migration and invasion of MDA-MB-231 cells. T-test (two-tailed) was used to compare differences between groups, and the significance level was set at PMB-231 cells proliferation, migration and invasion, and meanwhile the cells were arrested at G0/G1 phase. DUSP6 plays a role in triple-negative breast cancer cells that might promote growth in MDA-MB-231 triple-negative breast cancer cells.

  10. Parthenolide induces superoxide anion production by stimulating EGF receptor in MDA-MB-231 breast cancer cells.

    Science.gov (United States)

    D'Anneo, A; Carlisi, D; Emanuele, S; Buttitta, G; Di Fiore, R; Vento, R; Tesoriere, G; Lauricella, M

    2013-12-01

    The sesquiterpene lactone parthenolide (PN) has recently attracted considerable attention because of its anti-microbial, anti-inflammatory and anticancer effects. However, the mechanism of its cytotoxic action on tumor cells remains scarcely defined. We recently provided evidence that the effect exerted by PN in MDA-MB-231 breast cancer cells was mediated by the production of reactive oxygen species (ROS). The present study shows that PN promoted the phosphorylation of EGF receptor (phospho-EGFR) at Tyr1173, an event which was observed already at 1 h of incubation with 25 µM PN and reached a peak at 8-16 h. This effect seemed to be a consequence of ROS production, because N-acetylcysteine (NAC), a powerful ROS scavenger, prevented the increment of phospho-EGFR levels. In addition fluorescence analyses performed using dihydroethidium demonstrated that PN stimulated the production of superoxide anion already at 2-3 h of incubation and the effect further increased prolonging the time of treatment, reaching a peak at 8-16 h. Superoxide anion production was markedly hampered by apocynin, a well known NADPH oxidase (NOX) inhibitor, suggesting that the effect was dependent on NOX activity. The finding that AG1478, an EGFR kinase inhibitor, substantially blocked both EGFR phosphorylation and superoxide anion production strongly suggested that phosphorylation of EGFR can be responsible for the activation of NOX with the consequent production of superoxide anion. Therefore, EGFR phosphorylation can exert a key role in the production of superoxide anion and ROS induced by PN in MDA-MB-231 cells.

  11. Assessment of the anti-metastatic properties of sanguiin H-6 in HUVECs and MDA-MB-231 human breast cancer cells.

    Science.gov (United States)

    Park, Eun-Hwa; Park, Jun Yeon; Yoo, Hwa-Seung; Yoo, Jeong-Eun; Lee, Hye Lim

    2016-07-15

    The anti-metastatic properties of sanguiin H-6 were examined in human umbilical vein vascular endothelial cells (HUVECs) and MDA-MB-231 human breast cancer cells. In HUVECs, sanguiin H-6 inhibited the density of migrated cells compared to that observed after treatment with the vehicle. In addition, sanguiin H-6 at a concentration of 6.25μM significantly blocked tube formation. Treatment with up to 25μM sanguiin H-6 had no effect on MDA-MB-231 cells, whereas treatment with 200μM sanguiin H-6 decreased cell viability. Sanguiin H-6 significantly decreased the expression levels of vascular endothelial growth factor (VEGF), phosphorylated Akt, and extracellular signal-regulated kinase 1/2 (ERK1/2) in MDA-MB-231 cells. These findings suggest that sanguiin H-6 is potentially useful as an anti-metastatic agent.

  12. Inhibition of ROS production, autophagy or apoptosis signaling reversed the anticancer properties of Antrodia salmonea in triple-negative breast cancer (MDA-MB-231) cells.

    Science.gov (United States)

    Chang, Chia-Ting; Korivi, Mallikarjuna; Huang, Hui-Chi; Thiyagarajan, Varadharajan; Lin, Kai-Yuan; Huang, Pei-Jane; Liu, Jer-Yuh; Hseu, You-Cheng; Yang, Hsin-Ling

    2017-05-01

    We investigated the in vitro and in vivo anticancer properties of Antrodia salmonea (AS), a well-known edible/medicinal mushroom in Taiwan, on human triple-negative breast cancer (MDA-MB-231) cells and xenografted nude mice; and revealed the underlying molecular mechanisms involved in autophagic- and apoptotic-cell death. Treatment of MDA-MB-231 cells with fermented culture broth of AS (0-200 μg/mL) inhibited cell viability/growth. AS-induced autophagy was evidenced via increased LC3-II accumulation, GFP-LC3 puncta and AVOs formation in MDA-MB-231 cells. These events are associated with increased ATG7, decreased p-mTOR, vanished SQSTM1/p62 expressions and dysregulated Beclin-1/Bcl-2 ratio. AS-induced apoptosis/necrosis through increased DNA fragmentation, Annexin-V/PI stained cells and Bax expression. Both mitochondrial (caspase-9/caspase-3/PARP) and death-receptor (caspase-8/FasL/Fas) signaling pathways are involved in execution of apoptosis. Interestingly, blockade of AS-induced ROS production by N-acetylcysteine pretreatment substantially attenuated AS-induced autophagy, mitochondrial dysfunction and autophagic/apoptotic-cell death. Inhibition of apoptosis by Z-VAD-FMK suppressed AS-induced autophagic-death (decreased LC3-II/AVOs). Similarly, inhibition of autophagy by 3-methyladenine/chloroquine diminished AS-induced apoptosis (decreased DNA fragmentation/caspase-3) in MDA-MB-231 cells. Bioluminescence imaging further confirmed that AS inhibited breast tumor growth in living MDA-MB-231-luciferase-injected nude mice. Taken together, AS crucially involved in execution/propagation of autophagic- or apoptotic-death of MDA-MB-231 cells, and decreased tumor growth in xenografted nude mice. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Loquat (Eriobotrya japonica) leaf extract inhibits the growth of MDA-MB-231 tumors in nude mouse xenografts and invasion of MDA-MB-231 cells.

    Science.gov (United States)

    You, Mi-Kyoung; Kim, Min-Sook; Jeong, Kyu-Shik; Kim, Eun; Kim, Yong-Jae; Kim, Hyeon-A

    2016-04-01

    The present study was conducted to examine the inhibitory effect of loquat leaves on MDA-MB-231 cell proliferation and invasion. Female athymic nude mice were given a subcutaneous (s.c.) inoculation of MDA-MB-231 cells and randomly grouped to receive a s.c. injection of either 500 mg/kg ethanol, water extract or vehicle five times a week. Tumor growth, mitotic rate and necrosis were examined. MDA-MB-231 cells were cultured with DMSO or with various concentrations of loquat water or ethanol extract. Proliferation, adhesion, migration, invasion and matrix metalloproteinase (MMP) activity were examined. Tumor growth of xenograft nude mouse was significantly reduced by loquat extracts. The results of mitotic examination revealed that loquat extracts reduced tumor cell division. Both ethanol and water extracts significantly inhibited MDA-MB-231 cell proliferation. The protein expression of ErbB3 was significantly down-regulated by loquat leaf extracts. Loquat leaf extracts increased apoptosis of MDA-MB-231 cells following 24 hour incubation and the ethanol extract was more potent in inducing apoptosis than the water extract. Furthermore, loquat extracts inhibited adhesion, migration and invasion of MDA-MB-231 cells. MMP activity was significantly inhibited by loquat extracts. Our results show that extracts of loquat inhibit the growth of tumor in MDA-MB-231 xenograft nude mice and the invasion of human breast cancer cells, indicating the inhibition of tumor cell proliferation and invasion.

  14. Fluvastatin mediated breast cancer cell death: a proteomic approach to identify differentially regulated proteins in MDA-MB-231 cells.

    Directory of Open Access Journals (Sweden)

    Anantha Koteswararao Kanugula

    Full Text Available Statins are increasingly being recognized as anti-cancer agents against various cancers including breast cancer. To understand the molecular pathways targeted by fluvastatin and its differential sensitivity against metastatic breast cancer cells, we analyzed protein alterations in MDA-MB-231 cells treated with fluvastatin using 2-DE in combination with LC-MS/MS. Results revealed dys-regulation of 39 protein spots corresponding to 35 different proteins. To determine the relevance of altered protein profiles with breast cancer cell death, we mapped these proteins to major pathways involved in the regulation of cell-to-cell signaling and interaction, cell cycle, Rho GDI and proteasomal pathways using IPA analysis. Highly interconnected sub networks showed that vimentin and ERK1/2 proteins play a central role in controlling the expression of altered proteins. Fluvastatin treatment caused proteolysis of vimentin, a marker of epithelial to mesenchymal transition. This effect of fluvastatin was reversed in the presence of mevalonate, a downstream product of HMG-CoA and caspase-3 inhibitor. Interestingly, fluvastatin neither caused an appreciable cell death nor did modulate vimentin expression in normal mammary epithelial cells. In conclusion, fluvastatin alters levels of cytoskeletal proteins, primarily targeting vimentin through increased caspase-3- mediated proteolysis, thereby suggesting a role for vimentin in statin-induced breast cancer cell death.

  15. Mitochondrial calcium uniporter silencing potentiates caspase-independent cell death in MDA-MB-231 breast cancer cells.

    Science.gov (United States)

    Curry, Merril C; Peters, Amelia A; Kenny, Paraic A; Roberts-Thomson, Sarah J; Monteith, Gregory R

    2013-05-10

    The mitochondrial calcium uniporter (MCU) transports free ionic Ca(2+) into the mitochondrial matrix. We assessed MCU expression in clinical breast cancer samples using microarray analysis and the consequences of MCU silencing in a breast cancer cell line. Our results indicate that estrogen receptor negative and basal-like breast cancers are characterized by elevated levels of MCU. Silencing of MCU expression in the basal-like MDA-MB-231 breast cancer cell line produced no change in proliferation or cell viability. However, distinct consequences of MCU silencing were seen on cell death pathways. Caspase-dependent cell death initiated by the Bcl-2 inhibitor ABT-263 was not altered by MCU silencing; whereas caspase-independent cell death induced by the calcium ionophore ionomycin was potentiated by MCU silencing. Measurement of cytosolic Ca(2+) levels showed that the promotion of ionomycin-induced cell death by MCU silencing occurs independently of changes in bulk cytosolic Ca(2+) levels. This study demonstrates that MCU overexpression is a feature of some breast cancers and that MCU overexpression may offer a survival advantage against some cell death pathways. MCU inhibitors may be a strategy to increase the effectiveness of therapies that act through the induction of caspase-independent cell death pathways in estrogen receptor negative and basal-like breast cancers.

  16. Fluvastatin mediated breast cancer cell death: a proteomic approach to identify differentially regulated proteins in MDA-MB-231 cells.

    Science.gov (United States)

    Kanugula, Anantha Koteswararao; Dhople, Vishnu M; Völker, Uwe; Ummanni, Ramesh; Kotamraju, Srigiridhar

    2014-01-01

    Statins are increasingly being recognized as anti-cancer agents against various cancers including breast cancer. To understand the molecular pathways targeted by fluvastatin and its differential sensitivity against metastatic breast cancer cells, we analyzed protein alterations in MDA-MB-231 cells treated with fluvastatin using 2-DE in combination with LC-MS/MS. Results revealed dys-regulation of 39 protein spots corresponding to 35 different proteins. To determine the relevance of altered protein profiles with breast cancer cell death, we mapped these proteins to major pathways involved in the regulation of cell-to-cell signaling and interaction, cell cycle, Rho GDI and proteasomal pathways using IPA analysis. Highly interconnected sub networks showed that vimentin and ERK1/2 proteins play a central role in controlling the expression of altered proteins. Fluvastatin treatment caused proteolysis of vimentin, a marker of epithelial to mesenchymal transition. This effect of fluvastatin was reversed in the presence of mevalonate, a downstream product of HMG-CoA and caspase-3 inhibitor. Interestingly, fluvastatin neither caused an appreciable cell death nor did modulate vimentin expression in normal mammary epithelial cells. In conclusion, fluvastatin alters levels of cytoskeletal proteins, primarily targeting vimentin through increased caspase-3- mediated proteolysis, thereby suggesting a role for vimentin in statin-induced breast cancer cell death.

  17. Inhibition of Hypoxia-Induced Cell Motility by p16 in MDA-MB-231 Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Liyuan Li, Yi Lu

    2010-01-01

    Full Text Available Our previous studies indicated that p16 suppresses breast cancer angiogenesis and metastasis, and downregulates VEGF gene expression by neutralizing the transactivation of the VEGF transcriptional factor HIF-1α. Hypoxia stimulates tumor malignant progression and induces HIF-1α. Because p16 neutralizes effect of HIF-1α and attenuates tumor metastatic progression, we intended to investigate whether p16 directly affects one or more aspects of the malignant process such as adhesion and migration of breast cancer cells. To approach this aim, MDA-MB-231 and other breast cancer cells stably transfected with Tet-on inducible p16 were used to study the p16 effect on growth, adhesion and migration of the cancer cells. We found that p16 inhibits breast cancer cell proliferation and migration, but has no apparent effect on cell adhesion. Importantly, p16 inhibits hypoxia-induced cell migration in breast cancer in parallel with its inhibition of HIF-1α transactivation activity. This study suggests that p16's ability to suppress tumor metastasis may be partially resulted from p16's inhibition on cell migration, in addition to its known functions on inhibition of cell proliferation, angiogenesis and induction of apoptosis.

  18. Transcriptional effects of Organochlorine o,p′-DDT and its Metabolite p,p′-DDE in Transfected MDA-MB 231 and MCF-7 Breast Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Ehsan zayerzadeh

    2015-04-01

    Conclusion: In conclusion, our results revealed that o,p’-DDT has not estrogenic activity in a classical mechanism in transfected MDA-MB 231 breast cancer cells while has estrogenic activity in a classical mechanism in transfected MCF-7 human breast cancer cell line.

  19. Major triterpenoids in Chinese hawthorn "Crataegus pinnatifida" and their effects on cell proliferation and apoptosis induction in MDA-MB-231 cancer cells.

    Science.gov (United States)

    Wen, Lingrong; Guo, Ruixue; You, Lijun; Abbasi, Arshad Mehmood; Li, Tong; Fu, Xiong; Liu, Rui Hai

    2017-02-01

    The cytotoxicity and antiproliferative effect of phytochemicals presenting in the fruits of Chinese hawthorn (Crataegus pinnatifida) were evaluated. Shanlihong (Crataegus pinnatifida Bge. var. major N.E.Br.) variety possessed significant levels of flavonoids and triterpenoids, and showed potent antiproliferative effect against HepG2, MCF-7 and MDA-MB- 231 human cancer cells lines. Triterpenoids-enriched fraction (S9) prepared by Semi-preparative HPLC, and its predominant ingredient ursolic acid (UA) demonstrated remarkably antiproliferative activities for all the tested cancer cell lines. DNA flow cytometric analysis showed that S9 fraction and UA significantly induced G1 arrest in MDA-MB-231 cells in a dose-dependent manner. Western blotting analysis revealed that S9 fraction and UA significantly induced PCNA, CDK4, and Cyclin D1 downregulation in MDA-MB-231 cells, followed by p21(Waf1/Cip1) up-regulation. Additionally, flow cytometer and DNA ladder assays indicated that S9 fraction and UA significantly induced MDA-MB-231 cells apoptosis. Mitochondrial death pathway was involved in this apoptosis as significantly induced caspase-9 and caspase-3 activation. These results suggested that triterpenoids-enriched fraction and UA exhibited antiproliferative activity through the cell cycle arrest and apoptosis induction, and was majorly responsible for the potent anticancer activity of Chinese hawthorn. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Hypoxia counteracts taxol-induced apoptosis in MDA-MB-231 breast cancer cells: role of autophagy and JNK activation.

    Science.gov (United States)

    Notte, A; Ninane, N; Arnould, T; Michiels, C

    2013-05-16

    Cancer cell resistance against chemotherapy is still a heavy burden to improve anticancer treatments. Autophagy activation and the development of hypoxic regions within the tumors are known to promote cancer cell resistance. Therefore, we sought to evaluate the role of autophagy and hypoxia on the taxol-induced apoptosis in MDA-MB-231 breast cancer cells. The results showed that taxol induced apoptosis after 16 h of incubation, and that hypoxia protected MDA-MB-231 cells from taxol-induced apoptosis. In parallel, taxol induced autophagy activation already after 2 h of incubation both under normoxia and hypoxia. Autophagy activation after taxol exposure was shown to be a protective mechanism against taxol-induced cell death both under normoxia and hypoxia. However, at longer incubation time, the autophagic process reached a saturation point under normoxia leading to cell death, whereas under hypoxia, autophagy flow still correctly took place allowing the cells to survive. Autophagy induction is induced after taxol exposure via mechanistic target of rapamycin (mTOR) inhibition, which is more important in cells exposed to hypoxia. Taxol also induced c-Jun N-terminal kinase (JNK) activation and phosphorylation of its substrates B-cell CLL/lymphoma 2 (Bcl2) and BCL2-like 1 (BclXL) under normoxia and hypoxia very early after taxol exposure. Bcl2 and BclXL phosphorylation was decreased more importantly under hypoxia after long incubation time. The role of JNK in autophagy and apoptosis induction was studied using siRNAs. The results showed that JNK activation promotes resistance against taxol-induced apoptosis under normoxia and hypoxia without being involved in induction of autophagy. In conclusion, the resistance against taxol-induced cell death observed under hypoxia can be explained by a more effective autophagic flow activated via the classical mTOR pathway and by a mechanism involving JNK, which could be dependent on Bcl2 and BclXL phosphorylation but independent of

  1. Hypoxia counteracts taxol-induced apoptosis in MDA-MB-231 breast cancer cells: role of autophagy and JNK activation

    Science.gov (United States)

    Notte, A; Ninane, N; Arnould, T; Michiels, C

    2013-01-01

    Cancer cell resistance against chemotherapy is still a heavy burden to improve anticancer treatments. Autophagy activation and the development of hypoxic regions within the tumors are known to promote cancer cell resistance. Therefore, we sought to evaluate the role of autophagy and hypoxia on the taxol-induced apoptosis in MDA-MB-231 breast cancer cells. The results showed that taxol induced apoptosis after 16 h of incubation, and that hypoxia protected MDA-MB-231 cells from taxol-induced apoptosis. In parallel, taxol induced autophagy activation already after 2 h of incubation both under normoxia and hypoxia. Autophagy activation after taxol exposure was shown to be a protective mechanism against taxol-induced cell death both under normoxia and hypoxia. However, at longer incubation time, the autophagic process reached a saturation point under normoxia leading to cell death, whereas under hypoxia, autophagy flow still correctly took place allowing the cells to survive. Autophagy induction is induced after taxol exposure via mechanistic target of rapamycin (mTOR) inhibition, which is more important in cells exposed to hypoxia. Taxol also induced c-Jun N-terminal kinase (JNK) activation and phosphorylation of its substrates B-cell CLL/lymphoma 2 (Bcl2) and BCL2-like 1 (BclXL) under normoxia and hypoxia very early after taxol exposure. Bcl2 and BclXL phosphorylation was decreased more importantly under hypoxia after long incubation time. The role of JNK in autophagy and apoptosis induction was studied using siRNAs. The results showed that JNK activation promotes resistance against taxol-induced apoptosis under normoxia and hypoxia without being involved in induction of autophagy. In conclusion, the resistance against taxol-induced cell death observed under hypoxia can be explained by a more effective autophagic flow activated via the classical mTOR pathway and by a mechanism involving JNK, which could be dependent on Bcl2 and BclXL phosphorylation but

  2. Anti-proliferative effect of biogenic gold nanoparticles against breast cancer cell lines (MDA-MB-231 & MCF-7)

    Science.gov (United States)

    K. S., Uma Suganya; Govindaraju, K.; Ganesh Kumar, V.; Prabhu, D.; Arulvasu, C.; Stalin Dhas, T.; Karthick, V.; Changmai, Niranjan

    2016-05-01

    Breast cancer is a major complication in women and numerous approaches are being developed to overcome this problem. In conventional treatments such as chemotherapy and radiotherapy the post side effects cause an unsuitable effect in treatment of cancer. Hence, it is essential to develop a novel strategy for the treatment of this disease. In the present investigation, a possible route for green synthesis of gold nanoparticles (AuNPs) using leaf extract of Mimosa pudica and its anticancer efficacy in the treatment of breast cancer cell lines is studied. The synthesized nanoparticles were found to be effective in killing cancer cells (MDA-MB-231 & MCF-7) which were studied using various anticancer assays (MTT assay, cell morphology determination, cell cycle analysis, comet assay, Annexin V-FITC/PI staining and DAPI staining). Cell morphological analysis showed the changes occurred in cancer cells during the treatment with AuNPs. Cell cycle analysis revealed apoptosis in G0/G1 to S phase. Similarly in Comet assay, there was an increase in tail length in treated cells in comparison with the control. Annexin V-FITC/PI staining assay showed prompt fluorescence in treated cells indicating the translocation of phosphatidylserine from the inner membrane. PI and DAPI staining showed the DNA damage in treated cells.

  3. Effect of 3-bromopyruvate acid on the redox equilibrium in non-invasive MCF-7 and invasive MDA-MB-231 breast cancer cells.

    Science.gov (United States)

    Kwiatkowska, Ewa; Wojtala, Martyna; Gajewska, Agnieszka; Soszyński, Mirosław; Bartosz, Grzegorz; Sadowska-Bartosz, Izabela

    2016-02-01

    Novel approaches to cancer chemotherapy employ metabolic differences between normal and tumor cells, including the high dependence of cancer cells on glycolysis ("Warburg effect"). 3-Bromopyruvate (3-BP), inhibitor of glycolysis, belongs to anticancer drugs basing on this principle. 3-BP was tested for its capacity to kill human non-invasive MCF-7 and invasive MDA-MB-231 breast cancer cells. We found that 3-BP was more toxic for MDA-MB-231 cells than for MCF-7 cells. In both cell lines, a statistically significant decrease of ATP and glutathione was observed in a time- and 3-BP concentration-dependent manner. Transient increases in the level of reactive oxygen species and reactive oxygen species was observed, more pronounced in MCF-7 cells, followed by a decreasing tendency. Activities of glutathione peroxidase, glutathione reductase (GR) and glutathione S-transferase (GST) decreased in 3-BP treated MDA-MB-231 cells. For MCF-7 cells decreases of GR and GST activities were noted only at the highest concentration of 3-BP.These results point to induction of oxidative stress by 3-BP via depletion of antioxidants and inactivation of antioxidant enzymes, more pronounced in MDA-MB-231 cells, more sensitive to 3-BP.

  4. Induction of G1-phase cell cycle arrest and apoptosis pathway in MDA-MB-231 human breast cancer cells by sulfated polysaccharide extracted from Laurencia papillosa.

    Science.gov (United States)

    Murad, Hossam; Hawat, Mohammad; Ekhtiar, Adnan; AlJapawe, Abdulmunim; Abbas, Assef; Darwish, Hussein; Sbenati, Oula; Ghannam, Ahmed

    2016-01-01

    Marine algae consumption is linked to law cancer incidences in countries that traditionally consume marine products. Hence, Phytochemicals are considered as potential chemo-preventive and chemotherapeutic agents against cancer. We investigated the effects of the algal sulfated polysaccharide extract (ASPE) from the red marine alga L. papillosa on MDA-MB-231 human breast cancer cell line. Flow cytometry analysis was performed to study the cell viability, cell cycle arrest and apoptosis. Changes in the expression of certain genes associated with cell cycle regulation was conducted by PCR real time analyses. Further investigations on apoptotic molecules was performed by ROS measurement and protein profiling. ASPE at low doses (10 µg/ml), inhibited cell proliferation, and arrested proliferating MDA-MB-231 cells at G1-phase. However, higher doses (50 µg/ml), triggered apoptosis in those cells. The low dose of ASPE also caused up-regulation of Cip1/p21 and Kip1/p27 and down-regulation of cyclins D1, D2, and E1 transcripts and their related cyclin dependent kinases: Cdk2, Cdk4, and Cdk6. The higher doses of ASPE initiated a dose-dependent apoptotic death in MDA-MB-231 by induction of Bax transcripts, inhibition of Bcl-2 and cleavage of Caspase-3 protein. Over-generation of reactive oxygen species (ROS) were also observed in MDA-MB-231 treated cells. These findings indicated that ASPE induces G1-phase arrest and apoptosis in MDA-MB-231 cells. ASPE may serve as a potential therapeutic agent for breast cancer.

  5. A novel intracellular isoform of VEGFR-1 activates Src and promotes cell invasion in MDA-MB-231 breast cancer cells.

    Science.gov (United States)

    Mezquita, Belén; Mezquita, Jovita; Pau, Montserrat; Mezquita, Cristóbal

    2010-06-01

    Two types of VEGFR-1 receptors have been characterized: a full-length transmembrane receptor and a truncated extracellular soluble isoform (sVEGFR-1). We report here the characterization, in normal and cancer cells, of a new family of intracellular isoforms of VEGFR-1 resulting from alternative initiation of transcription in intronic sequences of the gene. While the classical isoforms of VEGFR-1 were barely detectable in MDA-MB-231 breast cancer cells, one of the intracellular isoforms transcribed from intron 21 (i(21)VEGFR-1) was the main isoform expressed in these cells. The new transcript encodes for a protein that contains only the phosphotransferase domain and the carboxyterminal tail of VEGFR-1. Treatment of MDA-MB-231 cells with siRNA specific for the tyrosine domain of VEGFR-1 suppressed the expression of i(21)VEGFR-1, downregulated phosphorylation of Src at tyrosine 418, and reduced markedly the invasion capacity of these cells in vitro. Accordingly, overexpression of transfected i(21)VEGFR-1 in MDA-MB-231 cells upregulated the active form of Src and increased invasiveness of MDA-MB-231 cells. The expression of i(21)VEGFR-1 in MDA-MB-231 cells was inhibited by retinoic acid. Both, activation of Src and downregulation by retinoic acid, have been reported in other intracellular members of the Fms/Kit/PDGFR family of tyrosine kinases, particularly in the intracellular isoform of c-kit, analogous structurally to i(21)VEGFR-1 and frequently expressed in cancer cells. (c) 2010 Wiley-Liss, Inc.

  6. Cantharidin suppressed breast cancer MDA-MB-231 cell growth and migration by inhibiting MAPK signaling pathway

    Directory of Open Access Journals (Sweden)

    X.-D. Gu

    Full Text Available As an active constituent of the beetle Mylabris used in traditional Chinese medicine, cantharidin is a potent and selective inhibitor of protein phosphatase 2A (PP2A that plays a crucial role in cell cycle progression, apoptosis, and cell fate. The role and possible mechanisms exerted by cantharidin in cell growth and metastasis of breast cancer were investigated in this study. Cantharidin was found to inhibit cell viability and clonogenic potential in a time- and dose-dependent manner. Cell cycle analysis revealed that cell percentage in G2/M phase decreased, whereas cells in S and G1 phases progressively accumulated with the increasing doses of cantharidin treatment. In a xenograft model of breast cancer, cantharidin inhibited tumor growth in a dose-dependent manner. Moreover, high doses of cantharidin treatment inhibited cell migration in wound and healing assay and downregulated protein levels of major matrix metalloproteinases (MMP-2 and MMP-9. MDA-MB-231 cell migration and invasion were dose-dependently inhibited by cantharidin treatment. Interestingly, the members of the mitogen-activated protein kinase (MAPK signaling family were less phosphorylated as the cantharidin dose increased. Cantharidin was hypothesized to exert its anticancer effect through the MAPK signaling pathway. The data of this study also highlighted the possibility of using PP2A as a therapeutic target for breast cancer treatment.

  7. Effect of aluminium on migration of oestrogen unresponsive MDA-MB-231 human breast cancer cells in culture.

    Science.gov (United States)

    Bakir, Ayse; Darbre, Philippa D

    2015-11-01

    Aluminium (Al) has been measured in human breast tissue, and may be a contributory factor in breast cancer development. At the 10th Keele meeting, we reported that long-term exposure to Al could increase migratory properties of oestrogen-responsive MCF-7 human breast cancer cells suggesting a role for Al in the metastatic process. We now report that long-term exposure (20-25 weeks) to Al chloride or Al chlorohydrate at 10(-4) M or 10(-5) M concentrations can also increase the migration of oestrogen unresponsive MDA-MB-231 human breast cancer cells as measured using time-lapse microscopy and xCELLigence technology. In parallel, Al exposure was found to give rise to increased secretion of active matrix metalloproteinase MMP9 as measured by zymography, and increased intracellular levels of activated MMP14 as measured by western immunoblotting. These results demonstrate that Al can increase migration of human breast cancer cells irrespective of their oestrogen responsiveness, and implicate alterations to MMPs as a potential mechanism worthy of further study.

  8. Methylene blue, curcumin and ion pairing nanoparticles effects on photodynamic therapy of MDA-MB-231 breast cancer cell.

    Science.gov (United States)

    Hosseinzadeh, Reza; Khorsandi, Khatereh

    2017-06-01

    The aim of current study was to use methylene blue-curcumin ion pair nanoparticles and single dyes as photosensitizer for comparison of photodynamic therapy (PDT) efficacy on MDA-MB-231 cancer cells, also various light sources effect on activation of photosensitizer (PS) was considered. Ion pair nanoparticles were synthesized using opposite charge ions precipitation and lyophilized. The PDT experiments were designed and the effect of PSs and light sources (Red LED (630nm; power density: 30mWcm(-2)) and blue LED (465nm; power density: 34mWcm(-2))) on the human breast cancer cell line were examined. The effect of PS concentration (0-75μg.mL(-1)), incubation time, irradiation time and light sources, and priority in irradiation of blue or red lights were determined. The results show that the ion pairing of methylene blue and curcumin enhance the photodynamic activity of both dyes and the cytotoxicity of ion pair nanoparticles on the MDA-231 breast cancer cell line. Blue and red LED light sources were used for photo activation of photosensitizers. The results demonstrated that both dyes can activate using red light LED better than blue light LED for singlet oxygen producing. Nano scale ion pair precipitating of methylene blue-curcumin enhanced the cell penetrating and subsequently cytotoxicity of both dyes together. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Polysaccharide from Sepia esculenta ink and cisplatin inhibit synergistically proliferation and metastasis of triple-negative breast cancer MDA-MB-231 cells

    Directory of Open Access Journals (Sweden)

    Hua-Zhong Liu

    2016-12-01

    Full Text Available Objective(s: This paper aims to investigate synergistic inhibition of polysaccharide from Sepia esculenta ink (SIP, a newly isolated marine polysaccharide in our laboratory, on breast cancer MDA-MB-231 cells exposed to cisplatin. Materials and Methods: Cell viability of MDA-MB-231 cells was determined by CCK 8 assay. Median-effect concentration was analyzed using Chou-Talalay method that was also subjected to determine cell inhibition ratio and combined index, as well as interaction between SIP and cisplatin. Proliferation and migration abilities were detected with plate colony formation assay and cell wound scratch assay, respectively. Expression of MMP-2 and MMP-9 proteins was measured with Western blot assay. Results: Data showed that SIP not only suppressed proliferation and migration of MDA-MB-231 cells, and expression of MMP-2 and MMP-9 proteins, also promoted inhibition of cisplatin on proliferation, migration and MMPs expression of MDA-MB-231 cells, which indicates synergy inhibition of drug combination of SIP and cisplatin on breast cancer cells. The median-effect concentrations of cisplatin and SIP were 4.9 and 1659.6 μg/ml, respectively. Whereas the concentration of combination drug was 158.5 μg/ml. The data indicated that drug combination can decrease dosages of the two single agents, especially the usual dosage of cisplatin. Conclusion: This research demonstrated that SIP repressed proliferation and metastasis of MDA-MB-231 cells and promoted anticancer effect of cisplatin on the breast cancer cells. The data suggested that SIP is a potential natural drug that can be used as an auxiliary medicine alongside chemotherapy in treating breast cancer.

  10. Polysaccharide from Sepia esculenta ink and cisplatin inhibit synergistically proliferation and metastasis of triple-negative breast cancer MDA-MB-231 cells.

    Science.gov (United States)

    Liu, Hua-Zhong; Xiao, Wei; Gu, Yi-Peng; Tao, Ye-Xing; Zhang, Da-Yan; Du, Hui; Shang, Jiang-Hua

    2016-12-01

    This paper aims to investigate synergistic inhibition of polysaccharide from Sepia esculenta ink (SIP), a newly isolated marine polysaccharide in our laboratory, on breast cancer MDA-MB-231 cells exposed to cisplatin. Cell viability of MDA-MB-231 cells was determined by CCK 8 assay. Median-effect concentration was analyzed using Chou-Talalay method that was also subjected to determine cell inhibition ratio and combined index, as well as interaction between SIP and cisplatin. Proliferation and migration abilities were detected with plate colony formation assay and cell wound scratch assay, respectively. Expression of MMP-2 and MMP-9 proteins was measured with Western blot assay. Data showed that SIP not only suppressed proliferation and migration of MDA-MB-231 cells, and expression of MMP-2 and MMP-9 proteins, also promoted inhibition of cisplatin on proliferation, migration and MMPs expression of MDA-MB-231 cells, which indicates synergy inhibition of drug combination of SIP and cisplatin on breast cancer cells. The median-effect concentrations of cisplatin and SIP were 4.9 and 1659.6 μg/ml, respectively. Whereas the concentration of combination drug was 158.5 μg/ml. The data indicated that drug combination can decrease dosages of the two single agents, especially the usual dosage of cisplatin. This research demonstrated that SIP repressed proliferation and metastasis of MDA-MB-231 cells and promoted anticancer effect of cisplatin on the breast cancer cells. The data suggested that SIP is a potential natural drug that can be used as an auxiliary medicine alongside chemotherapy in treating breast cancer.

  11. Mitochondrial calcium uniporter silencing potentiates caspase-independent cell death in MDA-MB-231 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Curry, Merril C.; Peters, Amelia A. [School of Pharmacy, The University of Queensland, Brisbane, Queensland 4072 (Australia); Kenny, Paraic A. [Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461 (United States); Roberts-Thomson, Sarah J. [School of Pharmacy, The University of Queensland, Brisbane, Queensland 4072 (Australia); Monteith, Gregory R., E-mail: gregm@uq.edu.au [School of Pharmacy, The University of Queensland, Brisbane, Queensland 4072 (Australia)

    2013-05-10

    Highlights: •Some clinical breast cancers are associated with MCU overexpression. •MCU silencing did not alter cell death initiated with the Bcl-2 inhibitor ABT-263. •MCU silencing potentiated caspase-independent cell death initiated by ionomycin. •MCU silencing promoted ionomycin-mediated cell death without changes in bulk Ca{sup 2+}. -- Abstract: The mitochondrial calcium uniporter (MCU) transports free ionic Ca{sup 2+} into the mitochondrial matrix. We assessed MCU expression in clinical breast cancer samples using microarray analysis and the consequences of MCU silencing in a breast cancer cell line. Our results indicate that estrogen receptor negative and basal-like breast cancers are characterized by elevated levels of MCU. Silencing of MCU expression in the basal-like MDA-MB-231 breast cancer cell line produced no change in proliferation or cell viability. However, distinct consequences of MCU silencing were seen on cell death pathways. Caspase-dependent cell death initiated by the Bcl-2 inhibitor ABT-263 was not altered by MCU silencing; whereas caspase-independent cell death induced by the calcium ionophore ionomycin was potentiated by MCU silencing. Measurement of cytosolic Ca{sup 2+} levels showed that the promotion of ionomycin-induced cell death by MCU silencing occurs independently of changes in bulk cytosolic Ca{sup 2+} levels. This study demonstrates that MCU overexpression is a feature of some breast cancers and that MCU overexpression may offer a survival advantage against some cell death pathways. MCU inhibitors may be a strategy to increase the effectiveness of therapies that act through the induction of caspase-independent cell death pathways in estrogen receptor negative and basal-like breast cancers.

  12. A potential peptide vector that allows targeted delivery of a desired fusion protein into the human breast cancer cell line MDA-MB-231.

    Science.gov (United States)

    Liu, Wei Qing; Yang, Jun; Hong, Min; Gao, Chang E; Dong, Jian

    2016-06-01

    Effective control of breast cancer has been primarily hampered by a lack of tumor specificity in treatments. One potential way to improve targeting specificity is to develop novel vectors that specifically bind to and are internalized by tumor cells. Through a phage display library, an 11-L-amino acid peptide, PI (sequence, CASPSGALRSC), was selected. PI was labeled with fluorescein isothiocyanate (FITC) and named PI-FITC. Subsequently, the specific affinity of PI-FITC to MDA-MB-231 human breast cancer cells and other cancer cell lines was observed by confocal microscopy. Our previous study established that PI-FITC also shows affinity to Calu-1 human lung carcinoma cells and major histocompatibility complex class I antigen molecules; therefore, the cytomembrane proteins of the cell lines were analyzed to determine those that were common to the two cell lines and may be associated with transmembrane transduction. To further test the delivery ability of PI to MDA-MB-231 cells, PI-glutathione-S-transferase (GST) was constructed and the internalization of this fusion protein was visualized by immunofluorescence microscopy. The results revealed that PI exhibited specific affinity to MDA-MB-231 cells. Use of membrane transport inhibitors indicated that macropinocytosis and caveolin-mediated endocytosis may be involved in the endocytosis of PI. In addition, 11 membrane proteins common to MDA-MB-231 and Calu-1 may be associated with transmembrane transduction. In summary, PI was able to deliver PI-GST into MDA-MB-231 cells. Thus, PI could be modified to be a potential vector, and may contribute to the development of targeted therapeutic strategies for breast cancer.

  13. Platycodin D from Platycodonis Radix enhances the anti-proliferative effects of doxorubicin on breast cancer MCF-7 and MDA-MB-231 cells.

    Science.gov (United States)

    Tang, Zheng-Hai; Li, Ting; Gao, Hong-Wei; Sun, Wen; Chen, Xiu-Ping; Wang, Yi-Tao; Lu, Jin-Jian

    2014-01-01

    It has been demonstrated that platycodin D (PD) exhibits anti-cancer activities. This study aims to investigate the anti-proliferative effects of the combination of PD and doxorubicin (DOX) on human breast cancer cells (MCF-7 and MDA-MB-231 cells). The anti-proliferative effects of different dosages of PD, DOX, and PD + DOX on MCF-7 and MDA-MB-231 cells were determined by the MTT assay. The 10 μM PD, 5 μM DOX, and 10 μM PD + 5 μM DOX induced-protein expression of apoptosis-related molecules on MCF-7 and MDA-MB-231 cells were detected by western blot. The 10 μM PD, 5 μM DOX and 10 μM PD + 5 μM DOX-induced mitochondrial membrane potential changes on MCF-7 and MDA-MB-231 cells were stained with JC-1 before visual determination. The intracellular accumulations of DOX, induced by 10 μM PD, 5 μM DOX and 10 μM PD + 5 μM DOX, were detected by flow cytometry. PD enhanced anti-cancer activities of DOX were observed in both MCF-7 and MDA-MB-231 cell lines. Compared with mono treatment, the combined treatment increased the protein expression of cleaved poly (ADP-ribose) polymerase and decreased the mitochondrial membrane potential. The combined treatment with PD did not obviously increase the accumulation of DOX in MCF-7 cells (1.66 ± 0.13 in DOX-treated group, and 1.69 ± 0.06 in PD + DOX-treated group, P = 0.76), but it significantly increased the accumulation of DOX in MDA-MB-231 cells (1.76 ± 0.17 in DOX-treated group, 2.09 ± 0.02 in PD + DOX-treated group, P = 0.027). The combined treatment of DOX and PD exhibited stronger anti-proliferative effects on MCF-7 and MDA-MB-231 cells than DOX and PD treatment did.

  14. [27-O-(E)-p-coumaric acyl ursolic acid via JNK/SAPK signal pathway regulates apoptosis of human breast cancer MDA-MB-231 cell line].

    Science.gov (United States)

    Wang, Hong-ting; Wang, Cun-qin

    2015-02-01

    27-O-(E)-p-coumaric acyl ursolic acid( DY-17) from Ilex latifolia is a compound of the monomer. To investigate the DY-17 inducing apoptosis in the human breast cancer cell line, the MDA-MB-231 cells were used as research object in this experiment. The proliferation activity of the MDA-MB-231 cells stimulated with the different concentrations of DY-17 (20, 40 µmol · L(-1)) was detected at different time( 12, 24, 36, 48, 60,72 h) . We surveyed the DY-17 inducing apoptosis of the MDA-MB-231 cells with the fluorescent staining technology. The rate of MDA-MB-231 cells apoptosis and necrosis was determined by flow cell cytometry (FCC). Moreover, expression of JNK, phosphorylated JNK, Bax, PARP shear and caspase-3 shear related to JNK/SAPK pathways were investigated in every group ( control group, EGF group, EGF + DY-17 40 µmol · L(1) group and EGF + SP600125 group) with Western blot. The MTT results showed that, in the presence of DY-17, the proliferation activity of MDA-MB-231 cells decreased in a dose-dependent and time-dependent manner. The apoptosis and necrosis rates of MDA-MB-231 cells with DY-17(20, 40 µmol · L(-1)) groups was respectively 31.86%, 49.91% by flow cytometry and significantly increased compared with control group under Fluores- cence microscopy. Up-regulation of the JNK phosphorylation protein expression was observed in EGF group compared with control group. In addition, markedly decreased the expression of JNK phosphorylation protein were also surveyed in EGF + DY-17 40 µmol · L(-1) group compared with EGF group. The expression of Bax, shear PARP and shear caspase-3 protein in EGF + DY-17 40 µmol · L(-1) group were significantly increased in comparison with EGF group. The results showed DY-17 induced apoptosis of human breast cancer MDA-MB-231 cell line related to down-regulating JNK/SAPK signal pathways.

  15. [Effect of down-regulation of Oct4 gene on biological characteristics of MDA-MB-231 breast cancer stem cells].

    Science.gov (United States)

    2015-04-01

    To investigate the effect and significance of down-regulation of Oct4 gene on biological characteristics of MDA-MB-231 breast cancer stem cells. Breast cancer cell line MDA-MB-231 cells were used in this study. Breast cancer stem cells were isolated and enriched by serum-free culture. The obtained stem cells were identified through calculating the percentages of CD44 and CD24 stem cells by FACS and evaluating the paclitaxel resistance in vitro and tumorigenicity in mice. RT-PCR, real-time PCR (qPCR) and Western blot were used to detect Oct4 expression. RNA interference was applied to induce Oct4 down-regulation. The interference experiment set up a control group (no siRNA transfection), negative control group (negative siRNA group, transfection of siRNA sequences without any interfering effect on the cells) and Oct4 siRNA group (transfection of siRNA with interfering effect on the Oct4 gene). Methyl thiazolyl tetrazolium (MTT) and Transwell chamber tests were conducted to detect the proliferation and invasion ability of MDA-MB-231 breast cancer stem cells after Oct4 knock-down, and paclitaxel inhibition test was applied to evaluate drug resistance of MDA-MB-231 breast cancer stem cells after Oct4 knock-down. MDA-MB-231 breast cancer stem cells grew as spheres cultured in serum-free suspension. MDA-MB-231 breast cancer stem cells showed a higher percentage of CD44+/CD24-/low cells (97.2%) than that in MDA-MB-231 breast cancer cells (76.6%) (P MB-231 breast cancer stem cells was (124.60 ± 13.65) mm3, significantly larger than that of mice inoculated with breast cancer cells (68.20 ± 9.99 mm3) (P = 0.0007). MDA-MB-231 breast cancer stem cells were less sensitive to paclitaxel inhibition than MDA-MB-231 breast cancer cells showing by 50% inhibitory concentration (IC50) [(4.40 ± 0.48) µg/ml vs. (8.20 ± 0.34) µg/m, P MB-231 breast cancer stem cells than that in breast cancer cells (P MB-231 breast cancer stem cells with Oct4 siRNA interference was significantly

  16. Antioxidant Activity and ROS-Dependent Apoptotic Effect of Scurrula ferruginea (Jack) Danser Methanol Extract in Human Breast Cancer Cell MDA-MB-231

    Science.gov (United States)

    Marvibaigi, Mohsen; Amini, Neda; Supriyanto, Eko; Abdul Majid, Fadzilah Adibah; Kumar Jaganathan, Saravana; Jamil, Shajarahtunnur; Hamzehalipour Almaki, Javad; Nasiri, Rozita

    2016-01-01

    Scurrula ferruginea (Jack) Danser is one of the mistletoe species belonging to Loranthaceae family, which grows on the branches of many deciduous trees in tropical countries. This study evaluated the antioxidant activities of S. ferruginea extracts. The cytotoxic activity of the selected extracts, which showed potent antioxidant activities, and high phenolic and flavonoid contents, were investigated in human breast cancer cell line (MDA-MB-231) and non-cancer human skin fibroblast cells (HSF-1184). The activities and characteristics varied depending on the different parts of S. ferruginea, solvent polarity, and concentrations of extracts. The stem methanol extract showed the highest amount of both phenolic (273.51 ± 4.84 mg gallic acid/g extract) and flavonoid contents (163.41 ± 4.62 mg catechin/g extract) and strong DPPH• radical scavenging (IC50 = 27.81 μg/mL) and metal chelation activity (IC50 = 80.20 μg/mL). The stem aqueous extract showed the highest ABTS•+ scavenging ability. The stem methanol and aqueous extracts exhibited dose-dependent cytotoxic activity against MDA-MB-231 cells with IC50 of 19.27 and 50.35 μg/mL, respectively. Furthermore, the extracts inhibited the migration and colony formation of MDA-MB-231 cells in a concentration-dependent manner. Morphological observations revealed hallmark properties of apoptosis in treated cells. The methanol extract induced an increase in ROS generation and mitochondrial depolarization in MDA-MB-231 cells, suggesting its potent apoptotic activity. The present study demonstrated that the S. ferruginea methanol extract mediated MDA-MB-231 cell growth inhibition via induction of apoptosis which was confirmed by Western blot analysis. It may be a potential anticancer agent; however, its in vivo anticancer activity needs to be investigated. PMID:27410459

  17. Down-Regulation of Notchl and NF-κB by Curcumin in Breast Cancer Cells MDA-MB-231

    Institute of Scientific and Technical Information of China (English)

    LONG Li; CAO You-de

    2008-01-01

    Objective:To test whether the down-regulation of Notch1 gene expression by curcumin could inhibit cell growth and induce apoptosis,which may be associated mechanistically with the down-regulation of NF-κB in breast cancer cells. Methods:Breast cancer cell lines MDA-MB-231 were cultured in vitro and treated with different dosages of curcumin(0,1.25,5.0,20.0μmol/L)for dose-dependent assay and different time(0,24,48,72 h)at the dosage of 5.0μmol/L for time course assay.The changes of the mRNA and protein expression of Notch1 and NF-κB were measured by RT-PCR and Western Blot,and MTT assay was used to measure the change of proliferation. Results:The mRNA and protein levels of Notch 1 and NF-κB were decreased significantly in human breast cancer cell line with the increase of dosage of curcumin(P<0.05),and with the extension of time course(P<0.05).These changes suggested a dose- and time-dependent manner.The proliferation rate of cells also was significantly inhibited(P<0.05). Conclusion:The current results show that the Notch-1 signaling pathway is associated mechanistically with NF-κB activity during curcumin-induced cell growth inhibition and apoptosis of breast cancer cells.These results suggest that the down-regulation of Notch signaling by curcumin may be a novel strategy for the treatment of patients with breast cancer.

  18. Correlation between Slug transcription factor and miR-221 in MDA-MB-231 breast cancer cells

    Directory of Open Access Journals (Sweden)

    Lambertini Elisabetta

    2012-10-01

    Full Text Available Abstract Background Breast cancer and its metastatic progression is mainly directed by epithelial to mesenchymal transition (EMT, a phenomenon supported by specific transcription factors and miRNAs. Methods In order to investigate a possible correlation between Slug transcription factor and miR-221, we performed Slug gene silencing in MDA-MB-231 breast cancer cells and evaluated the expression of genes involved in supporting the breast cancer phenotype, using qRT-PCR and Western blot analysis. Chromatin immunoprecipitation and wound healing assays were employed to determine a functional link between these two molecules. Results We showed that Slug silencing significantly decreased the level of miR-221 and vimentin, reactivated Estrogen Receptor α and increased E-cadherin and TRPS1 expression. We demonstrated that miR-221 is a Slug target gene, and identified a specific region of miR-221 promoter that is transcriptionally active and binds the transcription factor Slug “in vivo”. In addition, we showed that in Slug-silenced cells, wich retained residual miR-221 (about 38%, cell migration was strongly inhibited. Cell migration was inhibited, but to a less degree, following complete knockdown of miR-221 expression by transfection with antagomiR-221. Conclusions We report for the first time evidence of a correlation between Slug transcription factor and miR-221 in breast cancer cells. These studies suggest that miR-221 expression is, in part, dependent on Slug in breast cancer cells, and that Slug plays a more important role than miR-221 in cell migration and invasion.

  19. The monoamine oxidase-A inhibitor clorgyline promotes a mesenchymal-to-epithelial transition in the MDA-MB-231 breast cancer cell line.

    Science.gov (United States)

    Satram-Maharaj, Tamara; Nyarko, Jennifer N K; Kuski, Kelly; Fehr, Kelsey; Pennington, Paul R; Truitt, Luke; Freywald, Andrew; Lukong, Kiven Erique; Anderson, Deborah H; Mousseau, Darrell D

    2014-12-01

    Monoamine oxidase-A (MAO-A) dysfunction has been historically associated with depression. Recently, depression as well as altered MAO-A expression have both been associated with a poor prognosis in cancers, although the mechanism involved remains ambiguous. For example, MAO-A mRNA is repressed across cancers, yet MAO-A protein and levels of serotonin, a substrate of MAO-A implicated in depression, are paradoxically increased in malignancies, including breast cancer. The effect of clorgyline (CLG), a selective inhibitor of MAO-A, on malignant behaviour, expression of transitional markers, and biochemical correlates was examined in two human breast carcinoma cell lines, i.e. the epithelial, oestrogen receptor (ER)-positive MCF-7 cell line and the post-EMT (mesenchymal), ER-negative MDA-MB-231 cell line. CLG exerted little effect on malignant behaviour in MCF-7 cells, but inhibited proliferation and anchorage-independent growth, and increased invasiveness and active migration of MDA-MB-231 cells. CLG induced the expression of the mesenchymal marker vimentin in MCF-7 cells, but not in MDA-MB-231 cells. In contrast, CLG induced the epithelial protein marker E-cadherin in both cell lines, with a more robust effect in MDA-MB-231 cells (where a nuclear E-cadherin signal was also detected). This effect appears to be independent of any canonical Snai1-mediated regulation of E-cadherin mRNA expression. CLG interfered with the β-catenin/[phospho]GSK-3β complex as well as the E-cadherin/β-catenin complex in both cell lines cells, but, again, the effect was more robust in MDA-MB-231 cells. Parallel studies revealed a general lack of effect of CLG on the ER-negative, epithelial Au565 breast cancer cell line. Thus, any effect of CLG on metastatic behaviours appears to rely on the cell's EMT status rather than on the cell's ER status. These data suggest that inactivation of MAO-A triggers a mesenchymal-to-epithelial transition in MDA-MB-231 cells via a non-canonical mechanism

  20. An in vitro evaluation of graphene oxide reduced by Ganoderma spp. in human breast cancer cells (MDA-MB-231)

    Science.gov (United States)

    Gurunathan, Sangiliyandi; Han, JaeWoong; Park, Jung Hyun; Kim, Jin Hoi

    2014-01-01

    Background Recently, graphene and graphene-related materials have attracted much attention due their unique properties, such as their physical, chemical, and biocompatibility properties. This study aimed to determine the cytotoxic effects of graphene oxide (GO) that is reduced biologically using Ganoderma spp. mushroom extracts in MDA-MB-231 human breast cancer cells. Methods Herein, we describe a facile and green method for the reduction of GO using extracts of Ganoderma spp. as a reducing agent. GO was reduced without any hazardous chemicals in an aqueous solution, and the reduced GO was characterized using a range of analytical procedures. The Ganoderma extract (GE)-reduced GO (GE-rGO) was characterized by ultraviolet-visible absorption spectroscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, dynamic light scattering, scanning electron microscopy, Raman spectroscopy, and atomic force microscopy. Furthermore, the toxicity of GE-rGO was evaluated using a sequence of assays such as cell viability, lactate dehydrogenase leakage, and reactive oxygen species generation in human breast cancer cells (MDA-MB-231). Results The preliminary characterization of reduction of GO was confirmed by the red-shifting of the absorption peak for GE-rGO to 265 nm from 230 nm. The size of GO and GE-rGO was found to be 1,880 and 3,200 nm, respectively. X-ray diffraction results confirmed that reduction processes of GO and the processes of removing intercalated water molecules and the oxide groups. The surface functionalities and chemical natures of GO and GE-rGO were confirmed using Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy. The surface morphologies of the synthesized graphene were analyzed using high-resolution scanning electron microscopy. Raman spectroscopy revealed single- and multilayer properties of GE-rGO. Atomic force microscopy images provided evidence for the formation of graphene

  1. An in vitro evaluation of graphene oxide reduced by Ganoderma spp. in human breast cancer cells (MDA-MB-231

    Directory of Open Access Journals (Sweden)

    Gurunathan S

    2014-04-01

    Full Text Available Sangiliyandi Gurunathan,1,2 JaeWoong Han,1 Jung Hyun Park,1 Jin Hoi Kim1 1Department of Animal Biotechnology, Konkuk University, Seoul, South Korea; 2GS Institute of Bio and Nanotechnology, Coimbatore, Tamilnadu, India Background: Recently, graphene and graphene-related materials have attracted much attention due their unique properties, such as their physical, chemical, and biocompatibility properties. This study aimed to determine the cytotoxic effects of graphene oxide (GO that is reduced biologically using Ganoderma spp. mushroom extracts in MDA-MB-231 human breast cancer cells. Methods: Herein, we describe a facile and green method for the reduction of GO using extracts of Ganoderma spp. as a reducing agent. GO was reduced without any hazardous chemicals in an aqueous solution, and the reduced GO was characterized using a range of analytical procedures. The Ganoderma extract (GE-reduced GO (GE-rGO was characterized by ultraviolet-visible absorption spectroscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, dynamic light scattering, scanning electron microscopy, Raman spectroscopy, and atomic force microscopy. Furthermore, the toxicity of GE-rGO was evaluated using a sequence of assays such as cell viability, lactate dehydrogenase leakage, and reactive oxygen species generation in human breast cancer cells (MDA-MB-231. Results: The preliminary characterization of reduction of GO was confirmed by the red-shifting of the absorption peak for GE-rGO to 265 nm from 230 nm. The size of GO and GE-rGO was found to be 1,880 and 3,200 nm, respectively. X-ray diffraction results confirmed that reduction processes of GO and the processes of removing intercalated water molecules and the oxide groups. The surface functionalities and chemical natures of GO and GE-rGO were confirmed using Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy. The surface morphologies of the synthesized

  2. Roles for GP IIb/IIIa and αvβ3 integrins in MDA-MB-231 cell invasion and shear flow-induced cancer cell mechanotransduction.

    Science.gov (United States)

    Zhao, Fenglong; Li, Li; Guan, Liuyuan; Yang, Hong; Wu, Chunhui; Liu, Yiyao

    2014-03-01

    Adhesion of cancer cell to endothelial cells and the subsequent trans-endothelial migration are key steps in hematogenous metastasis. However, the molecular mechanisms of cancer cell/endothelial cell interaction under hemodynamic shear flow and how shear flow-induced cancer cell mechanotransduction are yet to be fully defined. In this study, we identified that the integrins of both platelet glycoprotein IIb/IIIa (GP IIb/IIIa) and αvβ3 were crucial for hematogenous metastasis of human breast carcinoma MDA-MB-231 cells. The cell migration and invasion were studied by using Millicell cell culture insert system. The numbers of invaded MDA-MB-231 cells significantly increased by thrombin-activated platelets and reduced by eptifibatide, a platelet inhibitor. Meanwhile, RGDWE peptides, a specific inhibitor of αvβ3 integrin, also inhibited MDA-MB-231 cell invasion. We further used a parallel-plate flow chamber to investigate MDA-MB-231 cell adhesion under flow conditions. Alike in static condition, the adhesion capability of MDA-MB-231 cells to endothelial monolayer was also significantly affected by GP IIb/IIIa and αvβ3 integrins. The expression of matrix metalloproteinase-2 (MMP-2), MMP-9 and αvβ3 integrin in MDA-MB-231 cells were up-regulated after low shear stress exposure (1.84 dynes/cm(2), 2 h). Moreover, we also demonstrated that low shear stress induced a sustained activation of p85 (a regulatory subunit of PI3K) and Akt. Pre-treating MDA-MB-231 cells with the specific PI3K inhibitor of LY294002 abolished the shear stress induced-Akt activation, and the expression of MMP-2, MMP-9, vascular endothelial growth factor (VEGF) and αvβ3 integrin were also down-regulated. Immunofluorescence assay showed that low shear stress also induced αvβ3 integrin clustering and nuclear factor-κB (NF-κB) activation. Interestingly, shear stress-induced activation of Akt and NF-κB was attenuated by LM609, a specific antibody of αvβ3 integrin. It suggests that αvβ3

  3. Direct RNA sequencing mediated identification of mRNA localized in protrusions of human MDA-MB-231 metastatic breast cancer cells

    DEFF Research Database (Denmark)

    Jakobsen, Kristine Raaby; Sørensen, Emilie; Brøndum, Karin Kathrine;

    2013-01-01

    Background Protrusions of cancer cells conferrers a vital function for cell migration and metastasis. Protein and RNA localization mechanisms have been extensively examined and shown to play pivotal roles for the functional presence of specific protein components in cancer cell protrusions. Methods...... To describe genome wide RNA localized in protrusions of the metastatic human breast cancer cell line MDA-MB-231 we used Boyden chamber based methodology followed by direct mRNA sequencing. Results In the hereby identified group of protrusion localized mRNA some previously were described to be localized...... exemplified by mRNA for Ras-Related protein 13 (RAB13) and p0071 (Plakophilin-4/PKP4). For other transcripts, exemplified by mRNA for SH3PXD2A/TKS5 and PPFIA1/Liprin-α1, only the corresponding proteins previously were described to have protrusion localization. Finally, a cohort of MDA-MB-231 protrusion...

  4. A comparative study of protein patterns of human estrogen receptor positive (MCF-7) and negative (MDA-MB-231) breast cancer cell lines.

    Science.gov (United States)

    Flodrova, Dana; Toporova, Lucia; Macejova, Dana; Lastovickova, Marketa; Brtko, Julius; Bobalova, Janette

    2016-07-01

    In the present study, we analyzed the cell lysates of human tumour cell lines representing two major clinically different types of breast cancer. Our main goal was to show the differences between them on proteomic level. Gel electrophoresis followed by MALDI-TOF MS analysis was used for proteins determination. Exactly 98 proteins were unequivocally identified and 60 of them were expressed differentially between MDA-MB-231 and MCF-7 cell lines. Among the proteins reported here, some well-known breast cancer markers (e.g., annexin A1, annexin A2 and vimentin) were identified in the MDA-MB-231 cell line and thus we were able to distinguish both cell lines sufficiently.

  5. Chamaejasmine Arrests Cell Cycle, Induces Apoptosis and Inhibits Nuclear NF-κB Translocation in the Human Breast Cancer Cell Line MDA-MB-231

    Directory of Open Access Journals (Sweden)

    Yuxian Bai

    2013-01-01

    Full Text Available In this study, the anticancer activity of chamaejasmine was characterized in the human breast cancer cell line, MDA-MB-231. Cell viability and cell cycle distribution were determined by MTT assay and flow cytometry, respectively. Western blotting was performed to determine changes in levels of various proteins. Results showed that treatment with chamaejasmine (4–16 μM inhibited cell proliferation, which correlated with G2/M phase arrest and apoptosis in MDA-MB-231 cells. Chamaejasmine treatment of MDA-MB-231 cells resulted in induction of WAF1/p21 and KIP1/p27, decrease in cyclins A and cyclins B1. Cyclin-dependent kinase (cdk 2 and cdc2 was also decreased after chamaejasmine treatment. Moreover, inhibition of nuclear translocation, phosphorylation of NF-κB, activation of IKKα and IKKβ, inhibition of phosphorylation and degradation of IκBα were also detected in this work. Our findings suggested that chamaejasmine could be explored as a preventive and perhaps as a chemotherapeutic agent in the management of breast cancer.

  6. Extracellular vesicles from MDA-MB-231 breast cancer cells stimulated with linoleic acid promote an EMT-like process in MCF10A cells.

    Science.gov (United States)

    Galindo-Hernandez, Octavio; Serna-Marquez, Nathalia; Castillo-Sanchez, Rocio; Salazar, Eduardo Perez

    2014-12-01

    Extracellular vesicles (EVs) are membrane-limited vesicles secreted by normal and malignant cells and their function is dependent on the cargo they carry and the cell type from which they originate. Moreover, EVs mediate many stages of tumor progression including angiogenesis, escape from immune surveillance and extracellular matrix degradation. Linoleic acid (LA) is an essential polyunsaturated fatty acid that induces expression of plasminogen activator inhibitor-1, proliferation, migration and invasion in breast cancer cells. However the role of secreted EVs from MDA-MB-231 cells stimulated with LA like mediator of the epithelial-mesenchymal-transition (EMT) process in mammary non-tumorigenic epithelial cells MCF10A remains to be studied. In the present study, we demonstrate that treatment of MDA-MB-231 cells for 48 h with 90 µM LA does not induce an increase in the number of secreted EVs. In addition, EVs isolated from supernatants of MDA-MB-231 stimulated for 48 h with 90 µM LA induce a transient down-regulation of E-cadherin expression, and an increase of Snail1 and 2, Twist1 and 2, Sip1, vimentin and N-cadherin expression in MCF10A cells. EVs also promote an increase of MMP-2 and -9 secretions, an increase of NFκB-DNA binding activity, migration and invasion in MCF10A cells. In summary, our findings demonstrate, for the first time, that EVs isolated from supernatants of MDA-MB-231 stimulated for 48 h with 90 µM LA induce an EMT-like process in MCF10A cells.

  7. Stable transfection of estrogen receptor-alpha suppresses expression of interleukin-8 in MDA-MB-231 breast cancer cells%转染ERα基因对MDA-MB-231乳腺癌细胞白细胞介素-8表达的影响

    Institute of Scientific and Technical Information of China (English)

    张辉; 林颖; 肖颖; 王三明; 刘祥厦; 王深明

    2010-01-01

    目的 通过转染GFP-C1-ERα质粒建立稳定表达ERα的MDA-MB-23l细胞株,观察ERα对该细胞株白细胞介素(IL)-8表达的影响.方法 pEGFP-C1-ERα质粒经酶切和测序后转染MDA-MB-231细胞,使用G418筛选出稳定表达的克隆并鉴定.使用荧光逆转录-聚合酶链反应(RT-PCR)分别测定稳定转染ERα的MDA-MB-231细胞、MDA-MB-231细胞及MCF-7细胞的IL-8mRNA的表达,使用酶联免疫吸附试验(ELISA)法测定细胞上清液IL-8的浓度.结果 成功建立ERα阳性表达的MDA-MB-231细胞株,转染ERα的细胞株IL-8 mRNA的合成(105±16)ng/L明显低于MDA-MB-231细胞(195±32)ng/L(P<0.05),但仍然高于MCF-7细胞(32±4)ng/L(P<0.05),转染后细胞上清液IL-8浓度较未转染细胞明显降低,分别为(3499±312)ng/L和(6788±427)ng/L(P<0.05),但仍然高于MCF-7细胞(1846±44)ng/L(P<0.05).结论 稳定转染ERα基因抑制了MDA-MB-231细胞的IL-8的合成和分泌.%Objective To construct stable MDA-MB-231 breast cancer cell line expressing estrogen receptor-α (ER-α) ,and explore the effect of ERα on interleukin (IL) -8 expression. Methods The GFP-C1-ERα plasmids were stably transfected into ER-negative MDA-MB-231 cells. Forty-eight hours posttransfection, the media was replaced with C418-containing media. Individual colonies were picked following 2 weeks of selection. The expression of IL-8 mRNA and the IL-8 secretion concentration were assayed in MDA-MB-231 ,ER-α transfected MDA-MB-231 and MCF-7 cell lines. Results The ERα stable transfectants in MDA-MB-231 cells were constructed successfully according Western blotting of ERα protein. The level of IL-8 mRNA and IL-8 secretion in ERα tranfected MDA-MB-231 cells were lower than which in MDA-MB-231 cells [(105 ±16) vs (195 ±32) ng/L,and (3499 ±312) vs (6788 ±427) ng/L,P <0. 05]but were still higher than which in MCF-7 cells [(32 ± 4) ng/L and (1846 ± 44) ng/L, P <0. 05]. Conclusion ERα stable transfection inhibits the expression and

  8. Quercetin-induced apoptosis acts through mitochondrial- and caspase-3-dependent pathways in human breast cancer MDA-MB-231 cells.

    Science.gov (United States)

    Chien, Su-Yu; Wu, Yao-Chung; Chung, Jing-Gung; Yang, Jai-Sing; Lu, Hsu-Feng; Tsou, Mei-Fen; Wood, W G; Kuo, Shou-Jen; Chen, Dar-Ren

    2009-08-01

    There has been considerable evidence recently demonstrating the anti-tumour effects of flavonols. Quercetin, an ubiquitous bioactive flavonol, inhibits cells proliferation, induces cell cycle arrest and apoptosis in different cancer cell types. The precise molecular mechanism of quercetin-induced apoptosis in human breast cancer cells is unclear. The purpose of this study was to investigate effects of quercetin on cell viability and to determine its underlying mechanism in human breast cancer MDA-MB-231 cells. Quercetin decreased the percentage of viable cells in a dose- and time-dependent manner, which was associated with cell cycle arrest and apoptosis. Quercetin did not increase reactive oxygen species generation but increased cytosolic Ca(2+) levels and reduced the mitochondrial membrane potential (DeltaPsi(m)). Quercetin treatment promoted activation of caspase-3, -8 and -9 in MDA-MB-231 cells. Caspase inhibitors prevented the quercetin-induced loss of cell viability. Quercetin increased abundance of the pro-apoptotic protein Bax and decreased the levels of anti-apoptotic protein Bcl-2. Confocal laser microscope examination indicated that quercetin promoted apoptosis-inducing factor (AIF) release from mitochondria and stimulated translocation to the nucleus. Taken together, these findings suggest that quercetin results in human breast cancer MDA-MB-231 cell death through mitochondrial- and caspase-3-dependent pathways.

  9. Taiwan cobra cardiotoxin III suppresses EGF/EGFR-mediated epithelial-to-mesenchymal transition and invasion of human breast cancer MDA-MB-231 cells.

    Science.gov (United States)

    Tsai, Pei-Chien; Fu, Yaw-Syan; Chang, Long-Sen; Lin, Shinne-Ren

    2016-03-01

    Breast cancer is a highly malignant carcinoma and most deaths of breast cancer are caused by metastasis. The epithelial-to-mesenchymal transition (EMT) has emerged as a pivotal event in the development of the invasive and metastatic potentials of cancer progression. Epidermal growth factor (EGF) and its receptor, EGFR, play roles in cancer metastasis. CTX III, a basic polypeptide isolated from Naja naja atra venom, has been shown to exhibit anticancer activity; however, the effect of CTX III on the EMT of cancer cells remains elusive. CTX III treatment resulted in morphological changes from elongated and spindle shape to rounded and epithelial-like shape, induced upregulation of E-cadherin and concurrent downregulation of N-cadherin and Vimentin protein levels, corresponding to observed decreases in cell migration and invasion. CTX III treatment also decreased the expression of Snail and Twist in EGF-induced MDA-MB-231 cells. Concurrently, CTX III efficiently inhibited the EGFR phosphorylation and downstream activation of phosphatidylinositol 3-kinase (PI3K)/Akt and ERK1/2. The EGFR specific inhibitor AG1478 significantly suppressed ERK1/2 and Akt phosphorylation, cell migration and invasion, as well as the expressional changes associated with EMT markers in EGF-induced MDA-MB-231 cells. CTX III inhibitory effect on EGF-evoked invasion of MDA-MB-231 cells is mediated through suppressing EGF/EGFR activation and EMT process.

  10. Pyruvate Carboxylase Is Up-Regulated in Breast Cancer and Essential to Support Growth and Invasion of MDA-MB-231 Cells.

    Science.gov (United States)

    Phannasil, Phatchariya; Thuwajit, Chanitra; Warnnissorn, Malee; Wallace, John C; MacDonald, Michael J; Jitrapakdee, Sarawut

    2015-01-01

    Pyruvate carboxylase (PC) is an anaplerotic enzyme that catalyzes the carboxylation of pyruvate to oxaloacetate, which is crucial for replenishing tricarboxylic acid cycle intermediates when they are used for biosynthetic purposes. We examined the expression of PC by immunohistochemistry of paraffin-embedded breast tissue sections of 57 breast cancer patients with different stages of cancer progression. PC was expressed in the cancerous areas of breast tissue at higher levels than in the non-cancerous areas. We also found statistical association between the levels of PC expression and tumor size and tumor stage (P MB-435 (moderate metastasis) and MDA-MB-231 (high metastasis). The abundance of both PC mRNA and protein in MDA-MB-231 and MDA-MB-435 cells was 2-3-fold higher than that in MCF-7 and SKBR3 cells. siRNA-mediated knockdown of PC expression in MDA-MB-231 and MDA-MB-435 cells resulted in a 50% reduction of cell proliferation, migration and in vitro invasion ability, under both glutamine-dependent and glutamine-depleted conditions. Overexpression of PC in MCF-7 cells resulted in a 2-fold increase in their proliferation rate, migration and invasion abilities. Taken together the above results suggest that anaplerosis via PC is important for breast cancer cells to support their growth and motility.

  11. ST6GalNAc I expression in MDA-MB-231 breast cancer cells greatly modifies their O-glycosylation pattern and enhances their tumourigenicity.

    Science.gov (United States)

    Julien, S; Adriaenssens, E; Ottenberg, K; Furlan, A; Courtand, G; Vercoutter-Edouart, A-S; Hanisch, F-G; Delannoy, P; Le Bourhis, X

    2006-01-01

    Sialyl-Tn is a carbohydrate antigen overexpressed in several epithelial cancers, including breast cancer, and usually associated with poor prognosis. Sialyl-Tn is synthesized by a CMP-Neu5Ac:GalNAcalpha2,6-sialyltransferase: CMP-Neu5Ac: R-GalNAcalpha1-O-Ser/Thr alpha2,6-sialyltransferase (EC 2.4.99.3) (ST6GalNAc I), which transfers a sialic acid residue in alpha2,6-linkage to the GalNAcalpha1-O-Ser/Thr structure. However, established breast cancer cell lines express neither ST6GalNAc I nor sialyl-Tn. We have previously shown that stable transfection of MDA-MB-231, a human breast cancer cell line, with ST6GalNAc I cDNA induces sialyl-Tn antigen (STn) expression. We report here the modifications of the O-glycosylation pattern of a MUC1-related recombinant protein secreted by MDA-MB-231 sialyl-Tn positive cells. We also show that sialyl-Tn expression and concomitant changes in the overall O-glycan profiles induce a decrease of adhesion and an increase of migration of MDA-MB-231. Moreover, STn positive clones exhibit an increased tumour growth in severe combined immunodeficiency (SCID) mice. These observations suggest that modification of the O-glycosylation pattern induced by ST6GalNAc I expression are sufficient to enhance the tumourigenicity of MDA-MB-231 breast cancer cells.

  12. Human ether à-gogo K(+) channel 1 (hEag1) regulates MDA-MB-231 breast cancer cell migration through Orai1-dependent calcium entry.

    Science.gov (United States)

    Hammadi, Mehdi; Chopin, Valérie; Matifat, Fabrice; Dhennin-Duthille, Isabelle; Chasseraud, Maud; Sevestre, Henri; Ouadid-Ahidouch, Halima

    2012-12-01

    Breast cancer (BC) has a poor prognosis due to its strong metastatic ability. Accumulating data present ether à go-go (hEag1) K(+) channels as relevant player in controlling cell cycle and proliferation of non-invasive BC cells. However, the role of hEag1 in invasive BC cells migration is still unknown. In this study, we studied both the functional expression and the involvement in cell migration of hEag1 in the highly metastatic MDA-MB-231 human BC cells. We showed that hEag1 mRNA and proteins were expressed in human invasive ductal carcinoma tissues and BC cell lines. Functional activity of hEag1 channels in MDA-MB-231 cells was confirmed using astemizole, a hEag1 blocker, or siRNA. Blocking or silencing hEag1 depolarized the membrane potential and reduced both Ca(2+) entry and MDA-MB-231 cell migration without affecting cell proliferation. Recent studies have reported that Ca(2+) entry through Orai1 channels is required for MDA-MB-231 cell migration. Down-regulation of hEag1 or Orai1 reduced Ca(2+) influx and cell migration with similar efficiency. Interestingly, no additive effects on Ca(2+) influx or cell migration were observed in cells co-transfected with sihEag1 and siOrai1. Finally, both Orai1 and hEag1 are expressed in invasive breast adenocarcinoma tissues and invaded metastatic lymph node samples (LNM(+)). In conclusion, this study is the first to demonstrate that hEag1 channels are involved in the serum-induced migration of BC cells by controlling the Ca(2+) entry through Orai1 channels. hEag1 may therefore represent a potential target for the suppression of BC cell migration, and thus prevention of metastasis development.

  13. Combined xanthorrhizol-curcumin exhibits synergistic growth inhibitory activity via apoptosis induction in human breast cancer cells MDA-MB-231

    Directory of Open Access Journals (Sweden)

    Azimahtol Hawariah

    2009-01-01

    Full Text Available Abstract Background It has been suggested that combined effect of natural products may improve the treatment effectiveness in combating proliferation of cancer cells. The present study was undertaken to evaluate the possibility that the combination of xanthorrhizol and curcumin might show synergistic growth inhibitory effect towards MDA-MB-231 human breast cancer cells via apoptosis induction. The effective dose that produced 50% growth inhibition (GI50 was calculated from the log dose-response curve of fixed-combinations of xanthorrhizol and curcumin generated from the sulforhodamine B (SRB assay. The experimental GI50 value was used to determine the synergistic activity of the combination treatment by isobolographic analysis and combination-index method. Further investigation of mode of cell death induced by the combination treatment was conducted in the present study. Results Isobole analysis revealed that substances interaction was synergistic when xanthorrhizol and curcumin were added concurrently to the cultures but merely additive when they were added sequentially. The synergistic combination treatment was then applied to the cultures to investigate the mode of cell death induced by the treatment. Immunofluorescence staining using antibody MitoCapture™ revealed the possibility of altered mitochondrial transmembrane potential, which is one of the hallmark of apoptosis. Hoechst 33258 nuclear staining assay showed the rate of apoptosis of MDA-MB-231 cells to increase in response to the treatment. Apoptotic cell death was further confirmed by DNA fragmentation assay, where internucleosomal excision of DNA was induced upon treatment with xanthorrhizol-curcumin. Conclusion This is the first time the combined cytotoxic effect of xanthorrhizol and curcumin on MDA-MB-231 cells has been documented and our findings provide experimental support to the hypothesis that combined xanthorrhizol-curcumin showed synergistic growth inhibitory activity on

  14. The Impact of Soy Isoflavones on MCF-7 and MDA-MB-231 Breast Cancer Cells Using a Global Metabolomic Approach

    Science.gov (United States)

    Uifălean, Alina; Schneider, Stefanie; Gierok, Philipp; Ionescu, Corina; Iuga, Cristina Adela; Lalk, Michael

    2016-01-01

    Despite substantial research, the understanding of the chemopreventive mechanisms of soy isoflavones remains challenging. Promising tools, such as metabolomics, can provide now a deeper insight into their biochemical mechanisms. The purpose of this study was to offer a comprehensive assessment of the metabolic alterations induced by genistein, daidzein and a soy seed extract on estrogen responsive (MCF-7) and estrogen non-responsive breast cancer cells (MDA-MB-231), using a global metabolomic approach. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed that all test compounds induced a biphasic effect on MCF-7 cells and only a dose-dependent inhibitory effect on MDA-MB-231 cells. Proton nuclear magnetic resonance (1H-NMR) profiling of extracellular metabolites and gas chromatography-mass spectrometry (GC-MS) profiling of intracellular metabolites confirmed that all test compounds shared similar metabolic mechanisms. Exposing MCF-7 cells to stimulatory concentrations of isoflavones led to increased intracellular levels of 6-phosphogluconate and ribose 5-phosphate, suggesting a possible upregulation of the pentose phosphate pathway. After exposure to inhibitory doses of isoflavones, a significant decrease in glucose uptake was observed, especially for MCF-7 cells. In MDA-MB-231 cells, the glutamine uptake was significantly restricted, leading to alterations in protein biosynthesis. Understanding the metabolomic alterations of isoflavones represents a step forward in considering soy and soy derivates as functional foods in breast cancer chemoprevention. PMID:27589739

  15. The Impact of Soy Isoflavones on MCF-7 and MDA-MB-231 Breast Cancer Cells Using a Global Metabolomic Approach

    Directory of Open Access Journals (Sweden)

    Alina Uifălean

    2016-08-01

    Full Text Available Despite substantial research, the understanding of the chemopreventive mechanisms of soy isoflavones remains challenging. Promising tools, such as metabolomics, can provide now a deeper insight into their biochemical mechanisms. The purpose of this study was to offer a comprehensive assessment of the metabolic alterations induced by genistein, daidzein and a soy seed extract on estrogen responsive (MCF-7 and estrogen non-responsive breast cancer cells (MDA-MB-231, using a global metabolomic approach. The 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay showed that all test compounds induced a biphasic effect on MCF-7 cells and only a dose-dependent inhibitory effect on MDA-MB-231 cells. Proton nuclear magnetic resonance (1H-NMR profiling of extracellular metabolites and gas chromatography-mass spectrometry (GC-MS profiling of intracellular metabolites confirmed that all test compounds shared similar metabolic mechanisms. Exposing MCF-7 cells to stimulatory concentrations of isoflavones led to increased intracellular levels of 6-phosphogluconate and ribose 5-phosphate, suggesting a possible upregulation of the pentose phosphate pathway. After exposure to inhibitory doses of isoflavones, a significant decrease in glucose uptake was observed, especially for MCF-7 cells. In MDA-MB-231 cells, the glutamine uptake was significantly restricted, leading to alterations in protein biosynthesis. Understanding the metabolomic alterations of isoflavones represents a step forward in considering soy and soy derivates as functional foods in breast cancer chemoprevention.

  16. EGFR signaling pathways are wired differently in normal 184A1L5 human mammary epithelial and MDA-MB-231 breast cancer cells.

    Science.gov (United States)

    Speth, Zachary; Islam, Tanzila; Banerjee, Kasturi; Resat, Haluk

    2017-03-29

    Because of differences in the downstream signaling patterns of its pathways, the role of the human epidermal growth factor family of receptors (HER) in promoting cell growth and survival is cell line and context dependent. Using two model cell lines, we have studied how the regulatory interaction network among the key proteins of HER signaling pathways may be rewired upon normal to cancerous transformation. We in particular investigated how the transcription factor STAT3 and several key kinases' involvement in cancer-related signaling processes differ between normal 184A1L5 human mammary epithelial (HME) and MDA-MB-231 breast cancer epithelial cells. Comparison of the responses in these cells showed that normal-to-cancerous cellular transformation causes a major re-wiring of the growth factor initiated signaling. In particular, we found that: i) regulatory interactions between Erk, p38, JNK and STAT3 are triangulated and tightly coupled in 184A1L5 HME cells, and ii) STAT3 is only weakly associated with the Erk-p38-JNK pathway in MDA-MB-231 cells. Utilizing the concept of pathway substitution, we predicted how the observed differences in the regulatory interactions may affect the proliferation/survival and motility responses of the 184A1L5 and MDA-MB-231 cells when exposed to various inhibitors. We then validated our predictions experimentally to complete the experiment-computation-experiment iteration loop. Validated differences in the regulatory interactions of the 184A1L5 and MDA-MB-231 cells indicated that instead of inhibiting STAT3, which has severe toxic side effects, simultaneous inhibition of JNK together with Erk or p38 could be a more effective strategy to impose cell death selectively to MDA-MB-231 cancer cells while considerably lowering the side effects to normal epithelial cells. Presented analysis establishes a framework with examples that would enable cell signaling researchers to identify the signaling network structures which can be used to

  17. Biodegradable Eri silk nanoparticles as a delivery vehicle for bovine lactoferrin against MDA-MB-231 and MCF-7 breast cancer cells

    Directory of Open Access Journals (Sweden)

    Roy K

    2015-12-01

    Full Text Available Kislay Roy,1,* Yogesh S Patel,1,* Rupinder K Kanwar,1 Rangam Rajkhowa,2 Xungai Wang,2 Jagat R Kanwar1 1Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research (NLIMBR, Centre for Molecular and Medical Research (C-MMR, School of Medicine (SoM, Faculty of Health, 2Institute for Frontier Materials (IFM, Deakin University, Waurn Ponds, VIC, Australia *These authors contributed equally to this work Abstract: This study used the Eri silk nanoparticles (NPs for delivering apo-bovine lactoferrin (Apo-bLf (~2% iron saturated and Fe-bLf (100% iron saturated in MDA-MB-231 and MCF-7 breast cancer cell lines. Apo-bLf and Fe-bLf-loaded Eri silk NPs with sizes between 200 and 300 nm (±10 nm showed a significant internalization within 4 hours in MDA-MB-231 cells when compared to MCF-7 cells. The ex vivo loop assay with chitosan-coated Fe-bLf-loaded silk NPs was able to substantiate its future use in oral administration and showed the maximum absorption within 24 hours by ileum. Both Apo-bLf and Fe-bLf induced increase in expression of low-density lipoprotein receptor-related protein 1 and lactoferrin receptor in epidermal growth factor (EGFR-positive MDA-MB-231 cells, while transferrin receptor (TfR and TfR2 in MCF-7 cells facilitated the receptor-mediated endocytosis of NPs. Controlled and sustained release of both bLf from silk NPs was shown to induce more cancer-specific cytotoxicity in MDA-MB-231 and MCF-7 cells compared to normal MCF-10A cells. Due to higher degree of internalization, the extent of cytotoxicity and apoptosis was significantly higher in MDA-MB-231 (EGFR+ cells when compared to MCF-7 (EGFR- cells. The expression of a prominent anti-cancer target, survivin, was found to be downregulated at both gene and protein levels. Taken together, all the observations suggest the potential use of Eri silk NPs as a delivery vehicle for an anti-cancer milk protein, and indicate bLf for the treatment of breast cancer. Keywords: breast

  18. Hyperglycemia regulates thioredoxin-ROS activity through induction of thioredoxin-interacting protein (TXNIP in metastatic breast cancer-derived cells MDA-MB-231

    Directory of Open Access Journals (Sweden)

    Friday Ellen

    2007-06-01

    Full Text Available Abstract Background We studied the RNA expression of the genes in response to glucose from 5 mM (condition of normoglycemia to 20 mM (condition of hyperglycemia/diabetes by microarray analysis in breast cancer derived cell line MDA-MB-231. We identified the thioredoxin-interacting protein (TXNIP, whose RNA level increased as a gene product particularly sensitive to the variation of the level of glucose in culture media. We investigated the kinesis of the TXNIP RNA and protein in response to glucose and the relationship between this protein and the related thioredoxin (TRX in regulating the level of reactive oxygen species (ROS in MDA-MB-231 cells. Methods MDA-MB-231 cells were grown either in 5 or 20 mM glucose chronically prior to plating. For glucose shift (5/20, cells were plated in 5 mM glucose and shifted to 20 mM at time 0. Cells were analyzed with Affymetrix Human U133A microarray chip and gene expression profile was obtained. Semi-quantitative RT-PCR and Western blot was used to validate the expression of TXNIP RNA and protein in response to glucose, respectively. ROS were detected by CM-H2DCFDA (5–6-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate and measured for mean fluorescence intensity with flow cytometry. TRX activity was assayed by the insulin disulfide reducing assay. Results We found that the regulation of TXNIP gene expression by glucose in MDA-MB-231 cells occurs rapidly within 6 h of its increased level (20 mM glucose and persists through the duration of the conditions of hyperglycemia. The increased level of TXNIP RNA is followed by increased level of protein that is associated with increasing levels of ROS and reduced TRX activity. The inhibition of the glucose transporter GLUT1 by phloretin notably reduces TXNIP RNA level and the inhibition of the p38 MAP kinase activity by SB203580 reverses the effects of TXNIP on ROS-TRX activity. Conclusion In this study we show that TXNIP is an oxidative stress responsive

  19. Culture supernatants of breast cancer cell line MDA-MB-231 treated with parthenolide inhibit the proliferation, migration, and lumen formation capacity of human umbilical vein endothelial cells

    Institute of Scientific and Technical Information of China (English)

    LI Cai-juan; GUO Su-fen; SHI Tie-mei

    2012-01-01

    Background Parthenolide has been tested for anti-tumor activities,such as anti-proliferation and pro-apoptosis in recent studies.However,little is known about its role in the process of tumor angiogenesis.This study aims to investigate the effects and potential mechanisms of parthenolide on the proliferation,migration and lumen formation capacity of human umbilical vein endothelial cells.Methods Different concentrations of parthenolide were applied to the human breast cancer cell line MDA-MB-231 cells.After 24-hour incubation,the culture supematants were harvested and used to treat human umbilical vein endothelial cells for 24 hours.Then an inverted fluorescence phase contrast microscope was used to evaluate the human umbilical vein endothelial cells.The secretion of vascular endothelial growth factor (VEGF),interleukin (IL)-8 and matrix metalloproteinases (MMP)-9 in the culture supernatant of the MDA-MB-231 cells was then measured with enzyme-linked immunosorbent assay (ELISA) assays.Results Suppression of proliferation,migration,and the lumen formation capacity of human umbilical vein endothelial cells was observed in the presence of the culture supernatants from the breast cancer cell line treated with different concentrations of parthenolide.Parthenolide decreased the levels of the angiogenic factors MMP-9,VEGF,and IL-8secreted by the MDA-MB-231 cells.Conclusions Parthenolide may suppress angiogenesis through decreasing angiogenic factors secreted by breast cancer cells to interfere with the proliferation,migration and lumen-like structure formation of endothelial cells,thereby inhibiting tumor growth.It is a promising potential anti-angiogenic drug.

  20. MicroRNA-125b Induces Metastasis by Targeting STARD13 in MCF-7 and MDA-MB-231 Breast Cancer Cells

    OpenAIRE

    Feng Tang; Rui Zhang; Yunmian He; Meijuan Zou; Le Guo; Tao Xi

    2012-01-01

    MicroRNAs (miRNAs) are a class of small noncoding RNAs that regulate gene expression by targeting mRNAs to trigger either translation repression or mRNA degradation. miR-125b is down-regulated in human breast cancer cells compared with the normal ones except highly metastatic tumor cells MDA-MB-231. However, few functional studies were designed to investigate metastatic potential of miR-125b. In this study, the effects of miR-125b on metastasis in human breast cancer cells were studied, and t...

  1. Fucoidan Extract Enhances the Anti-Cancer Activity of Chemotherapeutic Agents in MDA-MB-231 and MCF-7 Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Zhongyuan Zhang

    2013-01-01

    Full Text Available Fucoidan, a fucose-rich polysaccharide isolated from brown alga, is currently under investigation as a new anti-cancer compound. In the present study, fucoidan extract (FE from Cladosiphon navae-caledoniae Kylin was prepared by enzymatic digestion. We investigated whether a combination of FE with cisplatin, tamoxifen or paclitaxel had the potential to improve the therapeutic efficacy of cancer treatment. These co-treatments significantly induced cell growth inhibition, apoptosis, as well as cell cycle modifications in MDA-MB-231 and MCF-7 cells. FE enhanced apoptosis in cancer cells that responded to treatment with three chemotherapeutic drugs with downregulation of the anti-apoptotic proteins Bcl-xL and Mcl-1. The combination treatments led to an obvious decrease in the phosphorylation of ERK and Akt in MDA-MB-231 cells, but increased the phosphorylation of ERK in MCF-7 cells. In addition, we observed that combination treatments enhanced intracellular ROS levels and reduced glutathione (GSH levels in breast cancer cells, suggesting that induction of oxidative stress was an important event in the cell death induced by the combination treatments.

  2. Effects of down-regulatedβ-catenin on epithelial mesenchymal transition, invasion and migration ability of breast cancer cell line MDA-MB-231%β-catenin下调对乳腺癌MDA-MB-231细胞上皮间质转化及侵袭迁移能力的影响

    Institute of Scientific and Technical Information of China (English)

    许光伟; 曹旭晨

    2015-01-01

    Objective To investigate the effect ofβ-catenin on epithelial mesenchymal phenotype and invasion migra⁃tion ability of breast cancer cell line MDA-MB-231. Methods Small interfering RNA (siRNA) targetingβ-catenin plas⁃mid was transfected into MDA-MB-231 cell line. Immunofluorescence staining was used to observe the expression of β-catenin. The expressions of epithelial cell marker E-cadherin and mesenchymal marker vimentin, epithelial mesenchymal transition correlation factor Twist1 and Snail were detected by Western blot assay. Invasion and migration ability was com⁃pared by transwell invasion and wound healing assay between control group, the MDA-MB-231 group andβ-catenin down-regulated group. Results Immunofluorescence staining showed thatβ-catenin was expressed in cell membrane, cytoplasm or nucleus in MDA-MB-231 group and control group. There was a decreased expression in β-catenin down-regulated group, and no expression in cytoplasm or nucleus. The expression of E-cadherin was increased, while vimentin, Twist 1 and Snail expression decreased inβ-catenin down-regulated cells. Transwell invasion and wound healing assay results proved that transmembrane cell number and migration distance were significantly lower in β-catenin down-regulated group than those of MDA-MB-231 group and control group (P<0.05). Conclusion The down-regulation ofβ-catenin inhibits Wnt/β-catenin activation that decreases the mesenchymal phenotype but increases epithelial phenotype of breast cancer cells MDA-MB-231, and which reduces the cell invasion and migration ability in vitro.%目的:探讨β-连环蛋白(β-catenin)对乳腺癌细胞系MDA-MB-231细胞上皮间质表型和侵袭迁移能力的影响。方法用β-catenin siRNA质粒转染乳腺癌MDA-MB-231细胞(对照组),免疫荧光染色观察β-catenin的表达情况。Western blot检测上皮标记蛋白E-cadherin、间质标记蛋白vimentin及上皮间质转化相关调控因子Twist1和Snail的

  3. 乳腺癌MDA-MB-231细胞源exosomes对血管内皮细胞EGFR表达的影响%Effect of exosomes derived from breast cancer cell line MDA-MB-231 on EGFR expression in HUVECs

    Institute of Scientific and Technical Information of China (English)

    谢莹珊; 沈宜; 隆霜; 范维柯; 姜蓉; 陈黎

    2012-01-01

    目的 研究人乳腺癌MDA-MB-231细胞源exosomes介导表皮生长因子受体(EGFR)对人脐静脉内皮细胞株(HUVECs) EGFR表达影响,探讨肿瘤组织血管内皮细胞异常表达EGFR的机制.方法 超速离心及密度梯度离心法提取MDA-MB-231细胞源exosomes;免疫细胞化学法检测MDA-MB-231细胞EGFR的表达;Western blot法检测MDA-MB-231细胞、exosomes及HUVECs EGFR蛋白表达;免疫细胞化学法检测HUVECs与exosomes共培养24 h后EGFR的表达;RT-PCR法检测MDA-MB-231细胞与实验组HUVECs细胞 EGFR mRNA的表达.结果 EGFR在MDA-MB-231细胞中呈高表达,MDA-MB-231细胞及exosomes可见相对分子质量为170×103的EGFR蛋白呈阳性反应带,HUVECs呈阴性反应带;HUVECs与exosomes共培养24 h后,镜下可见实验组部分HUVECs细胞质有淡黄色或棕黄色颗粒,EGFR阳性表达率为(21.4±3.1)%,与对照组(无EGFR蛋白表达)比较,差异有统计学意义(P<0.01).MDA-MB-231细胞EGFR mRNA表达阳性,而实验组HUVECs EGFR mRNA表达阴性.结论 MDA-MB-231细胞源exosomes携带癌基因EGFR,并能介导其向周围血管内皮细胞转移,这可能是肿瘤内皮细胞异常表达EGFR的一种方式.%Objective To study the effect of exosomes derived from breast cancer cell line MDA-MB-231 on epidermal growth factor receptor(EGFR) expression in human umbilical vein endothelial cells(HUVKCs) and to research the possible manner of abnormal expression EGFR of tumor endothelial cell. Methods Exosomes were purified by serial ultracentrifugation and sugar density ultracentrifugation. The expression of KGFR in MDA-MB-231 was detected by immunocytochemistry and Western blotting. The expression of EGFR in exosomes and HUVECs was detected by Western blotting. The expression of EGFR in HUVECs with exosomes co-cultured 24 h was detected by immunocytochemistry. RT-PCR was used to detect the mRNA expression of EGFR in MDA-MB-231 and experimental group. Results MDA-MB-231 cells expressed high level of EGFR. In

  4. Comparative proteomic analysis implicates eEF2 as a novel target of PI3Kγ in the MDA-MB-231 metastatic breast cancer cell line

    Directory of Open Access Journals (Sweden)

    Niu Meizhi

    2013-01-01

    Full Text Available Abstract Background Cancer cell migration is fundamentally required for breast tumour invasion and metastasis. The insulin-like growth factor 1 tyrosine kinase receptor (IGF-1R and the chemokine G-protein coupled receptor, CXCR4 have been shown to play an important role in breast cancer metastasis. Our previous study has shown that IGF-1R can transactivate CXCR4 via a physical association in the human MDA-MB-231 metastatic breast cancer cell line and that this plays a key role in IGF-I-induced migration of these cells. In the present study we used pharmacological inhibition and RNAi to identify PI3Kγ as an important migration signalling molecule downstream of receptor transactivation in MDA-MB-231 cells. To identify PI3Kγ-regulated proteins upon transactivation of CXCR4 by IGF-I, we undertook a comparative proteomics approach using 2-D- Fluorescence Difference Gel Electrophoresis (DIGE and identified the proteins by mass spectrometry. Results These experiments identified eukaryotic elongation factor 2 (eEF2 as a novel downstream target of PI3Kγ after activation of the IGF-1R-CXCR4 heterodimer by IGF-I. Further analysis demonstrated that eEF2 is phosphorylated in MDA-MB-231 cells in response to IGF-I and that this is dependent on PI3Kγ activity. Conclusions Our data imply a novel role for PI3Kγ in facilitating cell migration by regulating phosphorylation of eEF2.

  5. ADM与5Fu可抑制MDA-MB231乳癌细胞的SNCG表达%ADM and 5Fu inhibit the synuclein-γexpression of MDA-MB231 breast cancer cells

    Institute of Scientific and Technical Information of China (English)

    袁光波; 张幸平; 何金花; 唐卫军; 陈睿

    2008-01-01

    目的 研究乳癌临床常用化疗药物顺铂(ciaplalin or DDP),阿霉素(adriamycin,ADM),氟尿嘧啶(fluorouradl,5Fu)对MDA-MB231乳癌细胞SNCG表达的干扰效应.方法 通过RT-PCR及免疫组织化学法检测上述药物处理组和阴性对照组MDA-MB231细胞的SNCG表达状况,用Quantity One软件及北航真彩色医学图像处理系统(CM-20008)分别对各组SNCG mR-NA和蛋白相对表达水平进行分析.结果 ADM和5Fu处理组与阴性对照组比较,MDA-MB231细胞的SNCG mRNA及蛋白表达水平差异均有统计学意义(P值均小于0.05),而DDP处理组表达水平与对照组无差别.结论 ADM和5Fu可抑制MDA-MB231细胞的SNCG表达.

  6. BETULINIC ACID WAS MORE CYTOTOXIC TOWARDS THE HUMAN BREAST CANCER CELL LINE MDA-MB-231 THAN THE HUMAN PROMYELOCYTIC LEUKAEMIA CELL LINE HL-60

    Directory of Open Access Journals (Sweden)

    LATIFAH SAIFUL YAZAN

    2009-01-01

    Full Text Available Betulinic acid (BA is a pentacyclic triterpene found in several botanical sources that has been shown to cause apoptosis in a number of cell lines. This study was undertaken to determine the in vitro cytotoxic properties of BA towards the human mammary carcinoma cell line MDA-MB-231 and the human promyelocytic leukaemia cell line HL-60 and the mode of the induced cell death. The cytotoxicity and mode of cell death of BA were determined using the MTT assay and DNAfragmentation analysis, respectively. In our study, the compound was found to be cytotoxic to MDA-MB-231 and HL-60 cells with IC50 values of 58 μg/mL and 134 μg/mL, respectively. Cells treated with high concentrations of BA exhibited features characteristic of apoptosis such as blebbing, shrinking and a number of small cytoplasm body masses when viewed under an inverted light microscope after 24 h. The incidence of apoptosis in MDA-MB-231 was further confirmed bythe DNA fragmentation analysis, with the formation of DNA fragments of oligonucleosomal size (180-200 base pairs, giving a ladder-like pattern on agarose gel electrophoresis. BA was more cytotoxic towards MDA-MB-231 than HL-60 cells, and induced apoptosis in MDA-MB-231 cells.

  7. [Effect of autophagy inhibitor combined with EGFR inhibitor on triple-negative breast cancer MDA-MB-468 and MDA-MB-231 cells].

    Science.gov (United States)

    Liu, Z Y; He, K W; Song, X G; Wang, X Z; Zhuo, P Y; Wang, X W; Ma, Q H; Huo, Z J; Yu, Z Y

    2016-06-23

    To investigate the effect of combined administration of autophagy inhibitor 3-methyladenine/bafilomycin A1 and EGFR inhibitor gefitinib on triple-negative breast cancer MDA-MB-468, MDA-MB-231 cells and estrogen receptor-positive MCF-7 cells. All the cells were treated with 3-methyladenine/bafilomycin A1 and/or gefitinib. The effect of autophagy inhibitor and gefitinib on the cell growth was evaluated by MTT assay. Cell apoptosis was detected by flow cytometry. Western blot analysis was used to determine the alteration of autophagy-related protein (such as LC3) and apoptosis-related proteins (such as caspase-3 and caspase-9). MTT assay showed that the IC50 in the GE+ 3-MA and GE+ BAF groups were (4.1±0.2) μmol/L and (3.8±0.3) μmol/L, significantly lower than that of the gefitinib alone group [(7.0±0.2) μmol/L] in MDA-MB-468 cells (PMB231 cells (PMB-468 cells in GE, GE+ 3-MA and GE+ BAF groups were (12.43±3.18)%, (23.37±2.71)% and (18.71±2.81)%, respectively. The apoptosis rates of MDA-MB-231 cells of the GE, GE+ 3-MA and GE+ BAF groups were (12.15±1.82)%, (16.94±2.19)% and (33.83±5.92) %, significantly higher than that of the gefitinib alone group (All P0.05). Western blot data showed that the expression levels of LC3 and p-Akt were decreased in the combined groups than that of the gefitinib alone group, while the p-PTEN, caspase-3 and caspase-9 were increased. Autophagy inhibitor may enhance the sensitivity to gefitinib in MDA-MB-468 and MDA-MB-231 cells by activation of the PTEN/P13K/Akt pathway. Apoptosis in MDA-MB-468 and MDA-MB-231 cells might be enhanced by the combination treatment through caspase cascade.

  8. Daucus carota pentane-based fractions arrest the cell cycle and increase apoptosis in MDA-MB-231 breast cancer cells.

    Science.gov (United States)

    Shebaby, Wassim N; Mroueh, Mohammad; Bodman-Smith, Kikki; Mansour, Anthony; Taleb, Robin I; Daher, Costantine F; El-Sibai, Mirvat

    2014-10-10

    Daucus carota L.ssp.carota (wild carrot), an herb used in folk medicine worldwide, was recently demonstrated to exhibit anticancer activity. In this study we examined the anticancer effect of Daucus carota oil extract (DCOE) fractions on the human breast adenocarcinoma cell lines MDA-MB-231 and MCF-7 and clarified the mechanism of action. Using the WST assay, the pentane fraction (F1) and 1:1 pentane:diethyl ether fraction (F2) were shown to possess the highest cytotoxicity against both cell lines. Flow cytometric analysis revealed that both fractions induced the accumulation of cells in the sub-G1 phase, increase in apoptotic cell death and chromatin condensation. The increase in apoptosis in response to treatment was also apparent in the increase in BAX and the decrease in Bcl-2 levels as well as the proteolytic cleavage of both caspase-3 and PARP as revealed by Western blot. Furthermore, treatment of MDA-MB-231 cells with either fraction significantly reduced the level of phosphorylated Erk but did not show any effect on phosphorylated Akt. The combined treatment with a potent PI3K inhibitor (wortmannin) and F1 or F2 fraction had a synergistic inhibitory effect on cell survival which shows that these two drugs work on different pathways. These results suggest that the pentane-based fractions of DCOE possess potential anti-cancer activity that is mainly mediated through the Erk pathway.

  9. Small molecule inhibition of arylamine N-acetyltransferase Type I inhibits proliferation and invasiveness of MDA-MB-231 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Tiang, Jacky M. [School of Biomedical Sciences, University of Queensland, St. Lucia, Qld 4072 (Australia); Butcher, Neville J., E-mail: n.butcher@uq.edu.au [School of Biomedical Sciences, University of Queensland, St. Lucia, Qld 4072 (Australia); Minchin, Rodney F. [School of Biomedical Sciences, University of Queensland, St. Lucia, Qld 4072 (Australia)

    2010-02-26

    Arylamine N-acetyltransferase 1 is a phase II metabolizing enzyme that has been associated with certain breast cancer subtypes. While it has been linked to breast cancer risk because of its role in the metabolic activation and detoxification of carcinogens, recent studies have suggested it may be important in cell growth and survival. To address the possible importance of NAT1 in breast cancer, we have used a novel small molecule inhibitor (Rhod-o-hp) of the enzyme to examine growth and invasion of the breast adenocarcinoma line MDA-MB-231. The inhibitor significantly reduced cell growth by increasing the percent of cells in G2/M phase of the cell cycle. Rhod-o-hp also reduced the ability of the MDA-MB-231 cells to grow in soft agar. Using an in vitro invasion assay, the inhibitor significantly reduced the invasiveness of the cells. To test whether this effect was due to inhibition of NAT1, the enzyme was knocked down using a lentivirus-based shRNA approach and invasion potential was significantly reduced. Taken together, the results of this study demonstrate that NAT1 activity may be important in breast cancer growth and metastasis. The study suggests that NAT1 is a novel target for breast cancer treatment.

  10. 雌激素受体β1对乳腺癌MDA-MB-231细胞上皮间质转化影响的初步研究%Primary study on estrogen receptor β1 impeding epithelial-mesenchymal transition of breast cancer MDA-MB-231 cells

    Institute of Scientific and Technical Information of China (English)

    周艳; 陈莉; 明佳; 唐鹏; 张毅; 杨新华; 姜军

    2012-01-01

    目的 将雌激素受体ERβ1真核表达质粒转染到人乳腺癌MDA-MB-231细胞中,观察外源性ERβ1基因转染MDA-MB-231细胞后对E-cadherin、Vimentin等基因表达和细胞上皮间质转化的影响,探讨ERβ1在乳腺癌发生发展中的生物学作用机制.方法 应用脂质体法将ERβ1真核表达质粒转染至乳腺癌MDA-MB-231细胞中,分别用实时荧光定量PCR、Western Blot检测转染前后细胞中ERβ1、E-cadherin、Vimentin mRNA和蛋白表达的变化;并用细胞增殖曲线显示转染后细胞增殖能力的改变.所有数据以±s表示,多个样本均数间的比较用单因素方差分析,组间比较采用SNK法.细胞生长曲线变化采用重复测量方差分析.结果 外源性ERβ1真核表达质粒转染组MDA-MB-231细胞较未转染组ERβ1、E-cadherin mRNA和蛋白水平明显增强(P<0.010),Vimentin mRNA水平明显减少(P<0.010),细胞增殖能力明显减弱.结论 ERβ1可能参与抑制乳腺癌MDA-MB-231细胞的上皮间质转化过程.%Objective To explore the effect of exogenous ERβ1 gene on the expression of E-cadherin and vimentin by transfecting recombinant eukaryotic expressing vector containing ERβ1 cDNA into human breast cancer MDA-MB-231 cells, and to investigate the biological role of ERβ1 in epithelial-mesenchymal transition of breast cancer cells. Methods Recombinant eukaryotic expressing vector containing ER β1 cDNA was transfected into human breast cancer MDA -MB-231 cells. The mRNA and protein expression levels of ERβ1, E-eadherin and vimentin were tested by real-time polymerase chain reaction and Western blot, respectively. The cell growth curve showed the change of proliferation ability in MDA-MB-231. All data were expressed as x±s. Single factor analysis of variance was used to compare the multiple sample means , and SNK method for group comparison. Changes in the cell growth curve were analyzed using repeated ANOVA . Results The mRNA and protein expression levels of ERβ1

  11. Effect of transfection with PLP2 antisense oligonucleotides on gene expression of cadmium-treated MDA-MB231 breast cancer cells.

    Science.gov (United States)

    Longo, Alessandra; Librizzi, Mariangela; Luparello, Claudio

    2013-02-01

    Emerging evidence indicates that cadmium (Cd) is able to regulate gene expression, drastically affecting the pattern of transcriptional activity in human normal and pathological cells. We have already shown that exposure of MDA-MB231 breast cancer cells to 5 μM CdCl(2) for 96 h, apart from significantly affecting mitochondrial metabolism, induces modifications of the expression level of genes coding for members of stress response-, mitochondrial respiration-, MAP kinase-, NF-κB-, and apoptosis-related pathways. In the present study, we have expanded the knowledge on the biological effects of Cd-breast cancer cell interactions, indicating PLP2 (proteolipid protein-2) as a novel member of the list of Cd-upregulated genes by MDA-MB231 cancer cells and, through the application of transfection techniques with specific antisense oligonucleotides, we have demonstrated that such over-expression may be an upstream event to some of the changes of gene expression levels already observed in Cd-treated cells, thus unveiling new possible molecular relationship between PLP2 and genes linked to the stress and apoptotic responses.

  12. The anti-proliferative effect of metformin in triple-negative MDA-MB-231 breast cancer cells is highly dependent on glucose concentration: implications for cancer therapy and prevention.

    Science.gov (United States)

    Zordoky, Beshay N M; Bark, Diana; Soltys, Carrie L; Sung, Miranda M; Dyck, Jason R B

    2014-06-01

    Metformin has been shown to have a strong anti-proliferative effect in many breast cancer cell lines, mainly due to the activation of the energy sensing kinase, AMP-activated protein kinase (AMPK). MDA-MB-231 cells are aggressive and invasive breast cancer cells that are known to be resistant to several anti-cancer agents as well as to the anti-proliferative effect of metformin. As metformin is a glucose lowering drug, we hypothesized that normoglycemia will sensitize MDA-MB-231 cells to the anti-proliferative effect of metformin. MDA-MB-231 cells were treated with increasing metformin concentrations in hyperglycemic or normoglycemic conditions. The growth inhibitory effect of metformin was assessed by MTT assay. The expression of several proteins involved in cell proliferation was measured by Western blotting. In agreement with previous studies, treatment with metformin did not inhibit the growth of MDA-MB-231 cells cultured in hyperglycemic conditions. However, metformin significantly inhibited MDA-MB-231 growth when the cells were cultured in normoglycemic conditions. In addition, we show that metformin-treatment of MDA-MB-231 cells cultured in normoglycemic conditions and not in hyperglycemic conditions caused a striking activation of AMPK, and an AMPK-dependent inhibition of multiple molecular signaling pathways known to control protein synthesis and cell proliferation. Our data show that normoglycemia sensitizes the triple negative MDA-MB-231 breast cancer cells to the anti-proliferative effect of metformin through an AMPK-dependent mechanism. These findings suggest that tight normoglycemic control may enhance the anti-proliferative effect of metformin in diabetic cancer patients. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Effects of Chinese medicinal herbs on expression of brain-derived Neurotrophic factor (BDNF) and its interaction with human breast cancer MDA-MB-231 cells and endothelial HUVECs.

    Science.gov (United States)

    Chiu, Jen-Hwey; Chen, Fang-Pey; Tsai, Yi-Fang; Lin, Man-Ting; Tseng, Ling-Ming; Shyr, Yi-Ming

    2017-08-12

    Our previous study demonstrated that an up-regulation of the Brain-Derived Neurotrophic Factor (BDNF) signaling pathway is involved the mechanism causing the recurrence of triple negative breast cancer. The aim of this study is to investigate the effects of commonly used Chinese medicinal herbs on MDA-MB-231 and HUVEC cells and how they interact with BDNF. Human TNBC MDA-MB-231 cells and human endothelial HUVEC cells were used to explore the effect of commonly used Chinese herbal medicines on cancer cells alone, on endothelial cells alone and on cancer cell/endothelial cell interactions; this was done via functional studies, including migration and invasion assays. Furthermore, Western blot analysis and real-time PCR investigations were also used to investigate migration signal transduction, invasion signal transduction, and angiogenic signal transduction in these systems. Finally, the effect of the Chinese medicinal herbs on cancer cell/endothelial cell interactions was assessed using co-culture and ELISA. In terms of autoregulation, BDNF up-regulated TrkB gene expression in both MDA-MB-231 and HUVEC cells. Furthermore, BDNF enhanced migration by MDA-MB-231 cells via Rac, Cdc42 and MMP, while also increasing the migration of HUVEC cells via MMP and COX-2 expression. As measured by ELISA, the Chinese herbal medicinal herbs A. membranaceus, P. lactiflora, L. chuanxiong, P. suffruticosa and L. lucidum increased BDNF secretion by MDA-MB-231 cells. Similarly, using a co-culture system with MDA-MB-231 cells, A. membranaceus and L. lucidum modulated BDNF-TrkB signaling by HUVEC cells. We conclude that BDNF plays an important role in the metastatic interaction between MDA-MB-231 and HUVEC cells. Some Chinese medicinal herbs are able to enhance the BDNF-related metastatic potential of the interaction between cancer cells and endothelial cells. These findings provide important information that should help with the development of integrated medical therapies for breast

  14. Exposure to cadmium chloride influences astrocyte-elevated gene-1 (AEG-1) expression in MDA-MB231 human breast cancer cells.

    Science.gov (United States)

    Luparello, Claudio; Longo, Alessandra; Vetrano, Marco

    2012-01-01

    It is known that cadmium (Cd) is able to regulate gene expression, drastically affecting the pattern of transcriptional activity and intracellular signalization in normal and pathological human cells. We have already shown that Cd exerts a cytotoxic effect on neoplastic MDA-MB231 cells from the human breast, which is characterized by the onset of a "non-classical" apoptotic kind of death, impairment of mitochondrial activity and drastic changes in gene expression pattern. In the present study, employing a combination of conventional and differential display-PCR techniques, immunocytochemical, ELISA and Western analyses, we extended the knowledge on the transcriptional modulation exerted by the metal demonstrating that in MDA-MB231 cells 5 μM CdCl(2) treatment for 96 h selectively down-regulates astrocyte-elevated gene-1 (AEG-1) and reduces the accumulation of its protein product which appears to be associated with the internal cytomembranes and also present in the nucleoplasm. In addition, due to the acknowledged role of AEG-1 in the intranuclear shuttling of NF-κB p65 subunit, we also showed that CdCl(2) treatment determines the decrease of p65 amount in nuclear extracts and the down-regulation of the NF-κB downstream genes c-fos and c-jun, thus providing a new contribution to the comprehension of the intracellular molecular mechanisms implicated in Cd-breast cancer cell interactions.

  15. Glycerol-3-phosphate acyltranferase-2 behaves as a cancer testis gene and promotes growth and tumorigenicity of the breast cancer MDA-MB-231 cell line.

    Directory of Open Access Journals (Sweden)

    Magali Pellon-Maison

    Full Text Available The de novo synthesis of glycerolipids in mammalian cells begins with the acylation of glycerol-3-phosphate, catalyzed by glycerol-3-phosphate acyltransferase (GPAT. GPAT2 is a mitochondrial isoform primarily expressed in testis under physiological conditions. Because it is aberrantly expressed in multiple myeloma, it has been proposed as a novel cancer testis gene. Using a bioinformatics approach, we found that GPAT2 is highly expressed in melanoma, lung, prostate and breast cancer, and we validated GPAT2 expression at the protein level in breast cancer by immunohistochemistry. In this case GPAT2 expression correlated with a higher histological grade. 5-Aza-2' deoxycytidine treatment of human cells lines induced GPAT2 expression suggesting epigenetic regulation of gene expression. In order to evaluate the contribution of GPAT2 to the tumor phenotype, we silenced its expression in MDA-MB-231 cells. GPAT2 knockdown diminished cell proliferation, anchorage independent growth, migration and tumorigenicity, and increased staurosporine-induced apoptosis. In contrast, GPAT2 over-expression increased cell proliferation rate and resistance to staurosporine-induced apoptosis. To understand the functional role of GPAT2, we performed a co-expression analysis in mouse and human testis and found a significant association with semantic terms involved in cell cycle, DNA integrity maintenance, piRNA biogenesis and epigenetic regulation. Overall, these results indicate the GPAT2 would be directly associated with the control of cell proliferation. In conclusion, we confirm GPAT2 as a cancer testis gene and that its expression contributes to the tumor phenotype of MDA-MB-231 cells.

  16. Stromelysin-3 over-expression enhances tumourigenesis in MCF-7 and MDA-MB-231 breast cancer cell lines: involvement of the IGF-1 signalling pathway

    Directory of Open Access Journals (Sweden)

    Mennerich Detlev

    2007-01-01

    Full Text Available Abstract Background Stromelysin-3 (ST-3 is over-expressed in the majority of human carcinomas including breast carcinoma. Due to its known effect in promoting tumour formation, but its impeding effect on metastasis, a dual role of ST-3 in tumour progression, depending on the cellular grade of dedifferentiation, was hypothesized. Methods The present study was designed to investigate the influence of ST-3 in vivo and in vitro on the oestrogen-dependent, non-invasive MCF-7 breast carcinoma cell line as well as on the oestrogen-independent, invasive MDA-MB-231 breast carcinoma cell line. Therefore an orthotopic human xenograft tumour model in nude mice, as well as a 3D matrigel cell culture system, were employed. Results Using both in vitro and in vivo techniques, we have demonstrated that over-expression of ST-3 in MCF-7 and MDA-MB-231 cells leads to both increased cell numbers and tumour volumes. This observation was dependent upon the presence of growth factors. In particular, the enhanced proliferative capacity was in MCF-7/ST-3 completely and in MDA-MB-231/ST-3 cells partially dependent on the IGF-1 signalling pathway. Microarray analysis of ST-3 over-expressing cells revealed that in addition to cell proliferation, further biological processes seemed to be affected, such as cell motility and stress response. The MAPK-pathway as well as the Wnt and PI3-kinase pathways, appear to also play a potential role. Furthermore, we have demonstrated that breast cancer cell lines of different differentiation status, as well as the non-tumourigenic cell line MCF-10A, have a comparable capability to induce endogenous ST-3 expression in fibroblasts. Conclusion These data reveal that ST-3 is capable of enhancing tumourigenesis in highly differentiated "early stage" breast cancer cell lines as well as in further progressed breast cancer cell lines that have already undergone epithelial-mesenchymal transition. We propose that ST-3 induction in tumour

  17. Cytotoxic activity of ten algae from the Persian Gulf and Oman Sea on human breast cancer cell lines; MDA-MB-231, MCF-7, and T-47D

    Directory of Open Access Journals (Sweden)

    Nasrollah Erfani

    2015-01-01

    Full Text Available Background: Seaweeds have proven to be a promising natural source of bioactive metabolites for drug development. Objective: This study aimed to monitor the ethanol extract of ten algae from the Persian Gulf and Oman Sea, for their in vitro cytotoxic activity on three human breast cancer cell lines. Materials and Methods: Three human breast cancer cell lines including MDA-MB-231(ER− , MCF-7(ER + , and T-47D (ER + were treated by different concentrations of total ethanol (90% algae extracts and the cytotoxic effects were evaluated by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assay. Doxorubicin (Ebewe, Austria was used as a positive control. After 72 h of incubation, the cytotoxic effect of the algae was calculated and presented as 50%-inhibitory concentration (IC 50 . Results: The results indicated Gracilaria foliifera and Cladophoropsis sp. to be the most active algae in terms of cytotoxic effects on the investigated cancer cell lines. The IC 50 values against MDA-MB-231, MCF-7, and T-47D cells were, respectively, 74.89 ± 21.71, 207.81 ± 12.07, and 203.25 ± 30.98 mg/ml for G. foliifera and 66.48 ± 4.96, 150.86 ± 51.56 and >400 mg/ml for Cladophoropsis sp. The rest of the algal extracts were observed not to have significant cytotoxic effects in the concentration range from 6.25 mg/ml to 400 mg/ml. Conclusion: Our data conclusively suggest that G. foliifera and Cladophoropsis sp. may be good candidates for further fractionation to obtain novel anticancer substances. Moreover, stronger cytotoxic effects on estrogen negative breast cancer cell line (MDA-MB-231(ER− in comparison to estrogen positive cells (MCF-7 and T-47D suggest that the extract of G. foliifera and Cladophoropsis sp. may have an estrogen receptor/progesterone receptor-independent mechanism for their cellular growth inhibition.

  18. 姜黄素对乳腺癌MDA-MB-231细胞株放射增敏作用的研究%Effect of curcumin on radiosensitization of breast cancer cell MDA-MB-231

    Institute of Scientific and Technical Information of China (English)

    李峰; 王辉; 牛国梁; 张树友; 谢荣俊; 周明利

    2013-01-01

    目的 姜黄素(curcumin)能有效增强放射线对乳腺癌的作用,但其作用机制尚不明朗.该文探讨姜黄素对人乳腺癌MDA-MB-231细胞放射增敏的作用机制.方法 对数生长的乳腺癌MDA-MB-231细胞,分成对照组、姜黄素组、照射组及联合组,使用流式细胞术(flow cytometry,FCM)检测细胞凋亡率;克隆形成实验检测放射增敏作用;蛋白免疫印迹法(Western blotting)检测Akt及pAkt蛋白表达.结果 联合组凋亡率显著高于照射组[(28.49±4.66)% vs(12.41±4.98)%](q=20.07,P<0.01);与照射组比较,克隆形成实验的放射敏感性指标标准阈剂量(Dq)、平均致死剂量(Do)、2 Gy存活分数(SF2)均明显降低,放射增敏比(SERDO)为1.293;各组间的Akt蛋白差异没有统计学意义(F=3.467,P=0.051),与对照组比较,单纯照射能提高pAkt的蛋白表达(q =4.71,P<0.05),而姜黄素可以抑制pAkt蛋白的表达(q =4.11,P<0.05),两者联用后pAkt蛋白表达较单纯照射组显著降低(q =7.36,P<0.01).结论 姜黄素可以增强射线对乳腺癌MDA-MB-231细胞的敏感性,其机制可能与姜黄素阻断PI3K/Akt信号通路中Akt磷酸化有关.

  19. Gallic acid indanone and mangiferin xanthone are strong determinants of immunosuppressive anti-tumour effects of Mangifera indica L. bark in MDA-MB231 breast cancer cells.

    Science.gov (United States)

    García-Rivera, Dagmar; Delgado, René; Bougarne, Nadia; Haegeman, Guy; Berghe, Wim Vanden

    2011-06-01

    Vimang is a standardized extract derived from Mango bark (Mangifera Indica L.), commonly used as anti-inflammatory phytomedicine, which has recently been used to complement cancer therapies in cancer patients. We have further investigated potential anti-tumour effects of glucosylxanthone mangiferin and indanone gallic acid, which are both present in Vimang extract. We observed significant anti-tumour effects of both Vimang constituents in the highly aggressive and metastatic breast cancer cell type MDA-MB231. At the molecular level, mangiferin and gallic acid both inhibit classical NFκB activation by IKKα/β kinases, which results in impaired IκB degradation, NFκB translocation and NFκB/DNA binding. In contrast to the xanthone mangiferin, gallic acid further inhibits additional NFκB pathways involved in cancer cell survival and therapy resistance, such as MEK1, JNK1/2, MSK1, and p90RSK. This results in combinatorial inhibition of NFκB activity by gallic acid, which results in potent inhibition of NFκB target genes involved in inflammation, metastasis, anti-apoptosis and angiogenesis, such as IL-6, IL-8, COX2, CXCR4, XIAP, bcl2, VEGF. The cumulative NFκB inhibition by gallic acid, but not mangiferin, is also reflected at the level of cell survival, which reveals significant tumour cytotoxic effects in MDA-MB231 cells. Altogether, we identify gallic acid, besides mangiferin, as an essential anti-cancer component in Vimang extract, which demonstrates multifocal inhibition of NFκB activity in the cancer-inflammation network.

  20. Effect of chidamide in combination with cisplatin interventing proliferation in triple-negative breast cancer cell lines MDA-MB-231 in vitro and its mechanism research%西达本胺联合顺铂对三阴乳腺癌细胞株MDA-MB-231的体外抗增殖作用及其机制的研究

    Institute of Scientific and Technical Information of China (English)

    项丹; 姜藻; 顾晓怡

    2013-01-01

    Objective: To explore the chidamide in combination with cisplatin on three negative breast cancer cells MDA-MB-231 inhibition and its possible molecular mechanism. Methods; The separate and combined administration with MTT method for the determination of MDA-MB-231 cell proliferation , flow cytometry ( FCM ) examination apoptosis rate , analysis of Western blotting acetylation of histone H 3 and HDAC3 expression levels , fluorescence quantitative PCR detection of ERCC1 expression level . Results; The detection of MTT showed that chidamide monotherapy and cisplatin monotherapy for in vitro cell line MDA-MB-231 value has certain inhibitory action in a dose-and time-dependent manner. Combined medication can play a synergistic effect. Chidamide can inhibit MDA-MB-231 cell HDAC3 expression, increased histone H3 acetylation levels. The synergistic effect combined with cisplatin of molecular mechanism is to decrease the expression of ERCC 1. Conclusion; Chidamide in combination with cisplatin in vitro may synergistically inhibit the proliferation of TNBC cell lines MDA -MB-231.%目的:探讨西达本胺联合顺铂对三阴乳腺癌细胞株MDA-MB-231的抑制作用及其可能的分子机制.方法:单独及联合给药后采用MTT法测定MDA-MB-231细胞的增殖,流式细胞仪(FCM)检测细胞凋亡率,Western blotting法分析乙酰化组蛋白H3及HDAC3的表达水平,荧光定量PCR检测ERCC1表达水平.结果:MTT法检测发现,西达本胺单药和顺铂单药在体外对细胞株MDA-MB-231增殖都有一定的抑制作用,且呈浓度、时间依赖性;联合用药可起到协同效应.西达本胺可抑制MDA-MB-231细胞株HDAC3的表达,提高组蛋白H3的乙酰化水平.联合顺铂起到协同效应的分子机制主要是降低细胞株ERCC1的表达水平.结论:西达本胺联合顺铂在体外能协同抑制三阴乳腺癌细胞株MDA-MB-231的增殖.

  1. Phaleria macrocarpa (Boerl.) fruit induce G0/G1 and G2/M cell cycle arrest and apoptosis through mitochondria-mediated pathway in MDA-MB-231 human breast cancer cell.

    Science.gov (United States)

    Kavitha, Nowroji; Ein Oon, Chern; Chen, Yeng; Kanwar, Jagat R; Sasidharan, Sreenivasan

    2017-04-06

    Phaleria macrocarpa (Scheff) Boerl, is a well-known folk medicinal plant in Indonesia. Traditionally, P. macrocarpa has been used to control cancer, impotency, hemorrhoids, diabetes mellitus, allergies, liver and hearth disease, kidney disorders, blood diseases, acne, stroke, migraine, and various skin diseases. The purpose of this study was to determine the in situ cytotoxicity effect P. macrocarpa fruit ethyl acetate fraction (PMEAF) and the underlying molecular mechanism of cell death. MDA-MB-231 cells were incubated with PMEAF for 24h. Cell cycle and viability were examined using flow cytometry analysis. Apoptosis was determined using the Annexin V assay and also by fluorescence microscopy. Apoptosis protein profiling was detected by RayBio® Human Apoptosis Array. The AO/PI staining and flow cytometric analysis of MDA-MB-231 cells treated with PMEAF were showed apoptotic cell death. The cell cycle analysis by flow cytometry analysis revealed that the accumulation of PMEAF treated MDA-MB-231 cells in G0/G1 and G2/M-phase of the cell cycle. Moreover, the PMEAF exert cytotoxicity by increased the ROS production in MDA-MB-231 cells consistently stimulated the loss of mitochondrial membrane potential (∆Ψm) and induced apoptosis cell death by activation of numerous signalling proteins. The results from apoptosis protein profiling array evidenced that PMEAF stimulated the expression of 9 pro-apoptotic proteins (Bax, Bid, caspase 3, caspase 8, cytochrome c, p21, p27, p53 and SMAC) and suppressed the 4 anti-apoptotic proteins (Bcl-2, Bcl-w, XIAP and survivin) in MDA-MB-231 cells. The results indicated that PMEAF treatment induced apoptosis in MDA-MB-231 cells through intrinsic mitochondrial related pathway with the participation of pro and anti-apoptotic proteins, caspases, G0/G1 and G2/M-phases cell cycle arrest by p53-mediated mechanism. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  2. Cochinchina momordica seed extract induces G2/M arrest and apoptosis in human breast cancer MDA-MB-231 cells by modulating the PI3K/Akt pathway.

    Science.gov (United States)

    Meng, Lin-Yi; Liu, Hong-Rui; Shen, Yang; Yu, Yun-Qiu; Tao, Xia

    2011-01-01

    Cochinchina momordica seeds are a kind of traditional Chinese herb. In this study, anticancer activity and underlying mechanisms were investigated with an extract using human breast cancer MDA-MB-231 cells. The survival rate was reduced in a concentration- and time-dependent manner as assessed by MTT assay. After incubation for 48 h, typical apoptotic morphological changes were observed by Hoechst 33258 dye assay. Flow cytometry revealed that the treatment obviously induced G2/M arrest and apoptosis in MDA-MB-231 cells. Furthermore, western blotting demonstrated downregulation of protein expression of PI3K, Akt, NF-kB, Bcl-2, Cdk1 and cyclin B1, whereas Bax and caspase-3 were upregulated. Our results suggest that the extract induced cell cycle G2/M arrest and apoptosis in MDA-MB-231 cells by decreasing PI3K/Akt pathway. Therefore, we propose that ECMS has potential as a breast cancer chemotherapeutic agent.

  3. Inhibitory effect of salinomycin on human breast cancer cells MDA-MB-231 proliferation through Hedgehog signaling pathway%盐霉素通过 Hedgehog 信号通路抑制乳腺癌细胞 MDA-MB-231的增殖

    Institute of Scientific and Technical Information of China (English)

    卢颖; 张春影; 李青; 毛俊; 马威; 于晓棠; 侯震寰; 李连宏

    2015-01-01

    目的:探讨盐霉素对Hedgehog信号通路的调控作用及盐霉素抑制乳腺癌细胞MDA-MB-231增殖的作用机制。方法培养人乳腺癌细胞MDA-MB-231,在不同浓度盐霉素及不同作用时间下,采用CCK-8比色法检测盐霉素对MDA-MB-231细胞生长的影响,采用流式细胞术观察经盐霉素作用后细胞周期的改变,采用即时定量PCR和Western blot检测盐霉素处理后Hedgehog通路中靶基因Shh、Smo、Gli1的mRNA和蛋白表达的变化。结果盐霉素可以抑制MDA-MB-231的增殖,0、0.4、0.8和1.6μmol/L 作用48 h后抑制率分别为11.18%、25.88%、50.03%和92.65%。盐霉素能够阻滞MDA-MB-231细胞由 G1期进入 S 期,0、0.8和1.6μmol/L 的 S 期比率分别是25.03%、11.85%和35.21%。盐霉素抑制Shh、Smo以及Gli1的mRNA和蛋白的表达具有剂量依赖性。结论盐霉素可以阻滞MDA-MB-231细胞由G1期进入S期,其机制可能是通过下调Hedgehog通路中相关靶基因的表达进而抑制细胞增殖。%Objective To investigate the inhibitory effect of salinomycin on human breast cancer cells in vitro, and to explore the related molecular mechanism.Methods Human breast cancer MDA-MB-231 cells were treated with salinomycin at different concentrations and at various time points.The effect of salinomycin on MDA-MB-231 cells proliferation was studied by CCK-8 method.The cell cycle status was examined by flow cytometry.RT-PCR and Western blot were used to detect the expression of Shh, Smo and Gli1 in the Hedgehog pathway at mRNA and protein levels.Results Proliferation of MDA-MB-231 cells treated with salinomycin was markedly inhibited in a concentration and time dependent manner.Salinomycin at concentrations of 0,0.4,0.8 and 1.6 μmol/L inhibited the growth at the rates of 11.18%,25.88%, 50.03%, 92.65%, respectively.Salinomycin prevented MDA-MB-231 cells from G1 into S phase.Salinomycin at concentrations of 0,0.8 and 1.6μmol/L resulted in S

  4. Resveratrol and Estradiol Exert Disparate Effects on Cell Migration, Cell Surface Actin Structures, and Focal Adhesion Assembly in MDA-MB-231 Human Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Nicolas G. Azios

    2005-02-01

    Full Text Available Resveratrol, a grape polyphenol, is thought to be a cancer preventive, yet its effects on metastatic breast cancer are relatively unknown. Since cancer cell invasion is dependent on cell migration, the chemotactic response of MDA-MB-231 metastatic human breast cancer cells to resveratrol, estradiol (E2, or epidermal growth factor (EGF was investigated. Resveratrol decreased while E2 and EGF increased directed cell migration. Resveratrol may inhibit cell migration by altering the cytoskeleton. Resveratrol induced a rapid global array of filopodia and decreased focal adhesions and focal adhesion kinase (FAK activity. E2 or EGF treatment did not affect filopodia extension but increased lamellipodia and associated focal adhesions that are integral for cell migration. Combined resveratrol and E2 treatment resulted in a filopodia and focal adhesion response similar to resveratrol alone. Combined resveratrol and EGF resulted in a lamellipodia and focal adhesion response similar to EGF alone. E2 and to a lesser extent resveratrol increased EGFR activity. The cytoskeletal changes and EGFR activity in response to E2 were blocked by EGFR1 inhibitor indicating that E2 may increase cell migration via crosstalk with EGFR signaling. These data suggest a promotional role for E2 in breast cancer cell migration but an antiestrogenic, preventative role for resveratrol.

  5. 纳米细菌促进乳腺癌细胞MDA-MB-231凋亡%Nanobacteria promotes apoptosis in breast cancer cell line MDA-MB-231

    Institute of Scientific and Technical Information of China (English)

    刘胜男; 张德纯; 张名均; 郭亚楠; 杨晓容; 许舸

    2013-01-01

    目的 观察纳米细菌(nanobacteria,NB)与纳米羟基磷灰石颗粒(nano hydroxyapatite,nHAP)对乳腺癌MDA-MB-231细胞的影响.方法 实验分为NB组、nHAP组和正常对照组,其中NB组和nHAP组悬液的浓度均为2麦氏浊度(M),正常对照组仅加培养基,与乳腺癌MDA-MB-231细胞共同培养24、48、72 h,通过CCK-8检测其对细胞的毒性作用;培养12、24、48、72 h,取上清,经全自动生化分析仪测定LDH活性;作用72 h,经流式细胞仪(flow cytometry,FCM)测定其凋亡率,透射电镜观察其超微结构的变化情况.结果 CCK-8显示,NB组24、48、72 h对细胞的抑制作用均强于nHAP组和正常对照组,差异有统计学意义(P<0.01);NB组LDH含量在24、48、72 h时均高于正常对照组,差异均有统计学意义(P <0.05);24、48、72 h均高于nHA组,但仅24、48 h有统计学差异(P<0.05).nHAP组LDH活性仅在72 h与正常对照组比较有统计学差异(P <0.01);72 h后NB组细胞凋亡率高于nHAP组,差异有统计学意义(P<0.01);透射电镜下观察,NB组可以看到胞质空泡样变,核固缩以及明显的凋亡小体,nHAP组未见明显异常.结论 NB可以抑制乳腺癌细胞的生长,促进其发生凋亡,其导致细胞凋亡的成分不仅仅是NB羟基磷灰石的外壳,也可能与NB的其他组分或代谢产物有关.

  6. The conditioned medium from osteo-differentiating human mesenchymal stem cells affects the viability of triple negative MDA-MB231 breast cancer cells.

    Science.gov (United States)

    Librizzi, Mariangela; Tobiasch, Edda; Luparello, Claudio

    2016-01-01

    This study aimed to investigate the effect of conditioned media (CM) from osteo-differentiating and adipo-differentiating human mesenchymal stem cells (MSCs) isolated from lipoaspirates of healthy female donors on the viability of triple-negative breast cancer cells MDA-MB231. The CM of undifferentiated and differentiating MSCs were collected after 7, 14, 21 and 28 days of culture. The effects of MSC CM on cell proliferation were assessed using an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay after 24 h. The effects of osteo-differentiating cell CM on apoptotic promotion, cell cycle impairment, mitochondrial transmembrane potential dissipation, production of reactive oxygen species and autophagosome accumulation were analysed by flow cytometry and Western blot. MTT assay showed that only CM collected from osteo-induced cells at day 28 (d28O-CM) reduced tumour cell viability. Treatment with d28O-CM restrained cell cycle progression through G2 phase, elicited a caspase-8-driven apoptotic effect already after 5 h of culture, and down-regulated autophagosome accumulation and beclin-1 expression. The finding that factor(s) secreted by osteo-differentiating MSCs shows properties of an apoptotic inducer and autophagy inhibitor on triple-negative breast cancer cells may have an important applicative potential that deserves further investigation.

  7. Antrodia salmonea induces G2 cell-cycle arrest in human triple-negative breast cancer (MDA-MB-231) cells and suppresses tumor growth in athymic nude mice.

    Science.gov (United States)

    Chang, Chia-Ting; Hseu, You-Cheng; Thiyagarajan, Varadharajan; Huang, Hui-Chi; Hsu, Li-Sung; Huang, Pei-Jane; Liu, Jer-Yuh; Liao, Jiunn-Wang; Yang, Hsin-Ling

    2017-01-20

    Antrodia salmonea (AS), is a well-known folk medicinal mushroom in Taiwan, has been reported to exhibit anti-oxidant, anti-angiogenic, and anti-inflammatory effects. In the present study, we examined the effects of AS on cell-cycle arrest in vitro in MDA-MB-231 cells and on tumor regression in vivo using an athymic nude mice model. AS (0-200μg/mL) treatment significantly induced G2 cell-cycle arrest in MDA-MB-231 cells by reducing the levels of cyclin B1, cyclin A, cyclin E, and CDC2 proteins. In addition, N-acetylcysteine (NAC) pretreatment prevented AS induced G2 cell-cycle arrest, indicating that ROS accumulation and subsequent cell cycle arrest might be a major mechanism of AS-induced cytotoxicity. Further, AS treatment decreased COX-2 expression and induced PARP cleavage was significantly reversed by NAC pretreatment in MDA-MB-231 cells. The in vivo study results revealed that AS treatment was effective in terms of delaying the tumor incidence and reducing the tumor growth in MDA-MB-231-xenografted nude mice. TUNEL assay, immunohistochemical staining and Western blotting confirmed that AS significantly modulated the xenografted tumor progression as demonstrated by induction of apoptosis, autophagy, and cell-cycle arrest. Our data strongly suggest that Antrodia salmonea could be an anti-cancer agent for human breast cancer. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Beneficial effects of a medicinal herb, Cirsium japonicum var. maackii, extract and its major component, cirsimaritin on breast cancer metastasis in MDA-MB-231 breast cancer cells.

    Science.gov (United States)

    Yeon Park, Jun; Young Kim, Hyun; Shibamoto, Takayuki; Su Jang, Tae; Cheon Lee, Sang; Suk Shim, Jae; Hahm, Dae-Hyun; Lee, Hae-Jeung; Lee, Sanghyun; Sung Kang, Ki

    2017-09-01

    The biological activities of the ethanol extract from Cirsium japonicum var. maackii (ICF-1) and its major component, polyphenol cirsimaritin, were investigated as part of the search for possible alternative drugs for breast cancer. Three in vitro cell-based assays were used: the cell proliferation assay, tube-formation assay, and Western blot analysis. Both the ICF-1 extract and cirsimaritin inhibited the viability of HUVECs in a dose-dependent manner. The inhibition achieved was 36.89% at a level of 200μg/ml by the ICF-1 extract and 62.04% at a level of 100μM by cirsimaritin. The ICF-1 extract and cirsimaritin reduced tube formation by 12.69% at level of 25μg/ml and 32.18% at the levels of 6.25μM, respectively. Cirsimaritin inhibited angiogenesis by downregulation of VEGF, p-Akt and p-ERK in MDA-MB-231 cells, suggesting that cirsimaritin is potentially useful as an anti-metastatic agent. The present study demonstrated that Cirsium japonicum extract and its active component cirsimaritin is an excellent candidate as an alternative anti-breast cancer drug. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Combined effects of furanodiene and doxorubicin on the migration and invasion of MDA-MB-231 breast cancer cells in vitro.

    Science.gov (United States)

    Zhong, Zhang-Feng; Tan, Wen; Tian, Ke; Yu, Hua; Qiang, Wen-An; Wang, Yi-Tao

    2017-04-01

    Furanodiene is one of the major bioactive components isolated from the natural product of the plant, Curcuma wenyujin Y.H. Chen et C. Ling. Furanodiene has been found to exert anticancer effects in various types of cancer cell lines, as well as exhibit antimetastatic activities. However, the antimetastatic capacity of furanodiene in combination with the common chemotherapy drug doxorubicin has not been investigated. We found that doxorubicin at a non-toxic concentration induced cell migration and cell invasion in highly metastatic breast cancer cells. Combinational treatments with furanodiene and doxorubicin blocked the invasion and migration of MDA-MB-231 breast cancer cells in vitro. We also clarified the effects of the combination on the signaling pathways involved in migration, invasion, and cytoskeletal organization. When combined with doxorubicin, furanodiene downregulated the expression of integrin αV and β-catenin and inhibited the phosphorylation of paxillin, Src, focal adhesion kinase (FAK), p85, and Akt. Moreover, combinational treatments also resulted in a decrease in matrix metalloproteinase-9 (MMP-9). Further study demonstrated that the co-treatments with furanodiene did not significantly alter the effects of doxorubicin on the tubulin cytoskeleton, represented by no influence on the expression levels of RhoA, Cdc42, N-WASP, and α/β tubulin. These observations indicate that furanodiene is a potential agent that may be utilized to improve the anticancer efficacy of doxorubicin and overcome the risk of chemotherapy in highly metastatic breast cancer.

  10. 4-氨基-2-三氟甲基苯基维甲酸酯对人乳腺癌细胞株MDA-MB-231诱导分化作用及可能的机制研究%Inducing effect of 4-Amino-2-Trifluoromethyl-Phenyl Retinate on differentiation of human breast cancer MDA-MB-231 cell and its possible mechanisms

    Institute of Scientific and Technical Information of China (English)

    雷静; 陈飞虎; 葛金芳; 李悦; 高文凡; 邓子云

    2015-01-01

    目的:观察4-氨基-2-三氟甲基苯基维甲酸酯(4-anino-2-trifluoromethyl-phenyl retimate, ATPR)对人乳腺癌细胞株MDA-MB-231抑制增殖诱导分化作用,探讨其可能的作用机制。方法体外培养人乳腺癌细胞株 MDA-MB-231, MTT检测细胞增殖,绘制细胞生长曲线,瑞氏-吉姆萨染色观察细胞形态变化,酶联免疫法检测粘蛋白MUC-1活性,流式细胞术检测细胞周期,实时荧光定量PCR法和Western blot法检测维甲酸受体(retinoic acid receptors,RAR) RARα、RARβ、RARγ和维甲类受体( retinoid X receptors, RXR ) RXRα、RXRβ、RXRγ基因和蛋白的表达。结果 ATPR 能够抑制MDA-MB-231细胞的增殖,具有浓度-时间依赖性,染色后镜下观察 MDA-MB-231细胞生长密度降低,形态趋于正常。ELISA结果显示,ATPR作用后明显降低MDA-MB-231细胞培养上清中MUC-1的浓度;流式细胞术结果显示,MDA-MB-231细胞中G0/G1期表达量增加,S期表达量减少,细胞阻滞在G0/G1期比例增加。 q-RT-PCR和Western blot结果显示, ATPR作用后, RARγ的mRNA和蛋白表达水平降低, RXRs mRNA和蛋白水平无明显变化。结论 ATPR可以抑制人乳腺癌细胞株MDA-MB-231增殖并诱导其分化,其机制可能与RARγ的表达有关。%Aim To investigate the effect of 4-Amino- 2-Trifluoromethyl-Phenyl Retinate on human breast cancer cells MDA-MB-231 and the possible mecha-nisms. Method Human breast cancer MDA-MB-231 cells were incubated with different concentrations of ATPR in vitro. MTT assay was performed to measure the proliferation of MDA-MB-231 . Cell growth curves were made by counting cells and morphologic changes were observed by Wright-Giemsa staining. The differ-entiation marker mucin-1 ( MUC-1 ) was measured by enzyme linked immunosorbent assay ( ELISA ) . Cell cycle was examined by Flow cytometry ( FCM ) . The expression of retinoic acid receptors ( RARs) and reti-noid X receptors ( RXRs ) were detected by Western blot and Quantitative

  11. Inositol hexaphosphate (IP6) inhibits key events of cancer metastasis: I. In vitro studies of adhesion, migration and invasion of MDA-MB 231 human breast cancer cells.

    Science.gov (United States)

    Tantivejkul, Kwanchanit; Vucenik, Ivana; Shamsuddin, Abulkalam M

    2003-01-01

    The anti-cancer agent inositol hexaphosphate (IP6) is an abundant intrinsic component of both plant and mammalian cells. In addition to inducing differentiation and inhibiting growth of numerous cancer cell lines in vitro, IP6 has been demonstrated to prevent and abrogate both primary tumor and metastasis in vivo. Using MDA-MB 231 human breast cancer cells, we studied the potential of IP6 to inhibit cell adhesion, migration and invasion, the key steps in cancer metastasis, utilizing the extracellular matrix (ECM) proteins, a culture wounding assay, modified Boyden chambers, immunocytochemistry and zymography. IP6 treatment caused a 65% reduction of cell adhesion to fibronection (p = 0.002) and a 37% reduction to collagen (p = 0.005). To determine whether a decrease in cell adhesion leads to a decrease in cell motility, migration assays were performed; IP6 decreased both the number of migrating cells and the distance of cell migration into the denuded area by 72% (p IP6-treated cells as compared to untreated cells, corresponding to a diminished ability of cancer cells to form cellular network as determined by Matrigel outgrowth assay. Likewise, cell invasion also was decreased (by 72% after IP6 treatment, p = 0.001) in a dose-dependent fashion. Additionally, IP6 significantly (p = 0.006) inhibited the secretion of matrix metalloproteinase (MMP)-9 as assessed by zymography. The results of this study show that IP6 inhibits the metastasis of human breast cancer cells in vitro through effects on cancer cell adhesion, migration and invasion.

  12. Peripheral-type benzodiazepine receptor levels correlate with the ability of human breast cancer MDA-MB-231 cell line to grow in SCID mice.

    Science.gov (United States)

    Hardwick, M; Rone, J; Han, Z; Haddad, B; Papadopoulos, V

    2001-11-01

    MDA-MB-231 (MDA-231) human breast cancer cells have a high proliferation rate, lack the estrogen receptor, express the intermediate filament vimentin, the hyaluronan receptor CD44, and are able to form tumors in nude mice. The MDA-231 cell line has been used in our laboratory to examine the role of the peripheral-type benzodiazepine receptor (PBR) in the progression of cancer. During these studies 2 populations of MDA-231 cells were subcloned based on the levels of PBR. The subclones proliferated at approximately the same rate, lacked the estrogen receptor, expressed vimentin and CD44, and had the same in vitro chemoinvasive and chemotactic potential. Both restriction fragment length polymorphism and comparative genomic hybridization analyses of genomic DNA from these cells indicated that both subclones are of the same genetic lineage. Only the subclone with high PBR levels, however, was able to form tumors when injected in SCID mice. These data suggest that the ability of MDA-231 cells to form tumors in vivo may depend on the amount of PBR present in the cells.

  13. Accumulation of GD1α Ganglioside in MDA-MB-231 Breast Cancer Cells Expressing ST6GalNAc V.

    Science.gov (United States)

    Vandermeersch, Sandy; Vanbeselaere, Jorick; Delannoy, Clément P; Drolez, Aurore; Mysiorek, Caroline; Guérardel, Yann; Delannoy, Philippe; Julien, Sylvain

    2015-04-16

    α-Series gangliosides define a particular sub-class of glycosphingolipids containing sialic acid α2,6-linked to GalNAc residue that was isolated as a minor compound from the brain. The sialyltransferase ST6GalNAc V was cloned from mouse brain and showed α2,6-sialyltransferase activity almost exclusively for GM1b, to form GD1α and is considered as the main enzyme involved in the biosynthesis of α-series gangliosides. Recently, ST6GALNAC5 was identified as one of the genes over-expressed in breast cancer cell populations selected for their ability to produce brain metastasis. However, the capacity of human breast cancer cells to produce α-series gangliosides has never been clearly demonstrated. Here, we show by stable transfection and MS-MS analysis of total glycosphingolipids that ST6GALNAC5 expressing MDA-MB-231 breast cancer cells accumulate GD1α ganglioside (IV3Neu5Ac1, III6Neu5Ac1Gg4-Cer).

  14. Accumulation of GD1α Ganglioside in MDA-MB-231 Breast Cancer Cells Expressing ST6GalNAc V

    Directory of Open Access Journals (Sweden)

    Sandy Vandermeersch

    2015-04-01

    Full Text Available α-Series gangliosides define a particular sub-class of glycosphingolipids containing sialic acid α2,6-linked to GalNAc residue that was isolated as a minor compound from the brain. The sialyltransferase ST6GalNAc V was cloned from mouse brain and showed α2,6-sialyltransferase activity almost exclusively for GM1b, to form GD1α and is considered as the main enzyme involved in the biosynthesis of α-series gangliosides. Recently, ST6GALNAC5 was identified as one of the genes over-expressed in breast cancer cell populations selected for their ability to produce brain metastasis. However, the capacity of human breast cancer cells to produce α-series gangliosides has never been clearly demonstrated. Here, we show by stable transfection and MS-MS analysis of total glycosphingolipids that ST6GALNAC5 expressing MDA-MB-231 breast cancer cells accumulate GD1α ganglioside (IV3Neu5Ac1, III6Neu5Ac1Gg4-Cer.

  15. Phenolic Fractions from Muscadine Grape "Noble" Pomace can Inhibit Breast Cancer Cell MDA-MB-231 Better than those from European Grape "Cabernet Sauvignon" and Induce S-Phase Arrest and Apoptosis.

    Science.gov (United States)

    Luo, Jianming; Wei, Zheng; Zhang, Shengyu; Peng, Xichun; Huang, Yu; Zhang, Yali; Lu, Jiang

    2017-03-22

    Tons of grape pomace which still contained a rich amount of plant polyphenols, is discarded after winemaking. Plant polyphenols have multi-functional activities for human body. In this study, polyphenols of pomaces from Muscadinia rotundifolia "Noble" and Vitis vinifera "Cabernet Sauvignon" were extracted and fractionated, and then they were analyzed with LC-MS and the inhibitory effects on breast cancer cells were compared. The inhibition on MDA-MB-231 cells of fractions from "Noble" was further evaluated. The results showed that polyphenols from 2 grape pomaces could be separated into 3 fractions, and ellagic acid and/or ellagitannins were only detected in fractions from "Noble" pomace. All 3 fractions from "Noble" pomace inhibited MDA-MB-231 better than MCF-7. But fraction 2 from "Cabernet Sauvignon" inhibited MCF-7 better while fraction 1 and fraction 3 inhibited both 2 cells similarly. Moreover, the fractions from "Noble" pomace rather than "Cabernet Sauvignon" can inhibit MDA-MB-231 better. Finally, fractions from "Noble" pomace can induce S-phase arrest and apoptosis on MDA-MB-231. These findings suggested the extracts from grape pomace especially those from "Noble," are potential to be utilized as health beneficial products or even anti-breast cancer agents.

  16. Mitochondrial calcium uniporter activity is dispensable for MDA-MB-231 breast carcinoma cell survival.

    Science.gov (United States)

    Hall, Duane D; Wu, Yuejin; Domann, Frederick E; Spitz, Douglas R; Anderson, Mark E

    2014-01-01

    Calcium uptake through the mitochondrial Ca2+ uniporter (MCU) is thought to be essential in regulating cellular signaling events, energy status, and survival. Functional dissection of the uniporter is now possible through the recent identification of the genes encoding for MCU protein complex subunits. Cancer cells exhibit many aspects of mitochondrial dysfunction associated with altered mitochondrial Ca2+ levels including resistance to apoptosis, increased reactive oxygen species production and decreased oxidative metabolism. We used a publically available database to determine that breast cancer patient outcomes negatively correlated with increased MCU Ca2+ conducting pore subunit expression and decreased MICU1 regulatory subunit expression. We hypothesized breast cancer cells may therefore be sensitive to MCU channel manipulation. We used the widely studied MDA-MB-231 breast cancer cell line to investigate whether disruption or increased activation of mitochondrial Ca2+ uptake with specific siRNAs and adenoviral overexpression constructs would sensitize these cells to therapy-related stress. MDA-MB-231 cells were found to contain functional MCU channels that readily respond to cellular stimulation and elicit robust AMPK phosphorylation responses to nutrient withdrawal. Surprisingly, knockdown of MCU or MICU1 did not affect reactive oxygen species production or cause significant effects on clonogenic cell survival of MDA-MB-231 cells exposed to irradiation, chemotherapeutic agents, or nutrient deprivation. Overexpression of wild type or a dominant negative mutant MCU did not affect basal cloning efficiency or ceramide-induced cell killing. In contrast, non-cancerous breast epithelial HMEC cells showed reduced survival after MCU or MICU1 knockdown. These results support the conclusion that MDA-MB-231 breast cancer cells do not rely on MCU or MICU1 activity for survival in contrast to previous findings in cells derived from cervical, colon, and prostate cancers and

  17. Mitochondrial calcium uniporter activity is dispensable for MDA-MB-231 breast carcinoma cell survival.

    Directory of Open Access Journals (Sweden)

    Duane D Hall

    Full Text Available Calcium uptake through the mitochondrial Ca2+ uniporter (MCU is thought to be essential in regulating cellular signaling events, energy status, and survival. Functional dissection of the uniporter is now possible through the recent identification of the genes encoding for MCU protein complex subunits. Cancer cells exhibit many aspects of mitochondrial dysfunction associated with altered mitochondrial Ca2+ levels including resistance to apoptosis, increased reactive oxygen species production and decreased oxidative metabolism. We used a publically available database to determine that breast cancer patient outcomes negatively correlated with increased MCU Ca2+ conducting pore subunit expression and decreased MICU1 regulatory subunit expression. We hypothesized breast cancer cells may therefore be sensitive to MCU channel manipulation. We used the widely studied MDA-MB-231 breast cancer cell line to investigate whether disruption or increased activation of mitochondrial Ca2+ uptake with specific siRNAs and adenoviral overexpression constructs would sensitize these cells to therapy-related stress. MDA-MB-231 cells were found to contain functional MCU channels that readily respond to cellular stimulation and elicit robust AMPK phosphorylation responses to nutrient withdrawal. Surprisingly, knockdown of MCU or MICU1 did not affect reactive oxygen species production or cause significant effects on clonogenic cell survival of MDA-MB-231 cells exposed to irradiation, chemotherapeutic agents, or nutrient deprivation. Overexpression of wild type or a dominant negative mutant MCU did not affect basal cloning efficiency or ceramide-induced cell killing. In contrast, non-cancerous breast epithelial HMEC cells showed reduced survival after MCU or MICU1 knockdown. These results support the conclusion that MDA-MB-231 breast cancer cells do not rely on MCU or MICU1 activity for survival in contrast to previous findings in cells derived from cervical, colon, and

  18. Smad2/3-Regulated Expression of DLX2 Is Associated with Radiation-Induced Epithelial-Mesenchymal Transition and Radioresistance of A549 and MDA-MB-231 Human Cancer Cell Lines

    Science.gov (United States)

    Choi, Yeo-Jin; Baek, Ga-Young; Park, Hae-Ran; Jo, Sung-Kee; Jung, Uhee

    2016-01-01

    The control of radioresistance and metastatic potential of surviving cancer cells is important for improving cancer eradication by radiotheraphy. The distal-less homeobox2 (DLX2) gene encodes for a homeobox transcription factor involved in morphogenesis and its deregulation was found in human solid tumors and hematologic malignancies. Here we investigated the role of DLX2 in association with radiation-induced epithelial to mesenchymal transition (EMT) and stem cell-like properties and its regulation by Smad2/3 signaling in irradiated A549 and MDA-MB-231 human cancer cell lines. In irradiated A549 and MDA-MB-231 cells, EMT was induced as demonstrated by EMT marker expression, phosphorylation of Smad2/3, and migratory and invasive ability. Also, irradiated A549 and MDA-MB-231 cells showed increased cancer stem cells (CSCs) marker. Interestingly, DLX2 was overexpressed upon irradiation. Therefore, we examined the role of DLX2 in radiation-induced EMT and radioresistance. The overexpression of DLX2 alone induced EMT, migration and invasion, and CSC marker expression. The reduced colony-forming ability in irradiated cells was partially restored by DLX2 overexpression. On the other hand, the depletion of DLX2 using si-RNA abolished radiation-induced EMT, CSC marker expression, and phosphorylation of Smad2/3 in irradiated A549 and MDA-MB-231 cells. Also, depletion of DLX2 increased the radiation sensitivity in both cell lines. Moreover, knockdown of Smad2/3, a key activator of TGF-β1 pathway, abrogated the radiation-induced DLX2 expression, indicating that radiation-induced DLX2 expression is dependent on Smad2/3 signaling. These results demonstrated that DLX2 plays a crucial role in radioresistance, radiation-induced EMT and CSC marker expression, and the expression of DLX2 is regulated by Smad2/3 signaling in A549 and MDA-MB-231 cell lines. PMID:26799321

  19. Catalysis and pH control by membrane-associated carbonic anhydrase IX in MDA-MB-231 breast cancer cells.

    Science.gov (United States)

    Li, Ying; Tu, Chingkuang; Wang, Hai; Silverman, David N; Frost, Susan C

    2011-05-06

    Carbonic anhydrase IX (CAIX) is a membrane-bound, tumor-related enzyme whose expression is often considered a marker for hypoxia, an indicator of poor prognosis in the majority of cancer patients, and is associated with acidification of the tumor microenvironment. Here, we describe for the first time the catalytic properties of native CAIX in MDA-MB-231 breast cancer cells that exhibit hypoxia-inducible CAIX expression. Using (18)O exchange measured by membrane inlet mass spectrometry, we determined catalytic activity in membrane ghosts and intact cells. Exofacial carbonic anhydrase activity increases with exposure to hypoxia, an activity which is suppressed by impermeant sulfonamide CA inhibitors. Inhibition by sulfonamide inhibitors is not sensitive to reoxygenation. CAIX activity in intact cells increases in response to reduced pH. Data from membrane ghosts show that the increase in activity at reduced pH is largely due to an increase in the dehydration reaction. In addition, the kinetic constants of CAIX in membrane ghosts are very similar to our previous measurements for purified, recombinant, truncated forms. Hence, the activity of CAIX is not affected by the proteoglycan extension or membrane environment. These activities were measured at a total concentration for all CO(2) species at 25 mm and close to chemical equilibrium, conditions which approximate the physiological extracellular environment. Our data suggest that CAIX is particularly well suited to maintain the extracellular pH at a value that favors the survival fitness of tumor cells.

  20. Modulatory effects of heparin and short-length oligosaccharides of heparin on the metastasis and growth of LMD MDA-MB 231 breast cancer cells in vivo.

    Science.gov (United States)

    Mellor, P; Harvey, J R; Murphy, K J; Pye, D; O'Boyle, G; Lennard, T W J; Kirby, J A; Ali, S

    2007-09-17

    Expression of the chemokine receptor CXCR4 allows breast cancer cells to migrate towards specific metastatic target sites which constitutively express CXCL12. In this study, we determined whether this interaction could be disrupted using short-chain length heparin oligosaccharides. Radioligand competition binding assays were performed using a range of heparin oligosaccharides to compete with polymeric heparin or heparan sulphate binding to I(125) CXCL12. Heparin dodecasaccharides were found to be the minimal chain length required to efficiently bind CXCL12 (71% inhibition; PLMD MDA-MB 231 breast cancer cells. In addition, heparin dodecasaccharides were found to have less anticoagulant activity than either a smaller quantity of polymeric heparin or a similar amount of the low molecular weight heparin pharmaceutical product, Tinzaparin. When given subcutaneously in a SCID mouse model of human breast cancer, heparin dodecasaccharides had no effect on the number of lung metastases, but did however inhibit (P<0.05) tumour growth (lesion area) compared to control groups. In contrast, polymeric heparin significantly inhibited both the number (P<0.001) and area of metastases, suggesting a differing mechanism for the action of polymeric and heparin-derived oligosaccharides in the inhibition of tumour growth and metastases.

  1. Acalypha indica Linn: Biogenic synthesis of silver and gold nanoparticles and their cytotoxic effects against MDA-MB-231, human breast cancer cells

    Directory of Open Access Journals (Sweden)

    C. Krishnaraj

    2014-12-01

    Full Text Available This study reports the in vitro cytotoxic effect of biologically synthesized silver and gold nanoparticles against MDA-MB-231, human breast cancer cells. Formation of silver and gold nanoparticles was observed within 30 min and the various characterization techniques such as UV–vis spectrophotometer, FE-SEM, TEM and XRD studies were confirmed the synthesis of nanoparticles. Further, MTT, acridine orange and ethidium bromide (AO/EB dual staining, caspase-3 and DNA fragmentation assays were carried out using various concentrations of silver and gold nanoparticles ranging from 1 to 100 μg/ml. At 100 μg/ml concentration, the plant extract derived nanoparticles exhibited significant cytotoxic effects and the apoptotic features were confirmed through caspase-3 activation and DNA fragmentation assays. Thus, the results of the present study indicate that biologically synthesized silver and gold nanoparticles might be used to treat breast cancer; however, it necessitates clinical studies to ascertain their potential as anticancer agents.

  2. Characterization of MNK1b DNA Aptamers That Inhibit Proliferation in MDA-MB231 Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Eva M García-Recio

    2016-01-01

    Full Text Available Elevated expression levels of eukaryotic initiation factor 4E (eIF4E promote cancer development and progression. MAP kinase interacting kinases (MNKs modulate the function of eIF4E through the phosphorylation that is necessary for oncogenic transformation. Therefore, pharmacologic MNK inhibitors may provide a nontoxic and effective anticancer strategy. MNK1b is a truncated isoform of MNK1a that is active in the absence of stimuli. Using in vitro selection, high-affinity DNA aptamers to MNK1b were selected from a library of ssDNA. Selection was monitored using the enzyme-linked oligonucleotide assay (ELONA, and the selected aptamer population was cloned and sequenced. Four groups of aptamers were identified, and the affinities of one representative for rMNK1b were determined using ELONA and quantitative polymerase chain reaction. Two aptamers, named apMNK2F and apMNK3R, had a lower Kd in the nmol/l range. The secondary structure of the selected aptamers was predicted using mFold, and the QGRS Mapper indicated the presence of potential G-quadruplex structures in both aptamers. The selected aptamers were highly specific against MNK1, showing higher affinity to MNK1b than to MNK1a. Interestingly, both aptamers were able to produce significant translation inhibition and prevent tumor cell proliferation and migration and colony formation in breast cancer cells. These results indicate that MNK1 aptamers have an attractive therapeutic potential.

  3. Frankincense derived heavy terpene cocktail boosting breast cancer cell (MDA-MB-231 death in vitro

    Directory of Open Access Journals (Sweden)

    Faruck Lukmanul Hakkim

    2015-10-01

    Conclusions: Extracting anti-cancer active principle cocktail by simple Soxhlet method is cost effective and less time consuming. Our in vitro anti-cancer data forms the rationale for us to test heavy terpene complex in breast cancer xenograft model in vivo. Furthermore, fractionation and developing frankincense heavy terpene based breast cancer drug is the major goal of our laboratory.

  4. Expression of GATA3 in MDA-MB-231 triple-negative breast cancer cells induces a growth inhibitory response to TGFß.

    Directory of Open Access Journals (Sweden)

    Isabel M Chu

    Full Text Available Transforming growth factor (ß1TGFß1 can promote proliferation in late stage cancers but acts as a tumor suppressor in normal epithelial cells and in early stage cancers. Although, the TGFß pathway has been shown to play a key role in tumorigenesis and metastasis, only a limited number of models have been developed to understand this process. Here, we present a novel model system to discern this paradoxical role of TGFß1 using the MDA-MB-231 (MB-231 cell line. The MB-231 triple-negative breast cancer cell line has been extensively characterized and has been shown to continue to proliferate and undergo epithelial-to-mesenchymal transition (EMT upon TGFß1 stimulation. We have previously shown by microarray analysis that expression of GATA3 in MB-231 cells results in reprogramming of these cells from a basal to a luminal subtype associated with a reduction of metastasis and tumorigenesis when implanted as xenografts. We now demonstrate that GATA3 overexpression in these cells results in a reduction of TGFß1 response, reversal of EMT, and most importantly, restoration of sensitivity to the inhibitory effects on proliferation of TGFß1. Microarray analysis revealed that TGFß1 treatment resulted in reduction of several cell cycle effectors in 231-GATA3 cells but not in control cells. Furthermore, our microarray analysis revealed a significant increase of BMP5 in 231-GATA3 cells. We demonstrate that combined treatment of MB-231 control cells with TGFß1 and BMP5 results in a significant reduction of cellular proliferation. Thus, this model offers a means to further investigate potentially novel mechanisms involved in the switch in response to TGFß1 from tumor promoter to tumor suppressor through the reprogramming of a triple-negative breast cancer cell line by the GATA3 transcription factor.

  5. Influence of washing and quenching in profiling the metabolome of adherent mammalian cells: a case study with the metastatic breast cancer cell line MDA-MB-231.

    Science.gov (United States)

    Kapoore, Rahul Vijay; Coyle, Rachael; Staton, Carolyn A; Brown, Nicola J; Vaidyanathan, Seetharaman

    2017-06-07

    Metabolome characterisation is a powerful tool in oncology. To obtain a valid description of the intracellular metabolome, two of the preparatory steps are crucial, namely washing and quenching. Washing must effectively remove the extracellular media components and quenching should stop the metabolic activities within the cell, without altering the membrane integrity of the cell. Therefore, it is important to evaluate the efficiency of the washing and quenching solvents. In this study, we employed two previously optimised protocols for simultaneous quenching and extraction, and investigated the effects of a number of washing steps/solvents and quenching solvent additives, on metabolite leakage from the adherent metastatic breast cancer cell line MDA-MB-231. We explored five washing protocols and five quenching protocols (including a control for each), and assessed for effectiveness by detecting ATP in the medium and cell morphology changes through scanning electron microscopy (SEM) analyses. Furthermore, we studied the overall recovery of eleven different metabolite classes using the GC-MS technique and compared the results with those obtained from the ATP assay and SEM analysis. Our data demonstrate that a single washing step with PBS and quenching with 60% methanol supplemented with 70 mM HEPES (-50 °C) results in minimum leakage of intracellular metabolites. Little or no interference of PBS (used in washing) and methanol/HEPES (used in quenching) on the subsequent GC-MS analysis step was noted. Together, these findings provide for the first time a systematic study into the washing and quenching steps of the metabolomics workflow for studying adherent mammalian cells, which we believe will improve reliability in the application of metabolomics technology to study adherent mammalian cell metabolism.

  6. Distinct Biochemical Pools of Golgi Phosphoprotein 3 in the Human Breast Cancer Cell Lines MCF7 and MDA-MB-231

    Science.gov (United States)

    Luchsinger, Charlotte; Rivera-Dictter, Andrés; Arriagada, Cecilia; Acuña, Diego; Aguilar, Marcelo; Cavieres, Viviana; Burgos, Patricia V.; Ehrenfeld, Pamela; Mardones, Gonzalo A.

    2016-01-01

    Golgi phosphoprotein 3 (GOLPH3) has been implicated in the development of carcinomas in many human tissues, and is currently considered a bona fide oncoprotein. Importantly, several tumor types show overexpression of GOLPH3, which is associated with tumor progress and poor prognosis. However, the underlying molecular mechanisms that connect GOLPH3 function with tumorigenicity are poorly understood. Experimental evidence shows that depletion of GOLPH3 abolishes transformation and proliferation of tumor cells in GOLPH3-overexpressing cell lines. Conversely, GOLPH3 overexpression drives transformation of primary cell lines and enhances mouse xenograft tumor growth in vivo. This evidence suggests that overexpression of GOLPH3 could result in distinct features of GOLPH3 in tumor cells compared to that of non-tumorigenic cells. GOLPH3 is a peripheral membrane protein mostly localized at the trans-Golgi network, and its association with Golgi membranes depends on binding to phosphatidylinositol-4-phosphate. GOLPH3 is also contained in a large cytosolic pool that rapidly exchanges with Golgi-associated pools. GOLPH3 has also been observed associated with vesicles and tubules arising from the Golgi, as well as other cellular compartments, and hence it has been implicated in several membrane trafficking events. Whether these and other features are typical to all different types of cells is unknown. Moreover, it remains undetermined how GOLPH3 acts as an oncoprotein at the Golgi. Therefore, to better understand the roles of GOLPH3 in cancer cells, we sought to compare some of its biochemical and cellular properties in the human breast cancer cell lines MCF7 and MDA-MB-231 with that of the non-tumorigenic breast human cell line MCF 10A. We found unexpected differences that support the notion that in different cancer cells, overexpression of GOLPH3 functions in diverse fashions, which may influence specific tumorigenic phenotypes. PMID:27123979

  7. Distinct Biochemical Pools of Golgi Phosphoprotein 3 in the Human Breast Cancer Cell Lines MCF7 and MDA-MB-231.

    Directory of Open Access Journals (Sweden)

    María J Tenorio

    Full Text Available Golgi phosphoprotein 3 (GOLPH3 has been implicated in the development of carcinomas in many human tissues, and is currently considered a bona fide oncoprotein. Importantly, several tumor types show overexpression of GOLPH3, which is associated with tumor progress and poor prognosis. However, the underlying molecular mechanisms that connect GOLPH3 function with tumorigenicity are poorly understood. Experimental evidence shows that depletion of GOLPH3 abolishes transformation and proliferation of tumor cells in GOLPH3-overexpressing cell lines. Conversely, GOLPH3 overexpression drives transformation of primary cell lines and enhances mouse xenograft tumor growth in vivo. This evidence suggests that overexpression of GOLPH3 could result in distinct features of GOLPH3 in tumor cells compared to that of non-tumorigenic cells. GOLPH3 is a peripheral membrane protein mostly localized at the trans-Golgi network, and its association with Golgi membranes depends on binding to phosphatidylinositol-4-phosphate. GOLPH3 is also contained in a large cytosolic pool that rapidly exchanges with Golgi-associated pools. GOLPH3 has also been observed associated with vesicles and tubules arising from the Golgi, as well as other cellular compartments, and hence it has been implicated in several membrane trafficking events. Whether these and other features are typical to all different types of cells is unknown. Moreover, it remains undetermined how GOLPH3 acts as an oncoprotein at the Golgi. Therefore, to better understand the roles of GOLPH3 in cancer cells, we sought to compare some of its biochemical and cellular properties in the human breast cancer cell lines MCF7 and MDA-MB-231 with that of the non-tumorigenic breast human cell line MCF 10A. We found unexpected differences that support the notion that in different cancer cells, overexpression of GOLPH3 functions in diverse fashions, which may influence specific tumorigenic phenotypes.

  8. MicroRNA-125b induces metastasis by targeting STARD13 in MCF-7 and MDA-MB-231 breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Feng Tang

    Full Text Available MicroRNAs (miRNAs are a class of small noncoding RNAs that regulate gene expression by targeting mRNAs to trigger either translation repression or mRNA degradation. miR-125b is down-regulated in human breast cancer cells compared with the normal ones except highly metastatic tumor cells MDA-MB-231. However, few functional studies were designed to investigate metastatic potential of miR-125b. In this study, the effects of miR-125b on metastasis in human breast cancer cells were studied, and the targets of miR-125b were also explored. Transwell migration assay, cell wound healing assay, adhesion assay and nude mice model of metastasis were utilized to investigate the effects of miR-125b on metastasis potential in vitro and in vivo. In addition, it was implied STARD13 (DLC2 was a direct target of miR-125b by Target-Scan analysis, luciferase reporter assay and western blot. Furthermore, activation of STARD13 was identified responsible for metastasis induced by miR-125b through a siRNA targeting STARD13. qRT-PCR, immunofluorescent assay and western blot was used to observe the variation of Vimentin and α-SMA in breast cancer cells. In summary, our study provided new insights into the function of miR-125b during the metastasis of breat cancer cells and also suggested the role of miR-125b in pro-metastasis by targeting STARD13.

  9. MicroRNA-125b induces metastasis by targeting STARD13 in MCF-7 and MDA-MB-231 breast cancer cells.

    Science.gov (United States)

    Tang, Feng; Zhang, Rui; He, Yunmian; Zou, Meijuan; Guo, Le; Xi, Tao

    2012-01-01

    MicroRNAs (miRNAs) are a class of small noncoding RNAs that regulate gene expression by targeting mRNAs to trigger either translation repression or mRNA degradation. miR-125b is down-regulated in human breast cancer cells compared with the normal ones except highly metastatic tumor cells MDA-MB-231. However, few functional studies were designed to investigate metastatic potential of miR-125b. In this study, the effects of miR-125b on metastasis in human breast cancer cells were studied, and the targets of miR-125b were also explored. Transwell migration assay, cell wound healing assay, adhesion assay and nude mice model of metastasis were utilized to investigate the effects of miR-125b on metastasis potential in vitro and in vivo. In addition, it was implied STARD13 (DLC2) was a direct target of miR-125b by Target-Scan analysis, luciferase reporter assay and western blot. Furthermore, activation of STARD13 was identified responsible for metastasis induced by miR-125b through a siRNA targeting STARD13. qRT-PCR, immunofluorescent assay and western blot was used to observe the variation of Vimentin and α-SMA in breast cancer cells. In summary, our study provided new insights into the function of miR-125b during the metastasis of breat cancer cells and also suggested the role of miR-125b in pro-metastasis by targeting STARD13.

  10. Thymoquinone-Loaded Nanostructured Lipid Carrier Exhibited Cytotoxicity towards Breast Cancer Cell Lines (MDA-MB-231 and MCF-7 and Cervical Cancer Cell Lines (HeLa and SiHa

    Directory of Open Access Journals (Sweden)

    Wei Keat Ng

    2015-01-01

    Full Text Available Thymoquinone (TQ has been shown to exhibit antitumor properties. Thymoquinone-loaded nanostructured lipid carrier (TQ-NLC was developed to improve the bioavailability and cytotoxicity of TQ. This study was conducted to determine the cytotoxic effects of TQ-NLC on breast cancer (MDA-MB-231 and MCF-7 and cervical cancer cell lines (HeLa and SiHa. TQ-NLC was prepared by applying the hot high pressure homogenization technique. The mean particle size of TQ-NLC was 35.66 ± 0.1235 nm with a narrow polydispersity index (PDI lower than 0.25. The zeta potential of TQ-NLC was greater than −30 mV. Polysorbate 80 helps to increase the stability of TQ-NLC. Differential scanning calorimetry showed that TQ-NLC has a melting point of 56.73°C, which is lower than that of the bulk material. The encapsulation efficiency of TQ in TQ-NLC was 97.63 ± 0.1798% as determined by HPLC analysis. TQ-NLC exhibited antiproliferative activity towards all the cell lines in a dose-dependent manner which was most cytotoxic towards MDA-MB-231 cells. Cell shrinkage was noted following treatment of MDA-MB-231 cells with TQ-NLC with an increase of apoptotic cell population (P<0.05. TQ-NLC also induced cell cycle arrest. TQ-NLC was most cytotoxic towards MDA-MB-231 cells. It induced apoptosis and cell cycle arrest in the cells.

  11. 过表达转移抑制基因KAI1对乳腺癌MDA-MB-231细胞上皮间质转化的影响%Effect of non-metastatic gene KAI1 overexpression on epithelial-mesenchymal transition in breast cancer cell line MDA-MB-231

    Institute of Scientific and Technical Information of China (English)

    鞠涛; 金志强

    2015-01-01

    .073)相比,过表达KAI1组(1.100±0.073)的N-钙黏蛋白表达水平相似(P=0.080,0.067)。酶活性分析发现,各组间MMP2(F=18.928,P=0.003)和MMP9(F=21.310,P=0.002)表达差异有统计学意义,与阴性对照组(1.090±0.160,1.091±0.107)和空白对照组(1.000±0.000,1.000±0.000)相比,过表达KAI1组(0.326±0.047,0.460±0.071)的 MMP2和 MMP9表达水平明显降低(P 均<0.050)。结论过表达转移抑制基因KAI1能抑制人乳腺癌MDA-MB-231细胞的间质表型。%Objective To investigate the impact of overexpression of non-metastatic gene KAI1 on the epithelial-mesenchymal transition in human breast cancer cell line MDA-MB-231. Methods Lentivirus vector was transfected into MDA-MB-231 cells to obtain the KAI1-overexpressed cell line ( KAI1 overexpression group) . The cell line with blank lentivirus vector infection served as negative control group and untreated cell line as control group. Western blot analysis was used to verify KAI1 protein expression. RT-PCR was used to detect the mRNA expression levels of vimentin, N-cadherin and fibronectin in KAI1-overexpressed MDA-MB-231 cells. Western blot was used to detect the protein expression levels of vimentin and N-cadherin. The gelatin zymography was used to detect MMP2 and MMP9 activities. If the means of multi-sample met the homogeneity of variance, ANOVA was used, otherwise Dunnett’s T3 test was used. Pairwise comparison was performed using LSD method. Results After lentivirus infection of MDA-MB-231 cells, KAI1 protein expression showed a significant difference among groups (F=25. 610, P=0. 001). Compared with the negative control group (0. 575 ± 0. 065) and control group (0. 458 ± 0. 0500), KAI1 protein level (0. 953±0. 034)was significantly higher in KAI1 overexpression group ( all P values <0. 050 ) . RT-PCR showed that there were significant differences in the mRNA levels of stromal cells markers vimentin (F=10. 268, P=0. 012), N-cadherin (F=32. 159, P=0. 001) and fibronectin (F=38

  12. Antiproliferative effect of gold(I compound auranofin through inhibition of STAT3 and telomerase activity in MDA-MB 231 human breast cancer cells

    Directory of Open Access Journals (Sweden)

    Nam-Hoon Kim

    2013-01-01

    Full Text Available Signal transducer and activator of transcription 3 (STAT3 andtelomerase are considered attractive targets for anticancertherapy. The in vitro anticancer activity of the gold(I compoundauranofin was investigated using MDA-MB 231 human breastcancer cells, in which STAT3 is constitutively active. In cellculture, auranofin inhibited growth in a dose-dependent manner,and N-acetyl-L-cysteine (NAC, a scavenger of reactive oxygenspecies (ROS, markedly blocked the effect of auranofin.Incorporation of 5-bromo-2’-deoxyuridine into DNA andanchorage-independent cell growth on soft agar were decreasedby auranofin treatment. STAT3 phosphorylation and telomeraseactivity were also attenuated in cells exposed to auranofin, butNAC pretreatment restored STAT3 phosphorylation andtelomerase activity in these cells. These findings indicate thatauranofin exerts in vitro antitumor effects in MDA-MB 231 cellsand its activity involves inhibition of STAT3 and telomerase.Thus, auranofin shows potential as a novel anticancer drug thattargets STAT3 and telomerase. [BMB Reports 2013; 46(1: 59-64

  13. Effects of the components of osthole, psoralen, paeonol on breast cancer MDA-MB-231BO cell lines inhibition and TGF-β1 gene expression in vitro%蛇床子素、补骨脂素及丹皮酚配伍对乳腺癌MDA-MB-231BO细胞株的体外抑制及TGF-β1基因表达的影响

    Institute of Scientific and Technical Information of China (English)

    郭保凤; 刘胜; 叶依依; 韩向晖

    2012-01-01

    目的:探讨蛇床子素、补骨脂素及丹皮酚对人乳腺癌高转移MDA-MB-231BO细胞株的体外抑制及侵袭作用的影响,并初步探讨其作用机制.方法:采用均匀设计实验方案进行组方设计;MDA-MB-231BO细胞体外侵袭实验,实时荧光聚合酶链反应( RT-PCR)检测,观察药物处理后细胞的侵袭情况及对人转化生长因子TGF-β1基因的表达情况.结果:获取蛇床子素、补骨脂素、丹皮酚3个药物的最佳配伍比例为10.00:7.78:6.67;单体组和阳性药物组在体外作用24h后,可以显著抑制MDA-MB-231BO细胞的侵袭(P<0.01).结论:中药单体组蛇床子素、补骨脂素、丹皮酚对乳腺癌MDA-MB-231BO细胞的生长具有抑制作用,有效抑制其侵袭和转移,其机制可能与抑制TGF-β1基因的表达有关.%Objective: To study the effects of Osthole, Psoralen, Paeonol on cell lines in vitro on proliferation and invasion of breast cancer MDA-MB-231BO and to study the anti-cancer mechanism of the Chinese Herb active components. Methods: The best combination dose of osthole, psoralen, paeonol on inhibition breast cancer MDA-MB-231BO cell lines in vitro was obtained after adopting the uniform experiment design; MDA-MB-231BO in vitro invasion assay was observed in cell invasion after drug treatment, and Real-time Quantitative RT-PCR experiment was observed the gene expression after drug treatment. Results: The best matched compatibility of Osthol, psoralen, Paeonol was 10.00:7.78:6.67; MDA-MB-231BO cells invasion was significantly inhibited after 24 hours drug treatment by The Chinese monomer groups and Zoledronic acid for injection group; TGF- β 1 gene expression after drug treatment was significantly reduced compared with the control group (P<0.01). Conclusion: The best matched compatibility of osthol, psoralen, paeonol can inhibit the growth of MDA-MB-231BO cells and can effectually inhibit the invasion of MDA-MB-231BO cells in vitro. The mechanism may be related to

  14. Synthesis of new cis-fused tetrahydrochromeno[4,3-b]quinolines and their antiproliferative activity studies against MDA-MB-231 and MCF-7 breast cancer cell lines.

    Science.gov (United States)

    Nagaiah, K; Venkatesham, A; Srinivasa Rao, R; Saddanapu, V; Yadav, J S; Basha, S J; Sarma, A V S; Sridhar, B; Addlagatta, A

    2010-06-01

    New cis-fused tetrahydrochromeno[4,3-b]quinolines have been synthesized by intramolecular [4+2] imino-Diels-Alder reactions of 2-azadienes derived in situ from aromatic amines and 7-O-prenyl derivatives of 8-formyl-2,3-disubstituted chromenones in the presence of 20mol% Yb(OTf)(3) in acetonitrile under reflux conditions in good to excellent yields. The structures were established by spectroscopic data and further confirmed by X-ray diffraction analysis. These compounds were evaluated for their antiproliferative activity against MDA-MB-231 and MCF-7 breast cancer cells. The results showed that compounds 3e, 3f, and 3k exhibit significant antiproliferative activity against MCF-7 breast cancer cells and low inhibitory activity against MDA-MB-231 breast cancer cell lines. Compound 3h displayed activity as comparable to tamoxifen on both the cell lines.

  15. Assessment of Interactions between Cisplatin and Two Histone Deacetylase Inhibitors in MCF7, T47D and MDA-MB-231 Human Breast Cancer Cell Lines – An Isobolographic Analysis

    OpenAIRE

    Anna Wawruszak; Luszczki, Jarogniew J; Aneta Grabarska; Ewelina Gumbarewicz; Magdalena Dmoszynska-Graniczka; Krzysztof Polberg; Andrzej Stepulak

    2015-01-01

    Histone deacetylase inhibitors (HDIs) are promising anticancer drugs, which inhibit proliferation of a wide variety of cancer cells including breast carcinoma cells. In the present study, we investigated the influence of valproic acid (VPA) and suberoylanilide hydroxamic acid (SAHA, vorinostat), alone or in combination with cisplatin (CDDP) on proliferation, induction of apoptosis and cell cycle progression in MCF7, T47D and MDA-MB-231 human breast carcinoma cell lines. The type of interactio...

  16. Functional Expression of Voltage-Gated Sodium Channels Navl.5 in Human Breast Caner Cell Line MDA-MB-231

    Institute of Scientific and Technical Information of China (English)

    Rui GAO; Jing WANG; Yi SHEN; Ming LEI; Zehua WANG

    2009-01-01

    Voltage-gated sodium channels (VGSCs) are known to be involved in the initiation and progression of many malignancies,and the different subtypes of VGSCs play important roles in the metastasis cascade of many tumors.This study investigated the functional expression of Nav 1.5 and its effect on invasion behavior of human breast cancer cell line MDA-MB-231.The mRNA and pro-tein expression of Navl.5 was detected by real time PCR,Western Blot and immunofluorescence.The effects of Navl.5 on cell proliferation,migration and invasion were respectively assessed by MTT and Transwell.The effects of Nav1.5 on the secretion of matrix metalloproteases (MMPs) by MDA-MB-231 were analyzed by RT-PCR.The over-expressed Navl.5 was present on the membrane of MDA-MB-231 cells.The invasion ability in vitro and the MMP-9 mRNA expression were respec-tively decreased to (47.82±0.53)% and (43.97±0.64)% (P<0.05) respectively in MDA-MB-231 cells treated with VGSCs specific inhibitor tetrodotoxin (TTX) by blocking Navl.5 activity.It was con-eluded that Nav1.5 functional expression potentiated the invasive behavior of human breast cancer cell line MDA-MB-231 by increasing the secretion of MMP-9.

  17. Arctigenin, a lignan from Arctium lappa L., inhibits metastasis of human breast cancer cells through the downregulation of MMP-2/-9 and heparanase in MDA-MB-231 cells.

    Science.gov (United States)

    Lou, Chenghua; Zhu, Zhihui; Zhao, Yaping; Zhu, Rui; Zhao, Huajun

    2017-01-01

    Arctigenin is a bioactive lignan isolated from the seeds of Arctium lappa L. which has been widely used as a diuretic and a diaphoretic in Traditional Chinese Medicine. In the present study, the authors investigated the effects of arctigenin on tumor migration and invasion in aggressive human breast cancer cells. The MTT assay results showed that arctigenin did not show a significant cytotoxic effect on the cell viability of MDA-MB-231 cells. However, wound healing migration and Boyden chamber invasion assays demonstrated that arctigenin significantly inhibited in vitro migration and invasion of the MDA-MB-231 cells. Furthermore, gelatin zymography results showed that arctigenin reduced the activity of MMP-2 and MMP-9. Western blot analysis results demonstrated that the expression of MMP-2, MMP-9 and heparanase proteins was significantly downregulated following the treatment of arctigenin. Finally, the antiangiogenic activity of arctigenin was also examined by the chick embryo chorioallantoic membrane (CAM) assay. Arctigenin treatment significantly inhibited angiogenesis in the CAM. In conclusion, the results revealed that arctigenin significantly inhibited the migration and invasion of MDA-MB-231 cells by downregulating MMP-2, MMP-9 and heparanase expression. However, further studies are still necessary to investigate the exact mechanisms involved and to explore signal transduction pathways to better understand the biological mechanisms.

  18. PIB5PA增强三阴性乳腺癌MDA-MB-231细胞对紫杉醇的敏感性的研究%PIB5PA enhance the Sensitivity of Triple-negative Breast CancerCell line MDA-MB-231 to Paclitaxel through Up-regulation of Bim

    Institute of Scientific and Technical Information of China (English)

    张楠楠; 胡春松; 陈振东

    2016-01-01

    目的 探讨PIB5PA(phosphatidylinositol 4,5-bisphosphate5-phosphatase)基因转染人三阴性乳腺癌MDA-MB-231细胞后对紫杉醇敏感性的影响.方法 体外培养人乳腺癌MCF-7和MDA-MB-231细胞株,MTT法观察不同浓度(0,0.1,0.2,0.3,0.4,0.5μmol/L)紫杉醇处理后对两株细胞生存率的影响;流式细胞PI单染法检测两株细胞凋亡率的差异;蛋白免疫印迹法检测0.3 μmol/L紫杉醇处理两株细胞不同时间点Bcl-2家族成员蛋白表达差异.将pCGN-PIB5 PA质粒转染对紫杉醇相对不敏感MDA-MB-231细胞,0.3μmol/L紫杉醇处理24h,免疫蛋白印迹法检测PIB5PA,磷酸化Akt以及Bcl-2家族成员蛋白的表达,MTT和PI单染法检测MDA-MB-231细胞对紫杉醇敏感性的改变.结果 MDA-MB-231细胞对紫杉醇敏感性较差,过表达PIB5 PA后细胞生存率明显降低,细胞中磷酸化Akt水平降低,Bim(Bcl-2 interacting mediator of cell death)表达明显增高,对紫杉醇敏感性明显增强.结论 PIB5PA可能通过上调Bim表达增强三阴性乳腺癌MDA-MB-231细胞对紫杉醇的敏感性.

  19. Photodynamic damage of carcinophotorin on breast cancer cells MDA-MB-231 and its mechanism%癌光啉对人乳腺癌细胞MDA-MB-231的光动力杀伤效应及其机制研究

    Institute of Scientific and Technical Information of China (English)

    陈磊; 孔祥杰; 李佳; 张俊峰; 房林

    2013-01-01

    Objective: This study aims to evaluate the efficacy of carcinophotorin (PSD-007) photosensitization on the apopto-sis-induced response in human breast cancer cells and analyze the mechanisms of PSD-007 involved in this process. Methods: Methyl thiazolyl tetrazolium (MTT) assay and in situ labeling were performed to examine the effects of the photodynamic therapy (PDT) on the proliferation and apoptosis of the cancer cells MDA-MB-231, respectively. Changes in cellular morphology were assessed using an optical microscope. Real-time polymerase chain reaction and Western blot analysis were conducted to clarify the underlying mecha-nisms. Results: The MTT assay revealed that at a concentration of 10 μg/mL and in combination with 9.0 J/cm2 laser radiation power 24 h after cell culture, PSD-007 markedly inhibited the proliferation of breast tumor cells, with an inhibition rate of 97.01%." Under a fluorescent microscope, apoptotic cells in the treatment groups with 5 and 10 μg/mL PSD-007-PDT were observed to have dramatically outnumbered the control groups. The dead cells after PSD-007-PDT mainly consisted of necrotic and late apoptotic cells. Caspase-3, caspase-8, P65, and P53 expression was upregulated in the treatment groups compared with the control group, with 5 and 10 μg/ml PSD-007 therapies, whereas no significant alteration in Bcl-2 and Bcl-x was found. Conclusion: PDT inhibits the proliferation and in-duces the apoptosis of cancer cells MDA-MB-231 by upregulating the caspase-3, caspase-8, P53, and NF-KB pathways, indicating a new strategy for treating breast cancer in the future.%  目的:探讨癌光啉(PSD-007)在体外对于乳腺癌细胞株MDA-MB-231光动力杀伤效应,并分析其分子机制.方法:MTT法检测不同浓度PSD-007(0、2、4、6、8、10μg/mL)作用于MDA-MB-231细胞株后对其增殖的影响;光学显微镜下观察光动力治疗后细胞形态的变化,荧光显微镜分析PSD-007作用后细胞

  20. Differential Ratios of Omega Fatty Acids (AA/EPA+DHA Modulate Growth, Lipid Peroxidation and Expression of Tumor Regulatory MARBPs in Breast Cancer Cell Lines MCF7 and MDA-MB-231.

    Directory of Open Access Journals (Sweden)

    Prakash P Mansara

    Full Text Available Omega 3 (n3 and Omega 6 (n6 polyunsaturated fatty acids (PUFAs have been reported to exhibit opposing roles in cancer progression. Our objective was to determine whether different ratios of n6/n3 (AA/EPA+DHA FAs could modulate the cell viability, lipid peroxidation, total cellular fatty acid composition and expression of tumor regulatory Matrix Attachment Region binding proteins (MARBPs in breast cancer cell lines and in non-cancerous, MCF10A cells. Low ratios of n6/n3 (1:2.5, 1:4, 1:5, 1:10 FA decreased the viability and growth of MDA-MB-231 and MCF7 significantly compared to the non-cancerous cells (MCF10A. Contrarily, higher n6/n3 FA (2.5:1, 4:1, 5:1, 10:1 decreased the survival of both the cancerous and non-cancerous cell types. Lower ratios of n6/n3 selectively induced LPO in the breast cancer cells whereas the higher ratios induced in both cancerous and non-cancerous cell types. Interestingly, compared to higher n6/n3 FA ratios, lower ratios increased the expression of tumor suppressor MARBP, SMAR1 and decreased the expression of tumor activator Cux/CDP in both breast cancer and non-cancerous, MCF10A cells. Low n6/n3 FAs significantly increased SMAR1 expression which resulted into activation of p21WAF1/CIP1 in MDA-MB-231 and MCF7, the increase being ratio dependent in MDA-MB-231. These results suggest that increased intake of n3 fatty acids in our diet could help both in the prevention as well as management of breast cancer.

  1. Effect of amlodipine on apoptosis of human breast carcinoma MDA-MB-231 cells

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Objective: To elucidate the effects of amlodipine on the proliferation and apoptosis of human breast carcinoma MDA-MB-231 cells. Methods: Light microscopy was used to determine the effects of amiodipine on cell morphology; Flow cytometry was used to quantitate cells undergoing apoptosis; the expression of a cell cycle-related protein, proliferating cell nuclear antigen (PCNA) and an antiapoptosis protein, Bcl-2 were assessed by immunocytochemistry. Results: Amlodipine concentration of 8.25 Ixmol/L (1/2 of IC50) affected the morphology, decreased the expression of PCNA and Bcl-2 and induced apoptosis of human breast carcinoma MDA-MB-231 cells. Conclusion: The effect of amlodipine on the antiproliferation of human breast carcinoma MDA-MB-231 cells is related to inducement of apoptosis, and the decrease of the expression of Bcl-2 and PCNA may be the possible mechanism for proliferation inhibitory and inducement of apoptosis.

  2. Assessment of Interactions between Cisplatin and Two Histone Deacetylase Inhibitors in MCF7, T47D and MDA-MB-231 Human Breast Cancer Cell Lines - An Isobolographic Analysis.

    Science.gov (United States)

    Wawruszak, Anna; Luszczki, Jarogniew J; Grabarska, Aneta; Gumbarewicz, Ewelina; Dmoszynska-Graniczka, Magdalena; Polberg, Krzysztof; Stepulak, Andrzej

    2015-01-01

    Histone deacetylase inhibitors (HDIs) are promising anticancer drugs, which inhibit proliferation of a wide variety of cancer cells including breast carcinoma cells. In the present study, we investigated the influence of valproic acid (VPA) and suberoylanilide hydroxamic acid (SAHA, vorinostat), alone or in combination with cisplatin (CDDP) on proliferation, induction of apoptosis and cell cycle progression in MCF7, T47D and MDA-MB-231 human breast carcinoma cell lines. The type of interaction between HDIs and CDDP was determined by an isobolographic analysis. The isobolographic analysis is a very precise and rigorous pharmacodynamic method, to determine the presence of synergism, addition or antagonism between different drugs with using variety of fixed dose ratios. Our experiments show that the combinations of CDDP with SAHA or VPA at a fixed-ratio of 1:1 exerted additive interaction in the viability of MCF7 cells, while in T47D cells there was a tendency to synergy. In contrast, sub-additive (antagonistic) interaction was observed for the combination of CDDP with VPA in MDA-MB-231 "triple-negative" (i.e. estrogen receptor negative, progesterone receptor negative, and HER-2 negative) human breast cancer cells, whereas combination of CDDP with SAHA in the same MDA-MB-231 cell line yielded additive interaction. Additionally, combined HDIs/CDDP treatment resulted in increase in apoptosis and cell cycle arrest in all tested breast cancer cell lines in comparison with a single therapy. In conclusion, the additive interaction of CDDP with SAHA or VPA suggests that HDIs could be combined with CDDP in order to optimize treatment regimen in some human breast cancers.

  3. Assessment of Interactions between Cisplatin and Two Histone Deacetylase Inhibitors in MCF7, T47D and MDA-MB-231 Human Breast Cancer Cell Lines – An Isobolographic Analysis

    Science.gov (United States)

    Wawruszak, Anna; Luszczki, Jarogniew J.; Grabarska, Aneta; Gumbarewicz, Ewelina; Dmoszynska-Graniczka, Magdalena; Polberg, Krzysztof; Stepulak, Andrzej

    2015-01-01

    Histone deacetylase inhibitors (HDIs) are promising anticancer drugs, which inhibit proliferation of a wide variety of cancer cells including breast carcinoma cells. In the present study, we investigated the influence of valproic acid (VPA) and suberoylanilide hydroxamic acid (SAHA, vorinostat), alone or in combination with cisplatin (CDDP) on proliferation, induction of apoptosis and cell cycle progression in MCF7, T47D and MDA-MB-231 human breast carcinoma cell lines. The type of interaction between HDIs and CDDP was determined by an isobolographic analysis. The isobolographic analysis is a very precise and rigorous pharmacodynamic method, to determine the presence of synergism, addition or antagonism between different drugs with using variety of fixed dose ratios. Our experiments show that the combinations of CDDP with SAHA or VPA at a fixed-ratio of 1:1 exerted additive interaction in the viability of MCF7 cells, while in T47D cells there was a tendency to synergy. In contrast, sub-additive (antagonistic) interaction was observed for the combination of CDDP with VPA in MDA-MB-231 “triple-negative” (i.e. estrogen receptor negative, progesterone receptor negative, and HER-2 negative) human breast cancer cells, whereas combination of CDDP with SAHA in the same MDA-MB-231 cell line yielded additive interaction. Additionally, combined HDIs/CDDP treatment resulted in increase in apoptosis and cell cycle arrest in all tested breast cancer cell lines in comparison with a single therapy. In conclusion, the additive interaction of CDDP with SAHA or VPA suggests that HDIs could be combined with CDDP in order to optimize treatment regimen in some human breast cancers. PMID:26580554

  4. Assessment of Interactions between Cisplatin and Two Histone Deacetylase Inhibitors in MCF7, T47D and MDA-MB-231 Human Breast Cancer Cell Lines - An Isobolographic Analysis.

    Directory of Open Access Journals (Sweden)

    Anna Wawruszak

    Full Text Available Histone deacetylase inhibitors (HDIs are promising anticancer drugs, which inhibit proliferation of a wide variety of cancer cells including breast carcinoma cells. In the present study, we investigated the influence of valproic acid (VPA and suberoylanilide hydroxamic acid (SAHA, vorinostat, alone or in combination with cisplatin (CDDP on proliferation, induction of apoptosis and cell cycle progression in MCF7, T47D and MDA-MB-231 human breast carcinoma cell lines. The type of interaction between HDIs and CDDP was determined by an isobolographic analysis. The isobolographic analysis is a very precise and rigorous pharmacodynamic method, to determine the presence of synergism, addition or antagonism between different drugs with using variety of fixed dose ratios. Our experiments show that the combinations of CDDP with SAHA or VPA at a fixed-ratio of 1:1 exerted additive interaction in the viability of MCF7 cells, while in T47D cells there was a tendency to synergy. In contrast, sub-additive (antagonistic interaction was observed for the combination of CDDP with VPA in MDA-MB-231 "triple-negative" (i.e. estrogen receptor negative, progesterone receptor negative, and HER-2 negative human breast cancer cells, whereas combination of CDDP with SAHA in the same MDA-MB-231 cell line yielded additive interaction. Additionally, combined HDIs/CDDP treatment resulted in increase in apoptosis and cell cycle arrest in all tested breast cancer cell lines in comparison with a single therapy. In conclusion, the additive interaction of CDDP with SAHA or VPA suggests that HDIs could be combined with CDDP in order to optimize treatment regimen in some human breast cancers.

  5. Synthesis, Characterization, and Study of In Vitro Cytotoxicity of ZnO-Fe3O4 Magnetic Composite Nanoparticles in Human Breast Cancer Cell Line (MDA-MB-231) and Mouse Fibroblast (NIH 3T3).

    Science.gov (United States)

    Bisht, Gunjan; Rayamajhi, Sagar; Kc, Biplab; Paudel, Siddhi Nath; Karna, Deepak; Shrestha, Bhupal G

    2016-12-01

    Novel magnetic composite nanoparticles (MCPs) were successfully synthesized by ex situ conjugation of synthesized ZnO nanoparticles (ZnO NPs) and Fe3O4 NPs using trisodium citrate as linker with an aim to retain key properties of both NPs viz. inherent selectivity towards cancerous cell and superparamagnetic nature, respectively, on a single system. Successful characterization of synthesized nanoparticles was done by XRD, TEM, FTIR, and VSM analyses. VSM analysis showed similar magnetic profile of thus obtained MCPs as that of naked Fe3O4 NPs with reduction in saturation magnetization to 16.63 emu/g. Also, cell viability inferred from MTT assay showed that MCPs have no significant toxicity towards noncancerous NIH 3T3 cells but impart significant toxicity at similar concentration to breast cancer cell MDA-MB-231. The EC50 value of MCPs on MDA-MB-231 is less than that of naked ZnO NPs on MDA-MB-231, but its toxicity on NIH 3T3 was significantly reduced compared to ZnO NPs. Our hypothesis for this prominent difference in cytotoxicity imparted by MCPs is the synergy of selective cytotoxicity of ZnO nanoparticles via reactive oxygen species (ROS) and exhausting scavenging activity of cancerous cells, which further enhance the cytotoxicity of Fe3O4 NPs on cancer cells. This dramatic difference in cytotoxicity shown by the conjugation of magnetic Fe3O4 NPs with ZnO NPs should be further studied that might hold great promise for the development of selective and site-specific nanoparticles. Schematic representation of the conjugation, characterization and cytotoxicity analysis of Fe3O4-ZnO magnetic composite particles (MCPs).

  6. Synthesis, Characterization, and Study of In Vitro Cytotoxicity of ZnO-Fe3O4 Magnetic Composite Nanoparticles in Human Breast Cancer Cell Line (MDA-MB-231) and Mouse Fibroblast (NIH 3T3)

    Science.gov (United States)

    Bisht, Gunjan; Rayamajhi, Sagar; KC, Biplab; Paudel, Siddhi Nath; Karna, Deepak; Shrestha, Bhupal G.

    2016-12-01

    Novel magnetic composite nanoparticles (MCPs) were successfully synthesized by ex situ conjugation of synthesized ZnO nanoparticles (ZnO NPs) and Fe3O4 NPs using trisodium citrate as linker with an aim to retain key properties of both NPs viz. inherent selectivity towards cancerous cell and superparamagnetic nature, respectively, on a single system. Successful characterization of synthesized nanoparticles was done by XRD, TEM, FTIR, and VSM analyses. VSM analysis showed similar magnetic profile of thus obtained MCPs as that of naked Fe3O4 NPs with reduction in saturation magnetization to 16.63 emu/g. Also, cell viability inferred from MTT assay showed that MCPs have no significant toxicity towards noncancerous NIH 3T3 cells but impart significant toxicity at similar concentration to breast cancer cell MDA-MB-231. The EC50 value of MCPs on MDA-MB-231 is less than that of naked ZnO NPs on MDA-MB-231, but its toxicity on NIH 3T3 was significantly reduced compared to ZnO NPs. Our hypothesis for this prominent difference in cytotoxicity imparted by MCPs is the synergy of selective cytotoxicity of ZnO nanoparticles via reactive oxygen species (ROS) and exhausting scavenging activity of cancerous cells, which further enhance the cytotoxicity of Fe3O4 NPs on cancer cells. This dramatic difference in cytotoxicity shown by the conjugation of magnetic Fe3O4 NPs with ZnO NPs should be further studied that might hold great promise for the development of selective and site-specific nanoparticles.

  7. Wharton’s Jelly-Derived Mesenchymal Stromal Cells and Fibroblast-Derived Extracellular Matrix Synergistically Activate Apoptosis in a p21-Dependent Mechanism in WHCO1 and MDA MB 231 Cancer Cells In Vitro

    Directory of Open Access Journals (Sweden)

    Kevin Dzobo

    2016-01-01

    Full Text Available The tumour microenvironment plays a crucial role in tumour progression and comprises tumour stroma which is made up of different cell types and the extracellular matrix (ECM. Mesenchymal stromal cells (MSCs are part of the tumour stroma and may have conflicting effects on tumour growth. In this study we investigated the effect of Wharton’s Jelly-derived MSCs (WJ-MSCs and a fibroblast-derived ECM (fd-ECM on esophageal (WHCO1 and breast (MDA MB 231 cancer cells in vitro. Both WJ-MSCs and the fd-ECM, alone or in combination, downregulate PCNA, cyclin D1, Bcl-2, Bcl-xL, and MMPs and upregulate p53 and p21. p21 induction resulted in G2 phase cell cycle arrest and induced apoptosis in vitro. Our data suggest that p21 induction is via p53-dependent and p53-independent mechanisms in WHCO1 and MDA MB 231 cells, respectively. Vascular endothelial growth factor, Akt, and Nodal pathways were downregulated in cancer cells cocultured with WJ-MSCs. We also demonstrate that WJ-MSCs effects on cancer cells appear to be short-lived whilst the fd-ECM effect is long-lived. This study shows the influence of tumour microenvironment on cancer cell behaviour and provides alternative therapeutic targets for potential regulation of tumour cells.

  8. Wharton's Jelly-Derived Mesenchymal Stromal Cells and Fibroblast-Derived Extracellular Matrix Synergistically Activate Apoptosis in a p21-Dependent Mechanism in WHCO1 and MDA MB 231 Cancer Cells In Vitro.

    Science.gov (United States)

    Dzobo, Kevin; Vogelsang, Matjaz; Thomford, Nicholas E; Dandara, Collet; Kallmeyer, Karlien; Pepper, Michael S; Parker, M Iqbal

    2016-01-01

    The tumour microenvironment plays a crucial role in tumour progression and comprises tumour stroma which is made up of different cell types and the extracellular matrix (ECM). Mesenchymal stromal cells (MSCs) are part of the tumour stroma and may have conflicting effects on tumour growth. In this study we investigated the effect of Wharton's Jelly-derived MSCs (WJ-MSCs) and a fibroblast-derived ECM (fd-ECM) on esophageal (WHCO1) and breast (MDA MB 231) cancer cells in vitro. Both WJ-MSCs and the fd-ECM, alone or in combination, downregulate PCNA, cyclin D1, Bcl-2, Bcl-xL, and MMPs and upregulate p53 and p21. p21 induction resulted in G2 phase cell cycle arrest and induced apoptosis in vitro. Our data suggest that p21 induction is via p53-dependent and p53-independent mechanisms in WHCO1 and MDA MB 231 cells, respectively. Vascular endothelial growth factor, Akt, and Nodal pathways were downregulated in cancer cells cocultured with WJ-MSCs. We also demonstrate that WJ-MSCs effects on cancer cells appear to be short-lived whilst the fd-ECM effect is long-lived. This study shows the influence of tumour microenvironment on cancer cell behaviour and provides alternative therapeutic targets for potential regulation of tumour cells.

  9. Cell cycle arrest induced by MPPa-PDT in MDA-MB-231 cells

    Science.gov (United States)

    Liang, Liming; Bi, Wenxiang; Tian, Yuanyuan

    2016-05-01

    Photodynamic therapy (PDT) is a medical treatment using a photosensitizing agent and light source to treat cancers. Pyropheophorbidea methyl ester (MPPa), a derivative of chlorophyll, is a novel potent photosensitizer. To learn more about this photosensitizer, we examined the cell cycle arrest in MDA-MB-231. Cell cycle and apoptosis were measured by flow cytometer. Checkpoints of the cell cycle were measured by western blot. In this study, we found that the expression of Cyclin D1 was obviously decreased, while the expression of Chk2 and P21 was increased after PDT treatment. This study showed that MPPa-PDT affected the checkpoints of the cell cycle and led the cells to apoptosis.

  10. Synthesis and in vitro anti-proliferative activity of some novel isatins conjugated with quinazoline/phthalazine hydrazines against triple-negative breast cancer MDA-MB-231 cells as apoptosis-inducing agents.

    Science.gov (United States)

    Eldehna, Wagdy M; Almahli, Hadia; Al-Ansary, Ghada H; Ghabbour, Hazem A; Aly, Mohamed H; Ismael, Omnia E; Al-Dhfyan, Abdullah; Abdel-Aziz, Hatem A

    2017-12-01

    Treatment of patients with triple-negative breast cancer (TNBC) is challenging due to the absence of well- defined molecular targets and the heterogeneity of such disease. In our endeavor to develop potent isatin-based anti-proliferative agents, we utilized the hybrid-pharmacophore approach to synthesize three series of novel isatin-based hybrids 5a-h, 10a-h and 13a-c, with the prime goal of developing potent anti-proliferative agents toward TNBC MDA-MB-231 cell line. In particular, compounds 5e and 10g were the most active hybrids against MDA-MB-231 cells (IC50 = 12.35 ± 0.12 and 12.00 ± 0.13 μM), with 2.37- and 2.44-fold increased activity than 5-fluorouracil (5-FU) (IC50 = 29.38 ± 1.24 μM). Compounds 5e and 10g induced the intrinsic apoptotic mitochondrial pathway in MDA-MB-231; evidenced by the reduced expression of the anti-apoptotic protein Bcl-2, the enhanced expression of the pro-apoptotic protein Bax and the up-regulated active caspase-9 and caspase-3 levels. Furthermore, 10g showed significant increase in the percent of annexin V-FITC positive apoptotic cells from 3.88 to 31.21% (8.4 folds compared to control).

  11. Embelin Inhibits Invasion and Migration of MDA-MB-231 Breast Cancer Cells by Suppression of CXC Chemokine Receptor 4, Matrix Metalloproteinases-9/2, and Epithelial-Mesenchymal Transition.

    Science.gov (United States)

    Lee, Hanwool; Ko, Jeong-Hyeon; Baek, Seung Ho; Nam, Dongwoo; Lee, Seok Geun; Lee, Junhee; Yang, Woong Mo; Um, Jae-Young; Kim, Sung-Hoon; Shim, Bum Sang; Ahn, Kwang Seok

    2016-06-01

    Embelin (EB) is a benzoquinone derivative isolated from Embelia ribes Burm plant. Recent scientific evidence shows that EB induces apoptosis and inhibits migration and invasion in highly metastatic human breast cancer cells. However, the exact mechanisms of EB in tumor metastasis and invasion have not been fully elucidated. Here, we investigated the underlying mechanisms of antimetastatic activities of EB in breast cancer cells. The EB downregulated the chemokine receptor 4 (CXCR4) as well as matrix metalloproteinase (MMP)-9/2 expression and upregulated the tissue inhibitor of metalloproteinase 1 expression in MDA-MB-231 cells under noncytotoxic concentrations but not in MCF-7 cells. Additionally, EB inhibited the CXC motif chemokine ligand 12 induced invasion and migration activities of MDA-MB-231 cells. A detailed study of underlying mechanisms revealed that the regulation of the downregulation of CXCR4 was at the transcriptional level, as indicated by the downregulation of mRNA expression and suppression of nuclear factor-kappa B (NF-κB) activation. It further reduced the binding of NF-κB to the CXCR4 promoter. Besides, EB downregulated mesenchymal marker proteins (neural cadherin and vimentin) and concurrently upregulated epithelial markers (epithelial cadherin and occludin). Overall, these findings suggest that EB can abrogate breast cancer cell invasion and metastasis by suppression of CXCR4, MMP-9/2 expressions, and inhibition of epithelial-mesenchymal transition and thus may have a great potential to suppress metastasis of breast cancer. Copyright © 2016 John Wiley & Sons, Ltd.

  12. The effect of baicalein on the expression of SATB1 in MDA-MB-231 cells

    Institute of Scientific and Technical Information of China (English)

    Xiaoyan Gao; Xingcong Ma; Yinan Ma; Xinghuan Xue; Shuqun Zhang

    2014-01-01

    Objective:Baicalein had been proved to have anti-cancer activity in vitro and in vivo, including the inhibition of malignant proliferation, migration, adhesion and invasion of many kinds of cancer cel s. The special AT-rich sequence binding protein 1 (SATB1) is a tissue-specific expression of nuclear matrix-binding protein and is reported to be a breast cancer“gene group organizer”. Previous studies have shown that SATB1 is involved in the growth, metastasis and prognosis of breast cancer. The present study was aimed to investigate whether baicalein inhibits the proliferation and migration of MDA-MB-231 human breast cancer cel s through down-regulation of the SATB1 expression. Methods:MDA-MB-231 cel s were treated for 24 h, 48 h and 72 h with various concentrations of baicalein (0, 5, 10, 20, 40 and 80μM) respectively. Then, the proliferation and migration of MDA-MB-231 cel s fol owing treatment with baicalein were determined using colorimetric 3-(4, 5-dimethylthia-zol-2-yl) 2, 5-diphenyltetrazolium bromide (MTT) and wound healing assays. Thereafter, western blot analysis was performed to detect the changes of SATB1 protein expression in MDA-MB-231 cel s. Results:Along with the prolongation of time and increase of drug concentration, inhibitory ef ect of baicalein on proliferation and migration of MDA-MB-231 cel s gradual y in-creased, in a time-and dose-dependent manner (P<0.05). Meanwhile, after treated with baicalein in dif erent concentrations for 48 h, the level of SATB1 protein expression of MDA-MB-231 cel s decreased obviously, in a dose-dependent manner (P<0.05). Conclusion:Baicalein inhibits breast cancer cel proliferation and suppresses its invasion and metastasis by reducing cel migration possibly by down-regulation of the SATB1 protein expression, indicating that baicalein is a potential therapeutic agent for human breast cancer.

  13. The immunomodulatory drug lenalidomide restores a vitamin D sensitive phenotype to the vitamin D resistant breast cancer cell line MDA-MB-231 through inhibition of BCL-2: potential for breast cancer therapeutics.

    Science.gov (United States)

    Brosseau, Carole; Colston, Kay; Dalgleish, Angus George; Galustian, Christine

    2012-02-01

    1α,25-Dihydroxyvitamin D3, (1,25-D3) the biologically active form of vitamin-D, is well established as a cancer cell growth inhibitor in addition to maintaining bone mineralization. In breast cancer cells, inhibitory effects on angiogenesis, and metastasis have been observed together with enhancement of apoptosis and induction of cell cycle arrest. There is a correlation between vitamin-D receptor expression on breast cancer cells and patient survival. However vitamin-D resistance and hypercalcaemia are key limiting factors in clinical use. The IMiD(®) immunomodulatory drug lenalidomide, (Revlimid(®), CC-5013) used in myeloma, can also modulate apoptotic and growth signalling. We studied whether lenalidomide treated breast cancer cells would acquire sensitivity to 1,25-D3 with resulting growth inhibition. The cell lines MCF-12A, MCF-7 and MDA-MB-231, representing non-tumorogenic, tumorogenic, and vitamin-D resistant lines respectively were treated with lenalidomide and/or 1,25-D3(at 100 nM). Whereas lenalidomide alone had no effect on cell growth, a 50% inhibition of cell growth by 1,25-D3 was achieved with additional 1 μM lenalidomide in resistant cells. This effect was through apoptosis measured by PARP cleavage and annexin-V expression. An apoptosis protein array showed that the 1,25-D3 and lenalidomide combination increased pro-apoptotic proteins (phosphorylated p53) and decreased BCL-2 expression. BCL-2 inhibition is proposed as a mechanism of action for the combined drugs in the MDA-MB-231 cell line. In vitamin D resistant cell lines MCF-7VDR and HBL-100 where the combination does not affect BCL-2-no inhibitory effect is observed. These results demonstrate the potential for the combinatorial use of lenalidomide and 1,25-D3 for vitamin D refractory tumours.

  14. Cytotoxic effect of sanguiin H-6 on MCF-7 and MDA-MB-231 human breast carcinoma cells.

    Science.gov (United States)

    Park, Eun-Ji; Lee, Dahae; Baek, Seon-Eun; Kim, Ki Hyun; Kang, Ki Sung; Jang, Tae Su; Lee, Hye Lim; Song, Ji Hoon; Yoo, Jeong-Eun

    2017-09-15

    Sanguiin H-6 is a dimer of casuarictin linked by a bond between the gallic acid residue and one of the hexahydroxydiphenic acid units. It is an effective compound extracted from Rubus coreanus. It has an anticancer effect against several human cancer cells; however, its effect on breast cancer cells has not been clearly demonstrated. Thus, we aimed to investigate the anticancer effect and mechanism of action of sanguiin H-6 against two human breast carcinoma cell lines (MCF-7 and MDA-MB-231). We found that sanguiin H-6 significantly reduced cell viability in a concentration-dependent manner. It also increased the rates at which MCF-7 and MDA-MB-231 cells underwent apoptosis. Furthermore, sanguiin H-6 induced the cleavage of caspase-8, caspase-3, and poly(ADP-ribose) polymerase, which resulted in apoptosis. However, cleavage of caspase-9 was only detectable in MCF-7 cells. In addition, sanguiin H-6 increased the ratio of Bax to Bcl-2 in both MCF-7 and MDA-MB-231 cells. These findings suggest that sanguiin H-6 is a potent therapeutic agent against breast cancer cells. In addition, it exerts its anticancer effect in an estrogen-receptor-independent manner. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Regulation of MDA-MB-231 cell proliferation by GSK-3β involves epigenetic modifications under high glucose conditions

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Chanchal; Kaur, Jasmine; Tikoo, Kulbhushan, E-mail: tikoo.k@gmail.com

    2014-05-15

    Hyperglycemia is a critical risk factor for development and progression of breast cancer. We have recently reported that high glucose induces phosphorylation of histone H3 at Ser 10 as well as de-phosphorylation of GSK-3β at Ser 9 in MDA-MB-231 cells. Here, we elucidate the mechanism underlying hyperglycemia-induced proliferation in MDA-MB-231 breast cancer cells. We provide evidence that hyperglycemia led to increased DNA methylation and DNMT1 expression in MDA-MB-231 cells. High glucose condition led to significant increase in the expression of PCNA, cyclin D1 and decrease in the expression of PTPN 12, p21 and PTEN. It also induced hypermethylation of DNA at the promoter region of PTPN 12, whereas hypomethylation at Vimentin and Snail. Silencing of GSK-3β by siRNA prevented histone H3 phosphorylation and reduced DNMT1 expression. We show that chromatin obtained after immunoprecipitation with phospho-histone H3 was hypermethylated under high glucose condition, which indicates a cross-talk between DNA methylation and histone H3 phosphorylation. ChIP-qPCR analysis revealed up-regulation of DNMT1 and metastatic genes viz. Vimentin, Snail and MMP-7 by phospho-histone H3, which were down-regulated upon GSK-3β silencing. To the best of our knowledge, this is the first report which shows that interplay between GSK-3β activation, histone H3 phosphorylation and DNA methylation directs proliferation of breast cancer cells. - Highlights: • High glucose induces phosphorylation of histone H3 and dephosphorylation of GSK-3β. • Moreover, hyperglycemia also leads to increased DNA methylation in MDA-MB-231 cells. • Inhibition of GSK-3β prevented histone H3 phosphorylation and reduced DNMT1 levels. • Interplay exists between GSK-3β, histone H3 phosphorylation and DNA methylation.

  16. Inhibition effect of luteolin on IL-8 signal path in breast cancer cells MDA MB 231%Luteolin抑制乳腺癌细胞MDA-MB231增殖及IL-8信号通路的实验研究

    Institute of Scientific and Technical Information of China (English)

    李文仿; 周科; 赵宗彬; 王明华; 王耕

    2014-01-01

    目的:探讨木犀草素(Luteolin)对乳腺癌细胞MDA-MB231增殖及IL-8信号通路的抑制作用.方法:采用不同浓度的Luteolin处理乳腺癌细胞MDA-MB231,观察MDA-MB231细胞的增殖、IL-8蛋白和mRNA的表达以及AKT、ERK的表达.结果:Luteolin可抑制MDA-MB231细胞的增殖和IL-8的分泌,并明显抑制IL-8对乳腺癌细胞的激活.结论:Luteolin是重要的乳腺癌抑制剂,在预防乳腺癌复发及转移中可能有重要的作用.

  17. Regulation of MDA-MB-231 cell proliferation by GSK-3β involves epigenetic modifications under high glucose conditions.

    Science.gov (United States)

    Gupta, Chanchal; Kaur, Jasmine; Tikoo, Kulbhushan

    2014-05-15

    Hyperglycemia is a critical risk factor for development and progression of breast cancer. We have recently reported that high glucose induces phosphorylation of histone H3 at Ser 10 as well as de-phosphorylation of GSK-3β at Ser 9 in MDA-MB-231 cells. Here, we elucidate the mechanism underlying hyperglycemia-induced proliferation in MDA-MB-231 breast cancer cells. We provide evidence that hyperglycemia led to increased DNA methylation and DNMT1 expression in MDA-MB-231 cells. High glucose condition led to significant increase in the expression of PCNA, cyclin D1 and decrease in the expression of PTPN 12, p21 and PTEN. It also induced hypermethylation of DNA at the promoter region of PTPN 12, whereas hypomethylation at Vimentin and Snail. Silencing of GSK-3β by siRNA prevented histone H3 phosphorylation and reduced DNMT1 expression. We show that chromatin obtained after immunoprecipitation with phospho-histone H3 was hypermethylated under high glucose condition, which indicates a cross-talk between DNA methylation and histone H3 phosphorylation. ChIP-qPCR analysis revealed up-regulation of DNMT1 and metastatic genes viz. Vimentin, Snail and MMP-7 by phospho-histone H3, which were down-regulated upon GSK-3β silencing. To the best of our knowledge, this is the first report which shows that interplay between GSK-3β activation, histone H3 phosphorylation and DNA methylation directs proliferation of breast cancer cells.

  18. Analysis of Protein–Protein Interactions in MCF-7 and MDA-MB-231 Cell Lines Using Phthalic Acid Chemical

    Directory of Open Access Journals (Sweden)

    Shih-Shin Liang

    2014-11-01

    Full Text Available Phthalates are a class of plasticizers that have been characterized as endocrine disrupters, and are associated with genital diseases, cardiotoxicity, hepatotoxicity, and nephrotoxicity in the GeneOntology gene/protein database. In this study, we synthesized phthalic acid chemical probes and demonstrated differing protein–protein interactions between MCF-7 cells and MDA-MB-231 breast cancer cell lines. Phthalic acid chemical probes were synthesized using silicon dioxide particle carriers, which were modified using the silanized linker 3-aminopropyl triethoxyslane (APTES. Incubation with cell lysates from breast cancer cell lines revealed interactions between phthalic acid and cellular proteins in MCF-7 and MDA-MB-231 cells. Subsequent proteomics analyses indicated 22 phthalic acid-binding proteins in both cell types, including heat shock cognate 71-kDa protein, ATP synthase subunit beta, and heat shock protein HSP 90-beta. In addition, 21 MCF-7-specific and 32 MDA-MB-231 specific phthalic acid-binding proteins were identified, including related proteasome proteins, heat shock 70-kDa protein, and NADPH dehydrogenase and ribosomal correlated proteins, ras-related proteins, and members of the heat shock protein family, respectively.

  19. Doxorubicin-Hyaluronan Conjugated Super-Paramagnetic Iron Oxide Nanoparticles (DOX-HA-SPION) Enhanced Cytoplasmic Uptake of Doxorubicin and Modulated Apoptosis, IL-6 Release and NF-kappaB Activity in Human MDA-MB-231 Breast Cancer Cells.

    Science.gov (United States)

    Vyas, Dinesh; Lopez-Hisijos, Nicolas; Gandhi, Sulakshana; El-Dakdouki, M; Basson, Marc D; Walsh, Mary F; Huang, X; Vyas, Arpita K; Chaturvedi, Lakshmi S

    2015-09-01

    Triple negative breast cancer exhibit increased IL-6 expression compared with matched healthy breast tissue and a strong link between inflammation and cancer progression and metastasis has been reported. We investigated whether doxorubicin-hyaluronan-super-paramagnetic iron oxide nanoparticles (DOX-HA-SPION) would show greater therapeutic efficacy in human triple negative breast cancer cells (TNBC) MDA-MB-231, as was recently shown in drug-sensitive and multi-drug-resistant ovarian cancer cells. Therefore, we measured cellular DOX uptake via confocal microscopy; observed morphologic changes: mitochondrial and nuclear changes with electron microscopy, and quantitated apoptosis using FACS analysis after Annexin V and PI staining in MDA-MB-231 cells treated with either DOX alone or DOX-HA-SPION. We also measured both proinflammatory and anti-inflammatory cytokines; IL-6, IL-10 respectively and also measured nitrate levels in the conditioned medium by ELISA. Inaddition, NF-κB activity was measured by luciferase assay. Confocal microscopy demonstrated greater cytoplasmic uptake of DOX-HA-SPION than free DOX. We also demonstrated reduction of Vimentin with DOX-HA-SPION which is significantly less than both control and DOX. DOX-HA-SPION enhanced apoptosis and significantly down regulated both pro-inflammatory mediators IL-6 and NF-κB in comparison to DOX alone. The secretion levels of anti-inflammatory mediators IL-10 and nitrate was not decreased in the DOX or DOX-HA-SPION treatment groups. Our data suggest that DOX-HA-SPION nanomedicine-based drug delivery could have promising potential in treating metastasized and chemoresistant breast cancer by enhancing the drug efficacy and minimizing off-target effects.

  20. Anticancer property of sediment actinomycetes against MCF-7 and MDA-MB-231 cell lines

    Institute of Scientific and Technical Information of China (English)

    Ravikumar S; Fredimoses M; Gnanadesigan M

    2012-01-01

    Objective: To investigate the anticancer property of marine sediment actinomycetes against two different breast cancer cell lines. Methods:In vitro anticancer activity was carried out against breast (MCF-7 and MDA-MB-231) cancer cell lines. Partial sequences of the 16s rRNA gene, phylogenetic tree construction, multiple sequence analysis and secondary structure analysis were also carried out with the actinomycetes isolates. Results: Of the selected five actinomycete isolates, ACT01 and ACT02 showed the IC50 value with (10.13±0.92) and (22.34±5.82)μg/mL concentrations, respectively for MCF-7 cell line at 48 h, but ACT01 showed the minimum (18.54±2.49 μg/mL) level of IC50 value with MDA-MB-231 cell line. Further, the 16s rRNA partial sequences of ACT01, ACT02, ACT03, ACT04 and ACT05 isolates were also deposited in NCBI data bank with the accession numbers of GQ478246, GQ478247, GQ478248, GQ478249 and GQ478250, respectively. The phylogenetic tree analysis showed that, the isolates of ACT02 and ACT03 were represented in group I and III, respectively, but ACT01 and ACT02 were represented in group II. The multiple sequence alignment of the actinomycete isolates showed that, the maximum identical conserved regions were identified with the nucleotide regions of 125 to 221st base pairs, 65 to 119th base pairs and 55, 48 and 31st base pairs. Secondary structure prediction of the 16s rRNA showed that, the maximum free energy was consumed with ACT03 isolate (-45.4 kkal/mol) and the minimum free energy was consumed with ACT04 isolate (-57.6 kkal/mol). Conclusions:The actinomycete isolates of ACT01 and ACT02 (GQ478246 and GQ478247) which are isolated from sediment sample can be further used as anticancer agents against breast cancer cell lines.

  1. MK886 inhibits the pioglitazone-induced anti-invasion of MDA-MB-231 cells is associated with PPARα/γ, FGF4 and 5LOX.

    Science.gov (United States)

    Nadarajan, Kalpanah; Balaram, Prabha; Khoo, Boon Yin

    2016-10-01

    The goal of this study was to determine the effects of PGZ and MK886 on the mRNA expression of PPARα and other associated genes in MDA-MB-231 cells, and the biological mechanisms induced by both drugs were also assessed. The levels of PPARα mRNA expression in PGZ-treated and MK886-treated MDA-MB-231 cells were determined using real-time PCR; the growth inhibitory effects of PGZ and MK886 were determined using the trypan blue exclusion assay; the induction of apoptosis by PGZ and MK886 was determined using DNA fragmentation assay and real-time PCR; and the invasion of PGZ-treated and MK886-treated MDA-MB-231 cells was determined using the wound healing and transwell migration assays. In addition, we correlated the expression of PPARα mRNA with other genes, including PPARγ, FGF4 and 5LOX, in drug-treated MDA-MB-231 cells. Our results demonstrated that the treatment of MDA-MB-231 cells with PGZ increased the expression of PPARα/γ mRNA and that this expression could be inhibited by treatment with MK886. Both drugs reduced the viability of MDA-MB-231 cells independently of PPARα/γ mRNA expression but did not induce apoptosis. The wound caused by invasion was not healed by PGZ-treated MDA-MB-231 cells, but it was healed by MK886-treated cancer cells, indicating that the reduction of invasion in PGZ-treated MDA-MB-231 cells was eliminated by treatment with MK886, and this finding was validated by the transwell migration assay. This phenomenon might also be associated with the expression of PPARα/γ, FGF4 and 5LOX mRNA in the treated cancer cells. This study provides useful information regarding the mRNA expression levels of PPARα and other related genes in MDA-MB-231 cells. These genes could be attractive targets for reducing the invasion of breast cancer.

  2. Stable shRNA Silencing of Lactate Dehydrogenase A (LDHA) in Human MDA-MB-231 Breast Cancer Cells Fails to Alter Lactic Acid Production, Glycolytic Activity, ATP or Survival.

    Science.gov (United States)

    Mack, Nzinga; Mazzio, Elizabeth A; Bauer, David; Flores-Rozas, Hernan; Soliman, Karam F A

    2017-03-01

    In the US, African Americans have a high death rate from triple-negative breast cancer (TNBC), characterized by lack of hormone receptors (ER, PR, HER2/ERRB2) which are otherwise valuable targets of chemotherapy. There is a need to identify novel targets that negatively impact TNBC tumorigenesis. TNBCs release an abundance of lactic acid, under normoxic, hypoxic and hyperoxic conditions; this referred to as the Warburg effect. Accumulated lactic acid sustains peri-cellular acidity which propels metastatic invasion and malignant aggressive transformation. The source of lactic acid is believed to be via conversion of pyruvate by lactate dehydrogenase (LDH) in the last step of glycolysis, with most studies focusing on the LDHA isoform. In this study, LDHA was silenced using long-term MISSION® shRNA lentivirus in human breast cancer MDA-MB-231 cells. Down-regulation of LDHA transcription and protein expression was confirmed by western blot, immunocytochemistry and qPCR. A number of parameters were measured in fully viable vector controls versus knock-down (KD) clones, including levels of lactic acid produced, glucose consumed, ATP and basic metabolic rates. The data show that lentivirus V-165 generated a knock-down clone most effective in reducing both gene and protein levels to less than 1% of vector controls. Stable KD showed absolutely no changes in cell viability, lactic acid production, ATP, glucose consumption or basic metabolic rate. Given the complete absence of impact on any observed parameter by LDH-A KD and this being somewhat contrary to findings in the literature, further analysis was required to determine why. Whole-transcriptome analytic profile on MDA-MB-231 for LDH subtypes using Agilent Human Genome 4×44k microarrays, where the data show the following component breakdown. Transcripts: 30.47 % LDHA, 69.36% LDHB, 0.12% LDHC and 0.05% LDHD. These findings underscore the importance of alternative isoforms of LDH in cancer cells to produce lactic acid

  3. Radio-sensitization by Piper longumine of human breast adenoma MDA-MB-231 cells in vitro.

    Science.gov (United States)

    Yao, Jian-Xin; Yao, Zhi-Feng; Li, Zhan-Feng; Liu, Yong-Biao

    2014-01-01

    The current study investigated the effects of Piper longumine on radio-sensitization of human breast cancer MDA-MB-231 cells and underlying mechanisms. Human breast cancer MDA-MB-231 cells were cultured in vitro and those in logarithmic growth phase were selected for experiments divided into four groups: control, X-ray exposed, Piper longumine, and Piper longumine combined with X-rays. Conogenic assays were performed to determine the radio-sensitizing effects. Cell survival curves were fitted by single-hit multi-target model and then the survival fraction (SF), average lethal dose (D0), quasi-threshold dose (Dq) and sensitive enhancement ratio (SER) were calculated. Cell apoptosis was analyzed by flow cytometry (FCM).Western blot assays were employed for expression of apoptosis-related proteins (Bc1-2 and Bax) after treatment with Piper longumine and/or X-ray radiation. The intracellular reactive oxygen species (ROS) level was detected by FCM with a DCFH-DA probe. The cloning formation capacity was decreased in the group of piperlongumine plus radiation, which displayed the values of SF2, D0, Dq significantly lower than those of radiation alone group and the sensitive enhancement ratio (SER) of D0 was1.22 and 1.29, respectively. The cell apoptosis rate was increased by the combination treatment of Piper longumine and radiation. Piper longumine increased the radiation-induced intracellular levels of ROS. Compared with the control group and individual group, the combination group demonstrated significantly decreased expression of Bcl-2 with increased Bax. Piper longumine at a non-cytotoxic concentration can enhance the radio-sensitivity of MDA- MB-231cells, which may be related to its regulation of apoptosis-related protein expression and the increase of intracellular ROS level, thus increasing radiation-induced apoptosis.

  4. Effect of lupeol on migration and invasion of human breast cancer MDA-MB-231 cells and its mechanism%羽扇豆醇对人乳腺癌MDA-MB-231细胞侵袭转移作用及机制研究

    Institute of Scientific and Technical Information of China (English)

    王明; 崔红霞; 孙超; 李刚; 王宏兰; 夏春辉; 王玉春; 刘吉成

    2016-01-01

    探索狼毒大戟活性成分羽扇豆醇(lupeol)对人乳腺癌MDA-MB-231细胞侵袭转移的作用,并对其机制进行研究.采用细胞黏附实验、transwell侵袭实验和伤口愈合细胞划痕实验检测羽扇豆醇对人乳腺癌MDA-MB-231细胞侵袭转移能力的作用.Western blot法测定不同浓度羽扇豆醇处理人乳腺癌后,侵袭转移相关蛋白环氧化酶2 (COX-2)、金属基质蛋白-2(MMP-2)、MMP-9和NF-κB p65的表达.结果显示,羽扇豆醇对人乳腺癌MDA-MB-231细胞的黏附、迁移和侵袭有明显的抑制作用,并具有一定的量效关系,且相关蛋白COX-2、MMP-2、MMP-9和NF-κB p65的表达均下调.由此可见,羽扇豆醇在体外能够有效地抑制人乳腺癌MDA-MB-231细胞的侵袭和转移,可能与抑制COX-2、MMP-2和MMP-9的蛋白表达有关,其机制可能是抑制了核转录因子NF-κB信号途径.

  5. The important role of Gli-1 in hypoxia-induced epithelial-mesenchymal transition of breast cancer cell line MDA-MB-231%Gli-1在缺氧诱导乳腺癌MDA-MB-231细胞上皮-间质转分化中的重要作用

    Institute of Scientific and Technical Information of China (English)

    李徐奇; 雷建军; 徐勤鸿; 段万星; 盛薇; 王康; 魏光兵

    2014-01-01

    目的 探讨Gli-1在缺氧诱导乳腺癌MDA-MB-231细胞上皮-间质转分化(EMT)及侵袭中的重要作用.方法 通过缺氧培养乳腺癌MDA-MB-231细胞,以常氧培养作为对照.Transwell小室侵袭试验检测各组MDA-MB-231细胞的侵袭能力;Western blot检测HIF-1α、Gli-1、E-Cadherin和vimentin蛋白的表达水平.通过shRNA稳定转染乳腺癌细胞,再次通过Transwell小室侵袭试验检测缺氧对乳腺癌细胞侵袭能力的影响,Western blot检测HIF 1α、Gli-1、E-Cadherin和vimentin蛋白的表达水平.结果 缺氧可明显诱导乳腺癌MDA MB-231细胞侵袭,并上调HIF-1α、Gli-1和vimentin蛋白,下调E-cadherin蛋白.靶向沉默Gli-1基因后,缺氧失去了对乳腺癌细胞侵袭和EMT的诱导作用.结论 缺氧通过上调Gli-1表达活化Hedgehog通路,诱导乳腺癌细胞侵袭及EMT过程.

  6. Cardiotoxin III suppresses MDA-MB-231 cell metastasis through the inhibition of EGF/EGFR-mediated signaling pathway.

    Science.gov (United States)

    Tsai, Pei-Chien; Hsieh, Chi-Ying; Chiu, Chien-Chih; Wang, Chih-Kuang; Chang, Long-Sen; Lin, Shinne-Ren

    2012-10-01

    Cardiotoxin III (CTX III), a basic polypeptide isolated from Naja naja atra venom, has been shown to exhibit anticancer activity. Epidermal growth factor (EGF) and its receptor, EGFR, play roles in cancer metastasis in various tumors. We use EGF as a metastatic inducer of MDA-MB-231 cells to investigate the effect of CTX III on cell migration. CTX III inhibited the EGF-induced activation of matrix metalloproteinase-9 (MMP-9), and further suppressed cell invasion and migration without obvious cellular cytotoxicity. CTX III suppressed EGF-induced nuclear factor-kappaB (NF-κB) nuclear translocation and also abrogated the EGF-induced phosphorylation of EGFR, phosphatidylinositol 3-kinase (PI3K)/Akt, and extracellular regulated kinase (ERK)1/2. In addition, CTX III similar to wortmannin (a PI3K inhibitor) and U0126 (an up-stream kinase regulating ERK1/2 inhibitor) attenuated cell migration and invasion induced by EGF. Furthermore, the EGFR inhibitor AG1478 inhibited EGF-induced MMP-9 expression, cell migration and invasion, as well as the activation of ERK1/2 and PI3K/Akt, suggesting that ERK1/2 and PI3K/Akt activation occur downstream of EGFR activation. These findings suggest that CTX III inhibited the EGF-induced invasion and migration of MDA-MB-231 cells via EGFR-dependent PI3K/Akt, ERK1/2, and NF-κB signaling, leading to the down-regulation of MMP-9 expression. These results provide a novel mechanism to explain the role of CTX III as a potent anti-metastatic agent in MDA-MB-231 cells.

  7. Polyamines modulate the roscovitine-induced cell death switch decision autophagy vs. apoptosis in MCF-7 and MDA-MB-231 breast cancer cells.

    Science.gov (United States)

    Arisan, Elif Damla; Akkoç, Yunus; Akyüz, Kaan Gencer; Kerman, Ezgi Melek; Obakan, Pinar; Çoker-Gürkan, Ajda; Palavan Ünsal, Narçin

    2015-06-01

    Current clinical strategies against breast cancer mainly involve the use of anti‑hormonal agents to decrease estrogen production; however, development of resistance is a major problem. The resistance phenotype depends on the modulation of cell‑cycle regulatory proteins, cyclins and cyclin‑dependent kinases. Roscovitine, a selective inhibitor of cyclin‑dependent kinases, shows high therapeutic potential by causing cell‑cycle arrest in various cancer types. Autophagy is a type of cell death characterized by the enzymatic degradation of macromolecules and organelles in double‑ or multi‑membrane autophagic vesicles. This process has important physiological functions, including the degradation of misfolded proteins and organelle turnover. Recently, the switch between autophagy and apoptosis has been proposed to constitute an important regulator of cell death in response to chemotherapeutic drugs. The process is regulated by several proteins, such as the proteins of the Atg family, essential for the initial formation of the autophagosome, and PI3K, important at the early stages of autophagic vesicle formation. Polyamines (PAs) are small aliphatic amines that play major roles in a number of eukaryotic processes, including cell proliferation. The PA levels are regulated by ornithine decarboxylase (ODC), the rate‑limiting enzyme in PA biosynthesis. In this study, we aimed to investigate the role of PAs in roscovitine‑induced autophagic/apoptotic cell death in estrogen receptor‑positive MCF‑7 and estrogen receptor‑negative MDA‑MB‑231 breast cancer cells. We show that MDA‑MB‑231 cells are more resistant to roscovitine than MCF‑7 cells. This difference was related to the regulation of autophagic key molecules in MDA‑MB‑231 cells. In addition, we found that exogenous PAs have a role in the cell death decision between roscovitine‑induced apoptosis or autophagy in MCF‑7 and MDA‑MB‑231 breast cancer cells.

  8. Phenazine-1-carboxamide (PCN) from Pseudomonas sp. strain PUP6 selectively induced apoptosis in lung (A549) and breast (MDA MB-231) cancer cells by inhibition of antiapoptotic Bcl-2 family proteins.

    Science.gov (United States)

    Kennedy, R Kamaraj; Veena, V; Naik, P Ravindra; Lakshmi, Pragna; Krishna, R; Sudharani, S; Sakthivel, N

    2015-06-01

    Phenazine-1-carboxamide (PCN), a naturally occurring simple phenazine derivative isolated from Pseudomonas sp. strain PUP6, exhibited selective cytotoxic activity against lung (A549) and breast (MDA-MB-231) cancer cell lines in differential and dose-dependent manner compared to normal peripheral blood mononuclear cells. PCN-treated cancer cells showed the induction of apoptosis as evidenced by the release of low level of LDH, morphological characteristics, production of reactive oxygen species, loss of mitochondrial membrane potential (ΔΨm) and induction of caspase-3. At molecular level, PCN instigates apoptosis by mitochondrial intrinsic apoptotic pathway via the overexpression of p53, Bax, cytochrome C release and activation of caspase-3 with the inhibition of oncogenic anti-apoptotic proteins such as PARP and Bcl-2 family proteins (Bcl-2, Bcl-w and Bcl-xL). The in silico docking studies of PCN targeted against the anti-apoptotic members of Bcl-2 family proteins revealed the interaction of PCN with the BH3 domain, which might lead to the induction of apoptosis due to the inhibition of antiapoptotic proteins. Due to its innate inhibition potential of antiapoptotic Bcl-2 family proteins, PCN may be used as potent anticancer agent against both lung and breast cancer.

  9. Resistin, a fat-derived secretory factor, promotes metastasis of MDA-MB-231 human breast cancer cells through ERM activation.

    Science.gov (United States)

    Lee, Jung Ok; Kim, Nami; Lee, Hye Jeong; Lee, Yong Woo; Kim, Su Jin; Park, Sun Hwa; Kim, Hyeon Soo

    2016-01-05

    Resistin, an adipocyte-secreted factor, is known to be elevated in breast cancer patients. However, the molecular mechanism by which resistin acts is not fully understood. The aim of this study was to investigate whether resistin could stimulate invasion and migration of breast cancer cells. Here, we report that resistin stimulated invasion and migration of breast cancer cells as well as phosphorylation of c-Src. Inhibition of c-Src blocked resistin-induced breast cancer cell invasion. Resistin increased intracellular calcium concentration, and chelation of intracellular calcium blocked resistin-mediated activation of Src. Resistin also induced phosphorylation of protein phosphatase 2A (PP2A). Inhibition of c-Src blocked resistin-mediated PP2A phosphorylation. In addition, resistin increased phosphorylation of PKCα. Inhibition of PP2A enhanced resistin-induced PKCα phosphorylation, demonstrating that PP2A activity is critical for PKCα phosphorylation. Resistin also increased phosphorylation of ezrin, radixin, and moesin (ERM). Additionally, ezrin interacted with PKCα, and resistin promoted co-localization of ezrin and PKCα. Either inhibition of c-Src and PKCα or knock-down of ezrin blocked resistin-induced breast cancer cells invasion. Moreover, resistin increased expression of vimentin, a key molecule for cancer cell invasion. Knock-down of ezrin abrogated resistin-induced vimentin expression. These results suggest that resistin play as a critical regulator of breast cancer metastasis.

  10. A Comparative Study of Cellular Uptake and Subcellular Localization of Doxorubicin Loaded in Self-Assemblies of Amphiphilic Copolymers with Pendant Dendron by MDA-MB-231 Human Breast Cancer Cells.

    Science.gov (United States)

    Viswanathan, Geetha; Hsu, Yu-Hsuan; Voon, Siew Hui; Imae, Toyoko; Siriviriyanun, Ampornphan; Lee, Hong Boon; Kiew, Lik Voon; Chung, Lip Yong; Yusa, Shin-Ichi

    2016-06-01

    Previously synthesized amphiphilic diblock copolymers with pendant dendron moieties have been investigated for their potential use as drug carriers to improve the delivery of an anticancer drug to human breast cancer cells. Diblock copolymer (P71 D3 )-based micelles effectively encapsulate the doxorubicin (DOX) with a high drug-loading capacity (≈95%, 104 DOX molecules per micelle), which is approximately double the amount of drug loaded into the diblock copolymer (P296 D1 ) vesicles. DOX released from the resultant P71 D3 /DOX micelles is approximately 1.3-fold more abundant, at a tumoral acidic pH of 5.5 compared with a pH of 7.4. The P71 D3 /DOX micelles also enhance drug potency in breast cancer MDA-MB-231 cells due to their higher intracellular uptake, by approximately twofold, compared with the vesicular nanocarrier, and free DOX. Micellar nanocarriers are taken up by lysosomes via energy-dependent processes, followed by the release of DOX into the cytoplasm and subsequent translocation into the nucleus, where it exert its cytotoxic effect.

  11. Effect of Recombinant Human Erythropoietin on Proliferation of Breast Cancer MDA-MB-231 Cells and Its Mechanism%重组人促红细胞生成素对人乳腺癌MDA-MB-231细胞增殖的影响及其作用机制研究

    Institute of Scientific and Technical Information of China (English)

    晋雯; 孔令英; 张小容; 杨丽

    2013-01-01

    目的 探讨重组人促红细胞生成素(recombinant human erythropoietin,rh-EPO)对人乳腺癌MDA-MB-231细胞增殖的影响及其作用机制.方法 将人乳腺癌 MDA-MB-231 细胞进行培养.传至5~6代,细胞生长状态稳定后,收集人乳腺癌 MDA-MB-231细胞用于MTT实验.采用MTT法检测 5 组(阴性对照组、rh-EPO A 组、rh-EPO B组、rh-EPO C 组和rh-EPO D 组)MDA-MB-231细胞增殖的情况.用10 μmol·L-1p38MAPK抑制剂SB203580、ERK抑制剂U0126、JNK抑制剂SP600125和NF-κB 抑制剂PDTC预处理人乳腺癌 MDA-MB-231 细胞后,用MTT法检测经100、200、300和400 U·mL-1的rh-EPO(PDTC+EPO 组、SB203580+EPO 组、SP600125+EPO组和U0126+EPO组)诱导后细胞增殖的情况.结果 阴性对照组、rh-EPO A 组、rh-EPO B组、rh-EPO C 组和rh-EPO D 组 72 h PI值分别为:1.000 0±1.000 0、1.231 8±0.133 0、1.323 9±0.136 0、1.351 7±0.146 0和1.423 1±0.084 0;96 h PI值分别为:1.000 0±1.000 0、1.352 5±0.036 0、1.359 7±0.112 0、1.387 2±0.063 0和1.410 8±0.060 0.rh-EPO A 组、rh-EPO B组、rh-EPO C 组和rh-EPO D 组 72、96 h PI值与阴性对照组比较差异均有统计学意义(均P<0.05).PDTC+EPO 组、SB203580+EPO 组72、96 h PI值均较EPO组明显降低(均P<0.05),SP600125+EPO组、U0126+EPO组72、96 h PI值与EPO组比较差异均无统计学意义(均P>0.05).结论 rh-EPO可能是通过NF-κB、MAPK传导通路发挥效应,促进人乳腺癌MDA-MB-231细胞增殖.

  12. The anticancer potential of steroidal saponin, dioscin, isolated from wild yam (Dioscorea villosa) root extract in invasive human breast cancer cell line MDA-MB-231 in vitro

    Science.gov (United States)

    Previously, we observed that wild yam (Dioscorea villosa) root extract (WYRE) was able to activate GATA3 in human breast cancer cells targeting epigenome. This study aimed to 'nd out if dioscin (DS), a bioactive compound of WYRE, can modulate GATA3 functions and cellular invasion in human breast can...

  13. UHRF1对人乳腺癌细胞MDA-MB-231辐射敏感性的影响及作用机制%Effect of UHRF1 on radiosensitivity of human breast cancer cells to X-rays and its mechanisms

    Institute of Scientific and Technical Information of China (English)

    李新莉; 孟庆慧; Eliot M Rosen; 樊赛军

    2010-01-01

    Objective To investigate the effect of UHRF1 on the radiosensitivity to x-ray in human breast cancer MDA-MB-231 cells and the underlying mechanisms. Methods Cell survival was determined by colony formation assay. Cell cycle distribution was measured by flow cytometry. The apoptosis was evaluated by DNA fragmentation assay and Annexin V apoptosis detection kit. Protein expression was analyzed by Western blot, and chromosome aberration (centric rings and dicentrics) were observed by conventional chromosome analysis. Results A significant decrease of radiosensitivity to X-rays was observed in MDA-MB-231 cells transfected with a full-length of human UHRF1 cDNA ( MDA-MB231/UHRF1 ) compared with the control cells ( MDA-MB-231/parental and MDA-MB-231/Neo), and the D0 value increased from 2.08 to 3. 17 Gy after UHRF1 transfection. In contrast, a decreased expression of UHRF1 by a specific UHRF1-siRNA significantly decreased cell survival from 41% to 17%. The UHRF1-mediated radioresistance was correlated with a G2/M arrest, a decreased apoptosis rate, a down-regulation of the pro-apoptotic protein Bax and up-regulation of the DNA damage repair proteins Ku70 and Ku80.Furthermore, chromosomal aberrations (centric rings and dicentrics) by X-ray were less in MDA-MB-231/UHRF1 than those in MDA-MB-231/parental cells and MDA-MB-231/Neo control cells. Conclusion UHRF1 may be a new target in the radiotherapy of breast cancer via affecting apoptosis and DNA damage repair.%目的 了解基因UHRF1的不同表达水平对乳腺癌细胞MDA-MB-231辐射敏感性的影响及潜在的作用机制.方法 利用克隆形成实验观察细胞存活;流式细胞术测定细胞周期;利用DNA片段分析和Annexin V试剂盒测定细胞凋亡;Western blot测定蛋白表达变化;利用经典的染色体分析,观察染色体畸变(着丝粒环和双着丝粒).结果 与对照相比较,UHRF1转染可将D0值由2.08 Gy提高至3.17 Gy,即降低MDA-MB-231细胞对X射线的辐

  14. EphB4 Tyrosine Kinase Stimulation Inhibits Growth of MDA-MB-231 Breast Cancer Cells in a Dose and Time Dependent Manner

    Directory of Open Access Journals (Sweden)

    Farnaz Barneh

    2013-01-01

    Full Text Available Background. EphB4 receptor tyrosine kinase is of diagnostic and therapeutic value due to its overexpression in breast tumors. Dual functions of tumor promotion and suppression have been reported for this receptor based on presence or absence of its ligand. To elucidate such discrepancy, we aimed to determine the effect of time- and dose-dependent stimulation of EphB4 on viability and invasion of breast cancer cells via recombinant ephrinB2-Fc. Methods. Cells were seeded into multiwell plates and were stimulated by various concentrations of preclustered ephrinB2-Fc. Cell viability was measured on days 3 and 6 following treatment using alamar-blue when cells were in different states of confluence. Results. Stimulation of cells with ephrinB2 did not pose any significant effect on cell viability before reaching confluence, while inhibition of cell growth was detected after 6 days when cells were in postconfluent state following a dose-dependent manner. EphrinB2 treatment did not affect tubular formation and invasion on matrigel. Conclusion. This study showed that EphB4 can differentially inhibit cells at post confluent state and that presence of ligand manifests growth-inhibitory properties of EphB4 receptor. It is concluded that growth inhibition has occurred possibly due to long treatment with ligand, a process which leads to receptor downregulation.

  15. Graded hypoxia modulates the invasive potential of HT1080 fibrosarcoma and MDA MB231 carcinoma cells.

    Science.gov (United States)

    Subarsky, Patrick; Hill, Richard P

    2008-01-01

    Spatial and temporal oxygen heterogeneity exists in most solid tumour microenvironments due to an inadequate vascular network supplying a dense population of tumour cells. An imbalance between oxygen supply and demand leads to hypoxia within a significant proportion of a tumour, which has been correlated to the likelihood of metastatic dissemination in both rodent tumour models and human patients. Experimentally, it has been demonstrated that near-anoxic in vitro exposure results in transiently increased metastatic potential in some tumour cell lines. The purpose of this study was to examine the effect of graded low oxygen conditions on the invasive phenotype of human tumour cells using an in vitro model of basement membrane invasion, in which we measured oxygen availability directly at the invasion surface of the transwell chamber. Our results show a relationship between culture vessel geometry and time to achieve hypoxia which may affect the interpretation of low oxygen experiments. We exposed the human tumour cell lines, HT1080 and MDA MB231, to graded normobaric oxygen (5% O(2)-0.2% O(2)) either during or prior to in vitro basement membrane invasion to simulate conditions of intravasation and extravasation. A secondary aim was to investigate the potential regulation of matrix metalloproteinase activity by oxygen availability. We identified significant reductions in invasive ability under low oxygen conditions for the HT1080 cell line and an increase in invasion at intermediate oxygen conditions for the MDA MB231 cell line. There were differences in the absolute activity of the individual matrix metalloproteinases, MMP-2, -9, -14, between the two cell lines, however there were no significant changes following exposure to hypoxic conditions. This study demonstrates cell line specific effects of graded oxygen levels on invasive potential and suggests that intermediate levels of low oxygen may increase metastatic dissemination.

  16. Cytotoxicity enhancement in MDA-MB-231 cells by the combination treatment of tetrahydropalmatine and berberine derived from Corydalis yanhusuo W. T. Wang

    Directory of Open Access Journals (Sweden)

    Yan Zhao

    2014-04-01

    Conclusion: Our findings suggested that the combination of THP and Ber might be beneficial for anti-proliferation of MDA-MB-231 breast cancer cells through a significant synergy effect. [J Intercult Ethnopharmacol 2014; 3(2.000: 68-72

  17. Transcriptional program induced by factor VIIa-tissue factor, PAR1 and PAR2 in MDA-MB-231 cells

    DEFF Research Database (Denmark)

    Albrektsen, Tatjana; Sørensen, B B; Hjortø, G M

    2007-01-01

    -activated receptor 1 (PAR1) or PAR2 agonists using MDA-MB-231 breast carcinoma cells that constitutively express TF, PAR1 and PAR2. RESULTS AND CONCLUSIONS: Out of 8500 genes, FVIIa stimulation induced differential regulation of 39 genes most of which were not previously recognized as FVIIa regulated. All genes...... regulated genes encode cytokines, chemokines and growth factors, and the gene repertoire induced by FVIIa in MDA-MB-231 cells is consistent with a role for TF-FVIIa signaling in regulation of a wound healing type of response. Interestingly, a number of genes regulated exclusively by FVIIa/PAR2-mediated cell...... signaling in MDA-MB-231 cells were regulated by thrombin and a PAR1 agonist, but not by FVIIa, in the TF-expressing glioblastoma U373 cell line....

  18. Gene expression profiling and pathway analysis in MCF-7 and MDA-MB-231 human breast cancer cell lines treated with dioscin

    Science.gov (United States)

    The long-term goal of our study is to understand the genetic and epigenetic mechanisms of breast cancer metastasis in human and to discover new possible genetic markers for use in clinical practice. We have used microarray technology (Human OneArray microarray, phylanxbiotech.com) to compare gene ex...

  19. Effects of RNA interference-mediated gene silencing of JMJD2A on human breast cancer cell line MDA-MB-231 in vitro

    National Research Council Canada - National Science Library

    Li, Bei-Xu; Zhang, Ming-Chang; Luo, Cheng-Liang; Yang, Peng; Li, Hui; Xu, Hong-Mei; Xu, Hong-Fei; Shen, Yi-Wen; Xue, Ai-Min; Zhao, Zi-Qin

    2011-01-01

    .... Cells proliferation was evaluated by using flow cytometric anlysis and MTT assay. The abilities of invasion and migration were evaluated by cell migration and invasion assay with Boyden chambers...

  20. Propofol induces proliferation partially via downregulation of p53 protein and promotes migration via activation of the Nrf2 pathway in human breast cancer cell line MDA-MB-231.

    Science.gov (United States)

    Meng, Chao; Song, Linlin; Wang, Juan; Li, Di; Liu, Yanhong; Cui, Xiaoguang

    2017-02-01

    Antioxidants induce the proliferation of cancers by decreasing the expression of p53. Propofol, one of the most extensively used intravenous anesthetics, provides its antioxidative activity via activation of the nuclear factor E2-related factor-2 (Nrf2) pathway, but the mechanisms involved in the effects remain unknown. Thus, we aimed to investigate the function of p53 and Nrf2 in the human breast cancer cell line MDA-MB-231 following treatment with propofol. The cells were treated with propofol (2, 5 and 10 µg/ml) for 1, 4 and 12 h, and MTT assay was used to evaluate cell proliferation, and a wound healing assay was used to evaluate cell migration. Cell apoptosis, caspase-3 activity, and western blot analysis for p53 and Nrf2 protein were also assessed. Finally, PIK-75, a potent Nrf2 inhibitor, was used to confirm the effects of Nrf2 after treatment with propofol. Treatment of MDA-MB‑231 cells with propofol resulted in increased proliferation and migration in a dose- and time-dependent manner. After treatment with propofol for 12 h, the Nrf2 protein expression was increased, while the percentage of apoptotic cells, caspase-3 activity, and expression of p53 were significantly decreased. Additionally, treatment with the Nrf2 inhibitor increased the percentage of apoptotic cells, inhibited the migration almost completely, and decreased the degree of proliferation, while the expression of p53 was not affected. In conclusion, propofol increased the proliferation of human breast cancer MDA-MB‑231 cells, which was at least partially associated with the inhibition of the expression of p53, and induced cell migration, which was involved in the activation of the Nrf2 pathway.

  1. Transcriptional program induced by factor VIIa-tissue factor, PAR1 and PAR2 in MDA-MB-231 cells

    DEFF Research Database (Denmark)

    Albrektsen, T; Sørensen, B B; Hjortø, G M

    2007-01-01

    -regulated genes was also regulated by a PAR1 agonist peptide suggesting extensive redundancy between FVIIa/PAR2 signaling and thrombin/PAR1 signaling. The FVIIa regulated genes encode cytokines, chemokines and growth factors, and the gene repertoire induced by FVIIa in MDA-MB-231 cells is consistent...... with a role for TF-FVIIa signaling in regulation of a wound healing type of response. Interestingly, a number of genes regulated exclusively by FVIIa/PAR2-mediated cell signaling in MDA-MB-231 cells were regulated by thrombin and a PAR1 agonist, but not by FVIIa, in the TF-expressing glioblastoma U373 cell...

  2. Effects of NRP-1 Overexpression on Biological Behaviors of Breast Cancer Cell Lines MDA-MB-231 and SK-BR-3%NRP-1过表达对乳腺癌细胞MDA-MB-231、SK-BR-3生物学行为的影响

    Institute of Scientific and Technical Information of China (English)

    张梦瑾; 徐杰; 王红梅; 杜秀平; 韩正祥

    2016-01-01

    目的 通过上调乳腺癌细胞MDA-MB-231、SK-BR-3中NRP-1的表达,观察NRP-1对细胞增殖、凋亡、迁移及侵袭能力的影响.方法 构建pcDNA3.1-NRP-1表达载体,脂质体介导NRP-1表达质粒转染MDA-MB-231、SK-BR-3细胞,用G418筛选出稳定转染的乳腺癌细胞株.利用RT-qPCR、Western blot法分别检测NRP-1基因mRNA及其蛋白表达;CCK-8法、AnnexinⅤ-APC/7-AAD法、Transwell小室分别检测转染细胞增殖率、凋亡率及侵袭、迁移能力.结果 成功构建pcDNA3.1-NRP-1表达载体,转染MDA-MB-231、SK-BR-3细胞并筛选稳定表达系.与对照组相比,过表达组细胞的NRP-1 mRNA及蛋白表达水平明显升高(均P<0.05);NRP-1过表达组的细胞较对照组增殖率增加、凋亡率降低、侵袭及迁移能力增强(均P<0.05).结论 NRP-1在乳腺癌发展、浸润、转移中起着一定的作用,它可促进乳腺癌细胞增殖、迁移和侵袭,抑制其凋亡.

  3. Inhibition of MDA-MB-231 breast cancer cell proliferation and tumor growth by apigenin through induction of G2/M arrest and histone H3 acetylation-mediated p21(WAF1/CIP1) expression.

    Science.gov (United States)

    Tseng, Tsui-Hwa; Chien, Ming-Hsien; Lin, Wea-Lung; Wen, Yu-Ching; Chow, Jyh-Ming; Chen, Chi-Kuan; Kuo, Tsang-Chih; Lee, Wei-Jiunn

    2017-02-01

    Apigenin (4',5,7-trihydroxyflavone), a flavonoid commonly found in fruits and vegetables, has anticancer properties in various malignant cancer cells. However, the molecular basis of the anticancer effect remains to be elucidated. In this study, we investigated the cellular mechanisms underlying the induction of cell cycle arrest by apigenin. Our results showed that apigenin at the nonapoptotic induction concentration inhibited cell proliferation and induced cell cycle arrest at the G2/M phase in the MDA-MB-231 breast cancer cell line. Immunoblot analysis indicated that apigenin suppressed the expression of cyclin A, cyclin B, and cyclin-dependent kinase-1 (CDK1), which control the G2-to-M phase transition in the cell cycle. In addition, apigenin upregulated p21(WAF1/CIP1) and increased the interaction of p21(WAF1/CIP1) with proliferating cell nuclear antigen (PCNA), which inhibits cell cycle progression. Furthermore, apigenin significantly inhibited histone deacetylase (HDAC) activity and induced histone H3 acetylation. The subsequent chromatin immunoprecipitation (ChIP) assay indicated that apigenin increased acetylation of histone H3 in the p21(WAF1/CIP1) promoter region, resulting in the increase of p21(WAF1/CIP1) transcription. In a tumor xenograft model, apigenin effectively delayed tumor growth. In these apigenin-treated tumors, we also observed reductions in the levels of cyclin A and cyclin B and increases in the levels of p21(WAF1/CIP1) and acetylated histone H3. These findings demonstrate for the first time that apigenin can be used in breast cancer prevention and treatment through epigenetic regulation. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 434-444, 2017.

  4. Comparative assessment of the apoptotic potential of silver nanoparticles synthesized by Bacillus tequilensis and Calocybe indica in MDA-MB-231 human breast cancer cells: targeting p53 for anticancer therapy

    Directory of Open Access Journals (Sweden)

    Gurunathan S

    2015-06-01

    -231 breast cancer cells. Western blot analyses revealed that AgNPs induce cellular apoptosis via activation of p53, p-Erk1/2, and caspase-3 signaling, and downregulation of Bcl-2. Cells pretreated with pifithrin-alpha were protected from p53-mediated AgNPs-induced toxicity.Conclusion: We have demonstrated a simple approach for the synthesis of AgNPs using the novel strains B. tequilensis and C. indica, as well as their mechanism of cell death in a p53-dependent manner in MDA-MB-231 human breast cancer cells. The present findings could provide insight for the future development of a suitable anticancer drug, which may lead to the development of novel nanotherapeutic molecules for the treatment of cancers.Keywords: apoptosis, UV-vis spectroscopy, X-ray diffraction, ROS generation

  5. Berberine hydrochloride IL-8 dependently inhibits invasion and IL-8-independently promotes cell apoptosis in MDA-MB-231 cells.

    Science.gov (United States)

    Li, Xiang; Zhao, Shu-Juan; Shi, Hai-Lian; Qiu, Shui-Ping; Xie, Jian-Qun; Wu, Hui; Zhang, Bei-Bei; Wang, Zheng-Tao; Yuan, Jian-Ye; Wu, Xiao-Jun

    2014-12-01

    Breast cancer, the leading cause of cancer-related mortality worldwide in females, has high metastastic and recurrence rates. The aim of the present study was to evaluate the anti-metastatic and anticancer in situ effect of berberine hydrochloride (BER) in MDA-MB-231 cells. BER dose-dependently inhibited proliferation and the IL-8 secretion of MDA-MB-231 cells. Additional experiments revealed that the inactivation of PI3K, JAK2, NF-κB and AP-1 by BER contributed to the decreased IL-8 secretion. BER abrogated cell invasion induced by IL-8 accompanied with the downregulation of the gene expression of MMP-2, EGF, E-cadherin, bFGF and fibronectin. In addition, BER reduced cell motility but induced G2/M arrest and cell apoptosis in an IL-8‑independent manner. BER modulated multiple signaling pathway molecules involved in the regulation of cell apoptosis, including activation of p38 MAPK and JNK and deactivation of JAK2, p85 PI3K, Akt and NF-κB. The enhanced cell apoptosis induced by BER was eliminated by inhibitors of p38 MAPK and JNK but was strengthened by activator of p38 MAPK. Thus, BER inhibited cell metastasis partly through the IL-8 mediated pathway while it induced G2/M arrest and promoted cell apoptosis through the IL-8 independent pathway. Apoptosis induced by BER was mediated by crosstalks of various pathways including activation of p38 MAPK and JNK pathways and inactivation of Jak2/PI3K/NF-κB/AP-1 pathways. The results suggested that BER may be an efficient and safe drug candidate for treating highly metastatic breast cancer.

  6. Nano-encapsulation of a novel anti-Ran-GTPase peptide for blockade of regulator of chromosome condensation 1 (RCC1) function in MDA-MB-231 breast cancer cells.

    Science.gov (United States)

    Haggag, Yusuf A; Matchett, Kyle B; Dakir, El-Habib; Buchanan, Paul; Osman, Mohammed A; Elgizawy, Sanaa A; El-Tanani, Mohamed; Faheem, Ahmed M; McCarron, Paul A

    2017-02-02

    Ran is a small ras-related GTPase and is highly expressed in aggressive breast carcinoma. Overexpression induces malignant transformation and drives metastatic growth. We have designed a novel series of anti-Ran-GTPase peptides, which prevents Ran hydrolysis and activation, and although they display effectiveness in silico, peptide activity is suboptimal in vitro due to reduced bioavailability and poor delivery. To overcome this drawback, we delivered an anti-Ran-GTPase peptide using encapsulation in PLGA-based nanoparticles (NP). Formulation variables within a double emulsion solvent evaporation technique were controlled to optimise physicochemical properties. NP were spherical and negatively charged with a mean diameter of 182-277nm. Peptide integrity and stability were maintained after encapsulation and release kinetics followed a sustained profile. We were interested in the relationship between cellular uptake and poly(ethylene glycol) (PEG) in the NP matrix, with results showing enhanced in vitro uptake with increasing PEG content. Peptide-loaded, pegylated (10% PEG)-PLGA NP induced significant cytotoxic and apoptotic effects in MDA-MB-231 breast cancer cells, with no evidence of similar effects in cells pulsed with free peptide. Western blot analysis showed that encapsulated peptide interfered with the proposed signal transduction pathway of the Ran gene. Our novel blockade peptide prevented Ran activation by blockage of regulator of chromosome condensation 1 (RCC1) following peptide release directly in the cytoplasm once endocytosis of the peptide-loaded nanoparticle has occurred. RCC1 blockage was effective only when a nanoparticulate delivery approach was adopted.

  7. Validation of a network-based strategy for the optimization of combinatorial target selection in breast cancer therapy: siRNA knockdown of network targets in MDA-MB-231 cells as an in vitro model for inhibition of tumor development.

    Science.gov (United States)

    Tilli, Tatiana M; Carels, Nicolas; Tuszynski, Jack A; Pasdar, Manijeh

    2016-09-27

    Network-based strategies provided by systems biology are attractive tools for cancer therapy. Modulation of cancer networks by anticancer drugs may alter the response of malignant cells and/or drive network re-organization into the inhibition of cancer progression. Previously, using systems biology approach and cancer signaling networks, we identified top-5 highly expressed and connected proteins (HSP90AB1, CSNK2B, TK1, YWHAB and VIM) in the invasive MDA-MB-231 breast cancer cell line. Here, we have knocked down the expression of these proteins, individually or together using siRNAs. The transfected cell lines were assessed for in vitro cell growth, colony formation, migration and invasion relative to control transfected MDA-MB-231, the non-invasive MCF-7 breast carcinoma cell line and the non-tumoral mammary epithelial cell line MCF-10A. The knockdown of the top-5 upregulated connectivity hubs successfully inhibited the in vitro proliferation, colony formation, anchorage independence, migration and invasion in MDA-MB-231 cells; with minimal effects in the control transfected MDA-MB-231 cells or MCF-7 and MCF-10A cells. The in vitro validation of bioinformatics predictions regarding optimized multi-target selection for therapy suggests that protein expression levels together with protein-protein interaction network analysis may provide an optimized combinatorial target selection for a highly effective anti-metastatic precision therapy in triple-negative breast cancer. This approach increases the ability to identify not only druggable hubs as essential targets for cancer survival, but also interactions most susceptible to synergistic drug action. The data provided in this report constitute a preliminary step toward the personalized clinical application of our strategy to optimize the therapeutic use of anti-cancer drugs.

  8. Modulation of markers associated with aggressive phenotype in MDA-MB-231 breast carcinoma cells by sulforaphane.

    Science.gov (United States)

    Hunakova, L; Sedlakova, O; Cholujova, D; Gronesova, P; Duraj, J; Sedlak, J

    2009-01-01

    Metastasis as a complex process involves loss of adhesion, migration, invasion and proliferation of cancer cells. Sulforaphane (SFN) is one of naturally occurring cancer chemopreventive isothiocyanates found in cruciferous vegetables, consumption of which has been associated with reduced risk of cancer. In this study, we describe effect of SFN on various aspects determining invasive behavior of MDA-MB-231 human breast carcinoma cells. We studied modulation of molecules associated with epithelial to mesenchymal transition (EMT), hypoxic marker CA IX and mitochondrially located peripheral benzodiazepine receptor (PBR) using flow cytometry, gene expression of matrix metalloproteinases MMP1, 3, 7, 9, 14, transcription factors POU5F1 and Twist1 mRNA by RT PCR, and cytokine production by multiplex bead assay. SFN downregulated PBR and vimentin expression in a dose dependent manner, but significantly affected neither HIF-1alpha, nor CA IX protein expression, nor VEGF and GLUT1 mRNA levels. Among studied MMPs, MMP7 and MMP14 mRNA were downregulated while no apparent effect on MMP1, MMP3 and MMP9 was observed. Further, we found significant down regulation of Twist1 and POU5F1, transcription factors that mediate EMT and the self-renewal of undifferentiated embryonic stem cells. SFN reduced also the production of pro-inflammatory cytokines IL-1beta, IL-6, TNF-alpha, IFN-gamma, immunomodulating cytokine IL-4 and growth factors involved in angiogenesis PDGF and VEGF. Our study shows that SFN efficacy is associated with the reversal of several biological characteristics connected with EMT or implicated in the matrix degradation and extracellular proteolysis, as well as with reduced production of pro-inflammatory cytokines and pro-angiogenic growth factors in MDA-MB-231 cells.

  9. Gold nanoparticles-conjugated quercetin induces apoptosis via inhibition of EGFR/PI3K/Akt-mediated pathway in breast cancer cell lines (MCF-7 and MDA-MB-231).

    Science.gov (United States)

    Balakrishnan, Solaimuthu; Mukherjee, Sudip; Das, Sourav; Bhat, Firdous Ahmad; Raja Singh, Paulraj; Patra, Chitta Ranjan; Arunakaran, Jagadeesan

    2017-06-01

    Epidermal growth factor plays a major role in breast cancer cell proliferation, survival, and metastasis. Quercetin, a bioactive flavonoid, is shown to exhibit anticarcinogenic effects against various cancers including breast cancer. Hence, the present study was designed to evaluate the effects of gold nanoparticles-conjugated quercetin (AuNPs-Qu-5) in MCF-7 and MDA-MB-231 breast cancer cell lines. Borohydride reduced AuNPs were synthesized and conjugated with quercetin to yield AuNPs-Qu-5. Both were thoroughly characterized by several physicochemical techniques, and their cytotoxic effects were assessed by MTT assay. Apoptotic studies such as DAPI, AO/EtBr dual staining, and annexin V-FITC staining were performed. AuNPs and AuNPs-Qu-5 were spherical with crystalline nature, and the size of particles range from 3.0 to 4.5 nm. AuNPs-Qu-5 exhibited lower IC50 value compared to free Qu. There was a considerable increase in apoptotic population with increased nuclear condensation seen upon treatment with AuNPs-Qu-5. To delineate the molecular mechanism behind its apoptotic role, we analysed the proteins involved in apoptosis and epidermal growth factor receptor (EGFR)-mediated PI3K/Akt/GSK-3β signalling by immunoblotting and immunocytochemistry. The pro-apoptotic proteins (Bax, Caspase-3) were found to be up regulated and anti-apoptotic protein (Bcl-2) was down regulated on treatment with AuNPs-Qu-5. Additionally, AuNPs-Qu-5 treatment inhibited the EGFR and its downstream signalling molecules PI3K/Akt/mTOR/GSK-3β. In conclusion, administration of AuNPs-Qu-5 in breast cancer cell lines curtails cell proliferation through induction of apoptosis and also suppresses EGFR signalling. AuNPs-Qu-5 is more potent than free quercetin in causing cancer cell death, and hence, this could be a potential drug delivery system in breast cancer therapy. Copyright © 2017 John Wiley & Sons, Ltd.

  10. Comparing Apoptosis and Necrosis Effects of Arctium Lappa Root Extract and Doxorubicin on MCF7 and MDA-MB-231 Cell Lines

    Science.gov (United States)

    Ghafari, Fereshteh; Rajabi, Mohammad Reza; Mazoochi, Tahereh; Taghizadeh, Mohsen; Nikzad, Hossein; Atlasi, Mohammad Ali; Taherian, Aliakbar

    2017-03-01

    Objective: Breast cancer is a heterogeneous disease and very common malignancy in women worldwide. The efficacy of chemotherapy as an important part of breast cancer treatment is limited due to its side effects. While pharmaceutical companies are looking for better chemicals, research on traditional medicines that generally have fewer side effects is quite interesting. In this study, apoptosis and necrosis effect of Arctium lappa and doxorubicin was compared in MCF7, and MDA-MB-231 cell lines. Materials and Methods: MCF7 and MDA-MB-231 cells were cultured in RPMI 1640 containing 10% FBS and 100 U/ml penicillin/streptomycin. MTT assay and an annexin V/propidium iodide (AV/PI) kit were used respectively to compare the survival rate and apoptotic effects of different concentrations of doxorubicin and Arctium lappa root extract on MDA-MB-231 and MCF7 cells. Results: Arctium lappa root extract was able to reduce cell viability of the two cell lines in a dose and time dependent manner similar to doxorubicin. Flow cytometry results showed that similar to doxorubicin, Arctium Lappa root extract had a dose and time dependent apoptosis effect on both cell lines. 10μg/mL of Arctium lappa root extract and 5 μM of doxorubicin showed the highest anti-proliferative and apoptosis effect in MCF7 and MDA231 cells. Conclusion: The MCF7 (ER/PR-) and MDA-MB-231 (ER/PR+) cell lines represent two major breast cancer subtypes. The similar anti-proliferative and apoptotic effects of Arctium lappa root extract and doxorubicin (which is a conventional chemotherapy drug) on two different breast cancer cell lines strongly suggests its anticancer effects and further studies. Creative Commons Attribution License

  11. Rapid dimerization of quercetin through an oxidative mechanism in the presence of serum albumin decreases its ability to induce cytotoxicity in MDA-MB-231 cells

    Energy Technology Data Exchange (ETDEWEB)

    Pham, Anh; Bortolazzo, Anthony [Department of Biological Sciences, San Jose State University, San Jose, CA 95192-0100 (United States); White, J. Brandon, E-mail: Brandon.White@sjsu.edu [Department of Biological Sciences, San Jose State University, San Jose, CA 95192-0100 (United States)

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer Quercetin cannot be detected intracellularly despite killing MDA-MB-231 cells. Black-Right-Pointing-Pointer Quercetin forms a heterodimer through oxidation in media with serum. Black-Right-Pointing-Pointer The quercetin heterodimer does not kill MDA-MB-231 cells. Black-Right-Pointing-Pointer Ascorbic acid stabilizes quercetin increasing cell death in quercetin treated cells. Black-Right-Pointing-Pointer Quercetin, and not a modified form, is responsible for apoptosis and cell death. -- Abstract: Quercetin is a member of the flavonoid family and has been previously shown to have a variety of anti-cancer activities. We and others have reported anti-proliferation, cell cycle arrest, and induction of apoptosis of cancer cells after treatment with quercetin. Quercetin has also been shown to undergo oxidation. However, it is unclear if quercetin or one of its oxidized forms is responsible for cell death. Here we report that quercetin rapidly oxidized in cell culture media to form a dimer. The quercetin dimer is identical to a dimer that is naturally produced by onions. The quercetin dimer and quercetin-3-O-glucopyranoside are unable to cross the cell membrane and do not kill MDA-MB-231 cells. Finally, supplementing the media with ascorbic acid increases quercetin's ability to induce cell death probably by reduction oxidative dimerization. Our results suggest that an unmodified quercetin is the compound that elicits cell death.

  12. Effects of exosomes derived from MDA-MB-231 on proliferation of endothelial cells and the role of MAPK/ERK and PI3K/Akt pathways

    Directory of Open Access Journals (Sweden)

    Shuang LONG

    2012-11-01

    Full Text Available Objective  To investigate the effects of exosomes derived from breast cancer cell line MDA-MB-231 on proliferation of human umbilical cord vein endothelial cells (HUVECs, and evaluate the role of MAPK/ERK and PI3K/Akt signal transduction pathway during the process. Methods  Exosomes were derived and purified from MDA-MB-231 by cryogenic ultracentrifugation and density gradient centrifugation. MTT assay was carried out for measurement of cell proliferation in HUVECs with exosome of 50, 100, 200 and 400μg/ml. The states of cell cycle of HUVECs co-cultured with 200μg/ml exosomes were detected by flow cytometry. The effects of 200μg/ml exosomes on the expression of ERK, Akt and phosphorylated ERK, Akt in HUVECs were detected with Western blotting. Results  Exosomes derived from MDA-MB-231 significantly promoted HUVECs proliferation in a classical time-and dose-dependent manner. Flow cytometry revealed that, co-cultured with 200μg/ml exosomes for 24h, S-phase cells in HUVECs increased, while G1/S phase cells in HUVECs decreased. Western blotting showed that, cocultured with 200μg/ml exosomes for 24h, 48h and 72h, the expressions of phosphorylated ERK and Akt were up-regulated in a time-dependent manner. Conclusion  Exosomes derived from breast cancer cell line MDA-MB-231 may promote HUVECs proliferation, the changes in cell cycle and the continuous activation of the MAPK/ERK and PI3K/Akt signal transduction pathways may be the underlying mechanism.

  13. Mentha arvensis (Linn.)-mediated green silver nanoparticles trigger caspase 9-dependent cell death in MCF7 and MDA-MB-231 cells.

    Science.gov (United States)

    Banerjee, Prajna Paramita; Bandyopadhyay, Arindam; Harsha, Singapura Nagesh; Policegoudra, Rudragoud S; Bhattacharya, Shelley; Karak, Niranjan; Chattopadhyay, Ansuman

    2017-01-01

    Leaf extract of Mentha arvensis or mint plant was used as reducing agent for the synthesis of green silver nanoparticles (GSNPs) as a cost-effective, eco-friendly process compared to that of chemical synthesis. The existence of nanoparticles was characterized by ultraviolet-visible spectrophotometry, dynamic light scattering, Fourier transform infrared spectroscopy, X-ray diffraction, energy-dispersive X-ray analysis, atomic-force microscopy and transmission electron microscopy analyses, which ascertained the formation of spherical GSNPs with a size range of 3-9 nm. Anticancer activities against breast cancer cell lines (MCF7 and MDA-MB-231) were studied and compared with those of chemically synthesized (sodium borohydride [NaBH4]-mediated) silver nanoparticles (CSNPs). Cell survival of nanoparticle-treated and untreated cells was studied by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay. Cell-cycle analyses were carried out using fluorescence-activated cell sorting. Cell morphology was observed by fluorescence microscopy. Expression patterns of PARP1, P53, P21, Bcl2, Bax and cleaved caspase 9 as well as caspase 3 proteins in treated and untreated MCF7 and MDA-MB-231 cells were studied by Western blot method. MTT assay results showed that Mentha arvensis-mediated GSNPs exhibited significant cytotoxicity toward breast cancer cells (MCF7 and MDA-MB-231), which were at par with that of CSNPs. Cell cycle analyses of MCF7 cells revealed a significant increase in sub-G1 cell population, indicating cytotoxicity of GSNPs. On the other hand, human peripheral blood lymphocytes showed significantly less cytotoxicity compared with MCF7 and MDA-MB-231 cells when treated with the same dose. Expression patterns of proteins suggested that GSNPs triggered caspase 9-dependent cell death in both cell lines. The Ames test showed that GSNPs were nonmutagenic in nature. GSNPs synthesized using Mentha arvensis may be considered as a promising anticancer agent in

  14. Cardiotoxin III Inhibits Hepatocyte Growth Factor-Induced Epithelial-Mesenchymal Transition and Suppresses Invasion of MDA-MB-231 Cells.

    Science.gov (United States)

    Tsai, Pei-Chien; Fu, Yaw-Syan; Chang, Long-Sen; Lin, Shinne-Ren

    2016-01-01

    The epithelial-mesenchymal transition (EMT) is the first step required for breast cancer to initiate metastasis. In this study, hepatocyte growth factor (HGF) was used as a metastatic inducer of MDA-MB-231 cells. Cardiotoxin III (CTX III) inhibited HGF-induced morphological changes and upregulation of E-cadherin with the concomitant decrease in N-cadherin and Vimentin protein levels, resulting in inhibition of cell migration and invasion. CTX III-induced downregulation of transcription factors, Snail, Twist, and Slug, in MDA-MB-231 cells. CTX III suppressed c-Met phosphorylation and downstream activation of phosphatidylinositol 3-kinase (PI3K)/Akt and extracellular signal-regulated kinase (ERK)1/2. The c-Met specific inhibitor PHA665752 attenuated ERK1/2 and Akt phosphorylation, cell migration and invasion, as well as the expressional changes of EMT markers induced by HGF. Taken together, our data suggest that CTX III suppresses HGF/c-Met-induced cell migration and invasion by reversing EMT, which involves the inactivation of the HGF/c-Met-mediated ERK1/2 and PI3K/Akt pathways in MDA-MB-231 cells.

  15. Inhibition of MMP-3 activity and invasion of the MDA-MB-231 human invasive breast carcinoma cell line by bioflavonoids

    Institute of Scientific and Technical Information of China (English)

    Kanokkarn PHROMNOI; Supachai YODKEEREE; Songyot ANUCHAPREEDA; Pornngarm LIMTRAKUL

    2009-01-01

    Aim: Stromelysin 1 (matrix metalloproteinase 3; MMP-3) is an enzyme known to be involved in tumor invasion and metastasis. In this study, flavonoids from vegetables and fruits, such as quercetin, kaempferol, genistein, genistin, and daidzein, were tested for their abil-ity to modulate the secretion and activity of MMP-3 in the MDA-MB-231 breast cancer cell line. In addition, we investigated the in vitro effects of flavonoids on MDA-MB-231 cell invasion.Methods: The toxic concentration range of flavonoids was evaluated using the MTr assay. The ability of MDA-MB-231 cells to invade was evaluated using a modified Boyden chamber system. The activity of MMP-3 was determined by casein zymography. The secretion of MMP-3 was evaluated using Western blotting, casein zymography and confirmed by ELISA.Results: Some putative flavonoids, ie, quercetin and kaempferol (flavonols), significantly inhibited the in vitro invasion of MDA-MB-231cells in a concentration-dependent manner, with IC50 values of 27 and 30 pmol/L, respectively. Quercetin and kaempferol also reduced MMP-3 activity in a dose-dependent manner, with IC50 values in the range of 30 μmol/L and 45 μmol/L, respectively. None of the flavonoids had a significant effect on the secretion of MMP-3.Conclusion: These data show that the flavonols quercetin and kaempferol have higher anti-invasion potency and higher MMP-3 inhibi-tory activity than isoflavones genistein, genistin and daidzein. In contrast, neither flavonols nor isofiavones have any effect on MMP-3 secretion.

  16. Antibacterial effect of an extract of the endophytic fungus Alternaria alternata and its cytotoxic activity on MCF-7 and MDA MB-231 tumour cell lines

    Directory of Open Access Journals (Sweden)

    EZHIL ARIVUDAINAMBI U.S.

    2014-06-01

    Full Text Available There is a growing need for new and effective antimicrobial agents to treat life-threatening diseases. Fungal endophytes are receiving increasing attention by natural product chemists due to the diverse and structurally unprecedented compounds, which make them interesting candidates for drug discovery. The present study evaluates the antibacterial activity of ethyl acetate extract of the endophytic fungus Alternaria alternata VN3 on multi-resistant clinical strains of Staphylococcus aureus and Pseudomonas aeruginosa, as well as its cytotoxicity on MCF-7 and MDA MB-231 tumour cell lines of breast cancer. The maximum inhibition zone of 21.4±0.07 mm and 21.5±0.25 mm was observed for S. aureus strain 10 and P. aeruginosa strain 2, respectively. The ethyl acetate extract showed minimal inhibitory concentration ranging from 100 to 900 μg/ml for S. aureus and P. aeruginosa. Further, the ethyl acetate extract of A. alternata VN3 exhibited moderate anticancer activity against MCF-7 and MDA MB-231 cell lines. At 30 μg/ml the cell viability was decreased to 75.5% and 71.8% for MCF-7 and MDA MB-231 cells, respectively. These results clearly indicate that the metabolites of A. alternata VN3 are a potential source for production of new drugs.

  17. Antiangiogenic 1-Aryl-3-[3-(thieno[3,2-b]pyridin-7-ylthio)phenyl]ureas Inhibit MCF-7 and MDA-MB-231 Human Breast Cancer Cell Lines Through PI3K/Akt and MAPK/Erk Pathways.

    Science.gov (United States)

    Machado, Vera A; Peixoto, Daniela; Queiroz, Maria João; Soares, Raquel

    2016-12-01

    Breast cancer is the most frequently diagnosed cancer and the second leading cause of cancer related deaths among women worldwide. The purpose of this study is to evaluate the cytotoxic effects and possible molecular mechanisms of the antiproliferative properties of the antiangiogenic 1-aryl-3-[3-(thieno[3,2-b]pyridin-7-ylthio)phenyl]ureas 1a-e, prepared earlier by us, on two human breast cancer cell lines of distinct histological types: hormone-dependent MCF-7 (ER positive), and hormone independent MDA-MB-231 (ER/PR/HER2 negative), this latter being the most aggressive and difficult to treat. Our findings clearly demonstrated that compounds 1a-e suppress breast cancer cell survival, proliferation, migration, and colony formation at very low concentrations, not showing cytotoxicity in normal human mammary cells (MCF-10A). TUNEL assay demonstrated that compounds 1a-e induced apoptosis in MDA-MB-231, but not in MCF-7 at the concentrations tested. PI3K/Akt and MAPK/Erk cell signaling pathways were investigated using Western blot analysis, revealing that these compounds decrease their activity in both breast cancer cell lines. Compounds 1b (R(2)  = F), 1c (R(2)  = Me), and 1e (R(1)  = Cl, R(2)  = CF3 ) were the most effective particularly in MDA-MB-231 cells. Overall, 1c and 1e compounds are the most promising antitumor compounds. These findings, together with the antiangiogenic activity previously described by us, render these compounds a relevant breakthrough for cancer therapy. J. Cell. Biochem. 117: 2791-2799, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. Progesterone signals through membrane progesterone receptors (mPRs) in MDA-MB-468 and mPR-transfected MDA-MB-231 breast cancer cells which lack full-length and N-terminally truncated isoforms of the nuclear progesterone receptor

    Science.gov (United States)

    Pang, Yefei; Thomas, Peter

    2011-01-01

    The functional characteristics of membrane progesterone receptors (mPRs) have been investigated using recombinant mPR proteins over-expressed in MDA-MB-231 breast cancer cells. Although these cells do not express the full-length progesterone receptor (PR), it is not known whether they express N-terminally truncated PR isoforms which could possibly account for some progesterone receptor functions attributed to mPRs. In the present study, the presence of N-terminally truncated PR isoforms was investigated in untransfected and mPR-transfected MDA-MB-231 cells, and in MDA-MB-468 breast cancer cells. PCR products were detected in PR-positive T47D Yb breast cancer cells using two sets of C-terminus PR primers, but not in untransfected and mPR-transfected MDA-MB-231 cells, nor in MDA-MB-468 cells. Western blot analysis using a C-terminal PR antibody, 2C11F1, showed the same distribution pattern for PR in these cell lines. Another C-terminal PR antibody, C-19, detected immunoreactive bands in all the cell lines, but also recognized α-actinin, indicating that the antibody is not specific for PR. High affinity progesterone receptor binding was identified on plasma membranes of MDA-MB-468 cells which was significantly decreased after treatment with siRNAs for mPRα and mPRβ. Plasma membranes of MDA-MB-468 cells showed very low binding affinity for the PR agonist, R5020, ≤1% that of progesterone, which is characteristic of mPRs. Progesterone treatment caused G protein activation and decreased production of cAMP in MDA-MB-468 cells, which is also characteristic of mPRs. The results indicate that the progestin receptor functions in these cell lines are mediated through mPRs and do not involve any N-terminally truncated PR isoforms. PMID:21291899

  19. Ziyuglycoside I Inhibits the Proliferation of MDA-MB-231 Breast Carcinoma Cells through Inducing p53-Mediated G2/M Cell Cycle Arrest and Intrinsic/Extrinsic Apoptosis

    Science.gov (United States)

    Zhu, Xue; Wang, Ke; Zhang, Kai; Zhang, Ting; Yin, Yongxiang; Xu, Fei

    2016-01-01

    Background: Due to the aggressive clinical behavior, poor outcome, and lack of effective specific targeted therapies, triple-negative breast cancer (TNBC) has currently been recognized as one of the most malignant types of tumors. In the present study, we investigated the cytotoxic effect of ziyuglycoside I, one of the major components extracted from Chinese anti-tumor herbal Radix Sanguisorbae, on the TNBC cell line MDA-MB-231. Methods: The underlying molecular mechanism of the cytotoxic effect ziyuglycoside I on MDA-MB-231 cells was investigated with cell viability assay, flow cytometric analysis and Western blot. Results: Compared to normal mammary gland Hs 578Bst cells, treatment of ziyuglycoside I resulted in a significant growth inhibitory effect on MDA-MB-231 cells. Ziyuglycoside I induced the G2/M phase arrest and apoptosis of MDA-MB-231 cells in a dose-dependent manner. These effects were found to be partially mediated through the up-regulation of p53 and p21WAF1, elevated Bax/Bcl-2 ratio, and the activation of both intrinsic (mitochondrial-initiated) and extrinsic (Fas/FasL-initiated) apoptotic pathways. Furthermore, the p53 specific siRNA attenuated these effects. Conclusion: Our study suggested that ziyuglycoside I-triggered MDA-MB-231 cell cycle arrest and apoptosis were probably mediated by p53. This suggests that ziyuglycoside I might be a potential drug candidate for treating TNBC. PMID:27879682

  20. Ziyuglycoside I Inhibits the Proliferation of MDA-MB-231 Breast Carcinoma Cells through Inducing p53-Mediated G2/M Cell Cycle Arrest and Intrinsic/Extrinsic Apoptosis.

    Science.gov (United States)

    Zhu, Xue; Wang, Ke; Zhang, Kai; Zhang, Ting; Yin, Yongxiang; Xu, Fei

    2016-11-22

    Due to the aggressive clinical behavior, poor outcome, and lack of effective specific targeted therapies, triple-negative breast cancer (TNBC) has currently been recognized as one of the most malignant types of tumors. In the present study, we investigated the cytotoxic effect of ziyuglycoside I, one of the major components extracted from Chinese anti-tumor herbal Radix Sanguisorbae, on the TNBC cell line MDA-MB-231. The underlying molecular mechanism of the cytotoxic effect ziyuglycoside I on MDA-MB-231 cells was investigated with cell viability assay, flow cytometric analysis and Western blot. Compared to normal mammary gland Hs 578Bst cells, treatment of ziyuglycoside I resulted in a significant growth inhibitory effect on MDA-MB-231 cells. Ziyuglycoside I induced the G2/M phase arrest and apoptosis of MDA-MB-231 cells in a dose-dependent manner. These effects were found to be partially mediated through the up-regulation of p53 and p21(WAF1), elevated Bax/Bcl-2 ratio, and the activation of both intrinsic (mitochondrial-initiated) and extrinsic (Fas/FasL-initiated) apoptotic pathways. Furthermore, the p53 specific siRNA attenuated these effects. Our study suggested that ziyuglycoside I-triggered MDA-MB-231 cell cycle arrest and apoptosis were probably mediated by p53. This suggests that ziyuglycoside I might be a potential drug candidate for treating TNBC.

  1. Ziyuglycoside I Inhibits the Proliferation of MDA-MB-231 Breast Carcinoma Cells through Inducing p53-Mediated G2/M Cell Cycle Arrest and Intrinsic/Extrinsic Apoptosis

    Directory of Open Access Journals (Sweden)

    Xue Zhu

    2016-11-01

    Full Text Available Background: Due to the aggressive clinical behavior, poor outcome, and lack of effective specific targeted therapies, triple-negative breast cancer (TNBC has currently been recognized as one of the most malignant types of tumors. In the present study, we investigated the cytotoxic effect of ziyuglycoside I, one of the major components extracted from Chinese anti-tumor herbal Radix Sanguisorbae, on the TNBC cell line MDA-MB-231. Methods: The underlying molecular mechanism of the cytotoxic effect ziyuglycoside I on MDA-MB-231 cells was investigated with cell viability assay, flow cytometric analysis and Western blot. Results: Compared to normal mammary gland Hs 578Bst cells, treatment of ziyuglycoside I resulted in a significant growth inhibitory effect on MDA-MB-231 cells. Ziyuglycoside I induced the G2/M phase arrest and apoptosis of MDA-MB-231 cells in a dose-dependent manner. These effects were found to be partially mediated through the up-regulation of p53 and p21WAF1, elevated Bax/Bcl-2 ratio, and the activation of both intrinsic (mitochondrial-initiated and extrinsic (Fas/FasL-initiated apoptotic pathways. Furthermore, the p53 specific siRNA attenuated these effects. Conclusion: Our study suggested that ziyuglycoside I-triggered MDA-MB-231 cell cycle arrest and apoptosis were probably mediated by p53. This suggests that ziyuglycoside I might be a potential drug candidate for treating TNBC.

  2. Oridonin induces MDA-MB-231 cells apoptosis through PI3K/Akt pathway in vitro%冬凌草甲素通过PI3K/Akt通路诱导MDA-MB-231细胞的凋亡

    Institute of Scientific and Technical Information of China (English)

    汪茗; 章尧; 谢向荣; 戚之琳; 毕富勇

    2013-01-01

    AIM: To research the proliferation inhibitory effect of oridonin on human breast cancer MDA-MB-231 cells and explore the mech anism of the inhibitory effect.METHODS: MDA-MB-231 cells were incubated with oridonin in vitro.Morphological changes of MDA-MB-231 cells induced by oridonin for 24 h were ob served by invert microscrope.The cell viability rate was evaluated by MTT assay.The cell ap-optotic rate was evalutated by flow cytometry (FCM).The apoptosis associated protein level of procaspase-3, PARP,Akt, p-Akt, p-GSK 3β was examined by Western blotting.RESULTS: The apoptosis phenomenon of MDA-MB-231 cells induced by oridonin for 24 h could be ob served.The apoptosis phenomenon of 24 μmol/ L group was more obvious than other groups.The cell viability rate induced by 6,12,24 μmol/ L oridonin was decreased and apoptotic rate was increased in a time- and dose-dependent manner (P<0.01).Oridonin cleaved PARP which is the substrate of caspase-3 in a dose-dependent manner(P<0.05).Oridonin also down- regula ted the protein level of procaspase-3, phospho-Akt(p-Akt) and phospho-GSK3β (p- GSK3β) in a dose-dependent manner(P<0.05).CONCLU SION: Oridonin can inhibit the proliferation of human breast cancer MDA-MB-231 cells and in duce cell apoptosis by inhibiting PI3K/Akt path way.%目的:研究冬凌草甲素对人乳腺癌MDA-MB-231细胞增殖产生的影响,初步探讨其作用机理.方法:体外培养人乳腺癌MDA-MB-231细胞,采用6、12、24 μmol/L冬凌草甲素对其进行处理,采用倒置显微镜进行细胞形态学观察,MTT比色法检测细胞存活率,流式细胞术检测细胞凋亡率,Western blotting检测凋亡相关蛋白procaspase-3、PARP及Akt、p-Akt、p-GSK3β表达的变化.结果:冬凌草甲素作用MDA-MB-231细胞24 h后,可观察到细胞凋亡的形态学改变,以24 μmol/L组最为明显.实验组与对照组相比,细胞存活率显著降低、凋亡率显著升高(P<0.01),具有时间和剂量

  3. Context dependent reversion of tumor phenotype by connexin-43 expression in MDA-MB231 cells and MCF-7 cells: Role of β-catenin/connexin43 association

    Energy Technology Data Exchange (ETDEWEB)

    Talhouk, Rabih S., E-mail: rtalhouk@aub.edu.lb [Department of Biology, Faculty of Arts and Sciences, American University of Beirut, P.O. Box 11-0236, Beirut (Lebanon); Fares, Mohamed-Bilal; Rahme, Gilbert J.; Hariri, Hanaa H.; Rayess, Tina; Dbouk, Hashem A.; Bazzoun, Dana; Al-Labban, Dania [Department of Biology, Faculty of Arts and Sciences, American University of Beirut, P.O. Box 11-0236, Beirut (Lebanon); El-Sabban, Marwan E., E-mail: me00@aub.edu.lb [Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Beirut (Lebanon)

    2013-12-10

    Connexins (Cx), gap junction (GJ) proteins, are regarded as tumor suppressors, and Cx43 expression is often down regulated in breast tumors. We assessed the effect of Cx43 over-expression in 2D and 3D cultures of two breast adenocarcinoma cell lines: MCF-7 and MDA-MB-231. While Cx43 over-expression decreased proliferation of 2D and 3D cultures of MCF-7 by 56% and 80% respectively, MDA-MB-231 growth was not altered in 2D cultures, but exhibited 35% reduction in 3D cultures. C-terminus truncated Cx43 did not alter proliferation. Untransfected MCF-7 cells formed spherical aggregates in 3D cultures, and MDA-MB-231 cells formed stellar aggregates. However, MCF-7 cells over-expressing Cx43 formed smaller sized clusters and Cx43 expressing MDA-MB-231 cells lost their stellar morphology. Extravasation ability of both MCF-7 and MDA-MB-231 cells was reduced by 60% and 30% respectively. On the other hand, silencing Cx43 in MCF10A cells, nonneoplastic human mammary cell line, increased proliferation in both 2D and 3D cultures, and disrupted acinar morphology. Although Cx43 over-expression did not affect total levels of β-catenin, α-catenin and ZO-2, it decreased nuclear levels of β-catenin in 2D and 3D cultures of MCF-7 cells, and in 3D cultures of MDA-MB-231 cells. Cx43 associated at the membrane with α-catenin, β-catenin and ZO-2 in 2D and 3D cultures of MCF-7 cells, and only in 3D conditions in MDA-MB-231 cells. This study suggests that Cx43 exerts tumor suppressive effects in a context-dependent manner where GJ assembly with α-catenin, β-catenin and ZO-2 may be implicated in reducing growth rate, invasiveness, and, malignant phenotype of 2D and 3D cultures of MCF-7 cells, and 3D cultures of MDA-MB-231 cells, by sequestering β-catenin away from nucleus. - Highlights: • Cx43 over-expressing MCF-7 and MDA-MB-231 were grown in 2D and 3D cultures. • Proliferation and growth morphology were affected in a context dependent manner. • Extravasation ability of both MCF

  4. Antiproliferative activity of Alisol B in MDA-MB-231 cells is mediated by apoptosis, dysregulation of mitochondrial functions, cell cycle arrest and generation of reactive oxygen species.

    Science.gov (United States)

    Zhang, Aifeng; Sheng, Yuqing; Zou, Mingchang

    2017-03-01

    Previous studies have demonstrated that Alisol B has inhibitory activity in cancer cells. However, the exact mechanism through which inhibition is achieved is still poorly understood. In the present study, the authors examined the effects of Alisol B in human breast cancer cells. Alisol B showed significant anticancer activity in MDA-MB-231 cells. The results demonstrated that the cytotoxicity induced by Alisol B was mediated by induction of apoptosis, decrease in mitochondrial membrane potential, cell cycle arrest, activation of caspases and accumulation of ROS (reactive oxygen species) level. Interestingly, pretreatment of cells with the general caspase inhibitor z-VAD-FMK significantly prevented Alisol B-induced apoptosis. Furthermore, western blot analysis revealed the upregulation of p-p38 and downregulation of p-AKT, p-p65 and p-mTOR. Taken together, the above results suggest that Alisol B suppresses the growth of MDA-MB-231 cells mainly through induction of apoptosis; this outcome may represent the major mechanism of Alisol B-mediated apoptosis. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  5. LINE-1 ORF-1p functions as a novel HGF/ETS-1 signaling pathway co-activator and promotes the growth of MDA-MB-231 cell.

    Science.gov (United States)

    Yang, Qian; Feng, Fan; Zhang, Fan; Wang, Chunping; Lu, Yinying; Gao, Xudong; Zhu, Yunfeng; Yang, Yongping

    2013-12-01

    Long interspersed nucleotide element (LINE)-1 ORF-1p is encoded by the human pro-oncogene LINE-1. It is involved in the development and progression of several human carcinomas, such as hepatocellular carcinoma and lung and breast cancers. The hepatocyte growth factor (HGF)/ETS-1 signaling pathway is involved in regulation of cancer cell proliferation, metastasis and invasion. The biological function of the interaction between LINE-1 ORF-1p and the HGF/ETS-1 signaling pathway in regulation of human breast cancer proliferation remains largely unknown. Here, we showed that LINE-1 ORF-1p enhanced ETS-1 transcriptional activity and increased expression of downstream genes of ETS-1. Interaction between ETS-1 and LINE-1 ORF-1p was identified by immunoprecipitation assays. LINE-1 ORF-1p modulated ETS-1 activity through cytoplasm/nucleus translocation and recruitment to the ETS-1 binding element in the MMP1 gene promoter. We also showed that LINE-1 ORF-1p promoted proliferation and anchorage-independent growth of MDA-MB-231 breast cancer cells. By investigating a novel role of the LINE-1 ORF-1p in the HGF/ETS-1 signaling pathway and MDA-MB-231 cells, we demonstrated that LINE-1 ORF-1p may be a novel ETS-1 coactivator and molecular target for therapy of human triple negative breast cancer. © 2013.

  6. Mentha arvensis (Linn.-mediated green silver nanoparticles trigger caspase 9-dependent cell death in MCF7 and MDA-MB-231 cells

    Directory of Open Access Journals (Sweden)

    Banerjee PP

    2017-04-01

    Full Text Available Prajna Paramita Banerjee,1 Arindam Bandyopadhyay,1 Singapura Nagesh Harsha,2 Rudragoud S Policegoudra,3 Shelley Bhattacharya,4 Niranjan Karak,2 Ansuman Chattopadhyay1 1Molecular Genetics Laboratory, Department of Zoology, Visva-Bharati, Santiniketan, West Bengal, 2Advanced Polymer and Nanomaterial Laboratory, Department of Chemical Sciences, Center for Polymer Science and Technology, Tezpur University, Napaam, 3Division of Pharmaceutical Technology, Defence Research Laboratory, Tezpur, Assam, 4Environmental Toxicology Laboratory, Department of Zoology, Visva-Bharati, Santiniketan, West Bengal, India Introduction: Leaf extract of Mentha arvensis or mint plant was used as reducing agent for the synthesis of green silver nanoparticles (GSNPs as a cost-effective, eco-friendly process compared to that of chemical synthesis. The existence of nanoparticles was characterized by ultraviolet–visible spectrophotometry, dynamic light scattering, Fourier transform infrared spectroscopy, X-ray diffraction, energy-dispersive X-ray analysis, atomic-force microscopy and transmission electron microscopy analyses, which ascertained the formation of spherical GSNPs with a size range of 3–9 nm. Anticancer activities against breast cancer cell lines (MCF7 and MDA-MB-231 were studied and compared with those of chemically synthesized (sodium borohydride [NaBH4]-mediated silver nanoparticles (CSNPs. Materials and methods: Cell survival of nanoparticle-treated and untreated cells was studied by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT assay. Cell-cycle analyses were carried out using fluorescence-activated cell sorting. Cell morphology was observed by fluorescence microscopy. Expression patterns of PARP1, P53, P21, Bcl2, Bax and cleaved caspase 9 as well as caspase 3 proteins in treated and untreated MCF7 and MDA-MB-231 cells were studied by Western blot method. Results: MTT assay results showed that Mentha arvensis-mediated GSNPs

  7. Estrogenic Activity of Some Phytoestrogens on Bovine Oxytocin and Thymidine Kinase-ERE Promoter through Estrogen Receptor-α in MDA-MB 231 Cells

    Directory of Open Access Journals (Sweden)

    Ehsan Zayerzadeh

    2014-08-01

    Full Text Available Background: Phytoestrogens, a group of plant-derived polyphenolic compounds have recently come into considerable attention due to the increasing information on their potential adverse effects in human health. Some of phytoestrogens show estrogenic activity that may be carcinogenic for human. In the present study, we investigated the transcriptional effects of variety of phytoestrogens on the bovine oxytocin and the thymidine kinase-ERE promoter by estrogen receptor α in MDA-MB 231 breast cancer cell line. Materials and Methods: Cells were seeded for transfections into 12- well plates at a density of 100000 cells per well were transfected with a total of 3 μg of plasmid DNA using calcium phosphate coprecipitation. Estrogen and some phytoestrogens (naringenin, 8-prenyl-naringenin and 6-( 1, 1 - dimethylallyl naringenin were used for the stimulation of transfected cells. Results: Findings of our study clearly demonstrated the subtype-selective activation of estrogen receptor (ERα and (ERβ by the p hytoestrogen naringenin (activating estrogen receptor β and its substituted forms 8-prenyl-naringenin and 6-( 1, 1 - dimethylallyl naringenin (activating estrogen receptor α , on the ERE-controlled promoter as well as on the oxytocin gene promoter. Conclusion: The study revealed that some p hytoestrogen s show estrogenic activity by classical or non-classical mechanisms as well as exhibit estrogenic activity by undetermined mechanisms in transfected MDA-MB 231 cell line.

  8. Induction of acetylation and bundling of cellular microtubules by 9-(4-vinylphenyl) noscapine elicits S-phase arrest in MDA-MB-231 cells.

    Science.gov (United States)

    Cheriyamundath, Sanith; Mahaddalkar, Tejashree; Kantevari, Srinivas; Lopus, Manu

    2017-02-01

    Noscapine is an alkaloid present in the latex of Papaver somniferum. It has been known for its anticancer efficacy and lack of severe toxicities to normal tissues. Structural alterations in noscapine core architecture have produced a number of potent analogues of noscapine. Here, we report an unusual activity of a novel noscapine analogue, 9-(4-vinylphenyl)noscapine (VinPhe-Nos) on cancer cells. As we reported earlier, VinPhe-Nos inhibited MDA-MB-231 cell proliferation with an IC50 of 6μM. The present study elucidated a possible antiproliferative mechanism of action of VinPhe-Nos. The noscapinoid significantly inhibited clonogenic propagation of MDA-MB-231 cells. However, unlike the majority of tubulin-binding agents, it did not induce mitotic arrest; instead, it prolonged S-phase. Although prolonged presence of the drug show some disruption of cellular microtubule architecture, it did not affect microtubule recovery after cold-induced depolymerization. VinPhe-Nos, nevertheless, induced acetylation and bundling of microtubules. Our data suggest that rational modification of parent compound can alter its mechanism of action on cell cycle and that VinPhe-Nos can be investigated further as a less-toxic, S-phase-preferred, cytostatic anticancer agent.

  9. Evaluation of anticancer potential of Bacopa monnieri L. against MCF-7 and MDA-MB 231 cell line

    Directory of Open Access Journals (Sweden)

    Md. Nasar Mallick

    2015-01-01

    Full Text Available Background: The ethanolic extract of Bacopa monnieri contains bacoside A and B, brahmin, cucurbitacins, and betulinic acid. Currently, cucurbitacins have also been reported for their strong anti-tumorigenic and anti-proliferative activity by inducing cell cycle arrest at the G2/M phase and formation of multiplied cells. The present study was carried out to evaluate the in vitro cytotoxic activity of ethanolic extract of dichloromethane (DCM fraction of B. monnieri on two different cell lines. Materials and Methods: The ethanolic extract of B. monnieri was prepared using soxhlet extraction method and different fractions (hexane, DCM, methanol, acetone, and water of ethanolic extracts were prepared. The 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assay of ethanolic extract and of all fractions was carried out on MCF-7 and MDA-MB 231 cell lines. The presence of cucurbitacins and betulinic acid in these fractions was confirmed by high-performance thin layer chromatography. Results: The IC50 values of ethanolic extract of B. monnieri in MCF-7 and MDA-MB 231 cell lines were 72.0 μg/mL and 75.0 μg/mL, respectively. The DCM fraction of B. monnieri showed maximum cytotoxic activity among all fraction upto 72 h and was found to be 57.0 μg/mL and 42.0 μg/mL, respectively. Conclusion: The results showed good cytotoxic activity in DCM fraction in both the cell lines may be due to the presence of cucurbitacins and betulinic acid in DCM fraction.

  10. Effects of cadmium chloride on some mitochondria-related activity and gene expression of human MDA-MB231 breast tumor cells.

    Science.gov (United States)

    Cannino, Giuseppe; Ferruggia, Elisa; Luparello, Claudio; Rinaldi, Anna Maria

    2008-08-01

    It was reported that cadmium is able to exert a cytotoxic effect on tumor MDA-MB231 cells, which shows signs of "non-classical" apoptosis and is characterized by drastic changes in gene expression pattern. In this study, we have extended our knowledge of metal-breast cancer cell interactions by analyzing some mitochondria-related aspects of the stress response to CdCl(2) at either 5 or 50 microM 24- or 96-h exposure, by cytochemical, conventional PCR and Northern/Western blot techniques. We demonstrated that (i) no modification of the mitochondrial mass was detectable due to CdCl(2) exposure; (ii) the respiration activity appeared to be increased after 96-h exposures, while the production of reactive oxygen species was significantly induced, as well; (iii) hsp60, hsp70, COXII and COXIV expressions were dependent on the duration of Cd exposure; (iv) a different hsp60 protein distribution was observed in mitochondrial and post-mitochondrial extracts and (v) 96-h exposure induced the over-expression of hsc/hsp70 proteins and, conversely, the down-regulation of cytochrome oxidase subunits II and IV. These observations, in addition to providing more information on the cellular and molecular aspects of the interaction between CdCl(2) and MDA-MB231 breast tumor cells, contribute to the comprehension of the intracellular molecular mechanisms implicated in the regulation of some mitochondrial proteins.

  11. 乌司他丁和泰索帝对人乳腺癌细胞MDA-MB-231增殖和侵袭的影响及其机制%Effect of Ulinastatin and Taxotere on Proliferation and Invasion of Human Breast Cancer Line MDA-MB-231 Ce1Ps and Relevant Mechanism

    Institute of Scientific and Technical Information of China (English)

    赵晓亮; 孙治君; 罗杰; 高峰

    2011-01-01

    Objective To observe the effect of ulinastatin (ULI)and taxotere (TXT) on proliferation and invasion of human breast cancer MDA-MB-231 cells as well as expressions of IL-6, IL-8 and TNF-α.Methods The estrogen receptor-negative MDAMB-231 cells cultured in vitro were randomly divided into blank control, ULI (800 U/mi), TXT (3.7 μg/ml) and ULI + TXT groups, and determined for the transcription levels of IL-6, IL-8 and TNF-α mRNAs by fluorescent quantitative RT-PCR, for proliferation ability by MTF method, and for invasion ability by Transwell chamber assay.Results Both TXT and ULI inhibited the expressions of IL-6, IL-8 and TNF-α genes as well as the proliferation and invasion of MDA-MB-231 cells, while the inhibition ability of ULI was lower than that of TXT.However, TXT combined with ULI showed the strongest inhibitory effect in all the four groups.Conclusion ULI inhibited the proliferation and invasion of human breast cancer MDA-MB-231 cells by a mechanism which might be associated with the down-regulation of expressions of IL-6, IL-8 and TNF-α genes.%目的 探讨乌司他丁(Ulinastatin,ULI)和泰索帝(Taxotere,TXT)对人乳腺癌细胞MDA-MB-231增殖、侵袭及白细胞介素-6(IL-6)、白细胞介素-8(IL-8)、肿瘤坏死因子-α(TNF-α)表达的影响.方法 将体外培养的人乳腺癌细胞MDA-MB-231(雌激素受体阴性)随机分为4组:对照组、ULI组(800 U/ml),TXT组(3.7 Rg/ml)和ULI+TXT组,采用荧光定量RT-PCR法检测细胞IL-6、IL-8和TNF-α基因mRNA的转录水平;MTT法检测细胞的增殖能力;TransweⅡ小室侵袭试验检测细胞的浸润能力.结果 TXT和ULI均能抑制MDA-MB-231细胞IL-6、IL-8和TNF-α基因的表达及细胞的增殖和侵袭能力,ULI的抑制作用低于TXT,但TXT与ULI联合应用,抑制作用最强.结论 ULI能抑制人乳腺癌细胞MDA-MB-231的增殖、侵袭,其作用机制可能与ULI降低IL-6、IL-8及TNF-α基因的表达有关.

  12. Platycodin D, a metabolite of Platycodin grandiflorum, inhibits highly metastatic MDA-MB-231 breast cancer growth in vitro and in vivo by targeting the MDM2 oncogene.

    Science.gov (United States)

    Kong, Ya; Lu, Zong-Liang; Wang, Jia-Jia; Zhou, Rui; Guo, Jing; Liu, Jie; Sun, Hai-Lan; Wang, He; Song, Wei; Yang, Jian; Xu, Hong-Xia

    2016-09-01

    The objective of the present study was to explore the in vitro and in vivo anticancer effects of Platycodin D (PD), derived from Platycodin grandiflorum, on highly metastatic MDA-MB-231 breast cancer cells. Using the MTT assay, we found that PD inhibited MDA-MB-231 cell growth in a concentration-dependent manner, with an IC50 value of 7.77±1.86 µM. Further studies showed that PD had anti-proliferative effects and induced cell cycle arrest in the G0/G1 phase. To explore the detailed mechanism(s) by which PD suppressed MDA-MB-231 cell growth, western blot analyses were used to detect the expression levels of proteins related to cell proliferation and survival. The data showed that PD decreased the expression of proteins related to the G0/G1 phases, downregulated the protein expression of MDM2, MDMX, and mutant p53, and increased the expression levels of p21 and p27 in vitro. We verified the effects of PD on the expression of MDM2, MDMX, mutant p53, p21 and p27 using a pcDNA3-Flag-MDM2 plasmid and MDM2 siRNA transfection, and found that PD inhibited MDA-MB-231 cell viability by targeting MDM2 and mutant p53. Compared with the corresponding parental cells, the cells with siRNA-MDM2 transfection had a greater decrease in cell viability and proliferation, while those with pcDNA3-MDM2 plasmid transfection did not show any increase in the effects of PD. We also established a MDA-MB-231 xenograft model in BALB/c nude mice, and found that PD significantly inhibited the growth of MDA-MB-231 xenograft tumors in these mice. The expression levels of various proteins in the tumor tissue exhibited changes similar to those observed in vitro. These findings indicate that PD exerted in vitro and in vivo anticancer effects against MDA-MB-231 breast cancer cells, that PD is a potential MDM2/MDMX inhibitor, and that the anticancer effects of PD were likely associated with its inhibition of these proteins. Our observations help to identify a mechanism by which PD functions as

  13. 多聚腺苷二磷酸核糖聚合酶抑制剂AG014699联合化疗对三阴性乳腺癌细胞株MDA-MB-231增殖的影响%Effects of Poly (ADP-ribose) Polymerase Inhibitor AG014699 Combined with Chemotherapy on the Proliferation of Triple-negative Breast Cancer Cell Line MDA-MB-231

    Institute of Scientific and Technical Information of China (English)

    孙颖; 丁焕; 黎晓晴; 黎莉

    2014-01-01

    目的 研究多聚腺苷二磷酸核糖聚合酶(PARP)抑制剂AG014699联合多西他赛(DTX)或卡铂(CBP)对三阴性乳腺癌细胞株MDA-MB-231增殖的影响,探讨PARP抑制剂AG014699联合化疗是否有协同抗肿瘤效应.方法 PARP抑制剂AG014699与DTX、CBP单独或联合作用于MDA-MB-231细胞,细胞增殖及细胞毒性实验法检测细胞增殖并用联合用药公式分析合用效应(q值0.85~1.15为单纯相加,>1.15为协同,<0.85为拮抗);流式细胞仪分析细胞凋亡及周期分布.结果 PARP抑制剂AG014699、DTX、CBP单独作用于MDA-MB-231细胞,均可抑制增殖,诱导凋亡,引起细胞周期阻滞;PARP抑制剂AG014699(10μmol/L)与DTX (10-8、10-7、10-6、10-5 mol/L)、CBP (10-5、10-4 mol/L)联合作用时,q值在0.85 ~1.15,显示相加效应;PARP抑制剂AG014699与CBP (10-3 mol/L)联合作用时,q值>1.15,显示协同效应.PARP抑制剂AG014699联合DTX或CBP能进一步促进凋亡,并使G2/M期细胞比例增加.结论 PARP抑制剂AG014699联合化疗药物DTX或CBP能显著抑制MDA-MB-231细胞增殖,发挥相加或协同抗肿瘤作用.

  14. The dose dependent in vitro responses of MCF-7 and MDA-MB-231 cell lines to extracts of Vatica diospyroides symington type SS fruit include effects on mode of cell death

    Science.gov (United States)

    Srisawat, Theera; Sukpondma, Yaowapa; Graidist, Potchanapond; Chimplee, Siriphon; Kanokwiroon, Kanyanatt

    2015-01-01

    Background: Vatica diospyroides type LS is a known source of valuable compounds for cancer treatment, however, in contrast little is known about therapeutic efficacy of type SS. Objective: This study focused on in vitro cytotoxicity of these fruit extracts, and the cell death mode they induce in breast cancer cells. Materials and Methods: Acetone extracts of fruit were tested for cytotoxicity against MCF-7 and MDA-MB-231 cell lines. The apoptosis and necrosis of these cells were quantified by fluorescence activated cell sorter (FACS) and western blot analyses. Results: After 72 h of treatment, the 50% growth inhibition concentrations (IC50) levels were 16.21 ± 0.13 µg/mL against MCF-7 and 30.0 ± 4.30 µg/mL against MDA-MB-231, indicating high and moderate cytotoxicity, respectively. From the FACS results, we estimate that the cotyledon extract at half IC50 produced 11.7% dead MCF-7 cells via apoptosis, whereas another concentrations both apoptosis and necrosis modes co-existed in a dose-dependent manner. In MDA-MB-231 cell line, only the apoptosis was induced by the pericarp extract in a dose-dependent manner. With the extracts at half IC50 concentration, in both cells, the expression of p21 decreased while that of Bax increased within 12–48 h of dosing, confirming apoptosis induced by time-dependent responses. Apoptosis dependent on p53 was found in MCF-7, whereas the mutant p53 of MDA-MB-231 cells was expressed. Conclusion: The results indicate that fruit extracts of V. diospyroides have cytotoxic effects against MCF-7 and MDA-MB-231 cells via apoptosis pathway in a dose-dependent manner. This suggests that the extracts could provide active ingredients for the development, targeting breast cancer therapy. PMID:26109760

  15. miRNA-199 a-5 p通过SP1调节ERK5抑制乳腺癌MDA-MB-231细胞侵袭的机制%miRNA-199 a-5 p inhibit the invasion of MDA-MB-231 cells via regulating ERK5 through SP1

    Institute of Scientific and Technical Information of China (English)

    翟丽敏; 杨硕; 李文通

    2015-01-01

    目的:探讨miR-199a-5p对乳腺癌MDA-MB-231细胞的侵袭影响及其作用机制。方法转染miR-199a-5p mimic至MDA-MB-231细胞,Transwell侵袭实验检测miR-199a-5p对MDA-MB-231细胞侵袭能力的影响。采用细胞免疫荧光、Western blot法检测上皮细胞-间充质转化( epithelial-mesenchymal transition, EMT)分子标志物 E-cadherin、vimentin 的表达。应用Western blot法检测miR-199a-5p mimic及其LNA-siRNA对ERK5、pERK5、EGF、SP1表达的影响。染色体免疫共沉淀( chroma-tin immunoprecipitation, CHIP)技术检测SP1是否与ERK5启动子区结合。结果 miR-199a-5p能抑制MDA-MB-231细胞的侵袭,降低vimentin的表达,增强E-cadherin的表达。同时,miR-199a-5p降低ERK5表达并抑制其磷酸化;EGF、SP1的表达也相应减少。相反,应用LNA-siRNA抑制miR-199a-5p后,ERK5、pERK5、EGF、SP1的表达上调。 CHIP结果显示SP1能与ERK5启动子区结合。结论 miR-199a-5p通过调节EGF、SP1下调ERK5的表达并抑制其磷酸化,进而发挥对乳腺癌MDA-MB-231细胞侵袭的抑制作用。%Purpose To study the effect and mechanism of miR-199a-5p on the invasion of breast cancer MDA-MB-231 cells. Meth-ods miR-199a-5p mimic was transfected into MDA-MB-231 cells. Influence of miR-199a-5p on the invasion of MDA-MB-231 cell was displayed by Transwell, the expression of epithelial-mesenchymal transition ( EMT) molecular markers ( E-cadherin, vimentin) regulated by miR-199a-5p was determined using immunofluorescence and Western blot. Western blot was employed to assess the levels of ERK5, pERK5, EGF and SP1 in MDA-MB-231 cells dealt with miR-199a-5p mimic and LNA-siRNA. Chromatin immunoprecipita-tion (CHIP) was applied for displaying the reaction of SP1 with ERK5 promoter. Results miR-199a-5p could inhibit the invasion of MDA-MB-231 cells, decrease the expression of vimentin and enhance E-cadherin. Meanwhile, miR-199a-5p decreased the expression of ERK5 and pERK5, the levels of EGF and SP1 were

  16. Methanol extract of Codium fragile inhibits tumor necrosis factor-α-induced matrix metalloproteinase-9 and invasiveness of MDA-MB-231 cells by suppressing nuclear factor-κB activation.

    Science.gov (United States)

    Dilshara, Matharage Gayani; Jayasooriya, Rajapaksha Gedara Prasad Tharanga; Kang, Chang-Hee; Choi, Yung-Hyun; Kim, Gi-Young

    2016-06-01

    To evaluate whether the methanol extract of Codium fragile (MECF) regulates tumor necrosis factor-α (TNF-α)-induced invasion of human breast cancer MDA-MB-231 cells by suppressing matrix metalloproteinase-9 (MMP-9). Reverse transcription-polymerase chain reaction (RT-PCR) and western blot analysis were performed to analyze the expression of MMP-9 and nuclear factor-κB (NF-κB) subunits, p65 and p50, and IκB in MDA-MB-231 cells. 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was used for cell viability. MMP-9 activity and invasion were measured by gelatin zymography and a matrigel invasion assay, respectively. NF-κB activity was measured by an electrophoretic mobility shift assay and luciferase activity. MECF had no effect on cell viability up to a concentration of 100 μg/mL in human breast cancer MDA-MB-231 cells regardless of the presence of TNF-α. MDA-MB-231 cells that were stimulated with TNF-α showed a marked increase of invasion compared to the untreated control, whereas pretreatment with MECF downregulated the TNF-α-induced invasion of MDA-MB-231 cells. Additionally, zymography, western blot analysis, and RT-PCR confirmed that MECF decreased TNF-α-induced MMP-9 expression and activity which is a key regulator for cancer invasion. According to an electrophoretic morbidity shift assay, pretreatment with MECF in MDA-MB-231 cells significantly decreased the TNF-α-induced DNA-binding activity of NF-κB, which is an important transcription factor for regulating cancer invasion-related genes such as MMP-9. Furthermore, treatment with MECF sustained the expression of p65 and p50 in response to TNF-α in the cytosolic compartment. The luciferase assay demonstrated that MECF attenuated TNF-α-induced NF-κB luciferase activity. MECF exhibited its anti-invasive capability by downregulating TNF-α-induced MMP-9 expression, resulting from the suppression of NF-κB activity in the human breast cancer cell line MDA-MB-231

  17. Inhibition of janus kinase 2 by compound AG490 suppresses the proliferation of MDA-MB-231 cells via up-regulating SARI (suppressor of AP-1, regulated by IFN).

    Science.gov (United States)

    Zhang, Yan-Xia; Yan, Li; Liu, Guang-Yu; Chen, Wen-Jun; Gong, Wei-Hong; Yu, Jin-Ming

    2015-06-01

    The Janus kinase-signal transducers and activators of transcription signaling pathway (JAK/STAT pathway) play an important role in proliferation of breast cancer cells. Previous data showed that inhibition of STAT3 suppresses the growth of breast cancer cells, but the associated mechanisms are not well understood. This study aims to investigate the effect and associated mechanisms of JAK/STAT pathway inhibitor AG490 on proliferation and suppression of breast cancer cells. CCK-8 assay and trypan blue exclusion assay were used to investigate the cytotoxicity of AG490 to MDA-MB-231 cells. Real-time PCR was used to detect the mRNA level of SARI (suppressor of AP-1, regulated by IFN). Western blot was used to analyze the protein levels of SARI, phospho-STAT3 and total STAT3. Luciferase reporter assay was adopted to explore the mechanism of SARI mRNA upregulation. AG490 suppressed the proliferation of MDA-MB-231 cells in a dose-dependent manner. AG490 significantly up-regulated the mRNA and protein levels of SARI in MDA-MB-231 cells. Knockdown of SARI obviously attenuated AG490-induced growth suppression effect in MDA-MB-231 cells. Furthermore, AG490 dramatically enhanced the transcription activity of SARI promoter. But the transcription activity of truncated SARI promoter, which does not contain STAT3 binding site, cannot be activated by AG490 treatment. We demonstrate in this study that AG490 suppresses the proliferation of MDA-MB-231 cells through transcriptional activation of SARI.

  18. Changes in cell migration due to the combined effects of sonodynamic therapy and photodynamic therapy on MDA-MB-231 cells

    Science.gov (United States)

    Wang, Haiping; Wang, Pan; Zhang, Kun; Wang, Xiaobing; Liu, Quanhong

    2015-03-01

    Sono-photodynamic therapy is an emerging method with an increasing amount of research having demonstrated its anti-cancer efficacy. However, the impacts of cell migration ability after sono-photodynamic therapy have seldom been reported. In this study, we identified cell migration by wound healing and transwell assays. Significant inability of cell migration was observed in combined groups accompanied by the decline of cell adhesion. Cells in combined treatment groups showed serious microfilament network collapse as well as decreased expression of matrix metalloproteinases-9. These results suggested that sono-photodynamic therapy could inhibit MDA-MB-231 cell migration and that the microfilament and matrix metalloproteinases-9 disorder might be involved.

  19. Activation of H-Ras and Rac1 correlates with epidermal growth factor-induced invasion in Hs578T and MDA-MB-231 breast carcinoma cells.

    Science.gov (United States)

    Koh, Min-Soo; Moon, Aree

    2011-03-01

    There is considerable experimental evidence that hyperactive Ras proteins promote breast cancer growth and development including invasiveness, despite the low frequency of mutated forms of Ras in breast cancer. We have previously shown that H-Ras, but not N-Ras, induces an invasive phenotype mediated by small GTPase Rac1 in MCF10A human breast epithelial cells. Epidermal growth factor (EGF) plays an important role in aberrant growth and metastasis formation of many tumor types including breast cancer. The present study aims to investigate the correlation between EGF-induced invasiveness and Ras activation in four widely used breast cancer cell lines. Upon EGF stimulation, invasive abilities and H-Ras activation were significantly increased in Hs578T and MDA-MB-231 cell lines, but not in MDA-MB-453 and T47D cell lines. Using small interfering RNA (siRNA) to target H-Ras, we showed a crucial role of H-Ras in the invasive phenotype induced by EGF in Hs578T and MDA-MB-231 cells. Moreover, siRNA-knockdown of Rac1 significantly inhibited the EGF-induced invasiveness in these cells. Taken together, this study characterized human breast cancer cell lines with regard to the relationship between H-Ras activation and the invasive phenotype induced by EGF. Our data demonstrate that the activation of H-Ras and the downstream molecule Rac1 correlates with EGF-induced breast cancer cell invasion, providing important information on the regulation of malignant progression in mammary carcinoma cells.

  20. Neohesperidin induces cellular apoptosis in human breast adenocarcinoma MDA-MB-231 cells via activating the Bcl-2/Bax-mediated signaling pathway.

    Science.gov (United States)

    Xu, Fei; Zang, Jia; Chen, Daozhen; Zhang, Ting; Zhan, Huiying; Lu, Mudan; Zhuge, Hongxiang

    2012-11-01

    Neohesperidin, a flavonoid compound found in high amounts in Poncirus trifoliata, has free radical scavenging activity. For the first time, our study indicated that neohesperidin also induces cell apoptosis in human breast adenocarcinoma MDA-MB-231 cells, which was possibly mediated by regulating the P53/Bcl-2/Bax pathway. MDA-MB-231 cells were subjected to treatment with neohesperidin. MTT and Trypan blue exclusion assays were applied to assess the cell viability. The morphological changes of cells were observed using an inverted microscope, and cell apoptosis was detected by flow cytometric analysis. Immunoblot analysis was conducted to evaluate the protein expressions of apoptosis-related genes, including P53, Bcl-2 and Bax. Our results indicated that the proliferation of MDA-MB-231 cells was inhibited by the treatment with neohesperidin in a time- and dose-dependent manner. The IC50 values of neohesperidin at 24 and 48 h were 47.4 +/- 2.6 microM and 32.5 +/- 1.8 microM, respectively. The expressions of P53 and Bax in the neohesperidin-treated cells were significantly up-regulated, while that of Bcl-2 was down-regulated. Our study suggested that neohesperidin could induce apoptosis of MDA-MB-231 cells, a process which was associated with the activation of the Bcl-2/Bax-mediated signaling pathway.

  1. Notch-1 signaling activates NF-κB in human breast carcinoma MDA-MB-231 cells via PP2A-dependent AKT pathway.

    Science.gov (United States)

    Li, Li; Zhang, Jing; Xiong, Niya; Li, Shun; Chen, Yu; Yang, Hong; Wu, Chunhui; Zeng, Hongjuan; Liu, Yiyao

    2016-04-01

    Breast cancer has a high incidence in the world and is becoming a leading cause of death in female patients due to its high metastatic ability. High expression of Notch-1 and its ligand Jagged-1 correlates with poor prognosis in breast cancer. Our previous work has shown that Notch-1 signaling pathway upregulates NF-κB transcriptional activity and induces the adhesion, migration and invasion of human breast cancer cell line MDA-MB-231. However, the role of Notch-1 in NF-κB activation is still poorly understood. Here, we aim to understand the exact mechanism that Notch-1 regulates NF-κB activity. In MDA-MB-231 cells where Notch-1 is constitutively activated, the phosphorylation of p85 and AKT (Tyr308/Ser473) is upregulated, indicating PI3K/AKT pathway is activated. Notch-1 activation caused the increase of PP2A phosphorylation at Tyr307, indicating Notch-1 inhibits PP2A activity. NF-κB transcriptional activity was evaluated by dual-luciferase reporter assay, and the results showed that, while silencing of Notch-1, PP2A activity was upregulated and NF-κB activity was downregulated, whereas PP2A inhibitor okadaic acid (OA) restored NF-κB activity. Immunofluorescence and Western blots showed that OA treatment antagonized the decrease of p65 nuclear translocation caused by Notch-1 silencing. Moreover, OA treatment also upregulated MMP-2, MMP-9 and VEGF mRNA expression levels, indicating OA rescues Notch-1 silencing that caused low cell invasion. Taken together, our results suggest that Notch-1-activating PI3K/AKT/NF-κB pathway is PP2A dependent; PP2A may be a potential therapeutic target in breast cancer.

  2. Proteomic and bioinformatic analyses of possible target-related proteins of gambogic acid in human breast carcinoma MDA-MB-231 cells.

    Science.gov (United States)

    Li, Dong; Song, Xiao-Yi; Yue, Qing-Xi; Cui, Ya-Jun; Liu, Miao; Feng, Li-Xing; Wu, Wan-Ying; Jiang, Bao-Hong; Yang, Min; Qu, Xiao-Bo; Liu, Xuan; Guo, De-An

    2015-01-01

    Gambogic acid (GA) is an anticancer agent in phase ‖b clinical trial in China but its mechanism of action has not been fully clarified. The present study was designed to search the possible target-related proteins of GA in cancer cells using proteomic method and establish possible network using bioinformatic analysis. Cytotoxicity and anti-migration effects of GA in MDA-MB-231 cells were checked using MTT assay, flow cytometry, wound migration assay, and chamber migration assay. Possible target-related proteins of GA at early (3 h) and late stage (24 h) of treatment were searched using a proteomic technology, two-dimensional electrophoresis (2-DE). The possible network of GA was established using bioinformatic analysis. The intracellular expression levels of vimentin, keratin 18, and calumenin were determined using Western blotting. GA inhibited cell proliferation and induced cell cycle arrest at G2/M phase and apoptosis in MDA-MB-231 cells. Additionally, GA exhibited anti-migration effects at non-toxic doses. In 2-DE analysis, totally 23 possible GA targeted proteins were found, including those with functions in cytoskeleton and transport, regulation of redox state, metabolism, ubiquitin-proteasome system, transcription and translation, protein transport and modification, and cytokine. Network analysis of these proteins suggested that cytoskeleton-related proteins might play important roles in the effects of GA. Results of Western blotting confirmed the cleavage of vimentin, increase in keratin 18, and decrease in calumenin levels in GA-treated cells. In summary, GA is a multi-target compound and its anti-cancer effects may be based on several target-related proteins such as cytoskeleton-related proteins.

  3. Oleanolic acid induces migration in Mv1Lu and MDA-MB-231 epithelial cells involving EGF receptor and MAP kinases activation

    Science.gov (United States)

    Ruzafa-Martínez, María; Ramos-Morcillo, Antonio Jesús

    2017-01-01

    During wound healing, skin function is restored by the action of several cell types that undergo differentiation, migration, proliferation and/or apoptosis. These dynamics are tightly regulated by the evolution of the extra cellular matrix (ECM) contents along the process. Pharmacologically active flavonoids have shown to exhibit useful physiological properties interesting in pathological states. Among them, oleanolic acid (OA), a pentacyclic triterpene, shows promising properties over wound healing, as increased cell migration in vitro and improved wound resolution in vivo. In this paper, we pursued to disclose the molecular mechanisms underlying those effects, by using an in vitro scratch assay in two epithelial cell lines of different linage: non-malignant mink lung epithelial cells, Mv1Lu; and human breast cancer cells, MDA-MB-231. In every case, we observed that OA clearly enhanced cell migration for in vitro scratch closure. This correlated with the stimulation of molecular pathways related to mitogen-activated protein (MAP) kinases, as ERK1,2 and Jun N-terminal kinase (JNK) 1,2 activation and c-Jun phosphorylation. Moreover, MDA-MB-231 cells treated with OA displayed an altered gene expression profile affecting transcription factor genes (c-JUN) as well as proteins involved in migration and ECM dynamics (PAI1), in line with the development of an epithelial to mesenchymal transition (EMT) status. Strikingly, upon OA treatment, we observed changes in the epidermal growth factor receptor (EGFR) subcellular localization, while interfering with its signalling completely prevented migration effects. This data provides a physiological framework supporting the notion that lipophilic plant extracts used in traditional medicine, might modulate wound healing processes in vivo through its OA contents. The molecular implications of these observations are discussed. PMID:28231262

  4. Study by Monte Carlo simulation of the absorbed dose in cells of breast cancer of the line MDA-MB231, due to sources of {sup 111}In, {sup 177}Lu and {sup 99m}Tc internalized in the nucleus. First results; Estudio por simulacion Monte Carlo de la dosis absorbida en celulas de cancer de seno de la linea MDA-MB231, debida a fuentes de {sup 11I}n, {sup 177}Lu y {sup 99m}Tc internalizadas en el nucleo. Primeros resultados

    Energy Technology Data Exchange (ETDEWEB)

    Rojas C, E. L.; Perez A, M., E-mail: leticia.rojas@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2011-11-15

    The necessity to design innovative treatments and to diagnose the cancer early, has taken to investigate therapies at cellular and molecular level. The design of appropriate radio-molecules to these therapies makes necessary to characterize in way exhaustive radionuclides that they are of accessible production in our country and to study as distributing the dose at cellular level with bio-molecules glued them. In this context, was realized the present work. Using Monte Carlo simulation, the energy deposited in a geometric model of cells of breast cancer was obtained, MDA-MB231, due to different radionuclides. The energy deposited in the nucleus was evaluated, in the cytoplasm and in the membrane of the cell, using the simulation code Monte Carlo Penelope 2008. A punctual source was simulated in the center of the cell nucleus. In each case all the emissions of each radionuclide majors to 400 eV were simulated. The energies deposited by disintegration in the nucleus, cytoplasm, membrane of the cell and in a sphere of 2 cm surrounding the source (in eV) were: 4.30E3, 4.85E2, 1.07E2 and 3.29E4, correspondingly, for the {sup 111}In; 4.46E3, 3.76E3, 1.26E3 and 1.33E5 for the {sup 177}Lu and; 2.12E3, 2.58E2, 9.33E1 and 1.88E4 for the {sup 99m}Tc. We can conclude that if the union of these radionuclides happens to a compound that was internalized to the cell nucleus, the best for therapy at this level is the conjugate with the {sup 177}Lu, followed by that with {sup 111}In and in third place that with {sup 99m}Tc. (Author)

  5. A Breast Cell Atlas: Organelle analysis of the MDA-MB-231 cell line by density-gradient fractionation using isotopic marking and label-free analysis

    Directory of Open Access Journals (Sweden)

    Marianne Sandin

    2015-09-01

    Full Text Available Protein translocation between organelles in the cell is an important process that regulates many cellular functions. However, organelles can rarely be isolated to purity so several methods have been developed to analyse the fractions obtained by density gradient centrifugation. We present an analysis of the distribution of proteins amongst organelles in the human breast cell line, MDA-MB-231 using two approaches: an isotopic labelling and a label-free approach.

  6. Identification of Novel Human Breast Carcinoma (MDA-MB-231 Cell Growth Modulators from a Carbohydrate-Based Diversity Oriented Synthesis Library

    Directory of Open Access Journals (Sweden)

    Elena Lenci

    2016-10-01

    Full Text Available The application of a cell-based growth inhibition on a library of skeletally different glycomimetics allowed for the selection of a hexahydro-2H-furo[3,2-b][1,4]oxazine compound as candidate inhibitors of MDA-MB-231 cell growth. Subsequent synthesis of analogue compounds and preliminary biological studies validated the selection of a valuable hit compound with a novel polyhydroxylated structure for the modulation of the breast carcinoma cell cycle mechanism.

  7. Identification of Novel Human Breast Carcinoma (MDA-MB-231) Cell Growth Modulators from a Carbohydrate-Based Diversity Oriented Synthesis Library.

    Science.gov (United States)

    Lenci, Elena; Innocenti, Riccardo; Biagioni, Alessio; Menchi, Gloria; Bianchini, Francesca; Trabocchi, Andrea

    2016-10-20

    The application of a cell-based growth inhibition on a library of skeletally different glycomimetics allowed for the selection of a hexahydro-2H-furo[3,2-b][1,4]oxazine compound as candidate inhibitors of MDA-MB-231 cell growth. Subsequent synthesis of analogue compounds and preliminary biological studies validated the selection of a valuable hit compound with a novel polyhydroxylated structure for the modulation of the breast carcinoma cell cycle mechanism.

  8. 1,2,3,4,6-Penta-O-galloylglucose within Galla Chinensis Inhibits Human LDH-A and Attenuates Cell Proliferation in MDA-MB-231 Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Shihab Deiab

    2015-01-01

    Full Text Available A characteristic feature of aggressive malignancy is the overexpression of lactic acid dehydrogenase- (LDH- A, concomitant to pericellular accumulation of lactate. In a recent high-throughput screening, we identified Rhus chinensis (Mill. gallnut (RCG (also known as Galla Chinensis extract as a potent (IC50 < 1 µg/mL inhibitor of human LDH-A (hLDH-A. In this study, through bioactivity guided fractionation of the crude extract, the data demonstrate that penta-1,2,3,4,6-O-galloyl-β-D-glucose (PGG was a primary constituent responsible for hLDH-A inhibition, present at ~9.95 ± 0.34% dry weight. Theoretical molecular docking studies of hLDH-A indicate that PGG acts through competitive binding at the NADH cofactor site, effects confirmed by functional enzyme studies where the IC50 = 27.32 nM was reversed with increasing concentration of NADH. Moreover, we confirm protein expression of hLDH-A in MDA-231 human breast carcinoma cells and show that PGG was toxic (LC50 = 94.18 µM, parallel to attenuated lactic acid production (IC50 = 97.81 µM. In a 72-hour cell proliferation assay, PGG was found to be a potent cytostatic agent with ability to halt cell division (IC50 = 1.2 µM relative to paclitaxel (IC50 < 100 nM. In summary, these findings demonstrate that PGG is a potent hLDH-A inhibitor with significant capacity to halt proliferation of human breast cancer cells.

  9. 1,2,3,4,6-Penta-O-galloylglucose within Galla Chinensis Inhibits Human LDH-A and Attenuates Cell Proliferation in MDA-MB-231 Breast Cancer Cells.

    Science.gov (United States)

    Deiab, Shihab; Mazzio, Elizabeth; Eyunni, Suresh; McTier, Oshlii; Mateeva, Nelly; Elshami, Faisel; Soliman, Karam F A

    2015-01-01

    A characteristic feature of aggressive malignancy is the overexpression of lactic acid dehydrogenase- (LDH-) A, concomitant to pericellular accumulation of lactate. In a recent high-throughput screening, we identified Rhus chinensis (Mill.) gallnut (RCG) (also known as Galla Chinensis) extract as a potent (IC50 < 1 µg/mL) inhibitor of human LDH-A (hLDH-A). In this study, through bioactivity guided fractionation of the crude extract, the data demonstrate that penta-1,2,3,4,6-O-galloyl-β-D-glucose (PGG) was a primary constituent responsible for hLDH-A inhibition, present at ~9.95 ± 0.34% dry weight. Theoretical molecular docking studies of hLDH-A indicate that PGG acts through competitive binding at the NADH cofactor site, effects confirmed by functional enzyme studies where the IC50 = 27.32 nM was reversed with increasing concentration of NADH. Moreover, we confirm protein expression of hLDH-A in MDA-231 human breast carcinoma cells and show that PGG was toxic (LC50 = 94.18 µM), parallel to attenuated lactic acid production (IC50 = 97.81 µM). In a 72-hour cell proliferation assay, PGG was found to be a potent cytostatic agent with ability to halt cell division (IC50 = 1.2 µM) relative to paclitaxel (IC50 < 100 nM). In summary, these findings demonstrate that PGG is a potent hLDH-A inhibitor with significant capacity to halt proliferation of human breast cancer cells.

  10. A Benzochalcone Derivative, (E-1-(2-hydroxy-6-methoxyphenyl-3-(naphthalen-2-ylprop-2-en-1-one (DK-512, Inhibits Tumor Invasion through Inhibition of the TNFα-Induced NF-κB/MMP-9 Axis in MDA-MB-231 Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Soon Young Shin

    2016-01-01

    Full Text Available Tumor invasion is a critical step in tumor metastasis. In this study, we synthesized a novel benzochalcone derivative, (E-1-(2-hydroxy-6-methoxyphenyl-3-(naphthalen-2-yl prop-2-en-1-one (DK-512, and characterized its effects on tumor invasion and its mechanism of action. We found that DK-512 strongly inhibited invasion of metastatic MDA-MB-231 breast cancer cells as revealed by a three-dimensional spheroid culture system. Tumor invasion and metastasis require disruption of the extracellular matrix. Matrix metalloproteinase-9 (MMP-9 is an endopeptidase that degrades extracellular matrix components. DK-512 significantly reduced tumor necrosis factor-α- (TNFα- induced MMP-9 mRNA expression through the inhibition of RelA nuclear factor- (NF- κB transcription factor. As our study was assessed in vitro, further works about in vivo efficacy of DK-512 are needed to gain further insights into whether DK-512 could be utilized as a scaffold for the development of antimetastatic agents for breast cancer.

  11. In situ morphological assessment of apoptosis induced by Phaleria macrocarpa (Boerl.) fruit ethyl acetate fraction (PMEAF) in MDA-MB-231 cells by microscopy observation.

    Science.gov (United States)

    Kavitha, Nowroji; Chen, Yeng; Kanwar, Jagat R; Sasidharan, Sreenivasan

    2017-03-01

    Phaleria macrocarpa (Boerl.) is a well-known medicinal plant and have been extensively used as traditional medicine for ages in treatment of various diseases. The purpose of this study was to determine the in situ cytotoxicity effect P. macrocarpa fruit ethyl acetate fraction (PMEAF) by using various conventional and modern microscopy techniques. The cytotoxicity of PMEAF treated MDA-MB-231 cells was determined through the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cytotoxicity assay and CyQuant Cell Proliferation Assay after 24h of treatment. Both results were indicated that the PMEAF is a potential anticancer agent with the average IC50 values of 18.10μg/mL by inhibiting the MDA-MB-231 cell proliferation. Various conventional and modern microscopy techniques such as light microscopy, holographic microscopy, transmission (TEM) and scanning (SEM) electron microscope were used for the observation of morphological changes in PMEAF treated MDA-MB-231cells for 24h. The characteristic of apoptotic cell death includes cell shrinkage, membrane blebs, chromatin condensation and the formation of apoptotic bodies were observed. PMEAF might be the best candidate for developing more potent anticancer drugs or chemo-preventive supplements.

  12. MDA-MB-231 and 8701BC breast cancer lines promote the migration and invasiveness of ECV304 cells on 2D and 3D type-I collagen matrix.

    Science.gov (United States)

    Saladino, Silvia; Salamone, Monica; Ghersi, Giulio

    2017-09-01

    Tumor angiogenesis is a multiphasic process, having the extracellular matrix remodeling as critical step. Different classes of proteolytic enzymes in matrix digestion/remodeling are involved. The role of lytic enzymes and their activation mode have not been completely elucidated. Herein, the crosstalk between endothelia and tumor cells, by realization of bi- and three-dimensional endothelial and breast cancer cells co-cultures, were studied in vitro. Particularly, the effects of two tumor conditioned media (TCM) were assessed about endothelial proliferation, migration, and invasiveness. An increase in expression of pro-MMP9 was detected when endothelial cells were cultured in the presence of both TCM; such as an up-regulation of MMP1 and MMP14 and a down-regulation of MMP7. Moreover the increased MMP2 gene expression from one of them and the stimulation MMP3 synthesis from the other one were observed; an increases of β3-integrin, VEGFA, and DPP4 molecules were detected when endothelia cells are cultured with both TCM. The selection/characterization of elements present in conditioned media from breast cancer cells differently affect endothelial cells, make them potential effectors useful in breast cancer treatment. © 2017 International Federation for Cell Biology.

  13. 5-氮杂-2’-脱氧胞苷对MDA-MB-231乳腺癌细胞SLIT2基因去甲基化作用及细胞运动能力的影响%5-Aza-dc induces demethylation in Slit2 promoter gene and inhibits the motility ability of MDA-MB-231 cell line

    Institute of Scientific and Technical Information of China (English)

    张姣; 付丽; 谷峰; 马勇杰

    2012-01-01

    目的 观察5-氮杂-2’-脱氧胞苷( 5-Aza-dc)对恶性乳腺癌MDA-MB-231细胞Slit2启动子的去甲基化作用及细胞运动能力的影响.方法 用5、10、20 μmol/L 5-Aza-dc分别处理MDA-MB-231乳腺癌细胞;噻唑蓝(MTT)比色法筛选能够恢复MDA-MB-231细胞Slit2表达的5-Azadc最适浓度为10 μmol/L;逆转录-聚合酶链反应(RT-PCR)检测对照组和10μmol/L处理组Slit2mRNA的表达;划痕实验和趋化实验检测5-Aza-dc给药后,乳腺癌细胞的非定向与定向运动能力的变化;聚集实验检测5 -Aza-dc对MDA-MB-231细胞间黏附能力的影响.结果 在RT-PCR结果中,对照组和10 μmol/L 5-Aza-dc处理组Slit2/GAPDH的密度比值分别为0.630±0.042和1.307±0.057,表明5-Aza-dc可有效恢复乳腺癌MDA-MB-231细胞Slit2的表达(P<0.05).体外趋化实验显示10 μmol/L 5-Aza-dc处理的MDA-MB-231细胞定向运动能力降低(P<0.01),趋化凶子上皮生长因子(EGF)浓度为10 μg/L时实验组穿过膜的细胞数为49.46±2.92;对照组为99.44±2.54.伤口愈合实验发现10μmol/L 5-Aza-dc处理的MDA-MB-231细胞非定向运动能力降低(P<0.05),24h时实验组运动的距离为(0.330±0.016) mm;对照组为(0.440±0.045) mm.聚集实验显示10 μmol/L 5-Aza-dc处理的MDA-MB-231细胞间黏附能力增加(P<0.01),60 min时实验组聚集指数为0.300±0.028,对照组为0.600±0.034.结论 5-Aza-dc可以使MDA-MB-231乳腺癌细胞Slit2启动子区去甲基化,使Slit2基因表达升高,恢复其抑制肿瘤运动的能力.%Objective To observe the transcription regulation of 5-Aza-dc on Slit2 tumor suppressor gene in human breast cancer MDA-MB-231 cell line and to investigate its effect on the motility ability of MDA-MB-231 cells.Methods Human breast cancer MDA-MB-231 cells were treated with 5,10,20 μ mol/L 5-Aza-dc respectively.The optical concentration of 5-Aza-dc chosen by methyl thiazol tetrazolium (MTT) assay was 10 μmol/L.Reverse transcription polymerase chain

  14. Stereospecific ligands and their complexes. Part XII. Synthesis, characterization and in vitro antiproliferative activity of platinum(IV) complexes with some O,O‧-dialkyl esters of (S,S)-ethylenediamine-N,N‧-di-2-propanoic acid against colon cancer (HCT-116) and breast cancer (MDA-MB-231) cell lines

    Science.gov (United States)

    Stojković, Danijela Lj.; Jevtić, Verica V.; Radić, Gordana P.; Đačić, Dragana S.; Ćurčić, Milena G.; Marković, Snežana D.; Ðinović, Vesna M.; Petrović, Vladimir P.; Trifunović, Srećko R.

    2014-03-01

    Synthesis of three new platinum(IV) complexes C1-C3, with bidentate N,N‧-ligand precursors, O,O‧-dialkyl esters (alkyl = propyl, butyl and pentyl), of (S,S)-ethylenediamine-N,N‧-di-2-propanoic acid, H2-S,S-eddp were reported. The reported platinum(IV) complexes characterized by elemental analysis and their structures were discussed on the bases of their infrared, 1H and 13C NMR spectroscopy. In vitro antiproliferative activity was determined on tumor cell lines: human colon carcinoma HCT-116 and human breast carcinoma MDA-MB-231, using MTT test.

  15. Signal cross-talk between estrogen receptor alpha and beta and the peroxisome proliferator-activated receptor gamma1 in MDA-MB-231 and MCF-7 breast cancer cells.

    Science.gov (United States)

    Wang, Xin; Kilgore, Michael W

    2002-08-30

    We have previously demonstrated that peroxisome proliferator-activated receptor gamma (PPARgamma) is expressed and transcriptionally responsive to both synthetic and natural ligands in a variety of human breast cancer cells. We also observed significant differences in basal and ligand-mediated transactivation of PPARgamma in cells with variable expression of the estrogen receptor. While previous reports indicate that PPARgamma can mediate the expression of estrogen target genes, no data have suggested that estrogen receptor (ER) expression can alter the transcriptional regulation of PPARgamma target gene expression. Here we have demonstrated that the expression of either ERalpha or beta, but not the androgen or aryl hydrocarbon receptors, lowers both basal and stimulated PPARgamma-mediated reporter activity. Interestingly, the presence of an ER antagonist does not inhibit this response while estradiol treatment further inhibits the ligand-stimulated transactivation of PPARgamma in cells expressing ERalpha but not ERbeta. Cells transfected with ERalpha deletion mutants demonstrate that the DNA binding domain of the ER is required to repress PPAR transactivation in these cells. Finally, using RNase protection assays we show that the inhibition of PPAR function is not due to a decrease in the expression of PPARgamma. These data suggest that signal cross talk exists bidirectionally between PPARgamma and ER in breast cancer cells.

  16. PDTC联合紫杉醇降低MDA-MB-231细胞增殖侵袭能力%Combination of pyrrolidine dithiocarbamate and paclitaxel suppresses proliferation and invasion of MDA-MB-231 cells

    Institute of Scientific and Technical Information of China (English)

    杨春蓉; 张徽; 黃伟; 刘琼

    2010-01-01

    目的 探讨核因子-κB(NF-κB)抑制剂--吡咯烷二硫代氨基甲酸盐(pyrrolidine dithiocarbamate,PDTC)联合紫杉醇(Paclitaxel)对人乳腺癌MDA-MB-231细胞增殖侵袭能力的影响.方法 MTT及FCM法测定细胞增殖和周期变化,RT-PCR检测细胞NF-κB p65 mRNA的变化,Western blot检测细胞NF-κB p65、MMP-9及TIMP-1蛋白表达变化,侵袭、迁移和黏附实验测定细胞侵袭转移能力的改变.结果 PDTC联合紫杉醇能明显抑制肿瘤细胞生长(P<0.05),细胞周期阻滞在G_1/G_0期,并可抵消紫杉醇对NF-κB的激活,使NF-κB p65 mRNA及蛋白的表达均降低(P<0.05).PDTC降低MDA-MB-231细胞的侵袭转移能力,与紫杉醇联合应用后作用增强(P<0.01).结论 PDTC联合紫杉醇能降低乳腺癌MDA-MB-231细胞的侵袭转移能力,其机制可能与PDTC抑制NF-κB的表达相关.

  17. Ascofuranone suppresses EGF-induced HIF-1α protein synthesis by inhibition of the Akt/mTOR/p70S6K pathway in MDA-MB-231 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Yun-Jeong; Cho, Hyun-Ji [Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu 705-718 (Korea, Republic of); Magae, Junji [Magae Bioscience Institute, 49-4 Fujimidai, Tsukuba 300-1263 (Japan); Lee, In-Kyu [Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu 700-721 (Korea, Republic of); Park, Keun-Gyu, E-mail: kpark@knu.ac.kr [Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu 700-721 (Korea, Republic of); Chang, Young-Chae, E-mail: ycchang@cu.ac.kr [Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu 705-718 (Korea, Republic of)

    2013-12-15

    Hypoxia-inducible factor (HIF)-1 plays an important role in tumor progression, angiogenesis and metastasis. In this study, we investigated the potential molecular mechanisms underlying the anti-angiogenic effect of ascofuranone, an isoprenoid antibiotic from Ascochyta viciae, in epidermal growth factor (EGF)-1 responsive human breast cancer cells. Ascofuranone significantly and selectively suppressed EGF-induced HIF-1α protein accumulation, whereas it did not affect the expression of HIF-1β. Furthermore, ascofuranone inhibited the transcriptional activation of vascular endothelial growth factor (VEGF) by reducing protein HIF-1α. Mechanistically, we found that the inhibitory effects of ascofuranone on HIF-1α protein expression are associated with the inhibition of synthesis HIF-1α through an EGF-dependent mechanism. In addition, ascofuranone suppressed EGF-induced phosphorylation of Akt/mTOR/p70S6 kinase, but the phosphorylation of ERK/JNK/p38 kinase was not affected by ascofuranone. These results suggest that ascofuranone suppresses EGF-induced HIF-1α protein translation through the inhibition of Akt/mTOR/p70S6 kinase signaling pathways and plays a novel role in the anti-angiogenic action. - Highlights: • Inhibitory effect of ascofuranone on HIF-1α expression is EGF-specific regulation. • Ascofuranone decreases HIF-1α protein synthesis through Akt/mTOR pathways. • Ascofuranone suppresses EGF-induced VEGF production and tumor angiogenesis.

  18. Salinomycin Promotes Anoikis and Decreases the CD44+/CD24- Stem-Like Population via Inhibition of STAT3 Activation in MDA-MB-231 Cells.

    Directory of Open Access Journals (Sweden)

    Hyunsook An

    Full Text Available Triple-negative breast cancer (TNBC is an aggressive tumor subtype with an enriched CD44+/CD24- stem-like population. Salinomycin is an antibiotic that has been shown to target cancer stem cells (CSC; however, the mechanisms of action involved have not been well characterized. The objective of the present study was to investigate the effect of salinomycin on cell death, migration, and invasion, as well as CSC-like properties in MDA-MB-231 breast cancer cells. Salinomycin significantly induced anoikis-sensitivity, accompanied by caspase-3 and caspase-8 activation and PARP cleavage, during anchorage-independent growth. Salinomycin treatment also caused a marked suppression of cell migration and invasion with concomitant downregulation of MMP-9 and MMP-2 mRNA levels. Notably, salinomycin inhibited the formation of mammospheres and effectively reduced the CD44+/CD24- stem-like population during anchorage-independent growth. These observations were associated with the inhibition of STAT3 phosphorylation (Tyr705. Furthermore, interleukin-6 (IL-6-induced STAT3 activation was strongly suppressed by salinomycin challenge. These findings support the notion that salinomycin may be potentially efficacious for targeting breast cancer stem-like cells through the inhibition of STAT3 activation.

  19. Salinomycin Promotes Anoikis and Decreases the CD44+/CD24- Stem-Like Population via Inhibition of STAT3 Activation in MDA-MB-231 Cells.

    Science.gov (United States)

    An, Hyunsook; Kim, Ji Young; Oh, Eunhye; Lee, Nahyun; Cho, Youngkwan; Seo, Jae Hong

    2015-01-01

    Triple-negative breast cancer (TNBC) is an aggressive tumor subtype with an enriched CD44+/CD24- stem-like population. Salinomycin is an antibiotic that has been shown to target cancer stem cells (CSC); however, the mechanisms of action involved have not been well characterized. The objective of the present study was to investigate the effect of salinomycin on cell death, migration, and invasion, as well as CSC-like properties in MDA-MB-231 breast cancer cells. Salinomycin significantly induced anoikis-sensitivity, accompanied by caspase-3 and caspase-8 activation and PARP cleavage, during anchorage-independent growth. Salinomycin treatment also caused a marked suppression of cell migration and invasion with concomitant downregulation of MMP-9 and MMP-2 mRNA levels. Notably, salinomycin inhibited the formation of mammospheres and effectively reduced the CD44+/CD24- stem-like population during anchorage-independent growth. These observations were associated with the inhibition of STAT3 phosphorylation (Tyr705). Furthermore, interleukin-6 (IL-6)-induced STAT3 activation was strongly suppressed by salinomycin challenge. These findings support the notion that salinomycin may be potentially efficacious for targeting breast cancer stem-like cells through the inhibition of STAT3 activation.

  20. Ganoderiol A-enriched extract suppresses migration and adhesion of MDA-MB-231 cells by inhibiting FAK-SRC-paxillin cascade pathway.

    Directory of Open Access Journals (Sweden)

    Guo-Sheng Wu

    Full Text Available Cell adhesion, migration and invasion are critical steps for carcinogenesis and cancer metastasis. Ganoderma lucidum, also called Lingzhi in China, is a traditional Chinese medicine, which exhibits anti-proliferation, anti-inflammation and anti-metastasis properties. Herein, GAEE, G. lucidum extract mainly contains ganoderiol A (GA, dihydrogenated GA and GA isomer, was shown to inhibit the abilities of adhesion and migration, while have a slight influence on that of invasion in highly metastatic breast cancer MDA-MB-231 cells at non-toxic doses. Further investigation revealed that GAEE decreased the active forms of focal adhesion kinase (FAK and disrupted the interaction between FAK and SRC, which lead to deactivating of paxillin. Moreover, GAEE treatment downregulated the expressions of RhoA, Rac1, and Cdc42, and decreased the interaction between neural Wiskott-Aldrich Syndrome protein (N-WASP and Cdc42, which impair cell migration and actin assembly. To our knowledge, this is the first report to show that G.lucidum triterpenoids could suppress cell migration and adhesion through FAK-SRC-paxillin signaling pathway. Our study also suggests that GAEE may be a potential agent for treatment of breast cancer.

  1. 乳腺癌细胞-干细胞共培养上清液对乳腺癌细胞的体外抗肿瘤作用研究%Antitumer effect of supernatant from co-culture of human embryonic stem cells and breast cancer cells on MDA-MB-231 cells in vitro

    Institute of Scientific and Technical Information of China (English)

    郑良栋; 冯涛; 何雪梅; 张婷; 刘梦楠; 廖红

    2016-01-01

    研究人胚胎干细胞H9与肿瘤细胞MDA-MB-231共培养上清液对乳腺癌MDA-MB-231细胞的抑制作用.建立人胚胎干细胞H9与乳腺癌MDA-MB-231细胞接触式共培养体系,收集共培养上清液.以单独培养的H9细胞上清为对照,显微镜下观察共培养上清液对肿瘤细胞生物行为学的影响,用MTT法检测上清液对MDA-MB-231细胞增殖能力的影响,Hoechst染色及流式细胞术检测上清液对肿瘤细胞的凋亡影响;transwell小室法检测上清液对肿瘤细胞迁移及侵袭的影响.结果显示,共培养上清液能抑制MDA-MB-231细胞增殖,促进其凋亡,抑制肿瘤细胞的侵袭和迁移,而单独培养的H9细胞上清液对MDA-MB-231细胞几乎没有影响.因此得出结论,人胚胎干细胞H9与人乳腺癌MDA-MB-231细胞共培养的上清液对MDA-MB-231有一定的体外抑癌效应.

  2. Inhibition of MMP-2-mediated cellular invasion by NF-κB inhibitor DHMEQ in 3D culture of breast carcinoma MDA-MB-231 cells: A model for early phase of metastasis.

    Science.gov (United States)

    Ukaji, Tamami; Lin, Yinzhi; Okada, Shoshiro; Umezawa, Kazuo

    2017-02-08

    The three-dimensional (3D) culture of cancer cells provides an environmental condition closely related to the condition in vivo. It would especially be an ideal model for the early phase of metastasis, including the detachment and invasion of cancer cells from the primary tumor. In one hand, dehydroxymethylepoxyquinomicin (DHMEQ), an NF-κB inhibitor, is known to inhibit cancer progression and late phase metastasis in animal experiments. In the present research, we studied the inhibitory activity on the 3D invasion of breast carcinoma cells. Breast carcinoma MDA-MB-231 cells showed the most active invasion from spheroid among the cell lines tested. DHMEQ inhibited the 3D invasion of cells at the 3D-nontoxic concentrations. The PCR array analysis using RNA isolated from the 3D on-top cultured cells indicated that matrix metalloproteinase (MMP)-2 expression is lowered by DHMEQ. Knockdown of MMP-2 and an MMP inhibitor, GM6001, both inhibited the invasion. DHMEQ was shown to inhibit the promoter activity of MMP-2 in the reporter assay. Thus, DHMEQ was shown to inhibit NF-κB/MMP-2-dependent cellular invasion in 3D-cultured MDA-MB-231 cells, suggesting that DHMEQ would inhibit the early phase of metastasis.

  3. ApoG2诱导乳腺癌细胞 MDA -MB231自噬的最低浓度探讨%Rational use of ApoG2 through autophagy inhibition exploiting and apoptosis inducing in breast cancer MDA -MB231 cells

    Institute of Scientific and Technical Information of China (English)

    陈可绪; 汪森明; 曹漫明; 胡喜钢

    2015-01-01

    目的:探究不同浓度棉酚衍生物 ApoG2对乳腺癌细胞株 MDA -MB231诱导自噬的最低浓度,寻找抗肿瘤效应的最适合浓度。方法:CCK8法检测细胞的增殖活性;透射电镜下观察细胞超微结构;流式细胞仪检测细胞凋亡及周期阻滞情况;细胞免疫荧光法检测各组细胞 LC3-II 荧光强度;RT -PCR 及 Western blot 法检测细胞自噬蛋白 LC3-I 及 LC3-II 表达强度。结果:CCK8法示 ApoG2对乳腺癌 MDA -MB231细胞呈浓度、时间依赖性抑制增殖且各组间差异存在统计学意义;透射电镜下发现 ApoG2可诱导凋亡及自噬;流式细胞仪检测发现 ApoG2诱导凋亡呈浓度依赖性,使细胞周期阻滞于 S 期且10μmol/L 浓度组最明显;细胞免疫荧光法发现10μmol/L 组细胞 LC3-II 荧光最弱;RT -PCR 及 Western blot 法示细胞自噬蛋白 LC3-I 表达各组间无明显差异,LC3-II 在10μmol/L 浓度组表达量最弱,80μmol/L 浓度组表达量最强。结论:10μmol/L 为ApoG2诱导乳腺癌细胞 MDA -MB231自噬最低浓度,也是抑制自噬,促进凋亡的抗肿瘤最适浓度。%Objective:To investigate the rational dose of Apogosspolone by inhibiting antophagy in anticancer ther-apy.Methods:Qualitative verification of apoptosis and autophagy was conducted with transmission electron micro-scope.Semi -quantitative determination of autophapy was performed by immunofluorescence staining,flow cytometry, and quantitative determination of autophagy by CCK8,real -time polymerase chain reaction,Western blotting.Re-sults:CCK8 showed ApoG2 was at inhibition proliferation in concentration and time dependence for MDA -MB231 of brest cancer.It was found that ApoG2 can induce apoptosis and autophagy under the transmission electron micro-scope.ApoG2 induced apoptosis with concentration dependence and arrested in S stage for cell cycle,with obvious-ness in 10μmol/L group.Immunofluorescence staining

  4. pACC1 peptide loaded chitosan nanoparticles induces apoptosis via reduced fatty acid synthesis in MDA-MB-231 cells

    Science.gov (United States)

    Kaliaperumal, Jagatheesh; Hari, Natarajan; Pavankumar, Padarthi; Elangovan, Namasivayam

    2016-06-01

    The development of formulations with therapeutic peptides has been restricted to poor cell penetration and in this attempt; we developed pACC1 peptide loaded chitosan nanoparticles. The prepared nanoparticles were characterized with FT-IR, XRD, SEM and TEM. In addition, the suitable formulation was evaluated for hemocompatibility, plasma stability and embryo toxicity using Danio rerio embryo model. The results showed that pACC1 peptide loaded chitosan nanoparticles were compatible with plasma. They possess sustained release pattern and also found to be safe up to 300 mg/L in embryo toxicity tests. Cytotoxicity assays with MDA-MB-231 cell lines suggested that, pACC1 peptide loaded chitosan nanoparticles were capable of enhanced cellular penetration and reduced palmitic acid content, which was confirmed by H1 NMR. Hence, these nanoparticles could be employed as excellent adjuvant therapeutics while treating solid tumors with multi-drug resistance.

  5. Tissue factor-factor VIIa-specific up-regulation of IL-8 expression in MDA-MB-231 cells is mediated by PAR-2 and results in increased cell migration

    DEFF Research Database (Denmark)

    Hjortoe, Gertrud M; Petersen, Lars C; Albrektsen, Tatjana

    2004-01-01

    in these processes. To elucidate the potential mechanisms by which TF contributes to tumor invasion and metastasis, we investigated the effect of FVIIa on IL-8 expression and cell migration in a breast carcinoma cell line, MDA-MB-231, a cell line that constitutively expresses abundant TF. Expression of IL-8 m......RNA in MDA-MB-231 cells was markedly up-regulated by plasma concentrations of FVII or an equivalent concentration of FVIIa (10 nM). Neither thrombin nor other proteases involved in hemostasis were effective in stimulating IL-8 in these cells. Increased transcriptional activation of the IL-8 gene...

  6. Noninvasive theranostic imaging of HSV1-sr39TK-NTR/GCV-CB1954 dual-prodrug therapy in metastatic lung lesions of MDA-MB-231 triple negative breast cancer in mice.

    Science.gov (United States)

    Sekar, Thillai V; Foygel, Kira; Ilovich, Ohad; Paulmurugan, Ramasamy

    2014-01-01

    Metastatic breast cancer is an obdurate cancer type that is not amenable to chemotherapy regimens currently used in clinic. There is a desperate need for alternative therapies to treat this resistant cancer type. Gene-Directed Enzyme Prodrug Therapy (GDEPT) is a superior gene therapy method when compared to chemotherapy and radiotherapy procedures, proven to be effective against many types of cancer in pre-clinical evaluations and clinical trials. Gene therapy that utilizes a single enzyme/prodrug combination targeting a single cellular mechanism needs significant overexpression of delivered therapeutic gene in order to achieve therapy response. Hence, to overcome this obstacle we recently developed a dual therapeutic reporter gene fusion that uses two different prodrugs, targeting two distinct cellular mechanisms in order to achieve effective therapy with a limited expression of delivered transgenes. In addition, imaging therapeutic reporter genes offers additional information that indirectly correlates gene delivery, expression, and functional effectiveness as a theranostic approach. In the present study, we evaluate the therapeutic potential of HSV1-sr39TK-NTR fusion dual suicide gene therapy system that we recently developed, in MDA-MB-231 triple negative breast cancer lung-metastatic lesions in a mouse model. We compared the therapeutic potential of HSV1-sr39TK-NTR fusion with respective dual prodrugs GCV-CB1954 with HSV1-sr39TK/GCV and NTR/CB1954 single enzyme prodrug system in this highly resistant metastatic lesion of the lungs. In vitro optimization of dose and duration of exposure to GCV and CB1954 was performed in MDA-MB-231 cells. Drug combinations of 1 μg/ml GCV and 10 μM CB1954 for 3 days was found to be optimal regimen for induction of significant cell death, as assessed by FACS analysis. In vivo therapeutic evaluation in animal models showed a complete ablation of lung metastatic nodules of MDA-MB-231 triple negative breast cancer cells following

  7. Uncaria tomentosa extract alters the catabolism of adenine nucleotides and expression of ecto-5'-nucleotidase/CD73 and P2X7 and A1 receptors in the MDA-MB-231 cell line.

    Science.gov (United States)

    Santos, Karen Freitas; Gutierres, Jessié Martins; Pillat, Micheli Mainardi; Rissi, Vitor Braga; Santos Araújo, Maria do Carmo Dos; Bertol, Gustavo; Gonçalves, Paulo Bayard Dias; Schetinger, Maria Rosa Chitolina; Morsch, Vera Maria

    2016-12-24

    Uncaria tomentosa (Willd.) DC. (Rubiaceae) (Ut), also known as cat's claw, is a woody liana widely spread throughout the Amazon rainforest of Central and South America, containing many chemical constituents such as oxindole alkaloids, which are responsible for various biological activities. Since ancient times, the indigenous people of Peru have used it as a bark infusion for the treatment of a wide range of health problems gastric ulcers, arthritis and rheumatism. Recently, Ut is distributed worldwide and used as an immunomodulatory and anti-inflammatory herbal remedy. Additionally, U. tomentosa also has antitumural activity. However, little is known about the action of U. tomentosa on the purinergic system mechanisms, which is involved in tumor progression. Considering the pharmacological properties of U. tomentosa, we sought to evaluate the hydroalcoholic extract U tomentosa is able to influence the purinergic system in breast cancer cells, MDA-MB-231. Through the activity and expression of ectonucleotidases (NTPDase - CD39; Ecto-5'-nucleotidase - CD73) and purinergic repceptores (P2X7 and A1). A hydroalcoholic extract was prepared in two concentrations, 250 and 500μg/mL. (Ut250; Ut500). The effect of these concentrations on the activity and expression of ectonucleotidases, as well as on the density of purinergic receptors were investigated in MDA-MB-231 breast cancer cells. Cells were treated with the hydroalcoholic extract of Uncaria tomentosa and/or doxorubicin (Doxo 1μM; Ut250+Doxo; Ut500+Doxo) for 24h. Although the results were not significant for the hydrolysis of the ATP, they presented an increase in the ADP hydrolysis in the Ut500+Doxo group when compared to the control group. Additionally, the activity of 5'-nucleotidase was inhibited in all groups when compared with the untreated group of cells. Inhibition of the enzyme was more evident in groups with U. tomentosa per se. The expression of CD39 was increased in the Ut250 and Ut250+Doxo groups when

  8. Estrogenic Activity of Some Phytoestrogens on Bovine Oxytocin and Thymidine Kinase-ERE Promoter through Estrogen Receptor-α in MDA-MB 231 Cells

    OpenAIRE

    Ehsan Zayerzadeh; Mohammad Kazem Koohi; Azadeh Fardipour

    2014-01-01

    Background: Phytoestrogens, a group of plant-derived polyphenolic compounds have recently come into considerable attention due to the increasing information on their potential adverse effects in human health. Some of phytoestrogens show estrogenic activity that may be carcinogenic for human. In the present study, we investigated the transcriptional effects of variety of phytoestrogens on the bovine oxytocin and the thymidine kinase-ERE promoter by estrogen receptor α in MDA-MB 231 breast canc...

  9. Effect of 3-Bromopyruvic acid combined with docetaxel on the proliferation and apoptosis of human breast neoplasm MDA-MB-231 cells%3-溴丙酮酸联合多西他赛对人乳腺癌MDA-MB-231细胞增殖和凋亡的影响

    Institute of Scientific and Technical Information of China (English)

    刘玲玲; 孙一鸣; 赵素容; 刘浩

    2016-01-01

    目的:观察3-溴丙酮酸(3-Bromopyruvic acid,3-BrPA)联合多西他赛(docetaxel,DTX)对乳腺癌MDA-MB-231细胞增殖和凋亡的影响,并探讨相关分子机制.方法:MTT实验检测不同药物处理后乳腺癌MDA-MB-231细胞株存活情况;流式细胞术PI单染法检测用药后细胞凋亡情况;ATP试剂盒检测3-BrPA对细胞内ATP水平的影响;线粒体膜电位检测试剂盒(JC-1)检测3-BrPA对细胞线粒体膜电位的影响;Western blot检测用药后HexokinaseⅡ、Bax、Bcl-2和Mcl-1蛋白的表达情况.结果:3-BrPA、DTX均可抑制MDA-MB-231细胞的生长,呈现浓度依赖性,低浓度3-BrPA明显增强DTX对MDA-MB-231细胞的抑制作用;3-BrPA作用于MDA-MB-231细胞5h后,随药物浓度递增细胞内ATP水平递减;3-BrPA作用于MDA-MB-231细胞24h后,HKⅡ表达减少,且使细胞线粒体膜电位发生降低;40 μmol/L 3-BrPA联合2 μmol/L DTX处理24h后,MDA-MB-231细胞凋亡率为63.5%,较单独用药组的凋亡率明显提高(P<0.01).3-BrPA与DTX联合作用于MDA-MB-231细胞后,凋亡相关蛋白Bcl-2和Mcl-1的表达减弱,Bax的表达增强.结论:3-BrPA可增强DTX对乳腺癌MDA-MB-231细胞的增殖抑制作用以及凋亡诱导作用,其机制可能与下调Mcl-1和Bcl-2表达、上调Bax表达有关.

  10. Peptides Derived from Type IV Collagen, CXC Chemokines, and Thrombospondin-1 Domain-Containing Proteins Inhibit Neovascularization and Suppress Tumor Growth in MDA-MB-231 Breast Cancer Xenografts

    Directory of Open Access Journals (Sweden)

    Jacob E. Koskimaki

    2009-12-01

    Full Text Available Angiogenesis or neovascularization, the process of new blood vessel formation from preexisting microvasculature, involves interactions among several cell types including parenchymal, endothelial cells, and immune cells. The formation of new vessels is tightly regulated by a balance between endogenous proangiogenic and antiangiogenic factors to maintain homeostasis in tissue; tumor progression and metastasis in breast cancer have been shown to be angiogenesis-dependent. We previously introduced a systematic methodology to identify putative endogenous antiangiogenic peptides and validated these predictions in vitro in human umbilical vein endothelial cell proliferation and migration assays. These peptides are derived from several protein families including type IV collagen, CXC chemokines, and thrombospondin-1 domain-containing proteins. On the basis of the results from the in vitro screening, we have evaluated the ability of one peptide selected from each family named pentastatin-1, chemokinostatin-1, and properdistatin, respectively, to suppress angiogenesis in an MDA-MB-231 human breast cancer orthotopic xenograft model in severe combined immunodeficient mice. Peptides were administered intraperitoneally once per day. We have demonstrated significant suppression of tumor growth in vivo and subsequent reductions in microvascular density, indicating the potential of these peptides as therapeutic agents for breast cancer.

  11. Cytotoxic effects of dillapiole on MDA-MB-231 cells involve the induction of apoptosis through the mitochondrial pathway by inducing an oxidative stress while altering the cytoskeleton network.

    Science.gov (United States)

    Ferreira, Adilson Kleber; de-Sá-Júnior, Paulo Luiz; Pasqualoto, Kerly Fernanda Mesquita; de Azevedo, Ricardo Alexandre; Câmara, Diana Aparecida Dias; Costa, André Santos; Figueiredo, Carlos Rogério; Matsuo, Alisson Leonardo; Massaoka, Mariana Hiromi; Auada, Aline Vivian Vatti; Lebrun, Ivo; Damião, Mariana Celestina Frojuello Costa Bernstorff; Tavares, Maurício Temotheo; Magri, Fátima Maria Motter; Kerkis, Irina; Parise Filho, Roberto

    2014-04-01

    Breast cancer is the world's leading cause of death among women. This situation imposes an urgent development of more selective and less toxic agents. The use of natural molecular fingerprints as sources for new bioactive chemical entities has proven to be a quite promising and efficient method. Here, we have demonstrated for the first time that dillapiole has broad cytotoxic effects against a variety tumor cells. For instance, we found that it can act as a pro-oxidant compound through the induction of reactive oxygen species (ROS) release in MDA-MB-231 cells. We also demonstrated that dillapiole exhibits anti-proliferative properties, arresting cells at the G0/G1 phase and its antimigration effects can be associated with the disruption of actin filaments, which in turn can prevent tumor cell proliferation. Molecular modeling studies corroborated the biological findings and suggested that dillapiole may present a good pharmacokinetic profile, mainly because its hydrophobic character, which can facilitate its diffusion through tumor cell membranes. All these findings support the fact that dillapiole is a promising anticancer agent. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  12. Melatonin modulates the cadmium-induced expression of MT-2 and MT-1 metallothioneins in three lines of human tumor cells (MCF-7, MDA-MB-231 and HeLa).

    Science.gov (United States)

    Alonso-Gonzalez, Carolina; Mediavilla, Dolores; Martinez-Campa, Carlos; Gonzalez, Alicia; Cos, Samuel; Sanchez-Barcelo, Emilio J

    2008-10-01

    Cadmium (Cd) is a human carcinogen present in tobacco smoke and contaminated industrial soils. Metallothioneins (MTs) are intracellular proteins involved in protecting against Cd. The toxic effects of Cd can be modified by compounds able to modulate MTs synthesis. Melatonin has oncostatic properties and has also been shown to counteract the toxic effects of Cd. In this study we examine the possible role of melatonin in Cd-induced expression of several MT isoforms (MT-2A, MT-1X, MT-1F and MT-1E) in three human tumor cell lines (MCF-7, MDA-MB-231 and HeLa). We found that, in all cell types, melatonin increases Cd-induced expression of MT-2A, which is considered to protect against Cd toxicity. As regards MT-1 subtypes, which have been related with cell invasiveness and high histological grade tumors, melatonin caused Cd-induced expression in both breast cancer cell lines to decrease. These effects point towards melatonin's possible role as a preventive agent for carcinogenesis dependent on Cd contamination.

  13. 5-氮杂-2'-脱氧胞苷序贯顺铂对MDA-MB-231细胞的影响%Effect of sequential treatment of 5-aza-2'-deoxycytidine and cisplatin in MDA-MB-231 cells

    Institute of Scientific and Technical Information of China (English)

    沈三弟; 陈卓荣; 肖高芳; 刘彦明; 黄湛; 罗智辉

    2013-01-01

    目的 探讨5-氮杂-2'-脱氧胞苷(DAC)、顺铂(PDD)序贯应用对人三阴性乳腺癌细胞MDA-MB-231体外增殖、周期及凋亡的影响.方法 实验分4组:对照组、DAC组(5μmol/L DAC处理)、PDD组(15 μmol/L PDD处理)、DAC序贯PDD组(2.5μmol/L DAC处理24h,再用8μmol/L PDD处理48 h).分别用MTT法、流式细胞仪测定各组MDA-MB-231细胞的增殖、周期及凋亡,并用金氏公式来评价两药联合效应.结果 DAC序贯PDD组较DAC组、PDD组增殖抑制率高(P<0.01).DAC序贯PDD组48 h、72 h的q值分别为1.12、1.17,两药联合有增效作用.DAC序贯PDD组G1、S期细胞减少,G2/M期细胞增多,DAC序贯PDD组较DAC组、PDD组细胞凋亡率高(P<0.01).结论 低剂量的DAC与PDD序贯应用可以抑制人三阴性乳腺癌MDA-MB-231细胞增殖,促进MDA-MB-231细胞凋亡.

  14. 天南星多糖联合顺铂对乳腺癌MDA-MB-231细胞增殖、凋亡及上皮间质转化的影响%Combined Influence of Arisaematis Rhizoma Polysaccharide with Cisplatin on the Proliferation,Apoptosis and Epithelial Mesenchymal Transition of Breast Carcinoma MDA-MB-231 Cells

    Institute of Scientific and Technical Information of China (English)

    邱丽敏; 姜爽

    2016-01-01

    目的:探讨天南星多糖联合顺铂对乳腺癌MDA-MB-231细胞增殖、凋亡及上皮间质转化(EMT)的影响.方法:将MDA-MB-231细胞分为对照组、天南星多糖(50 μg/mL)组、顺铂(5μg/mL)组及联合给药组(天南星多糖+顺铂);MTT法检测细胞增殖,Annexin V/PI双染流式细胞术检测细胞凋亡,Real time PCR法检测EMT相关标记分子(Vimentin、N-cadherin及E-cadherin)mRNA表达,ELISA法检测细胞上清液中纤连蛋白(FN)表达,Western blotring检测Akt及其磷酸化形式(p-Akt)蛋白的表达.结果:天南星多糖组、顺铂组和天南星多糖+顺铂组均可抑制MDA-MB-231细胞的增殖,其作用呈时效关系;各给药组细胞早、晚期凋亡率及E-cadherin mRNA水平值高于对照组,而Vimentin、N-cadherin mRNA、FN水平及p-Akt/Akt显著低于对照组(P<0.05);与天南星多糖组和顺铂组比较,天南星多糖+顺铂组的早、晚期凋亡率及E-cadherin mRNA水平显著升高,Vimentin、N-cadherin mRNA、FN表达水平及p-Akt/Akt显著降低(P<0.05).结论:天南星多糖和顺铂对乳腺癌MDA-MB-231细胞的增殖、凋亡及上皮问质转化均有一定的作用,可抑制PI3K/Akt信号通路的激活,且二者联合作用时效果更好.

  15. Novel C-4 heteroaryl 13-cis-retinamide Mnk/AR degrading agents inhibit cell proliferation and migration and induce apoptosis in human breast and prostate cancer cells and suppress growth of MDA-MB-231 human breast and CWR22Rv1 human prostate tumor xenografts in mice.

    Science.gov (United States)

    Mbatia, Hannah W; Ramalingam, Senthilmurugan; Ramamurthy, Vidya P; Martin, Marlena S; Kwegyir-Afful, Andrew K; Njar, Vincent C O

    2015-02-26

    The synthesis and in vitro and in vivo antibreast and antiprostate cancers activities of novel C-4 heteroaryl 13-cis-retinamides that modulate Mnk-eIF4E and AR signaling are discussed. Modifications of the C-4 heteroaryl substituents reveal that the 1H-imidazole is essential for high anticancer activity. The most potent compounds against a variety of human breast and prostate cancer (BC/PC) cell lines were compounds 16 (VNHM-1-66), 20 (VNHM-1-81), and 22 (VNHM-1-73). In these cell lines, the compounds induce Mnk1/2 degradation to substantially suppress eIF4E phosphorylation. In PC cells, the compounds induce degradation of both full-length androgen receptor (fAR) and splice variant AR (AR-V7) to inhibit AR transcriptional activity. More importantly, VNHM-1-81 has strong in vivo antibreast and antiprostate cancer activities, while VNHM-1-73 exhibited strong in vivo antibreast cancer activity, with no apparent host toxicity. Clearly, these lead compounds are strong candidates for development for the treatments of human breast and prostate cancers.

  16. OBP-401-GFP telomerase-dependent adenovirus illuminates and kills high-metastatic more effectively than low-metastatic triple-negative breast cancer in vitro.

    Science.gov (United States)

    Yano, S; Takehara, K; Kishimoto, H; Tazawa, H; Urata, Y; Kagawa, S; Bouvet, M; Fujiwara, T; Hoffman, R M

    2017-02-01

    We previously described the development of a highly-invasive, triple-negative breast cancer (TNBC) variant using serial orthotopic implantation of MDA-MB-231 human breast cancer in nude mice. The isolated variant is highly invasive in the mammary gland and metastasized to lymph nodes in 10 of 12 mice compared with 2 of 12 of the parental cell line. OBP-401 is a telomerase-dependent cancer-specific, green fluorescent protein (GFP)-expressing adenovirus. OBP-401 was used to infect parental MDA-MB-231P cells and high-metastatic MDA-MB-231H and MDA-MB-231HLN isolated from a lymph node metastasis and MDA-MB-231HLM isolated from a lung metastasis. Time-course imaging showed that OBP-401 labeled MDA-MB-231HP, MDA-MB-231HLN, and MDA-MB-231HLM cells more brightly than MDA-MB-231 parental cells. OBP-401 killed MDA-MB-231H, MDA-MB-231HLN, and MDA-MB-231HLM cells more efficiently than MDA-MB-231P parental cells. These results indicate that OBP-401 could infect, label and then kill high-metastatic MDA-MB-231 more efficiently than low-metastatic MDA-MB-231.

  17. 5-氮杂-2'-脱氧胞苷与顺铂对MDA-MB-231细胞的联合作用%Effect of combining treatment of 5-Aza-CdR and cisplatin on MDA-MB-231 cells

    Institute of Scientific and Technical Information of China (English)

    沈三弟; 陈卓荣; 肖高芳; 刘彦明

    2013-01-01

    目的 探讨5-氮杂-2'-脱氧胞苷(5-Aza-CdR,DAC)与顺铂(cisplatin,PDD)联合应用对人三阴性乳腺癌细胞株MDA-MB-231体外增殖及凋亡的影响.方法实验分组:5 μM DAC处理组(DAC组),15 μM PDD处理组(PDD组),2.5 μM DAC与8 μM PDD同步处理组(DAC+PDD组),2.5 μM DAC与8 μM PDD序贯处理组(DAC→PDD组)及空白对照组.分别以MTT法和流式细胞术(FCM)测定各处理组MDA-MB-231细胞的增殖、凋亡情况,以q值评价两药的联合效应.结果 DAC组的24 h、48 h、72 h增殖抑制率分别为(8.12±0.79)%、(21.72±1.60)%及(30.39±1.31)%;PDD组为(35.14±2.00)%、(49.22±1.01)%及(65.52±1.53)%;DAC+PDD组为(54.25±3.82)%、(68.89±1.52)%及(87.26±2.37)%;DAC→PDD组为(6.84±0.68)%、(67.64±0.91)%及(88.76±3.54)%.联合组较单药组增殖抑制率均显著升高(P<0.01).DAC+PDD组、DAC→PDD组24 h、48 h、72 h的q值分别为1.12、1.14、1.15和0、1.12、1.17,两药联合有增效作用.对照组、DAC组、PDD组、DAC+PDD组、DAC→PDD组24 h、48 h、72 h凋亡率分别为(1.57±0.38)%、(1.83±0.27)%、(2.26±0.42)%;(10.41±0.70)%、(15.37±0.74)%、(21.39±1.22)%;(16.63±0.65)%、(21.89±1.20)%、(30.39±2.20)%;(21.42±1.11)%、(33.86±1.16)%、(42.92±1.16)%;(8.26±0.68)%、(28.98±1.01)%、(41.98±1.12)%.联合组较单药组及对照组凋亡率显著升高(P<0.01).结论 DAC与PDD均能抑制MDA-MB-231细胞株的增殖,促进其凋亡,且两者联合有增效作用.

  18. Suppression of Growth of Hela, EJ, SK-OV-3 and MDA-MB-231 Cells by Recombinant Human NK4

    Institute of Scientific and Technical Information of China (English)

    Hua Bai; Hong Chen; Chang-shan Ren

    2009-01-01

    Objective: To study the effects of recombinant human Nk4 on the growth and invasion activities of tumor cells. Methods: The inhibition of recombinant human NK4 on human oophoroma, cervical tumor, breast tumor and gallbladder tumor cells was evaluated in vitro by basement membrane invasion assay.Results: rhNK4 could markedly inhibited the growth of human oophoroma, cervical tumor and breast tumor cells. The inhibition rates of human oophoroma, cervical tumor, breast tumor and gallbladder tumor cells were 48.2%, 29.2%, 58.4% and 30.1% respectively. Conclusion: rhNK4 factor can markedly inhibit the invasion of multiple tumor cells.

  19. File list: Oth.Brs.05.AllAg.MDA-MB-231 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Brs.05.AllAg.MDA-MB-231 hg19 TFs and others Breast MDA-MB-231 SRX883585,SRX8835...473,SRX1156472,SRX1076936 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Brs.05.AllAg.MDA-MB-231.bed ...

  20. File list: Unc.Brs.20.AllAg.MDA-MB-231 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Brs.20.AllAg.MDA-MB-231 hg19 Unclassified Breast MDA-MB-231 SRX101819,SRX101822...,SRX101820,SRX265431,SRX101825,SRX101821 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Brs.20.AllAg.MDA-MB-231.bed ...

  1. File list: His.Brs.20.AllAg.MDA-MB-231 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Brs.20.AllAg.MDA-MB-231 hg19 Histone Breast MDA-MB-231 SRX891828,SRX332676,SRX8...X332674,SRX891827,SRX196427 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Brs.20.AllAg.MDA-MB-231.bed ...

  2. File list: Oth.Brs.20.AllAg.MDA-MB-231 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Brs.20.AllAg.MDA-MB-231 hg19 TFs and others Breast MDA-MB-231 SRX883577,SRX8835...472,SRX1044416,SRX1044414 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Brs.20.AllAg.MDA-MB-231.bed ...

  3. File list: ALL.Brs.05.AllAg.MDA-MB-231 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Brs.05.AllAg.MDA-MB-231 hg19 All antigens Breast MDA-MB-231 SRX332679,SRX883585...,SRX1156475 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Brs.05.AllAg.MDA-MB-231.bed ...

  4. File list: ALL.Brs.10.AllAg.MDA-MB-231 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Brs.10.AllAg.MDA-MB-231 hg19 All antigens Breast MDA-MB-231 SRX883577,SRX883579...,SRX1156475 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Brs.10.AllAg.MDA-MB-231.bed ...

  5. File list: Unc.Brs.50.AllAg.MDA-MB-231 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Brs.50.AllAg.MDA-MB-231 hg19 Unclassified Breast MDA-MB-231 SRX101819,SRX101822...,SRX101820,SRX101825,SRX265431,SRX101821 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Brs.50.AllAg.MDA-MB-231.bed ...

  6. File list: Unc.Brs.05.AllAg.MDA-MB-231 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Brs.05.AllAg.MDA-MB-231 hg19 Unclassified Breast MDA-MB-231 SRX101820,SRX265431...,SRX101819,SRX101822,SRX101821,SRX101825 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Brs.05.AllAg.MDA-MB-231.bed ...

  7. File list: His.Brs.50.AllAg.MDA-MB-231 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Brs.50.AllAg.MDA-MB-231 hg19 Histone Breast MDA-MB-231 SRX891828,SRX332676,SRX8...X196427,SRX196428,SRX246864 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Brs.50.AllAg.MDA-MB-231.bed ...

  8. File list: Unc.Brs.10.AllAg.MDA-MB-231 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Brs.10.AllAg.MDA-MB-231 hg19 Unclassified Breast MDA-MB-231 SRX265431,SRX101819...,SRX101822,SRX101820,SRX101825,SRX101821 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Brs.10.AllAg.MDA-MB-231.bed ...

  9. File list: Oth.Brs.10.AllAg.MDA-MB-231 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Brs.10.AllAg.MDA-MB-231 hg19 TFs and others Breast MDA-MB-231 SRX883577,SRX8835...913,SRX1076936,SRX1156472 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Brs.10.AllAg.MDA-MB-231.bed ...

  10. File list: ALL.Brs.20.AllAg.MDA-MB-231 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Brs.20.AllAg.MDA-MB-231 hg19 All antigens Breast MDA-MB-231 SRX883577,SRX883576...0,SRX246863 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Brs.20.AllAg.MDA-MB-231.bed ...

  11. File list: His.Brs.05.AllAg.MDA-MB-231 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Brs.05.AllAg.MDA-MB-231 hg19 Histone Breast MDA-MB-231 SRX332679,SRX332678,SRX8...X332675,SRX891830,SRX196428 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Brs.05.AllAg.MDA-MB-231.bed ...

  12. File list: ALL.Brs.50.AllAg.MDA-MB-231 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Brs.50.AllAg.MDA-MB-231 hg19 All antigens Breast MDA-MB-231 SRX883577,SRX883576...4,SRX737089 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Brs.50.AllAg.MDA-MB-231.bed ...

  13. File list: Oth.Brs.50.AllAg.MDA-MB-231 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Brs.50.AllAg.MDA-MB-231 hg19 TFs and others Breast MDA-MB-231 SRX883577,SRX8835...416,SRX1044415,SRX1044414 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Brs.50.AllAg.MDA-MB-231.bed ...

  14. File list: His.Brs.10.AllAg.MDA-MB-231 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Brs.10.AllAg.MDA-MB-231 hg19 Histone Breast MDA-MB-231 SRX332679,SRX332678,SRX8...X332674,SRX332675,SRX196428 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Brs.10.AllAg.MDA-MB-231.bed ...

  15. Enhancement of viability of radiosensitive (PBMC) and resistant (MDA-MB-231) clones in low-dose-rate cobalt-60 radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Falcao, Patricia Lima, E-mail: patricialfalcao@gmail.com [Universidade Federal do Amazonas (UFAM), Manaus, AM (Brazil); Motta, Barbara Miranda; Lima, Fernanda Castro de; Lima, Celso Vieira; Campos, Tarcisio Passos Ribeiro [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil)

    2015-05-15

    Objective: in the present study, the authors investigated the in vitro behavior of radio-resistant breast adenocarcinoma (MDA-MB-231) cells line and radiosensitive peripheral blood mononuclear cells (PBMC), as a function of different radiation doses, dose rates and postirradiation time kinetics, with a view to the interest of clinical radiotherapy. Materials and methods: the cells were irradiated with Co-60, at 2 and 10 Gy and two different exposure rates, 339.56 cGy.min{sup -1} and the other corresponding to one fourth of the standard dose rates, present over a 10-year period of cobalt therapy. Post-irradiation sampling was performed at pre-established kinetics of 24, 48 and 72 hours. The optical density response in viability assay was evaluated and a morphological analysis was performed. Results: radiosensitive PBMC showed decrease in viability at 2 Gy, and a more significant decrease at 10 Gy for both dose rates. MDAMB-231 cells presented viability decrease only at higher dose and dose rate. The results showed MDA-MB-231 clone expansion at low dose rate after 48-72 hours post-radiation. Conclusion: low dose rate shows a possible potential clinical impact involving decrease in management of radio-resistant and radiosensitive tumor cell lines in cobalt therapy for breast cancer. (author)

  16. Enhancement of viability of radiosensitive (PBMC and resistant (MDA-MB-231 clones in low-dose-rate cobalt-60 radiation therapy

    Directory of Open Access Journals (Sweden)

    Patrícia Lima Falcão

    2015-06-01

    Full Text Available Abstract Objective: In the present study, the authors investigated the in vitro behavior of radio-resistant breast adenocarcinoma (MDA-MB-231 cells line and radiosensitive peripheral blood mononuclear cells (PBMC, as a function of different radiation doses, dose rates and postirradiation time kinetics, with a view to the interest of clinical radiotherapy. Materials and Methods: The cells were irradiated with Co-60, at 2 and 10 Gy and two different exposure rates, 339.56 cGy.min–1 and the other corresponding to one fourth of the standard dose rates, present over a 10-year period of cobalt therapy. Post-irradiation sampling was performed at pre-established kinetics of 24, 48 and 72 hours. The optical density response in viability assay was evaluated and a morphological analysis was performed. Results: Radiosensitive PBMC showed decrease in viability at 2 Gy, and a more significant decrease at 10 Gy for both dose rates. MDAMB- 231 cells presented viability decrease only at higher dose and dose rate. The results showed MDA-MB-231 clone expansion at low dose rate after 48–72 hours post-radiation. Conclusion: Low dose rate shows a possible potential clinical impact involving decrease in management of radio-resistant and radiosensitive tumor cell lines in cobalt therapy for breast cancer.

  17. File list: InP.Brs.50.AllAg.MDA-MB-231 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Brs.50.AllAg.MDA-MB-231 hg19 Input control Breast MDA-MB-231 SRX883581,SRX88358...46863,SRX1156474,SRX737089 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Brs.50.AllAg.MDA-MB-231.bed ...

  18. File list: NoD.Brs.10.AllAg.MDA-MB-231 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Brs.10.AllAg.MDA-MB-231 hg19 No description Breast MDA-MB-231 ERX309839,ERX3098...45 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Brs.10.AllAg.MDA-MB-231.bed ...

  19. File list: NoD.Brs.05.AllAg.MDA-MB-231 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Brs.05.AllAg.MDA-MB-231 hg19 No description Breast MDA-MB-231 ERX309839,ERX3098...45 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Brs.05.AllAg.MDA-MB-231.bed ...

  20. File list: InP.Brs.05.AllAg.MDA-MB-231 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Brs.05.AllAg.MDA-MB-231 hg19 Input control Breast MDA-MB-231 SRX883581,SRX88358...56474,SRX332680,SRX1156475 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Brs.05.AllAg.MDA-MB-231.bed ...

  1. File list: NoD.Brs.50.AllAg.MDA-MB-231 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Brs.50.AllAg.MDA-MB-231 hg19 No description Breast MDA-MB-231 ERX309839,ERX3098...45 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Brs.50.AllAg.MDA-MB-231.bed ...

  2. File list: InP.Brs.10.AllAg.MDA-MB-231 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Brs.10.AllAg.MDA-MB-231 hg19 Input control Breast MDA-MB-231 SRX883581,SRX88358...56474,SRX246863,SRX1156475 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Brs.10.AllAg.MDA-MB-231.bed ...

  3. File list: InP.Brs.20.AllAg.MDA-MB-231 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Brs.20.AllAg.MDA-MB-231 hg19 Input control Breast MDA-MB-231 SRX883581,SRX88358...156475,SRX332680,SRX246863 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Brs.20.AllAg.MDA-MB-231.bed ...

  4. Effects of shRNA targeted inhibition of Midkine expression on the tumorigenic ability of MDA-MB-231 cells in nude mice%shRNA靶向抑制MK表达对MDA-MB-231细胞裸鼠体内成瘤能力的影响

    Institute of Scientific and Technical Information of China (English)

    韩正杰; 张鹏; 孙卓; 巩玉森; 刘慧; 王庆苓

    2016-01-01

    目的:探讨中期因子(Midkine,MK)基因表达对人乳腺癌MDA-MB-231细胞株裸鼠体内成瘤性的影响。方法将转染pSilencer-3.1-H1-MK(MK KD组)和pSilencer-3.1-H1-NC(NC组)质粒的乳腺癌细胞分别接种于雌性BALB/c裸鼠右侧前肢腋部皮下,然后于接种第7、14、21、28和35天观察测量肿瘤大小。结果与NC组相比,MK KD组裸鼠肿瘤形成时间长,并且肿瘤生长速度慢,瘤体重量轻、体积小(P<0.05)。结论抑制MDA-MB-231乳腺癌细胞MK基因的表达,可以抑制裸鼠体内成瘤能力。%Objective To investigate the effects of Midkine ( MK) expression on the tumorigenic ability of MDA -MB-231 cells in nude mice.Methods Plasmids pSilencer -3.1-H1-MK (Group MK KD) and pSilencer-3.1-H1-NC ( Group NC) were transfected into MDA 231 cells which were then inoculated in the right side of female BALB /c nude mice.The tumor size was measured on Days 7, 14, 21, 28 and 35.Results Compared with Group NC, nude mice in Group MK KD showed longer time to develop tumor , with a slower rate of tumor growth , lower tumor volume and weight (P<0.05).Conclusion The inhibition of MK gene expression in MDA -MB-231 cells can inhibit the growth of tumor in nude mice .

  5. Metabolomic Dynamic Analysis of Hypoxia in MDA-MB-231 and the Comparison with Inferred Metabolites from Transcriptomics Data

    Directory of Open Access Journals (Sweden)

    Yufeng Jane Tseng

    2013-05-01

    Full Text Available Hypoxia affects the tumor microenvironment and is considered important to metastasis progression and therapy resistance. Thus far, the majority of global analyses of tumor hypoxia responses have been limited to just a single omics level. Combining multiple omics data can broaden our understanding of tumor hypoxia. Here, we investigate the temporal change of the metabolite composition with gene expression data from literature to provide a more comprehensive insight into the system level in response to hypoxia. Nuclear magnetic resonance spectroscopy was used to perform metabolomic profiling on the MDA-MB-231 breast cancer cell line under hypoxic conditions. Multivariate statistical analysis revealed that the metabolic difference between hypoxia and normoxia was similar over 24 h, but became distinct over 48 h. Time dependent microarray data from the same cell line in the literature displayed different gene expressions under hypoxic and normoxic conditions mostly at 12 h or earlier. The direct metabolomic profiles show a large overlap with theoretical metabolic profiles deduced from previous transcriptomic studies. Consistent pathways are glycolysis/gluconeogenesis, pyruvate, purine and arginine and proline metabolism. Ten metabolic pathways revealed by metabolomics were not covered by the downstream of the known transcriptomic profiles, suggesting new metabolic phenotypes. These results confirm previous transcriptomics understanding and expand the knowledge from existing models on correlation and co-regulation between transcriptomic and metabolomics profiles, which demonstrates the power of integrated omics analysis.

  6. DC electric fields direct breast cancer cell migration, induce EGFR polarization, and increase the intracellular level of calcium ions.

    Science.gov (United States)

    Wu, Dan; Ma, Xiuli; Lin, Francis

    2013-01-01

    Migration of cancer cells leads to invasion of primary tumors to distant organs (i.e., metastasis). Growing number of studies have demonstrated the migration of various cancer cell types directed by applied direct current electric fields (dcEF), i.e., electrotaxis, and suggested its potential implications in metastasis. MDA-MB-231 cell, a human metastatic breast cancer cell line, has been shown to migrate toward the anode of dcEF. Further characterizations of MDA-MB-231 cell electrotaxis and investigation of its underlying signaling mechanisms will lead to a better understanding of electrically guided cancer cell migration and metastasis. Therefore, we quantitatively characterized MDA-MB-231 cell electrotaxis and a few associated signaling events. Using a microfluidic device that can create well-controlled dcEF, we showed the anode-directing migration of MDA-MB-231 cells. In addition, surface staining of epidermal growth factor receptor (EGFR) and confocal microscopy showed the dcEF-induced anodal EGFR polarization in MDA-MB-231 cells. Furthermore, we showed an increase of intracellular calcium ions in MDA-MB-231 cells upon dcEF stimulation. Altogether, our study provided quantitative measurements of electrotactic migration of MDA-MB-231 cells, and demonstrated the electric field-mediated EGFR and calcium signaling events, suggesting their involvement in breast cancer cell electrotaxis.

  7. MDA-MB-231细胞源exosome对人脐静脉内皮细胞(HUVEC)VEGF自分泌及体外成管作用的影响%Effects of exosomes derived from MDA-MB-231 on the expression of autocrine VEGF and capillary-like tube formation in HUVECs

    Institute of Scientific and Technical Information of China (English)

    隆霜; 沈宜; 谢莹珊; 范维珂; 姜蓉; 陈黎

    2012-01-01

    目的 研究人乳腺癌MDA-MB-231细胞源exosome对人脐静脉内皮细胞(human umbilical vein endothelial cell,HUVEC)血管内皮生长因子(vascular endothelial growth factor,VEGF)自分泌及体外成管作用的影响,探讨肿瘤细胞源exosome在肿瘤微环境中对血管内皮细胞血管生成的调控作用.方法 低温超速离心及密度梯度离心法提取乳腺癌MDA-MB-231细胞源exosome;酶联免疫吸附试验(ELISA)检测HUVEC与exosome共培养24 h后上清液中VEGF的变化水平;Western blot技术检测HUVEC与exosome共培养24 h后VEGF、VEGFR2及p-VEGFR2的蛋白表达情况;RT-PCR法检测HUVEC与exosome共培养24 h后VEGF的基因表达情况;观察HUVEC与exosome共培养24 h后的体外成管能力.结果 HUVEC与exosome共培养24 h后上清液中VEGF为(110.851±18.404)pg/mL,与对照组相比差异具有统计学意义(P<0.05);Western blot结果显示,HUVEC与exosome共培养24 h后VEGF和p-VEGFR2的蛋白表达水平均增加(P<0.05);RT-PCR结果显示,HUVEC与exosome共培养24 h后VEGF的基因表达水平增加(P<0.05);体外成管实验显示,exosome显著提高了HUVEC的管腔形成能力(P<0.05).结论 乳腺癌MDA-MB-231细胞源exosome促进了血管内皮细胞VEGF的表达及分泌,激活了血管内皮细胞VEGF/VEGFR2自分泌环并提高了血管内皮细胞的体外成管能力,对促肿瘤血管生成有一定的调控作用.%Objective To investigate the effects of exosomes derived from breast cancer cell line MDA-MB-231 on the expression of autocrine vascular endothelial growth factor (VEGF) and capillary-like tube formation in human umbilical vein endothelial cells ( HUVECs) , and to observe the regulatory effect of exosomes derived from cancer cells on angiogenesis in tumor microenvironment. Methods Exosomes were purified by serial ultracentrifugation and sugar density ultracentrifugation. The expression of autocrine VEGF in HUVECs with exosomes co-cultured 24 hours were detected by

  8. Breast cancer cell behaviors on staged tumorigenesis-mimicking matrices derived from tumor cells at various malignant stages.

    Science.gov (United States)

    Hoshiba, Takashi; Tanaka, Masaru

    2013-09-20

    Extracellular matrix (ECM) has been focused to understand tumor progression in addition to the genetic mutation of cancer cells. Here, we prepared "staged tumorigenesis-mimicking matrices" which mimic in vivo ECM in tumor tissue at each malignant stage to understand the roles of ECM in tumor progression. Breast tumor cells, MDA-MB-231 (invasive), MCF-7 (non-invasive), and MCF-10A (benign) cells, were cultured to form their own ECM beneath the cells and formed ECM was prepared as staged tumorigenesis-mimicking matrices by decellularization treatment. Cells showed weak attachment on the matrices derived from MDA-MB-231 cancer cells. The proliferations of MDA-MB-231 and MCF-7 was promoted on the matrices derived from MDA-MB-231 cancer cells whereas MCF-10A cell proliferation was not promoted. MCF-10A cell proliferation was promoted on the matrices derived from MCF-10A cells. Chemoresistance of MDA-MB-231 cells against 5-fluorouracil increased on only matrices derived from MDA-MB-231 cells. Our results showed that the cells showed different behaviors on staged tumorigenesis-mimicking matrices according to the malignancy of cell sources for ECM preparation. Therefore, staged tumorigenesis-mimicking matrices might be a useful in vitro ECM models to investigate the roles of ECM in tumor progression.

  9. VEGF EXPRESSION IS INHIBITED BY APIGENIN IN HUMAN BREAST CANCER CELLS

    Institute of Scientific and Technical Information of China (English)

    JIN Xue-ying; REN Chang-shan

    2006-01-01

    Objective: To study the effects of apigenin on vascular endothelial growth factor (VEGF) in human breast cancer cells(MDA-MB-231. Methods: MTT assay was used to detect the cell proliferation inhibitory effect of apigenin on MDA-MB-231 cell. ELISA was used to determine the protein level of VEGF secreted by MDA-MB-231 cells. RT-PCR was used to detect mRNA levels of VEGF in MDA-MB-231 cells. The protein levels of HIF-1α,p-AKT,p-ERK1/2,and p53 were detected by Western Blotting. Results: Apigenin did not inhibit the cell viability of MDA-MB-231 cell. Apigenin reduced the secretion and mRNA levels of VEGF in MDA-MB-231 cells. Additionally, apigenin decreased the expressions of HIF-1α,p-AKT and p-ERK1/2, but induced the expression of p53. Conclusion: Apigenin can inhibit VEGF expression in human breast cancer cells, and this may be achieved through decreasing HIF-1α.

  10. Microenvironment promotes tumor cell reprogramming in human breast cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Fabrizio D'Anselmi

    Full Text Available The microenvironment drives mammary gland development and function, and may influence significantly both malignant behavior and cell growth of mammary cancer cells. By restoring context, and forcing cells to properly interpret native signals from the microenvironment, the cancer cell aberrant behavior can be quelled, and organization re-established. In order to restore functional and morphological differentiation, human mammary MCF-7 and MDA-MB-231 cancer cells were allowed to grow in a culture medium filled with a 10% of the albumen (EW, Egg White from unfertilized chicken egg. That unique microenvironment behaves akin a 3D culture and induces MCF-7 cells to produce acini and branching duct-like structures, distinctive of mammary gland differentiation. EW-treated MDA-MB-231 cells developed buds of acini and duct-like structures. Both MCF-7 and MDA-MB-231 cells produced β-casein, a key milk component. Furthermore, E-cadherin expression was reactivated in MDA-MB-231 cells, as a consequence of the increased cdh1 expression; meanwhile β-catenin - a key cytoskeleton component - was displaced behind the inner cell membrane. Such modification hinders the epithelial-mesenchymal transition in MDA-MB-231 cells. This differentiating pathway is supported by the contemporary down-regulation of canonical pluripotency markers (Klf4, Nanog. Given that egg-conditioned medium behaves as a 3D-medium, it is likely that cancer phenotype reversion could be ascribed to the changed interactions between cells and their microenvironment.

  11. Src/STAT3-dependent heme oxygenase-1 induction mediates chemoresistance of breast cancer cells to doxorubicin by promoting autophagy.

    Science.gov (United States)

    Tan, Qixing; Wang, Hongli; Hu, Yongliang; Hu, Meiru; Li, Xiaoguang; Aodengqimuge; Ma, Yuanfang; Wei, Changyuan; Song, Lun

    2015-08-01

    Chemotherapeutic resistance in breast cancer, whether acquired or intrinsic, remains a major clinical obstacle. Thus, increasing tumor cell sensitivity to chemotherapeutic agents will be helpful in improving the clinical management of breast cancer. In the present study, we found an induction of HO-1 expression in doxorubicin (DOX)-treated MDA-MB-231 human breast adenocarcinoma cells, which showed insensitivity to DOX treatment. Knockdown HO-1 expression dramatically upregulated the incidence of MDA-MB-231 cell death under DOX treatment, indicating that HO-1 functions as a critical contributor to drug resistance in MDA-MB-231 cells. We further observed that DOX exposure induced a cytoprotective autophagic flux in MDA-MB-231 cells, which was dependent on HO-1 induction. Moreover, upregulation of HO-1 expression required the activation of both signal transducer and activator of transcription (STAT)3 and its upstream regulator, protein kinase Src. Abrogating Src/STAT3 pathway activation attenuated HO-1 and autophagy induction, thus increasing the chemosensitivity of MDA-MB-231 cells. Therefore, we conclude that Src/STAT3-dependent HO-1 induction protects MDA-MB-231 breast cancer cells from DOX-induced death through promoting autophagy. In the following study, we further demonstrated the contribution of Src/STAT3/HO-1/autophagy pathway activation to DOX resistance in another breast cancer cell line, MDA-MB-468, which bears a similar phenotype to MDA-MB-231 cells. Therefore, activation of Src/STAT3/HO-1/autophagy signaling pathway might play a general role in protecting certain subtypes of breast cancer cells from DOX-induced cytotoxicity. Targeting this signaling event may provide a potential approach for overcoming DOX resistance in breast cancer therapeutics.

  12. Downregulation of β-catenin decreases the tumorigenicity, but promotes epithelial-mesenchymal transition in breast cancer cells

    Directory of Open Access Journals (Sweden)

    Kai Cai

    2014-01-01

    Full Text Available Background: Wnt/β-catenin signaling pathway plays a key role in human breast cancer progression. In this study, we down regulated β-catenin expression in human breast cancer MDA-MB-231 cells and investigated the effect of β-catenin knockdown on the cell biological characteristics. Materials and Methods: The recombinant plasmids of pSUPER-enhancement green fluorescent protein 1 (EGFP1-scrabble-β-catenin-short hairpin ribonucleic acid (shRNA and pSUPER-EGFP1-β-catenin-shRNA-1 were transfected into MDA-MB-231 cells, respectively, and the stably transfected cells were isolated from G418 selected clones. The β-catenin gene silenced efficiency was measured by quantitative reverse transcriptase polymerase chain reaction (QRT-PCR and Western blot. The biological characteristics of MDA-MB-231 cells with down regulated β-catenin were evaluated by analyzing cell proliferation, clonogenicity, cell mobility and tumorigenicity. The expression of E-cadherin and Vimentin was concurrently detected by QRT-PCR. Results: The β-catenin-shRNA-1 stably transfected MDA-MB-231 cells significantly decreased β-catenin expression, cell proliferation, clonogenicity, and tumorigenicity in Balb/c nude mice compared with the MDA-MB-231 cells transfected with pSUPER-EGFP1-scrabble-β-catenin-shRNA. Interestingly, knockdown of β-catenin led to the reduction of epithelial E-cadherin expression, the increase of cell mobility and mesenchymal vimentin expression in MDA-MB-231 cells, indicating an epithelial to mesenchymal transition. Conclusion: Knockdown of β-catenin expression in human breast cancer MDA-MB-231 cells inhibits cell tumorigenicity in mice, but promotes cell epithelial-mesenchymal transition.

  13. P2Y2 nucleotide receptor-mediated extracellular signal-regulated kinases and protein kinase C activation induces the invasion of highly metastatic breast cancer cells.

    Science.gov (United States)

    Eun, So Young; Ko, Young Shin; Park, Sang Won; Chang, Ki Churl; Kim, Hye Jung

    2015-07-01

    Tumor metastasis is considered the main cause of mortality in cancer patients, thus it is important to investigate the differences between high- and low-metastatic cancer cells. Our previous study showed that the highly metastatic breast cancer cell line MDA-MB-231 released higher levels of ATP and exhibited higher P2Y2R activity compared with the low-metastatic breast cancer cell line MCF-7. In addition, P2Y2R activation by ATP released from MDA-MB-231 cells induced hypoxia-inducible factor-1α expression, lysyl oxidase secretion and collagen crosslinking, generating a receptive microenvironment for pre-metastatic niche formation. Thus, in the present study, we investigated which P2Y2R-related signaling pathways are involved in the invasion of breast cancer cells. The highly metastatic breast cancer cells MDA-MB-231 and SK-BR-3 showed higher invasion than MCF-7 and T47D cells at a basal level, which was abolished through P2Y2R knockdown or in the presence of apyrase, an enzyme that hydrolyzes extracellular nucleotides. MDA-MB-231 cells also showed high levels of mesenchymal markers, such as Snail, Vimentin and N-cadherin, but not the epithelial marker E-cadherin and this expression was inhibited through ATP degradation or P2Y2R knockdown. Moreover, SK-BR-3 and MDA-MB231 cells exhibited higher ERK and PKC phosphorylation levels than T47D and MCF-7 cells and upregulated phospho-ERK and -PKC levels in MDA-MB-231 cells were significantly downregulated by apyrase or P2Y2R knockdown. Specific inhibitors of ERK, PKC and PLC markedly reduced the invasion and levels of mesenchymal marker expression in MDA-MB-231 cells. These results suggest that over-activated ERK and PKC pathways are involved in the P2Y2R-mediated invasion of breast cancer cells.

  14. Cell cycle arrest and apoptogenic properties of opium alkaloids noscapine and papaverine on breast cancer stem cells.

    Science.gov (United States)

    Sajadian, Saharolsadat; Vatankhah, Melody; Majdzadeh, Maryam; Kouhsari, Shide Montaser; Ghahremani, Mohammad Hossein; Ostad, Seyed Nasser

    2015-01-01

    Previous report of the vast effectiveness of opium derivatives in cancer therapy is leading us to see possible effects of these derivatives on cancer stem cells in order to find new agent for cancer therapy. In this study, cells were stained for CSC markers and sorted by magnetic beads. CSCs exhibit the characteristic CD44(+)/CD24(-/low)/ESA(+) phenotype. Noscapine and papaverine (alkaloids) showed anti-proliferative activity on MCF-7 and MDA-MB-231 cell lines. It was observed that noscapine has more cytotoxic effect on CSC derived from both cell lines compared with their parental cells. Papaverine has more cytotoxic effect on MCF-7 CSCs in comparison with parental cells, while CSCs population of MDA-MB-231 is more resistant to papaverine compared with MDA-MB-231 cells. Noscapine enhances apoptosis in MDA-MB-231 CSCs more than parent cells, while in MCF-7 CSCs the apoptosis is less than parent cells. Our results show that papverine is less active in terms of apoptotic effect on CSCs in both cell lines. Moreover, noscapine arrests MCF-7 and MDA-MB-231 CSCs cell cycle at G2/M phase, while papverine arrests cell cycle at G0/G1 phase. It was suggested different mechanism for apoptotic cytotoxicity. The results of this study show possible specific effects of noscapine on these breast cell lines CSCs.

  15. Enhanced Metastatic Recurrence Via Lymphatic Trafficking of a High-Metastatic Variant of Human Triple-Negative Breast Cancer After Surgical Resection in Orthotopic Nude Mouse Models.

    Science.gov (United States)

    Yano, Shuya; Takehara, Kiyoto; Tazawa, Hiroshi; Kishimoto, Hiroyuki; Kagawa, Shunsuke; Bouvet, Michael; Fujiwara, Toshiyoshi; Hoffman, Robert M

    2017-03-01

    We previously developed and characterized a highly invasive and metastatic triple-negative breast cancer (TNBC) variant by serial orthotopic implantation of MDA-MB-231 human breast cancer cells in nude mice. Eventually, a highly invasive and metastatic variant of human TNBC was isolated after lymph node metastases was harvested and orthotopically re-implanted into the mammary gland of nude mice for two cycles. The variant thereby isolated is highly invasive in the mammary gland and metastasized to lymph nodes in 10 of 12 mice compared to 2 of 12 of the parental cell line. In the present report, we observed that high-metastatic MDA-MB-231H-RFP cells produced significantly larger subcutaneous tumors compared with parental MDA-MB-231 cells in nude mice. Extensive lymphatic trafficking by high-metastatic MDA-MB-231 cells was also observed. High-metastatic MDA-MB-231 developed larger recurrent tumors 2 weeks after tumor resection compared with tumors that were not resected in orthotopic models. Surgical resection of the MDA-MB-231 high-metastatic variant primary tumor in orthotopic models also resulted in rapid and enhanced lymphatic trafficking of residual cancer cells and extensive lymph node and lung metastasis that did not occur in the non-surgical mice. These results suggest that surgical resection of high metastatic TNBC can greatly increase the malignancy of residual cancer. J. Cell. Biochem. 118: 559-569, 2017. © 2016 Wiley Periodicals, Inc.

  16. Mesenchymal stem cells directly interact with breast cancer cells and promote tumor cell growth in vitro and in vivo.

    Science.gov (United States)

    Mandel, Katharina; Yang, Yuanyuan; Schambach, Axel; Glage, Silke; Otte, Anna; Hass, Ralf

    2013-12-01

    Cellular interactions were investigated between human mesenchymal stem cells (MSC) and human breast cancer cells. Co-culture of the two cell populations was associated with an MSC-mediated growth stimulation of MDA-MB-231 breast cancer cells. A continuous expansion of tumor cell colonies was progressively surrounded by MSC(GFP) displaying elongated cell bodies. Moreover, some MSC(GFP) and MDA-MB-231(cherry) cells spontaneously generated hybrid/chimeric cell populations, demonstrating a dual (green fluorescent protein+cherry) fluorescence. During a co-culture of 5-6 days, MSC also induced expression of the GPI-anchored CD90 molecule in breast cancer cells, which could not be observed in a transwell assay, suggesting the requirement of direct cellular interactions. Indeed, MSC-mediated CD90 induction in the breast cancer cells could be partially blocked by a gap junction inhibitor and by inhibition of the notch signaling pathway, respectively. Similar findings were observed in vivo by which a subcutaneous injection of a co-culture of primary MSC with MDA-MB-231(GFP) cells into NOD/scid mice exhibited an about 10-fold increased tumor size and enhanced metastatic capacity as compared with the MDA-MB-231(GFP) mono-culture. Flow cytometric evaluation of the co-culture tumors revealed more than 90% of breast cancer cells with about 3% of CD90-positive cells, also suggesting an MSC-mediated in vivo induction of CD90 in MDA-MB-231 cells. Furthermore, immunohistochemical analysis demonstrated an elevated neovascularization and viability in the MSC/MDA-MB-231(GFP)-derived tumors. Together, these data suggested an MSC-mediated growth stimulation of breast cancer cells in vitro and in vivo by which the altered MSC morphology and the appearance of hybrid/chimeric cells and breast cancer-expressing CD90(+) cells indicate mutual cellular alterations.

  17. Isolation, identification, and spheroids formation of breast cancer stem cells, therapeutics implications

    Directory of Open Access Journals (Sweden)

    Maytham Abbas Abboodi

    2014-01-01

    Full Text Available Aims: Cancer stem cells (CSCs are population of cells present in tumors, which can undergo self-renewal and differentiation. Three-dimensional (3D in vitro models mimic features of the in vivo environment and provide unique perspectives on the behavior of stem cells. Materials and Methods: In this study, MDA-MB 231 cells were grown in two-dimensional (2D monolayers and 3D spheroid formats and CSCs were isolated and grown as spheroids. The isolated CSCs were subjected to molecular studies for detection of CD44, CD24, MMP1, ABCG2, ALDH1, and GAPDH markers. Results: The monolayer of CSCs grown as spheroids showed better growth rate than the MDA-MB 231 cells, which shows the efficacy of 3D spheroid format of growing CSCs. CD44 show increased expression in spheroids compared to 2D culture of MDA-MB 231. ALDH1 a key marker of breast stem cells was highly expressed in BCSCs and MDA-MB 231 grown in 3D, while being absent in CSCs and MDA-MB 231 cells grown in 2D. Conclusions: The CSCs grown as spheroids showed better growth rate, which showed the efficacy of 3D spheroid format for CSCs culture. Since the association between BCSCs prevalence and clinical outcome and the evidence presented in this study support key roles of CSCs in breast cancer metastasis and drug resistance, it has been proposed that new therapies must target these cells.

  18. Mitochondrial Ca{sup 2+} uniporter is critical for store-operated Ca{sup 2+} entry-dependent breast cancer cell migration

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Shihao [Department of Occupational Health and Occupational Medicine, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong (China); Guangzhou No.12 Hospital, Guangzhou (China); Wang, Xubu [Department of Occupational Health and Occupational Medicine, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong (China); Shen, Qiang [Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX (United States); Yang, Xinyi; Yu, Changhui; Cai, Chunqing [Department of Occupational Health and Occupational Medicine, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong (China); Cai, Guoshuai [Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX (United States); Meng, Xiaojing, E-mail: xiaojingmeng@smu.edu.cn [Department of Occupational Health and Occupational Medicine, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong (China); Zou, Fei, E-mail: zoufei616@163.com [Department of Occupational Health and Occupational Medicine, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong (China)

    2015-02-27

    Metastasis of cancer cells is a complicated multistep process requiring extensive and continuous cytosolic calcium modulation. Mitochondrial Ca{sup 2+} uniporter (MCU), a regulator of mitochondrial Ca{sup 2+} uptake, has been implicated in energy metabolism and various cellular signaling processes. However, whether MCU contributes to cancer cell migration has not been established. Here we examined the expression of MCU mRNA in the Oncomine database and found that MCU is correlated to metastasis and invasive breast cancer. MCU inhibition by ruthenium red (RuR) or MCU silencing by siRNA abolished serum-induced migration in MDA-MB-231 breast cancer cells and reduced serum- or thapsigargin (TG)-induced store-operated Ca2+ entry (SOCE). Serum-induced migrations in MDA-MB-231 cells were blocked by SOCE inhibitors. Our results demonstrate that MCU plays a critical role in breast cancer cell migration by regulating SOCE. - Highlights: • MCU is correlated to metastasis and invasive breast cancer. • MCU inhibition abolished serum-induced migration in MDA-MB-231 breast cancer cells and reduced serum- or TG-induced SOCE. • Serum-induced migrations in MDA-MB-231 cells were blocked by SOCE inhibitors. • MCU plays a critical role in MDA-MB-231 cell migration by regulating SOCE.

  19. Human adipose tissue-derived stromal/stem cells promote migration and early metastasis of triple negative breast cancer xenografts.

    Directory of Open Access Journals (Sweden)

    Brian G Rowan

    Full Text Available BACKGROUND: Fat grafting is used to restore breast defects after surgical resection of breast tumors. Supplementing fat grafts with adipose tissue-derived stromal/stem cells (ASCs is proposed to improve the regenerative/restorative ability of the graft and retention. However, long term safety for ASC grafting in proximity of residual breast cancer cells is unknown. The objective of this study was to determine the impact of human ASCs derived from abdominal lipoaspirates of three donors, on a human breast cancer model that exhibits early metastasis. METHODOLOGY/PRINCIPAL FINDINGS: Human MDA-MB-231 breast cancer cells represents "triple negative" breast cancer that exhibits early micrometastasis to multiple mouse organs [1]. Human ASCs were derived from abdominal adipose tissue from three healthy female donors. Indirect co-culture of MDA-MB-231 cells with ASCs, as well as direct co-culture demonstrated that ASCs had no effect on MDA-MB-231 growth. Indirect co-culture, and ASC conditioned medium (CM stimulated migration of MDA-MB-231 cells. ASC/RFP cells from two donors co-injected with MDA-MB-231/GFP cells exhibited a donor effect for stimulation of primary tumor xenografts. Both ASC donors stimulated metastasis. ASC/RFP cells were viable, and integrated with MDA-MB-231/GFP cells in the tumor. Tumors from the co-injection group of one ASC donor exhibited elevated vimentin, matrix metalloproteinase-9 (MMP-9, IL-8, VEGF and microvessel density. The co-injection group exhibited visible metastases to the lung/liver and enlarged spleen not evident in mice injected with MDA-MB-231/GFP alone. Quantitation of the total area of GFP fluorescence and human chromosome 17 DNA in mouse organs, H&E stained paraffin sections and fluorescent microscopy confirmed multi-focal metastases to lung/liver/spleen in the co-injection group without evidence of ASC/RFP cells. CONCLUSIONS: Human ASCs derived from abdominal lipoaspirates of two donors stimulated metastasis of

  20. Expression of cancer stem cell surface markers after chemotherapeutic drug treatment to reflect breast cancer cell regrowth

    Institute of Scientific and Technical Information of China (English)

    Qing Liu; Wings Tjing Yung Loo; Louis Wing Cheong Chow; Kelly Wei Yu Rui

    2014-01-01

    Objective To detect the cell viability and the expressions of stem cell surface markers after chemotherapeutic drug treatment. Methods We observed the cytotoxic effects of three chemotherapeutic agents [ epirubicin ( Epi ) , fluorouracil ( 5-FU ) and cyclophosphamide ( Cyc ) ] in three cell lines, and the cell viabilities after removed these chemotherapeutic agents. Expressions of stem cell surface markers CD44, CD24, CD90, CD14 and aldehyde dehydrogenase1(ALDH1) in breast cancer cells were analyzed by real-time PCR. The post hoc analysis (Tukey’s tests) in conjunction with one-way ANOVA was used for statistical analysis. Results The initial cytotoxic efficacy was most notable. After the treatment of the same therapeutic agents, cell viability was decreased by 64. 8% 35. 14%, 32. 25% in BT-483 cells, 66. 4%, 22. 94% and 45. 88% in MDA-MB-231 cells, 97. 1%, 99. 5% and 76. 4% in MCF cells. The difference was significant compared with that before treatment ( P=0. 000 ) . However, the inhibitory effects were diminished after chemotherapeutic agent withdrawal. Cell viabilities were increased to 167. 9%, 212. 04% and 188. 66% in MDA-MB-231 cells at 48 h after withdrawal. At 72 h after withdrawal, cell viability was increased with a significant difference in three cell lines (all P values=0. 000). Expressions of CD44 and ALDH1 were most prevalent for MDA-MB-231, BT-483 and MCF-7 cells. ALDH1 mRNA level was significant higher in BT-483 ( HER-2 overexpression cell line) than MDA-MB-231 ( triple negative cell line ) ( P = 0. 012 ) . CD14 mRNA level in MCF-7 cells were significantly lower than that in MDA-MB-231 and BT-483 (P=0. 003, 0. 001). BT-483 showed significantly higher level of CD44 than MDA-MB-231 and MCF-7 cell line (P= 0.013, 0.020), and no significant difference was detected between MDA-MB-231 and MCF-7 breast cancer cells ( P=0. 955 ) . CD90 mRNA expressions were detected in MDA-MB-231 cells and MCF-7 cells, but not in BT-483 cells. Conclusion Some malignant

  1. Role of NF-κB activation in matrix metalloproteinase 9, vascular endothelial growth factor and interleukin 8 expression and secretion in human breast cancer cells.

    Science.gov (United States)

    Li, Caijuan; Guo, Sufen; Shi, Tiemei

    2013-04-01

    The aims of this study were to assess the effects and potential mechanisms of parthenolide on the expression of vascular endothelial growth factor (VEGF), interleukin 8 (IL-8) and matrix metalloproteinase 9 (MMP-9) in human breast cancer cell line MDA-MB-231. After incubation with different concentrations of parthenolide for 24 h, MDA-MB-231 cells were collected, and the expressions of VEGF, IL-8 and MMP-9 were measured by real-time PCR and Western blot. The secretions of VEGF, IL-8 and MMP-9 in culture supernatant of MDA-MB-231 cells were then measured with ELISA assays. The NF-κB DNA-binding activity of breast cancer cells treated with parthenolide was analyzed using electrophoretic mobility assays. The real-time PCR and Western blot data showed that the expressions of VEGF, IL-8 and MMP-9 were significantly inhibited by parthenolide at both transcription level and protein level in MDA-MB-231 cells. ELISA results also confirmed these effects at a secretion level. The electrophoretic mobility assay results demonstrated that parthenolide can inhibit NF-κB DNA-binding activity of the breast cancer cells. Hence, the expression of VEGF, IL-8 and MMP-9 may be suppressed by parthenolide through the inhibition of NF-κB DNA-binding activity in MDA-MB-231 cells.

  2. A truncated-Flt1 isoform of breast cancer cells is upregulated by Notch and downregulated by retinoic acid.

    Science.gov (United States)

    Mezquita, Belén; Mezquita, Jovita; Barrot, Carme; Carvajal, Silvia; Pau, Montserrat; Mezquita, Pau; Mezquita, Cristóbal

    2014-01-01

    We have previously reported that the major isoform of Flt1/VEGFR-1 expressed in MDA-MB-231 breast cancer cells was a truncated intracellular isoform transcribed from intron 21 (i21 Flt1). This isoform upregulated the active form of Src and increased breast cancer cell invasiveness. Since expression of the transmembrane and soluble Flt1 isoforms of HUVEC is activated by Notch signaling, we wondered whether the expression of the intracellular isoform i21 Flt1 was also dependent on Notch activation. We report here that the expression of i21 Flt1 in HUVEC and MDA-MB-231 cells is downregulated by the γ-secretase inhibitor DAPT. In addition, treatment of MDA-MB-231 cells with siRNA specific for Notch-1 and Notch-3 downregulates the expression of i21 Flt1. In agreement with these findings, HUVEC and MDA-MB-231 breast cancer cells, cultured on dishes coated with recombinant human Dll4 extracellular domain, express higher levels of i21 Flt1. In cancer cells, Flt1 is a target of the micro RNA family miR-200. In MDA-MB-231 breast cancer cells, the truncated intracellular isoform i21 Flt1 is also negatively regulated by miR-200c. Retinoic acid interferes i21 Flt1 expression by downregulating Notch-3 and upregulating miR-200 expression. Treatment of MDA-MB-231 breast cancer cells with both a γ-secretase inhibitor and retinoic acid suppresses the expression of i21 Flt1, providing a new mechanism to explain the effectiveness of this therapeutic approach. © 2013 Wiley Periodicals, Inc.

  3. Specific expression of the human voltage-gated proton channel Hv1 in highly metastatic breast cancer cells, promotes tumor progression and metastasis

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yifan [The Key Laboratory of Bioactive Materials, Ministry of Education, School of Physics Science, Nankai University, Tianjin 300071 (China); Li, Shu Jie, E-mail: shujieli@nankai.edu.cn [The Key Laboratory of Bioactive Materials, Ministry of Education, School of Physics Science, Nankai University, Tianjin 300071 (China); Pan, Juncheng [The Key Laboratory of Bioactive Materials, Ministry of Education, School of Physics Science, Nankai University, Tianjin 300071 (China); Che, Yongzhe, E-mail: cheli@nankai.edu.cn [The Key Laboratory of Bioactive Materials, Ministry of Education, School of Medicine, Nankai University, Tianjin 300071 (China); Yin, Jian [Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300060 (China); Zhao, Qing [The Key Laboratory of Bioactive Materials, Ministry of Education, School of Physics Science, Nankai University, Tianjin 300071 (China)

    2011-08-26

    Highlights: {yields} Hv1 is specifically expressed in highly metastatic human breast tumor tissues. {yields} Hv1 regulates breast cancer cytosolic pH. {yields} Hv1 acidifies extracellular milieu. {yields} Hv1 exacerbates the migratory ability of metastatic cells. -- Abstract: The newly discovered human voltage-gated proton channel Hv1 is essential for proton transfer, which contains a voltage sensor domain (VSD) without a pore domain. We report here for the first time that Hv1 is specifically expressed in the highly metastatic human breast tumor tissues, but not in poorly metastatic breast cancer tissues, detected by immunohistochemistry. Meanwhile, real-time RT-PCR and immunocytochemistry showed that the expression levels of Hv1 have significant differences among breast cancer cell lines, MCF-7, MDA-MB-231, MDA-MB-468, MDA-MB-453, T-47D and SK-BR-3, in which Hv1 is expressed at a high level in highly metastatic human breast cancer cell line MDA-MB-231, but at a very low level in poorly metastatic human breast cancer cell line MCF-7. Inhibition of Hv1 expression in the highly metastatic MDA-MB-231 cells by small interfering RNA (siRNA) significantly decreases the invasion and migration of the cells. The intracellular pH of MDA-MB-231 cells down-regulated Hv1 expression by siRNA is obviously decreased compared with MDA-MB-231 with the scrambled siRNA. The expression of matrix metalloproteinase-2 and gelatinase activity in MDA-MB-231 cells suppressed Hv1 by siRNA were reduced. Our results strongly suggest that Hv1 regulates breast cancer intracellular pH and exacerbates the migratory ability of metastatic cells.

  4. OSTEOBLAST ADHESION OF BREAST CANCER CELLS WITH SCANNING ACOUSTIC MICROSCOPY

    Energy Technology Data Exchange (ETDEWEB)

    Chiaki Miyasaka; Robyn R. Mercer; Andrea M. Mastro; Ken L. Telschow

    2005-03-01

    Breast cancer frequently metastasizes to the bone. Upon colonizing bone tissue, the cancer cells stimulate osteoclasts (cells that break bone down), resulting in large lesions in the bone. The breast cancer cells also affect osteoblasts (cells that build new bone). Conditioned medium was collected from a bone-metastatic breast cancer cell line, MDA-MB-231, and cultured with an immature osteoblast cell line, MC3T3-E1. Under these conditions the osteoblasts acquired a changed morphology and appeared to adherer in a different way to the substrate and to each other. To characterize cell adhesion, MC3T3-E1 osteoblasts were cultured with or without MDA-MB-231 conditioned medium for two days, and then assayed with a mechanical scanning acoustic reflection microscope (SAM). The SAM indicated that in normal medium the MC3T3-E1 osteoblasts were firmly attached to their plastic substrate. However, MC3T3-E1 cells cultured with MDA-MB-231 conditioned medium displayed both an abnormal shape and poor adhesion at the substrate interface. The cells were fixed and stained to visualize cytoskeletal components using optical microscopic techniques. We were not able to observe these differences until the cells were quite confluent after 7 days of culture. However, using the SAM, we were able to detect these changes within 2 days of culture with MDA-MB-231 conditioned medium

  5. Decrease of breast cancer cell invasiveness by sodium phenylacetate (NaPa) is associated with an increased expression of adhesive molecules

    OpenAIRE

    Vasse, M.; Thibout, D; Paysant, J; Legrand, E.; Soria, C.; Crépin, M

    2001-01-01

    Sodium phenylacetate (NaPa), a non-toxic phenylalanine metabolite, has been shown to induce in vivo and in vitro cytostatic and antiproliferative effects on various cell types. In this work, we analysed the effect of NaPa on the invasiveness of breast cancer cell (MDA-MB-231, MCF-7 and MCF-7 ras). Using the highly invasive breast cancer cell line MDA-MB-231, we demonstrated that an 18-hour incubation with NaPa strongly inhibits the cell invasiveness through Matrigel (86% inhibition at 20 mM o...

  6. Human amniotic membrane-derived stromal cells (hAMSC) interact depending on breast cancer cell type through secreted molecules.

    Science.gov (United States)

    Kim, Sun-Hee; Bang, So Hee; Kang, So Yeong; Park, Ki Dae; Eom, Jun Ho; Oh, Il Ung; Yoo, Si Hyung; Kim, Chan-Wha; Baek, Sun Young

    2015-02-01

    Human amniotic membrane-derived stromal cells (hAMSC) are candidates for cell-based therapies. We examined the characteristics of hAMSC including the interaction between hAMSC and breast cancer cells, MCF-7, and MDA-MB-231. Human amniotic membrane-derived stromal cells showed typical MSC properties, including fibroblast-like morphology, surface antigen expression, and mesodermal differentiation. To investigate cell-cell interaction via secreted molecules, we cultured breast cancer cells in hAMSC-conditioned medium (hAMSC-CM) and analyzed their proliferation, migration, and secretome profiles. MCF-7 and MDA-MB-231 cells exposed to hAMSC-CM showed increased proliferation and migration. However, in hAMSC-CM, MCF-7 cells proliferated significantly faster than MDA-MB-231 cells. When cultured in hAMSC-CM, MCF-7 cells migrated faster than MDA-MB-231 cells. Two cell types showed different profiles of secreted factors. MCF-7 cells expressed much amounts of IL-8, GRO, and MCP-1 in hAMSC-CM. Human amniotic membrane-derived stromal cells interact with breast cancer cells through secreted molecules. Factors secreted by hAMSCs promote the proliferation and migration of MCF-7 breast cancer cells. For much safe cell-based therapies using hAMSC, it is necessary to study carefully about interaction between hAMSC and cancer cells.

  7. Comparative assessment of the apoptotic potential of silver nanoparticles synthesized by Bacillus tequilensis and Calocybe indica in MDA-MB-231 human breast cancer cells: targeting p53 for anticancer therapy

    OpenAIRE

    Gurunathan S; Park JH; Han JW; Kim JH

    2015-01-01

    Sangiliyandi Gurunathan, Jung Hyun Park, Jae Woong Han, Jin-Hoi KimDepartment of Animal Biotechnology, Konkuk University, Seoul, Republic of KoreaBackground: Recently, the use of nanotechnology has been expanding very rapidly in diverse areas of research, such as consumer products, energy, materials, and medicine. This is especially true in the area of nanomedicine, due to physicochemical properties, such as mechanical, chemical, magnetic, optical, and electrical properties, compared...

  8. Structure-activity relationships of a-, ß1-, and d-Tomatines and Tomatidine Against Human Breast (MDA-MB-231), Gastric (KATO-III), and Prostate (PC3) Cancer Cells

    Science.gov (United States)

    Partial acid hydrolysis of the tetrasaccharide (lycotetraose) side chain of the tomato glycoalkaloid a-tomatine resulted in the formation of four products with three (ß1-tomatine), two ('-tomatine), one (d-tomatine), and zero (tomatidine) sugar residues. These compounds were isolated by chromatogra...

  9. In vitro study on effect of germinated wheat on human breast cancer cells

    Science.gov (United States)

    This research investigated the possible anti-cancer effects of germinated wheat flours (GWF) on cell growth and apoptosis of human breast cancer cells. In a series of in vitro experiments, estrogen receptor-positive (MCF-7) and negative (MDA-MB-231) cells were cultured and treated with GWF that wer...

  10. Effects of Neuregulins on Invasion and Metastasis of Non-overexpression ErbB2 Breast Cancer Cells

    Institute of Scientific and Technical Information of China (English)

    Ya-mei Zhang; Ting-ting Zhao; Hua-yu Deng

    2009-01-01

    Objective: To explore the effects of neuregulins on ErbB2 receptor signal transduction pathway activation, and invasion and metastasis of non-overexpression ErbB2 breast cancer cell MDA-MB-231. Methods: The expressions of neuregulin were detected by immunocytochemistry and Western blot. MDA-MB-231 cells were treated with ErbB2 kinase inhibitor AG825. Proliferations were measured with MTT assay. Invasion and metastasis of MDA-ME-231 cells were evaluated with transwell chamber. The enzyme activities of MMP-2 and MMP-9 were detected by gelatin zymography. The expressions of MMP-2 and HIF-1α were detected by Western blot.Results: MDA-MB-231 cells expressed a relatively higher level of neuregulin. In Western blot, the positive reaction band was found at 44KD which coincides with the molecular weight of NRG. When MDA-MB-231 cells were treated with AG825, the proliferation was inhibited in a time-dose-dependent manner (P<0.01), invasion and metastasis were also depressed (P<0.05). The enzyme activities of MMP-2 and MMP-9 were lower (P<0.05). The expression levels of MMP-2 and HIF-1α were decreased (P<0.05).Conclusion: Our study indicates that neuregulins are synthesized in MDA-MB-231 cells as transmembrane proteins, neuregulins could activate ErbB2 receptor signal transduction pathway by autocrine or paracrine secretion, and induce invasion and metastasis of MDA-MB-231 cells.

  11. Chrysin, Abundant in Morinda citrifolia Fruit Water-EtOAc Extracts, Combined with Apigenin Synergistically Induced Apoptosis and Inhibited Migration in Human Breast and Liver Cancer Cells.

    Science.gov (United States)

    Huang, Cheng; Wei, Yu-Xuan; Shen, Ma-Ching; Tu, Yu-Hsuan; Wang, Chia-Chi; Huang, Hsiu-Chen

    2016-06-01

    The composition of Morinda citrifolia (M. citrifolia) was determined using high-performance liquid chromatography (HPLC), and the anticancer effects of M. citrifolia extract evaluated in HepG2, Huh7, and MDA-MB-231 cancer cells. M. citrifolia fruit extracts were obtained by using five different organic solvents, including hexane (Hex), methanol (MeOH), ethyl acetate (EtOAc), chloroform (CHCl3), and ethanol (EtOH). The water-EtOAc extracts from M. citrifolia fruits was found to have the highest anticancer activity. HPLC data revealed the predominance of chrysin in water-EtOAc extracts of M. citrifolia fruit. Furthermore, the combined effects of cotreatment with apigenin and chrysin on liver and breast cancer were investigated. Treatment with apigenin plus chrysin for 72-96 h reduced HepG2 and MDA-MB-231 cell viability and induced apoptosis through down-regulation of S-phase kinase-associated protein-2 (Skp2) and low-density lipoprotein receptor-related protein 6 (LRP6) expression. However, the combination treatment for 36 h synergistically decreased MDA-MB-231 cell motility but not cell viability through down-regulation of MMP2, MMP9, fibronectin, and snail in MDA-MB-231 cells. Additionally, chrysin combined with apigenin also suppressed tumor growth in human MDA-MB-231 breast cancer cells xenograft through down-regulation of ki-67 and Skp2 protein. The experimental results showed that chrysin combined with apigenin can reduce HepG2 and MDA-MB-231 proliferation and cell motility and induce apoptosis. It also offers opportunities for exploring new drug targets, and further investigations are underway in this regard.

  12. Reduced expression of Toll-like receptor 4 inhibits human breast cancer cells proliferation and inflammatory cytokines secretion

    Directory of Open Access Journals (Sweden)

    Xie Xiaofang

    2010-07-01

    Full Text Available Abstract Background Tumor cell expression of Toll-like receptors (TLRs can promote inflammation and cell survival in the tumor microenvironment. Toll-like receptor 4 (TLR4 signaling in tumor cells can mediate tumor cell immune escape and tumor progression, and it is regarded as one of the mechanisms for chronic inflammation in tumorigenesis and progression. The expression of TLR4 in human breast cancer cell line MDA-MB-231 and its biological function in the development and progression of breast cancer have not been investigated. We sought to characterize the expression of TLR1-TLR10 in the established human breast cancer cell line MDA-MB-231, and to investigate the biological roles of TLR4 in breast cancer cells growth, survival, and its potential as a target for breast cancer therapy. Methods TLRs mRNA and protein expressions were detected in human breast cancer cell line MDA-MB-231 by RT-PCR, real-time PCR and flow cytometry (FCM. RNA interference was used to knockdown the expression of TLR4 in MDA-MB-231. MDA-MB-231 transfected with the vector pGenesil-1 and the vector containing a scrambled siRNA were as controls. Recombinant plasmids named TLR4AsiRNA, TLR4BsiRNA and TLR4CsiRNA specific to TLR4 were transfected into human breast cancer cell line MDA-MB-231 with Lipfectamine™2000 reagent. TLR4 mRNA and protein expressions were investigated by RT-PCR, real-time PCR, FCM and immunofluorescence after silence. MTT analysis was performed to detect cell proliferation and FCM was used to detect the secretion of inflammatory cytokines in supernatant of transfected cells. Results The human breast cancer cell line MDA-MB-231 was found to express TLR1-TLR10 at both the mRNA and protein levels. TLR4 was found to be the highest expressed TLR in MDA-MB-231. TLR4AsiRNA, TLR4BsiRNA and TLR4CsiRNA were found to significantly inhibit TLR4 expression in MDA-MB-231 at both mRNA and protein levels as compared to vector control(vector transfected cells. TLR4Asi

  13. Investigating the effect of cell substrate on cancer cell stiffness by optical tweezers.

    Science.gov (United States)

    Yousafzai, Muhammad Sulaiman; Coceano, Giovanna; Bonin, Serena; Niemela, Joseph; Scoles, Giacinto; Cojoc, Dan

    2017-07-26

    The mechanical properties of cells are influenced by their microenvironment. Here we report cell stiffness alteration by changing the cell substrate stiffness for isolated cells and cells in contact with other cells. Polydimethylsiloxane (PDMS) is used to prepare soft substrates with three different stiffness values (173, 88 and 17kPa respectively). Breast cancer cells lines, namely HBL-100, MCF-7 and MDA-MB-231 with different level of aggressiveness are cultured on these substrates and their local elasticity is investigated by vertical indentation of the cell membrane. Our preliminary results show an unforeseen behavior of the MDA-MB-231 cells. When cultured on glass substrate as isolated cells, they are less stiff than the other two types of cells, in agreement with the general statement that more aggressive and metastatic cells are softer. However, when connected to other cells the stiffness of MDA-MB-231 cells becomes similar to the other two cell lines. Moreover, the stiffness of MDA-MB-231 cells cultured on soft PDMS substrates is significantly higher than the stiffness of the other cell types, demonstrating thus the strong influence of the environmental conditions on the mechanical properties of the cells. Copyright © 2017. Published by Elsevier Ltd.

  14. Microwave-assisted synthesis of sec/tert-butyl 2-arylbenzimidazoles and their unexpected antiproliferative activity towards ER negative breast cancer cells.

    Science.gov (United States)

    Abdul Rahim, Aisyah Saad; Salhimi, Salizawati Muhamad; Arumugam, Natarajan; Pin, Lim Chung; Yee, Ng Shy; Muttiah, Nithya Niranjini; Keat, Wong Boon; Abd Hamid, Shafida; Osman, Hasnah; Mat, Ishak b

    2013-12-01

    A new series of N-sec/tert-butyl 2-arylbenzimidazole derivatives was synthesised in 85-96% yields within 2-3.5 min by condensing ethyl 3-amino-4-butylamino benzoate with various substituted metabisulfite adducts of benzaldehyde under focused microwave irradiation. The benzimidazole analogues were characterised using (1)H NMR, (13)C NMR, high resolution MS and melting points. Evaluation of antiproliferative activity of the benzimidazole analogues against MCF-7 and MDA-MB-231 revealed several compounds with unexpected selective inhibitions of MDA-MB-231 in micromolar range. All analogues were found inactive towards MCF-7. The most potent inhibition against MDA-MB-231 human breast cancer cell line came from the unsubstituted 2-phenylbenzimidazole 10a.

  15. Stathmin表达水平与乳腺癌细胞侵袭能力相关性研究%Correlation of Breast Cancer Cells Invasive and Stathmin Gene Expression

    Institute of Scientific and Technical Information of China (English)

    杨铭; 林芳; 和婷; 王琳; 董轲; 张惠中

    2016-01-01

    Objective To explore the relationship between the Stathmin gene expression in breast cancer cells MDA-MB-231, MCF-7 and the biological behaviours such as cell growth,adhesion and invasion,and provide experimental basis of breast cancer metastasis for further study.Methods Used RT-PCR and Western Blot methods to detect the Stathmin gene expres-sion levels in MDA-MB-231 and MCF-7 cells,and in the mean while to test the MDA-MB-231 and MCF-7 cell growth,adhe-sion,invasion ability by CCK-8 cell proliferation experiments,cell adhesion experiments,cell invasion experiments,then, analyed the relationship of Stathmin gene expression and cell growth,adhesion,invasion ability.Results Over-expression levels of Stathmin gene were observed both in the MDA-MB-231 and MCF-7 cells (F=10.173,P<0.05),and furthermore, the expression levels of Stathmin gene in MDA-MB-231 cells was higher than in MCF-7 cells (t=4.562,P<0.05).While, the growth,adhesion and invasion ability of the MDA-MB-231 cells was higher than that of MCF-7 cells(P<0.05).Conclu-sion The higher level of Stathmin gene expression,the stronger breast cancer cells had ability of growth,invasion,and ad-hesive.The Stathmin gene expression levels was closely correlated with breast cancer cell invasive.%目的:探讨乳腺癌细胞 MDA-MB-231和 MCF-7中 Stathmin基因表达水平与细胞生长、黏附、侵袭等生物学行为之间的关系,为进一步研究乳腺癌转移机制奠定实验基础。方法应用 RT-PCR和 Western Blot方法检测 MDA-MB-231和 MCF-7细胞中 Stathmin基因的表达水平,同时利用细胞增殖试验、细胞黏附试验和细胞侵袭试验检测 MDA-MB-231和MCF-7细胞的生长、黏附、侵袭能力,分析Stathmin表达与细胞的生长、黏附、侵袭能力之间的关系。结果 RT-PCR和Western Blot检测结果显示,Stathmin基因在 MDA-MB-231和 MCF-7细胞中表达均高于正常对照细胞(F=10.173,P<0.05),且 MDA-MB-231细胞

  16. N-myc downstream-regulated gene 2 (NDRG2) suppresses the epithelial-mesenchymal transition (EMT) in breast cancer cells via STAT3/Snail signaling.

    Science.gov (United States)

    Kim, Myung-Jin; Lim, Jihyun; Yang, Young; Lee, Myeong-Sok; Lim, Jong-Seok

    2014-11-01

    Although NDRG2 has recently been found to be a candidate tumor suppressor, its precise role in the epithelial-mesenchymal transition (EMT) is not well understood. In the present study, we demonstrated that NDRG2 overexpression in MDA-MB-231 cells down-regulated the expression of Snail, a transcriptional repressor of E-cadherin and a key regulator of EMT, as well as the phosphorylation of signal transducer and activator of transcription 3 (STAT3), an oncogenic transcription factor that is activated in many human malignancies including breast cancer. In addition, we confirmed that the expression of Snail and phospho-STAT3 was recovered when NDRG2 was knocked down by siRNA in MCF7 cells in which NDRG2 is endogenously expressed. Interestingly, MDA-MB-231-NDRG2 cells showed remarkably decreased Snail expression after treatment with JSI-124 (also known as cucurbitacin I) or Stattic, STAT3 inhibitors, compared to MDA-MB-231-mock cells. Moreover, STAT3 activation by EGF treatment induced higher Snail expression, and NDRG2 overexpression resulted in the inhibition of Snail expression in MDA-MB-231 cells stimulated by EGF in the absence or presence of STAT3 inhibitor. Treatment of MDA-MB-231 cells with STAT3 inhibitor led to a moderate decrease in wound healing and migration capacity, whereas STAT3 inhibitor treatment of MDA-MB-231-NDRG2 cells resulted in a significant attenuation of migration in both resting and EGF-stimulated cells. Collectively, our data demonstrate that the inhibition of STAT3 signaling by NDRG2 suppresses EMT progression of EMT via the down-regulation of Snail expression. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. Parathyroid hormone-related protein regulates tumor-relevant genes in breast cancer cells.

    NARCIS (Netherlands)

    Dittmer, A.; Vetter, M.; Schunke, D.; Span, P.N.; Sweep, C.G.J.; Thomssen, C.; Dittmer, J.

    2006-01-01

    The effect of endogenous parathyroid hormone-related protein (PTHrP) on gene expression in breast cancer cells was studied. We suppressed PTHrP expression in MDA-MB-231 cells by RNA interference and analyzed changes in gene expression by microarray analysis. More than 200 genes showed altered

  18. Luteolin inhibits lung metastasis, cell migration, and viability of triple-negative breast cancer cells

    Science.gov (United States)

    Cook, Matthew T; Liang, Yayun; Besch-Williford, Cynthia; Hyder, Salman M

    2017-01-01

    Most breast cancer-related deaths from triple-negative breast cancer (TNBC) occur following metastasis of cancer cells and development of tumors at secondary sites. Because TNBCs lack the three receptors targeted by current chemotherapeutic regimens, they are typically treated with extremely aggressive and highly toxic non-targeted treatment strategies. Women with TNBC frequently develop metastatic lesions originating from drug-resistant residual cells and have poor prognosis. For this reason, novel therapeutic strategies that are safer and more effective are sought. Luteolin (LU) is a naturally occurring, non-toxic plant compound that has proven effective against several types of cancer. With this in mind, we conducted in vivo and in vitro studies to determine whether LU might suppress metastasis of TNBC. In an in vivo mouse metastasis model, LU suppressed metastasis of human MDA-MB-435 and MDA-MB-231 (4175) LM2 TNBC cells to the lungs. In in vitro assays, LU inhibited cell migration and viability of MDA-MB-435 and MDA-MB-231 (4175) LM2 cells. Further, LU induced apoptosis in MDA-MB-231 (4175) LM2 cells. Relatively low levels (10 µM) of LU significantly inhibited vascular endothelial growth factor (VEGF) secretion in MDA-MB-231 (4175) LM2 cells, suggesting that it has the ability to suppress a potent angiogenic and cell survival factor. In addition, migration of MDA-MB-231 (4175) LM2 cells was inhibited upon exposure to an antibody against the VEGF receptor, KDR, but not by exposure to a VEGF165 antibody. Collectively, these data suggest that the anti-metastatic properties of LU may, in part, be due to its ability to block VEGF production and KDR-mediated activity, thereby inhibiting tumor cell migration. These studies suggest that LU deserves further investigation as a potential treatment option for women with TNBC. PMID:28096694

  19. Anti-metastatic and anti-tumor growth effects of Origanum majorana on highly metastatic human breast cancer cells: inhibition of NFκB signaling and reduction of nitric oxide production.

    Directory of Open Access Journals (Sweden)

    Yusra Al Dhaheri

    Full Text Available BACKGROUND: We have recently reported that Origanummajorana exhibits anticancer activity by promoting cell cycle arrest and apoptosis of the metastatic MDA-MB-231 breast cancer cell line. Here, we extended our study by investigating the effect of O. majorana on the migration, invasion and tumor growth of these cells. RESULTS: We demonstrate that non-cytotoxic concentrations of O. majorana significantly inhibited the migration and invasion of the MDA-MB-231 cells as shown by wound-healing and matrigel invasion assays. We also show that O. majorana induce homotypic aggregation of MDA-MB-231 associated with an upregulation of E-cadherin protein and promoter activity. Furthermore, we show that O. majorana decrease the adhesion of MDA-MB-231 to HUVECs and inhibits transendothelial migration of MDA-MB-231 through TNF-α-activated HUVECs. Gelatin zymography assay shows that O. majorana suppresses the activities of matrix metalloproteinase-2 and -9 (MMP-2 and MMP-9. ELISA, RT-PCR and Western blot results revealed that O. majorana decreases the expression of MMP-2, MMP-9, urokinase plasminogen activator receptor (uPAR, ICAM-1 and VEGF. Further investigation revealed that O. majorana suppresses the phosphorylation of IκB, downregulates the nuclear level of NFκB and reduces Nitric Oxide (NO production in MDA-MB-231 cells. Most importantly, by using chick embryo tumor growth assay, we also show that O. majorana promotes inhibition of tumor growth and metastasis in vivo. CONCLUSION: Our findings identify Origanummajorana as a promising chemopreventive and therapeutic candidate that modulate breast cancer growth and metastasis.

  20. Micro RNA-126 coordinates cell behavior and signaling cascades according to characteristics of breast cancer cells.

    Science.gov (United States)

    Turgut Cosan, D; Oner, C; Mutlu Sahin, F

    2016-01-01

    Micro RNA-126 is known to enhance apoptotic processes and also plays a role in vascular growth through the regulation of vascular endothelial growth factor-mediated signaling, angiogenesis, and vascular integrity. We aimed to determine the role of miR-126 in breast cancer cell lines with a variety of different characteristics to evaluate its interaction with certain cancer-related molecules and mechanisms. To determine the effect of presence and absence of miR-126 in MCF-7 and MDA-MB-231 breast cancer cells, miR-126 mimics and inhibitor were transfected. miRNA and gene expressions were observed by using RT-PCR. Viability, proliferation, adhesion, invasion and lateral motility assays were performed to determine cell behavior changes. miR-126 is more effective on MDA-MB-231 cells on cell behavior. We observed an increase in miR-126 expression when miR-126 mimics was transfected to MCF-7 and MDA-MB-231 cells. Also, there was a decrease in miR-126 expression when MCF-7 and MDA-MB-231 cells were transfected with miR-126 inhibitor. Furthermore, presence and absence of miR-126 modulated the gene expressions of VEGF/PI3K/AKT and MAPK signaling in MCF-7 and MDA-MB-231. Our study showed that miR-126 is in a state of interaction with a multitude molecules playing a role in breast cancer. According to obtained data, we can say that miR-126 may be more effective in inhibition of metastatic breast cancer (Tab. 4, Fig. 3, Ref. 46).

  1. Role for chondroitin sulfate glycosaminoglycan in NEDD9-mediated breast cancer cell growth

    NARCIS (Netherlands)

    Iida, J.; Dorchak, J.; Clancy, R.; Slavik, J.; Ellsworth, R.; Katagiri, Y.; Pugacheva, E.N.; Kuppevelt, T.H. van; Mural, R.J.; Cutler, M.L.; Shriver, C.D.

    2015-01-01

    There are lines of evidence demonstrating that NEDD9 (Cas-L, HEF-1) plays a key role in the development, progression, and metastasis of breast cancer cells. We previously reported that NEDD9 plays a critical role for promoting migration and growth of MDA-MB-231. In order to further characterize the

  2. Phellinus linteus extract induces autophagy and synergizes with 5-fluorouracil to inhibit breast cancer cell growth.

    Science.gov (United States)

    Lee, Wen-Ying; Hsu, Keng-Fu; Chiang, Tai-An; Chen, Chee-Jen

    2015-01-01

    Phellinus linteus (PL) is a medicinal mushroom due to its several biological properties, including anticancer activity. However, the mechanisms of its anticancer effect remain to be elucidated. We evaluated the inhibitory effects of the ethanolic extract from the PL combined with 5-FU on MDA-MB-231 breast cancer cell line and to determine the mechanism of cell death. Individually, PL extract and 5-FU significantly inhibited the proliferation of MDA-MB-231 cells in a dose-dependent manner. PL extract (30 mg/mL) in combination with 5-FU (10 μg/mL) synergistically inhibited MDA-MB-231 cells by 1.8-fold. PL did not induce apoptosis, as demonstrated by the DNA fragmentation assay, the sub-G1 population, and staining with annexin V-FITC and propidium iodide. The exposure of MDA-MB-231 cells to PL extracts resulted in several confirmed characteristics of autophagy, including the appearance of autophagic vacuoles revealed by monodansylcadaverine staining, the formation of acidic vesicular organelles, autophagosome membrane association of microtubule-associated protein light chain 3 (LC3) characterized by cleavage of LC3 and its punctuate redistribution, and ultrastructural observation of autophagic vacuoles by transmission electron microscopy. We concluded that PL extracts synergized with low doses of 5-FU to inhibit triple-negative breast cancer cell growth and demonstrated that PL extract can induce autophagy-related cell death.

  3. Human embryonic stem cell-derived endothelial cells as cellular delivery vehicles for treatment of metastatic breast cancer.

    Science.gov (United States)

    Su, Weijun; Wang, Lina; Zhou, Manqian; Liu, Ze; Hu, Shijun; Tong, Lingling; Liu, Yanhua; Fan, Yan; Kong, Deling; Zheng, Yizhou; Han, Zhongchao; Wu, Joseph C; Xiang, Rong; Li, Zongjin

    2013-01-01

    Endothelial progenitor cells (EPCs) have shown tropism towards primary tumors or metastases and are thus potential vehicles for targeting tumor therapy. However, the source of adult EPCs is limited, which highlights the need for a consistent and renewable source of endothelial cells for clinical applications. Here, we investigated the potential of human embryonic stem cell-derived endothelial cells (hESC-ECs) as cellular delivery vehicles for therapy of metastatic breast cancer. In order to provide an initial assessment of the therapeutic potency of hESC-ECs, we treated human breast cancer MDA-MB-231 cells with hESC-EC conditioned medium (EC-CM) in vitro. The results showed that hESC-ECs could suppress the Wnt/β-catenin signaling pathway and thereby inhibit the proliferation and migration of MDA-MB-231 cells. To track and evaluate the possibility of hESC-EC-employed therapy, we employed the bioluminescence imaging (BLI) technology. To study the therapeutic potential of hESC-ECs, we established lung metastasis models by intravenous injection of MDA-MB-231 cells labeled with firefly luciferase (Fluc) and green fluorescent protein (GFP) to NOD/SCID mice. In mice with lung metastases, we injected hESC-ECs armed with herpes simplex virus truncated thymidine kinase (HSV-ttk) intravenously on days 11, 16, 21, and 26 after MDA-MB-231 cell injection. The NOD/SCID mice were subsequently treated with ganciclovir (GCV), and the growth status of tumor was monitored by Fluc imaging. We found that MDA-MB-231 tumors were significantly inhibited by intravenously injected hESC-ECs. The tumor-suppressive effects of the hESC-ECs, by inhibiting Wnt/β-catenin signaling pathway and inducing tumor cell death through bystander effect in human metastatic breast cancer model, provide previously unexplored therapeutic modalities for cancer treatment.

  4. Cytotoxic Activities against Breast Cancer Cells of Local Justicia gendarussa Crude Extracts.

    Science.gov (United States)

    Ayob, Zahidah; Mohd Bohari, Siti Pauliena; Abd Samad, Azman; Jamil, Shajarahtunnur

    2014-01-01

    Justicia gendarussa methanolic leaf extracts from five different locations in the Southern region of Peninsular Malaysia and two flavonoids, kaempferol and naringenin, were tested for cytotoxic activity. Kaempferol and naringenin were two flavonoids detected in leaf extracts using gas chromatography-flame ionization detection (GC-FID). The results indicated that highest concentrations of kaempferol and naringenin were detected in leaves extracted from Mersing with 1591.80 mg/kg and 444.35 mg/kg, respectively. Positive correlations were observed between kaempferol and naringenin concentrations in all leaf extracts analysed with the Pearson method. The effects of kaempferol and naringenin from leaf extracts were examined on breast cancer cell lines (MDA-MB-231 and MDA-MB-468) using MTT assay. Leaf extract from Mersing showed high cytotoxicity against MDA-MB-468 and MDA-MB-231 with IC50 values of 23 μg/mL and 40 μg/mL, respectively, compared to other leaf extracts. Kaempferol possessed high cytotoxicity against MDA-MB-468 and MDA-MB-231 with IC50 values of 23 μg/mL and 34 μg/mL, respectively. These findings suggest that the presence of kaempferol in Mersing leaf extract contributed to high cytotoxicity of both MDA-MB-231 and MDA-MB-468 cancer cell lines.

  5. Inhibition of human breast cancer xenograft growth by cruciferous vegetable constituent benzyl isothiocyanate.

    Science.gov (United States)

    Warin, Renaud; Xiao, Dong; Arlotti, Julie A; Bommareddy, Ajay; Singh, Shivendra V

    2010-05-01

    Benzyl isothiocyanate (BITC), a constituent of cruciferous vegetables such as garden cress, inhibits growth of human breast cancer cell lines in culture. The present study was undertaken to determine in vivo efficacy of BITC against MDA-MB-231 human breast cancer xenografts. The BITC administration retarded growth of MDA-MB-231 cells subcutaneously implanted in female nude mice without causing weight loss or any other side effects. The BITC-mediated suppression of MDA-MB-231 xenograft growth correlated with reduced cell proliferation as revealed by immunohistochemical analysis for Ki-67 expression. Analysis of the vasculature in the tumors from BITC-treated mice indicated smaller vessel area compared with control tumors based on immunohistochemistry for angiogenesis marker CD31. The BITC-mediated inhibition of angiogenesis in vivo correlated with downregulation of vascular endothelial growth factor (VEGF) receptor 2 protein levels in the tumor. Consistent with these results, BITC treatment suppressed VEGF secretion and VEGF receptor 2 protein levels in cultured MDA-MB-231 cells. Moreover, the BITC-treated MDA-MB-231 cells exhibited reduced capacity for migration compared with vehicle-treated control cells. In contrast to cellular data, BITC administration failed to elicit apoptotic response as judged by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay. In conclusion, the present study demonstrates in vivo anti-cancer efficacy of BITC against MDA-MB-231 xenografts in association with reduced cell proliferation and suppression of neovascularization. These preclinical observations merit clinical investigation to determine efficacy of BITC against human breast cancers.

  6. Recombinant FIP-gat, a Fungal Immunomodulatory Protein from Ganoderma atrum, Induces Growth Inhibition and Cell Death in Breast Cancer Cells.

    Science.gov (United States)

    Xu, Hui; Kong, Ying-Yu; Chen, Xin; Guo, Meng-Yuan; Bai, Xiao-Hui; Lu, Yu-Jia; Li, Wei; Zhou, Xuan-Wei

    2016-04-06

    FIP-gat, an immunomodulatory protein isolated from Ganoderma atrum, is a new member of the FIP family. Little is known, however, about its expressional properties and antitumor activities. It was availably expressed in Escherichia coli with a total yield of 29.75 mg/L. The migration of recombinant FIP-gat (rFIP-gat) on SDS-PAGE corresponded to the predicted molecular mass, and the band was correctly detected by a specific antibody. To characterize the direct effects of rFIP-gat on MDA-MB-231 breast cancer cells, MDA-MB-231 cells were treated with different concentrations of rFIP-gat in vitro; the results showed that this protein could reduce cell viability dose-dependently with a median inhibitory concentration (IC50) of 9.96 μg/mL and agglutinate the MDA-MB-231 cells at a concentration as low as 5 μg/mL. Furthermore, FIP-gat at a concentration of 10 μg/mL can induce significant growth inhibition and cell death in MDA-MB-231 cells. Notably, FIP-gat treatment triggers significant cell cycle arrest at the G1/S transition and pronounced increase in apoptotic cell population. Molecular assays based on microarray and real-time PCR further revealed the potential mechanisms encompassing growth arrest, apoptosis, and autophagy underlying the phenotypic effects.

  7. A novel peptide, selected from phage display library of random peptides, can efficiently target into human breast cancer cell

    Institute of Scientific and Technical Information of China (English)

    DONG Jian; LIU WeiQing; JIANG AiMei; ZHANG KeJian; CHEN MingQing

    2008-01-01

    To develop a targeting vector for breast cancer biotherapy, MDA-MB-231 cell, a human breast cancer cell line, was co-cultured with pC89 (9 aa) phage display library of random peptides. In multiple inde-pendent peptide-presenting phage screening trials, subtilisin was used as a protease to inactivate ex-tra-cellular phages. The internalized phages were collected by cell lysising and amplified in E. coli XLI-Blue. Through five rounds of selection, the peptide-presenting phages which could be internalized in MDA-MB-231 cells were isolated. A comparison was made between internalization capacities of pep-tide-presenting phages isolated from MDA-MB-231 cells and RGD-integrin binding phage by cocultur-ing them with other human tumor cell lines and normal cells. The nucleotide sequences of isolated peptide-presenting phages were then determined by DNA sequencing. To uncover whether phage coat protein or amino acid order was required for the character of the peptide to MDA-MB-231 cells, three peptides were synthesized. They are CASPSGALRSC, ASPSGALRS and CGVIFDHSVPC (the shifted sequence of CASPSGALRSC), and after coculturing them with different cell lines, their targeting ca-pacities to MDA-MB-231 cells were detected. These data suggested that the internalization process was highly selective, and capable of capturing a specific peptide from parent peptide variants. Moreover, the targeting internalization event of peptides was an amino acid sequence dependent manner. The results demonstrated the feasibility of using phage display library of random peptides to develop new targeting system for intracellular delivery of macromolecules, and the peptide we obtained might be modified as a targeting vector for breast cancer gene therapy.

  8. Indole Diterpene Alkaloids as Novel Inhibitors of the Wnt/β-catenin Pathway in Breast Cancer Cells

    Science.gov (United States)

    Sallam, Asmaa A.; Ayoub, Nehad M.; Foudah, Ahmed I.; Gissendanner, Chris R.; Meyer, Sharon A.; El Sayed, Khalid A.

    2013-01-01

    Penitrems are indole diterpene alkaloids best known for their BK channel inhibition and tremorgenic effects in mammals. In a previous study, penitrems A–F (1–5), their biosynthetic precursors, paspaline (6) and emindole SB (7), and two brominated penitrem analogs 8 and 9 demonstrated promising in vitro antiproliferative, antimigratory, and anti-invasive effects in the MTT (MCF-7 and MDA-MB-231), wound-healing, and Cultrex® BME cell invasion (MDA-MB-231) assays, respectively. The study herein reports the novel ability of penitrem A to suppress total β-catenin levels in MDA-MB-231 mammary cancer cells. Nine new penitrem analogs (10–18) were semisynthetically prepared, in an attempt to identify pharmacophores correlated with BK channel inhibition and tremorgenicity of penitrems and decrease their toxicity. The degree of BK channel inhibition was assessed using the nematode Caenorhabditis elegans, and in vivo tremorgenic EC50 was calculated using CD-1 male mice following an Up-and-Down-Procedure (UDP). Although new analogs were generally less active than parent compound 1, some showed no BK channel inhibition or tremorgenicity and retained the ability of penitrem A (1) to suppress total β-catenin levels in MDA-MB-231 cells. Paspaline (6) and emindole SB (7), both lacking BK channel inhibition and tremorgenicity, represent the simplest indole diterpene skeleton that retains the antiproliferative, antimigratory and total β-catenin suppressing effects shown by the more complex penitrem A (1). PMID:24211635

  9. Critical role of p53 upregulated modulator of apoptosis in benzyl isothiocyanate-induced apoptotic cell death.

    Directory of Open Access Journals (Sweden)

    Marie Lue Antony

    Full Text Available Benzyl isothiocyanate (BITC, a constituent of edible cruciferous vegetables, decreases viability of cancer cells by causing apoptosis but the mechanism of cell death is not fully understood. The present study was undertaken to determine the role of Bcl-2 family proteins in BITC-induced apoptosis using MDA-MB-231 (breast, MCF-7 (breast, and HCT-116 (colon human cancer cells. The B-cell lymphoma 2 interacting mediator of cell death (Bim protein was dispensable for proapoptotic response to BITC in MCF-7 and MDA-MB-231 cells as judged by RNA interference studies. Instead, the BITC-treated MCF-7 and MDA-MB-231 cells exhibited upregulation of p53 upregulated modulator of apoptosis (PUMA protein. The BITC-mediated induction of PUMA was relatively more pronounced in MCF-7 cells due to the presence of wild-type p53 compared with MDA-MB-231 with mutant p53. The BITC-induced apoptosis was partially but significantly attenuated by RNA interference of PUMA in MCF-7 cells. The PUMA knockout variant of HCT-116 cells exhibited significant resistance towards BITC-induced apoptosis compared with wild-type HCT-116 cells. Attenuation of BITC-induced apoptosis in PUMA knockout HCT-116 cells was accompanied by enhanced G2/M phase cell cycle arrest due to induction of p21 and down regulation of cyclin-dependent kinase 1 protein. The BITC treatment caused a decrease in protein levels of Bcl-xL (MCF-7 and MDA-MB-231 cells and Bcl-2 (MCF-7 cells. Ectopic expression of Bcl-xL in MCF-7 and MDA-MB-231 cells and that of Bcl-2 in MCF-7 cells conferred protection against proapoptotic response to BITC. Interestingly, the BITC-treated MDA-MB-231 cells exhibited induction of Bcl-2 protein expression, and RNA interference of Bcl-2 in this cell line resulted in augmentation of BITC-induced apoptosis. The BITC-mediated inhibition of MDA-MB-231 xenograft growth in vivo was associated with the induction of PUMA protein in the tumor. In conclusion, the results of the present study

  10. Decrease of breast cancer cell invasiveness by sodium phenylacetate (NaPa) is associated with an increased expression of adhesive molecules.

    Science.gov (United States)

    Vasse, M; Thibout, D; Paysant, J; Legrand, E; Soria, C; Crépin, M

    2001-03-23

    Sodium phenylacetate (NaPa), a non-toxic phenylalanine metabolite, has been shown to induce in vivo and in vitro cytostatic and antiproliferative effects on various cell types. In this work, we analysed the effect of NaPa on the invasiveness of breast cancer cell (MDA-MB-231, MCF-7 and MCF-7 ras). Using the highly invasive breast cancer cell line MDA-MB-231, we demonstrated that an 18-hour incubation with NaPa strongly inhibits the cell invasiveness through Matrigel (86% inhibition at 20 mM of NaPa). As cell invasiveness is greatly influenced by the expression of urokinase (u-PA) and its cell surface receptor (u-PAR) as well as the secretion of matrix metalloproteinases (MMP), we tested the effect of NaPa on these parameters. An 18-hour incubation with NaPa did not modify u-PA expression, either on MDA-MB-231 or on MCF-7 and MCF-7 ras cell lines, and induced a small u-PA decrease after 3 days of treatment of MDA-MB-321 with NaPa. In contrast, an 18 h incubation of MDA-MB-231 increased the expression of u-PAR and the secretion of MMP-9. As u-PAR is a ligand for vitronectin, a composant of the extracellular matrix, these data could explain the increased adhesion of MDA-MB-231 to vitronectin, while cell adhesivity of MCF-7 and MCF-7 ras was unmodified by NaPa treatment. NaPa induced also an increased expression of both Lymphocyte Function-Associated-1 (LFA-1) and Intercellular Adhesion Molecule-1 (ICAM-1), which was obvious from 18 hour incubation with NaPa for the MDA-MB-231 cells, but was delayed (3 days) for MCF-7 and MCF-7 ras. Only neutralizing antibodies against LFA-1 reversed the decreased invasiveness of NaPa-treated cells. Therefore we can conclude that the strong inhibition of MDA-MB-231 invasiveness is not due to a decrease in proteases involved in cell migration (u-PA and MMP) but could be related both to the modification of cell structure and an increased expression of adhesion molecules such as u-PAR and LFA-1.

  11. Decreased Iron in Cancer Cells and Their Microenvironment Improves Cytolysis of Breast Cancer Cells by Natural Killer Cells.

    Science.gov (United States)

    Jiang, Xian-Peng; Elliott, Robert L

    2017-05-01

    The association of iron with anticancer immunity is unclear. In order to determine the role of iron in anticancer immunity, we manipulated intracellular iron levels of the human MCF-7 and MDA-MB-231 breast cancer cell lines, and measured cytolysis of breast cancer cells by the natural killer cell line NK-92MI, nitric oxide (NO) production, tumor necrosis factor alpha (TNFα) production and gene expression of ferritin heavy chain (FTH1). We found that NK-92MI increased synthesis and release of NO and TNFα into the medium during co-culturing of NK-92MI cells with MCF-7 or MDA-MB-231 cells. Addition of iron inhibited the cytolysis of the breast cancer cell lines. The iron chelator deferoxamine (DFOM) increased NK-92MI cytolysis to MCF-7 or MDA-MB-231 cells. Iron reversed cytotoxicity to breast cancer cells induced by NO, released from S-nitroso-N-acetyl-penicillamine (NO donor). Real time quantitative polymerase chain reaction showed that iron up-regulated the expression of FTH1 and iron chelator DFOM reduced FTH1 expression of MCF-7 and MDA-MB-231 cells. In conclusion, increased iron in cancer cells and their microenvironment protects cancer cells from natural killer cell cytolysis by antagonizing NO- and TNFα-associated cytotoxicity and by up-regulation of ferritin expression in breast cancer cells. Conversely, a decrease in iron concentration caused by DFOM improves natural killer cytolysis of tumor cells. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  12. The role of the chemokine receptor XCR1 in breast cancer cells

    Directory of Open Access Journals (Sweden)

    Yang XL

    2017-03-01

    Full Text Available Xiao Li Yang,1,* Li Guo Qi,2,* Feng Juan Lin,1 Zhou Luo Ou1 1Department of Oncology, Breast Cancer Institute, Fudan University, Shanghai Cancer Center, Shanghai, 2Department of Neurosurgery, Taian City Central Hospital, Taian, Shangdong, People’s Republic of China *These authors contributed equally to this work Abstract: Considerable attention has recently been paid to the application of chemokines to cancer immunotherapy due to their complex role in cell proliferation, invasion, metastasis, and tumorigenesis, which extends beyond the regulation of lymphocyte migration during immune responses. The expression and the function of the chemokine receptor XCR1 on breast cancer have remained elusive to date. In this study, the expressions of XCR1 mRNA were tested by quantitative real-time polymerase chain reaction in one breast epithelial cell line (MCF-10A and nine breast cancer cell lines (MDA-MB-231, 231HM, 231BO, MDA-MB-468, MCF-7, T47D, Bcap-37, ZR-75-30, and SK-BR-3. We established XCR1-overexpressing breast cancer cell line MDA-MB-231 (231/XCR1 in XCR1 low expression cell line MDA-MB-231 (231. The ability of proliferation, invasion, and metastasis was measured by CCK8, plate cloning formation, and transwell analysis, respectively, in XCR1-overexpressing breast cancer cell lines (231/XCR1 and their parental cell line MDA-MB-231/Vector (simplified as “231/Vector”; 5×106/100 μL cells were inoculated in mammary fat pad of BALB/c nude mice. There were six BALB/c nude mice in the experimental group and control group. Protein expression was analyzed by cell immunofluorescence and Western blot. The growth of XCR1-overexpressing human breast cancer cell line MDA-MB-231 in vitro was restrained and tumorigenesis in vivo was also extenuated, its mechanism may involve in the inhibition of MAPK and PI3K/AKT/mTOR signaling pathway, but increase in LC3 expression. However, the overexpression of XCR1 in human breast cancer cell line MDA-MB-231 in vitro

  13. Benzyl Isothiocyanate Inhibits Epithelial-Mesenchymal Transition in Cultured and Xenografted Human Breast Cancer Cells

    OpenAIRE

    Sehrawat, Anuradha; Singh, Shivendra V.

    2011-01-01

    We showed previously that cruciferous vegetable constituent benzyl isothiocyanate (BITC) inhibits growth of cultured and xenografted human breast cancer cells, and suppresses mammary cancer development in a transgenic mouse model. We now demonstrate, for the first time, that BITC inhibits epithelial-to-mesenchymal transition (EMT) in human breast cancer cells. Exposure of estrogen-independent MDA-MB-231 and estrogen-responsive MCF-7 human breast cancer cell lines and a pancreatic cancer cell ...

  14. GATA3 inhibits breast cancer metastasis through the reversal of epithelial-mesenchymal transition.

    Science.gov (United States)

    Yan, Wei; Cao, Qing Jackie; Arenas, Richard B; Bentley, Brooke; Shao, Rong

    2010-04-30

    GATA3, a transcription factor that regulates T lymphocyte differentiation and maturation, is exclusively expressed in early stage well differentiated breast cancers but not in advanced invasive cancers. However, little is understood regarding its activity and the mechanisms underlying this differential expression in cancers. Here, we employed GATA3-positive, non-invasive (MCF-7) and GATA3-negative, invasive (MDA-MB-231) breast cancer cells to define its role in the transformation between these two distinct phenotypes. Ectopic expression of GATA3 in MDA-MB-231 cells led to a cuboidal-like epithelial phenotype and reduced cell invasive activity. These cells also increased E-cadherin expression but decreased levels of vimentin, N-cadherin, and MMP-9. Further, MDA-MB-231 cells expressing GATA3 grew smaller primary tumors without metastasis compared with larger metastatic tumors derived from control MDA-MB-231 cells in xenografted mice. GATA3 was found to induce E-cadherin expression through binding GATA-like motifs located in the E-cadherin promoter. Blockade of GATA3 using small interfering RNA gene knockdown in MCF-7 cells triggered fibroblastic transformation and cell invasion, resulting in distant metastasis. Studies of human breast cancer showed that GATA3 expression correlated with elevated E-cadherin levels, ER expression, and long disease-free survival. These data suggest that GATA3 drives invasive breast cancer cells to undergo the reversal of epithelial-mesenchymal transition, leading to the suppression of cancer metastasis.

  15. FH535 inhibited migration and growth of breast cancer cells.

    Science.gov (United States)

    Iida, Joji; Dorchak, Jesse; Lehman, John R; Clancy, Rebecca; Luo, Chunqing; Chen, Yaqin; Somiari, Stella; Ellsworth, Rachel E; Hu, Hai; Mural, Richard J; Shriver, Craig D

    2012-01-01

    There is substantial evidence indicating that the WNT signaling pathway is activated in various cancer cell types including breast cancer. Previous studies reported that FH535, a small molecule inhibitor of the WNT signaling pathway, decreased growth of cancer cells but not normal fibroblasts, suggesting this pathway plays a role in tumor progression and metastasis. In this study, we tested FH535 as a potential inhibitor for malignant phenotypes of breast cancer cells including migration, invasion, and growth. FH535 significantly inhibited growth, migration, and invasion of triple negative (TN) breast cancer cell lines (MDA-MB231 and HCC38) in vitro. We demonstrate that FH535 was a potent growth inhibitor for TN breast cancer cell lines (HCC38 and MDA-MB-231) but not for other, non-TN breast cancer cell lines (MCF-7, T47D or SK-Br3) when cultured in three dimensional (3D) type I collagen gels. Western blotting analyses suggest that treatment of MDA-MB-231 cells with FH535 markedly inhibited the expression of NEDD9 but not activations of FAK, Src, or downstream targets such as p38 and Erk1/2. We demonstrated that NEDD9 was specifically associated with CSPG4 but not with β1 integrin or CD44 in MDA-MB-231 cells. Analyses of gene expression profiles in breast cancer tissues suggest that CSPG4 expression is higher in Basal-type breast cancers, many of which are TN, than any other subtypes. These results suggest not only a mechanism for migration and invasion involving the canonical WNT-signaling pathways but also novel strategies for treating patients who develop TN breast cancer.

  16. FH535 inhibited migration and growth of breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Joji Iida

    Full Text Available There is substantial evidence indicating that the WNT signaling pathway is activated in various cancer cell types including breast cancer. Previous studies reported that FH535, a small molecule inhibitor of the WNT signaling pathway, decreased growth of cancer cells but not normal fibroblasts, suggesting this pathway plays a role in tumor progression and metastasis. In this study, we tested FH535 as a potential inhibitor for malignant phenotypes of breast cancer cells including migration, invasion, and growth. FH535 significantly inhibited growth, migration, and invasion of triple negative (TN breast cancer cell lines (MDA-MB231 and HCC38 in vitro. We demonstrate that FH535 was a potent growth inhibitor for TN breast cancer cell lines (HCC38 and MDA-MB-231 but not for other, non-TN breast cancer cell lines (MCF-7, T47D or SK-Br3 when cultured in three dimensional (3D type I collagen gels. Western blotting analyses suggest that treatment of MDA-MB-231 cells with FH535 markedly inhibited the expression of NEDD9 but not activations of FAK, Src, or downstream targets such as p38 and Erk1/2. We demonstrated that NEDD9 was specifically associated with CSPG4 but not with β1 integrin or CD44 in MDA-MB-231 cells. Analyses of gene expression profiles in breast cancer tissues suggest that CSPG4 expression is higher in Basal-type breast cancers, many of which are TN, than any other subtypes. These results suggest not only a mechanism for migration and invasion involving the canonical WNT-signaling pathways but also novel strategies for treating patients who develop TN breast cancer.

  17. The role of the chemokine receptor XCR1 in breast cancer cells

    Science.gov (United States)

    Yang, Xiao Li; Qi, Li Guo; Lin, Feng Juan; Ou, Zhou Luo

    2017-01-01

    Considerable attention has recently been paid to the application of chemokines to cancer immunotherapy due to their complex role in cell proliferation, invasion, metastasis, and tumorigenesis, which extends beyond the regulation of lymphocyte migration during immune responses. The expression and the function of the chemokine receptor XCR1 on breast cancer have remained elusive to date. In this study, the expressions of XCR1 mRNA were tested by quantitative real-time polymerase chain reaction in one breast epithelial cell line (MCF-10A) and nine breast cancer cell lines (MDA-MB-231, 231HM, 231BO, MDA-MB-468, MCF-7, T47D, Bcap-37, ZR-75-30, and SK-BR-3). We established XCR1-overexpressing breast cancer cell line MDA-MB-231 (231/XCR1) in XCR1 low expression cell line MDA-MB-231 (231). The ability of proliferation, invasion, and metastasis was measured by CCK8, plate cloning formation, and transwell analysis, respectively, in XCR1-overexpressing breast cancer cell lines (231/XCR1) and their parental cell line MDA-MB-231/Vector (simplified as “231/Vector”); 5×106/100 μL cells were inoculated in mammary fat pad of BALB/c nude mice. There were six BALB/c nude mice in the experimental group and control group. Protein expression was analyzed by cell immunofluorescence and Western blot. The growth of XCR1-overexpressing human breast cancer cell line MDA-MB-231 in vitro was restrained and tumorigenesis in vivo was also extenuated, its mechanism may involve in the inhibition of MAPK and PI3K/AKT/mTOR signaling pathway, but increase in LC3 expression. However, the overexpression of XCR1 in human breast cancer cell line MDA-MB-231 in vitro can promote the migration and invasion partially due to decreasing the protein level of β-catenin. Therefore, XCR1 can affect the biological characteristics of some special breast cancer cells through complex signal transduction pathway.

  18. Evaluation of Stem Cell Markers, CD44/CD24 in Breast Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Masoud Hashemi Arabi

    2014-05-01

    Four breast cancer cell lines, MCF-7 ، T47D ، MDA-MB231 and MDA-MB468 were purchased from National cell Bank of Iran based in Iran Pasture Institute and were cultured in high glucose DMEM supplemented with 10% FCS. Cells were stained with antiCD44-PE and antiCD24-FITC antibodies and Status of CD44 and CD24 as markers of breast cancer stem cells were evaluated using flow cytometer and fluorescent microscopy.Evaluation of CD44 and CD24 as markers of breast cancer stem cells showed that MDA-MB231 with 97±1.2% CD44+/CD24-/low cells is significantly different from the others that they were mainly CD44 and CD24 positive cells(p

  19. Anti-cancer effects of Kochia scoparia fruit in human breast cancer cells

    Directory of Open Access Journals (Sweden)

    Hye-Yeon Han

    2014-01-01

    Full Text Available Background: The fruit of Kochia scoparia Scharder is widely used as a medicinal ingredient for the treatment of dysuria and skin diseases in China, Japan and Korea. Especially, K. scoparia had been used for breast masses and chest and flank pain. Objective: To investigate the anti-cancer effect of K. scoparia on breast cancer. Materials and Methods: We investigated the anti-cancer effects of K. scoparia, methanol extract (MEKS in vitro. We examined the effects of MEKS on the proliferation rate, cell cycle arrest, reactive oxygen species (ROS generation and activation of apoptosis-associated proteins in MDA-MB-231, human breast cancer cells. Results: MTT assay results demonstrated that MEKS decreased the proliferation rates of MDA-MB-231 cells in a dose-dependent manner with an IC 50 value of 36.2 μg/ml. MEKS at 25 μg/ml significantly increased the sub-G1 DNA contents of MDA-MB-231 cells to 44.7%, versus untreated cells. In addition, MEKS induced apoptosis by increasing the levels of apoptosis-associated proteins such as cleaved caspase 3, cleaved caspase 8, cleaved caspase 9 and cleaved Poly (ADP-ribose polymerase (PARP. Conclusion: These results suggest that MEKS inhibits cell proliferation and induces apoptosis in breast cancer cells and that MEKS may have potential chemotherapeutic value for the treatment of human breast cancer.

  20. Tualang Honey Promotes Apoptotic Cell Death Induced by Tamoxifen in Breast Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Nik Soriani Yaacob

    2013-01-01

    Full Text Available Tualang honey (TH is rich in flavonoids and phenolic acids and has significant anticancer activity against breast cancer cells comparable to the effect of tamoxifen (TAM, in vitro. The current study evaluated the effects of TH when used in combination with TAM on MCF-7 and MDA-MB-231 cells. We observed that TH promoted the anticancer activity of TAM in both the estrogen receptor-(ER-responsive and ER-nonresponsive human breast cancer cell lines. Flow cytometric analyses indicated accelerated apoptosis especially in MDA-MB-231 cells and with the involvement of caspase-3/7, -8 and -9 activation as shown by fluorescence microscopy. Depolarization of the mitochondrial membrane was also increased in both cell lines when TH was used in combination with TAM compared to TAM treatment alone. TH may therefore be a potential adjuvant to be used with TAM for reducing the dose of TAM, hence, reducing TAM-induced adverse effects.

  1. The adhesion G protein-coupled receptor G2 (ADGRG2/GPR64) constitutively activates SRE and NFκB and is involved in cell adhesion and migration

    DEFF Research Database (Denmark)

    Cornelia Peeters, Miriam; Fokkelman, Michiel; Boogaard, Bob

    2015-01-01

    intracellular signal transduction. Knockdown of ADGRG2 by siRNA in the highly motile breast cancer cell lines Hs578T and MDA-MB-231 resulted in a strong reduction in cell adhesion and subsequent cell migration which was associated with a selective reduction in RelB, an NFκB family member. It is concluded...

  2. Enhancement of ionizing radiation response by histamine in vitro and in vivo in human breast cancer.

    Science.gov (United States)

    Martinel Lamas, Diego J; Cortina, Jorge E; Ventura, Clara; Sterle, Helena A; Valli, Eduardo; Balestrasse, Karina B; Blanco, Horacio; Cremaschi, Graciela A; Rivera, Elena S; Medina, Vanina A

    2015-01-01

    The radioprotective potential of histamine on healthy tissue has been previously demonstrated. The aims of this work were to investigate the combinatorial effect of histamine or its receptor ligands and gamma radiation in vitro on the radiobiological response of 2 breast cancer cell lines (MDA-MB-231 and MCF-7), to explore the potential molecular mechanisms of the radiosensitizing action and to evaluate the histamine-induced radiosensitization in vivo in a triple negative breast cancer model. Results indicate that histamine significantly increased the radiosensitivity of MDA-MB-231 and MCF-7 cells. This effect was mimicked by the H1R agonist 2-(3-(trifluoromethyl)phenyl)histamine and the H4R agonists (Clobenpropit and VUF8430) in MDA-MB-231 and MCF-7 cells, respectively. Histamine and its agonists enhanced radiation-induced oxidative DNA damage, DNA double-strand breaks, apoptosis and senescence. These effects were associated with increased production of reactive oxygen species, which correlated with the inhibition of catalase, glutathione peroxidase and superoxide dismutase activities in MDA-MB-231 cells. Histamine was able also to potentiate in vivo the anti-tumoral effect of radiation, increasing the exponential tumor doubling time. We conclude that histamine increased radiation response of breast cancer cells, suggesting that it could be used as a potential adjuvant to enhance the efficacy of radiotherapy.

  3. A novel curcumin-like dienone induces apoptosis in triple-negative breast cancer cells

    Science.gov (United States)

    Robles-Escajeda, Elisa; Das, Umashankar; Ortega, Nora M.; Parra, Karla; Francia, Giulio; Dimmock, Jonathan R.; Varela-Ramirez, Armando; Aguilera, Renato J.

    2016-01-01

    Purpose According to the World Health Organization (WHO), breast cancer is the most common cancer affecting women worldwide. In the USA ~12.3 % of all women are expected to be diagnosed with various types of breast cancer, exhibiting varying degrees of therapeutic response rates. Therefore, the identification of novel anti-breast cancer drugs is of paramount importance. Methods The 1,5-diaryl-3-oxo-1,4-pentadienyl pharmacophore was incorporated into a number of cytotoxins. Three of the resulting dienones, 2a, 2b and 2c, were tested for their antineoplastic potencies in a variety of human breast cancer-derived cell lines, including the triple negative MDA-MB-231 cell line and its metastatic variant, using a live-cell bio-imaging method. Special emphasis was put on dienone 2c, since its anti-cancer activity and its mode of inflicting cell death have so far not been reported. Results We found that all three dienones exhibited potent cytotoxicities towards the breast cancer-derived cell lines tested, whereas significantly lower toxicities were observed towards the non-cancerous human breast cell line MCF-10A. The dienones 2b and 2c exhibited the greatest selective cytotoxicity at submicromolar concentration levels. We found that these two dienones induced phosphatidylserine externalization in MDA-MB-231 cells in a concentration-dependent manner, suggesting that their cytotoxic effect might be mediated by apoptosis. This possibility was confirmed by our observation that the dienone 2c can induce mitochondrial depolarization, caspase-3 activation, cell cycle disruption and DNA fragmentation in MDA-MB-231 cells. Conclusion Our findings indicate that dienone 2c uses the mitochondrial/intrinsic pathway to inflict apoptosis in triple negative MDA-MB-231 breast cancer-derived cells. This observation warrants further assessment of dienone 2c as a potential anti-breast cancer drug. PMID:26920032

  4. Obtusifolin suppresses phthalate esters-induced breast cancer bone metastasis by targeting parathyroid hormone-related protein.

    Science.gov (United States)

    Hsu, Ya-Ling; Tsai, Eing-Mei; Hou, Ming-Feng; Wang, Tsu-Nai; Hung, Jen-Yu; Kuo, Po-Lin

    2014-12-10

    This study is the first to demonstrate that parathyroid hormone-related protein (PTHrP), produced by human breast cancer cells after exposure to phthalate esters, contributes to bone metastasis by increasing osteoclastogenesis. This is also the first to reveal that obtusifolin reverses phthalate esters-mediated bone resorption. Human breast cancer cells were treated with dibutyl phthalate (DBP), harvested in conditioned medium, and cultured to osteoblasts or osteoclasts. Cultures of osteoblasts with DBP-MDA-MB-231-CM increased the osteoclastogenesis activator RANKL (receptor activator of nuclear factor κ-B ligand) and M-CSF (macrophage colony-stimulating factor). PTHrP was secreted in MDA-MB-231 cells. DBP-MDA-MB-231-CM reduced osteoblasts to produce osteoprotegerin, an osteoclastogenesis inhibitor, while DBP mediated PTHrP up-regulation, increasing IL-8 secretion in MDA-MB-231 and contributing to breast cancer-mediated osteoclast differentiation and bone resorption. Obtusifolin, a major bioactive compound present in Cassia tora L., suppressed phthalate esters-mediated bone resorption. Therefore, obtusifolin may be a novel anti-breast-cancer bone metastasis agent.

  5. New bis(hydroxymethyl) alkanoate curcuminoid derivatives exhibit activity against triple-negative breast cancer in vitro and in vivo.

    Science.gov (United States)

    Hsieh, Min-Tsang; Chang, Ling-Chu; Hung, Hsin-Yi; Lin, Hui-Yi; Shih, Mei-Hui; Tsai, Chang-Hai; Kuo, Sheng-Chu; Lee, Kuo-Hsiung

    2017-05-05

    Novel bis(hydroxymethyl) alkanoate curcuminoid derivatives were designed, synthesized and screened for in vitro antiproliferative and in vivo antitumor activity. Selected new compound 9a and curcumin were further evaluated for inhibitory activity against ER(+)/PR(+) breast cancer (MCF-7, T47D), HER 2(+) breast cancer (SKBR3, BT474, and MDA-MB-457) and triple negative breast cancer (TNBC) (HS-578T, MDA-MB-157, and MDA-MB-468) cell lines. In addition, compound 9a was evaluated in the MDA-MB-231 xenograft nude mice model. Compound 9a exhibited greater inhibitory activity than curcumin against TNBC cells and also demonstrated significant inhibitory activity against doxorubicin-resistant MDA-MB-231 cells, with ten-fold higher potency than curcumin. Furthermore, when evaluated against the MDA-MB-231 xenograft nude mice model, compound 9a alone was ten-fold more potent than curcumin. Moreover, synergistic activity was observed when 9a was used in combination with doxorubicin against MDA-MB-231 breast cancer cells.

  6. Effects of Inhibiting JAK on Invasion and Metastasis of the Human Breast Cancer Cells through ERK Signaling Transduction Pathway

    Institute of Scientific and Technical Information of China (English)

    Jing Zhao; Hong-fang Chen; Hua-yu Deng

    2009-01-01

    Objective: To explore the effects of Janus activated kinase (JAK) inhibitor AG490 on the phosphorylation of extracellular signal regulated protein kinase (ERK) in human breast cancer cells MDA-MB-231 and the roles of JAK in the invasion and metastasis of the human breast cancer cells through ERK signaling transduction pathways.Methods: MDA-MB-231 cells were treated with 20 (mol/L, 40 (mol/L, 80 (mol/L Janus kinase inhibitor AG490 for 24, 48 and 72 h. Proliferation and adhesion of MDA-MB-231 cells to matrigel were measured with MTT assay. When treated with 40 (mol/L AG490 for 24 h, the expressions of P-ERK and MMP-9 of cells were detected by Western-blot and invasion and metastasis of MDA-MB-231 cells were evaluated with transwell chamber.Results: After being treated with 20 (mol/L, 40 (mol/L, 80 (mol/L AG490 for 24, 48 and 72 h, the proliferation of MDA-MB-231 cells was inhibited in a dose-and time-dependent manner. MDA-MB-231 cells treated with 40 (mol/L AG490 for 30, 60, 90 and 120 min resulted in the increasing adhesion of cells to Matrigel in a time-dependent manner. However, capacity of adhesion in the group treated with AG490 was significantly decreased in comparison with the control group (P<0.01). The expression level of P-ERK and MMP-9 were decreased when treated with AG490. After treatment with 40 (mol/L AG490, in invasion assay, the number of cells in AG490 treated group to migrate to filter coated with Matrigel was reduced compared with control group (P<0.05). Meanwhile, in migration assay, the number of cells in AG490 treated group to migrate to filter was also decreased compared with control group (P<0.05).Conclusion: Our study indicates that JAK kinase could affect the activity of ERK signal transduction pathway through the phosphorylation of ERK. The inhibitory effects of JAK kinase on MMP-9 expression and invasion of breast cancer cells were associated with the down-regulation of the ERK signaling pathway.

  7. Benzimidazoles diminish ERE transcriptional activity and cell growth in breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Payton-Stewart, Florastina [Department of Chemistry, College of Arts and Sciences, Xavier University of Louisiana, New Orleans, LA (United States); Tilghman, Syreeta L. [Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA (United States); Williams, LaKeisha G. [Division of Clinical and Administrative Sciences, College of Pharmacy Xavier University of Louisiana, New Orleans, LA (United States); Winfield, Leyte L., E-mail: lwinfield@spelman.edu [Department of Chemistry, Spelman College, Atlanta, GA (United States)

    2014-08-08

    Highlights: • The methyl-substituted benzimidazole was more effective at inhibiting growth in MDA-MB 231 cells. • The naphthyl-substituted benzimidazole was more effective at inhibiting growth in MCF-7 cells than ICI. • The benzimidazole molecules demonstrated a dose-dependent reduction in ERE transcriptional activity. • The benzimidazole molecules had binding mode in ERα and ERβ comparable to that of the co-crystallized ligand. - Abstract: Estrogen receptors (ERα and ERβ) are members of the nuclear receptor superfamily. They regulate the transcription of estrogen-responsive genes and mediate numerous estrogen related diseases (i.e., fertility, osteoporosis, cancer, etc.). As such, ERs are potentially useful targets for developing therapies and diagnostic tools for hormonally responsive human breast cancers. In this work, two benzimidazole-based sulfonamides originally designed to reduce proliferation in prostate cancer, have been evaluated for their ability to modulate growth in estrogen dependent and independent cell lines (MCF-7 and MDA-MB 231) using cell viability assays. The molecules reduced growth in MCF-7 cells, but differed in their impact on the growth of MDA-MB 231 cells. Although both molecules reduced estrogen response element (ERE) transcriptional activity in a dose dependent manner, the contrasting activity in the MDA-MB-231 cells seems to suggest that the molecules may act through alternate ER-mediated pathways. Further, the methyl analog showed modest selectivity for the ERβ receptor in an ER gene expression array panel, while the naphthyl analog did not significantly alter gene expression. The molecules were docked in the ligand binding domains of the ERα-antagonist and ERβ-agonist crystal structures to evaluate the potential of the molecules to interact with the receptors. The computational analysis complimented the results obtained in the assay of transcriptional activity and gene expression suggesting that the molecules

  8. MicroRNA-224 inhibits proliferation and migration of breast cancer cells by down-regulating Fizzled 5 expression.

    Science.gov (United States)

    Liu, Feng; Liu, Yang; Shen, Jingling; Zhang, Guoqiang; Han, Jiguang

    2016-08-02

    The Wnt/β-catenin signaling is crucial for the proliferation and migration of breast cancer cells. However, the expression of microRNA-224 (miR-224) in the different types of breast cancers and its role in the Wnt/β-catenin signaling and the proliferation and migration of breast cancer cells are poorly understood. In this study, the levels of miR-224 in different types of breast cancer tissues and cell lines were examined by quantitative RT-PCR and the potential targets of miR-224 in the Wnt/β-catenin signaling were investigated. The effects of altered miR-224 expression on the frequency of CD44+CD24- cancer stem-like cells (CSC), proliferation and migration of MCF-7 and MDA-MB-231 cells were examined by flow cytometry, MTT and transwell migration. We found that the levels of miR-224 expression in different types of breast cancer tissues and cell lines were associated inversely with aggressiveness of breast cancers. Enhanced miR-224 expression significantly reduced the fizzled 5-regulated luciferase activity in 293T cells, fizzled 5 expression in MCF-7 and MDA-MB-231 cells, the β-dependent luciferase activity in MCF-7 cells, and the nuclear translocation of β-catenin in MDA-MB-231 cells. miR-224 inhibition significantly increased the percentages of CSC in MCF-7 cells and enhanced proliferation and migration of MCF-7 cells. Enhanced miR-224 expression inhibited proliferation and migration of MDA-MB-231 cells, and the growth of implanted breast cancers in vivo. Induction of Frizzled 5 over-expression mitigated the miR-224-mediated inhibition of breast cancer cell proliferation. Collectively, these data indicated that miR-224 down-regulated the Wnt/β-catenin signaling possibly by binding to Frizzled 5 and inhibited proliferation and migration of breast cancer cells.

  9. Knockdown of LRP/LR Induces Apoptosis in Breast and Oesophageal Cancer Cells.

    Science.gov (United States)

    Khumalo, Thandokuhle; Ferreira, Eloise; Jovanovic, Katarina; Veale, Rob B; Weiss, Stefan F T

    2015-01-01

    Cancer is a global burden due to high incidence and mortality rates and is ranked the second most diagnosed disease amongst non-communicable diseases in South Africa. A high expression level of the 37kDa/67kDa laminin receptor (LRP/LR) is one characteristic of cancer cells. This receptor is implicated in the pathogenesis of cancer cells by supporting tumor angiogenesis, metastasis and especially for this study, the evasion of apoptosis. In the current study, the role of LRP/LR on cellular viability of breast MCF-7, MDA-MB 231 and WHCO1 oesophageal cancer cells was investigated. Western blot analysis revealed that total LRP expression levels of MCF-7, MDA-MB 231 and WHCO1 were significantly downregulated by targeting LRP mRNA using siRNA-LAMR1. This knockdown of LRP/LR resulted in a significant decrease of viability in the breast and oesophageal cancer cells as determined by an MTT assay. Transfection of MDA-MB 231 cells with esiRNA-RPSA directed against a different region of the LRP mRNA had similar effects on LRP/LR expression and cell viability compared to siRNA-LAMR1, excluding an off-target effect of siRNA-LAMR1. This reduction in cellular viability is as a consequence of apoptosis induction as indicated by the exposure of the phosphatidylserine protein on the surface of breast MCF-7, MDA-MB 231 and oesophageal WHCO1 cancer cells, respectively, detected by an Annexin-V/FITC assay as well as nuclear morphological changes observed post-staining with Hoechst. These observations indicate that LRP/LR is crucial for the maintenance of cellular viability of breast and oesophageal cancer cells and recommend siRNA technology targeting LRP expression as a possible novel alternative technique for breast and oesophageal cancer treatment.

  10. A novel taspine derivative, HMQ1611, inhibits breast cancer cell growth via estrogen receptor α and EGF receptor signaling pathways.

    Science.gov (United States)

    Zhan, Yingzhuan; Zhang, Yanmin; Liu, Cuicui; Zhang, Jie; Smith, Wanli W; Wang, Nan; Chen, Yinnan; Zheng, Lei; He, Langchong

    2012-06-01

    Breast cancer is a common cancer with a leading cause of cancer mortality in women. Currently, the chemotherapy for breast cancer is underdeveloped. Here, we report a novel taspine derivative, HMQ1611, which has anticancer effects using in vitro and in vivo breast cancer models. HMQ1611 reduced cancer cell proliferation in four human breast cancer cell lines including MDA-MB-231, SK-BR-3, ZR-75-30, and MCF-7. HMQ1611 more potently reduced growth of estrogen receptor α (ERα)-positive breast cancer cells (ZR-75-30 and MCF-7) than ERα-negative cells (MDA-MB-231 and SK-BR-3). Moreover, HMQ1611 arrested breast cancer cell cycle at S-phase. In vivo tumor xenograft model, treatment of HMQ1611 significantly reduced tumor size and weight compared with vehicles. We also found that HMQ1611 reduced ERα expression and inhibited membrane ERα-mediated mitogen-activated protein kinase (MAPK) signaling following the stimulation of cells with estrogen. Knockdown of ERα by siRNA transfection in ZR-75-30 cells attenuated HMQ1611 effects. In contrast, overexpression of ERα in MDA-MB-231 cells enhanced HMQ1611 effects, suggesting that ERα pathway mediated HMQ1611's inhibition of breast cancer cell growth in ERα-positive breast cancer. HMQ1611 also reduced phosphorylation of EGF receptor (EGFR) and its downstream signaling players extracellular signal-regulated kinase (ERK)1/2 and AKT activation both in ZR-75-30 and MDA-MB-231 cells. These results showed that the novel compound HMQ1611 had anticancer effects, and partially via ERα and/or EGFR signaling pathways, suggesting that HMQ1611 may be a potential novel candidate for human breast cancer intervention.

  11. EBP50 inhibits EGF-induced breast cancer cell proliferation by blocking EGFR phosphorylation.

    Science.gov (United States)

    Yao, Wenfang; Feng, Duiping; Bian, Weihua; Yang, Longyan; Li, Yang; Yang, Zhiyu; Xiong, Ying; Zheng, Junfang; Zhai, Renyou; He, Junqi

    2012-11-01

    Ezrin-radixin-moesin-binding phosphoprotein-50 (EBP50) suppresses breast cancer cell proliferation, potentially through its regulatory effect on epidermal growth factor receptor (EGFR) signaling, although the mechanism by which this occurs remains unknown. Thus in our studies, we aimed to determine the effect of EBP50 expression on EGF-induced cell proliferation and activation of EGFR signaling in the breast cancer cell lines, MDA-MB-231 and MCF-7. In MDA-MB-231 cells, which express low levels of EBP50, EBP50 overexpression inhibited EGF-induced cell proliferation, ERK1/2 and AKT phosphorylation. In MCF-7 cells, which express high levels of EBP50, EBP50 knockdown promoted EGF-induced cell proliferation, ERK1/2 and AKT phosphorylation. Knockdown of EBP50 in EBP50-overexpressed MDA-MB-231 cells abrogated the inhibitory effect of EBP50 on EGF-stimulated ERK1/2 phosphorylation and restoration of EBP50 expression in EBP50-knockdown MCF-7 cells rescued the inhibition of EBP50 on EGF-stimulated ERK1/2 phosphorylation, further confirming that the activation of EGF-induced downstream molecules could be specifically inhibited by EBP50 expression. Since EGFR signaling was triggered by EGF ligands via EGFR phosphorylation, we further detected the phosphorylation status of EGFR in the presence or absence of EBP50 expression. Overexpression of EBP50 in MDA-MB-231 cells inhibited EGF-stimulated EGFR phosphorylation, whereas knockdown of EBP50 in MCF-7 cells enhanced EGF-stimulated EGFR phosphorylation. Meanwhile, total expression levels of EGFR were unaffected during EGF stimulation. Taken together, our data shows that EBP50 can suppress EGF-induced proliferation of breast cancer cells by inhibiting EGFR phosphorylation and blocking EGFR downstream signaling in breast cancer cells. These results provide further insight into the molecular mechanism by which EBP50 regulates the development and progression of breast cancer.

  12. Exogenous normal mammary epithelial mitochondria suppress glycolytic metabolism and glucose uptake of human breast cancer cells.

    Science.gov (United States)

    Jiang, Xian-Peng; Elliott, Robert L; Head, Jonathan F

    2015-10-01

    We hypothesized that normal mitochondria inhibited cancer cell proliferation and increased drug sensitivity by the mechanism of suppression of cancer aerobic glycolysis. To demonstrate the mechanism, we used real-time PCR and glycolysis cell-based assay to measure gene expression of glycolytic enzymes and glucose transporters, and extracellular lactate production of human breast cancer cells. We found that isolated fluorescent probe-stained mitochondria of MCF-12A (human mammary epithelia) could enter into human breast cancer cell lines MCF-7, T47D, and MDA-MB-231, confirmed by fluorescent and confocal microscopy. Mitochondria from the untransformed human mammary epithelia increased drug sensitivity of MCF-7 cells to paclitaxel. Real-time PCR showed that exogenous normal mitochondria of MCF-12A suppressed gene expression of glycolytic enzymes, lactate dehydrogenase A, and glucose transporter 1 and 3 of MCF-7 and MDA-MB-231 cells. Glycolysis cell-based assay revealed that normal mitochondria significantly suppressed lactate production in culture media of MCF-7, T47D, and MDA-MB-231 cells. In conclusion, normal mitochondria suppress cancer proliferation and increase drug sensitivity by the mechanism of inhibition of cancer cell glycolysis and glucose uptake.

  13. Benzimidazoles diminish ERE transcriptional activity and cell growth in breast cancer cells.

    Science.gov (United States)

    Payton-Stewart, Florastina; Tilghman, Syreeta L; Williams, LaKeisha G; Winfield, Leyte L

    2014-08-08

    Estrogen receptors (ERα and ERβ) are members of the nuclear receptor superfamily. They regulate the transcription of estrogen-responsive genes and mediate numerous estrogen related diseases (i.e., fertility, osteoporosis, cancer, etc.). As such, ERs are potentially useful targets for developing therapies and diagnostic tools for hormonally responsive human breast cancers. In this work, two benzimidazole-based sulfonamides originally designed to reduce proliferation in prostate cancer, have been evaluated for their ability to modulate growth in estrogen dependent and independent cell lines (MCF-7 and MDA-MB 231) using cell viability assays. The molecules reduced growth in MCF-7 cells, but differed in their impact on the growth of MDA-MB 231 cells. Although both molecules reduced estrogen response element (ERE) transcriptional activity in a dose dependent manner, the contrasting activity in the MDA-MB-231 cells seems to suggest that the molecules may act through alternate ER-mediated pathways. Further, the methyl analog showed modest selectivity for the ERβ receptor in an ER gene expression array panel, while the naphthyl analog did not significantly alter gene expression. The molecules were docked in the ligand binding domains of the ERα-antagonist and ERβ-agonist crystal structures to evaluate the potential of the molecules to interact with the receptors. The computational analysis complimented the results obtained in the assay of transcriptional activity and gene expression suggesting that the molecules upregulate ERβ activity while down regulating that of ERα.

  14. Gli-1 is crucial for hypoxia-induced epithelial-mesenchymal transition and invasion of breast cancer.

    Science.gov (United States)

    Lei, Jianjun; Fan, Lin; Wei, Guangbing; Chen, Xin; Duan, Wanxing; Xu, Qinhong; Sheng, Wei; Wang, Kang; Li, Xuqi

    2015-04-01

    Hypoxia can induce HIF-1α expression and promote the epithelial-mesenchymal transition (EMT) and invasion of cancer cells. However, their mechanisms remain unclear. The objective of this study was to evaluate the role of Gli-1, an effector of the Hedgehog pathway, in the hypoxia-induced EMT and invasion of breast cancer cells. Human breast cancer MDA-MB-231 cells were transfected with HIF-1α or Gli-1-specific small interfering RNA (siRNA) and cultured under a normoxic or hypoxic condition. The relative levels of HIF-1α, Gli-1, E-cadherin, and vimentin in the cells were characterized by quantitative RT-PCR and Western blot assays, and the invasion of MDA-MB-231 cells was determined. Data was analyzed by Student T test, one-way ANOVA, and post hoc LSD test or Mann-Whitney U when applicable. We observed that hypoxia significantly upregulated the relative levels of vimentin expression, but downregulated E-cadherin expression and promoted the invasion of MDA-MB-231 cells, associated with upregulated HIF-1α translation and Gil-1 expression. Knockdown of HIF-1α mitigated hypoxia-modulated Gil-1, vimentin and E-cadherin expression, and invasion of MDA-MB-231 cells. Knockdown of Gil-1 did not significantly change hypoxia-upregulated HIF-1α translation but completely eliminated hypoxia-modulated vimentin and E-cadherin expression and invasion of MDA-MB-231 cells. These data indicate that Gil-1 is crucial for hypoxia-induced EMT and invasion of breast cancer cells and may be a therapeutic target for intervention of breast cancer metastasis.

  15. Anticancer Effects of Extracts from the Fruit of Morinda Citrifolia (Noni) in Breast Cancer Cell Lines.

    Science.gov (United States)

    Sharma, K; Pachauri, S D; Khandelwal, K; Ahmad, H; Arya, A; Biala, P; Agrawal, S; Pandey, R R; Srivastava, A; Srivastav, A; Saxena, J K; Dwivedi, A K

    2016-03-01

    Morinda citrifolia L. (NONI) fruits have been used for thousands of years for the treatment of many health problems including cancer, cold, diabetes, flu, hypertension, and pain. Plant extracts have reported several therapeutic benefits, but extraction of individual compound from the extract often exhibits limited clinical utility as the synergistic effect of various natural ingredients gets lost. They generally constitute polyphenols and flavonoids. Studies have suggested that these phytochemicals, especially polyphenols, display high antioxidant properties, which help to reduce the risk of degenerative diseases, such as cancer and cardiovascular diseases. Several in-vitro and in-vivo studies have shown that Noni fruits have antioxidant, anti-inflammatory, anti-dementia, liver-protective, anticancer, analgesic, and immunomodulatory effects. Till date about 7 in vitro cancer studies have been done, but a detailed in vitro study including cell cycle and caspase activation assay on breast cancer cell line has not been done. In the present study different Noni fruit fractions have tested on cancer cell lines MCF-7, MDA-MB-231 (breast adenocarcinoma) and one non-cancer cell line HEK-293 (Human embryonic kidney). Out of which ethylacetate extract showed a higher order of in vitro anticancer activity profile. The ethylacetate extract strongly inhibited the proliferation of MCF-7, MDA-MB-231 and HEK-293 cell lines with IC50 values of 25, 35, 60 µg/ml respectively. The extract showed increase in apoptotic cells in MCF-7 and MDA-MB-231 cells and arrested the cell cycle in the G1/S phase in MCF-7 and G0/G1 phase in MDA-MB-231 cells. Noni extract also decreases the intracellular ROS generation and mitochondrial membrane potential.

  16. VI-14, a novel flavonoid derivative, inhibits migration and invasion of human breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Fanni; Li, Chenglin; Zhang, Haiwei; Lu, Zhijian [State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009 (China); Li, Zhiyu; You, Qidong [Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009 (China); Lu, Na [State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009 (China); Guo, Qinglong, E-mail: anticancer_drug@yahoo.com.cn [State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009 (China)

    2012-06-01

    It has been well characterized that flavonoids possess pronounced anticancer potentials including anti-angiogenesis, anti-metastasis, and pro-apoptosis. Herein, we report, for the first time, that VI-14, a novel flavonoid derivative, possesses anti-cancer properties. The purpose of this study is to investigate the anti-migration and anti-invasion activities of VI-14 in breast cancer cells. Our data indicate that VI-14 inhibits adhesion, migration and invasion of MDA-MB-231 and MDA-MB-435 human breast cancer cells. MDA-MB-231 cells treated with VI-14 display reduced activities and expressions of ECM degradation-associated proteins including matrix metalloproteinase 2 (MMP-2) and 9 (MMP-9) at both the protein and mRNA levels. Meanwhile, VI-14 treatment induces an up-regulated expression of tissue inhibitor of metalloproteinase 1 (TIMP-1) and 2 (TIMP-2) in MDA-MB-231 cells. Western blotting results show that phosphorylation levels of critical components of the MAPK signaling pathway, including ERK, JNK and P38, are dramatically decreased in VI-14-treated MDA-MB-231 cells. Furthermore, treatment of VI-14 significantly decreases the nuclear levels and the binding ability of nuclear factor-kappa B (NF-κB) and activator protein-1 (AP-1). Taken together, our data suggest that VI-14 treatment suppresses migration and motility of breast cancer cells, and VI-14 may be a potential compound for cancer therapy. Highlights: ► We report for the first time that VI-14 possesses anti-cancer properties. ► VI-14 weakens the adhesion, migration and invasion of human breast cancer cells. ► VI-14 decreases the activities and expressions of MMP-2/9. ► VI-14 suppresses the phosphorylation levels of the MAPK signaling pathway. ► VI-14 decreases the nuclear levels and the binding ability of NF-κB and AP-1.

  17. Unleashing Cancer Cells on Surfaces Exposing Motogenic IGDQ Peptides.

    Science.gov (United States)

    Corvaglia, Valentina; Marega, Riccardo; De Leo, Federica; Michiels, Carine; Bonifazi, Davide

    2016-01-20

    Thiolated peptides bearing the Ile-Gly-Asp (IGD) motif, a highly conserved sequence of fibronectin, are used for the preparation of anisotropic self-assembled monolayers (SAM gradients) to study the whole-population migratory behavior of metastatic breast cancer cells (MDA-MB-231 cells). Ile-Gly-Asp-Gln-(IGDQ)-exposing SAMs sustain the adhesion of MDA-MB-231 cells by triggering focal adhesion kinase phosphorylation, similarly to the analogous Gly-Arg-Gly-Asp-(GRGD)-terminating surfaces. However, the biological responses of different cell lines interfaced with the SAM gradients show that only those exposing the IGDQ sequence induce significant migration of MDA-MB-231 cells. In particular, the observed migratory behavior suggests the presence of cell subpopulations associated with a "stationary" or a "migratory" phenotype, the latter determining a considerable cell migration at the sub-cm length scale. These findings are of great importance as they suggest for the first time an active role of biological surfaces exposing the IGD motif in the multicomponent orchestration of cellular signaling involved in the metastatic progression.

  18. miR-506 regulates epithelial mesenchymal transition in breast cancer cell lines.

    Science.gov (United States)

    Arora, Himanshu; Qureshi, Rehana; Park, Woong-Yang

    2013-01-01

    Epithelial-mesenchymal transition (EMT) is an important parameter related to breast cancer survival. Among several microRNAs predicted to target EMT-related genes, miR-506 is a novel miRNA found to be significantly related to breast cancer patient survival in a meta-analysis. miR-506 suppressed the expression of mesenchymal genes such as Vimentin, Snai2, and CD151 in MDA-MB-231 human breast cancer cell line. Moreover, NF-κB bound to the upstream promoter region of miR-506 to suppress transcription. Overexpression of miR-506 inhibited TGFβ-induced EMT and suppressed adhesion, invasion, and migration of MDA-MB-231 cells. From these results, we concluded that miR-506 plays a key role in the process of EMT through posttranslational control of EMT-related genes.

  19. miR-506 regulates epithelial mesenchymal transition in breast cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Himanshu Arora

    Full Text Available Epithelial-mesenchymal transition (EMT is an important parameter related to breast cancer survival. Among several microRNAs predicted to target EMT-related genes, miR-506 is a novel miRNA found to be significantly related to breast cancer patient survival in a meta-analysis. miR-506 suppressed the expression of mesenchymal genes such as Vimentin, Snai2, and CD151 in MDA-MB-231 human breast cancer cell line. Moreover, NF-κB bound to the upstream promoter region of miR-506 to suppress transcription. Overexpression of miR-506 inhibited TGFβ-induced EMT and suppressed adhesion, invasion, and migration of MDA-MB-231 cells. From these results, we concluded that miR-506 plays a key role in the process of EMT through posttranslational control of EMT-related genes.

  20. Quercetin Suppresses Twist to Induce Apoptosis in MCF-7 Breast Cancer Cells.

    Science.gov (United States)

    Ranganathan, Santhalakshmi; Halagowder, Devaraj; Sivasithambaram, Niranjali Devaraj

    2015-01-01

    Quercetin is a dietary flavonoid which exerts anti-oxidant, anti-inflammatory and anti-cancer properties. In this study, we investigated the anti-proliferative effect of quercetin in two breast cancer cell lines (MCF-7 and MDA-MB-231), which differed in hormone receptor. IC50 value (37μM) of quercetin showed significant cytotoxicity in MCF-7 cells, which was not observed in MDA-MB-231 cells even at 100μM of quercetin treatment. To study the response of cancer cells to quercetin, with respect to different hormone receptors, both the cell lines were treated with a fixed concentration (40μM) of quercetin. MCF-7 cells on quercetin treatment showed more apoptotic cells with G1 phase arrest. In addition, quercetin effectively suppressed the expression of CyclinD1, p21, Twist and phospho p38MAPK, which was not observed in MDA-MB-231 cells. To analyse the molecular mechanism of quercetin in exerting an apoptotic effect in MCF-7 cells, Twist was over-expressed and the molecular changes were observed after quercetin administration. Quercetin effectively regulated the expression of Twist, in turn p16 and p21 which induced apoptosis in MCF-7 cells. In conclusion, quercetin induces apoptosis in breast cancer cells through suppression of Twist via p38MAPK pathway.

  1. Quercetin Suppresses Twist to Induce Apoptosis in MCF-7 Breast Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Santhalakshmi Ranganathan

    Full Text Available Quercetin is a dietary flavonoid which exerts anti-oxidant, anti-inflammatory and anti-cancer properties. In this study, we investigated the anti-proliferative effect of quercetin in two breast cancer cell lines (MCF-7 and MDA-MB-231, which differed in hormone receptor. IC50 value (37μM of quercetin showed significant cytotoxicity in MCF-7 cells, which was not observed in MDA-MB-231 cells even at 100μM of quercetin treatment. To study the response of cancer cells to quercetin, with respect to different hormone receptors, both the cell lines were treated with a fixed concentration (40μM of quercetin. MCF-7 cells on quercetin treatment showed more apoptotic cells with G1 phase arrest. In addition, quercetin effectively suppressed the expression of CyclinD1, p21, Twist and phospho p38MAPK, which was not observed in MDA-MB-231 cells. To analyse the molecular mechanism of quercetin in exerting an apoptotic effect in MCF-7 cells, Twist was over-expressed and the molecular changes were observed after quercetin administration. Quercetin effectively regulated the expression of Twist, in turn p16 and p21 which induced apoptosis in MCF-7 cells. In conclusion, quercetin induces apoptosis in breast cancer cells through suppression of Twist via p38MAPK pathway.

  2. Clotrimazole Preferentially Inhibits Human Breast Cancer Cell Proliferation, Viability and Glycolysis

    Science.gov (United States)

    Furtado, Cristiane M.; Marcondes, Mariah C.; Sola-Penna, Mauro; de Souza, Maisa L. S.; Zancan, Patricia

    2012-01-01

    Background Clotrimazole is an azole derivative with promising anti-cancer effects. This drug interferes with the activity of glycolytic enzymes altering their cellular distribution and inhibiting their activities. The aim of the present study was to analyze the effects of clotrimazole on the growth pattern of breast cancer cells correlating with their metabolic profiles. Methodology/Principal Findings Three cell lines derived from human breast tissue (MCF10A, MCF-7 and MDA-MB-231) that present increasingly aggressive profiles were used. Clotrimazole induces a dose-dependent decrease in glucose uptake in all three cell lines, with Ki values of 114.3±11.7, 77.1±7.8 and 37.8±4.2 µM for MCF10A, MCF-7 and MDA-MB-231, respectively. Furthermore, the drug also decreases intracellular ATP content and inhibits the major glycolytic enzymes, hexokinase, phosphofructokinase-1 and pyruvate kinase, especially in the highly metastatic cell line, MDA-MB-231. In this last cell lineage, clotrimazole attenuates the robust migratory response, an effect that is progressively attenuated in MCF-7 and MCF10A, respectively. Moreover, clotrimazole reduces the viability of breast cancer cells, which is more pronounced on MDA-MB-231. Conclusions/Significance Clotrimazole presents deleterious effects on two human breast cancer cell lines metabolism, growth and migration, where the most aggressive cell line is more affected by the drug. Moreover, clotrimazole presents little or no effect on a non-tumor human breast cell line. These results suggest, at least for these three cell lines studied, that the more aggressive the cell is the more effective clotrimazole is. PMID:22347377

  3. Clotrimazole preferentially inhibits human breast cancer cell proliferation, viability and glycolysis.

    Directory of Open Access Journals (Sweden)

    Cristiane M Furtado

    Full Text Available BACKGROUND: Clotrimazole is an azole derivative with promising anti-cancer effects. This drug interferes with the activity of glycolytic enzymes altering their cellular distribution and inhibiting their activities. The aim of the present study was to analyze the effects of clotrimazole on the growth pattern of breast cancer cells correlating with their metabolic profiles. METHODOLOGY/PRINCIPAL FINDINGS: Three cell lines derived from human breast tissue (MCF10A, MCF-7 and MDA-MB-231 that present increasingly aggressive profiles were used. Clotrimazole induces a dose-dependent decrease in glucose uptake in all three cell lines, with K(i values of 114.3±11.7, 77.1±7.8 and 37.8±4.2 µM for MCF10A, MCF-7 and MDA-MB-231, respectively. Furthermore, the drug also decreases intracellular ATP content and inhibits the major glycolytic enzymes, hexokinase, phosphofructokinase-1 and pyruvate kinase, especially in the highly metastatic cell line, MDA-MB-231. In this last cell lineage, clotrimazole attenuates the robust migratory response, an effect that is progressively attenuated in MCF-7 and MCF10A, respectively. Moreover, clotrimazole reduces the viability of breast cancer cells, which is more pronounced on MDA-MB-231. CONCLUSIONS/SIGNIFICANCE: Clotrimazole presents deleterious effects on two human breast cancer cell lines metabolism, growth and migration, where the most aggressive cell line is more affected by the drug. Moreover, clotrimazole presents little or no effect on a non-tumor human breast cell line. These results suggest, at least for these three cell lines studied, that the more aggressive the cell is the more effective clotrimazole is.

  4. Small interfering RNA targeted to secretory clusterin blocks tumor growth, motility, and invasion in breast cancer

    Institute of Scientific and Technical Information of China (English)

    Zhaohe Niu; Xinhui Li; Bin Hu; Rong Li; Ligang Wang; Lilin Wu; Xingang Wang

    2012-01-01

    Clusterin/apolipoprotein J (Clu) is a ubiquitously expressed secreted heterodimeric glycoprotein that is implicated in several physiological processes.It has been reported that the elevated level of secreted clusterin (sClu) protein is associated with poor survival in breast