WorldWideScience

Sample records for cancer killing effect

  1. Metformin kills and radiosensitizes cancer cells and preferentially kills cancer stem cells

    Science.gov (United States)

    Song, Chang W.; Lee, Hyemi; Dings, Ruud P. M.; Williams, Brent; Powers, John; Santos, Troy Dos; Choi, Bo-Hwa; Park, Heon Joo

    2012-01-01

    The anti-cancer effects of metformin, the most widely used drug for type 2 diabetes, alone or in combination with ionizing radiation were studied with MCF-7 human breast cancer cells and FSaII mouse fibrosarcoma cells. Clinically achievable concentrations of metformin caused significant clonogenic death in cancer cells. Importantly, metformin was preferentially cytotoxic to cancer stem cells relative to non-cancer stem cells. Metformin increased the radiosensitivity of cancer cells in vitro, and significantly enhanced the radiation-induced growth delay of FSaII tumors (s.c.) in the legs of C3H mice. Both metformin and ionizing radiation activated AMPK leading to inactivation of mTOR and suppression of its downstream effectors such as S6K1 and 4EBP1, a crucial signaling pathway for proliferation and survival of cancer cells, in vitro as well as in the in vivo tumors. Conclusion: Metformin kills and radiosensitizes cancer cells and eradicates radioresistant cancer stem cells by activating AMPK and suppressing mTOR. PMID:22500211

  2. Plasma-activated medium (PAM) kills human cancer-initiating cells.

    Science.gov (United States)

    Ikeda, Jun-Ichiro; Tanaka, Hiromasa; Ishikawa, Kenji; Sakakita, Hajime; Ikehara, Yuzuru; Hori, Masaru

    2018-01-01

    Medical non-thermal plasma (NTP) treatments for various types of cancers have been reported. Cells with tumorigenic potential (cancer-initiating cells; CICs) are few in number in many types of tumors. CICs efficiently eliminate anti-cancer chemicals and exhibit high-level aldehyde dehydrogenase (ALDH) activity. We previously examined the effects of direct irradiation via NTP on cancer cells; even though we targeted CICs expressing high levels of ALDH, such treatment affected both non-CICs and CICs. Recent studies have shown that plasma-activated medium (PAM) (culture medium irradiated by NTP) selectively induces apoptotic death of cancer but not normal cells. Therefore, we explored the anti-cancer effects of PAM on CICs among endometrioid carcinoma and gastric cancer cells. PAM reduced the viability of cells expressing both low and high levels of ALDH. Combined PAM/cisplatin appeared to kill cancer cells more efficiently than did PAM or cisplatin alone. In a mouse tumor xenograft model, PAM exerted an anti-cancer effect on CICs. Thus, our results suggest that PAM effectively kills both non-CICs and CICs, as does NTP. Therefore, PAM may be a useful new anti-cancer therapy, targeting various cancer cells including CICs. © 2017 Japanese Society of Pathology and John Wiley & Sons Australia, Ltd.

  3. CD47-CAR-T Cells Effectively Kill Target Cancer Cells and Block Pancreatic Tumor Growth.

    Science.gov (United States)

    Golubovskaya, Vita; Berahovich, Robert; Zhou, Hua; Xu, Shirley; Harto, Hizkia; Li, Le; Chao, Cheng-Chi; Mao, Mike Ming; Wu, Lijun

    2017-10-21

    CD47 is a glycoprotein of the immunoglobulin superfamily that is often overexpressed in different types of hematological and solid cancer tumors and plays important role in blocking phagocytosis, increased tumor survival, metastasis and angiogenesis. In the present report, we designed CAR (chimeric antigen receptor)-T cells that bind CD47 antigen. We used ScFv (single chain variable fragment) from mouse CD47 antibody to generate CD47-CAR-T cells for targeting different cancer cell lines. CD47-CAR-T cells effectively killed ovarian, pancreatic and other cancer cells and produced high level of cytokines that correlated with expression of CD47 antigen. In addition, CD47-CAR-T cells significantly blocked BxPC3 pancreatic xenograft tumor growth after intratumoral injection into NSG mice. Moreover, we humanized mouse CD47 ScFv and showed that it effectively bound CD47 antigen. The humanized CD47-CAR-T cells also specifically killed ovarian, pancreatic, and cervical cancer cell lines and produced IL-2 that correlated with expression of CD47. Thus, CD47-CAR-T cells can be used as a novel cellular therapeutic agent for treating different types of cancer.

  4. Role of nitric oxide in Salmonella typhimurium-mediated cancer cell killing

    International Nuclear Information System (INIS)

    Barak, Yoram; Schreiber, Frank; Thorne, Steve H; Contag, Christopher H; DeBeer, Dirk; Matin, A

    2010-01-01

    Bacterial targeting of tumours is an important anti-cancer strategy. We previously showed that strain SL7838 of Salmonella typhimurium targets and kills cancer cells. Whether NO generation by the bacteria has a role in SL7838 lethality to cancer cells is explored. This bacterium has the mechanism for generating NO, but also for decomposing it. Mechanism underlying Salmonella typhimurium tumour therapy was investigated through in vitro and in vivo studies. NO measurements were conducted either by chemical assays (in vitro) or using Biosensors (in vivo). Cancer cells cytotoxic assay were done by using MTS. Bacterial cell survival and tumour burden were determined using molecular imaging techniques. SL7838 generated nitric oxide (NO) in anaerobic cell suspensions, inside infected cancer cells in vitro and in implanted 4T1 tumours in live mice, the last, as measured using microsensors. Thus, under these conditions, the NO generating pathway is more active than the decomposition pathway. The latter was eliminated, in strain SL7842, by the deletion of hmp- and norV genes, making SL7842 more proficient at generating NO than SL7838. SL7842 killed cancer cells more effectively than SL7838 in vitro, and this was dependent on nitrate availability. This strain was also ca. 100% more effective in treating implanted 4T1 mouse tumours than SL7838. NO generation capability is important in the killing of cancer cells by Salmonella strains

  5. Mechanistic insights into selective killing of OXPHOS-dependent cancer cells by arctigenin.

    Science.gov (United States)

    Brecht, Karin; Riebel, Virginie; Couttet, Philippe; Paech, Franziska; Wolf, Armin; Chibout, Salah-Dine; Pognan, Francois; Krähenbühl, Stephan; Uteng, Marianne

    2017-04-01

    Arctigenin has previously been identified as a potential anti-tumor treatment for advanced pancreatic cancer. However, the mechanism of how arctigenin kills cancer cells is not fully understood. In the present work we studied the mechanism of toxicity by arctigenin in the human pancreatic cell line, Panc-1, with special emphasis on the mitochondria. A comparison of Panc-1 cells cultured in glucose versus galactose medium was applied, allowing assessments of effects in glycolytic versus oxidative phosphorylation (OXPHOS)-dependent Panc-1 cells. For control purposes, the mitochondrial toxic response to treatment with arctigenin was compared to the anti-cancer drug, sorafenib, which is a tyrosine kinase inhibitor known for mitochondrial toxic off-target effects (Will et al., 2008). In both Panc-1 OXPHOS-dependent and glycolytic cells, arctigenin dissipated the mitochondrial membrane potential, which was demonstrated to be due to inhibition of the mitochondrial complexes II and IV. However, arctigenin selectively killed only the OXPHOS-dependent Panc-1 cells. This selective killing of OXPHOS-dependent Panc-1 cells was accompanied by generation of ER stress, mitochondrial membrane permeabilization and caspase activation leading to apoptosis and aponecrosis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Epirubicin-adsorbed nanodiamonds kill chemoresistant hepatic cancer stem cells.

    Science.gov (United States)

    Wang, Xin; Low, Xinyi Casuarine; Hou, Weixin; Abdullah, Lissa Nurrul; Toh, Tan Boon; Mohd Abdul Rashid, Masturah; Ho, Dean; Chow, Edward Kai-Hua

    2014-12-23

    Chemoresistance is a primary cause of treatment failure in cancer and a common property of tumor-initiating cancer stem cells. Overcoming mechanisms of chemoresistance, particularly in cancer stem cells, can markedly enhance cancer therapy and prevent recurrence and metastasis. This study demonstrates that the delivery of Epirubicin by nanodiamonds is a highly effective nanomedicine-based approach to overcoming chemoresistance in hepatic cancer stem cells. The potent physical adsorption of Epirubicin to nanodiamonds creates a rapidly synthesized and stable nanodiamond-drug complex that promotes endocytic uptake and enhanced tumor cell retention. These attributes mediate the effective killing of both cancer stem cells and noncancer stem cells in vitro and in vivo. Enhanced treatment of both tumor cell populations results in an improved impairment of secondary tumor formation in vivo compared with treatment by unmodified chemotherapeutics. On the basis of these results, nanodiamond-mediated drug delivery may serve as a powerful method for overcoming chemoresistance in cancer stem cells and markedly improving overall treatment against hepatic cancers.

  7. Sulindac enhances the killing of cancer cells exposed to oxidative stress.

    Directory of Open Access Journals (Sweden)

    Maria Marchetti

    2009-06-01

    Full Text Available Sulindac is an FDA-approved non-steroidal anti-inflammatory drug (NSAID that affects prostaglandin production by inhibiting cyclooxygenases (COX 1 and 2. Sulindac has also been of interest for more than decade as a chemopreventive for adenomatous colorectal polyps and colon cancer.Pretreatment of human colon and lung cancer cells with sulindac enhances killing by an oxidizing agent such as tert-butyl hydroperoxide (TBHP or hydrogen peroxide. This effect does not involve cyclooxygenase (COX inhibition. However, under the conditions used, there is a significant increase in reactive oxygen species (ROS within the cancer cells and a loss of mitochondrial membrane potential, suggesting that cell death is due to apoptosis, which was confirmed by Tunel assay. In contrast, this enhanced killing was not observed with normal lung or colon cells.These results indicate that normal and cancer cells handle oxidative stress in different ways and sulindac can enhance this difference. The combination of sulindac and an oxidizing agent could have therapeutic value.

  8. Killing effect of peripheral blood mononuclear cells irradiated by γ ray on human gastric cancer MKN-28 cell

    International Nuclear Information System (INIS)

    Wu Daocheng; Zhang Xianqing; Mu Shijie; Liu Zhongxiang; Xia Aijun; Huang Xiaofeng; An Qunxing

    2007-01-01

    Objective: To observe the killing effect of peripheral blood mononuclear cells (PBMCs) irradiated by γ ray on cultured human gastric cancer cell line MKN-28. Methods: The experiment were divided into MKN-28 tumor cell control group, PBMCs groups and MKN-28 cells with irradiated or non-irradiated PBMCs co-culture groups. Radidation dosage were from 0.5 to 3 Gy, acridine orange/ethidium bromide (AO/EB) staining were used to observe the kill effect of PBMCs on tumor cells in different period. Results: After culture for 144h, the dead cells of several dosage irradiated PBMCs are much more than those of non-irradiated PBMCs group. At 240 hours of culture, the alive PBMCs deareses in number in both irradiated and non-irradiared groups, but decreases in radiated groups are more obvious. After culture for 72 h in the co-cultured groups, the difference is not evident among all radiation dosage groups. After 96-240 h of co-culture, the killing effect of 0.5-2Gy irradiated PBMCs on tumor cells is very strong, especially in 1Gy group, but the killing effect of PBMCs irradiated by 2.5-3Gy on tumor cells were weaker than that of 0.5-2Gy irradiated groups. At 240 hours co-cultured groups irradiated by 2.5-3Gy, tumor cells still survive and proliferate. Conclusion: Gamma ray irradiation have killing effect to some PBMCs. The cytocidal effect of PBMCs irradiated by 0.5-2Gy on tumor cells were increased. Chemotaxis and cytocidal effect of tumor cells to postirradiated PBMCs were also found. The killing effect of PBMCs irradiated by 2.5 and 3 Gy on tumor cells were restrained. (authors)

  9. A novel bispecific antibody, S-Fab, induces potent cancer cell killing.

    Science.gov (United States)

    Li, Li; He, Ping; Zhou, Changhua; Jing, Li; Dong, Bin; Chen, Siqi; Zhang, Ning; Liu, Yawei; Miao, Ji; Wang, Zhong; Li, Qing

    2015-01-01

    Bispecific antibodies that engage immune cells to kill cancer cells have been actively studied in cancer immunotherapy. In this study, we present a novel bispecific format, S-Fab, fabricated by linking a single-domain anti-carcinoembryonic antigen VHH to a conventional anti-CD3 Fab. In contrast to most bispecific antibodies, the S-Fab bispecific antibody can be efficiently expressed and purified from bacteria. The purified S-Fab is stable in serum and is able to recruit T cells to drive potent cancer cell killing. In xenograft models, the S-Fab antibody suppresses tumor growth in the presence of human immune cells. Our study suggested that the bispecific S-Fab format can be applied to a wide range of immunotherapies.

  10. Sinularin Selectively Kills Breast Cancer Cells Showing G2/M Arrest, Apoptosis, and Oxidative DNA Damage

    Directory of Open Access Journals (Sweden)

    Hurng-Wern Huang

    2018-04-01

    Full Text Available The natural compound sinularin, isolated from marine soft corals, is antiproliferative against several cancers, but its possible selective killing effect has rarely been investigated. This study investigates the selective killing potential and mechanisms of sinularin-treated breast cancer cells. In 3-(4,5-dimethylthiazol-2-yl-5-(3-carboxymethoxyphenyl-2-(4-sulfophenyl-2H- tetrazolium, inner salt (MTS assay, sinularin dose-responsively decreased the cell viability of two breast cancer (SKBR3 and MDA-MB-231 cells, but showed less effect on breast normal (M10 cells after a 24 h treatment. According to 7-aminoactinomycin D (7AAD flow cytometry, sinularin dose-responsively induced the G2/M cycle arrest of SKBR3 cells. Sinularin dose-responsively induced apoptosis on SKBR3 cells in terms of a flow cytometry-based annexin V/7AAD assay and pancaspase activity, as well as Western blotting for cleaved forms of poly(ADP-ribose polymerase (PARP, caspases 3, 8, and 9. These caspases and PARP activations were suppressed by N-acetylcysteine (NAC pretreatment. Moreover, sinularin dose-responsively induced oxidative stress and DNA damage according to flow cytometry analyses of reactive oxygen species (ROS, mitochondrial membrane potential (MitoMP, mitochondrial superoxide, and 8-oxo-2′-deoxyguanosine (8-oxodG. In conclusion, sinularin induces selective killing, G2/M arrest, apoptosis, and oxidative DNA damage of breast cancer cells.

  11. [Synergetic killing effects of external magnetic fields combined with porphyrin-dextran magnetic nanoparticles on the human bladder cancer cells].

    Science.gov (United States)

    Luo, Dao-sheng; Mi, Qi-wu; Meng, Xiang-jun; Gao, Yong; Dai, Yu-ping; Deng, Chun-hua

    2012-08-18

    To study the synergetic killing effects of external magnetic fields combined with the photodynamic action of porphyrin-dextran iron oxide magnetic nanoparticles (PDMN) on human bladder cancer cells in vitro. The PDMN were produced by using the chemical co-precipitation and redox process and the physicochemical properties were characterized. Methyl thiazolyl tetrazolium (MTT) and flow cytometry were used to determine the effects of photodynamic therapy of PDMN combined with external pulsed electromagnetic fields (5 mT) on killing human bladder cancer BIU-87 cells respectively. The diameters of PDMN were 10-15 nm and the saturation magnetization was 0.20 emu/g. Effective diameter of PDMN was 94.8 nm. PDMN could remarkably inhibit the proliferation and induce the obvious apoptosis of BIU-87 cells, and the rates of growth inhibition and apoptosis were (17.61±2.73)% and (24.53±5.74)% respectively. Moreover, external pulsed electromagnetic fields (5 mT) could also suppress the proliferation and induce apoptosis of BIU-87 cells. Furthermore, the photodynamic action of PDMN combined with external magnetic fields significantly inhibited the proliferation and promote apoptosis of BIU-87 cells, and the rates of growth inhibition and apoptosis was (28.11±4.25)% and (24.53±5.74)%, respectively, which were significantly higher than those of other groups (Peffectively inhibit proliferation and induce apoptosis of BIU-87 cells. Moreover, these effects on BIU-87 cells could be strengthened by the combination with external magnetic fields.

  12. 4β-Hydroxywithanolide E selectively induces oxidative DNA damage for selective killing of oral cancer cells.

    Science.gov (United States)

    Tang, Jen-Yang; Huang, Hurng-Wern; Wang, Hui-Ru; Chan, Ya-Ching; Haung, Jo-Wen; Shu, Chih-Wen; Wu, Yang-Chang; Chang, Hsueh-Wei

    2018-03-01

    Reactive oxygen species (ROS) induction had been previously reported in 4β-hydroxywithanolide (4βHWE)-induced selective killing of oral cancer cells, but the mechanism involving ROS and the DNA damage effect remain unclear. This study explores the role of ROS and oxidative DNA damage of 4βHWE in the selective killing of oral cancer cells. Changes in cell viability, morphology, ROS, DNA double strand break (DSB) signaling (γH2AX foci in immunofluorescence and DSB signaling in western blotting), and oxidative DNA damage (8-oxo-2'deoxyguanosine [8-oxodG]) were detected in 4βHWE-treated oral cancer (Ca9-22) and/or normal (HGF-1) cells. 4βHWE decreased cell viability, changed cell morphology and induced ROS generation in oral cancer cells rather than oral normal cells, which were recovered by a free radical scavenger N-acetylcysteine (NAC). For immunofluorescence, 4βHWE also accumulated more of the DSB marker, γH2AX foci, in oral cancer cells than in oral normal cells. For western blotting, DSB signaling proteins such as γH2AX and MRN complex (MRE11, RAD50, and NBS1) were overexpressed in 4βHWE-treated oral cancer cells in different concentrations and treatment time. In the formamidopyrimidine-DNA glycolyase (Fpg)-based comet assay and 8-oxodG-based flow cytometry, the 8-oxodG expressions were higher in 4βHWE-treated oral cancer cells than in oral normal cells. All the 4βHWE-induced DSB and oxidative DNA damage to oral cancer cells were recovered by NAC pretreatment. Taken together, the 4βHWE selectively induced DSB and oxidative DNA damage for the ROS-mediated selective killing of oral cancer cells. © 2017 Wiley Periodicals, Inc.

  13. Can dendritic cells improve whole cancer cell vaccines based on immunogenically killed cancer cells?

    Science.gov (United States)

    Cicchelero, Laetitia; Denies, Sofie; Devriendt, Bert; de Rooster, Hilde; Sanders, Niek N

    2015-01-01

    Immunogenic cell death (ICD) offers interesting opportunities in cancer cell (CC) vaccine manufacture, as it increases the immunogenicity of the dead CC. Furthermore, fusion of CCs with dendritic cells (DCs) is considered a superior method for generating whole CC vaccines. Therefore, in this work, we determined in naive mice whether immunogenically killed CCs per se (CC vaccine) elicit an antitumoral immune response different from the response observed when immunogenically killed CCs are associated with DCs through fusion (fusion vaccine) or through co-incubation (co-incubation vaccine). After tumor inoculation, the type of immune response in the prophylactically vaccinated mice differed between the groups. In more detail, fusion vaccines elicited a humoral anticancer response, whereas the co-incubation and CC vaccine mainly induced a cellular response. Despite these differences, all three approaches offered a prophylactic protection against tumor development in the murine mammary carcinoma model. In summary, it can be concluded that whole CC vaccines based on immunogenically killed CCs may not necessarily require association with DCs to elicit a protective anticancer immune response. If this finding can be endorsed in other cancer models, the manufacture of CC vaccines would greatly benefit from this new insight, as production of DC-based vaccines is laborious, time-consuming and expensive. PMID:26587315

  14. Killing effect of EGFR-TKI combined with 125I seed implantation therapy on ⅢB-Ⅳ stage lung cancer tissue

    Directory of Open Access Journals (Sweden)

    Ai-Sheng Xiang

    2016-12-01

    Full Text Available Objective: To analyze the killing effect of EGFR-TKI combined with 125I seed implantation therapy on ⅢB-Ⅳ stage lung cancer tissue. Methods: A total of 78 patients with ⅢB-Ⅳ stage lung cancer were randomly divided into observation group and control group (n=39, control group received EGFR-TKI treatment and observation group received EGFR-TKI combined with 125I seed implantation therapy. Differences in apoptosis gene, invasion gene and autophagy gene expression in lung tissue were compared between two groups after 1 month of treatment. Results: Apoptosis genes PDCD5, bax and bcl-xS mRNA expression levels in lung tissue of observation group after 1 month of treatment were higher than those of control group while Bag-1, survivin and bcl-xL mRNA expression levels were lower than those of control group; invasion genes CD147, EGFR and DDX17 mRNA expression levels were lower than those of control group while Bin1, E-cadherin and Ovol2 mRNA expression levels were higher than those of control group; autophagy genes ARHI, Beclin1, Atg5, LC3B, pULK and PI3KC3 mRNA expression levels were higher than those of control group. Conclusions: EGFR-TKI combined with 125I seed implantation therapy can enhance the tumor killing effect on patients with ⅢB-Ⅳ stage lung cancer, and contribute to the optimization of overall condition and the extension of survival time.

  15. DC-CIK cells derived from ovarian cancer patient menstrual blood activate the TNFR1-ASK1-AIP1 pathway to kill autologous ovarian cancer stem cells.

    Science.gov (United States)

    Qin, Wenxing; Xiong, Ying; Chen, Juan; Huang, Yongyi; Liu, Te

    2018-03-22

    Ovarian cancer stem cells (OCSCs) are highly carcinogenic and have very strong resistance to traditional chemotherapeutic drugs; therefore, they are an important factor in ovarian cancer metastasis and recurrence. It has been reported that dendritic cell (DC)-cytokine-induced killer (CIK) cells have significant killing effects on all cancer cells across many systems including the blood, digestive, respiratory, urinary and reproductive systems. However, whether DC-CIK cells can selectively kill OCSCs is currently unclear. In this study, we collected ovarian cancer patient menstrual blood (OCPMB) samples to acquire mononuclear cells and isolated DC-CIK cells in vitro. In addition, autologous CD44+/CD133+ OCSCs were isolated and used as target cells. The experimental results showed that when DC-CIK cells and OCSCs were mixed and cultured in vitro at ratios of 5:1, 10:1 and 50:1, the DC-CIK cells killed significant amounts of OCSCs, inhibited their invasion in vitro and promoted their apoptosis. The qPCR and Western blot results showed that DC-CIK cells stimulated high expression levels and phosphorylation of TNFR1, ASK1, AIP1 and JNK in OCSCs through the release of TNF-α. After the endogenous TNFR1 gene was knocked out in OCSCs using the CRISPR/Cas9 technology, the killing function of DC-CIK cells on target OCSCs was significantly attenuated. The results of the analyses of clinical samples suggested that the TNFR1 expression level was negatively correlated with ovarian cancer stage and prognosis. Therefore, we innovatively confirmed that DC-CIK cells derived from OCPMB could secret TNF-α to activate the expression of the TNFR1-ASK1-AIP1-JNK pathway in OCSCs and kill autologous OCSCs. © 2018 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  16. Novel innate cancer killing activity in humans

    Directory of Open Access Journals (Sweden)

    Lovato James

    2011-08-01

    Full Text Available Abstract Background In this study, we pilot tested an in vitro assay of cancer killing activity (CKA in circulating leukocytes of 22 cancer cases and 25 healthy controls. Methods Using a human cervical cancer cell line, HeLa, as target cells, we compared the CKA in circulating leukocytes, as effector cells, of cancer cases and controls. The CKA was normalized as percentages of total target cells during selected periods of incubation time and at selected effector/target cell ratios in comparison to no-effector-cell controls. Results Our results showed that CKA similar to that of our previous study of SR/CR mice was present in human circulating leukocytes but at profoundly different levels in individuals. Overall, males have a significantly higher CKA than females. The CKA levels in cancer cases were lower than that in healthy controls (mean ± SD: 36.97 ± 21.39 vs. 46.28 ± 27.22. Below-median CKA was significantly associated with case status (odds ratio = 4.36; 95% Confidence Interval = 1.06, 17.88 after adjustment of gender and race. Conclusions In freshly isolated human leukocytes, we were able to detect an apparent CKA in a similar manner to that of cancer-resistant SR/CR mice. The finding of CKA at lower levels in cancer patients suggests the possibility that it may be of a consequence of genetic, physiological, or pathological conditions, pending future studies with larger sample size.

  17. ONC201 kills breast cancer cells in vitro by targeting mitochondria.

    Science.gov (United States)

    Greer, Yoshimi Endo; Porat-Shliom, Natalie; Nagashima, Kunio; Stuelten, Christina; Crooks, Dan; Koparde, Vishal N; Gilbert, Samuel F; Islam, Celia; Ubaldini, Ashley; Ji, Yun; Gattinoni, Luca; Soheilian, Ferri; Wang, Xiantao; Hafner, Markus; Shetty, Jyoti; Tran, Bao; Jailwala, Parthav; Cam, Maggie; Lang, Martin; Voeller, Donna; Reinhold, William C; Rajapakse, Vinodh; Pommier, Yves; Weigert, Roberto; Linehan, W Marston; Lipkowitz, Stanley

    2018-04-06

    We report a novel mechanism of action of ONC201 as a mitochondria-targeting drug in cancer cells. ONC201 was originally identified as a small molecule that induces transcription of TNF-related apoptosis-inducing ligand (TRAIL) and subsequently kills cancer cells by activating TRAIL death receptors. In this study, we examined ONC201 toxicity on multiple human breast and endometrial cancer cell lines. ONC201 attenuated cell viability in all cancer cell lines tested. Unexpectedly, ONC201 toxicity was not dependent on either TRAIL receptors nor caspases. Time-lapse live cell imaging revealed that ONC201 induces cell membrane ballooning followed by rupture, distinct from the morphology of cells undergoing apoptosis. Further investigation found that ONC201 induces phosphorylation of AMP-dependent kinase and ATP loss. Cytotoxicity and ATP depletion were significantly enhanced in the absence of glucose, suggesting that ONC201 targets mitochondrial respiration. Further analysis indicated that ONC201 indirectly inhibits mitochondrial respiration. Confocal and electron microscopic analysis demonstrated that ONC201 triggers mitochondrial structural damage and functional impairment. Moreover, ONC201 decreased mitochondrial DNA (mtDNA). RNAseq analysis revealed that ONC201 suppresses expression of multiple mtDNA-encoded genes and nuclear-encoded mitochondrial genes involved in oxidative phosphorylation and other mitochondrial functions. Importantly, fumarate hydratase deficient cancer cells and multiple cancer cell lines with reduced amounts of mtDNA were resistant to ONC201. These results indicate that cells not dependent on mitochondrial respiration are ONC201-resistant. Our data demonstrate that ONC201 kills cancer cells by disrupting mitochondrial function and further suggests that cancer cells that are dependent on glycolysis will be resistant to ONC201.

  18. Photochemical internalisation of chemotherapy potentiates killing of multidrug-resistant breast and bladder cancer cells.

    Science.gov (United States)

    Adigbli, D K; Wilson, D G G; Farooqui, N; Sousi, E; Risley, P; Taylor, I; Macrobert, A J; Loizidou, M

    2007-08-20

    Multidrug resistance (MDR) is the major confounding factor in adjuvant solid tumour chemotherapy. Increasing intracellular amounts of chemotherapeutics to circumvent MDR may be achieved by a novel delivery method, photochemical internalisation (PCI). PCI consists of the co-administration of drug and photosensitiser; upon light activation the latter induces intracellular release of organelle-bound drug. We investigated whether co-administration of hypericin (photosensitiser) with mitoxantrone (MTZ, chemotherapeutic) plus illumination potentiates cytotoxicity in MDR cancer cells. We mapped the extent of intracellular co-localisation of drug/photosensitiser. We determined whether PCI altered drug-excreting efflux pump P-glycoprotein (Pgp) expression or function in MDR cells. Bladder and breast cancer cells and their Pgp-overexpressing MDR subclones (MGHU1, MGHU1/R, MCF-7, MCF-7/R) were given hypericin/MTZ combinations, with/without blue-light illumination. Pilot experiments determined appropriate sublethal doses for each. Viability was determined by the 3-[4,5-dimethylthiazolyl]-2,5-diphenyltetrazolium bromide assay. Intracellular localisation was mapped by confocal microscopy. Pgp expression was detected by immunofluorescence and Pgp function investigated by Rhodamine123 efflux on confocal microscopy. MTZ alone (0.1-0.2 microg ml(-1)) killed up to 89% of drug-sensitive cells; MDR cells exhibited less cytotoxicity (6-28%). Hypericin (0.1-0.2 microM) effects were similar for all cells; light illumination caused none or minimal toxicity. In combination, MTZ /hypericin plus illumination, potentiated MDR cell killing, vs hypericin or MTZ alone. (MGHU1/R: 38.65 and 36.63% increase, Phypericin increased killing by 28.15% (Phypericin was evident before illumination and at serial times post-illumination. MTZ was always found in sensitive cell nuclei, but not in dark resistant cell nuclei. In illuminated resistant cells there was some mobilisation of MTZ into the nucleus. Pgp

  19. Interleukin-15 stimulates natural killer cell-mediated killing of both human pancreatic cancer and stellate cells

    Science.gov (United States)

    Van Audenaerde, Jonas R.M.; De Waele, Jorrit; Marcq, Elly; Van Loenhout, Jinthe; Lion, Eva; Van den Bergh, Johan M.J.; Jesenofsky, Ralf; Masamune, Atsushi; Roeyen, Geert; Pauwels, Patrick; Lardon, Filip; Peeters, Marc; Smits, Evelien L.J.

    2017-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is the 4th leading cause of cancer-related death in Western countries with a 5-year survival rate below 5%. One of the hallmarks of this cancer is the strong desmoplastic reaction within the tumor microenvironment (TME), orchestrated by activated pancreatic stellate cells (PSC). This results in a functional and mechanical shield which causes resistance to conventional therapies. Aiming to overcome this resistance by tackling the stromal shield, we assessed for the first time the capacity of IL-15 stimulated natural killer (NK) cells to kill PSC and pancreatic cancer cells (PCC). The potency of IL-15 to promote NK cell-mediated killing was evaluated phenotypically and functionally. In addition, NK cell and immune checkpoint ligands on PSC were charted. We demonstrate that IL-15 activated NK cells kill both PCC and PSC lines (range 9-35% and 20-50%, respectively) in a contact-dependent manner and significantly higher as compared to resting NK cells. Improved killing of these pancreatic cell lines is, at least partly, dependent on IL-15 induced upregulation of TIM-3 and NKG2D. Furthermore, we confirm significant killing of primary PSC by IL-15 activated NK cells in an ex vivo autologous system. Screening for potential targets for immunotherapeutic strategies, we demonstrate surface expression of both inhibitory (PD-L1, PD-L2) and activating (MICA/B, ULBPs and Galectin-9) ligands on primary PSC. These data underscore the therapeutic potential of IL-15 to promote NK cell-mediated cytotoxicity as a treatment of pancreatic cancer and provide promising future targets to tackle remaining PSC. PMID:28915646

  20. Selective killing of cancer cells by leaf extract of Ashwagandha: components, activity and pathway analyses.

    Science.gov (United States)

    Widodo, Nashi; Takagi, Yasuomi; Shrestha, Bhupal G; Ishii, Tetsuro; Kaul, Sunil C; Wadhwa, Renu

    2008-04-08

    Ashwagandha, also called as "Queen of Ayurveda" and "Indian ginseng", is a commonly used plant in Indian traditional medicine, Ayurveda. Its roots have been used as herb remedy to treat a variety of ailments and to promote general wellness. However, scientific evidence to its effects is limited to only a small number of studies. We had previously identified anti-cancer activity in the leaf extract (i-Extract) of Ashwagandha and demonstrated withanone as a cancer inhibitory factor (i-Factor). In the present study, we fractionated the i-Extract to its components by silica gel column chromatography and subjected them to cell based activity analyses. We found that the cancer inhibitory leaf extract (i-Extract) has, at least, seven components that could cause cancer cell killing; i-Factor showed the highest selectivity for cancer cells and i-Factor rich Ashwagandha leaf powder was non-toxic and anti-tumorigenic in mice assays. We undertook a gene silencing and pathway analysis approach and found that i-Extract and its components kill cancer cells by at least five different pathways, viz. p53 signaling, GM-CFS signaling, death receptor signaling, apoptosis signaling and G2-M DNA damage regulation pathway. p53 signaling was most common. Visual analysis of p53 and mortalin staining pattern further revealed that i-Extract, fraction F1, fraction F4 and i-Factor caused an abrogation of mortalin-p53 interactions and reactivation of p53 function while the fractions F2, F3, F5 work through other mechanisms.

  1. T-peptide Enhances the Killing Effects of Cisplatinum on Lung Cancer

    Directory of Open Access Journals (Sweden)

    Hongyi ZHANG

    2017-02-01

    Full Text Available Background and objective T peptide is extensively used in anti-tumor treatment. The aims of this study were to investigate whether T peptide enhances cisplatinum efficiency while reducing its side effects and to identify its effective mechanisms. Methods (1 Human macrophage U937 cells were treated with T peptide and/or cisplatinum. The levels of tumor necrosis factor-α (TNF-α and interferon-γ (IFN-γ of each group were detected by enzyme-linked immunosorbent assay (ELISA; (2 Xenograft mouse models of human lung cancer were treated with T peptide and/or cisplatinum once every five days for three times. Tumor volumes were measured during treatment; (3 The percentages of macrophages in the peripheral blood of the xenograft mouse models were measured by FACS. Results (1 Compared with other groups, the level of TNF-α was significantly higher in the human macrophage U937 cells that were treated with T peptide combined with cisplatinum. The levels of IFN-γ were significantly higher in human macrophage U937 cells that were treated with T peptide alone or T peptide combined with cisplatinum; (2 In the xenograft mouse models, T peptide combined with cisplatinum treatment significantly inhibited tumor growth without weight loss compared with the other groups; (3 The percentages of macrophages in the peripheral blood were significantly higher in the xenograft mouse models that were treated with T peptide combined with cisplatinum compared with in the other groups. Conclusion T peptide promotes macrophage proliferation and increases tumor cell killing factors (TNF-α, IFN-γ in vitro. Moreover, T peptide enhances the efficacy of cisplatin and reduces its toxicity in vivo.

  2. Improved Killing of Ovarian Cancer Stem Cells by Combining a Novel Chimeric Antigen Receptor-Based Immunotherapy and Chemotherapy.

    Science.gov (United States)

    Klapdor, Rüdiger; Wang, Shuo; Hacker, Ulrich; Büning, Hildegard; Morgan, Michael; Dörk, Thilo; Hillemanns, Peter; Schambach, Axel

    2017-10-01

    Ovarian cancer represents the most lethal gynecological cancer. Although cytoreductive chemotherapy and surgery lead to complete macroscopic tumor removal, most of the patients in advanced stages suffer from recurrent disease and subsequently die. This may be explained by the activity of cancer stem cells (CSC), which are a subpopulation of cells with an elevated chemoresistance and an increased capacity for self-renewal and metastatic spread. Specifically targeting these cells by adoptive immunotherapy represents a promising strategy to reduce the risk for recurrent disease. This study selected the widely accepted CSC marker CD133 as a target for a chimeric antigen receptor (CAR)-based immunotherapeutic approach to treat ovarian cancer. A lentiviral vector was generated encoding a third-generation anti-CD133-CAR, and clinically used NK92 cells were transduced. These engineered natural killer (NK) cells showed specific killing against CD133-positive ovarian cancer cell lines and primary ovarian cancer cells cultured from sequential ascites harvests. Additionally, specific activation of these engineered NK cells was demonstrated via interferon-gamma secretion assays. To improve clinical efficacy of ovarian cancer treatment, the effect of the chemotherapeutic agent cisplatin was evaluated together with CAR-transduced NK cell treatment. It was demonstrated that NK cells remain cytotoxic and active under cisplatin treatment and, importantly, that sequential treatment with cisplatin followed by CAR-NK cells led to the strongest killing effect. The specific eradication of ovarian CSCs by anti-CD133-CAR expressing NK92 cells represents a promising strategy and, when confirmed in vivo, shall be the basis of future clinical studies with the aim to prevent recurrent disease.

  3. Photochemical internalisation of chemotherapy potentiates killing of multidrug-resistant breast and bladder cancer cells

    Science.gov (United States)

    Adigbli, D K; Wilson, D G G; Farooqui, N; Sousi, E; Risley, P; Taylor, I; MacRobert, A J; Loizidou, M

    2007-01-01

    Multidrug resistance (MDR) is the major confounding factor in adjuvant solid tumour chemotherapy. Increasing intracellular amounts of chemotherapeutics to circumvent MDR may be achieved by a novel delivery method, photochemical internalisation (PCI). PCI consists of the co-administration of drug and photosensitiser; upon light activation the latter induces intracellular release of organelle-bound drug. We investigated whether co-administration of hypericin (photosensitiser) with mitoxantrone (MTZ, chemotherapeutic) plus illumination potentiates cytotoxicity in MDR cancer cells. We mapped the extent of intracellular co-localisation of drug/photosensitiser. We determined whether PCI altered drug-excreting efflux pump P-glycoprotein (Pgp) expression or function in MDR cells. Bladder and breast cancer cells and their Pgp-overexpressing MDR subclones (MGHU1, MGHU1/R, MCF-7, MCF-7/R) were given hypericin/MTZ combinations, with/without blue-light illumination. Pilot experiments determined appropriate sublethal doses for each. Viability was determined by the 3-[4,5-dimethylthiazolyl]-2,5-diphenyltetrazolium bromide assay. Intracellular localisation was mapped by confocal microscopy. Pgp expression was detected by immunofluorescence and Pgp function investigated by Rhodamine123 efflux on confocal microscopy. MTZ alone (0.1–0.2 μg ml−1) killed up to 89% of drug-sensitive cells; MDR cells exhibited less cytotoxicity (6–28%). Hypericin (0.1–0.2 μM) effects were similar for all cells; light illumination caused none or minimal toxicity. In combination, MTZ /hypericin plus illumination, potentiated MDR cell killing, vs hypericin or MTZ alone. (MGHU1/R: 38.65 and 36.63% increase, P<0.05; MCF-7/R: 80.2 and 46.1% increase, P<0.001). Illumination of combined MTZ/hypericin increased killing by 28.15% (P<0.05 MGHU1/R) compared to dark controls. Intracytoplasmic vesicular co-localisation of MTZ/hypericin was evident before illumination and at serial times post

  4. Smart Plasmonic Glucose Nanosensors as Generic Theranostic Agents for Targeting-Free Cancer Cell Screening and Killing.

    Science.gov (United States)

    Chen, Limei; Li, Haijuan; He, Haili; Wu, Haoxi; Jin, Yongdong

    2015-07-07

    Fast and accurate identification of cancer cells from healthy normal cells in a simple, generic way is very crucial for early cancer detection and treatment. Although functional nanoparticles, like fluorescent quantum dots and plasmonic Au nanoparticles (NPs), have been successfully applied for cancer cell imaging and photothermal therapy, they suffer from the main drawback of needing time-consuming targeting preparation for specific cancer cell detection and selective ablation. The lack of a generic and effective method therefore limits their potential high-throughput cancer cell preliminary screening and theranostic applications. We report herein a generic in vitro method for fast, targeting-free (avoiding time-consuming preparations of targeting moiety for specific cancer cells) visual screening and selective killing of cancer cells from normal cells, by using glucose-responsive/-sensitive glucose oxidase-modified Ag/Au nanoshells (Ag/Au-GOx NSs) as a smart plasmonic theranostic agent. The method is generic to some extent since it is based on the distinct localized surface plasmon resonance (LSPR) responses (and colors) of the smart nanoprobe with cancer cells (typically have a higher glucose uptake level) and normal cells.

  5. Carbon-ion beam irradiation kills X-ray-resistant p53-null cancer cells by inducing mitotic catastrophe.

    Directory of Open Access Journals (Sweden)

    Napapat Amornwichet

    Full Text Available BACKGROUND AND PURPOSE: To understand the mechanisms involved in the strong killing effect of carbon-ion beam irradiation on cancer cells with TP53 tumor suppressor gene deficiencies. MATERIALS AND METHODS: DNA damage responses after carbon-ion beam or X-ray irradiation in isogenic HCT116 colorectal cancer cell lines with and without TP53 (p53+/+ and p53-/-, respectively were analyzed as follows: cell survival by clonogenic assay, cell death modes by morphologic observation of DAPI-stained nuclei, DNA double-strand breaks (DSBs by immunostaining of phosphorylated H2AX (γH2AX, and cell cycle by flow cytometry and immunostaining of Ser10-phosphorylated histone H3. RESULTS: The p53-/- cells were more resistant than the p53+/+ cells to X-ray irradiation, while the sensitivities of the p53+/+ and p53-/- cells to carbon-ion beam irradiation were comparable. X-ray and carbon-ion beam irradiations predominantly induced apoptosis of the p53+/+ cells but not the p53-/- cells. In the p53-/- cells, carbon-ion beam irradiation, but not X-ray irradiation, markedly induced mitotic catastrophe that was associated with premature mitotic entry with harboring long-retained DSBs at 24 h post-irradiation. CONCLUSIONS: Efficient induction of mitotic catastrophe in apoptosis-resistant p53-deficient cells implies a strong cancer cell-killing effect of carbon-ion beam irradiation that is independent of the p53 status, suggesting its biological advantage over X-ray treatment.

  6. A novel class of chemicals that react with abasic sites in DNA and specifically kill B cell cancers.

    Directory of Open Access Journals (Sweden)

    Shanqiao Wei

    Full Text Available Most B cell cancers overexpress the enzyme activation-induced deaminase at high levels and this enzyme converts cytosines in DNA to uracil. The constitutive expression of this enzyme in these cells greatly increases the uracil content of their genomes. We show here that these genomes also contain high levels of abasic sites presumably created during the repair of uracils through base-excision repair. We further show that three alkoxyamines with an alkyne functional group covalently link to abasic sites in DNA and kill immortalized cell lines created from B cell lymphomas, but not other cancers. They also do not kill normal B cells. Treatment of cancer cells with one of these chemicals causes strand breaks, and the sensitivity of the cells to this chemical depends on the ability of the cells to go through the S phase. However, other alkoxyamines that also link to abasic sites- but lack the alkyne functionality- do not kill cells from B cell lymphomas. This shows that the ability of alkoxyamines to covalently link to abasic sites is insufficient for their cytotoxicity and that the alkyne functionality may play a role in it. These chemicals violate the commonly accepted bioorthogonality of alkynes and are attractive prototypes for anti-B cell cancer agents.

  7. The bystander effect of cancer gene therapy

    International Nuclear Information System (INIS)

    Lumniczky, K.; Safrany, G.

    2008-01-01

    Cancer gene therapy is a new, promising therapeutic agent. In the clinic, it should be used in combination with existing modalities, such as tumour irradiation. First, we summarise the most important fields of cancer gene therapy: gene directed enzyme pro-drug therapy; the activation of an anti-tumour immune attack; restoration of the wild type p53 status; the application of new, replication competent and oncolytic viral vectors; tumour specific, as well as radiation- and hypoxia-induced gene expression. Special emphasizes are put on the combined effect of these modalities with local tumour irradiation. Using the available vector systems, only a small portion of the cancer cells will contain the therapeutic genes under therapeutic situations. Bystander cell killing might contribute to the success of various gene therapy protocols. We summarise the evidences that lethal bystander effects may occur during cancer gene therapy. Bystander effects are especially important in the gene directed enzyme pro-drug therapy. There, bystander cell killing might have different routes: cell communication through gap junction intercellular contacts; release of toxic metabolites into the neighbourhood or to larger distances; phagocytosis of apoptotic bodies; and the activation of the immune system. Bystander cell killing can be enhanced by the introduction of gap junction proteins into the cells, by further activating the immune system with immune-stimulatory molecules, or by introducing genes into the cells that help the transfer of cytotoxic genes and / or metabolites into the bystander cells. In conclusion, there should be additional improvements in cancer gene therapy for the more efficient clinical application. (orig.)

  8. Fiber mediated receptor masking in non-infected bystander cells restricts adenovirus cell killing effect but promotes adenovirus host co-existence.

    Directory of Open Access Journals (Sweden)

    Johan Rebetz

    Full Text Available The basic concept of conditionally replicating adenoviruses (CRAD as oncolytic agents is that progenies generated from each round of infection will disperse, infect and kill new cancer cells. However, CRAD has only inhibited, but not eradicated tumor growth in xenograft tumor therapy, and CRAD therapy has had only marginal clinical benefit to cancer patients. Here, we found that CRAD propagation and cancer cell survival co-existed for long periods of time when infection was initiated at low multiplicity of infection (MOI, and cancer cell killing was inefficient and slow compared to the assumed cell killing effect upon infection at high MOI. Excessive production of fiber molecules from initial CRAD infection of only 1 to 2% cancer cells and their release prior to the viral particle itself caused a tropism-specific receptor masking in both infected and non-infected bystander cells. Consequently, the non-infected bystander cells were inefficiently bound and infected by CRAD progenies. Further, fiber overproduction with concomitant restriction of adenovirus spread was observed in xenograft cancer therapy models. Besides the CAR-binding Ad4, Ad5, and Ad37, infection with CD46-binding Ad35 and Ad11 also caused receptor masking. Fiber overproduction and its resulting receptor masking thus play a key role in limiting CRAD functionality, but potentially promote adenovirus and host cell co-existence. These findings also give important clues for understanding mechanisms underlying the natural infection course of various adenoviruses.

  9. Evaluation of the effects of a plasma activated medium on cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Mohades, S.; Laroussi, M., E-mail: mlarouss@odu.edu; Sears, J.; Barekzi, N.; Razavi, H. [Plasma Engineering and Medicine Institute, Old Dominion University, Norfolk, Virginia 23529 (United States)

    2015-12-15

    The interaction of low temperature plasma with liquids is a relevant topic of study to the field of plasma medicine. This is because cells and tissues are normally surrounded or covered by biological fluids. Therefore, the chemistry induced by the plasma in the aqueous state becomes crucial and usually dictates the biological outcomes. This process became even more important after the discovery that plasma activated media can be useful in killing various cancer cell lines. Here, we report on the measurements of concentrations of hydrogen peroxide, a species known to have strong biological effects, produced by application of plasma to a minimum essential culture medium. The activated medium is then used to treat SCaBER cancer cells. Results indicate that the plasma activated medium can kill the cancer cells in a dose dependent manner, retain its killing effect for several hours, and is as effective as apoptosis inducing drugs.

  10. Influence of sequential 125I particle chain implantation and transcatheter arterial chemoembolization on tumor cell killing effect in patients with liver cancer

    Directory of Open Access Journals (Sweden)

    Wei Dai

    2017-07-01

    Full Text Available Objective: To study the influence of sequential 125I particle chain implantation and transcatheter arterial chemoembolization (TACE on tumor cell killing effect in patients with liver cancer. Methods: A total of 82 cases of patients with advanced liver cancer who were treated in our hospital between September 2014 and December 2016 were collected, reviewed and then divided into the control group (n=45 who received TACE alone and the observation group (n=37 who received sequential 125I particle chain implantation and TACE. Serum levels of tumor markers, angiogenesis indexes and apoptosis molecules before and after treatments were compared between two groups of patients. Results: Before treatment, differences in serum levels of tumor markers, angiogenesis indexes and apoptosis molecules were not statistically significant between two groups of patients. After treatment, serum tumor markers AFP, CA199, CA153 and Ferritin levels in observation group were lower than those in control group; serum angiogenesis indexes VEGF, PEDF, ES and bFGF contents were lower than those in control group; serum apoptosis molecules p53 and Fas contents were higher than those in control group. Conclusion: Sequential 125I particle chain implantation and TACE treatment of advanced liver cancer can effectively reduce tumor malignancy and promote tumor apoptosis.

  11. Selective replication of oncolytic virus M1 results in a bystander killing effect that is potentiated by Smac mimetics.

    Science.gov (United States)

    Cai, Jing; Lin, Yuan; Zhang, Haipeng; Liang, Jiankai; Tan, Yaqian; Cavenee, Webster K; Yan, Guangmei

    2017-06-27

    Oncolytic virotherapy is a treatment modality that uses native or genetically modified viruses that selectively replicate in and kill tumor cells. Viruses represent a type of pathogen-associated molecular pattern and thereby induce the up-regulation of dozens of cytokines via activating the host innate immune system. Second mitochondria-derived activator of caspases (Smac) mimetic compounds (SMCs), which antagonize the function of inhibitor of apoptosis proteins (IAPs) and induce apoptosis, sensitize tumor cells to multiple cytokines. Therefore, we sought to determine whether SMCs sensitize tumor cells to cytokines induced by the oncolytic M1 virus, thus enhancing a bystander killing effect. Here, we report that SMCs potentiate the oncolytic effect of M1 in vitro, in vivo, and ex vivo. This strengthened oncolytic efficacy resulted from the enhanced bystander killing effect caused by the M1 virus via cytokine induction. Through a microarray analysis and subsequent validation using recombinant cytokines, we identified IL-8, IL-1A, and TRAIL as the key cytokines in the bystander killing effect. Furthermore, SMCs increased the replication of M1, and the accumulation of virus protein induced irreversible endoplasmic reticulum stress- and c-Jun N-terminal kinase-mediated apoptosis. Nevertheless, the combined treatment with M1 and SMCs had little effect on normal and human primary cells. Because SMCs selectively and significantly enhance the bystander killing effect and the replication of oncolytic virus M1 specifically in cancer cells, this combined treatment may represent a promising therapeutic strategy.

  12. Antibacterial activity of silver-killed bacteria: the "zombies" effect

    Science.gov (United States)

    Wakshlak, Racheli Ben-Knaz; Pedahzur, Rami; Avnir, David

    2015-04-01

    We report a previously unrecognized mechanism for the prolonged action of biocidal agents, which we denote as the zombies effect: biocidally-killed bacteria are capable of killing living bacteria. The concept is demonstrated by first killing Pseudomonas aeruginosa PAO1 with silver nitrate and then challenging, with the dead bacteria, a viable culture of the same bacterium: Efficient antibacterial activity of the killed bacteria is observed. A mechanism is suggested in terms of the action of the dead bacteria as a reservoir of silver, which, due to Le-Chatelier's principle, is re-targeted to the living bacteria. Langmuirian behavior, as well as deviations from it, support the proposed mechanism.

  13. An Aqueous Extract of Marine Microalgae Exhibits Antimetastatic Activity through Preferential Killing of Suspended Cancer Cells and Anticolony Forming Activity

    Science.gov (United States)

    Somasekharan, Syam Prakash; El-Naggar, Amal; Sorensen, Poul H.

    2016-01-01

    Research on marine natural products as potential anticancer agents is still limited. In the present study, an aqueous extract of a Canadian marine microalgal preparation was assessed for anticancer activities using various assays and cell lines of human cancers, including lung, prostate, stomach, breast, and pancreatic cancers, as well as an osteosarcoma. In vitro, the microalgal extract exhibited marked anticolony forming activity. In addition, it was more toxic, as indicated by increased apoptosis, to nonadherent cells (grown in suspension) than to adherent cells. In vivo, an antimetastatic effect of the extract was observed in NOD-SCID mice carrying subrenal capsule xenografts of PC3 prostate cancer cells. The results of the present study suggest that the antimetastatic effect of the aqueous microalgal extract is based on inhibition of colony forming ability of cancer cells and the preferential killing of suspended cancer cells. Further research aimed at identification of the molecular basis of the anticancer activities of the microalgal extract appears to be warranted. PMID:27656243

  14. An Aqueous Extract of Marine Microalgae Exhibits Antimetastatic Activity through Preferential Killing of Suspended Cancer Cells and Anticolony Forming Activity

    Directory of Open Access Journals (Sweden)

    Syam Prakash Somasekharan

    2016-01-01

    Full Text Available Research on marine natural products as potential anticancer agents is still limited. In the present study, an aqueous extract of a Canadian marine microalgal preparation was assessed for anticancer activities using various assays and cell lines of human cancers, including lung, prostate, stomach, breast, and pancreatic cancers, as well as an osteosarcoma. In vitro, the microalgal extract exhibited marked anticolony forming activity. In addition, it was more toxic, as indicated by increased apoptosis, to nonadherent cells (grown in suspension than to adherent cells. In vivo, an antimetastatic effect of the extract was observed in NOD-SCID mice carrying subrenal capsule xenografts of PC3 prostate cancer cells. The results of the present study suggest that the antimetastatic effect of the aqueous microalgal extract is based on inhibition of colony forming ability of cancer cells and the preferential killing of suspended cancer cells. Further research aimed at identification of the molecular basis of the anticancer activities of the microalgal extract appears to be warranted.

  15. Selective Killing of Breast Cancer Cells by Doxorubicin-Loaded Fluorescent Gold Nanoclusters: Confocal Microscopy and FRET.

    Science.gov (United States)

    Chattoraj, Shyamtanu; Amin, Asif; Jana, Batakrishna; Mohapatra, Saswat; Ghosh, Surajit; Bhattacharyya, Kankan

    2016-01-18

    Fluorescent gold nanoclusters (AuNCs) capped with lysozymes are used to deliver the anticancer drug doxorubicin to cancer and noncancer cells. Doxorubicin-loaded AuNCs cause the highly selective and efficient killing (90 %) of breast cancer cells (MCF7) (IC50 =155 nm). In contrast, the killing of the noncancer breast cells (MCF10A) by doxorubicin-loaded AuNCs is only 40 % (IC50 =4500 nm). By using a confocal microscope, the fluorescence spectrum and decay of the AuNCs were recorded inside the cell. The fluorescence maxima (at ≈490-515 nm) and lifetime (≈2 ns), of the AuNCs inside the cells correspond to Au10-13 . The intracellular release of doxorubicin from AuNCs is monitored by Förster resonance energy transfer (FRET) imaging. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Trastuzumab triggers phagocytic killing of high HER2 cancer cells in vitro and in vivo by interaction with Fcγ receptors on macrophages.

    Science.gov (United States)

    Shi, Yun; Fan, Xuejun; Deng, Hui; Brezski, Randall J; Rycyzyn, Michael; Jordan, Robert E; Strohl, William R; Zou, Quanming; Zhang, Ningyan; An, Zhiqiang

    2015-05-01

    Trastuzumab has been used for the treatment of HER2-overexpressing breast cancer for more than a decade, but the mechanisms of action for the therapy are still being actively investigated. Ab-dependent cell-mediated cytotoxicity mediated by NK cells is well recognized as one of the key mechanisms of action for trastuzumab, but trastuzumab-mediated Ab-dependent cellular phagocytosis (ADCP) has not been established. In this study, we demonstrate that macrophages, by way of phagocytic engulfment, can mediate ADCP and cancer cell killing in the presence of trastuzumab. Increased infiltration of macrophages in the tumor tissue was associated with enhanced efficacy of trastuzumab whereas depletion of macrophages resulted in reduced antitumor efficacy in mouse xenograft tumor models. Among the four mouse FcγRs, FcγRIV exhibits the strongest binding affinity to trastuzumab. Knockdown of FcγRIV in mouse macrophages reduced cancer cell killing and ADCP activity triggered by trastuzumab. Consistently, an upregulation of FcγRIV expression by IFN-γ triggered an increased ADCP activity by trastuzumab. In an analogous fashion, IFN-γ priming of human macrophages increased the expression of FcγRIII, the ortholog of murine FcγRIV, and increased trastuzumab-mediated cancer cell killing. Thus, in two independent systems, the results indicated that activation of macrophages in combination with trastuzumab can serve as a therapeutic strategy for treating high HER2 breast cancer by boosting ADCP killing of cancer cells. Copyright © 2015 by The American Association of Immunologists, Inc.

  17. Killing tensors and conformal Killing tensors from conformal Killing vectors

    International Nuclear Information System (INIS)

    Rani, Raffaele; Edgar, S Brian; Barnes, Alan

    2003-01-01

    Koutras has proposed some methods to construct reducible proper conformal Killing tensors and Killing tensors (which are, in general, irreducible) when a pair of orthogonal conformal Killing vectors exist in a given space. We give the completely general result demonstrating that this severe restriction of orthogonality is unnecessary. In addition, we correct and extend some results concerning Killing tensors constructed from a single conformal Killing vector. A number of examples demonstrate that it is possible to construct a much larger class of reducible proper conformal Killing tensors and Killing tensors than permitted by the Koutras algorithms. In particular, by showing that all conformal Killing tensors are reducible in conformally flat spaces, we have a method of constructing all conformal Killing tensors, and hence all the Killing tensors (which will in general be irreducible) of conformally flat spaces using their conformal Killing vectors

  18. Synergistically killing activity of aspirin and histone deacetylase inhibitor valproic acid (VPA) on hepatocellular cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaofei; Zhu, Yanshuang [Department of Infectious Diseases, Yiwu Central Hospita, 519 Nan men Street, Yiwu, Jinhua, Zhejing 322000 (China); He, Huabin [Department of Orthopedics, Yiwu Central Hospita, 519 Nan men Street, Yiwu, Jinhua, Zhejing 322000 (China); Lou, Lianqing; Ye, Weiwei; Chen, Yongxin [Department of Infectious Diseases, Yiwu Central Hospita, 519 Nan men Street, Yiwu, Jinhua, Zhejing 322000 (China); Wang, Jinghe, E-mail: Xiaofeili2000@163.com [Department of Infectious Diseases, Yiwu Central Hospita, 519 Nan men Street, Yiwu, Jinhua, Zhejing 322000 (China)

    2013-06-28

    Highlights: •Novel combination therapy using aspirin and valproic acid (VPA). •Combination of aspirin and VPA elicits synergistic cytotoxic effects. •Combination of aspirin and VPA significantly reduces the drug dosage required alone. •Combination of aspirin and VPA significantly inhibit tumor growth. •Lower dose of aspirin in combination therapy will minimize side effects of aspirin. -- Abstract: Aspirin and valproic acid (VPA) have been extensively studied for inducing various malignancies growth inhibition respectively, despite their severe side effects. Here, we developed a novel combination by aspirin and VPA on hepatocellular cancer cells (HCCs). The viability of HCC lines were analyzed by MTT assay, apoptotic analysis of HepG2 and SMMC-7721 cell was performed. Real time-PCR and Western blotting were performed to determine the expression of apoptosis related genes and proteins such as Survivin, Bcl-2/Bax, Cyclin D1 and p15. Moreover, orthotopic xenograft tumors were challenged in nude mice to establish murine model, and then therapeutic effect was analyzed after drug combination therapy. The viability of HCC lines’ significantly decreased after drug combination treatment, and cancer cell apoptosis in combination group increasingly induced compared with single drug use. Therapeutic effect was significantly enhanced by combination therapy in tumor volume and tumor weight decrease. From the data shown here, aspirin and VPA combination have a synergistic killing effect on hepatocellular cancers cells proliferation and apoptosis.

  19. Synergistically killing activity of aspirin and histone deacetylase inhibitor valproic acid (VPA) on hepatocellular cancer cells

    International Nuclear Information System (INIS)

    Li, Xiaofei; Zhu, Yanshuang; He, Huabin; Lou, Lianqing; Ye, Weiwei; Chen, Yongxin; Wang, Jinghe

    2013-01-01

    Highlights: •Novel combination therapy using aspirin and valproic acid (VPA). •Combination of aspirin and VPA elicits synergistic cytotoxic effects. •Combination of aspirin and VPA significantly reduces the drug dosage required alone. •Combination of aspirin and VPA significantly inhibit tumor growth. •Lower dose of aspirin in combination therapy will minimize side effects of aspirin. -- Abstract: Aspirin and valproic acid (VPA) have been extensively studied for inducing various malignancies growth inhibition respectively, despite their severe side effects. Here, we developed a novel combination by aspirin and VPA on hepatocellular cancer cells (HCCs). The viability of HCC lines were analyzed by MTT assay, apoptotic analysis of HepG2 and SMMC-7721 cell was performed. Real time-PCR and Western blotting were performed to determine the expression of apoptosis related genes and proteins such as Survivin, Bcl-2/Bax, Cyclin D1 and p15. Moreover, orthotopic xenograft tumors were challenged in nude mice to establish murine model, and then therapeutic effect was analyzed after drug combination therapy. The viability of HCC lines’ significantly decreased after drug combination treatment, and cancer cell apoptosis in combination group increasingly induced compared with single drug use. Therapeutic effect was significantly enhanced by combination therapy in tumor volume and tumor weight decrease. From the data shown here, aspirin and VPA combination have a synergistic killing effect on hepatocellular cancers cells proliferation and apoptosis

  20. How Effective Is Road Mitigation at Reducing Road-Kill? A Meta-Analysis.

    Science.gov (United States)

    Rytwinski, Trina; Soanes, Kylie; Jaeger, Jochen A G; Fahrig, Lenore; Findlay, C Scott; Houlahan, Jeff; van der Ree, Rodney; van der Grift, Edgar A

    2016-01-01

    Road traffic kills hundreds of millions of animals every year, posing a critical threat to the populations of many species. To address this problem there are more than forty types of road mitigation measures available that aim to reduce wildlife mortality on roads (road-kill). For road planners, deciding on what mitigation method to use has been problematic because there is little good information about the relative effectiveness of these measures in reducing road-kill, and the costs of these measures vary greatly. We conducted a meta-analysis using data from 50 studies that quantified the relationship between road-kill and a mitigation measure designed to reduce road-kill. Overall, mitigation measures reduce road-kill by 40% compared to controls. Fences, with or without crossing structures, reduce road-kill by 54%. We found no detectable effect on road-kill of crossing structures without fencing. We found that comparatively expensive mitigation measures reduce large mammal road-kill much more than inexpensive measures. For example, the combination of fencing and crossing structures led to an 83% reduction in road-kill of large mammals, compared to a 57% reduction for animal detection systems, and only a 1% for wildlife reflectors. We suggest that inexpensive measures such as reflectors should not be used until and unless their effectiveness is tested using a high-quality experimental approach. Our meta-analysis also highlights the fact that there are insufficient data to answer many of the most pressing questions that road planners ask about the effectiveness of road mitigation measures, such as whether other less common mitigation measures (e.g., measures to reduce traffic volume and/or speed) reduce road mortality, or to what extent the attributes of crossing structures and fences influence their effectiveness. To improve evaluations of mitigation effectiveness, studies should incorporate data collection before the mitigation is applied, and we recommend a

  1. How Effective Is Road Mitigation at Reducing Road-Kill? A Meta-Analysis.

    Directory of Open Access Journals (Sweden)

    Trina Rytwinski

    Full Text Available Road traffic kills hundreds of millions of animals every year, posing a critical threat to the populations of many species. To address this problem there are more than forty types of road mitigation measures available that aim to reduce wildlife mortality on roads (road-kill. For road planners, deciding on what mitigation method to use has been problematic because there is little good information about the relative effectiveness of these measures in reducing road-kill, and the costs of these measures vary greatly. We conducted a meta-analysis using data from 50 studies that quantified the relationship between road-kill and a mitigation measure designed to reduce road-kill. Overall, mitigation measures reduce road-kill by 40% compared to controls. Fences, with or without crossing structures, reduce road-kill by 54%. We found no detectable effect on road-kill of crossing structures without fencing. We found that comparatively expensive mitigation measures reduce large mammal road-kill much more than inexpensive measures. For example, the combination of fencing and crossing structures led to an 83% reduction in road-kill of large mammals, compared to a 57% reduction for animal detection systems, and only a 1% for wildlife reflectors. We suggest that inexpensive measures such as reflectors should not be used until and unless their effectiveness is tested using a high-quality experimental approach. Our meta-analysis also highlights the fact that there are insufficient data to answer many of the most pressing questions that road planners ask about the effectiveness of road mitigation measures, such as whether other less common mitigation measures (e.g., measures to reduce traffic volume and/or speed reduce road mortality, or to what extent the attributes of crossing structures and fences influence their effectiveness. To improve evaluations of mitigation effectiveness, studies should incorporate data collection before the mitigation is applied, and we

  2. How Effective Is Road Mitigation at Reducing Road-Kill? A Meta-Analysis

    Science.gov (United States)

    Rytwinski, Trina; Soanes, Kylie; Jaeger, Jochen A. G.; Fahrig, Lenore; Findlay, C. Scott; Houlahan, Jeff; van der Ree, Rodney; van der Grift, Edgar A

    2016-01-01

    Road traffic kills hundreds of millions of animals every year, posing a critical threat to the populations of many species. To address this problem there are more than forty types of road mitigation measures available that aim to reduce wildlife mortality on roads (road-kill). For road planners, deciding on what mitigation method to use has been problematic because there is little good information about the relative effectiveness of these measures in reducing road-kill, and the costs of these measures vary greatly. We conducted a meta-analysis using data from 50 studies that quantified the relationship between road-kill and a mitigation measure designed to reduce road-kill. Overall, mitigation measures reduce road-kill by 40% compared to controls. Fences, with or without crossing structures, reduce road-kill by 54%. We found no detectable effect on road-kill of crossing structures without fencing. We found that comparatively expensive mitigation measures reduce large mammal road-kill much more than inexpensive measures. For example, the combination of fencing and crossing structures led to an 83% reduction in road-kill of large mammals, compared to a 57% reduction for animal detection systems, and only a 1% for wildlife reflectors. We suggest that inexpensive measures such as reflectors should not be used until and unless their effectiveness is tested using a high-quality experimental approach. Our meta-analysis also highlights the fact that there are insufficient data to answer many of the most pressing questions that road planners ask about the effectiveness of road mitigation measures, such as whether other less common mitigation measures (e.g., measures to reduce traffic volume and/or speed) reduce road mortality, or to what extent the attributes of crossing structures and fences influence their effectiveness. To improve evaluations of mitigation effectiveness, studies should incorporate data collection before the mitigation is applied, and we recommend a

  3. Killing malignant melanoma cells with protoporphyrin IX-loaded polymersome-mediated photodynamic therapy and cold atmospheric plasma

    Directory of Open Access Journals (Sweden)

    Wang M

    2017-05-01

    Full Text Available Mian Wang,1 Benjamin M Geilich,2 Michael Keidar,3 Thomas J Webster1,4 1Department of Chemical Engineering, 2Department of Bioengineering, Northeastern University, Boston, MA, 3Department of Mechanical and Aerospace Engineering, George Washington University, Washington, DC, USA; 4Wenzhou Institute of Biomaterials and Engineering, Wenzhou Medical University, Wenzhou, People’s Republic of China Abstract: Traditional cancer treatments contain several limitations such as incomplete ablation and multidrug resistance. It is known that photodynamic therapy (PDT is an effective treatment for several tumor types especially melanoma cells. During the PDT process, protoporphyrin IX (PpIX, an effective photosensitizer, can selectively kill cancer cells by activating a special light source. When tumor cells encapsulate a photosensitizer, they can be easily excited into an excited state by a light source. In this study, cold atmospheric plasma (CAP was used as a novel light source. Results of some studies have showed that cancer cells can be effectively killed by using either a light source or an individual treatment due to the generation of reactive oxygen species and electrons from a wide range of wavelengths, which suggest that CAP can act as a potential light source for anticancer applications compared with UV light sources. Results of the present in vitro study indicated for the first time that PpIX can be successfully loaded into polymersomes. Most importantly, cell viability studies revealed that PpIX-loaded polymersomes had a low toxicity to healthy fibroblasts (20% were killed at a concentration of 400 µg/mL, but they showed a great potential to selectively kill melanoma cells (almost 50% were killed. With the application of CAP posttreatment, melanoma cell viability significantly decreased (80% were killed compared to not using a light source (45% were killed or using a UV light source (65% were killed. In summary, these results indicated for the

  4. Killing Effect of Ad5/F35-APE1 siRNA Recombinant Adenovirus in Combination with Hematoporphrphyrin Derivative-Mediated Photodynamic Therapy on Human Nonsmall Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Lei Xia

    2013-01-01

    Full Text Available The main goal of this work is to investigate the killing effects and molecular mechanism of photodynamic therapy (PDT mediated by the Ad5/F35-APE1 siRNA recombinant adenovirus in combination with a hematoporphrphyrin derivative (HpD in the A549 human lung adenocarcinoma cell line in vitro to provide a theoretical reference for treating lung cancer by HpD-PDT. By using the technologies of MTT, flow cytometry, ELISA, and western blot, we observed that the proliferation inhibition and apoptosis of the A549 cells were significantly higher than the control group ( after HpD-PDT was performed. The inhibitory efficiency is dependent on the HpD concentration and laser intensity dose. The inhibitory effect on the proliferation of A549 cells of Ad5/F35-APE1 siRNA is more significant after combining with PDT, as indicated by a significant elevation of the intracellular ROS level and the expression of inflammatory factors (. The HpD-PDT-induced expression of the APE1 protein reached the peak after 24 h in A549 cells. The inhibition of APE1 expression in A549 cells was most significant after 48 hours of infection by Ad5/F35-APE1 siRNA recombinant adenovirus (10 MOI. In conclusion, the Ad5/F35-APE1 siRNA recombinant adenovirus could efficiently inhibit the HpD-PDT-induced APE1 expression hence could significantly enhance the killing effect of HpD-PDT in lung cancer cells.

  5. Monoclonal TCR-redirected tumor cell killing.

    Science.gov (United States)

    Liddy, Nathaniel; Bossi, Giovanna; Adams, Katherine J; Lissina, Anna; Mahon, Tara M; Hassan, Namir J; Gavarret, Jessie; Bianchi, Frayne C; Pumphrey, Nicholas J; Ladell, Kristin; Gostick, Emma; Sewell, Andrew K; Lissin, Nikolai M; Harwood, Naomi E; Molloy, Peter E; Li, Yi; Cameron, Brian J; Sami, Malkit; Baston, Emma E; Todorov, Penio T; Paston, Samantha J; Dennis, Rebecca E; Harper, Jane V; Dunn, Steve M; Ashfield, Rebecca; Johnson, Andy; McGrath, Yvonne; Plesa, Gabriela; June, Carl H; Kalos, Michael; Price, David A; Vuidepot, Annelise; Williams, Daniel D; Sutton, Deborah H; Jakobsen, Bent K

    2012-06-01

    T cell immunity can potentially eradicate malignant cells and lead to clinical remission in a minority of patients with cancer. In the majority of these individuals, however, there is a failure of the specific T cell receptor (TCR)–mediated immune recognition and activation process. Here we describe the engineering and characterization of new reagents termed immune-mobilizing monoclonal TCRs against cancer (ImmTACs). Four such ImmTACs, each comprising a distinct tumor-associated epitope-specific monoclonal TCR with picomolar affinity fused to a humanized cluster of differentiation 3 (CD3)-specific single-chain antibody fragment (scFv), effectively redirected T cells to kill cancer cells expressing extremely low surface epitope densities. Furthermore, these reagents potently suppressed tumor growth in vivo. Thus, ImmTACs overcome immune tolerance to cancer and represent a new approach to tumor immunotherapy.

  6. Selective Killing Effects of Cold Atmospheric Pressure Plasma with NO Induced Dysfunction of Epidermal Growth Factor Receptor in Oral Squamous Cell Carcinoma.

    Directory of Open Access Journals (Sweden)

    Jung-Hwan Lee

    Full Text Available The aim of this study is to investigate the effects of cold atmospheric pressure plasma (CAP-induced radicals on the epidermal growth factor receptor (EGFR, which is overexpressed by oral squamous cell carcinoma, to determine the underlying mechanism of selective killing. CAP-induced highly reactive radicals were observed in both plasma plume and cell culture media. The selective killing effect was observed in oral squamous cell carcinoma compared with normal human gingival fibroblast. Degradation and dysfunction of EGFRs were observed only in the EGFR-overexpressing oral squamous cell carcinoma and not in the normal cell. Nitric oxide scavenger pretreatment in cell culture media before CAP treatment rescued above degradation and dysfunction of the EGFR as well as the killing effect in oral squamous cell carcinoma. CAP may be a promising cancer treatment method by inducing EGFR dysfunction in EGFR-overexpressing oral squamous cell carcinoma via nitric oxide radicals.

  7. Selective Killing Effects of Cold Atmospheric Pressure Plasma with NO Induced Dysfunction of Epidermal Growth Factor Receptor in Oral Squamous Cell Carcinoma.

    Science.gov (United States)

    Lee, Jung-Hwan; Om, Ji-Yeon; Kim, Yong-Hee; Kim, Kwang-Mahn; Choi, Eun-Ha; Kim, Kyoung-Nam

    2016-01-01

    The aim of this study is to investigate the effects of cold atmospheric pressure plasma (CAP)-induced radicals on the epidermal growth factor receptor (EGFR), which is overexpressed by oral squamous cell carcinoma, to determine the underlying mechanism of selective killing. CAP-induced highly reactive radicals were observed in both plasma plume and cell culture media. The selective killing effect was observed in oral squamous cell carcinoma compared with normal human gingival fibroblast. Degradation and dysfunction of EGFRs were observed only in the EGFR-overexpressing oral squamous cell carcinoma and not in the normal cell. Nitric oxide scavenger pretreatment in cell culture media before CAP treatment rescued above degradation and dysfunction of the EGFR as well as the killing effect in oral squamous cell carcinoma. CAP may be a promising cancer treatment method by inducing EGFR dysfunction in EGFR-overexpressing oral squamous cell carcinoma via nitric oxide radicals.

  8. Improving the selective cancer killing ability of ZnO nanoparticles using Fe doping.

    Science.gov (United States)

    Thurber, Aaron; Wingett, Denise G; Rasmussen, John W; Layne, Janet; Johnson, Lydia; Tenne, Dmitri A; Zhang, Jianhui; Hanna, Charles B; Punnoose, Alex

    2012-06-01

    This work reports a new method to improve our recent demonstration of zinc oxide (ZnO) nanoparticles (NPs) selectively killing certain human cancer cells, achieved by incorporating Fe ions into the NPs. Thoroughly characterized cationic ZnO NPs (∼6 nm) doped with Fe ions (Zn(1-x )Fe (x) O, x = 0-0.15) were used in this work, applied at a concentration of 24 μg/ml. Cytotoxicity studies using flow cytometry on Jurkat leukemic cancer cells show cell viability drops from about 43% for undoped ZnO NPs to 15% for ZnO NPs doped with 7.5% Fe. However, the trend reverses and cell viability increases with higher Fe concentrations. The non-immortalized human T cells are markedly more resistant to Fe-doped ZnO NPs than cancerous T cells, confirming that Fe-doped samples still maintain selective toxicity to cancer cells. Pure iron oxide samples displayed no appreciable toxicity. Reactive oxygen species generated with NP introduction to cells increased with increasing Fe up to 7.5% and decreased for >7.5% doping.

  9. [Killing effect of polymorphonuclear neutrophils on Trichomonas vaginalis].

    Science.gov (United States)

    Zhao, Jian-Ling; Gao, Xing-Zheng; Qu, Ming

    2008-10-30

    To study the killing effect of polymorphonuclear neutrophils (PMNs) on Trichomonas vaginalis. The vaginal secretion from a patient with vaginitis was incubated in the liver infusion liquid medium to get T. vaginalis. One ml serum was collected from the patient and heated for 30 min at 56 degrees C to inactivate complement in serum, and was absorbed three times with the parasites at 0 degree C to make the serum free of antibodies. PMNs were separated from the patient's blood and purified with density gradient centrifugation and polymer accelerating sedimentation. NBT and safranin O were used to stain the sample. The interaction between PMNs and the parasites was observed under microscope. 300 trichomonads and 3x10(4) PMNs were incubated for 10, 20, 30, 40, 50, 60 minutes under the conditions of aerobic or anaerobic, with superoxide dismutase (SOD) and catalase (CAT) or without SOD and CAT, and with complement or without complement. They were then inoculated in solid medium for another five days under the anaerobic condition, and surviving organisms were enumerated. PMNs were observed to surround and kill a single trichomonad. In the petri-dish containing PMNs, the surviving rate of the parasites in anaerobic condition was 85%, only 3% in aerobic condition (P<0.01). SOD and CAT reduced the killing effect of PMNs, with a surviving rate of 98% and 94% respectively after 60 min incubation. Without SOD and CAT, the surviving rate is only 2% (P<0.05). PMNs in the serum without antibodies killed all the parasites, while the complement-inactivated serum fail to kill them. The trichomonacidal activity of PMNs relies on the presence of oxygen and complement in the serum of patient.

  10. The irreversible ERBB1/2/4 inhibitor neratinib interacts with the PARP1 inhibitor niraparib to kill ovarian cancer cells.

    Science.gov (United States)

    Booth, Laurence; Roberts, Jane L; Samuel, Peter; Avogadri-Connors, Francesca; Cutler, Richard E; Lalani, Alshad S; Poklepovic, Andrew; Dent, Paul

    2018-06-03

    The irreversible ERBB1/2/4 inhibitor neratinib has been shown to rapidly down-regulate the expression of ERBB1/2/4 as well as the levels of c-MET, PDGFRα and mutant RAS proteins via autophagic degradation. Neratinib interacted in an additive to synergistic fashion with the approved PARP1 inhibitor niraparib to kill ovarian cancer cells. Neratinib and niraparib caused the ATM-dependent activation of AMPK which in turn was required to cause mTOR inactivation, ULK-1 activation and ATG13 phosphorylation. The drug combination initially increased autophagosome levels followed later by autolysosome levels. Preventing autophagosome formation by expressing activated mTOR or knocking down of Beclin1, or knock down of the autolysosome protein cathepsin B, reduced drug combination lethality. The drug combination caused an endoplasmic reticulum stress response as judged by enhanced eIF2α phosphorylation that was responsible for reducing MCL-1 and BCL-XL levels and increasing ATG5 and Beclin1 expression. Knock down of BIM, but not of BAX or BAK, reduced cell killing. Expression of activated MEK1 prevented the drug combination increasing BIM expression and reduced cell killing. Downstream of the mitochondrion, drug lethality was partially reduced by knock down of AIF, but expression of dominant negative caspase 9 was not protective. Our data demonstrate that neratinib and niraparib interact to kill ovarian cancer cells through convergent DNA damage and endoplasmic reticulum stress signaling. Cell killing required the induction of autophagy and was cathepsin B and AIF -dependent, and effector caspase independent.

  11. Leadership Matters : The Effects of Targeted Killings on Militant Group Tactics

    NARCIS (Netherlands)

    Abrahms, Max; Mierau, Jochen

    2017-01-01

    Targeted killings have become a central component of counter-terrorism strategy. In response to the unprecedented prevalence of this strategy around the world, numerous empirical studies have recently examined whether "decapitating" militant groups with targeted killings is strategically effective.

  12. Deprive to kill: Glutamine closes the gate to anticancer monocarboxylic drugs

    OpenAIRE

    Cardaci, Simone; Ciriolo, Maria Rosa

    2012-01-01

    Killing properties of antitumor drugs can be enhanced by strategies targeting biochemical adaptations of cancer cells. Recently, we reported that depriving cancer cells of glutamine is a feasible approach to enhance antitumor effects of the alkylating analog of pyruvic acid, 3-bromopyruvate, which rely on the induction of autophagic cell death by metabolic-oxidative stress. 3-bromopyruvate chemopotentiation is the result of its increased intracellular uptake mediated by the monocarboxylate tr...

  13. Preferential killing of cancer cells and activated human T cells using ZnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Hanley, Cory; Layne, Janet; Feris, Kevin; Wingett, Denise [Department of Biological Sciences, Boise State University, Boise, ID 83725 (United States); Punnoose, Alex; Reddy, K M; Coombs, Isaac; Coombs, Andrew [Department of Physics, Boise State University, Boise, ID 83725 (United States)], E-mail: denisewingett@boisestate.edu

    2008-07-23

    Nanoparticles are increasingly being recognized for their potential utility in biological applications including nanomedicine. Here we examine the response of normal human cells to ZnO nanoparticles under different signaling environments and compare it to the response of cancerous cells. ZnO nanoparticles exhibit a strong preferential ability to kill cancerous T cells ({approx}28-35 x) compared to normal cells. Interestingly, the activation state of the cell contributes toward nanoparticle toxicity, as resting T cells display a relative resistance while cells stimulated through the T cell receptor and CD28 costimulatory pathway show greater toxicity in direct relation to the level of activation. Mechanisms of toxicity appear to involve the generation of reactive oxygen species, with cancerous T cells producing higher inducible levels than normal T cells. In addition, nanoparticles were found to induce apoptosis and the inhibition of reactive oxygen species was found to be protective against nanoparticle induced cell death. The novel findings of cell selective toxicity, towards potential disease causing cells, indicate a potential utility of ZnO nanoparticles in the treatment of cancer and/or autoimmunity.

  14. Preferential killing of cancer cells and activated human T cells using ZnO nanoparticles

    International Nuclear Information System (INIS)

    Hanley, Cory; Layne, Janet; Feris, Kevin; Wingett, Denise; Punnoose, Alex; Reddy, K M; Coombs, Isaac; Coombs, Andrew

    2008-01-01

    Nanoparticles are increasingly being recognized for their potential utility in biological applications including nanomedicine. Here we examine the response of normal human cells to ZnO nanoparticles under different signaling environments and compare it to the response of cancerous cells. ZnO nanoparticles exhibit a strong preferential ability to kill cancerous T cells (∼28-35 x) compared to normal cells. Interestingly, the activation state of the cell contributes toward nanoparticle toxicity, as resting T cells display a relative resistance while cells stimulated through the T cell receptor and CD28 costimulatory pathway show greater toxicity in direct relation to the level of activation. Mechanisms of toxicity appear to involve the generation of reactive oxygen species, with cancerous T cells producing higher inducible levels than normal T cells. In addition, nanoparticles were found to induce apoptosis and the inhibition of reactive oxygen species was found to be protective against nanoparticle induced cell death. The novel findings of cell selective toxicity, towards potential disease causing cells, indicate a potential utility of ZnO nanoparticles in the treatment of cancer and/or autoimmunity

  15. A visualized investigation at the atomic scale of the antitumor effect of magnetic nanomedicine on gastric cancer cells.

    Science.gov (United States)

    Liu, Xiaokang; Deng, Xia; Li, Xinghua; Xue, Desheng; Zhang, Haoli; Liu, Tao; Liu, Qingfang; Mellors, Nigel J; Li, Yumin; Peng, Yong

    2014-07-01

    Discovering which anticancer drugs attack which organelle(s) of cancer cells is essential and significant, not only for understanding their therapeutic and adverse effects, but also to enable the development of new-generation therapeutics. Here, we show that novel Fe3O4-carboxymethyl cellulose-5-fluorouracil (Fe3O4-CMC-5FU) nanomedicine can apparently enhance the antitumor effect on gastric cancer cells, and its mechanism of killing the SGC-7901 gastric cancer cells can be directly observed at the atomic scale. The novel nanomedicine was prepared using the traditional antitumor drug 5FU to chemically bond onto the functionalized Fe3O4 nanoparticles (Fe3O4-CMC-5FU nanomedicine), and then was fed into SGC-7901 gastric cancer cells. The inorganic Fe3O4 nanoparticles were used to track the distribution and antitumor effect of the nanomedicine within individual SGC-7901 gastric cancer cells. Atomic-level observation and tracking the elemental distribution inside individual cells proved that the magnetic nanomedicine killed the gastric cells mainly by attacking their mitochondria. The enhanced therapeutic efficacy derives from the localized high concentration and poor mobility of the aggregated Fe3O4-CMC-5FU nanomedicine in the cytoplasm. A brand new mechanism of Fe3O4-CMC-5FU nanomedicine killing SGC-7901 gastric cancer cells by attacking their mitochondria was discovered, which is different from the classical mechanism utilized by traditional medicine 5FU, which kills gastric cancer cells by damaging their DNA. Our work might provide a partial solution in nanomedicines or even modern anticancer medicine for the visualized investigation of their antitumor effect.

  16. Anti-Cancer Effect of Angelica Sinensis on Women’s Reproductive Cancer

    Directory of Open Access Journals (Sweden)

    Hong-Hong Zhu

    2012-06-01

    Full Text Available Objective: Danggui, the root of Angelica Sinensis, has traditionally been used for the treatment of women’s reproductive disorders in China for thousands of years. This study was to determine whether Danggui have potential anti-cancer effect on women’s cancer and its potential mechanism. Methods: Danggui was extracted by ethanol. The Cell Titer 96® Aqueous Non-Radioactive Cell Proliferation Assay was used to compare the effects of Danggui on human breast (MCF-7 and 7368 and cervical (CaSki and SiHa cancer cells with its effects on normal fibroblasts (HTB-125. A revised Ames test was used to test for antimutagenicity. The standard strains of Salmonella typhimarium (TA 100 and 102 were used in the test. Methyl methane sulfonate (MMS and UV light were used as positive mutagen controls and ethanol and double distilled water (DDW as controls. The SAS statistical software was used to analyze the data. Results: Danggui was found to be much more toxic to all cancer cell lines tested than to normal fibroblasts. There was a significant negative dose-effect relationship between Danggui and cancer cell viability. Average viability of MCF-7 was 69.5%, 18.4%, 5.7%, 5.7%, and 5.0% of control for Danggui doses 0.07, 0.14, 0.21, 0.32, and 0.64 ug/ul, respectively, with a Ptrend < 0.0001. Half maximal inhibitory dose (ID50 of Danggui for cancer cell lines MCF-7, CaSki, SiHa and CRL-7368 was 0.10, 0.09, 0.10 and 0.07 ug/ul, Functional Foods in Health and Disease 2012, 2(6:242-250respectively. For the normal fibroblasts, ID50 was 0.58 ug/ul. At a dose of 0.32 ug/ul, Danggui killed over 90% of the cells in each cancer cell line, but at the same dose, only 12.3 % of the normal HTB-125 cells were killed. Revertants per plate of TA 100 decreased with the introduction of increasing doses of Danggui extracts with a Ptrend < 0.0001 when UV light was used as a mutagen. There was no difference in revertants per plate between ethanol and DDW control groups. Conclusions

  17. The radiosensitizing effect of doranidazole on human colorectal cancer cells exposed to high doses of irradiation

    International Nuclear Information System (INIS)

    Zhang, Li; Gong, Aimin; Ji, Jun; Wu, Yuanyuan; Zhu, Xiaoyu; Lv, Suqing; Lv, Hongzhu; Sun, Xizhuo

    2007-01-01

    This paper investigates the effects of a new radiosensitizer, doranidazole, and enhancing irradiation on colorectal cancer cells. The radiosensitizing effect of doranidazole was determined using colony formation and propidium iodide (PI) assays to measure cell growth inhibition and the cell killing effect of human colorectal cancer cell lines exposed to high doses of γ-ray irradiation under hypoxic conditions in vitro. Fluorescence staining and cell migration assays were also used to assess the radiosensitizing effect. Cell proliferation evaluated by clonogenic survival curves was significantly inhibited by 5 mmol/L doranidazole, particularly at doses ranging from 10 to 30 Gy of irradiation. The radiosensitizing effect of doranidazole on colorectal cancer cells occurs in a time- and dose-dependent manner. Doranidazole also inhibited the mobility of cell invasion and migration. Doranidazole can enhance the killing effect and the cell growth inhibition of colorectal cancer after high-dose irradiation in a time and dose-dependent manner

  18. Hypofractionation results in reduced tumor cell kill compared to conventional fractionation for tumors with regions of hypoxia.

    Science.gov (United States)

    Carlson, David J; Keall, Paul J; Loo, Billy W; Chen, Zhe J; Brown, J Martin

    2011-03-15

    Tumor hypoxia has been observed in many human cancers and is associated with treatment failure in radiation therapy. The purpose of this study is to quantify the effect of different radiation fractionation schemes on tumor cell killing, assuming a realistic distribution of tumor oxygenation. A probability density function for the partial pressure of oxygen in a tumor cell population is quantified as a function of radial distance from the capillary wall. Corresponding hypoxia reduction factors for cell killing are determined. The surviving fraction of a tumor consisting of maximally resistant cells, cells at intermediate levels of hypoxia, and normoxic cells is calculated as a function of dose per fraction for an equivalent tumor biological effective dose under normoxic conditions. Increasing hypoxia as a function of distance from blood vessels results in a decrease in tumor cell killing for a typical radiotherapy fractionation scheme by a factor of 10(5) over a distance of 130 μm. For head-and-neck cancer and prostate cancer, the fraction of tumor clonogens killed over a full treatment course decreases by up to a factor of ∼10(3) as the dose per fraction is increased from 2 to 24 Gy and from 2 to 18 Gy, respectively. Hypofractionation of a radiotherapy regimen can result in a significant decrease in tumor cell killing compared to standard fractionation as a result of tumor hypoxia. There is a potential for large errors when calculating alternate fractionations using formalisms that do not account for tumor hypoxia. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. How Effective Is Road Mitigation at Reducing Road-Kill? A Meta-Analysis

    OpenAIRE

    Rytwinski, Trina; Soanes, Kylie; Jaeger, Jochen A. G.; Fahrig, Lenore; Findlay, C. Scott; Houlahan, Jeff; van der Ree, Rodney; van der Grift, Edgar A

    2016-01-01

    Road traffic kills hundreds of millions of animals every year, posing a critical threat to the populations of many species. To address this problem there are more than forty types of road mitigation measures available that aim to reduce wildlife mortality on roads (road-kill). For road planners, deciding on what mitigation method to use has been problematic because there is little good information about the relative effectiveness of these measures in reducing road-kill, and the costs of these...

  20. Effect of Shark Liver Oil on Peritoneal Murine Macrophages in Responses to Killed-Candida albicans

    Directory of Open Access Journals (Sweden)

    Monire Hajimoradi

    2009-09-01

    Full Text Available Objective(sShark Liver Oil (SLO is an immunomodulator. Macrophages play a key role in host defense against pathogens like fungi. Candida albicans have mechanisms to escape immune system. We determined the effect of killed-Candida on the in vitro viability of macrophages and the effect of SLO on augmentation of this potency.Materials and MethodsPeritoneal macrophages were separated and cultured (3×105/well. At first, the effect of killed-Candida (200 cells/well on macrophage viability was evaluated, using MTT test. Then, MTT was performed on macrophages stimulated with killed-Candida in the presence of SLO. ResultsKilled-Candida suppressed the ability of MTT reduction and hence macrophages viability (P=0.026, but addition of SLO (100 mg/ml significantly enhanced cell viability (P=0.00. So, SLO could neutralize the inhibitory effect of Candida.ConclusionSimultaneous with cytotoxic effect of killed-Candida cells on macrophages viability, SLO augment macrophages viability. So, it can be applied in candidiasis as a complement.

  1. Killing effect of carboranyl uridine on boron neutron capture reaction

    International Nuclear Information System (INIS)

    Takagaki, M.; Oda, Y.; Zhang, Z.

    1994-01-01

    This paper deals with the killing effect of carboranyl uridine (CU) on thermal neutron capture reaction in cultured glioma cell line (C6). The tumoricidal effect of CU for boron neutron capture therapy in the cultured cell system is presented. To assess the uptake of CU, the number of germ cells was determined by comparing protein concentrations of C6 cells in vitro with that of intracranially transplanted C6 tumor cells in vivo. To assess tumoricidal effects of CU, human glioma cells (T98G), containing 25 ppm natural boron of CU, were irradiated with various doses of thermal neutrons at a constant fluence rate. The uptake and killing effects of mercaptoboron and boric acid were also investigated as controls. Subcellular boron concentrations confirmed the selective affinity to the nucleic acid synthesis. CU was found to have an affinity to nucleic acid synthesis and to be accumulated into nucleus of tumor cells. The irradiation dose which yielded 37% survival rate in the case of CU and control were 3.78+12E nvt and 5.80+12E nvt, respectively. The killing effect of CU was slightly higher than that of B-SH or BA. The effective way of CU injection should be further studied to obtain the uniform CU uptake in tumor cells. (N.K.)

  2. Chemotherapy to Treat Cancer

    Science.gov (United States)

    Chemotherapy is a type of cancer treatment that uses drugs to kill cancer cells. Learn how chemotherapy works against cancer, why it causes side effects, and how it is used with other cancer treatments.

  3. Effects of concomitant cisplatin and radiotherapy on inoperable non-small-cell lung cancer

    NARCIS (Netherlands)

    Schaake-Koning, C.; van den Bogaert, W.; Dalesio, O.; Festen, J.; Hoogenhout, J.; van Houtte, P.; Kirkpatrick, A.; Koolen, M.; Maat, B.; Nijs, A.

    1992-01-01

    BACKGROUND AND METHODS: Cisplatin (cis-diamminedichloroplatinum) has been reported to enhance the cell-killing effect of radiation, an effect whose intensity varies with the schedule of administration. We randomly assigned 331 patients with nonmetastatic inoperable non-small-cell lung cancer to one

  4. Glycan elongation beyond the mucin associated Tn antigen protects tumor cells from immune-mediated killing.

    Directory of Open Access Journals (Sweden)

    Caroline B Madsen

    Full Text Available Membrane bound mucins are up-regulated and aberrantly glycosylated during malignant transformation in many cancer cells. This results in a negatively charged glycoprotein coat which may protect cancer cells from immune surveillance. However, only limited data have so far demonstrated the critical steps in glycan elongation that make aberrantly glycosylated mucins affect the interaction between cancer cells and cytotoxic effector cells of the immune system. Tn (GalNAc-Ser/Thr, STn (NeuAcα2-6GalNAc-Ser/Thr, T (Galβ1-3GalNAc-Ser/Thr, and ST (NeuAcα2-6Galβ1-3GalNAc-Ser/Thr antigens are recognized as cancer associated truncated glycans, and are expressed in many adenocarcinomas, e.g. breast- and pancreatic cancer cells. To investigate the role of the cancer associated glycan truncations in immune-mediated killing we created glyco-engineered breast- and pancreatic cancer cells expressing only the shortest possible mucin-like glycans (Tn and STn. Glyco-engineering was performed by zinc finger nuclease (ZFN knockout (KO of the Core 1 enzyme chaperone COSMC, thereby preventing glycan elongation beyond the initial GalNAc residue in O-linked glycans. We find that COSMC KO in the breast and pancreatic cancer cell lines T47D and Capan-1 increases sensitivity to both NK cell mediated antibody-dependent cellular-cytotoxicity (ADCC and cytotoxic T lymphocyte (CTL-mediated killing. In addition, we investigated the association between total cell surface expression of MUC1/MUC16 and NK or CTL mediated killing, and observed an inverse correlation between MUC16/MUC1 expression and the sensitivity to ADCC and CTL-mediated killing. Together, these data suggest that up-regulation of membrane bound mucins protects cells from immune mediated killing, and that particular glycosylation steps, as demonstrated for glycan elongation beyond Tn and STn, can be important for fine tuning of the immune escape mechanisms in cancer cells.

  5. LDR brachytherapy: can low dose rate hypersensitivity from the "inverse" dose rate effect cause excessive cell killing to peripherial connective tissues and organs?

    Science.gov (United States)

    Leonard, B E; Lucas, A C

    2009-02-01

    Examined here are the possible effects of the "inverse" dose rate effect (IDRE) on low dose rate (LDR) brachytherapy. The hyper-radiosensitivity and induced radioresistance (HRS/IRR) effect benefits cell killing in radiotherapy, and IDRE and HRS/IRR seem to be generated from the same radioprotective mechanisms. We have computed the IDRE excess cell killing experienced in LDR brachytherapy using permanent seed implants. We conclude, firstly, that IDRE is a dose rate-dependent manifestation of HRS/IRR. Secondly, the presence of HRS/IRR or IDRE in a cell species or tissue must be determined by direct dose-response measurements. Thirdly, a reasonable estimate is that 50-80% of human adjoining connective and organ tissues experience IDRE from permanent implanted LDR brachytherapy. If IDRE occurs for tissues at point A for cervical cancer, the excess cell killing will be about a factor of 3.5-4.0 if the initial dose rate is 50-70 cGy h(-1). It is greater for adjacent tissues at lower dose rates and higher for lower initial dose rates at point A. Finally, higher post-treatment complications are observed in LDR brachytherapy, often for unknown reasons. Some of these are probably a result of IDRE excess cell killing. Measurements of IDRE need be performed for connective and adjacent organ tissues, i.e. bladder, rectum, urinary tract and small bowels. The measured dose rate-dependent dose responses should extended to tissues and organs remain above IDRE thresholds).

  6. Plant cyclopeptide RA-V kills human breast cancer cells by inducing mitochondria-mediated apoptosis through blocking PDK1–AKT interaction

    International Nuclear Information System (INIS)

    Fang, Xian-Ying; Chen, Wei; Fan, Jun-Ting; Song, Ran; Wang, Lu; Gu, Yan-Hong; Zeng, Guang-Zhi; Shen, Yan; Wu, Xue-Feng; Tan, Ning-Hua; Xu, Qiang; Sun, Yang

    2013-01-01

    In the present paper, we examined the effects of a natural cyclopeptide RA-V on human breast cancer cells and the underlying mechanisms. RA-V significantly inhibited the growth of human breast cancer MCF-7, MDA-MB-231 cells and murine breast cancer 4T1 cells. In addition, RA-V triggered mitochondrial apoptotic pathway which was indicated by the loss of mitochondrial membrane potential, the release of cytochrome c, and the activation of caspase cascade. Further study showed that RA-V dramatically inhibited phosphorylation of AKT and 3-phosphoinositide dependent protein kinase 1 (PDK1) in MCF-7 cells. Moreover, RA-V disrupted the interaction between PDK1 and AKT in MCF-7 cells. Furthermore, RA-V-induced apoptosis could be enhanced by phosphatidylinositol 3-kinase inhibitor or attenuated by over-expression of AKT in all the three kinds of breast cancer cells. Taken together, this study shows that RA-V, which can induce mitochondria-mediated apoptosis, exerts strong anti-tumor activity against human breast cancer. The underlying anti-cancer mechanism of RA-V is related to the blockage of the interaction between PDK1 and AKT. - Highlights: ► Plant cyclopeptide RA-V kills human breast cancer cells. ► RA-V triggered mitochondrial apoptotic pathway in human breast cancer cells. ► RA-V inhibited phosphorylation of AKT and PDK1 in breast cancer MCF-7 cells. ► Its mechanism is related to the blockage of the interaction between PDK1 and AKT

  7. Plant cyclopeptide RA-V kills human breast cancer cells by inducing mitochondria-mediated apoptosis through blocking PDK1–AKT interaction

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Xian-Ying; Chen, Wei [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Han Kou Road, Nanjing (China); Fan, Jun-Ting [State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming (China); Song, Ran; Wang, Lu [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Han Kou Road, Nanjing (China); Gu, Yan-Hong [Department of Clinical Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing (China); Zeng, Guang-Zhi [State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming (China); Shen, Yan; Wu, Xue-Feng [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Han Kou Road, Nanjing (China); Tan, Ning-Hua, E-mail: nhtan@mail.kib.ac.cn [State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming (China); Xu, Qiang, E-mail: molpharm@163.com [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Han Kou Road, Nanjing (China); Sun, Yang, E-mail: yangsun@nju.edu.cn [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Han Kou Road, Nanjing (China)

    2013-02-15

    In the present paper, we examined the effects of a natural cyclopeptide RA-V on human breast cancer cells and the underlying mechanisms. RA-V significantly inhibited the growth of human breast cancer MCF-7, MDA-MB-231 cells and murine breast cancer 4T1 cells. In addition, RA-V triggered mitochondrial apoptotic pathway which was indicated by the loss of mitochondrial membrane potential, the release of cytochrome c, and the activation of caspase cascade. Further study showed that RA-V dramatically inhibited phosphorylation of AKT and 3-phosphoinositide dependent protein kinase 1 (PDK1) in MCF-7 cells. Moreover, RA-V disrupted the interaction between PDK1 and AKT in MCF-7 cells. Furthermore, RA-V-induced apoptosis could be enhanced by phosphatidylinositol 3-kinase inhibitor or attenuated by over-expression of AKT in all the three kinds of breast cancer cells. Taken together, this study shows that RA-V, which can induce mitochondria-mediated apoptosis, exerts strong anti-tumor activity against human breast cancer. The underlying anti-cancer mechanism of RA-V is related to the blockage of the interaction between PDK1 and AKT. - Highlights: ► Plant cyclopeptide RA-V kills human breast cancer cells. ► RA-V triggered mitochondrial apoptotic pathway in human breast cancer cells. ► RA-V inhibited phosphorylation of AKT and PDK1 in breast cancer MCF-7 cells. ► Its mechanism is related to the blockage of the interaction between PDK1 and AKT.

  8. A rationally designed photo-chemo core-shell nanomedicine for inhibiting the migration of metastatic breast cancer cells followed by photodynamic killing.

    Science.gov (United States)

    Malarvizhi, Giridharan Loghanathan; Chandran, Parwathy; Retnakumari, Archana Payickattu; Ramachandran, Ranjith; Gupta, Neha; Nair, Shantikumar; Koyakutty, Manzoor

    2014-04-01

    A multifunctional core-shell nanomedicine capable of inhibiting the migratory capacity of metastatic cancer cells followed by imparting cytotoxic stress by photodynamic action is reported. Based on in silico design, we have developed a core-shell nanomedicine comprising of ~80nm size poly(lactic-co-glycolic acid) (PLGA) nano-core encapsulating photosensitizer, m-tetra(hydroxyphenyl)chlorin (mTHPC), and ~20nm size albumin nano-shell encapsulating tyrosine kinase inhibitor, Dasatinib, which impair cancer migration. This system was prepared by a sequential process involving electrospray of polymer core and coacervation of protein shell. Cell studies using metastatic breast cancer cells demonstrated disruption of Src kinase involved in the cancer migration by albumin-dasatinib nano-shell and generation of photoactivated oxidative stress by mTHPC-PLGA nano-core. This unique combinatorial photo-chemo nanotherapy resulted synergistic cytotoxicity in ~99% of the motility-impaired metastatic cells. This approach of blocking cancer migration followed by photodynamic killing using rationally designed nanomedicine is a promising new strategy against cancer metastasis. A multifunctional core-shell nanomedicine capable of inhibiting metastatic cancer cell migration, in addition to inducing photodynamic effects, is described in this paper. The authors document cytotoxicity in approximately 99% of the studied metastatic breast cancer cells. Similar approaches would be a very welcome addition to the treatment protocols of advanced metastatic breast cancer and other types of neoplasms. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Vitamin C selectively kills KRAS and BRAF mutant colorectal cancer cells by targeting GAPDH.

    Science.gov (United States)

    Yun, Jihye; Mullarky, Edouard; Lu, Changyuan; Bosch, Kaitlyn N; Kavalier, Adam; Rivera, Keith; Roper, Jatin; Chio, Iok In Christine; Giannopoulou, Eugenia G; Rago, Carlo; Muley, Ashlesha; Asara, John M; Paik, Jihye; Elemento, Olivier; Chen, Zhengming; Pappin, Darryl J; Dow, Lukas E; Papadopoulos, Nickolas; Gross, Steven S; Cantley, Lewis C

    2015-12-11

    More than half of human colorectal cancers (CRCs) carry either KRAS or BRAF mutations and are often refractory to approved targeted therapies. We found that cultured human CRC cells harboring KRAS or BRAF mutations are selectively killed when exposed to high levels of vitamin C. This effect is due to increased uptake of the oxidized form of vitamin C, dehydroascorbate (DHA), via the GLUT1 glucose transporter. Increased DHA uptake causes oxidative stress as intracellular DHA is reduced to vitamin C, depleting glutathione. Thus, reactive oxygen species accumulate and inactivate glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Inhibition of GAPDH in highly glycolytic KRAS or BRAF mutant cells leads to an energetic crisis and cell death not seen in KRAS and BRAF wild-type cells. High-dose vitamin C impairs tumor growth in Apc/Kras(G12D) mutant mice. These results provide a mechanistic rationale for exploring the therapeutic use of vitamin C for CRCs with KRAS or BRAF mutations. Copyright © 2015, American Association for the Advancement of Science.

  10. Effects of Vegetation Structure on the Location of Lion Kill Sites in African Thicket.

    Directory of Open Access Journals (Sweden)

    Andrew B Davies

    Full Text Available Predator-prey relationships are integral to ecosystem stability and functioning. These relationships are, however, difficult to maintain in protected areas where large predators are increasingly being reintroduced and confined. Where predators make kills has a profound influence on their role in ecosystems, but the relative importance of environmental variables in determining kill sites, and how these might vary across ecosystems is poorly known. We investigated kill sites for lions in South Africa's thicket biome, testing the importance of vegetation structure for kill site locations compared to other environmental variables. Kill sites were located over four years using GPS telemetry and compared to non-kill sites that had been occupied by lions, as well as to random sites within lion ranges. Measurements of 3D vegetation structure obtained from Light Detection and Ranging (LiDAR were used to calculate the visible area (viewshed around each site and, along with wind and moonlight data, used to compare kill sites between lion sexes, prey species and prey sexes. Viewshed area was the most important predictor of kill sites (sites in dense vegetation were twice as likely to be kill sites compared to open areas, followed by wind speed and, less so, moonlight. Kill sites for different prey species varied with vegetation structure, and male prey were killed when wind speeds were higher compared to female prey of the same species. Our results demonstrate that vegetation structure is an important component of predator-prey interactions, with varying effects across ecosystems. Such differences require consideration in terms of the ecological roles performed by predators, and in predator and prey conservation.

  11. Effects of Vegetation Structure on the Location of Lion Kill Sites in African Thicket.

    Science.gov (United States)

    Davies, Andrew B; Tambling, Craig J; Kerley, Graham I H; Asner, Gregory P

    2016-01-01

    Predator-prey relationships are integral to ecosystem stability and functioning. These relationships are, however, difficult to maintain in protected areas where large predators are increasingly being reintroduced and confined. Where predators make kills has a profound influence on their role in ecosystems, but the relative importance of environmental variables in determining kill sites, and how these might vary across ecosystems is poorly known. We investigated kill sites for lions in South Africa's thicket biome, testing the importance of vegetation structure for kill site locations compared to other environmental variables. Kill sites were located over four years using GPS telemetry and compared to non-kill sites that had been occupied by lions, as well as to random sites within lion ranges. Measurements of 3D vegetation structure obtained from Light Detection and Ranging (LiDAR) were used to calculate the visible area (viewshed) around each site and, along with wind and moonlight data, used to compare kill sites between lion sexes, prey species and prey sexes. Viewshed area was the most important predictor of kill sites (sites in dense vegetation were twice as likely to be kill sites compared to open areas), followed by wind speed and, less so, moonlight. Kill sites for different prey species varied with vegetation structure, and male prey were killed when wind speeds were higher compared to female prey of the same species. Our results demonstrate that vegetation structure is an important component of predator-prey interactions, with varying effects across ecosystems. Such differences require consideration in terms of the ecological roles performed by predators, and in predator and prey conservation.

  12. Mechanisms of Enhanced Cell Killing at Low Doses: Implications for Radiation Risk

    International Nuclear Information System (INIS)

    Johnston, Peter J.; Wilson, George D.

    2003-01-01

    We have shown that cell lethality actually measured after exposure to low-doses of low-LET radiation, is markedly enhanced relative to the cell lethality previously expected by extrapolation of the high-dose cell-killing response. Net cancer risk is a balance between cell transformation and cell kill and such enhanced lethality may more than compensate for transformation at low radiation doses over a least the first 10 cGy of low-LET exposure. This would lead to a non-linear, threshold, dose-risk relationship. Therefore our data imply the possibility that the adverse effects of small radiation doses (<10 cGy) could be overestimated in specific cases. It is now important to research the mechanisms underlying the phenomenon of low-dose hypersensitivity to cell killing, in order to determine whether this can be generalized to safely allow an increase in radiation exposure limits. This would have major cost-reduction implications for the whole EM program

  13. Gambogic Acid Efficiently Kills Stem-Like Colorectal Cancer Cells by Upregulating ZFP36 Expression

    Directory of Open Access Journals (Sweden)

    Fang Wei

    2018-03-01

    Full Text Available Background/Aims: Gambogic acid (GA, the main active compound of Gamboge hanburyi, has been reported to be a potential novel antitumor drug. Whether GA inhibits putative cancer stem cells (CSCs, which are considered to be the major cause of cancer treatment failure, remains largely unknown. This study investigated whether GA inhibits the CSCs of colorectal cancer (CRC and its possible mechanisms. Methods: We performed CCK8 and tumor sphere formation assays, percentage analysis of both side population and CD133+CD44+ cells, and the detection of stem cells markers, in order to assess the role of GA in inhibiting the stem celllike features of CRC. An mRNA microarray was performed to identify the downstream gene affected by GA and rescue assays were performed to further clarify whether the downstream gene is involved in the GA induced decrease of the stem cell-like CRC population. CRC cells were engineered with a CSC detector vector encoding GFP and luciferase (Luc under the control of the Nanog promoter, which were utilized to investigate the effect of GA on putative CSC in human tumor xenograft-bearing mice using in vivo bioluminescence imaging. Results: Our results showed that GA significantly reduced tumor sphere formation and the percentages of side population and CD133+CD44+ cells, while also decreasing the expression of stemness and EMT-associated markers in CRC cells in vitro. GA killed stem-like CRC cells by upregulating the expression of ZFP36, which is dependent on the inactivation of the EGFR/ ERK signaling pathway. GFP+ cells harboring the PNanog-GFP-T2A-Luc transgene exhibited CSC characteristics. The in vivo results showed that GA significantly inhibited tumor growth in nude mice, accompanied by a remarkable reduction in the putative CSC number, based on whole-body bioluminescence imaging. Conclusion: These findings suggest that GA significantly inhibits putative CSCs of CRC both in vitro and in vivo by inhibiting the activation of the

  14. Synergistic killing effect of chloroquine and androgen deprivation in LNCaP cells

    Energy Technology Data Exchange (ETDEWEB)

    Kaini, Ramesh R. [Department of Biochemistry and Molecular Biology and UNM Cancer and Treatment Center, University of New Mexico Health Sciences Center, Albuquerque, NM (United States); Hu, Chien-An A., E-mail: AHu@salud.unm.edu [Department of Biochemistry and Molecular Biology and UNM Cancer and Treatment Center, University of New Mexico Health Sciences Center, Albuquerque, NM (United States)

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Chloroquine synergistically killed LNCaP cells during androgen deprivation treatment. Black-Right-Pointing-Pointer Chloroquine inhibited the function of autolysosomes and decreases the cytosolic ATP. Black-Right-Pointing-Pointer Chloroquine induced nuclear and DNA fragmentation in androgen deprived LNCaP. Black-Right-Pointing-Pointer Chloroquine may be an useful adjuvant in hormone ablation therapy in PCa patients. -- Abstract: Modulation of autophagy is a new paradigm in cancer therapeutics. Recently a novel function of chloroquine (CLQ) in inhibiting degradation of autophagic vesicles has been revealed, which raises the question whether CLQ can be used as an adjuvant in targeting autophagic pro-survival mechanism in prostate cancer (PCa). We previously showed that autophagy played a protective role during hormone ablation therapy, in part, by consuming lipid droplets in PCa cells. In addition, blocking autophagy by genetic and pharmacological means in the presence of androgen deprivation caused cell death in PCa cells. To further investigate the importance of autophagy in PCa survival and dissect the role of CLQ in PCa death, we treated hormone responsive LNCaP cells with CLQ in combination with androgen deprivation. We observed that CLQ synergistically killed LNCaP cells during androgen deprivation in a dose- and time-dependent manner. We further confirmed that CLQ inhibited the maturation of autophagic vesicles and decreased the cytosolic ATP. Moreover, CLQ induced nuclear condensation and DNA fragmentation, a hallmark of apoptosis, in androgen deprived LNCaP cells. Taken together, our finding suggests that CLQ may be an useful adjuvant in hormone ablation therapy to improve the therapeutic efficacy.

  15. Synergistic killing effect of chloroquine and androgen deprivation in LNCaP cells

    International Nuclear Information System (INIS)

    Kaini, Ramesh R.; Hu, Chien-An A.

    2012-01-01

    Highlights: ► Chloroquine synergistically killed LNCaP cells during androgen deprivation treatment. ► Chloroquine inhibited the function of autolysosomes and decreases the cytosolic ATP. ► Chloroquine induced nuclear and DNA fragmentation in androgen deprived LNCaP. ► Chloroquine may be an useful adjuvant in hormone ablation therapy in PCa patients. -- Abstract: Modulation of autophagy is a new paradigm in cancer therapeutics. Recently a novel function of chloroquine (CLQ) in inhibiting degradation of autophagic vesicles has been revealed, which raises the question whether CLQ can be used as an adjuvant in targeting autophagic pro-survival mechanism in prostate cancer (PCa). We previously showed that autophagy played a protective role during hormone ablation therapy, in part, by consuming lipid droplets in PCa cells. In addition, blocking autophagy by genetic and pharmacological means in the presence of androgen deprivation caused cell death in PCa cells. To further investigate the importance of autophagy in PCa survival and dissect the role of CLQ in PCa death, we treated hormone responsive LNCaP cells with CLQ in combination with androgen deprivation. We observed that CLQ synergistically killed LNCaP cells during androgen deprivation in a dose- and time-dependent manner. We further confirmed that CLQ inhibited the maturation of autophagic vesicles and decreased the cytosolic ATP. Moreover, CLQ induced nuclear condensation and DNA fragmentation, a hallmark of apoptosis, in androgen deprived LNCaP cells. Taken together, our finding suggests that CLQ may be an useful adjuvant in hormone ablation therapy to improve the therapeutic efficacy.

  16. Bystander Effects Induced by Continuous Low-Dose-Rate 125I Seeds Potentiate the Killing Action of Irradiation on Human Lung Cancer Cells In Vitro

    International Nuclear Information System (INIS)

    Chen, H.H.; Jia, R.F.; Yu, L.; Zhao, M.J.; Shao, C.L.; Cheng, W.Y.

    2008-01-01

    Purpose: To investigate bystander effects of low-dose-rate (LDR) 125 I seed irradiation on human lung cancer cells in vitro. Methods and Materials: A549 and NCI-H446 cell lines of differing radiosensitivity were directly exposed to LDR 125 I seeds irradiation for 2 or 4 Gy and then cocultured with nonirradiated cells for 24 hours. Induction of micronucleus (MN), γH2AX foci, and apoptosis were assayed. Results: After 2 and 4 Gy irradiation, micronucleus formation rate (MFR) and apoptotic rate of A549 and NCI-H446 cells were increased, and the MFR and apoptotic rate of NCI-H446 cells was 2.1-2.8 times higher than that of A549 cells. After coculturing nonirradiated bystander cells with 125 I seed irradiated cells for 24 hours, MFR and the mean number of γH2AX foci/cells of bystander A549 and NCI-H446 cells were similar and significantly higher than those of control (p 125 I seeds could induce bystander effects, which potentiate the killing action on tumor cells and compensate for the influence of nonuniform distribution of radiation dosage on therapeutic outcomes

  17. Pseudomonas Exotoxin A: optimized by evolution for effective killing

    Directory of Open Access Journals (Sweden)

    Marta eMichalska

    2015-09-01

    Full Text Available Pseudomonas Exotoxin A (PE is the most toxic virulence factor of the pathogenic bacterium Pseudomonas aeruginosa. This review describes current knowledge about the intoxication pathways of PE. Moreover, PE represents a remarkable example for pathoadaptive evolution, how bacterial molecules have been structurally and functionally optimized under evolutionary pressure to effectively impair and kill their host cells.

  18. Radiation Therapy for Cancer

    Science.gov (United States)

    Radiation therapy is a type of cancer treatment that uses high doses of radiation to kill cancer cells and shrink tumors. Learn about the types of radiation, why side effects happen, which ones you might have, and more.

  19. Melanoma stem cells in experimental melanoma are killed by radioimmunotherapy

    International Nuclear Information System (INIS)

    Jandl, Thomas; Revskaya, Ekaterina; Jiang, Zewei; Harris, Matthew; Dorokhova, Olena; Tsukrov, Dina; Casadevall, Arturo; Dadachova, Ekaterina

    2013-01-01

    Introduction: In spite of recently approved B-RAF inhibitors and immunomodulating antibodies, metastatic melanoma has poor prognosis and novel treatments are needed. Melanoma stem cells (MSC) have been implicated in the resistance of this tumor to chemotherapy. Recently we demonstrated in a Phase I clinical trial in patients with metastatic melanoma that radioimmunotherapy (RIT) with 188-Rhenium( 188 Re)-6D2 antibody to melanin was a safe and effective modality. Here we investigated the interaction of MSC with RIT as a possible mechanism for RIT efficacy. Methods: Mice bearing A2058 melanoma xenografts were treated with either 1.5 mCi 188 Re-6D2 antibody, saline, unlabeled 6D2 antibody or 188 Re-labeled non-specific IgM. Results: On Day 28 post-treatment the tumor size in the RIT group was 4-times less than in controls (P < 0.001). The tumors were analyzed by immunohistochemistry and FACS for two MSC markers — chemoresistance mediator ABCB5 and H3K4 demethylase JARID1B. There were no significant differences between RIT and control groups in percentage of ABCB5 or JARID1B-positive cells in the tumor population. Our results demonstrate that unlike chemotherapy, which kills tumor cells but leaves behind MSC leading to recurrence, RIT kills MSC at the same rate as the rest of tumor cells. Conclusions: These results have two main implications for melanoma treatment and possibly other cancers. First, the susceptibility of ABCB5 + and JARID1B + cells to RIT in melanoma might be indicative of their susceptibility to antibody-targeted radiation in other cancers where they are present as well. Second, specifically targeting cancer stem cells with radiolabeled antibodies to ABCB5 or JARID1B might help to completely eradicate cancer stem cells in various cancers

  20. Heavy-ion-induced bystander killing of human lung cancer cells. Role of gap junctional intercellular communication

    International Nuclear Information System (INIS)

    Harada, Kosaku; Nonaka, Tetsuo; Hamada, Nobuyuki; Sakurai, Hideyuki; Hasegawa, Masatoshi; Kobayashi, Yasuhiko; Nakano, Takashi; Funayama, Tomoo; Kakizaki, Takehiko

    2009-01-01

    The aim of the present study was to clarify the mechanisms of cell death induced by heavy-ion irradiation focusing on the bystander effect in human lung cancer A549 cells. In microbeam irradiation, each of 1, 5, and 25 cells under confluent cell conditions was irradiated with 1, 5, or 10 particles of carbon ions (220 MeV), and then the surviving fraction of the population was measured by a clonogenic assay in order to investigate the bystander effect of heavy-ions. In this experiment, the limited number of cells (0.0001-0.002%, 5-25 cells) under confluent cell conditions irradiated with 5 or 10 carbon ions resulted in an exaggerated 8-14% increase in cell death by clonogenic assay. However, these overshooting responses were not observed under exponentially growing cell conditions. Furthermore, these responses were inhibited in cells treated with an inhibitor of gap junctional intercellular communication (GJIC), whereas they were markedly enhanced by the addition of a stimulator of GJIC. The present results suggest that bystander cell killing by heavy-ions was induced mainly by direct cell-to-cell communication, such as GJIC, which might play important roles in bystander responses. (author)

  1. Radiosensitization effect of CMNa on hypoxic pancreatic cancer cell in vitro

    International Nuclear Information System (INIS)

    Yin Lijie; Zhang Li; Ding Tiangui; Peng Zhaoxiang; Yu Huan; Gao Yuwei

    2006-01-01

    Objective: To investigate the effects of glycodidazolum natrium (CMNa) on pancreatic cancer cells under hypoxic condition. Methods: The human pancreatic cancer Panc-1 cells were exposed to a single fraction of high-dose γ-ray radiation either with CMNa or under hypoxic condition. The percentage of dead cells was detected with a multiwell plated reader, and fluorescence intensities of propidium iodide were measured before and after digitonin treatment. The sensitizing effect of CMNa on cell killing induced by high-dose irradiation was evaluated by time and concentration dependence. The selective radiosensitive effect of CMNa on hypoxia was evaluated by flow cytometry. Results: The death rate of pancreatic cancer Panc-1 cells paralleled with the increasing concentration of CMNa under hypoxic condition after 30 gray irradiation. The selective radiosensitive effect of CMNa on hypoxia was time-dependent. Conclusions: CMNa can enhance the radiosensitivity of pancreatic cancer Pane-1 cells under hypoxic condition with high-dose irradiation. (authors)

  2. Managing Threat, Cost, and Incentive to Kill: The Short- and Long-Term Effects of Intervention in Mass Killings

    Science.gov (United States)

    Kathman, Jacob D.; Wood, Reed M.

    2011-01-01

    How do third-party interventions affect the severity of mass killings? The authors theorize that episodes of mass killing are the consequence of two factors: (1) the threat perceptions of the perpetrators and (2) the cost of implementing genocidal policies relative to other alternatives. To reduce genocidal hostilities, interveners must address…

  3. Chemically enhanced sunlight for killing bacteria

    International Nuclear Information System (INIS)

    Block, S.S.; Goswami, D.Y.

    1995-01-01

    Solar ultraviolet (UV) photocatalyzed oxidation of chemicals with titanium dioxide (TiO 2 ) has received considerable attention. Much less recognized, however, is the ability of the same system to destroy bacteria. This study examined this phenomenon and the conditions that affect it. Bacteria in aqueous solution were given solar exposure with titanium dioxide and their survival with time was determined. Lamps with a predominantly solar ultraviolet spectrum were also used in the experiments. Without exposure to UV light, TiO 2 had no deleterious effect on the bacteria. However, several common bacteria on solar exposure in the presence of TiO 2 were killed in just a few minutes, whereas without TiO 2 it took over an hour to destroy them. A concentration of 0.01% TiO 2 was most effective in killing bacteria and 10-fold concentrations lower or higher were successively less effective. Inorganic and organic compounds in solution, even in small amounts, interfered with the efficiency of killing. Alkaline solution also reduced the bactericidal activity. Circulation and agitation provided by stirring to keep the TiO 2 particles suspended reduced the time necessary to kill the bacteria. Time-intensity curves for killing bacteria were the same general shape with or without TiO 2 , indicating that TiO 2 served merely as a catalyst to increase the rate of the reaction but that the mechanism of action was not changed. The shape of the curves show that the organisms are sensitized with a minimum intensity of radiation and that an increase doesn't greatly increase the rate of kill. Below this critical intensity, however, the time required for killing markedly increases as the intensity is decreased

  4. Cryptococcus neoformans modulates extracellular killing by neutrophils

    Directory of Open Access Journals (Sweden)

    Asfia eQureshi

    2011-09-01

    Full Text Available We recently established a key role for host sphingomyelin synthase (SMS in the regulation of the killing activity of neutrophils against Cryptococcus neoformans. In this work, we studied the effect of C. neoformans on the killing activity of neutrophils and whether SMS would still be a player against C. neoformans in immunocompromised mice lacking T and NK cells (Tgε26 mice. To this end, we analyzed whether C. neoformans would have any effect on neutrophil survival and killing in vitro and in vivo. We show that unlike C. albicans, neither the presence nor the capsule size of C. neoformans cells have any effect on neutrophil viability. Interestingly, melanized C. neoformans cells totally abrogated the killing activity of neutrophils. Next, we monitored how exposure of neutrophils to C. neoformans cells would interfere with any further killing activity of the medium and found that pre-incubation with live but not heat-killed fungal cells significantly inhibits further killing activity of the medium. We next studied whether activation of SMS at the site of C. neoformans infection is dependent on T and NK cells. Using matrix-assisted laser desorption-ionization (MALDI tissue imaging in infected lung we found that similarly to previous observations in the isogenic wild type CBA/J mice, SM 16:0 levels are significantly elevated at the site of infection in mice lacking T and NK cells but only at early time points. This study highlights that C. neoformans may negatively regulate the killing activity of neutrophils and that SMS activation in neutrophils appears to be partially independent of T and/or NK cells.

  5. Absence of synergistic enhancement of non-thermal effects of ultrasound on cell killing induced by ionizing radiation

    International Nuclear Information System (INIS)

    Kondo, T.; Kano, E.

    1987-01-01

    The present study was performed to elucidate the role of non-thermal effects (cavitation and direct effects) of ultrasound, in simultaneous combination with X-irradiation on the cytotoxicity of mouse L cells. Firstly, mouse L cells were exposed to X-rays and ultrasound (1 MHz continous wave, spatial peak temporal average intensity; 3.7 W/cm 2 ) simultaneously at 37 0 C under O 2 or Ar saturated conditions to examine the cavitational effect of ultrasound. Secondly, cells were exposed to X-rays and ultrasound at 37 0 C under N 2 O saturated conditions, which suppresses the cavitation, to examine the direct effects of ultrasound. The cavitational effect under O 2 and Ar saturated conditions induced an exponential decrease in cell survival, and resulted in an additive effect on cell killing with the combination of X-rays and ultrasound. The direct effect in the N 2 O conditions induced no cell killing and did not modify the cell killing induced by X-rays. These results suggested that the non-thermal effects of ultrasound did not interact synergistically with X-rays for cell killing. (author)

  6. Effects of lead on the killing mechanisms of polymorphonuclear leukocytes

    International Nuclear Information System (INIS)

    Silberstein, C.F.

    1984-01-01

    The effects of lead on the killing mechanisms of rat polymorphonuclear leukocytes (PMN) were investigated, using male Long-Evans rats exposed to 1% lead acetate in the drinking water for varying periods of time to achieve blood lead levels ranging from 20-200 μg/dl. Studies of PMN bacterial and fungal killing activity, chemotaxis and phagocytosis demonstrated that: 1) bactericidal activity of PMN from rats exposed to lead was not altered; 2) chemotactic activity remained within normal limits; 3) the phagocytic ability of the PMN also remained unaltered. In addition to these normal findings, one major abnormality was demonstrated: a significant decrease in the ability of PMN from rats exposed to lead to kill Candida albicans. This defect was not related to age or to length of exposure. It could not be produced by addition of lead to the test system in vitro. Further investigation revealed significant decreases in PMN glucose-6-phosphate dehydrogenase, catalase, and myeloperoxidase activities. These data support two possible mechanisms for the abnormal fungicidal activity of PMN from lead-exposed rats: decrease in ability to reduce oxygen to active metabolites, or reduction in myeloperoxidase activity due to diminshed synthesis of the heme moiety required for its function

  7. Killing Effects of an Isolated Serratia marcescens KH-001 on Diaphorina citri via Lowering the Endosymbiont Numbers.

    Science.gov (United States)

    Hu, Wei; Kuang, Fan; Lu, Zhanjun; Zhang, Ning; Chen, Tingtao

    2018-01-01

    Huanglongbing (HLB) is the most devastating citrus disease worldwide, and suppression of the Asian citrus psyllid ( Diaphorina citri ) is regarded as an effective method to inhibit the spread of HLB. In this study, we isolated a strain named as Serratia marcescens KH-001 from D. citri nymphs suffering from disease, and evaluated its killing effect on D. citri via toxicity test and effect on microbial community in D. citri using high-throughput sequencing. Our results indicated that S. marcescens KH-001 could effectively kill 83% of D. citri nymphs, while the fermentation products of S. marcescens KH-001 only killed 40% of the D. citri nymphs. High-throughput sequencing results indicated that the S. marcescens KH-001 increased the OTU numbers from 62.5 (PBS buffer) to 81.5, while significantly lowered the Shannon index compared with Escherichia coli DH5α (group E) ( p citri endow S. marcescens KH-001 a sound killing effect on D. citri . Further work need to do before this strain is used as a sound biological control agents.

  8. Killing Effects of an Isolated Serratia marcescens KH-001 on Diaphorina citri via Lowering the Endosymbiont Numbers

    Directory of Open Access Journals (Sweden)

    Wei Hu

    2018-05-01

    Full Text Available Huanglongbing (HLB is the most devastating citrus disease worldwide, and suppression of the Asian citrus psyllid (Diaphorina citri is regarded as an effective method to inhibit the spread of HLB. In this study, we isolated a strain named as Serratia marcescens KH-001 from D. citri nymphs suffering from disease, and evaluated its killing effect on D. citri via toxicity test and effect on microbial community in D. citri using high-throughput sequencing. Our results indicated that S. marcescens KH-001 could effectively kill 83% of D. citri nymphs, while the fermentation products of S. marcescens KH-001 only killed 40% of the D. citrinymphs. High-throughput sequencing results indicated that the S. marcescens KH-001 increased the OTU numbers from 62.5 (PBS buffer to 81.5, while significantly lowered the Shannon index compared with Escherichia coli DH5α (group E (p < 0.05. OTU analysis showed that the S. marcescens KH-001 had significantly reduced the relative abundance of endosymbionts Wolbachia, Profftella, and Carsonella in group S compared with that in other groups (p < 0.05. Therefore, the direct killing effect of the fermentation products of S. marcescens KH-001 and the indirect effect via reducing the numbers of endosymbionts (Wolbachia, Profftella, and Carsonella of D. citri endow S. marcescens KH-001 a sound killing effect on D. citri. Further work need to do before this strain is used as a sound biological control agents.

  9. Double suicide genes selectively kill human umbilical vein endothelial cells

    Directory of Open Access Journals (Sweden)

    Liu Lunxu

    2011-02-01

    Full Text Available Abstract Background To construct a recombinant adenovirus containing CDglyTK double suicide genes and evaluate the killing effect of the double suicide genes driven by kinase domain insert containing receptor (KDR promoter on human umbilical vein endothelial cells. Methods Human KDR promoter, Escherichia coli (E. coli cytosine deaminase (CD gene and the herpes simplex virus-thymidine kinase (TK gene were cloned using polymerase chain reaction (PCR. Plasmid pKDR-CDglyTK was constructed with the KDR promoter and CDglyTK genes. A recombinant adenoviral plasmid AdKDR-CDglyTK was then constructed and transfected into 293 packaging cells to grow and harvest adenoviruses. KDR-expressing human umbilical vein endothelial cells (ECV304 and KDR-negative liver cancer cell line (HepG2 were infected with the recombinant adenoviruses at different multiplicity of infection (MOI. The infection rate was measured by green fluorescent protein (GFP expression. The infected cells were cultured in culture media containing different concentrations of prodrugs ganciclovir (GCV and/or 5-fluorocytosine (5-FC. The killing effects were measured using two different methods, i.e. annexin V-FITC staining and terminal transferase-mediated dUTP nick end-labeling (TUNEL staining. Results Recombinant adenoviruses AdKDR-CDglyTK were successfully constructed and they infected ECV304 and HepG2 cells efficiently. The infection rate was dependent on MOI of recombinant adenoviruses. ECV304 cells infected with AdKDR-CDglyTK were highly sensitive to GCV and 5-FC. The cell survival rate was dependent on both the concentration of the prodrugs and the MOI of recombinant adenoviruses. In contrast, there were no killing effects in the HepG2 cells. The combination of two prodrugs was much more effective in killing ECV304 cells than GCV or 5-FC alone. The growth of transgenic ECV304 cells was suppressed in the presence of prodrugs. Conclusion AdKDR-CDglyTK/double prodrog system may be a useful

  10. Photoacoustically-guided photothermal killing of mosquitoes targeted by nanoparticles.

    Science.gov (United States)

    Foster, Stephen R; Galanzha, Ekaterina I; Totten, Daniel C; Beneš, Helen; Shmookler Reis, Robert J; Zharov, Vladimir P

    2014-07-01

    In biomedical applications, nanoparticles have demonstrated the potential to eradicate abnormal cells in small localized pathological zones associated with cancer or infections. Here, we introduce a method for nanotechnology-based photothermal (PT) killing of whole organisms considered harmful to humans or the environment. We demonstrate that laser-induced thermal, and accompanying nano- and microbubble phenomena, can injure or kill C. elegans and mosquitoes fed carbon nanotubes, gold nanospheres, gold nanoshells, or magnetic nanoparticles at laser energies that are safe for humans. In addition, a photoacoustic (PA) effect was used to control nanoparticle delivery. Through the integration of this technique with molecular targeting, nanoparticle clustering, magnetic capturing and spectral sharpening of PA and PT plasmonic resonances, our laser-based PA-PT nano-theranostic platform can be applied to detection and the physical destruction of small organisms and carriers of pathogens, such as malaria vectors, spiders, bed bugs, fleas, ants, locusts, grasshoppers, phytophagous mites, or other arthropod pests, irrespective of their resistance to conventional treatments. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Activated human primary NK cells efficiently kill colorectal cancer cells in 3D spheroid cultures irrespectively of the level of PD-L1 expression.

    Science.gov (United States)

    Lanuza, Pilar M; Vigueras, Alan; Olivan, Sara; Prats, Anne C; Costas, Santiago; Llamazares, Guillermo; Sanchez-Martinez, Diego; Ayuso, José María; Fernandez, Luis; Ochoa, Ignacio; Pardo, Julián

    2018-01-01

    Haploidentical Natural Killer (NK) cells have been shown as an effective and safe alternative for the treatment of haematological malignancies with poor prognosis for which traditional therapies are ineffective. In contrast to haematological cancer cells, that mainly grow as single suspension cells, solid carcinomas are characterised by a tridimensional (3D) architecture that provide specific surviving advantages and resistance against chemo- and radiotherapy. However, little is known about the impact of 3D growth on solid cancer immunotherapy especially adoptive NK cell transfer. We have recently developed a protocol to activate ex vivo human primary NK cells using B lymphoblastic cell lines, which generates NK cells able to overcome chemoresistance in haematological cancer cells. Here we have analysed the activity of these allogeneic NK cells against colorectal (CRC) human cell lines growing in 3D spheroid culture and correlated with the expression of some of the main ligands regulating NK cell activity. Our results indicate that activated NK cells efficiently kill colorectal tumour cell spheroids in both 2D and 3D cultures. Notably, although 3D CRC cell cultures favoured the expression of the inhibitory immune checkpoint PD-L1, it did not correlate with increased resistance to NK cells. Finally, we have analysed in detail the infiltration of NK cells in 3D spheroids by microscopy and found that at low NK cell density, cell death is not observed although NK cells are able to infiltrate into the spheroid. In contrast, higher densities promote tumoural cell death before infiltration can be detected. These findings show that highly dense activated human primary NK cells efficiently kill colorectal carcinoma cells growing in 3D cultures independently of PD-L1 expression and suggest that the use of allogeneic activated NK cells could be beneficial for the treatment of colorectal carcinoma.

  12. Adjuvant Therapy: Treatment to Keep Cancer from Returning

    Science.gov (United States)

    ... significant side effects, and these treatments don't benefit everyone. Types of cancer treatment that are used as adjuvant therapy include: Chemotherapy. Chemotherapy uses drugs to kill cancer cells throughout ...

  13. The Killing

    DEFF Research Database (Denmark)

    Agger, Gunhild

    2013-01-01

    This article tracks the uncanny locations of The Killing (2007–2012), relating them to place, space and atmosphere, putting bits and pieces from the topographic puzzle together with cues from the symbolic space in order to see how they fit into the overall pattern of Nordic Noir. In The Killing......, the abstract level of space and atmosphere meets the concrete level of place, both influencing the notion of location. This meeting, I suggest, has contributed towards the simultaneous domestic and international appeal of The Killing....

  14. HAMLET kills tumor cells by apoptosis: structure, cellular mechanisms, and therapy.

    Science.gov (United States)

    Gustafsson, Lotta; Hallgren, Oskar; Mossberg, Ann-Kristin; Pettersson, Jenny; Fischer, Walter; Aronsson, Annika; Svanborg, Catharina

    2005-05-01

    New cancer treatments should aim to destroy tumor cells without disturbing normal tissue. HAMLET (human alpha-lactalbumin made lethal to tumor cells) offers a new molecular approach to solving this problem, because it induces apoptosis in tumor cells but leaves normal differentiated cells unaffected. After partial unfolding and binding to oleic acid, alpha-lactalbumin forms the HAMLET complex, which enters tumor cells and freezes their metabolic machinery. The cells proceed to fragment their DNA, and they disintegrate with apoptosis-like characteristics. HAMLET kills a wide range of malignant cells in vitro and maintains this activity in vivo in patients with skin papillomas. In addition, HAMLET has striking effects on human glioblastomas in a rat xenograft model. After convection-enhanced delivery, HAMLET diffuses throughout the brain, selectively killing tumor cells and controlling tumor progression without apparent tissue toxicity. HAMLET thus shows great promise as a new therapeutic with the advantage of selectivity for tumor cells and lack of toxicity.

  15. Targeted alpha therapy in vivo: direct evidence for single cancer cell kill using 149Tb-rituximab

    International Nuclear Information System (INIS)

    Beyer, G.J.; Soloviev, D.; Buchegger, F.; Miederer, M.; Vranjes-Duric, S.; Comor, J.J.; Kuenzi, G.; Hartley, O.; Senekowitsch-Schmidtke, R.

    2004-01-01

    This study demonstrates high-efficiency sterilisation of single cancer cells in a SCID mouse model of leukaemia using rituximab, a monoclonal antibody that targets CD20, labelled with terbium-149, an alpha-emitting radionuclide. Radio-immunotherapy with 5.5 MBq labelled antibody conjugate (1.11 GBq/mg) 2 days after an intravenous graft of 5.10 6 Daudi cells resulted in tumour-free survival for >120 days in 89% of treated animals. In contrast, all control mice (no treatment or treated with 5 or 300 μg unlabelled rituximab) developed lymphoma disease. At the end of the study period, 28.4%±4% of the long-lived daughter activity remained in the body, of which 91.1% was located in bone tissue and 6.3% in the liver. A relatively high daughter radioactivity concentration was found in the spleen (12%±2%/g), suggesting that the killed cancer cells are mainly eliminated through the spleen. This promising preliminary in vivo study suggests that targeted alpha therapy with 149 Tb is worthy of consideration as a new-generation radio-immunotherapeutic approach. (orig.)

  16. 33 CFR 117.801 - Newtown Creek, Dutch Kills, English Kills and their tributaries.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Newtown Creek, Dutch Kills, English Kills and their tributaries. 117.801 Section 117.801 Navigation and Navigable Waters COAST GUARD....801 Newtown Creek, Dutch Kills, English Kills and their tributaries. (a) The following requirements...

  17. Patterns and Composition of Road-Killed Wildlife in Northwest Argentina

    Science.gov (United States)

    Cuyckens, Griet An Erica; Mochi, Lucía Sol; Vallejos, María; Perovic, Pablo Gastón; Biganzoli, Fernando

    2016-11-01

    Roads have important effects on wildlife, such as natural habitat fragmentation and degradation and direct killing of fauna, which leads to reductions in wildlife population size. We focused on a principal road in Northwest Argentina to test for the effect of seasonality and landscape features on the composition of road-killed wildlife. We conducted regularly scheduled road trips during the dry and wet seasons. We recorded the presence or absence of a vegetation curtain or hedge along the road. We measured land use by remote sensing in a 500 m buffer along the road. We compared the abundance of animals killed between seasons (dry and wet) for different taxonomic groups (mammals, birds and reptiles) and for different origins (domestic and native). We built linear mixed models to test the effect of landscape features on the abundance of killed animals. Two hundred and ninety-three individuals were killed, belonging to 35 species; 75.8 % were native and 24.2 % domestic species. The majority of animals killed were mid-sized mammals. More animals were killed during the dry season. The most important factors to explain the wildlife road-killing were the season and the proportion of agricultural landscape. The composition of the killed animals changed with the season. The proportion of agricultural landscape incremented the number of killed birds and mammals during both seasons, without affecting reptiles. The ratio of wild to domestic animals killed was dependent on the season. This study sets a precedent as the first in road ecology in Northwest Argentina and should be taken into account for road planning and regulation.

  18. Implications of effects ''adaptive response'', ''low-dose hypersensitivity'' und ''bystander effect'' for cancer risk at low doses and low dose rates

    International Nuclear Information System (INIS)

    Jacob, P

    2006-01-01

    A model for carcinogenesis (the TSCE model) was applied in order to examine the effects of ''Low-dose hypersensitivity (LDH)'' and the ''Bystander effect (BE)'' on the derivation of radiation related cancer mortality risks. LDH has been discovered to occur in the inactivation of cells after acute exposure to low LET radiation. A corresponding version of the TSCE model was applied to the mortality data on the Abomb survivors from Hiroshima and Nagasaki. The BE has been mainly observed in cells after exposure to high LET radiation. A Version of the TSCE model which included the BE was applied to the data on lung cancer mortality from the workers at the Mayak nuclear facilities who were exposed to Plutonium. In general an equally good description of the A-bomb survivor mortality data (for all solid, stomach and lung tumours) was found for the TSCE model and the (conventional) empirical models but fewer parameters were necessary for the TSCE model. The TSCE model which included the effects of radiation induced cell killing resulted in non-linear dose response curves with excess relative risks after exposure at young ages that were generally lower than in the models without cell killing. The main results from TSCE models which included cell killing described by either conventional survival curves or LDH were very similar. A sub multiplicative effect from the interaction of smoking and exposure to plutonium was found to result from the analysis of the Mayak lung cancer mortality data. All models examined resulted in the predominant number of Mayak lung cancer deaths being ascribed to smoking. The interaction between smoking and plutonium exposures was found to be the second largest effect. The TSCE model resulted in lower estimates for the lung cancer excess relative risk per unit plutonium dose than the empirical risk model, but this difference was not found to be statistically significant. The excess relative risk dose responses were linear in the empirical model and

  19. Hemagglutinating virus of Japan envelope (HVJ-E) can enhance the immune responses of swine immunized with killed PRRSV vaccine

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Zhihong [State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing 100094 (China); China Institute of Veterinary Drug Control, Beijing 100081 (China); Zhang, Quan [College of Veterinary Medicine, Yangzhou University, Yangzhou 225009 (China); Wang, Zaishi [China Institute of Veterinary Drug Control, Beijing 100081 (China); Zhang, Zhongqiu [State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing 100094 (China); Veterinary Bureau, Ministry of Agriculture of the People' s Republic of China, Beijing 100125 (China); Guo, Pengju [Institute of Veterinary Medicine, Guangdong Academy of Agricultural Sciences, Guangdong 510640 (China); Zhao, Deming, E-mail: zhaodm@cau.edu.cn [State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing 100094 (China)

    2011-11-11

    Highlights: Black-Right-Pointing-Pointer We investigated the immunoadjuvant effects of HVJ-E on killed PRRSV vaccine. Black-Right-Pointing-Pointer HVJ-E enhanced the humoral and cellular responses of the piglets to PRRSV. Black-Right-Pointing-Pointer It is suggested that HVJ-E could be developed as a new-type adjuvant for mammals. -- Abstract: Porcine reproductive and respiratory syndrome virus (PRRSV) is an economically detrimental pig pathogen that causes significant losses for the pig industry. The immunostimulatory effects of hemagglutinating virus of Japan envelope (HVJ-E) in cancer therapy and the adjuvant efficacy of HVJ-E have been previously evaluated. The objective of this study was to investigate the adjuvant effects of HVJ-E on immunization with killed PRRSV vaccine, and to evaluate the protective effects of this immunization strategy against virulent PRRSV infection in piglets. Next, the PRRSV-specific antibody response, lymphocyte proliferation, PRRSV-specific IL-2, IL-10 and IFN-{gamma} production, and the overall protection efficacy were evaluated to assess the immune responses of the piglets. The results showed that the piglets inoculated simultaneously with killed PRRSV vaccine and HVJ-E had a significantly stronger immune response than those inoculated with killed PRRSV vaccine alone. Our results suggest that HVJ-E could be employed as an effective adjuvant to enhance the humoral and cellular responses of piglets to PRRSV.

  20. Photothermal effects of multi-walled carbon nanotubes on the viability of BT-474 cancer cells

    International Nuclear Information System (INIS)

    Chou, Hung-Tao; Wang, Tsung-Pao; Lee, Chi-Young; Tai, Nyan-Hwa; Chang, Hwan-You

    2013-01-01

    Functionalized multi-walled carbon nanotubes (f-MWCNTs) were conjugated to an antibody of BT-474 cancer cells (f-MWCNTs-ab), and the photothermal effect of the f-MWCNTs-ab for BT-474 cancer cell destruction was demonstrated. After near-infrared irradiation, the f-MWCNTs-ab were more capable of killing cancer cells and possessed higher cell specificity than f-MWCNTs. Quantitative results showed that the viability of the cancer cells was affected by the concentration of the f-MWCNTs-ab solution, irradiation time, and settling time after irradiation. The membrane impermeable fluorescence dye ethidium bromide was used to detect cell viability after near-infrared irradiation, and the results agreed with those obtained from the Alamar Blue cell viability assay. The EtBr fluorescence results suggest that the cell membrane, attached to f-MWCNTs-ab, was damaged after irradiation, which led to cell death and necrosis. Using confocal microscopy, a few f-MWCNTs-ab were detected in the cell, indicating the endocytosis effect. The results not only explain the improved efficiency of thermotherapy but also indicate that necrosis may result from protein denaturation attributing to the heated f-MWCNTs-ab in the cell. Highlights: ► f-MWCNTs conjugated with anti-HER2 antibody by chemical method. ► Kill breast cancer cells by using low dose f-MWCNTs-ab due to photothermal effect. ► Use EtBr fluorescent to prove that the cell membrane was broken by heated f-MWCNTs. ► Few f-MWCNTs-ab were detected in the cell indicating the endocytosis effect. ► Necrosis may result from protein denaturation due to contact with the heated CNTs.

  1. Adenoviral delivery of pan-caspase inhibitor p35 enhances bystander killing by P450 gene-directed enzyme prodrug therapy using cyclophosphamide+

    International Nuclear Information System (INIS)

    Doloff, Joshua C; Su, Ting; Waxman, David J

    2010-01-01

    Cytochrome P450-based suicide gene therapy for cancer using prodrugs such as cyclophosphamide (CPA) increases anti-tumor activity, both directly and via a bystander killing mechanism. Bystander cell killing is essential for the clinical success of this treatment strategy, given the difficulty of achieving 100% efficient gene delivery in vivo using current technologies. Previous studies have shown that the pan-caspase inhibitor p35 significantly increases CPA-induced bystander killing by tumor cells that stably express P450 enzyme CYP2B6 (Schwartz et al, (2002) Cancer Res. 62: 6928-37). To further develop this approach, we constructed and characterized a replication-defective adenovirus, Adeno-2B6/p35, which expresses p35 in combination with CYP2B6 and its electron transfer partner, P450 reductase. The expression of p35 in Adeno-2B6/p35-infected tumor cells inhibited caspase activation, delaying the death of the CYP2B6 'factory' cells that produce active CPA metabolites, and increased bystander tumor cell killing compared to that achieved in the absence of p35. Tumor cells infected with Adeno-2B6/p35 were readily killed by cisplatin and doxorubicin, indicating that p35 expression is not associated with acquisition of general drug resistance. Finally, p35 did not inhibit viral release when the replication-competent adenovirus ONYX-017 was used as a helper virus to facilitate co-replication and spread of Adeno-2B6/p35 and further increase CPA-induced bystander cell killing. The introduction of p35 into gene therapeutic regimens constitutes an effective approach to increase bystander killing by cytochrome P450 gene therapy. This strategy may also be used to enhance other bystander cytotoxic therapies, including those involving the production of tumor cell toxic protein products

  2. Enhancement of radiation effect on cancer cells by gold-pHLIP

    Science.gov (United States)

    Antosh, Michael P.; Wijesinghe, Dayanjali D.; Shrestha, Samana; Lanou, Robert; Huang, Yun Hu; Hasselbacher, Thomas; Fox, David; Neretti, Nicola; Sun, Shouheng; Katenka, Natallia; Cooper, Leon N; Andreev, Oleg A.; Reshetnyak, Yana K.

    2015-01-01

    Previous research has shown that gold nanoparticles can increase the effectiveness of radiation on cancer cells. Improved radiation effectiveness would allow lower radiation doses given to patients, reducing adverse effects; alternatively, it would provide more cancer killing at current radiation doses. Damage from radiation and gold nanoparticles depends in part on the Auger effect, which is very localized; thus, it is important to place the gold nanoparticles on or in the cancer cells. In this work, we use the pH-sensitive, tumor-targeting agent, pH Low-Insertion Peptide (pHLIP), to tether 1.4-nm gold nanoparticles to cancer cells. We find that the conjugation of pHLIP to gold nanoparticles increases gold uptake in cells compared with gold nanoparticles without pHLIP, with the nanoparticles distributed mostly on the cellular membranes. We further find that gold nanoparticles conjugated to pHLIP produce a statistically significant decrease in cell survival with radiation compared with cells without gold nanoparticles and cells with gold alone. In the context of our previous findings demonstrating efficient pHLIP-mediated delivery of gold nanoparticles to tumors, the obtained results serve as a foundation for further preclinical evaluation of dose enhancement. PMID:25870296

  3. A Multimodal System with Synergistic Effects of Magneto-Mechanical, Photothermal, Photodynamic and Chemo Therapies of Cancer in Graphene-Quantum Dot-Coated Hollow Magnetic Nanospheres.

    Science.gov (United States)

    Wo, Fangjie; Xu, Rujiao; Shao, Yuxiang; Zhang, Zheyu; Chu, Maoquan; Shi, Donglu; Liu, Shupeng

    2016-01-01

    In this study, a multimodal therapeutic system was shown to be much more lethal in cancer cell killing compared to a single means of nano therapy, be it photothermal or photodynamic. Hollow magnetic nanospheres (HMNSs) were designed and synthesized for the synergistic effects of both magneto-mechanical and photothermal cancer therapy. By these combined stimuli, the cancer cells were structurally and physically destroyed with the morphological characteristics distinctively different from those by other therapeutics. HMNSs were also coated with the silica shells and conjugated with carboxylated graphene quantum dots (GQDs) as a core-shell composite: HMNS/SiO2/GQDs. The composite was further loaded with an anticancer drug doxorubicin (DOX) and stabilized with liposomes. The multimodal system was able to kill cancer cells with four different therapeutic mechanisms in a synergetic and multilateral fashion, namely, the magnetic field-mediated mechanical stimulation, photothermal damage, photodynamic toxicity, and chemotherapy. The unique nanocomposites with combined mechanical, chemo, and physical effects will provide an alternative strategy for highly improved cancer therapy efficiency.

  4. It's not just conflict that motivates killing of orangutans.

    Directory of Open Access Journals (Sweden)

    Jacqueline T Davis

    Full Text Available We investigated why orangutans are being killed in Kalimantan, Indonesia, and the role of conflict in these killings. Based on an analysis of interview data from over 5,000 respondents in over 450 villages, we also assessed the socio-ecological factors associated with conflict and non-conflict killings. Most respondents never kill orangutans. Those who reported having personally killed an orangutan primarily did so for non-conflict reasons; for example, 56% of these respondents said that the reason they had killed an orangutan was to eat it. Of the conflict-related reasons for killing, the most common reasons orangutans were killed was fear of orangutans or in self-defence. A similar pattern was evident among reports of orangutan killing by other people in the villages. Regression analyses indicated that religion and the percentage of intact forest around villages were the strongest socio-ecological predictors of whether orangutans were killed for conflict or non-conflict related reasons. Our data indicate that between 44,170 and 66,570 orangutans were killed in Kalimantan within the respondents' active hunting lifetimes: between 12,690 and 29,024 for conflict reasons (95%CI and between 26,361 and 41,688 for non-conflict reasons (95% CI. These findings confirm that habitat protection alone will not ensure the survival of orangutans in Indonesian Borneo, and that effective reduction of orangutan killings is urgently needed.

  5. It's not just conflict that motivates killing of orangutans.

    Science.gov (United States)

    Davis, Jacqueline T; Mengersen, Kerrie; Abram, Nicola K; Ancrenaz, Marc; Wells, Jessie A; Meijaard, Erik

    2013-01-01

    We investigated why orangutans are being killed in Kalimantan, Indonesia, and the role of conflict in these killings. Based on an analysis of interview data from over 5,000 respondents in over 450 villages, we also assessed the socio-ecological factors associated with conflict and non-conflict killings. Most respondents never kill orangutans. Those who reported having personally killed an orangutan primarily did so for non-conflict reasons; for example, 56% of these respondents said that the reason they had killed an orangutan was to eat it. Of the conflict-related reasons for killing, the most common reasons orangutans were killed was fear of orangutans or in self-defence. A similar pattern was evident among reports of orangutan killing by other people in the villages. Regression analyses indicated that religion and the percentage of intact forest around villages were the strongest socio-ecological predictors of whether orangutans were killed for conflict or non-conflict related reasons. Our data indicate that between 44,170 and 66,570 orangutans were killed in Kalimantan within the respondents' active hunting lifetimes: between 12,690 and 29,024 for conflict reasons (95%CI) and between 26,361 and 41,688 for non-conflict reasons (95% CI). These findings confirm that habitat protection alone will not ensure the survival of orangutans in Indonesian Borneo, and that effective reduction of orangutan killings is urgently needed.

  6. Killing Range

    Science.gov (United States)

    Asal, Victor; Rethemeyer, R. Karl; Horgan, John

    2015-01-01

    This paper presents an analysis of the Provisional Irish Republican Army's (PIRA) brigade level behavior during the Northern Ireland Conflict (1970-1998) and identifies the organizational factors that impact a brigade's lethality as measured via terrorist attacks. Key independent variables include levels of technical expertise, cadre age, counter-terrorism policies experienced, brigade size, and IED components and delivery methods. We find that technical expertise within a brigade allows for careful IED usage, which significantly minimizes civilian casualties (a specific strategic goal of PIRA) while increasing the ability to kill more high value targets with IEDs. Lethal counter-terrorism events also significantly affect a brigade's likelihood of killing both civilians and high-value targets but in different ways. Killing PIRA members significantly decreases IED fatalities but also significantly decreases the possibility of zero civilian IED-related deaths in a given year. Killing innocent Catholics in a Brigade's county significantly increases total and civilian IED fatalities. Together the results suggest the necessity to analyze dynamic situational variables that impact terrorist group behavior at the sub-unit level. PMID:25838603

  7. Dendritic Cells Loaded with Pancreatic Cancer Stem Cells (CSCs) Lysates Induce Antitumor Immune Killing Effect In Vitro

    Science.gov (United States)

    Yin, Tao; Shi, Pengfei; Gou, Shanmiao; Shen, Qiang; Wang, Chunyou

    2014-01-01

    According to the cancer stem cells (CSCs) theory, malignant tumors may be heterogeneous in which a small population of CSCs drive the progression of cancer. Because of their intrinsic abilities, CSCs may survive a variety of treatments and then lead to therapeutic resistance and cancer recurrence. Pancreatic CSCs have been reported to be responsible for the malignant behaviors of pancreatic cancer, including suppression of immune protection. Thus, development of immune strategies to eradicate pancreatic CSCs may be of great value for the treatment of pancreatic cancer. In this study, we enriched pancreatic CSCs by culturing Panc-1 cells under sphere-forming conditions. Panc-1 CSCs expressed low levels of HLA-ABC and CD86, as measured by flow cytometry analysis. We further found that the Panc-1 CSCs modulate immunity by inhibiting lymphocyte proliferation which is promoted by phytohemagglutinin (PHA) and anti-CD3 monoclonal antibodies. The monocyte derived dendritic cells (DCs) were charged with total lysates generated from Panc-1 CSCs obtained from tumor sphere culturing. After co-culturing with lymphocytes at different ratios, the Panc-1 CSCs lysates modified DC effectively promoted lymphocyte proliferation. The activating efficiency reached 72.4% and 74.7% at the ratios of 1∶10 and 1∶20 with lymphocytes. The activated lymphocytes secreted high levels of INF-γ and IL-2, which are strong antitumor cytokines. Moreover, Panc-1 CSCs lysates modified DC induced significant cytotoxic effects of lymphocytes on Panc-1 CSCs and parental Panc-1 cells, respectively, as shown by lactate dehydrogenase (LDH) assay. Our study demonstrates that the development of CSCs-based vaccine is a promising strategy for treating pancreatic cancer. PMID:25521461

  8. Dendritic cells loaded with pancreatic Cancer Stem Cells (CSCs lysates induce antitumor immune killing effect in vitro.

    Directory of Open Access Journals (Sweden)

    Tao Yin

    Full Text Available According to the cancer stem cells (CSCs theory, malignant tumors may be heterogeneous in which a small population of CSCs drive the progression of cancer. Because of their intrinsic abilities, CSCs may survive a variety of treatments and then lead to therapeutic resistance and cancer recurrence. Pancreatic CSCs have been reported to be responsible for the malignant behaviors of pancreatic cancer, including suppression of immune protection. Thus, development of immune strategies to eradicate pancreatic CSCs may be of great value for the treatment of pancreatic cancer. In this study, we enriched pancreatic CSCs by culturing Panc-1 cells under sphere-forming conditions. Panc-1 CSCs expressed low levels of HLA-ABC and CD86, as measured by flow cytometry analysis. We further found that the Panc-1 CSCs modulate immunity by inhibiting lymphocyte proliferation which is promoted by phytohemagglutinin (PHA and anti-CD3 monoclonal antibodies. The monocyte derived dendritic cells (DCs were charged with total lysates generated from Panc-1 CSCs obtained from tumor sphere culturing. After co-culturing with lymphocytes at different ratios, the Panc-1 CSCs lysates modified DC effectively promoted lymphocyte proliferation. The activating efficiency reached 72.4% and 74.7% at the ratios of 1∶10 and 1∶20 with lymphocytes. The activated lymphocytes secreted high levels of INF-γ and IL-2, which are strong antitumor cytokines. Moreover, Panc-1 CSCs lysates modified DC induced significant cytotoxic effects of lymphocytes on Panc-1 CSCs and parental Panc-1 cells, respectively, as shown by lactate dehydrogenase (LDH assay. Our study demonstrates that the development of CSCs-based vaccine is a promising strategy for treating pancreatic cancer.

  9. Killing-Yano tensors, rank-2 Killing tensors, and conserved quantities in higher dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Krtous, Pavel [Institute of Theoretical Physics, Charles University, V Holesovickach 2, Prague (Czech Republic); Kubiznak, David [Institute of Theoretical Physics, Charles University, V Holesovickach 2, Prague (Czech Republic); Page, Don N. [Theoretical Physics Institute, University of Alberta, Edmonton T6G 2G7, Alberta (Canada); Frolov, Valeri P. [Theoretical Physics Institute, University of Alberta, Edmonton T6G 2G7, Alberta (Canada)

    2007-02-15

    From the metric and one Killing-Yano tensor of rank D-2 in any D-dimensional spacetime with such a principal Killing-Yano tensor, we show how to generate k = [(D+1)/2] Killing-Yano tensors, of rank D-2j for all 0 {<=} j {<=} k-1, and k rank-2 Killing tensors, giving k constants of geodesic motion that are in involution. For the example of the Kerr-NUT-AdS spacetime (hep-th/0604125) with its principal Killing-Yano tensor (gr-qc/0610144), these constants and the constants from the k Killing vectors give D independent constants in involution, making the geodesic motion completely integrable (hep-th/0611083). The constants of motion are also related to the constants recently obtained in the separation of the Hamilton-Jacobi and Klein-Gordon equations (hep-th/0611245)

  10. Killing-Yano tensors, rank-2 Killing tensors, and conserved quantities in higher dimensions

    International Nuclear Information System (INIS)

    Krtous, Pavel; Kubiznak, David; Page, Don N.; Frolov, Valeri P.

    2007-01-01

    From the metric and one Killing-Yano tensor of rank D-2 in any D-dimensional spacetime with such a principal Killing-Yano tensor, we show how to generate k = [(D+1)/2] Killing-Yano tensors, of rank D-2j for all 0 ≤ j ≤ k-1, and k rank-2 Killing tensors, giving k constants of geodesic motion that are in involution. For the example of the Kerr-NUT-AdS spacetime (hep-th/0604125) with its principal Killing-Yano tensor (gr-qc/0610144), these constants and the constants from the k Killing vectors give D independent constants in involution, making the geodesic motion completely integrable (hep-th/0611083). The constants of motion are also related to the constants recently obtained in the separation of the Hamilton-Jacobi and Klein-Gordon equations (hep-th/0611245)

  11. Effects of radiation from a radiofrequency identification (RFID) microchip on human cancer cells.

    Science.gov (United States)

    Lai, Henry C; Chan, Ho Wing; Singh, Narendra P

    2016-01-01

    Radiofrequency identification (RFID) microchips are used to remotely identify objects, e.g. an animal in which a chip is implanted. A passive RFID microchip absorbs energy from an external source and emits a radiofrequency identification signal which is then decoded by a detector. In the present study, we investigated the effect of the radiofrequency energy emitted by a RFID microchip on human cancer cells. Molt-4 leukemia, BT474 breast cancer, and HepG2 hepatic cancer cells were exposed in vitro to RFID microchip-emitted radiofrequency field for 1 h. Cells were counted before and after exposure. Effects of pretreatment with the spin-trap compound N-tert-butyl-alpha-phenylnitrone or the iron-chelator deferoxamine were also investigated. Results We found that the energy effectively killed/retarded the growth of the three different types of cancer cells, and the effect was blocked by the spin-trap compound or the iron-chelator, whereas an inactive microchip and energy from the external source had no significant effect on the cells. Conclusions Data of the present study suggest that radiofrequency field from the microchip affects cancer cells via the Fenton Reaction. Implantation of RFID microchips in tumors may provide a new method for cancer treatment.

  12. Photothermal effects of multi-walled carbon nanotubes on the viability of BT-474 cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Hung-Tao [Department of Materials Science and Engineering, National Tsing Hua University, No. 101, Sec. 2 Kuang-Fu Rd., Hsin-chu 30013, Taiwan (China); Wang, Tsung-Pao [Department of Medical Science, National Tsing Hua University, No. 101, Sec. 2 Kuang-Fu Rd., Hsin-chu 30013, Taiwan (China); Lee, Chi-Young [Department of Materials Science and Engineering, National Tsing Hua University, No. 101, Sec. 2 Kuang-Fu Rd., Hsin-chu 30013, Taiwan (China); Tai, Nyan-Hwa, E-mail: nhtai@mx.nthu.edu.tw [Department of Materials Science and Engineering, National Tsing Hua University, No. 101, Sec. 2 Kuang-Fu Rd., Hsin-chu 30013, Taiwan (China); Chang, Hwan-You, E-mail: hychang@mx.nthu.edu.tw [Department of Medical Science, National Tsing Hua University, No. 101, Sec. 2 Kuang-Fu Rd., Hsin-chu 30013, Taiwan (China)

    2013-03-01

    Functionalized multi-walled carbon nanotubes (f-MWCNTs) were conjugated to an antibody of BT-474 cancer cells (f-MWCNTs-ab), and the photothermal effect of the f-MWCNTs-ab for BT-474 cancer cell destruction was demonstrated. After near-infrared irradiation, the f-MWCNTs-ab were more capable of killing cancer cells and possessed higher cell specificity than f-MWCNTs. Quantitative results showed that the viability of the cancer cells was affected by the concentration of the f-MWCNTs-ab solution, irradiation time, and settling time after irradiation. The membrane impermeable fluorescence dye ethidium bromide was used to detect cell viability after near-infrared irradiation, and the results agreed with those obtained from the Alamar Blue cell viability assay. The EtBr fluorescence results suggest that the cell membrane, attached to f-MWCNTs-ab, was damaged after irradiation, which led to cell death and necrosis. Using confocal microscopy, a few f-MWCNTs-ab were detected in the cell, indicating the endocytosis effect. The results not only explain the improved efficiency of thermotherapy but also indicate that necrosis may result from protein denaturation attributing to the heated f-MWCNTs-ab in the cell. Highlights: Black-Right-Pointing-Pointer f-MWCNTs conjugated with anti-HER2 antibody by chemical method. Black-Right-Pointing-Pointer Kill breast cancer cells by using low dose f-MWCNTs-ab due to photothermal effect. Black-Right-Pointing-Pointer Use EtBr fluorescent to prove that the cell membrane was broken by heated f-MWCNTs. Black-Right-Pointing-Pointer Few f-MWCNTs-ab were detected in the cell indicating the endocytosis effect. Black-Right-Pointing-Pointer Necrosis may result from protein denaturation due to contact with the heated CNTs.

  13. Role of nitric oxide and superoxide in Giardia lamblia killing

    Directory of Open Access Journals (Sweden)

    P.D. Fernandes

    1997-01-01

    Full Text Available Giardia lamblia trophozoites were incubated for 2 h with activated murine macrophages, nitric oxide (NO donors or a superoxide anion generator (20 mU/ml xanthine oxidase plus 1 mM xanthine. Activated macrophages were cytotoxic to Giardia trophozoites (~60% dead trophozoites. This effect was inhibited (>90% by an NO synthase inhibitor (200 µM and unaffected by superoxide dismutase (SOD, 300 U/ml. Giardia trophozoites were killed by the NO donors, S-nitroso-acetyl-penicillamine (SNAP and sodium nitroprusside (SNP in a dose-dependent manner (LD50 300 and 50 µM, respectively. A dual NO-superoxide anion donor, 3-morpholino-sydnonimine hydrochloride (SIN-1, did not have a killing effect in concentrations up to 1 mM. However, when SOD (300 U/ml was added simultaneously with SIN-1 to Giardia, a significant trophozoite-killing effect was observed (~35% dead trophozoites at 1 mM. The mixture of SNAP or SNP with superoxide anion, which yields peroxynitrite, abolished the trophozoite killing induced by NO donors. Authentic peroxynitrite only killed trophozoites at very high concentrations (3 mM. These results indicate that NO accounts for Giardia trophozoite killing and this effect is not mediated by peroxynitrite

  14. The HK2 Dependent "Warburg Effect" and Mitochondrial Oxidative Phosphorylation in Cancer: Targets for Effective Therapy with 3-Bromopyruvate.

    Science.gov (United States)

    Lis, Paweł; Dyląg, Mariusz; Niedźwiecka, Katarzyna; Ko, Young H; Pedersen, Peter L; Goffeau, Andre; Ułaszewski, Stanisław

    2016-12-15

    This review summarizes the current state of knowledge about the metabolism of cancer cells, especially with respect to the "Warburg" and "Crabtree" effects. This work also summarizes two key discoveries, one of which relates to hexokinase-2 (HK2), a major player in both the "Warburg effect" and cancer cell immortalization. The second discovery relates to the finding that cancer cells, unlike normal cells, derive as much as 60% of their ATP from glycolysis via the "Warburg effect", and the remaining 40% is derived from mitochondrial oxidative phosphorylation. Also described are selected anticancer agents which generally act as strong energy blockers inside cancer cells. Among them, much attention has focused on 3-bromopyruvate (3BP). This small alkylating compound targets both the "Warburg effect", i.e., elevated glycolysis even in the presence oxygen, as well as mitochondrial oxidative phosphorylation in cancer cells. Normal cells remain unharmed. 3BP rapidly kills cancer cells growing in tissue culture, eradicates tumors in animals, and prevents metastasis. In addition, properly formulated 3BP shows promise also as an effective anti-liver cancer agent in humans and is effective also toward cancers known as "multiple myeloma". Finally, 3BP has been shown to significantly extend the life of a human patient for which no other options were available. Thus, it can be stated that 3BP is a very promising new anti-cancer agent in the process of undergoing clinical development.

  15. Moringa oleifera Root Induces Cancer Apoptosis more Effectively than Leave Nanocomposites and Its Free Counterpart

    Science.gov (United States)

    Abd-Rabou, Ahmed A; Abdalla, Aboelfetoh M; Ali, Naglaa A; Zoheir, Khairy MA

    2017-01-01

    Medicinal plants are important elements of indigenous medical system that have persisted in developing countries. Many of the botanical chemo-preventions currently used as potent anticancer agents. However, some important anticancer agents are still extracted from plants because they cannot be synthesized chemically on a commercial scale due to their complex structures that often contain several chiral centers. The aim of this study was to test different extracts from the Moringa oleifera leaves (ML), its PLGA-CS-PEG nanocomposites (MLn), as well as root core (Rc) and outer (Ro) parts for activity against hepatocarcinoma HepG2, breast MCF7, and colorectal HCT 116/ Caco-2 cells in vitro. Nano-composites were prepared and characterized. Then, the nanocomposites and the free counterparts were screened on different propagated cancer cell lines. The underlying cytotoxic impact was followed using apoptosis measurements. All extracts kill the different cancer cells with different ratios, but intriguingly, the root core extract could kill the majority of cancer cells (approximately 70-80%), while sparing normal BHK-21 cells with minimal inhibitory effect (approximately 30-40%). Apoptotic cell increment came to confirm the cytotoxic effects of these extracts on HCT 116 cells (Rc: 212% and Ro: 180%, respectively) and HepG2 cells (ML: 567.5% and MLn: 608%, respectively) compared to control (100%) mechanistically wise. Moringa oleifera nanocomposites may have potential for use as a natural source of anti-cancer compounds. PMID:28843248

  16. In vitro and in vivo anti-cancer effects of tillandsia recurvata (ball moss) from Jamaica.

    Science.gov (United States)

    Lowe, H I C; Toyang, N J; Bryant, J

    2013-03-01

    Tillandsia recurvata, also commonly known as Ball Moss, is endemic to Jamaica and some parts of the Caribbean and South America. The plant, despite being reported to be used in folk medicine, had not previously been evaluated for its anti-cancer potential. The aim of this study was to evaluate the anti-cancer activity ofBall Moss. The anti-proliferation activity of the crude methanolic extract of the T recurvata was evaluated in vitro in five different histogenic cancer cell lines (prostate cancer - PC-3, breast cancer Kaposi sarcoma, B-16 melanoma and a B-cell lymphoma from a transgenic mouse strain) using the trypan blue assay. The crude extract was also evaluated in vivo in tumour-bearing mice. Immunohistochemistry staining with Apoptag was used for histology and determination of apoptosis. The crude methanolic extract of T recurvata demonstrated anti-proliferation activity against all the cell lines, killing > 50% of the cells at a concentration of 2.5 microg/ml. Kaposi sarcoma xenograft tumours were inhibited by up to 75% compared to control in the in vivo study (p < 0.05). There was evidence of DNA fragmentation and a decrease in cell viability on histological studies. The methanolic extract showed no toxic effect in the mice at a dose of 200 mg/kg. Our data suggest that T recurvata has great potential as an anti-cancer agent and that one of its mechanisms of cell kill and tumour inhibition is by the induction of apoptosis.

  17. Preliminary study of killing the larva of plodia interpunella by irradiation

    International Nuclear Information System (INIS)

    Wang Jide; Ma Xiaoping

    1994-01-01

    The results of killing the larva of plodia interpunella in the fruit by 60 Co γ-irradiation are described. The lowest effective dose for killing larva by irradiation is ca. 2000 Gy; the effective dose for immediately killing larva is 3000 Gy. The method is simple and easy and also suitable for the study of commercial irradiation of dry-fruit

  18. DISE: A Seed-Dependent RNAi Off-Target Effect That Kills Cancer Cells.

    Science.gov (United States)

    Putzbach, William; Gao, Quan Q; Patel, Monal; Haluck-Kangas, Ashley; Murmann, Andrea E; Peter, Marcus E

    2018-01-01

    Off-target effects (OTEs) represent a significant caveat for RNAi caused by substantial complementarity between siRNAs and unintended mRNAs. We now discuss the existence of three types of seed-dependent OTEs (sOTEs). Type I involves unintended targeting through the guide strand seed of an siRNA. Type II is caused by the activity of the seed on the designated siRNA passenger strand when loaded into the RNA-induced silencing complex (RISC). Both type I and II sOTEs will elicit unpredictable cellular responses. By contrast, in sOTE type III the guide strand seed preferentially targets essential survival genes resulting in death induced by survival gene elimination (DISE). In this Opinion article, we discuss DISE as a consequence of RNAi that may preferentially affect cancer cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. It’s Not Just Conflict That Motivates Killing of Orangutans

    Science.gov (United States)

    Davis, Jacqueline T.; Mengersen, Kerrie; Abram, Nicola K.; Ancrenaz, Marc; Wells, Jessie A.; Meijaard, Erik

    2013-01-01

    We investigated why orangutans are being killed in Kalimantan, Indonesia, and the role of conflict in these killings. Based on an analysis of interview data from over 5,000 respondents in over 450 villages, we also assessed the socio-ecological factors associated with conflict and non-conflict killings. Most respondents never kill orangutans. Those who reported having personally killed an orangutan primarily did so for non-conflict reasons; for example, 56% of these respondents said that the reason they had killed an orangutan was to eat it. Of the conflict-related reasons for killing, the most common reasons orangutans were killed was fear of orangutans or in self-defence. A similar pattern was evident among reports of orangutan killing by other people in the villages. Regression analyses indicated that religion and the percentage of intact forest around villages were the strongest socio-ecological predictors of whether orangutans were killed for conflict or non-conflict related reasons. Our data indicate that between 44,170 and 66,570 orangutans were killed in Kalimantan within the respondents’ active hunting lifetimes: between 12,690 and 29,024 for conflict reasons (95%CI) and between 26,361 and 41,688 for non-conflict reasons (95% CI). These findings confirm that habitat protection alone will not ensure the survival of orangutans in Indonesian Borneo, and that effective reduction of orangutan killings is urgently needed. PMID:24130707

  20. Selective killing of hepatocellular carcinoma HepG2 cells by three-dimensional nanographene nanoparticles based on triptycene

    Science.gov (United States)

    Xiong, Xiaoqin; Gan, Lu; Liu, Ying; Zhang, Chun; Yong, Tuying; Wang, Ziyi; Xu, Huibi; Yang, Xiangliang

    2015-03-01

    Carbon-based materials have been widely used in the biomedical fields including drug delivery and cancer therapies. In this paper, a recently synthesized three-dimensional nanographene (NG) based on triptycene self-assembles into nanoparticles which selectively kill human hepatocellular carcinoma HepG2 cells as compared to human normal liver HL7702 cells. Obvious differences in cellular accumulation, the endocytic pathway and intracellular trafficking of NG nanoparticles are observed in HepG2 cells and HL7702 cells. Further studies reveal that NG nanoparticles significantly increase the levels of reactive oxygen species (ROS) in HepG2 cells, but not in HL7702 cells. NG nanoparticle-induced ROS result in apoptosis induction and the decrease in mitochondrial membrane potential in HepG2 cells. Moreover, IKK/nuclear factor-κB (NF-κB) signaling is found to be activated by NG nanoparticle-induced ROS and serves to antagonize NG nanoparticle-induced apoptosis in HepG2 cells. Our studies show that the distinct behaviors of cellular uptake and ROS-mediated cytotoxicity are responsible for the selective killing of HepG2 cells. This study provides a foundation for understanding the mechanism of selective induction of apoptosis in cancer cells by NG nanoparticles and designing more effective chemotherapeutical agents.Carbon-based materials have been widely used in the biomedical fields including drug delivery and cancer therapies. In this paper, a recently synthesized three-dimensional nanographene (NG) based on triptycene self-assembles into nanoparticles which selectively kill human hepatocellular carcinoma HepG2 cells as compared to human normal liver HL7702 cells. Obvious differences in cellular accumulation, the endocytic pathway and intracellular trafficking of NG nanoparticles are observed in HepG2 cells and HL7702 cells. Further studies reveal that NG nanoparticles significantly increase the levels of reactive oxygen species (ROS) in HepG2 cells, but not in HL7702

  1. Technical Aspects of Cyber Kill Chain

    OpenAIRE

    Yadav, Tarun; Mallari, Rao Arvind

    2016-01-01

    Recent trends in targeted cyber-attacks has increased the interest of research in the field of cyber security. Such attacks have massive disruptive effects on rganizations, enterprises and governments. Cyber kill chain is a model to describe cyber-attacks so as to develop incident response and analysis capabilities. Cyber kill chain in simple terms is an attack chain, the path that an intruder takes to penetrate information systems over time to execute an attack on the target. This paper broa...

  2. Analysing the Wrongness of Killing

    DEFF Research Database (Denmark)

    Di Nucci, Ezio

    2014-01-01

    This article provides an in-depth analysis of the wrongness of killing by comparing different versions of three influential views: the traditional view that killing is always wrong; the liberal view that killing is wrong if and only if the victim does not want to be killed; and Don Marquis‟ future...... of value account of the wrongness of killing. In particular, I illustrate the advantages that a basic version of the liberal view and a basic version of the future of value account have over competing alternatives. Still, ultimately none of the views analysed here are satisfactory; but the different...

  3. Understanding the Effectiveness of Natural Compound Mixtures in Cancer through Their Molecular Mode of Action

    Directory of Open Access Journals (Sweden)

    Thazin Nwe Aung

    2017-03-01

    Full Text Available Many approaches to cancer management are often ineffective due to adverse reactions, drug resistance, or inadequate target specificity of single anti-cancer agents. In contrast, a combinatorial approach with the application of two or more anti-cancer agents at their respective effective dosages can achieve a synergistic effect that boosts cytotoxicity to cancer cells. In cancer, aberrant apoptotic pathways allow cells that should be killed to survive with genetic abnormalities, leading to cancer progression. Mutations in apoptotic mechanism arising during the treatment of cancer through cancer progression can consequently lead to chemoresistance. Natural compound mixtures that are believed to have multiple specific targets with minimal acceptable side-effects are now of interest to many researchers due to their cytotoxic and chemosensitizing activities. Synergistic interactions within a drug mixture enhance the search for potential molecular targets in cancer cells. Nonetheless, biased/flawed scientific evidence from natural products can suggest false positive therapeutic benefits during drug screening. In this review, we have taken these factors into consideration when discussing the evidence for these compounds and their synergistic therapeutic benefits in cancer. While there is limited evidence for clinical efficacy for these mixtures, in vitro data suggest that these preparations merit further investigation, both in vitro and in vivo.

  4. Gold Nanotheranostics: Photothermal Therapy and Imaging of Mucin 7 Conjugated Antibody Nanoparticles for Urothelial Cancer

    Directory of Open Access Journals (Sweden)

    Chieh Hsiao Chen

    2015-01-01

    Full Text Available Objective. To kill urothelial cancer cells while preserving healthy cells, this study used photothermal therapy (PTT. PTT techniques target urothelial cancer cells using gold nanoparticles (GNPs and a green light laser. Materials and Methods. The GNPs were conjugated with anti-Mucin 7 antibodies, which acted as a probe for targeting tumor cells. Conjugated GNPs were exposed to a green light laser (532 nm with sufficient thermal energy to kill the transitional cell carcinomas (TCCs. Results. According to our results, nanoparticles conjugated with Mucin 7 antibodies damaged all types of cancer cells (MBT2, T24, 9202, and 8301 at relatively low energy levels (i.e., 500 laser shots at 10 W/cm2 in power, 1.6 Hz in frequency, and 300 ms in duration. Nonconjugated nanoparticles required 30 W/cm2 or more to achieve the same effect. Cell damage was directly related to irradiation time and applied laser energy. Conclusions. The minimally invasive PTT procedure combined with Mucin 7 targeted GNPs is able to kill cancer cells and preserve healthy cells. The success of this treatment technique can likely be attributed to the lower amount of energy required to kill targeted cancer cells compared with that required to kill nontargeted cancer cells. Our in vitro pilot study yielded promising results; however, additional animal studies are required to confirm these findings.

  5. Bystander Host Cell Killing Effects of Clostridium perfringens Enterotoxin

    Directory of Open Access Journals (Sweden)

    Archana Shrestha

    2016-12-01

    Full Text Available Clostridium perfringens enterotoxin (CPE binds to claudin receptors, e.g., claudin-4, and then forms a pore that triggers cell death. Pure cultures of host cells that do not express claudin receptors, e.g., fibroblasts, are unaffected by pathophysiologically relevant CPE concentrations in vitro. However, both CPE-insensitive and CPE-sensitive host cells are present in vivo. Therefore, this study tested whether CPE treatment might affect fibroblasts when cocultured with CPE-sensitive claudin-4 fibroblast transfectants or Caco-2 cells. Under these conditions, immunofluorescence microscopy detected increased death of fibroblasts. This cytotoxic effect involved release of a toxic factor from the dying CPE-sensitive cells, since it could be reproduced using culture supernatants from CPE-treated sensitive cells. Supernatants from CPE-treated sensitive cells, particularly Caco-2 cells, were found to contain high levels of membrane vesicles, often containing a CPE species. However, most cytotoxic activity remained in those supernatants even after membrane vesicle depletion, and CPE was not detected in fibroblasts treated with supernatants from CPE-treated sensitive cells. Instead, characterization studies suggest that a major cytotoxic factor present in supernatants from CPE-treated sensitive cells may be a 10- to 30-kDa host serine protease or require the action of that host serine protease. Induction of caspase-3-mediated apoptosis was found to be important for triggering release of the cytotoxic factor(s from CPE-treated sensitive host cells. Furthermore, the cytotoxic factor(s in these supernatants was shown to induce a caspase-3-mediated killing of fibroblasts. This bystander killing effect due to release of cytotoxic factors from CPE-treated sensitive cells could contribute to CPE-mediated disease.

  6. Cloning, killing, and identity.

    Science.gov (United States)

    McMahan, J

    1999-01-01

    One potentially valuable use of cloning is to provide a source of tissues or organs for transplantation. The most important objection to this use of cloning is that a human clone would be the sort of entity that it would be seriously wrong to kill. I argue that entities of the sort that you and I essentially are do not begin to exist until around the seventh month of fetal gestation. Therefore to kill a clone prior to that would not be to kill someone like you or me but would be only to prevent one of us from existing. And even after one of us begins to exist, the objections to killing it remain comparatively weak until its psychological capacities reach a certain level of maturation. These claims support the permissibility of killing a clone during the early stages of its development in order to use its organs for transplantation. PMID:10226909

  7. siRNA inhibition of telomerase enhances the anti-cancer effect of doxorubicin in breast cancer cells

    International Nuclear Information System (INIS)

    Dong, Xuejun; Liu, Anding; Zer, Cindy; Feng, Jianguo; Zhen, Zhuan; Yang, Mingfeng; Zhong, Li

    2009-01-01

    Doxorubicin is an effective breast cancer drug but is hampered by a severe, dose-dependent toxicity. Concomitant administration of doxorubicin and another cancer drug may be able to sensitize tumor cells to the cytotoxicity of doxorubicin and lowers the therapeutic dosage. In this study, we examined the combined effect of low-dose doxorubicin and siRNA inhibition of telomerase on breast cancer cells. We found that when used individually, both treatments were rapid and potent apoptosis inducers; and when the two treatments were combined, we observed an enhanced and sustained apoptosis induction in breast cancer cells. siRNA targeting the mRNA of the protein component of telomerase, the telomerase reverse transcriptase (hTERT), was transfected into two breast cancer cell lines. The siRNA inhibition was confirmed by RT-PCR and western blot on hTERT mRNA and protein levels, respectively, and by measuring the activity level of telomerase using the TRAP assay. The effect of the hTERT siRNA on the tumorigenicity of the breast cancer cells was also studied in vivo by injection of the siRNA-transfected breast cancer cells into nude mice. The effects on cell viability, apoptosis and senescence of cells treated with hTERT siRNA, doxorubicin, and the combined treatment of doxorubicin and hTERT siRNA, were examined in vitro by MTT assay, FACS and SA-β-galactosidase staining. The hTERT siRNA effectively knocked down the mRNA and protein levels of hTERT, and reduced the telomerase activity to 30% of the untreated control. In vivo, the tumors induced by the hTERT siRNA-transfected cells were of reduced sizes, indicating that the hTERT siRNA also reduced the tumorigenic potential of the breast cancer cells. The siRNA treatment reduced cell viability by 50% in breast cancer cells within two days after transfection, while 0.5 μM doxorubicin treatment had a comparable effect but with a slower kinetics. The combination of hTERT siRNA and 0.5 μM doxorubicin killed twice as many

  8. NK-cell-dependent killing of colon carcinoma cells is mediated by natural cytotoxicity receptors (NCRs) and stimulated by parvovirus infection of target cells

    International Nuclear Information System (INIS)

    Bhat, Rauf; Rommelaere, Jean

    2013-01-01

    Investigating how the immune system functions during malignancies is crucial to developing novel therapeutic strategies. Natural killer (NK) cells, an important component of the innate immune system, play a vital role in immune defense against tumors and virus-infected cells. The poor survival rate in colon cancer makes it particularly important to develop novel therapeutic strategies. Oncolytic viruses, in addition to lysing tumor cells, may have the potential to augment antitumor immune responses. In the present study, we investigate the role of NK cells and how parvovirus H-1PV can modulate NK-cell mediated immune responses against colon carcinoma. Human NK cells were isolated from the blood of healthy donors. The cytotoxicity and antibody-mediated inhibition of NK cells were measured in chromium release assays. Phenotypic assessment of colon cancer and dendritic cells was done by FACS. The statistical significance of the results was calculated with Student’s t test (*p <0.05; **, p < 0.01; ***, p < 0.001). We show that IL-2-activated human NK cells can effectively kill colon carcinoma cells. Killing of colon carcinoma cells by NK cells was further enhanced upon infection of the former cells with parvovirus H-1PV. H-1PV has potent oncolytic activity against various tumors, yet its direct killing effect on colon carcinoma cells is limited. The cytotoxicity of NK cells towards colon carcinoma cells, both mock- and H-1PV-infected, was found to be mostly mediated by a combination of natural cytotoxicity receptors (NCRs), namely NKp30, 44, and 46. Colon carcinoma cells displayed low to moderate expression of NK cell ligands, and this expression was modulated upon H-1PV infection. Lysates of H-1PV-infected colon carcinoma cells were found to increase MHC class II expression on dendritic cells. Altogether, these data suggest that IL-2-activated NK cells actively kill colon carcinoma cells and that this killing is mediated by several natural cytotoxicity receptors

  9. How effective is road mitigation at reducing road-kill? A meta-analysis

    NARCIS (Netherlands)

    Rytwinski, Trina; Soanes, Kylie; Jaeger, Jochen A.G.; Fahrig, Lenore; Findlay, C.S.; Houlahan, Jeff; Ree, van der Rodney; Grift, van der Edgar A.

    2016-01-01

    Road traffic kills hundreds of millions of animals every year, posing a critical threat to the populations of many species. To address this problem there are more than forty types of road mitigation measures available that aim to reduce wildlife mortality on roads (road-kill). For road planners,

  10. Mass killings and detection of impacts

    Science.gov (United States)

    McLaren, Digby J.

    Highly energetic bolide impacts occur and their flux is known. For larger bodies the energy release is greater than for any other short-term global phenomenon. Such impacts produce or release a large variety of shock induced changes including major atmospheric, sedimentologic, seismic and volcanic events. These events must necessarily leave a variety of records in the stratigraphic column, including mass killings resulting in major changes in population density and reduction or extinction of many taxonomic groups, followed by characteristic patterns of faunal and flora replacement. Of these effects, mass killings, marked by large-scale loss of biomass, are the most easily detected evidence in the field but must be manifest on a near-global scale. Such mass killings that appear to be approximately synchronous and involve disappearance of biomass at a bedding plane in many sedimentologically independent sections globally suggest a common cause and probable synchroneity. Mass killings identify an horizon which may be examined for evidence of cause. Geochemical markers may be ephemeral and absence may not be significant. There appears to be no reason why ongoing phenomena such as climate and sea-level changes are primary causes of anomolous episodic events.

  11. Glycan elongation beyond the mucin associated Tn antigen protects tumor cells from immune-mediated killing

    DEFF Research Database (Denmark)

    Madsen, Caroline B; Lavrsen, Kirstine; Steentoft, Catharina

    2013-01-01

    are recognized as cancer associated truncated glycans, and are expressed in many adenocarcinomas, e.g. breast- and pancreatic cancer cells. To investigate the role of the cancer associated glycan truncations in immune-mediated killing we created glyco-engineered breast- and pancreatic cancer cells expressing...... only the shortest possible mucin-like glycans (Tn and STn). Glyco-engineering was performed by zinc finger nuclease (ZFN) knockout (KO) of the Core 1 enzyme chaperone COSMC, thereby preventing glycan elongation beyond the initial GalNAc residue in O-linked glycans. We find that COSMC KO in the breast...

  12. "Guns do not kill, people do!"

    DEFF Research Database (Denmark)

    Lemche, Niels Peter

    2011-01-01

    The Bible does not kill, but many people who have read the Bible (in their way) have killed, virtually or in real.......The Bible does not kill, but many people who have read the Bible (in their way) have killed, virtually or in real....

  13. Lentiviral vectors in cancer immunotherapy.

    Science.gov (United States)

    Oldham, Robyn Aa; Berinstein, Elliot M; Medin, Jeffrey A

    2015-01-01

    Basic science advances in cancer immunotherapy have resulted in various treatments that have recently shown success in the clinic. Many of these therapies require the insertion of genes into cells to directly kill them or to redirect the host's cells to induce potent immune responses. Other analogous therapies work by modifying effector cells for improved targeting and enhanced killing of tumor cells. Initial studies done using γ-retroviruses were promising, but safety concerns centered on the potential for insertional mutagenesis have highlighted the desire to develop other options for gene delivery. Lentiviral vectors (LVs) have been identified as potentially more effective and safer alternative delivery vehicles. LVs are now in use in clinical trials for many different types of inherited and acquired disorders, including cancer. This review will discuss current knowledge of LVs and the applications of this viral vector-based delivery vehicle to cancer immunotherapy.

  14. Photoexcited quantum dots for killing multidrug-resistant bacteria

    Science.gov (United States)

    Courtney, Colleen M.; Goodman, Samuel M.; McDaniel, Jessica A.; Madinger, Nancy E.; Chatterjee, Anushree; Nagpal, Prashant

    2016-05-01

    Multidrug-resistant bacterial infections are an ever-growing threat because of the shrinking arsenal of efficacious antibiotics. Metal nanoparticles can induce cell death, yet the toxicity effect is typically nonspecific. Here, we show that photoexcited quantum dots (QDs) can kill a wide range of multidrug-resistant bacterial clinical isolates, including methicillin-resistant Staphylococcus aureus, carbapenem-resistant Escherichia coli, and extended-spectrum β-lactamase-producing Klebsiella pneumoniae and Salmonella typhimurium. The killing effect is independent of material and controlled by the redox potentials of the photogenerated charge carriers, which selectively alter the cellular redox state. We also show that the QDs can be tailored to kill 92% of bacterial cells in a monoculture, and in a co-culture of E. coli and HEK 293T cells, while leaving the mammalian cells intact, or to increase bacterial proliferation. Photoexcited QDs could be used in the study of the effect of redox states on living systems, and lead to clinical phototherapy for the treatment of infections.

  15. MR-only Radiotherapy of prostate cancer

    OpenAIRE

    Maspero, Matteo

    2018-01-01

    Radiotherapy is a local approach that involves the use of ionising radiation by exploiting its cell-killing effect to cure cancer. This effect, however, is not specific to damage only cancerous cells and spare healthy cells. Therefore, developments in radiotherapy aimed at reducing treatment uncertainties such that therapeutic radiation dose may be delivered to a malignant tumour while decreasing the dose received by healthy tissues. The recent advances in imaging techniques impacted and radi...

  16. In vivo tyrosinase mini-gene transfer enhances killing effect of BNCT on amelanotic melanoma

    International Nuclear Information System (INIS)

    Kondoh, H.; Mishima, Y.; Hiratsuka, J.; Iwakura, M.

    2000-01-01

    Using accentuated melanogenesis principally occurring within melanoma cells, we have successfully treated human malignant melanoma (Mm) with 10 B-BPA BNCT. Despite this success, there are still remaining issues for poorly melanogenic Mm and further non-pigment cell tumors. We found the selective accumulation of 10 B-BPA to Mm is primarily due to the complex formation of BPA and melanin-monomers activity synthesized within Mm cells. Then, we succeeded in transferring the tyrosinase gene into amelanotic to substantially produce melanin monomers. These cells has demonstrated increased boron accumulation and enhanced killing effect of BNCT. Further, transfection of TRP-2 (DOPAchrome tautomerase) gene into poorly eumelanotic and slightly phenomelanotic Mm cells in culture cell systems also led to increased BPA accumulation. Thereafter, we studied in vivo gene transfer. We transferred the tyrosinase mini-gene by intra-tumor injection into poorly melanotic Mm proliferating subcutaneously in hamster skin, and performed BNCT. Compared to control tumors, gene-transferred tumors showed increased BPA accumulation leading to enhanced killing effect. (author)

  17. Killing-Yano tensors and Nambu mechanics

    International Nuclear Information System (INIS)

    Baleanu, D.

    1998-01-01

    Killing-Yano tensors were introduced in 1952 by Kentaro-Yano from mathematical point of view. The physical interpretation of Killing-Yano tensors of rank higher than two was unclear. We found that all Killing-Yano tensors η i 1 i 2 . .. i n with covariant derivative zero are Nambu tensors. We found that in the case of flat space case all Killing-Yano tensors are Nambu tensors. In the case of Taub-NUT and Kerr-Newmann metric Killing-Yano tensors of order two generate Nambu tensors of rank 3

  18. Treatment of colon cancer with oncolytic herpes simplex virus in preclinical models.

    Science.gov (United States)

    Yang, H; Peng, T; Li, J; Wang, Y; Zhang, W; Zhang, P; Peng, S; Du, T; Li, Y; Yan, Q; Liu, B

    2016-05-01

    Cancer stem cells (CSCs), which are a rare population in any type of cancer, including colon cancer, are tumorigenic and responsible for cancer recurrence and metastasis. CSCs have been isolated from a number of different solid tumors recently, although the isolation of CSCs in colon cancer is still challenging. We cultured colon cancer cells in stem cell medium to obtain colonosphere cells. These cells possessed the characteristics of CSCs, with a high capacity of tumorigenicity, migration and invasion in vitro and in vivo. The isolation and identification of CSCs have provided new targets for the therapeutics. Oncolytic herpes simplex viruses (oHSV) are an effective strategy for killing colon cancer cells in preclinical models. Here, we examined the efficacy of an oncolytic herpes simplex virus type 2 (oHSV2) in killing colon cancer cells and colon cancer stem-like cells (CSLCs). oHSV2 was found to be highly cytotoxic to the adherent and sphere cells in vitro, and oHSV2 treatment in vivo significantly inhibited tumor growth. This study demonstrates that oHSV2 is effective against colon cancer cells and colon CSLCs and could be a promising strategy for treating colon cancer patients.

  19. Habitat or matrix: which is more relevant to predict road-kill of vertebrates?

    Science.gov (United States)

    Bueno, C; Sousa, C O M; Freitas, S R

    2015-11-01

    We believe that in tropics we need a community approach to evaluate road impacts on wildlife, and thus, suggest mitigation measures for groups of species instead a focal-species approach. Understanding which landscape characteristics indicate road-kill events may also provide models that can be applied in other regions. We intend to evaluate if habitat or matrix is more relevant to predict road-kill events for a group of species. Our hypothesis is: more permeable matrix is the most relevant factor to explain road-kill events. To test this hypothesis, we chose vertebrates as the studied assemblage and a highway crossing in an Atlantic Forest region in southeastern Brazil as the study site. Logistic regression models were designed using presence/absence of road-kill events as dependent variables and landscape characteristics as independent variables, which were selected by Akaike's Information Criterion. We considered a set of candidate models containing four types of simple regression models: Habitat effect model; Matrix types effect models; Highway effect model; and, Reference models (intercept and buffer distance). Almost three hundred road-kills and 70 species were recorded. River proximity and herbaceous vegetation cover, both matrix effect models, were associated to most road-killed vertebrate groups. Matrix was more relevant than habitat to predict road-kill of vertebrates. The association between river proximity and road-kill indicates that rivers may be a preferential route for most species. We discuss multi-species mitigation measures and implications to movement ecology and conservation strategies.

  20. "The Killing Fields" of Innovation

    DEFF Research Database (Denmark)

    Ingerslev, Karen

    2014-01-01

    to clustering of ideas, a design strategy which seemed to kill unique ideas. The reframing of innovation as a radical endeavor killed learning from others for being not innovative. The findings of this paper supplement theories of deliberate killing of ideas by suggesting framing, design and facilitation......This paper points to seemingly contradicted processes of framing innovation, idea generation and killing ideas. It reports from a yearlong innovation project, where health care professionals explored problems and tested ideas for solutions, regarding a future downsizing of the case hospital....... Theories in various ways describe the opening and closing phases of innovation. Exploration and idea generation opens a field of interest, which is then closed by making choices of ideas to further explore in the next opening phase. These choices deliberately kill a lot of ideas. In the innovation project...

  1. Reptile road-kills in Southern Brazil: Composition, hot moments and hotspots.

    Science.gov (United States)

    Gonçalves, Larissa Oliveira; Alvares, Diego Janisch; Teixeira, Fernanda Zimmermann; Schuck, Gabriela; Coelho, Igor Pfeifer; Esperandio, Isadora Beraldi; Anza, Juan; Beduschi, Júlia; Bastazini, Vinicius Augusto Galvão; Kindel, Andreas

    2018-02-15

    Understanding road-kill patterns is the first step to assess the potential effects of road mortality on wildlife populations, as well as to define the need for mitigation and support its planning. Reptiles are one of the vertebrate groups most affected by roads through vehicle collisions, both because they are intentionally killed by drivers, and due to their biological needs, such as thermoregulation, which make them more prone to collisions. We conducted monthly road surveys (33months), searching for carcasses of freshwater turtles, lizards, and snakes on a 277-km stretch of BR-101 road in Southernmost Brazil to estimate road-kill composition and magnitude and to describe the main periods and locations of road-kills. We modeled the distribution of road-kills in space according to land cover classes and local traffic volume. Considering the detection capacity of our method and carcass persistence probability, we estimated that 15,377 reptiles are road-killed per year (55reptiles/km/year). Road-kills, especially lizards and snakes, were concentrated during summer, probably due to their higher activity in this period. Road-kill hotspots were coincident among freshwater turtles, lizards, and snakes. Road-kill distribution was negatively related to pine plantations, and positively related to rice plantations and traffic volume. A cost-benefit analysis highlighted that if mitigation measures were installed at road-kill hotspots, which correspond to 21% of the road, they could have avoided up to 45% of recorded reptile fatalities, assuming a 100% mitigation effectiveness. Given the congruent patterns found for all three taxa, the same mitigation measures could be used to minimize the impacts of collision on local herpetofauna. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Scientific projection paper for mutagenesis, transformation and cell killing

    International Nuclear Information System (INIS)

    Todd, P.

    1980-01-01

    Our knowledge about mutagenesis, transformation, and cell killing by ionizing radiation consists of large bodies of data, which are potentially useful in terms of application to human risk assessment and to the constructive use of radiation, as in cancer treatment. The three end-points discussed above are united by at least five significant concepts in radiation research strategy: (1) The inter-relationships among the important end-points, mutation, carcinogenesis, and cell killing. Research on one is meaningful only in the context of information about the other two. (2) The interaction of radiations with other agents in producing these end-points. (3) The mechanisms of action of other environmental mutagenic, carcinogenic, and cytotoxic agents. (4) The use of repair deficient human mutant cells. (5) The study of radiation damage mechanisms. There is no better way to extrapolate laboratory data to the clinical and public worlds than to understand the underlying biological mechanisms that produced the data

  3. Efficient Kill-Save Ratios Ease Up the Cognitive Demands on Counterintuitive Moral Utilitarianism.

    Science.gov (United States)

    Trémolière, Bastien; Bonnefon, Jean-François

    2014-07-01

    The dual-process model of moral judgment postulates that utilitarian responses to moral dilemmas (e.g., accepting to kill one to save five) are demanding of cognitive resources. Here we show that utilitarian responses can become effortless, even when they involve to kill someone, as long as the kill-save ratio is efficient (e.g., 1 is killed to save 500). In Experiment 1, participants responded to moral dilemmas featuring different kill-save ratios under high or low cognitive load. In Experiments 2 and 3, participants responded at their own pace or under time pressure. Efficient kill-save ratios promoted utilitarian responding and neutered the effect of load or time pressure. We discuss whether this effect is more easily explained by a parallel-activation model or by a default-interventionist model. © 2014 by the Society for Personality and Social Psychology, Inc.

  4. Combination of chemotherapy and heavy-ion particle therapy for pancreas cancer

    International Nuclear Information System (INIS)

    Yamada, Shigeru; Ando, Koichi

    2003-01-01

    The purpose of this study is to investigate the combination of chemotherapy and heavy-ion particle therapy for pancreas cancer. We measured surviving fractions in four culture pancreas cancer cells. The cell killing of heavy-ion irradiation is more effective compared to that of X ray irradiation. Gemcitabine induced radiosensitization for pancreas cancer cells. (author)

  5. Combination of chemotherapy and heavy-ion particle therapy for pancreas cancer

    International Nuclear Information System (INIS)

    Yamada, Shigeru; Ando, Koichi

    2004-01-01

    The purpose of this study is to investigate the combination of chemotherapy and heavy-ion particle therapy for pancreas cancer. We measured surviving fractions in four culture pancreas cancer cells. The cell killing of heavy-ion irradiation is more effective compared to that of X ray irradiation. Gemcitabine induced radiosensitization for pancreas cancer cells. (author)

  6. Photomedicine and Stem Cells; The Janus face of photodynamic therapy (PDT) to kill cancer stem cells, and photobiomodulation (PBM) to stimulate normal stem cells

    Science.gov (United States)

    Abrahamse, Heidi; Hamblin, Michael R.

    2017-12-01

    Janus, the ancient Roman god depicted with two faces is an appropriate metaphor for light therapy. In the right photodynamic therapy conditions, light is able to kill nearly anything that is living such as cancers, microorganisms, parasites, and more. On the opposite face, light of the correct wavelength and proper dose (photobiomodulation) can heal, regenerate, protect, revitalize and restore any kind of dead, damaged, stressed, dying, degenerating cells, tissue, or organ system. This book discusses both sides of Janus' face in regards to light therapy.

  7. A Novel Scheme for Optimal Control of a Nonlinear Delay Differential Equations Model to Determine Effective and Optimal Administrating Chemotherapy Agents in Breast Cancer.

    Science.gov (United States)

    Ramezanpour, H R; Setayeshi, S; Akbari, M E

    2011-01-01

    Determining the optimal and effective scheme for administrating the chemotherapy agents in breast cancer is the main goal of this scientific research. The most important issue here is the amount of drug or radiation administrated in chemotherapy and radiotherapy for increasing patient's survival. This is because in these cases, the therapy not only kills the tumor cells, but also kills some of the healthy tissues and causes serious damages. In this paper we investigate optimal drug scheduling effect for breast cancer model which consist of nonlinear ordinary differential time-delay equations. In this paper, a mathematical model of breast cancer tumors is discussed and then optimal control theory is applied to find out the optimal drug adjustment as an input control of system. Finally we use Sensitivity Approach (SA) to solve the optimal control problem. The goal of this paper is to determine optimal and effective scheme for administering the chemotherapy agent, so that the tumor is eradicated, while the immune systems remains above a suitable level. Simulation results confirm the effectiveness of our proposed procedure. In this paper a new scheme is proposed to design a therapy protocol for chemotherapy in Breast Cancer. In contrast to traditional pulse drug delivery, a continuous process is offered and optimized, according to the optimal control theory for time-delay systems.

  8. Oncolytic Viruses in Head and Neck Cancer: A New Ray of Hope in ...

    African Journals Online (AJOL)

    radiotherapy, immunotherapy, and gene therapy. All the treatment modalities currently employed are associated with potential adverse effects. Hence, there is an urgent need of a treatment modality that targets cancer cell and has minimal side-effects. One such upcoming approach is the use of viruses to kill cancer cells.

  9. Comparing Road-Kill Datasets from Hunters and Citizen Scientists in a Landscape Context

    OpenAIRE

    Florian Heigl; Carina R. Stretz; Wolfgang Steiner; Franz Suppan; Thomas Bauer; Gregor Laaha; Johann G. Zaller

    2016-01-01

    Road traffic has severe effects on animals, especially when road-kills are involved. In many countries, official road-kill data are provided by hunters or police; there are also road-kill observations reported by citizen scientists. The aim of the current study was to test whether road-kill reports by hunters stem from similar landscapes than those reported by citizen scientists. We analysed the surrounding landscapes of 712 road-kill reportings of European hares in the province of Lower Aust...

  10. Habitat or matrix: which is more relevant to predict road-kill of vertebrates?

    Directory of Open Access Journals (Sweden)

    C. Bueno

    Full Text Available Abstract We believe that in tropics we need a community approach to evaluate road impacts on wildlife, and thus, suggest mitigation measures for groups of species instead a focal-species approach. Understanding which landscape characteristics indicate road-kill events may also provide models that can be applied in other regions. We intend to evaluate if habitat or matrix is more relevant to predict road-kill events for a group of species. Our hypothesis is: more permeable matrix is the most relevant factor to explain road-kill events. To test this hypothesis, we chose vertebrates as the studied assemblage and a highway crossing in an Atlantic Forest region in southeastern Brazil as the study site. Logistic regression models were designed using presence/absence of road-kill events as dependent variables and landscape characteristics as independent variables, which were selected by Akaike’s Information Criterion. We considered a set of candidate models containing four types of simple regression models: Habitat effect model; Matrix types effect models; Highway effect model; and, Reference models (intercept and buffer distance. Almost three hundred road-kills and 70 species were recorded. River proximity and herbaceous vegetation cover, both matrix effect models, were associated to most road-killed vertebrate groups. Matrix was more relevant than habitat to predict road-kill of vertebrates. The association between river proximity and road-kill indicates that rivers may be a preferential route for most species. We discuss multi-species mitigation measures and implications to movement ecology and conservation strategies.

  11. Effects of Combined Simultaneous and Sequential Endostar and Cisplatin Treatment in a Mice Model of Gastric Cancer Peritoneal Metastases

    Directory of Open Access Journals (Sweden)

    Lin Jia

    2017-01-01

    Full Text Available Objective. Aimed to study the effects of endostar and cisplatin using an in vivo imaging system (IVIS in a model of peritoneal metastasis of gastric cancer. Methods. NUGC-4 gastric cancer cells transfected with luciferase gene (NUGC-4-Luc were injected i.p. into nude mice. One week later, mice were randomly injected i.p.: group 1, cisplatin (d1–3 + endostar (d4–7; group 2, endostar (d1–4 + cisplatin (d5–7; group 3, endostar + cisplatin d1, 4, and 7; group 4, saline for two weeks. One week after the final administration, mice were sacrificed. Bioluminescent data, microvessel density (MVD, and lymphatic vessel density (LVD were analyzed. Results. Among the four groups, there were no significant differences in the weights and in the number of cancer cell photons on days 1 and 8 (P>0.05. On day 15, the numbers in groups 3 and 1 were less than that in group 2 (P0.05 or in LVD number among the four groups (P>0.05. Conclusions. IVIS® was more useful than weight, volume of ascites, and number of peritoneal nodules. The simultaneous group was superior to sequential groups in killing cancer cells and inhibiting vascular endothelium. Cisplatin-endostar was superior to endostar-cisplatin in killing cancer cells, while the latter in inhibiting peritoneal vascular endothelium.

  12. Effects of Combined Simultaneous and Sequential Endostar and Cisplatin Treatment in a Mice Model of Gastric Cancer Peritoneal Metastases.

    Science.gov (United States)

    Jia, Lin; Ren, Shuguang; Li, Tao; Wu, Jianing; Zhou, Xinliang; Zhang, Yan; Wu, Jianhua; Liu, Wei

    2017-01-01

    Objective . Aimed to study the effects of endostar and cisplatin using an in vivo imaging system (IVIS) in a model of peritoneal metastasis of gastric cancer. Methods . NUGC-4 gastric cancer cells transfected with luciferase gene (NUGC-4-Luc) were injected i.p. into nude mice. One week later, mice were randomly injected i.p.: group 1, cisplatin (d1-3) + endostar (d4-7); group 2, endostar (d1-4) + cisplatin (d5-7); group 3, endostar + cisplatin d1, 4, and 7; group 4, saline for two weeks. One week after the final administration, mice were sacrificed. Bioluminescent data, microvessel density (MVD), and lymphatic vessel density (LVD) were analyzed. Results . Among the four groups, there were no significant differences in the weights and in the number of cancer cell photons on days 1 and 8 ( P > 0.05). On day 15, the numbers in groups 3 and 1 were less than that in group 2 ( P 0.05) or in LVD number among the four groups ( P > 0.05). Conclusions . IVIS® was more useful than weight, volume of ascites, and number of peritoneal nodules. The simultaneous group was superior to sequential groups in killing cancer cells and inhibiting vascular endothelium. Cisplatin-endostar was superior to endostar-cisplatin in killing cancer cells, while the latter in inhibiting peritoneal vascular endothelium.

  13. Combination of chemotherapy and heavy-ion particle therapy for gastrointestinal cancer

    International Nuclear Information System (INIS)

    Yamada, Shigeru; Kitabayashi, Hiroyuki; Furusawa, Yoshiya; Ando, Koichi

    2005-01-01

    The purpose of this study is to investigate the combination of chemotherapy and heavy-ion particle therapy for pancreas and esophageal cancer. We measured surviving fractions in four culture pancreas and esophageal cancer cells. The cell killing of heavy-ion irradiation is more effective compared to that of X ray irradiation. Gemcitabine induced radiosensitization for pancreas cancer cells and also taxotel for esophageal cancer. (author)

  14. Effects of oxygen and misonidazole on cell transformation and cell killing in C3H 10T1/2 cells by X rays in vitro

    International Nuclear Information System (INIS)

    Borsa, J.; Sargent, M.D.; Einspenner, M.; Azzam, E.I.; Raaphorst, G.P.

    1984-01-01

    The effects of oxygen (air) and misonidazole on the transformation and killing of 10T1/2 cells by X rays were examined. The oxygen effect for the cell transformation end point was very similar to that for cell killing. Misonidazole enhanced both cell killing and cell transformation to a similar extent. The enhancement of both end points by misonidazole occurred only in the absence of oxygen during irradiation and was of lesser magnitude than that observed for oxygen. These results demonstrate that the radiation chemical processes leading to cell killing and cell transformation, respectively, are affected similarly by these two enhancers of radiation action. 22 references, 3 figures, 2 tables

  15. Salivary Gland Cancer

    Science.gov (United States)

    ... contains antibodies that can kill germs. Salivary gland cancer is a type of head and neck cancer. It is rare. It may not cause any ... pain in your face Doctors diagnose salivary gland cancer using a physical exam, imaging tests, and a ...

  16. Cancer cells become susceptible to natural killer cell killing after exposure to histone deacetylase inhibitors due to glycogen synthase kinase-3-dependent expression of MHC class I-related chain A and B

    DEFF Research Database (Denmark)

    Skov, Søren; Pedersen, Marianne Terndrup; Andresen, Lars

    2005-01-01

    We show that histone deacetylase (HDAC) inhibitors lead to functional expression of MHC class I-related chain A and B (MICA/B) on cancer cells, making them potent targets for natural killer (NK) cell-mediated killing through a NK group 2, member D (NKG2D) restricted mechanism. Blocking either...

  17. In vivo tyrosinase mini-gene transfer enhances killing effect of BNCT on amelanotic melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Kondoh, H.; Mishima, Y. [Mishima Institute for Dermatological Research, Kobe, Hyogo (Japan); Hiratsuka, J. [Kawasaki Medical School, Dept. of Radiation Oncology, Kurashiki, Okayama (Japan); Iwakura, M. [Kobe Univ. (Japan). School of Medicine

    2000-10-01

    Using accentuated melanogenesis principally occurring within melanoma cells, we have successfully treated human malignant melanoma (Mm) with {sup 10}B-BPA BNCT. Despite this success, there are still remaining issues for poorly melanogenic Mm and further non-pigment cell tumors. We found the selective accumulation of {sup 10}B-BPA to Mm is primarily due to the complex formation of BPA and melanin-monomers activity synthesized within Mm cells. Then, we succeeded in transferring the tyrosinase gene into amelanotic to substantially produce melanin monomers. These cells has demonstrated increased boron accumulation and enhanced killing effect of BNCT. Further, transfection of TRP-2 (DOPAchrome tautomerase) gene into poorly eumelanotic and slightly phenomelanotic Mm cells in culture cell systems also led to increased BPA accumulation. Thereafter, we studied in vivo gene transfer. We transferred the tyrosinase mini-gene by intra-tumor injection into poorly melanotic Mm proliferating subcutaneously in hamster skin, and performed BNCT. Compared to control tumors, gene-transferred tumors showed increased BPA accumulation leading to enhanced killing effect. (author)

  18. When Bcl-2 Is Absent, Anti-IGF1R Antibody Is Effective | Center for Cancer Research

    Science.gov (United States)

    A number of new agents being developed to treat cancer are able to kill cancer cells and cause tumor regression, but the mechanisms by which these drugs act, and the biological processes by which they induce cancer cell death are not clear. Understanding which pathways and proteins are influenced by an agent may help predict tumor responses and refine treatment regimens.

  19. Bacteria killing effect of pulsed plasmas in oxygen+air at atmospheric pressure

    International Nuclear Information System (INIS)

    Akan, T.

    2005-01-01

    Bacteria Killing Method. The high voltage pulsed plasma is a non-equilibrium plasma and generates UV photons, ozone and active oxygen. The aim of this paper is to present a simple device to generate plasma able to kill efficiently bacteria. One of the probes charged with bacteria, was kept as a control probes (not exposed to the pulsed plasma), the rest of the probes were exposed to the pulsed plasma and afterwards compared with above mentioned control probe (reference sample). During treatment the bacteria were exposed to the active atoms, molecules, charged particles and photons generated by the pulsed plasma. The temperature of the support of samples with bacteria exposed to plasma increased during the treatment with only 1-2 degrees. Full killing time of Staphylococcus species as low as 3 minutes have been obtained quite easily

  20. Herceptin Enhances the Antitumor Effect of Natural Killer Cells on Breast Cancer Cells Expressing Human Epidermal Growth Factor Receptor-2

    Directory of Open Access Journals (Sweden)

    Xiao Tian

    2017-10-01

    Full Text Available Optimal adoptive cell therapy (ACT should contribute to effective cancer treatment. The unique ability of natural killer (NK cells to kill cancer cells independent of major histocompatibility requirement makes them suitable as ACT tools. Herceptin, an antihuman epidermal growth factor receptor-2 (anti-HER2 monoclonal antibody, is used to treat HER2+ breast cancer. However, it has limited effectiveness and possible severe cardiotoxicity. Given that Herceptin may increase the cytotoxicity of lymphocytes, we explored the possible augmentation of NK cell cytotoxicity against HER2+ breast cancer cells by Herceptin. We demonstrated that Herceptin could interact with CD16 on NK cells to expand the cytotoxic NK (specifically, CD56dim cell population. Additionally, Herceptin increased NK cell migration and cytotoxicity against HER2+ breast cancer cells. In a pilot study, Herceptin-treated NK cells shrunk lung nodular metastasis in a woman with HER2+ breast cancer who could not tolerate the cardiotoxic side effects of Herceptin. Our findings support the therapeutic potential of Herceptin-treated NK cells in patients with HER2+ and Herceptin-intolerant breast cancer.

  1. Theranostic Imaging of Cancer Gene Therapy.

    Science.gov (United States)

    Sekar, Thillai V; Paulmurugan, Ramasamy

    2016-01-01

    Gene-directed enzyme prodrug therapy (GDEPT) is a promising therapeutic approach for treating cancers of various phenotypes. This strategy is independent of various other chemotherapeutic drugs used for treating cancers where the drugs are mainly designed to target endogenous cellular mechanisms, which are different in various cancer subtypes. In GDEPT an external enzyme, which is different from the cellular proteins, is expressed to convert the injected prodrug in to a toxic metabolite, that normally kill cancer cells express this protein. Theranostic imaging is an approach used to directly monitor the expression of these gene therapy enzymes while evaluating therapeutic effect. We recently developed a dual-GDEPT system where we combined mutant human herpes simplex thymidine kinase (HSV1sr39TK) and E. coli nitroreductase (NTR) enzyme, to improve therapeutic efficiency of cancer gene therapy by simultaneously injecting two prodrugs at a lower dose. In this approach we use two different prodrugs such as ganciclovir (GCV) and CB1954 to target two different cellular mechanisms to kill cancer cells. The developed dual GDEPT system was highly efficacious than that of either of the system used independently. In this chapter, we describe the complete protocol involved for in vitro and in vivo imaging of therapeutic cancer gene therapy evaluation.

  2. Effect of pulsed electron beam on cell killing

    International Nuclear Information System (INIS)

    Acharya, Santhosh; Joseph, Praveen; Sanjeev, Ganesh; Narayana, Y.; Bhat, N.N.

    2009-01-01

    The extent of repairable and irreparable damage in a living cell produced by ionizing radiation depends on the quality of the radiation. In the case of sparsely ionizing radiation, the dose rate and the pattern of energy deposition of the radiation are the important physical factors which can affect the amount of damage in living cells. In the present study, radio-sensitive and radioresistive bacteria cells were exposed to 8 MeV pulsed electron beam and the efficiency of cell-killing was investigated to evaluate the Do, the mean lethal dose. The dose to the cell was delivered in micro-second pulses at an instantaneous dose rate of 2.6 x 10 5 Gy s -1 . Fricke dosimeter was used to measure the absorbed dose of electron beam. The results were compared with those of gamma rays. The survival curve of radio-resistive Deinococcus-radiodurans (DR) is found to be sigmoidal and the survival response for radio-sensitive Escherichia-coli (E-coli) is found to be exponential without any shoulder. Comparison of Do values indicate that irradiation with pulsed electron beam resulted in more cell-killing than was observed for gamma irradiation. (author)

  3. Evaluation of Honour Killings in Turkey

    OpenAIRE

    Celbis, Osman; Ozdemir, Bora; Oruc, Mucahit; Dogan, Mustafa; Egri, Mucahit

    2013-01-01

    Honour killings are still pervasive in many societies.  The aim of this study is to reveal the characteristics of the victims of honour killings and honour killers in Malatya province between 2000 and 2004, and to review the concept of honour killings in Turkey.  Data are collected from the records of Malatya Higher Criminal Court.  The results are discussed in the light of the data obtained from Turkish Republic Ministry of Justice.  There were 36 honour killings in Malatya between 2000 and ...

  4. Strong synergy of heat and modulated electromagnetic field in tumor cell killing.

    Science.gov (United States)

    Andocs, Gabor; Renner, Helmut; Balogh, Lajos; Fonyad, Laszlo; Jakab, Csaba; Szasz, Andras

    2009-02-01

    Hyperthermia is an emerging complementary method in radiooncology. Despite many positive studies and comprehensive reviews, the method is not widely accepted as a combination to radiotherapy. Modulated electrohyperthermia (mEHT; capacitive, electric field modulated, 13.56 MHz) has been used in clinical practice for almost 2 decades in Germany, Austria and Hungary. This in vivo study in nude mice xenograft tumors compares mEHT with "classic" radiative hyperthermia (radHT). Nude mice were xenografted with HT29 human colorectal carcinoma cells. 28 mice in four groups with seven animals each and two tumors per animal (totally 56 tumors) were included in the present study: group 1 as untreated control; group 2 treated with radHT at 42 degrees C; group 3 treated with mEHT at identical 42 degrees C; group 4 treated with mEHT at 38 degrees C (by intensively cooling down the tumor). 24 h after treatment, animals were sacrificed and the tumor cross sections studied by precise morphological methods for the respective relative amount of "dead" tumor cells. The effect of mEHT established a double effect as a synergy between the purely thermal (temperature-dependent) and nonthermal (not directly temperature-dependent) effects. The solely thermal enhancement ratio (TER) of cell killing was shown to be 2.9. The field enhancement ratio (FER) at a constant temperature of 42 degrees C was measured as 3.2. Their complex application significantly increased the therapeutic enhancement to 9.4. mEHT had a remarkable cancer cell-killing effect in a nude mice xenograft model.

  5. Strong synergy of heat and modulated electromagnetic field in tumor cell killing

    International Nuclear Information System (INIS)

    Andocs, Gabor; Fonyad, Laszlo; Jakab, Csaba; Szasz, Andras

    2009-01-01

    Hyperthermia is an emerging complementary method in radiooncology. Despite many positive studies and comprehensive reviews, the method is not widely accepted as a combination to radiotherapy. Modulated electrohyperthermia (mEHT; capacitive, electric field modulated, 13.56 MHz) has been used in clinical practice for almost 2 decades in Germany, Austria and Hungary. This in vivo study in nude mice xenograft tumors compares mEHT with ''classic'' radiative hyperthermia (radHT). Nude mice were xenografted with HT29 human colorectal carcinoma cells. 28 mice in four groups with seven animals each and two tumors per animal (totally 56 tumors) were included in the present study: group 1 as untreated control; group 2 treated with radHT at 42 C; group 3 treated with mEHT at identical 42 C; group 4 treated with mEHT at 38 C (by intensively cooling down the tumor). 24 h after treatment, animals were sacrificed and the tumor cross sections studied by precise morphological methods for the respective relative amount of ''dead'' tumor cells. The effect of mEHT established a double effect as a synergy between the purely thermal (temperature-dependent) and nonthermal (not directly temperature-dependent) effects. The solely thermal enhancement ratio (TER) of cell killing was shown to be 2.9. The field enhancement ratio (FER) at a constant temperature of 42 C was measured as 3.2. Their complex application significantly increased the therapeutic enhancement to 9.4. mEHT had a remarkable cancer cell-killing effect in a nude mice xenograft model. (orig.)

  6. Strong synergy of heat and modulated electromagnetic field in tumor cell killing

    Energy Technology Data Exchange (ETDEWEB)

    Andocs, Gabor [Frederic Joliot Curie National Research Inst. for Radiobiology and Radiohygiene, Budapest (Hungary)]|[St. Istvan Univ., Budapest (Hungary). Dept. of Pharmacology and Toxicology; Renner, Helmut [Klinikum Nuernberg (Germany). Clinic of Radiooncology; Balogh, Lajos [Frederic Joliot Curie National Research Inst. for Radiobiology and Radiohygiene, Budapest (Hungary); Fonyad, Laszlo [Semmelweis Univ., Budapest (Hungary). 1. Dept. of of Pathology and Experimental Cancer Research; Jakab, Csaba [St. Istvan Univ., Budapest (Hungary). Dept. of Pathology; Szasz, Andras [St. Istvan Univ., Goedoelloe (Hungary). Biotechnics Dept.

    2009-02-15

    Hyperthermia is an emerging complementary method in radiooncology. Despite many positive studies and comprehensive reviews, the method is not widely accepted as a combination to radiotherapy. Modulated electrohyperthermia (mEHT; capacitive, electric field modulated, 13.56 MHz) has been used in clinical practice for almost 2 decades in Germany, Austria and Hungary. This in vivo study in nude mice xenograft tumors compares mEHT with 'classic' radiative hyperthermia (radHT). Nude mice were xenografted with HT29 human colorectal carcinoma cells. 28 mice in four groups with seven animals each and two tumors per animal (totally 56 tumors) were included in the present study: group 1 as untreated control; group 2 treated with radHT at 42 C; group 3 treated with mEHT at identical 42 C; group 4 treated with mEHT at 38 C (by intensively cooling down the tumor). 24 h after treatment, animals were sacrificed and the tumor cross sections studied by precise morphological methods for the respective relative amount of 'dead' tumor cells. The effect of mEHT established a double effect as a synergy between the purely thermal (temperature-dependent) and nonthermal (not directly temperature-dependent) effects. The solely thermal enhancement ratio (TER) of cell killing was shown to be 2.9. The field enhancement ratio (FER) at a constant temperature of 42 C was measured as 3.2. Their complex application significantly increased the therapeutic enhancement to 9.4. mEHT had a remarkable cancer cell-killing effect in a nude mice xenograft model. (orig.)

  7. To Kill, Stay or Flee: The Effects of Lions and Landscape Factors on Habitat and Kill Site Selection of Cheetahs in South Africa

    OpenAIRE

    Rostro-Garc?a, Susana; Kamler, Jan F.; Hunter, Luke T. B.

    2015-01-01

    Understanding how animals utilize available space is important for their conservation, as it provides insight into the ecological needs of the species, including those related to habitat, prey and inter and intraspecific interactions. We used 28 months of radio telemetry data and information from 200 kill locations to assess habitat selection at the 3rd order (selection of habitats within home ranges) and 4th order (selection of kill sites within the habitats used) of a reintroduced populatio...

  8. Killing, letting die and euthanasia.

    Science.gov (United States)

    Husak, D N

    1979-12-01

    Medical ethicists debate whether or not the moral assessment of cases of euthanasia should depend on whether the patient is 'killed' or 'allowed to die'. The usual presupposition is that a clear distinction between killing and letting die can be drawn so that this substantive question is not begged. I contend that the categorisation of cases of instances of killing rather than as instances of letting die depends in part on a prior moral assessment of the case. Hence is it trivially rather than substantively true that the distinction has moral significance. But even if a morally neutral (ie non-question begging) distinction could be drawn, its application to the euthanasia controversy is problematic. I illustrate the difficulties of employing this distinction to reach moral conclusions by critically discussing Philippa Foot's recent treatment of euthanasia. I conclude that even if an act of euthanasia is an instance of killing, and there exists a prima facie moral duty not to kill, and no more stringent duty overrides this duty, one still cannot determine such an act to be morally impermissible.

  9. Killing, letting die and euthanasia.

    Science.gov (United States)

    Husak, D N

    1979-01-01

    Medical ethicists debate whether or not the moral assessment of cases of euthanasia should depend on whether the patient is 'killed' or 'allowed to die'. The usual presupposition is that a clear distinction between killing and letting die can be drawn so that this substantive question is not begged. I contend that the categorisation of cases of instances of killing rather than as instances of letting die depends in part on a prior moral assessment of the case. Hence is it trivially rather than substantively true that the distinction has moral significance. But even if a morally neutral (ie non-question begging) distinction could be drawn, its application to the euthanasia controversy is problematic. I illustrate the difficulties of employing this distinction to reach moral conclusions by critically discussing Philippa Foot's recent treatment of euthanasia. I conclude that even if an act of euthanasia is an instance of killing, and there exists a prima facie moral duty not to kill, and no more stringent duty overrides this duty, one still cannot determine such an act to be morally impermissible. PMID:541821

  10. ROS accumulation by PEITC selectively kills ovarian cancer cells via UPR-mediated apoptosis

    Directory of Open Access Journals (Sweden)

    Yoon-hee eHong

    2015-07-01

    Full Text Available Unfolded protein response (UPR is crucial for both survival and death of mammalian cells, which is regulated by reactive oxygen species (ROS and nutrient depletion. In this study, we demonstrated the effect of ROS-accumulation, induced by β-phenethyl isothiocyanate (PEITC, on UPR mediated apoptosis in ovarian cancer cells. We used ovarian cancer cell lines, PA-1 and SKOV-3, with different p53 status (wild- and null- type, respectively. PEITC caused increased ROS-accumulation and inhibited proliferation selectively in ovarian cancer cells, and glutathione (GSH depletion in SKOV-3. However, PEITC did not cause any effect in normal ovarian epithelial cells and peripheral blood mononuclear cells. After 48 h of PEITC treatment (5 µM, apoptotic cell death was shown to increase significantly in the ovarian cancer cells and not in the normal cells. The key regulator of UPR-mediated apoptosis, CHOP/GADD153 and ER resident chaperone BiP/GRP78 were parallely up-regulated with activation of two major sensors of the UPR (PERK and ATF-6 in PA-1; PERK, and IRE1α in SKOV-3 in response to ROS accumulation induced by PEITC (5 µM. ROS scavenger, N-acetyl-cysteine (NAC, attenuated the effect of PEITC on UPR signatures (P-PERK, IRE1α, CHOP/GADD153, and BiP/GRP78, suggesting the involvement of ROS in UPR-mediated apoptosis. Altogether, PEITC induces UPR-mediated apoptosis in ovarian cancer cells via accumulation of ROS in a cancer-specific manner.

  11. Prostate Cancer Stem-Like Cells | Center for Cancer Research

    Science.gov (United States)

    Prostate cancer is the third leading cause of cancer-related death among men, killing an estimated 27,000 men each year in the United States. Men with advanced prostate cancer often become resistant to conventional therapies. Many researchers speculate that the emergence of resistance is due to the presence of cancer stem cells, which are believed to be a small subpopulation

  12. Mitochondrially targeted vitamin E succinate efficiently kills breast tumour-initiating cells in a complex II-dependent manner

    International Nuclear Information System (INIS)

    Yan, Bing; Stantic, Marina; Zobalova, Renata; Bezawork-Geleta, Ayenachew; Stapelberg, Michael; Stursa, Jan; Prokopova, Katerina; Dong, Lanfeng; Neuzil, Jiri

    2015-01-01

    Accumulating evidence suggests that breast cancer involves tumour-initiating cells (TICs), which play a role in initiation, metastasis, therapeutic resistance and relapse of the disease. Emerging drugs that target TICs are becoming a focus of contemporary research. Mitocans, a group of compounds that induce apoptosis of cancer cells by destabilising their mitochondria, are showing their potential in killing TICs. In this project, we investigated mitochondrially targeted vitamin E succinate (MitoVES), a recently developed mitocan, for its in vitro and in vivo efficacy against TICs. The mammosphere model of breast TICs was established by culturing murine NeuTL and human MCF7 cells as spheres. This model was verified by stem cell marker expression, tumour initiation capacity and chemotherapeutic resistance. Cell susceptibility to MitoVES was assessed and the cell death pathway investigated. In vivo efficacy was studied by grafting NeuTL TICs to form syngeneic tumours. Mammospheres derived from NeuTL and MCF7 breast cancer cells were enriched in the level of stemness, and the sphere cells featured altered mitochondrial function. Sphere cultures were resistant to several established anti-cancer agents while they were susceptible to MitoVES. Killing of mammospheres was suppressed when the mitochondrial complex II, the molecular target of MitoVES, was knocked down. Importantly, MitoVES inhibited progression of syngeneic HER2 high tumours derived from breast TICs by inducing apoptosis in tumour cells. These results demonstrate that using mammospheres, a plausible model for studying TICs, drugs that target mitochondria efficiently kill breast tumour-initiating cells. The online version of this article (doi:10.1186/s12885-015-1394-7) contains supplementary material, which is available to authorized users

  13. The killing of African trypanosomes by ethidium bromide.

    Directory of Open Access Journals (Sweden)

    Arnab Roy Chowdhury

    2010-12-01

    Full Text Available Introduced in the 1950s, ethidium bromide (EB is still used as an anti-trypanosomal drug for African cattle although its mechanism of killing has been unclear and controversial. EB has long been known to cause loss of the mitochondrial genome, named kinetoplast DNA (kDNA, a giant network of interlocked minicircles and maxicircles. However, the existence of viable parasites lacking kDNA (dyskinetoplastic led many to think that kDNA loss could not be the mechanism of killing. When recent studies indicated that kDNA is indeed essential in bloodstream trypanosomes and that dyskinetoplastic cells survive only if they have a compensating mutation in the nuclear genome, we investigated the effect of EB on kDNA and its replication. We here report some remarkable effects of EB. Using EM and other techniques, we found that binding of EB to network minicircles is low, probably because of their association with proteins that prevent helix unwinding. In contrast, covalently-closed minicircles that had been released from the network for replication bind EB extensively, causing them, after isolation, to become highly supertwisted and to develop regions of left-handed Z-DNA (without EB, these circles are fully relaxed. In vivo, EB causes helix distortion of free minicircles, preventing replication initiation and resulting in kDNA loss and cell death. Unexpectedly, EB also kills dyskinetoplastic trypanosomes, lacking kDNA, by inhibiting nuclear replication. Since the effect on kDNA occurs at a >10-fold lower EB concentration than that on nuclear DNA, we conclude that minicircle replication initiation is likely EB's most vulnerable target, but the effect on nuclear replication may also contribute to cell killing.

  14. Notes on super Killing tensors

    Energy Technology Data Exchange (ETDEWEB)

    Howe, P.S. [Department of Mathematics, King’s College London,The Strand, London WC2R 2LS (United Kingdom); Lindström, University [Department of Physics and Astronomy, Theoretical Physics, Uppsala University,SE-751 20 Uppsala (Sweden); Theoretical Physics, Imperial College London,Prince Consort Road, London SW7 2AZ (United Kingdom)

    2016-03-14

    The notion of a Killing tensor is generalised to a superspace setting. Conserved quantities associated with these are defined for superparticles and Poisson brackets are used to define a supersymmetric version of the even Schouten-Nijenhuis bracket. Superconformal Killing tensors in flat superspaces are studied for spacetime dimensions 3,4,5,6 and 10. These tensors are also presented in analytic superspaces and super-twistor spaces for 3,4 and 6 dimensions. Algebraic structures associated with superconformal Killing tensors are also briefly discussed.

  15. Time-kill profiles and cell-surface morphological effects of crude ...

    African Journals Online (AJOL)

    MK1201 mycelial extract on the viability and cell surface morphology of methicillin-susceptible Staphylococcus aureus (MSSA) and methicillin-resistant Staphylococcus aureus (MRSA). Methods: Time-kill assays were conducted by incubating test ...

  16. 75 FR 62469 - Drawbridge Operation Regulations; Newtown Creek, Dutch Kills, English Kills, and Their...

    Science.gov (United States)

    2010-10-12

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 117 [Docket No. USCG-2010-0907] Drawbridge Operation Regulations; Newtown Creek, Dutch Kills, English Kills, and Their Tributaries, NY, Maintenance AGENCY: Coast Guard, DHS. ACTION: Notice of temporary deviation from regulations. SUMMARY: The Commander...

  17. 75 FR 30299 - Drawbridge Operation Regulations; Newtown Creek, Dutch Kills, English Kills, and Their...

    Science.gov (United States)

    2010-06-01

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 117 [Docket No. USCG-2010-0355] Drawbridge Operation Regulations; Newtown Creek, Dutch Kills, English Kills, and Their Tributaries, NY, Maintenance AGENCY: Coast Guard, DHS. ACTION: Notice of temporary deviation from regulations. SUMMARY: The Commander...

  18. On integrability of the Killing equation

    Science.gov (United States)

    Houri, Tsuyoshi; Tomoda, Kentaro; Yasui, Yukinori

    2018-04-01

    Killing tensor fields have been thought of as describing the hidden symmetry of space(-time) since they are in one-to-one correspondence with polynomial first integrals of geodesic equations. Since many problems in classical mechanics can be formulated as geodesic problems in curved space and spacetime, solving the defining equation for Killing tensor fields (the Killing equation) is a powerful way to integrate equations of motion. Thus it has been desirable to formulate the integrability conditions of the Killing equation, which serve to determine the number of linearly independent solutions and also to restrict the possible forms of solutions tightly. In this paper, we show the prolongation for the Killing equation in a manner that uses Young symmetrizers. Using the prolonged equations, we provide the integrability conditions explicitly.

  19. Preliminary study of steep pulse irreversible electroporation technology in human large cell lung cancer cell lines L9981

    Directory of Open Access Journals (Sweden)

    Song Zuoqing

    2013-01-01

    Full Text Available Our aim was to validate the effectiveness of steep pulse irreversible electroporation technology in human large cell lung cancer cells and to screen the optimal treatment of parameters for human large cell lung cancer cells. Three different sets of steep pulse therapy parameters were applied on the lung cancer cell line L9981. The cell line L9981 inhibition rate and proliferation capacity were detected by Vi-Cell vitality analysis and MTT. Steep pulsed irreversible electroporation technology for large cell lung cancer L9981 presents killing effects with various therapy parameters. The optimal treatment parameters are at a voltage amplitude of 2000V/cm, pulse width of 100μs, pulse frequency of 1 Hz, pulse number 10. With this group of parameters, steep pulse could have the best tumor cell-killing effects.

  20. Cytotoxic effect of galvanically coupled magnesium-titanium particles.

    Science.gov (United States)

    Kim, Jua; Gilbert, Jeremy L

    2016-01-01

    Recent work has shown that reduction reactions at metallic biomaterial surfaces can induce significant killing of cells in proximity to the surface. To exploit this phenomenon for therapeutic purposes, for example, for cancer tumor killing or antibacterial effects (amongst other applications), magnesium metal particles, galvanically coupled to titanium by sputtering, have been evaluated for their cell-killing capability (i.e. cytotoxicity). Magnesium (Mg) particles large enough to prevent particle phagocytosis were investigated, so that only electrochemical reactions, and not particle toxicity per se, caused cytotoxic effects. Titanium (Ti) coated magnesium particles, as well as magnesium-only particles were introduced into MC3T3-E1 mouse pre-osteoblast cell cultures over a range of particle concentrations, and cells were observed to die in a dosage-dependent manner. Ti-coated magnesium particles killed more cells at lower particle concentration than magnesium alone (Pmagnesium and magnesium-titanium had no significant difference at similar particle concentrations. Complete cell killing occurred at 750μg/ml and 1500μg/ml for Mg-Ti and Mg, respectively. Thus, this work demonstrates that galvanically coupled Mg-Ti particles have a significant cell killing capability greater than Mg alone. In addition, when the pH associated with complete killing with particles was created using NaOH only (no particles), then the percentage of cells killed was significantly less (Pmagnesium-titanium microparticles kill cells more effectively than magnesium particles alone. The killing effect was shown to not be due to pH shifts since no differences were seen for different particle types and pH adjusted medium without particles did not exhibit the same level of killing. The significance of this work is the recognition of this killing effect with Mg particles and the potential therapeutic applications in infection control and cancer treatment that this process may provide. Copyright

  1. Spacetimes foliated by Killing horizons

    International Nuclear Information System (INIS)

    Pawlowski, Tomasz; Lewandowski, Jerzy; Jezierski, Jacek

    2004-01-01

    It seems to be expected that a horizon of a quasi-local type, such as a Killing or an isolated horizon, by analogy with a globally defined event horizon, should be unique in some open neighbourhood in the spacetime, provided the vacuum Einstein or the Einstein-Maxwell equations are satisfied. The aim of our paper is to verify whether that intuition is correct. If one can extend a so-called Kundt metric, in such a way that its null, shear-free surfaces have spherical spacetime sections, the resulting spacetime is foliated by so-called non-expanding horizons. The obstacle is Kundt's constraint induced at the surfaces by the Einstein or the Einstein-Maxwell equations, and the requirement that a solution be globally defined on the sphere. We derived a transformation (reflection) that creates a solution to Kundt's constraint out of data defining an extremal isolated horizon. Using that transformation, we derived a class of exact solutions to the Einstein or Einstein-Maxwell equations of very special properties. Each spacetime we construct is foliated by a family of the Killing horizons. Moreover, it admits another, transversal Killing horizon. The intrinsic and extrinsic geometries of the transversal Killing horizon coincide with the one defined on the event horizon of the extremal Kerr-Newman solution. However, the Killing horizon in our example admits yet another Killing vector tangent to and null at it. The geometries of the leaves are given by the reflection

  2. Studies of killing effect of ionization radiation associated with As2O3 on SHG44 human glioma cells

    International Nuclear Information System (INIS)

    Huang Hui; Liu Fenju; Chen Jian; Ning Ping

    2004-01-01

    Objective: To study the effect of ionization radiation combined with As 2 O 3 on the killing of SHG44 human glioma cells. Methods: The survival rates of SHG44 cells treated with different doses of ionization radiation, As 2 O 3 respectively and radiation associated were determined with As 2 O 3 by MTT assay. The change of cell morphology was observed by confocal laser scanning microscopy. Results: (1) The survival rate of the group treated with ionization radiation combined with As 2 O 3 was significantly lower than that of the group treated with radiation or As 2 O 3 only (P 2 O 3 was significantly lower than that of the group treated with 6 Gy radiation (P 0.05); (3) Cells treated with radiation or As 2 O 3 had a morphological change indicating the apoptosis of SHG44 cells. Conclusion: The killing effect of ionization radiation combined with As 2 O 3 on the SHG44 cells is stronger than that of radiation or As 2 O 3 only. Inducing SHG44 cells' apoptosis may be the mechanism of As 2 O 3 killing effects on SHG44 cells. (authors)

  3. PESAN MORAL DALAM FILM TO KILL A MOCKINGBIRD (ANALISIS SEMIOTIKA PADA FILM TO KILL A MOCKINGBIRD

    OpenAIRE

    RENYOET, JAQUILINE MELISSA

    2014-01-01

    2014 JAQUILINE MELISSA RENYOET. Pesan Moral Dalam Film To Kill A Mockingbird (Analisis Semiotika Pada Film To Kill A Mockingbird). (Dibimbing oleh Muh. Nadjib dan Alem Febri Sonni). Tujuan Penelitian ini adalah mengidentifikasi bentuk pesan moral dan memahami makna pesan moral dalam film To Kill A Mockingbird. Penelitian ini dilakukan selama kurang lebih 2 bulan yaitu Maret ??? Mei 2014. Metode yang digunakan untuk penelitian ini adalah metode penelitian kualitatif den...

  4. NH125 kills methicillin-resistant Staphylococcus aureus persisters by lipid bilayer disruption.

    Science.gov (United States)

    Kim, Wooseong; Fricke, Nico; Conery, Annie L; Fuchs, Beth Burgwyn; Rajamuthiah, Rajmohan; Jayamani, Elamparithi; Vlahovska, Petia M; Ausubel, Frederick M; Mylonakis, Eleftherios

    2016-01-01

    NH125, a known WalK inhibitor kills MRSA persisters. However, its precise mode of action is still unknown. The mode of action of NH125 was investigated by comparing its spectrum of antimicrobial activity and its effects on membrane permeability and giant unilamellar vesicles (GUVs) with walrycin B, a WalR inhibitor and benzyldimethylhexadecylammonium chloride (16-BAC), a cationic surfactant. NH125 killed persister cells of a variety of Staphylococcus aureus strains. Similar to 16-BAC, NH125 killed MRSA persisters by inducing rapid membrane permeabilization and caused the rupture of GUVs, whereas walrycin B did not kill MRSA persisters or induce membrane permeabilization and did not affect GUVs. NH125 kills MRSA persisters by interacting with and disrupting membranes in a detergent-like manner.

  5. Generation of a selectively cytotoxic fusion protein against p53 mutated cancers

    International Nuclear Information System (INIS)

    Kousparou, Christina A; Yiacoumi, Efthymia; Deonarain, Mahendra P; Epenetos, Agamemnon A

    2012-01-01

    A significant number of cancers are caused by defects in p21 causing functional defects in p21 or p53 tumour-suppressor proteins. This has led to many therapeutic approaches including restoration by gene therapy with wild-type p53 or p21 using viral or liposomal vectors, which have toxicity or side-effect limitations. We set out to develop a safer, novel fusion protein which has the ability to reconstitute cancer cell lines with active p21 by protein transduction. The fusion protein was produced from the cell-translocating peptide Antennapedia (Antp) and wild-type, full-length p21 (Antp-p21). This was expressed and refolded from E. coli and tested on a variety of cell lines and tumours (in a BALB/c nude xenograft model) with differing p21 or p53 status. Antp-p21 penetrated and killed cancer cells that do not express wild type p53 or p21. This included cells that were matched to cogenic parental cell lines. Antp-p21 killed cancer cells selectively that were malignant as a result of mutations or nuclear exclusion of the p53 and p21 genes and over-expression of MDM2. Non-specific toxicity was excluded by showing that Antp-p21 penetrated but did not kill p53- or p21- wild-type cells. Antp-p21 was not immunogenic in normal New Zealand White rabbits. Recombinant Antp peptide alone was not cytotoxic, showing that killing was due to the transduction of the p21 component of Antp-p21. Antp-p21 was shown to penetrate cancer cells engrafted in vivo and resulted in tumour eradication when administered with conventionally-used chemotherapeutic agents, which alone were unable to produce such an effect. Antp-p21 may represent a new and promising targeted therapy for patients with p53-associated cancers supporting the concept that rational design of therapies directed against specific cancer mutations will play a part in the future of medical oncology

  6. Generation of a selectively cytotoxic fusion protein against p53 mutated cancers

    Directory of Open Access Journals (Sweden)

    Kousparou Christina A

    2012-08-01

    Full Text Available Abstract Background A significant number of cancers are caused by defects in p21 causing functional defects in p21 or p53 tumour-suppressor proteins. This has led to many therapeutic approaches including restoration by gene therapy with wild-type p53 or p21 using viral or liposomal vectors, which have toxicity or side-effect limitations. We set out to develop a safer, novel fusion protein which has the ability to reconstitute cancer cell lines with active p21 by protein transduction. Methods The fusion protein was produced from the cell-translocating peptide Antennapedia (Antp and wild-type, full-length p21 (Antp-p21. This was expressed and refolded from E. coli and tested on a variety of cell lines and tumours (in a BALB/c nude xenograft model with differing p21 or p53 status. Results Antp-p21 penetrated and killed cancer cells that do not express wild type p53 or p21. This included cells that were matched to cogenic parental cell lines. Antp-p21 killed cancer cells selectively that were malignant as a result of mutations or nuclear exclusion of the p53 and p21 genes and over-expression of MDM2. Non-specific toxicity was excluded by showing that Antp-p21 penetrated but did not kill p53- or p21- wild-type cells. Antp-p21 was not immunogenic in normal New Zealand White rabbits. Recombinant Antp peptide alone was not cytotoxic, showing that killing was due to the transduction of the p21 component of Antp-p21. Antp-p21 was shown to penetrate cancer cells engrafted in vivo and resulted in tumour eradication when administered with conventionally-used chemotherapeutic agents, which alone were unable to produce such an effect. Conclusions Antp-p21 may represent a new and promising targeted therapy for patients with p53-associated cancers supporting the concept that rational design of therapies directed against specific cancer mutations will play a part in the future of medical oncology.

  7. Identification and structural analysis of an L-asparaginase enzyme from guinea pig with putative tumor cell killing properties.

    Science.gov (United States)

    Schalk, Amanda M; Nguyen, Hien-Anh; Rigouin, Coraline; Lavie, Arnon

    2014-11-28

    The initial observation that guinea pig serum kills lymphoma cells marks the serendipitous discovery of a new class of anti-cancer agents. The serum cell killing factor was shown to be an enzyme with L-asparaginase (ASNase) activity. As a direct result of this observation, several bacterial L-asparaginases were developed and are currently approved by the Food and Drug Administration for the treatment of the subset of hematological malignancies that are dependent on the extracellular pool of the amino acid asparagine. As drugs, these enzymes act to hydrolyze asparagine to aspartate, thereby starving the cancer cells of this amino acid. Prior to the work presented here, the precise identity of this guinea pig enzyme has not been reported in the peer-reviewed literature. We discovered that the guinea pig enzyme annotated as H0W0T5_CAVPO, which we refer to as gpASNase1, has the required low Km property consistent with that possessed by the cell-killing guinea pig serum enzyme. Elucidation of the ligand-free and aspartate complex gpASNase1 crystal structures allows a direct comparison with the bacterial enzymes and serves to explain the lack of L-glutaminase activity in the guinea pig enzyme. The structures were also used to generate a homology model for the human homolog hASNase1 and to help explain its vastly different kinetic properties compared with gpASNase1, despite a 70% sequence identity. Given that the bacterial enzymes frequently present immunogenic and other toxic side effects, this work suggests that gpASNase1 could be a promising alternative to these bacterial enzymes. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Apoptotic Effect of the Urtica Dioica Plant Extracts on Breast Cancer Cell Line (MDA- MB- 468

    Directory of Open Access Journals (Sweden)

    A Mohammadi

    2015-09-01

    Full Text Available Background & objectives: Cancer is one of the most causes of mortality in worldwide. Components derived from natural plants that induce apoptosis are used for cancer treatment. Therefore investigation of different herbal components for new anti-cancer drug is one of the main research activities throughout the world. According to low cost, oral consumption and easy access to the public extracts of Urtica dioica, in this study we aimed to investigate the effectiveness of this herb on MDA-MB-468 breast cancer cells.   Methods: Cytotoxic effect of Urtica dioica extract was measured using MTT assays. To show induction of apoptosis by this plant TUNEL and DNA Fragmentation test were performed.   Results: In the present study dichloromethane extracts noticeably killed cancer cells. IC50 values related to human breast adenocarcinoma cell line MDA-MB-468 were 29.46±1.05 µg/ml in 24 hours and 15.54±1.04 µg/ml in 48 hours. TUNEL test and DNA Fragmentation assay showed apoptotic characteristic in the extract treated cells.   Conclusion: The results showed that MDA-MB-468 cells after treatment with dichloromethane extract of Urtica dioica, induces apoptosis in MDA-MB-468 cancer cells which may be useful in the treatment of cancer.

  9. ANALYZE THE IMPACT OF HABITAT PATCHES ON WILDLIFE ROAD-KILL

    Directory of Open Access Journals (Sweden)

    S. Seok

    2015-10-01

    Full Text Available The ecosystem fragmentation due to transportation infrastructure causes a road-kill phenomenon. When making policies for mitigating road-kill it is important to select target-species in order to enhance its efficiency. However, many wildlife crossing structures have been questioned regarding their effectiveness due to lack of considerations such as target-species selection, site selection, management, etc. The purpose of this study is to analyse the impact of habitat patches on wildlife road-kill and to suggest that spatial location of habitat patches should be considered as one of the important factors when making policies for mitigating road-kill. Habitat patches were presumed from habitat variables and a suitability index on target-species that was chosen by literature review. The road-kill hotspot was calculated using Getis-Ord Gi*. After that, we performed a correlation analysis between Gi Z-score and the distance from habitat patches to the roads. As a result, there is a low negative correlation between two variables and it increases the Gi Z-score if the habitat patches and the roads become closer.

  10. Analyze the Impact of Habitat Patches on Wildlife Road-Kill

    Science.gov (United States)

    Seok, S.; Lee, J.

    2015-10-01

    The ecosystem fragmentation due to transportation infrastructure causes a road-kill phenomenon. When making policies for mitigating road-kill it is important to select target-species in order to enhance its efficiency. However, many wildlife crossing structures have been questioned regarding their effectiveness due to lack of considerations such as target-species selection, site selection, management, etc. The purpose of this study is to analyse the impact of habitat patches on wildlife road-kill and to suggest that spatial location of habitat patches should be considered as one of the important factors when making policies for mitigating road-kill. Habitat patches were presumed from habitat variables and a suitability index on target-species that was chosen by literature review. The road-kill hotspot was calculated using Getis-Ord Gi*. After that, we performed a correlation analysis between Gi Z-score and the distance from habitat patches to the roads. As a result, there is a low negative correlation between two variables and it increases the Gi Z-score if the habitat patches and the roads become closer.

  11. Sildenafil (Viagra) sensitizes prostate cancer cells to doxorubicin-mediated apoptosis through CD95

    Science.gov (United States)

    Das, Anindita; Durrant, David; Mitchell, Clint; Dent, Paul; Batra, Surinder K.; Kukreja, Rakesh C.

    2016-01-01

    We previously reported that Sildenafil enhances apoptosis and antitumor efficacy of doxorubicin (DOX) while attenuating its cardiotoxic effect in prostate cancer. In the present study, we investigated the mechanism by which sildenafil sensitizes DOX in killing of prostate cancer (PCa) cells, DU145. The death receptor Fas (APO-1 or CD95) induces apoptosis in many carcinoma cells, which is negatively regulated by anti-apoptotic molecules such as FLIP (Fas-associated death domain (FADD) interleukin-1-converting enzyme (FLICE)-like inhibitory protein). Co-treatment of PCa cells with sildenafil and DOX for 48 hours showed reduced expression of both long and short forms of FLIP (FLIP-L and -S) as compared to individual drug treatment. Over-expression of FLIP-s with an adenoviral vector attentuated the enhanced cell-killing effect of DOX and sildenafil. Colony formation assays also confirmed that FLIP-S over-expression inhibited the DOX and sildenafil-induced synergistic killing effect as compared to the cells infected with an empty vector. Moreover, siRNA knock-down of CD95 abolished the effect of sildenafil in enhancing DOX lethality in cells, but had no effect on cell killing after treatment with a single agent. Sildenafil co-treatment with DOX inhibited DOX-induced NF-κB activity by reducing phosphorylation of IκB and nuclear translocation of the p65 subunit, in addition to down regulation of FAP-1 (Fas associated phosphatase-1, a known inhibitor of CD95-mediated apoptosis) expression. This data provides evidence that the CD95 is a key regulator of sildenafil and DOX mediated enhanced cell death in prostate cancer. PMID:26716643

  12. Timelike Killing spinors in seven dimensions

    International Nuclear Information System (INIS)

    Cariglia, Marco; Conamhna, Oisin A.P. Mac

    2004-01-01

    We employ the G-structure formalism to study supersymmetric solutions of minimal and SU(2) gauged supergravities in seven dimensions admitting Killing spinors with an associated timelike Killing vector. The most general such Killing spinor defines a SU(3) structure. We deduce necessary and sufficient conditions for the existence of a timelike Killing spinor on the bosonic fields of the theories, and find that such configurations generically preserve one out of 16 supersymmetries. Using our general supersymmetric ansatz we obtain numerous new solutions, including squashed or deformed anti-de Sitter solutions of the gauged theory, and a large class of Goedel-like solutions with closed timelike curves

  13. Archivists Killed for Political Reasons

    NARCIS (Netherlands)

    de Baets, Antoon

    2015-01-01

    This essay, Archivists Killed for Political Reasons, offers an overview of archivists who were killed for political reasons through the ages. After determining the criteria for inclusion, sixteen such political murders of archivists are briefly discussed. These cases were distributed over six

  14. Time-kill profiles and cell-surface morphological effects of crude ...

    African Journals Online (AJOL)

    Methods: Time-kill assays were conducted by incubating test bacteria with the extract and sampling at selected time points within ... activity against both bacteria and fungi [14]. Also, a protein ..... be developed as novel drugs for the treatment of.

  15. Welfare Risks of Repeated Application of On-Farm Killing Methods for Poultry

    Directory of Open Access Journals (Sweden)

    Jessica E. Martin

    2018-03-01

    Full Text Available Council Regulation (EC no. 1099/2009 on the protection of animals at the time of killing restricts the use of manual cervical dislocation in poultry on farms in the European Union (EU to birds weighing up to 3 kg and 70 birds per person per day. However, few studies have examined whether repeated application of manual cervical dislocation has welfare implications and whether these are dependent on individual operator skill or susceptibility to fatigue. We investigated the effects of repeated application (100 birds at a fixed killing rate of 1 bird per 2 min and multiple operators on two methods of killing of broilers, laying hens, and turkeys in commercial settings. We compared the efficacy and welfare impact of repeated application of cervical dislocation and a percussive killer (Cash Poultry Killer, CPK, using 12 male stockworkers on three farms (one farm per bird type. Both methods achieved over 96% kill success at the first attempt. The killing methods were equally effective for each bird type and there was no evidence of reduced performance with time and/or bird number. Both methods of killing caused a rapid loss of reflexes, indicating loss of brain function. There was more variation in reflex durations and post-mortem damage in birds killed by cervical dislocation than that found using CPK. High neck dislocation was associated with improved kill success and more rapid loss of reflexes. The CPK caused damage to multiple brain areas with little variation. Overall, the CPK was associated with faster abolition of reflexes, with fewer birds exhibiting them at all, suggestive of better welfare outcomes. However, technical difficulties with the CPK highlighted the advantages of cervical dislocation, which can be performed immediately with no equipment. At the killing rates tested, we did not find evidence to justify the current EU limit on the number of birds that one operator can kill on–farm by manual cervical dislocation.

  16. Competition between apex predators? Brown bears decrease wolf kill rate on two continents.

    Science.gov (United States)

    Tallian, Aimee; Ordiz, Andrés; Metz, Matthew C; Milleret, Cyril; Wikenros, Camilla; Smith, Douglas W; Stahler, Daniel R; Kindberg, Jonas; MacNulty, Daniel R; Wabakken, Petter; Swenson, Jon E; Sand, Håkan

    2017-02-08

    Trophic interactions are a fundamental topic in ecology, but we know little about how competition between apex predators affects predation, the mechanism driving top-down forcing in ecosystems. We used long-term datasets from Scandinavia (Europe) and Yellowstone National Park (North America) to evaluate how grey wolf ( Canis lupus ) kill rate was affected by a sympatric apex predator, the brown bear ( Ursus arctos ). We used kill interval (i.e. the number of days between consecutive ungulate kills) as a proxy of kill rate. Although brown bears can monopolize wolf kills, we found no support in either study system for the common assumption that they cause wolves to kill more often. On the contrary, our results showed the opposite effect. In Scandinavia, wolf packs sympatric with brown bears killed less often than allopatric packs during both spring (after bear den emergence) and summer. Similarly, the presence of bears at wolf-killed ungulates was associated with wolves killing less often during summer in Yellowstone. The consistency in results between the two systems suggests that brown bear presence actually reduces wolf kill rate. Our results suggest that the influence of predation on lower trophic levels may depend on the composition of predator communities. © 2017 The Authors.

  17. 9 CFR 113.213 - Pseudorabies Vaccine, Killed Virus.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Pseudorabies Vaccine, Killed Virus..., DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.213 Pseudorabies Vaccine, Killed Virus. Pseudorabies Vaccine, Killed...

  18. Carbon nanotubes enhance the internalization of drugs by cancer cells and decrease their chemoresistance to cytostatics

    Science.gov (United States)

    Mahmood, M.; Xu, Y.; Dantuluri, V.; Mustafa, T.; Zhang, Y.; Karmakar, A.; Casciano, D.; Ali, S.; Biris, A.

    2013-02-01

    Etoposide is a semisynthetic, chemotherapeutic drug widely recommended to treat an extensive range of human cancers. Our studies indicate that, while etoposide is capable of killing human cancer cells, exposure to single-walled carbon nanotubes (SWCNTs) and etoposide results in enhanced cell death that appears to be synergistic and not merely additive. In this study, we used high pressure liquid chromatography and mass spectrometry to quantify the internal effective dose of etoposide when the human pancreatic cancer cell (PANC-1) was exposed to the combination of these agents. Our results unequivocally indicate that SWCNTs improve etoposide uptake and increase its capacity to kill cancer cells. We suggest that a combination of SWCNTs and etoposide may prove to be a more efficient chemotherapeutic protocol, especially because of the potential to lower toxic drug doses to levels that may be useful in decreasing adverse side effects, as well as in lowering the probability of inducing chemoresistance in exposed cancer cells.

  19. Carbon nanotubes enhance the internalization of drugs by cancer cells and decrease their chemoresistance to cytostatics

    International Nuclear Information System (INIS)

    Mahmood, M; Xu, Y; Dantuluri, V; Mustafa, T; Karmakar, A; Casciano, D; Biris, A; Zhang, Y; Ali, S

    2013-01-01

    Etoposide is a semisynthetic, chemotherapeutic drug widely recommended to treat an extensive range of human cancers. Our studies indicate that, while etoposide is capable of killing human cancer cells, exposure to single-walled carbon nanotubes (SWCNTs) and etoposide results in enhanced cell death that appears to be synergistic and not merely additive. In this study, we used high pressure liquid chromatography and mass spectrometry to quantify the internal effective dose of etoposide when the human pancreatic cancer cell (PANC-1) was exposed to the combination of these agents. Our results unequivocally indicate that SWCNTs improve etoposide uptake and increase its capacity to kill cancer cells. We suggest that a combination of SWCNTs and etoposide may prove to be a more efficient chemotherapeutic protocol, especially because of the potential to lower toxic drug doses to levels that may be useful in decreasing adverse side effects, as well as in lowering the probability of inducing chemoresistance in exposed cancer cells. (paper)

  20. Cell killing and mutation induction on Chinese hamster cells by photoradiations

    International Nuclear Information System (INIS)

    Lam, C.K.C.

    1982-11-01

    Applying radiation directly on cells, far-uv is more effective than black light, and black light is more effective than white light in inducing proliferative death and in inducing resistance to 6-thioguanine (6-TG), ouabain and diptheria toxin (DT). Gold light has no killing and mutagenic effects on CHO (Chinese hamster ovary) cells. Use of filters showed that a small percentage of shorter wavelengths in the far-uv region is responsible for most of the killing and mutagenic effects in the unfiltered broad spectra of black and white light

  1. Cell killing and mutation induction on Chinese hamster cells by photoradiations

    Energy Technology Data Exchange (ETDEWEB)

    Lam, C.K.C.

    1982-11-01

    Applying radiation directly on cells, far-uv is more effective than black light, and black light is more effective than white light in inducing proliferative death and in inducing resistance to 6-thioguanine (6-TG), ouabain and diptheria toxin (DT). Gold light has no killing and mutagenic effects on CHO (Chinese hamster ovary) cells. Use of filters showed that a small percentage of shorter wavelengths in the far-uv region is responsible for most of the killing and mutagenic effects in the unfiltered broad spectra of black and white light.

  2. Killing superalgebras for Lorentzian four-manifolds

    International Nuclear Information System (INIS)

    Medeiros, Paul de; Figueroa-O’Farrill, José; Santi, Andrea

    2016-01-01

    We determine the Killing superalgebras underpinning field theories with rigid unextended supersymmetry on Lorentzian four-manifolds by re-interpreting them as filtered deformations of ℤ-graded subalgebras with maximum odd dimension of the N=1 Poincaré superalgebra in four dimensions. Part of this calculation involves computing a Spencer cohomology group which, by analogy with a similar result in eleven dimensions, prescribes a notion of Killing spinor, which we identify with the defining condition for bosonic supersymmetric backgrounds of minimal off-shell supergravity in four dimensions. We prove that such Killing spinors always generate a Lie superalgebra, and that this Lie superalgebra is a filtered deformation of a subalgebra of the N=1 Poincaré superalgebra in four dimensions. Demanding the flatness of the connection defining the Killing spinors, we obtain equations satisfied by the maximally supersymmetric backgrounds. We solve these equations, arriving at the classification of maximally supersymmetric backgrounds whose associated Killing superalgebras are precisely the filtered deformations we classify in this paper.

  3. Killing superalgebras for Lorentzian four-manifolds

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, Paul de [Department of Mathematics and Natural Sciences, University of Stavanger,4036 Stavanger (Norway); Figueroa-O’Farrill, José; Santi, Andrea [Maxwell Institute and School of Mathematics, The University of Edinburgh,James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD, Scotland (United Kingdom)

    2016-06-20

    We determine the Killing superalgebras underpinning field theories with rigid unextended supersymmetry on Lorentzian four-manifolds by re-interpreting them as filtered deformations of ℤ-graded subalgebras with maximum odd dimension of the N=1 Poincaré superalgebra in four dimensions. Part of this calculation involves computing a Spencer cohomology group which, by analogy with a similar result in eleven dimensions, prescribes a notion of Killing spinor, which we identify with the defining condition for bosonic supersymmetric backgrounds of minimal off-shell supergravity in four dimensions. We prove that such Killing spinors always generate a Lie superalgebra, and that this Lie superalgebra is a filtered deformation of a subalgebra of the N=1 Poincaré superalgebra in four dimensions. Demanding the flatness of the connection defining the Killing spinors, we obtain equations satisfied by the maximally supersymmetric backgrounds. We solve these equations, arriving at the classification of maximally supersymmetric backgrounds whose associated Killing superalgebras are precisely the filtered deformations we classify in this paper.

  4. Isolated Horizon, Killing Horizon and Event Horizon

    OpenAIRE

    Date, G.

    2001-01-01

    We consider space-times which in addition to admitting an isolated horizon also admit Killing horizons with or without an event horizon. We show that an isolated horizon is a Killing horizon provided either (1) it admits a stationary neighbourhood or (2) it admits a neighbourhood with two independent, commuting Killing vectors. A Killing horizon is always an isolated horizon. For the case when an event horizon is definable, all conceivable relative locations of isolated horizon and event hori...

  5. Conformal Killing vectors in Robertson-Walker spacetimes

    International Nuclear Information System (INIS)

    Maartens, R.; Maharaj, S.d.

    1986-01-01

    It is well known that Robertson-Walker spacetimes admit a conformal Killingl vector normal to the spacelike homogeneous hypersurfaces. Because these spacetimes are conformally flat, there are a further eight conformal Killing vectors, which are neither normal nor tangent to the homogeneous hypersurfaces. The authors find these further conformal Killing vectors and the Lie algebra of the full G 15 of conformal motions. Conditions on the metric scale factor are determined which reduce some of the conformal Killing vectors to homothetic Killing vectors or Killing vectors, allowing one to regain in a unified way the known special geometries. The non-normal conformal Killing vectors provide a counter-example to show that conformal motions do not, in general, map a fluid flow conformally. These non-normal vectors are also used to find the general solution of the null geodesic equation and photon Liouville equation. (author)

  6. 9 CFR 113.206 - Wart Vaccine, Killed Virus.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Wart Vaccine, Killed Virus. 113.206... AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.206 Wart Vaccine, Killed Virus. Wart Vaccine, Killed Virus, shall be prepared...

  7. Research on killing Escherichia Coli by reactive oxygen species based on strong ionization discharging plasma

    International Nuclear Information System (INIS)

    Li, Y J; Tian, Y P; Zhang, Z T; Li, R H; Cai, L J; Gao, J Y

    2013-01-01

    Reactive oxygen species solution produced by strong ionization discharging plasma was used to kill Escherichia coli by spraying. Several effect factors such as pH value, solution temperature, spraying time and exposure time were observed in this study, and their effects on killing rate of Escherichia coli were discussed and analysed. Results show that the treating efficiency of ROS solution for Escherichia coli is higher in alkaline solution than that in acid solution. The killing rate of Escherichia coli increases while the spraying time and exposure time are longer and the temperature is lower. The effects of different factors on killing rate of Escherichia coli are as follows: spraying time > pH value > exposure time > solution temperature.

  8. 9 CFR 113.209 - Rabies Vaccine, Killed Virus.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Rabies Vaccine, Killed Virus. 113.209... Killed Virus Vaccines § 113.209 Rabies Vaccine, Killed Virus. Rabies Vaccine (Killed Virus) shall be prepared from virus-bearing cell cultures or nerve tissues obtained from animals that have developed rabies...

  9. Intracellular effects of atmospheric-pressure plasmas on melanoma cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Ishaq, M., E-mail: ishaqmusarat@gmail.com [Peter MacCallum Cancer Centre, East Melbourne, VIC 3002 (Australia); Comonwealth Scientific and Industrial Research Organization, Sydney, New South Wales (Australia); Bazaka, K. [Institute for Health and Biomedical Innovation, School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4000 (Australia); Ostrikov, K. [Comonwealth Scientific and Industrial Research Organization, Sydney, New South Wales (Australia); Institute for Health and Biomedical Innovation, School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4000 (Australia)

    2015-12-15

    Gas discharge plasmas formed at atmospheric pressure and near room temperature have recently been shown as a promising tool for cancer treatment. The mechanism of the plasma action is attributed to generation of reactive oxygen and nitrogen species, electric fields, charges, and photons. The relative importance of different modes of action of atmospheric-pressure plasmas depends on the process parameters and specific treatment objects. Hence, an in-depth understanding of biological mechanisms that underpin plasma-induced death in cancer cells is required to optimise plasma processing conditions. Here, the intracellular factors involved in the observed anti-cancer activity in melanoma Mel007 cells are studied, focusing on the effect of the plasma treatment dose on the expression of tumour suppressor protein TP73. Over-expression of TP73 causes cell growth arrest and/or apoptosis, and hence can potentially be targeted to enhance killing efficacy and selectivity of the plasma treatment. It is shown that the plasma treatment induces dose-dependent up-regulation of TP73 gene expression, resulting in significantly elevated levels of TP73 RNA and protein in plasma-treated melanoma cells. Silencing of TP73 expression by means of RNA interference inhibited the anticancer effects of the plasma, similar to the effect of caspase inhibitor z-VAD or ROS scavenger N-acetyl cysteine. These results confirm the role of TP73 protein in dose-dependent regulation of anticancer activity of atmospheric-pressure plasmas.

  10. Killing multiple myeloma cells with the small molecule 3-bromopyruvate: implications for therapy.

    Science.gov (United States)

    Majkowska-Skrobek, Grażyna; Augustyniak, Daria; Lis, Paweł; Bartkowiak, Anna; Gonchar, Mykhailo; Ko, Young H; Pedersen, Peter L; Goffeau, Andre; Ułaszewski, Stanisław

    2014-07-01

    The small molecule 3-bromopyruvate (3-BP), which has emerged recently as the first member of a new class of potent anticancer agents, was tested for its capacity to kill multiple myeloma (MM) cancer cells. Human MM cells (RPMI 8226) begin to lose viability significantly within 8 h of incubation in the presence of 3-BP. The Km (0.3 mmol/l) for intracellular accumulation of 3-BP in MM cells is 24 times lower than that in control cells (7.2 mmol/l). Therefore, the uptake of 3-BP by MM cells is significantly higher than that by peripheral blood mononuclear cells. Further, the IC50 values for human MM cells and control peripheral blood mononuclear cells are 24 and 58 µmol/l, respectively. Therefore, specificity and selectivity of 3-BP toward MM cancer cells are evident on the basis of the above. In MM cells the transcription levels of the gene encoding the monocarboxylate transporter MCT1 is significantly amplified compared with control cells. The level of intracellular ATP in MM cells decreases by over 90% within 1 h after addition of 100 µmol/l 3-BP. The cytotoxicity of 3-BP, exemplified by a marked decrease in viability of MM cells, is potentiated by the inhibitor of glutathione synthesis buthionine sulfoximine. In addition, the lack of mutagenicity and its superior capacity relative to Glivec to kill MM cancer cells are presented in this study.

  11. Using DNA to describe and quantify interspecific killing of fishers in California

    Science.gov (United States)

    Greta M. Wengert; Mourad W. Gabriel; Sean M. Matthews; J. Mark Higley; Rick A. Sweitzer; Craig. M. Thompson; Kathryn L. Purcell; Reginald H. Barrett; Leslie W. Woods; Rebecca E. Green; Stefan M. Keller; Patricia M. Gaffney; Megan Jones; Benjamin N. Sacks

    2014-01-01

    Interspecific killing is common among carnivores and can have population-level effects on imperiled species. The fisher (Pekania [Martes] pennant) is a rare forest carnivore in western North America and a candidate for listing under the United States Endangered Species Act. Interspecific killing and...

  12. Chlorin e6 Conjugated Interleukin-6 Receptor Aptamers Selectively Kill Target Cells Upon Irradiation

    Directory of Open Access Journals (Sweden)

    Sven Kruspe

    2014-01-01

    Full Text Available Photodynamic therapy (PDT uses the therapeutic properties of light in combination with certain chemicals, called photosensitizers, to successfully treat brain, breast, prostate, and skin cancers. To improve PDT, current research focuses on the development of photosensitizers to specifically target cancer cells. In the past few years, aptamers have been developed to directly deliver cargo molecules into target cells. We conjugated the photosensitizer chlorin e6 (ce6 with a human interleukin-6 receptor (IL-6R binding RNA aptamer, AIR-3A yielding AIR-3A-ce6 for application in high efficient PDT. AIR-3A-ce6 was rapidly and specifically internalized by IL-6R presenting (IL-6R+ cells. Upon light irradiation, targeted cells were selectively killed, while free ce6 did not show any toxic effect. Cells lacking the IL-6R were also not affected by AIR-3A-ce6. With this approach, we improved the target specificity of ce6-mediated PDT. In the future, other tumor-specific aptamers might be used to selectively localize photosensitizers into cells of interest and improve the efficacy and specificity of PDT in cancer and other diseases.

  13. Heat Killed Lactobacillus reuteri GMNL-263 Reduces Fibrosis Effects on the Liver and Heart in High Fat Diet-Hamsters via TGF-β Suppression

    Directory of Open Access Journals (Sweden)

    Wei-Jen Ting

    2015-10-01

    Full Text Available Obesity is one of the major risk factors for nonalcoholic fatty liver disease (NAFLD, and NAFLD is highly associated with an increased risk of cardiovascular disease (CVD. Scholars have suggested that certain probiotics may significantly impact cardiovascular health, particularly certain Lactobacillus species, such as Lactobacillus reuteri GMNL-263 (Lr263 probiotics, which have been shown to reduce obesity and arteriosclerosis in vivo. In the present study, we examined the potential of heat-killed bacteria to attenuate high fat diet (HFD-induced hepatic and cardiac damages and the possible underlying mechanism of the positive effects of heat-killed Lr263 oral supplements. Heat-killed Lr263 treatments (625 and 3125 mg/kg-hamster/day were provided as a daily supplement by oral gavage to HFD-fed hamsters for eight weeks. The results show that heat-killed Lr263 treatments reduce fatty liver syndrome. Moreover, heat-killed Lactobacillus reuteri GMNL-263 supplementation in HFD hamsters also reduced fibrosis in the liver and heart by reducing transforming growth factor β (TGF-β expression levels. In conclusion, heat-killed Lr263 can reduce lipid metabolic stress in HFD hamsters and decrease the risk of fatty liver and cardiovascular disease.

  14. The application of exosomes as a nanoscale cancer vaccine

    Directory of Open Access Journals (Sweden)

    Aaron Tan

    2010-11-01

    Full Text Available Aaron Tan1, Hugo De La Peña2, Alexander M Seifalian1,31UCL Division of Surgery and Interventional Science, Centre for Nanotechnology and Regenerative Medicine, University College London, London, UK; 2Department of Pathology, University of Cambridge, Cambridge, UK; 3Royal Free Hampstead NHS Trust Hospital, London, UKAbstract: Cancer is a leading cause of death globally, and it is predicted and projected to continue rising as life expectancy increases. Although patient survival rates for some forms of cancers are high due to clinical advances in treatment protocols, the search for effective cancer vaccines remains the ultimate Rosetta Stone in oncology. Cervarix®, Gardasil®, and hepatitis B vaccines are currently employed in preventing certain forms of viral cancers. However, they are, strictly speaking, not ‘true’ cancer vaccines as they are prophylactic rather than therapeutic, are only effective against the oncogenic viruses, and do not kill the actual cancer cells. On April 2010, a new prostate cancer vaccine Provenge® (sipuleucel-T was approved by the US FDA, and it is the first approved therapeutic vaccine that utilizes antigen-presenting cell technology involving dendritic cells in cancer immunotherapy. Recent evidence suggests that the use of nanoscale particles like exosomes in immunotherapy could form a viable basis for the development of novel cancer vaccines, via antigen-presenting cell technology, to prime the immune system to recognize and kill cancer cells. Coupled with nanotechnology, engineered exosomes are emerging as new and novel avenues for cancer vaccine development. Here, we review the current knowledge pertaining to exosome technology in immunotherapy and also seek to address the challenges and future directions associated with it, in hopes of bringing this exciting application a step closer toward an effective clinical reality.Keywords: exosomes, cancer vaccine, immunotherapy, nanomedicine 

  15. Killing machines: three pore-forming proteins of the immune system

    Science.gov (United States)

    McCormack, Ryan; de Armas, Lesley; Shiratsuchi, Motoaki

    2014-01-01

    The evolution of early multicellular eukaryotes 400–500 million years ago required a defensive strategy against microbial invasion. Pore-forming proteins containing the membrane-attack-complex-perforin (MACPF) domain were selected as the most efficient means to destroy bacteria or virally infected cells. The mechanism of pore formation by the MACPF domain is distinctive in that pore formation is purely physical and unspecific. The MACPF domain polymerizes, refolds, and inserts itself into bilayer membranes or bacterial outer cell walls. The displacement of surface lipid/carbohydrate molecules by the polymerizing MACPF domain creates clusters of large, water-filled holes that destabilize the barrier function and provide access for additional anti-bacterial or anti-viral effectors to sensitive sites that complete the destruction of the invader via enzymatic or chemical attack. The highly efficient mechanism of anti-microbial defense by a combined physical and chemical strategy using pore-forming MACPF-proteins has been retargeted during evolution of vertebrates and mammals for three purposes: (1) to kill extracellular bacteria C9/polyC9 evolved in conjunction with complement, (2) to kill virus infected and cancer cells perforin-1/polyperforin-1 CTL evolved targeted by NK and CTL, and (3) to kill intracellular bacteria transmembrane perforin-2/putative polyperforin-2 evolved targeted by phagocytic and nonphagocytic cells. Our laboratory has been involved in the discovery and description of each of the three pore-formers that will be reviewed here. PMID:24293008

  16. Peptidoglycan recognition proteins kill bacteria by inducing oxidative, thiol, and metal stress.

    Directory of Open Access Journals (Sweden)

    Des Raj Kashyap

    2014-07-01

    Full Text Available Mammalian Peptidoglycan Recognition Proteins (PGRPs are a family of evolutionary conserved bactericidal innate immunity proteins, but the mechanism through which they kill bacteria is unclear. We previously proposed that PGRPs are bactericidal due to induction of reactive oxygen species (ROS, a mechanism of killing that was also postulated, and later refuted, for several bactericidal antibiotics. Here, using whole genome expression arrays, qRT-PCR, and biochemical tests we show that in both Escherichia coli and Bacillus subtilis PGRPs induce a transcriptomic signature characteristic of oxidative stress, as well as correlated biochemical changes. However, induction of ROS was required, but not sufficient for PGRP killing. PGRPs also induced depletion of intracellular thiols and increased cytosolic concentrations of zinc and copper, as evidenced by transcriptome changes and supported by direct measurements. Depletion of thiols and elevated concentrations of metals were also required, but by themselves not sufficient, for bacterial killing. Chemical treatment studies demonstrated that efficient bacterial killing can be recapitulated only by the simultaneous addition of agents leading to production of ROS, depletion of thiols, and elevation of intracellular metal concentrations. These results identify a novel mechanism of bacterial killing by innate immunity proteins, which depends on synergistic effect of oxidative, thiol, and metal stress and differs from bacterial killing by antibiotics. These results offer potential targets for developing new antibacterial agents that would kill antibiotic-resistant bacteria.

  17. The Globalisation of Cancer

    International Nuclear Information System (INIS)

    Potterton, L.

    2010-01-01

    Cancer has gone global. Once seen as the disease of the rich and old, cancer now kills over seven million people a year, with 70% of these deaths occurring in developing countries. The number of cancer cases is growing globally, but developing countries are worst hit by the cancer crisis, since the resources needed to prevent, diagnose and treat cancer are severely limited or nonexistent.

  18. Anti-proliferative effect of biogenic gold nanoparticles against breast cancer cell lines (MDA-MB-231 & MCF-7)

    Science.gov (United States)

    K. S., Uma Suganya; Govindaraju, K.; Ganesh Kumar, V.; Prabhu, D.; Arulvasu, C.; Stalin Dhas, T.; Karthick, V.; Changmai, Niranjan

    2016-05-01

    Breast cancer is a major complication in women and numerous approaches are being developed to overcome this problem. In conventional treatments such as chemotherapy and radiotherapy the post side effects cause an unsuitable effect in treatment of cancer. Hence, it is essential to develop a novel strategy for the treatment of this disease. In the present investigation, a possible route for green synthesis of gold nanoparticles (AuNPs) using leaf extract of Mimosa pudica and its anticancer efficacy in the treatment of breast cancer cell lines is studied. The synthesized nanoparticles were found to be effective in killing cancer cells (MDA-MB-231 & MCF-7) which were studied using various anticancer assays (MTT assay, cell morphology determination, cell cycle analysis, comet assay, Annexin V-FITC/PI staining and DAPI staining). Cell morphological analysis showed the changes occurred in cancer cells during the treatment with AuNPs. Cell cycle analysis revealed apoptosis in G0/G1 to S phase. Similarly in Comet assay, there was an increase in tail length in treated cells in comparison with the control. Annexin V-FITC/PI staining assay showed prompt fluorescence in treated cells indicating the translocation of phosphatidylserine from the inner membrane. PI and DAPI staining showed the DNA damage in treated cells.

  19. Environmental and genetic interactions in human cancer

    International Nuclear Information System (INIS)

    Paterson, M.C.

    Humans, depending upon their genetic make-up, differ in their susceptibility to the cancer-causing effects of extrinsic agents. Clinical and laboratory studies on the hereditary disorder, ataxia telangiectasia (AT) show that persons afflicted with this are cancer-prone and unusually sensitive to conventional radiotherapy. Their skin cells, when cultured, are hypersensitive to killing by ionizing radiation, being defective in the enzymatic repair of radiation-induced damange to the genetic material, deoxyribonucleic acid (DNA). This molecular finding implicates DNA damage and its imperfect repair as an early step in the induction of human cancer by radiation and other carcinogens. The parents of AT patients are clincally normal but their cultured cells are often moderately radiosensitive. The increased radiosensitivity of cultured cells offers a means of identifying a presumed cancer-prone subpopulation that should avoid undue exposure to certain carcinogens. The radioresponse of cells from patients with other cancer-associated genetic disorders and persons suspected of being genetically predisposed to radiation-induced cancer has also been measured. Increased cell killing by γ-rays appears in the complex genetic disease, tuberous sclerosis. Cells from cancer-stricken members of a leukemia-prone family are also radiosensitive, as are cells from one patient with radiation-associated breast cancer. These radiobiological data, taken together, strongly suggest that genetic factors can interact with extrinsic agents and thereby play a greater causative role in the development of common cancers in man than previously thought. (L.L.)

  20. South Carolina Cancer Health Equity Consortium: HBCU Student Summer Training Program

    Science.gov (United States)

    2017-08-01

    term effects on our health when we get much older . The accumulation of AGEs alters the development of the pubertal mammary gland by increasing cell...Papilloma Virus (HPV) is a sexually transmitted virus that is associated with cervical cancer. HPV early proteins, E6 and E7, have cancer-killing...The Impact of Reactive Sugar Metabolites on Pubertal Mammary Gland Development and Increased Cancer Risk Advanced Glycation End-Products ( AGEs ) are a

  1. Mitigation options for fish kills in L Lake and Pond C

    International Nuclear Information System (INIS)

    Paller, M.H.

    1989-11-01

    This report concerns mitigation options for reducing or eliminating the fish kills that occur in L Lake and Pond C as a result of reactor operations. These kills occur when fish that have entered the discharge areas during outages are killed by the rapid rises in temperature that follow reactor re-starts. Factors that have been observed to influence the severity of the kills include the length of the outage, season during which the outage occurs, reactor power level, and size of the fish in the discharge area. Without mitigation, fish kills can be expected to occur in Pond C with approximately the same frequency and severity as in the past. Even in the absence of mitigation, however, it is unlikely that future fish kills in L Lake will be as severe as the large kill that occurred in December 1986. Fish abundance in Region 2 of L Lake (where severe kills occurred in the past) has declined over 90% since 1986, largely due to a reduction in the abundance of juvenile sunfish (which constituted approximately 99% of past kills). There are basically three categories of mitigation options: changes in reactor operations, methods to exclude fish from time discharge areas, and methods to promote the escapement of fish from the discharge area. These options vary in approach, scope, and anticipated expense. Most would need to be researched in greater depth before it would be possible to predict their effectiveness more definitively. While the options have the potential to greatly reduce mortalities, none can totally eliminate mortalities. The only way of ensuring the elimination of all mortalities is to reduce effluent temperatures to sublethal levels with properly designed and operated cooling technology. 18 refs., 2 figs., 1 tab

  2. Targeting the Checkpoint to Kill Cancer Cells

    Czech Academy of Sciences Publication Activity Database

    Benada, Jan; Macůrek, Libor

    2015-01-01

    Roč. 6, č. 3 (2015), s. 1912-1937 ISSN 2218-273X R&D Projects: GA ČR(CZ) GA14-34264S Institutional support: RVO:68378050 Keywords : checkpoint * DNA damage response * cancer Subject RIV: EB - Genetics ; Molecular Biology

  3. TOFA (5-tetradecyl-oxy-2-furoic acid) reduces fatty acid synthesis, inhibits expression of AR, neuropilin-1 and Mcl-1 and kills prostate cancer cells independent of p53 status.

    Science.gov (United States)

    Guseva, Natalya V; Rokhlin, Oskar W; Glover, Rebecca A; Cohen, Michael B

    2011-07-01

    A key player in prostate cancer development and progression is the androgen receptor (AR). Tumor-associated lipogenesis can protect cancer cells from carcinogenic- and therapeutic-associated treatments. Increased synthesis of fatty acids and cholesterol is regulated by androgens through induction of several genes in androgen-responsive cancer cells. Acetyl-CoA-carboxylase-α (ACCA) is a key enzyme in the regulation of fatty acids synthesis. Here we show that AR binds in vivo to intron regions of human ACCA gene. We also show that the level of ACCA protein in LNCaP depends on AR expression and that DHT treatment increases ACCA expression and fatty acid synthesis. Inhibition of ACCA by TOFA (5-tetradecyl-oxy-2-furoic acid) decreases fatty acid synthesis and induces caspase activation and cell death in most PCa cell lines. Our data suggest that TOFA can kill cells via the mitochondrial pathway since we found cytochrome c release after TOFA treatment in androgen sensitive cell lines. The results also imply that the pro-apoptotic effect of TOFA may be mediated via a decrease of neuropilin-1(NRP1) and Mcl-1expression. We have previously reported that Mcl-1 is under AR regulation and plays an important role in resistance to drug-induced apoptosis in prostate cancer cells, and NRP1 is known to regulate Mcl-1 expression. Here, we show for the first time that NRP1 expression is under AR control. Taken together, our data suggest that TOFA is a potent cell death inducing agent in prostate cancer cells.

  4. ANALYZE THE IMPACT OF HABITAT PATCHES ON WILDLIFE ROAD-KILL

    OpenAIRE

    Seok, S.; Lee, J.

    2015-01-01

    The ecosystem fragmentation due to transportation infrastructure causes a road-kill phenomenon. When making policies for mitigating road-kill it is important to select target-species in order to enhance its efficiency. However, many wildlife crossing structures have been questioned regarding their effectiveness due to lack of considerations such as target-species selection, site selection, management, etc. The purpose of this study is to analyse the impact of habitat patches on wildlife road-...

  5. The antioxidant, MnTE-2-PyP, prevents side-effects incurred by prostate cancer irradiation.

    Directory of Open Access Journals (Sweden)

    Rebecca E Oberley-Deegan

    Full Text Available Prostate cancer is the most commonly diagnosed cancer, with an estimated 240,000 new cases reported annually in the United States. Due to early detection and advances in therapies, more than 90% of patients will survive 10 years post diagnosis and treatment. Radiation is a treatment option often used to treat localized disease; however, while radiation is very effective at killing tumor cells, normal tissues are damaged as well. Potential side-effects due to prostate cancer-related radiation therapy include bowel inflammation, erectile dysfunction, urethral stricture, rectal bleeding and incontinence. Currently, radiation therapy for prostate cancer does not include the administration of therapeutic agents to reduce these side effects and protect normal tissues from radiation-induced damage. In the current study, we show that the small molecular weight antioxidant, MnTE-2-PyP, protects normal tissues from radiation-induced damage in the lower abdomen in rats. Specifically, MnTE-2-PyP protected skin, prostate, and testes from radiation-induced damage. MnTE-2-PyP also protected from erectile dysfunction, a persistent problem regardless of the type of radiation techniques used because the penile neurovascular bundles lay in the peripheral zones of the prostate, where most prostate cancers reside. Based on previous studies showing that MnTE-2-PyP, in combination with radiation, further reduces subcutaneous tumor growth, we believe that MnTE-2-PyP represents an excellent radioprotectant in combination radiotherapy for cancer in general and specifically for prostate cancer.

  6. Clinical Concentrations of Thioridazine Kill Intracellular Multidrug-Resistant Mycobacterium tuberculosis

    Science.gov (United States)

    Ordway, Diane; Viveiros, Miguel; Leandro, Clara; Bettencourt, Rosário; Almeida, Josefina; Martins, Marta; Kristiansen, Jette E.; Molnar, Joseph; Amaral, Leonard

    2003-01-01

    The phenothiazines chlorpromazine (CPZ) and thioridazine (TZ) have equal in vitro activities against antibiotic-sensitive and -resistant Mycobacterium tuberculosis. These compounds have not been used as anti-M. tuberculosis agents because their in vitro activities take place at concentrations which are beyond those that are clinically achievable. In addition, chronic administration of CPZ produces frequent severe side effects. Because CPZ has been shown to enhance the killing of intracellular M. tuberculosis at concentrations in the medium that are clinically relevant, we have investigated whether TZ, a phenothiazine whose negative side effects are less frequent and serious than those associated with CPZ, kills M. tuberculosis organisms that have been phagocytosed by human macrophages, which have nominal killing activities against these bacteria. Both CPZ and TZ killed intracellular antibiotic-sensitive and -resistant M. tuberculosis organisms when they were used at concentrations in the medium well below those present in the plasma of patients treated with these agents. These concentrations in vitro were not toxic to the macrophage, nor did they affect in vitro cellular immune processes. TZ thus appears to be a serious candidate for the management of a freshly diagnosed infection of pulmonary tuberculosis or as an adjunct to conventional antituberculosis therapy if the patient originates from an area known to have a high prevalence of multidrug-resistant M. tuberculosis isolates. Nevertheless, we must await the outcomes of clinical trials to determine whether TZ itself may be safely and effectively used as an antituberculosis agent. PMID:12604522

  7. Photothermal-triggered control of sub-cellular drug accumulation using doxorubicin-loaded single-walled carbon nanotubes for the effective killing of human breast cancer cells

    Science.gov (United States)

    Oh, Yunok; Jin, Jun-O.; Oh, Junghwan

    2017-03-01

    Single-walled carbon nanotubes (SWNTs) are often the subject of investigation as effective photothermal therapy (PTT) agents owing to their unique strong optical absorption. Doxorubicin (DOX)-loaded SWNTs (SWNTs-DOX) can be used as an efficient therapeutic agent for combined near infrared (NIR) cancer photothermal and chemotherapy. However, SWNTs-DOX-mediated induction of cancer cell death has not been fully investigated, particularly the reaction of DOX inside cancer cells by PTT. In this study, we examined how the SWNTs-DOX promoted effective MDA-MB-231 cell death compared to DOX and PTT alone. We successfully synthesized the SWNTs-DOX. The SWNTs-DOX exhibited a slow DOX release, which was accelerated by NIR irradiation. Furthermore, DOX released from the SWNTs-DOX accumulated inside the cells at high concentration and effectively localized into the MDA-MB-231 cell nucleus. A combination of SWNTs-DOX and PTT promoted an effective MDA-MB-231 cell death by mitochondrial disruption and ROS generation. Thus, SWNTs-DOX can be utilized as an excellent anticancer agent for early breast cancer treatment.

  8. The value of oncolysis virus in treating liver cancer

    International Nuclear Information System (INIS)

    Xiong Zhuang; Wang Jianhua

    2007-01-01

    The effect of traditional therapy is limited for liver cancer, gene therapy gets more and more recognition in recent years. Oncolysis virus is a kind of conditionally replicating virus, with special reproductivity in cancer cells, and then kills them. Gene agents are usually introduced into tumor tissue by intra-tumor and intra-arterial injection, and the technique of interventional therapy is able to satisfy the demand excellently. So, some breakthrough is expected in treating liver cancer by skillfully combining oncolysis virus and interventional technique. (authors)

  9. Comparisons of boll weevil (Coleoptera: Curculionidae) pheromone traps with and without kill strips.

    Science.gov (United States)

    Suh, C P C; Armstrong, J S; Spurgeon, D W; Duke, S

    2009-02-01

    Boll weevil, Anthonomus grandis grandis Boheman (Coleoptera: Curculionidae), eradication programs typically equip pheromone traps with an insecticide-impregnated kill strip. These strips are intended to kill captured insects, thereby simplifying trap servicing and reducing the loss of weevils from predation and escape. However, the effectiveness of kill strips has not been extensively evaluated. We examined the influences of kill strips on weevil captures, trap servicing, and the incidences of weevil predation and trap obstruction (e.g., by spider webs). Evaluations were conducted weekly during three different production periods (pre- to early-, late-, and postseason) of cotton, Gossypium hirsutum L., to represent different environmental conditions and weevil population levels. Within each period, mean weekly captures of weevils in traps with and without kill strips were statistically similar. On average, traps with kill strips took 9 s longer to service than traps without kill strips, but statistical differences were only detected during the late-season period. Overall, the mean weekly proportion of traps with evidence of weevil predation or trap obstruction was significantly lower for traps with kill strips (0.25) than for traps without kill strips (0.37). However, this reduction in the frequency of weevil predation or trap obstruction was too small to produce a corresponding increase in the numbers of weevils captured. In light of these findings, the use of kill strips is likely unnecessary in eradication programs, but may be a consideration in situations when the numbers of deployed traps are reduced and chronic problems with weevil predation or trap obstruction exist.

  10. The multikinase inhibitor Sorafenib enhances glycolysis and synergizes with glycolysis blockade for cancer cell killing

    NARCIS (Netherlands)

    Tesori, V.; Piscaglia, A.C.; Samengo, D.; Barba, M.; Bernardini, C.; Scatena, R.; Pontoglio, A.; Castellini, L.; Spelbrink, H.; Maulucci, G.; Puglisi, M.A.; Pani, G.; Gasbarrini, A.

    2015-01-01

    Although the only effective drug against primary hepatocarcinoma, the multikinase inhibitor Sorafenib (SFB) usually fails to eradicate liver cancer. Since SFB targets mitochondria, cell metabolic reprogramming may underlie intrinsic tumor resistance. To characterize cancer cell metabolic response to

  11. New trial evaluates investigational drug for endometrial and breast cancers | Center for Cancer Research

    Science.gov (United States)

    A new clinical trial is testing ONC201, an investigational drug that in laboratory studies has been shown to kill breast and endometrial cancer cells most likely by destroying mitochondria within the tumor cells. Mitochondria are the “powerhouse” of the cell, and blocking its activity may kill tumor cells and shrink tumors in human patients.

  12. Dirac operators and Killing spinors with torsion; Dirac-Operatoren und Killing-Spinoren mit Torsion

    Energy Technology Data Exchange (ETDEWEB)

    Becker-Bender, Julia

    2012-12-17

    On a Riemannian spin manifold with parallel skew torsion, we use the twistor operator to obtain an eigenvalue estimate for the Dirac operator with torsion. We consider the equality case in dimensions four and six. In odd dimensions we describe Sasaki manifolds on which equality in the estimate is realized by Killing spinors with torsion. In dimension five we characterize all Killing spinors with torsion and obtain certain naturally reductive spaces as exceptional cases.

  13. Complement-mediated killing of Borrelia burgdorferi by nonimmune sera from sika deer.

    Science.gov (United States)

    Nelson, D R; Rooney, S; Miller, N J; Mather, T N

    2000-12-01

    Various species of cervid deer are the preferred hosts for adult, black-legged ticks (Ixodes scapularis and Ixodes pacificus) in the United States. Although frequently exposed to the agent of Lyme disease (Borrelia burgdorferi), these animals, for the most part, are incompetent as transmission reservoirs. We examined the borreliacidal activity of normal and B. burgdorferi-immune sera from sika deer (Cervus nippon) maintained in a laboratory setting and compared it to that of similar sera from reservoir-competent mice and rabbits. All normal deer sera (NDS) tested killed > 90% of B. burgdorferi cells. In contrast, normal mouse and rabbit sera killed feeding exhibited IFA titers of 1:256, whereas sera from mice and rabbits similarly exposed had titers of > 1:1,024. Heat treatment (56 C, 30 min) of NDS reduced borreliacidal activity, with complement-mediated killing. The chelators EGTA and EDTA were used to block the classical or both the classical and alternative complement pathways, respectively. Addition of 10 mM EGTA to NDS had a negligible effect on borreliacidal activity, with > 90% of the cells killed. Addition of 10 mM EDTA reduced the killing to approximately 30%, whereas the addition of Mg2+ (10 mM) restored borreliacidal activity to NDS. The addition of zymosan A, an activator of the alternative pathway, increased the survival of B. burgdorferi cells to approximately 80% in NDS. These data suggest that the alternative complement activation pathway plays a major role in the borreliacidal activity of NDS. Additionally, 10 mM EGTA had almost no effect on the killing activity of B. burgdorferi-exposed deer sera, suggesting that the classical pathway is not involved in Borrelia killing, even in sera from B. burgdorferi-exposed deer.

  14. Inflatable kill packers used in working over Kuwaiti wells

    Energy Technology Data Exchange (ETDEWEB)

    Miller, D. (Baker Oil Tools, Houston, TX (US)); Conover, G. (Baker Service Tools, Houston, TX (US))

    1992-03-09

    This paper reports on inflatable packers which are being used with great success in post-well capping workover operations in Kuwait oil fields. In mid-January, about one kill packer was being run per day. Use is expected to increase in March when a second post-capping crew arrives. Of several thousand unconventional ideas submitted to Kuwait Oil Co. (KOC) for controlling the well fires left in the aftermath of lst year's Gulf War, only about a dozen were actually used. Inflatable kill packers, designed and manufactured by Baker Service Tools and marketed by Baker Oil Tools, were one of the ideas that proved effective. The kill packers are modifications of Baker's inflatable packers that have successfully been used in capping producers on many blowouts throughout the world, including the Piper Alpha disaster in the North Sea and the Saga blowout offshore Norway.

  15. Molecular genetics of cancer and tumorigenesis: Drosophila models

    Institute of Scientific and Technical Information of China (English)

    Wu-Min Deng

    2011-01-01

    Why do some cells not respond to normal control of cell division and become tumorous? Which signals trigger some tumor cells to migrate and colonize other tissues? What genetic factors are responsible for tumorigenesis and cancer development? What environmental factors play a role in cancer formation and progression? In how many ways can our bodies prevent and restrict the growth of cancerous cells?How can we identify and deliver effective drugs to fight cancer? In the fight against cancer,which kills more people than any other disease,these and other questions have long interested researchers from a diverse range of fields.To answer these questions and to fight cancer more effectively,we must increase our understanding of basic cancer biology.Model organisms,including the fruit fly Drosophila melanogaster,have played instrumental roles in our understanding of this devastating disease and the search for effective cures.Drosophila and its highly effective,easy-touse,and ever-expanding genetic tools have contributed toand enriched our knowledge of cancer and tumor formation tremendously.

  16. Honor Killing: Where Pride Defeats Reason.

    Science.gov (United States)

    Kanchan, Tanuj; Tandon, Abhishek; Krishan, Kewal

    2016-12-01

    Honor killings are graceless and ferocious murders by chauvinists with an antediluvian mind. These are categorized separately because these killings are committed for the prime reason of satisfying the ego of the people whom the victim trusts and always looks up to for support and protection. It is for this sole reason that honor killings demand strict and stern punishment, not only for the person who committed the murder but also for any person who contributed or was party to the act. A positive change can occur with stricter legislation and changes in the ethos of the society we live in today.

  17. Single-hit mechanism of tumour cell killing by radiation.

    Science.gov (United States)

    Chapman, J D

    2003-02-01

    To review the relative importance of the single-hit mechanism of radiation killing for tumour response to 1.8-2.0 Gy day(-1) fractions and to low dose-rate brachytherapy. Tumour cell killing by ionizing radiation is well described by the linear-quadratic equation that contains two independent components distinguished by dose kinetics. Analyses of tumour cell survival curves that contain six or more dose points usually provide good estimates of the alpha- and beta-inactivation coefficients. Superior estimates of tumour cell intrinsic radiosensitivity are obtained when synchronized populations are employed. The characteristics of single-hit inactivation of tumour cells are reviewed and compared with the characteristics of beta-inactivation. Potential molecular targets associated with single-hit inactivation are discussed along with strategies for potentiating cell killing by this mechanism. The single-hit mechanism of tumour cell killing shows no dependence on dose-rate and, consequently, no evidence of sublethal damage repair. It is uniquely potentiated by high linear-energy-transfer radiation, exhibits a smaller oxygen enhancement ratio and exhibits a larger indirect effect by hydroxyl radicals than the beta-mechanism. alpha-inactivation coefficients vary slightly throughout interphase but mitotic cells exhibit extremely high alpha-coefficients in the range of those observed for lymphocytes and some repair-deficient cells. Evidence is accumulating to suggest that chromatin in compacted form could be a radiation-hypersensitive target associated with single-hit radiation killing. Analyses of tumour cell survival curves demonstrate that it is the single-hit mechanism (alpha) that determines the majority of cell killing after doses of 2Gy and that this mechanism is highly variable between tumour cell lines. The characteristics of single-hit inactivation are qualitatively and quantitatively distinct from those of beta-inactivation. Compacted chromatin in tumour cells

  18. Role of copper oxides in contact killing of bacteria.

    Science.gov (United States)

    Hans, Michael; Erbe, Andreas; Mathews, Salima; Chen, Ying; Solioz, Marc; Mücklich, Frank

    2013-12-31

    The potential of metallic copper as an intrinsically antibacterial material is gaining increasing attention in the face of growing antibiotics resistance of bacteria. However, the mechanism of the so-called "contact killing" of bacteria by copper surfaces is poorly understood and requires further investigation. In particular, the influences of bacteria-metal interaction, media composition, and copper surface chemistry on contact killing are not fully understood. In this study, copper oxide formation on copper during standard antimicrobial testing was measured in situ by spectroscopic ellipsometry. In parallel, contact killing under these conditions was assessed with bacteria in phosphate buffered saline (PBS) or Tris-Cl. For comparison, defined Cu2O and CuO layers were thermally generated and characterized by grazing incidence X-ray diffraction. The antibacterial properties of these copper oxides were tested under the conditions used above. Finally, copper ion release was recorded for both buffer systems by inductively coupled plasma atomic absorption spectroscopy, and exposed copper samples were analyzed for topographical surface alterations. It was found that there was a fairly even growth of CuO under wet plating conditions, reaching 4-10 nm in 300 min, but no measurable Cu2O was formed during this time. CuO was found to significantly inhibit contact killing, compared to pure copper. In contrast, thermally generated Cu2O was essentially as effective in contact killing as pure copper. Copper ion release from the different surfaces roughly correlated with their antibacterial efficacy and was highest for pure copper, followed by Cu2O and CuO. Tris-Cl induced a 10-50-fold faster copper ion release compared to PBS. Since the Cu2O that primarily forms on copper under ambient conditions is as active in contact killing as pure copper, antimicrobial objects will retain their antimicrobial properties even after oxide formation.

  19. Characterization of cell lysis in Pseudomonas putida induced upon expression of heterologous killing genes

    DEFF Research Database (Denmark)

    Ronchel, M.C.; Molina, L.; Witte, A.

    1998-01-01

    Active biological containment systems are based on the controlled expression of killing genes. These systems are of interest for the Pseudomonadaceae because of the potential applications of these microbes as bioremediation agents and biopesticides, The physiological effects that lead to cell dea...... protein was the killing agent. In both cases, cell death occurred as a result of impaired respiration, altered membrane permeability, and the release of some cytoplasmic contents to the extracellular medium.......Active biological containment systems are based on the controlled expression of killing genes. These systems are of interest for the Pseudomonadaceae because of the potential applications of these microbes as bioremediation agents and biopesticides, The physiological effects that lead to cell death......, respectively. Expression of the killing genes is controlled by the LacI protein, whose expression is initiated from the XylS-dependent Pm promoter. Under induced conditions, killing of P. putida CMC12 cells mediated by phi X174 lysis protein E was faster than that observed for P. putida CMC4, for which the Gef...

  20. Understanding and potentially reducing second breast cancer

    International Nuclear Information System (INIS)

    Brenner, D.

    2011-01-01

    Full text: Long term survival after breast cancer diagnosis has increased markedly in the last decade: 15-year relative survival after breast cancer diagnosis is now 75% in the US. Associated with these excellent survival prospects, however, long term studies suggest that contralateral second breast cancer rates are in the range from 10 to 15% at 15 years post treatment, and are still higher for BRCA1/2 carriers, as well as for still longer term survivors. These second cancer risks are much higher than those for a comparable healthy woman to develop a first breast cancer. It follows that women with breast cancer are highly prone to develop a second breast cancer. We propose here a new option for reducing the disturbingly high risk of a contralateral second breast cancer. in patients with both estrogen positive and negative primary breast cancer: prophylactic mammary irradiation (PMI) of the contralateral breast. The rationale behind PMI is evidence that standard post-Iumpectomy radiotherapy of the affected (ipsilateral) breast substantially reduces the long-term genetically-based second cancer risk in the ipsilateral breast, by killing the existing premalignant cells in that breast. This suggests that there are relatively few premalignant cells in the breast (hundreds or thousands, not millions), so even a fairly modest radiation cell-kill level across the whole breast would be expected to kill essentially all of them. If this is so, then a modest radiation dose-much lower than that to the affected breast--delivered uniformly to the whole contralateral breast, and typically delivered at the same time as the radiotherapy of the ipsilateral breast, would have the potential to markedly reduce second-cancer risks in the contralateral breast by killing essentially all the pre-malignant cells in that breast while causing only a very low level of radiation-induced sequelae. Therefore we hypothesize that low-dose prophylactic mammary irradiation of the contralateral breast

  1. Gefitinib-induced killing of NSCLC cell lines expressing mutant EGFR requires BIM and can be enhanced by BH3 mimetics.

    Directory of Open Access Journals (Sweden)

    Mark S Cragg

    2007-10-01

    Full Text Available The epidermal growth factor receptor (EGFR plays a critical role in the control of cellular proliferation, differentiation, and survival. Abnormalities in EGF-EGFR signaling, such as mutations that render the EGFR hyperactive or cause overexpression of the wild-type receptor, have been found in a broad range of cancers, including carcinomas of the lung, breast, and colon. EGFR inhibitors such as gefitinib have proven successful in the treatment of certain cancers, particularly non-small cell lung cancers (NSCLCs harboring activating mutations within the EGFR gene, but the molecular mechanisms leading to tumor regression remain unknown. Therefore, we wished to delineate these mechanisms.We performed biochemical and genetic studies to investigate the mechanisms by which inhibitors of EGFR tyrosine kinase activity, such as gefitinib, inhibit the growth of human NSCLCs. We found that gefitinib triggered intrinsic (also called "mitochondrial" apoptosis signaling, involving the activation of BAX and mitochondrial release of cytochrome c, ultimately unleashing the caspase cascade. Gefitinib caused a rapid increase in the level of the proapoptotic BH3-only protein BIM (also called BCL2-like 11 through both transcriptional and post-translational mechanisms. Experiments with pharmacological inhibitors indicated that blockade of MEK-ERK1/2 (mitogen-activated protein kinase kinase-extracellular signal-regulated protein kinase 1/2 signaling, but not blockade of PI3K (phosphatidylinositol 3-kinase, JNK (c-Jun N-terminal kinase or mitogen-activated protein kinase 8, or AKT (protein kinase B, was critical for BIM activation. Using RNA interference, we demonstrated that BIM is essential for gefitinib-induced killing of NSCLC cells. Moreover, we found that gefitinib-induced apoptosis is enhanced by addition of the BH3 mimetic ABT-737.Inhibitors of the EGFR tyrosine kinase have proven useful in the therapy of certain cancers, in particular NSCLCs possessing

  2. Road-Killed Animals as Resources for Ecological Studies.

    Science.gov (United States)

    Adams, Clark E.

    1983-01-01

    Summarizes 19 literature sources identifying road-killed vertebrates and frequency of kill by numbers. Examples of how these animals can be incorporated into curricula (integrating biology, society, people, and values) are given, followed by an illustrated example of how a road-killed raccoon's skull demonstrated a human/wildlife interaction prior…

  3. Current concepts for chronochemotherapy of cancer.

    Science.gov (United States)

    Laerum, O D; Smaaland, R; Abrahamsen, J F

    1995-01-01

    In this article, a survey on the concepts and scientific basis for applying chemotherapy against malignant tumors on a circadian schedule is given. The idea is to give the cytostatic drugs at times of the day when optimal effect on the tumor is achieved, but at the same time causing minimal toxic side effects. Following a brief description of the complexity of cancer tissue, some aspects of the present status of cancer chemotherapy in general are reviewed. Applications of chronobiology in cancer treatment are then surveyed together with possibilities to increase cytostatic doses and reduce side effects. When optimal tumor cell kill is achieved, the next step is to address the circadian aspects of normal organs, including the proliferative behavior of tissues with rapid cell renewal. Finally, the question of how regulatory mechanisms responsible for normal circadian rhythms can be interfered with is addressed. Cancer chronochemotherapy today combined with modern infusional technology is a promising field for improving cancer treatment in general and reducing side effects and is expected to make important progress in the near future.

  4. Podoplanin emerges as a functionally relevant oral cancer biomarker and therapeutic target.

    Science.gov (United States)

    Retzbach, Edward P; Sheehan, Stephanie A; Nevel, Evan M; Batra, Amber; Phi, Tran; Nguyen, Angels T P; Kato, Yukinari; Baredes, Soly; Fatahzadeh, Mahnaz; Shienbaum, Alan J; Goldberg, Gary S

    2018-03-01

    Oral cancer has become one of the most aggressive types of cancer, killing 140,000 people worldwide every year. Current treatments for oral cancer include surgery and radiation therapies. These procedures can be very effective; however, they can also drastically decrease the quality of life for survivors. New chemotherapeutic treatments are needed to more effectively combat oral cancer. The transmembrane receptor podoplanin (PDPN) has emerged as a functionally relevant oral cancer biomarker and chemotherapeutic target. PDPN expression promotes tumor cell migration leading to oral cancer invasion and metastasis. Here, we describe the role of PDPN in oral squamous cell carcinoma progression, and how it may be exploited to prevent and treat oral cancer. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Perturbative stability of the approximate Killing field eigenvalue problem

    International Nuclear Information System (INIS)

    Beetle, Christopher; Wilder, Shawn

    2014-01-01

    An approximate Killing field may be defined on a compact, Riemannian geometry by solving an eigenvalue problem for a certain elliptic operator. This paper studies the effect of small perturbations in the Riemannian metric on the resulting vector field. It shows that small metric perturbations, as measured using a Sobolev-type supremum norm on the space of Riemannian geometries on a fixed manifold, yield small perturbations in the approximate Killing field, as measured using a Hilbert-type square integral norm. It also discusses applications to the problem of computing the spin of a generic black hole in general relativity. (paper)

  6. Beyond the visible: Managing heart disease and cancer with nuclear science

    International Nuclear Information System (INIS)

    Kindly, D. III

    2006-09-01

    Heart disease and cancer are the world's number one and two killers. According to the World Health Organization (WHO), heart disease kills 17 million people a year - almost one third of all deaths worldwide - and cancer causes 7 million deaths every year. Early and accurate diagnosis is vital for effective treatment of both heart disease and cancer. Nuclear medicine techniques are helping to provide the vital information that doctors need to make decisions about treatment and disease management for patients

  7. Potential Combinational Anti-Cancer Therapy in Non-Small Cell Lung Cancer with Traditional Chinese Medicine Sun-Bai-Pi Extract and Cisplatin

    Science.gov (United States)

    Wang, Jhih-Syuan; Chung, Meng-Chi; Chang, Jing-Fen; Chao, Ming-Wei

    2016-01-01

    Traditional lung cancer treatments involve chemical or radiation therapies after surgical tumor removal; however, these procedures often kill normal cells as well. Recent studies indicate that chemotherapies, when combined with Traditional Chinese Medicines, may offer a new way to treat cancer. In vitro tests measuring the induction of autophagy and/or apoptosis were used to examine the cytotoxicity of SBPE, commonly used for lung inflammation on A549 cell line. The results indicated that intercellular levels of p62 and Atg12 were increased, LC3-I was cleaved into LC3-II, and autophagy was induced with SBPE only. After 24 hours, the apoptotic mechanism was induced. If the Cisplatin was added after cells reached the autophagy state, we observed synergistic effects of the two could achieve sufficient death of lung cancer cells. Therefore, the Cisplatin dosage used to induce apoptosis could be reduced by half, and the amount of time needed to achieve the inhibitory concentration of 50% was also half that of the original. In addition to inducing autophagy within a shortened period of time, the SBPE and chemotherapy drug combination therapy was able to achieve the objective of rapid low-dosage cancer cell elimination. Besides, SBPE was applied with Gemcitabine or Paclitaxel, and found that the combination treatment indeed achieve improved lung cancer cell killing effects. However, SBPE may also be less toxic to normal cells. PMID:27171432

  8. Some basic properties of Killing spinors

    International Nuclear Information System (INIS)

    Hacyan, S.; Plebanski, J.

    1976-01-01

    The concept of Killing spinor is analyzed in a general way by using the spinorial formalism. It is shown, among other things, that higher derivatives of Killing spinors can be expressed in terms of lower order derivatives. Conformal Killing vectors are studied in some detail in the light of spinorial analysis: Classical results are formulated in terms of spinors. A theorem on Lie derivatives of Debever--Penrose vectors is proved, and it is shown that conformal motion in vacuum with zero cosmological constant must be homothetic, unless the conformal tensor vanishes or is of type N. Our results are valid for either real or complex space--time manifolds

  9. Killing vectors in algebraically special space-times

    International Nuclear Information System (INIS)

    Torres del Castillo, G.F.

    1984-01-01

    The form of the isometric, homothetic, and conformal Killing vectors for algebraically special metrics which admit a shear-free congruence of null geodesics is obtained by considering their complexification, using the existence of a congruence of null strings. The Killing equations are partially integrated and the reasons which permit this reduction are exhibited. In the case where the congruence of null strings has a vanishing expansion, the Killing equations are reduced to a single master equation

  10. Phantom metrics with Killing spinors

    Directory of Open Access Journals (Sweden)

    W.A. Sabra

    2015-11-01

    Full Text Available We study metric solutions of Einstein–anti-Maxwell theory admitting Killing spinors. The analogue of the IWP metric which admits a space-like Killing vector is found and is expressed in terms of a complex function satisfying the wave equation in flat (2+1-dimensional space–time. As examples, electric and magnetic Kasner spaces are constructed by allowing the solution to depend only on the time coordinate. Euclidean solutions are also presented.

  11. Generalized Killing-Yano equations in D=5 gauged supergravity

    International Nuclear Information System (INIS)

    Kubiznak, David; Kunduri, Hari K.; Yasui, Yukinori

    2009-01-01

    We propose a generalization of the (conformal) Killing-Yano equations relevant to D=5 minimal gauged supergravity. The generalization stems from the fact that the dual of the Maxwell flux, the 3-form *F, couples naturally to particles in the background as a 'torsion'. Killing-Yano tensors in the presence of torsion preserve most of the properties of the standard Killing-Yano tensors - exploited recently for the higher-dimensional rotating black holes of vacuum gravity with cosmological constant. In particular, the generalized closed conformal Killing-Yano 2-form gives rise to the tower of generalized closed conformal Killing-Yano tensors of increasing rank which in turn generate the tower of Killing tensors. An example of a generalized Killing-Yano tensor is found for the Chong-Cvetic-Lue-Pope black hole spacetime [Z.W. Chong, M. Cvetic, H. Lu, C.N. Pope, (hep-th/0506029)]. Such a tensor stands behind the separability of the Hamilton-Jacobi, Klein-Gordon, and Dirac equations in this background.

  12. A hypoxia- and {alpha}-fetoprotein-dependent oncolytic adenovirus exhibits specific killing of hepatocellular carcinomas.

    Science.gov (United States)

    Kwon, Oh-Joon; Kim, Pyung-Hwan; Huyn, Steven; Wu, Lily; Kim, Minjung; Yun, Chae-Ok

    2010-12-15

    Oncolytic adenoviruses (Ad) constitute a new promising modality of cancer gene therapy that displays improved efficacy over nonreplicating Ads. We have previously shown that an E1B 19-kDa-deleted oncolytic Ad exhibits a strong cell-killing effect but lacks tumor selectivity. To achieve hepatoma-restricted cytotoxicity and enhance replication of Ad within the context of tumor microenvironment, we used a modified human α-fetoprotein (hAFP) promoter to control the replication of Ad with a hypoxia response element (HRE). We constructed Ad-HRE(6)/hAFPΔ19 and Ad-HRE(12)/hAFPΔ19 that incorporated either 6 or 12 copies of HRE upstream of promoter. The promoter activity and specificity to hepatoma were examined by luciferase assay and fluorescence-activated cell sorting analysis. In addition, the AFP expression- and hypoxia-dependent in vitro cytotoxicity of Ad-HRE(6)/hAFPΔ19 and Ad-HRE(12)/hAFPΔ19 was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and cytopathic effect assay. In vivo tumoricidal activity on subcutaneous and liver orthotopic model was monitored by noninvasive molecular imaging. Ad-HRE(12)/hAFPΔ19 exhibited enhanced tumor selectivity and cell-killing activity when compared with Ad-hAFPΔ19. The tumoricidal activity of Ad-HRE(12)/hAFPΔ19 resulted in significant inhibition of tumor growth in both subcutaneous and orthotopic models. Histologic examination of the primary tumor after treatment confirmed accumulation of viral particles near hypoxic areas. Furthermore, Ad-HRE(12)/hAFPΔ19 did not cause severe inflammatory immune response and toxicity after systemic injection. The results presented here show the advantages of incorporating HREs into a hAFP promoter-driven oncolytic virus. This system is unique in that it acts in both a tissue-specific and tumor environment-selective manner. The greatly enhanced selectivity and tumoricidal activity of Ad-HRE(12)/hAFPΔ19 make it a promising therapeutic agent in the treatment

  13. Landscape integration of freeways: how does it affect road kill rates?

    OpenAIRE

    Sanz, Luis

    2001-01-01

    Some ecological processes are affected by the transportation infrastructure development. The barrier effect caused by roads, which alters the movement patterns of terrestrial wildlife and increases its road kill risk, is just an example. Road kills must be considered both from environmental and highway safety perspectives, and are related to road permeability and to the surrounding environment. This paper compares the landscape fragmentation caused by two freeways in Navarra (north of Spain) ...

  14. Evaluation of the speed of kill, effects on reproduction, and effectiveness in a simulated infested-home environment of sarolaner (Simparica™) against fleas on dogs.

    Science.gov (United States)

    Six, Robert H; Becskei, Csilla; Carter, Lori; Gale, Boyd; Young, David R; Mahabir, Sean P; Chapin, Sara; Myers, Melanie R

    2016-05-30

    Four studies were conducted to evaluate the speed of kill, effect on egg production, and efficacy in a simulated infested-home environment of a novel isoxazoline, sarolaner (Simparica™, Zoetis), against fleas on dogs. Individually identified and housed, purpose-bred Beagles were used in each study and were allocated randomly to groups based on pretreatment parasite counts. In two speed of kill studies, groups of dogs infested with 100 fleas prior to treatment were treated orally with placebo or sarolaner tablets providing the minimum dose of 2mg/kg and then re-infested with fleas weekly for five weeks post-treatment. Comb counts were conducted to determine the numbers of viable fleas at one to three, four, eight and 12h after treatment and each subsequent infestation. In the egg production study, sarolaner- and placebo-treated dogs were similarly challenged with fleas and at 48h after each infestation the dogs were housed for 20h in cages allowing the collection and counting of all flea eggs produced during this period. Collected eggs were incubated to evaluate hatch and development to adults. The last study used dogs housed in a flea-infested simulated-home environment. Dogs were allocated to treatment with either placebo or sarolaner tablets providing a dose of 2mg/kg once a month for three treatments. Flea infestations were assessed by comb counts (fleas were replaced on the dogs) on Days 14, 30, 44, 60, 74 and 90. The speed of kill studies demonstrated that a single 2mg/kg oral dose of sarolaner started killing fleas within three to four hours after treatment or subsequent re-infestations for up to a month, and achieved ≥98% control of fleas by eight hours after treatment or re-infestation for 28 days. In the study to assess effects on flea reproduction, a single oral treatment of sarolaner resulted in the complete cessation of egg-laying for 35 days. This rapid kill of fleas and inhibition of reproduction were confirmed in a simulated-home environment

  15. Comparing Road-Kill Datasets from Hunters and Citizen Scientists in a Landscape Context

    Directory of Open Access Journals (Sweden)

    Florian Heigl

    2016-10-01

    Full Text Available Road traffic has severe effects on animals, especially when road-kills are involved. In many countries, official road-kill data are provided by hunters or police; there are also road-kill observations reported by citizen scientists. The aim of the current study was to test whether road-kill reports by hunters stem from similar landscapes than those reported by citizen scientists. We analysed the surrounding landscapes of 712 road-kill reportings of European hares in the province of Lower Austria. Our data showed that road-killed hares reported both by hunters and citizens are predominantly surrounded by arable land. No difference of hedges and solitary trees could be found between the two datasets. However, significant differences in landcover classes and surrounding road networks indicate that hunters’ and citizen scientists’ data are different. Hunters reported hares from landscapes with significantly higher percentages of arable land, and greater lengths of secondary roads. In contrast, citizens reported hares from landscapes with significantly higher percentages of urban or industrial areas and greater lengths of motorways, primary roads, and residential roads. From this we argue that hunters tend to report data mainly from their hunting areas, whereas citizens report data during their daily routine on the way to/from work. We conclude that a citizen science approach is an important source for road-kill data when used in addition to official data with the aim of obtaining an overview of road-kill events on a landscape scale.

  16. Enhanced killing of chordoma cells by antibody-dependent cell-mediated cytotoxicity employing the novel anti-PD-L1 antibody avelumab.

    Science.gov (United States)

    Fujii, Rika; Friedman, Eitan R; Richards, Jacob; Tsang, Kwong Y; Heery, Christopher R; Schlom, Jeffrey; Hodge, James W

    2016-06-07

    Chordoma, a rare bone tumor derived from the notochord, has been shown to be resistant to conventional therapies. Checkpoint inhibition has shown great promise in immune-mediated therapy of diverse cancers. The anti-PD-L1 mAb avelumab is unique among checkpoint inhibitors in that it is a fully human IgG1 capable of mediating antibody-dependent cell-mediated cytotoxicity (ADCC) of PD-L1-expressing tumor cells. Here, we investigated avelumab as a potential therapy for chordoma. We examined 4 chordoma cell lines, first for expression of PD-L1, and in vitro for ADCC killing using NK cells and avelumab. PD-L1 expression was markedly upregulated by IFN-γ in all 4 chordoma cell lines, which significantly increased sensitivity to ADCC. Brachyury is a transcription factor that is uniformly expressed in chordoma. Clinical trials are ongoing in which chordoma patients are treated with brachyury-specific vaccines. Co-incubating chordoma cells with brachyury-specific CD8+ T cells resulted in significant upregulation of PD-L1 on the tumor cells, mediated by the CD8+ T cells' IFN-γ production, and increased sensitivity of chordoma cells to avelumab-mediated ADCC. Residential cancer stem cell subpopulations of chordoma cells were also killed by avelumab-mediated ADCC to the same degree as non-cancer stem cell populations. These findings suggest that as a monotherapy for chordoma, avelumab may enable endogenous NK cells, while in combination with T-cell immunotherapy, such as a vaccine, avelumab may enhance NK-cell killing of chordoma cells via ADCC.

  17. Killing rate of colony count by hydrodynamic cavitation due to square multi-orifice plates

    Science.gov (United States)

    Dong, Zhiyong; Zhao, Wenqian

    2018-02-01

    Currently,in water supply engineering, the conventional technique of disinfection by chlorination is employed to kill pathogenic microorganisms in raw water. However, chlorine reacts with organic compounds in water and generates disinfection byproducts (DBPs), such as trihalomethanes (THMs), haloacetic acids (HAAs) etc. These byproducts are of carcinogenic, teratogenic and mutagenic effects, which seriously threaten human health. Hydrodynamic cavitation is a novel technique of drinking water disinfection without DBPs. Effects of orifice size, orifice number and orifice layout of multi-orifice plate, cavitation number, cavitation time and orifice velocity on killing pathogenic microorganisms by cavitation were investigated experimentally in a self-developed square multi-orifice plate-type hydrodynamic cavitation device. The experimental results showed that cavitation effects increased with decrease in orifice size and increase in orifice number, cavitation time and orifice velocity. Along with lowering in cavitation number, there was an increase in Reynolds shear stress,thus enhancing the killing rate of pathogenic microorganism in raw water. In addition, the killing rate by staggered orifice layout was greater than that by checkerboard-type orifice layout.

  18. Magnetic Nanowires as Materials for Cancer Cell Destruction

    KAUST Repository

    Contreras, Maria F.

    2015-12-01

    Current cancer therapies are highly cytotoxic and their delivery to exclusively the affected site is poorly controlled, resulting in unavoidable and often severe side effects. In an effort to overcome such issues, magnetic nanoparticles have been recently gaining relevance in the areas of biomedical applications and therapeutics, opening pathways to alternative methods. This led to the concept of magnetic particle hyperthermia in which magnetic nano beads are heated by a high power magnetic field. The increase in temperature kills the cancer cells, which are more susceptible to heat in comparison to healthy cells. In this dissertation, the possibility to kill cancer cells with magnetic nanowires is evaluated. The idea is to exploit a magnetomechanical effect, where nanowires cause cancer cell death through vibrating in a low power magnetic field. Specifically, the magnetic nanowires effects to cells in culture and their ability to induce cancer cell death, when combined with an alternating magnetic field, was investigated. Nickel and iron nanowires of 35 nm diameter and 1 to 5 μm long were synthesized by electrodeposition into nanoporous alumina templates, which were prepared using a two-step anodization process on highly pure aluminum substrates. For the cytotoxicity studies, the nanowires were added to cancer cells in culture, varying the incubation time and the concentration. The cell-nanowire interaction was thoroughly studied at the cellular level (mitochondrial metabolic activity, cell membrane integrity and, apoptosis/necrosis assay), and optical level (transmission electron and confocal microscopy). Furthermore, to investigate their therapeutic potential, an alternating magnetic field was applied varying its intensity and frequency. After the magnetic field application, cells health was measured at the mitochondrial activity level. Cytotoxicity results shed light onto the cellular tolerance to the nanowires, which helped in establishing the appropriate

  19. Antiproliferative Effects of Bacillus coagulans Unique IS2 in Colon Cancer Cells.

    Science.gov (United States)

    Madempudi, Ratna Sudha; Kalle, Arunasree M

    2017-10-01

    In the present study, the in vitro anticancer (antiproliferative) effects of Bacillus coagulans Unique IS2 were evaluated on human colon cancer (COLO 205), cervical cancer (HeLa), and chronic myeloid leukemia (K562) cell lines with a human embryonic kidney cell line (HEK 293T) as noncancerous control cells. The Cytotoxicity assay (MTT) clearly demonstrated a 22%, 31.7%, and 19.5% decrease in cell proliferation of COLO 205, HeLa, and K562 cells, respectively, when compared to the noncancerous HEK 293T cells. Normal phase-contrast microscopic images clearly suggested that the mechanism of cell death is by apoptosis. To further confirm the induction of apoptosis by Unique IS2, the sub-G0-G1 peak of the cell cycle was quantified using a flow cytometer and the data indicated 40% of the apoptotic cells in Unique IS2-treated COLO cells when compared with their untreated control cells. The Western blot analysis showed an increase in pro-apoptotic protein BAX, decrease in antiapoptotic protein, Bcl2, decrease in mitochondrial membrane potential, increase in cytochrome c release, increase in Caspase 3 activity, and cleavage of poly(ADP-ribose) polymerase. The present study suggests that the heat-killed culture supernatant of B. coagulans can be more effective in inducing apoptosis of colon cancer cells and that can be considered for adjuvant therapy in the treatment of colon carcinoma.

  20. Nonmarket benefits of reducing environmental effects of potential wildfires in beetle-killed trees: A contingent valuation study

    Science.gov (United States)

    Maryam Tabatabaei; John B. Loomis; Daniel W. McCollum

    2015-01-01

    We estimated Colorado households’ nonmarket values for two forest management options for reducing intensity of future wildfires and associated nonmarket environmental effects wildfires. The first policy is the traditional harvesting of pine beetle-killed trees and burning of the slash piles of residual materials on-site. The second involves harvesting but moving the...

  1. The HK2 Dependent “Warburg Effect” and Mitochondrial Oxidative Phosphorylation in Cancer: Targets for Effective Therapy with 3-Bromopyruvate

    Directory of Open Access Journals (Sweden)

    Paweł Lis

    2016-12-01

    Full Text Available This review summarizes the current state of knowledge about the metabolism of cancer cells, especially with respect to the “Warburg” and “Crabtree” effects. This work also summarizes two key discoveries, one of which relates to hexokinase-2 (HK2, a major player in both the “Warburg effect” and cancer cell immortalization. The second discovery relates to the finding that cancer cells, unlike normal cells, derive as much as 60% of their ATP from glycolysis via the “Warburg effect”, and the remaining 40% is derived from mitochondrial oxidative phosphorylation. Also described are selected anticancer agents which generally act as strong energy blockers inside cancer cells. Among them, much attention has focused on 3-bromopyruvate (3BP. This small alkylating compound targets both the “Warburg effect”, i.e., elevated glycolysis even in the presence oxygen, as well as mitochondrial oxidative phosphorylation in cancer cells. Normal cells remain unharmed. 3BP rapidly kills cancer cells growing in tissue culture, eradicates tumors in animals, and prevents metastasis. In addition, properly formulated 3BP shows promise also as an effective anti-liver cancer agent in humans and is effective also toward cancers known as “multiple myeloma”. Finally, 3BP has been shown to significantly extend the life of a human patient for which no other options were available. Thus, it can be stated that 3BP is a very promising new anti-cancer agent in the process of undergoing clinical development.

  2. In vitro radiobiological evaluation of selective killing effects of 10B1-paraboronophenylalanine.HCl in the thermal neutron capture therapy of malignant melanoma cells

    International Nuclear Information System (INIS)

    Ichihashi, M.; Ueda, M.; Hayashibe, K.; Hatta, S.; Tsuji, M.; Mishima, Y.; Fukuda, H.; Kobayashi, T.; Kanda, K.

    1985-01-01

    In order to clarify the specific affinity of 10 B 1 -p-boronophenylalanine.HCl ( 10 B 1 -BPA) to melanoma cells, the killing effects of 10 B 1 -BPA in the thermal neutron capture treatment on both cultured melanotic and amelanotic melanoma cells were compared with those on non-melanoma cells, such as Alexander cells, HeLa cells and normal human fibroblasts. Cells in the plateau phase cultured in the usual medium for 4-7 days were incubated with the medium containing 50 μg/ml 10 B 1 -BPA for 20 hours until 2 hours before thermal neutron irradiation. After thermal neutron irradiation, the number of colonies consisting of more than 50 cells was counted to obtain the dose-survival curves. The melanotic cells pre-incubated with 10 B 1 -BPA had more enhanced killing sensitivity to thermal neutron irradiation than amelanotic melanoma cells pre-incubated similarly with 10 B 1 -BPA. 10 B 1 -BPA pre-incubation had no enhanced killing effects on Alexander cells, but had slightly enhanced killing effects on HeLa cells. These results indicate that 10 B 1 -BPA could be incorporated by a specific uptake mechanism of melanoma cells and accumulated within melanotic melanoma cells and that 10 B 1 -BPA at present could be the best chemical for the thermal neutron capture therapy of human malignant melanoma. (Namekawa, K.)

  3. Cancer vaccines: the challenge of developing an ideal tumor killing system.

    Science.gov (United States)

    Mocellin, Simone

    2005-09-01

    Despite the evidence that the immune system plays a significant role in controlling tumor growth in natural conditions and in response to therapeutic vaccination, cancer cells can survive their attack as the disease progresses and no vaccination regimen should be currently proposed to patients outside experimental clinical trials. Clinical results show that the immune system can be actively polarized against malignant cells by means of a variety of vaccination strategies, and that in some cases this is associated with tumor regression. This implies that under some unique circumstances, the naturally "dormant" immune effectors can actually be put at work and used as endogenous weapons against malignant cells. Consequently, the main challenge of tumor immunologists appears to lie on the ability of reproducing those conditions in a larger set of patients. The complexity of the immune network and the still enigmatic host-tumor interactions make these tasks at the same time challenging and fascinating. Recent tumor immunology findings are giving new impetus to the development of more effective vaccination strategies and might revolutionize the way of designing the next generation of cancer vaccines. In the near future, the implementation of these insights in the clinical setting and the completion/conduction of comparative randomized phase III trials will allow oncologists to define the actual role of cancer vaccines in the fight against malignancy.

  4. Mitochondrial Enzyme Plays Critical Role in Chemotherapy-Induced Heart Damage | Center for Cancer Research

    Science.gov (United States)

    Doxorubicin (DOX) is an effective drug for treating cancers ranging from leukemia and lymphoma to solid tumors, such as breast cancer. DOX kills dividing cells in two ways: inserting between the base pairs of DNA and trapping a complex of DNA and an enzyme that cuts DNA, topoisomerase 2α, preventing DNA repair. However, DOX also causes congestive heart failure in about 30

  5. To kill, stay or flee: the effects of lions and landscape factors on habitat and kill site selection of cheetahs in South Africa.

    Directory of Open Access Journals (Sweden)

    Susana Rostro-García

    Full Text Available Understanding how animals utilize available space is important for their conservation, as it provides insight into the ecological needs of the species, including those related to habitat, prey and inter and intraspecific interactions. We used 28 months of radio telemetry data and information from 200 kill locations to assess habitat selection at the 3rd order (selection of habitats within home ranges and 4th order (selection of kill sites within the habitats used of a reintroduced population of cheetahs Acinonyx jubatus in Phinda Private Game Reserve, South Africa. Along with landscape characteristics, we investigated if lion Panthera leo presence affected habitat selection of cheetahs. Our results indicated that cheetah habitat selection was driven by a trade-off between resource acquisition and lion avoidance, and the balance of this trade-off varied with scale: more open habitats with high prey densities were positively selected within home ranges, whereas more closed habitats with low prey densities were positively selected for kill sites. We also showed that habitat selection, feeding ecology, and avoidance of lions differed depending on the sex and reproductive status of cheetahs. The results highlight the importance of scale when investigating a species' habitat selection. We conclude that the adaptability of cheetahs, together with the habitat heterogeneity found within Phinda, explained their success in this small fenced reserve. The results provide information for the conservation and management of this threatened species, especially with regards to reintroduction efforts in South Africa.

  6. To Kill, Stay or Flee: The Effects of Lions and Landscape Factors on Habitat and Kill Site Selection of Cheetahs in South Africa

    Science.gov (United States)

    Rostro-García, Susana; Kamler, Jan F.; Hunter, Luke T. B.

    2015-01-01

    Understanding how animals utilize available space is important for their conservation, as it provides insight into the ecological needs of the species, including those related to habitat, prey and inter and intraspecific interactions. We used 28 months of radio telemetry data and information from 200 kill locations to assess habitat selection at the 3rd order (selection of habitats within home ranges) and 4th order (selection of kill sites within the habitats used) of a reintroduced population of cheetahs Acinonyx jubatus in Phinda Private Game Reserve, South Africa. Along with landscape characteristics, we investigated if lion Panthera leo presence affected habitat selection of cheetahs. Our results indicated that cheetah habitat selection was driven by a trade-off between resource acquisition and lion avoidance, and the balance of this trade-off varied with scale: more open habitats with high prey densities were positively selected within home ranges, whereas more closed habitats with low prey densities were positively selected for kill sites. We also showed that habitat selection, feeding ecology, and avoidance of lions differed depending on the sex and reproductive status of cheetahs. The results highlight the importance of scale when investigating a species’ habitat selection. We conclude that the adaptability of cheetahs, together with the habitat heterogeneity found within Phinda, explained their success in this small fenced reserve. The results provide information for the conservation and management of this threatened species, especially with regards to reintroduction efforts in South Africa. PMID:25693067

  7. To kill, stay or flee: the effects of lions and landscape factors on habitat and kill site selection of cheetahs in South Africa.

    Science.gov (United States)

    Rostro-García, Susana; Kamler, Jan F; Hunter, Luke T B

    2015-01-01

    Understanding how animals utilize available space is important for their conservation, as it provides insight into the ecological needs of the species, including those related to habitat, prey and inter and intraspecific interactions. We used 28 months of radio telemetry data and information from 200 kill locations to assess habitat selection at the 3rd order (selection of habitats within home ranges) and 4th order (selection of kill sites within the habitats used) of a reintroduced population of cheetahs Acinonyx jubatus in Phinda Private Game Reserve, South Africa. Along with landscape characteristics, we investigated if lion Panthera leo presence affected habitat selection of cheetahs. Our results indicated that cheetah habitat selection was driven by a trade-off between resource acquisition and lion avoidance, and the balance of this trade-off varied with scale: more open habitats with high prey densities were positively selected within home ranges, whereas more closed habitats with low prey densities were positively selected for kill sites. We also showed that habitat selection, feeding ecology, and avoidance of lions differed depending on the sex and reproductive status of cheetahs. The results highlight the importance of scale when investigating a species' habitat selection. We conclude that the adaptability of cheetahs, together with the habitat heterogeneity found within Phinda, explained their success in this small fenced reserve. The results provide information for the conservation and management of this threatened species, especially with regards to reintroduction efforts in South Africa.

  8. It?s Not Just Conflict That Motivates Killing of Orangutans

    OpenAIRE

    Davis, Jacqueline T.; Mengersen, Kerrie; Abram, Nicola K.; Ancrenaz, Marc; Wells, Jessie A.; Meijaard, Erik

    2013-01-01

    We investigated why orangutans are being killed in Kalimantan, Indonesia, and the role of conflict in these killings. Based on an analysis of interview data from over 5,000 respondents in over 450 villages, we also assessed the socio-ecological factors associated with conflict and non-conflict killings. Most respondents never kill orangutans. Those who reported having personally killed an orangutan primarily did so for non-conflict reasons; for example, 56% of these respondents said that the ...

  9. 9 CFR 113.208 - Avian Encephalomyelitis Vaccine, Killed Virus.

    Science.gov (United States)

    2010-01-01

    ..., Killed Virus. 113.208 Section 113.208 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.208 Avian Encephalomyelitis Vaccine, Killed Virus. Avian...

  10. Glucocorticoids and Polyamine Inhibitors Synergize to Kill Human Leukemic CEM Cells

    Directory of Open Access Journals (Sweden)

    Aaron L. Miller

    2002-01-01

    Full Text Available Glucocorticoids are well-known apoptotic agents in certain classes of lymphoid cell malignancies. Reduction of intracellular polyamine levels by use of inhibitors that block polyamine synthesis slows or inhibits growth of many cells in vitro. Several such inhibitors have shown efficacy in clinical trials, though the toxicity of some compounds has limited their usefulness. We have tested the effects of combinations of the glucocorticoid dexamethasone. (20Dex and two polyamine inhibitors, difluoromethylornithine. (20DFMO and methyl glyoxal bis guanylhydrazone. (20MGBG, on the clonal line of human acute lymphoblastic leukemia cells, CEM-C7-14. Dex alone kills these cells, though only after a delay of at least 24 hours. We also evaluated a partially glucocorticoid-resistant c-Myc-expressing CEM-C7-14 clone. We show that Dex downregulates ornithine decarboxylase. (20ODC, the rate-limiting enzyme in polyamine synthesis. Pretreatment with the ODC inhibitor DFMO, followed by addition of Dex, enhances steroid-evoked kill slightly. The combination of pretreatment with sublethal concentrations of both DFMO and the inhibitor of S-adenosylmethionine decarboxylase, MGBG, followed by addition of Dex, results in strong synergistic cell kill. Both the rapidity and extent of cell kill are enhanced compared to the effects of Dex alone. These results suggest that use of such combinations in vivo may result in apoptosis of malignant cells with lower overall toxicity.

  11. Where and How Wolves (Canis lupus Kill Beavers (Castor canadensis.

    Directory of Open Access Journals (Sweden)

    Thomas D Gable

    Full Text Available Beavers (Castor canadensis can be a significant prey item for wolves (Canis lupus in boreal ecosystems due to their abundance and vulnerability on land. How wolves hunt beavers in these systems is largely unknown, however, because observing predation is challenging. We inferred how wolves hunt beavers by identifying kill sites using clusters of locations from GPS-collared wolves in Voyageurs National Park, Minnesota. We identified 22 sites where wolves from 4 different packs killed beavers. We classified these kill sites into 8 categories based on the beaver-habitat type near which each kill occurred. Seasonal variation existed in types of kill sites as 7 of 12 (58% kills in the spring occurred at sites below dams and on shorelines, and 8 of 10 (80% kills in the fall occurred near feeding trails and canals. From these kill sites we deduced that the typical hunting strategy has 3 components: 1 waiting near areas of high beaver use (e.g., feeding trails until a beaver comes near shore or ashore, 2 using vegetation, the dam, or other habitat features for concealment, and 3 immediately attacking the beaver, or ambushing the beaver by cutting off access to water. By identifying kill sites and inferring hunting behavior we have provided the most complete description available of how and where wolves hunt and kill beavers.

  12. Enhanced killing of mammalian cells by radiation combined with m-AMSA

    International Nuclear Information System (INIS)

    Roberts, P.B.; Millar, B.C.

    1980-01-01

    m-AMSA is an intercalating agent at present on Phase II trial as a chemotherapeutic drug. A 30min exposure of Chinese hamster (Line V79-753B) cells to submicromolar concentrations of m-AMSA killed 50% of the cells. The survivors had an enhanced sensitivity to radiation-induced cell killing. Depending upon the conditions, m-AMSA enhanced the radiation effect by either a decrease in the survival-curve shoulder or by an increase in slope. m-AMSA may act partly by suppressing the accumulation of sublethal damage but, if so, recovery from damage as measured in split-dose experiments with cells pretreated with the drug is not affected. m-AMSA increased radiation lethality throughout the cell cycle, but a contribution to its radiation effect from selective toxicity to cells in a radioresistant phase of the cell cycle cannot be excluded. Radiation and the drug interacted to give increased cell killing, even when the exposures to each agent were separated in time. It is concluded that m-ASMA may behave like actinomycin D and adriamycin, and enhance clinical radiation responses. In vivo testing to determine the effect of m-AMSA on the therapeutic index is recommended. (author)

  13. Enhanced killing of mammalian cells by radiation combined with m-AMSA

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, P B; Millar, B C [Institute of Cancer Research, Sutton (UK). Surrey Branch

    1980-11-01

    m-AMSA is an intercalating agent at present on Phase II trial as a chemotherapeutic drug. A 30 min exposure of Chinese hamster (Line V79-753B) cells to submicromolar concentrations of m-AMSA killed 50% of the cells. The survivors had an enhanced sensitivity to radiation-induced cell killing. Depending upon the conditions, m-AMSA enhanced the radiation effect by either a decrease in the survival-curve shoulder or by an increase in slope. m-AMSA may act partly by suppressing the accumulation of sublethal damage but, if so, recovery from damage as measured in split-dose experiments with cells pretreated with the drug is not affected. m-AMSA increased radiation lethality throughout the cell cycle, but a contribution to its radiation effect from selective toxicity to cells in a radioresistant phase of the cell cycle cannot be excluded. Radiation and the drug interacted to give increased cell killing, even when the exposures to each agent were separated in time. It is concluded that m-ASMA may behave like actinomycin D and adriamycin, and enhance clinical radiation responses. In vivo testing to determine the effect of m-AMSA on the therapeutic index is recommended.

  14. Conformal Killing horizons and their thermodynamics

    Science.gov (United States)

    Nielsen, Alex B.; Shoom, Andrey A.

    2018-05-01

    Certain dynamical black hole solutions can be mapped to static spacetimes by conformal metric transformations. This mapping provides a physical link between the conformal Killing horizon of the dynamical black hole and the Killing horizon of the static spacetime. Using the Vaidya spacetime as an example, we show how this conformal relation can be used to derive thermodynamic properties of such dynamical black holes. Although these horizons are defined quasi-locally and can be located by local experiments, they are distinct from other popular notions of quasi-local horizons such as apparent horizons. Thus in the dynamical Vaidya spacetime describing constant accretion of null dust, the conformal Killing horizon, which is null by construction, is the natural horizon to describe the black hole.

  15. Radiation Therapy Side Effects

    Science.gov (United States)

    Radiation therapy has side effects because it not only kills or slows the growth of cancer cells, it can also affect nearby healthy cells. Many people who get radiation therapy experience fatigue. Other side effects depend on the part of the body that is being treated. Learn more about possible side effects.

  16. Effect of high-intensity focused ultrasound (HIFU combined with radiotherapy on tumor malignancy in patients with advanced pancreatic cancer and evaluation of side effects

    Directory of Open Access Journals (Sweden)

    Jing Li

    2017-02-01

    Full Text Available Objective: To study the effect of high-intensity focused ultrasound (HIFU combined with radiotherapy on tumor malignancy in patients with advanced pancreatic cancer and the corresponding side effects. Methods: A total of 84 patients with advanced pancreatic cancer treated in our hospital between May 2013 and March 2016 were selected and randomly divided into HIFU group and IGRT group, HIFU group accepted high-intensity focused ultrasound combined with radiotherapy and IGRT group received radiotherapy alone. 4 weeks after treatment, the levels of tumor markers, liver and kidney function indexes, perineural invasionrelated molecules and cytokines in serum as well as the levels of immune cells in peripheral blood were determined. Results: 4 weeks after treatment, serum CA199, CA242, OPN, NGAL, RBP4, NGF, TrkA, p75, BDNF and TrkB levels of HIFU group were significantly lower than those of IGRT group, serum IL-2, TNF-毩, IFN-γ and IL-13 levels as well as peripheral blood NKT cell and CD4+T cell levels were significantly higher than those of IGRT group, and serum ALT, AST, Cr and BUN levels were not significantly different from those of IGRT group. Conclusion: HIFU combined with radiotherapy treatment of advanced pancreatic cancer can more effectively kill cancer cells, inhibit pancreatic cancer cell invasion to the peripheral nerve and enhance the antitumor immune response mediated by NKT cells and CD4+T cells.

  17. Engineering Multi-Walled Carbon Nanotube Therapeutic Bionanofluids to Selectively Target Papillary Thyroid Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Idit Dotan

    Full Text Available The incidence of papillary thyroid carcinoma (PTC has risen steadily over the past few decades as well as the recurrence rates. It has been proposed that targeted ablative physical therapy could be a therapeutic modality in thyroid cancer. Targeted bio-affinity functionalized multi-walled carbon nanotubes (BioNanofluid act locally, to efficiently convert external light energy to heat thereby specifically killing cancer cells. This may represent a promising new cancer therapeutic modality, advancing beyond conventional laser ablation and other nanoparticle approaches.Thyroid Stimulating Hormone Receptor (TSHR was selected as a target for PTC cells, due to its wide expression. Either TSHR antibodies or Thyrogen or purified TSH (Thyrotropin were chemically conjugated to our functionalized Bionanofluid. A diode laser system (532 nm was used to illuminate a PTC cell line for set exposure times. Cell death was assessed using Trypan Blue staining.TSHR-targeted BioNanofluids were capable of selectively ablating BCPAP, a TSHR-positive PTC cell line, while not TSHR-null NSC-34 cells. We determined that a 2:1 BCPAP cell:α-TSHR-BioNanofluid conjugate ratio and a 30 second laser exposure killed approximately 60% of the BCPAP cells, while 65% and >70% of cells were ablated using Thyrotropin- and Thyrogen-BioNanofluid conjugates, respectively. Furthermore, minimal non-targeted killing was observed using selective controls.A BioNanofluid platform offering a potential therapeutic path for papillary thyroid cancer has been investigated, with our in vitro results suggesting the development of a potent and rapid method of selective cancer cell killing. Therefore, BioNanofluid treatment emphasizes the need for new technology to treat patients with local recurrence and metastatic disease who are currently undergoing either re-operative neck explorations, repeated administration of radioactive iodine and as a last resort external beam radiation or chemotherapy, with

  18. Effect of Legionella pneumophila sonicate on killing of Listeria monocytogenes by human polymorphonuclear neutrophils and monocytes

    DEFF Research Database (Denmark)

    Rechnitzer, C; Bangsborg, Jette Marie; Shand, G H

    1993-01-01

    Legionella pneumophila shares with other intracellular pathogens the ability to resist intracellular killing within phagocytes. An increasing number of cellular components of L. pneumophila are proposed as pathogenic factors of the organism. At the site of infection, the phagocytic cells will be ......Legionella pneumophila shares with other intracellular pathogens the ability to resist intracellular killing within phagocytes. An increasing number of cellular components of L. pneumophila are proposed as pathogenic factors of the organism. At the site of infection, the phagocytic cells...... are most likely to represent the inhibitory factors. The inhibitory activity of L. pneumophila sonic extract appears to be related to inhibition of killing mechanisms since uptake of Listeria was not affected by the sonicate. Our observations indicate that as Legionella infection progresses, bacterial...

  19. Intergenomic arms races: detection of a nuclear rescue gene of male-killing in a ladybird.

    Directory of Open Access Journals (Sweden)

    Tamsin M O Majerus

    Full Text Available Many species of arthropod are infected by deleterious inherited micro-organisms. Typically these micro-organisms are inherited maternally. Consequently, some, particularly bacteria of the genus Wolbachia, employ a variety of strategies that favour female over male hosts. These strategies include feminisation, induction of parthenogenesis and male-killing. These strategies result in female biased sex ratios in host populations, which lead to selection for host factors that promote male production. In addition, the intra-genomic conflict produced by the difference in transmission of these cytoplasmic endosymbionts and nuclear factors will impose a pressure favouring nuclear factors that suppress the effects of the symbiont. During investigations of the diversity of male-killing bacteria in ladybirds (Coccinellidae, unexpected patterns of vertical transmission of a newly discovered male-killing taxon were observed in the ladybird Cheilomenes sexmaculata. Initial analysis suggested that the expression of the bacterial male-killing trait varies according to the male(s a female has mated with. By swapping males between females, a male influence on the expression of the male-killing trait was confirmed. Experiments were then performed to determine the nature of the interaction. These studies showed that a single dominant allele, which rescues male progeny of infected females from the pathological effect of the male-killer, exists in this species. The gene shows typical Mendelian autosomal inheritance and is expressed irrespective of the parent from which it is inherited. Presence of the rescue gene in either parent does not significantly affect the inheritance of the symbiont. We conclude that C. sexmaculata is host to a male-killing gamma-proteobacterium. Further, this beetle is polymorphic for a nuclear gene, the dominant allele of which rescues infected males from the pathogenic effects of the male-killing agent. These findings represent the first

  20. 9 CFR 113.204 - Mink Enteritis Vaccine, Killed Virus.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Mink Enteritis Vaccine, Killed Virus..., DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.204 Mink Enteritis Vaccine, Killed Virus. Mink Enteritis Vaccine...

  1. 9 CFR 113.212 - Bursal Disease Vaccine, Killed Virus.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Bursal Disease Vaccine, Killed Virus..., DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.212 Bursal Disease Vaccine, Killed Virus. Bursal Disease Vaccine...

  2. Psychological traits underlying different killing methods among Malaysian male murderers.

    Science.gov (United States)

    Kamaluddin, Mohammad Rahim; Shariff, Nadiah Syariani; Nurfarliza, Siti; Othman, Azizah; Ismail, Khaidzir H; Mat Saat, Geshina Ayu

    2014-04-01

    Murder is the most notorious crime that violates religious, social and cultural norms. Examining the types and number of different killing methods that used are pivotal in a murder case. However, the psychological traits underlying specific and multiple killing methods are still understudied. The present study attempts to fill this gap in knowledge by identifying the underlying psychological traits of different killing methods among Malaysian murderers. The study adapted an observational cross-sectional methodology using a guided self-administered questionnaire for data collection. The sampling frame consisted of 71 Malaysian male murderers from 11 Malaysian prisons who were selected using purposive sampling method. The participants were also asked to provide the types and number of different killing methods used to kill their respective victims. An independent sample t-test was performed to establish the mean score difference of psychological traits between the murderers who used single and multiple types of killing methods. Kruskal-Wallis tests were carried out to ascertain the psychological trait differences between specific types of killing methods. The results suggest that specific psychological traits underlie the type and number of different killing methods used during murder. The majority (88.7%) of murderers used a single method of killing. Multiple methods of killing was evident in 'premeditated' murder compared to 'passion' murder, and revenge was a common motive. Examples of multiple methods are combinations of stabbing and strangulation or slashing and physical force. An exception was premeditated murder committed with shooting, when it was usually a single method, attributed to the high lethality of firearms. Shooting was also notable when the motive was financial gain or related to drug dealing. Murderers who used multiple killing methods were more aggressive and sadistic than those who used a single killing method. Those who used multiple methods or

  3. The eyeball killer: serial killings with postmortem globe enucleation.

    Science.gov (United States)

    Coyle, Julie; Ross, Karen F; Barnard, Jeffrey J; Peacock, Elizabeth; Linch, Charles A; Prahlow, Joseph A

    2015-05-01

    Although serial killings are relatively rare, they can be the cause of a great deal of anxiety while the killer remains at-large. Despite the fact that the motivations for serial killings are typically quite complex, the psychological analysis of a serial killer can provide valuable insight into how and why certain individuals become serial killers. Such knowledge may be instrumental in preventing future serial killings or in solving ongoing cases. In certain serial killings, the various incidents have a variety of similar features. Identification of similarities between separate homicidal incidents is necessary to recognize that a serial killer may be actively killing. In this report, the authors present a group of serial killings involving three prostitutes who were shot to death over a 3-month period. Scene and autopsy findings, including the unusual finding of postmortem enucleation of the eyes, led investigators to recognize the serial nature of the homicides. © 2015 American Academy of Forensic Sciences.

  4. 9 CFR 113.201 - Canine Distemper Vaccine, Killed Virus.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Canine Distemper Vaccine, Killed Virus... REQUIREMENTS Killed Virus Vaccines § 113.201 Canine Distemper Vaccine, Killed Virus. Canine Distemper Vaccine... canine distemper susceptible dogs (20 vaccinates and 5 controls) shall be used as test animals. Blood...

  5. Enhancement of radiation cytotoxicity by gold nanoparticles in MCF-7 breast cancer cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Rosli, Nur Shafawati binti; Rahman, Azhar Abdul [School of Physics, Universiti Sains Malaysia, 11800, Pulau Pinang (Malaysia); Aziz, Azlan Abdul [School of Physics, Universiti Sains Malaysia, 11800, Pulau Pinang (Malaysia); Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Pulau Pinang (Malaysia); Shamsuddin, Shaharum [Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Pulau Pinang (Malaysia); School of Health Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan (Malaysia)

    2015-04-24

    Therapy combined with metallic nanoparticles is a new way to treat cancer, in which gold nanoparticles (AuNPs) are injected through intravenous administration and bound to tumor sites. Radiotherapy aims to deliver a high therapeutic dose of ionizing radiation to the tumor without exceeding normal tissue tolerance. The use of AuNPs which is a high-atomic-number (Z) material in radiotherapy will provide a high probability for photon interaction by photoelectric effect. These provide advantages in terms of radiation dose enhancement. The high linear energy transfer and short range of photoelectric interaction products (photoelectrons, characteristic x-rays, Auger electrons) produce localized dose enhancement of the tumor. In this work, breast cancer cell lines (MCF-7) are seeded in the 96-well plate and were treated with 13 nm AuNPs before they were irradiated with 6 MV and 10 MV photon beam from a medical linear accelerator at various radiation doses. To validate the enhanced killing effect, both with and without AuNPs MCF-7 cells is irradiated simultaneously. By comparison, the results show that AuNPs significantly enhance cancer killing.

  6. Designing Antibacterial Peptides with Enhanced Killing Kinetics

    Directory of Open Access Journals (Sweden)

    Faiza H. Waghu

    2018-02-01

    Full Text Available Antimicrobial peptides (AMPs are gaining attention as substitutes for antibiotics in order to combat the risk posed by multi-drug resistant pathogens. Several research groups are engaged in design of potent anti-infective agents using natural AMPs as templates. In this study, a library of peptides with high sequence similarity to Myeloid Antimicrobial Peptide (MAP family were screened using popular online prediction algorithms. These peptide variants were designed in a manner to retain the conserved residues within the MAP family. The prediction algorithms were found to effectively classify peptides based on their antimicrobial nature. In order to improve the activity of the identified peptides, molecular dynamics (MD simulations, using bilayer and micellar systems could be used to design and predict effect of residue substitution on membranes of microbial and mammalian cells. The inference from MD simulation studies well corroborated with the wet-lab observations indicating that MD-guided rational design could lead to discovery of potent AMPs. The effect of the residue substitution on membrane activity was studied in greater detail using killing kinetic analysis. Killing kinetics studies on Gram-positive, negative and human erythrocytes indicated that a single residue change has a drastic effect on the potency of AMPs. An interesting outcome was a switch from monophasic to biphasic death rate constant of Staphylococcus aureus due to a single residue mutation in the peptide.

  7. Killing of intracellular Mycobacterium tuberculosis by receptor-mediated drug delivery

    International Nuclear Information System (INIS)

    Majumdar, S.; Basu, S.K.

    1991-01-01

    p-Aminosalicylic acid (PAS) conjugated to maleylated bovine serum albumin (MBSA) was taken up efficiently through high-affinity MBSA-binding sites on macrophages. Binding of the radiolabeled conjugate to cultured mouse peritoneal macrophages at 4 degrees C was competed for by MBSA but not by PAS. At 37 degrees C, the radiolabeled conjugate was rapidly degraded by the macrophages, leading to release of acid-soluble degradation products in the medium. The drug conjugate was nearly 100 times as effective as free PAS in killing the intracellular mycobacteria in mouse peritoneal macrophages infected in culture with Mycobacterium tuberculosis. The killing of intracellular mycobacteria mediated by the drug conjugate was effectively prevented by simultaneous addition of excess MBSA (100 micrograms/ml) or chloroquine (3 microM) to the medium, whereas these agents did not affect the microbicidal action of free PAS. These results suggest that (i) uptake of the PAS-MBSA conjugate was mediated by cell surface receptors on macrophages which recognize MBSA and (ii) lysosomal hydrolysis of the internalized conjugate resulted in intracellular release of a pharmacologically active form of the drug, which led to selective killing of the M. tuberculosis harbored by mouse macrophages infected in culture. This receptor-mediated modality of delivering drugs to macrophages could contribute to greater therapeutic efficacy and minimization of toxic side effects in the management of tuberculosis and other intracellular mycobacterial infections

  8. Engineered T cells for pancreatic cancer treatment

    Science.gov (United States)

    Katari, Usha L; Keirnan, Jacqueline M; Worth, Anna C; Hodges, Sally E; Leen, Ann M; Fisher, William E; Vera, Juan F

    2011-01-01

    Objective Conventional chemotherapy and radiotherapy produce marginal survival benefits in pancreatic cancer, underscoring the need for novel therapies. The aim of this study is to develop an adoptive T cell transfer approach to target tumours expressing prostate stem cell antigen (PSCA), a tumour-associated antigen that is frequently expressed by pancreatic cancer cells. Methods Expression of PSCA on cell lines and primary tumour samples was confirmed by immunohistochemistry. Healthy donor- and patient-derived T cells were isolated, activated in vitro using CD3/CD28, and transduced with a retroviral vector encoding a chimeric antigen receptor (CAR) targeting PSCA. The ability of these cells to kill tumour cells was analysed by chromium-51 (Cr51) release. Results Prostate stem cell antigen was expressed on >70% of the primary tumour samples screened. Activated, CAR-modified T cells could be readily generated in clinically relevant numbers and were specifically able to kill PSCA-expressing pancreatic cancer cell lines with no non-specific killing of PSCA-negative target cells, thus indicating the potential efficacy and safety of this approach. Conclusions Prostate stem cell antigen is frequently expressed on pancreatic cancer cells and can be targeted for immune-mediated destruction using CAR-modified, adoptively transferred T cells. The safety and efficacy of this approach indicate that it deserves further study and may represent a promising novel treatment for patients with pancreatic cancer. PMID:21843265

  9. Killing spinors for the bosonic string and Kaluza-Klein theory with scalar potentials

    International Nuclear Information System (INIS)

    Liu, Haishan; Lue, H.; Wang, Zhao-Long

    2012-01-01

    The paper consists mainly of two parts. In the first part, we obtain well-defined Killing spinor equations for the low-energy effective action of the bosonic string with the conformal anomaly term. We show that the conformal anomaly term is the only scalar potential that one can add into the action that is consistent with the Killing spinor equations. In the second part, we demonstrate that Kaluza-Klein theory can be gauged so that the Killing spinors are charged under the Kaluza-Klein vector. This gauging process generates a scalar potential with a maximum that gives rise to an AdS spacetime. We also construct solutions of these theories. (orig.)

  10. From Attitudes to Actions: Predictors of Lion Killing by Maasai Warriors.

    Science.gov (United States)

    Hazzah, Leela; Bath, Alistair; Dolrenry, Stephanie; Dickman, Amy; Frank, Laurence

    2017-01-01

    Despite legal protection, deliberate killing by local people is one of the major threats to the conservation of lions and other large carnivores in Africa. Addressing this problem poses particular challenges, mainly because it is difficult to uncover illicit behavior. This article examined two groups of Maasai warriors: individuals who have killed African lions (Panthera leo) and those who have not. We conducted interviews to explore the relationship between attitudes, intentions and known lion killing behavior. Factor analysis and logistic regression revealed that lion killing was mainly determined by: (a) general attitudes toward lions, (b) engagement in traditional customs, (c) lion killing intentions to defend property, and (d) socio-cultural killing intentions. Our results indicated that general attitudes toward lions were the strongest predictor of lion killing behavior. Influencing attitudes to encourage pro-conservation behavior may help reduce killing.

  11. Cancer log-kill revisited.

    Science.gov (United States)

    Norton, Larry

    2014-01-01

    At the root of science lie basic rules, if we can discover or deduce them. This is not an abstract project but practical; if we can understand the why then perhaps we can rationally intervene. One of the unifying unsolved problems in physics is the hypothetical "Theory of Everything." In a similar vein, we can ask whether our own field contains such hidden fundamental truths and, if so, how we can use them to develop better therapies and outcomes for our patients. Modern oncology has developed as drugs and translational science have matured over the 50 years since ASCO's founding, but almost from that beginning tumor modeling has been a key tool. Through this general approach Norton and Simon changed our understanding of cancer biology and response to therapy when they described the fit of Gompertzian curves to both clinical and animal observations of tumor growth. The practical relevance of these insights has only grown with the development of DNA sequencing promising a raft of new targets (and drugs). In that regard, Larry Norton's contribution to this year's Educational Book reminds us to always think creatively about the fundamental problems of tumor growth and metastases as well as therapeutic response. Demonstrating the creativity and thoughtfulness that have marked his remarkable career, he now incorporates a newer concept of self-seeding to further explain why Gompertzian growth occurs and, in the process, provides a novel potential therapeutic target. As you read his elegantly presented discussion, consider how this understanding, wisely applied to the modern era of targeted therapies, might speed the availability of better treatments. But even more instructive is his personal model-not only the Norton-Simon Hypothesis-of how to live and approach science, biology, patients and their families, as well as the broader community. He shows that with energy, enthusiasm, optimism, intellect, and hard work we can make the world better. Clifford A. Hudis, MD, FACP

  12. Effect of sociality and season on gray wolf (Canis lupus) foraging behavior: implications for estimating summer kill rate.

    Science.gov (United States)

    Metz, Matthew C; Vucetich, John A; Smith, Douglas W; Stahler, Daniel R; Peterson, Rolf O

    2011-03-01

    Understanding how kill rates vary among seasons is required to understand predation by vertebrate species living in temperate climates. Unfortunately, kill rates are only rarely estimated during summer. For several wolf packs in Yellowstone National Park, we used pairs of collared wolves living in the same pack and the double-count method to estimate the probability of attendance (PA) for an individual wolf at a carcass. PA quantifies an important aspect of social foraging behavior (i.e., the cohesiveness of foraging). We used PA to estimate summer kill rates for packs containing GPS-collared wolves between 2004 and 2009. Estimated rates of daily prey acquisition (edible biomass per wolf) decreased from 8.4±0.9 kg (mean ± SE) in May to 4.1±0.4 kg in July. Failure to account for PA would have resulted in underestimating kill rate by 32%. PA was 0.72±0.05 for large ungulate prey and 0.46±0.04 for small ungulate prey. To assess seasonal differences in social foraging behavior, we also evaluated PA during winter for VHF-collared wolves between 1997 and 2009. During winter, PA was 0.95±0.01. PA was not influenced by prey size but was influenced by wolf age and pack size. Our results demonstrate that seasonal patterns in the foraging behavior of social carnivores have important implications for understanding their social behavior and estimating kill rates. Synthesizing our findings with previous insights suggests that there is important seasonal variation in how and why social carnivores live in groups. Our findings are also important for applications of GPS collars to estimate kill rates. Specifically, because the factors affecting the PA of social carnivores likely differ between seasons, kill rates estimated through GPS collars should account for seasonal differences in social foraging behavior.

  13. Killing vectors in empty space algebraically special metrics. II

    International Nuclear Information System (INIS)

    Held, A.

    1976-01-01

    Empty space algebraically special metrics possessing an expanding degenerate principal null vector and Killing vectors are investigated. Attention is centered on that class of Killing vector (called nonpreferred) which is necessarily spacelike in the asymptotic region. A detailed analysis of the relationship between the Petrov--Penrose classification and these Killing vectors is carried out

  14. Neutrophils kill the parasite Trichomonas vaginalis using trogocytosis

    Science.gov (United States)

    Mercer, Frances; Ng, Shek Hang; Brown, Taylor M.; Boatman, Grace; Johnson, Patricia J.

    2018-01-01

    T. vaginalis, a human-infective parasite, causes the most common nonviral sexually transmitted infection (STI) worldwide and contributes to adverse inflammatory disorders. The immune response to T. vaginalis is poorly understood. Neutrophils (polymorphonuclear cells [PMNs]) are the major immune cell present at the T. vaginalis–host interface and are thought to clear T. vaginalis. However, the mechanism of PMN clearance of T. vaginalis has not been characterized. We demonstrate that human PMNs rapidly kill T. vaginalis in a dose-dependent, contact-dependent, and neutrophil extracellular trap (NET)-independent manner. In contrast to phagocytosis, we observed that PMN killing of T. vaginalis involves taking “bites” of T. vaginalis prior to parasite death, using trogocytosis to achieve pathogen killing. Both trogocytosis and parasite killing are dependent on the presence of PMN serine proteases and human serum factors. Our analyses provide the first demonstration, to our knowledge, of a mammalian phagocyte using trogocytosis for pathogen clearance and reveal a novel mechanism used by PMNs to kill a large, highly motile target. PMID:29408891

  15. Prairie dogs increase fitness by killing interspecific competitors.

    Science.gov (United States)

    Hoogland, John L; Brown, Charles R

    2016-03-30

    Interspecific competition commonly selects for divergence in ecology, morphology or physiology, but direct observation of interspecific competition under natural conditions is difficult. Herbivorous white-tailed prairie dogs (Cynomys leucurus) employ an unusual strategy to reduce interspecific competition: they kill, but do not consume, herbivorous Wyoming ground squirrels (Urocitellus elegans) encountered in the prairie dog territories. Results from a 6-year study in Colorado, USA, revealed that interspecific killing of ground squirrels by prairie dogs was common, involving 47 different killers; 19 prairie dogs were serial killers in the same or consecutive years, and 30% of female prairie dogs killed at least one ground squirrel over their lifetimes. Females that killed ground squirrels had significantly higher annual and lifetime fitness than non-killers, probably because of decreased interspecific competition for vegetation. Our results document the first case of interspecific killing of competing individuals unrelated to predation (IK) among herbivorous mammals in the wild, and show that IK enhances fitness for animals living under natural conditions. © 2016 The Author(s).

  16. Killing cancer cells by targeted drug-carrying phage nanomedicines

    Directory of Open Access Journals (Sweden)

    Yacoby Iftach

    2008-04-01

    Full Text Available Abstract Background Systemic administration of chemotherapeutic agents, in addition to its anti-tumor benefits, results in indiscriminate drug distribution and severe toxicity. This shortcoming may be overcome by targeted drug-carrying platforms that ferry the drug to the tumor site while limiting exposure to non-target tissues and organs. Results We present a new form of targeted anti-cancer therapy in the form of targeted drug-carrying phage nanoparticles. Our approach is based on genetically-modified and chemically manipulated filamentous bacteriophages. The genetic manipulation endows the phages with the ability to display a host-specificity-conferring ligand. The phages are loaded with a large payload of a cytotoxic drug by chemical conjugation. In the presented examples we used anti ErbB2 and anti ERGR antibodies as targeting moieties, the drug hygromycin conjugated to the phages by a covalent amide bond, or the drug doxorubicin conjugated to genetically-engineered cathepsin-B sites on the phage coat. We show that targeting of phage nanomedicines via specific antibodies to receptors on cancer cell membranes results in endocytosis, intracellular degradation, and drug release, resulting in growth inhibition of the target cells in vitro with a potentiation factor of >1000 over the corresponding free drugs. Conclusion The results of the proof-of concept study presented here reveal important features regarding the potential of filamentous phages to serve as drug-delivery platform, on the affect of drug solubility or hydrophobicity on the target specificity of the platform and on the effect of drug release mechanism on the potency of the platform. These results define targeted drug-carrying filamentous phage nanoparticles as a unique type of antibody-drug conjugates.

  17. Killing cancer cells by targeted drug-carrying phage nanomedicines

    Science.gov (United States)

    Bar, Hagit; Yacoby, Iftach; Benhar, Itai

    2008-01-01

    Background Systemic administration of chemotherapeutic agents, in addition to its anti-tumor benefits, results in indiscriminate drug distribution and severe toxicity. This shortcoming may be overcome by targeted drug-carrying platforms that ferry the drug to the tumor site while limiting exposure to non-target tissues and organs. Results We present a new form of targeted anti-cancer therapy in the form of targeted drug-carrying phage nanoparticles. Our approach is based on genetically-modified and chemically manipulated filamentous bacteriophages. The genetic manipulation endows the phages with the ability to display a host-specificity-conferring ligand. The phages are loaded with a large payload of a cytotoxic drug by chemical conjugation. In the presented examples we used anti ErbB2 and anti ERGR antibodies as targeting moieties, the drug hygromycin conjugated to the phages by a covalent amide bond, or the drug doxorubicin conjugated to genetically-engineered cathepsin-B sites on the phage coat. We show that targeting of phage nanomedicines via specific antibodies to receptors on cancer cell membranes results in endocytosis, intracellular degradation, and drug release, resulting in growth inhibition of the target cells in vitro with a potentiation factor of >1000 over the corresponding free drugs. Conclusion The results of the proof-of concept study presented here reveal important features regarding the potential of filamentous phages to serve as drug-delivery platform, on the affect of drug solubility or hydrophobicity on the target specificity of the platform and on the effect of drug release mechanism on the potency of the platform. These results define targeted drug-carrying filamentous phage nanoparticles as a unique type of antibody-drug conjugates. PMID:18387177

  18. Charge properties and bacterial contact-killing of hyperbranched polyurea-polyethyleneimine coatings with various degrees of alkylation

    International Nuclear Information System (INIS)

    Roest, Steven; Mei, Henny C. van der; Loontjens, Ton J.A.; Busscher, Henk J.

    2015-01-01

    Highlights: • Cationic charge density does not reflect bacterial contact-killing by QUAT coatings. • Charge carrier and density reflect bacterial killing by QUAT coatings. • Fluorescein staining cannot distinguish charge carriers in cationic coatings. • Charge carrier and density of QUAT coatings are reflected in the N401.3 eV XPS peak. • The at.% N401.3 eV should be more than 0.45% for effective bacterial contact-killing. - Abstract: Coatings of immobilized-quaternary-ammonium-ions (QUAT) uniquely kill adhering bacteria upon contact. QUAT-coatings require a minimal cationic-charge surface density for effective contact-killing of adhering bacteria of around 10 14 cm −2 . Quaternization of nitrogen is generally achieved through alkylation. Here, we investigate the contribution of additional alkylation with methyl-iodide to the cationic-charge density of hexyl-bromide alkylated, hyperbranched polyurea-polyethyleneimine coatings measuring charge density with fluorescein staining. X-ray-photoelectron-spectroscopy was used to determine the at.% alkylated-nitrogen. Also streaming potentials, water contact-angles and bacterial contact-killing were measured. Cationic-charge density increased with methyl-iodide alkylation times up to 18 h, accompanied by an increase in the at.% alkylated-nitrogen. Zeta-potentials became more negative upon alkylation as a result of shielding of cationiccharges by hydrophobic alkyl-chains. Contact-killing of Gram-positive Staphylococci only occurred when the cationic-charge density exceeded 10 16 cm −2 and was carried by alkylated-nitrogen (electron-binding energy 401.3 eV). Gram-negative Escherichia coli was not killed upon contact with the coatings. There with this study reveals that cationic-charge density is neither appropriate nor sufficient to determine the ability of QUAT-coatings to kill adhering bacteria. Alternatively, the at.% of alkylated-nitrogen at 401.3 eV is proposed, as it reflects both cationic-charge and its

  19. Charge properties and bacterial contact-killing of hyperbranched polyurea-polyethyleneimine coatings with various degrees of alkylation

    Energy Technology Data Exchange (ETDEWEB)

    Roest, Steven [University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, AntoniusDeusinglaan 1, 9713 AV Groningen (Netherlands); Mei, Henny C. van der, E-mail: h.c.van.der.mei@umcg.nl [University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, AntoniusDeusinglaan 1, 9713 AV Groningen (Netherlands); Loontjens, Ton J.A. [University of Groningen, Zernike Institute for Advanced Materials, Department of Polymer Chemistry, Nijenborgh 4, 9747 AG Groningen (Netherlands); Busscher, Henk J. [University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, AntoniusDeusinglaan 1, 9713 AV Groningen (Netherlands)

    2015-11-30

    Highlights: • Cationic charge density does not reflect bacterial contact-killing by QUAT coatings. • Charge carrier and density reflect bacterial killing by QUAT coatings. • Fluorescein staining cannot distinguish charge carriers in cationic coatings. • Charge carrier and density of QUAT coatings are reflected in the N401.3 eV XPS peak. • The at.% N401.3 eV should be more than 0.45% for effective bacterial contact-killing. - Abstract: Coatings of immobilized-quaternary-ammonium-ions (QUAT) uniquely kill adhering bacteria upon contact. QUAT-coatings require a minimal cationic-charge surface density for effective contact-killing of adhering bacteria of around 10{sup 14} cm{sup −2}. Quaternization of nitrogen is generally achieved through alkylation. Here, we investigate the contribution of additional alkylation with methyl-iodide to the cationic-charge density of hexyl-bromide alkylated, hyperbranched polyurea-polyethyleneimine coatings measuring charge density with fluorescein staining. X-ray-photoelectron-spectroscopy was used to determine the at.% alkylated-nitrogen. Also streaming potentials, water contact-angles and bacterial contact-killing were measured. Cationic-charge density increased with methyl-iodide alkylation times up to 18 h, accompanied by an increase in the at.% alkylated-nitrogen. Zeta-potentials became more negative upon alkylation as a result of shielding of cationiccharges by hydrophobic alkyl-chains. Contact-killing of Gram-positive Staphylococci only occurred when the cationic-charge density exceeded 10{sup 16} cm{sup −2} and was carried by alkylated-nitrogen (electron-binding energy 401.3 eV). Gram-negative Escherichia coli was not killed upon contact with the coatings. There with this study reveals that cationic-charge density is neither appropriate nor sufficient to determine the ability of QUAT-coatings to kill adhering bacteria. Alternatively, the at.% of alkylated-nitrogen at 401.3 eV is proposed, as it reflects both

  20. Immunotherapy with Dendritic Cells Modified with Tumor-Associated Antigen Gene Demonstrates Enhanced Antitumor Effect Against Lung Cancer

    Directory of Open Access Journals (Sweden)

    Tao Jiang

    2017-04-01

    Full Text Available BACKGROUND: Immunotherapy using dendritic cell (DC vaccine has the potential to overcome the bottleneck of cancer therapy. METHODS: We engineered Lewis lung cancer cells (LLCs and bone marrow–derived DCs to express tumor-associated antigen (TAA ovalbumin (OVA via lentiviral vector plasmid encoding OVA gene. We then tested the antitumor effect of modified DCs both in vitro and in vivo. RESULTS: The results demonstrated that in vitro modified DCs could dramatically enhance T-cell proliferation (P < .01 and killing of LLCs than control groups (P < .05. Moreover, modified DCs could reduce tumor size and prolong the survival of LLC tumor-bearing mice than control groups (P < .01 and P < .01, respectively. Mechanistically, modified DCs demonstrated enhanced homing to T-cell–rich compartments and triggered more naive T cells to become cytotoxic T lymphocytes, which exhibited significant infiltration into the tumors. Interestingly, modified DCs also markedly reduced tumor cells harboring stem cell markers in mice (P < .05, suggesting the potential role on cancer stem-like cells. CONCLUSION: These findings suggested that DCs bioengineered with TAA could enhance antitumor effect and therefore represent a novel anticancer strategy that is worth further exploration.

  1. Female serial killing: review and case report.

    Science.gov (United States)

    Frei, Andreas; Völlm, Birgit; Graf, Marc; Dittmann, Volker

    2006-01-01

    Single homicide committed by women is rare. Serial killing is very infrequent, and the perpetrators are usually white, intelligent males with sadistic tendencies. Serial killing by women has, however, also been described. To conduct a review of published literature on female serial killers and consider its usefulness in assessing a presenting case. A literature review was conducted, after searching EMBASE, MEDLINE and PsycINFO. The presenting clinical case is described in detail in the context of the literature findings. Results The literature search revealed few relevant publications. Attempts to categorize the phenomenon of female serial killing according to patterns of and motives for the homicides have been made by some authors. The most common motive identified was material gain or similar extrinsic gratification while the 'hedonistic' sadistic or sexual serial killer seems to be extremely rare in women. There is no consistent theory of serial killing by women, but psychopathic personality traits and abusive childhood experiences have consistently been observed. The authors' case did not fit the description of a 'typical' female serial killer. In such unusual circumstances as serial killing by a woman, detailed individual case formulation is required to make sense of the psychopathology in each case. Publication of cases in scientific journals should be encouraged to advance our understanding of this phenomenon. Copyright (c) 2006 John Wiley & Sons, Ltd.

  2. Targeted Anticancer Immunotoxins and Cytotoxic Agents with Direct Killing Moieties

    Directory of Open Access Journals (Sweden)

    Koji Kawakami

    2006-01-01

    Full Text Available Despite the progress of the bioinformatics approach to characterize cell-surface antigens and receptors on tumor cells, it remains difficult to generate novel cancer vaccines or neutralizing monoclonal antibody therapeutics. Among targeted cancer therapeutics, biologicals with targetable antibodies or ligands conjugated or fused to toxins or chemicals for direct cell-killing ability have been developed over the last 2 decades. These conjugated or fused chimeric proteins are termed immunotoxins or cytotoxic agents. Two agents, DAB389IL-2 (ONTAKTM targeting the interleukin-2 receptor and CD33-calicheamicin (Mylotarg®, have been approved by the FDA for cutaneous T-cell lymphoma (CTCL and relapsed acute myeloid leukemia (AML, respectively. Such targetable agents, including RFB4(dsFv-PE38 (BL22, IL13-PE38QQR, and Tf-CRM107, are being tested in clinical trials. Several agents using unique technology such as a cleavable adapter or immunoliposomes with antibodies are also in the preclinical stage. This review summarizes the generation, mechanism, and development of these agents. In addition, possible future directions of this therapeutic approach are discussed.

  3. Oncolytic Sendai virus-based virotherapy for cancer: recent advances

    Directory of Open Access Journals (Sweden)

    Saga K

    2015-10-01

    Full Text Available Kotaro Saga, Yasufumi Kaneda Division of Gene Therapy Science, Graduate School of Medicine, Osaka University, Osaka, Japan Abstract: Many drugs have been developed and optimized for the treatment of cancer; however, it is difficult to completely cure cancer with anticancer drugs alone. Therefore, the development of new therapeutic technologies, in addition to new anticancer drugs, is necessary for more effective oncotherapy. Oncolytic viruses are one potential new anticancer strategy. Various oncolytic viruses have been developed for safe and effective oncotherapy. Recently, Sendai virus-based oncotherapy has been reported by several groups, and attention has been drawn to its unique anticancer mechanisms, which are different from those of the conventional oncolytic viruses that kill cancer cells by cancer cell-selective replication. Here, we introduce Sendai virus-based virotherapy and its anticancer mechanisms. Keywords: HVJ-E, cancer therapy, apoptosis, necroptosis, anticancer immunity 

  4. Glucocorticoids and Polyamine Inhibitors Synergize to Kill Human Leukemic CEM Cells1

    Science.gov (United States)

    Miller, Aaron L; Johnson, Betty H; Medh, Rheem D; Townsend, Courtney M; Thompson, E Brad

    2002-01-01

    Abstract Glucocorticoids are well-known apoptotic agents in certain classes of lymphoid cell malignancies. Reduction of intracellular polyamine levels by use of inhibitors that block polyamine synthesis slows or inhibits growth of many cells in vitro. Several such inhibitors have shown efficacy in clinical trials, though the toxicity of some compounds has limited their usefulness. We have tested the effects of combinations of the glucocorticoid dexamethasone (Dex) and two polyamine inhibitors, difluoromethylornithine (DFMO) and methyl glyoxal bis guanylhydrazone (MGBG), on the clonal line of human acute lymphoblastic leukemia cells, CEM-C7-14. Dex alone kills these cells, though only after a delay of at least 24 hours. We also evaluated a partially glucocorticoid-resistant c-Myc-expressing CEM-C7-14 clone. We show that Dex downregulates ornithine decarboxylase (ODC), the rate-limiting enzyme in polyamine synthesis. Pretreatment with the ODC inhibitor DFMO, followed by addition of Dex, enhances steroid-evoked kill slightly. The combination of pretreatment with sublethal concentrations of both DFMO and the inhibitor of S-adenosylmethionine decarboxylase, MGBG, followed by addition of Dex, results in strong synergistic cell kill. Both the rapidity and extent of cell kill are enhanced compared to the effects of Dex alone. These results suggest that use of such combinations in vivo may result in apoptosis of malignant cells with lower overall toxicity. PMID:11922393

  5. Charge properties and bacterial contact-killing of hyperbranched polyurea-polyethyleneimine coatings with various degrees of alkylation

    NARCIS (Netherlands)

    Roest, Steven; van der Mei, Henny C.; Loontjens, Ton J. A.; Busscher, Henk J.

    2015-01-01

    Coatings of immobilized-quaternary-ammonium-ions (QUAT) uniquely kill adhering bacteria upon contact. QUAT-coatings require a minimal cationic-charge surface density for effective contact-killing of adhering bacteria of around 10(14) cm(-2). Quaternization of nitrogen is generally achieved through

  6. Broadening the future of value account of the wrongness of killing

    DEFF Research Database (Denmark)

    Di Nucci, Ezio

    2015-01-01

    On Don Marquis's future of value account of the wrongness of killing, 'what makes it wrong to kill those individuals we all believe it is wrong to kill, is that killing them deprives them of their future of value'. Marquis has recently argued for a narrow interpretation of his future of value...... account of the wrongness of killing and against the broad interpretation that I had put forward in response to Carson Strong. In this article I argue that the narrow view is problematic because it violates some basic principles of equality and because it allows for some of the very killing that Marquis...

  7. Fractional Killing-Yano Tensors and Killing Vectors Using the Caputo Derivative in Some One- and Two-Dimensional Curved Space

    Directory of Open Access Journals (Sweden)

    Ehab Malkawi

    2014-01-01

    Full Text Available The classical free Lagrangian admitting a constant of motion, in one- and two-dimensional space, is generalized using the Caputo derivative of fractional calculus. The corresponding metric is obtained and the fractional Christoffel symbols, Killing vectors, and Killing-Yano tensors are derived. Some exact solutions of these quantities are reported.

  8. Pathogen analysis of NYSDOT road-killed deer carcass compost facilities.

    Science.gov (United States)

    2008-09-01

    Composting of deer carcasses was effective in reducing pathogen levels, decomposing the : carcasses and producing a useable end product after 12 months. The composting process used in this project : involved enveloping the carcasses of road-killed de...

  9. γδ T cells as a potential tool in colon cancer immunotherapy.

    Science.gov (United States)

    Ramutton, Thiranut; Buccheri, Simona; Dieli, Francesco; Todaro, Matilde; Stassi, Giorgio; Meraviglia, Serena

    2014-01-01

    γδ T cells are capable of recognizing tumor cells and exert potent cellular cytotoxicity against a large range of tumors, including colon cancer. However, tumors utilize numerous strategies to escape recognition or killing by patrolling γδ T cells, such a downregulation of NKG2D ligands, MICA/B and ULBPs. Therefore, the combined upregulation of T-cell receptorand NKG2D ligands on tumor cells and induction of NKG2D expression on γδ T cells may greatly enhance tumor killing and unlock the functions of γδ T cells. Here, we briefly review current data on the mechanisms of γδ T-cell recognition and killing of colon cancer cells and propose that γδ T cells may represent a promising target for the design of novel and highly innovative immunotherapy in patients with colon cancer.

  10. General Information about Paranasal Sinus and Nasal Cavity Cancer

    Science.gov (United States)

    ... such as those found in the following jobs: Furniture-making. Sawmill work. Woodworking (carpentry). Shoemaking. Metal-plating. ... cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells ...

  11. Colorectal Cancer - What You Need to Know

    Centers for Disease Control (CDC) Podcasts

    This podcast is based on the July, 2011 CDC Vital Signs report. Colorectal cancer kills about 50,000 men and women every year. Screening can save lives! Screening can find abnormal growths so they can be removed before turning into cancer, and can find the cancer early, when it's easiest to treat. If you're over 50, talk to your doctor about getting screened for colorectal cancer.

  12. Effect of sociality and season on gray wolf (Canis lupus foraging behavior: implications for estimating summer kill rate.

    Directory of Open Access Journals (Sweden)

    Matthew C Metz

    Full Text Available BACKGROUND: Understanding how kill rates vary among seasons is required to understand predation by vertebrate species living in temperate climates. Unfortunately, kill rates are only rarely estimated during summer. METHODOLOGY/PRINCIPAL FINDINGS: For several wolf packs in Yellowstone National Park, we used pairs of collared wolves living in the same pack and the double-count method to estimate the probability of attendance (PA for an individual wolf at a carcass. PA quantifies an important aspect of social foraging behavior (i.e., the cohesiveness of foraging. We used PA to estimate summer kill rates for packs containing GPS-collared wolves between 2004 and 2009. Estimated rates of daily prey acquisition (edible biomass per wolf decreased from 8.4±0.9 kg (mean ± SE in May to 4.1±0.4 kg in July. Failure to account for PA would have resulted in underestimating kill rate by 32%. PA was 0.72±0.05 for large ungulate prey and 0.46±0.04 for small ungulate prey. To assess seasonal differences in social foraging behavior, we also evaluated PA during winter for VHF-collared wolves between 1997 and 2009. During winter, PA was 0.95±0.01. PA was not influenced by prey size but was influenced by wolf age and pack size. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that seasonal patterns in the foraging behavior of social carnivores have important implications for understanding their social behavior and estimating kill rates. Synthesizing our findings with previous insights suggests that there is important seasonal variation in how and why social carnivores live in groups. Our findings are also important for applications of GPS collars to estimate kill rates. Specifically, because the factors affecting the PA of social carnivores likely differ between seasons, kill rates estimated through GPS collars should account for seasonal differences in social foraging behavior.

  13. Some spacetimes with higher rank Killing-Staeckel tensors

    International Nuclear Information System (INIS)

    Gibbons, G.W.; Houri, T.; Kubiznak, D.; Warnick, C.M.

    2011-01-01

    By applying the lightlike Eisenhart lift to several known examples of low-dimensional integrable systems admitting integrals of motion of higher-order in momenta, we obtain four- and higher-dimensional Lorentzian spacetimes with irreducible higher-rank Killing tensors. Such metrics, we believe, are first examples of spacetimes admitting higher-rank Killing tensors. Included in our examples is a four-dimensional supersymmetric pp-wave spacetime, whose geodesic flow is superintegrable. The Killing tensors satisfy a non-trivial Poisson-Schouten-Nijenhuis algebra. We discuss the extension to the quantum regime.

  14. Low Temperature Plasma for the Treatment of Epithelial Cancer Cells

    Science.gov (United States)

    Mohades, Soheila

    Biomedical applications of low temperature plasmas (LTP) may lead to a paradigm shift in treating various diseases by conducting fundamental research on the effects of LTP on cells, tissues, organisms (plants, insects, and microorganisms). This is a rapidly growing interdisciplinary research field that involves engineering, physics, life sciences, and chemistry to find novel solutions for urgent medical needs. Effects of different LTP sources have shown the anti-tumor properties of plasma exposure; however, there are still many unknowns about the interaction of plasma with eukaryotic cells which must be elucidated in order to evaluate the practical potential of plasma in cancer treatment. Plasma, the fourth state of matter, is composed of electrons, ions, reactive molecules (radicals and non-radicals), excited species, radiation, and heat. A sufficient dose (time) of plasma exposure can induce death in cancer cells. The plasma pencil is employed to study the anti-tumor properties of this treatment on epithelial cells. The plasma pencil has been previously used for the inactivation of bacteria, destroying amyloid fibrils, and the killing of various cancer cells. Bladder cancer is the 9th leading cause of cancer. In this dissertation, human urinary bladder tissue with the squamous cell carcinoma disease (SCaBER cells) is treated with LTP utilizing two different approaches: direct plasma exposure and Plasma Activated Media (PAM) as an advancement to the treatment. PAM is produced by exposing a liquid cell culture medium to the plasma pencil. Direct LTP treatment of cancer cells indicates a dose-dependent killing effect at post-treatment times. Similarly, PAM treatment shows an anti-cancer effect by inducing substantial cell death. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) have an important role in the biomedical effects of LTP treatment. This study demonstrates the capability of the plasma pencil to transport ROS/RNS into cell culture media

  15. Long-term effects of ionizing radiation

    International Nuclear Information System (INIS)

    Kaul, Alexander; Burkart, Werner; Grosche, Bernd; Jung, Thomas; Martignoni, Klaus; Stephan, Guenther

    1997-01-01

    This paper approaches the long-term effects of ionizing radiation considering the common thought that killing of cells is the basis for deterministic effects and that the subtle changes in genetic information are important in the development of radiation-induced cancer, or genetic effects if these changes are induced in germ cells

  16. Can patriotism justify killing in defense of one’s country?

    Directory of Open Access Journals (Sweden)

    Pavković Aleksandar

    2007-01-01

    Full Text Available Cosmopolitan liberals would be ready to fight - and to kill and be killed for the sake of restoring international justice or for the abolition of profoundly unjust political institutions. Patriots are ready to do the same for their own country. Sometimes the cosmopolitan liberals and patriots would fight on the same side and sometimes on the opposite sides of the conflict. Thus the former would join the latter in the defense of Serbia against Austria-Hungary (in 1914 but would oppose the white Southerner patriots in the American Civil War (in 1861. In this paper I argue that fighting and killing for one’s country is, in both of those cases, different from the defense of one’s own life and the lives of those who cannot defend themselves. Killing for one’s country is killing in order to fulfill a particular political preference. The same is the case with fighting for the abolition of a profoundly unjust political institution. It is not amoral or immoral to refuse to kill for any one of these two political preferences because there is no reason to believe that either political preference trumps our moral constraints against killing.

  17. Pseudomonas piscicida kills vibrios by two distinct mechanisms

    Science.gov (United States)

    Pseudoalteromonas piscicida is a naturally-occurring marine bacterium which kills competing bacteria, including vibrios. In studies by Richards et al. (AEM00175-17), three strains of P. piscicida were isolated and characterized. Strains secreted proteolytic enzymes which likely killed competing or...

  18. Structural equations for Killing tensors of order two. II

    International Nuclear Information System (INIS)

    Hauser, I.; Malhiot, R.J.

    1975-01-01

    In a preceding paper, a new form of the structural equations for any Killing tensor of order two have been derived; these equations constitute a system analogous to the Killing vector equations Nabla/sub alpha/ K/sub beta/ = ω/sub alpha beta/ = -ω/sub beta alpha/ and Nabla/sub gamma/ ω/sub alpha beta = R/sub alpha beta gamma delta/ K/sup delta/. The first integrability condition for the Killing tensor structural equations is now derived. The structural equations and the integrability condition have forms which can readily be expressed in terms of a null tetrad to furnish a Killing tensor parallel of the Newman--Penrose equations; this is briefly described. The integrability condition implies the new result, for any given space--time, that the dimension of the set of second-order Killing tensors attains its maximum possible value of 50 only if the space--time is of constant curvature. Potential applications of the structural equations are discussed

  19. How to kill creativity.

    Science.gov (United States)

    Amabile, T M

    1998-01-01

    In today's knowledge economy, creativity is more important than ever. But many companies unwittingly employ managerial practices that kill it. How? By crushing their employees' intrinsic motivation--the strong internal desire to do something based on interests and passions. Managers don't kill creativity on purpose. Yet in the pursuit of productivity, efficiency, and control--all worthy business imperatives--they undermine creativity. It doesn't have to be that way, says Teresa Amabile. Business imperatives can comfortably coexist with creativity. But managers will have to change their thinking first. Specifically, managers will need to understand that creativity has three parts: expertise, the ability to think flexibly and imaginatively, and motivation. Managers can influence the first two, but doing so is costly and slow. It would be far more effective to increase employees' intrinsic motivation. To that end, managers have five levers to pull: the amount of challenge they give employees, the degree of freedom they grant around process, the way they design work groups, the level of encouragement they give, and the nature of organizational support. Take challenge as an example. Intrinsic motivation is high when employees feel challenged but not overwhelmed by their work. The task for managers, therefore, becomes matching people to the right assignments. Consider also freedom. Intrinsic motivation--and thus creativity--soars when managers let people decide how to achieve goals, not what goals to achieve. Managers can make a difference when it comes to employee creativity. The result can be truly innovative companies in which creativity doesn't just survive but actually thrives.

  20. Stochastic Threshold Microdose Model for Cell Killing by Insoluble Metallic Nanomaterial Particles

    Science.gov (United States)

    Scott, Bobby R.

    2010-01-01

    This paper introduces a novel microdosimetric model for metallic nanomaterial-particles (MENAP)-induced cytotoxicity. The focus is on the engineered insoluble MENAP which represent a significant breakthrough in the design and development of new products for consumers, industry, and medicine. Increased production is rapidly occurring and may cause currently unrecognized health effects (e.g., nervous system dysfunction, heart disease, cancer); thus, dose-response models for MENAP-induced biological effects are needed to facilitate health risk assessment. The stochastic threshold microdose (STM) model presented introduces novel stochastic microdose metrics for use in constructing dose-response relationships for the frequency of specific cellular (e.g., cell killing, mutations, neoplastic transformation) or subcellular (e.g., mitochondria dysfunction) effects. A key metric is the exposure-time-dependent, specific burden (MENAP count) for a given critical target (e.g., mitochondria, nucleus). Exceeding a stochastic threshold specific burden triggers cell death. For critical targets in the cytoplasm, the autophagic mode of death is triggered. For the nuclear target, the apoptotic mode of death is triggered. Overall cell survival is evaluated for the indicated competing modes of death when both apply. The STM model can be applied to cytotoxicity data using Bayesian methods implemented via Markov chain Monte Carlo. PMID:21191483

  1. Extinction models for cancer stem cell therapy

    Science.gov (United States)

    Sehl, Mary; Zhou, Hua; Sinsheimer, Janet S.; Lange, Kenneth L.

    2012-01-01

    Cells with stem cell-like properties are now viewed as initiating and sustaining many cancers. This suggests that cancer can be cured by driving these cancer stem cells to extinction. The problem with this strategy is that ordinary stem cells are apt to be killed in the process. This paper sets bounds on the killing differential (difference between death rates of cancer stem cells and normal stem cells) that must exist for the survival of an adequate number of normal stem cells. Our main tools are birth–death Markov chains in continuous time. In this framework, we investigate the extinction times of cancer stem cells and normal stem cells. Application of extreme value theory from mathematical statistics yields an accurate asymptotic distribution and corresponding moments for both extinction times. We compare these distributions for the two cell populations as a function of the killing rates. Perhaps a more telling comparison involves the number of normal stem cells NH at the extinction time of the cancer stem cells. Conditioning on the asymptotic time to extinction of the cancer stem cells allows us to calculate the asymptotic mean and variance of NH. The full distribution of NH can be retrieved by the finite Fourier transform and, in some parameter regimes, by an eigenfunction expansion. Finally, we discuss the impact of quiescence (the resting state) on stem cell dynamics. Quiescence can act as a sanctuary for cancer stem cells and imperils the proposed therapy. We approach the complication of quiescence via multitype branching process models and stochastic simulation. Improvements to the τ-leaping method of stochastic simulation make it a versatile tool in this context. We conclude that the proposed therapy must target quiescent cancer stem cells as well as actively dividing cancer stem cells. The current cancer models demonstrate the virtue of attacking the same quantitative questions from a variety of modeling, mathematical, and computational perspectives

  2. Detecting the contagion effect in mass killings; a constructive example of the statistical advantages of unbinned likelihood methods.

    Science.gov (United States)

    Towers, Sherry; Mubayi, Anuj; Castillo-Chavez, Carlos

    2018-01-01

    When attempting to statistically distinguish between a null and an alternative hypothesis, many researchers in the life and social sciences turn to binned statistical analysis methods, or methods that are simply based on the moments of a distribution (such as the mean, and variance). These methods have the advantage of simplicity of implementation, and simplicity of explanation. However, when null and alternative hypotheses manifest themselves in subtle differences in patterns in the data, binned analysis methods may be insensitive to these differences, and researchers may erroneously fail to reject the null hypothesis when in fact more sensitive statistical analysis methods might produce a different result when the null hypothesis is actually false. Here, with a focus on two recent conflicting studies of contagion in mass killings as instructive examples, we discuss how the use of unbinned likelihood methods makes optimal use of the information in the data; a fact that has been long known in statistical theory, but perhaps is not as widely appreciated amongst general researchers in the life and social sciences. In 2015, Towers et al published a paper that quantified the long-suspected contagion effect in mass killings. However, in 2017, Lankford & Tomek subsequently published a paper, based upon the same data, that claimed to contradict the results of the earlier study. The former used unbinned likelihood methods, and the latter used binned methods, and comparison of distribution moments. Using these analyses, we also discuss how visualization of the data can aid in determination of the most appropriate statistical analysis methods to distinguish between a null and alternate hypothesis. We also discuss the importance of assessment of the robustness of analysis results to methodological assumptions made (for example, arbitrary choices of number of bins and bin widths when using binned methods); an issue that is widely overlooked in the literature, but is critical

  3. Killing spinors as a characterisation of rotating black hole spacetimes

    International Nuclear Information System (INIS)

    Cole, Michael J; Kroon, Juan A Valiente

    2016-01-01

    We investigate the implications of the existence of Killing spinors in a spacetime. In particular, we show that in vacuum and electrovacuum a Killing spinor, along with some assumptions on the associated Killing vector in an asymptotic region, guarantees that the spacetime is locally isometric to the Kerr or Kerr–Newman solutions. We show that the characterisation of these spacetimes in terms of Killing spinors is an alternative expression of characterisation results of Mars (Kerr) and Wong (Kerr–Newman) involving restrictions on the Weyl curvature and matter content. (paper)

  4. Development and characterization of multifunctional nanoparticles for drug delivery to cancer cells

    Science.gov (United States)

    Nahire, Rahul Rajaram

    Lipid and polymeric nanoparticles, although proven to be effective drug delivery systems compared to free drugs, have shown considerable limitations pertaining to their uptake and release at tumor sites. Spatial and temporal control over the delivery of anticancer drugs has always been challenge to drug delivery scientists. Here, we have developed and characterized multifunctional nanoparticles (liposomes and polymersomes) which are targeted specifically to cancer cells, and release their contents with tumor specific internal triggers. To enable these nanoparticles to be tracked in blood circulation, we have imparted them with echogenic characteristic. Echogenicity of nanoparticles is evaluated using ultrasound scattering and imaging experiments. Nanoparticles demonstrated effective release with internal triggers such as elevated levels of MMP-9 enzyme found in the extracellular matrix of tumor cells, decreased pH of lysosome, and differential concentration of reducing agents in cytosol of cancer cells. We have also successfully demonstrated the sensitivity of these particles towards ultrasound to further enhance the release with internal triggers. To ensure the selective uptake by folate receptor- overexpressing cancer cells, we decorated these nanoparticles with folic acid on their surface. Fluorescence microscopic images showed significantly higher uptake of folate-targeted nanoparticles by MCF-7 (breast cancer) and PANC-1 (pancreatic cancer) cells compared to particles without any targeting ligand on their surface. To demonstrate the effectiveness of these nanoparticles to carry the drugs inside and kill cancer cells, we encapsulated doxorubicin and/or gemcitabine employing the pH gradient method. Drug loaded nanoparticles showed significantly higher killing of the cancer cells compared to their non-targeted counterparts and free drugs. With further development, these nanoparticles certainly have potential to be used as a multifunctional nanocarriers for image

  5. Killing Cancer Cells with the Help of Infrared Light – Photoimmunotherapy

    Science.gov (United States)

    Near-infrared photoimmunotherapy uses an antibody–photoabsorber conjugate that binds to cancer cells. When near-infrared light is applied, the cells swell and then burst, causing the cancer cell to die. Photoimmunotherapy is in clinical trials in patients with inoperable tumors.

  6. Salinomycin Exerts Anticancer Effects on PC-3 Cells and PC-3-Derived Cancer Stem Cells In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Yunsheng Zhang

    2017-01-01

    Full Text Available Salinomycin is an antibiotic isolated from Streptomyces albus that selectively kills cancer stem cells (CSCs. However, the antitumor mechanism of salinomycin is unclear. This study investigated the chemotherapeutic efficacy of salinomycin in human prostate cancer PC-3 cells. We found that cytotoxicity of salinomycin to PC-3 cells was stronger than to nonmalignant prostate cell RWPE-1, and exposure to salinomycin induced G2/M phage arrest and apoptosis of PC-3 cells. A mechanistic study found salinomycin suppressed Wnt/β-catenin pathway to induce apoptosis of PC-3 cells. An in vivo experiment confirmed that salinomycin suppressed tumorigenesis in a NOD/SCID mice xenograft model generated from implanted PC-3 cells by inhibiting the Wnt/β-catenin pathway, since the total β-catenin protein level was reduced and the downstream target c-Myc level was significantly downregulated. We also showed that salinomycin, but not paclitaxel, triggered more apoptosis in aldehyde dehydrogenase- (ALDH- positive PC-3 cells, which were considered as the prostate cancer stem cells, suggesting that salinomycin may be a promising chemotherapeutic to target CSCs. In conclusion, this study suggests that salinomycin reduces resistance and relapse of prostate tumor by killing cancer cells as well as CSCs.

  7. The hydroxypyridinone iron chelator CP94 increases methyl-aminolevulinate-based photodynamic cell killing by increasing the generation of reactive oxygen species

    Directory of Open Access Journals (Sweden)

    Yuktee Dogra

    2016-10-01

    Full Text Available Methyl-aminolevulinate-based photodynamic therapy (MAL-PDT is utilised clinically for the treatment of non-melanoma skin cancers and pre-cancers and the hydroxypyridinone iron chelator, CP94, has successfully been demonstrated to increase MAL-PDT efficacy in an initial clinical pilot study. However, the biochemical and photochemical processes leading to CP94-enhanced photodynamic cell death, beyond the well-documented increases in accumulation of the photosensitiser protoporphyrin IX (PpIX, have not yet been fully elucidated. This investigation demonstrated that MAL-based photodynamic cell killing of cultured human squamous carcinoma cells (A431 occurred in a predominantly necrotic manner following the generation of singlet oxygen and ROS. Augmenting MAL-based photodynamic cell killing with CP94 co-treatment resulted in increased PpIX accumulation, MitoSOX-detectable ROS generation (probably of mitochondrial origin and necrotic cell death, but did not affect singlet oxygen generation. We also report (to our knowledge, for the first time the detection of intracellular PpIX-generated singlet oxygen in whole cells via electron paramagnetic resonance spectroscopy in conjunction with a spin trap.

  8. Theriocide: Naming Animal Killing

    Directory of Open Access Journals (Sweden)

    Piers Beirne

    2014-08-01

    Full Text Available In this essay I recommend ‘theriocide’ as the name for those diverse human actions that cause the deaths of animals. Like the killing of one human by another, theriocide may be socially acceptable or unacceptable, legal or illegal. It may be intentional or unintentional and may involve active maltreatment or passive neglect. Theriocide may occur one-on-one, in small groups or in large-scale social institutions. The numerous and sometimes intersecting sites of theriocide include intensive rearing regimes; hunting and fishing; trafficking; vivisection; militarism; pollution; and human-induced climate change. If the killing of animals by humans is as harmful to them as homicide is to humans, then the proper naming of such deaths offers a remedy, however small, to the extensive privileging of human lives over those of other animals. Inevitably, the essay leads to a shocking question: Is theriocide murder?

  9. 1,25-(OH)2-vitamin D3 enhances the cytotoxic effect of radioiodine therapy in prostate cancer cells expressing the sodium iodide symporter

    International Nuclear Information System (INIS)

    Spitzweg, Christine; Hirschmann, Martin; Unterholzner, Stefanie; Cengic, Neziha; Eckel, Petra; Sharif-Samani, Bibi-Rana; Willhauck, Michael J.; Goeke, Burkhard; Morris, John C.

    2005-01-01

    Full text: We reported recently the induction of androgen-dependent iodide uptake activity in human prostate cancer cells (LNCaP) utilizing a prostate-specific antigen (PSA)-promoter directed expression of the sodium iodide symporter (NIS) gene. This offers the potential to treat prostate cancer with radioiodine. In the current study we examined the regulation of PSA-promoter directed NIS expression and therapeutic effectiveness of 131 I in LNCaP cells by 1,25-(OH)2-Vitamin D3 (Vit D3). For this purpose, NIS mRNA and protein expression levels in the NIS-transfected LNCaP cell line NP-1 were examined by Northern and Western blot analysis following incubation with Vit D3 (10 -9 M - 10 -5 M) in the presence of mibolerone (10 -9 M). In addition, NIS functional activity was measured by iodide uptake assay, and in vitro cytotoxicity of 131 I was examined by in vitro clonogenic assay. Following incubation with Vit D3, NIS mRNA levels in NP-1 cells were stimulated 1.2-fold, whereas NIS protein levels increased 1.65-fold and iodide accumulation was stimulated 1.4-fold in a concentration-dependent manner. Further, the selective killing effect of 131 I in NP-1 cells was significantly increased from 55% in NP-1 cells incubated with mibolerone alone to 86 % in NP-1 cells treated with Vit D3 (10 -5 M) in the presence of mibolerone. In the absence of androgen, with or without Vit D3 no functional NIS expression was detected. Conclusion: Treatment with Vit D3 increases androgen-induced NIS expression levels and selective killing effect of 131 I in prostate cancer cells stably expressing NIS under the control of the PSA promoter. Vit D3 may therefore be used to enhance the therapeutic response to radioiodine in prostate cancer cells following PSA-promoter directed NIS gene delivery. (author)

  10. Anti-cancer effect of HIV-1 viral protein R on doxorubicin resistant neuroblastoma.

    Directory of Open Access Journals (Sweden)

    Richard Y Zhao

    Full Text Available Several unique biological features of HIV-1 Vpr make it a potentially powerful agent for anti-cancer therapy. First, Vpr inhibits cell proliferation by induction of cell cycle G2 arrest. Second, it induces apoptosis through multiple mechanisms, which could be significant as it may be able to overcome apoptotic resistance exhibited by many cancerous cells, and, finally, Vpr selectively kills fast growing cells in a p53-independent manner. To demonstrate the potential utility of Vpr as an anti-cancer agent, we carried out proof-of-concept studies in vitro and in vivo. Results of our preliminary studies demonstrated that Vpr induces cell cycle G2 arrest and apoptosis in a variety of cancer types. Moreover, the same Vpr effects could also be detected in some cancer cells that are resistant to anti-cancer drugs such as doxorubicin (DOX. To further illustrate the potential value of Vpr in tumor growth inhibition, we adopted a DOX-resistant neuroblastoma model by injecting SK-N-SH cells into C57BL/6N and C57BL/6J-scid/scid mice. We hypothesized that Vpr is able to block cell proliferation and induce apoptosis regardless of the drug resistance status of the tumors. Indeed, production of Vpr via adenoviral delivery to neuroblastoma cells caused G2 arrest and apoptosis in both drug naïve and DOX-resistant cells. In addition, pre-infection or intratumoral injection of vpr-expressing adenoviral particles into neuroblastoma tumors in SCID mice markedly inhibited tumor growth. Therefore, Vpr could possibly be used as a supplemental viral therapeutic agent for selective inhibition of tumor growth in anti-cancer therapy especially when other therapies stop working.

  11. Mathematical models in cell biology and cancer chemotherapy

    CERN Document Server

    Eisen, Martin

    1979-01-01

    The purpose of this book is to show how mathematics can be applied to improve cancer chemotherapy. Unfortunately, most drugs used in treating cancer kill both normal and abnormal cells. However, more cancer cells than normal cells can be destroyed by the drug because tumor cells usually exhibit different growth kinetics than normal cells. To capitalize on this last fact, cell kinetics must be studied by formulating mathematical models of normal and abnormal cell growth. These models allow the therapeutic and harmful effects of cancer drugs to be simulated quantitatively. The combined cell and drug models can be used to study the effects of different methods of administering drugs. The least harmful method of drug administration, according to a given criterion, can be found by applying optimal control theory. The prerequisites for reading this book are an elementary knowledge of ordinary differential equations, probability, statistics, and linear algebra. In order to make this book self-contained, a chapter on...

  12. Does host complement kill Borrelia burgdorferi within ticks?

    Science.gov (United States)

    Rathinavelu, Sivaprakash; Broadwater, Anne; de Silva, Aravinda M

    2003-02-01

    The Lyme disease spirochete, Borrelia burgdorferi, inhabits the gut lumen of the tick vector. At this location the spirochete is exposed to host blood when a tick feeds. We report here on studies that were done with normal and complement-deficient (C3-knockout) mice to determine if the host complement system killed spirochetes within the vector. We found that spirochete numbers within feeding nymphs were not influenced by complement, most likely because host complement was inactivated within the vector. The Lyme disease outer surface protein A (OspA) vaccine is a transmission-blocking vaccine that targets spirochetes in the vector. In experiments with mice hyperimmunized with OspA, complement was not required to kill spirochetes within nymphs and to block transmission from nymphs to the vaccinated host. However, host complement did enhance the ability of OspA antibody to block larvae from acquiring spirochetes. Thus, the effects of OspA antibody on nymphal transmission and larval acquisition appear to be based on different mechanisms.

  13. Predator-dependent functional response in wolves: from food limitation to surplus killing.

    Science.gov (United States)

    Zimmermann, Barbara; Sand, Håkan; Wabakken, Petter; Liberg, Olof; Andreassen, Harry Peter

    2015-01-01

    The functional response of a predator describes the change in per capita kill rate to changes in prey density. This response can be influenced by predator densities, giving a predator-dependent functional response. In social carnivores which defend a territory, kill rates also depend on the individual energetic requirements of group members and their contribution to the kill rate. This study aims to provide empirical data for the functional response of wolves Canis lupus to the highly managed moose Alces alces population in Scandinavia. We explored prey and predator dependence, and how the functional response relates to the energetic requirements of wolf packs. Winter kill rates of GPS-collared wolves and densities of cervids were estimated for a total of 22 study periods in 15 wolf territories. The adult wolves were identified as the individuals responsible for providing kills to the wolf pack, while pups could be described as inept hunters. The predator-dependent, asymptotic functional response models (i.e. Hassell-Varley type II and Crowley-Martin) performed best among a set of 23 competing linear, asymptotic and sigmoid models. Small wolf packs acquired >3 times as much moose biomass as required to sustain their field metabolic rate (FMR), even at relatively low moose abundances. Large packs (6-9 wolves) acquired less biomass than required in territories with low moose abundance. We suggest the surplus killing by small packs is a result of an optimal foraging strategy to consume only the most nutritious parts of easy accessible prey while avoiding the risk of being detected by humans. Food limitation may have a stabilizing effect on pack size in wolves, as supported by the observed negative relationship between body weight of pups and pack size. © 2014 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.

  14. Contagion in Mass Killings and School Shootings.

    Directory of Open Access Journals (Sweden)

    Sherry Towers

    Full Text Available Several past studies have found that media reports of suicides and homicides appear to subsequently increase the incidence of similar events in the community, apparently due to the coverage planting the seeds of ideation in at-risk individuals to commit similar acts.Here we explore whether or not contagion is evident in more high-profile incidents, such as school shootings and mass killings (incidents with four or more people killed. We fit a contagion model to recent data sets related to such incidents in the US, with terms that take into account the fact that a school shooting or mass murder may temporarily increase the probability of a similar event in the immediate future, by assuming an exponential decay in contagiousness after an event.We find significant evidence that mass killings involving firearms are incented by similar events in the immediate past. On average, this temporary increase in probability lasts 13 days, and each incident incites at least 0.30 new incidents (p = 0.0015. We also find significant evidence of contagion in school shootings, for which an incident is contagious for an average of 13 days, and incites an average of at least 0.22 new incidents (p = 0.0001. All p-values are assessed based on a likelihood ratio test comparing the likelihood of a contagion model to that of a null model with no contagion. On average, mass killings involving firearms occur approximately every two weeks in the US, while school shootings occur on average monthly. We find that state prevalence of firearm ownership is significantly associated with the state incidence of mass killings with firearms, school shootings, and mass shootings.

  15. Contagion in Mass Killings and School Shootings.

    Science.gov (United States)

    Towers, Sherry; Gomez-Lievano, Andres; Khan, Maryam; Mubayi, Anuj; Castillo-Chavez, Carlos

    2015-01-01

    Several past studies have found that media reports of suicides and homicides appear to subsequently increase the incidence of similar events in the community, apparently due to the coverage planting the seeds of ideation in at-risk individuals to commit similar acts. Here we explore whether or not contagion is evident in more high-profile incidents, such as school shootings and mass killings (incidents with four or more people killed). We fit a contagion model to recent data sets related to such incidents in the US, with terms that take into account the fact that a school shooting or mass murder may temporarily increase the probability of a similar event in the immediate future, by assuming an exponential decay in contagiousness after an event. We find significant evidence that mass killings involving firearms are incented by similar events in the immediate past. On average, this temporary increase in probability lasts 13 days, and each incident incites at least 0.30 new incidents (p = 0.0015). We also find significant evidence of contagion in school shootings, for which an incident is contagious for an average of 13 days, and incites an average of at least 0.22 new incidents (p = 0.0001). All p-values are assessed based on a likelihood ratio test comparing the likelihood of a contagion model to that of a null model with no contagion. On average, mass killings involving firearms occur approximately every two weeks in the US, while school shootings occur on average monthly. We find that state prevalence of firearm ownership is significantly associated with the state incidence of mass killings with firearms, school shootings, and mass shootings.

  16. Development of an immunotherapeutic adenovirus targeting hormone-independent prostate cancer

    Directory of Open Access Journals (Sweden)

    Kim JS

    2013-11-01

    Full Text Available Jae Sik Kim,1 Sang Don Lee,2 Sang Jin Lee,3 Moon Kee Chung21Department of Urology, The Catholic University of Korea Incheon St Mary's Hospital, Incheon, 2Pusan National University Yangsan Hospital and Research Institute for Convergence of Biomedical Science and Technology, Yangsan, 3Genitourinary Cancer Branch, National Cancer Center, Goyang, KoreaBackground: To develop a targeting therapy for hormone-independent prostate cancer, we constructed and characterized conditionally replicating oncolytic adenovirus (Ad equipped with mRFP(monomeric red fluorescence protein/ttk (modified herpes simplex virus thymidine kinase This construct was then further modified to express both mRFP/ttk and a soluble form of cytokine FLT3L (fms-related tyrosine kinase 3 ligand simultaneously.Methods: To construct the recombinant oncolytic adenovirus, E1a and E4 genes, which are necessary for adenovirus replication, were controlled by the prostate-specific enhancer sequence (PSES targeting prostate cancer cells expressing prostate-specific antigen (PSA and prostate-specific membrane antigen (PSMA. Simultaneously, it expressed the mRFP/ttk fusion protein in order to be able to elicit the cytotoxic effect.Results: The Ad5/35PSES.mRFP/ttk chimeric recombinant adenovirus was generated successfully. When replication of Ad5/35PSES.mRFP/ttk was evaluated in prostate cancer cell lines under fluorescence microscopy, red fluorescence intensity increased more in LNCaP cells, suggesting that the mRFP/ttk fusion protein was folded functionally. In addition, the replication assay including wild-type adenovirus as a positive control showed that PSES-positive cells (LNCaP and CWR22rv permitted virus replication but not PSES-negative cells (DU145 and PC3. Next, we evaluated the killing activity of this recombinant adenovirus. The Ad5/35PSES.mRFP/ttk killed LNCaP and CWR22rv more effectively. Unlike PSES-positive cells, DU145 and PC3 were resistant to killing by this recombinant

  17. Evolution equations for Killing fields

    International Nuclear Information System (INIS)

    Coll, B.

    1977-01-01

    The problem of finding necessary and sufficient conditions on the Cauchy data for Einstein equations which insure the existence of Killing fields in a neighborhood of an initial hypersurface has been considered recently by Berezdivin, Coll, and Moncrief. Nevertheless, it can be shown that the evolution equations obtained in all these cases are of nonstrictly hyperbolic type, and, thus, the Cauchy data must belong to a special class of functions. We prove here that, for the vacuum and Einstein--Maxwell space--times and in a coordinate independent way, one can always choose, as evolution equations for the Killing fields, a strictly hyperbolic system: The above theorems can be thus extended to all Cauchy data for which the Einstein evolution problem has been proved to be well set

  18. Dirac operators and Killing spinors with torsion

    International Nuclear Information System (INIS)

    Becker-Bender, Julia

    2012-01-01

    On a Riemannian spin manifold with parallel skew torsion, we use the twistor operator to obtain an eigenvalue estimate for the Dirac operator with torsion. We consider the equality case in dimensions four and six. In odd dimensions we describe Sasaki manifolds on which equality in the estimate is realized by Killing spinors with torsion. In dimension five we characterize all Killing spinors with torsion and obtain certain naturally reductive spaces as exceptional cases.

  19. Potential Therapeutic Roles of Tanshinone IIA in Human Bladder Cancer Cells

    Directory of Open Access Journals (Sweden)

    Sheng-Chun Chiu

    2014-09-01

    Full Text Available Tanshinone IIA (Tan-IIA, one of the major lipophilic components isolated from the root of Salviae Miltiorrhizae, has been found to exhibit anticancer activity in various cancer cells. We have demonstrated that Tan-IIA induces apoptosis in several human cancer cells through caspase- and mitochondria-dependent pathways. Here we explored the anticancer effect of Tan-IIA in human bladder cancer cell lines. Our results showed that Tan-IIA caused bladder cancer cell death in a time- and dose-dependent manner. Tan-IIA induced apoptosis through the mitochondria-dependent pathway in these bladder cancer cells. Tan-IIA also suppressed the migration of bladder cancer cells as revealed by the wound healing and transwell assays. Finally, combination therapy of Tan-IIA with a lower dose of cisplatin successfully killed bladder cancer cells, suggesting that Tan-IIA can serve as a potential anti-cancer agent in bladder cancer.

  20. Anti-proliferative effect of biogenic gold nanoparticles against breast cancer cell lines (MDA-MB-231 & MCF-7)

    International Nuclear Information System (INIS)

    Uma Suganya, K.S.; Govindaraju, K.; Ganesh Kumar, V.; Prabhu, D.; Arulvasu, C.; Stalin Dhas, T.; Karthick, V.; Changmai, Niranjan

    2016-01-01

    Highlights: • Biosynthesis of stable and well dispersed predominantly spherical gold nanoparticles of size around ∼12.5 nm. • Anticancer assessment of gold nanoparticles on MDA-MB-231 and MCF-7 cell lines. • AuNPs were found non toxic to normal HMEC cells. • Flow cytometry results revealed significant arrest in cell proliferation in early G0/G1 to S phase. - Abstract: Breast cancer is a major complication in women and numerous approaches are being developed to overcome this problem. In conventional treatments such as chemotherapy and radiotherapy the post side effects cause an unsuitable effect in treatment of cancer. Hence, it is essential to develop a novel strategy for the treatment of this disease. In the present investigation, a possible route for green synthesis of gold nanoparticles (AuNPs) using leaf extract of Mimosa pudica and its anticancer efficacy in the treatment of breast cancer cell lines is studied. The synthesized nanoparticles were found to be effective in killing cancer cells (MDA-MB-231 & MCF-7) which were studied using various anticancer assays (MTT assay, cell morphology determination, cell cycle analysis, comet assay, Annexin V-FITC/PI staining and DAPI staining). Cell morphological analysis showed the changes occurred in cancer cells during the treatment with AuNPs. Cell cycle analysis revealed apoptosis in G_0/G_1 to S phase. Similarly in Comet assay, there was an increase in tail length in treated cells in comparison with the control. Annexin V-FITC/PI staining assay showed prompt fluorescence in treated cells indicating the translocation of phosphatidylserine from the inner membrane. PI and DAPI staining showed the DNA damage in treated cells.

  1. Anti-proliferative effect of biogenic gold nanoparticles against breast cancer cell lines (MDA-MB-231 & MCF-7)

    Energy Technology Data Exchange (ETDEWEB)

    Uma Suganya, K.S. [Centre for Ocean Research, Sathyabama University, Chennai 600119 (India); Govindaraju, K., E-mail: govindtu@gmail.com [Centre for Ocean Research, Sathyabama University, Chennai 600119 (India); Ganesh Kumar, V. [Centre for Ocean Research, Sathyabama University, Chennai 600119 (India); Prabhu, D.; Arulvasu, C. [Department of Zoology, University of Madras, Guindy campus, Chennai 600 025 (India); Stalin Dhas, T.; Karthick, V.; Changmai, Niranjan [Centre for Ocean Research, Sathyabama University, Chennai 600119 (India)

    2016-05-15

    Highlights: • Biosynthesis of stable and well dispersed predominantly spherical gold nanoparticles of size around ∼12.5 nm. • Anticancer assessment of gold nanoparticles on MDA-MB-231 and MCF-7 cell lines. • AuNPs were found non toxic to normal HMEC cells. • Flow cytometry results revealed significant arrest in cell proliferation in early G0/G1 to S phase. - Abstract: Breast cancer is a major complication in women and numerous approaches are being developed to overcome this problem. In conventional treatments such as chemotherapy and radiotherapy the post side effects cause an unsuitable effect in treatment of cancer. Hence, it is essential to develop a novel strategy for the treatment of this disease. In the present investigation, a possible route for green synthesis of gold nanoparticles (AuNPs) using leaf extract of Mimosa pudica and its anticancer efficacy in the treatment of breast cancer cell lines is studied. The synthesized nanoparticles were found to be effective in killing cancer cells (MDA-MB-231 & MCF-7) which were studied using various anticancer assays (MTT assay, cell morphology determination, cell cycle analysis, comet assay, Annexin V-FITC/PI staining and DAPI staining). Cell morphological analysis showed the changes occurred in cancer cells during the treatment with AuNPs. Cell cycle analysis revealed apoptosis in G{sub 0}/G{sub 1} to S phase. Similarly in Comet assay, there was an increase in tail length in treated cells in comparison with the control. Annexin V-FITC/PI staining assay showed prompt fluorescence in treated cells indicating the translocation of phosphatidylserine from the inner membrane. PI and DAPI staining showed the DNA damage in treated cells.

  2. Targeted killing with drones? Old arguments, new technologies

    Directory of Open Access Journals (Sweden)

    Meisels Tamar

    2018-01-01

    Full Text Available The question of how to contend with terrorism in keeping with our preexisting moral and legal commitments now challenges Europe as well as Israel and the United States: how do we apply Just War Theory and International Law to asymmetrical warfare, specifically to our counter terrorism measures? What can the classic moral argument in Just and Unjust Wars teach us about contemporary targeted killings with drones? I begin with a defense of targeted killing, arguing for the advantages of pin pointed attacks over any alternative measure available for combatting terrorism. Assuming the legitimacy of killing combatants in wartime, I argue, there is nothing wrong, and in fact much that is right, with targeting particular terrorists selected by name, as long as their assassinations can be reasonably expected to reduce terrorist hostilities rather than increase it. Subsequently, I offer some further thoughts and comments on the use of remotely piloted aircrafts to carry out targeted killings, and address the various sources for discomfort with this practice identified by Michael Walzer and others.

  3. Polyanhydride Nanoparticle Delivery Platform Dramatically Enhances Killing of Filarial Worms.

    Directory of Open Access Journals (Sweden)

    Andrea M Binnebose

    Full Text Available Filarial diseases represent a significant social and economic burden to over 120 million people worldwide and are caused by endoparasites that require the presence of symbiotic bacteria of the genus Wolbachia for fertility and viability of the host parasite. Targeting Wolbachia for elimination is a therapeutic approach that shows promise in the treatment of onchocerciasis and lymphatic filariasis. Here we demonstrate the use of a biodegradable polyanhydride nanoparticle-based platform for the co-delivery of the antibiotic doxycycline with the antiparasitic drug, ivermectin, to reduce microfilarial burden and rapidly kill adult worms. When doxycycline and ivermectin were co-delivered within polyanhydride nanoparticles, effective killing of adult female Brugia malayi filarial worms was achieved with approximately 4,000-fold reduction in the amount of drug used. Additionally the time to death of the macrofilaria was also significantly reduced (five-fold when the anti-filarial drug cocktail was delivered within polyanhydride nanoparticles. We hypothesize that the mechanism behind this dramatically enhanced killing of the macrofilaria is the ability of the polyanhydride nanoparticles to behave as a Trojan horse and penetrate the cuticle, bypassing excretory pumps of B. malayi, and effectively deliver drug directly to both the worm and Wolbachia at high enough microenvironmental concentrations to cause death. These provocative findings may have significant consequences for the reduction in the amount of drug and the length of treatment required for filarial infections in terms of patient compliance and reduced cost of treatment.

  4. Enzyme-driven Bacillus spore coat degradation leading to spore killing.

    Science.gov (United States)

    Mundra, Ruchir V; Mehta, Krunal K; Wu, Xia; Paskaleva, Elena E; Kane, Ravi S; Dordick, Jonathan S

    2014-04-01

    The bacillus spore coat confers chemical and biological resistance, thereby protecting the core from harsh environments. The primarily protein-based coat consists of recalcitrant protein crosslinks that endow the coat with such functional protection. Proteases are present in the spore coat, which play a putative role in coat degradation in the environment. However these enzymes are poorly characterized. Nonetheless given the potential for proteases to catalyze coat degradation, we screened 10 commercially available proteases for their ability to degrade the spore coats of B. cereus and B. anthracis. Proteinase K and subtilisin Carlsberg, for B. cereus and B. anthracis spore coats, respectively, led to a morphological change in the otherwise impregnable coat structure, increasing coat permeability towards cortex lytic enzymes such as lysozyme and SleB, thereby initiating germination. Specifically in the presence of lysozyme, proteinase K resulted in 14-fold faster enzyme induced germination and exhibited significantly shorter lag times, than spores without protease pretreatment. Furthermore, the germinated spores were shown to be vulnerable to a lytic enzyme (PlyPH) resulting in effective spore killing. The spore surface in response to proteolytic degradation was probed using scanning electron microscopy (SEM), which provided key insights regarding coat degradation. The extent of coat degradation and spore killing using this enzyme-based pretreatment approach is similar to traditional, yet far harsher, chemical decoating methods that employ detergents and strong denaturants. Thus the enzymatic route reduces the environmental burden of chemically mediated spore killing, and demonstrates that a mild and environmentally benign biocatalytic spore killing is achievable. © 2013 Wiley Periodicals, Inc.

  5. Effects of yoga on cancer-related fatigue and global side-effect burden in older cancer survivors.

    Science.gov (United States)

    Sprod, Lisa K; Fernandez, Isabel D; Janelsins, Michelle C; Peppone, Luke J; Atkins, James N; Giguere, Jeffrey; Block, Robert; Mustian, Karen M

    2015-01-01

    Sixty percent of cancer survivors are 65years of age or older. Cancer and its treatments lead to cancer-related fatigue and many other side effects, in turn, creating substantial global side-effect burden (total burden from all side effects) which, ultimately, compromises functional independence and quality of life. Various modes of exercise, such as yoga, reduce cancer-related fatigue and global side-effect burden in younger cancer survivors, but no studies have specifically examined the effects of yoga on older cancer survivors. The purpose of this study was to assess the effects of a 4-week yoga intervention (Yoga for Cancer Survivors: YOCAS©®) on overall cancer-related fatigue, and due to its multidimensional nature, the subdomains of cancer-related fatigue (general, physical, emotional, and mental) and global side-effect burden in older cancer survivors. We conducted a secondary analysis on data from a multicenter phase III randomized controlled clinical trial with 2 arms (standard care and standard care plus a 4-week YOCAS©® intervention). The sample for this secondary analysis was 97 older cancer survivors (≥60years of age), between 2months and 2years post-treatment, who participated in the original trial. Participants in the YOCAS©® intervention arm reported significantly lower cancer-related fatigue, physical fatigue, mental fatigue, and global side-effect burden than participants in the standard care arm following the 4-week intervention period (peffective standardized yoga intervention for reducing cancer-related fatigue, physical fatigue, mental fatigue, and global side-effect burden among older cancer survivors. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. 9 CFR 113.214 - Parvovirus Vaccine, Killed Virus (Canine).

    Science.gov (United States)

    2010-01-01

    ... REQUIREMENTS Killed Virus Vaccines § 113.214 Parvovirus Vaccine, Killed Virus (Canine). Parvovirus Vaccine... antibody against canine parvovirus to determine susceptibility. A constant virus-varying serum... vaccinates and the controls shall be challenged with virulent canine parvovirus furnished or approved by...

  7. Effects of Lactobacillus strains on cancer cell proliferation and oxidative stress in vitro.

    Science.gov (United States)

    Choi, S S; Kim, Y; Han, K S; You, S; Oh, S; Kim, S H

    2006-05-01

    The objective of this study was to assess in vitro, whether heat-killed (HK) lactic acid bacteria cells and fractionations of HK cells could suppress the viability of human cancer cells and inhibit the cytotoxicity associated with oxidative stress. Among the strains, the HK cells of Lactobacillus acidophilus 606 and Lactobacillus casei ATCC 393 exhibited the most profound inhibitory activity in all of the tested cell lines. HK cells of L. acidophilus 606 were determined to be less toxic to healthy human embryo fibroblasts (hEF cells) than were HK cells of L. casei ATCC 393. The soluble polysaccharides from L. acidophilus 606 evidenced the most effective anticancer activity, but inhibited hEF cell growth by only 20%. The soluble polysaccharides from L. acidophilus 606 were partly observed to induce apoptosis in the HT-29 cells by DNA fragmentation and propidium iodine staining. Both the HK cells of L. acidophilus 606 and the soluble polysaccharide components of this strain also exhibited potent antioxidative activity. Our findings suggest that the soluble polysaccharide fraction from L. acidophilus 606 may constitute a novel anticancer agent, which manifests a high degree of selectivity for human cancer cells and antioxidative agent in the food industry. These soluble polysaccharide components from Lactobacillus may be applied to various foods, and used as adjuncts for cancer therapy and prevention.

  8. Effect of hGC-MSCs from human gastric cancer tissue on cell proliferation, invasion and epithelial-mesenchymal transition in tumor tissue of gastric cancer tumor-bearing mice.

    Science.gov (United States)

    Song, Lin; Zhou, Xin; Jia, Hong-Jun; Du, Mei; Zhang, Jin-Ling; Li, Liang

    2016-08-01

    To study the effect of hGC-MSCs from human gastric cancer tissue on cell proliferation, invasion and epithelial-mesenchymal transition in tumor tissue of gastric cancer tumor-bearing mice. BABL/c nude mice were selected as experimental animals and gastric cancer tumor-bearing mice model were established by subcutaneous injection of gastric cancer cells, randomly divided into different intervention groups. hGC-MSCs group were given different amounts of gastric cancer cells for subcutaneous injection, PBS group was given equal volume of PBS for subcutaneous injection. Then tumor tissue volume were determined, tumor-bearing mice were killed and tumor tissues were collected, mRNA expression of proliferation, invasion, EMT-related molecules were determined. 4, 8, 12, 16, 20 d after intervention, tumor tissue volume of hGC-MSCs group were significantly higher than those of PBS group and the more the number of hGC-MSCs, the higher the tumor tissue volume; mRNA contents of Ki-67, PCNA, Bcl-2, MMP-2, MMP-7, MMP-9, MMP-14, N-cadherin, vimentin, Snail and Twist in tumor tissue of hGC-MSCs group were higher than those of PBS group, and mRNA contents of Bax, TIMP1, TIMP2 and E-cadherin were lower than those of PBS group. hGC-MSCs from human gastric cancer tissue can promote the tumor growth in gastric cancer tumor-bearing mice, and the molecular mechanism includes promoting cell proliferation, invasion and epithelial-mesenchymal transition. Copyright © 2016 Hainan Medical College. Production and hosting by Elsevier B.V. All rights reserved.

  9. Control of Influenza and Poliomyelitis with Killed Virus Vaccines

    Science.gov (United States)

    Salk, Jonas; Salk, Darrell

    1977-01-01

    Discusses control of poliomyelitis and influenza by live and killed virus vaccines. Considered are the etiological agents, pathogenic mechanisms and epidemiology of each disease. Reviews recent scientific studies of the diseases. Recommends use of killed virus vaccines in controlling both diseases. (CS)

  10. 9 CFR 113.210 - Feline Calicivirus Vaccine, Killed Virus.

    Science.gov (United States)

    2010-01-01

    ... Virus. 113.210 Section 113.210 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.210 Feline Calicivirus Vaccine, Killed Virus. Feline Calicivirus...

  11. 9 CFR 113.211 - Feline Rhinotracheitis Vaccine, Killed Virus.

    Science.gov (United States)

    2010-01-01

    ... Virus. 113.211 Section 113.211 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.211 Feline Rhinotracheitis Vaccine, Killed Virus. Feline...

  12. 9 CFR 113.216 - Bovine Rhinotracheitis Vaccine, Killed Virus.

    Science.gov (United States)

    2010-01-01

    ... Virus. 113.216 Section 113.216 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.216 Bovine Rhinotracheitis Vaccine, Killed Virus. Infectious Bovine...

  13. 9 CFR 113.203 - Feline Panleukopenia Vaccine, Killed Virus.

    Science.gov (United States)

    2010-01-01

    ... Virus. 113.203 Section 113.203 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.203 Feline Panleukopenia Vaccine, Killed Virus. Feline Panleukopenia...

  14. Vertebrate road kill survey on a highway in southern Brazil

    Directory of Open Access Journals (Sweden)

    Luiz Liberato Costa Corrêa

    2017-06-01

    Full Text Available Highways are a major factor acting in the decline of several wildlife populations. Impact occurs due to the continuous flow of motor vehicles over tracks and collision with animals using the same area. This study aimed to list road killed wild vertebrates found in highways in the Pampa Biome, state of Rio Grande do Sul, over an entire year. The taxa found (amphibians, reptiles, birds and mammals were identified to species level and their frequency of occurrence was seasonally registered. Along 2,160 km, we found 318 road killed individuals, totaling 65 species. This number represents an average of 0.147 road killed specimens by kilometer (that is, 1 individual each 7 km. Of these, seven species are under threat of extinction in the state of Rio Grande do Sul. We also found a seasonal pattern among road kills, in which the highest number of road killed animals was registered in the summer and spring months. These results contribute to increase knowledge about which species are most impacted by road kill on highways of the Pampa Biome. Such data can be used as an indicator for the implementation of measures by competent bodies to mitigate impacts of highways in the state of Rio Grande do Sul.

  15. In vitro cytotoxicity of galvanically coupled magnesium-titanium particles on human osteosarcoma SAOS2 cells: A potential cancer therapy.

    Science.gov (United States)

    Kim, Jua; Gilbert, Jeremy L

    2018-04-10

    Osteosarcoma is a malignant bone cancer that occurs mostly in children and young adults. This study investigated the cytotoxicity of Mg and Mg-Ti microparticles to human osteosarcoma cells. Osteosarcoma cells were killed in a dosage-dependent manner when cells, with a cell seeding density of 30,000 cells/cm 2 , were cultured with 0 to 2500 µg/mL of Mg or Mg-Ti in cell culture media for 24-72 h. Mg-Ti killed cells more effectively, where 1250 µg/mL of Mg-Ti killed cells completely by 24 h, while 2500 µg/mL of Mg killed nearly all cells, but not all. Killing due to particle corrosion occurred mostly during the first 24 h, and so the percent cell viability between 24 and 72 h showed not much variability. However, the measurement of live and dead cell numbers, over the timeframe of 24-72 h, showed more insight, such as cell recovery. If particle concentrations were low, the number of live cells increased after 24 h, indicating cell proliferation. If particle concentrations were high, the number of live cells either remained steady or decreased, indicating cell quiescence or continued killing, respectively. Increase in the number of dead cells also indicated killing, while plateau meant discontinued killing. In addition, repeated killing of recovered cells exhibited the same dose-dependent killing profile as the initial experiment, implying little development of cell resistance to treatment. These results, together, show that osteosarcoma cells are susceptible to killing by way of exposure to corroding particles, showing highly effective killing using the galvanic couple of Mg-Ti. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2018. © 2018 Wiley Periodicals, Inc.

  16. Understanding the role of type 1 interferon in resistance to cancer ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Chemotherapy is the main form of treatment for cancer, but it cannot cure most types of cancer. Another form of treatment is immunotherapy, which aims to stimulate cells of the body's immune system (T cells) to kill cancer cells. Unfortunately, cancers may become resistant to T cells in the same way they learned to resist ...

  17. Derivation of a triple mosaic adenovirus for cancer gene therapy.

    Directory of Open Access Journals (Sweden)

    Yizhe Tang

    2009-12-01

    Full Text Available A safe and efficacious cancer medicine is necessary due to the increasing population of cancer patients whose particular diseases cannot be cured by the currently available treatment. Adenoviral (Ad vectors represent a promising therapeutic medicine for human cancer therapy. However, several improvements are needed in order for Ad vectors to be effective cancer therapeutics, which include, but are not limited to, improvement of cellular uptake, enhanced cancer cell killing activity, and the capability of vector visualization and tracking once injected into the patients. To this end, we attempted to develop an Ad as a multifunctional platform incorporating targeting, imaging, and therapeutic motifs. In this study, we explored the utility of this proposed platform by generating an Ad vector containing the poly-lysine (pK, the herpes simplex virus type 1 (HSV-1 thymidine kinase (TK, and the monomeric red fluorescent protein (mRFP1 as targeting, tumor cell killing, and imaging motifs, respectively. Our study herein demonstrates the generation of the triple mosaic Ad vector with pK, HSV-1 TK, and mRFP1 at the carboxyl termini of Ad minor capsid protein IX (pIX. In addition, the functionalities of pK, HSV-1 TK, and mRFP1 proteins on the Ad vector were retained as confirmed by corresponding functional assays, indicating the potential multifunctional application of this new Ad vector for cancer gene therapy. The validation of the triple mosaic Ad vectors also argues for the ability of pIX modification as a base for the development of multifunctional Ad vectors.

  18. Targeted Killings in Bangladesh: Diversity at Stake

    OpenAIRE

    Syed, Jawad

    2016-01-01

    Since 2013, Bangladesh has repeatedly been in headline news across the world due to systematic and incessant targeted killings. In the mainstream media, both in South Asia and the West, the focus has been generally on high profile murders of secular and progressive bloggers. This includes the recent worldwide broad coverage on the tragic murder of Xulhaz Mannan, editor of Bangladesh's first LGBT rights magazine. However, not many know that these killings are only one part of the story. Secula...

  19. Contagion in Mass Killings and School Shootings

    OpenAIRE

    Towers, Sherry; Gomez-Lievano, Andres; Khan, Maryam; Mubayi, Anuj; Castillo-Chavez, Carlos

    2015-01-01

    Background Several past studies have found that media reports of suicides and homicides appear to subsequently increase the incidence of similar events in the community, apparently due to the coverage planting the seeds of ideation in at-risk individuals to commit similar acts. Methods Here we explore whether or not contagion is evident in more high-profile incidents, such as school shootings and mass killings (incidents with four or more people killed). We fit a contagion model to recent dat...

  20. Heterosigma bloom and associated fish kill

    Science.gov (United States)

    Hershberger, P.K.; Rensel, J.E.; Postel, J.R.; Taub, F.B.

    1997-01-01

    A bloom of the harmful marine phytoplankton, Heterosigma carterae occurred in upper Case Inlet, south Puget Sound, Washington in late September, 1994, correlating with the presence of at least 35 dead salmon. This marks the first time that this alga has been closely correlated with a wild fish kill; in the past it was thought to be associated with kills of penned fish at fish farms only. We were informed of the presence of a possible harmful algal bloom and dead salinois Ilear the town of Allyn on 27 September and a team was formed to investigate. We arrived at the Allyn waterfront at 17:30 hours the same day. Prior to our arrival, state agency personnel walked approximatcly two miles of shoreline from the powerlines north of the dock, to the mouth of Sherwood Creek and conducted the only official count of dead fish present along the shore consisting of 12 coho salmon (Oncorhynchus kisutch), 11 chum salmon (Oncorhynchus keta), 12 chinook salmon (Oncorhynchus tschawytscha), one flat fish, and one sculpin on the morning of 9/27. Since previous harmful blooms of Heterosigma have resultedin the majority of net penreared salmon sinking to the bottom of pens, and only approximately two miles of shoreline were sampled, it is suspected that many more exposed fish may have succumbed than were counted. Witnesses who explored the east side of the bay reported seeing many dead salmon there as well, but no counts were made. State agency personnel who observed the fish kill reported seeing “dying fish coming to the beach, gulping at the surface, trying to get out of the water” Scavengers were seen consuming the salmon carcasses; these included two harbor seals, a house cat, and Hymenopteran insects. None suffered any noticeable acute ill effects. Although precise cause of death has not been ascertained, visual inspection of the reproductive organs from a deceased male chum salmon found on the shore at Allyn confirmed that the fish was not yet reproductively mature and

  1. 9 CFR 113.205 - Newcastle Disease Vaccine, Killed Virus.

    Science.gov (United States)

    2010-01-01

    ... Virus. 113.205 Section 113.205 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.205 Newcastle Disease Vaccine, Killed Virus. Newcastle Disease Vaccine...

  2. Are lead-free hunting rifle bullets as effective at killing wildlife as conventional lead bullets? A comparison based on wound size and morphology

    Energy Technology Data Exchange (ETDEWEB)

    Trinogga, Anna, E-mail: anna_trinogga@gmx.de; Fritsch, Guido; Hofer, Heribert; Krone, Oliver

    2013-01-15

    Fragmentation of the lead core of conventional wildlife hunting rifle bullets causes contamination of the target with lead. The community of scavenger species which feed on carcasses or viscera discarded by hunters are regularly exposed to these lead fragments and may die by acute or chronic lead intoxication, as demonstrated for numerous species such as white-tailed eagles (Haliaeetus albicilla) where it is among the most important sources of mortality. Not only does hunting with conventional ammunition deposit lead in considerable quantities in the environment, it also significantly delays or threatens the recovery of endangered raptor populations. Although lead-free bullets might be considered a suitable alternative that addresses the source of these problems, serious reservations have been expressed as to their ability to quickly and effectively kill a hunted animal. To assess the suitability of lead-free projectiles for hunting practice, the wounding potential of conventional bullets was compared with lead-free bullets under real life hunting conditions. Wound dimensions were regarded as good markers of the projectiles' killing potential. Wound channels in 34 killed wild ungulates were evaluated using computed tomography and post-mortem macroscopical examination. Wound diameters caused by conventional bullets did not differ significantly to those created by lead-free bullets. Similarly, the size of the maximum cross-sectional area of the wound was similar for both bullet types. Injury patterns suggested that all animals died by exsanguination. This study demonstrates that lead-free bullets are equal to conventional hunting bullets in terms of killing effectiveness and thus equally meet the welfare requirements of killing wildlife as painlessly as possible. The widespread introduction and use of lead-free bullets should be encouraged as it prevents environmental contamination with a seriously toxic pollutant and contributes to the conservation of a wide

  3. Are lead-free hunting rifle bullets as effective at killing wildlife as conventional lead bullets? A comparison based on wound size and morphology

    International Nuclear Information System (INIS)

    Trinogga, Anna; Fritsch, Guido; Hofer, Heribert; Krone, Oliver

    2013-01-01

    Fragmentation of the lead core of conventional wildlife hunting rifle bullets causes contamination of the target with lead. The community of scavenger species which feed on carcasses or viscera discarded by hunters are regularly exposed to these lead fragments and may die by acute or chronic lead intoxication, as demonstrated for numerous species such as white-tailed eagles (Haliaeetus albicilla) where it is among the most important sources of mortality. Not only does hunting with conventional ammunition deposit lead in considerable quantities in the environment, it also significantly delays or threatens the recovery of endangered raptor populations. Although lead-free bullets might be considered a suitable alternative that addresses the source of these problems, serious reservations have been expressed as to their ability to quickly and effectively kill a hunted animal. To assess the suitability of lead-free projectiles for hunting practice, the wounding potential of conventional bullets was compared with lead-free bullets under real life hunting conditions. Wound dimensions were regarded as good markers of the projectiles' killing potential. Wound channels in 34 killed wild ungulates were evaluated using computed tomography and post-mortem macroscopical examination. Wound diameters caused by conventional bullets did not differ significantly to those created by lead-free bullets. Similarly, the size of the maximum cross-sectional area of the wound was similar for both bullet types. Injury patterns suggested that all animals died by exsanguination. This study demonstrates that lead-free bullets are equal to conventional hunting bullets in terms of killing effectiveness and thus equally meet the welfare requirements of killing wildlife as painlessly as possible. The widespread introduction and use of lead-free bullets should be encouraged as it prevents environmental contamination with a seriously toxic pollutant and contributes to the conservation of a wide variety

  4. Charge properties and bacterial contact-killing of hyperbranched polyurea-polyethyleneimine coatings with various degrees of alkylation

    Science.gov (United States)

    Roest, Steven; van der Mei, Henny C.; Loontjens, Ton J. A.; Busscher, Henk J.

    2015-11-01

    Coatings of immobilized-quaternary-ammonium-ions (QUAT) uniquely kill adhering bacteria upon contact. QUAT-coatings require a minimal cationic-charge surface density for effective contact-killing of adhering bacteria of around 1014 cm-2. Quaternization of nitrogen is generally achieved through alkylation. Here, we investigate the contribution of additional alkylation with methyl-iodide to the cationic-charge density of hexyl-bromide alkylated, hyperbranched polyurea-polyethyleneimine coatings measuring charge density with fluorescein staining. X-ray-photoelectron-spectroscopy was used to determine the at.% alkylated-nitrogen. Also streaming potentials, water contact-angles and bacterial contact-killing were measured. Cationic-charge density increased with methyl-iodide alkylation times up to 18 h, accompanied by an increase in the at.% alkylated-nitrogen. Zeta-potentials became more negative upon alkylation as a result of shielding of cationiccharges by hydrophobic alkyl-chains. Contact-killing of Gram-positive Staphylococci only occurred when the cationic-charge density exceeded 1016 cm-2 and was carried by alkylated-nitrogen (electron-binding energy 401.3 eV). Gram-negative Escherichia coli was not killed upon contact with the coatings. There with this study reveals that cationic-charge density is neither appropriate nor sufficient to determine the ability of QUAT-coatings to kill adhering bacteria. Alternatively, the at.% of alkylated-nitrogen at 401.3 eV is proposed, as it reflects both cationic-charge and its carrier. The at.% N401.3 eV should be above 0.45 at.% for Gram-positive bacterial contact-killing.

  5. Heat-killed Lactobacillus spp. cells enhance survivals of Caenorhabditis elegans against Salmonella and Yersinia infections.

    Science.gov (United States)

    Lee, J; Choe, J; Kim, J; Oh, S; Park, S; Kim, S; Kim, Y

    2015-12-01

    This study examined the effect of feeding heat-killed Lactobacillus cells on the survival of Caenorhabditis elegans nematodes after Salmonella Typhimurium and Yersinia enterocolitica infection. The feeding of heat-killed Lactobacillus plantarum 133 (LP133) and Lactobacillus fermentum 21 (LP21) cells to nematodes was shown to significantly increase the survival rate as well as stimulate the expression of pmk-1 gene that key factor for C. elegans immunity upon infection compared with control nematodes that were only fed Escherichia coli OP50 (OP50) cells. These results suggest that heat-killed LP133 and LF21 cells exert preventive or protective effects against the Gram-negative bacteria Salm. Typhimurium and Y. enterocolitica. To better understand the mechanisms underlying the LF21-mediated and LP133-mediated protection against bacterial infection in nematodes, transcriptional profiling was performed for each experimental group. These experiments showed that genes related to energy generation and ageing, regulators of insulin/IGF-1-like signalling, DAF genes, oxidation and reduction processes, the defence response and/or the innate immune response, and neurological processes were upregulated in nematodes that had been fed heat-killed Lactobacillus cells compared with nematodes that had been fed E. coli cells. In this study, the feeding of heat-killed Lactobacillus bacteria to Caenorhabditis elegans nematodes was shown to decrease infection by Gram-negative bacteria and increase the host lifespan. C. elegans has a small, well-organized genome and is an excellent in vivo model organism; thus, these results will potentially shed light on important Lactobacillus-host interactions. © 2015 The Society for Applied Microbiology.

  6. "Drone Killings in Principle and in Practice"

    DEFF Research Database (Denmark)

    Dige, Morten

    2017-01-01

    to argue that what we see in the real world cases of drone killings is not merely an accidental or contingent use of drone technology. The real life use reflects to a large extent features that are inherent of the dominant drone systems that has been developed to date. What is being imagined "in principle......" is thus to a large extent drone killings in dreamland. I use an historic example as a point of reference and departure: the debate over the lawfulness of nuclear weapons....

  7. Cold atmospheric plasma treatment inhibits growth in colorectal cancer cells.

    Science.gov (United States)

    Schneider, Christin; Arndt, Stephanie; Zimmermann, Julia L; Li, Yangfang; Karrer, Sigrid; Bosserhoff, Anja-Katrin

    2018-06-01

    Plasma oncology is a relatively new field of research. Recent developments have indicated that cold atmospheric plasma (CAP) technology is an interesting new therapeutic approach to cancer treatment. In this study, p53 wildtype (LoVo) and human p53 mutated (HT29 and SW480) colorectal cancer cells were treated with the miniFlatPlaSter - a device particularly developed for the treatment of tumor cells - that uses the Surface Micro Discharge (SMD) technology for plasma production in air. The present study analyzed the effects of plasma on colorectal cancer cells in vitro and on normal colon tissue ex vivo. Plasma treatment had strong effects on colon cancer cells, such as inhibition of cell proliferation, induction of cell death, and modulation of p21 expression. In contrast, CAP treatment of murine colon tissue ex vivo for up to 2 min did not show any toxic effect on normal colon cells compared to H2O2 positive control. In summary, these results suggest that the miniFlatPlaSter plasma device is able to kill colorectal cancer cells independent of their p53 mutation status. Thus, this device presents a promising new approach in colon cancer therapy.

  8. Opposing effects of low versus high concentrations of water soluble vitamins/dietary ingredients Vitamin C and niacin on colon cancer stem cells (CSCs).

    Science.gov (United States)

    Sen, Utsav; Shenoy P, Sudheer; Bose, Bipasha

    2017-10-01

    Colorectal cancer is one of the global causes of cancer deaths. Cancer stem cells (CSCs) inside the tumour niche responsible for metastasis and relapses, and hence need to be targeted for cancer therapeutics. Although dietary fibre and lifestyle changes have been recommended as measures for colorectal cancer prevention, no such recommendations are available for using water soluble vitamins as prophylaxis measure for colorectal cancers. High dose of Vitamin C has been proven to selectively kill colon cancer cells having BRAF and KRAS mutations by inducing oxidative stress. In this study, we show for the first time the opposing effects of the low and high dose of Vitamin C and vitamin B3 on colon CSCs isolated from HT-29 and HCT-15 colorectal carcinoma cell lines. At small doses, both of these vitamins exerted a cell proliferative effect only on CSCs, while there was no change in the proliferation status of non-stem cancer cells and wild-type (WT) populations. On the other hand, the death effects induced by high doses of Vitamin C and B3 were of the order of 50-60% and ∼30% on CSCs from HT-29 and HCT15, respectively. Interestingly, the control fibroblast cell line (NIH3T3) was highly refractory all the tested concentrations of Vitamin C and B3, except for the highest dose - 10,000 μg of Vitamin C that induced only 15% of cell death. Hence, these results indicate the future scope of use of therapeutic doses of Vitamin C and B3 especially in patients with advanced colorectal cancer. © 2017 International Federation for Cell Biology.

  9. Comparison of two mathematical models for describing heat-induced cell killing

    International Nuclear Information System (INIS)

    Roti Roti, J.L.; Henle, K.J.

    1980-01-01

    A computer-based minimization algorithm is utilized to obtain the optimum fits of two models to hyperthermic cell killing data. The models chosen are the multitarget, single-hit equation, which is in general use, and the linear-quadratic equation, which has been applied to cell killing by ionizing irradiation but not to heat-induced cell killing. The linear-quadratic equation fits hyperthermic cell killing data as well as the multitarget, single-hit equation. Both parameters of the linear-quadratic equation obey the Arrhenius law, whereas only one of the two parameters of the multitarget, single-hit equation obeys the Arrhenius law. Thus the linear-quadratic function can completely define cell killing as a function of both time and temperature. In addition, the linear-quadratic model will provide a simplified approach to the study of the synergism between heat and X irradiation

  10. Wind power and bird kills

    International Nuclear Information System (INIS)

    Raynolds, M.

    1998-01-01

    The accidental killing of birds by wind generators, and design improvements in the towers that support the turbines that might cut down on the bird killings were discussed. The first problem for the industry began in the late 1980s when the California Energy Commission reported as many as 160 birds (the majority being raptors, including the protected golden eagle) killed in one year in the vicinity of wind power plants. The key factor identified was the design of the towers as birds of prey are attracted to lattice towers as a place to hunt from. Tubular towers do not provide a place for the birds to perch, therefore they reduce the potential for bird strikes. Bird strikes also have been reported in Spain and the siting of the towers have been considered as the principal cause of the bird strikes. In view of these incidents, the wind power industry is developing standards for studying the potential of bird strikes and is continuing to study bird behaviour leading to collisions, the impact of topography, cumulative impacts and new techniques to reduce bird strikes. Despite the reported incidents, the risk of bird strikes by wind turbines, compared to other threats to birds such as pollution, oil spills, and other threats from fossil and nuclear fuels, is considered to be negligible. With continuing efforts to minimize incidents by proper design and siting, wind power can continue to grow as an environmentally sound and efficient source of energy

  11. Wind power and bird kills

    Energy Technology Data Exchange (ETDEWEB)

    Raynolds, M.

    1998-12-01

    The accidental killing of birds by wind generators, and design improvements in the towers that support the turbines that might cut down on the bird killings were discussed. The first problem for the industry began in the late 1980s when the California Energy Commission reported as many as 160 birds (the majority being raptors, including the protected golden eagle) killed in one year in the vicinity of wind power plants. The key factor identified was the design of the towers as birds of prey are attracted to lattice towers as a place to hunt from. Tubular towers do not provide a place for the birds to perch, therefore they reduce the potential for bird strikes. Bird strikes also have been reported in Spain and the siting of the towers have been considered as the principal cause of the bird strikes. In view of these incidents, the wind power industry is developing standards for studying the potential of bird strikes and is continuing to study bird behaviour leading to collisions, the impact of topography, cumulative impacts and new techniques to reduce bird strikes. Despite the reported incidents, the risk of bird strikes by wind turbines, compared to other threats to birds such as pollution, oil spills, and other threats from fossil and nuclear fuels, is considered to be negligible. With continuing efforts to minimize incidents by proper design and siting, wind power can continue to grow as an environmentally sound and efficient source of energy.

  12. Tumor cell killing effect of boronated dipeptide. Boromethylglycylphenylalanine on boron neutron capture therapy for malignant brain tumors

    International Nuclear Information System (INIS)

    Takagaki, Masao; Ono, Koji; Masunaga, Shinichiro; Kinashi, Yuko; Kobayashi, Toru; Oda, Yoshifumi; Kikuchi, Haruhiko; Spielvogel, B.F.

    1994-01-01

    The killing effect of Boron Neutron Capture Therapy; BNCT, is dependant on the boron concentration ratio of tumor to normal brain (T/N ratio), and also that of tumor to blood (T/B ratio). The clinical boron carrier of boro-captate (BSH) showed the large T/N ratio of ca. 8, however the T/B ratio was around 1, which indicated nonselective accumulation into tumor. Indeed high boron concentration of blood restrict the neutron irradiation dose in order to circumvent the normal endothelial damage, especially in the case of deeply seated tumor. Phenylalanine analogue of para borono-phenylalanine (BPA) is an effective boron carrier on BNCT for malignant melanoma. For the BNCT on brain tumors, however, BPA concentration in normal brain was reported to be intolerably high. In order to improve the T/N ratio of BPA in brain, therefore, a dipeptide of boromethylglycylphenylalanine (BMGP) was synthesized deriving from trimethylglycine conjugated with BPA. It is expected to be selectively accumulated into tumor with little uptake into normal brain. Because a dipeptide might not pass through the normal blood brain barrier (BBB). Its killing effect on cultured glioma cell, T98G, and its distribution in rat brain bearing 9L glioma have been investigated in this paper. The BNCT effect of BMGP on cultured cells was nearly triple in comparison with DL-BPA. The neutron dose yielding 1% survival ratio were 7x10 12 nvt for BMGP and 2x10 13 nvt for BPA respectively on BNCT after boron loading for 16 hrs in the same B-10 concentration of 20ppm. Quantitative study of boron concentration via the α-auto radiography and the prompt gamma ray assay on 9L brain tumor rats revealed that T/N ratio and T/B ratio are 12.0 and 3.0 respectively. Those values are excellent for BNCT use. (author)

  13. Increased Staphylococcus-killing activity of an antimicrobial peptide, lactoferricin B, with minocycline and monoacylglycerol.

    Science.gov (United States)

    Wakabayashi, Hiroyuki; Teraguchi, Susumu; Tamura, Yoshitaka

    2002-10-01

    This study aimed to find antibiotics or other compounds that could increase the antimicrobial activity of an antimicrobial peptide, lactoferricin B (LFcin B), against Staphylococcus aureus, including antibiotic-resistant strains. Among conventional antibiotics, minocycline increased the bactericidal activity of LFcin B against S. aureus, but methicillin, ceftizoxime, and sulfamethoxazole-trimethoprim did not have such an effect. The combination of minocycline and LFcin B had synergistic effects against three antibiotic-resistant strains of S. aureus, according to result of checkerboard analysis. Screening of 33 compounds, including acids and salts, alcohols, amino acids, proteins and peptides, sugar, and lipids, showed that medium-chain monoacylglycerols increased the bactericidal activity of LFcin B against three S. aureus strains. The short-term killing test in water and the killing curve test in growing cultures showed that a combination of LFcin B and monolaurin (a monoacylglycerol with a 12-carbon acyl chain) killed S. aureus more rapidly than either agent alone. These findings may be helpful in the application of antimicrobial peptides in medical or other situations.

  14. γ-rays kill grasshopper primary spermatocytes in groups

    International Nuclear Information System (INIS)

    Al-Taweel, A.A.; Shawkit, M.A.; Fox, D.P.

    1985-01-01

    Primary spermatocyte killing by γ-rays was studied in the grasshopper Heteracris littoralis in which spermatogenic development occurs in cysts containing a maximum of 64 cells during the first meiotic division. Cell killing at this stage is not random and mainly involves the death of whole cysts. The dose-response curve for cell killing has complex kinetics with at least two components but lacks any shoulder at low doses, thus indicating no repair of the lethal damage. Cell loss is apparent from surviving cysts as early as 45 min post irradiation but loss of > 24 cells is incompatible with cyst survival. Loss of fewer than 24 cells also is not random since certain values for cell loss are frequently observed while other, interspersed values are not seen at all. (Auth.)

  15. Evodiamine selectively targets cancer stem-like cells through the p53-p21-Rb pathway

    International Nuclear Information System (INIS)

    Han, Seula; Woo, Jong Kyu; Jung, Yuchae; Jeong, Dawoon; Kang, Minsook; Yoo, Young-Ji; Lee, Hani; Oh, Seung Hyun; Ryu, Jae-Ha; Kim, Woo-Young

    2016-01-01

    In spite of the recent improvements, the resistance to chemotherapy/radiotherapy followed by relapse is the main hurdle for the successful treatment of breast cancer, a leading cause of death in women. A small population of breast cancer cells that have stem-like characteristics (cancer stem-like cells; CSLC) may contribute to this resistance and relapse. Here, we report on a component of a traditional Chinese medicine, evodiamine, which selectively targets CSLC of breast cancer cell lines MCF7 and MDAMB 231 at a concentration that does show a little or no cytotoxic effect on bulk cancer cells. While evodiamine caused the accumulation of bulk cancer cells at the G2/M phase, it did not hold CSLC in a specific cell cycle phase but instead, selectively killed CSLC. This was not due to the culture of CSLC in suspension or without FBS. A proteomic analysis and western blotting revealed that evodiamine changed the expression of cell cycle regulating molecules more efficiently in CSLC cells than in bulk cancer cells. Surprisingly, evodiamine selectively activated p53 and p21 and decreased inactive Rb, the master molecules in G1/S checkpoint. These data collectively suggest a novel mechanism involving CSLC-specific targeting by evodiamine and its possible use to the therapy of breast cancer. - Highlights: • Evodiamine selectively kills breast cancer stem like cells at G1 phase. • Evodiamine utilizes different mechanism of cell cycle modulation in CSLC and in bulk cancer cells. • Evodiamine activate the p53, p21 and Rb pathway.

  16. Evodiamine selectively targets cancer stem-like cells through the p53-p21-Rb pathway

    Energy Technology Data Exchange (ETDEWEB)

    Han, Seula [The Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women' s University, Seoul (Korea, Republic of); Woo, Jong Kyu [College of Pharmacy, Gachon University, Incheon (Korea, Republic of); Jung, Yuchae; Jeong, Dawoon; Kang, Minsook; Yoo, Young-Ji; Lee, Hani [The Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women' s University, Seoul (Korea, Republic of); Oh, Seung Hyun [College of Pharmacy, Gachon University, Incheon (Korea, Republic of); Ryu, Jae-Ha [The Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women' s University, Seoul (Korea, Republic of); Kim, Woo-Young, E-mail: wykim@sookmyung.ac.kr [The Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women' s University, Seoul (Korea, Republic of)

    2016-01-22

    In spite of the recent improvements, the resistance to chemotherapy/radiotherapy followed by relapse is the main hurdle for the successful treatment of breast cancer, a leading cause of death in women. A small population of breast cancer cells that have stem-like characteristics (cancer stem-like cells; CSLC) may contribute to this resistance and relapse. Here, we report on a component of a traditional Chinese medicine, evodiamine, which selectively targets CSLC of breast cancer cell lines MCF7 and MDAMB 231 at a concentration that does show a little or no cytotoxic effect on bulk cancer cells. While evodiamine caused the accumulation of bulk cancer cells at the G2/M phase, it did not hold CSLC in a specific cell cycle phase but instead, selectively killed CSLC. This was not due to the culture of CSLC in suspension or without FBS. A proteomic analysis and western blotting revealed that evodiamine changed the expression of cell cycle regulating molecules more efficiently in CSLC cells than in bulk cancer cells. Surprisingly, evodiamine selectively activated p53 and p21 and decreased inactive Rb, the master molecules in G1/S checkpoint. These data collectively suggest a novel mechanism involving CSLC-specific targeting by evodiamine and its possible use to the therapy of breast cancer. - Highlights: • Evodiamine selectively kills breast cancer stem like cells at G1 phase. • Evodiamine utilizes different mechanism of cell cycle modulation in CSLC and in bulk cancer cells. • Evodiamine activate the p53, p21 and Rb pathway.

  17. Killing Horizons as Equipotential Hypersurfaces

    OpenAIRE

    Smolić, Ivica

    2012-01-01

    In this note we present a new proof that Killing horizons are equipotential hypersurfaces for the electric and the magnetic scalar potential, that makes no use of gravitational field equations or the assumption about the existence of bifurcation surface.

  18. Opinions of university students on honour killings: Perspective from Islamabad and Rawalpindi.

    Science.gov (United States)

    Shaikh, Masood Ali; Kamal, Anila; Naqvi, Irum

    2015-04-01

    Honour killing incidents have been reported from every province of Pakistan. In 2014 a pregnant woman was killed in front of Lahore High Court, by her family members, in the name of honour. This study was conducted to determine the perspective of university students on honour killing with specific reference to one such killing incident in Lahore. Cumulatively, 989 students participated in the survey. Compared with female students, male students were less likely to agree and were more unequivocal that a woman has a right to marry any man she wants despite her family's disapproval, in a statistically significant manner. Similarly, male students were statistically significantly more likely to report that killing in the name of honour is always justified and were less equivocal about it compared to female students. Nonetheless, cumulatively 824 (83.3%) students believed that killing in the name of honour is not always justified.

  19. Cu-Au alloy nanostructures coated with aptamers: a simple, stable and highly effective platform for in vivo cancer theranostics

    Science.gov (United States)

    Ye, Xiaosheng; Shi, Hui; He, Xiaoxiao; Yu, Yanru; He, Dinggeng; Tang, Jinlu; Lei, Yanli; Wang, Kemin

    2016-01-01

    As a star material in cancer theranostics, photoresponsive gold (Au) nanostructures may still have drawbacks, such as low thermal conductivity, irradiation-induced melting effect and high cost. To solve the problem, copper (Cu) with a much higher thermal conductivity and lower cost was introduced to generate a novel Cu-Au alloy nanostructure produced by a simple, gentle and one-pot synthetic method. Having the good qualities of both Cu and Au, the irregularly-shaped Cu-Au alloy nanostructures showed several advantages over traditional Au nanorods, including a broad and intense near-infrared (NIR) absorption band from 400 to 1100 nm, an excellent heating performance under laser irradiation at different wavelengths and even a notable photostability against melting. Then, via a simple conjugation of fluorophore-labeled aptamers on the Cu-Au alloy nanostructures, active targeting and signal output were simultaneously introduced, thus constructing a theranostic platform based on fluorophore-labeled, aptamer-coated Cu-Au alloy nanostructures. By using human leukemia CCRF-CEM cancer and Cy5-labeled aptamer Sgc8c (Cy5-Sgc8c) as the model, a selective fluorescence imaging and NIR photothermal therapy was successfully realized for both in vitro cancer cells and in vivo tumor tissues. It was revealed that Cy5-Sgc8c-coated Cu-Au alloy nanostructures were not only capable of robust target recognition and stable signal output for molecular imaging in complex biological systems, but also killed target cancer cells in mice with only five minutes of 980 nm irradiation. The platform was found to be simple, stable, biocompatible and highly effective, and shows great potential as a versatile tool for cancer theranostics.As a star material in cancer theranostics, photoresponsive gold (Au) nanostructures may still have drawbacks, such as low thermal conductivity, irradiation-induced melting effect and high cost. To solve the problem, copper (Cu) with a much higher thermal conductivity

  20. HIF-1α is essential for effective PMN bacterial killing, antimicrobial peptide production and apoptosis in Pseudomonas aeruginosa keratitis.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Berger

    Full Text Available Hypoxia-inducible factor (HIF-1α, is a transcription factor that controls energy metabolism and angiogenesis under hypoxic conditions, and a potent regulator of innate immunity. The studies described herein examined the role of HIF-1α in disease resolution in BALB/c (resistant, cornea heals mice after ocular infection with Pseudomonas (P. aeruginosa. Furthermore, the current studies focused on the neutrophil (PMN, the predominant cell infiltrate in keratitis. Using both siRNA and an antagonist (17-DMAG, the role of HIF-1α was assessed in P. aeruginosa-infected BALB/c mice. Clinical score and slit lamp photography indicated HIF-1α inhibition exacerbated disease and corneal destruction. Real time RT-PCR, immunohistochemistry, ELISA, Greiss and MPO assays, bacterial load, intracellular killing, phagocytosis and apoptosis assays further tested the regulatory role of HIF-1α. Despite increased pro-inflammatory cytokine expression and increased MPO levels after knocking down HIF-1α expression, in vivo studies revealed a decrease in NO production and higher bacterial load. In vitro studies using PMN provided evidence that although inhibition of HIF-1α did not affect phagocytosis, both bacterial killing and apoptosis were significantly affected, as was production of antimicrobial peptides. Overall, data provide evidence that inhibition of HIF-1α converts a normally resistant disease response to susceptible (corneal thinning and perforation after induction of bacterial keratitis. Although this inhibition does not appear to affect PMN transmigration or phagocytosis, both in vivo and in vitro approaches indicate that the transcriptional factor is essential for effective bacterial killing, apoptosis and antimicrobial peptide production.

  1. Selective killing of tumors deficient in methylthioadenosine phosphorylase: a novel strategy.

    Directory of Open Access Journals (Sweden)

    Martin Lubin

    2009-05-01

    Full Text Available The gene for methylthioadenosine phosphorylase (MTAP lies on 9p21, close to the gene CDKN2A that encodes the tumor suppressor proteins p16 and p14ARF. MTAP and CDKN2A are homozygously co-deleted, with a frequency of 35 to 70%, in lung and pancreatic cancer, glioblastoma, osteosarcoma, soft-tissue sarcoma, mesothelioma, and T-cell acute lymphoblastic leukemia. In normal cells, but not in tumor cells lacking MTAP, MTAP cleaves the natural substrate, 5'-deoxy-5'-methylthioadenosine (MTA, to adenine and 5-methylthioribose-1-phosphate (MTR-1-P, which are then converted to adenine nucleotides and methionine. This distinct difference between normal MTAP-positive cells and tumor MTAP-negative cells led to several proposals for therapy. We offer a novel strategy in which both MTA and a toxic adenine analog, such as 2,6-diaminopurine (DAP, 6-methylpurine (MeP, or 2-fluoroadenine (F-Ade, are administered. In MTAP-positive cells, abundant adenine, generated from supplied MTA, competitively blocks the conversion of an analog, by adenine phosphoribosyltransferase (APRT, to its active nucleotide form. In MTAP-negative tumor cells, the supplied MTA cannot generate adenine; hence conversion of the analog is not blocked.We show that this combination treatment--adenine analog plus MTA--kills MTAP-negative A549 lung tumor cells, while MTAP-positive human fibroblasts (HF are protected. In co-cultures of the breast tumor cell line, MCF-7, and HF cells, MCF-7 is inhibited or killed, while HF cells proliferate robustly. 5-Fluorouracil (5-FU and 6-thioguanine (6-TG may also be used with our strategy. Though neither analog is activated by APRT, in MTAP-positive cells, adenine produced from supplied MTA blocks conversion of 5-FU and 6-TG to their toxic nucleotide forms by competing for 5-phosphoribosyl-1-pyrophosphate (PRPP. The combination of MTA with 5-FU or 6-TG, in the treatment of MTAP-negative tumors, may produce a significantly improved therapeutic index

  2. political killings in South Africa

    African Journals Online (AJOL)

    mainly occurred in KwaZulu-Natal, with a much smaller number occurring in Mpumalanga and ... Though the problem is concentrated in specific provinces it is likely to impact on political life ... killings that are the focus of the article, including.

  3. Killing horizons as equipotential hypersurfaces

    International Nuclear Information System (INIS)

    Smolić, Ivica

    2012-01-01

    In this note we present a new proof that Killing horizons are equipotential hypersurfaces for the electric and the magnetic scalar potential, which makes no use of gravitational field equations or the assumption about the existence of a bifurcation surface. (note)

  4. Histone Deacetylase Inhibitor Induced Radiation Sensitization Effects on Human Cancer Cells after Photon and Hadron Radiation Exposure

    Directory of Open Access Journals (Sweden)

    Ariungerel Gerelchuluun

    2018-02-01

    Full Text Available Suberoylanilide hydroxamic acid (SAHA is a histone deacetylase inhibitor, which has been widely utilized throughout the cancer research field. SAHA-induced radiosensitization in normal human fibroblasts AG1522 and lung carcinoma cells A549 were evaluated with a combination of γ-rays, proton, and carbon ion exposure. Growth delay was observed in both cell lines during SAHA treatment; 2 μM SAHA treatment decreased clonogenicity and induced cell cycle block in G1 phase but 0.2 μM SAHA treatment did not show either of them. Low LET (Linear Energy Transfer irradiated A549 cells showed radiosensitization effects on cell killing in cycling and G1 phase with 0.2 or 2 μM SAHA pretreatment. In contrast, minimal sensitization was observed in normal human cells after low and high LET radiation exposure. The potentially lethal damage repair was not affected by SAHA treatment. SAHA treatment reduced the rate of γ-H2AX foci disappearance and suppressed RAD51 and RPA (Replication Protein A focus formation. Suppression of DNA double strand break repair by SAHA did not result in the differences of SAHA-induced radiosensitization between human cancer cells and normal cells. In conclusion, our results suggest SAHA treatment will sensitize cancer cells to low and high LET radiation with minimum effects to normal cells.

  5. Effect of preoperative S-1 combined with regional transcatheter arterial chemoembolization on malignant degree of locally advanced gastric cancer

    Directory of Open Access Journals (Sweden)

    Ru-Juan Xu

    2016-07-01

    Full Text Available Objective: To study the effect of preoperative S-1 combined with regional transcatheter arterial chemoembolization on malignant degree of locally advanced gastric cancer. Methods: A total of 134 patients who were diagnosed with advanced gastric cancer in our hospital from May 2012 to December 2014 were selected for study, received surgical resection after chemotherapy, and were divided into intravenous chemotherapy group and combined treatment group according to different chemotherapy regimens. After chemotherapy and before operation, serum tumor marker levels were detected; after operation, recurrence and metastasis-related molecule levels in tumor tissue were detected. Results: After chemotherapy and before operation, serum CEA, CA199, CA72-4, TSGF, ESM-1 and DKK-1 levels of combined treatment group were significantly lower than those of intravenous chemotherapy group; TET1, TET2, LATS1 and RUNX3 levels in tumor tissue of combined treatment group were higher than those of intravenous chemotherapy group while Sipa1, GOLPH3, AEP, MT2- MMP, OPN, Galectin-1, Galectin-3 and Galectin-9 levels were lower than those of intravenous chemotherapy group. Conclusions: Compared with systemic intravenous chemotherapy, preoperative S-1 combined with regional transcatheter arterial chemoembolization can more effectively kill gastric cancer cells and prevent tumor recurrence and metastasis at molecular level.

  6. Increased killing of SCCVII squamous cell carcinoma cells after the combination of Pc 4 photodynamic therapy and dasatinib is associated with enhanced caspase-3 activity and ceramide synthase 1 upregulation

    Science.gov (United States)

    SEPAROVIC, DUSKA; BREEN, PAUL; BOPPANA, NITHIN B.; VAN BUREN, ERIC; JOSEPH, NICHOLAS; KRAVEKA, JACQUELINE M.; RAHMANIYAN, MEHRDAD; LI, LI; GUDZ, TATYANA I.; BIELAWSKA, ALICJA; BAI, AIPING; BIELAWSKI, JACEK; PIERCE, JASON S.; KORBELIK, MLADEN

    2013-01-01

    Photodynamic therapy (PDT) is not always effective as an anticancer treatment, therefore, PDT is combined with other anticancer agents for improved efficacy. The combination of dasatinib and PDT with the silicone phthalocyanine photosensitizer Pc 4 was assessed for increased killing of SCCVII mouse squamous cell carcinoma cells, a preclinical model of head and neck squamous cell carcinoma, using apoptotic markers and colony formation as experimental end-points. Because each of these treatments regulates the metabolism of the sphingolipid ceramide, their effects on mRNA levels of ceramide synthase, a ceramide-producing enzyme, and the sphingolipid profile were determined. PDT + dasatinib induced an additive loss of clonogenicity. Unlike PDT alone or PDT + dasatinib, dasatinib induced zVAD-fmk-dependent cell killing. PDT or dasatinib-induced caspase-3 activation was potentiated after the combination. PDT alone induced mitochondrial depolarization, and the effect was inhibited after the combination. Annexin V+ and propidium iodide+ cells remained at control levels after treatments. In contrast to PDT alone, dasatinib induced upregulation of ceramide synthase 1 mRNA, and the effect was enhanced after the combination. Dasatinib induced a modest increase in C20:1-and C22-ceramide but had no effect on total ceramide levels. PDT increased the levels of 12 individual ceramides and total ceramides, and the addition of dasatinib did not affect these increases. PDT alone decreased substantially sphingosine levels and inhibited the activity of acid ceramidase, an enzyme that converts ceramide to sphingosine. The data suggest that PDT-induced increases in ceramide levels do not correlate with ceramide synthase mRNA levels but rather with inhibition of ceramidase. Cell killing was zVAD-fmk-sensitive after dasatinib but not after either PDT or the combination and enhanced cell killing after the combination correlated with potentiated caspase-3 activation and upregulation of

  7. Kill rate of mastitis pathogens by a combination of cefalexin and kanamycin.

    Science.gov (United States)

    Maneke, E; Pridmore, A; Goby, L; Lang, I

    2011-01-01

    To assess the bacterial killing rate produced by a combination of cefalexin and kanamycin at two different concentration ratios. Time-kill kinetics of cefalexin and kanamycin, individually and in combination, were determined against one strain each of Escherichia coli, Staphylococcus aureus, Streptococcus agalactiae, Streptococcus dysgalactiae and Streptococcus uberis. The combination was tested using two fixed ratios (cefalexin : kanamycin ratios of 1·25 : 1 and 1 : 2·3) and two concentrations of each ratio. Time-kill curves produced with either ratio were quite similar. Against most bacterial species, higher concentrations produced faster kill. In all cases, the combination of cefalexin and kanamycin showed faster and greater kill at lower antibiotic concentrations than those observed with either drug alone. The combination of cefalexin and kanamycin results in a fast initial killing of major mastitis pathogens at both concentration ratios. The combination of cefalexin and kanamycin achieved rapid bacterial kill at concentrations and ratios that can be achieved in vivo following intramammary infusion of a mastitis treatment. © 2010 Boehringer Ingelheim Vetmedica GmbH. Journal of Applied Microbiology © 2010 The Society for Applied Microbiology.

  8. SU-F-T-677: Synergistic Effect(s) of Clotrimazole On Radiation Cell Survival of A549 Lung Cancer Cells in Glucose Vs. Galactose Media

    Energy Technology Data Exchange (ETDEWEB)

    Boss, G; Tambasco, M; Garakani, M [San Diego State University, San Diego, CA (United States)

    2016-06-15

    Purpose: In order to determine the synergistic effect of clotrimazole on radiosensitivity of A549 lung cancer cells, and the effect of oxidative pathways on modulating radiosensitivity, we studied how these cells survived under varying amounts of radiation and clotrimazole as well ass when glucose was switched for galactose media. Methods: The glucose media was used to determine the presence of any synergistic effect of clotrimazole on radiation using values of radiation and clotrimazole concentrations, varying from 0 – 8 Gy and 0 – 20 µM, respectively. As a galactose diet is known to activate oxidative pathways, which do not rely on hexokinase II (HK2), all trials were repeated using galactose media to determine the extent that HK2 unbinding from the mitochondrial membrane plays a role in modulating the observed radiosensitivity. An apoptosis vs. necrosis assay was implemented to find out the modality by which cell death occurred. An intracellular lactate assay was performed to exhibit the extent of anaerobic glycolysis. Results: After running the primary experiments, it was found that in glucose media, the cancer cells showed higher cell kill when clotrimazole was added to the media, followed by the cells being irradiated. Conclusion: Given the preliminary results it is validated that under higher concentrations of clotrimazole, in glucose media, A549 lung cancer cells exhibit a lower amount of survival. While all results have not yet been gathered. We anticipate that in galactose media the A549 cells will exhibit this effect to a much smaller degree, if at all.

  9. Factors Affecting Zebra Mussel Kill by the Bacterium Pseudomonas fluorescens

    Energy Technology Data Exchange (ETDEWEB)

    Daniel P. Molloy

    2004-02-24

    The specific purpose of this research project was to identify factors that affect zebra mussel kill by the bacterium Pseudomonas fluorescens. Test results obtained during this three-year project identified the following key variables as affecting mussel kill: treatment concentration, treatment duration, mussel siphoning activity, dissolved oxygen concentration, water temperature, and naturally suspended particle load. Using this latter information, the project culminated in a series of pipe tests which achieved high mussel kill inside power plants under once-through conditions using service water in artificial pipes.

  10. Colorectal Cancer - What You Need to Know PSA (:60)

    Centers for Disease Control (CDC) Podcasts

    This 60 second Public Service Announcement (PSA) is based on the July, 2011 CDC Vital Signs report. Colorectal cancer kills about 50,000 men and women every year. Screening can save lives! Screening can find abnormal growths so they can be removed before turning into cancer, and can find the cancer early, when it's easiest to treat. If you're over 50, talk to your doctor about getting screened for colorectal cancer.

  11. No evidence of a threshold in traffic volume affecting road-kill mortality at a large spatio-temporal scale

    Energy Technology Data Exchange (ETDEWEB)

    Grilo, Clara, E-mail: clarabentesgrilo@gmail.com [Departamento de Biología de la Conservación, Estación Biológica de Doñana (EBD-CSIC), Calle Américo Vespucio s/n, E-41092 Sevilla (Spain); Centro Brasileiro de Estudos em Ecologia de Estradas, Departamento de Biologia, Universidade Federal de Lavras, Campus Universitário, 37200-000 Lavras, Minas Gerais (Brazil); Ferreira, Flavio Zanchetta; Revilla, Eloy [Departamento de Biología de la Conservación, Estación Biológica de Doñana (EBD-CSIC), Calle Américo Vespucio s/n, E-41092 Sevilla (Spain)

    2015-11-15

    Previous studies have found that the relationship between wildlife road mortality and traffic volume follows a threshold effect on low traffic volume roads. We aimed at evaluating the response of several species to increasing traffic intensity on highways over a large geographic area and temporal period. We used data of four terrestrial vertebrate species with different biological and ecological features known by their high road-kill rates: the barn owl (Tyto alba), hedgehog (Erinaceus europaeus), red fox (Vulpes vulpes) and European rabbit (Oryctolagus cuniculus). Additionally, we checked whether road-kill likelihood varies when traffic patterns depart from the average. We used annual average daily traffic (AADT) and road-kill records observed along 1000 km of highways in Portugal over seven consecutive years (2003–2009). We fitted candidate models using Generalized Linear Models with a binomial distribution through a sample unit of 1 km segments to describe the effect of traffic on the probability of finding at least one victim in each segment during the study. We also assigned for each road-kill record the traffic of that day and the AADT on that year to test for differences using Paired Student's t-test. Mortality risk declined significantly with traffic volume but varied among species: the probability of finding road-killed red foxes and rabbits occurs up to moderate traffic volumes (< 20,000 AADT) whereas barn owls and hedgehogs occurred up to higher traffic volumes (40,000 AADT). Perception of risk may explain differences in responses towards high traffic highway segments. Road-kill rates did not vary significantly when traffic intensity departed from the average. In summary, we did not find evidence of traffic thresholds for the analysed species and traffic intensities. We suggest mitigation measures to reduce mortality be applied in particular on low traffic roads (< 5000 AADT) while additional measures to reduce barrier effects should take into

  12. No evidence of a threshold in traffic volume affecting road-kill mortality at a large spatio-temporal scale

    International Nuclear Information System (INIS)

    Grilo, Clara; Ferreira, Flavio Zanchetta; Revilla, Eloy

    2015-01-01

    Previous studies have found that the relationship between wildlife road mortality and traffic volume follows a threshold effect on low traffic volume roads. We aimed at evaluating the response of several species to increasing traffic intensity on highways over a large geographic area and temporal period. We used data of four terrestrial vertebrate species with different biological and ecological features known by their high road-kill rates: the barn owl (Tyto alba), hedgehog (Erinaceus europaeus), red fox (Vulpes vulpes) and European rabbit (Oryctolagus cuniculus). Additionally, we checked whether road-kill likelihood varies when traffic patterns depart from the average. We used annual average daily traffic (AADT) and road-kill records observed along 1000 km of highways in Portugal over seven consecutive years (2003–2009). We fitted candidate models using Generalized Linear Models with a binomial distribution through a sample unit of 1 km segments to describe the effect of traffic on the probability of finding at least one victim in each segment during the study. We also assigned for each road-kill record the traffic of that day and the AADT on that year to test for differences using Paired Student's t-test. Mortality risk declined significantly with traffic volume but varied among species: the probability of finding road-killed red foxes and rabbits occurs up to moderate traffic volumes (< 20,000 AADT) whereas barn owls and hedgehogs occurred up to higher traffic volumes (40,000 AADT). Perception of risk may explain differences in responses towards high traffic highway segments. Road-kill rates did not vary significantly when traffic intensity departed from the average. In summary, we did not find evidence of traffic thresholds for the analysed species and traffic intensities. We suggest mitigation measures to reduce mortality be applied in particular on low traffic roads (< 5000 AADT) while additional measures to reduce barrier effects should take into

  13. Reorienting the immune system in the treatment of cancer by using anti-PD-1 and anti-PD-L1 antibodies

    DEFF Research Database (Denmark)

    Borch, Troels H; Donia, Marco; Andersen, Mads H

    2015-01-01

    Physiologically, the programmed death 1 (PD-1) pathway is involved in limiting the killing of bystander cells during an infection and controlling autoimmunity. However, cancers exploit this system to avoid immune killing, and PD-1 ligand 1 and 2 (PD-L1 and PD-L2) expression on tumor cells, as wel...... Food and Drug Administration (FDA) for the treatment of metastatic melanoma. As already shown with nivolumab and ipilimumab, the combination of PD-1 pathway blockade with other anticancer agents holds promise in the form of additive synergistic anticancer effects....

  14. Antibacterial Surface Design of Titanium-Based Biomaterials for Enhanced Bacteria-Killing and Cell-Assisting Functions Against Periprosthetic Joint Infection.

    Science.gov (United States)

    Wang, Jiaxing; Li, Jinhua; Qian, Shi; Guo, Geyong; Wang, Qiaojie; Tang, Jin; Shen, Hao; Liu, Xuanyong; Zhang, Xianlong; Chu, Paul K

    2016-05-04

    Periprosthetic joint infection (PJI) is one of the formidable and recalcitrant complications after orthopedic surgery, and inhibiting biofilm formation on the implant surface is considered crucial to prophylaxis of PJI. However, it has recently been demonstrated that free-floating biofilm-like aggregates in the local body fluid and bacterial colonization on the implant and peri-implant tissues can coexist and are involved in the pathogenesis of PJI. An effective surface with both contact-killing and release-killing antimicrobial capabilities can potentially abate these concerns and minimize PJI caused by adherent/planktonic bacteria. Herein, Ag nanoparticles (NPs) are embedded in titania (TiO2) nanotubes by anodic oxidation and plasma immersion ion implantation (PIII) to form a contact-killing surface. Vancomycin is then incorporated into the nanotubes by vacuum extraction and lyophilization to produce the release-killing effect. A novel clinical PJI model system involving both in vitro and in vivo use of methicillin-resistant Staphylococcus aureus (MRSA) ST239 is established to systematically evaluate the antibacterial properties of the hybrid surface against planktonic and sessile bacteria. The vancomycin-loaded and Ag-implanted TiO2 nanotubular surface exhibits excellent antimicrobial and antibiofilm effects against planktonic/adherent bacteria without appreciable silver ion release. The fibroblasts/bacteria cocultures reveal that the surface can help fibroblasts to combat bacteria. We first utilize the nanoarchitecture of implant surface as a bridge between the inorganic bactericide (Ag NPs) and organic antibacterial agent (vancomycin) to achieve total victory in the battle of PJI. The combination of contact-killing and release-killing together with cell-assisting function also provides a novel and effective strategy to mitigate bacterial infection and biofilm formation on biomaterials and has large potential in orthopedic applications.

  15. Dose selenomethionine have radio-protective effect on cell lines with wild type p53?

    International Nuclear Information System (INIS)

    Tsuji, K.; Hagihira, T.; Ohnishi, K.; Ohnishi, T.; Matsumoto, H.

    2003-01-01

    Full text: Selenium compounds are known to have cancer preventive effects. It is reported recently that selenium in the form of selenomethionine (SeMet) can protect cells with wild type p53 from UV-induced cell killing by activating the DNA repair mechanism of p53 tumor suppressor protein via redox factor Ref1 by reducing p53 cysteine residue 275 and 277. In contrast, SeMet has no protective effect on UV-induced cell killing in p53-null cells. If SeMet also has protective effect in cells with wild type p53 on cell killing by photon irradiation, SeMet can be used as normal tissue radio-protector. We examined the effect of SeMet on cell killing by X-ray irradiation in several cell lines with different p53 status at exponentially growing phase. Cell lines used in this experiment were as follows: H1299/neo; human lung cancer cell line of p53 null type tranfected with control vector with no p53, H1299/wp53; wild type p53 transfected counterpart. A172/neo; human glioblastoma cell line with wild type p53, A172/mp53-248; mp53-248 (248-mutant, ARG >TRP) transfected counterpart. SAS/neo; human tongue cancer cell line with wild type p53, and SAS/mp53-248; mp53-248 transfected counterpart. Cells were subcultured at monolayer in D-MEM containing 10% FBS. Survivals of the cells were determined by colony forming ability. Ten-MV linac X-ray was used to irradiate the cells. Exponentially growing cells were incubated with 20μM of SeMet for 15 hours before irradiation. After 24 hours exposure of SeMet, cells were incubated up to two weeks in growth medium for colony formation. Twenty-four hours exposure of 20μM of SeMet had no cytotoxicity on these cell lines. SeMet had no modification effect on cell killing by photon irradiation in H1299/neo, H1299/wp53, SAS/neo, SAS/mp53-248, and A172/mp53-248. On the other hand, SeMet sensitized A172/neo in radiation cell killing. The effects of p53 on interaction of SeMet and photon irradiation differ according to cell lines

  16. WOMEN'S RIGHTS VIOLATION: HONOUR KILLINGS

    Directory of Open Access Journals (Sweden)

    CRISTINA OTOVESCU FRASIE

    2011-04-01

    Full Text Available In this study I have presented the domestic violence concept and the situation regarding the observing of woman’s rights in Syria. We have also evidenced the juridical aspects regarding the honor killing directed against women after the modification of the article 548 from the Penal Code changed by the President al-Asad on July the 1st 2009. The data offered by NGOs have been of great help for the elaboration of the study as also the statistic data presented in Thara E-Magazine regarding the cities where had been done the honor killings and their number, the instrument of the murder, the age of the victim, and the motives for the murders. It must be noticed that, lately, the Government fought for the observing of the woman’s rights and promoted he gender equality by appointing women in leading positions, including the vice-president one.

  17. Default risk modeling with position-dependent killing

    Science.gov (United States)

    Katz, Yuri A.

    2013-04-01

    Diffusion in a linear potential in the presence of position-dependent killing is used to mimic a default process. Different assumptions regarding transport coefficients, initial conditions, and elasticity of the killing measure lead to diverse models of bankruptcy. One “stylized fact” is fundamental for our consideration: empirically default is a rather rare event, especially in the investment grade categories of credit ratings. Hence, the action of killing may be considered as a small parameter. In a number of special cases we derive closed-form expressions for the entire term structure of the cumulative probability of default, its hazard rate, and intensity. Comparison with historical data on aggregate global corporate defaults confirms the validity of the perturbation method for estimations of long-term probability of default for companies with high credit quality. On a single company level, we implement the derived formulas to estimate the one-year likelihood of default of Enron on a daily basis from August 2000 to August 2001, three months before its default, and compare the obtained results with forecasts of traditional structural models.

  18. Pediatric medulloblastoma xenografts including molecular subgroup 3 and CD133+ and CD15+ cells are sensitive to killing by oncolytic herpes simplex viruses.

    Science.gov (United States)

    Friedman, Gregory K; Moore, Blake P; Nan, Li; Kelly, Virginia M; Etminan, Tina; Langford, Catherine P; Xu, Hui; Han, Xiaosi; Markert, James M; Beierle, Elizabeth A; Gillespie, G Yancey

    2016-02-01

    Childhood medulloblastoma is associated with significant morbidity and mortality that is compounded by neurotoxicity for the developing brain caused by current therapies, including surgery, craniospinal radiation, and chemotherapy. Innate therapeutic resistance of some aggressive pediatric medulloblastoma has been attributed to a subpopulation of cells, termed cancer-initiating cells or cancer stemlike cells (CSCs), marked by the surface protein CD133 or CD15. Brain tumors characteristically contain areas of pathophysiologic hypoxia, which has been shown to drive the CSC phenotype leading to heightened invasiveness, angiogenesis, and metastasis. Novel therapies that target medulloblastoma CSCs are needed to improve outcomes and decrease toxicity. We hypothesized that oncolytic engineered herpes simplex virus (oHSV) therapy could effectively infect and kill pediatric medulloblastoma cells, including CSCs marked by CD133 or CD15. Using 4 human pediatric medulloblastoma xenografts, including 3 molecular subgroup 3 tumors, which portend worse patient outcomes, we determined the expression of CD133, CD15, and the primary HSV-1 entry molecule nectin-1 (CD111) by fluorescence activated cell sorting (FACS) analysis. Infectability and cytotoxicity of clinically relevant oHSVs (G207 and M002) were determined in vitro and in vivo by FACS, immunofluorescent staining, cytotoxicity assays, and murine survival studies. We demonstrate that hypoxia increased the CD133+ cell fraction, while having the opposite effect on CD15 expression. We established that all 4 xenografts, including the CSCs, expressed CD111 and were highly sensitive to killing by G207 or M002. Pediatric medulloblastoma, including Group 3 tumors, may be an excellent target for oHSV virotherapy, and a clinical trial in medulloblastoma is warranted. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. In vitro cytotoxicity of alpha conjugates for human pancreatic cancer cell lines

    International Nuclear Information System (INIS)

    Qu, C.; Li, Y.; Rizvi, M.A.; Allen, B.; Samra, J.; Smith, R.

    2003-01-01

    Targeted Alpha therapy (TAT) can inhibit the growth of micrometastases by selectively killing isolated and preangiogenic clusters of cancer cells. The aim of this study is to demonstrate the cytotoxicity of different alpha conjugates in vitro to human metastatic pancreatic cancer cell lines (CAPAN-1, CFPAN-1 and PANC-1). We are labeling the C595 and J591 (non-specific controls) monoclonal antibodies (Mabs) with 213 Bi were performed according to the standard methods in our laboratory. 213 Bi-C595 is specifically cytotoxic to CAPAN-1, CFPAN-1 and PANC-1cell lines in a concentration-dependent fashion. While non-specific alpha conjugates only killed very small fractions of pancreatic cancer cells. These alpha conjugates might be useful agents for the treatment of micro-metastases in pancreatic cancer patients with over-expression of the targeted receptors

  20. The number of killings in southern rural Norway, 1300–1569

    OpenAIRE

    Kadane, Joseph B.; Næshagen, Ferdinand L.

    2013-01-01

    Three dual systems estimates are employed to study the number of killings in southern rural Norway in a period of slightly over 250 years. The first system is a set of five letters sent to each killer as part of the legal process. The second system is the mention of killings from all other contemporary sources. The posterior distributions derived suggest fewer such killings than rough demographic estimates.

  1. Targeting Homologous Recombination by Pharmacological Inhibitors Enhances the Killing Response of Glioblastoma Cells Treated with Alkylating Drugs.

    Science.gov (United States)

    Berte, Nancy; Piée-Staffa, Andrea; Piecha, Nadine; Wang, Mengwan; Borgmann, Kerstin; Kaina, Bernd; Nikolova, Teodora

    2016-11-01

    Malignant gliomas exhibit a high level of intrinsic and acquired drug resistance and have a dismal prognosis. First- and second-line therapeutics for glioblastomas are alkylating agents, including the chloroethylating nitrosoureas (CNU) lomustine, nimustine, fotemustine, and carmustine. These agents target the tumor DNA, forming O 6 -chloroethylguanine adducts and secondary DNA interstrand cross-links (ICL). These cross-links are supposed to be converted into DNA double-strand breaks, which trigger cell death pathways. Here, we show that lomustine (CCNU) with moderately toxic doses induces ICLs in glioblastoma cells, inhibits DNA replication fork movement, and provokes the formation of DSBs and chromosomal aberrations. Since homologous recombination (HR) is involved in the repair of DSBs formed in response to CNUs, we elucidated whether pharmacologic inhibitors of HR might have impact on these endpoints and enhance the killing effect. We show that the Rad51 inhibitors RI-1 and B02 greatly ameliorate DSBs, chromosomal changes, and the level of apoptosis and necrosis. We also show that an inhibitor of MRE11, mirin, which blocks the formation of the MRN complex and thus the recognition of DSBs, has a sensitizing effect on these endpoints as well. In a glioma xenograft model, the Rad51 inhibitor RI-1 clearly enhanced the effect of CCNU on tumor growth. The data suggest that pharmacologic inhibition of HR, for example by RI-1, is a reasonable strategy for enhancing the anticancer effect of CNUs. Mol Cancer Ther; 15(11); 2665-78. ©2016 AACR. ©2016 American Association for Cancer Research.

  2. Mechanistic studies of cancer cell mitochondria- and NQO1-mediated redox activation of beta-lapachone, a potentially novel anticancer agent

    International Nuclear Information System (INIS)

    Li, Jason Z.; Ke, Yuebin; Misra, Hara P.; Trush, Michael A.; Li, Y. Robert; Zhu, Hong; Jia, Zhenquan

    2014-01-01

    Beta-lapachone (beta-Lp) derived from the Lapacho tree is a potentially novel anticancer agent currently under clinical trials. Previous studies suggested that redox activation of beta-Lp catalyzed by NAD(P)H:quinone oxidoreductase 1 (NQO1) accounted for its killing of cancer cells. However, the exact mechanisms of this effect remain largely unknown. Using chemiluminescence and electron paramagnetic resonance (EPR) spin-trapping techniques, this study for the first time demonstrated the real-time formation of ROS in the redox activation of beta-lapachone from cancer cells mediated by mitochondria and NQO1 in melanoma B16–F10 and hepatocellular carcinoma HepG2 cancer cells. ES936, a highly selective NQO1 inhibitor, and rotenone, a selective inhibitor of mitochondrial electron transport chain (METC) complex I were found to significantly block beta-Lp meditated redox activation in B16–F10 cells. In HepG2 cells ES936 inhibited beta-Lp-mediated oxygen radical formation by ∼ 80% while rotenone exerted no significant effect. These results revealed the differential contribution of METC and NQO1 to beta-lapachone-induced ROS formation and cancer cell killing. In melanoma B16–F10 cells that do not express high NQO1 activity, both NOQ1 and METC play a critical role in beta-Lp redox activation. In contrast, in hepatocellular carcinoma HepG2 cells expressing extremely high NQO1 activity, redox activation of beta-Lp is primarily mediated by NQO1 (METC plays a minor role). These findings will contribute to our understanding of how cancer cells are selectively killed by beta-lapachone and increase our ability to devise strategies to enhance the anticancer efficacy of this potentially novel drug while minimizing its possible adverse effects on normal cells. - Highlights: • Both isolated mitochondria and purified NQO1 are able to generate ROS by beta-Lp. • The differential roles of mitochondria and NQO1 in mediating redox activation of beta-Lp • In cancer cells with

  3. Mechanistic studies of cancer cell mitochondria- and NQO1-mediated redox activation of beta-lapachone, a potentially novel anticancer agent

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jason Z. [Virginia Tech CRC, Blacksburg, VA (United States); Ke, Yuebin [Shenzhen Center for Disease Control and Prevention, Shenzhen 518055 (China); Misra, Hara P. [Virginia Tech CRC, Blacksburg, VA (United States); Trush, Michael A. [Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD (United States); Li, Y. Robert [Campbell University School of Osteopathic Medicine, Buies Creek, NC (United States); Virginia Tech-Wake Forest University SBES, Blacksburg, VA (United States); Department of Biology, University of North Carolina at Greensboro, NC (United States); Zhu, Hong, E-mail: zhu@campbell.edu [Campbell University School of Osteopathic Medicine, Buies Creek, NC (United States); Jia, Zhenquan, E-mail: z_jia@uncg.edu [Department of Biology, University of North Carolina at Greensboro, NC (United States)

    2014-12-15

    Beta-lapachone (beta-Lp) derived from the Lapacho tree is a potentially novel anticancer agent currently under clinical trials. Previous studies suggested that redox activation of beta-Lp catalyzed by NAD(P)H:quinone oxidoreductase 1 (NQO1) accounted for its killing of cancer cells. However, the exact mechanisms of this effect remain largely unknown. Using chemiluminescence and electron paramagnetic resonance (EPR) spin-trapping techniques, this study for the first time demonstrated the real-time formation of ROS in the redox activation of beta-lapachone from cancer cells mediated by mitochondria and NQO1 in melanoma B16–F10 and hepatocellular carcinoma HepG2 cancer cells. ES936, a highly selective NQO1 inhibitor, and rotenone, a selective inhibitor of mitochondrial electron transport chain (METC) complex I were found to significantly block beta-Lp meditated redox activation in B16–F10 cells. In HepG2 cells ES936 inhibited beta-Lp-mediated oxygen radical formation by ∼ 80% while rotenone exerted no significant effect. These results revealed the differential contribution of METC and NQO1 to beta-lapachone-induced ROS formation and cancer cell killing. In melanoma B16–F10 cells that do not express high NQO1 activity, both NOQ1 and METC play a critical role in beta-Lp redox activation. In contrast, in hepatocellular carcinoma HepG2 cells expressing extremely high NQO1 activity, redox activation of beta-Lp is primarily mediated by NQO1 (METC plays a minor role). These findings will contribute to our understanding of how cancer cells are selectively killed by beta-lapachone and increase our ability to devise strategies to enhance the anticancer efficacy of this potentially novel drug while minimizing its possible adverse effects on normal cells. - Highlights: • Both isolated mitochondria and purified NQO1 are able to generate ROS by beta-Lp. • The differential roles of mitochondria and NQO1 in mediating redox activation of beta-Lp • In cancer cells with

  4. Anti-tumor effects of 125I radioactive particles implantation on transplantated tumor model of human breast cancer cells in nude mice

    International Nuclear Information System (INIS)

    Xiao Zhongdi; Liang Chunlin; Zhang Guoli; Jing Yue; Zhang Yucheng; Gai Baodong

    2011-01-01

    Objective: To study the anti-tumor effects of 125 I radioactive particles implantation on transplantated tumor model of human breast cancer cells in nude mice and clarify their anti-tumor mechanisms. Methods 120 nude mice transplantated with human breast cancer cells MCF-7 were randomly divided into 3 groups (n=40): 125 I radioactive particles implanted group, non-radioactive particles implanted group and non-particles implanted group. The articles were implanted into mice according to Pairs system principle. The expressions of Fas mRNA and protein and the activaties of caspase-3 and caspase-8 enzyme were detected by RT-PCR and Western blotting. The changes of cell cycle were detected by flow cytometry. Results: Compared with non-radioactive particles implanted group and non-particles implanted group, the size of cancer tissues in 125 I radioactive particles implanted group was reduced significantly (P 0 /G 1 phase was significantly increased (P 125 I radioactive particles into transplantated tumor model of human breast cancer cells can kill tumor cells, inhibit the growth cycle of tumor cells and induce the apoptosis of tumor cells in nude mice. (authors)

  5. Designing nanoconjugates to effectively target pancreatic cancer cells in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Jameel Ahmad Khan

    Full Text Available Pancreatic cancer is the fourth leading cause of cancer related deaths in America. Monoclonal antibodies are a viable treatment option for inhibiting cancer growth. Tumor specific drug delivery could be achieved utilizing these monoclonal antibodies as targeting agents. This type of designer therapeutic is evolving and with the use of gold nanoparticles it is a promising approach to selectively deliver chemotherapeutics to malignant cells. Gold nanoparticles (GNPs are showing extreme promise in current medicinal research. GNPs have been shown to non-invasively kill tumor cells by hyperthermia using radiofrequency. They have also been implemented as early detection agents due to their unique X-ray contrast properties; success was revealed with clear delineation of blood capillaries in a preclinical model by CT (computer tomography. The fundamental parameters for intelligent design of nanoconjugates are on the forefront. The goal of this study is to define the necessary design parameters to successfully target pancreatic cancer cells.The nanoconjugates described in this study were characterized with various physico-chemical techniques. We demonstrate that the number of cetuximab molecules (targeting agent on a GNP, the hydrodynamic size of the nanoconjugates, available reactive surface area and the ability of the nanoconjugates to sequester EGFR (epidermal growth factor receptor, all play critical roles in effectively targeting tumor cells in vitro and in vivo in an orthotopic model of pancreatic cancer.Our results suggest the specific targeting of tumor cells depends on a number of crucial components 1 targeting agent to nanoparticle ratio 2 availability of reactive surface area on the nanoparticle 3 ability of the nanoconjugate to bind the target and 4 hydrodynamic diameter of the nanoconjugate. We believe this study will help define the design parameters for formulating better strategies for specifically targeting tumors with nanoparticle

  6. Killing in More-than-human Spaces: Pasteurisation, Fungi, and the Metabolic Lives of Wine

    Directory of Open Access Journals (Sweden)

    Brice, Jeremy

    2014-05-01

    Full Text Available What place might killing occupy in a more-than-human world, where human life is always-already entangled among nonhumans? In this article I attempt to unsettle the assumption that only individual organisms can be killed, and to render other sites and spaces of killing visible. Drawing on ethnographic fieldwork among winemakers in South Australia I examine pasteurisation, a killing practice that acts not on organisms but on the fluids within which they live. Examining the pasteurisation of wine damaged by the fungus Botrytis cinerea, I argue that this practice shifts the locus of killing from botrytis’ body to metabolic life processes which embrace extracellular enzymes diffused throughout the wine. I suggest that pasteurisation thus displaces killing into spaces, such as wine-in-the-making, within which many metabolic lives coexist and interpenetrate. Pasteurisation therefore renders killing an intervention into the metabolic relationships that tie together numerous species of microbes living within wine. In acting on wine as a whole it kills rather indiscriminately, simultaneously terminating multiple lives that relate to humans in different ways. Pasteurisation therefore both protects and spoils wine, reconfiguring multiple human-nonhuman relationships in conflicting and sometimes economically costly ways. In so doing, it illustrates that in a more-than-human world killing becomes difficult to confine to a single unwanted organism or species. Killing instead becomes disturbingly mobile and communicable, prone to rebound upon the valued human lives of those who kill in unsettling and potentially harmful ways.

  7. Transforming growth factor β signaling overcomes dasatinib resistance in lung cancer.

    Directory of Open Access Journals (Sweden)

    Edna Gordian

    Full Text Available Lung cancer is the second most common cancer and the leading cause of cancer-related deaths. Despite recent advances in the development of targeted therapies, patients with advanced disease remain incurable, mostly because metastatic non-small cell lung carcinomas (NSCLC eventually become resistant to tyrosine kinase inhibitors (TKIs. Kinase inhibitors have the potential for target promiscuity because the kinase super family is the largest family of druggable genes that binds to a common substrate (ATP. As a result, TKIs often developed for a specific purpose have been found to act on other targets. Drug affinity chromatography has been used to show that dasatinib interacts with the TGFβ type I receptor (TβR-I, a serine-threonine kinase. To determine the potential biological relevance of this association, we studied the combined effects of dasatinib and TGFβ on lung cancer cell lines. We found that dasatinib treatment alone had very little effect; however, when NSCLC cell lines were treated with a combination of TGFβ and dasatinib, apoptosis was induced. Combined TGFβ-1 + dasatinib treatment had no effect on the activity of Smad2 or other non-canonical TGFβ intracellular mediators. Interestingly, combined TGFβ and dasatinib treatment resulted in a transient increase in p-Smad3 (seen after 3 hours. In addition, when NSCLC cells were treated with this combination, the pro-apoptotic protein BIM was up-regulated. Knockdown of the expression of Smad3 using Smad3 siRNA also resulted in a decrease in BIM protein, suggesting that TGFβ-1 + dasatinib-induced apoptosis is mediated by Smad3 regulation of BIM. Dasatinib is only effective in killing EGFR mutant cells, which is shown in only 10% of NSCLCs. Therefore, the observation that wild-type EGFR lung cancers can be manipulated to render them sensitive to killing by dasatinib could have important implications for devising innovative and potentially more efficacious treatment strategies for this

  8. Proton beam therapy how protons are revolutionizing cancer treatment

    CERN Document Server

    Yajnik, Santosh

    2013-01-01

    Proton beam therapy is an emerging technology with promise of revolutionizing the treatment of cancer. While nearly half of all patients diagnosed with cancer in the US receive radiation therapy, the majority is delivered via electron accelerators, where photons are used to irradiate cancerous tissue. Because of the physical properties of photon beams, photons may deposit energy along their entire path length through the body. On the other hand, a proton beam directed at a tumor travels in a straight trajectory towards its target, gives off most of its energy at a defined depth called the Bragg peak, and then stops. While photons often deposit more energy within the healthy tissues of the body than within the cancer itself, protons can deposit most of their cancer-killing energy within the area of the tumor. As a result, in the properly selected patients, proton beam therapy has the ability to improve cure rates by increasing the dose delivered to the tumor and simultaneously reduce side-effects by decreasing...

  9. Colorectal Cancer - What You Need to Know

    Centers for Disease Control (CDC) Podcasts

    2011-07-05

    This podcast is based on the July, 2011 CDC Vital Signs report. Colorectal cancer kills about 50,000 men and women every year. Screening can save lives! Screening can find abnormal growths so they can be removed before turning into cancer, and can find the cancer early, when it's easiest to treat. If you're over 50, talk to your doctor about getting screened for colorectal cancer.  Created: 7/5/2011 by Centers for Disease Control and Prevention (CDC).   Date Released: 7/5/2011.

  10. Cell injury, retrodifferentiation and the cancer treatment paradox.

    Science.gov (United States)

    Uriel, José

    2015-09-01

    This "opinion article" is an attempt to take an overview of some significant changes that have happened in our understanding of cancer status during the last half century and its evolution under the progressive influence of molecular biology. As an active worker in cancer research and developmental biology during most of this period, I would like to comment briefly on these changes and to give my critical appreciation of their outcome as it affects our knowledge of cancer development as well as the current treatment of the disease. A recall of my own contribution to the subject is also included. Two subjects are particularly developed: cell injury and cell-killing therapies. Cell injury, whatever its origin, has acquired the status of a pivotal event for the initiation of cancer emergence. It is postulated that cell injury, a potential case of cellular death, may also be the origin of a process of stepwise cell reversion (retrodifferentiation or retroprogrammation) leading, by division, mature or stem cells to progressive immaturity. The genetic instability and mutational changes that accompanies this process of cell injury and rejuvenation put normal cells in a status favourable to neoplastic transformation or may evolve cancer cells toward clones with higher malignant potentiality. Thus, cell injury suggests lifestyle as the major upstream initiator of cancer development although this not exclude randomness as an unavoidable contributor to the disease. Cell-killing agents (mainly cytotoxic drugs and radiotherapy) are currently used to treat cancer. At the same time, it is agreed that agents with high cell injury potential (ultraviolet light, ionising radiations, tobacco, environmental pollutants, etc.) contribute to the emergence of malignant tumours. This represents a real paradox. In spite of the progress accomplished in cancer survival, one is tempted to suggest that we have very few chances of really cure cancer as long as we continue to treat malignancies

  11. Rapamycin potentiates cytotoxicity by docetaxel possibly through downregulation of Survivin in lung cancer cells

    Directory of Open Access Journals (Sweden)

    Li Hui

    2011-03-01

    Full Text Available Abstract Background To elucidate whether rapamycin, the inhibitor of mTOR (mammalian target of rapamycin, can potentiate the cytotoxic effect of docetaxel in lung cancer cells and to probe the mechanism underlying such enhancement. Methods Lung cancer cells were treated with docetaxel and rapamycin. The effect on the proliferation of lung cancer cells was evaluated using the MTT method, and cell apoptosis was measured by flow cytometry. Protein expression and level of phosphorylation were assayed using Western Blot method. Results Co-treatment of rapamycin and docetaxel was found to favorably enhance the cytotoxic effect of docetaxel in four lung cancer cell lines. This tumoricidal boost is associated with a reduction in the expression and phosphorylation levels of Survivin and ERK1/2, respectively. Conclusion The combined application of mTOR inhibitor and docetaxel led to a greater degree of cancer cell killing than that by either compound used alone. Therefore, this combination warrants further investigation in its suitability of serving as a novel therapeutic scheme for treating advanced and recurrent lung cancer patients.

  12. Photodynamic therapy in head and neck cancer

    Directory of Open Access Journals (Sweden)

    Kamil H Nelke

    2014-02-01

    Full Text Available Photodynamic therapy (PDT is a special type of treatment involving the use of a photosensitizer or a photosensitizing agent along with a special type of light, which, combined together, induces production of a form of oxygen that is used to kill surrounding cells in different areas of the human body. Specification of the head and neck region requires different approaches due to the surrounding of vital structures. PDT can also be used to treat cells invaded with infections such as fungi, bacteria and viruses. The light beam placed in tumor sites activates locally applied drugs and kills the cancer cells. Many studies are taking place in order to invent better photosensitizers, working on a larger scale and to treat deeply placed and larger tumors. It seems that PDT could be used as an alternative surgical treatment in some tumor types; however, all clinicians should be aware that the surgical approach is still the treatment of choice. PDT is a very accurate and effective therapy, especially in early stages of head and neck squamous cell carcinomas (HNSCC, and can greatly affect surgical outcomes in cancerous patients. We present a detailed review about photosensitizers, their use, and therapeutic advantages and disadvantages.

  13. Commuting symmetry operators of the Dirac equation, Killing-Yano and Schouten-Nijenhuis brackets

    International Nuclear Information System (INIS)

    Cariglia, Marco; Krtous, Pavel; Kubiznak, David

    2011-01-01

    In this paper we derive the most general first-order symmetry operator commuting with the Dirac operator in all dimensions and signatures. Such an operator splits into Clifford even and Clifford odd parts which are given in terms of odd Killing-Yano and even closed conformal Killing-Yano inhomogeneous forms, respectively. We study commutators of these symmetry operators and give necessary and sufficient conditions under which they remain of the first-order. In this specific setting we can introduce a Killing-Yano bracket, a bilinear operation acting on odd Killing-Yano and even closed conformal Killing-Yano forms, and demonstrate that it is closely related to the Schouten-Nijenhuis bracket. An important nontrivial example of vanishing Killing-Yano brackets is given by Dirac symmetry operators generated from the principal conformal Killing-Yano tensor [hep-th/0612029]. We show that among these operators one can find a complete subset of mutually commuting operators. These operators underlie separability of the Dirac equation in Kerr-NUT-(A)dS spacetimes in all dimensions [arXiv:0711.0078].

  14. SU-E-J-95: Predicting Treatment Outcomes for Prostate Cancer: Irradiation Responses of Prostate Cancer Stem Cells

    International Nuclear Information System (INIS)

    Wang, K

    2014-01-01

    Purpose: Most prostate cancers are slow-growing diseases but normally require much higher doses (80Gy) with conventional fractionation radiotherapy, comparing to other more aggressive cancers. This study is to disclose the radiobiological basis of this discrepancy by proposing the concept of prostate cancer stem cells (CSCs) and examining their specific irradiation responses. Methods: There are overwhelming evidences that CSC may keep their stemness, e.g. the competency of cell differentiation, in hypoxic microenvironments and hence become radiation resistive, though the probability is tiny for aggressiveness cancers. Tumor hypoxia used to be considered as an independent reason for poor treatment outcomes, and recent evidences showed that even prostate cancers were also hypoxic though they are very slow-growing. In addition, to achieve comparable outcomes to other much more aggressive cancers, much higher doses (rather than lower doses) are always needed for prostate cancers, regardless of its non-aggressiveness. All these abnormal facts can only be possibly interpreted by the irradiation responses characteristics of prostate CSCs. Results: Both normal cancer cells (NCCs) and CSCs exiting in tumors, in which NCCs are mainly for symptoms whereas killing all CSCs achieves disease-free. Since prostate cancers are slow-growing, the hypoxia in prostate cancers cannot possibly from NCCs, thus it is caused by hypoxic CSCs. However, single hypoxic cell cannot be imaged due to limitation of imaging techniques, unless a large group of hypoxic cells exist together, thus most of CSCs in prostate cancers are virtually hypoxic, i.e. not in working mode because CSCs in proliferating mode have to be normoxic, and this explains why prostate cancers are unaggressive. Conclusion: The fractional dose in conventional radiotherapy (∼2Gy) could only kill NCCs and CSCs in proliferating modes, whereas most CSCs survived fractional treatments since they were hypoxic, thus to eliminate all

  15. Killing Unwanted West Indies Mahogany Trees by Peeling and Frilling

    Science.gov (United States)

    R. W. Nobles; C. B. Briscoe

    1966-01-01

    Peeling and frilling each killed approximately 70 percent of treated West Indies mahogany, but peeling killed a higher percentage of trees between 18 and 33 centimeters (7 and 13 inches) than did frilling. Essentially all mortality occurred within the first 15 months following treatment.

  16. HIV transcription is induced with some forms of cell killing

    International Nuclear Information System (INIS)

    Woloschak, G.E.; Schreck, S.; Chang-Liu, C.-M.; Libertin, C.R.

    1996-01-01

    Using HeLa cells stably transfected with an HIV-LTR-CAT construct', we demonstrated a peak in CAT induction that occurs in viable (but not necessarily cell-division-competent) cells 24 h following exposure to some cell-killing agents. Γ rays were the only cell-killing agent which did not induce HIV transcription; this can be attributed to the fact that γ-ray-induced apoptotic death requires function p53, which is missing in HeLa cells. For all other agents, HIV-LTR induction was dose-dependent and correlated with the amount of cell killing that occurred in the culture

  17. Kill Shakespeare – This Bard contains graphic language!

    Directory of Open Access Journals (Sweden)

    Mauro Gentile

    2017-11-01

    Full Text Available Today, adapting Shakespearean plays into comic books or graphic novels appears to be a well-established literary practice in contemporary storytelling. One of the most interesting examples is ÒKill ShakespeareÓ, a graphic novel written by Anthony Del Col and Conor McCreery and illustrated by Andy Belanger. In ÒKill ShakespeareÓ, the authors abandon the idea of adapting a single play to create a Shakespearian mashup in which Hamlet and Juliet fight such villains as Richard III and Lady Macbeth who try to kill a wizard named William Shakespeare.This is the premise for a compelling narration that intertwines various elements of the Shakespearean tradition and attempts to convey an idea of Elizabethan language to contemporary readers. While the characters are familiar, the quest is wholly new and triggers a series of transformations in the narrative, turning upside down the well-established images of Hamlet, Juliet and Othello. Beside the intriguing depictions of the female characters, especially Lady Macbeth,whose image poses questions about the representation of women in comic books, one of the most fertile narrative elements in Kill Shakespeare is the actual presence of William Shakespeare as a character. In conclusion, Del Col and McCreery prove they know their Shakespeare, surprising readers with a fresh approach which, hopefully, will enlarge the Shakespearean audience.

  18. Effects of the Liquids Used to Kill Larvae on the Length of Forensically Important Blow Fly Lucilia sericata Meigen (Diptera: Calliphoridae Larvae

    Directory of Open Access Journals (Sweden)

    Halide Nihal Açıkgöz

    2017-12-01

    Full Text Available Forensic entomological practices rely upon accurate larval identification and measurement of larval length, for the estimation of post-mortem intervals. The methods used for killing larvae may affect the length of larvae. In the autopsy hall, corpses which are contain entomological remains have been washed with grape vinegar. Besides, while collecting and killing the larvae on corpses, crime scene teams use alcohol 70% because it is practical. The aim of this study was to determine which of hot water (90°C, cold vinegar and cold alcohol 96 % method, preserved the best the length of larvae. To achieve this aim, third instar larvae which are reared on 200 g of veal meat were killed using hot water, cold vinegar and cold alcohol. Before killing and after killing the maggots, their length was measured. To determine the difference between the groups to be compared ANOVA test, to reliability and validity analyses Kruskal-Wallis and whether there was any difference between the groups were made with Tukey’s Honestly Significant Difference (Tukey’s HSD Hot water was found to preserve the length of the larvae more accurately than cold vinegar and alcohol.

  19. STK33 kinase inhibitor BRD-8899 has no effect on KRAS-dependent cancer cell viability.

    Science.gov (United States)

    Luo, Tuoping; Masson, Kristina; Jaffe, Jacob D; Silkworth, Whitney; Ross, Nathan T; Scherer, Christina A; Scholl, Claudia; Fröhling, Stefan; Carr, Steven A; Stern, Andrew M; Schreiber, Stuart L; Golub, Todd R

    2012-02-21

    Approximately 30% of human cancers harbor oncogenic gain-of-function mutations in KRAS. Despite interest in KRAS as a therapeutic target, direct blockade of KRAS function with small molecules has yet to be demonstrated. Based on experiments that lower mRNA levels of protein kinases, KRAS-dependent cancer cells were proposed to have a unique requirement for the serine/threonine kinase STK33. Thus, it was suggested that small-molecule inhibitors of STK33 might have therapeutic benefit in these cancers. Here, we describe the development of selective, low nanomolar inhibitors of STK33's kinase activity. The most potent and selective of these, BRD8899, failed to kill KRAS-dependent cells. While several explanations for this result exist, our data are most consistent with the view that inhibition of STK33's kinase activity does not represent a promising anti-KRAS therapeutic strategy.

  20. New modalities in radiation therapy for treatment of cancer

    International Nuclear Information System (INIS)

    Kumar, Deepak

    2013-01-01

    Cancer is a generic term for a large group of diseases characterized by rapid creation of abnormal cells that grow beyond their usual boundaries, and which can then invade adjoining parts of the body and spread to other organs. Cancer mortality is the second and most common cause of death in the USA and in most European countries. In India, it is the fourth leading disease and the major cause of death. Cancer remains one of the most dreadful disease and approximately ten million cases of cancer occur in the world every year. The course of cancer treatment depends on the type of cancer, its location, and its state of advancement. Cancer is treated with surgery, chemotherapy, radiation therapy, hormone therapy, biological therapy and targeted therapy. Radiation therapy is an important an affordable modality for cancer treatment with minimal side effects. Radiation kills cancer cells with high-energy rays targeted directly to the tumor. Radiation therapy works by damaging the DNA and preventing its replication: therefore, it preferentially kills cancer cells, which rapidly divides. Radiation therapy is used for cure, control, and palliation of cancers in more than 60% of cancer patients. The goal of radiotherapy is to treat the cancer and spare the normal tissue as much as possible. Advances have been made in radiotherapy that allow delivery of higher doses of radiation to the tumor while sparing a greater amount of surrounding tissue, thus achieving more cures and fewer acute and long-term side effects. Technological advances and research are being continued to result in improvements in the field. Several new devices and techniques are used these days in radiotherapy for accurate treatment of cancer. Teletherapy (external radiation therapy) used focused radiation beams targeting well defined tumor through extremely detailed imaging scans. Conventional external beam radiation therapy (2DXRT) is delivered via two-dimensional beams using linear accelerator machines (X

  1. Ruxolitinib synergizes with DMF to kill via BIM+BAD-induced mitochondrial dysfunction and via reduced SOD2/TRX expression and ROS.

    Science.gov (United States)

    Tavallai, Mehrad; Booth, Laurence; Roberts, Jane L; McGuire, William P; Poklepovic, Andrew; Dent, Paul

    2016-04-05

    We determined whether the myelofibrosis drug ruxolitinib, an inhibitor of Janus kinases 1/2 (JAK1 and JAK2), could interact with the multiple sclerosis drug dimethyl-fumarate (DMF) to kill tumor cells; studies used the in vivo active form of the drug, mono-methyl fumarate (MMF). Ruxolitinib interacted with MMF to kill brain, breast, lung and ovarian cancer cells, and enhanced the lethality of standard of care therapies such as paclitaxel and temozolomide. MMF also interacted with other FDA approved drugs to kill tumor cells including Celebrex® and Gilenya®. The combination of [ruxolitinib + MMF] inactivated ERK1/2, AKT, STAT3 and STAT5; reduced expression of MCL-1, BCL-XL, SOD2 and TRX; increased BIM expression; decreased BAD S112 S136 phosphorylation; and enhanced pro-caspase 3 cleavage. Expression of activated forms of STAT3, MEK1 or AKT each significantly reduced drug combination lethality; prevented BAD S112 S136 dephosphorylation and decreased BIM expression; and preserved TRX, SOD2, MCL-1 and BCL-XL expression. The drug combination increased the levels of reactive oxygen species in cells, and over-expression of TRX or SOD2 prevented drug combination tumor cell killing. Over-expression of BCL-XL or knock down of BAX, BIM, BAD or apoptosis inducing factor (AIF) protected tumor cells. The drug combination increased AIF : HSP70 co-localization in the cytosol but this event did not prevent AIF : eIF3A association in the nucleus.

  2. Emergence of Buprestidae, Cerambycidae, and Scolytinae (Coleoptera) from mountain pine beetle-killed and fire-killed ponderosa pines in the Black Hills, South Dakota, USA

    Science.gov (United States)

    Sheryl L. Costello; William R. Jacobi; Jose F. Negron

    2013-01-01

    Wood borers (Coleoptera: Cerambycidae and Buprestidae) and bark beetles (Coleoptera: Curculionidae) infest ponderosa pines, Pinus ponderosa P. Lawson and C. Lawson, killed by mountain pine beetle (MPB), Dendroctonus ponderosae Hopkins, and fire. No data is available comparing wood borer and bark beetle densities or species guilds associated with MPB-killed or fire-...

  3. Homefucking is Killing Prostitution / Taavi Eelmaa

    Index Scriptorium Estoniae

    Eelmaa, Taavi, 1971-

    2008-01-01

    Mis jääb vaatajale teatrietendusest meelde? Ilmus Kris Moori raamat "Homefucking is Killing Prostitution". Raamat sisaldab tekste ja Erki Lauri fotosid Von Krahli Teatri samanimelisest etendusest, mida kordagi ei mängitud

  4. Flow cytometric analysis of cell killing by the jumper ant venom peptide pilosulin 1.

    Science.gov (United States)

    King, M A; Wu, Q X; Donovan, G R; Baldo, B A

    1998-08-01

    Pilosulin 1 is a synthetic 56-amino acid residue polypeptide that corresponds to the largest allergenic polypeptide found in the venom of the jumper ant Myrmecia pilosula. Initial experiments showed that pilosulin 1 lysed erythrocytes and killed proliferating B cells. Herein, we describe how flow cytometry was used to investigate the cytotoxicity of the peptide for human white blood cells. Cells were labeled with fluorochrome-conjugated antibodies, incubated with the peptide and 7-aminoactinomycin D (7-AAD), and then analyzed. The effects of varying the peptide concentration, serum concentration, incubation time, and incubation temperature were measured, and the cytotoxicity of pilosulin 1 was compared with that of the bee venom peptide melittin. The antibodies and the 7-AAD enabled the identification of cell subpopulations and dead cells, respectively. It was possible, using the appropriate mix of antibodies and four-color analysis, to monitor the killing of three or more cell subpopulations simultaneously. We found that 1) pilosulin 1 killed cells within minutes, with kinetics similar to those of melittin; 2) pilosulin 1 was a slightly more potent cytotoxic agent than melittin; 3) both pilosulin 1 and melittin were more potent against mononuclear leukocytes than against granulocytes; and 4) serum inhibited killing by either peptide.

  5. Male-killing bacteria as agents of insect pest control

    International Nuclear Information System (INIS)

    Berec, Ludek; Maxin, Daniel; Bernhauerová, Veronika

    2016-01-01

    1. Continual effort is needed to reduce the impact of exotic species in the context of increased globalization. Any innovation in this respect would be an asset. 2. We assess the potential of combining two pest control techniques: the well-established sterile insect technique (SIT) and a novel male-killing technique (MKT), which comprises inoculation of a pest population with bacteria that kill the infected male embryos. 3. Population models are developed to assess the efficiency of using the MKT for insect pest control, either alone or together with the SIT. We seek for conditions under which the MKT weakens requirements on the SIT. 4. Regarding the SIT, we consider both non-heritable and inherited sterility. In both cases, the MKT and SIT benefit one another. The MKT may prevent the SIT from failing when not enough sterilized males are released due to high production costs and/or uncertainty on their mating ability following a high irradiation dose. Conversely, with already established SIT, pest eradication can be achieved after introduction of male-killing bacteria with lower vertical transmission efficiency than if the MKT was applied alone. 5. For tephritid fruit flies with non-heritable sterility, maximal impact of the SIT is achieved when the released males are fully sterile. Conversely, for lepidopterans with inherited sterility, maximal impact of the SIT is achieved for intermediate irradiation doses. In both cases, increasing vertical transmission efficiency of male-killing bacteria benefits the SIT; high enough vertical transmission efficiency allows for pest eradication where the SIT is absent or induces only pest suppression when used alone. 6. Synthesis and applications. While both techniques can suppress or eliminate the pest on their own, combined application of the male-killing technique and the sterile insect technique substantially increases pest control efficiency. If male-killing bacteria are already established in the pest, any assessment of

  6. ING1 and 5-azacytidine act synergistically to block breast cancer cell growth.

    Directory of Open Access Journals (Sweden)

    Satbir Thakur

    Full Text Available Inhibitor of Growth (ING proteins are epigenetic "readers" that recognize trimethylated lysine 4 of histone H3 (H3K4Me3 and target histone acetyl transferase (HAT and histone deacetylase (HDAC complexes to chromatin.Here we asked whether dysregulating two epigenetic pathways with chemical inhibitors showed synergistic effects on breast cancer cell line killing. We also tested whether ING1 could synergize better with chemotherapeutics that target the same epigenetic mechanism such as the HDAC inhibitor LBH589 (Panobinostat or a different epigenetic mechanism such as 5-azacytidine (5azaC, which inhibits DNA methyl transferases. Simultaneous treatment of breast cancer cell lines with LBH589 and 5azaC did not show significant synergy in killing cells. However, combination treatment of ING1 with either LBH589 or 5azaC did show synergy. The combination of ING1b with 5azaC, which targets two distinct epigenetic mechanisms, was more effective at lower doses and enhanced apoptosis as determined by Annexin V staining and cleavage of caspase 3 and poly-ADP-ribose polymerase (PARP. ING1b plus 5azaC also acted synergistically to increase γH2AX staining indicating significant levels of DNA damage were induced. Adenoviral delivery of ING1b with 5azaC also inhibited cancer cell growth in a murine xenograft model and led to tumor regression when viral concentration was optimized in vivo.These data show that targeting distinct epigenetic pathways can be more effective in blocking cancer cell line growth than targeting the same pathway with multiple agents, and that using viral delivery of epigenetic regulators can be more effective in synergizing with a chemical agent than using two chemotherapeutic agents. This study also indicates that the ING1 epigenetic regulator may have additional activities in the cell when expressed at high levels.

  7. Stunning and killing of farmed fish: How to put it into pratice?

    NARCIS (Netherlands)

    Vis, van de J.W.; Abbink, W.; Lambooij, B.; Bracke, M.B.M.

    2014-01-01

    In this article an approach is presented to implement stunning and killing of farmed fish in practice. First, in a laboratory setting, the conditions need to be established to achieve an effective stun without causing avoidable distress and discomfort. Product quality is evaluated to assess the

  8. A New Calculation Method of Dynamic Kill Fluid Density Variation during Deep Water Drilling

    Directory of Open Access Journals (Sweden)

    Honghai Fan

    2017-01-01

    Full Text Available There are plenty of uncertainties and enormous challenges in deep water drilling due to complicated shallow flow and deep strata of high temperature and pressure. This paper investigates density of dynamic kill fluid and optimum density during the kill operation process in which dynamic kill process can be divided into two stages, that is, dynamic stable stage and static stable stage. The dynamic kill fluid consists of a single liquid phase and different solid phases. In addition, liquid phase is a mixture of water and oil. Therefore, a new method in calculating the temperature and pressure field of deep water wellbore is proposed. The paper calculates the changing trend of kill fluid density under different temperature and pressure by means of superposition method, nonlinear regression, and segment processing technique. By employing the improved model of kill fluid density, deep water kill operation in a well is investigated. By comparison, the calculated density results are in line with the field data. The model proposed in this paper proves to be satisfactory in optimizing dynamic kill operations to ensure the safety in deep water.

  9. Nitric oxide prodrug JS-K inhibits ubiquitin E1 and kills tumor cells retaining wild-type p53.

    Science.gov (United States)

    Kitagaki, J; Yang, Y; Saavedra, J E; Colburn, N H; Keefer, L K; Perantoni, A O

    2009-01-29

    Nitric oxide (NO) is a major effector molecule in cancer prevention. A number of studies have shown that NO prodrug JS-K (O(2)-(2,4-dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate) induces apoptotic cell death in vitro and in vivo, indicating that it is a promising new therapeutic for cancer. However, the mechanism of its tumor-killing activity remains unclear. Ubiquitin plays an important role in the regulation of tumorigenesis and cell apoptosis. Our earlier report has shown that inactivation of the ubiquitin system through blocking E1 (ubiquitin-activating enzyme) activity preferentially induces apoptosis in p53-expressing transformed cells. As E1 has an active cysteine residue that could potentially interact with NO, we hypothesized that JS-K could inactivate E1 activity. E1 activity was evaluated by detecting ubiquitin-E1 conjugates through immunoblotting. JS-K strikingly inhibits the ubiquitin-E1 thioester formation in cells in a dose-dependent manner with an IC(50) of approximately 2 microM, whereas a JS-K analog that cannot release NO did not affect these levels in cells. Moreover, JS-K decreases total ubiquitylated proteins and increases p53 levels, which is mainly regulated by ubiquitin and proteasomal degradation. Furthermore, JS-K preferentially induces cell apoptosis in p53-expressing transformed cells. These findings indicate that JS-K inhibits E1 activity and kills transformed cells harboring wild-type p53.

  10. Effects of caffeine on X-irradiated synchronous, asynchronous and plateau phase mouse ascites cells: the importance of progression through the cell cycle for caffeine enhancement of killing

    International Nuclear Information System (INIS)

    Iliakis, G.; Nuesse, M.

    1983-01-01

    Caffeine potentiated the killing effect of X-rays on exponentially growing cells giving rise to exponential curves (D 0 =(0.8+-0.05)Gy) at 4mM and 14 hours treatment. Irradiated plateau phase cells were less sensitive. Exponentially growing cells also became less sensitive to the effects of caffeine when they were incubated in the conditioned medium of plateau phase cells(C-medium) in which cell growth was considerably inhibited. Low caffeine concentrations(2mM) enhanced X-ray induced killing of cells irradiated in G 1 -,G 1 /S- or S-phase, but more effectively G 2 -phase cells. High caffeine concentrations (6mM) enhanced killing of cells in all phases of the cell cycle. Incubation of synchronized populations in C-medium during treatment with caffeine (2mM and 6mM) resulted in less potentiation than in cells treated in fresh medium. The expression of X-ray induced potentially lethal damage caused by 6mM caffeine in cells irradiated in various phases resulted in an exponential survival curve with a mean lethal dose of (0.8+-0.05)Gy, but the time of caffeine treatment necessary to reach this curve was different for cells irradiated in different phases. PLD repair, measured as loss of sensitivity to 6mM caffeine (4 hours treatment) was of 1-2 hours duration. (author)

  11. The bystander cell-killing effect mediated by nitric oxide in normal human fibroblasts varies with irradiation dose but not with radiation quality.

    Science.gov (United States)

    Yokota, Yuichiro; Funayama, Tomoo; Mutou-Yoshihara, Yasuko; Ikeda, Hiroko; Kobayashi, Yasuhiko

    2015-05-01

    To investigate the dependence of the bystander cell-killing effect on radiation dose and quality, and to elucidate related molecular mechanisms. Normal human fibroblast WI-38 cells were irradiated with 0.125 - 2 Gy of γ-rays or carbon ions and were co-cultured with non-irradiated cells. Survival rates of bystander cells were investigated using the colony formation assays, and nitrite concentrations in the medium were measured using the modified Saltzman method. Survival rates of bystander cells decreased with doses of γ-rays and carbon ions of ≤ 0.5 Gy. Treatment of the specific nitric oxide (NO) radical scavenger prevented reductions in survival rates of bystander cells. Moreover, nitrite concentrations increased with doses of less than 0.25 Gy (γ-rays) and 1 Gy (carbon ions). The dose responses of increased nitrite concentrations as well as survival reduction were similar between γ-rays and carbon ions. In addition, negative relationships were observed between survival rates and nitrite concentrations. The bystander cell-killing effect mediated by NO radicals in normal human fibroblasts depends on irradiation doses of up to 0.5 Gy, but not on radiation quality. NO radical production appears to be an important determinant of γ-ray- and carbon-ion-induced bystander effects.

  12. To kill a mockingbird robot

    NARCIS (Netherlands)

    Bartneck, C.; Verbunt, M.N.C.; Mubin, O.; Al Mahmud, A.

    2007-01-01

    Robots are being introduced in our society but their social status is still unclear. A critical issue is if the robot's exhibition of intelligent life-like behavior leads to the users' perception of animacy. The ultimate test for the life-likeness of a robot is to kill it. We therefore conducted an

  13. Wind farm facilities in Germany kill noctule bats from near and far.

    Directory of Open Access Journals (Sweden)

    Linn S Lehnert

    Full Text Available Over recent years, it became widely accepted that alternative, renewable energy may come at some risk for wildlife, for example, when wind turbines cause large numbers of bat fatalities. To better assess likely populations effects of wind turbine related wildlife fatalities, we studied the geographical origin of the most common bat species found dead below German wind turbines, the noctule bat (Nyctalus noctula. We measured stable isotope ratios of non-exchangeable hydrogen in fur keratin to separate migrants from local individuals, used a linear mixed-effects model to identify temporal, spatial and biological factors explaining the variance in measured stable isotope ratios and determined the geographical breeding provenance of killed migrants using isoscape origin models. We found that 72% of noctule bat casualties (n = 136 were of local origin, while 28% were long-distance migrants. These findings highlight that bat fatalities at German wind turbines may affect both local and distant populations. Our results indicated a sex and age-specific vulnerability of bats towards lethal accidents at turbines, i.e. a relatively high proportion of killed females were recorded among migratory individuals, whereas more juveniles than adults were recorded among killed bats of local origin. Migratory noctule bats were found to originate from distant populations in the Northeastern parts of Europe. The large catchment areas of German wind turbines and high vulnerability of female and juvenile noctule bats call for immediate action to reduce the negative cross-boundary effects of bat fatalities at wind turbines on local and distant populations. Further, our study highlights the importance of implementing effective mitigation measures and developing species and scale-specific conservation approaches on both national and international levels to protect source populations of bats. The efficacy of local compensatory measures appears doubtful, at least for migrant

  14. In vitro investigation of the effect of matrix molecules on the behavior of colon cancer cells under the effect of geldanamycin derivative.

    Science.gov (United States)

    Vural, Kamil; Kosova, Funda; Kurt, Feyzan Özdal; Tuğlu, İbrahim

    2017-10-01

    The chaperone-binding drug, 17-allylamino-17-demethoxygeldanamycin, has recently come into clinical use. It is a derivative of geldanamycin, an ansamycin benzoquinone antibiotic with anti-carcinogenic effect. Understanding the effect of this drug on the cancer cells and their niche is important for treatment. We applied 17-allylamino-17-demethoxygeldanamycin to colon cancer cell line (Colo 205) on matrix molecules to investigate the relationship of apoptosis with terminal deoxynucleotidyl transferase dUTP nick end labeling immunocytochemistry and related gene expression. We used laminin and collagen I for matrix molecules and vascular endothelial growth factor for angiogenic structure. We also examined apoptosis-related signaling pathway including mitochondrial proteins, cytochrome c, Bcl-2, caspase-9, Apaf-1 expression using real-time polymerase chain reaction. There was clear effect of 17-allylamino-17-demethoxygeldanamycin that killed more cells on tissue culture plastic compared to matrix molecules. The IC 50 value was 0.58 µg/mL for tissue culture plastic compared with 0.64 µg/mL for laminin and 0.75 µg/mL for collagen I. The analyses showed that more cells on matrix molecules underwent apoptosis compared to that on tissue culture plastic. Apoptosis-related gene expression was similar in which Bcl-2 expression decreased and proapoptotic gene expression of the cells on matrix molecules increased compared to that on tissue culture plastic. However, the application of 17-allylamino-17-demethoxygeldanamycin was more effective for the cells on collagen I compared to the cells on laminin. There was also a decrease in angiogenesis as shown by the vascular endothelial growth factor staining. This was more pronounced by coating of the tissue culture plastic with matrix molecules. Our results supported the anti-cancer effect of 17-allylamino-17-demethoxygeldanamycin, and this effect depended on matrix molecules. This effect occurs through apoptosis, and related

  15. Quantifying Killing of Orangutans and Human-Orangutan Conflict in Kalimantan, Indonesia

    Science.gov (United States)

    Meijaard, Erik; Buchori, Damayanti; Hadiprakarsa, Yokyok; Utami-Atmoko, Sri Suci; Nurcahyo, Anton; Tjiu, Albertus; Prasetyo, Didik; Nardiyono; Christie, Lenny; Ancrenaz, Marc; Abadi, Firman; Antoni, I Nyoman Gede; Armayadi, Dedy; Dinato, Adi; Ella; Gumelar, Pajar; Indrawan, Tito P.; Kussaritano; Munajat, Cecep; Priyono, C. Wawan Puji; Purwanto, Yadi; Puspitasari, Dewi; Putra, M. Syukur Wahyu; Rahmat, Abdi; Ramadani, Harri; Sammy, Jim; Siswanto, Dedi; Syamsuri, Muhammad; Andayani, Noviar; Wu, Huanhuan; Wells, Jessie Anne; Mengersen, Kerrie

    2011-01-01

    Human-orangutan conflict and hunting are thought to pose a serious threat to orangutan existence in Kalimantan, the Indonesian part of Borneo. No data existed prior to the present study to substantiate these threats. We investigated the rates, spatial distribution and causes of conflict and hunting through an interview-based survey in the orangutan's range in Kalimantan, Indonesia. Between April 2008 and September 2009, we interviewed 6983 respondents in 687 villages to obtain socio-economic information, assess knowledge of local wildlife in general and orangutan encounters specifically, and to query respondents about their knowledge on orangutan conflicts and killing, and relevant laws. This survey revealed estimated killing rates of between 750 and 1800 animals killed in the last year, and between 1950 and 3100 animals killed per year on average within the lifetime of the survey respondents. These killing rates are higher than previously thought and are high enough to pose a serious threat to the continued existence of orangutans in Kalimantan. Importantly, the study contributes to our understanding of the spatial variation in threats, and the underlying causes of those threats, which can be used to facilitate the development of targeted conservation management. PMID:22096582

  16. Quantifying killing of orangutans and human-orangutan conflict in Kalimantan, Indonesia.

    Directory of Open Access Journals (Sweden)

    Erik Meijaard

    Full Text Available Human-orangutan conflict and hunting are thought to pose a serious threat to orangutan existence in Kalimantan, the Indonesian part of Borneo. No data existed prior to the present study to substantiate these threats. We investigated the rates, spatial distribution and causes of conflict and hunting through an interview-based survey in the orangutan's range in Kalimantan, Indonesia. Between April 2008 and September 2009, we interviewed 6983 respondents in 687 villages to obtain socio-economic information, assess knowledge of local wildlife in general and orangutan encounters specifically, and to query respondents about their knowledge on orangutan conflicts and killing, and relevant laws. This survey revealed estimated killing rates of between 750 and 1800 animals killed in the last year, and between 1950 and 3100 animals killed per year on average within the lifetime of the survey respondents. These killing rates are higher than previously thought and are high enough to pose a serious threat to the continued existence of orangutans in Kalimantan. Importantly, the study contributes to our understanding of the spatial variation in threats, and the underlying causes of those threats, which can be used to facilitate the development of targeted conservation management.

  17. A small quantity of sodium arsenite will kill large cull hardwoods

    Science.gov (United States)

    Francis M. Rushmore

    1956-01-01

    Although it is well known that sodium arsenite is an effective silvicide, forestry literature contains little information about the minimum quantities of this chemical that are required to kill large cull trees. Such information would be of value because if small quantities of a chemical will produce satisfactory results, small holes or frills in the tree will hold it...

  18. Effectiveness of Disinfectants in Killing Enterobacter sakazakii in Suspension, Dried on the Surface of Stainless Steel, and in a Biofilm▿

    OpenAIRE

    Kim, Hoikyung; Ryu, Jee-Hoon; Beuchat, Larry R.

    2006-01-01

    The effectiveness of 13 disinfectants used in hospitals, day-care centers, and food service kitchens in killing Enterobacter sakazakii in suspension, dried on the surface of stainless steel, and in biofilm was determined. E. sakazakii exhibited various levels of resistance to the disinfectants, depending on the composition of the disinfectants, amount and type of organic matrix surrounding cells, and exposure time. Populations of planktonic cells suspended in water (7.22 to 7.40 log CFU/ml) d...

  19. Dynamics of human complement-mediated killing of Klebsiella pneumoniae.

    Science.gov (United States)

    Nypaver, Christina M; Thornton, Margaret M; Yin, Suellen M; Bracho, David O; Nelson, Patrick W; Jones, Alan E; Bortz, David M; Younger, John G

    2010-11-01

    With an in vitro system that used a luminescent strain of Klebsiella pneumoniae to assess bacterial metabolic activity in near-real-time, we investigated the dynamics of complement-mediated attack in healthy individuals and in patients presenting to the emergency department with community-acquired severe sepsis. A novel mathematical/statistical model was developed to simplify light output trajectories over time into two fitted parameters, the rate of complement activation and the delay from activation to the onset of killing. Using Factor B-depleted serum, the alternative pathway was found to be the primary bactericidal effector: In the absence of B, C3 opsonization as measured by flow cytometry did not progress and bacteria proliferated near exponentially. Defects in bacterial killing were easily demonstrable in patients with severe sepsis compared with healthy volunteers. In most patients with sepsis, the rate of activation was higher than in normal subjects but was associated with a prolonged delay between activation and bacterial killing (P < 0.05 for both). Theoretical modeling suggested that this combination of accentuated but delayed function should allow successful bacterial killing but with significantly greater complement activation. The use of luminescent bacteria allowed for the development of a novel and powerful tool for assessing complement immunology for the purposes of mechanistic study and patient evaluation.

  20. A compound magnetic field generating system for targeted killing of Staphylococcus aureus by magnetotactic bacteria in a microfluidic chip

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Linjie; Chen, Changyou [Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); France-China Bio-Mineralization and Nano-Structures Laboratory, Beijing (China); Wang, Pingping; Chen, Chuanfang [Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); France-China Bio-Mineralization and Nano-Structures Laboratory, Beijing (China); Wu, Long-Fei [Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Laboratoire de Chimie Bactérienne, UMR7283, Aix-Marseille University, Institut de Microbiologie de la Méditerranée, CNRS, Marseille (France); Song, Tao, E-mail: songtao@mail.iee.ac.cn [Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); France-China Bio-Mineralization and Nano-Structures Laboratory, Beijing (China)

    2017-04-01

    A compound magnetic field generating system was built to kill Staphylococcus aureus (S. aureus) by magnetotactic bacteria (MTB) in a microfluidic chip in this paper. The system was consisted of coil pairs, a switch circuit, a control program and controllable electrical sources. It could produce a guiding magnetic field (gMF) of ±1 mT along arbitrary direction in the horizontal plane, a rotating magnetic field (rMF) and a swing magnetic field (sMF, 2 Hz, 10 mT) by controlling the currents. The gMF was used to guide MTB swimming to the S. aureus pool in the microfluidic chip, and then the rMF enhanced the mixture of S. aureus and MTB cells, therefore beneficial to the attachments of them. Finally, the sMF was used to induce the death of S. aureus via MTB. The results showed that MTB could be navigated by the gMF and that 47.1% of S. aureus were killed when exposed to the sMF. It provides a new solution for the targeted treatment of infected diseases and even cancers. - Highlights: • We built a system which generated a compound magnetic field in one device. • The compoud magnetic field includes guiding, rotating and swing magnetic fields. • MTB was guided and S. aureus attached to MTB was killed in the same device.

  1. Nanotechnology-Based Detection and Targeted Therapy in Cancer: Nano-Bio Paradigms and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Mousa, Shaker A., E-mail: shaker.mosua@acphs.edu [The Pharmaceutical Research Institute at Albany College of Pharmacy and Health Sciences, 1 Discovery Drive, Rensselaer, NY 12144 (United States); College of Medicine, King Saud University, Riyadh (Saudi Arabia); Bharali, Dhruba J. [The Pharmaceutical Research Institute at Albany College of Pharmacy and Health Sciences, 1 Discovery Drive, Rensselaer, NY 12144 (United States)

    2011-07-15

    The application of nanotechnology to biomedicine, particularly in cancer diagnosis and treatment, promises to have a profound impact on healthcare. The exploitation of the unique properties of nano-sized particles for cancer therapeutics is most popularly known as nanomedicine. The goals of this review are to discuss the current state of nanomedicine in the field of cancer detection and the subsequent application of nanotechnology to treatment. Current cancer detection methods rely on the patient contacting their provider when they feel ill, or relying on non-specific screening methods, which unfortunately often result in cancers being detected only after it is too late for effective treatment. Cancer treatment paradigms mainly rely on whole body treatment with chemotherapy agents, exposing the patient to medications that non-specifically kill rapidly dividing cells, leading to debilitating side effects. In addition, the use of toxic organic solvents/excipients can hamper the further effectiveness of the anticancer drug. Nanomedicine has the potential to increase the specificity of treatment of cancer cells while leaving healthy cells intact through the use of novel nanoparticles. This review discusses the use of nanoparticles such as quantum dots, nanoshells, nanocrystals, nanocells, and dendrimers for the detection and treatment of cancer. Future directions and perspectives of this cutting-edge technology are also discussed.

  2. Nanotechnology-Based Detection and Targeted Therapy in Cancer: Nano-Bio Paradigms and Applications

    Directory of Open Access Journals (Sweden)

    Dhruba J. Bharali

    2011-07-01

    Full Text Available The application of nanotechnology to biomedicine, particularly in cancer diagnosis and treatment, promises to have a profound impact on healthcare. The exploitation of the unique properties of nano-sized particles for cancer therapeutics is most popularly known as nanomedicine. The goals of this review are to discuss the current state of nanomedicine in the field of cancer detection and the subsequent application of nanotechnology to treatment. Current cancer detection methods rely on the patient contacting their provider when they feel ill, or relying on non-specific screening methods, which unfortunately often result in cancers being detected only after it is too late for effective treatment. Cancer treatment paradigms mainly rely on whole body treatment with chemotherapy agents, exposing the patient to medications that non-specifically kill rapidly dividing cells, leading to debilitating side effects. In addition, the use of toxic organic solvents/excipients can hamper the further effectiveness of the anticancer drug. Nanomedicine has the potential to increase the specificity of treatment of cancer cells while leaving healthy cells intact through the use of novel nanoparticles. This review discusses the use of nanoparticles such as quantum dots, nanoshells, nanocrystals, nanocells, and dendrimers for the detection and treatment of cancer. Future directions and perspectives of this cutting-edge technology are also discussed.

  3. Nanotechnology-Based Detection and Targeted Therapy in Cancer: Nano-Bio Paradigms and Applications

    International Nuclear Information System (INIS)

    Mousa, Shaker A.; Bharali, Dhruba J.

    2011-01-01

    The application of nanotechnology to biomedicine, particularly in cancer diagnosis and treatment, promises to have a profound impact on healthcare. The exploitation of the unique properties of nano-sized particles for cancer therapeutics is most popularly known as nanomedicine. The goals of this review are to discuss the current state of nanomedicine in the field of cancer detection and the subsequent application of nanotechnology to treatment. Current cancer detection methods rely on the patient contacting their provider when they feel ill, or relying on non-specific screening methods, which unfortunately often result in cancers being detected only after it is too late for effective treatment. Cancer treatment paradigms mainly rely on whole body treatment with chemotherapy agents, exposing the patient to medications that non-specifically kill rapidly dividing cells, leading to debilitating side effects. In addition, the use of toxic organic solvents/excipients can hamper the further effectiveness of the anticancer drug. Nanomedicine has the potential to increase the specificity of treatment of cancer cells while leaving healthy cells intact through the use of novel nanoparticles. This review discusses the use of nanoparticles such as quantum dots, nanoshells, nanocrystals, nanocells, and dendrimers for the detection and treatment of cancer. Future directions and perspectives of this cutting-edge technology are also discussed

  4. Supersymmetric backgrounds, the Killing superalgebra, and generalised special holonomy

    Energy Technology Data Exchange (ETDEWEB)

    Coimbra, André [Institut des Hautes Études Scientifiques, Le Bois-Marie,35 route de Chartres, F-91440 Bures-sur-Yvette (France); Strickland-Constable, Charles [Institut des Hautes Études Scientifiques, Le Bois-Marie,35 route de Chartres, F-91440 Bures-sur-Yvette (France); Institut de physique théorique, Université Paris Saclay, CEA, CNRS,Orme des Merisiers, F-91191 Gif-sur-Yvette (France)

    2016-11-10

    We prove that, for M theory or type II, generic Minkowski flux backgrounds preserving N supersymmetries in dimensions D≥4 correspond precisely to integrable generalised G{sub N} structures, where G{sub N} is the generalised structure group defined by the Killing spinors. In other words, they are the analogues of special holonomy manifolds in E{sub d(d)}×ℝ{sup +} generalised geometry. In establishing this result, we introduce the Kosmann-Dorfman bracket, a generalisation of Kosmann’s Lie derivative of spinors. This allows us to write down the internal sector of the Killing superalgebra, which takes a rather simple form and whose closure is the key step in proving the main result. In addition, we find that the eleven-dimensional Killing superalgebra of these backgrounds is necessarily the supertranslational part of the N-extended super-Poincaré algebra.

  5. Killing of tumor cells: a drama in two acts.

    Science.gov (United States)

    Giansanti, Vincenzo; Tillhon, Micol; Mazzini, Giuliano; Prosperi, Ennio; Lombardi, Paolo; Scovassi, A Ivana

    2011-11-15

    Cancer still represents a major health problem worldwide, which urges the development of more effective strategies. Resistance to chemotherapy, a major obstacle for cancer eradication, is mainly related to an intrinsic failure to activate the apoptotic pathways. However, a protective effect of autophagy toward cancer cells has been recently observed, thus adding further complexity to the development of an effective approach counteracting cancer cell growth and improving the response to therapy. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Folate-conjugated polymeric micelle HB-loaded on targeting effect by intraperitoneal to ovarian cancer in vitro and in vivo.

    Science.gov (United States)

    Li, Jie; Yao, Shu; Wang, Kai; Lu, Zaijun; Su, Xuantao; Li, Li; Yuan, Cunzhong; Feng, Jinbo; Yan, Shi; Kong, Beihua; Song, Kun

    2018-04-04

    Photodynamic therapy (PDT) is considered as an innovative and attractive modality to treat ovarian cancer. In this study, a biodegradable polymer poly (ethylene glycol)-poly (lactic acid)(PLA)-folate (FA-PEG-PLA) was prepared in order to synthesize an active targeting, water soluble and pharmacomodulated photosensitizer nano-carriers. The drug loading content, encapsulation efficiency, in vitro and in vivo release were characterized, in which HB/FA-PEG-PLA micelles had a high encapsulation efficiency and much slower control release for drugs compared to free drugs (pHB/FA-PEG-PLA micelles, the cellular uptake study in vitro were tested, which owned significantly enhanced uptake of HB/FA-PEG-PLA micelles in SKOV3 (FR+) compared to A2780 cancer cells (FR-). The enhanced uptake of HB/FA-PEG-PLA micelles to cancer cells resulted in a more effective post-PDT killing of SKOV3 cells compared to plain micelles and free drugs. Binding and uptake of HB/FA-PEG-PLA micelles by SKOV3 cells were also observed in vivo after intraperitoneal injection of folate targeted micelles in tumor-bearing ascitic ovarian cancer animals. The drug levels in ascitic tumor tissues were increased by 20-fold (pHB-loaded micelles were mainly distributed in kidney and liver (the main clearance organs) in biodistribution. These results demonstrated that our new developed PDT photosensitizer HB/FA-PEG-PLA micelles has a high drug-loading capacity, good biocompatibility, control drug release, and enhanced targeting and antitumor effect, which is a potential approach to future targeting ovarian cancer therapy. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. Carbon stocks of trees killed by bark beetles and wildfire in the western United States

    International Nuclear Information System (INIS)

    Hicke, Jeffrey A; Meddens, Arjan J H; Kolden, Crystal A; Allen, Craig D

    2013-01-01

    Forests are major components of the carbon cycle, and disturbances are important influences of forest carbon. Our objective was to contribute to the understanding of forest carbon cycling by quantifying the amount of carbon in trees killed by two disturbance types, fires and bark beetles, in the western United States in recent decades. We combined existing spatial data sets of forest biomass, burn severity, and beetle-caused tree mortality to estimate the amount of aboveground and belowground carbon in killed trees across the region. We found that during 1984–2010, fires killed trees that contained 5–11 Tg C year −1 and during 1997–2010, beetles killed trees that contained 2–24 Tg C year −1 , with more trees killed since 2000 than in earlier periods. Over their periods of record, amounts of carbon in trees killed by fires and by beetle outbreaks were similar, and together these disturbances killed trees representing 9% of the total tree carbon in western forests, a similar amount to harvesting. Fires killed more trees in lower-elevation forest types such as Douglas-fir than higher-elevation forest types, whereas bark beetle outbreaks also killed trees in higher-elevation forest types such as lodgepole pine and Engelmann spruce. Over 15% of the carbon in lodgepole pine and spruce/fir forest types was in trees killed by beetle outbreaks; other forest types had 5–10% of the carbon in killed trees. Our results document the importance of these natural disturbances in the carbon budget of the western United States. (letter)

  8. Fertility effects of cancer treatment.

    Science.gov (United States)

    Marsden, Donald E; Hacker, Neville

    2003-01-01

    Cancer sufferers are a subfertile group, and most treatments have the potential to adversely affect gonadal function. As cancer treatment becomes more effective and survival rates improve there are more cancer survivors in the reproductive age group for whom parenting is an important consideration. This article outlines the effects on fertility of cancer treatments and techniques to minimise the risk of infertility. The overall prospects for younger cancer sufferers to either retain their fertility or have genetic offspring is now better than ever before, due to advances in assisted reproductive technology, the appropriate use of fertility sparing surgery and other techniques to reduce the toxicity of therapy on the reproductive organs. These advances raise new moral and ethical concerns that must be considered before advising cancer sufferers of the options for preserving reproductive capacity.

  9. Killed oral cholera vaccines: history, development and implementation challenges.

    Science.gov (United States)

    Lopez, Anna Lena; Gonzales, Maria Liza Antoinette; Aldaba, Josephine G; Nair, G Balakrish

    2014-09-01

    Cholera is still a major global health problem, affecting mainly people living in unsanitary conditions and who are at risk for outbreaks of cholera. During the past decade, outbreaks are increasingly reported from more countries. From the early killed oral cholera vaccine, rapid improvements in vaccine development occurred as a result of a better understanding of the epidemiology of the disease, pathogenesis of cholera infection and immunity. The newer-generation oral killed cholera vaccines have been shown to be safe and effective in field trials conducted in cholera endemic areas. Likewise, they have been shown to be protective when used during outbreak settings. Aside from providing direct protection to vaccinated individuals, recent studies have demonstrated that these killed oral vaccines also confer indirect protection through herd immunity. Although new-generation oral cholera vaccines should not be considered in isolation from other preventive approaches in countries where they are most needed, especially improved water quality and sanitation, these vaccines serve as immediately available public health tools for preventing further morbidity and mortality from cholera. However, despite its availability for more than two decades, use of these vaccines has not been optimized. Although there are limitations of the currently available oral cholera vaccines, recent data show that the vaccines are safe, feasible to use even in difficult circumstances and able to provide protection in various settings. Clear identification of the areas and target population groups who will benefit from the use of the cholera vaccines will be required and strategies to facilitate accessibility and usage of these vaccines in these areas and population groups will need to be developed.

  10. Analysis of Chemopredictive Assay for Targeting Cancer Stem Cells in Glioblastoma Patients

    Directory of Open Access Journals (Sweden)

    Candace M. Howard

    2017-04-01

    Full Text Available Introduction: The prognosis of glioblastoma (GBM treated with standard-of-care maximal surgical resection and concurrent adjuvant temozolomide (TMZ/radiotherapy remains very poor (less than 15 months. GBMs have been found to contain a small population of cancer stem cells (CSCs that contribute to tumor propagation, maintenance, and treatment resistance. The highly invasive nature of high-grade gliomas and their inherent resistance to therapy lead to very high rates of recurrence. For these reasons, not all patients with similar diagnoses respond to the same chemotherapy, schedule, or dose. Administration of ineffective anticancer therapy is not only costly but more importantly burdens the patient with unnecessary toxicity and selects for the development of resistant cancer cell clones. We have developed a drug response assay (ChemoID that identifies the most effective chemotherapy against CSCs and bulk of tumor cells from of a panel of potential treatments, offering great promise for individualized cancer management. Providing the treating physician with drug response information on a panel of approved drugs will aid in personalized therapy selections of the most effective chemotherapy for individual patients, thereby improving outcomes. A prospective study was conducted evaluating the use of the ChemoID drug response assay in GBM patients treated with standard of care. Methods: Forty-one GBM patients (mean age 54 years, 59% male, all eligible for a surgical biopsy, were enrolled in an Institutional Review Board–approved protocol, and fresh tissue samples were collected for drug sensitivity testing. Patients were all treated with standard-of-care TMZ plus radiation with or without maximal surgery, depending on the status of the disease. Patients were prospectively monitored for tumor response, time to recurrence, progression-free survival (PFS, and overall survival (OS. Odds ratio (OR associations of 12-month recurrence, PFS, and OS outcomes

  11. Modification of oxide inclusions in calcium-treated Al-killed high sulphur steels

    NARCIS (Netherlands)

    Gollapalli, Veerababu; Rao, M.B.Venkata; Karamched, P.S.; Borra, C.R.; Roy, G.G.; Srirangam, Prakash

    2018-01-01

    A study has been carried out to understand the modification of alumina inclusions in Al-killed high sulphur steel with calcium treatment. For calcium treatment to be effective, a general practice is to desulphurise the steel to prevent the formation of solid CaS inclusions that are harmful to

  12. Multiple factors and processes involved in host cell killing by bacteriophage Mu: characterization and mapping.

    Science.gov (United States)

    Waggoner, B T; Marrs, C F; Howe, M M; Pato, M L

    1984-07-15

    The regions of bacteriophage Mu involved in host cell killing were determined by infection of a lambda-immune host with 12 lambda pMu-transducing phages carrying different amounts of Mu DNA beginning at the left end. Infecting lambda pMu phages containing 5.0 (+/- 0.2) kb or less of the left end of Mu DNA did not kill the lambda-immune host, whereas lambda pMu containing 5.1 kb did kill, thus locating the right end of the kil gene between approximately 5.0 and 5.1 kb. For the Kil+ phages the extent of killing increased as the multiplicity of infection (m.o.i.) increased. In addition, killing was also affected by the presence of at least two other regions of Mu DNA: one, located between 5.1 and 5.8 kb, decreased the extent of killing; the other, located between 6.3 and 7.9 kb, greatly increased host cell killing. Killing was also assayed after lambda pMu infection of a lambda-immune host carrying a mini-Mu deleted for most of the B gene and the middle region of Mu DNA. Complementation of mini-Mu replication by infecting B+ lambda pMu phages resulted in killing of the lambda-immune, mini-Mu-containing host, regardless of the presence or absence of the Mu kil gene. The extent of host cell killing increased as the m.o.i. of the infecting lambda pMu increased, and was further enhanced by both the presence of the kil gene and the region located between 6.3 and 7.9 kb. These distinct processes of kil-mediated killing in the absence of replication and non-kil-mediated killing in the presence of replication were also observed after induction of replication-deficient and kil mutant prophages, respectively.

  13. Age and sex composition of seals killed by polar bears in the eastern Beaufort Sea.

    Science.gov (United States)

    Pilfold, Nicholas W; Derocher, Andrew E; Stirling, Ian; Richardson, Evan; Andriashek, Dennis

    2012-01-01

    Polar bears (Ursus maritimus) of the Beaufort Sea enter hyperphagia in spring and gain fat reserves to survive periods of low prey availability. We collected information on seals killed by polar bears (n=650) and hunting attempts on ringed seal (Pusa hispida) lairs (n=1396) observed from a helicopter during polar bear mark-recapture studies in the eastern Beaufort Sea in spring in 1985-2011. We investigated how temporal shifts in ringed seal reproduction affect kill composition and the intraspecific vulnerabilities of ringed seals to polar bear predation. Polar bears primarily preyed on ringed seals (90.2%) while bearded seals (Erignathus barbatus) only comprised 9.8% of the kills, but 33% of the biomass. Adults comprised 43.6% (150/344) of the ringed seals killed, while their pups comprised 38.4% (132/344). Juvenile ringed seals were killed at the lowest proportion, comprising 18.0% (62/344) of the ringed seal kills. The proportion of ringed seal pups was highest between 2007-2011, in association with high ringed seal productivity. Half of the adult ringed seal kills were ≥ 21 years (60/121), and kill rates of adults increased following the peak of parturition. Determination of sex from DNA revealed that polar bears killed adult male and adult female ringed seals equally (0.50, n=78). The number of hunting attempts at ringed seal subnivean lair sites was positively correlated with the number of pup kills (r(2) =0.30, P=0.04), but was not correlated with the number of adult kills (P=0.37). Results are consistent with decadal trends in ringed seal productivity, with low numbers of pups killed by polar bears in spring in years of low pup productivity, and conversely when pup productivity was high. Vulnerability of adult ringed seals to predation increased in relation to reproductive activities and age, but not gender.

  14. 77 FR 10960 - Security Zone, East River and Bronx Kill; Randalls and Wards Islands, NY

    Science.gov (United States)

    2012-02-24

    ...'' W (Port Morris Stacks), and all waters of the Bronx Kill southeast of the Bronx Kill Rail Road...-AA87 Security Zone, East River and Bronx Kill; Randalls and Wards Islands, NY AGENCY: Coast Guard, DHS... waters of the East River and Bronx Kill, in the vicinity of Randalls and Wards Islands, New York. This...

  15. A novel oncolytic adenovirus targeting Wnt signaling effectively inhibits cancer-stem like cell growth via metastasis, apoptosis and autophagy in HCC models.

    Science.gov (United States)

    Zhang, Jian; Lai, Weijie; Li, Qiang; Yu, Yang; Jin, Jin; Guo, Wan; Zhou, Xiumei; Liu, Xinyuan; Wang, Yigang

    2017-09-16

    Cancer stem cells (CSCs), which are highly differentiated and self-renewing, play an important role in the occurrence, therapeutic resistant and metastasis of hepatacellular carcinoma (HCC). Oncolytic adenoviruses have targeted killing effect on tumor cells, and are invoked as candidate drugs for cancer treatment. We designed a dual-regulated oncolytic adenovirus Ad.wnt-E1A(△24bp)-TSLC1 that targets Wnt and Rb signaling pathways respectively, and carries the tumor suppressor gene, TSLC1. Previous studies have demonstrated that oncolytic adenovirus mediated TSLC1can target liver cancer and exhibit significant cytotoxicity. However, whether Ad.wnt-E1A(△24bp)-TSLC1 can effectively eliminate liver CSCs remains to be explored. We first used the spheroid culture to enrich the liver CSCs-like cells, and detected the self-renewal capacity, differentiation, drug resistance and tumorigenicity. The results showed that Ad-wnt-E1A(△24bp)-TSLC1 could effectively lead to autophagic death. In addition, recombinant adenovirus effectively induced the apoptosis, inhibit metastasis of hepatic CSCs-like cells in vivo. Further animal experiments indicated that Ad-wnt-E1A(△24bp)-TSLC1could effectively inhibit the growth of transplanted tumor of hepatic CSCs and prolong the survival time of mice. Therefore, the novel oncolytic adenovirus Ad.wnt-E1A(△24bp)-TSLC1 has potential application as a therapeutic target for HCC stem cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Cost-effectiveness of colorectal cancer screening

    NARCIS (Netherlands)

    I. Lansdorp-Vogelaar (Iris); A.B. Knudsen (Amy); H. Brenner (Hermann)

    2011-01-01

    textabstractColorectal cancer is an important public health problem. Several screening methods have been shown to be effective in reducing colorectal cancer mortality. The objective of this review was to assess the cost-effectiveness of the different colorectal cancer screening methods and to

  17. Novel water-based antiseptic lotion demonstrates rapid, broad-spectrum kill compared with alcohol antiseptic.

    Science.gov (United States)

    Czerwinski, Steven E; Cozean, Jesse; Cozean, Colette

    2014-01-01

    A novel alcohol-based antiseptic and a novel water-based antiseptic lotion, both with a synergistic combination of antimicrobial ingredients containing 0.2% benzethonium chloride, were evaluated using the standard time-kill method against 25 FDA-specified challenge microorganisms. The purpose of the testing was to determine whether a non-alcohol product could have equivalent rapid and broad-spectrum kill to a traditional alcohol sanitizer. Both the alcohol- and water-based products showed rapid and broad-spectrum antimicrobial activity. The average 15-s kill was 99.999% of the challenge organism for the alcohol-based antiseptic and 99.971% for the water-based antiseptic. The alcohol-based product demonstrated 100% of peak efficacy (60s) within the first 15s, whereas the water-based product showed 99.97%. The novel alcohol-based antiseptic reduced concentrations of 100% of organisms by 99.999%, whereas the water-based antiseptic lotion showed the same reduction for 96% of organisms. A novel water-based antiseptic product demonstrated equivalent rapid, broad-spectrum antimicrobial activity to an alcohol-based sanitizer and provided additional benefits of reduced irritation, persistent effect, and greater efficacy against common viruses. The combination of rapid, broad-spectrum immediate kill and persistent efficacy against pathogens may have significant clinical benefit in limiting the spread of disease. Copyright © 2014 King Saud Bin Abdulaziz University for Health Sciences. Published by Elsevier Ltd. All rights reserved.

  18. Thou Shalt Not Kill: Conscientious Objection and the Decalogue

    Science.gov (United States)

    2012-04-01

    used to condone animal cruelty .66 Second, n¥1 (ratsach) is not used in the context of proper punishment for a crime.67 Alan Cole explains...used to refer to the killing animals for food and sacrifices.63 Scripture records that God allowed the killing of animals for food.64 God also allowed...the slaying of animals for sacrifices.65 Consequently, the sixth commandment cannot be used to support the practice of vegetarianism nor can it be

  19. Tetrandrine, a Compound Common in Chinese Traditional Medicine, Preferentially Kills Breast Cancer Tumor Initiating Cells (TICs) In Vitro

    International Nuclear Information System (INIS)

    Xu, Wei; Debeb, Bisrat G.; Lacerda, Lara; Li, Jessica; Woodward, Wendy A.

    2011-01-01

    Tetrandrine is a bisbenzylisoquinoline alkaloid found in Stephania tetrandra, a Chinese medicine commonly used as an anti-inflammatory. It has extensive pharmacological activity, including positive ion channel blockade and inhibition of multiple drug resistance proteins. These activities are very similar to that of salinomycin, a known drug targeting breast cancer initiation cells (TICs). Herein, we tested tetrandrine targeting of breast cancer TICs. SUM-149, an inflammatory breast cancer cell line and SUM-159, a non-inflammatory metaplastic breast cancer cell line were used in these studies. In proliferation assays using 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl) -2H-tetrazolium (MTS), we found that the IC 50 for inhibition of proliferation is 15.3 ± 4.1 μM for SUM-149 and 24.3 ± 2.1 μM for SUM-159 cells. Tetrandrine also inhibited mammosphere formation, a surrogate for breast cancer TICs growth in vitro with IC 50 around 1 μM for SUM-149 and around 2 μM for SUM-159 cells. Tetrandrine has similar effects on the mammosphere formation from cells isolated from fresh patient sample. Moreover, tetrandrine decreases the aldehyde dehydrogenase (ALDH) positive population in SUM-159 by 45% ± 5.45% P = 0.005. In summary, tetrandrine demonstrates significant efficacy against in vitro surrogates for inflammatory and aggressive breast cancer TICs

  20. Tetrandrine, a Compound Common in Chinese Traditional Medicine, Preferentially Kills Breast Cancer Tumor Initiating Cells (TICs) In Vitro

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Wei; Debeb, Bisrat G.; Lacerda, Lara; Li, Jessica; Woodward, Wendy A., E-mail: wwoodward@mdanderson.org [Division of Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030 (United States)

    2011-05-04

    Tetrandrine is a bisbenzylisoquinoline alkaloid found in Stephania tetrandra, a Chinese medicine commonly used as an anti-inflammatory. It has extensive pharmacological activity, including positive ion channel blockade and inhibition of multiple drug resistance proteins. These activities are very similar to that of salinomycin, a known drug targeting breast cancer initiation cells (TICs). Herein, we tested tetrandrine targeting of breast cancer TICs. SUM-149, an inflammatory breast cancer cell line and SUM-159, a non-inflammatory metaplastic breast cancer cell line were used in these studies. In proliferation assays using 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl) -2H-tetrazolium (MTS), we found that the IC{sub 50} for inhibition of proliferation is 15.3 ± 4.1 μM for SUM-149 and 24.3 ± 2.1 μM for SUM-159 cells. Tetrandrine also inhibited mammosphere formation, a surrogate for breast cancer TICs growth in vitro with IC{sub 50} around 1 μM for SUM-149 and around 2 μM for SUM-159 cells. Tetrandrine has similar effects on the mammosphere formation from cells isolated from fresh patient sample. Moreover, tetrandrine decreases the aldehyde dehydrogenase (ALDH) positive population in SUM-159 by 45% ± 5.45% P = 0.005. In summary, tetrandrine demonstrates significant efficacy against in vitro surrogates for inflammatory and aggressive breast cancer TICs.

  1. Tetrandrine, a Compound Common in Chinese Traditional Medicine, Preferentially Kills Breast Cancer Tumor Initiating Cells (TICs In Vitro

    Directory of Open Access Journals (Sweden)

    Jessica Li

    2011-05-01

    Full Text Available Tetrandrine is a bisbenzylisoquinoline alkaloid found in Stephania tetrandra, a Chinese medicine commonly used as an anti-inflammatory. It has extensive pharmacological activity, including positive ion channel blockade and inhibition of multiple drug resistance proteins. These activities are very similar to that of salinomycin, a known drug targeting breast cancer initiation cells (TICs. Herein, we tested tetrandrine targeting of breast cancer TICs. SUM-149, an inflammatory breast cancer cell line and SUM-159, a non-inflammatory metaplastic breast cancer cell line were used in these studies. In proliferation assays using 3-(4,5-dimethylthiazol-2-yl-5-(3-carboxymethoxyphenyl-2-(4-sulfophenyl-2H-tetrazolium (MTS, we found that the IC50 for inhibition of proliferation is 15.3 ± 4.1 µM for SUM-149 and 24.3 ± 2.1 µM for SUM-159 cells. Tetrandrine also inhibited mammosphere formation, a surrogate for breast cancer TICs growth in vitro with IC50 around 1 µM for SUM-149 and around 2 µM for SUM-159 cells. Tetrandrine has similar effects on the mammosphere formation from cells isolated from fresh patient sample. Moreover, tetrandrine decreases the aldehyde dehydrogenase (ALDH positive population in SUM-159 by 45% ± 5.45% P = 0.005. In summary, tetrandrine demonstrates significant efficacy against in vitro surrogates for inflammatory and aggressive breast cancer TICs.

  2. Herbal medicine as inducers of apoptosis in cancer treatment.

    Science.gov (United States)

    Safarzadeh, Elham; Sandoghchian Shotorbani, Siamak; Baradaran, Behzad

    2014-10-01

    Cancer is uncontrolled growth of abnormal cells in the body. Nowadays, cancer is considered as a human tragedy and one of the most prevalent diseases in the wide, and its mortality resulting from cancer is being increased. It seems necessary to identify new strategies to prevent and treat such a deadly disease. Control survival and death of cancerous cell are important strategies in the management and therapy of cancer. Anticancer agents should kill the cancerous cell with the minimal side effect on normal cells that is possible through the induction of apoptosis. Apoptosis is known as programmed cell death in both normal and damaged tissues. This process includes some morphologically changes in cells such as rapid condensation and budding of the cell, formation of membrane-enclosed apoptotic bodies with well-preserved organelles. Induction of apoptosis is one of the most important markers of cytotoxic antitumor agents. Some natural compounds including plants induce apoptotic pathways that are blocked in cancer cells through various mechanisms in cancer cells. Multiple surveys reported that people with cancer commonly use herbs or herbal products. Vinca Alkaloids, Texans, podo phyllotoxin, Camptothecins have been clinically used as Plant derived anticancer agents. The present review summarizes the literature published so far regarding herbal medicine used as inducers of apoptosis in cancer.

  3. Combination of doxorubicin and low-intensity ultrasound causes a synergistic enhancement in cell killing and an additive enhancement in apoptosis induction in human lymphoma U937 cells.

    Science.gov (United States)

    Yoshida, Toru; Kondo, Takashi; Ogawa, Ryohei; Feril, Loreto B; Zhao, Qing-Li; Watanabe, Akihiko; Tsukada, Kazuhiro

    2008-04-01

    Potential clinical use of ultrasound (US) in enhancing the effects of anticancer drugs in the treatment of cancers has been highlighted in previous reports. Increased uptake of drugs by the cancer cells due to US has been suggested as a mechanism. However, the precise mechanism of the enhancement has not yet been elucidated. Here, the combined effects of low-intensity pulsed US and doxorubicin (DOX) on cell killing and apoptosis induction of U937 cells, and mechanisms involved were investigated. Human myelomonocytic lymphoma U937 cells were used for the experiments. Experiments were conducted in 4 groups: (1) non-treated, (2) DOX treated (DOX), (3) US treated (US), and (4) combined (DOX + US). In DOX +US, cells were exposed to 5 microM DOX for 30 min and sonicated by 1 MHz pulsed US (PRF 100 Hz, DF 10%) at intensities of 0.2-0.5 W/cm(2) for 60 s. The cells were washed and incubated for 6 h. The viability was evaluated by Trypan blue dye exclusion test and apoptosis and incorporation of DOX was assessed by flow cytometry. Involvement of sonoporation in molecular incorporation was evaluated using FITC-dextran, hydroxyl radical formation was measured by electron paramagnetic resonance-spin trapping, membrane alteration including lipid peroxidation and membrane fluidity by DOX was evaluated using cis-parinaric acid and perylene fluorescence polarization method, respectively. Synergistic enhancement in cell killing and additive enhancement in induction of apoptosis were observed at and above 0.3 W/cm(2). No enhancement was observed at 0.2 W/cm(2) in cell killing and induction of apoptosis. Hydroxyl radicals formation was detected at and above 0.3 W/cm(2). The radicals were produced more in the DOX + US than US alone. Incorporation of DOX was increased 13% in DOX + US (vs. DOX) at 0.5 W/cm(2). Involvement of sonoporation for increase of drug uptake was suggested by experiment using FITC-labeled dextran. We made the hypothesis that DOX treatment made the cells weaken

  4. High hydrostatic pressure in cancer immunotherapy and biomedicine.

    Science.gov (United States)

    Adkins, Irena; Hradilova, Nada; Palata, Ondrej; Sadilkova, Lenka; Palova-Jelinkova, Lenka; Spisek, Radek

    High hydrostatic pressure (HHP) has been known to affect biological systems for >100 years. In this review, we describe the technology of HHP and its effect macromolecules and physiology of eukaryotic cells. We discuss the use of HHP in cancer immunotherapy to kill tumor cells for generation of whole cell and dendritic cell-based vaccines. We further summarize the current use and perspectives of HHP application in biomedicine, specifically in orthopedic surgery and for the viral, microbial and protozoan inactivation to develop vaccines against infectious diseases. Copyright © 2018. Published by Elsevier Inc.

  5. Colorectal Cancer - What You Need to Know PSA (:60)

    Centers for Disease Control (CDC) Podcasts

    2011-07-05

    This 60 second Public Service Announcement (PSA) is based on the July, 2011 CDC Vital Signs report. Colorectal cancer kills about 50,000 men and women every year. Screening can save lives! Screening can find abnormal growths so they can be removed before turning into cancer, and can find the cancer early, when it's easiest to treat. If you're over 50, talk to your doctor about getting screened for colorectal cancer.  Created: 7/5/2011 by Centers for Disease Control and Prevention (CDC).   Date Released: 7/5/2011.

  6. An evaluation of sex-age-kill (SAK) model performance

    Science.gov (United States)

    Millspaugh, Joshua J.; Skalski, John R.; Townsend, Richard L.; Diefenbach, Duane R.; Boyce, Mark S.; Hansen, Lonnie P.; Kammermeyer, Kent

    2009-01-01

    The sex-age-kill (SAK) model is widely used to estimate abundance of harvested large mammals, including white-tailed deer (Odocoileus virginianus). Despite a long history of use, few formal evaluations of SAK performance exist. We investigated how violations of the stable age distribution and stationary population assumption, changes to male or female harvest, stochastic effects (i.e., random fluctuations in recruitment and survival), and sampling efforts influenced SAK estimation. When the simulated population had a stable age distribution and λ > 1, the SAK model underestimated abundance. Conversely, when λ < 1, the SAK overestimated abundance. When changes to male harvest were introduced, SAK estimates were opposite the true population trend. In contrast, SAK estimates were robust to changes in female harvest rates. Stochastic effects caused SAK estimates to fluctuate about their equilibrium abundance, but the effect dampened as the size of the surveyed population increased. When we considered both stochastic effects and sampling error at a deer management unit scale the resultant abundance estimates were within ±121.9% of the true population level 95% of the time. These combined results demonstrate extreme sensitivity to model violations and scale of analysis. Without changes to model formulation, the SAK model will be biased when λ ≠ 1. Furthermore, any factor that alters the male harvest rate, such as changes to regulations or changes in hunter attitudes, will bias population estimates. Sex-age-kill estimates may be precise at large spatial scales, such as the state level, but less so at the individual management unit level. Alternative models, such as statistical age-at-harvest models, which require similar data types, might allow for more robust, broad-scale demographic assessments.

  7. Dynamics of Human Complement–Mediated Killing of Klebsiella pneumoniae

    Science.gov (United States)

    Nypaver, Christina M.; Thornton, Margaret M.; Yin, Suellen M.; Bracho, David O.; Nelson, Patrick W.; Jones, Alan E.; Bortz, David M.; Younger, John G.

    2010-01-01

    With an in vitro system that used a luminescent strain of Klebsiella pneumoniae to assess bacterial metabolic activity in near-real-time, we investigated the dynamics of complement-mediated attack in healthy individuals and in patients presenting to the emergency department with community-acquired severe sepsis. A novel mathematical/statistical model was developed to simplify light output trajectories over time into two fitted parameters, the rate of complement activation and the delay from activation to the onset of killing. Using Factor B–depleted serum, the alternative pathway was found to be the primary bactericidal effector: In the absence of B, C3 opsonization as measured by flow cytometry did not progress and bacteria proliferated near exponentially. Defects in bacterial killing were easily demonstrable in patients with severe sepsis compared with healthy volunteers. In most patients with sepsis, the rate of activation was higher than in normal subjects but was associated with a prolonged delay between activation and bacterial killing (P < 0.05 for both). Theoretical modeling suggested that this combination of accentuated but delayed function should allow successful bacterial killing but with significantly greater complement activation. The use of luminescent bacteria allowed for the development of a novel and powerful tool for assessing complement immunology for the purposes of mechanistic study and patient evaluation. PMID:20008281

  8. Heat-Killed Enterococcus faecalis EF-2001 Ameliorates Atopic Dermatitis in a Murine Model

    Science.gov (United States)

    Choi, Eun-Ju; Iwasa, Masahiro; Han, Kwon-Il; Kim, Wan-Jae; Tang, Yujiao; Hwang, Young Joung; Chae, Jeong Ryong; Han, Weon Cheol; Shin, Yu-Su; Kim, Eun-Kyung

    2016-01-01

    Recent reports have shown the immunomodulatory effect of heat-killed lactic acid bacteria. Atopic dermatitis (AD) is an allergic skin disease, caused by immune dysregulation among other factors. The aim of this study was to assess the effect of heat-killed Enterococcus faecalis EF-2001 (EF-2001) on AD. We established an in vivo AD model by repeated local exposure of Dermatophagoides farinae extract (DFE; house dust mite extract) and 2,4-dinitrochlorobenzene (DNCB) to the ears of mice. After oral administration of EF-2001 for four weeks, the epidermal and dermal ear thickness, mast cell infiltration, and serum immunoglobulin levels were measured. In addition, the gene expression levels of pathogenic cytokines in the ears, lymph nodes, and splenocytes were assayed. EF-2001 attenuated AD symptoms based on the ear thickness, histopathological analysis, and serum immunoglobulin levels. Moreover, EF-2001 decreased the DFE/DNCB-induced expression of various pathogenic cytokines in the ears, lymph nodes, and splenocytes. These results suggest that EF-2001 has therapeutic potential in the treatment of AD owing to its immunomodulatory effects. PMID:26959058

  9. Heat-Killed Enterococcus faecalis EF-2001 Ameliorates Atopic Dermatitis in a Murine Model

    Directory of Open Access Journals (Sweden)

    Eun-Ju Choi

    2016-03-01

    Full Text Available Recent reports have shown the immunomodulatory effect of heat-killed lactic acid bacteria. Atopic dermatitis (AD is an allergic skin disease, caused by immune dysregulation among other factors. The aim of this study was to assess the effect of heat-killed Enterococcus faecalis EF-2001 (EF-2001 on AD. We established an in vivo AD model by repeated local exposure of Dermatophagoides farinae extract (DFE; house dust mite extract and 2,4-dinitrochlorobenzene (DNCB to the ears of mice. After oral administration of EF-2001 for four weeks, the epidermal and dermal ear thickness, mast cell infiltration, and serum immunoglobulin levels were measured. In addition, the gene expression levels of pathogenic cytokines in the ears, lymph nodes, and splenocytes were assayed. EF-2001 attenuated AD symptoms based on the ear thickness, histopathological analysis, and serum immunoglobulin levels. Moreover, EF-2001 decreased the DFE/DNCB-induced expression of various pathogenic cytokines in the ears, lymph nodes, and splenocytes. These results suggest that EF-2001 has therapeutic potential in the treatment of AD owing to its immunomodulatory effects.

  10. Exploring gamma radiation effect on exoelectron emission properties of bone

    International Nuclear Information System (INIS)

    Zakaria, M.; Dekhtyar, Y.; Bogucharska, T.; Noskov, V.

    2006-01-01

    Gamma radiation is used for radiation therapy to treat carcinogenic diseases including bone cancer. Ionising radiation kills carcinogenic calls. However, there are side effects of the gamma radiation on the bone surface electron structure. One of the effects is in the form of altering electron density of states of bone that, with time, influences biomedical reactions on bone life condition. (authors)

  11. Exploring gamma radiation effect on exoelectron emission properties of bone

    Energy Technology Data Exchange (ETDEWEB)

    Zakaria, M.; Dekhtyar, Y.; Bogucharska, T.; Noskov, V. [Riga Technical Univ., Biomedical Engineering and Nanotechnology Institute (Latvia)

    2006-07-01

    Gamma radiation is used for radiation therapy to treat carcinogenic diseases including bone cancer. Ionising radiation kills carcinogenic calls. However, there are side effects of the gamma radiation on the bone surface electron structure. One of the effects is in the form of altering electron density of states of bone that, with time, influences biomedical reactions on bone life condition. (authors)

  12. Spatial distribution of lion kills determined by the water dependency of prey species

    NARCIS (Netherlands)

    Boer, de W.F.; Vis, M.J.P.; Knegt, de H.J.; Rowles, C.; Kohi, E.; Langevelde, van F.; Peel, M.J.S.; Pretorius, Y.; Skidmore, A.K.; Slotow, R.; Wieren, van S.E.; Prins, H.H.T.

    2010-01-01

    Predation risk from lions (Panthera leo) has been linked to habitat characteristics and availability and traits of prey. We separated the effects of vegetation density and the presence of drinking water by analyzing locations of lion kills in relation to rivers with dense vegetation, which offer

  13. Traffics and wildlife: A preliminary study on road-kill

    OpenAIRE

    Rustiati, Elly Lestari

    2012-01-01

    This paper presents the preliminary finding on road kill survey by direct observations onthe high ways. The road-kills recorded of small wildlife, including medium size-mammal (2.50%, n =1), birds (5.00%, n = 2) and small mammals (92.50%, n = 37). The small mammals include the mostcommon mammals in the areas, squirrels, raccoons, skunks and woodchuck. Of mammals, squirrels(35.00%) were the highest recorded, followed by woodchucks (25.00%), mice/shrew (17.50%),raccoons (10.00%), skunk (5.00%) ...

  14. Potential of radiosensitizing agents in cancer chemo-radiotherapy

    Directory of Open Access Journals (Sweden)

    Girdhani S

    2005-01-01

    Full Text Available Potential of herbs and other plant-based formulations have been increasingly recognized in prevention and treatment of human diseases including cancer. There exist enormous prospect for screening and evaluation of herbal/plant products for developing effective radiosensitization and radioprotection relevant to nuclear research program. Investigations in our laboratory have focused on the mechanism of activity of variety of anticancer and antioxidant agents, namely, Eugenol, (EU, Ellagic acid (EA, Triphala (TPL, Tocopherol Succinate (TOS and Arachidonic acid on normal and cancer cells with view to design effective protocols in practical radioprotection and cancer radiotherapy. This paper is mainly focused on studies on cytotoxic effects on cancer cell lines. Results have shown that these agents produced radiosensitizing action involving oxidative damage, membrane alteration and damage to nucleic acid in various human cell lines. Studies were performed employing fluorescence probes and electron spin resonance methods and gel electrophoresis protocols. It has been found that cytotoxic effect was induced by initiating membrane oxidative damage and by triggering intracellular generation of reactive oxygen species (ROS by gamma radiation in combination with phytochemicals like TPL, EA and TOS in tumor cell line Ehrlich Ascites (EAC, Human cervical (HeLa and breast (MCF-7 cells. Membrane damage and ROS generation was measured by DPH and DCF-FDA fluorescent probes respectively after exposure to low to moderate doses of gamma radiation. This talk will present the cytotoxic effects of phytochemicals in combination with ionizing radiation. It is emphasized that modulation of membrane peroxidative damage and intra cellular ROS may help achieve efficient killing of cancer cells which may provide a new approach to developing effective treatment of cancer.

  15. Cancer resistance of SR/CR mice in the genetic knockout backgrounds of leukocyte effector mechanisms: determinations for functional requirements.

    Science.gov (United States)

    Sanders, Anne M; Stehle, John R; Blanks, Michael J; Riedlinger, Gregory; Kim-Shapiro, Jung W; Monjazeb, Arta M; Adams, Jonathan M; Willingham, Mark C; Cui, Zheng

    2010-03-31

    Spontaneous Regression/Complete Resistant (SR/CR) mice are a colony of cancer-resistant mice that can detect and rapidly destroy malignant cells with innate cellular immunity, predominately mediated by granulocytes. Our previous studies suggest that several effector mechanisms, such as perforin, granzymes, or complements, may be involved in the killing of cancer cells. However, none of these effector mechanisms is known as critical for granulocytes. Additionally, it is unclear which effector mechanisms are required for the cancer killing activity of specific leukocyte populations and the survival of SR/CR mice against the challenges of lethal cancer cells. We hypothesized that if any of these effector mechanisms was required for the resistance to cancer cells, its functional knockout in SR/CR mice should render them sensitive to cancer challenges. This was tested by cross breeding SR/CR mice into the individual genetic knockout backgrounds of perforin (Prf-/-), superoxide (Cybb-/), or inducible nitric oxide (Nos2-/). SR/CR mice were bred into individual Prf-/-, Cybb-/-, or Nos2-/- genetic backgrounds and then challenged with sarcoma 180 (S180). Their overall survival was compared to controls. The cancer killing efficiency of purified populations of macrophages and neutrophils from these immunodeficient mice was also examined. When these genetically engineered mice were challenged with cancer cells, the knockout backgrounds of Prf-/-, Cybb-/-, or Nos2-/- did not completely abolish the SR/CR cancer resistant phenotype. However, the Nos2-/- background did appear to weaken the resistance. Incidentally, it was also observed that the male mice in these immunocompromised backgrounds tended to be less cancer-resistant than SR/CR controls. Despite the previously known roles of perforin, superoxide or nitric oxide in the effector mechanisms of innate immune responses, these effector mechanisms were not required for cancer-resistance in SR/CR mice. The resistance was

  16. Oil is killing Africa

    International Nuclear Information System (INIS)

    Paris, H.

    2007-09-01

    Sub-Saharan Africa, with its mining and petroleum resources, is still the object of covetous desires from developed countries. The Gulf of Guinea is a promising area and probably the future battlefield of the 21. century. The fighters of this war are the African people and the big powers, the USA and China at the head, who call upon mercenaries to get their share of this fabulous treasure. Oil was a chance for Africa, but now oil is killing it

  17. Long-term health effects among testicular cancer survivors.

    Science.gov (United States)

    Hashibe, Mia; Abdelaziz, Sarah; Al-Temimi, Mohammed; Fraser, Alison; Boucher, Kenneth M; Smith, Ken; Lee, Yuan-Chin Amy; Rowe, Kerry; Rowley, Braden; Daurelle, Micky; Holton, Avery E; VanDerslice, James; Richiardi, Lorenzo; Bishoff, Jay; Lowrance, Will; Stroup, Antoinette

    2016-12-01

    Testicular cancer is diagnosed at a young age and survival rates are high; thus, the long-term effects of cancer treatment need to be assessed. Our objectives are to estimate the incidence rates and determinants of late effects in testicular cancer survivors. We conducted a population-based cohort study of testicular cancer survivors, diagnosed 1991-2007, followed up for a median of 10 years. We identified 785 testicular cancer patients who survived ≥5 years and 3323 men free of cancer for the comparison group. Multivariate Cox regression analysis was used to compare the hazard ratio between the cases and the comparison group and for internal analysis among case patients. Testicular cancer survivors experienced a 24 % increase in risk of long-term health effects >5 years after diagnosis. The overall incidence rate of late effects among testicular cancer survivors was 66.3 per 1000 person years. Higher risks were observed among testicular cancer survivors for hypercholesterolemia, infertility, and orchitis. Chemotherapy and retroperitoneal lymph node dissection appeared to increase the risk of late effects. Being obese prior to cancer diagnosis appeared to be the strongest factor associated with late effects. Testicular cancer survivors were more likely to develop chronic health conditions when compared to cancer-free men. While the late effects risk was increased among testicular cancer survivors, the incidence rates of late effects after cancer diagnosis was fairly low.

  18. Age and sex composition of seals killed by polar bears in the eastern Beaufort Sea.

    Directory of Open Access Journals (Sweden)

    Nicholas W Pilfold

    Full Text Available Polar bears (Ursus maritimus of the Beaufort Sea enter hyperphagia in spring and gain fat reserves to survive periods of low prey availability. We collected information on seals killed by polar bears (n=650 and hunting attempts on ringed seal (Pusa hispida lairs (n=1396 observed from a helicopter during polar bear mark-recapture studies in the eastern Beaufort Sea in spring in 1985-2011. We investigated how temporal shifts in ringed seal reproduction affect kill composition and the intraspecific vulnerabilities of ringed seals to polar bear predation.Polar bears primarily preyed on ringed seals (90.2% while bearded seals (Erignathus barbatus only comprised 9.8% of the kills, but 33% of the biomass. Adults comprised 43.6% (150/344 of the ringed seals killed, while their pups comprised 38.4% (132/344. Juvenile ringed seals were killed at the lowest proportion, comprising 18.0% (62/344 of the ringed seal kills. The proportion of ringed seal pups was highest between 2007-2011, in association with high ringed seal productivity. Half of the adult ringed seal kills were ≥ 21 years (60/121, and kill rates of adults increased following the peak of parturition. Determination of sex from DNA revealed that polar bears killed adult male and adult female ringed seals equally (0.50, n=78. The number of hunting attempts at ringed seal subnivean lair sites was positively correlated with the number of pup kills (r(2 =0.30, P=0.04, but was not correlated with the number of adult kills (P=0.37.Results are consistent with decadal trends in ringed seal productivity, with low numbers of pups killed by polar bears in spring in years of low pup productivity, and conversely when pup productivity was high. Vulnerability of adult ringed seals to predation increased in relation to reproductive activities and age, but not gender.

  19. Co-delivery of siRNA and doxorubicin to cancer cells from additively manufactured implants

    DEFF Research Database (Denmark)

    Chen, Muwan; Andersen, Morten Østergaard; Dillschneider, Philipp

    2015-01-01

    , capable of physically supporting the void while killing residual cancer cells, would be an attractive solution. Here we describe a novel additively manufactured implant that can be functionalized with chitosan/siRNA nanoparticles. These induce long term gene silencing in adjacent cancer cells without...

  20. Melatonin Cytotoxicity Is Associated to Warburg Effect Inhibition in Ewing Sarcoma Cells.

    Directory of Open Access Journals (Sweden)

    Ana M Sanchez-Sanchez

    Full Text Available Melatonin kills or inhibits the proliferation of different cancer cell types, and this is associated with an increase or a decrease in reactive oxygen species, respectively. Intracellular oxidants originate mainly from oxidative metabolism, and cancer cells frequently show alterations in this metabolic pathway, such as the Warburg effect (aerobic glycolysis. Thus, we hypothesized that melatonin could also regulate differentially oxidative metabolism in cells where it is cytotoxic (Ewing sarcoma cells and in cells where it inhibits proliferation (chondrosarcoma cells. Ewing sarcoma cells but not chondrosarcoma cells showed a metabolic profile consistent with aerobic glycolysis, i.e. increased glucose uptake, LDH activity, lactate production and HIF-1α activation. Melatonin reversed Ewing sarcoma metabolic profile and this effect was associated with its cytotoxicity. The differential regulation of metabolism by melatonin could explain why the hormone is harmless for a wide spectrum of normal and only a few tumoral cells, while it kills specific tumor cell types.

  1. On Discrete Killing Vector Fields and Patterns on Surfaces

    KAUST Repository

    Ben-Chen, Mirela

    2010-09-21

    Symmetry is one of the most important properties of a shape, unifying form and function. It encodes semantic information on one hand, and affects the shape\\'s aesthetic value on the other. Symmetry comes in many flavors, amongst the most interesting being intrinsic symmetry, which is defined only in terms of the intrinsic geometry of the shape. Continuous intrinsic symmetries can be represented using infinitesimal rigid transformations, which are given as tangent vector fields on the surface - known as Killing Vector Fields. As exact symmetries are quite rare, especially when considering noisy sampled surfaces, we propose a method for relaxing the exact symmetry constraint to allow for approximate symmetries and approximate Killing Vector Fields, and show how to discretize these concepts for generating such vector fields on a triangulated mesh. We discuss the properties of approximate Killing Vector Fields, and propose an application to utilize them for texture and geometry synthesis. Journal compilation © 2010 The Eurographics Association and Blackwell Publishing Ltd.

  2. Conserved features of cancer cells define their sensitivity to HAMLET-induced death; c-Myc and glycolysis.

    Science.gov (United States)

    Storm, P; Aits, S; Puthia, M K; Urbano, A; Northen, T; Powers, S; Bowen, B; Chao, Y; Reindl, W; Lee, D Y; Sullivan, N L; Zhang, J; Trulsson, M; Yang, H; Watson, J D; Svanborg, C

    2011-12-01

    HAMLET is the first member of a new family of tumoricidal protein-lipid complexes that kill cancer cells broadly, while sparing healthy, differentiated cells. Many and diverse tumor cell types are sensitive to the lethal effect, suggesting that HAMLET identifies and activates conserved death pathways in cancer cells. Here, we investigated the molecular basis for the difference in sensitivity between cancer cells and healthy cells. Using a combination of small-hairpin RNA (shRNA) inhibition, proteomic and metabolomic technology, we identified the c-Myc oncogene as one essential determinant of HAMLET sensitivity. Increased c-Myc expression levels promoted sensitivity to HAMLET and shRNA knockdown of c-Myc suppressed the lethal response, suggesting that oncogenic transformation with c-Myc creates a HAMLET-sensitive phenotype. Furthermore, HAMLET sensitivity was modified by the glycolytic state of tumor cells. Glucose deprivation sensitized tumor cells to HAMLET-induced cell death and in the shRNA screen, hexokinase 1 (HK1), 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 1 and hypoxia-inducible factor 1α modified HAMLET sensitivity. HK1 was shown to bind HAMLET in a protein array containing ∼8000 targets, and HK activity decreased within 15 min of HAMLET treatment, before morphological signs of tumor cell death. In parallel, HAMLET triggered rapid metabolic paralysis in carcinoma cells. Tumor cells were also shown to contain large amounts of oleic acid and its derivatives already after 15 min. The results identify HAMLET as a novel anti-cancer agent that kills tumor cells by exploiting unifying features of cancer cells such as oncogene addiction or the Warburg effect.

  3. Conserved features of cancer cells define their sensitivity of HAMLET-induced death; c-Myc and glycolysis

    Science.gov (United States)

    Storm, Petter; Puthia, Manoj Kumar; Aits, Sonja; Urbano, Alexander; Northen, Trent; Powers, Scott; Bowen, Ben; Chao, Yinxia; Reindl, Wolfgang; Lee, Do Yup; Sullivan, Nancy Liu; Zhang, Jianping; Trulsson, Maria; Yang, Henry; Watson, James; Svanborg, Catharina

    2014-01-01

    HAMLET is the first member of a new family of tumoricidal protein-lipid complexes that kill cancer cells broadly, while sparing healthy, differentiated cells. Many and diverse tumor cell types are sensitive to the lethal effect, suggesting that HAMLET identifies and activates conserved death pathways in cancer cells. Here we investigated the molecular basis for the difference in sensitivity between cancer cells and healthy cells. Using a combination of small hairpin RNA inhibition, proteomic and metabolomic technology we identified the c-Myc oncogene as one essential determinant of HAMLET sensitivity. Increased c-Myc expression levels promoted the sensitivity to HAMLET and shRNA knockdown of c-Myc suppressed the lethal response, suggesting that oncogenic transformation with c-Myc creates a HAMLET-sensitive phenotype. Furthermore, the HAMLET sensitivity was modified by the glycolytic state of the tumor cells. Glucose deprivation sensitized tumor cells to HAMLET-induced cell death and in the shRNA screen Hexokinase 1, PFKFB1 and HIF1α modified HAMLET sensitivity. Hexokinase 1 was shown to bind HAMLET in a protein array containing approximately 8000 targets and Hexokinase activity decreased within 15 minutes of HAMLET treatment, prior to morphological signs of tumor cell death. In parallel, HAMLET triggered rapid metabolic paralysis in carcinoma cells. The glycolytic machinery was modified and glycolysis was shifted towards the pentose phosphate pathway. Tumor cells were also shown to contain large amounts of oleic acid and its derivatives already after 15 minutes. The results identify HAMLET as a novel anti-cancer agent that kills tumor cells by exploiting unifying features of cancer cells such as oncogene-addiction or the Warburg effect. PMID:21643007

  4. Risk estimates for the health effects of alpha radiation

    International Nuclear Information System (INIS)

    Thomas, D.C.; McNeill, K.G.

    1981-09-01

    This report provides risk estimates for various health effects of alpha radiation. Human and animal data have been used to characterize the shapes of dose-response relations and the effects of various modifying factors, but quantitative risk estimates are based solely on human data: for lung cancer, on miners in the Colorado plateau, Czechoslovakia, Sweden, Ontario and Newfoundland; for bone and head cancers, on radium dial painters and radium-injected patients. Slopes of dose-response relations for lung cancer show a tendency to decrease with increasing dose. Linear extrapolation is unlikely to underestimate the excess risk at low doses by more than a factor of l.5. Under the linear cell-killing model, our best estimate

  5. Caffeine enhancement of x-ray killing in cultured human and rodent cells

    International Nuclear Information System (INIS)

    Waldren, C.A.; Rasko, I.

    1978-01-01

    A 16 to 20 hr postirradiation incubation with caffeine enhances x-ray killing of rodent and human cells. Cells tested were Chinese hamster ovary (CHO-K1), lung (CHL), V79, mouse L, HeLa S3, human fibroblasts (AF288, TC171, FS9, CRL1166), and a human-hamster hybrid. The effect of caffeine on the x-ray survival curve of these cells was to remove the initial shoulder without significantly altering the mean lethal dose (D 0 ). This action can be achieved at caffeine concentrations which of themselves cause less than 15% killing. In randomly growing CHO-K1 cells the caffeine-sensitive process occurs with a half-time of 2 to 5 hr after irradiation. These experiments indicate the existence in human and rodent cells of caffeine-inhibited genome repair for x-ray damage

  6. Carpobrotus edulis methanol extract inhibits the MDR efflux pumps, enhances killing of phagocytosed S. aureus and promotes immune modulation.

    Science.gov (United States)

    Ordway, Diane; Hohmann, Judit; Viveiros, Miguel; Viveiros, Antonio; Molnar, Joseph; Leandro, Clara; Arroz, Maria Jorge; Gracio, Maria Amelia; Amaral, Leonard

    2003-05-01

    Although alkaloids from the family Aizoaceae have anticancer activity, species of this family have received little attention. Because these alkaloids also exhibit properties normally associated with compounds that have activity at the level of the plasma membrane, a methanol extract of Carpobrotus edulis, a common plant found along the Portuguese coast, was studied for properties normally associated with plasma membrane active compounds. The results of this study show that the extract is non-toxic at concentrations that inhibit a verapamil sensitive efflux pump of L5178 mouse T cell lymphoma cell line thereby rendering these multi-drug resistant cells susceptible to anticancer drugs. These non-toxic concentrations also prime THP-1 human monocyte-derived macrophages to kill ingested Staphylococcus aureus and to promote the release of lymphokines associated with cellular immune functions. The extract also induces the proliferation of THP-1 cells within 1 day of exposure to quantities normally associated with phytohaemagglutinin. The potential role of the compound(s) isolated from this plant in cancer biology is intriguing and is currently under investigation. It is supposed that the resistance modifier and immunomodulatory effect of this plant extract can be exploited in the experimental chemotherapy of cancer and bacterial or viral infections. Copyright 2003 John Wiley & Sons, Ltd.

  7. Radiation biology as a basis for multidisciplinary cancer therapy

    International Nuclear Information System (INIS)

    Hosoya, N.

    2017-01-01

    The research field of radiation biology has progressed greatly thanks to the advances in molecular biology. DNA in the cell nucleus is the principal target of radiation. The biological effect of radiation can be determined by how the DNA damage is processed in the cell. In order to prevent deleterious biological effects due to DNA damage, the cells possess a system termed 'DNA damage response'. The DNA damage response finally induces cell cycle arrest, activation of DNA repair pathways, or cell death. If accurately repaired, DNA damage will result in survival of cells with no biological effects. If inaccurately repaired, DNA damage may result in survival of cells exhibiting genetic alterations, which can lead to the development of various diseases including cancer. If unrepaired, fatal DNA damage such as the DNA double-strand break will result in cell depth. Since radiation therapy and chemotherapy are designed to specifically kill cancer cells by inducing DNA double-strand breaks, it is important to take advantage of cancer-specific abnormalities in DNA damage response. In this review, I describe the impact of targeting DNA damage response in cancer therapy and show how progress in radiation biology has contributed to the development of novel therapeutic strategies. (author)

  8. Metformin decreases the dose of chemotherapy for prolonging tumor remission in mouse xenografts involving multiple cancer cell types.

    Science.gov (United States)

    Iliopoulos, Dimitrios; Hirsch, Heather A; Struhl, Kevin

    2011-05-01

    Metformin, the first-line drug for treating diabetes, selectively kills the chemotherapy resistant subpopulation of cancer stem cells (CSC) in genetically distinct types of breast cancer cell lines. In mouse xenografts, injection of metformin and the chemotherapeutic drug doxorubicin near the tumor is more effective than either drug alone in blocking tumor growth and preventing relapse. Here, we show that metformin is equally effective when given orally together with paclitaxel, carboplatin, and doxorubicin, indicating that metformin works together with a variety of standard chemotherapeutic agents. In addition, metformin has comparable effects on tumor regression and preventing relapse when combined with a four-fold reduced dose of doxorubicin that is not effective as a monotherapy. Finally, the combination of metformin and doxorubicin prevents relapse in xenografts generated with prostate and lung cancer cell lines. These observations provide further evidence for the CSC hypothesis for cancer relapse, an experimental rationale for using metformin as part of combinatorial therapy in a variety of clinical settings, and for reducing the chemotherapy dose in cancer patients.

  9. Fifth annual report of cancer research at the University of Chicago

    International Nuclear Information System (INIS)

    Berk, A.J.

    1978-01-01

    Research on viral oncology included molecular organization and functions of herpes simplex virus and mechanism of type C RNA virus activation by 5-BrdU. Cancer biology studies included molecular studies of all differentiation and cell interactions, mechanism of inhibition of DNA synthesis by nalidixic acid and other agents, and sensitivity of cells to uv and x radiation. Tumor immunology studies included the role of immunoglobulin D in lymphoproliferative disorders, mechanisms of suppression of rat renal allograft rejection, and effects of drugs on sensitivity of tumor cells to antibody and complement. Studies on carcinogenesis included chemistry of metabolites of hydrocarbons, radiation toxicity in dogs, detection and prevention of neoplasia, carcinogenic and genetic effects of tritium, and effects of DES during pregnancy. Clinical research included studies on gallium scanning, chemotherapy, control of thyroid cancer, leukopoietic mechanisms, and diagnostic and therapetutic techniques. Research on radiotherapy, radiation physics, and radiation biology included neutron dosimetry, computerized dosimetry for radiotherapy, DNA damage, and mammalian cell killing. Research at core facilities is reported with regard to the core immunology laboratory, computerized oncology radiation and data system, and application of nuclear magnetic resonance spectroscopy to cancer research. Activities of the cancer control center are described with regard to education and dissemination of knowledge about cancer

  10. Fifth annual report of cancer research at the University of Chicago

    Energy Technology Data Exchange (ETDEWEB)

    Berk, A.J. (ed.)

    1978-01-01

    Research on viral oncology included molecular organization and functions of herpes simplex virus and mechanism of type C RNA virus activation by 5-BrdU. Cancer biology studies included molecular studies of all differentiation and cell interactions, mechanism of inhibition of DNA synthesis by nalidixic acid and other agents, and sensitivity of cells to uv and x radiation. Tumor immunology studies included the role of immunoglobulin D in lymphoproliferative disorders, mechanisms of suppression of rat renal allograft rejection, and effects of drugs on sensitivity of tumor cells to antibody and complement. Studies on carcinogenesis included chemistry of metabolites of hydrocarbons, radiation toxicity in dogs, detection and prevention of neoplasia, carcinogenic and genetic effects of tritium, and effects of DES during pregnancy. Clinical research included studies on gallium scanning, chemotherapy, control of thyroid cancer, leukopoietic mechanisms, and diagnostic and therapetutic techniques. Research on radiotherapy, radiation physics, and radiation biology included neutron dosimetry, computerized dosimetry for radiotherapy, DNA damage, and mammalian cell killing. Research at core facilities is reported with regard to the core immunology laboratory, computerized oncology radiation and data system, and application of nuclear magnetic resonance spectroscopy to cancer research. Activities of the cancer control center are described with regard to education and dissemination of knowledge about cancer. (HLW)

  11. Prevalence of alcohol and other psychoactive substances in injured and killed drivers

    DEFF Research Database (Denmark)

    Isalberti, Cristina; Linden, Trudy Van der; Legrand, Sara-Ann

    2011-01-01

    regarding the prevalence of alcohol and other psychoactive substances in drivers who have been injured/killed in traffic accidents. Part 1 of this report presents the general results of the hospital & killed driver studies. After a short introduction, the representativeness of the populations in the EU...... countries as well as the representativeness of hospitalised and killed driver samples are addressed. An overview of the non-response issues in the various countries is also included. Based on the toxicological findings, a general summary of the prevalence of drug use is given for the 9 participating...

  12. TRAIL, Wnt, Sonic Hedgehog, TGFβ, and miRNA Signalings Are Potential Targets for Oral Cancer Therapy.

    Science.gov (United States)

    Farooqi, Ammad Ahmad; Shu, Chih-Wen; Huang, Hurng-Wern; Wang, Hui-Ru; Chang, Yung-Ting; Fayyaz, Sundas; Yuan, Shyng-Shiou F; Tang, Jen-Yang; Chang, Hsueh-Wei

    2017-07-14

    Clinical studies and cancer cell models emphasize the importance of targeting therapies for oral cancer. The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is highly expressed in cancer, and is a selective killing ligand for oral cancer. Signaling proteins in the wingless-type mouse mammary tumor virus (MMTV) integration site family (Wnt), Sonic hedgehog (SHH), and transforming growth factor β (TGFβ) pathways may regulate cell proliferation, migration, and apoptosis. Accordingly, the genes encoding these signaling proteins are potential targets for oral cancer therapy. In this review, we focus on recent advances in targeting therapies for oral cancer and discuss the gene targets within TRAIL, Wnt, SHH, and TGFβ signaling for oral cancer therapies. Oncogenic microRNAs (miRNAs) and tumor suppressor miRNAs targeting the genes encoding these signaling proteins are summarized, and the interactions between Wnt, SHH, TGFβ, and miRNAs are interpreted. With suitable combination treatments, synergistic effects are expected to improve targeting therapies for oral cancer.

  13. TRAIL, Wnt, Sonic Hedgehog, TGFβ, and miRNA Signalings Are Potential Targets for Oral Cancer Therapy

    Science.gov (United States)

    Farooqi, Ammad Ahmad; Shu, Chih-Wen; Huang, Hurng-Wern; Wang, Hui-Ru; Chang, Yung-Ting; Fayyaz, Sundas; Yuan, Shyng-Shiou F.; Tang, Jen-Yang

    2017-01-01

    Clinical studies and cancer cell models emphasize the importance of targeting therapies for oral cancer. The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is highly expressed in cancer, and is a selective killing ligand for oral cancer. Signaling proteins in the wingless-type mouse mammary tumor virus (MMTV) integration site family (Wnt), Sonic hedgehog (SHH), and transforming growth factor β (TGFβ) pathways may regulate cell proliferation, migration, and apoptosis. Accordingly, the genes encoding these signaling proteins are potential targets for oral cancer therapy. In this review, we focus on recent advances in targeting therapies for oral cancer and discuss the gene targets within TRAIL, Wnt, SHH, and TGFβ signaling for oral cancer therapies. Oncogenic microRNAs (miRNAs) and tumor suppressor miRNAs targeting the genes encoding these signaling proteins are summarized, and the interactions between Wnt, SHH, TGFβ, and miRNAs are interpreted. With suitable combination treatments, synergistic effects are expected to improve targeting therapies for oral cancer. PMID:28708091

  14. Evaluating the Cancer Therapeutic Potential of Cardiac Glycosides

    Directory of Open Access Journals (Sweden)

    José Manuel Calderón-Montaño

    2014-01-01

    Full Text Available Cardiac glycosides, also known as cardiotonic steroids, are a group of natural products that share a steroid-like structure with an unsaturated lactone ring and the ability to induce cardiotonic effects mediated by a selective inhibition of the Na+/K+-ATPase. Cardiac glycosides have been used for many years in the treatment of cardiac congestion and some types of cardiac arrhythmias. Recent data suggest that cardiac glycosides may also be useful in the treatment of cancer. These compounds typically inhibit cancer cell proliferation at nanomolar concentrations, and recent high-throughput screenings of drug libraries have therefore identified cardiac glycosides as potent inhibitors of cancer cell growth. Cardiac glycosides can also block tumor growth in rodent models, which further supports the idea that they have potential for cancer therapy. Evidence also suggests, however, that cardiac glycosides may not inhibit cancer cell proliferation selectively and the potent inhibition of tumor growth induced by cardiac glycosides in mice xenografted with human cancer cells is probably an experimental artifact caused by their ability to selectively kill human cells versus rodent cells. This paper reviews such evidence and discusses experimental approaches that could be used to reveal the cancer therapeutic potential of cardiac glycosides in preclinical studies.

  15. Subordinations In “To Kill A Mockingbird” By Harper Lee

    OpenAIRE

    Siregar, Rut Sri Novitawaty

    2011-01-01

    Salah satu yang dipelajari mahasiswa adalah tulis menulis. Secara ilmiah tulis menulis adalah penyampaian informasi dalam bentuk tulisan serta bagaimana informasi itu disampaikan. Judul kertas karya ini adalah Kalimat Subordinat yang ditemukan dalam novel To Kill a Mockingbird karya Harper Lee: SUBORDINATION IN TO KILL A MOCKINGBIRD BY HARPER LEE. Penulis mengangkat hal ini karena penulis tertarik dengan bentuk–bentuk serta fungsi-fungsi kalimat subordinat yang terdapat dalam tulisan-tulisan ...

  16. 40 CFR 180.1107 - Delta endotoxin of Bacillus thuringiensis variety kurstaki encapsulated into killed Pseudomonas...

    Science.gov (United States)

    2010-07-01

    ... thuringiensis variety kurstaki encapsulated into killed Pseudomonas fluorescens; exemption from the requirement... killed Pseudomonas fluorescens; exemption from the requirement of a tolerance. The delta endotoxin of Bacillus thuringiensis variety kurstaki encapsulated into killed Pseudomonas fluorescens is exempt from the...

  17. KILLING, VIEWED FROM A CONFLICT RESOLUTION PERSPECTIVE

    African Journals Online (AJOL)

    DODO

    2017-07-01

    Jul 1, 2017 ... ... million people were killed as part of the industrial policy of Belgium's ..... the seeds of hate and further conspiracies against others, the entire .... International Commission On Intervention and State Sovereignty (ICISS) 2001.

  18. 9 CFR 113.207 - Encephalomyelitis Vaccine, Eastern, Western, and Venezuelan, Killed Virus.

    Science.gov (United States)

    2010-01-01

    ..., Western, and Venezuelan, Killed Virus. 113.207 Section 113.207 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.207 Encephalomyelitis...

  19. Killing fields; The politics

    Energy Technology Data Exchange (ETDEWEB)

    Philips, Alasdair

    1990-02-01

    An overview considers the NRPB guidelines on possible health effects of low-level alternating electrical and magnetic fields and examines work by individuals on the hazards of microwave radiation, overhead power lines and childhood cancer, and the problems caused by electromagnetic fields at 50 Hz frequency. (U.K.).

  20. An Analysis Of Intrinsic Elements In Harper Lee’s To Kill A Mockingbird

    OpenAIRE

    Simbolon, Hendra Halomoan

    2011-01-01

    Skripsi ini berjudul “An Analysis of Intrinsic Elements in Harper Lee’s To Kill A Mockingbird”. Skripsi ini mengenai unsur-unsur intrinsik yakni karakter, plot, setting, tema, sudut pandang dan gaya penulisan yang terdapat pada karya Charles Dickens yang berjudul To Kill A Mockingbird. Di dalam skripsi ini, penulis ingin membuktikan keterkaitan unsur-unsur intrinsik yang terdapat dalam novel To Kill A Mockingbird karya Harper Lee. Adapun metode yang digunakan penul...