WorldWideScience

Sample records for cancer invasion proliferation

  1. Adipose tissue-derived stem cells promote pancreatic cancer cell proliferation and invasion

    Energy Technology Data Exchange (ETDEWEB)

    Ji, S.Q.; Cao, J. [Department of Liver Surgery I, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai (China); Zhang, Q.Y.; Li, Y.Y. [Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Wenzhou Medical College, Wenzhou (China); Yan, Y.Q. [Department of Liver Surgery I, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai (China); Yu, F.X. [Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Wenzhou Medical College, Wenzhou (China)

    2013-09-27

    To explore the effects of adipose tissue-derived stem cells (ADSCs) on the proliferation and invasion of pancreatic cancer cells in vitro and the possible mechanism involved, ADSCs were cocultured with pancreatic cancer cells, and a cell counting kit (CCK-8) was used to detect the proliferation of pancreatic cancer cells. ELISA was used to determine the concentration of stromal cell-derived factor-1 (SDF-1) in the supernatants. RT-PCR was performed to detect the expression of the chemokine receptor CXCR4 in pancreatic cancer cells and ADSCs. An in vitro invasion assay was used to measure invasion of pancreatic cancer cells. SDF-1 was detected in the supernatants of ADSCs, but not in pancreatic cancer cells. Higher CXCR4 mRNA levels were detected in the pancreatic cancer cell lines compared with ADSCs (109.3±10.7 and 97.6±7.6 vs 18.3±1.7, respectively; P<0.01). In addition, conditioned medium from ADSCs promoted the proliferation and invasion of pancreatic cancer cells, and AMD3100, a CXCR4 antagonist, significantly downregulated these growth-promoting effects. We conclude that ADSCs can promote the proliferation and invasion of pancreatic cancer cells, which may involve the SDF-1/CXCR4 axis.

  2. Adipose tissue-derived stem cells promote pancreatic cancer cell proliferation and invasion

    International Nuclear Information System (INIS)

    To explore the effects of adipose tissue-derived stem cells (ADSCs) on the proliferation and invasion of pancreatic cancer cells in vitro and the possible mechanism involved, ADSCs were cocultured with pancreatic cancer cells, and a cell counting kit (CCK-8) was used to detect the proliferation of pancreatic cancer cells. ELISA was used to determine the concentration of stromal cell-derived factor-1 (SDF-1) in the supernatants. RT-PCR was performed to detect the expression of the chemokine receptor CXCR4 in pancreatic cancer cells and ADSCs. An in vitro invasion assay was used to measure invasion of pancreatic cancer cells. SDF-1 was detected in the supernatants of ADSCs, but not in pancreatic cancer cells. Higher CXCR4 mRNA levels were detected in the pancreatic cancer cell lines compared with ADSCs (109.3±10.7 and 97.6±7.6 vs 18.3±1.7, respectively; P<0.01). In addition, conditioned medium from ADSCs promoted the proliferation and invasion of pancreatic cancer cells, and AMD3100, a CXCR4 antagonist, significantly downregulated these growth-promoting effects. We conclude that ADSCs can promote the proliferation and invasion of pancreatic cancer cells, which may involve the SDF-1/CXCR4 axis

  3. Enhanced proliferation, invasion, and epithelial-mesenchymal transition of nicotine-promoted gastric cancer by periostin

    Institute of Scientific and Technical Information of China (English)

    Yu Liu; Bao-An Liu

    2011-01-01

    AIM: To investigate the contribution of periostin in nicotine-promoted gastric cancer cell proliferation, survival, invasion, drug resistance, and epithelial-mesenchymal transition (EMT). METHODS: Gastric cancer cells were treated with nicotine and periostin protein expression was determined by immunoblotting. Periostin mRNA in gastric cancer cells was silenced using small interfering RNA (siRNA) techniques and periostin gene expression was evaluated by quantitative reverse transcription-polymerase chain reaction. Gastric cancer cells transfected with control or periostin siRNA plasmid were compared in terms of cell proliferation using the methylthiazolyldiphenyl-tetrazolium bromide assay. Cell apoptosis was compared using annexin V-fluoresceine isothiocyanate and propidium iodine double staining. Tumor invasion was determined using the Boyden chamber invasion assay, and the EMT marker Snail expression was evaluated by immunoblotting. RESULTS: Nicotine upregulated periostin in gastric cancer cells through a COX-2 dependent pathway, which was blocked by the COX-2-specific inhibitor NS398. Periostin mRNA expression was decreased by ~87.2% by siRNA in gastric cancer cells, and stable periostinsilenced cells were obtained by G418 screening. Periostin- silenced gastric cancer cells exhibited reduced cell proliferation, elevated sensitivity to chemotherapy with 5-fluorouracil, and decreased cell invasion and Snail expression (P < 0.05). CONCLUSION: Periostin is a nicotine target gene in gastric cancer and plays a role in gastric cancer cell growth, invasion, drug resistance, and EMT facilitated by nicotine.

  4. Effects of Src on Proliferation and Invasion of Lung Cancer Cells

    Directory of Open Access Journals (Sweden)

    Rui ZHENG

    2011-04-01

    Full Text Available Background and objective It has been proven that Src played pivotal roles in carcinogenesis, cancer progression and metastasis. The aim of this study is to explore the roles of Src phosphorylation on lung cancer cells. Methods Western blot and immunoprecipitation was used to detect the expression and phosphorylation of Src in lung cancer cells. MTT and Boyden chamber assay was used to examine the effects of inhibition of Src phosphorylation on proliferation and invasion of lung cancer cells in vitro, respectively. Results pp60src was expressed in all lung cancer cell lines in this study. All 5 non-small cell lung cancer (NSCLC cell lines had increased autophosphorylated tyrosine-418, while nearly no phosphorylated Src in small cell lung cancer SBC5 cell line was detected. The effect of inhibition of Src tyrosine kinase on cell proliferation varied among the lung cancer cell lines. Submicromolar Src tyrosine kinase inhibitor (≤1 μM remarkably suppressed the proliferation of PC-9 and A549 cells in a dose dependent manner (P < 0.05, while the same concentration of Src tyrosine kinase inhibitor had no significant effect on proliferation of H226, PC14PE6 and RERFLCOK cells. Invasiveness of lung cancer cells was significantly suppressed by Src tyrosine kinase in a dose-dependent manner (P < 0.05. Conclusion Phosphorylation of Src, but not over-expression, plays a pivotal role in proliferation and invasion of NSCLC cell lines in vitro.

  5. Effects of Src on Proliferation and Invasion of Lung Cancer Cells

    OpenAIRE

    ZHENG, Rui; Qin, Xiaosong; Li, Wenjie; Kang, Jian

    2011-01-01

    Background and objective It has been proven that Src played pivotal roles in carcinogenesis, cancer progression and metastasis. The aim of this study is to explore the roles of Src phosphorylation on lung cancer cells. Methods Western blot and immunoprecipitation was used to detect the expression and phosphorylation of Src in lung cancer cells. MTT and Boyden chamber assay was used to examine the effects of inhibition of Src phosphorylation on proliferation and invasion of lung cancer cells i...

  6. NME2 reduces proliferation, migration and invasion of gastric cancer cells to limit metastasis.

    Directory of Open Access Journals (Sweden)

    Yan-fei Liu

    Full Text Available Gastric cancer is one of the most common malignancies and has a high rate of metastasis. We hypothesize that NME2 (Nucleoside Diphosphate Kinase 2, which has previously been considered as an anti-metastatic gene, plays a role in the invasiveness of gastric cancer cells. Using a tissue chip technology and immunohistochemistry, we demonstrated that NME2 expression was associated with levels of differentiation of gastric cancer cells and their metastasis into the lymph nodes. When the NME2 gene product was over-expressed by ;in vitro stable transfection, cells from BGC823 and MKN45 gastric cancer cell lines had reduced rates of proliferation, migration, and invasion through the collagen matrix, suggesting an inhibitory activity of NME2 in the propagation and invasion of gastric cancer. NME2 could, therefore, severe as a risk marker for gastric cancer invasiveness and a potential new target for gene therapy to enhance or induce NME2 expression.

  7. Propofol induces proliferation and invasion of gallbladder cancer cells through activation of Nrf2

    Directory of Open Access Journals (Sweden)

    Zhang Lingmin

    2012-08-01

    Full Text Available Abstract Background Propofol is one of the most commonly used intravenous anaesthetic agents during cancer resection surgery, but the effect of propofol on gallbladder cancer is not clear. NF-E2-related factor 2 (Nrf2 is abundantly expressed in cancer cells and relates to proliferation, invasion, and chemoresistance. The aims of the current study were to evaluate effects of propofol on the behavior of human GC cells and role of Nrf2 in these effects. Method The effects of propofol on cell proliferation, apoptosis, and invasion were detected by MTT assays, flow cytometry, and transwell assay. Also, activation of Nrf2 was determined by western blot, RT-PCR, and immunofluorescence assays. Nrf2 was knocked-down in GBC-SD cells by shRNA before evaluating the role of Nrf2 in the influence of propofol on biological behaviors. Results Propofol promoted the proliferation of GBC-SD cells in a dose- and time- dependent manner. After exposure to propofol for 48 h, GBC-SD cells showed decreased apoptosis and increased invasion. Also, propofol over-expressed Nrf2 at both the protein and mRNA levels and induced translocation of Nrf2 into the nucleus. Finally, loss of Nrf2 by shRNA reversed the effect of propofol on cell proliferation, apoptosis, and invasion. Conclusion Propofol induces proliferation and promotes invasion of GC cells through activation of Nrf2.

  8. CXCL12/CXCR4 axis induces proliferation and invasion in human endometrial cancer

    Science.gov (United States)

    Liu, Pingping; Long, Ping; Huang, Yu; Sun, Fengyi; Wang, Zhenyan

    2016-01-01

    Objective: Since that we have previously found CXCL12/CXCR4, an important biological axis is highly transcribed in several cancer cells. We aim to investigate whether CXCL12/CXCR4 axis regulates critical processes in neoplastic transformation that affects endometrial cancer cell biology. Methods: The expression levels of CXCR4 were analyzed in human normal endometrial tissue, simple hyperplasia, atypical hyperplasia and endometrial cancer cells by immunohistochemistry and reverse transcriptase-polymerase chain reaction (RT-PCR). Serum CXCL12 was measured by Enzyme-Linked Immunosorbent Assay (ELISA) in Ishikawa endometrial cancer cell line. To study the biological function of CXCL12/CXCR4 in endometrial cancer, short interfering RNA silencing of CXCR4 was established to analyze the roles of CXCL12/CXCR4 in proliferation, migration, invasion and apoptosis of Ishikawa cells in vitro. Results: The expression level of CXCR4 in endometrial cancer tissue was higher as compared to atypical hyperplasia, simple hyperplasia and normal cycling endometrium cells. Ishikawa cells secreted CXCL12 spontaneously and continuously for 96 hrs in culture. The proliferation, migration and invasion of Ishikawa cells was significantly induced, and the apoptosis was significantly reduced by CXCL12 in combination with CXCR4. Moreover, CXCR4 silencing could significantly antagonize all these functions. Conclusions: CXCL12/CXCR4 axis plays an important role in the proliferation, invasion and metastasis of endometrial cancer, indicating that CXCR4 could be the target for the treatment of endometrial cancer. PMID:27186295

  9. PFTK1 Promotes Gastric Cancer Progression by Regulating Proliferation, Migration and Invasion.

    Directory of Open Access Journals (Sweden)

    Lei Yang

    Full Text Available PFTK1, also known as PFTAIRE1, CDK14, is a novel member of Cdc2-related serine/threonine protein kinases. Recent studies show that PFTK1 is highly expressed in several malignant tumors such as hepatocellular carcinoma, esophageal cancer, breast cancer, and involved in regulation of cell cycle, tumors proliferation, migration, and invasion that further influence the prognosis of tumors. However, the expression and physiological significance of PFTK1 in gastric cancer remain unclear. In this study, we analyzed the expression and clinical significance of PFTK1 by Western blot in 8 paired fresh gastric cancer tissues, nontumorous gastric mucosal tissues and immunohistochemistry on 161 paraffinembedded slices. High PFTK1 expression was correlated with the tumor grade, lymph node invasion as well as Ki-67. Through Cell Counting Kit (CCK-8 assay, flow cytometry, colony formation, wound healing and transwell assays, the vitro studies demonstrated that PFTK1 overexpression promoted proliferation, migration and invasion of gastric cancer cells, while PFTK1 knockdown led to the opposite results. Our findings for the first time supported that PFTK1 might play an important role in the regulation of gastric cancer proliferation, migration and would provide a novel promising therapeutic strategy against human gastric cancer.

  10. PFTK1 Promotes Gastric Cancer Progression by Regulating Proliferation, Migration and Invasion.

    Science.gov (United States)

    Yang, Lei; Zhu, Jia; Huang, Hua; Yang, Qichang; Cai, Jing; Wang, Qiuhong; Zhu, Junya; Shao, Mengting; Xiao, Jinzhang; Cao, Jie; Gu, Xiaodan; Zhang, Shusen; Wang, Yingying

    2015-01-01

    PFTK1, also known as PFTAIRE1, CDK14, is a novel member of Cdc2-related serine/threonine protein kinases. Recent studies show that PFTK1 is highly expressed in several malignant tumors such as hepatocellular carcinoma, esophageal cancer, breast cancer, and involved in regulation of cell cycle, tumors proliferation, migration, and invasion that further influence the prognosis of tumors. However, the expression and physiological significance of PFTK1 in gastric cancer remain unclear. In this study, we analyzed the expression and clinical significance of PFTK1 by Western blot in 8 paired fresh gastric cancer tissues, nontumorous gastric mucosal tissues and immunohistochemistry on 161 paraffinembedded slices. High PFTK1 expression was correlated with the tumor grade, lymph node invasion as well as Ki-67. Through Cell Counting Kit (CCK)-8 assay, flow cytometry, colony formation, wound healing and transwell assays, the vitro studies demonstrated that PFTK1 overexpression promoted proliferation, migration and invasion of gastric cancer cells, while PFTK1 knockdown led to the opposite results. Our findings for the first time supported that PFTK1 might play an important role in the regulation of gastric cancer proliferation, migration and would provide a novel promising therapeutic strategy against human gastric cancer. PMID:26488471

  11. PEG10 promotes human breast cancer cell proliferation, migration and invasion.

    Science.gov (United States)

    Li, Xinran; Xiao, Ruijing; Tembo, Kingsley; Hao, Ling; Xiong, Meng; Pan, Shan; Yang, Xiangyong; Yuan, Wen; Xiong, Jie; Zhang, Qiuping

    2016-05-01

    Paternally expressed imprinted gene 10 (PEG10), derived from the Ty3/Gypsy family of retrotransposons, has been implicated as a genetic imprinted gene. Accumulating evidence suggests that PEG10 plays an important role in tumor growth in various cancers, including hepatocellular carcinoma, lung cancer and prostate cancer. However, the correlation between PEG10 and breast cancer remains unclear. In the present study, we evaluated and characterized the role of PEG10 in human breast cancer proliferation, cell cycle, clone formation, migration and invasion. The expression level of PEG10 was significantly elevated in breast cancer tissues and associated with distant metastasis and poor clinical outcome. Gene set enrichment analysis indicated that high expression of PEG10 could enrich cell cycle-related processes in breast cancer tissues. Ectopic overexpression of PEG10 in breast cancer cells enhanced cell proliferation, cell cycle, clone formation along with migration and invasion. Cell-to-cell junction molecule E-cadherin was downregulated and matrix degradation proteases MMP-1, MMP-2, MMP-9 were up-regulated after PEG10 overexpression. Our results demonstrated that PEG10 is a crucial oncogene and has prognostic value for breast cancer, which could be applied in breast cancer diagnosis and targeting therapy in future. PMID:26934961

  12. miR-708/LSD1 axis regulates the proliferation and invasion of breast cancer cells.

    Science.gov (United States)

    Ma, Lin; Ma, Shan; Zhao, Guimei; Yang, Longqiu; Zhang, Peng; Yi, Qingting; Cheng, Shuguang

    2016-04-01

    Breast cancer is one of the most common malignant tumors in women worldwide. The microRNAs (miRNAs) are small, noncoding RNAs that regulate various biological processes, including breast cancer. miR-708 played an important role in a variety of cancers. However, its involvement in breast cancer remains largely unclear. In this study, we found that forced the expression of miR-708 in breast cancer cell lines decreased cell proliferation and invasion, whereas inhibition of miR-708 increased cell growth and invasion. miR-708 could directly target the LSD1 3'UTR to downregulate the expression. Further studies suggested that inhibition of LSD1 could phenocopied function of the miR-708 overexpression in MDA-MB-231 cells .Overexpression of LSD1 could counteract the effects of miR-708 on the proliferation and invasion. Taken together, the results indicate that miR-708 may function as a tumor suppressor gene in breast cancer development, and miR-708/LSD1 axis may be a therapeutic intervention in breast cancer in the future. PMID:26833707

  13. Low power ultrasound inhibits cell proliferation and invasion of human cancer cells in vitro

    Directory of Open Access Journals (Sweden)

    Etienne Mfoumou

    2012-01-01

    Full Text Available Background: Applications of ultrasound in medicine for therapeutic purposes have been accepted, and they have several beneficial uses for many years. However, the outcome of low power ultrasound waves on cell proliferation, especially cell cycle progression and invasion as well as their associated genes on human breast and cervical cancer cells has not been investigated yet. Therefore, we examined the effect of low power ultrasound on BT20, BT20-E6/E7 and HeLa cell lines. Materials and Methods: BT20, BT20-E6/E7 and HeLa cell lines were used in this study. On the other hand, cell proliferation, cell cycle, and invasion assays were applied to study the effect of low ultrasound irradiation on these cell lines. Meanwhile, western blot was performed to study the expression patterns of some selected genes associated with this effect. Results: We found that low power ultrasound inhibits cell proliferation and provokes G0-G1 cell cycle arrest and reduction of S as well as an increase in the G2-M phase of HeLa cells in comparison with the untreated cells. This is accompanied by a down-regulation of Cdk-6 (cyclin dependent kinase which is a major control switch for the cell cycle. Moreover, low power ultrasound inhibits cell invasion and consequently down-regulates the expression of Id-1, caveolin, and EGF-R which are widely considered as main regulators of cell invasion and metastasis of human cancer. Conclusion: These results suggest that application of low power ultrasound on human breast and cervical cancer could be an effective method to reduce cell proliferation and invasion of these cancers.

  14. Tetrandrine suppresses proliferation, induces apoptosis, and inhibits migration and invasion in human prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Wei Liu

    2015-01-01

    Full Text Available Tetrandrine (TET, a traditional Chinese medicine, exerts remarkable anticancer activity on various cancer cells. However, little is known about the effect of TET on human prostate cancer cells, and the mechanism of function of TET on prostate cancer has not yet been elucidated. To investigate the effects of TET on the suppression of proliferation, induction of apoptosis, and inhibition of migration and invasion in human prostate cancer cell lines, DU145 and PC-3. Inhibition of growth was determined by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assay and clone formation assay, and flow cytometry analysis was performed to detect the induction of apoptosis. Activation of poly (ADP-ribose polymerase, caspase-3, Akt, phospho-Akt, Bcl-2, and Bax was analyzed by Western blotting. Wound healing assay and transwell migration assay were used to evaluate the effect of TET on migration and invasion of cancer cells. TET inhibited the growth of DU145 and PC-3 cells in a dose- and time-dependent manner. Cell cloning was inhibited in the presence of TET in DU145 and PC-3 cells. TET suppressed the migration of DU145 and PC-3 cells. Transwell invasion assay showed that TET significantly weakened invasion capacity of DU145 and PC-3 cells. TET exhibited strong inhibitory effect on proliferation, migration, and invasion of prostate cancer cells. In addition, TET induced apoptosis in a dose-dependent manner by activating the caspase cascade and inhibiting phosphoinositide 3-kinase-Akt signal pathway. The accumulating evidence suggests that TET could be a potential therapeutic candidate against prostate cancer in a clinical setting.

  15. microRNA-21 Governs TORC1 Activation in Renal Cancer Cell Proliferation and Invasion

    OpenAIRE

    Dey, Nirmalya; Das, Falguni; Ghosh-Choudhury, Nandini; Mandal, Chandi Charan; Parekh, Dipen J.; Block, Karen; Kasinath, Balakuntalam S.; Abboud, Hanna E.; Choudhury, Goutam Ghosh

    2012-01-01

    Metastatic renal cancer manifests multiple signatures of gene expression. Deviation in expression of mature miRNAs has been linked to human cancers. Importance of miR-21 in renal cell carcinomas is proposed from profiling studies using tumor tissue samples. However, the role of miR-21 function in causing renal cancer cell proliferation and invasion has not yet been shown. Using cultured renal carcinoma cells, we demonstrate enhanced expression of mature miR-21 along with pre-and pri-miR-21 by...

  16. MiR-614 Inhibited Lung Cancer Cell Invasion and Proliferation via Targeting PSA

    Directory of Open Access Journals (Sweden)

    Fang LV

    2014-10-01

    Full Text Available Background and objective MicroRNAs (miRNAs is a group of non-coding small RNA molecules, which play important roles in the development of tumor. The mechanisms of various kinds of miRNAs in lung cancer still need to be further elucidated. This study investigated the function of miR-614 on lung cancer cell invasion and proliferation. Methods Real-time quantitative PCR was used to detect the expression of miR-614 in lung cancer cell PGCL3 and PGLH7. Transwell assay was used to test the role of miR-614 on regulating invasion and migration of cells. CCK8 assay and BrdU incorporation assay was used to assess the role of miR-614 on cell proliferation. Bioinformatics software predicted the potential target genes of miR-614 and dual luciferase reporter gene was used to analyze the binding between miR-614 and 3’UTR of puromycin-sensitive aminopeptidase (PSA. Western blot detected the PSA protein levels. Results The expression of miR-614 in PGCL3 cells with high metastasis potential was significantly lower than that in PGLH7 cells with low metastasis potential. Furthermore, altered expression of miR-614 by transfection of pre-miR-614 mimics and inhibitor significantly affected the ability of invasion and proliferation of lung cancer cells. Bioinformatics analysis predicted that PSA was one of the potential target genes of miR-614. Altered expression of miR-614 markedly down-regulated the PSA protein levels of lung cancer cells. In addition, dual luciferase reporter gene assay indicated that miR-614 regulated PSA expression by binding to the 3’UTR of PSA mRNA. Conclusion MiR-614 inhibited cell invasion and proliferationa targeting PSA in lung cancer cells, PGCL3.

  17. Investigational Study of Mesenchymal Stem Cells on Lung Cancer Cell Proliferation and Invasion

    Directory of Open Access Journals (Sweden)

    Mei LI

    2015-11-01

    Full Text Available Background and objective Mesenchymal stem cells (MSC are adult stem cells derived from mesoderm. Evidence has shown that MSC could migrate towards tumor tissue and differentiate into tumor associated fibroblast in tumor microenvironment, which influences tumor growth and metastasis. However, the reports of MSC in non-small cell lung cancer (NSCLC are few and controversial. The aim of this study is to explore the chemotaxis of MSC towards NSCLC and to test the effects of MSC on the proliferation and invasion ability of NSCLC. Methods Transwell assay was used to test MSC and NSCLC migration and invasion, and Thymidine incorporation assay was adopted to measure NSCLC cells proliferation. The expression of interleukin-6 (IL-6, insulinlike growth factor (IGF-1, vascular endothelial growth factor (VEGF and dickkopf-related protein 1 (DKK1 of MSCs were determined by real time PCR. A549 lung cancer xenograft animal tumor model was set up to evaluate the MSC effect in vivo. Results Lung cancer cells could attract MSC tropism. MSC conditioned medium favored lung cancer cell proliferation and lung cancer cells stimulated the expression of IL-6, IGF-1, VEGF and DKK1 on MSCs. In vivo animal study showed that the tumor with MSC injection grew much faster compared to control group. Conclusion MSCs could migrate towards NSCLC cells and favor tumor growth. In turn, NSCLC cells could stimulate the overexpression of cytokines on MSCs which are essential for the tumor growth.

  18. Upregulation of HYAL1 expression in breast cancer promoted tumor cell proliferation, migration, invasion and angiogenesis.

    Directory of Open Access Journals (Sweden)

    Jin-Xiang Tan

    Full Text Available Hyaluronic acid (HA is a component of the Extra-cellular matrix (ECM, it is closely correlated with tumor cell growth, proliferation, metastasis and angiogenesis, etc. Hyaluronidase (HAase is a HA-degrading endoglycosidase, levels of HAase are elevated in many cancers. Hyaluronidase-1 (HYAL1 is the major tumor-derived HAase. We previously demonstrated that HYAL1 were overexpression in human breast cancer. Breast cancer cells with higher HAase expression, exhibited significantly higher invasion ability through matrigel than those cells with lower HAase expression, and knockdown of HYAL1 expression in breast cancer cells resulted in decreased cell growth, adhesion, invasion and angiogenesis. Here, to further elucidate the function of HYAL1 in breast cancer, we investigated the consequences of forcing HYAL1 expression in breast cancer cells by transfection of expression plasmid. Compared with control, HYAL1 up-regulated cells showed increased the HAase activity, and reduced the expression of HA in vitro. Meantime, upregulation of HYAL1 promoted the cell growth, migration, invasion and angiogenesis in vitro. Moreover, in nude mice model, forcing HYAL1 expression induced breast cancer cell xenograft tumor growth and angiogenesis. Interestingly, the HA expression was upregulated by forcing HYAL1 expression in vivo. These findings suggested that HYAL1-HA system is correlated with the malignant behavior of breast cancer.

  19. CO-029 is overexpressed in gastric cancer and mediates the effects of EGF on gastric cancer cell proliferation and invasion.

    Science.gov (United States)

    Zhu, Hongyu; Wu, Yulian; Zheng, Wen; Lu, Shiliu

    2015-03-01

    Tetraspanins are cell-surface glycoproteins and have received attention recently as both suppressors and promoters of metastasis. CO-029 is a member of the tetraspanin family and is implicated to be a metastasis-promoting tetraspanin in some cancers. However, the role of CO-029 in gastric cancer remains unexplored. The present study aimed to investigate the expression of CO-029 in gastric cancer tissues and to determine whether CO-029 is involved in the effects of epidermal growth factor (EGF) on gastric cancer cell proliferation and invasion. We collected clinical samples and found that the expression of CO-029 was increased both at the mRNA level and protein level in gastric cancer tissues in comparison to normal and tumor-adjacent tissues, as demonstrated by RT-qPCR and western blot analysis, respectively. Furthermore, we performed an in vitro experiment using AGS cells and observed that EGF promoted AGS cell proliferation and enhanced the invasion ability of the AGS cells, as shown by MTT assay and cell invasion assay, respectively. To the best of our knowledge, our results reveal for the first time, that CO-029 expression was affected by EGF in a concentration- time-dependent manner. The knockdown of CO-029 attenuated the effects of EGF on gastric cancer cell proliferation and invasion. These findings suggest that CO-029 is an oncogene in human gastric cancer and that CO-029 at least partially mediates the effects of EGF on gastric cancer cell proliferation and invasion. Our data may provide a novel target for therapeutic intervention in human gastric cancer. PMID:25592989

  20. Pancreatic stellate cells promote proliferation and invasiveness of human pancreatic cancer cells via galectin-3

    Institute of Scientific and Technical Information of China (English)

    Hai-Biao Jiang; Ming Xu; Xing-Peng Wang

    2008-01-01

    AIM: To investigate the role of pancreatic stellate cells (PSCs) and galectin-3 (GAL-3) in the proliferation and infiltration of pancreatic cancer cell line SW1990.METHODS: Human pancreatic cancer cell line SW1990 and PSCs were cultured in vitro. Supernatant fluid of cultured PSCs and SW1990 cells was collected. Expression of GAL-3 in SW1990 cells and PSCs was detected by ELISA, RT-PCR and Western blotting. Proliferation of cultured PSCs and SW1990 cells was measured by 3-(4, 5-methylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay and flow cytometry. Infiltration of SW1990 cells was detected by a cell infiltration kit.RESULTS: SW1990 cells expressed GAL-3 and this was up-regulated by the supernatant fluid of cultured PSCs. PSCs did not express GAL-3. SW1990 cells stimulated proliferation of PSCs via GAL-3. GAL-3 antibody inhibited SW1990 cell proliferation, while the supernatant fluid of PSCs stimulated proliferation of SW1990 cells through interaction with GAL-3 protein. The supernatant fluid of PSCs enhanced the invasiveness of SW1990 cells through interaction with GAL-3.CONCLUSION: GAL-3 and PSCs were involved in the proliferation and infiltration process of pancreatic cancer cells.

  1. Roles of TRPM8 Ion Channels in Cancer: Proliferation, Survival, and Invasion

    Directory of Open Access Journals (Sweden)

    Nelson S. Yee

    2015-10-01

    Full Text Available The goal of this article is to provide a critical review of the transient receptor potential melastatin-subfamily member 8 (TRPM8 in cancers, with an emphasis on its roles in cellular proliferation, survival, and invasion. The TRPM8 ion channels regulate Ca²⁺ homeostasis and function as a cellular sensor and transducer of cold temperature. Accumulating evidence has demonstrated that TRPM8 is aberrantly expressed in a variety of malignant solid tumors. Clinicopathological analysis has shown that over-expression of TRPM8 correlates with tumor progression. Experimental data have revealed important roles of TRPM8 channels in cancer cells proliferation, survival, and invasion, which appear to be dependent on the cancer type. Recent reports have begun to reveal the signaling mechanisms that mediate the biological roles of TRPM8 in tumor growth and metastasis. Determining the mechanistic roles of TRPM8 in cancer is expected to elucidate the impact of thermal and chemical stimuli on the formation and progression of neoplasms. Translational research and clinical investigation of TRPM8 in malignant diseases will help exploit these ion channels as molecular biomarkers and therapeutic targets for developing precision cancer medicine.

  2. The Biological Effect of Hepsin on the Proliferation and Invasion of PC-3 Prostate Cancer Cells

    Institute of Scientific and Technical Information of China (English)

    Yong Xu; Zhiqiang Fan; Jantao Sun; Ranlu Liu; Weiming Zhao; Chunyu Wang; Ju Zhang

    2006-01-01

    OBJECTIVE Recent studies have shown that hepsin, a type of transmembrane serine protease, is highly upregulated in prostate cancer, but, little is known about its role in progression and invasion of this cancer. We constructed a hepsin-expressing plasmid and transfected it into PC-3 cells to investigate the effect of the hepsin gene on the biological behavior of the PC-3 cells.METHODS Plasmid pHepsin-IRES2 was transfected into prostate cancer PC-3 cells using Fugene6, and the cells with stable hepsin expression were screened and selected with Zeocin (600 mg/L). The hepsin mRNA level was measured by real-time PCR and the growth curve of the PC-3-transfected cells assessed using MTT and BrdU assays. A Boyden chamber was used to examine the difference in invasion and metastases between transfected and non-transfected cells.RESULTS The hepsin mRNA level in pHepsin-IRES2 transfected -PC-3 cells was significantly higher than that found in the control PC-3 cells. While the growth curve of the hepsin gene transfected PC-3 cells showed that there was no significant effect on proliferation, the invasive ability of the pHepsin-IRES2 transfected PC-3 cells, as compared with control cells, was significantly increased (P<0.05).CONCLUSION The results suggest that even though hepsin has no effect on the proliferation of prostate cancer PC-3 cells, it does promote cellular invasion and metastasis.Therefore hepsin may have a role in the development of prostate cancer.

  3. Adipose-derived mesenchymal stem cells promote cell proliferation and invasion of epithelial ovarian cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Yijing; Tang, Huijuan; Guo, Yan; Guo, Jing; Huang, Bangxing; Fang, Fang; Cai, Jing, E-mail: caijingmmm@hotmail.com; Wang, Zehua, E-mail: zehuawang@163.net

    2015-09-10

    Adipose-derived mesenchymal stem cell (ADSC) is an important component of tumor microenvironment. However, whether ADSCs have a hand in ovarian cancer progression remains unclear. In this study, we investigated the impact of human ADSCs derived from the omentum of normal donors on human epithelial ovarian cancer (EOC) cells in vitro and in vivo. Direct and indirect co-culture models including ADSCs and human EOC cell lines were established and the effects of ADSCs on EOC cell proliferation were evaluated by EdU incorporation and flow cytometry. Transwell migration assays and detection of MMPs were performed to assess the invasion activity of EOC cells in vitro. Mouse models were established by intraperitoneal injection of EOC cells with or without concomitant ADSCs to investigate the role of ADSCs in tumor progression in vivo. We found that ADSCs significantly promoted proliferation and invasion of EOC cells in both direct and indirect co-culture assays. In addition, after co-culture with ADSCs, EOC cells secreted higher levels of matrix metalloproteinases (MMPs), and inhibition of MMP2 and MMP9 partially relieved the tumor-promoting effects of ADSCs in vitro. In mouse xenograft models, we confirmed that ADSCs promoted EOC growth and metastasis and elevated the expression of MMP2 and MMP9. Our findings indicate that omental ADSCs play a promotive role during ovarian cancer progression. - Highlights: • Omental adipose derived stem cells enhanced growth and invasion properties of ovarian cancer cells. • Adipose derived stem cells promoted the growth and metastasis of ovarian cancer in mice models. • Adipose derived stem cells promoted MMPs expression and secretion of ovarian cancer cells. • Elevated MMPs mediated the tumor promoting effects of ADSCs.

  4. Adipose-derived mesenchymal stem cells promote cell proliferation and invasion of epithelial ovarian cancer

    International Nuclear Information System (INIS)

    Adipose-derived mesenchymal stem cell (ADSC) is an important component of tumor microenvironment. However, whether ADSCs have a hand in ovarian cancer progression remains unclear. In this study, we investigated the impact of human ADSCs derived from the omentum of normal donors on human epithelial ovarian cancer (EOC) cells in vitro and in vivo. Direct and indirect co-culture models including ADSCs and human EOC cell lines were established and the effects of ADSCs on EOC cell proliferation were evaluated by EdU incorporation and flow cytometry. Transwell migration assays and detection of MMPs were performed to assess the invasion activity of EOC cells in vitro. Mouse models were established by intraperitoneal injection of EOC cells with or without concomitant ADSCs to investigate the role of ADSCs in tumor progression in vivo. We found that ADSCs significantly promoted proliferation and invasion of EOC cells in both direct and indirect co-culture assays. In addition, after co-culture with ADSCs, EOC cells secreted higher levels of matrix metalloproteinases (MMPs), and inhibition of MMP2 and MMP9 partially relieved the tumor-promoting effects of ADSCs in vitro. In mouse xenograft models, we confirmed that ADSCs promoted EOC growth and metastasis and elevated the expression of MMP2 and MMP9. Our findings indicate that omental ADSCs play a promotive role during ovarian cancer progression. - Highlights: • Omental adipose derived stem cells enhanced growth and invasion properties of ovarian cancer cells. • Adipose derived stem cells promoted the growth and metastasis of ovarian cancer in mice models. • Adipose derived stem cells promoted MMPs expression and secretion of ovarian cancer cells. • Elevated MMPs mediated the tumor promoting effects of ADSCs

  5. Rap2b promotes proliferation, migration, and invasion of lung cancer cells.

    Science.gov (United States)

    Peng, Yi-Gen; Zhang, Zheng-Qun; Chen, Yan-Bin; Huang, Jian-An

    2016-10-01

    Rap2b, a member of the guanosine triphosphate-binding proteins, is widely up-regulated in many types of tumors. However, the functional role of Rap2b in tumorigenesis of lung cancer remains to be fully elucidated. In this study, we investigated the effect of Rap2b on the lung cancer malignant phenotype, such as cell proliferation and metastasis. We found that Rap2b could promote the abilities of lung cancer cell wound healing, migration, and invasion via increasing matrix metalloproteinase-2 enzyme activity. Furthermore, Rap2b overexpression could increase the phosphorylation level of extracellular signal-regulated protein kinases 1/2. In conclusion, our results suggested that Rap2b may be a potential therapeutic target for lung cancer. PMID:26671640

  6. Silencing of the integrin-linked kinase gene suppresses the proliferation, migration and invasion of pancreatic cancer cells (Panc-1

    Directory of Open Access Journals (Sweden)

    Xiang-Yu Zhu

    2012-01-01

    Full Text Available Integrin-linked kinase (ILK is an ankyrin repeat-containing serine-threonine protein kinase that is involved in the regulation of integrin-mediated processes such as cancer cell proliferation, migration and invasion. In this study, we examined the effect of a lentivirus-mediated knockdown of ILK on the proliferation, migration and invasion of pancreatic cancer (Panc-1 cells. Immunohistochemical staining showed that ILK expression was enhanced in pancreatic cancer tissue. The silencing of ILK in human Panc-1 cells led to cell cycle arrest in the G0/G1 phase and delayed cell proliferation, in addition to down-regulating cell migration and invasion. The latter effects were mediated by up-regulating the expression of E-cadherin, a key protein in cell adhesion. These findings indicate that ILK may be a new diagnostic marker for pancreatic cancer and that silencing ILK could be a potentially useful therapeutic approach for treating pancreatic cancer.

  7. Overexpressed ubiquitin ligase Cullin7 in breast cancer promotes cell proliferation and invasion via down-regulating p53

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Hongsheng [Department of Histology and Embryology, Guangdong Medical College, Dongguan 523808, Guangdong (China); Wu, Fenping [The 7th People’s Hospital of Chengdu, Chengdu 610041, Sichuan (China); Wang, Yan [The Second School of Clinical Medicine, Guangdong Medical College, Dongguan 523808, Guangdong (China); Yan, Chong [School of Pharmacy, Guangdong Medical College, Dongguan 523808, Guangdong (China); Su, Wenmei, E-mail: wenmeisutg@126.com [Oncology of Affiliated Hospital Guangdong Medical College, Zhanjiang 524000, Guangdong (China)

    2014-08-08

    Highlights: • Cullin7 is overexpressed in human breast cancer samples. • Cullin7 stimulated proliferation and invasion of breast cancer cells. • Inhibition of p53 contributes to Cullin7-induced proliferation and invasion. - Abstract: Ubiquitin ligase Cullin7 has been identified as an oncogene in some malignant diseases such as choriocarcinoma and neuroblastoma. However, the role of Cullin7 in breast cancer carcinogenesis remains unclear. In this study, we compared Cullin7 protein levels in breast cancer tissues with normal breast tissues and identified significantly higher expression of Cullin7 protein in breast cancer specimens. By overexpressing Cullin7 in breast cancer cells HCC1937, we found that Cullin7 could promote cell growth and invasion in vitro. In contrast, the cell growth and invasion was inhibited by silencing Cullin7 in breast cancer cell BT474. Moreover, we demonstrated that Cullin7 promoted breast cancer cell proliferation and invasion via down-regulating p53 expression. Thus, our study provided evidence that Cullin7 functions as a novel oncogene in breast cancer and may be a potential therapeutic target for breast cancer management.

  8. MTA1 promotes proliferation and invasion in human gastric cancer cells

    Directory of Open Access Journals (Sweden)

    Yao Y

    2015-07-01

    Full Text Available Yuan Yao,1 Shuting Feng,1 Mingming Xiao,2 Yan Li,1 Li Yang,1 Jiao Gong1 1Digestive System Department, 2Department of Pathology, The People’s Hospital of Liaoning Province, Shenyang, Liaoning, People’s Republic of China Abstract: Although metastasis-associated protein 1 (MTA1 has been widely li­nked to tumor metastasis, the relevant mechanisms remain to be elucidated, especially in gastric cancer. The aim of this study was to examine whether the MTA1 gene is associated with the process of proliferation and invasion by regulating several molecular targets in gastric cancer. MTA1 expression in 61 gastric cancer tissue and adjacent noncancerous tissues was analyzed by immunohistochemistry. The prognostic value of MTA1 for overall survival and disease-free survival was determined by Kaplan–Meier estimates, and the significance of differences between curves was evaluated by the log-rank test. Furthermore, overexpression of MTA1 in SGC7901 and BGC823 cells promoted cell cycle progression, cell adhesion, and cell invasion. Our study found that MTA1 is overexpressed in gastric cancers, which contributes to malignant cell growth by facilitating cell cycle progression through upregulation of cyclin D1 and accelerates the migration and invasion of human gastric cancer cells by regulating expression of fibronectin and MMP2/MMP9. Taken together, MTA1 was involved in the pathogenesis of gastric cancer and might be a candidate therapeutic target in gastric cancer. Keywords: cell cycle, cell adhesion, migration

  9. Norstictic Acid Inhibits Breast Cancer Cell Proliferation, Migration, Invasion, and In Vivo Invasive Growth Through Targeting C-Met.

    Science.gov (United States)

    Ebrahim, Hassan Y; Elsayed, Heba E; Mohyeldin, Mohamed M; Akl, Mohamed R; Bhattacharjee, Joydeep; Egbert, Susan; El Sayed, Khalid A

    2016-04-01

    Breast cancer is a major health problem affecting the female population worldwide. The triple-negative breast cancers (TNBCs) are characterized by malignant phenotypes, worse patient outcomes, poorest prognosis, and highest mortality rates. The proto-oncogenic receptor tyrosine kinase c-Met is usually dysregulated in TNBCs, contributing to their oncogenesis, tumor progression, and aggressive cellular invasiveness that is strongly linked to tumor metastasis. Therefore, c-Met is proposed as a promising candidate target for the control of TNBCs. Lichens-derived metabolites are characterized by their structural diversity, complexity, and novelty. The chemical space of lichen-derived metabolites has been extensively investigated, albeit their biological space is still not fully explored. The anticancer-guided fractionation of Usnea strigosa (Ach.) lichen extract led to the identification of the depsidone-derived norstictic acid as a novel bioactive hit against breast cancer cell lines. Norstictic acid significantly suppressed the TNBC MDA-MB-231 cell proliferation, migration, and invasion, with minimal toxicity to non-tumorigenic MCF-10A mammary epithelial cells. Molecular modeling, Z'-LYTE biochemical kinase assay and Western blot analysis identified c-Met as a potential macromolecular target. Norstictic acid treatment significantly suppressed MDA-MB-231/GFP tumor growth of a breast cancer xenograft model in athymic nude mice. Lichen-derived natural products are promising resources to discover novel c-Met inhibitors useful to control TNBCs. PMID:26744260

  10. Knockdown of Long Noncoding RNA GHET1 Inhibits Cell Proliferation and Invasion of Colorectal Cancer.

    Science.gov (United States)

    Zhou, Jianyu; Li, Xiaorong; Wu, Meirong; Lin, Changwei; Guo, Yihang; Tian, Buning

    2016-01-01

    Emerging evidence has identified the vital role of long noncoding RNAs (lncRNAs) in the development of colorectal cancer. In this study, we aimed to investigate the role of lncRNA gastric carcinoma highly expressed transcript 1 (GHET1) in colorectal cancer. We analyzed the expression of GHET1 in colorectal cancer (CRC) tissues by using ISH. We found that GHET1 expression was significantly increased in the CRC samples compared with adjacent tissues. Furthermore, the cancer tissues had higher GHET1 mRNA levels than their matched adjacent tissues. GHET1 expression was also significantly increased in the CRC cell lines compared with human normal colon epithelial cells. Downregulation of GHET1 mediated by shRNA suppressed the proliferation, cell cycle arrest, migration, and invasion of colorectal cancer cells in vitro. In addition, inhibition of GHET1 reversed the epithelial-mesenchymal transition in colorectal cancer cell lines. Taken together, our results suggest the potential use of GHET1 as a therapeutic target of colorectal cancer. PMID:27131316

  11. IL1β-mediated Stromal COX-2 signaling mediates proliferation and invasiveness of colonic epithelial cancer cells

    International Nuclear Information System (INIS)

    COX-2 is a major inflammatory mediator implicated in colorectal inflammation and cancer. However, the exact origin and role of COX-2 on colorectal inflammation and carcinogenesis are still not well defined. Recently, we reported that COX-2 and iNOS signalings interact in colonic CCD18Co fibroblasts. In this article, we investigated whether activation of COX-2 signaling by IL1β in primary colonic fibroblasts obtained from normal and cancer patients play a critical role in regulation of proliferation and invasiveness of human colonic epithelial cancer cells. Our results demonstrated that COX-2 level was significantly higher in cancer associated fibroblasts than that in normal fibroblasts with or without stimulation of IL-1β, a powerful stimulator of COX-2. Using in vitro assays for estimating proliferative and invasive potential, we discovered that the proliferation and invasiveness of the epithelial cancer cells were much greater when the cells were co-cultured with cancer associated fibroblasts than with normal fibroblasts, with or without stimulation of IL1β. Further analysis indicated that the major COX-2 product, prostaglandin E2, directly enhanced proliferation and invasiveness of the epithelial cancer cells in the absence of fibroblasts. Moreover, a selective COX-2 inhibitor, NS-398, blocked the proliferative and invasive effect of both normal and cancer associate fibroblasts on the epithelial cancer cells, with or without stimulation of IL-1β. Those results indicate that activation of COX-2 signaling in the fibroblasts plays a major role in promoting proliferation and invasiveness of the epithelial cancer cells. In this process, PKC is involved in the activation of COX-2 signaling induced by IL-1β in the fibroblasts.

  12. The stem cell factor/c-kit receptor pathway enhances proliferation and invasion of pancreatic cancer cells

    Directory of Open Access Journals (Sweden)

    Okada Yuji

    2006-10-01

    Full Text Available Abstract Background The transmembrane protein c-kit is a receptor tyrosine kinase (KIT and KIT is expressed in solid tumors and hematological malignancies such as gastrointestinal stromal tumor (GIST, small-cell lung cancer and chronic myelogenous leukemia (CML. KIT plays a critical role in cell proliferation and differentiation and represents a logical therapeutic target in GIST and CML. In pancreatic cancer, c-kit expression has been observed by immunohistochemical techniques. In this study, we examined the influence of c-kit expression on proliferation and invasion using five pancreatic cancer cell lines. In addition, the inhibitory effect of imatinib mesylate on stem cell factor (SCF-induced proliferation and invasion was evaluated. Finally, we also analyzed KIT and SCF expression in pancreatic cancer tissues using immunohistochemistry and correlated the results with clinical features. Results RT-PCR revealed that two pancreatic cancer cell lines, PANC-1 and SW1990, expressed c-kit mRNA. By Western blot analysis, c-kit protein was also present in those lines. In KIT-positive pancreatic cancer cell lines, proliferation and invasion were significantly enhanced by addition of SCF. In contrast, SCF did not enhance proliferation and invasion in the three KIT-negative lines (BxPC-3, Capan-2 and MIA PaCa-2. 5 μM imatinib mesylate significantly inhibited SCF-enhanced proliferation to the same extent compared with the control. Similarly, SCF-enhanced invasive ability was significantly inhibited by 5 μM imatinib mesylate. KIT was expressed in 16 of 42 clinical specimens by immunohistochemistry, and KIT expression was significantly related to venous system invasion. Furthermore, patients expressing both KIT and SCF had a somewhat lower survival. Conclusion Our results demonstrated that the SCF-KIT pathway enhanced the proliferation and invasiveness in KIT-positive pancreatic cancer cell lines and that the enhanced proliferation and invasion were

  13. Over-Expression of LSD1 Promotes Proliferation, Migration and Invasion in Non-Small Cell Lung Cancer

    OpenAIRE

    Lv, Tangfeng; Yuan, Dongmei; Xiaohui MIAO; Lv, Yanling; Zhan, Ping; Shen, Xiaokun; Song, Yong

    2012-01-01

    Background Lysine specific demethylase 1 (LSD1) has been identified and biochemically characterized in epigenetics, but the pathological roles of its dysfunction in lung cancer remain to be elucidated. The aim of this study was to evaluate the prognostic significance of LSD1 expression in patients with non-small cell lung cancer (NSCLC) and to define its exact role in lung cancer proliferation, migration and invasion. Methods The protein levels of LSD1 in surgically resected samples from NSCL...

  14. Crosstalk between EGFR and integrin affects invasion and proliferation of gastric cancer cell line, SGC7901

    Directory of Open Access Journals (Sweden)

    Dan L

    2012-10-01

    Full Text Available Li Dan,1,* Ding Jian,2,* Lin Na,1 Wang Xiaozhong,1 1Digestive Department, the Union Hospital of Fujian Medical University, Fujian, People’s Republic of China; 2Digestive Department, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, People’s Republic of China*These authors contributed equally to this workBackground/objective: To investigate the crosstalk between epidermal growth factor receptor (EGFR and integrin-mediated signal transduction pathways in human gastric adenocarcinoma cells.Methods: EGF was used as a ligand of EGFR to stimulate the gastric adenocarcinoma cell, SGC7901. Signal molecules downstream of the integrin, FAK(Y397 and p130cas(Y410 phosphorylation, were measured by immunoprecipitation and western blot. Fibronectin (Fn was used as a ligand of integrin to stimulate the same cell line. Signal molecules downstream of EGFR and extracellular signal-regulated kinase (ERK general phosphorylation were also measured. Focal adhesion kinase (FAK small-interfering RNA was designed and transfected into SGC7901 cells to decrease the expression of FAK. Modified Boyden chambers and MTT assay were used to examine the effect of FAK inhibition on the invasiveness and proliferation of SGC7901.Results: EGF activated FAK(Y397 and p130cas(Y410 phosphorylation, while Fn activated ERK general phosphorylation. Inhibition of FAK expression decreased p130cas(Y410 phosphorylation activated by EGF and ERK general phosphorylation activated by Fn, also decreased the invasiveness and proliferation of SGC7901 cells activated by EGF or Fn.Conclusion: There is crosstalk between EGFR and integrin signal transduction. FAK may be a key cross point of the two signal pathways and acts as a potential target for human gastric cancer therapy.Keywords: gastric adenocarcinoma, epidermal growth factor receptor, integrin, focal adhesion kinase, crosstalk

  15. Effect of WFDC 2 silencing on the proliferation, motility and invasion of human serous ovarian cancer cells in vitro

    Institute of Scientific and Technical Information of China (English)

    Ya-Fei Zhu; Guo-Lan Gao; Sheng-Bo Tang; Zhen-Dong Zhang; Qing-Shui Huang

    2013-01-01

    Objective: To investigate effect and possible mechanisms of silencing human WFDC2 (HE4) gene on biological behavior changes as cell proliferation, apoptosis, movement and invasion of human serous ovarian cancer cell line SKOV3. Methods: Lentiviral WFDC2 gene sequence of small interfering siRNA was stablely transfected into SKOV3 identified by Q-PCR and western-blot. Obtained SKOV3 stable strains with silenced HE4 were measured by proliferation, apoptosis, migration, and invasion. Results: Gene sequencing showed that the oligonucleotides were successfully inserted into the expected site. After silencing HE4 in the SKOV3, proliferation was significantly inhibited (P<0.05). G0/G1 phase was arrested by the cell cycle (P<0.01) and capacity of the migration and invasion decreased significantly (P<0.01). Slight early apoptosis ratio and no change of late apoptosis were found without change of Caspase-3 or Bcl-2 protein. Proteins involed in ERK pathway as phosphorylated protein as p-EGFR, p- ERK decreased and protease protein involved in tissue remoding as matrix metalloproteinases MMP-9, MMP-2 and cathepsin B decreased compared with control group. Conclusions: HE4 gene plays an important role in regulating proliferation, apoptosis, migration, invasion of serous ovarian cancer cells by ERK pathway and protease system. Its role in apoptosis needs to be further explored, and it may be a potential target for serous ovarian cancer.

  16. Over-expression of LSD1 promotes proliferation, migration and invasion in non-small cell lung cancer.

    Directory of Open Access Journals (Sweden)

    Tangfeng Lv

    Full Text Available BACKGROUND: Lysine specific demethylase 1 (LSD1 has been identified and biochemically characterized in epigenetics, but the pathological roles of its dysfunction in lung cancer remain to be elucidated. The aim of this study was to evaluate the prognostic significance of LSD1 expression in patients with non-small cell lung cancer (NSCLC and to define its exact role in lung cancer proliferation, migration and invasion. METHODS: The protein levels of LSD1 in surgically resected samples from NSCLC patients were detected by immunohistochemistry or Western blotting. The mRNA levels of LSD1 were detected by qRT-PCR. The correlation of LSD1 expression with clinical characteristics and prognosis was determined by statistical analysis. Cell proliferation rate was assessed by MTS assay and immunofluorescence. Cell migration and invasion were detected by scratch test, matrigel assay and transwell invasion assay. RESULTS: LSD1 expression was higher in lung cancer tissue more than in normal lung tissue. Our results showed that over-expression of LSD1 protein were associated with shorter overall survival of NSCLC patients. LSD1 was localized mainly to the cancer cell nucleus. Interruption of LSD1 using siRNA or a chemical inhibitor, pargyline, suppressed proliferation, migration and invasion of A549, H460 and 293T cells. Meanwhile, over-expression of LSD1 enhanced cell growth. Finally, LSD1 was shown to regulate epithelial-to-mesenchymal transition in lung cancer cells. CONCLUSIONS: Over-expression of LSD1 was associated with poor prognosis in NSCLC, and promoted tumor cell proliferation, migration and invasion. These results suggest that LSD1 is a tumor-promoting factor with promising therapeutic potential for NSCLC.

  17. miR-1271 promotes non-small-cell lung cancer cell proliferation and invasion via targeting HOXA5

    International Nuclear Information System (INIS)

    MicroRNAs (miRNAs) are short, non-coding RNAs (∼22 nt) that play important roles in the pathogenesis of human diseases by negatively regulating numerous target genes at posttranscriptional level. However, the role of microRNAs in lung cancer, particularly non-small-cell lung cancer (NSCLC), has remained elusive. In this study, two microRNAs, miR-1271 and miR-628, and their predicted target genes were identified differentially expressed in NSCLC by analyzing the miRNA and mRNA expression data from NSCLC tissues and their matching normal controls. miR-1271 and its target gene HOXA5 were selected for further investigation. CCK-8 proliferation assay showed that the cell proliferation was promoted by miR-1271 in NSCLC cells, while miR-1271 inhibitor could significantly inhibited the proliferation of NSCLC cells. Interestingly, migration and invasion assay indicated that overexpression of miR-1271 could significantly promoted the migration and invasion of NSCLC cells, whereas miR-1271 inhibitor could inhibited both cell migration and invasion of NSCLC cells. Western blot showed that miR-1271 suppressed the protein level of HOXA5, and luciferase assays confirmed that miR-1271 directly bound to the 3'untranslated region of HOXA5. This study indicated indicate that miR-1271 regulates NSCLC cell proliferation and invasion, via the down-regulation of HOXA5. Thus, miR-1271 may represent a potential therapeutic target for NSCLC intervention. - Highlights: • Overexpression of miR-1271 promoted proliferation and invasion of NSCLC cells. • miR-1271 inhibitor inhibited the proliferation and invasion of NSCLC cells. • miR-1271 targets 3′ UTR of HOXA5 in NSCLC cells. • miR-1271 negatively regulates HOXA5 in NSCLC cells

  18. miR-132 targeting E2F5 suppresses cell proliferation, invasion, migration in ovarian cancer cells

    Science.gov (United States)

    Tian, Hang; Hou, Lei; Xiong, Yu-Mei; Huang, Jun-Xiang; Zhang, Wen-Hua; Pan, Yong-Ying; Song, Xing-Rong

    2016-01-01

    Accumulating evidence showed that microRNA-132 (miR-132) are involved in development and progression of several types of cancers, however, the function and underlying molecular mechanism of miR-132 in ovarian cancer remains unclear. In this study we investigated the biological roles and molecular mechanism of miR-132 in ovarian cancer. Here, we found that that the expression levels of miR-132 were dramatically decreased in ovarian cancer cell lines and clinical ovarian cancer tissue samples. Then, we found that introduction of miR-132 significantly suppressed the proliferation, colony formation, migration and invasion of ovarian cancer cells. Mechanism investigation revealed that miR-132 inhibited the expression of transcription factor E2F5 by specifically targeting its mRNA 3’UTR. Moreover, the expression level of E2F5 was significantly increased in ovarian cancer tissues than in the adjacent normal tissues, and its expression was inversely correlated with miR-132 expression in clinical ovarian cancer tissues. Additionally, silencing E2F5 was able to inhibit the proliferation, colony formation, migration and invasion of ovarian cancer cells, parallel to the effect of miR-132 overexpression on the ovarian cancer cells. Meanwhile, overexpression of E2F5 reversed the inhibition effect mediated by miR-132 overexpression. These results indicate that miR-132 suppresses the cell proliferation, invasion, migration in ovarian cancer cells by targeting E2F5. PMID:27186275

  19. Targeting Id1 reduces proliferation and invasion in aggressive human salivary gland cancer cells

    International Nuclear Information System (INIS)

    Salivary gland cancer (SGC) is one of the common malignancies of the head and neck area. It develops in the minor and major salivary glands and sometimes metastasizes to other organs, particularly to the lungs. Inhibitors of differentiation (Id) proteins are negative regulators of basic helix-loop-helix transcription factors that control malignant cell behavior and tumor aggressiveness in many tissues. In this study, our goal was to determine the potential role of Id proteins, particularly Id1, during human SGC cell progression. We first determined the expression levels of Id1 and Id2 in four SGC cell lines: two adenocarcinoma of the salivary gland (HSG and HSY) and two adenoid cystic carcinoma (ACC2 and ACCM) cell lines. We then used constructs that expressed antisense cDNAs to Id1 or Id2 to knockdown the expression of these proteins in cell lines where they were highly expressed, and determined the effects of the knockdown on cell proliferation, migration and invasion. Id1 mRNA and protein were detectable in all cell lines, and expression of Id2 was variable, from absent to high. The ACC2 and ACCM cell lines expressed both Id1 and Id2, but Id1 was expressed at a higher level in the more aggressive ACCM cell line in comparison toACC2 cells as confirmed by Id1 promoter-reporter assays. We therefore focused on the ACCM cells for the remainder of the study. We found that proliferation and invasiveness of ACCM cells were strongly reduced after Id1 knockdown whereas Id2 suppression had only a slight effect. Results of scratch and colony formation assays also confirmed that ACCM cell aggressiveness was significantly reduced upon Id1 knockdown. Finally, this knockdown resulted in reduced c-myc and enhanced cyclin-dependent kinase inhibitor p21 expression. These results demonstrate that Id1 plays an important role in the control of human SGC cell aggressiveness and suggest a potential role as a marker of diagnosis, prognosis and progression of SGCs. Id1 suppression could

  20. Effects of MicroRNA-10b on lung cancer cell proliferation and invasive metastasis and the underlying mechanism

    Institute of Scientific and Technical Information of China (English)

    Qiao-Li Su; Shuang-Qing Li; Duo-Ning Wang; Feng Liu; Bo Yuan

    2014-01-01

    Objective:To study the influence ofMicroRNA-10b on proliferation and invasion of human low metastatic lung cancer cell95-C and its mechanism.Methods:LipofectamineMicroRNA-10b eukaryotic expression plasmid was transfected into95-C.The experiment group was divided into blank control group, empty vector transfected group andMicroRNA-10b transfected group.Real time quantitativeRT-PCR was used to detect theexpression ofMicroRNA-10b and KLF4mRNA expression.Proliferations of cells were detected by cell proliferation assay, invasion of the detected the cellTranswell experiments, the expression ofKLF4 protein was detected in Western blotting cells.Results:The proliferation rate ofMicroRNA-10b plasmid transfection group increased significantly after transfection, invasion and migration ability enhancement, by comparison, there are statistically significant differences in the blank control group and negative control group(P0.05). Conclusions:MicroRNA-10b may promote proliferation and invasion of95-C cells by down regulating the expression ofKLF4 protein.

  1. MiR-132 prohibits proliferation, invasion, migration, and metastasis in breast cancer by targeting HN1

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhan-Guo, E-mail: zhang_zhanguo@hotmail.com; Chen, Wei-Xun, E-mail: chenweixunclark@163.com; Wu, Yan-Hui, E-mail: wuyanhui84@126.com; Liang, Hui-Fang, E-mail: lianghuifang1997@126.com; Zhang, Bi-Xiang, E-mail: bixiangzhang@163.com

    2014-11-07

    Highlights: • MiR-132 is down-regulated in breast cancer tissues and cell lines. • MiR-132 directly regulates HN1 by binding its 3′ UTR. • MiR-132 shows regulatory role in proliferation, invasion, migration and metastasis. • HN1 is involved in miR-132-mediated cell behavior. • Aberrant HN1 is associated with worse overall survival of breast cancer patients. - Abstract: Accumulating evidence indicates that miRNAs play critical roles in tumorigenesis and cancer progression. This study aims to investigate the role and the underlying mechanism of miR-132 in breast cancer. Here, we report that miR-132 is significantly down-regulated in breast cancer tissues and cancer cell lines. Additional study identifies HN1 as a novel direct target of miR-132. MiR-132 down-regulates HN1 expression by binding to the 3′ UTR of HN1 transcript, thereby, suppressing multiple oncogenic traits such as cancer cell proliferation, invasion, migration and metastasis in vivo and in vitro. Overexpression of HN1 restores miR-132-suppressed malignancy. Importantly, higher HN1 expression is significantly associated with worse overall survival of breast cancer patients. Taken together, our data demonstrate a critical role of miR-132 in prohibiting cell proliferation, invasion, migration and metastasis in breast cancer through direct suppression of HN1, supporting the potential utility of miR-132 as a novel therapeutic strategy against breast cancer.

  2. MiR-132 prohibits proliferation, invasion, migration, and metastasis in breast cancer by targeting HN1

    International Nuclear Information System (INIS)

    Highlights: • MiR-132 is down-regulated in breast cancer tissues and cell lines. • MiR-132 directly regulates HN1 by binding its 3′ UTR. • MiR-132 shows regulatory role in proliferation, invasion, migration and metastasis. • HN1 is involved in miR-132-mediated cell behavior. • Aberrant HN1 is associated with worse overall survival of breast cancer patients. - Abstract: Accumulating evidence indicates that miRNAs play critical roles in tumorigenesis and cancer progression. This study aims to investigate the role and the underlying mechanism of miR-132 in breast cancer. Here, we report that miR-132 is significantly down-regulated in breast cancer tissues and cancer cell lines. Additional study identifies HN1 as a novel direct target of miR-132. MiR-132 down-regulates HN1 expression by binding to the 3′ UTR of HN1 transcript, thereby, suppressing multiple oncogenic traits such as cancer cell proliferation, invasion, migration and metastasis in vivo and in vitro. Overexpression of HN1 restores miR-132-suppressed malignancy. Importantly, higher HN1 expression is significantly associated with worse overall survival of breast cancer patients. Taken together, our data demonstrate a critical role of miR-132 in prohibiting cell proliferation, invasion, migration and metastasis in breast cancer through direct suppression of HN1, supporting the potential utility of miR-132 as a novel therapeutic strategy against breast cancer

  3. MiR-203 controls proliferation, migration and invasive potential of prostate cancer cell lines

    DEFF Research Database (Denmark)

    Viticchiè, Giuditta; Lena, Anna Maria; Latina, Alessia;

    2011-01-01

    cell lines compared to normal epithelial prostatic cells. Overexpression of miR-203 in brain or bone metastatic prostate cell lines (DU145 and PC3) is sufficient to induce a mesenchymal to epithelial transition with inhibition of cell proliferation, migration and invasiveness. We have identified CKAP2...

  4. miR-92a is upregulated in cervical cancer and promotes cell proliferation and invasion by targeting FBXW7

    International Nuclear Information System (INIS)

    MicroRNAs (miRNAs) are involved in the cervical carcinogenesis and progression. In this study, we investigated the role of miR-92a in progression and invasion of cervical cancer. MiR-92a was significantly upregulated in cervical cancer tissues and cell lines. Overexpression of miR-92a led to remarkably enhanced proliferation by promoting cell cycle transition from G1 to S phase and significantly enhanced invasion of cervical cancer cells, while its knockdown significantly reversed these cellular events. Bioinformatics analysis suggested F-box and WD repeat domain-containing 7 (FBXW7) as a novel target of miR-92a, and miR-92a suppressed the expression level of FBXW7 mRNA by direct binding to its 3′-untranslated region (3′UTR). Expression of miR-92a was negatively correlated with FBXW7 in cervical cancer tissues. Furthermore, Silencing of FBXW7 counteracted the effects of miR-92a suppression, while its overexpression reversed oncogenic effects of miR-92a. Together, these findings indicate that miR-92a acts as an onco-miRNA and may contribute to the progression and invasion of cervical cancer, suggesting miR-92a as a potential novel diagnostic and therapeutic target of cervical cancer. - Highlights: • miR-92a is elevated in cervical cancer tissues and cell lines. • miR-92a promotes cervical cancer cell proliferation, cell cycle transition from G1 to S phase and invasion. • FBXW7 is a direct target of miR-92a. • FBXW7 counteracts the oncogenic effects of miR-92a on cervical cancer cells

  5. miR-92a is upregulated in cervical cancer and promotes cell proliferation and invasion by targeting FBXW7

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Chuanyi [Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008 (China); Shen, Liangfang, E-mail: lfshen2008@163.com [Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008 (China); Mao, Lei; Wang, Bing; Li, Yang; Yu, Huizhi [Department of Radiation Oncology, Yueyang Second People' s Hospital, Yueyang 414000 (China)

    2015-02-27

    MicroRNAs (miRNAs) are involved in the cervical carcinogenesis and progression. In this study, we investigated the role of miR-92a in progression and invasion of cervical cancer. MiR-92a was significantly upregulated in cervical cancer tissues and cell lines. Overexpression of miR-92a led to remarkably enhanced proliferation by promoting cell cycle transition from G1 to S phase and significantly enhanced invasion of cervical cancer cells, while its knockdown significantly reversed these cellular events. Bioinformatics analysis suggested F-box and WD repeat domain-containing 7 (FBXW7) as a novel target of miR-92a, and miR-92a suppressed the expression level of FBXW7 mRNA by direct binding to its 3′-untranslated region (3′UTR). Expression of miR-92a was negatively correlated with FBXW7 in cervical cancer tissues. Furthermore, Silencing of FBXW7 counteracted the effects of miR-92a suppression, while its overexpression reversed oncogenic effects of miR-92a. Together, these findings indicate that miR-92a acts as an onco-miRNA and may contribute to the progression and invasion of cervical cancer, suggesting miR-92a as a potential novel diagnostic and therapeutic target of cervical cancer. - Highlights: • miR-92a is elevated in cervical cancer tissues and cell lines. • miR-92a promotes cervical cancer cell proliferation, cell cycle transition from G1 to S phase and invasion. • FBXW7 is a direct target of miR-92a. • FBXW7 counteracts the oncogenic effects of miR-92a on cervical cancer cells.

  6. MicroRNA-106b targets FUT6 to promote cell migration, invasion, and proliferation in human breast cancer.

    Science.gov (United States)

    Li, Nana; Liu, Yuejian; Miao, Yuan; Zhao, Lifen; Zhou, Huimin; Jia, Li

    2016-09-01

    It is demonstrated that the maladjustment of microRNA (miRNA) plays significant roles in the occurrence and development of tumors. MicroRNA-106b-5p (miR-106b), a carcinogenic miRNA, is identified as a dysregulated miRNA in human breast cancer. In this article, the expression levels of miR-106b were discovered to be particularly higher in breast cancer tissues than that in the corresponding adjacent tissues. Accordingly, miR-106b was higher expressed in the breast cancer cell lines compared with that in the normal breast cell lines. Moreover, according to the data previously reported, increased expression of miR-106b was significantly associated with advanced clinical stages and poor prognosis in breast cancer. Fucosyltransferase 6 (FUT6), a member of the fucosyltransferase (FUT) family, was found to have a reduced expression in tissues or cells with higher level of miR-106b in breast cancer. Additionally, down-regulation of miR-106b increased the expression of FUT6 and resulted in an obvious decrease of cell migration, invasion, and proliferation in MDA-MB-231 cells. Furthermore, over-expressed FUT6 reversed the impacts of up-regulated miR-106b on cell migration, invasion, and proliferation in MCF-7 cells, indicating that FUT6 might be directly targeted by miR-106b and serve as therapeutic targets for breast cancer. In brief, our results strongly showed that the low expression of FUT6 regulated by miR-106b contributed to cell migration, invasion, and proliferation in human breast cancer. © 2016 IUBMB Life, 68(9):764-775, 2016. PMID:27519168

  7. Stromal COX-2 signaling activated by deoxycholic acid mediates proliferation and invasiveness of colorectal epithelial cancer cells

    International Nuclear Information System (INIS)

    Highlights: ► Human colonic cancer associated fibroblasts are major sources of COX-2 and PGE2. ► The fibroblasts interact with human colonic epithelial cancer cells. ► Activation of COX-2 signaling in the fibroblasts affects behavior of the epithelia. ► Protein Kinase C controls the activation of COX-2 signaling. -- Abstract: COX-2 is a major regulator implicated in colonic cancer. However, how COX-2 signaling affects colonic carcinogenesis at cellular level is not clear. In this article, we investigated whether activation of COX-2 signaling by deoxycholic acid (DCA) in primary human normal and cancer associated fibroblasts play a significant role in regulation of proliferation and invasiveness of colonic epithelial cancer cells. Our results demonstrated while COX-2 signaling can be activated by DCA in both normal and cancer associated fibroblasts, the level of activation of COX-2 signaling is significantly greater in cancer associated fibroblasts than that in normal fibroblasts. In addition, we discovered that the proliferative and invasive potential of colonic epithelial cancer cells were much greater when the cells were co-cultured with cancer associated fibroblasts pre-treated with DCA than with normal fibroblasts pre-treated with DCA. Moreover, COX-2 siRNA attenuated the proliferative and invasive effect of both normal and cancer associate fibroblasts pre-treated with DCA on the colonic cancer cells. Further studies indicated that the activation of COX-2 signaling by DCA is through protein kinase C signaling. We speculate that activation of COX-2 signaling especially in cancer associated fibroblasts promotes progression of colonic cancer.

  8. FHL2 inhibits the Id3-promoted proliferation and invasive growth of human MCF-7 breast cancer cells

    Institute of Scientific and Technical Information of China (English)

    CHEN Yi-hong; WU Zhi-qiang; ZHAO Ya-li; SI Yi-ling; GUO Ming-zhou; HAN Wei-dong

    2012-01-01

    Background Id3 plays a key role in the progression of breast cancer.Previously,four and a half LIM protein (FHL2) was identified as a repressor of Id family proteins by interacting with them.This study aimed to investigate the effects of FHL2 on the transcriptional regulation and oncogenic activities of Id3 in human breast cancer cells.Methods Cell transfection was performed with SuperFect reagent.Stable transfectants that overexpressed Id3 were obtained by selection on G418.The level of Id3 protein was determined by Western blotting analysis.Dual luciferase assays were used to measure the effect of Id3 and FHL2 on E47-mediated transcriptional activity in MCF-7 human breast cancer cells.The MTT assay was used to measure cell proliferation.The transwell assay was used to measure the invasive capacity of MCF-7 cancer cells.Results Id3 markedly repressed transcription mediated by the basic helix-loop-helix (bHLH) factor E47 in MCF-7 cells.This Id3-mediated repression was effectively antagonized by FHL2.Overexpression of Id3 markedly promoted the proliferation and invasive capacity of MCF-7 cells; however,these effects were significantly suppressed by the overexpression of FHL2.Conclusions FHL2 can inhibit the proliferation and invasive growth of human breast cancer cells by repressing the functional activity of Id3.The functional roles of FHL2-1d3 signaling in the development of human breast cancer need further research.

  9. MicroRNA-100 regulates SW620 colorectal cancer cell proliferation and invasion by targeting RAP1B.

    Science.gov (United States)

    Peng, Hui; Luo, Jun; Hao, Hu; Hu, Jun; Xie, Shang-Kui; Ren, Donglin; Rao, Benqiang

    2014-05-01

    MicroRNAs (miRNAs) have been demonstrated to play important roles in tumorigenesis of human cancer. Fewer studies have explored the roles of miR-100 on human colorectal cancer cell proliferation and invasion. In this study, we utilized real-time PCR to verify whether miR-100 was downregulated in human colorectal cancer tissues compared with matched adjacent normal tissues. Functional studies demonstrated that ectopic expression of miR-100 inhabits cell growth and invasion and induce apoptosis, whereas knockdown of miR-100 yielded the reverse phenotype. Mechanistic studies reveal that miR-100 repressed the activity of a reporter gene fused to the 3'-untranslated region (3'-UTR) of RAP1B, whereas miR-100 silencing upregulated the expression of the reporter gene. Furthermore, we also detected that RAP1B mRNA was inversely expressed with miR-100 in colorectal cancer tissues. These data indicate that the miR-100 plays a tumor suppressor role by regulating colorectal cancer cell growth and invasion phenotype, and could serve as a potential maker for colorectal cancer therapy. PMID:24626817

  10. The activation of Proteinase-Activated Receptor-1 (PAR1) mediates gastric cancer cell proliferation and invasion

    International Nuclear Information System (INIS)

    In addition to regulating platelet function, the G protein-coupled sub-family member Proteinase-activated receptor-1 (PAR1) has a proposed role in the development of various cancers, but its exact role and mechanism of action in the invasion, metastasis, and proliferation process in gastric cancer have yet to be completely elucidated. Here, we analyzed the relationship between PAR1 activation, proliferation, invasion, and the signaling pathways downstream of PAR1 activation in gastric cancer. We established a PAR1 stably transfected MKN45 human gastric cancer cell line (MKN45/PAR1) and performed cell proliferation and invasion assays employing this cell line and MKN28 cell line exposed to PAR1 agonists (α-thrombin and TFLLR-NH2). We also quantified NF-κB activation by electrophoretic mobility shift assay (EMSA) and the level of Tenascin-C (TN-C) expression in conditioned medium by ELISA of MKN45/PAR1 following administration of α-thrombin. A high molecular weight concentrate was derived from the resultant conditioned medium and subsequent cultures of MKN45/PAR1 and MKN28 were exposed to the resultant concentrate either in the presence or absence of TN-C-neutralizing antibody. Lysates of these subsequent cells were probed to quantify levels of phospholyrated Epidermal Growth Factor Receptor (EGFR). PAR1 in both PAR1/MKN45 and MKN28 was activated by PAR1 agonists, resulting in cell proliferation and matrigel invasion. We have shown that activation of NF-κB and EGFR phosphorylation initially were triggered by the activation of PAR1 with α-thrombin. Quantitative PCR and Western blot assay revealed up-regulation of mRNA and protein expression of NF-κB target genes, especially TN-C, a potential EGFR activator. The suppressed level of phosphorylated EGFR, observed in cells exposed to concentrate of conditioned medium in the presence of TN-C-neutralizing antibody, identifies TN-C as a putative autocrine stimulatory factor of EGFR possibly involved in the sustained

  11. Invasion and Proliferation in Malignant Cells

    OpenAIRE

    Svensson Månsson, Sofie

    2006-01-01

    Two key events in the oncogenic process of tumor cells are to acquire uncontrolled proliferation and invasive properties. This allows the tumor to grow and invade beyond the tissue from which the tumor cells originate. We here specifically studied p16 and ERK1/2 with special focus on and the relation to proliferation and invasion in non-melanoma skin cancer and in breast cancer. In a model system of basal cell carcinoma, we observed that tumor cells changed phenotype from a highly prol...

  12. DJ-1 Is Upregulated in Oral Squamous Cell Carcinoma and Promotes Oral Cancer Cell Proliferation and Invasion

    Science.gov (United States)

    Xu, Shuaimei; Ma, Dandan; Zhuang, Rui; Sun, Wenjuan; Liu, Ying; Wen, Jun; Cui, Li

    2016-01-01

    Background: The development of oral squamous cell carcinoma (OSCC) is a multistep process that involves in both genetic alterations and epigenetic modifications. DJ-1, a negative regulator of tumor suppressor PTEN, functions as an oncogene in many types of cancers. However, its role in OSCC is poorly known. Methods: Immunohistochemical staining and Western blotting were performed to evaluate the expression level of DJ-1 in oral leukoplakia (OLK) and OSCC tissues respectively. Then lentiviral mediated DJ-1 shRNA was constructed and used to infect the OSCC cell lines (Tca8113 and CAL-27). MTT, cell counting, and Matrigel invasion assay were utilized to examine the effects of DJ-1 down-regulation on proliferation and invasion capacity of oral cancer cells. Results: The immunoreactivity and expression level of DJ-1 protein was significantly increased in OLK and OSCC tissues compared with the controls. Lentiviral-delivered shRNA targeting DJ-1 could effectively knock down DJ-1 at mRNA and protein level (P<0.01). The proliferative and invasion ability of OSCC cell lines was significantly suppressed following DJ-1 inhibition (P<0.01). Conclusions: Our study indicated that DJ-1 is over-expressed in both oral precancer and cancer tissues and shRNA inhibition of DJ-1 expression led to decreased proliferation and invasion capability of oral cancer cells. These findings suggest that DJ-1 might be actively involved in the development of OSCC. Future studies will investigate the potential of DJ-1 as a biomarker for early detection of OSCC. PMID:27313793

  13. Fentanyl inhibits proliferation and invasion of colorectal cancer via β-catenin

    OpenAIRE

    Zhang, Xiu-lai; Chen, Min-Li; Zhou, Sheng-Li

    2015-01-01

    Background and aim: Fentanyl is widely used for relieving pain and narcotizing in cancer patients. However, there are few published reports regarding the effects of fentanyl on tumor control and treatment. Here we investigated the effects of fentanyl on tumor growth and cell invasion in the human colorectal carcinoma (HCT116) cells. Methods: Nude mice xenografts of HCT116 cells were established to assess the inhibition effect on tumor growth by fentanyl. MTT and Transwell were employed to det...

  14. MicroRNA-193b modulates proliferation, migration, and invasion of non-small cell lung cancer cells

    Institute of Scientific and Technical Information of China (English)

    Huajun Hu; Shangao Li; Jun Liu; Bin Ni

    2012-01-01

    MicroRNAs have been reported to be closely related to the development of human lung cancers.However,the functions of microRNAs in non-small cell lung cancer (NSCLC) remain largely undefined.Here,we investigated the role of microRNA-193b (miR-193b) in NSCLC.Our data showed that miR-193b was markedly down-regulated in NSCLC cancer tissues compared with adjacent normal tissues.The NSCLC cell line (A549) transfected with the miR-193b exhibited significantly decreased proliferation,migration,and invasion capacities when compared with the control cells.In contrast,inhibition of miR-193bincreased the proliferation,migration,and invasion of A549 cells.Moreover,miR-193b repressed the expressions of cyclin D1 and urokinase-type plasminogen activator in A549 cells.These data suggest that miR-193b is a tumor suppressor in NSCLC.

  15. Pristimerin inhibits proliferation, migration and invasion, and induces apoptosis in HCT-116 colorectal cancer cells.

    Science.gov (United States)

    Yousef, Bashir A; Hassan, Hozeifa M; Guerram, Mounia; Hamdi, Aida M; Wang, Bin; Zhang, Lu-Yong; Jiang, Zhen-Zhou

    2016-04-01

    Colorectal cancer (CRC) is one of the world's most common cancers with a high mortality rate mainly due to metastasis. Our previous study showed that pristimerin had potent antitumor activities against human CRC cells. In the present study, we further evaluated pristimerin anti-tumor and anti-metastatic properties. MTT assay, Hoechst staining, Annexin V/PI double staining, reactive oxygen species (ROS) measurements were used to assess pristimerin cytotoxicity and apoptotic-inducing effects on HCT-116 cells. Wound healing assay and Transwell assay were used to estimate pristimerin anti-migration and anti-invasion activities on CRC cells. Meanwhile, HCT-116 xenograft model applied for investigating in vivo antitumor activities. Our results showed that pristimerin mediated in vitro HCT-116 cell death, through generation of intracellular ROS and apoptosis induction. Tumor volumes and weights measurements, pathological analysis and Tunnel assay proved that pristimerin inhibited in vivo HCT-116 xenografts growth. Pristimerin was also able to limit CRC invasion and metastasis. It caused downregulation of PI3K/AKT/mTOR pathway and its subsequent downstream p70S6K and E4-BP1 proteins. Collectively, pristimerin exerted both in vitro and in vivo cytotoxic and anti-metastatic effects on HCT-116 cells, suggesting that pristimerin has potential as a new anticancer drug for treatment of colon cancer. PMID:27044819

  16. RNAi-mediated knockdown of FANCF suppresses cell proliferation, migration, invasion, and drug resistance potential of breast cancer cells

    Directory of Open Access Journals (Sweden)

    L. Zhao

    2014-01-01

    Full Text Available Fanconi anemia complementation group F protein (FANCF is a key factor, which maintains the function of FA/BRCA, a DNA damage response pathway. However, the functional role of FANCF in breast cancer has not been elucidated. We performed a specific FANCF-shRNA knockdown of endogenous FANCF in vitro. Cell viability was measured with a CCK-8 assay. DNA damage was assessed with an alkaline comet assay. Apoptosis, cell cycle, and drug accumulation were measured by flow cytometry. The expression levels of protein were determined by Western blot using specific antibodies. Based on these results, we used cell migration and invasion assays to demonstrate a crucial role for FANCF in those processes. FANCF shRNA effectively inhibited expression of FANCF. We found that proliferation of FANCF knockdown breast cancer cells (MCF-7 and MDA-MB-435S was significantly inhibited, with cell cycle arrest in the S phase, induction of apoptosis, and DNA fragmentation. Inhibition of FANCF also resulted in decreased cell migration and invasion. In addition, FANCF knockdown enhanced sensitivity to doxorubicin in breast cancer cells. These results suggest that FANCF may be a potential target for molecular, therapeutic intervention in breast cancer.

  17. RNAi-mediated knockdown of FANCF suppresses cell proliferation, migration, invasion, and drug resistance potential of breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, L.; Li, N.; Yu, J.K.; Tang, H.T.; Li, Y.L.; He, M.; Yu, Z.J.; Bai, X.F. [Department of Pharmacology, School of Pharmacy, China Medical University, Heping Ward, Shenyang City, Liaoning (China); Zheng, Z.H.; Wang, E.H. [Institute of Pathology and Pathophysiology, China Medical University, Heping Ward, Shenyang City, Liaoning (China); Wei, M.J. [Department of Pharmacology, School of Pharmacy, China Medical University, Heping Ward, Shenyang City, Liaoning (China)

    2013-12-12

    Fanconi anemia complementation group F protein (FANCF) is a key factor, which maintains the function of FA/BRCA, a DNA damage response pathway. However, the functional role of FANCF in breast cancer has not been elucidated. We performed a specific FANCF-shRNA knockdown of endogenous FANCF in vitro. Cell viability was measured with a CCK-8 assay. DNA damage was assessed with an alkaline comet assay. Apoptosis, cell cycle, and drug accumulation were measured by flow cytometry. The expression levels of protein were determined by Western blot using specific antibodies. Based on these results, we used cell migration and invasion assays to demonstrate a crucial role for FANCF in those processes. FANCF shRNA effectively inhibited expression of FANCF. We found that proliferation of FANCF knockdown breast cancer cells (MCF-7 and MDA-MB-435S) was significantly inhibited, with cell cycle arrest in the S phase, induction of apoptosis, and DNA fragmentation. Inhibition of FANCF also resulted in decreased cell migration and invasion. In addition, FANCF knockdown enhanced sensitivity to doxorubicin in breast cancer cells. These results suggest that FANCF may be a potential target for molecular, therapeutic intervention in breast cancer.

  18. RNAi-mediated knockdown of FANCF suppresses cell proliferation, migration, invasion, and drug resistance potential of breast cancer cells

    International Nuclear Information System (INIS)

    Fanconi anemia complementation group F protein (FANCF) is a key factor, which maintains the function of FA/BRCA, a DNA damage response pathway. However, the functional role of FANCF in breast cancer has not been elucidated. We performed a specific FANCF-shRNA knockdown of endogenous FANCF in vitro. Cell viability was measured with a CCK-8 assay. DNA damage was assessed with an alkaline comet assay. Apoptosis, cell cycle, and drug accumulation were measured by flow cytometry. The expression levels of protein were determined by Western blot using specific antibodies. Based on these results, we used cell migration and invasion assays to demonstrate a crucial role for FANCF in those processes. FANCF shRNA effectively inhibited expression of FANCF. We found that proliferation of FANCF knockdown breast cancer cells (MCF-7 and MDA-MB-435S) was significantly inhibited, with cell cycle arrest in the S phase, induction of apoptosis, and DNA fragmentation. Inhibition of FANCF also resulted in decreased cell migration and invasion. In addition, FANCF knockdown enhanced sensitivity to doxorubicin in breast cancer cells. These results suggest that FANCF may be a potential target for molecular, therapeutic intervention in breast cancer

  19. MicroRNA-196a promotes non-small cell lung cancer cell proliferation and invasion through targeting HOXA5

    International Nuclear Information System (INIS)

    MicroRNAs (miRNAs) are short, non-coding RNAs (~22 nt) that play important roles in the pathogenesis of human diseases by negatively regulating gene expression. Although miR-196a has been implicated in several other cancers, its role in non-small cell lung cancer (NSCLC) is unknown. The aim of the present study was to examine the expression pattern of miR-196a in NSCLC and its clinical significance, as well as its biological role in tumor progression. Expression of miR-196a was analyzed in 34 NSCLC tissues and five NSCLC cell lines by quantitative reverse-transcription polymerase chain reaction (qRT-PCR). The effect of DNA methylation on miR-196a expression was investigated by 5-aza-2-deoxy-cytidine treatment and bisulfite sequencing. The effect of miR-196a on proliferation was evaluated by MTT and colony formation assays, and cell migration and invasion were evaluated by transwell assays. Analysis of target protein expression was determined by western blotting. Luciferase reporter plasmids were constructed to confirm the action of miR-196a on downstream target genes, including HOXA5. Differences between the results were tested for significance using Student’s t-test (two-tailed). miR-196a was highly expressed both in NSCLC samples and cell lines compared with their corresponding normal counterparts, and the expression of miR-196a may be affected by DNA demethylation. Higher expression of miR-196a in NSCLC tissues was associated with a higher clinical stage, and also correlated with NSCLC lymph-node metastasis. In vitro functional assays demonstrated that modulation of miR-196a expression affected NSCLC cell proliferation, migration and invasion. Our analysis showed that miR-196a suppressed the expression of HOXA5 both at the mRNA and protein levels, and luciferase assays confirmed that miR-196a directly bound to the 3’untranslated region of HOXA5. Knockdown of HOXA5 expression in A549 cells using RNAi was shown to promote NSCLC cell proliferation, migration

  20. Targeting choline phospholipid metabolism: GDPD5 and GDPD6 silencing decrease breast cancer cell proliferation, migration, and invasion.

    Science.gov (United States)

    Cao, Maria Dung; Cheng, Menglin; Rizwan, Asif; Jiang, Lu; Krishnamachary, Balaji; Bhujwalla, Zaver M; Bathen, Tone F; Glunde, Kristine

    2016-08-01

    Abnormal choline phospholipid metabolism is associated with oncogenesis and tumor progression. We have investigated the effects of targeting choline phospholipid metabolism by silencing two glycerophosphodiesterase genes, GDPD5 and GDPD6, using small interfering RNA (siRNA) in two breast cancer cell lines, MCF-7 and MDA-MB-231. Treatment with GDPD5 and GDPD6 siRNA resulted in significant increases in glycerophosphocholine (GPC) levels, and no change in the levels of phosphocholine or free choline, which further supports their role as GPC-specific regulators in breast cancer. The GPC levels were increased more than twofold during GDPD6 silencing, and marginally increased during GDPD5 silencing. DNA laddering was negative in both cell lines treated with GDPD5 and GDPD6 siRNA, indicating absence of apoptosis. Treatment with GDPD5 siRNA caused a decrease in cell viability in MCF-7 cells, while GDPD6 siRNA treatment had no effect on cell viability in either cell line. Decreased cell migration and invasion were observed in MDA-MB-231 cells treated with GDPD5 or GDPD6 siRNA, where a more pronounced reduction in cell migration and invasion was observed under GDPD5 siRNA treatment as compared with GDPD6 siRNA treatment. In conclusion, GDPD6 silencing increased the GPC levels in breast cancer cells more profoundly than GDPD5 silencing, while the effects of GDPD5 silencing on cell viability/proliferation, migration, and invasion were more severe than those of GDPD6 silencing. Our results suggest that silencing GDPD5 and GDPD6 alone or in combination may have potential as a new molecular targeting strategy for breast cancer treatment. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27356959

  1. Inhibition of DACH1 activity by short hairpin RNA represses cell proliferation and tumor invasion in pancreatic cancer.

    Science.gov (United States)

    Bu, Xiao-Na; Qiu, Chan; Wang, Chuan; Jiang, Zheng

    2016-08-01

    Cancer of the pancreas is one of the most lethal diseases worldwide. Better understanding of the molecular mechanisms involved in tumorigenesis is of great consequence to elevate the survival rate. Human Dachshund homologue 1 (DACH1) plays a controversial role in human malignancy progression with its expression being altered in a variety of cancers. Nevertheless, its functional roles and molecular mechanisms in pancreatic cancer remain unknown. The expression of DACH1 in pancreatic cancer cell lines and the ductal epithelial cells were evaluated both at mRNA and protein levels. Three pairs of siRNA targeting the DACH1 gene were designed and synthesized, double-stranded short hairpin RNA (shRNA) were annealed and inserted into pGenesil-1 vector, which was confirmed by enzymatic digestion and sequencing analyses. The successfully constructed recombinant plasmids were transfected into Capan-1 cells and our data indicated that knockdown of DACH1 gene expression showed strong correlation with repressing tumorigenesis. The proliferation of Capan-1 cells was significantly repressed as evaluated by CCK-8 and colony formation assays. Flow cymetry revealed that cell apoptosis was promoted in interference plasmid group compared with control groups (P0.05). Transwell assay validated the abilities of migration and invasion as being significantly reduced in pshRNA-DACH1 group. Furthermore, our study suggested that DACH1 expression regulates the pancreatic cancer cell apoptosis through interacting with Bcl-2 signaling axis, whereas it controls cell migration and invasion via epithelial-mesenchymal transition (EMT) process. PMID:27278537

  2. MiRNA-203 suppresses cell proliferation, migration and invasion in colorectal cancer via targeting of EIF5A2

    Science.gov (United States)

    Deng, Biao; Wang, Bin; Fang, Jiaqing; Zhu, Xuchao; Cao, Zhongwei; Lin, Qi; Zhou, Lisheng; Sun, Xing

    2016-01-01

    While it is known that miR-203 is frequently downregulated in many types of human cancer, little is known regarding its expression and functional role in colorectal cancer (CRC). In this study, we aimed to investigate the expression and the potential mechanisms of miR-203 in colorectal cancer. MiR-203 was significantly downregulated in CRC tissues compared with matched normal adjacent tissues. Our clinical data show that decreased miR-203 was associated with an advanced clinical tumor-node-metastasis stage, lymph node metastasis, and poor survival in CRC patients. Furthermore, externally induced expression of miR-203 significantly inhibited CRC cell proliferation and invasion in vitro and in vivo. Mechanistically, we identified EIF5A2 as a direct and functional target of miR-203. The levels of miR-203 were inversely correlated with levels of the EIF5A2 in the CRC tissues. Restoration of EIF5A2 in the miR-203-overexpressing CRC cells reversed the suppressive effects of miR-203. Our results demonstrate that miR-203 serves as a tumor suppressor gene and may be useful as a new potential therapeutic target in CRC. PMID:27376958

  3. Using real-time impedance-based assays to monitor the effects of fibroblast-derived media on the adhesion, proliferation, migration and invasion of colon cancer cells

    OpenAIRE

    2014-01-01

    Increasing our knowledge of the mechanisms regulating cell proliferation, migration and invasion are central to understanding tumour progression and metastasis. The local tumour microenvironment contributes to the transformed phenotype in cancer by providing specific environmental cues that alter the cells behaviour and promotes metastasis. Fibroblasts have a strong association with cancer and in recent times there has been some emphasis in designing novel therapeutic strategies that alter fi...

  4. miR-22 suppresses the proliferation and invasion of gastric cancer cells by inhibiting CD151

    International Nuclear Information System (INIS)

    Highlights: • miR-22 was decreased in GC tissue samples and cell lines. • miR-22 suppressed GC cell growth and motility in vitro. • CD151 was a direct target of miR-22. • miR-22 suppressed GC cell growth and motility by inhibiting CD151. - Abstract: Gastric cancer (GC) is the second common cause of cancer-related death worldwide. microRNAs (miRNAs) play important roles in the carcinogenesis of GC. Here, we found that miR-22 was significantly decreased in GC tissue samples and cell lines. Ectopic overexpression of miR-22 remarkably suppressed cell proliferation and colony formation of GC cells. Moreover, overexpression of miR-22 significantly suppressed migration and invasion of GC cells. CD151 was found to be a target of miR-22. Furthermore, overexpression of CD151 significantly attenuated the tumor suppressive effect of miR-22. Taken together, miR-22 might suppress GC cells growth and motility partially by inhibiting CD151

  5. Long non-coding RNA BACE1-AS is a novel target for anisomycin-mediated suppression of ovarian cancer stem cell proliferation and invasion.

    Science.gov (United States)

    Chen, Qing; Liu, Xinghui; Xu, Limin; Wang, Ying; Wang, Suwei; Li, Qiong; Huang, Yongyi; Liu, Te

    2016-04-01

    Human ovarian cancer stem cells (OCSCs) are one of the main factors affecting ovarian cancer cell metastasis, recurrence, prognosis and tolerance to chemotherapy drugs. However, the mechanisms of OCSC proliferation and invasion are not clear. Recent studies suggest that anisomycin can inhibit the proliferative and invasive ability of various tumor cells by increasing the production of the toxic amyloid β (Aβ1-42) peptides from the amyloid precursor protein (APP). We explored whether anisomycin could also suppress human OCSC proliferation and invasion. The CD44+/CD117+ OCSCs were enriched from human clinical ovarian tumor tissues. OCSCs treated with anisomycin showed reduced proliferation compared to controls. Moreover, anisomycin significantly suppressed the invasive capacity of OCSCs in vitro, as indicated by cell migration assays. The mRNA expression levels of long non-coding RNA (lncRNA) β-site APP cleaving enzyme 1 antisense strand (BACE1-AS) were significantly increased in anisomycin-treated OCSCs compared to controls. In addition, mRNA and protein levels of BACE1 and Aβ1-42 were increased in anisomycin-treated OCSCs compared to controls. We confirmed that anisomycin suppressed the growth of xenograft tumors formed by OCSCs in vivo. Finally, when expression of lncRNA BACE1-AS was silenced using siRNA, BACE1 expression was downregulated and the antiproliferative and anti-invasive effects of anisomycin were reduced. Overall, we identified lncRNA BACE1-AS as a novel target for anisomycin. Elevation of lncRNA BACE1-AS expression is a potential mechanism for suppressing human OCSC proliferation and invasion. PMID:26783004

  6. Afatinib inhibits proliferation and invasion and promotes apoptosis of the T24 bladder cancer cell line

    OpenAIRE

    Tang, Yunhua; Zhang, XiangYang; QI, FAN; CHEN, MINGFENG; Li, Yuan; Liu, Longfei; He, Wei; Li, Zhuo; Zu, Xiongbing

    2015-01-01

    Afatinib is a highly selective, irreversible inhibitor of the epidermal growth factor receptor (EGFR) and human EGFR 2 (HER-2). Although preclinical and clinical studies have indicated that afatinib has antitumor activity and clinical efficacy in non-small cell lung carcinoma, head and neck squamous cell carcinoma and breast cancer, there are few studies investigating its inhibitory effect on human bladder carcinoma cells. In this study, the antitumor effect of afatinib was investigated on th...

  7. Cholestane-3β, 5α, 6β-triol suppresses proliferation, migration, and invasion of human prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Ching-Yu Lin

    Full Text Available Oxysterols are oxidation products of cholesterol. Cholestane-3β, 5α, 6β-triol (abbreviated as triol is one of the most abundant and active oxysterols. Here, we report that triol exhibits anti-cancer activity against human prostate cancer cells. Treatment of cells with triol dose-dependently suppressed proliferation of LNCaP CDXR-3, DU-145, and PC-3 human prostate cancer cells and reduced colony formation in soft agar. Oral administration of triol at 20 mg/kg daily for three weeks significantly retarded the growth of PC-3 xenografts in nude mice. Flow cytometric analysis revealed that triol treatment at 10-40 µM caused G1 cell cycle arrest while the TUNEL assay indicated that triol treatment at 20-40 µM induced apoptosis in all three cell lines. Micro-Western Arrays and traditional Western blotting methods indicated that triol treatment resulted in reduced expression of Akt1, phospho-Akt Ser473, phospho-Akt Thr308, PDK1, c-Myc, and Skp2 protein levels as well as accumulation of the cell cycle inhibitor p27(Kip. Triol treatment also resulted in reduced Akt1 protein expression in PC-3 xenografts. Overexpression of Skp2 in PC-3 cells partially rescued the growth inhibition caused by triol. Triol treatment suppressed migration and invasion of DU-145, PC-3, and CDXR-3 cells. The expression levels of proteins associated with epithelial-mesenchymal transition as well as focal adhesion kinase were affected by triol treatment in these cells. Triol treatment caused increased expression of E-cadherin protein levels but decreased expression of N-cadherin, vimentin, Slug, FAK, phospho-FAK Ser722, and phospho-FAK Tyr861 protein levels. Confocal laser microscopy revealed redistribution of β-actin and α-tubulin at the periphery of the CDXR-3 and DU-145 cells. Our observations suggest that triol may represent a promising therapeutic agent for advanced metastatic prostate cancer.

  8. Protein tyrosine phosphatase µ (PTP µ or PTPRM, a negative regulator of proliferation and invasion of breast cancer cells, is associated with disease prognosis.

    Directory of Open Access Journals (Sweden)

    Ping-Hui Sun

    Full Text Available BACKGROUND: PTPRM has been shown to exhibit homophilic binding and confer cell-cell adhesion in cells including epithelial and cancer cells. The present study investigated the expression of PTPRM in breast cancer and the biological impact of PTPRM on breast cancer cells. DESIGN: Expression of PTPRM protein and gene transcript was examined in a cohort of breast cancer patients. Knockdown of PTPRM in breast cancer cells was performed using a specific anti-PTPRM transgene. The impact of PTPRM knockdown on breast cancer was evaluated using in vitro cell models. RESULTS: A significant decrease of PTPRM transcripts was seen in poorly differentiated and moderately differentiated tumours compared with well differentiated tumours. Patients with lower expression of PTPRM had shorter survival compared with those which had a higher level of PTPRM expression. Knockdown of PTPRM increased proliferation, adhesion, invasion and migration of breast cancer cells. Furthermore, knockdown of PTPRM in MDA-MB-231 cells resulted in increased cell migration and invasion via regulation of the tyrosine phosphorylation of ERK and JNK. CONCLUSIONS: Decreased expression of PTPRM in breast cancer is correlated with poor prognosis and inversely correlated with disease free survival. PTPRM coordinated cell migration and invasion through the regulation of tyrosine phosphorylation of ERK and JNK.

  9. TM4SF1 Promotes Proliferation, Invasion, and Metastasis in Human Liver Cancer Cells

    OpenAIRE

    Yu-Kun Huang; Xue-Gong Fan; Fu Qiu

    2016-01-01

    Transmembrane 4 superfamily member 1 (TM4SF1) is a member of tetraspanin family, which mediates signal transduction events regulating cell development, activation, growth and motility. Our previous studies showed that TM4SF1 is highly expressed in liver cancer. HepG2 cells were transfected with TM4SFl siRNA and TM4SF1-expressing plasmids and their biological functions were analyzed in vitro and in vivo. HepG2 cells overexpressing TM4SF1 showed reduced apoptosis and increased cell migration in...

  10. Knockdown of biglycan expression by RNA interference inhibits the proliferation and invasion of, and induces apoptosis in, the HCT116 colon cancer cell line.

    Science.gov (United States)

    Xing, Xiaojing; Gu, Xiaohu; Ma, Tianfei

    2015-11-01

    Biglycan is an important component of the extracellular matrix, and it is also a member of small leucine-rich proteoglycan family. Previous studies indicated that the expression of biglycan was increased in a variety of tumor tissues, including colon cancer. However, the mechanisms underlying its effects in colon cancer remain to be fully elucidated. In the present study, the effects of biglycan knockdown on colon cancer cell proliferation, migration, invasion and apoptosis were investigated. The mRNA expression levels of biglycan in the HCT116 colon cancer cell line were downregulated using RNA interference, and the stably transfected cell line was obtained through G418 screening for subsequent experiments. The results revealed that downregulation of the expression of biglycan suppressed cell proliferation and caused a cell cycle arrest at the G0/G1 phase. The results of the western blot analysis also revealed that the expression levels of cell cycle‑associated proteins, including cyclin A and cyclin D1, were markedly decreased following silencing of biglycan, whereas the expression levels of p21 and p27 were markedly increased compared with that of the short hairpin RNA control group. Furthermore, the decreased expression of biglycan inhibited colon cancer cell migration and invasion, and induced apoptosis. A complete inhibition of the p38 signaling pathway with SB203580 effectively reversed the increase in apoptotic cell numbers induced by biglycan downregulation. Taken together, the results of the present study indicated that biglycan exerts an important role in cell proliferation, migration, invasion and apoptosis in colon cancer, and that biglycan regulates the p38 MAPK signaling pathway by exerting an antiapoptotic effect. Therefore, biglycan may represent a putative target for colon cancer gene therapy. PMID:26459740

  11. Effect of MicroRNA-335 on the Metastasis, Invasion and Proliferation of Cells in Patients with Non-small Cell Lung Cancer

    Institute of Scientific and Technical Information of China (English)

    Wang He; Liu Zhili; Wang Zhaoxia

    2013-01-01

    Objective: To investigate the effect of microRNA-335 on the metastasis, invasion and proliferation of cells in patients with non-small-cell lung cancer (NSCLC). Methods:Real-time PCR was performed to detect the expression differences of microRNA-335 between 12 pairs of NSCLC and normal cancerous peripheral tissues, and between SPCA-1 cells of NSCLC and 16HBE of normal pulmonary epithelial cells, while miR-335 expression in SPCA-1 cells were down-regulated and proved by Lipofectamine 2000 transient transfection and real-time PCR, respectively. Scratch test, Transwell invasion assay as well as MTT and clone formation assays were applied to respectively determine the effect of miR-335 on the metastasis, invasion and proliferation of SPCA-1 cells. Results:Compared with para-carcinoma tissues and 16HBE cells, miR-335 expression was evidently higher in NSCLC and SPCA-1 cells. However, it decreased remarkably after transient transfection of anti-miR-335 by SPCA-1 cells with Lipofectamine 2000 for 24 h. Metastasis and invasion of SPCA-1 cells could be inhibited by suppressing miR-335 expression with suppression rates being (42.8±2.7)%and (73.25±4.4)%, respectively. However, the inhibition of miR-335 expression had no effect on the proliferation of SPCA-1 cells. Conclusion:miR-335 expresses highly in NSCLC and its low expression can obviously inhibit the metastasis and invasion of SPCA-1 cells, but has no effect on the proliferation.

  12. Ovarian cancers overexpress the antimicrobial protein hCAP-18 and its derivative LL-37 increases ovarian cancer cell proliferation and invasion.

    Science.gov (United States)

    Coffelt, Seth B; Waterman, Ruth S; Florez, Luisa; Höner zu Bentrup, Kerstin; Zwezdaryk, Kevin J; Tomchuck, Suzanne L; LaMarca, Heather L; Danka, Elizabeth S; Morris, Cindy A; Scandurro, Aline B

    2008-03-01

    The role of the pro-inflammatory peptide, LL-37, and its pro-form, human cationic antimicrobial protein 18 (hCAP-18), in cancer development and progression is poorly understood. In damaged and inflamed tissue, LL-37 functions as a chemoattractant, mitogen and pro-angiogenic factor suggesting that the peptide may potentiate tumor progression. The aim of this study was to characterize the distribution of hCAP-18/LL-37 in normal and cancerous ovarian tissue and to examine the effects of LL-37 on ovarian cancer cells. Expression of hCAP-18/LL-37 was localized to immune and granulosa cells of normal ovarian tissue. By contrast, ovarian tumors displayed significantly higher levels of hCAP-18/LL-37 where expression was observed in tumor and stromal cells. Protein expression was statistically compared to the degree of immune cell infiltration and microvessel density in epithelial-derived ovarian tumors and a significant correlation was observed for both. It was demonstrated that ovarian tumor tissue lysates and ovarian cancer cell lines express hCAP-18/LL-37. Treatment of ovarian cancer cell lines with recombinant LL-37 stimulated proliferation, chemotaxis, invasion and matrix metalloproteinase expression. These data demonstrate for the first time that hCAP-18/LL-37 is significantly overexpressed in ovarian tumors and suggest LL-37 may contribute to ovarian tumorigenesis through direct stimulation of tumor cells, initiation of angiogenesis and recruitment of immune cells. These data provide further evidence of the existing relationship between pro-inflammatory molecules and ovarian cancer progression. PMID:17960624

  13. ING5 suppresses proliferation, apoptosis, migration and invasion, and induces autophagy and differentiation of gastric cancer cells: a good marker for carcinogenesis and subsequent progression

    Science.gov (United States)

    Gou, Wen-feng; Shen, Dao-fu; Yang, Xue-feng; Zhao, Shuang; Liu, Yun-peng; Sun, Hong-zhi; Su, Rong-jian; Luo, Jun-sheng; Zheng, Hua-chuan

    2015-01-01

    Here, we found that ING5 overexpression increased autophagy, differentiation, and decreased proliferation, apoptosis, migration, invasion and lamellipodia formation in gastric cancer cells, while ING5 knockdown had the opposite effects. In SGC-7901 transfectants, ING5 overexpression caused G1 arrest, which was positively associated with 14-3-3 overexpression, Cdk4 and c-jun hypoexpression. The induction of Bax hypoexpression, Bcl-2, survivin, 14-3-3, PI3K, p-Akt and p70S6K overexpression by ING5 decreased apoptosis in SGC-7901 cells. The hypoexpression of MMP-9, MAP1B and flotillin 2 contributed to the inhibitory effects of ING5 on migration and invasion of SGC-7901 cells. ING5 overexpression might activate both β-catenin and NF-κB pathways in SGC-7901 cells, and promote the expression of down-stream genes (c-myc, VEGF, Cyclin D1, survivin, and interleukins). Compared with the control, ING5 transfectants displayed drug resistance to triciribine, paclitaxel, cisplatin, SAHA, MG132 and parthenolide, which was positively related to their apoptotic induction and the overexpression of chemoresistance-related genes (MDR1, GRP78, GRP94, IRE, CD147, FBXW7, TOP1, TOP2, MLH1, MRP1, BRCP1 and GST-π). ING5 expression was higher in gastric cancer than matched mucosa. It was inversely associated with tumor size, dedifferentiation, lymph node metastasis and clinicopathological staging of cancer. ING5 overexpression suppressed growth, blood supply and lung metastasis of SGC-7901 cells by inhibiting proliferation, enhancing autophagy and apoptosis in xenograft models. It was suggested that ING5 expression might be employed as a good marker for gastric carcinogenesis and subsequent progression by inhibiting proliferation, growth, migration, invasion and metastasis. ING5 might induce apoptotic and chemotherapeutic resistances of gastric cancer cells by activating β-catenin, NF-κB and Akt pathways. PMID:25980581

  14. microRNA-183 plays as oncogenes by increasing cell proliferation, migration and invasion via targeting protein phosphatase 2A in renal cancer cells

    International Nuclear Information System (INIS)

    Highlights: • miR-183 was up-regulated in renal cancer tissues. • Inhibition of endogenous miR-183 suppressed renal cancer cell growth and metastasis. • miR-183 increased cell growth and metastasis. • miR-183 regulated renal cancer cell growth and metastasis via directly targeting tumor suppressor protein phosphatase 2A. - Abstract: The aim of this study was to investigate the function of miR-183 in renal cancer cells and the mechanisms miR-183 regulates this process. In this study, level of miR-183 in clinical renal cancer specimens was detected by quantitative real-time PCR. miR-183 was up- and down-regulated in two renal cancer cell lines ACHN and A498, respectively, and cell proliferation, Caspase 3/7 activity, colony formation, in vitro migration and invasion were measured; and then the mechanisms of miR-183 regulating was analyzed. We found that miR-183 was up-regulated in renal cancer tissues; inhibition of endogenous miR-183 suppressed in vitro cell proliferation, colony formation, migration, and invasion and stimulated Caspase 3/7 activity; up-regulated miR-183 increased cell growth and metastasis and suppressed Caspase 3/7 activity. We also found that miR-183 directly targeted tumor suppressor, specifically the 3′UTR of three subunits of protein phosphatase 2A (PP2A-Cα, PP2A-Cβ, and PP2A-B56-γ) transcripts, inhibiting their expression and regulated the downstream regulators p21, p27, MMP2/3/7 and TIMP1/2/3/4. These results revealed the oncogenes role of miR-183 in renal cancer cells via direct targeting protein phosphatase 2A

  15. Effect of HMGA2 shRNA on the Cell Proliferation and Invasion of Human Colorectal Cancer SW480 Cells In vitro

    Institute of Scientific and Technical Information of China (English)

    XU Guang-meng; ZHANG Hai-na; TIAN Xiao-feng; SUN Mei; FANG Xue-dong

    2012-01-01

    High mobility group A2(HMGA2)protein is a small nonhistone chromosomal protein that can modulate transcription of an ample number of genes.Many previous studies demonstrate that up-regulation of HMGA2 expression occurrs in many kinds of cancers including colorectal cancer,suggesting that HMGA2 might play a critical role in the progression of various tumors.However,the exact role of HMGA2 in colorectal cancer has not been determined.To verify the essential role of HMGA2 in the growth and invasiveness of colorectal cancer,HMGA2 expression was down-regulated by RNA interference(RNAi)in SW480 cells.We observed that the knockdown of HMGA2 led to the significant inhibition of proliferation and invasion of SW480 cells in vitro.These results suggest that HMGA2 might play a crucial role in the progression of colorectal cancer,and be a potential therapeutic target for human colorectal cancer.

  16. Tumor suppressive microRNA-133a regulates novel targets: Moesin contributes to cancer cell proliferation and invasion in head and neck squamous cell carcinoma

    International Nuclear Information System (INIS)

    Highlights: ► Tumor suppressive microRNA-133a regulates moesin (MSN) expression in HNSCC. ► Silencing of MSN in HNSCC cells suppressed proliferation, migration and invasion. ► The expression level of MSN was significantly up-regulated in cancer tissues. -- Abstract: Recently, many studies suggest that microRNAs (miRNAs) contribute to the development, invasion and metastasis of various types of human cancers. Our recent study revealed that expression of microRNA-133a (miR-133a) was significantly reduced in head and neck squamous cell carcinoma (HNSCC) and that restoration of miR-133a inhibited cell proliferation, migration and invasion in HNSCC cell lines, suggesting that miR-133a function as a tumor suppressor. Genome-wide gene expression analysis of miR-133a transfectants and TargetScan database showed that moesin (MSN) was a promising candidate of miR-133a target gene. MSN is a member of the ERM (ezrin, radixin and moesin) protein family and ERM function as cross-linkers between plasma membrane and actin-based cytoskeleton. The functions of MSN in cancers are controversial in previous reports. In this study, we focused on MSN and investigated whether MSN was regulated by tumor suppressive miR-133a and contributed to HNSCC oncogenesis. Restoration of miR-133a in HNSCC cell lines (FaDu, HSC3, IMC-3 and SAS) suppressed the MSN expression both in mRNA and protein level. Silencing study of MSN in HNSCC cell lines demonstrated significant inhibitions of cell proliferation, migration and invasion activities in si-MSN transfectants. In clinical specimen with HNSCC, the expression level of MSN was significantly up-regulated in cancer tissues compared to adjacent non-cancerous tissues. These data suggest that MSN may function as oncogene and is regulated by tumor suppressive miR-133a. Our analysis data of novel tumor-suppressive miR-133a-mediated cancer pathways could provide new insights into the potential mechanisms of HNSCC oncogenesis.

  17. Leukocyte-associated immunoglobulin-like receptor-1 expressed in epithelial ovarian cancer cells and involved in cell proliferation and invasion

    International Nuclear Information System (INIS)

    Previous studies have shown that leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1) is expressed on most types of hamatopoietic cells and negatively regulate immune response, but the roles of LAIR-1 in tumor of the non-hematopoietic lineage have not been determined. Despite advances in therapy of epithelial ovarian cancer (EOC), many questions relating to EOC pathogenesis remain unanswered. The aim of this study was to investigate the clinical significance of LAIR-1 expression in EOC and explore the possible association between LAIR-1 and cancer. In this study, a tissue microarray containing 78 ovarian cancer cases was stained following a standard immunohistochemical protocol for LAIR-1 and the correlation of LAIR-1 expression with clinicopathologic features was assessed. LAIR-1 was detected to express in tumor cells of ovarian cancer tissues (73.1%) and EOC cell lines COC1 and HO8910, not in normal ovarian tissues. In addition, LAIR-1 expression correlates significantly with tumor grade (p = 0.004). Furthermore, down-regulation of LAIR-1 in HO8910 cells increased cell proliferation, colony formation and cell invasion. These data suggest that LAIR-1 has a relevant impact on EOC progression and may be helpful for a better understanding of molecular pathogenesis of cancer. - Highlights: • LAIR-1 is expressed in epithelial ovarian cancer cells. • LAIR-1 expression correlates significantly with tumor grade. • Down-regulation of LAIR-1 expression increased cell proliferation and invasion. • LAIR-1 may be a novel candidate for cancer diagnosis and therapy

  18. Leukocyte-associated immunoglobulin-like receptor-1 expressed in epithelial ovarian cancer cells and involved in cell proliferation and invasion

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Qizhi [Department of Immunology, Binzhou Medical University, Yantai (China); Fu, Aili [Department of Immunology, Binzhou Medical University, Yantai (China); The People' s Liberation Army 107 Hospital, Affiliated Hospital of Bin Zhou Medical University, Yantai (China); Yang, Shude [Institute of Fungi Science and Technology, Ludong University, Yantai (China); He, Xiaoli; Wang, Yue; Zhang, Xiaoshu; Zhou, Jiadi; Luan, Xiying [Department of Immunology, Binzhou Medical University, Yantai (China); Yu, Wenzheng, E-mail: bzywz2009@163.com [Department of Hemotology, The Hospital Affiliated Binzhou Medical University, Binzhou (China); Xue, Jiangnan, E-mail: xuejinagnan@263.net [Department of Immunology, Binzhou Medical University, Yantai (China)

    2015-03-06

    Previous studies have shown that leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1) is expressed on most types of hamatopoietic cells and negatively regulate immune response, but the roles of LAIR-1 in tumor of the non-hematopoietic lineage have not been determined. Despite advances in therapy of epithelial ovarian cancer (EOC), many questions relating to EOC pathogenesis remain unanswered. The aim of this study was to investigate the clinical significance of LAIR-1 expression in EOC and explore the possible association between LAIR-1 and cancer. In this study, a tissue microarray containing 78 ovarian cancer cases was stained following a standard immunohistochemical protocol for LAIR-1 and the correlation of LAIR-1 expression with clinicopathologic features was assessed. LAIR-1 was detected to express in tumor cells of ovarian cancer tissues (73.1%) and EOC cell lines COC1 and HO8910, not in normal ovarian tissues. In addition, LAIR-1 expression correlates significantly with tumor grade (p = 0.004). Furthermore, down-regulation of LAIR-1 in HO8910 cells increased cell proliferation, colony formation and cell invasion. These data suggest that LAIR-1 has a relevant impact on EOC progression and may be helpful for a better understanding of molecular pathogenesis of cancer. - Highlights: • LAIR-1 is expressed in epithelial ovarian cancer cells. • LAIR-1 expression correlates significantly with tumor grade. • Down-regulation of LAIR-1 expression increased cell proliferation and invasion. • LAIR-1 may be a novel candidate for cancer diagnosis and therapy.

  19. RNAi-mediated knockdown of pituitary tumor-transforming gene-1 (PTTG1) suppresses the proliferation and invasive potential of PC3 human prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Huang, S.Q. [Department of Urology and Center of Nephrology, Xinqiao Hospital, Third Military Medical University, Chongqing (China); Institute of Urology, Peking University and Department of Urology, First Hospital, Peking University, Beijing (China); Liao, Q.J.; Wang, X.W. [Department of Urology and Center of Nephrology, Xinqiao Hospital, Third Military Medical University, Chongqing (China); Xin, D.Q. [Institute of Urology, Peking University and Department of Urology, First Hospital, Peking University, Beijing (China); Chen, S.X.; Wu, Q.J.; Ye, G. [Department of Urology and Center of Nephrology, Xinqiao Hospital, Third Military Medical University, Chongqing (China)

    2012-08-10

    Pituitary tumor-transforming gene-1 (PTTG1) is a proto-oncogene that promotes tumorigenesis and metastasis in numerous cell types and is overexpressed in a variety of human tumors. We have demonstrated that PTTG1 expression was up-regulated in both human prostate cancer specimens and prostate cancer cell lines. For a more direct assessment of the function of PTTG1 in prostate tumorigenesis, RNAi-mediated knockdown was used to selectively decrease PTTG1 expression in PC3 human prostate tumor cells. After three weeks of selection, colonies stably transfected with PTTG1-targeted RNAi (the knockdown PC3 cell line) or empty vector (the control PC3 cell line) were selected and expanded to investigate the role of PTTG1 expression in PC3 cell growth and invasion. Cell proliferation rate was significantly slower (28%) in the PTTG1 knockdown line after 6 days of growth as indicated by an MTT cell viability assay (P < 0.05). Similarly, a soft agar colony formation assay revealed significantly fewer (66.7%) PTTG1 knockdown PC3 cell colonies than control colonies after three weeks of growth. In addition, PTTG1 knockdown resulted in cell cycle arrest at G1 as indicated by fluorescence-activated cell sorting. The PTTG1 knockdown PC3 cell line also exhibited significantly reduced migration through Matrigel in a transwell assay of invasive potential, and down-regulation of PTTG1 could lead to increased sensitivity of these prostate cancer cells to a commonly used anticancer drug, taxol. Thus, PTTG1 expression is crucial for PC3 cell proliferation and invasion, and could be a promising new target for prostate cancer therapy.

  20. RNAi-mediated knockdown of pituitary tumor-transforming gene-1 (PTTG1) suppresses the proliferation and invasive potential of PC3 human prostate cancer cells

    International Nuclear Information System (INIS)

    Pituitary tumor-transforming gene-1 (PTTG1) is a proto-oncogene that promotes tumorigenesis and metastasis in numerous cell types and is overexpressed in a variety of human tumors. We have demonstrated that PTTG1 expression was up-regulated in both human prostate cancer specimens and prostate cancer cell lines. For a more direct assessment of the function of PTTG1 in prostate tumorigenesis, RNAi-mediated knockdown was used to selectively decrease PTTG1 expression in PC3 human prostate tumor cells. After three weeks of selection, colonies stably transfected with PTTG1-targeted RNAi (the knockdown PC3 cell line) or empty vector (the control PC3 cell line) were selected and expanded to investigate the role of PTTG1 expression in PC3 cell growth and invasion. Cell proliferation rate was significantly slower (28%) in the PTTG1 knockdown line after 6 days of growth as indicated by an MTT cell viability assay (P < 0.05). Similarly, a soft agar colony formation assay revealed significantly fewer (66.7%) PTTG1 knockdown PC3 cell colonies than control colonies after three weeks of growth. In addition, PTTG1 knockdown resulted in cell cycle arrest at G1 as indicated by fluorescence-activated cell sorting. The PTTG1 knockdown PC3 cell line also exhibited significantly reduced migration through Matrigel in a transwell assay of invasive potential, and down-regulation of PTTG1 could lead to increased sensitivity of these prostate cancer cells to a commonly used anticancer drug, taxol. Thus, PTTG1 expression is crucial for PC3 cell proliferation and invasion, and could be a promising new target for prostate cancer therapy

  1. A combination of desmopressin and docetaxel inhibit cell proliferation and invasion mediated by urokinase-type plasminogen activator (uPA) in human prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Hiroshi; Klotz, Laurence H. [Division of Urology, Sunnybrook Health Sciences Center, Toronto, ON (Canada); Sugar, Linda M. [Department of Pathology, Sunnybrook Health Sciences Center, Toronto, ON (Canada); Kiss, Alexander [Department of Research Design and Biostatistics, Institute for Clinical Evaluative Sciences, Sunnybrook Health Sciences Center, Toronto, ON (Canada); Venkateswaran, Vasundara, E-mail: vasundara.venkateswaran@sunnybrook.ca [Division of Urology, Sunnybrook Health Sciences Center, Toronto, ON (Canada)

    2015-08-28

    Background: This study was designed to assess the effectiveness of a combination treatment using both desmopressin and docetaxel in prostate cancer treatment. Desmopressin is a well-known synthetic analogue of the antidiuretic hormone vasopressin. It has recently been demonstrated to inhibit tumor progression and metastasis in in vivo models. Docetaxel is widely used for the treatment of castration resistant prostate cancer (CRPC) patients. However, durable responses have been uncommon to date. In this study, we investigated the anti-tumor effect of desmopressin in combination with docetaxel in vitro and in vivo. Methods: Two prostate cancer cells (PC3, LNCaP) were treated with different concentrations of desmopressin alone, docetaxel alone, and a combination of desmopressin and docetaxel. Cell proliferation was determined by MTS assay. The anti-invasive and anti-migration potential of desmopressin and in combination with docetaxel were examined by wound healing assay, migration chamber assay, and matrigel invasion assay. Results: The combination of desmopressin and docetaxel resulted in a significant inhibition of PC3 and LNCaP cell proliferation (p < 0.01). Additionally, cell migration and invasion were also inhibited by the combination when compared to that of either treatment alone in PC3 cells (p < 0.01). The anti-tumor effect of this combination treatment was associated with down-regulation of both urokinase-type plasminogen activator (uPA) and matrix metalloproteinase (MMP-2 and MMP-9) in PC3 cells. Conclusions: We are the first to elucidate the anti-tumor and anti-metastatic potential of desmopressin in combination with docetaxel in a prostate cancer model via the uPA-MMP pathway. Our finding could potentially contribute to the therapeutic profile of desmopressin and enhance the efficacy of docetaxel based treatment for CRPC. - Highlights: • Desmopressin inhibits cell proliferation in prostate cancer cells. • The expression of cyclin A and CDK2

  2. A combination of desmopressin and docetaxel inhibit cell proliferation and invasion mediated by urokinase-type plasminogen activator (uPA) in human prostate cancer cells

    International Nuclear Information System (INIS)

    Background: This study was designed to assess the effectiveness of a combination treatment using both desmopressin and docetaxel in prostate cancer treatment. Desmopressin is a well-known synthetic analogue of the antidiuretic hormone vasopressin. It has recently been demonstrated to inhibit tumor progression and metastasis in in vivo models. Docetaxel is widely used for the treatment of castration resistant prostate cancer (CRPC) patients. However, durable responses have been uncommon to date. In this study, we investigated the anti-tumor effect of desmopressin in combination with docetaxel in vitro and in vivo. Methods: Two prostate cancer cells (PC3, LNCaP) were treated with different concentrations of desmopressin alone, docetaxel alone, and a combination of desmopressin and docetaxel. Cell proliferation was determined by MTS assay. The anti-invasive and anti-migration potential of desmopressin and in combination with docetaxel were examined by wound healing assay, migration chamber assay, and matrigel invasion assay. Results: The combination of desmopressin and docetaxel resulted in a significant inhibition of PC3 and LNCaP cell proliferation (p < 0.01). Additionally, cell migration and invasion were also inhibited by the combination when compared to that of either treatment alone in PC3 cells (p < 0.01). The anti-tumor effect of this combination treatment was associated with down-regulation of both urokinase-type plasminogen activator (uPA) and matrix metalloproteinase (MMP-2 and MMP-9) in PC3 cells. Conclusions: We are the first to elucidate the anti-tumor and anti-metastatic potential of desmopressin in combination with docetaxel in a prostate cancer model via the uPA-MMP pathway. Our finding could potentially contribute to the therapeutic profile of desmopressin and enhance the efficacy of docetaxel based treatment for CRPC. - Highlights: • Desmopressin inhibits cell proliferation in prostate cancer cells. • The expression of cyclin A and CDK2

  3. Downregulated long non-coding RNA MEG3 in breast cancer regulates proliferation, migration and invasion by depending on p53's transcriptional activity.

    Science.gov (United States)

    Sun, Lin; Li, Yu; Yang, Bangxiang

    2016-09-01

    Long non-coding RNAs (lncRNAs) was found to play critical roles in tumorigenesis, hence, screen of tumor-related lncRNAs, identification of their biological roles is important for understanding the processes of tumorigenesis. In this study, we identified the expressing difference of several tumor-related lncRNAs in breast cancer samples and found that, MEG3, which is downregulated in non-small cell lung cancer (NSCLC) tumor tissues, is also downregulated in breast cancer samples compared with adjacent tissues. For figuring out the effect of MEG3 in breast cancer cells MCF7 and MB231, we overexpressed MEG3 in these cells, and found that it resulted the inhibition of proliferation, colony formation, migration and invasion capacities by enhancing p53's transcriptional activity on its target genes, including p21, Maspin and KAI1. MEG3 presented similar effects in MB157, which is a p53-null breast cancer cell line, when functional p53 but not p53R273H mutant, which lacks transcriptional activity, was introduced. Surprisingly, overexpression of MEG3 activates p53's transcriptional activity by decreasing MDM2's transcription level, and thus stabilizes and accumulates P53. Taken together, our findings indicate that MEG3 is downregulated in breast cancer tissues and affects breast cancer cells' malignant behaviors, which indicate MEG3 a potential therapeutic target for breast cancer. PMID:27166155

  4. EZH2 promotes cell migration and invasion but not alters cell proliferation by suppressing E-cadherin, partly through association with MALAT-1 in pancreatic cancer

    Science.gov (United States)

    Han, Ting; Jiao, Feng; Hu, Hai; Yuan, Cuncun; Wang, Lei; Jin, Zi-Liang; Song, Wei-feng; Wang, Li-Wei

    2016-01-01

    Enhancer of zeste homolog 2 (EZH2) is an essential component of the polycomb repressive complex 2 (PRC2), which is required for epigenetic silencing of target genes, including those affecting cancer progression. Its role in pancreatic cancer remains to be clarified; therefore, we investigated the effects of aberrantly expressed EZH2 on pancreatic cancer. We found that EZH2 expression is up-regulated in pancreatic cancer tissues and positively correlated with lymph node metastasis and advanced clinical stage in pancreatic cancer patients. EZH2 knockdown in pancreatic cancer cell lines inhibited cell migration and invasion, but did not alter cell proliferation. Silencing of EZH2 also increased E-cadherin expression in vitro, and E-cadherin expression was inversely correlated with EZH2 expression in pancreatic cancer tissue samples. Patients with high EZH2 and low E-cadherin expression had the worst prognosis. RIP and ChIP assays suggest that EZH2 is recruited to the E-cadherin promoter by the long non-coding RNA, MALAT-1 (metastasis associated in lung adenocarcinoma transcript 1), where it represses E-cadherin expression. Our results show that EZH2-based therapies may be an option for the treatment of pancreatic cancer. PMID:26848980

  5. HER2 induces cell proliferation and invasion of non-small-cell lung cancer by upregulating COX-2 expression via MEK/ERK signaling pathway

    Directory of Open Access Journals (Sweden)

    Chi F

    2016-05-01

    Full Text Available Feng Chi, Rong Wu, Xueying Jin, Min Jiang, Xike Zhu Department of Medical Oncology, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China Abstract: HER2 positivity has been well studied in various cancers, but its importance in non-small-cell lung cancer (NSCLC is still being explored. In this study, quantitative reverse transcription polymerase chain reaction (qRT-PCR was performed to detect HER2 and COX-2 expression in NSCLC tissues. Then, pcDNA3.1-HER2 was used to overexpress HER2, while HER2 siRNA and COX-2 siRNA were used to silence HER2 and COX-2 expression. MTT assay and invasion assay were used to detect the effects of HER2 on cell proliferation and invasion. Our study revealed that HER2 and COX-2 expression were upregulated in NSCLC tissues and HER2 exhibited a significant positive correlation with the levels of COX-2 expression. Overexpression of HER2 evidently elevated COX-2 expression, while silencing of HER2 evidently decreased COX-2 expression. Furthermore, overexpressed HER2 induced the ERK phosphorylation, and this was abolished by the treatment with U0126, a pharmacological inhibitor of MEK, an upstream kinase of ERK. HER2-induced expression and promoter activity of COX-2 were also suppressed by U0126, suggesting that the MEK/ERK signaling pathway regulates COX-2 expression. In addition, HER2 induced activation of AKT signaling pathway, which was reversed by pretreatment with U0126 and COX-2 siRNA. MTT and invasion assays revealed that HER2 induced cell proliferation and invasion that were reversed by pretreatment with U0126 and COX-2 siRNA. In this study, our results demonstrated for the first time that HER2 elevated COX-2 expression through the activation of MEK/ERK pathway, which subsequently induced cell proliferation and invasion via AKT pathway in NSCLC tissues. Keywords: HER2, MEK/ERK, COX-2, AKT signaling pathway, non-small-cell lung cancer

  6. Down-regulation of 5-HT1B and 5-HT1D receptors inhibits proliferation, clonogenicity and invasion of human pancreatic cancer cells.

    Directory of Open Access Journals (Sweden)

    Nilgun Gurbuz

    Full Text Available Pancreatic ductal adenocarcinoma is characterized by extensive local tumor invasion, metastasis and early systemic dissemination. The vast majority of pancreatic cancer (PaCa patients already have metastatic complications at the time of diagnosis, and the death rate of this lethal type of cancer has increased over the past decades. Thus, efforts at identifying novel molecularly targeted therapies are priorities. Recent studies have suggested that serotonin (5-HT contributes to the tumor growth in a variety of cancers including prostate, colon, bladder and liver cancer. However, there is lack of evidence about the impact of 5-HT receptors on promoting pancreatic cancer. Having considered the role of 5-HT-1 receptors, especially 5-HT1B and 5-HT1D subtypes in different types of malignancies, the aim of this study was to investigate the role of 5-HT1B and 5-HT1D receptors in PaCa growth and progression and analyze their potential as cytotoxic targets. We found that knockdown of 5-HT1B and 5-HT1D receptors expression, using specific small interfering RNA (siRNA, induced significant inhibition of proliferation and clonogenicity of PaCa cells. Also, it significantly suppressed PaCa cells invasion and reduced the activity of uPAR/MMP-2 signaling and Integrin/Src/Fak-mediated signaling, as integral tumor cell pathways associated with invasion, migration, adhesion, and proliferation. Moreover, targeting 5-HT1B and 5-HT1D receptors down-regulates zinc finger ZEB1 and Snail proteins, the hallmarks transcription factors regulating epithelial-mesenchymal transition (EMT, concomitantly with up-regulating of claudin-1 and E-Cadherin. In conclusion, our data suggests that 5-HT1B- and 5-HT1D- mediated signaling play an important role in the regulation of the proliferative and invasive phenotype of PaCa. It also highlights the therapeutic potential of targeting of 5-HT1B/1D receptors in the treatment of PaCa, and opens a new avenue for biomarkers identification

  7. Down-regulation of 5-HT1B and 5-HT1D receptors inhibits proliferation, clonogenicity and invasion of human pancreatic cancer cells.

    Directory of Open Access Journals (Sweden)

    Nilgun Gurbuz

    Full Text Available Pancreatic ductal adenocarcinoma is characterized by extensive local tumor invasion, metastasis and early systemic dissemination. The vast majority of pancreatic cancer (PaCa patients already have metastatic complications at the time of diagnosis, and the death rate of this lethal type of cancer has increased over the past decades. Thus, efforts at identifying novel molecularly targeted therapies are priorities. Recent studies have suggested that serotonin (5-HT contributes to the tumor growth in a variety of cancers including prostate, colon, bladder and liver cancer. However, there is lack of evidence about the impact of 5-HT receptors on promoting pancreatic cancer. Having considered the role of 5-HT-1 receptors, especially 5-HT1B and 5-HT1D subtypes in different types of malignancies, the aim of this study was to investigate the role of 5-HT1B and 5-HT1D receptors in PaCa growth and progression and analyze their potential as cytotoxic targets. We found that knockdown of 5-HT1B and 5-HT1D receptors expression, using specific small interfering RNA (siRNA, induced significant inhibition of proliferation and clonogenicity of PaCa cells. Also, it significantly suppressed PaCa cells invasion and reduced the activity of uPAR/MMP-2 signaling and Integrin/Src/Fak-mediated signaling, as integral tumor cell pathways associated with invasion, migration, adhesion, and proliferation. Moreover, targeting 5-HT1B and 5-HT1D receptors down-regulates zinc finger ZEB1 and Snail proteins, the hallmarks transcription factors regulating epithelial-mesenchymal transition (EMT, concomitantly with up-regulating of claudin-1 and E-Cadherin. In conclusion, our data suggests that 5-HT1B- and 5-HT1D-mediated signaling play an important role in the regulation of the proliferative and invasive phenotype of PaCa. It also highlights the therapeutic potential of targeting of 5-HT1B/1D receptors in the treatment of PaCa, and opens a new avenue for biomarkers identification

  8. Down-regulation of 5-HT1B and 5-HT1D receptors inhibits proliferation, clonogenicity and invasion of human pancreatic cancer cells.

    Science.gov (United States)

    Gurbuz, Nilgun; Ashour, Ahmed A; Alpay, S Neslihan; Ozpolat, Bulent

    2014-01-01

    Pancreatic ductal adenocarcinoma is characterized by extensive local tumor invasion, metastasis and early systemic dissemination. The vast majority of pancreatic cancer (PaCa) patients already have metastatic complications at the time of diagnosis, and the death rate of this lethal type of cancer has increased over the past decades. Thus, efforts at identifying novel molecularly targeted therapies are priorities. Recent studies have suggested that serotonin (5-HT) contributes to the tumor growth in a variety of cancers including prostate, colon, bladder and liver cancer. However, there is lack of evidence about the impact of 5-HT receptors on promoting pancreatic cancer. Having considered the role of 5-HT-1 receptors, especially 5-HT1B and 5-HT1D subtypes in different types of malignancies, the aim of this study was to investigate the role of 5-HT1B and 5-HT1D receptors in PaCa growth and progression and analyze their potential as cytotoxic targets. We found that knockdown of 5-HT1B and 5-HT1D receptors expression, using specific small interfering RNA (siRNA), induced significant inhibition of proliferation and clonogenicity of PaCa cells. Also, it significantly suppressed PaCa cells invasion and reduced the activity of uPAR/MMP-2 signaling and Integrin/Src/Fak-mediated signaling, as integral tumor cell pathways associated with invasion, migration, adhesion, and proliferation. Moreover, targeting 5-HT1B and 5-HT1D receptors down-regulates zinc finger ZEB1 and Snail proteins, the hallmarks transcription factors regulating epithelial-mesenchymal transition (EMT), concomitantly with up-regulating of claudin-1 and E-Cadherin. In conclusion, our data suggests that 5-HT1B- and 5-HT1D- mediated signaling play an important role in the regulation of the proliferative and invasive phenotype of PaCa. It also highlights the therapeutic potential of targeting of 5-HT1B/1D receptors in the treatment of PaCa, and opens a new avenue for biomarkers identification, and valuable new

  9. Design, synthesis, and biological evaluation of dibromotyrosine analogues inspired by marine natural products as inhibitors of human prostate cancer proliferation, invasion, and migration.

    Science.gov (United States)

    Sallam, Asmaa A; Ramasahayam, Sindhura; Meyer, Sharon A; El Sayed, Khalid A

    2010-11-01

    Bioactive secondary metabolites originating from dibromotyrosine are common in marine sponges, such as sponges of the Aplysina species. Verongiaquinol (1), 3,5-dibromo-1-hydroxy-4-oxocyclohexa-2,5-diene-1-acetamide, and aeroplysinin-1 are examples of such bioactive metabolites. Previous studies have shown the potent antimicrobial as well as cytotoxic properties of verongiaquinol and the anti-angiogenic activity of aeroplysinin-1. The work presented herein shows the design and synthesis of dibromotyrosine-inspired phenolic ester and ether analogues with anti-angiogenic, anti-proliferative and anti-migratory properties and negligible cytotoxicity. Several analogues were synthesized based on docking experiments in the ATP binding site of VEGFR2 and their anti-angiogenic potential and ability to inhibit angiogenesis and prostate cancer proliferation, migration and invasion were evaluated using the chick chorioallantoic membrane (CAM) assay, MTT, wound-healing, and Cultrex® BME cell invasion assay models, respectively. Analogues with high docking scores showed promising anti-angiogenic activity in the CAM assay. In general, ester analogues (5, 6, and 8-10) proved to be of higher anti-migratory activity whereas ether analogues (11-14) showed better anti-proliferative activity. These results demonstrate the potential of dibromotyrosines as promising inhibitory scaffolds for the control of metastatic prostate cancer proliferation and migration. PMID:20884214

  10. miR-564 acts as a dual inhibitor of PI3K and MAPK signaling networks and inhibits proliferation and invasion in breast cancer

    Science.gov (United States)

    Mutlu, Merve; Saatci, Özge; Ansari, Suhail A.; Yurdusev, Emre; Shehwana, Huma; Konu, Özlen; Raza, Umar; Şahin, Özgür

    2016-01-01

    Dysregulation of PI3K and MAPK pathways promotes uncontrolled cell proliferation, apoptotic inhibition and metastasis. Individual targeting of these pathways using kinase inhibitors has largely been insufficient due to the existence of cross-talks between these parallel cascades. MicroRNAs are small non-coding RNAs targeting several genes simultaneously and controlling cancer-related processes. To identify miRNAs repressing both PI3K and MAPK pathways in breast cancer, we re-analyzed our previous miRNA mimic screen data with reverse phase protein array (RPPA) output, and identified miR-564 inhibiting both PI3K and MAPK pathways causing markedly decreased cell proliferation through G1 arrest. Moreover, ectopic expression of miR-564 blocks epithelial-mesenchymal transition (EMT) and reduces migration and invasion of aggressive breast cancer cells. Mechanistically, miR-564 directly targets a network of genes comprising AKT2, GNA12, GYS1 and SRF, thereby facilitating simultaneous repression of PI3K and MAPK pathways. Notably, combinatorial knockdown of these target genes using a cocktail of siRNAs mimics the phenotypes exerted upon miR-564 expression. Importantly, high miR-564 expression or low expression of target genes in combination is significantly correlated with better distant relapse-free survival of patients. Overall, miR-564 is a potential dual inhibitor of PI3K and MAPK pathways, and may be an attractive target and prognostic marker for breast cancer. PMID:27600857

  11. Inhibition of cell proliferation, invasion and migration by the cardenolides digitoxigenin monodigitoxoside and convallatoxin in human lung cancer cell line.

    Science.gov (United States)

    Schneider, Naira F Z; Geller, Fabiana C; Persich, Lara; Marostica, Lucas L; Pádua, Rodrigo M; Kreis, Wolfgang; Braga, Fernão C; Simões, Cláudia M O

    2016-06-01

    Cardiac glycosides consist of a large family of naturally derived compounds that are clinically used to treat congestive heart failure, and also present anticancer properties. In this study, the cytotoxic effects of two cardenolides, digitoxigenin monodigitoxoside (DGX) and convallatoxin (CON) were screened in four human tumour cell lines. Both compounds showed anti-proliferative effects in all tumour cells, at nanomolar concentrations. Since the human lung cancer cell line A549 was the most sensitive, we investigated the anti-proliferative, anti-migratory and anti-invasive effects of these cardenolides. DGX and CON reduced A549 cell migration, being able to reduce more than 90% of cell invasion. Their effects on the expression of key regulators of metastatic mechanism showed decreased levels of MMP-2, MMP-9 and p-FAK. Both compounds also presented low toxicity for healthy cells. Finally, this work provides the first insights into the effects of these cardenolides on key steps of lung cancer metastasis. PMID:26252521

  12. Matrine inhibits the proliferation, invasion and migration of castration-resistant prostate cancer cells through regulation of the NF-κB signaling pathway.

    Science.gov (United States)

    Li, Qi; Lai, Yiming; Wang, Chengbin; Xu, Guibin; He, Zheng; Shang, Xiaohong; Sun, Yi; Zhang, Fan; Liu, Leyuan; Huang, Hai

    2016-01-01

    Matrine is a naturally occurring alkaloid extracted from the Chinese herb Sophora flavescens. It has been demonstrated to exhibit antiproliferative properties, promote apoptosis and inhibit cell invasion in a number of cancer cell lines. It has also been shown to improve the efficacy of chemotherapy when it is combined with other chemotherapy drugs. However, the therapeutic efficacy of matrine for prostate cancer remains poorly understood. In the present study, we showed that matrine inhibited the proliferation, migration and invasion of both DU145 and PC-3 cells in a dose- and time-dependent manner. It also reduced the cell population at S phase and increased the cell population at sub-G1 phase. The increases in both the apoptotic cell population and cell population at S and sub-G1 phases consistently indicated a pro-apoptotic effect of matrine. Decreases in levels of P65, p-P65, IKKα/β, p-IKKα/β, IKBα and p-IKBα as detected by immunoblot analysis in the matrine-treated DU145 and PC-3 cells suggested an involvement of the NF-κB signaling pathway. Therefore, it is a novel promising addition to the current arsenal of chemotherapy drugs for the treatment of androgen-independent prostate cancer. PMID:26497618

  13. Metformin inhibits cell proliferation, migration and invasion by attenuating CSC function mediated by deregulating miRNAs in pancreatic cancer cells.

    Science.gov (United States)

    Bao, Bin; Wang, Zhiwei; Ali, Shadan; Ahmad, Aamir; Azmi, Asfar S; Sarkar, Sanila H; Banerjee, Sanjeev; Kong, Dejuan; Li, Yiwei; Thakur, Shivam; Sarkar, Fazlul H

    2012-03-01

    Pancreatic cancer is the fourth leading cause of cancer-related deaths in the United States, which is, in part, due to intrinsic (de novo) and extrinsic (acquired) resistance to conventional therapeutics, suggesting that innovative treatment strategies are required for overcoming therapeutic resistance to improve overall survival of patients. Oral administration of metformin in patients with diabetes mellitus has been reported to be associated with reduced risk of pancreatic cancer and that metformin has been reported to kill cancer stem cells (CSC); however, the exact molecular mechanism(s) has not been fully elucidated. In the current study, we examined the effect of metformin on cell proliferation, cell migration and invasion, and self-renewal capacity of CSCs and further assessed the expression of CSC marker genes and microRNAs (miRNA) in human pancreatic cancer cells. We found that metformin significantly decreased cell survival, clonogenicity, wound-healing capacity, sphere-forming capacity (pancreatospheres), and increased disintegration of pancreatospheres in both gemcitabine-sensitive and gemcitabine-resistant pancreatic cancer cells. Metformin also decreased the expression of CSC markers,CD44, EpCAM,EZH2, Notch-1, Nanog and Oct4, and caused reexpression of miRNAs (let-7a,let-7b, miR-26a, miR-101, miR-200b, and miR-200c) that are typically lost in pancreatic cancer and especially in pancreatospheres. We also found that reexpression of miR-26a by transfection led to decreased expression of EZH2 and EpCAM in pancreatic cancer cells. These results clearly suggest that the biologic effects of metformin are mediated through reexpression of miRNAs and decreased expression of CSC-specific genes, suggesting that metformin could be useful for overcoming therapeutic resistance of pancreatic cancer cells. PMID:22086681

  14. The putative tumor suppressor microRNA-497 modulates gastric cancer cell proliferation and invasion by repressing eIF4E

    International Nuclear Information System (INIS)

    Highlights: • MiR-497 expression was down-regulated in GC patients and GC cell lines. • MiR-497 inhibited cell proliferation and invasion of GC cells in vitro. • MiR-497 modulated eIF4E expression in GC cells. • Restoration of miR-497 decreased tumor growth and metastasis in vivo. - Abstract: Accumulating evidence has shown that microRNAs are involved in multiple processes in gastric cancer (GC) development and progression. Aberrant expression of miR-497 has been frequently reported in cancer studies; however, the role and mechanism of its function in GC remains unknown. Here, we reported that miR-497 was frequently downregulated in GC tissues and associated with aggressive clinicopathological features of GC patients. Further in vitro observations showed that the enforced expression of miR-497 inhibited cell proliferation by blocking the G1/S transition and decreased the invasion of GC cells, implying that miR-497 functions as a tumor suppressor in the progression of GC. In vivo study indicated that restoration of miR-497 inhibited tumor growth and metastasis. Luciferase assays revealed that miR-497 inhibited eIF4E expression by targeting the binding sites in the 3′-untranslated region of eIF4E mRNA. qRT-PCR and Western blot assays verified that miR-497 reduced eIF4E expression at both the mRNA and protein levels. A reverse correlation between miR-497 and eIF4E expression was noted in GC tissues. Taken together, our results identify a crucial tumor suppressive role of miR-497 in the progression of GC and suggest that miR-497 might be an anticancer therapeutic target for GC patients

  15. miR-3646 promotes cell proliferation, migration, and invasion via regulating G2/M transition in human breast cancer cells

    Science.gov (United States)

    Tao, Shuang; Liu, Yao-Bang; Zhou, Zhi-Wei; Lian, Bin; Li, Hong; Li, Jin-Ping; Zhou, Shu-Feng

    2016-01-01

    MicroRNAs (miRNAs) are small non-coding RNAs that are often located in genomic breakpoint regions and play a critical role in regulating a variety of the cellular processes in human cancer. miR-3646 has been reported to take part in tumorigenic progression in breast and bladder cancer, but its potential functions and exact mechanistic roles in breast cancer are still unclear. The objective of this study was to investigate the role of miR-3646 in breast cancer growth and metastasis using both bioinformatic and experimental approaches. Before starting the bench work, we conducted a bioinformatic study to predict the target genes regulated by miR-3646 using a panel of different algorithms. The results showed that miR-3646 might regulate a large number of genes that are related to cell growth, proliferation, metabolis, transport, and apoptosis and some were cancer-related genes. We found that the expression level of miR-3646 was significantly upregulated in breast cancer cells and tissues compared with normal breast cells and no tumor tissues. Subsequently, the MTT and colony formation assay results showed that up-regulation of miR-3646 promoted the cell viability and proliferation. Our results also showed that down-regulation of miR-3646 arrested the cells in G2/M phase in MCF7 and MDA-MB-231 cells which was accompanied by the down-regulation of CDK1/CDC2 and cyclin B1 and upregulation of p21Waf1/Cip1, p27 Kip1, and p53, suggesting that down-regulation of miR-3646 induces G2/M arrest through activation of the p53/p21/CDC2/cyclin B1 pathway. In addition, overexpression of miR-3646 promoted migration and invasion of MCF7 and MDA-MB-231 cells. Taken together, miR-3646 is a potential oncogene in breast cancer and it may represent a new niomarker in the diagnosis and prediction of prognosis and therapeutic response. PMID:27186291

  16. Effects of Src on Proliferation and Invasion of Lung Cancer Cells%Src蛋白在肺癌细胞增殖浸润中的作用

    Institute of Scientific and Technical Information of China (English)

    郑锐; 秦晓松; 李文洁; 康健

    2011-01-01

    Background and objective It has been proven that Src played pivotal roles in carcinogenesis, cancer progression and metastasis.The aim of this study is to explore the roles of Src phosphorylation on lung cancer cells.Methods Western blot and immunoprecipitation was used to detect the expression and phosphorylation of Src in lung cancer cells.MTT and Boyden chamber assay was used to examine the effects of inhibition of Src phosphorylation on proliferation and invasion of lung cancer cells in vitro, respectively.Results pp60src was expressed in alllung cancer celllines in this study All s non-small cell lung cancer (NSCLC) cell lines had increased autophosphorylated tyrosine-418, while nearly no phosphorylated Src in small cell lung cancer SBC5 cell line was detected.The effect of inhibition of Src tyrosine kinase on cell proliferation varied among the lung cancer cell lines.Submicromolar Src tyrosine kinase inhibitor (≤1μM) remarkably suppressed the proliferation of PC-9 and A549 cells in a dose dependent manner (P<0.05), while the same concentration of Src tyrosine kinase inhibitor had no significant effect on proliferation of H226, PCl4PE6 and RERFLCOK cells.Invasiveness of lung cancer cells was significantly suppressed by Src tyrosine kinase in a dose-dependent manner (P<0.05).Conclusion Phosphorylation of Src, but not over-expression, plays a pivotal role in proliferation and invasion of NSCLC cell lines in vitro.%背景与目的 Src蛋自在肿瘤的发生、发展和转移中具有重要作用.本研究旨在探讨Src蛋白在肺癌细胞中的表达活化情况及其对肺癌细胞增殖浸润的影响.方法 采用Western blot和免疫沉淀法检测Src蛋自在肺癌细胞株中的表达和磷酸化情况;MTT法检测抑制Src酪酸激酶活化对肺癌细胞体外增殖的影响;Boyden chamber法检测抑制Src酪氨酸激酶活化对肺癌细胞体外侵袭浸润的影响.结果 本实验选用的肺癌细胞都存在pp60src的

  17. Preclinical evaluation of destruxin B as a novel Wnt signaling target suppressing proliferation and metastasis of colorectal cancer using non-invasive bioluminescence imaging

    International Nuclear Information System (INIS)

    In continuation to our studies toward the identification of direct anti-cancer targets, here we showed that destruxin B (DB) from Metarhizium anisopliae suppressed the proliferation and induced cell cycle arrest in human colorectal cancer (CRC) HT29, SW480 and HCT116 cells. Additionally, DB induced apoptosis in HT29 cells by decreased expression level of anti-apoptotic proteins Bcl-2 and Bcl-xL while increased pro-apoptotic Bax. On the other hand, DB attenuated Wnt-signaling by downregulation of β-catenin, Tcf4 and β-catenin/Tcf4 transcriptional activity, concomitantly with decreased expression of β-catenin target genes cyclin D1, c-myc and survivin. Furthermore, DB affected the migratory and invasive ability of HT29 cells through suppressed MMPs-2 and -9 enzymatic activities. We also found that DB targeted the MAPK and/or PI3K/Akt pathway by reduced expression of Akt, IKK-α, JNK, NF-κB, c-Jun and c-Fos while increased that of IκBα. Finally, we demonstrated that DB inhibited tumorigenesis in HT29 xenograft mice using non-invasive bioluminescence technique. Consistently, tumor samples from DB-treated mice demonstrated suppressed expression of β-catenin, cyclin D1, survivin, and endothelial marker CD31 while increased caspase-3 expression. Collectively, our data supports DB as an inhibitor of Wnt/β-catenin/Tcf signaling pathway that may be beneficial in the CRC management. Highlights: ► Destruxin B (DB) inhibited colorectal cancer cells growth and induced apoptosis. ► MAPK and/or PI3K/Akt cascade cooperates in DB induced apoptosis. ► DB affected the migratory and invasive ability of HT29 cells through MMP-9. ► DB attenuated Wnt-signaling components β-catenin, Tcf4. ► DB attenuated cyclin D1, c-myc, survivin and tumorigenesis in HT29 xenograft mice.

  18. Preclinical evaluation of destruxin B as a novel Wnt signaling target suppressing proliferation and metastasis of colorectal cancer using non-invasive bioluminescence imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Chi-Tai [Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan (China); Center of Excellence for Cancer Research, Taipei Medical University, Taipei, Taiwan (China); Department of Surgery, Taipei Medical University-Shuang Ho Hospital, Taipei, Taiwan (China); Rao, Yerra Koteswara [Institute of Biochemical Sciences and Technology, Chaoyang University of Technology, Taichung, Taiwan (China); Ye, Min [Department of Natural Medicine, School of Pharmaceutical Sciences, Peking University, Beijing (China); Wu, Wen-Shi [Department of Horticulture and Biotechnology, Chinese Culture University, Taipei, Taiwan (China); Chang, Tung-Chen [Department of Surgery, Taipei Medical University-Shuang Ho Hospital, Taipei, Taiwan (China); Wang, Liang-Shun [Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan (China); Division of Thoracic Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan (China); Wu, Chih-Hsiung [Center of Excellence for Cancer Research, Taipei Medical University, Taipei, Taiwan (China); Department of Surgery, Taipei Medical University-Shuang Ho Hospital, Taipei, Taiwan (China); Wu, Alexander T.H., E-mail: chaw1211@tmu.edu.tw [Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan (China); Department of Radiation Oncology, Taipei Medical University Hospital, Taipei, Taiwan (China); Tzeng, Yew-Min, E-mail: ymtzeng@cyut.edu.tw [Institute of Biochemical Sciences and Technology, Chaoyang University of Technology, Taichung, Taiwan (China)

    2012-05-15

    In continuation to our studies toward the identification of direct anti-cancer targets, here we showed that destruxin B (DB) from Metarhizium anisopliae suppressed the proliferation and induced cell cycle arrest in human colorectal cancer (CRC) HT29, SW480 and HCT116 cells. Additionally, DB induced apoptosis in HT29 cells by decreased expression level of anti-apoptotic proteins Bcl-2 and Bcl-xL while increased pro-apoptotic Bax. On the other hand, DB attenuated Wnt-signaling by downregulation of β-catenin, Tcf4 and β-catenin/Tcf4 transcriptional activity, concomitantly with decreased expression of β-catenin target genes cyclin D1, c-myc and survivin. Furthermore, DB affected the migratory and invasive ability of HT29 cells through suppressed MMPs-2 and -9 enzymatic activities. We also found that DB targeted the MAPK and/or PI3K/Akt pathway by reduced expression of Akt, IKK-α, JNK, NF-κB, c-Jun and c-Fos while increased that of IκBα. Finally, we demonstrated that DB inhibited tumorigenesis in HT29 xenograft mice using non-invasive bioluminescence technique. Consistently, tumor samples from DB-treated mice demonstrated suppressed expression of β-catenin, cyclin D1, survivin, and endothelial marker CD31 while increased caspase-3 expression. Collectively, our data supports DB as an inhibitor of Wnt/β-catenin/Tcf signaling pathway that may be beneficial in the CRC management. Highlights: ► Destruxin B (DB) inhibited colorectal cancer cells growth and induced apoptosis. ► MAPK and/or PI3K/Akt cascade cooperates in DB induced apoptosis. ► DB affected the migratory and invasive ability of HT29 cells through MMP-9. ► DB attenuated Wnt-signaling components β-catenin, Tcf4. ► DB attenuated cyclin D1, c-myc, survivin and tumorigenesis in HT29 xenograft mice.

  19. Small molecule inhibition of arylamine N-acetyltransferase Type I inhibits proliferation and invasiveness of MDA-MB-231 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Tiang, Jacky M. [School of Biomedical Sciences, University of Queensland, St. Lucia, Qld 4072 (Australia); Butcher, Neville J., E-mail: n.butcher@uq.edu.au [School of Biomedical Sciences, University of Queensland, St. Lucia, Qld 4072 (Australia); Minchin, Rodney F. [School of Biomedical Sciences, University of Queensland, St. Lucia, Qld 4072 (Australia)

    2010-02-26

    Arylamine N-acetyltransferase 1 is a phase II metabolizing enzyme that has been associated with certain breast cancer subtypes. While it has been linked to breast cancer risk because of its role in the metabolic activation and detoxification of carcinogens, recent studies have suggested it may be important in cell growth and survival. To address the possible importance of NAT1 in breast cancer, we have used a novel small molecule inhibitor (Rhod-o-hp) of the enzyme to examine growth and invasion of the breast adenocarcinoma line MDA-MB-231. The inhibitor significantly reduced cell growth by increasing the percent of cells in G2/M phase of the cell cycle. Rhod-o-hp also reduced the ability of the MDA-MB-231 cells to grow in soft agar. Using an in vitro invasion assay, the inhibitor significantly reduced the invasiveness of the cells. To test whether this effect was due to inhibition of NAT1, the enzyme was knocked down using a lentivirus-based shRNA approach and invasion potential was significantly reduced. Taken together, the results of this study demonstrate that NAT1 activity may be important in breast cancer growth and metastasis. The study suggests that NAT1 is a novel target for breast cancer treatment.

  20. Small molecule inhibition of arylamine N-acetyltransferase Type I inhibits proliferation and invasiveness of MDA-MB-231 breast cancer cells

    International Nuclear Information System (INIS)

    Arylamine N-acetyltransferase 1 is a phase II metabolizing enzyme that has been associated with certain breast cancer subtypes. While it has been linked to breast cancer risk because of its role in the metabolic activation and detoxification of carcinogens, recent studies have suggested it may be important in cell growth and survival. To address the possible importance of NAT1 in breast cancer, we have used a novel small molecule inhibitor (Rhod-o-hp) of the enzyme to examine growth and invasion of the breast adenocarcinoma line MDA-MB-231. The inhibitor significantly reduced cell growth by increasing the percent of cells in G2/M phase of the cell cycle. Rhod-o-hp also reduced the ability of the MDA-MB-231 cells to grow in soft agar. Using an in vitro invasion assay, the inhibitor significantly reduced the invasiveness of the cells. To test whether this effect was due to inhibition of NAT1, the enzyme was knocked down using a lentivirus-based shRNA approach and invasion potential was significantly reduced. Taken together, the results of this study demonstrate that NAT1 activity may be important in breast cancer growth and metastasis. The study suggests that NAT1 is a novel target for breast cancer treatment.

  1. A Study on the Mechanism of Low-Expressed Cancer Stem Cell Marker Lgr5 in Inhibition of the Proliferation and Invasion of Colorectal Carcinoma.

    Science.gov (United States)

    Jia, Houjun; Xiang, Lin; Wang, Ziwei; Zhou, Qipeng

    2015-11-01

    The present study intends to explore the influence of Lgr5 as a marker of tumor stem cells after siRNA interference on the proliferation and invasion of colorectal carcinoma (CRC) and its mechanism. The tissue samples were taken for biopsy from 32 cases of patients and 32 cases of normal subjects by colonoscopy. Real-time quantitative PCR was used to detect the differential expression of Lgr5. After siRNA interference of Lgr5 in CRC cell line CT-26 cells, RT-PCR method was used to detect the mRNA expression level of Lgr5 after interference of CT-26 cells. CCK8 method was used to observe the influence of Lgr5 interference on the proliferation, colony formation, and invasion of CT-26 cells. RT-PCR and Western blot were used to detect the E-cadherin mRNA and protein levels in CT-26 cells. Lgr5 expression level in CRC tissue was significantly higher than that in the corresponding para-carcinoma tissue and the control group, and the differences were statistically significant (P < 0.05). Lgr5 mRNA expression level in tissue with lymph node metastasis was significantly higher than that in the tissue without lymph node metastasis, and the difference was statistically significant (P < 0.05). Compared with the control group, CT-26 cell proliferation, colony formation, and migration capability after Lgr5 siRNA transfection were all significantly reduced, and the differences were statistically significant (P < 0.05). CT-26 cells after Lgr5 interference were found with significantly reduced E-cadherin mRNA and protein levels. Lgr5 facilitates the cell proliferation, colony formation, and migration of colorectal carcinoma, which may be closely related to the expression level of E-cadherin. PMID:27352328

  2. Management of invasive bladder cancer

    International Nuclear Information System (INIS)

    Muscle invasive disease accounts for a quarter of all cases of bladder cancer. A bewildering variety of treatment options are available for patients with this disease, with combinations of surgery and/or radiotherapy, with or without chemotherapy. This review discusses these treatment options and their relative merits for patients with muscle invasive bladder cancer. 22 refs., 3 figs., 7 tabs

  3. miR-34a Inhibits Proliferation and Invasion of Bladder Cancer Cells by Targeting Orphan Nuclear Receptor HNF4G

    OpenAIRE

    Huaibin Sun; Jun Tian; Wanhua Xian; Tingting Xie; Xiangdong Yang

    2015-01-01

    miR-34a is a member of the miR-34 family and acts as a tumor suppressor in bladder cancer. This study explored the regulative role of miR-34a on an orphan nuclear receptor HNF4G, which has a well-confirmed role in bladder tumor growth and invasion. qRT-PCR analysis was applied to measure miR-34a expression in two tumorigenic bladder cancer cell lines 5637 and T24 and one normal human urothelial cell line SV-HUC-1. Luciferase assay was performed to verify the putative binding between miR-34a a...

  4. Anti-Proliferation and Anti-Invasion Effects of Diosgenin on Gastric Cancer BGC-823 Cells with HIF-1α shRNAs

    Directory of Open Access Journals (Sweden)

    Yuan-Neng Chou

    2012-05-01

    Full Text Available Drug resistance is a major factor for the limited efficacy of chemotherapy in gastric cancer treatment. Hypoxia-inducible factor-1α (HIF-1α, a central transcriptional factor in hypoxia, is suggested to participate in the resistance. Here, we identified a hypoxia-mimic (cobalt chloride sensitive gastric cell line BGC-823 to explore whether diosgenin, an aglycone of steroidal saponins, can inhibit cancer cell invasion and survival of solid tumor in a hypoxic mimic microenvironment. We have shown that diosgenin is a potent candidate for decreasing the ability of invasion and survival in cobalt chloride treated BGC-823 cells. In addition, when combined with HIF-1α specific short hairpin RNA (shRNA, diosgenin can inhibit BGC-823 cells more effectively. The anti-invasion role of diosgenin may be related to E-cadherin, integrinα5 and integrinβ6. These results suggest that diosgenin may be a useful compound in controlling gastric cancer cells in hypoxia condition, especially when combined with down-regulated HIF-1α.

  5. Modeling invasion of metastasizing cancer cells to bone marrow utilizing ecological principles

    OpenAIRE

    Chen Kun-Wan; Pienta Kenneth J

    2011-01-01

    Abstract Background The invasion of a new species into an established ecosystem can be directly compared to the steps involved in cancer metastasis. Cancer must grow in a primary site, extravasate and survive in the circulation to then intravasate into target organ (invasive species survival in transport). Cancer cells often lay dormant at their metastatic site for a long period of time (lag period for invasive species) before proliferating (invasive spread). Proliferation in the new site has...

  6. Arene ruthenium(ii) complex, a potent inhibitor against proliferation, migration and invasion of breast cancer cells, reduces stress fibers, focal adhesions and invadopodia.

    Science.gov (United States)

    Wu, Qiong; He, Jiangtu; Mei, Wenjie; Zhang, Zhao; Wu, Xiaohui; Sun, Fenyong

    2014-12-01

    Effective chemotherapy drugs for cancer that would inhibit tumor growth and suppress metastasis are currently lacking. In this study, a series of arene ruthenium complexes, [(η6-arene)Ru(H2iip)Cl]Cl (arene = p-cymene, RAWQ03; CH3C6H5, RAWQ04; and C6H6, RAWQ11), were synthesized and their inhibitory activity against tumor cells were evaluated. The results showed that the complex RAWQ11 inhibited the growth of MDA-MB-231 breast cancer cells by inducing S-phase arrest, which is closely related to the inhibition of cell mitosis-mediated cell nucleus damage. Further studies showed that RAWQ11 can inhibit the invasion and metastasis of MDA-MB-231 cells. The morphology of MDA-MB-231 cells changed, the number of focal adhesions decreased, and the stress fibers de-polymerized upon dealing with the complex RAWQ11. The FITC-gelatin assay confirmed that the formation of invadopodia in MDA-MB-231 cells was significantly blocked by RAWQ11. Furthermore, RAWQ11 can block the AKT signal pathway by upregulating the PTEN expression through binding and downregulating miR-21. These results demonstrated that this type of arene ruthenium(ii) complex can block the invadopodia formation by regulating the PTEN/AKT signal pathway mediated by miR-21 to inhibit the invasion and metastasis of breast cancer cells. Therefore, this complex can be used as a potential dual functional agent to inhibit the growth and metastasis of tumor cells. PMID:25142071

  7. Effect of Leptin on Cytotrophoblast Proliferation and Invasion

    Institute of Scientific and Technical Information of China (English)

    Haiyi LIU; Yuanyuan WU; Fuyuan QIAO; Xun GONG

    2009-01-01

    The effects of leptin on cytotrophoblast proliferation and invasion activity were investigated.Immunohistochemistry was used to determine the placental expression of leptin in first-trimester preg-nancy. By using RT-PCR and quantitative real-time PCR, the expression of leptin in cytotrophoblast and the effect of leptin on cytotrophoblast secretion were detected. The potential of cell proliferation, inva-siveness and migration was assessed by MTT, Transwell invasion assay and migration assay respec-tively when the cytotrophoblast was cultured with different concentrations of leptin. The results showed that: (1) Leptin was distributed diffusely around cell membrane, in cytoplasma, and on nuclear mem-brane of cytotrophoblast; (2) Leptin mRNA was expressed in cytotrophoblast. Ten ng/mL leptin could promote the secretion of cytotrophoblast significantly (P<0.01); (3) After culture with different concen-trations of leptin for 24 h or longer, the proliferation of cytotrophoblast was inhibited, while in 24 h leptin could promote cytotrophoblast invasion and migration. Leptin at a concentration of 500 ng/mL could promote cytotrophoblast invasiveness and migration significantly as compared with controls (P<0.05). It was suggested that leptin could inhibit cytotrophoblast proliferation, and promote cytotro-phoblast invasion and migration activity.

  8. Sulforaphane Derived from Broccoli Inhibit Proliferation and Invasion of Gastric Cancer and Pancreatic Cancer%西兰花提取物萝卜硫素抑制胃癌和胰腺癌的生长与侵袭

    Institute of Scientific and Technical Information of China (English)

    贺云冲; 贾侃; 王川; 沈雯; 洪姣; 黄春琦; 任军; 许健

    2015-01-01

    Objective:To investigate the effect of vitality, invasion, cell cycle, apoptosis, DNA fragment and relative proteins expression in gastric cancer SGC-7901 and pancreatic cancer PANC-1 cell line by sulforaphane(SFN)derived from broccoli, to provide reference for daily diet and supply experiment data for treatment gastric cancer and pancreatic cancer. Methods:Analyzed vitality and invasion of SGC-7901 and PANC-1 cells treated with sulforaphane by cell counting kit (CCK8) and transwell, then measure the half maximal (50%) inhibitory concentration (IC50) of sulforaphane for SGC-7901 and PANC-1 cells. The cells cycle, apoptosis and DNA fragment were analyzed using Flow Cytometry Analysis and agarose electrophoresis, TNF-α, TGF-β and NF-κB were analyzed by western blot and immunohistochemistry after treatment with sulforaphane. Results:Results showed that SGC-7901 and PANC-1 cells proliferate and invade were inhibited by sulforaphane with a dose-dependent manner, IC50 of sulforaphane was 4.5μg/mL(SGC-7901,24h) and 5.5μg/mL (PANC-1,24h), and the cell cycle were arrested at G0/G1 phase. 4.5μg/mL and 5.5μg/mL sulforaphane induced apoptosis, DNA fragment, decreased the expression of TNF-α, TGF-β and NF-κB in SGC-7901 and PANC-1 cells. Conclusion: Sulforaphane inhibited proliferation and invasion of gastric cancer SGC-7901 and pancreatic cancer PANC-1 cells in vitro, decreased the expression of inflammation proteins, maybe a novel chemotherapy for gastric cancer and pancreatic cancer.%目的:观察萝卜硫素对胃癌和胰腺癌细胞活力、侵袭能力、周期、凋亡、DNA片段和相关蛋白的影响,为日常饮食提供参考,为临床治疗胃癌和胰腺癌提供实验数据。方法:通过CCK-8和transwell侵袭实验分析初步判断萝卜硫素对SGC-7901胃癌细胞和PANC-1胰腺癌细胞活性和转移侵袭的影响,计算体外干预SGC-7901和PANC-1的IC50,流式细胞学分析IC50浓度萝卜硫素对细胞周期

  9. The indole alkaloid meleagrin, from the olive tree endophytic fungus Penicillium chrysogenum, as a novel lead for the control of c-Met-dependent breast cancer proliferation, migration and invasion.

    Science.gov (United States)

    Mady, Mohamed S; Mohyeldin, Mohamed M; Ebrahim, Hassan Y; Elsayed, Heba E; Houssen, Wael E; Haggag, Eman G; Soliman, Randa F; El Sayed, Khalid A

    2016-01-15

    Fungi of the genus Penicillium produce unique and chemically diverse biologically active secondary metabolites, including indole alkaloids. The role of dysregulated hepatocyte growth factor (HGF) and its receptor, c-Met, in the development and progression of breast carcinoma is documented. The goal of this work is to explore the chemistry and bioactivity of the secondary metabolites of the endophytic Penicillium chrysogenum cultured from the leaf of the olive tree Olea europea, collected in its natural habitat in Egypt. This fungal extract showed good inhibitory activities against the proliferation and migration of several human breast cancer lines. The CH2Cl2 extract of P. chrysogenum mycelia was subjected to bioguided chromatographic separation to afford three known indole alkaloids; meleagrin (1), roquefortine C (2) and DHTD (3). Meleagrin inhibited the growth of the human breast cancer cell lines MDA-MB-231, MDA-468, BT-474, SK BR-3, MCF7 and MCF7-dox, while similar treatment doses were found to have no effect on the growth and viability of the non-tumorigenic human mammary epithelial cells MCF10A. Meleagrin also showed excellent ATP competitive c-Met inhibitory activity in Z-Lyte assay, which was further confirmed via molecular docking studies and Western blot analysis. In addition, meleagrin treatment caused a dose-dependent inhibition of HGF-induced cell migration, and invasion of breast cancer cell lines. Meleagrin treatment potently suppressed the invasive triple negative breast tumor cell growth in an orthotopic athymic nude mice model, promoting this unique natural product from hit to a lead rank. The indole alkaloid meleagrin is a novel lead c-Met inhibitory entity useful for the control of c-Met-dependent metastatic and invasive breast malignancies. PMID:26692349

  10. Comment on "Effect of transferred NK4 gene on proliferation,migration, invasion, and apoptosis of human prostate cancer DU145 cells" by Dan Yue et al. in Asian Journal of Andrology

    Institute of Scientific and Technical Information of China (English)

    Shahriar Koochekpour

    2010-01-01

    @@ Hepatocyte growth factor/scatter factor (HGF/SF) interacting with its cell surface receptor tyrosine kinase (RTK) c-met proto-oncogene drives downstream signaling pathways which lead to cell proliferation, migration,invasion, apoptotic cell-death protection, angiogenesis during embryogenesis, repair and regeneration, and neoplastic growth and metastatic progression [1-6].

  11. Astaxanthin Inhibits JAK/STAT-3 Signaling to Abrogate Cell Proliferation, Invasion and Angiogenesis in a Hamster Model of Oral Cancer

    OpenAIRE

    Kowshik, J.; Baba, Abdul Basit; Giri, Hemant; Deepak Reddy, G.; Dixit, Madhulika; Nagini, Siddavaram

    2014-01-01

    Identifying agents that inhibit STAT-3, a cytosolic transcription factor involved in the activation of various genes implicated in tumour progression is a promising strategy for cancer chemoprevention. In the present study, we investigated the effect of dietary astaxanthin on JAK-2/STAT-3 signaling in the 7,12-dimethylbenz[a]anthracene (DMBA)-induced hamster buccal pouch (HBP) carcinogenesis model by examining the mRNA and protein expression of JAK/STAT-3 and its target genes. Quantitative RT...

  12. Loss of GATA3 in bladder cancer promotes cell migration and invasion

    OpenAIRE

    Li, Yi; Ishiguro, Hitoshi; Kawahara, Takashi; Kashiwagi, Eiji; Izumi, Koji; Miyamoto, Hiroshi

    2014-01-01

    The transcription factor GATA3 is known as a breast tumor suppressor as well as a urothelial marker, and its loss is often seen in high-grade invasive bladder cancer. Nonetheless, GATA3 functions in bladder cancer cells remain largely unknown. In this study, we assessed the effects of GATA3 silencing via RNA interference on cell migration, invasion, and proliferation of bladder cancer. GATA3 expression was downregulated in all four bladder cancer lines examined, compared with a non-neoplastic...

  13. Sulforaphane derived from broccoli inhibit proliferation and invasion of lung cancer A549 cells in vitro%西兰花提取物萝卜硫素抑制肺癌细胞的生长和侵袭

    Institute of Scientific and Technical Information of China (English)

    贾侃; 贺云冲; 洪姣; 黄春琦; 任军; 许健

    2014-01-01

    Sulforaphane was a multifunction compound derived from brassicaceous vegetable such as broccoli, reports showed that Sulforaphane provided with effection of antitumor and antioxidant. Lung cancer is an aggressive malignancy with a tendency of early distant metastases, the antitumor function of sulforaphane was corroborated by numerous lines of evidence, but the anticancer mechanism of this compound has not been wel obsvered. In this work, we analyzed vitality and invasion of A549 cels treated with sulforaphane by cellcounting kit (CCK8) and transwel, then measure the half maximal (50%) inhibitory concentration (IC50) of sulforaphane for A549 cels. The cels cycle, apoptosis and DNA fragment were analyzed using Flow Cytometry Analysis and agarose electrophoresis, TGF-βand NF-κB were analyzed by western blot after treatment with 3μg/mL sulforaphane. Results showed that A549 cels proliferate and invade were inhibited by sulforaphane with a dose-dependent manner, IC50 of sulforaphane was 3μg/mL, and the cellcycle were arrested at G2/M phase. 3μg/mL sulforaphane induced apoptosis , DNA fragment, decreased the expression of TGF-βand NF-κB in A549 cels. Our results pointed out that sulforaphane inhibited proliferation and invasion of lung cancer A549 cels in vitro, decreased the expression of inflammation proteins, maybe a novel chemotherapy for lung cancer.%萝卜硫素是从十字花科蔬菜中提取的多功能物质,研究已证实其具有抗癌、抗氧化等功效。肺癌是恶性程度高、具有转移倾向的恶性肿瘤,萝卜硫素抗肺癌的机制尚不是十分清楚。本研究通过CCK-8和transwel侵袭实验分析初步判断萝卜硫素对A549肺癌细胞活性和转移侵袭的影响,计算体外干预A549的IC50,流式细胞学分析IC50浓度萝卜硫素对细胞周期和凋亡的影响,电泳分析DNA片段化改变。结果显示A549细胞活性对萝卜硫素剂量依赖性下降,萝卜硫素作用于A549细胞的IC50为3μg

  14. MicroRNA-663a is downregulated in non-small cell lung cancer and inhibits proliferation and invasion by targeting JunD

    OpenAIRE

    Zhang, Yi; Xu, Xiaoman; Zhang, Meng; wang, xin; Bai, Xue; Li, Hui; KAN, LIANG; Zhou, Yong; Niu, Huiyan; He, Ping

    2016-01-01

    Background MicroRNA-663a expression is downregulated in several tumors. However, its functions and mechanisms in human non-small cell lung (NSCLC) cancer remain obscure. The present study aimed to identify the expression pattern, biological roles and potential mechanisms by which miR-663a dysregulation is associated with NSCLC. Methods We examined expression level of miR-663a in 62 cases of NSCLC tissues and 5 NSCLC cell lines by reverse transcription PCR. In vitro, gain-of-function and loss-...

  15. Invasive cancer cells and metastasis

    Science.gov (United States)

    Mierke, Claudia Tanja

    2013-12-01

    The physics of cancer is a relatively new emerging field of cancer research. In the last decade it has become a focus of biophysical research as well as becoming a novel focus for classical cancer research. This special section of Physical Biology focusing on invasive cancer cells and metastasis (physical oncology) will give greater insight into the different subfields where physical approaches are being applied to cancer research. This focus on the physical aspects of cancer is necessary because novel approaches in the field of genomics and proteomics have not altered the field of cancer research dramatically, due to the fact that few breakthroughs have been made. It is still not understood why some primary tumors metastasize and thus have a worse outcome compared to others that do not metastasize. As biophysicists, we and others suggest that the mechanical properties of the cancer cells, which possess the ability to transmigrate, are quite different compared to non-metastatic and non-invasive cancer cells. Furthermore, we hypothesize that these cancer cells undergo a selection process within the primary tumor that enables them to weaken their cell-cell adhesions and to alter their cell-matrix adhesions in order to be able to cross the outermost boundary of the primary tumor, as well as the surrounding basement membrane, and to invade the connective tissue. This prerequisite may also help the cancer cells to enter blood or lymph vessels, get transported with the vessel flow and form secondary tumors either within the vessel, directly on the endothelium, or in a different organ after crossing the endothelial lining a second time. This special section begins with a paper by Mark F Coughlin and Jeffrey J Fredberg on the changes in cytoskeletal dynamics and nonlinear rheology due to the metastatic capability of cancer cells from different cancer tissue types such as skin, bladder, prostate and kidney [1]. The hypothesis was that the metastatic outcome is impacted by

  16. Study on Invasion of Artesunate on Inhibiting Human Colon Cancer Cell SW620

    Directory of Open Access Journals (Sweden)

    Yu Fan

    2013-09-01

    Full Text Available Objective: To observe the invasive effect of Chinese extraction artesunate on human colon cancer cell SW620 and explore its possible mechanisms. Methods: Colon cancer cell SW620 was managed by different concentrations of artesunate, and soft agar colony-cultivating trial was applied to detect anchorage independent proliferation of cancer cells, Boyden chamber model method to detect the invasive capability of cancer cells and Western blot method to detect the change of intercellular adhesion molecule-1 (ICAM-1 proteins. Results: Artesunate can effectively inhibit malignant proliferation and invasive capability of colon cancer cell SW620, and was dose-dependent (P < 0.01. Artesunate can effectively inhibit the expression of cancer cell ICAM-1 gene proteins, and was time- and concentration-dependant (P <0.01. Conclusion: Artesunate can significantly inhibit the invasion of colon cancer cell SW620, which can be related to down-regulation of ICAM-1 protein level.

  17. Continuous Time Random Walk and Migration-Proliferation Dichotomy of Brain Cancer

    Science.gov (United States)

    Iomin, A.

    A theory of fractional kinetics of glial cancer cells is presented. A role of the migration-proliferation dichotomy in the fractional cancer cell dynamics in the outer-invasive zone is discussed and explained in the framework of a continuous time random walk. The main suggested model is based on a construction of a 3D comb model, where the migration-proliferation dichotomy becomes naturally apparent and the outer-invasive zone of glioma cancer is considered as a fractal composite with a fractal dimension Dfr < 3.

  18. Extracellular Molecules Involved in Cancer Cell Invasion

    Energy Technology Data Exchange (ETDEWEB)

    Stivarou, Theodora; Patsavoudi, Evangelia, E-mail: epatsavoudi@pasteur.gr [Department of Biochemistry, Hellenic Pasteur Institute, Athens 11521 (Greece); Technological Educational Institute of Athens, Egaleo, Athens 12210 (Greece)

    2015-01-26

    Nowadays it is perfectly clear that understanding and eradicating cancer cell invasion and metastasis represent the crucial, definitive points in cancer therapeutics. During the last two decades there has been a great interest in the understanding of the extracellular molecular mechanisms involved in cancer cell invasion. In this review, we highlight the findings concerning these processes, focusing in particular on extracellular molecules, including extracellular matrix proteins and their receptors, growth factors and their receptors, matrix metalloproteinases and extracellular chaperones. We report the molecular mechanisms underlying the important contribution of this pool of molecules to the complex, multi-step phenomenon of cancer cell invasion.

  19. Expression of PTP1B in gastric cancer and its effect on proliferation and invasion of gastric cancer cell line MKN28%PTP1B在胃癌组织中表达及其对胃癌细胞系MKN28增殖、侵袭行为的影响

    Institute of Scientific and Technical Information of China (English)

    叶亚峻; 朱小存; 朱治淮; 刘琪; 秦凯

    2014-01-01

    目的:研究蛋白质酪氨酸磷酸酶1B(PTP1B)在胃癌组织中的表达及其对胃癌细胞株MKN28增殖、侵袭的影响,为PTP1B作为靶点治疗胃癌提供理论基础。方法:采用Western blot检测PTP1B在39例胃癌组织及8例非癌胃组织中的表达情况,分析其与胃癌重要病理因素之间的关系,并通过构建靶向PTP1B的ShRNA的真核表达质粒Sh-PTP1B转染人胃癌细胞系MKN28,应用Western blot检测PTP1B蛋白表达,采用CCK-8、Transwell侵袭小室检测MKN28细胞增殖和侵袭。结果:PTP1B在胃癌组织的表达明显高于非癌胃组织,PTP1B表达与胃癌患者组织分化程度及TNM分期明显相关;胃癌细胞系MKN28中转染Sh-PTP1B后,细胞PTP1B蛋白表达明显减少,细胞增殖和侵袭明显抑制(P<0.05)。结论:PTP1B在胃癌的生长和侵袭过程中发挥重要作用,有可能成为靶向治疗胃癌的潜在靶点。%Objective:To study the expression of Protein tyrosine phosphatase 1B (PTP1B) in gastric carcinoma and its effect on proliferation and invasion of gastric cancer cell line MKN28. Methods: The expression of PTP1B was detected by Western blot in 39 cases of gastric cancer and 8 cases of non-cancerous gastric tissues, and its relation with the impor-tant factors for gastric pathology was analyzed. Through building the ShRNA targeting PTP1B eukaryotic expression plasmid Sh-PTP1B to transfect human gastric cancer cell line MKN28, the expression of PTP1B was detected by Western blot and the proliferation and invasion were detected by CCK-8 and Transwell invasion chamber assay. Results:PTP1B expression in gastric cancer tissues was significantly higher than in non-cancerous gastric tissue, and was significantly correlated with tissue differentiation and TNM staging. The expression of PTP1B was effectively reduced after the transfection. And the RNA interference led to the restraining of tumor cells proliferation and invasion(P<0

  20. Inhibition of nuclear factor-kappa B differentially affects thyroid cancer cell growth, apoptosis, and invasion

    OpenAIRE

    Schweppe Rebecca E; Bauerle Kevin T; Haugen Bryan R

    2010-01-01

    Abstract Background Nuclear factor-κB (NF-κB) is constitutively activated in many cancers and plays a key role in promoting cell proliferation, survival, and invasion. Our understanding of NF-κB signaling in thyroid cancer, however, is limited. In this study, we have investigated the role of NF-κB signaling in thyroid cancer cell proliferation, invasion, and apoptosis using selective genetic inhibition of NF-κB in advanced thyroid cancer cell lines. Results Three pharmacologic inhibitors of N...

  1. Rab25 upregulation correlates with the proliferation, migration, and invasion of renal cell carcinoma

    International Nuclear Information System (INIS)

    Renal cell carcinoma (RCC) is a common urological cancer with a poor prognosis. A recent cohort study revealed that the median survival of RCC patients was only 1.5 years and that <10% of the patients in the study survived up to 5 years. In tumor development, Rab GTPase are known to play potential roles such as regulation of cell proliferation, migration, invasion, communication, and drug resistance in multiple tumors. However, the correlation between Rabs expression and the occurrence, development, and metastasis of RCC remains unclear. In this study, we analyzed the transcriptional levels of 52 Rab GTPases in RCC patients. Our results showed that high levels of Rab25 expression were significantly correlated with RCC invasion classification (P < 0.01), lymph-node metastasis (P < 0.001), and pathological stage (P < 0.01). Conversely, in 786-O and A-498 cells, knocking down Rab25 protein expression inhibited cell proliferation, migration, and invasion. Our results also demonstrated that Rab25 is a target gene of let-7d, and further suggested that Rab25 upregulation in RCC is due to diminished expression of let-7d. These findings indicate that Rab25 might be a novel candidate molecule involved in RCC development, thus identifying a potential biological therapeutic target for RCC. - Highlights: • The transcriptional levels of 52 Rab GTPases were analyzed in renal cell carcinoma (RCC). • High levels of Rab25 expression were significantly correlated with clinicopathological factors of RCC. • Knockdown of Rab25 protein expression reduced RCC cells proliferation, migration, and invasion. • Rab25 is a target gene of let-7d in RCC

  2. Rab25 upregulation correlates with the proliferation, migration, and invasion of renal cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuanyuan; Jia, Qingzhu [Biomedical Analysis Center, Third Military Medical University, Chongqing (China); Chongqing Key Laboratory of Cytomics, Chongqing (China); Zhang, Qian [Department of Urology, Xinqiao Hospital, Third Military Medical University, Chongqing (China); Wan, Ying, E-mail: wanying_cn@163.com [Biomedical Analysis Center, Third Military Medical University, Chongqing (China); Chongqing Key Laboratory of Cytomics, Chongqing (China)

    2015-03-20

    Renal cell carcinoma (RCC) is a common urological cancer with a poor prognosis. A recent cohort study revealed that the median survival of RCC patients was only 1.5 years and that <10% of the patients in the study survived up to 5 years. In tumor development, Rab GTPase are known to play potential roles such as regulation of cell proliferation, migration, invasion, communication, and drug resistance in multiple tumors. However, the correlation between Rabs expression and the occurrence, development, and metastasis of RCC remains unclear. In this study, we analyzed the transcriptional levels of 52 Rab GTPases in RCC patients. Our results showed that high levels of Rab25 expression were significantly correlated with RCC invasion classification (P < 0.01), lymph-node metastasis (P < 0.001), and pathological stage (P < 0.01). Conversely, in 786-O and A-498 cells, knocking down Rab25 protein expression inhibited cell proliferation, migration, and invasion. Our results also demonstrated that Rab25 is a target gene of let-7d, and further suggested that Rab25 upregulation in RCC is due to diminished expression of let-7d. These findings indicate that Rab25 might be a novel candidate molecule involved in RCC development, thus identifying a potential biological therapeutic target for RCC. - Highlights: • The transcriptional levels of 52 Rab GTPases were analyzed in renal cell carcinoma (RCC). • High levels of Rab25 expression were significantly correlated with clinicopathological factors of RCC. • Knockdown of Rab25 protein expression reduced RCC cells proliferation, migration, and invasion. • Rab25 is a target gene of let-7d in RCC.

  3. Korean mistletoe lectin promotes proliferation and invasion of trophoblast cells through regulation of Akt signaling.

    Science.gov (United States)

    Lyu, Su-Yun; Choi, Jong Ho; Lee, Hyun-Jung; Park, Won-Bong; Kim, Gi Jin

    2013-08-01

    Recently, Viscum album var. coloratum agglutinin (VCA) was shown to have various effects on cancer cells. However, most researchers are focused on high concentrations (1-1000 ng/ml) of VCA and its anti-cancer effects. Therefore, we wanted to know whether low concentrations of VCA have an effect on proliferation and invasion of human trophoblast cells (HTR-8/SVneo cell line). Cell proliferations at low concentration of VCA (1-10 pg/ml) were increased over 2-fold relative to the control. Also, gelatinolytic activities of matrix metalloproteinase-2 were increased after VCA treatment, while TIMP-1 expression was reduced. Furthermore, the expression of integrin subunits α5 and β1 were increased 1.5-fold when cells were treated with low dose of VCA (10 pg/ml). Lastly, VCA was able to promote trophoblast invasion through activation of the Akt signaling pathway. In conclusion, low concentrations of VCA can stimulate the ability of trophoblast cells to invade through the extracellular matrix in vitro. PMID:23571125

  4. Minimally Invasive Treatment for Lung Cancer

    Medline Plus

    Full Text Available Minimally Invasive Treatment for Lung Cancer June 15, 2009 Welcome to this “OR-Live” webcast presentation, premiering from Beth Israel Medical Center in New York City. During ...

  5. miR-4295 promotes cell proliferation and invasion in anaplastic thyroid carcinoma via CDKN1A

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Mingchen; Geng, Yiwei [Oncology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou (China); Laboratory of Tumor Biology, Zhengzhou University, Zhengzhou (China); Lu, Peng [Gastrointestinal Surgery Department, People' s Hospital of Zhengzhou, Zhengzhou (China); Xi, Ying [Oncology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou (China); Laboratory of Tumor Biology, Zhengzhou University, Zhengzhou (China); Wei, Sidong [Liver Transplantation Hepatobiliary Surgery Department, People' s Hospital of Zhengzhou, Zhengzhou (China); Wang, Liuxing; Fan, Qingxia [Oncology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou (China); Laboratory of Tumor Biology, Zhengzhou University, Zhengzhou (China); Ma, Wang, E-mail: doctormawang@126.com [Oncology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou (China); Laboratory of Tumor Biology, Zhengzhou University, Zhengzhou (China)

    2015-09-04

    MicroRNAs (miRNAs) play important roles in the pathogenesis of many types of cancers by negatively regulating gene expression at posttranscriptional level. However, the role of microRNAs in anaplastic thyroid carcinoma (ATC), has remained elusive. Here, we identified that miR-4295 promotes ATC cell proliferation by negatively regulates its target gene CDKN1A. In ATC cell lines, CCK-8 proliferation assay indicated that the cell proliferation was promoted by miR-4295, while miR-4295 inhibitor significantly inhibited the cell proliferation. Transwell assay showed that miR-4295 mimics significantly promoted the migration and invasion of ATC cells, whereas miR-4295 inhibitors significantly reduced cell migration and invasion. luciferase assays confirmed that miR-4295 directly bound to the 3'untranslated region of CDKN1A, and western blotting showed that miR-4295 suppressed the expression of CDKN1A at the protein levels. This study indicated that miR-4295 negatively regulates CDKN1A and promotes proliferation and invasion of ATC cell lines. Thus, miR-4295 may represent a potential therapeutic target for ATC intervention. - Highlights: • miR-4295 mimics promote the proliferation and invasion of ATC cells. • miR-4295 inhibitors inhibit the proliferation and invasion of ATC cells. • miR-4295 targets 3′UTR of CDKN1A in ATC cells. • miR-4295 negatively regulates CDKN1A in ATC cells.

  6. miR-4295 promotes cell proliferation and invasion in anaplastic thyroid carcinoma via CDKN1A

    International Nuclear Information System (INIS)

    MicroRNAs (miRNAs) play important roles in the pathogenesis of many types of cancers by negatively regulating gene expression at posttranscriptional level. However, the role of microRNAs in anaplastic thyroid carcinoma (ATC), has remained elusive. Here, we identified that miR-4295 promotes ATC cell proliferation by negatively regulates its target gene CDKN1A. In ATC cell lines, CCK-8 proliferation assay indicated that the cell proliferation was promoted by miR-4295, while miR-4295 inhibitor significantly inhibited the cell proliferation. Transwell assay showed that miR-4295 mimics significantly promoted the migration and invasion of ATC cells, whereas miR-4295 inhibitors significantly reduced cell migration and invasion. luciferase assays confirmed that miR-4295 directly bound to the 3'untranslated region of CDKN1A, and western blotting showed that miR-4295 suppressed the expression of CDKN1A at the protein levels. This study indicated that miR-4295 negatively regulates CDKN1A and promotes proliferation and invasion of ATC cell lines. Thus, miR-4295 may represent a potential therapeutic target for ATC intervention. - Highlights: • miR-4295 mimics promote the proliferation and invasion of ATC cells. • miR-4295 inhibitors inhibit the proliferation and invasion of ATC cells. • miR-4295 targets 3′UTR of CDKN1A in ATC cells. • miR-4295 negatively regulates CDKN1A in ATC cells

  7. Down-regulation of miR-126 is associated with colorectal cancer cells proliferation, migration and invasion by targeting IRS-1 via the AKT and ERK1/2 signaling pathways.

    Directory of Open Access Journals (Sweden)

    Yu Zhou

    Full Text Available BACKGROUND: Colorectal carcinoma (CRC is one of the leading causes of cancer-related mortality worldwide. MicroRNAs (miRNAs, miRs play important roles in carcinogenesis. MiR-126 has been shown to be down-regulated in CRC. In this study, we identified the potential effects of miR-126 on some important biological properties of CRC cells and clarified the regulation of insulin receptor substrate 1 (IRS-1 and its possible signaling pathway by miR-126. METHODS: The effect of miR-126 on IRS-1, AKT, and ERK1/2 expression was assessed in the CRC cell lines HT-29 and HCT-116 with a miR-126 mimic or inhibitor to increase or decrease miR-126 expression. Furthermore, the roles of miR-126 in regulation of the biological properties of CRC cells were analyzed with miR-126 mimic or inhibitor-transfected cells. The 3'-untranslated region (3'-UTR of IRS-1 regulated by miR-126 was analyzed by using a dual-luciferase reporter assay. RESULTS: We found that IRS-1 is the functional downstream target of miR-126 by directly targeting the 3'-UTR of IRS-1. Endogenous miR-126 and exogenous miR-126 mimic inhibited IRS-1 expression. Furthermore, gain-of-function or loss-of-function studies showed that over-expression of miR-126 down-regulated IRS-1, suppressed AKT and ERK1/2 activation, CRC cells proliferation, migration, invasion, and caused cell cycle arrest, but had no effect on cell apoptosis. Knockdown of miR-126 promoted these processes in HCT-116 cells and promoted AKT and ERK1/2 activation by up-regulating the expression of the IRS-1 protein. CONCLUSIONS: MiR-126 may play roles in regulation of the biological behavior of CRC cells, at least in part, by targeting IRS-1 via AKT and ERK1/2 signaling pathways.

  8. TRPM7 is required for ovarian cancer cell growth, migration and invasion

    International Nuclear Information System (INIS)

    Highlights: • Silence of TRPM7 in ovarian cancer cells inhibits cell proliferation, migration and invasion. • Silence of TRPM7 decreases phosphorylation levels of Akt, Src and p38 in ovarian cancer cells. • Silence of TRPM7 increases expression of filamentous actin and number of focal adhesions in ovarian cancer cells. - Abstract: Our previous study demonstrated that the melastatin-related transient receptor potential channel 7 (TRPM7) was highly expressed in ovarian carcinomas and its overexpression was significantly associated with poor prognosis in ovarian cancer patients. However, the function of TRPM7 in ovarian cancer is mostly unknown. In this study, we examined the roles of TRPM7 in ovarian cancer cell proliferation, migration and invasion. We found that short hairpin RNA interference-mediated silence of TRPM7 significantly inhibited cell proliferation, colony formation, migration and invasion in multiple ovarian cancer cell lines. Mechanistic investigation revealed that silence of TRPM7 decreased phosphorylation levels of Akt, Src and p38 and increased filamentous actin and focal adhesion number in ovarian cancer cells. Thus, our results suggest that TRPM7 is required for proliferation, migration and invasion of ovarian cancer cells through regulating multiple signaling transduction pathways and the formation of focal adhesions

  9. TRPM7 is required for ovarian cancer cell growth, migration and invasion

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing; Liao, Qian-jin [The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013 (China); Zhang, Yi [Department of Obstetrics and Gynaecology, Xiangya Hospital, Central South University, Changsha 410078 (China); Zhou, Hui; Luo, Chen-hui; Tang, Jie; Wang, Ying; Tang, Yan; Zhao, Min; Zhao, Xue-heng [The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013 (China); Zhang, Qiong-yu [Department of Basic Medical Science, Yongzhou Vocational Technical College, Yong Zhou 425100 (China); Xiao, Ling, E-mail: lingxiaocsu@126.com [Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha 410013 (China); Institute of Clinical Pharmacology, Central South University, Changsha 410018 (China)

    2014-11-28

    Highlights: • Silence of TRPM7 in ovarian cancer cells inhibits cell proliferation, migration and invasion. • Silence of TRPM7 decreases phosphorylation levels of Akt, Src and p38 in ovarian cancer cells. • Silence of TRPM7 increases expression of filamentous actin and number of focal adhesions in ovarian cancer cells. - Abstract: Our previous study demonstrated that the melastatin-related transient receptor potential channel 7 (TRPM7) was highly expressed in ovarian carcinomas and its overexpression was significantly associated with poor prognosis in ovarian cancer patients. However, the function of TRPM7 in ovarian cancer is mostly unknown. In this study, we examined the roles of TRPM7 in ovarian cancer cell proliferation, migration and invasion. We found that short hairpin RNA interference-mediated silence of TRPM7 significantly inhibited cell proliferation, colony formation, migration and invasion in multiple ovarian cancer cell lines. Mechanistic investigation revealed that silence of TRPM7 decreased phosphorylation levels of Akt, Src and p38 and increased filamentous actin and focal adhesion number in ovarian cancer cells. Thus, our results suggest that TRPM7 is required for proliferation, migration and invasion of ovarian cancer cells through regulating multiple signaling transduction pathways and the formation of focal adhesions.

  10. 17β-Estradiol treatment inhibits breast cell proliferation, migration and invasion by decreasing MALAT-1 RNA level

    International Nuclear Information System (INIS)

    Highlights: • E2 affects not only estrogen-receptor α positive breast cells but also negative ones. • 100 nM E2 treatment affects breast cells proliferation, migration. • 100 nM E2 treatment functions in an estrogen-receptor α-independent way. • E2 treatment decreases MALAT-1 RNA level by post-transcriptional regulation. - Abstract: Breast cancer cells, which express estrogen receptor α (ERα), respond to estrogen in a concentration dependent fashion, resulting in proliferation or apoptosis. But breast cancer cells without ERα show no effect on low concentration of estrogen treatment. Proliferation, migration and invasion of MCF10a, MCF7 and MB231 cells treated with low (1 nM) or high (100 nM) dose of 17β-Estradiol (E2) was performed. We identified the effects of E2 on these breast cell lines, and looked for the difference in the presence and absence of ERα. Specifically, we looked for the changes of long non-coding RNA metastasis associated lung adenocarcinoma transcript 1 (MALAT-1), which is found extensively and highly expressed in several kinds of tumor cells, including breast carcinoma. It was observed that proliferation, migration and invasion of breast cells were greatly affected by high concentration E2 treatment and were not affected by low concentration E2 treatment in an ERα independent way. We found that the high concentration E2 treatment largely decreased MALAT-1 RNA level. Interestingly, MALAT-1 decreasing by knocking down showed similar effects on proliferation, migration and invasion. E2 treatment affects breast tumor or non-tumor cells proliferation, migration and invasion in an ERα -independent, but a dose-dependent way by decreasing the MALAT-1 RNA level

  11. 17β-Estradiol treatment inhibits breast cell proliferation, migration and invasion by decreasing MALAT-1 RNA level

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Ziyi [Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610041 (China); Chen, Changjin [Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041 (China); Liu, Yu [Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610041 (China); Wu, Chuanfang, E-mail: 879413966@qq.com [Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610041 (China)

    2014-03-07

    Highlights: • E2 affects not only estrogen-receptor α positive breast cells but also negative ones. • 100 nM E2 treatment affects breast cells proliferation, migration. • 100 nM E2 treatment functions in an estrogen-receptor α-independent way. • E2 treatment decreases MALAT-1 RNA level by post-transcriptional regulation. - Abstract: Breast cancer cells, which express estrogen receptor α (ERα), respond to estrogen in a concentration dependent fashion, resulting in proliferation or apoptosis. But breast cancer cells without ERα show no effect on low concentration of estrogen treatment. Proliferation, migration and invasion of MCF10a, MCF7 and MB231 cells treated with low (1 nM) or high (100 nM) dose of 17β-Estradiol (E2) was performed. We identified the effects of E2 on these breast cell lines, and looked for the difference in the presence and absence of ERα. Specifically, we looked for the changes of long non-coding RNA metastasis associated lung adenocarcinoma transcript 1 (MALAT-1), which is found extensively and highly expressed in several kinds of tumor cells, including breast carcinoma. It was observed that proliferation, migration and invasion of breast cells were greatly affected by high concentration E2 treatment and were not affected by low concentration E2 treatment in an ERα independent way. We found that the high concentration E2 treatment largely decreased MALAT-1 RNA level. Interestingly, MALAT-1 decreasing by knocking down showed similar effects on proliferation, migration and invasion. E2 treatment affects breast tumor or non-tumor cells proliferation, migration and invasion in an ERα -independent, but a dose-dependent way by decreasing the MALAT-1 RNA level.

  12. MicroRNA-153 inhibits osteosarcoma cells proliferation and invasion by targeting TGF-β2.

    Directory of Open Access Journals (Sweden)

    Guangfeng Niu

    Full Text Available Increasing evidence indicates that microRNAs (miRNAs, a class of small noncoding RNAs, participate in almost every step of cellular processes. MiRNAs are aberrantly expressed in human cancers and contribute to cancer development and progression. Study of miRNAs may provide a new clue for understanding the mechanism of carcinogenesis and a new tool for cancer treatment. In the present study, miR-153 was downregulated in human osteosarcoma tissues and cell lines. Introduction of miR-153 mimics into the MG-63 cells inhibited cell proliferation and invasion. Our results further revealed that transforming growth factor beta 2 (TGF-β2 was negatively regulated by miR-153. Furthermore, overexpression of miR-153 decreased p-SMAD2, p-SMAD3, epidermal growth factor receptor (EGFR and insulin-like growth factor binding protein-3 (IGFBP-3 expressions, which were the downstream signaling molecules of TGF-β. Furthermore, miRNA-153 suppressed TGF-β-mediated MG-63 proliferation and migration. Therefore, our results suggest that miR-153 may act as a tumor suppressor in osteosarcoma through targeting TGF-β2.

  13. Minimally Invasive Treatment for Lung Cancer

    Medline Plus

    Full Text Available Minimally Invasive Treatment for Lung Cancer June 15, 2009 Welcome to this “OR-Live” webcast presentation, premiering from Beth Israel Medical Center in New ... can have. My role is to deliver radiation therapy in these lung cancer patients. And what radiation therapy is is the ...

  14. Quercetin-induced downregulation of phospholipase D1 inhibits proliferation and invasion in U87 glioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Park, Mi Hee [Department of Molecular Biology, College of Natural Science, Pusan National University, 30 Jangjeon dong, Geumjeong gu, Busan 609-735 (Korea, Republic of); Min, Do Sik, E-mail: minds@pusan.ac.kr [Department of Molecular Biology, College of Natural Science, Pusan National University, 30 Jangjeon dong, Geumjeong gu, Busan 609-735 (Korea, Republic of)

    2011-09-09

    Highlights: {yields} Quercetin, a bioactive flavonoid, suppresses expression and enzymatic activity of phospholipase D1. {yields} Quercetin abolishes NFkB-induced phospholipase D1 expression via inhibition of NFkB transactivation. {yields} Quercetin-induced suppression of phospholipase D1 inhibits invasion and proliferation of human glioma cells. -- Abstract: Phospholipase D (PLD) has been recognized as a regulator of cell proliferation and tumorigenesis, but little is known about the molecules regulating PLD expression. Thus, the identification of small molecules inhibiting PLD expression would be an important advance in PLD-mediated physiology. Quercetin, a ubiquitous bioactive flavonoid, is known to inhibit proliferation and induce apoptosis in a variety of cancer cells. In the present study, we examined the effect of quercetin on the expression of PLD in U87 glioma cells. Quercetin significantly suppressed the expression of PLD1 at the transcriptional level. Moreover, quercetin abolished the protein expression of PLD1 in a time and dose-dependent manner, as well as inhibited PLD activity. Quercetin suppressed NF{kappa}B-induced PLD1 expression via inhibition of NFkB transactivation. Furthermore, quercetin inhibited activation and invasion of metalloproteinase-2 (MMP-2), a key modulator of glioma cell invasion, induced by phosphatidic acid (PA), a product of PLD activity. Taken together these data demonstrate that quercetin abolishes PLD1 expression and subsequently inhibits invasion and proliferation of glioma cells.

  15. EZH2 depletion blocks the proliferation of colon cancer cells.

    Directory of Open Access Journals (Sweden)

    Bettina Fussbroich

    Full Text Available The Enhancer of Zeste 2 (EZH2 protein has been reported to stimulate cell growth in some cancers and is therefore considered to represent an interesting new target for therapeutic intervention. Here, we investigated a possible role of EZH2 for the growth control of colon cancer cells. RNA interference (RNAi-mediated intracellular EZH2 depletion led to cell cycle arrest of colon carcinoma cells at the G1/S transition. This was associated with a reduction of cell numbers upon transient transfection of synthetic EZH2-targeting siRNAs and with inhibition of their colony formation capacity upon stable expression of vector-borne siRNAs. We furthermore tested whether EZH2 may repress the growth-inhibitory p27 gene, as reported for pancreatic cancer. However, expression analyses of colon cancer cell lines and colon cancer biopsies did not reveal a consistent correlation between EZH2 and p27 levels. Moreover, EZH2 depletion did not re-induce p27 expression in colon cancer cells, indicating that p27 repression by EZH2 may be cell- or tissue-specific. Whole genome transcriptome analyses identified cellular genes affected by EZH2 depletion in colon cancer cell lines. They included several cancer-associated genes linked to cellular proliferation or invasion, such as Dag1, MageD1, SDC1, Timp2, and Tob1. In conclusion, our results demonstrate that EZH2 depletion blocks the growth of colon cancer cells. These findings might provide benefits for the treatment of colon cancer.

  16. [Minimally Invasive Open Surgery for Lung Cancer].

    Science.gov (United States)

    Nakagawa, Kazuo; Watanabe, Shunichi

    2016-07-01

    Significant efforts have been made to reduce the invasiveness of surgical procedures by surgeons for a long time. Surgeons always keep it in mind that the basic principle performing less invasive surgical procedures for malignant tumors is to decrease the invasiveness for patients without compromising oncological curability and surgical safety. Video-assisted thoracic surgery (VATS) has been used increasingly as a minimally invasive approach to lung cancer surgery. Whereas, whether VATS lobectomy is a less invasive procedure and has equivalent or better clinical effect compared with open lobectomy for patients with lung cancer remains controversial because of the absence of randomized prospective studies. The degree of difficulty for anatomical lung resection depends on the degree of the fissure development, mobility of hilar lymph nodes, and the degree of pleural adhesions. During pulmonary surgery, thoracic surgeons always have to deal with not only these difficulties but other unexpected events such as intraoperative bleeding. Recently, we perform pulmonary resection for lung cancer with minimally invasive open surgery (MIOS) approach. In this article, we introduce the surgical procedure of MIOS and demonstrate short-term results. Off course, the efficacy of MIOS needs to be further evaluated with long-term results. PMID:27440030

  17. Aquatic invasive species: Lessons from cancer research

    Science.gov (United States)

    Sepulveda, Adam; Ray, Andrew; Al-Chokhachy, Robert K.; Muhlfeld, Clint C.; Gresswell, Robert E.; Gross, Jackson A.; Kershner, Jeffrey L.

    2014-01-01

    Aquatic invasive species are disrupting ecosystems with increasing frequency. Successful control of these invasions has been rare: Biologists and managers have few tools for fighting aquatic invaders. In contrast, the medical community has long worked to develop tools for preventing and fighting cancer. Its successes are marked by a coordinated research approach with multiple steps: prevention, early detection, diagnosis, treatment options and rehabilitation. The authors discuss how these steps can be applied to aquatic invasive species, such as the American bullfrog (Lithobates catesbeianus), in the Northern Rocky Mountain region of the United States, to expedite tool development and implementation along with achievement of biodiversity conservation goals.

  18. Endostatin induces proliferation of oral carcinoma cells but its effect on invasion is modified by the tumor microenvironment

    International Nuclear Information System (INIS)

    The turnover of extracellular matrix liberates various cryptic molecules with novel biological activities. Endostatin is an endogenous angiogenesis inhibitor that is derived from the non-collagenous domain of collagen XVIII. Although there are a large number of studies on its anti-tumor effects, the molecular mechanisms are not yet completely understood, and the reasons why endostatin has not been successful in clinical trials are unclear. Research has mostly focused on its anti-angiogenic effect in tumors. Here, we aimed to elucidate how endostatin affects the behavior of aggressive tongue HSC-3 carcinoma cells that were transfected to overproduce endostatin. Endostatin inhibited the invasion of HSC-3 cells in a 3D collagen–fibroblast model. However, it had no effect on invasion in a human myoma organotypic model, which lacks vital fibroblasts. Recombinant endostatin was able to reduce the Transwell migration of normal fibroblasts, but had no effect on carcinoma associated fibroblasts. Surprisingly, endostatin increased the proliferation and decreased the apoptosis of cancer cells in organotypic models. Also subcutaneous tumors overproducing endostatin grew bigger, but showed less local invasion in nude mice xenografts. We conclude that endostatin affects directly to HSC-3 cells increasing their proliferation, but its net effect on cancer invasion seem to depend on the cellular composition and interactions of tumor microenvironment. - Highlights: • Endostatin affects not only angiogenesis, but also carcinoma cells and fibroblasts. • Endostatin increased carcinoma cell proliferation, but decreased 3D invasion. • The invasion inhibitory effect was sensitive to the microenvironment composition. • Fibroblasts may be a factor regulating the fluctuating roles of endostatin

  19. Endostatin induces proliferation of oral carcinoma cells but its effect on invasion is modified by the tumor microenvironment

    Energy Technology Data Exchange (ETDEWEB)

    Alahuhta, Ilkka [Research Group of Cancer and Translational Medicine, Faculty of Medicine, University of Oulu (Finland); Medical Research Center, Oulu University Hospital, Oulu (Finland); Aikio, Mari [Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu (Finland); Oulu Center for Cell-Matrix Research, University of Oulu (Finland); Väyrynen, Otto; Nurmenniemi, Sini [Research Group of Cancer and Translational Medicine, Faculty of Medicine, University of Oulu (Finland); Medical Research Center, Oulu University Hospital, Oulu (Finland); Suojanen, Juho [Department of Oral and Maxillo-facial Diseases, University of Helsinki, Helsinki University Central Hospital (Finland); Teppo, Susanna [Research Group of Cancer and Translational Medicine, Faculty of Medicine, University of Oulu (Finland); Medical Research Center, Oulu University Hospital, Oulu (Finland); Pihlajaniemi, Taina; Heljasvaara, Ritva [Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu (Finland); Oulu Center for Cell-Matrix Research, University of Oulu (Finland); Salo, Tuula [Research Group of Cancer and Translational Medicine, Faculty of Medicine, University of Oulu (Finland); Medical Research Center, Oulu University Hospital, Oulu (Finland); Department of Oral and Maxillo-facial Diseases, University of Helsinki, Helsinki University Central Hospital (Finland); Department of Oral Diagnosis, School of Dentistry, State University of Campinas, Piracicaba, Sao Paolo (Brazil); Nyberg, Pia, E-mail: pia.nyberg@oulu.fi [Research Group of Cancer and Translational Medicine, Faculty of Medicine, University of Oulu (Finland); Medical Research Center, Oulu University Hospital, Oulu (Finland)

    2015-08-01

    The turnover of extracellular matrix liberates various cryptic molecules with novel biological activities. Endostatin is an endogenous angiogenesis inhibitor that is derived from the non-collagenous domain of collagen XVIII. Although there are a large number of studies on its anti-tumor effects, the molecular mechanisms are not yet completely understood, and the reasons why endostatin has not been successful in clinical trials are unclear. Research has mostly focused on its anti-angiogenic effect in tumors. Here, we aimed to elucidate how endostatin affects the behavior of aggressive tongue HSC-3 carcinoma cells that were transfected to overproduce endostatin. Endostatin inhibited the invasion of HSC-3 cells in a 3D collagen–fibroblast model. However, it had no effect on invasion in a human myoma organotypic model, which lacks vital fibroblasts. Recombinant endostatin was able to reduce the Transwell migration of normal fibroblasts, but had no effect on carcinoma associated fibroblasts. Surprisingly, endostatin increased the proliferation and decreased the apoptosis of cancer cells in organotypic models. Also subcutaneous tumors overproducing endostatin grew bigger, but showed less local invasion in nude mice xenografts. We conclude that endostatin affects directly to HSC-3 cells increasing their proliferation, but its net effect on cancer invasion seem to depend on the cellular composition and interactions of tumor microenvironment. - Highlights: • Endostatin affects not only angiogenesis, but also carcinoma cells and fibroblasts. • Endostatin increased carcinoma cell proliferation, but decreased 3D invasion. • The invasion inhibitory effect was sensitive to the microenvironment composition. • Fibroblasts may be a factor regulating the fluctuating roles of endostatin.

  20. Carvacrol suppresses proliferation and invasion in human oral squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Dai W

    2016-04-01

    Full Text Available Wei Dai,1,2 Changfu Sun,1,2 Shaohui Huang,1,2 Qing Zhou1,21Department of Oromaxillofacial-Head and Neck Surgery, 2Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, Liaoning, People’s Republic of ChinaAbstract: Carvacrol, a component of thyme oil, as a novel antitumor agent, has been implicated in several types of cancer cells. However, the mechanisms underlying the effect of carvacrol in human oral squamous cell carcinoma (OSCC remain unclear. Here, we report that carvacrol significantly inhibits tumor cell proliferation, metastasis and invasion, and induces apoptosis in OSCC. Our results demonstrated that the molecular mechanisms of the effect of carvacrol in Tca-8113 induces G1/S cell cycle arrest through downregulation of CDK regulator CCND1 and CDK4, and upregulation of CDK inhibitor P21. Further analysis demonstrated that carvacrol also inhibited Tca-8113 cells’ clone formation in clonogenic cell survival assay. Student’s t-test (two-tailed was used to compare differences between groups, and the significance level was P<0.01. Then, treatment of Tca-8113 cells with carvacrol resulted in downregulation of Bcl-2, Cox2, and upregulation of Bax. Carvacrol significantly inhibited the migration and invasion of human OSCC cells by blocking the phosphorylation of FAK and MMP-9 and MMP-2, transcription factor ZEB1, and β-catenin proteins’ expression. Taken together, these results provide novel insights into the mechanism of carvacrol and suggest potential therapeutic strategies for human OSCC.Keywords: carvacrol, proliferation, metastasis and invasion, oral squamous cell carcinoma

  1. MicroRNA-133a Inhibits Osteosarcoma Cells Proliferation and Invasion via Targeting IGF-1R

    Directory of Open Access Journals (Sweden)

    Guangnan Chen

    2016-02-01

    Full Text Available Background/Aims: MicroRNAs (miRNAs are a class of small noncoding RNAs that regulate gene expression by repressing translation or cleaving RNA transcripts in a sequence-specific manner. Downregulated microRNAs and their roles in cancer development have attracted much attention. A growing body of evidence showed that microRNA-133a (miR-133a has inhibitory effects on cell proliferation, migration, invasion, and metastasis of osteosarcoma. Methods: MiR-133a expression in human osteosarcoma cell lines and human normal osteoblastic cell line hFOB was investigated by real-time PCR (RT-PCR. The role of miR-133a in human osteosarcoma growth and invasion was assessed in cell lines in vitro and in vivo. Then, luciferase reporter assay validated IGF-1R as a downstream and functional target of miR-133a, and functional studies revealed that the anti-tumor effect of miR-133a was probably due to targeting and repressing of IGF-1R expression. Results: MiR-133a was lower expressed in human osteosarcoma cell lines than human normal osteoblastic cell line hFOB and its effect on inhibiting proliferation, invasion and metastasis is mediated by its direct interaction with the IGF-1R. Furthermore, the tumour-suppressive function of miR-133a probably contributed to inhibiting the activation AKT and ERK signaling pathway. Conclusion: MiR-133a suppresses osteosarcoma progression and metastasis by targeting IGF-1R in human osteosarcoma cells, providing a novel candidate prognostic factor and a potential anti-metastasis therapeutic target in osteosarcoma.

  2. HPV genotypes in invasive cervical cancer in Danish women

    DEFF Research Database (Denmark)

    Kirschner, Benny; Junge, Jette; Holl, Katsiaryna;

    2013-01-01

    Human papillomavirus (HPV) genotype distribution in invasive cervical cancers may differ by geographic region. The primary objective of this study was to estimate HPV-genotype distribution in Danish women with a diagnosis of invasive cervical cancer.......Human papillomavirus (HPV) genotype distribution in invasive cervical cancers may differ by geographic region. The primary objective of this study was to estimate HPV-genotype distribution in Danish women with a diagnosis of invasive cervical cancer....

  3. Minimally Invasive Treatment for Lung Cancer

    Medline Plus

    Full Text Available Minimally Invasive Treatment for Lung Cancer June 15, 2009 Welcome to this “OR-Live” webcast presentation, premiering from Beth Israel Medical ... when detected, you know, and when patients get treatment. Okay. So it’s very important, you know, to ...

  4. MicroRNA-181b promotes ovarian cancer cell growth and invasion by targeting LATS2

    International Nuclear Information System (INIS)

    Highlights: • miR-181b is upregulated in human ovarian cancer tissues. • miR-181b promotes ovarian cancer cell proliferation and invasion. • LATS2 is a direct target of miR-181b. • LATS2 is involved in miR-181b-induced ovarian cancer cell growth and invasion. - Abstract: MicroRNAs (miRNAs) are strongly implicated in tumorigenesis and metastasis. In this study, we showed significant upregulation of miR-181b in ovarian cancer tissues, compared with the normal ovarian counterparts. Forced expression of miR-181b led to remarkably enhanced proliferation and invasion of ovarian cancer cells while its knockdown induced significant suppression of these cellular events. The tumor suppressor gene, LATS2 (large tumor suppressor 2), was further identified as a novel direct target of miR-181b. Specifically, miR-181b bound directly to the 3′-untranslated region (UTR) of LATS2 and suppressed its expression. Restoration of LATS2 expression partially reversed the oncogenic effects of miR-181b. Our results indicate that miR-181b promotes proliferation and invasion by targeting LATS2 in ovarian cancer cells. These findings support the utility of miR-181b as a potential diagnostic and therapeutic target for ovarian cancer

  5. MicroRNA-181b promotes ovarian cancer cell growth and invasion by targeting LATS2

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Ying; Gao, Yan, E-mail: gaoyanhdhos@126.com

    2014-05-09

    Highlights: • miR-181b is upregulated in human ovarian cancer tissues. • miR-181b promotes ovarian cancer cell proliferation and invasion. • LATS2 is a direct target of miR-181b. • LATS2 is involved in miR-181b-induced ovarian cancer cell growth and invasion. - Abstract: MicroRNAs (miRNAs) are strongly implicated in tumorigenesis and metastasis. In this study, we showed significant upregulation of miR-181b in ovarian cancer tissues, compared with the normal ovarian counterparts. Forced expression of miR-181b led to remarkably enhanced proliferation and invasion of ovarian cancer cells while its knockdown induced significant suppression of these cellular events. The tumor suppressor gene, LATS2 (large tumor suppressor 2), was further identified as a novel direct target of miR-181b. Specifically, miR-181b bound directly to the 3′-untranslated region (UTR) of LATS2 and suppressed its expression. Restoration of LATS2 expression partially reversed the oncogenic effects of miR-181b. Our results indicate that miR-181b promotes proliferation and invasion by targeting LATS2 in ovarian cancer cells. These findings support the utility of miR-181b as a potential diagnostic and therapeutic target for ovarian cancer.

  6. Carvacrol suppresses proliferation and invasion in human oral squamous cell carcinoma

    Science.gov (United States)

    Dai, Wei; Sun, Changfu; Huang, Shaohui; Zhou, Qing

    2016-01-01

    Carvacrol, a component of thyme oil, as a novel antitumor agent, has been implicated in several types of cancer cells. However, the mechanisms underlying the effect of carvacrol in human oral squamous cell carcinoma (OSCC) remain unclear. Here, we report that carvacrol significantly inhibits tumor cell proliferation, metastasis and invasion, and induces apoptosis in OSCC. Our results demonstrated that the molecular mechanisms of the effect of carvacrol in Tca-8113 induces G1/S cell cycle arrest through downregulation of CDK regulator CCND1 and CDK4, and upregulation of CDK inhibitor P21. Further analysis demonstrated that carvacrol also inhibited Tca-8113 cells’ clone formation in clonogenic cell survival assay. Student’s t-test (two-tailed) was used to compare differences between groups, and the significance level was P<0.01. Then, treatment of Tca-8113 cells with carvacrol resulted in downregulation of Bcl-2, Cox2, and upregulation of Bax. Carvacrol significantly inhibited the migration and invasion of human OSCC cells by blocking the phosphorylation of FAK and MMP-9 and MMP-2, transcription factor ZEB1, and β-catenin proteins’ expression. Taken together, these results provide novel insights into the mechanism of carvacrol and suggest potential therapeutic strategies for human OSCC. PMID:27143925

  7. Upregulation of metastasis-associated gene 2 promotes cell proliferation and invasion in nasopharyngeal carcinoma

    Directory of Open Access Journals (Sweden)

    Wu MH

    2016-03-01

    Full Text Available Minhua Wu,1,2,* Xiaoxia Ye,2,* Xubin Deng,3,* Yanxia Wu,4 Xiaofang Li,4 Lin Zhang11Department of Histology and Embryology, Southern Medical University, Guangzhou, 2Department of Histology and Embryology, Guangdong Medical University, Zhanjiang, 3Affiliated Cancer Hospital of Guangzhou Medical University, Cancer Center of Guangzhou Medical University, Guangzhou, 4Pathological Diagnosis and Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, People’s Republic of China*These authors contributed equally to this workAims: Metastasis-associated gene 2 (MTA2 is reported to play an important role in tumor progression, but little is known about the role of MTA2 in nasopharyngeal carcinoma (NPC. The aim of the study was to explore the expression and function of MTA2 in NPC.Methods: Expression of MTA2 in NPC tissues and cell lines was detected by immunohistochemistry and Western blotting. Relationship between MTA2 expression and clinicopathological features was analyzed. Stable MTA2-overexpressing and MTA2-siliencing NPC cells were established by transfection with plasmids encoding MTA2 cDNA and lentivirus-mediated short hairpin RNA, respectively. Cell viability was determined by Cell Counting Kit-8 and colony formation assay. Cell migration ability was evaluated by wound healing and transwell invasion assay. The impact of MTA2 knockdown on growth and metastasis of CNE2 cells in vivo was determined by nude mouse xenograft models. Expression of several Akt pathway proteins was detected by Western blotting.Results: MTA2 was upregulated in NPC tissues and three NPC cell lines detected (CNE1, CNE2, and HNE1. MTA2 expression was related to clinical stage and lymph node metastasis of patients with NPC. MTA2 upregulation promoted proliferation and invasion of CNE1 cells, while MTA2 depletion had opposite effects on CNE2 cells. Moreover, MTA2 depletion suppressed growth and metastasis of CNE2 cells in vivo. MTA2 overexpression

  8. RNAi-mediated silencing of CD147 inhibits tumor cell proliferation, invasion and increases chemosensitivity to cisplatin in SGC7901 cells in vitro

    Directory of Open Access Journals (Sweden)

    Zhu Chan

    2010-06-01

    Full Text Available Abstract Background CD147 is a widely distributed cell surface glycoprotein that belongs to the Ig superfamily. CD147 has been implicated in numerous physiological and pathological activities. Enriched on the surface of many tumor cells, CD147 promotes tumor growth, invasion, metastasis and angiogenesis and confers resistance to some chemotherapeutic drugs. In this study, we investigated the possible role of CD147 in the progression of gastric cancer. Methods Short hairpin RNA (shRNA expressing vectors targeting CD147 were constructed and transfected into human gastric cancer cells SGC7901 and CD147 expression was monitored by quantitative realtime RT-PCR and Western blot. Cell proliferation, the activities of MMP-2 and MMP-9, the invasive potential and chemosensitivity to cisplatin of SGC7901 cells were determined by MTT, gelatin zymography, Transwell invasion assay and MTT, respectively. Results Down-regulation of CD147 by RNAi approach led to decreased cell proliferation, MMP-2 and MMP-9 activities and invasive potential of SGC7901 cells as well as increased chemosensitivity to cisplatin. Conclusion CD147 involves in proliferation, invasion and chemosensitivity of human gastric cancer cell line SGC7901, indicating that CD147 may be a promising therapeutic target for gastric cancer.

  9. Alpha lipoic acid inhibits proliferation and epithelial mesenchymal transition of thyroid cancer cells.

    Science.gov (United States)

    Jeon, Min Ji; Kim, Won Gu; Lim, Seonhee; Choi, Hyun-Jeung; Sim, Soyoung; Kim, Tae Yong; Shong, Young Kee; Kim, Won Bae

    2016-01-01

    The naturally occurring short-chain fatty acid, α-lipoic acid (ALA) is a powerful antioxidant which is clinically used for treatment of diabetic neuropathy. Recent studies suggested the possibility of ALA as a potential anti-cancer agent, because it could activate adenosine monophosphate activated protein kinase (AMPK) and inhibit transforming growth factor-β (TGFβ) pathway. In this study, we evaluate the effects of ALA on thyroid cancer cell proliferation, migration and invasion. We performed in vitro cell proliferation analysis using BCPAP, HTH-83, CAL-62 and FTC-133 cells. ALA suppressed thyroid cancer cell proliferation through activation of AMPK and subsequent down-regulation of mammalian target of rapamycin (mTOR)-S6 signaling pathway. Low-dose ALA, which had minimal effects on cell proliferation, also decreased cell migration and invasion of BCPAP, CAL-62 and HTH-83 cells. ALA inhibited epithelial mesenchymal transition (EMT) evidently by increase of E-cadherin and decreases of activated β-catenin, vimentin, snail, and twist in these cells. ALA suppressed TGFβ production and inhibited induction of p-Smad2 and twist by TGFβ1 or TGFβ2. These findings indicate that ALA reduces cancer cell migration and invasion through suppression of TGFβ production and inhibition of TGFβ signaling pathways in thyroid cancer cells. ALA also significantly suppressed tumor growth in mouse xenograft model using BCPAP and FTC-133 cells. This is the first study to show anti-cancer effect of ALA on thyroid cancer cells. ALA could be a potential therapeutic agent for treatment of advanced thyroid cancer, possibly as an adjuvant therapy with other systemic therapeutic agents. PMID:26463583

  10. Nucleostemin expression in invasive breast cancer

    International Nuclear Information System (INIS)

    Recently, the cancer stem cell hypothesis has become widely accepted. Cancer stem cells are thought to possess the ability to undergo self-renewal and differentiation, similar to normal stem cells. Nucleostemin (NS), initially cloned from rat neural stem cells, binds to various proteins, including p53, in the nucleus and is thought to be a key molecule for stemness. NS is expressed in various types of cancers; therefore, its role in cancer pathogenesis is thought to be important. This study was conducted to clarify the clinicopathological and prognostic impact of NS in invasive breast cancers. The correlation between NS immunoreactivity and clinicopathological parameters was examined in 220 consecutive surgically resected invasive breast cancer tissue samples by using tissue microarrays. The presence of nuclear NS and p53 immunoreactivity in 10% or more of cancer cells was considered as a positive result. Among the 220 patients, 154 were hormone-receptor (HR)-positive, 22 HER2-positive/HR-negative, and 44 HR-negative/HER2-negative. One hundred and forty-two tumors (64.5%) showed NS positivity, and this positivity was significantly correlated with estrogen receptor (ER) (P = 0.050), human epidermal growth factor receptor 2 (HER2) (P = 0.021), and p53 (P = 0.031) positivity. The patients with NS-positive tumors showed significantly shorter disease-free survival than those with NS-negative tumors. Furthermore, the patient group with NS- and p53-positive tumors showed significantly poorer prognosis than other patient groups. Multivariate analysis showed that NS status was an independent prognostic indicator. NS may play a significant role in the determination of breast cancer progression in association with p53 alterations. The NS status of patients with luminal and HER2 type breast cancers may be a useful prognostic marker

  11. Downregulation of VEGFA inhibits proliferation, promotes apoptosis, and suppresses migration and invasion of renal clear cell carcinoma

    Science.gov (United States)

    Zeng, Fan-Chang; Zeng, Ming-Qiang; Huang, Liang; Li, Yong-Lin; Gao, Ben-Min; Chen, Jun-Jie; Xue, Rui-Zhi; Tang, Zheng-Yan

    2016-01-01

    Objective The aim of this study was to investigate the effects of vascular endothelial growth factor A (VEGFA) on cell proliferation, apoptosis, migration, and invasion in renal clear cell carcinoma (RCCC). Methods Between June 2012 and June 2015, RCCC tissues were obtained for the experimental group, and RCCC adjacent tumor-free kidney parenchyma tissues were obtained for the control group. VEGFA mRNA and protein expressions and phosphoinositide 3-kinase, serine/threonine-specific protein kinase (AKT), and phosphorylated-AKT protein expressions were detected. The chemically synthesized specific siRNA using RNA interference technology was used to inhibit VEGFA gene expression in human RCCC 786-O cells. The negative control (NC) group was transfected with NC sequence, and the blank group was transfected with no sequence. Flow cytometry, scratch test, and cell-penetrating experiment were used to detect cell proliferation, apoptosis, migration, and invasion of 786-O cells. Results Positive expression of VEGFA protein was 60.62% in RCCC tissue and 18.34% in adjacent tissue with statistically significant difference (P<0.001). VEGFA protein and mRNA expressions were higher in RCCC tissue than those in adjacent tissue (both P<0.01). VEGF expression in RCCC tissue was associated with Fuhrman grading and American Joint Committee on Cancer staging (both P<0.05). After RCCC 786-O cells transfecting the VEGFA siRNA, the VEGFA mRNA and protein expressions and phosphoinositide 3-kinase and phosphorylated-AKT protein expressions were significantly decreased, cell proliferation was remarkably inhibited, cell apoptotic ratio was obviously increased, and migration distance and invasive cell number were markedly decreased compared to those in the NC group and the blank group (all P<0.05). Conclusion Inhibition of VEGFA inhibited proliferation, promoted apoptosis, and suppressed migration and invasion of RCCC 786-O cells. VEGF has a potential role in diagnosis and therapy of RCCC

  12. Modeling invasion of metastasizing cancer cells to bone marrow utilizing ecological principles

    Directory of Open Access Journals (Sweden)

    Chen Kun-Wan

    2011-10-01

    Full Text Available Abstract Background The invasion of a new species into an established ecosystem can be directly compared to the steps involved in cancer metastasis. Cancer must grow in a primary site, extravasate and survive in the circulation to then intravasate into target organ (invasive species survival in transport. Cancer cells often lay dormant at their metastatic site for a long period of time (lag period for invasive species before proliferating (invasive spread. Proliferation in the new site has an impact on the target organ microenvironment (ecological impact and eventually the human host (biosphere impact. Results Tilman has described mathematical equations for the competition between invasive species in a structured habitat. These equations were adapted to study the invasion of cancer cells into the bone marrow microenvironment as a structured habitat. A large proportion of solid tumor metastases are bone metastases, known to usurp hematopoietic stem cells (HSC homing pathways to establish footholds in the bone marrow. This required accounting for the fact that this is the natural home of hematopoietic stem cells and that they already occupy this structured space. The adapted Tilman model of invasion dynamics is especially valuable for modeling the lag period or dormancy of cancer cells. Conclusions The Tilman equations for modeling the invasion of two species into a defined space have been modified to study the invasion of cancer cells into the bone marrow microenvironment. These modified equations allow a more flexible way to model the space competition between the two cell species. The ability to model initial density, metastatic seeding into the bone marrow and growth once the cells are present, and movement of cells out of the bone marrow niche and apoptosis of cells are all aspects of the adapted equations. These equations are currently being applied to clinical data sets for verification and further refinement of the models.

  13. Minimally Invasive Colorectal Cancer Surgery in Europe

    OpenAIRE

    Babaei, Masoud; Balavarca, Yesilda; Jansen, Lina; Gondos, Adam; Lemmens, Valery; Sjövall, Annika; B⊘rge Johannesen, Tom; Moreau, Michel; Gabriel, Liberale; Gonçalves, Ana Filipa; Bento, Maria José; van de Velde, Tony; Kempfer, Lana Raffaela; Becker, Nikolaus; Ulrich, Alexis

    2016-01-01

    Abstract Minimally invasive surgery (MIS) of colorectal cancer (CRC) was first introduced over 20 years ago and recently has gained increasing acceptance and usage beyond clinical trials. However, data on dissemination of the method across countries and on long-term outcomes are still sparse. In the context of a European collaborative study, a total of 112,023 CRC cases from 3 population-based (N = 109,695) and 4 institute-based clinical cancer registries (N = 2328) were studied and compared ...

  14. Ki-67 Proliferation Index in Gastric Cancer - Biologic Significance

    OpenAIRE

    Nabais, C.; Caldeira Fradique, A; Oliveira, M.; Quaresma, L.; Gualdino Silva, J; Vasconcelos, V.; Sacadura, J.; Costa, L; Cabrita, F; Mateus Marques, R; Esteves, J.; Fernandez, G.; Guedes da Silva

    2016-01-01

    Objectives/Introdution: Ki-67 protein has been used as an indicator of proliferation activity in tumor cells. In gastric cancer the prognostic value has not been fully understood. This study was designed to assess the biologic significance of Ki-67 proliferation index (PI) in gastric cancer. Material/Methods: Seventy-two patients with gastric cancer were evaluated. These patients underwent gastric resection, and the tumor tissue was stained immunohistochemically. Ki-67 PI was defi...

  15. Nuclear location of tumor suppressor protein maspin inhibits proliferation of breast cancer cells without affecting proliferation of normal epithelial cells

    International Nuclear Information System (INIS)

    Maspin, which is classified as a tumor suppressor protein, is downregulated in many types of cancer. Several studies have suggested potential anti-proliferative activity of maspin as well as sensitizing activity of maspin for therapeutic cytotoxic agents in breast cancer tissue culture and animal models. All of the experimental data gathered so far have been based on studies with maspin localized cytoplasmically, while maspin in breast cancer tumor cells may be located in the cytoplasm, nucleus or both. In this study, the effect of maspin cytoplasmic and nuclear location and expression level on breast cancer proliferation and patient survival was studied. Tissue sections from 166 patients with invasive ductal breast cancer were stained by immunohistochemistry for maspin and Ki-67 protein. The localization and expression level of maspin were correlated with estimated patient overall survival and percent of Ki-67-positive cells. In further studies, we created constructs for transient transfection of maspin into breast cancer cells with targeted cytoplasmic and nuclear location. We analyzed the effect of maspin location in normal epithelial cell line MCF10A and three breast cancer cell lines - MCF-7, MDA-MB-231 and SKBR-3 - by immunofluorescence and proliferation assay. We observed a strong positive correlation between moderate and high nuclear maspin level and survival of patients. Moreover, a statistically significant negative relationship was observed between nuclear maspin and Ki-67 expression in patients with invasive ductal breast cancer. Spearman’s correlation analysis showed a negative correlation between level of maspin localized in nucleus and percentage of Ki-67 positive cells. No such differences were observed in cells with cytoplasmic maspin. We found a strong correlation between nuclear maspin and loss of Ki-67 protein in breast cancer cell lines, while there was no effect in normal epithelial cells from breast. The anti-proliferative effect of nuclear

  16. Chemokine CXCL16 Expression Suppresses Migration and Invasiveness and Induces Apoptosis in Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Yeying Fang

    2014-01-01

    Full Text Available Background. Increasing evidence argues that soluble CXCL16 promotes proliferation, migration, and invasion of cancer cells in vitro. However, the role of transmembrane or cellular CXCL16 in cancer remains relatively unknown. In this study, we determine the function of cellular CXCL16 as tumor suppressor in breast cancer cells. Methods. Expression of cellular CXCL16 in breast cancer cell lines was determined at both RNA and protein levels. In vitro and in vivo studies that overexpressed or downregulated CXCL16 were conducted in breast cancer cells. Results. We report differential expression of cellular CXCL16 in breast cancer cell lines that was negatively correlated with cell invasiveness and migration. Overexpression of CXCL16 in MDA-MB-231 cells led to a decrease in cell invasion and migration and induced apoptosis of the cells; downregulation of CXCL16 in MCF-7 cells increased cell migration and invasiveness. Consistent with the in vitro data, CXCL16 overexpression inhibited tumorigenesis in vivo. Conclusions. Cellular CXCL16 suppresses invasion and metastasis of breast cancer cells in vitro and inhibits tumorigenesis in vivo. Targeting of cellular CXCL16 expression is a potential therapeutic strategy for breast cancer.

  17. Liver epithelial cells inhibit proliferation and invasiveness of hepatoma cells.

    Science.gov (United States)

    Jeng, Kuo-Shyang; Jeng, Chi-Juei; Jeng, Wen-Juei; Sheen, I-Shyan; Li, Shih-Yun; Hung, Zih-Hang; Hsiau, Hsin-I; Yu, Ming-Che; Chang, Chiung-Fang

    2016-03-01

    Hepatocellular carcinoma (HCC) is a worldwide malignancy with poor prognosis. Liver progenitors or stem cells could be a potential therapy for HCC treatment since they migrate toward tumors. Rat liver epithelial (RLE) cells have both progenitor and stem cell-like properties. Therefore, our study elucidated the therapeutic effect of RLE cells in rat hepatoma cells. RLE cells were isolated from 10-day old rats and characterized for stem cell marker expression. RLE cells and rat hepatoma cells (H4-IIE-C3 cells) were co-cultured and divided into four groups with different ratios of RLE and hepatoma cells. Group A had only rat hepatoma cells as a control group. The ratios of rat hepatoma and RLE cells in group B, C and D were 5:1, 1:1 and 1:5, respectively. Effective inhibition of cell proliferation and migration was found in group D when compared to group A. There was a significant decrease in Bcl2 expression and increase in late apoptosis of rat hepatoma cells when adding more RLE cells. RLE cells reduced cell proliferation and migration of rat hepatoma cells. These results suggested that RLE cells could be used as a potential cell therapy. PMID:26647726

  18. Identification of pancreatic cancer invasion-related proteins by proteomic analysis

    Directory of Open Access Journals (Sweden)

    Clynes Martin

    2009-02-01

    Full Text Available Abstract Background Markers of pancreatic cancer invasion were investigated in two clonal populations of the cell line, MiaPaCa-2, Clone #3 (high invasion and Clone #8 (low invasion using proteomic profiling of an in vitro model of pancreatic cancer. Materials and methods Using 2D-DIGE followed by MALDI-TOF MS, two clonal sub-populations of the pancreatic cancer cell line, MiaPaCa-2 with high and low invasive capacities were incubated on matrigel 24 hours prior to analysis to stimulate cell-ECM contact and mimic in vivo interaction with the basement membrane. Results Sixty proteins were identified as being differentially expressed (> 1.2 fold change and p ≤ 0.05 between Clone #3 and Clone #8. Proteins found to have higher abundance levels in the highly invasive Clone #3 compared to the low invasive Clone #8 include members of the chaperone activity proteins and cytoskeleton constituents whereas metabolism-associated and catalytic proteins had lower abundance levels. Differential protein expression levels of ALDH1A1, VIM, STIP1 and KRT18 and GAPDH were confirmed by immunoblot. Using RNAi technology, STIP1 knockdown significantly reduced invasion and proliferation of the highly invasive Clone #3. Knockdown of another target, VIM by siRNA in Clone #3 cells also resulted in decreased invasion abilities of Clone #3. Elevated expression of STIP1 was observed in pancreatic tumour tissue compared to normal pancreas, whereas ALDH1A1 stained at lower levels in pancreatic tumours, as detected by immunohistochemistry. Conclusion Identification of targets which play a role in the highly invasive phenotype of pancreatic cancer may help to understand the biological behaviour, the rapid progression of this cancer and may be of importance in the development of new therapeutic strategies for pancreatic cancer.

  19. MicroRNA‑451 inhibits neuroblastoma proliferation, invasion and migration by targeting macrophage migration inhibitory factor.

    Science.gov (United States)

    Liu, Geng; Xu, Zhengwei; Hao, Dingjun

    2016-03-01

    Neuroblastoma (NB) is the most prevalent type of extracranial solid tumour in young children. To improve current understanding of the mechanisms, which modulate cancer cell proliferation, invasion and migration, investigations have focused on microRNAs (miRs), a class of small non‑coding RNAs, which post‑transcriptionally regulate gene expression during various crucial cell processes. The present study aimed to investigate the role of miR‑451 in NB. Human NB tissue and adjacent normal tissue were surgically removed, and the expression of miR‑451, and development and pathological characteristics of NB were investigated. The expression of miR‑451 was reduced in the NB tissue, compared with that in the adjacent tissue, and correlations between the reduction in miR‑451 and unfavourable variables included tumour size (P=0.0081), differentiation (P=0.0217), lymph node metastasis (P=0.0489), tumour‑node‑metastasis stage (0.0220) and distant metastases (P=0.0201). Transfection of the SK‑N‑SH and GI‑LA‑N NB cell lines with miR‑451 inhibited cell growth, invasion and migration. Furthermore, the present study demonstrated that macrophage migration inhibitory factor (MIF) was regulated directly by miR‑451 and was a critical mediator of the biological effects of miR‑451 in NB. The re‑expression of MIF markedly reversed the carcinogenic inhibitory property of miR‑451. These data provide a more detailed understanding of the essential role of miR‑451 in NB, which relies on regulation of the expression of MIF. PMID:26783235

  20. Intertwining of Activin A and TGFβ Signaling: Dual Roles in Cancer Progression and Cancer Cell Invasion

    Energy Technology Data Exchange (ETDEWEB)

    Loomans, Holli A. [Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Andl, Claudia D., E-mail: claudia.andl@vanderbilt.edu [Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Vanderbilt Digestive Disease Center, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Vanderbilt Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232 (United States)

    2014-12-30

    In recent years, a significant amount of research has examined the controversial role of activin A in cancer. Activin A, a member of the transforming growth factor β (TGFβ) superfamily, is best characterized for its function during embryogenesis in mesoderm cell fate differentiation and reproduction. During embryogenesis, TGFβ superfamily ligands, TGFβ, bone morphogenic proteins (BMPs) and activins, act as potent morphogens. Similar to TGFβs and BMPs, activin A is a protein that is highly systemically expressed during early embryogenesis; however, post-natal expression is overall reduced and remains under strict spatiotemporal regulation. Of importance, normal post-natal expression of activin A has been implicated in the migration and invasive properties of various immune cell types, as well as endometrial cells. Aberrant activin A signaling during development results in significant morphological defects and premature mortality. Interestingly, activin A has been found to have both oncogenic and tumor suppressor roles in cancer. Investigations into the role of activin A in prostate and breast cancer has demonstrated tumor suppressive effects, while in lung and head and neck squamous cell carcinoma, it has been consistently shown that activin A expression is correlated with increased proliferation, invasion and poor patient prognosis. Activin A signaling is highly context-dependent, which is demonstrated in studies of epithelial cell tumors and the microenvironment. This review discusses normal activin A signaling in comparison to TGFβ and highlights how its dysregulation contributes to cancer progression and cell invasion.

  1. Intertwining of Activin A and TGFβ Signaling: Dual Roles in Cancer Progression and Cancer Cell Invasion

    International Nuclear Information System (INIS)

    In recent years, a significant amount of research has examined the controversial role of activin A in cancer. Activin A, a member of the transforming growth factor β (TGFβ) superfamily, is best characterized for its function during embryogenesis in mesoderm cell fate differentiation and reproduction. During embryogenesis, TGFβ superfamily ligands, TGFβ, bone morphogenic proteins (BMPs) and activins, act as potent morphogens. Similar to TGFβs and BMPs, activin A is a protein that is highly systemically expressed during early embryogenesis; however, post-natal expression is overall reduced and remains under strict spatiotemporal regulation. Of importance, normal post-natal expression of activin A has been implicated in the migration and invasive properties of various immune cell types, as well as endometrial cells. Aberrant activin A signaling during development results in significant morphological defects and premature mortality. Interestingly, activin A has been found to have both oncogenic and tumor suppressor roles in cancer. Investigations into the role of activin A in prostate and breast cancer has demonstrated tumor suppressive effects, while in lung and head and neck squamous cell carcinoma, it has been consistently shown that activin A expression is correlated with increased proliferation, invasion and poor patient prognosis. Activin A signaling is highly context-dependent, which is demonstrated in studies of epithelial cell tumors and the microenvironment. This review discusses normal activin A signaling in comparison to TGFβ and highlights how its dysregulation contributes to cancer progression and cell invasion

  2. Phellinus linteus suppresses growth, angiogenesis and invasive behaviour of breast cancer cells through the inhibition of AKT signalling

    OpenAIRE

    Sliva, D; Jedinak, A; Kawasaki, J.; Harvey, K; Slivova, V

    2008-01-01

    The antitumour activity of a medicinal mushroom Phellinus linteus (PL), through the stimulation of immune system or the induction of apoptosis, has been recently described. However, the molecular mechanisms responsible for the inhibition of invasive behaviour of cancer cells remain to be addressed. In the present study, we demonstrate that PL inhibits proliferation (anchorage-dependent growth) as well as colony formation (anchorage-independent growth) of highly invasive human breast cancer ce...

  3. Effects of cisplatin on the LSD1-mediated invasion and metastasis of prostate cancer cells.

    Science.gov (United States)

    Chen, Zhi-Yuan; Chen, Hui; Qiu, Tao; Weng, Xiao-Dong; Guo, Jia; Wang, Lei; Liu, Xiu-Heng

    2016-09-01

    Prostate cancer poses a major public health problem in men. Metastatic prostate cancer is incurable, and ultimately threatens the life of patients. Lysine‑specific demethylase 1 (LSD1) is an androgen receptor‑interacting protein that exerts a key role in regulating gene expression and is involved in numerous biological processes associated with prostate cancer. Cisplatin, also known as cis‑diamminedichloroplatinum or DDP, is a standard chemotherapeutic agent used to treat prostate cancer; however, it has the disadvantage of various serious side effects. The present study aimed to investigate the effects of LSD1 knockdown, and the interplay between LSD1 and DDP, on prostate cancer cell proliferation, apoptosis and invasion, and, therefore, the potential of LSD1 as a target for prostate cancer therapy. Flow cytometric analysis, Cell Counting kit 8 assay, Transwell assay and western blotting results revealed that LSD1 knockdown, in combination with DDP treatment, exerted antiproliferative, proapoptotic and anti‑invasive effects on PC3 prostate cancer cells. In addition, knockdown of LSD1 acted synergistically with DDP, thereby enhancing the induction of apoptosis, and the inhibition of proliferation and invasion in prostate cancer cells. These results indicated that LSD1 may serve as a potential therapeutic target, and may enhance the sensitivity of PC3 cells to DDP. PMID:27484796

  4. Role of HLA-G1 in trophoblast cell proliferation, adhesion and invasion

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Feng, E-mail: jiangfeng1161@163.com [Department of Gynecology and Obstetrics, Tangdu Hospital, The Fourth Military Medical University, 569 Xinsi Road, Baqiao District, Xi' an 710038 (China); Zhao, Hongxi [Department of Gynecology and Obstetrics, Tangdu Hospital, The Fourth Military Medical University, 569 Xinsi Road, Baqiao District, Xi' an 710038 (China); Wang, Li [Department of Gynecology and Obstetrics, The Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing 100853 (China); Guo, Xinyu [Assisted Reproductive Center, General Hospital of Guangzhou Military Command, Guangzhou 510010 (China); Wang, Xiaohong; Yin, Guowu [Department of Gynecology and Obstetrics, Tangdu Hospital, The Fourth Military Medical University, 569 Xinsi Road, Baqiao District, Xi' an 710038 (China); Hu, Yunsheng [Department of Orthopedics, Tangdu Hospital, The Fourth Military Medical University, Xi' an 710038 (China); Li, Yi [Department of Gynecology and Obstetrics, Tangdu Hospital, The Fourth Military Medical University, 569 Xinsi Road, Baqiao District, Xi' an 710038 (China); Yao, Yuanqing, E-mail: yuanqingyaoxa@163.com [Department of Gynecology and Obstetrics, The Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing 100853 (China)

    2015-02-27

    Trophoblast cells are important in embryo implantation and fetomaternal tolerance. HLA-G is specifically expressed at the maternal–fetal interface and is a regulator in pregnancy. The aim of the present study was to detect the effect of HLA-G1 on trophoblast cell proliferation, adhesion, and invasion. Human trophoblast cell lines (JAR and HTR-8/SVneo cells) were infected with HLA-G1-expressing lentivirus. After infection, HLA-G1 expression of the cells was detected by western blotting. Cell proliferation was detected by the BrdU assay. The cell cycle and apoptosis of JAR and HTR-8/SVneo cells was measured by flow cytometry (FCM). The invasion of the cells under different conditions was detected by the transwell invasion chamber assay. HLA-G1 didn't show any significant influence on the proliferation, apoptosis, adhesion, and invasion of trophocytes in normal culture conditions. However, HLA-G1 inhibited JAR and HTR-8/SVneo cells invasion induced by hepatocyte growth factor (HGF) under normal oxygen conditions. In conditions of hypoxia, HLA-G1 couldn't inhibit the induction of cell invasion by HGF. HLA-G1 is not an independent factor for regulating the trophocytes. It may play an indirect role in embryo implantation and formation of the placenta. - Highlights: • HLA-G1 could not influence trophocytes under normal conditions. • HLA-G1 inhibited cell invasion induced by HGF under normal oxygen condition. • HLA-G1 could not influence cell invasion under hypoxia conditions.

  5. DDRs: receptors that mediate adhesion, migration and invasion in breast cancer cells

    Directory of Open Access Journals (Sweden)

    Emmanuel Reyes-Uribe

    2015-08-01

    Full Text Available Discoidin domain receptors (DDRs are receptor tyrosine kinases that are activated by native collagens and have an important role during cell adhesion, development, differentiation, proliferation, and migration. DDR deregulation is associated with progression of several different cancers. However, there is limited information about the role of DDRs in the progression of breast cancer. In this review we attempt to collect the most relevant information about DDR signaling and their role in various cancer-related processes such as adhesion, epithelial to mesenchymal transition, migration, invasion, and survival, with a focus on breast cancer.

  6. MicroRNA-21 directly targets MARCKS and promotes apoptosis resistance and invasion in prostate cancer cells

    International Nuclear Information System (INIS)

    Prostate cancer is one of the most common malignant cancers in men. Recent studies have shown that microRNA-21 (miR-21) is overexpressed in various types of cancers including prostate cancer. Studies on glioma, colon cancer cells, hepatocellular cancer cells and breast cancer cells have indicated that miR-21 is involved in tumor growth, invasion and metastasis. However, the roles of miR-21 in prostate cancer are poorly understood. In this study, the effects of miR-21 on prostate cancer cell proliferation, apoptosis, and invasion were examined. In addition, the targets of miR-21 were identified by a reported RISC-coimmunoprecipitation-based biochemical method. Inactivation of miR-21 by antisense oligonucleotides in androgen-independent prostate cancer cell lines DU145 and PC-3 resulted in sensitivity to apoptosis and inhibition of cell motility and invasion, whereas cell proliferation were not affected. We identified myristoylated alanine-rich protein kinase c substrate (MARCKS), which plays key roles in cell motility, as a new target in prostate cancer cells. Our data suggested that miR-21 could promote apoptosis resistance, motility, and invasion in prostate cancer cells and these effects of miR-21 may be partly due to its regulation of PDCD4, TPM1, and MARCKS. Gene therapy using miR-21 inhibition strategy may therefore be useful as a prostate cancer therapy.

  7. Minimal Invasive Surgery for Esophageal Cancer

    Institute of Scientific and Technical Information of China (English)

    A.H.Hoelscher; Ch.Gutschow

    2004-01-01

    Thoracoscopic esophagectomy is only established in some centers and affords a cervical anastomosis because intrathoracic anastomosis as a routine is technically too difficult. Laparoscopic mobilisation of the stomach (gastrolysis) is an important contribution for minimal invasive surgery of esophageal cancer.This procedure reduces the stress of the two cavity operation for the patient and allows the construction of a comparable gastric conduit like by open surgery. The technique of laparoscopic gastrolysis as preparation for transthoracic en bloc esophagectomy is described in detail and preliminary results are briefly mentioned.

  8. miR-107 and miR-25 simultaneously target LATS2 and regulate proliferation and invasion of gastric adenocarcinoma (GAC) cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Mingjun; Wang, Xiaolei [Cancer Center, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601 (China); Li, Wanhu [MRI Room of Shandong Cancer Hospital & Institute, Jinan 250117 (China); Cui, Yongchun, E-mail: yongchuncui1@126.com [Drug Clinical Trial Institution of Shandong Cancer Hospital & Institute, #440, Jiyan Road, Jinan 250117 (China)

    2015-05-08

    Although a series of oncogenes and tumor suppressors were identified in the pathological development of gastric adenocarcinoma (GAC), the underlying molecule mechanism were still not fully understood. The current study explored the expression profile of miR-107 and miR-25 in GAC patients and their downstream regulative network. qRT-PCR analysis was performed to quantify the expression of these two miRNAs in serum samples from both patients and healthy controls. Dual luciferase assay was conducted to verify their putative bindings with LATS2. MTT assay, cell cycle assay and transwell assay were performed to explore how miR-107 and miR-25 regulate proliferation and invasion of gastric cancer cells. Findings of this study demonstrated that total miR-107 or miR-25 expression might be overexpressed in gastric cancer patients and they can simultaneously and synchronically regulate LATS2 expression, thereby affecting gastric cancer cell growth and invasion. Therefore, the miR-25/miR-107-LATS2 axis might play an important role in proliferation and invasion of the gastric cancer cells. - Highlights: • Total miR-107 and miR-25 expression is significantly increased in GAC patients. • Both miR-107 and miR-25 can promote proliferation and invasion of GAC cells. • Both miR-107 and miR-25 can target LATS2 and regulate its expression. • miR-107 and miR-25 regulate proliferation and invasion of GAC cells though LATS2.

  9. miR-664 negatively regulates PLP2 and promotes cell proliferation and invasion in T-cell acute lymphoblastic leukaemia

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Hong; Miao, Mei-hua; Ji, Xue-qiang; Xue, Jun; Shao, Xue-jun, E-mail: xuejunshao@hotmail.com

    2015-04-03

    MicroRNAs (miRNAs) play important roles in the pathogenesis of many types of cancers by negatively regulating gene expression at posttranscriptional level. However, the role of microRNAs in leukaemia, particularly T-cell acute lymphoblastic leukaemia (T-ALL), has remained elusive. Here, we identified miR-664 and its predicted target gene PLP2 were differentially expressed in T-ALL using bioinformatics methods. In T-ALL cell lines, CCK-8 proliferation assay indicated that the cell proliferation was promoted by miR-664, while miR-664 inhibitor could significantly inhibited the proliferation. Moreover, migration and invasion assay showed that overexpression of miR-664 could significantly promoted the migration and invasion of T-ALL cells, whereas miR-664 inhibitor could reduce cell migration and invasion. luciferase assays confirmed that miR-664 directly bound to the 3'untranslated region of PLP2, and western blotting showed that miR-664 suppressed the expression of PLP2 at the protein levels. This study indicated that miR-664 negatively regulates PLP2 and promotes proliferation and invasion of T-ALL cell lines. Thus, miR-664 may represent a potential therapeutic target for T-ALL intervention. - Highlights: • miR-664 mimics promote the proliferation and invasion of T-ALL cells. • miR-664 inhibitors inhibit the proliferation and invasion of T-ALL cells. • miR-664 targets 3′ UTR of PLP2 in T-ALL cells. • miR-664 negatively regulates PLP2 in T-ALL cells.

  10. miR-664 negatively regulates PLP2 and promotes cell proliferation and invasion in T-cell acute lymphoblastic leukaemia

    International Nuclear Information System (INIS)

    MicroRNAs (miRNAs) play important roles in the pathogenesis of many types of cancers by negatively regulating gene expression at posttranscriptional level. However, the role of microRNAs in leukaemia, particularly T-cell acute lymphoblastic leukaemia (T-ALL), has remained elusive. Here, we identified miR-664 and its predicted target gene PLP2 were differentially expressed in T-ALL using bioinformatics methods. In T-ALL cell lines, CCK-8 proliferation assay indicated that the cell proliferation was promoted by miR-664, while miR-664 inhibitor could significantly inhibited the proliferation. Moreover, migration and invasion assay showed that overexpression of miR-664 could significantly promoted the migration and invasion of T-ALL cells, whereas miR-664 inhibitor could reduce cell migration and invasion. luciferase assays confirmed that miR-664 directly bound to the 3'untranslated region of PLP2, and western blotting showed that miR-664 suppressed the expression of PLP2 at the protein levels. This study indicated that miR-664 negatively regulates PLP2 and promotes proliferation and invasion of T-ALL cell lines. Thus, miR-664 may represent a potential therapeutic target for T-ALL intervention. - Highlights: • miR-664 mimics promote the proliferation and invasion of T-ALL cells. • miR-664 inhibitors inhibit the proliferation and invasion of T-ALL cells. • miR-664 targets 3′ UTR of PLP2 in T-ALL cells. • miR-664 negatively regulates PLP2 in T-ALL cells

  11. Effects of arctigenin on proliferation, invasion and metastasis of bladder cancer T24 cells in vitro%牛蒡子苷元对人膀胱癌T24细胞增殖、侵袭转移的影响

    Institute of Scientific and Technical Information of China (English)

    冯思嘉; 吕晓红; 杨树才; 杨慧科; 袁颖; 马晶; 张雅芳

    2012-01-01

    目的:研究牛蒡子苷元在体外对人膀胱癌细胞系T24细胞增殖、侵袭转移能力的影响.方法:培养T24细胞,采用不同浓度牛蒡子苷元处理,通过MTT、Transwell及划痕法观察牛蒡子苷元在不同时间点对T24细胞增殖、粘附、侵袭、迁移能力的影响;免疫印迹检测基质金属蛋白酶-9(MMP-9)蛋白的表达.结果:随着药物浓度升高(0~100μmol/L)和作用时间的延长(12~48 h),牛蒡子苷元抑制细胞增殖能力增强.牛蒡子苷元(40~100μmol/L)能明显抑制T24细胞的粘附能力.同时,牛蒡子苷元能够降低T24细胞的侵袭和迁移能力.随着作用浓度的增加,T24细胞的MMP-9蛋白表达明显降低.结论:牛蒡子苷元具有抑制人膀胱癌T24细胞增殖、粘附、侵袭和迁移的作用,且呈剂量依赖性,其作用可能与MMP-9的表达降低有关.%Objective:To investigate the effects of the arctigenin on proliferation, invasion and metastasis of human bladder cancer T24 cells in vitro. Methods: Human bladder cancer T24 cell lines were cultured in vitro; MTT assay was used to determine the inhibitive effect of arctigenin on the proliferation and adhesion of T24 cells. The invasion ability was assessed with Transwell chamber assay. Wound healing assay was used to investigate the migration ability. The role of matrix metal-loproteinase-9 (MMP-9) protein levels was analyzed by Western blotting. Results: MTT assay showed that the cell viability was obviously decreased with arctigenin treatment at different concentrations of 0-100 μmol/L in a dose-dependent and time-dependent manner. Arctigenin could decrease the adhesion activities of T24 cells in a dose-dependent manner. The cellular migration ability and invasion ability was also inhibited in a dose-dependent manner. Western blotting analysis indicated that the treatment of T24 cells with arctigenin showed in a dose-dependent (40-100 μmol/L) decrease in MMP-9 protein levels. Conclusion: arctigenin can

  12. Mitochondrial targeted catalase suppresses invasive breast cancer in mice

    International Nuclear Information System (INIS)

    Treatment of invasive breast cancer has an alarmingly high rate of failure because effective targets have not been identified. One potential target is mitochondrial generated reactive oxygen species (ROS) because ROS production has been associated with changes in substrate metabolism and lower concentration of anti-oxidant enzymes in tumor and stromal cells and increased metastatic potential. Transgenic mice expressing a human catalase gene (mCAT) were crossed with MMTV-PyMT transgenic mice that develop metastatic breast cancer. All mice (33 mCAT positive and 23 mCAT negative) were terminated at 110 days of age, when tumors were well advanced. Tumors were histologically assessed for invasiveness, proliferation and metastatic foci in the lungs. ROS levels and activation status of p38 MAPK were determined. PyMT mice expressing mCAT had a 12.5 per cent incidence of high histological grade primary tumor invasiveness compared to a 62.5 per cent incidence in PyMT mice without mCAT. The histological grade correlated with incidence of metastasis with 56 per cent of PyMT mice positive for mCAT showing evidence of pulmonary metastasis compared to 85.4 per cent of PyMT mice negative for mCAT with pulmonary metastasis (p ≤ 0.05). PyMT tumor cells expressing mCAT had lower ROS levels and were more resistant to hydrogen peroxide-induced oxidative stress than wild type tumor cells, suggesting that mCAT has the potential of quenching intracellular ROS and subsequent invasive behavior. The metastatic tumor burden in PyMT mice expressing mCAT was 0.1 mm2/cm2 of lung tissue compared with 1.3 mm2/cm2 of lung tissue in PyMT mice expressing the wild type allele (p ≤ 0.01), indicating that mCAT could play a role in mitigating metastatic tumor progression at a distant organ site. Expression of mCAT in the lungs increased resistance to hydrogen peroxide-induced oxidative stress that was associated with decreased activation of p38MAPK suggesting ROS signaling is dependent on p38MAPK for

  13. Mitochondrial targeted catalase suppresses invasive breast cancer in mice

    Directory of Open Access Journals (Sweden)

    Morton John

    2011-05-01

    Full Text Available Abstract Background Treatment of invasive breast cancer has an alarmingly high rate of failure because effective targets have not been identified. One potential target is mitochondrial generated reactive oxygen species (ROS because ROS production has been associated with changes in substrate metabolism and lower concentration of anti-oxidant enzymes in tumor and stromal cells and increased metastatic potential. Methods Transgenic mice expressing a human catalase gene (mCAT were crossed with MMTV-PyMT transgenic mice that develop metastatic breast cancer. All mice (33 mCAT positive and 23 mCAT negative were terminated at 110 days of age, when tumors were well advanced. Tumors were histologically assessed for invasiveness, proliferation and metastatic foci in the lungs. ROS levels and activation status of p38 MAPK were determined. Results PyMT mice expressing mCAT had a 12.5 per cent incidence of high histological grade primary tumor invasiveness compared to a 62.5 per cent incidence in PyMT mice without mCAT. The histological grade correlated with incidence of metastasis with 56 per cent of PyMT mice positive for mCAT showing evidence of pulmonary metastasis compared to 85.4 per cent of PyMT mice negative for mCAT with pulmonary metastasis (p ≤ 0.05. PyMT tumor cells expressing mCAT had lower ROS levels and were more resistant to hydrogen peroxide-induced oxidative stress than wild type tumor cells, suggesting that mCAT has the potential of quenching intracellular ROS and subsequent invasive behavior. The metastatic tumor burden in PyMT mice expressing mCAT was 0.1 mm2/cm2 of lung tissue compared with 1.3 mm2/cm2 of lung tissue in PyMT mice expressing the wild type allele (p ≤ 0.01, indicating that mCAT could play a role in mitigating metastatic tumor progression at a distant organ site. Expression of mCAT in the lungs increased resistance to hydrogen peroxide-induced oxidative stress that was associated with decreased activation of p38MAPK

  14. Hypoxia and the Presence of Human Vascular Endothelial Cells Affect Prostate Cancer Cell Invasion and Metabolism

    Directory of Open Access Journals (Sweden)

    Ellen Ackerstaff

    2007-12-01

    Full Text Available Tumor progression and metastasis are influenced by hypoxia, as well as by interactions between cancer cells and components of the stroma, such as endothelial cells. Here, we have used a magnetic resonance (MRcompatible invasion assay to further understand the effects of hypoxia on human prostate cancer cell invasion and metabolism in the presence and absence of human umbilical vein endothelial cells (HUVECs. Additionally, we compared endogenous activities of selected proteases related to invasion in PC-3 cells and HUVECs, profiled gene expression of PC-3 cells by microarray, evaluated cell proliferation of PC-3 cells and HUVECs by flow cytometry, under hypoxic and oxygenated conditions. The invasion of less-invasive DU-145 cells was not affected by either hypoxia or the presence of HUVECs. However, hypoxia significantly decreased the invasion of PC-3 cells. This hypoxia-induced decrease was attenuated by the presence of HUVECs, whereas under oxygenated conditions, HUVECs did not alter the invasion of PC-3 cells. Cell metabolism changed distinctly with hypoxia and invasion. The endogenous activity of selected extracellular proteases, although altered by hypoxia, did not fully explain the hypoxia-induced changes in invasion. Gene expression profiling indicated that hypoxia affects multiple cellular functions and pathways.

  15. Minimally invasive local therapies for liver cancer.

    Science.gov (United States)

    Li, David; Kang, Josephine; Golas, Benjamin J; Yeung, Vincent W; Madoff, David C

    2014-12-01

    Primary and metastatic liver tumors are an increasing global health problem, with hepatocellular carcinoma (HCC) now being the third leading cause of cancer-related mortality worldwide. Systemic treatment options for HCC remain limited, with Sorafenib as the only prospectively validated agent shown to increase overall survival. Surgical resection and/or transplantation, locally ablative therapies and regional or locoregional therapies have filled the gap in liver tumor treatments, providing improved survival outcomes for both primary and metastatic tumors. Minimally invasive local therapies have an increasing role in the treatment of both primary and metastatic liver tumors. For patients with low volume disease, these therapies have now been established into consensus practice guidelines. This review highlights technical aspects and outcomes of commonly utilized, minimally invasive local therapies including laparoscopic liver resection (LLR), radiofrequency ablation (RFA), microwave ablation (MWA), high-intensity focused ultrasound (HIFU), irreversible electroporation (IRE), and stereotactic body radiation therapy (SBRT). In addition, the role of combination treatment strategies utilizing these minimally invasive techniques is reviewed. PMID:25610708

  16. Minimally invasive local therapies for liver cancer

    Institute of Scientific and Technical Information of China (English)

    David Li; Josephine Kang; Benjamin J Golas; Vincent W Yeung; David C Madoff

    2014-01-01

    Primary and metastatic liver tumors are an increasing global health problem, with hepatocellular carcinoma (HCC) now being the third leading cause of cancer-related mortality worldwide. Systemic treatment options for HCC remain limited, with Sorafenib as the only prospectively validated agent shown to increase overall survival. Surgical resection and/or transplantation, locally ablative therapies and regional or locoregional therapies have iflled the gap in liver tumor treatments, providing improved survival outcomes for both primary and metastatic tumors. Minimally invasive local therapies have an increasing role in the treatment of both primary and metastatic liver tumors. For patients with low volume disease, these therapies have now been established into consensus practice guidelines. This review highlights technical aspects and outcomes of commonly utilized, minimally invasive local therapies including laparoscopic liver resection (LLR), radiofrequency ablation (RFA), microwave ablation (MWA), high-intensity focused ultrasound (HIFU), irreversible electroporation (IRE), and stereotactic body radiation therapy (SBRT). In addition, the role of combination treatment strategies utilizing these minimally invasive techniques is reviewed.

  17. Minimally invasive local therapies for liver cancer

    International Nuclear Information System (INIS)

    Primary and metastatic liver tumors are an increasing global health problem, with hepatocellular carcinoma (HCC) now being the third leading cause of cancer-related mortality worldwide. Systemic treatment options for HCC remain limited, with Sorafenib as the only prospectively validated agent shown to increase overall survival. Surgical resection and/or transplantation, locally ablative therapies and regional or locoregional therapies have filled the gap in liver tumor treatments, providing improved survival outcomes for both primary and metastatic tumors. Minimally invasive local therapies have an increasing role in the treatment of both primary and metastatic liver tumors. For patients with low volume disease, these therapies have now been established into consensus practice guidelines. This review highlights technical aspects and outcomes of commonly utilized, minimally invasive local therapies including laparoscopic liver resection (LLR), radiofrequency ablation (RFA), microwave ablation (MWA), high-intensity focused ultrasound (HIFU), irreversible electroporation (IRE), and stereotactic body radiation therapy (SBRT). In addition, the role of combination treatment strategies utilizing these minimally invasive techniques is reviewed

  18. Curcumin induces autophagy, inhibits proliferation and invasion by downregulating AKT/mTOR signaling pathway in human melanoma cells.

    Science.gov (United States)

    Zhao, Guangming; Han, Xiaodong; Zheng, Siwen; Li, Zhen; Sha, Yang; Ni, Jing; Sun, Zhe; Qiao, Song; Song, Zhiqi

    2016-02-01

    Melanoma is the foremost malignant cutaneous cancer and it is extremely resistant to chemotherapy and radiotherapy. Curcumin is an active component of turmeric, the yellow spice derived from the rhizome of Curcuma longa, and is widely known for its anti-inflammatory and anti-cancerogenic properties. Several recent studies suggest that curcumin induces apoptosis by modulating multiple signaling pathways to exert its anticancer effect. In the present study, we investigated the effect of curcumin on the viability, invasion potential, cell cycle, autophagy and the AKT, mTOR, P70S6K proteins of AKT/mTOR signaling pathway in human melanoma A375 and C8161 cell lines in vitro and in an in vivo tumorigenesis model. Curcumin effectively inhibited the proliferation of melanoma cells in vitro and in vivo. It suppressed cell invasion, arrested the cancer cells at G2/M phase of the cell cycle, and induced autophagy. Furthermore, curcumin suppressed the activation of AKT, mTOR and P70S6K proteins. Curcumin, therefore, is a potent suppressor of cell viability and invasion, and simultaneously an inducer of autophagy in A375 and C8161 cells. Accordingly, curcumin could be a novel therapeutic candidate for the management of melanoma. PMID:26573768

  19. Clinicopathological features of early gastric cancer with duodenal invasion

    Institute of Scientific and Technical Information of China (English)

    Tsutomu Namikawa; Kazuhiro Hanazaki

    2009-01-01

    The incidence of early gastric cancer (EGC) with duodenal invasion is ext remely low, al though advanced gastric cancer that arises in the antrum occasionally invades the duodenum. We investigated the clinicopathological features of EGC with duodenal invasion and provided strategies for clinical management. A Medline search was performed using the keyword "early gastric cancer" and "duodenal invasion". Additional articles were obtained from references within the papers identified by the Medline search. We revealed that EGC with duodenal invasion was of the superficial spreading type of tumor. Tumors > 60 mm in size invaded the duodenum more extensively, and the distance of duodenal invasion from the pyloric ring was further in the elevated type than in the depressed type of tumor. There was no significant difference between the length of duodenal invasion and the histological type of the tumor. Gastric cancer located adjacent to the pyloric ring, even if cancer invasion was confined to the mucosa or submucosa, was more likely to invade the duodenum. The present study reveals that the elevated type of EGC is associated with more extensive duodenal invasion when the tumor size is > 60 mm, thus highlighting the importance of identification of duodenal invasion in these cases. We also reveal that sufficient duodenal resection with a cancer-free distal surgical margin should be performed in cases of duodenal invasion.

  20. miR-214 promotes the proliferation and invasion of osteosarcoma cells through direct suppression of LZTS1

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhengyu [Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai (China); Wang, Tao, E-mail: wangtaohappy2010@sohu.com [Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai (China)

    2014-06-27

    Highlights: • miR-214 is upregulated in human OS tissues and inversely correlated with LZTS1 expression. • miR-214 directly targets LZTS1 by binding to its 3′-UTR. • miR-214 promotes OS cell proliferation, invasion and tumor growth. • Overexpression of LZTS1 reverses miR-214-induced proliferation and invasion of OS cells. - Abstract: Previous studies have shown that miR-214 functions either as an oncogene or a tumor suppressor in various human cancer types. The role of this microRNA in osteosarcoma (OS) is presently unclear. Here, we demonstrated that miR-214 is frequently upregulated in OS specimens, compared with noncancerous bone tissues. Bioinformatics analysis further revealed leucine zipper, putative tumor suppressor 1 (LZTS1) as a potential target of miR-214. Expression patterns of miR-214 were inversely correlated with those of LZTS1 mRNA and protein in OS tissues. Data from reporter assays showed that miR-214 directly binds to the 3′-untranslated region (3′-UTR) of LZTS1 mRNA and suppresses expression at both transcriptional and translational levels. In functional assays, miR-214 promoted OS cell proliferation, invasion and tumor growth in nude mice, which could be reversed by overexpression of LZTS1. Taken together, our data provide compelling evidence that miR-214 functions as an onco-miRNA in OS, and its oncogenic effects are mediated chiefly through downregulation of LZTS1.

  1. Receptor-interacting protein-1 promotes the growth and invasion in gastric cancer.

    Science.gov (United States)

    Zhu, Guangwei; Ye, Jianxin; Huang, Yongjian; Zheng, Wei; Hua, Jin; Yang, Shugang; Zhuang, Jinfu; Wang, Jinzhou

    2016-06-01

    The receptor-interacting protein-1 (RIP-1) is an important molecular in inflammation signaling pathways, but the role of RIP-1 in gastric cancer is largely unknown. In this study, we tested the expression of RIP-1 in gastric cancer samples and analyzed the effects of expression of RIP-1 on the prognosis in gastric cancer patients. We analyzed the role of the RIP-1 in gastric cancer cells and addressed the functional role of RIP-1 using a xenograft mouse model. A lentivirus-based effective RIP-1 siRNA vector was infected into HGC and AGS cells. The effect of RIP-1 siRNA on HGC and AGS cells were investigated by cell proliferation assay and invasion assay. Furthermore, we examined the role of RIP-1-siRNA on HGC cells in the mice with subcutaneous xenograft tumor, and preliminarily analyzed the underlying mechanisms. The results indicated that the expression of RIP-1 in the gastric cancer tissues was significantly higher than the expression in the normal gastric tissues. Additionally, RIP-1 immunoreactivity was positive at the site of invasion, but little or no immunoreactivity was detected at the gastric cancer parts of interstitial substance. Gastric cancer patients with high expression of RIP-1 had a poor survival rate. RIP-1 expression in the gastric cancer cell lines were general. HGC-R-1-RNAi-LV inhibited HGC and AGS cell proliferation and invasion ability in vitro. RIP-NF-κB/AP-1-VEGF-C signaling pathways have a crucial role in the regulate the biological functions of HGC cells. HGC-R-1-RNAi-LV suppressed tumor growth in the HGC cell subcutaneous xenograft model. In conclusion, our data indicate that RIP-1 promote the growth and invasion of gastric cancer in vitro and in vivo, additionally providing evidence that targeting RIP-1 may be useful in the treatment of gastric cancer. PMID:27035122

  2. Global tyrosine kinome profiling of human thyroid tumors identifies Src as a promising target for invasive cancers

    International Nuclear Information System (INIS)

    Highlights: ► Kinome profiling is a novel technique for identifying activated kinases in human cancers. ► Src activity is increased in invasive thyroid cancers. ► Inhibition of Src activity decreased proliferation and invasion in vitro. ► Further investigation of Src targeted therapies in thyroid cancer is warranted. -- Abstract: Background: Novel therapies are needed for the treatment of invasive thyroid cancers. Aberrant activation of tyrosine kinases plays an important role in thyroid oncogenesis. Because current targeted therapies are biased toward a small subset of tyrosine kinases, we conducted a study to reveal novel therapeutic targets for thyroid cancer using a bead-based, high-throughput system. Methods: Thyroid tumors and matched normal tissues were harvested from twenty-six patients in the operating room. Protein lysates were analyzed using the Luminex immunosandwich, a bead-based kinase phosphorylation assay. Data was analyzed using GenePattern 3.0 software and clustered according to histology, demographic factors, and tumor status regarding capsular invasion, size, lymphovascular invasion, and extrathyroidal extension. Survival and invasion assays were performed to determine the effect of Src inhibition in papillary thyroid cancer (PTC) cells. Results: Tyrosine kinome profiling demonstrated upregulation of nine tyrosine kinases in tumors relative to matched normal thyroid tissue: EGFR, PTK6, BTK, HCK, ABL1, TNK1, GRB2, ERK, and SRC. Supervised clustering of well-differentiated tumors by histology, gender, age, or size did not reveal significant differences in tyrosine kinase activity. However, supervised clustering by the presence of invasive disease showed increased Src activity in invasive tumors relative to non-invasive tumors (60% v. 0%, p < 0.05). In vitro, we found that Src inhibition in PTC cells decreased cell invasion and proliferation. Conclusion: Global kinome analysis enables the discovery of novel targets for thyroid cancer

  3. Global tyrosine kinome profiling of human thyroid tumors identifies Src as a promising target for invasive cancers

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Nancy L., E-mail: nlcho@partners.org [Department of Surgery, Brigham and Women' s Hospital, Boston, MA 02115 (United States); Lin, Chi-Iou [Department of Surgery, Brigham and Women' s Hospital, Boston, MA 02115 (United States); Du, Jinyan [Broad Institute, Massachusetts Institute of Technology, Cambridge, MA 02142 (United States); Whang, Edward E. [Department of Surgery, Brigham and Women' s Hospital, Boston, MA 02115 (United States); Ito, Hiromichi [Department of Surgery, Michigan State University, Lansing, MI 48912 (United States); Moore, Francis D.; Ruan, Daniel T. [Department of Surgery, Brigham and Women' s Hospital, Boston, MA 02115 (United States)

    2012-05-11

    Highlights: Black-Right-Pointing-Pointer Kinome profiling is a novel technique for identifying activated kinases in human cancers. Black-Right-Pointing-Pointer Src activity is increased in invasive thyroid cancers. Black-Right-Pointing-Pointer Inhibition of Src activity decreased proliferation and invasion in vitro. Black-Right-Pointing-Pointer Further investigation of Src targeted therapies in thyroid cancer is warranted. -- Abstract: Background: Novel therapies are needed for the treatment of invasive thyroid cancers. Aberrant activation of tyrosine kinases plays an important role in thyroid oncogenesis. Because current targeted therapies are biased toward a small subset of tyrosine kinases, we conducted a study to reveal novel therapeutic targets for thyroid cancer using a bead-based, high-throughput system. Methods: Thyroid tumors and matched normal tissues were harvested from twenty-six patients in the operating room. Protein lysates were analyzed using the Luminex immunosandwich, a bead-based kinase phosphorylation assay. Data was analyzed using GenePattern 3.0 software and clustered according to histology, demographic factors, and tumor status regarding capsular invasion, size, lymphovascular invasion, and extrathyroidal extension. Survival and invasion assays were performed to determine the effect of Src inhibition in papillary thyroid cancer (PTC) cells. Results: Tyrosine kinome profiling demonstrated upregulation of nine tyrosine kinases in tumors relative to matched normal thyroid tissue: EGFR, PTK6, BTK, HCK, ABL1, TNK1, GRB2, ERK, and SRC. Supervised clustering of well-differentiated tumors by histology, gender, age, or size did not reveal significant differences in tyrosine kinase activity. However, supervised clustering by the presence of invasive disease showed increased Src activity in invasive tumors relative to non-invasive tumors (60% v. 0%, p < 0.05). In vitro, we found that Src inhibition in PTC cells decreased cell invasion and proliferation

  4. Down-Regulated MAC30 Expression Inhibits Proliferation and Mobility of Human Gastric Cancer Cells

    Directory of Open Access Journals (Sweden)

    Xiao-Yan Xu

    2014-05-01

    Full Text Available Background: Gastric cancer is one of the most common cancers in the world. MAC30/Transmembrane protein 97 (TMEM97 is aberrantly up-regulated in many human carcinoma cells. However, the function of MAC30 in gastric carcinoma cells is not studied. Material and Methods: To investigate the function of MAC30 in gastric carcinoma, we used RNA silencing technology to knock down the expression of MAC30 in gastric cancer cells BGC-823 and AGS. Real-time quantitative PCR and Western blot were used to analyze the mRNA level and the related protein expression. The localization of MAC30 and lamellipodia was observed by immunofluorescence. The biological phenotypes of gastric cells were examined by cell proliferation assay, cell cycle analysis, apoptosis assay, cell migration and invasion assay. Results: We found that down-regulation of MAC30 expression efficiently inhibited the proliferation of gastric cancer cells. Furthermore, the mobility of gastric cancer cells was also inhibited by down-regulation of MAC30. Moreover, we found that MAC30 knockdown inhibited AKT phosphorylation and reduced the expression of cyclinB1 and WAVE2. Conclusion: To our knowledge, this is the first report investigating the effect of MAC30 on growth, cell cycle, migration, and invasion in gastric carcinoma cells via suppressing AKT signaling pathway. MAC30 may be a potential therapeutic target for treatment of gastric carcinoma.

  5. miRNA-135a promotes breast cancer cell migration and invasion by targeting HOXA10

    International Nuclear Information System (INIS)

    miRNAs are a group of small RNA molecules regulating target genes by inducing mRNA degradation or translational repression. Aberrant expression of miRNAs correlates with various cancers. Although miR-135a has been implicated in several other cancers, its role in breast cancer is unknown. HOXA10 however, is associated with multiple cancer types and was recently shown to induce p53 expression in breast cancer cells and reduce their invasive ability. Because HOXA10 is a confirmed miR-135a target in more than one tissue, we examined miR-135a levels in relation to breast cancer phenotypes to determine if miR-135a plays role in this cancer type. Expression levels of miR-135a in tissues and cells were determined by poly (A)-RT PCR. The effect of miR-135a on proliferation was evaluated by CCK8 assay, cell migration and invasion were evaluated by transwell migration and invasion assays, and target protein expression was determined by western blotting. GFP and luciferase reporter plasmids were constructed to confirm the action of miR-135a on downstream target genes including HOXA10. Results are reported as means ± S.D. and differences were tested for significance using 2-sided Student's t-test. Here we report that miR-135a was highly expressed in metastatic breast tumors. We found that the expression of miR-135a was required for the migration and invasion of breast cancer cells, but not their proliferation. HOXA10, which encodes a transcription factor required for embryonic development and is a metastasis suppressor in breast cancer, was shown to be a direct target of miR-135a in breast cancer cells. Our analysis showed that miR-135a suppressed the expression of HOXA10 both at the mRNA and protein level, and its ability to promote cellular migration and invasion was partially reversed by overexpression of HOXA10. In summary, our results indicate that miR-135a is an onco-miRNA that can promote breast cancer cell migration and invasion. HOXA10 is a target gene for mi

  6. The 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors, simvastatin, lovastatin and mevastatin inhibit proliferation and invasion of melanoma cells

    International Nuclear Information System (INIS)

    A number of recent studies have suggested that cancer incidence rates may be lower in patients receiving statin treatment for hypercholesterolemia. We examined the effects of statin drugs on in vitro proliferation, migration and invasion of melanoma cells. The ability of lovastatin, mevastatin and simvastatin to inhibit the melanoma cell proliferation was examined using cytotoxicity and apoptosis assays. Effects on cell migration and invasion were assessed using transwell invasion and migration chambers. Hypothesis testing was performed using 1-way ANOVA, and Student's t-test. Lovastatin, mevastatin and simvastatin inhibited the growth, cell migration and invasion of HT144, M14 and SK-MEL-28 melanoma cells. The concentrations required to inhibit proliferation of melanoma cells (0.8–2.1 μM) have previously been achieved in a phase I clinical trial of lovastatin in patients with solid tumours, (45 mg/kg/day resulted in peak plasma concentrations of approximately 3.9 μM). Our results suggest that statin treatment is unlikely to prevent melanoma development at standard doses. However, higher doses of statins may have a role to play in adjuvant therapy by inhibiting growth and invasion of melanoma cells

  7. Targeting ILK and β4 integrin abrogates the invasive potential of ovarian cancer

    International Nuclear Information System (INIS)

    Highlights: ► The potential of targeting ILK and integrins for highly aggressive ovarian cancer. ► Unanticipated synergistic effect for the combination of ILK/β4 integrin. ► Combination of ILK/β4 integrin effectively inhibited the PI3K/Akt/Rac1 cascade. ► Targeting of β4 integrin/ILK had potent inhibitory effects in ovarian cancer. -- Abstract: Integrins and integrin-linked kinase (ILK) are essential to cancerous invasion because they mediate physical interactions with the extracellular matrix, and regulate oncogenic signaling pathways. The purpose of our study is to determine whether deletion of β1 and β4 integrin and ILK, alone or in combination, has antitumoral effects in ovarian cancer. Expression of β1 and β4 integrin and ILK was analyzed by immunohistochemistry in 196 ovarian cancer tissue samples. We assessed the effects of depleting these molecules with shRNAs in ovarian cancer cells by Western blot, conventional RT-PCR, cell proliferation, migration, invasion, and in vitro Rac1 activity assays, and in vivo xenograft formation assays. Overexpression of β4 integrin and ILK in human ovarian cancer specimens was found to correlate with tumor aggressiveness. Depletion of these targets efficiently suppresses ovarian cancer cell proliferation, migration, and invasion in vitro and xenograft tumor formation in vivo. We also demonstrated that single depletion of ILK or combination depletion of β4 integrin/ILK inhibits phosphorylation of downstream signaling targets, p-Ser 473 Akt and p-Thr202/Tyr204 Erk1/2, and activation of Rac1, as well as reduce expression of MMP-2 and MMP-9 and increase expression of caspase-3 in vitro. In conclusion, targeting β4 integrin combined with ILK can instigate the latent tumorigenic potential and abrogate the invasive potential in ovarian cancer.

  8. Downregulation of VEGFA inhibits proliferation, promotes apoptosis, and suppresses migration and invasion of renal clear cell carcinoma

    Directory of Open Access Journals (Sweden)

    Zeng FC

    2016-04-01

    Full Text Available Fan-Chang Zeng,1,2 Ming-Qiang Zeng,1 Liang Huang,1 Yong-Lin Li,1 Ben-Min Gao,1 Jun-Jie Chen,1 Rui-Zhi Xue,1 Zheng-Yan Tang1 1Department of Urology, Xiangya Hospital, Central South University, Changsha, 2Department of Urology, Hainan General Hospital, Haikou, People’s Republic of China Objective: The aim of this study was to investigate the effects of vascular endothelial growth factor A (VEGFA on cell proliferation, apoptosis, migration, and invasion in renal clear cell carcinoma (RCCC. Methods: Between June 2012 and June 2015, RCCC tissues were obtained for the experimental group, and RCCC adjacent tumor-free kidney parenchyma tissues were obtained for the control group. VEGFA mRNA and protein expressions and phosphoinositide 3-kinase, serine/threonine-specific protein kinase (AKT, and phosphorylated-AKT protein expressions were detected. The chemically synthesized specific siRNA using RNA interference technology was used to inhibit VEGFA gene expression in human RCCC 786-O cells. The negative control (NC group was transfected with NC sequence, and the blank group was transfected with no sequence. Flow cytometry, scratch test, and cell-penetrating experiment were used to detect cell proliferation, apoptosis, migration, and invasion of 786-O cells. Results: Positive expression of VEGFA protein was 60.62% in RCCC tissue and 18.34% in adjacent tissue with statistically significant difference (P<0.001. VEGFA protein and mRNA expressions were higher in RCCC tissue than those in adjacent tissue (both P<0.01. VEGF expression in RCCC tissue was associated with Fuhrman grading and American Joint Committee on Cancer staging (both P<0.05. After RCCC 786-O cells transfecting the VEGFA siRNA, the VEGFA mRNA and protein expressions and phosphoinositide 3-kinase and phosphorylated-AKT protein expressions were significantly decreased, cell proliferation was remarkably inhibited, cell apoptotic ratio was obviously increased, and migration distance and

  9. The PDZ protein TIP-1 facilitates cell migration and pulmonary metastasis of human invasive breast cancer cells in athymic mice

    International Nuclear Information System (INIS)

    Highlights: ► This study has revealed novel oncogenic functions of TIP-1 in human invasive breast cancer. ► Elevated TIP-1 expression levels in human breast cancers correlate to the disease prognosis. ► TIP-1 knockdown suppressed the cell migration and pulmonary metastasis of human breast cancer cells. ► TIP-1 knockdown suppressed the expression and functionality of motility-related genes. -- Abstract: Tax-interacting protein 1 (TIP-1, also known as Tax1bp3) inhibited proliferation of colon cancer cells through antagonizing the transcriptional activity of beta-catenin. However, in this study, elevated TIP-1 expression levels were detected in human invasive breast cancers. Studies with two human invasive breast cancer cell lines indicated that RNAi-mediated TIP-1 knockdown suppressed the cell adhesion, proliferation, migration and invasion in vitro, and inhibited tumor growth in mammary fat pads and pulmonary metastasis in athymic mice. Biochemical studies showed that TIP-1 knockdown had moderate and differential effects on the beta-catenin-regulated gene expression, but remarkably down regulated the genes for cell adhesion and motility in breast cancer cells. The decreased expression of integrins and paxillin was accompanied with reduced cell adhesion and focal adhesion formation on fibronectin-coated surface. In conclusion, this study revealed a novel oncogenic function of TIP-1 suggesting that TIP-1 holds potential as a prognostic biomarker and a therapeutic target in the treatment of human invasive breast cancers.

  10. Role of human cytomegalovirus in the proliferation and invasion of extravillous cytotrophoblasts isolated from early placentae

    OpenAIRE

    Liu, Tao; Zheng, Xiaofei; Li, Qin; Chen, Juanjuan; Yin, Zongzhi; Xiao, Juan; Zhang, Dandan; Li, Wei; Qiao, Yuan; Chen, Suhua

    2015-01-01

    Aim: We investigated the role of human cytomegalovirus (HCMV) and its mechanism in extravillous cytotrophoblast (EVT) proliferation and invasion in vitro. Methods: Differential enzymatic digestion combined with gradient centrifugation, was used to isolate primary EVT from human chorionic villi collected from early placentae of healthy pregnant women. HCMV infection was determined by immunofluorescence staining of HCMVpp65 antigen expression. An MTT assay was used to examine the role of HCMV i...

  11. ZEB2 mediates multiple pathways regulating cell proliferation, migration, invasion, and apoptosis in glioma.

    Directory of Open Access Journals (Sweden)

    Songtao Qi

    Full Text Available BACKGROUND: The aim of the present study was to analyze the expression of Zinc finger E-box Binding homeobox 2 (ZEB2 in glioma and to explore the molecular mechanisms of ZEB2 that regulate cell proliferation, migration, invasion, and apoptosis. METHODOLOGY/PRINCIPAL FINDINGS: Expression of ZEB2 in 90 clinicopathologically characterized glioma patients was analyzed by immunohistochemistry. Furthermore, siRNA targeting ZEB2 was transfected into U251 and U87 glioma cell lines in vitro and proliferation, migration, invasion, and apoptosis were examined separately by MTT assay, Transwell chamber assay, flow cytometry, and western blot. RESULTS: The expression level of ZEB2 protein was significantly increased in glioma tissues compared to normal brain tissues (P<0.001. In addition, high levels of ZEB2 protein were positively correlated with pathology grade classification (P = 0.024 of glioma patients. Knockdown of ZEB2 by siRNA suppressed cell proliferation, migration and invasion, as well as induced cell apoptosis in glioma cells. Furthermore, ZEB2 downregulation was accompanied by decreased expression of CDK4/6, Cyclin D1, Cyclin E, E2F1, and c-myc, while p15 and p21 were upregulated. Lowered expression of ZEB2 enhanced E-cadherin levels but also inhibited β-Catenin, Vimentin, N-cadherin, and Snail expression. Several apoptosis-related regulators such as Caspase-3, Caspase-6, Caspase-9, and Cleaved-PARP were activated while PARP was inhibited after ZEB2 siRNA treatment. CONCLUSION: Overexpression of ZEB2 is an unfavorable factor that may facilitate glioma progression. Knockdown ZEB2 expression by siRNA suppressed cell proliferation, migration, invasion and promoted cell apoptosis in glioma cells.

  12. Nifedipine promotes the proliferation and migration of breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Dong-Qing Guo

    Full Text Available Nifedipine is widely used as a calcium channel blocker (CCB to treat angina and hypertension,but it is controversial with respect the risk of stimulation of cancers. In this study, we demonstrated that nifedipine promoted the proliferation and migration of breast cancer cells both invivo and invitro. However, verapamil, another calcium channel blocker, didn't exert the similar effects. Nifedipine and high concentration KCl failed to alter the [Ca2+]i in MDA-MB-231 cells, suggesting that such nifedipine effect was not related with calcium channel. Moreover, nifedipine decreased miRNA-524-5p, resulting in the up-regulation of brain protein I3 (BRI3. Erk pathway was consequently activated and led to the proliferation and migration of breast cancer cells. Silencing BRI3 reversed the promoting effect of nifedipine on the breast cancer. In a summary, nifedipine stimulated the proliferation and migration of breast cancer cells via the axis of miRNA-524-5p-BRI3-Erk pathway independently of its calcium channel-blocking activity. Our findings highlight that nifedipine but not verapamil is conducive for breast cancer growth and metastasis, urging that the caution should be taken in clinic to prescribe nifedipine to women who suffering both hypertension and breast cancer, and hypertension with a tendency in breast cancers.

  13. Association of diabetes and perineural invasion in pancreatic cancer

    OpenAIRE

    Sahin, Ibrahim Halil; Shama, Mohamed A; Tanaka, Motofumi; James L. Abbruzzese; Curley, Steven A; Hassan, Manal; Li, Donghui

    2012-01-01

    Diabetes and perineural invasion are frequently observed in pancreatic cancer. In this study, we tested possible relations between diabetes and perineural invasion in patients with resected pancreatic cancer. We conducted a retrospective study in 544 cases of resected pancreatic adenocarcinoma seen at the University of Texas MD Anderson Cancer Center during 1996–2011. Information on tumor characteristics, diabetes history, and survival time was collected by personal interview and medical reco...

  14. Muscarinic receptor agonists stimulate matrix metalloproteinase 1-dependent invasion of human colon cancer cells

    International Nuclear Information System (INIS)

    Highlights: ► Muscarinic receptor agonists stimulated robust human colon cancer cell invasion. ► Anti-matrix metalloproteinase1 antibody pre-treatment blocks cell invasion. ► Bile acids stimulate MMP1 expression, cell migration and MMP1-dependent invasion. -- Abstract: Mammalian matrix metalloproteinases (MMPs) which degrade extracellular matrix facilitate colon cancer cell invasion into the bloodstream and extra-colonic tissues; in particular, MMP1 expression correlates strongly with advanced colon cancer stage, hematogenous metastasis and poor prognosis. Likewise, muscarinic receptor signaling plays an important role in colon cancer; muscarinic receptors are over-expressed in colon cancer compared to normal colon epithelial cells. Muscarinic receptor activation stimulates proliferation, migration and invasion of human colon cancer cells. In mouse intestinal neoplasia models genetic ablation of muscarinic receptors attenuates carcinogenesis. In the present work, we sought to link these observations by showing that MMP1 expression and activation plays a mechanistic role in muscarinic receptor agonist-induced colon cancer cell invasion. We show that acetylcholine, which robustly increases MMP1 expression, stimulates invasion of HT29 and H508 human colon cancer cells into human umbilical vein endothelial cell monolayers – this was abolished by pre-incubation with atropine, a non-selective muscarinic receptor inhibitor, and by pre-incubation with anti-MMP1 neutralizing antibody. Similar results were obtained using a Matrigel chamber assay and deoxycholyltaurine (DCT), an amidated dihydroxy bile acid associated with colon neoplasia in animal models and humans, and previously shown to interact functionally with muscarinic receptors. DCT treatment of human colon cancer cells resulted in time-dependent, 10-fold increased MMP1 expression, and DCT-induced cell invasion was also blocked by pre-treatment with anti-MMP1 antibody. This study contributes to understanding

  15. Muscarinic receptor agonists stimulate matrix metalloproteinase 1-dependent invasion of human colon cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Raufman, Jean-Pierre, E-mail: jraufman@medicine.umaryland.edu [Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD (United States); Cheng, Kunrong; Saxena, Neeraj; Chahdi, Ahmed; Belo, Angelica; Khurana, Sandeep; Xie, Guofeng [Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD (United States)

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Muscarinic receptor agonists stimulated robust human colon cancer cell invasion. Black-Right-Pointing-Pointer Anti-matrix metalloproteinase1 antibody pre-treatment blocks cell invasion. Black-Right-Pointing-Pointer Bile acids stimulate MMP1 expression, cell migration and MMP1-dependent invasion. -- Abstract: Mammalian matrix metalloproteinases (MMPs) which degrade extracellular matrix facilitate colon cancer cell invasion into the bloodstream and extra-colonic tissues; in particular, MMP1 expression correlates strongly with advanced colon cancer stage, hematogenous metastasis and poor prognosis. Likewise, muscarinic receptor signaling plays an important role in colon cancer; muscarinic receptors are over-expressed in colon cancer compared to normal colon epithelial cells. Muscarinic receptor activation stimulates proliferation, migration and invasion of human colon cancer cells. In mouse intestinal neoplasia models genetic ablation of muscarinic receptors attenuates carcinogenesis. In the present work, we sought to link these observations by showing that MMP1 expression and activation plays a mechanistic role in muscarinic receptor agonist-induced colon cancer cell invasion. We show that acetylcholine, which robustly increases MMP1 expression, stimulates invasion of HT29 and H508 human colon cancer cells into human umbilical vein endothelial cell monolayers - this was abolished by pre-incubation with atropine, a non-selective muscarinic receptor inhibitor, and by pre-incubation with anti-MMP1 neutralizing antibody. Similar results were obtained using a Matrigel chamber assay and deoxycholyltaurine (DCT), an amidated dihydroxy bile acid associated with colon neoplasia in animal models and humans, and previously shown to interact functionally with muscarinic receptors. DCT treatment of human colon cancer cells resulted in time-dependent, 10-fold increased MMP1 expression, and DCT-induced cell invasion was also blocked by pre

  16. Osteopontin knockdown suppresses non-small cell lung cancer cell invasion and metastasis

    Institute of Scientific and Technical Information of China (English)

    SUN Bing-sheng; YOU Jian; LI Yue; ZHANG Zhen-fa; WANG Chang-li

    2013-01-01

    Background Osteopontin (OPN) was identified as one of the leading genes that promote the metastasis of malignant tumor.However,the mechanism by which OPN mediates metastasis in non-small cell lung cancer (NSCLC) remains unknown.The aim of the study is to investigate the biological significance and the related molecular mechanism of OPN expression in lung cancer cell line.Methods Lentiviral-mediated RNA interference was applied to inhibit OPN expression in metastatic human NSCLC cell line (A549).The invasion,proliferation,and metastasis were evaluated OPN-silenced in A549 cells in vitro and in vivo.The related mechanism was further investigated.Results Interestingly,OPN knockdown significantly suppressed the invasiveness of A549 cells,but had only a minor effect on the cellular migration and proliferation.Moreover,we demonstrated that OPN knockdown significantly reduced the levels of matrix metalloproteinase (MMP)-2 and urokinase plasminogen activator (uPA),and led to an obviousinhibition of both in vitro invasion and in vivo lung metastasis of A549 cells (P <0.001).Conclusions Our data demonstrate that OPN contributes to A549 cell metastasis by stimulating cell invasion,independent of cellular migration and proliferation.OPN could be a new treatment target of NSCLC.

  17. Oridonin Suppresses Proliferation of Human Ovarian Cancer Cells via Blockage of mTOR Signaling.

    Science.gov (United States)

    Xia, Rong; Chen, Sun-Xiao; Qin, Qin; Chen, Yan; Zhang, Wei-Wei; Zhu, Rong-Rong; Deng, An-Mei

    2016-01-01

    Oridonin, an ent-kaurane diterpenoid compound isolated from the traditional Chinese herb Rabdosia rubescens, has shown various pharmacological and physiological effects such as anti-tumor, anti-bacterial, and anti-inflammatory properties. However, the effect of oridonin on human ovarian cancer cell lines has not been determined. In this study, we demonstrated that oridonin inhibited ovarian cancer cell proliferation, migration and invasion in a dose-dependent manner. Furthermore, we showed oridonin inhibited tumor growth of ovarian cancer cells (SKOV3) in vivo. We then assessed mechanisms and found that oridonin specifically abrogated the phosphorylation/activation of mTOR signaling. In summary, our results indicate that oridonin is a potential inhibitor of ovarian cancer by blocking the mTOR signaling pathway. PMID:26925661

  18. The endogenous cannabinoid anandamide inhibits human breast cancer cell proliferation

    OpenAIRE

    De Petrocellis, Luciano; Melck, Dominique; Palmisano, Antonella; Bisogno, Tiziana; Laezza, Chiara; Bifulco, Maurizio; Di Marzo, Vincenzo

    1998-01-01

    Anandamide was the first brain metabolite shown to act as a ligand of “central” CB1 cannabinoid receptors. Here we report that the endogenous cannabinoid potently and selectively inhibits the proliferation of human breast cancer cells in vitro. Anandamide dose-dependently inhibited the proliferation of MCF-7 and EFM-19 cells with IC50 values between 0.5 and 1.5 μM and 83–92% maximal inhibition at 5–10 μM. The proliferation of several other nonmammary tumoral cell lines was not affected by 10 ...

  19. Hypothyroidism in Pancreatic Cancer: Role of Exogenous Thyroid Hormone in Tumor Invasion-Preliminary Observations.

    Science.gov (United States)

    Sarosiek, Konrad; Gandhi, Ankit V; Saxena, Shivam; Kang, Christopher Y; Chipitsyna, Galina I; Yeo, Charles J; Arafat, Hwyda A

    2016-01-01

    According to the epidemiological studies, about 4.4% of American general elderly population has a pronounced hypothyroidism and relies on thyroid hormone supplements daily. The prevalence of hypothyroidism in our patients with pancreatic cancer was much higher, 14.1%. A retrospective analysis was performed on patients who underwent pancreaticoduodenectomy (Whipple procedure) or distal pancreatectomy and splenectomy (DPS) at Thomas Jefferson University Hospital, Philadelphia, from 2005 to 2012. The diagnosis of hypothyroidism was correlated with clinicopathologic parameters including tumor stage, grade, and survival. To further understand how thyroid hormone affects pancreatic cancer behavior, functional studies including wound-induced cell migration, proliferation, and invasion were performed on pancreatic cancer cell lines, MiaPaCa-2 and AsPC-1. We found that hypothyroid patients taking exogenous thyroid hormone were more than three times likely to have perineural invasion, and about twice as likely to have higher T stage, nodal spread, and overall poorer prognostic stage (P < 0.05). Pancreatic cancer cell line studies demonstrated that exogenous thyroid hormone treatment increased cell proliferation, migration, and invasion (P < 0.05). We conclude that exogenous thyroid hormone may contribute to the progression of pancreatic cancer. PMID:27123358

  20. MiR-34a suppresses ovarian cancer proliferation and motility by targeting AXL.

    Science.gov (United States)

    Li, Rui; Shi, Xuejun; Ling, Fengyu; Wang, Chunguang; Liu, Junxia; Wang, Wei; Li, Ming

    2015-09-01

    Increasing evidence has suggested that dysregulation of microRNAs (miRNAs) could contribute to tumor progression. The miR-34 family is directly transactivated by tumor suppressor p53 which is frequently mutated in various cancers; however, the effect of miR-34a on the ovarian cancer cells remains unclear. The aim of the paper was to study the expression of miR-34a in ovarian cancer and miR-34a's relation to the cell proliferation and metastasis in ovarian cancer in vitro. miR-34a expression was determined by quantitative RT-PCR in a panel of 60 human ovarian cancer samples. Functional characterization of miR-34a was accomplished by reconstitution of miR-34a expression in ovarian cancer cells by determining changes in proliferation, migration, and invasion. Our results showed that miR-34a is downregulated in ovarian cancer tissues compared with the corresponding adjacent non-neoplastic tissues, and the expression level of miR-34a was significantly lower in ovarian cancer cell lines in comparison with normal human fallopian tube epithelial cell line. The 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-diphenytetrazoliumromide (MTT) assay revealed significant cell proliferation inhibition in miR-34a transfectant compared with the control from HO8910 and SKOV3 cells, which displayed lowest expressions of miR-34a. Furthermore, the transwell assay also showed significant cell migration inhibition in miR-34a transfectant, compared with cell lines transfected with NC. Overexpression of miR-34a led to the inhibition of AXL expression, indicating that AXL is a target gene for miR-34a. Our data suggest that miR-34a may function as a tumor suppressor through repression of oncogenic AXL in ovarian cancer. PMID:25895459

  1. Knockdown of RAGE inhibits growth and invasion of gastric cancer cells

    Directory of Open Access Journals (Sweden)

    X.C. Xu

    2013-11-01

    Full Text Available The receptor for advanced glycation endproducts (RAGE is an oncogenic trans-membranous receptor, which is overexpressed in multiple human cancers. However, the role of RAGE in gastric cancer is still elusive. In this study, we investigated the expression and molecular mechanisms of RAGE in gastric cancer cells. Forty cases of gastric cancer and corresponding adjacent non-cancerous tissues (ANCT were collected, and the expression of RAGE was assessed using immunohistochemistry (IHC in biopsy samples. Furthermore, RAGE signaling was blocked by constructed recombinant small hairpin RNA lentiviral vector (Lv-shRAGE used to transfect into human gastric cancer SGC-7901 cells. The expression of AKT, proliferating cell nuclear antigen (PCNA and matrix metallopeptidase-2 (MMP-2 was detected by Real-time PCR and Western blot assays. Cell proliferative activities and invasive capability were respectively determined by MTT and Transwell assays. Cell apoptosis and cycle distribution were analyzed by flow cytometry. As a consequence, RAGE was found highly expressed in cancer tissues compared with the ANCT (70.0% vs 45.0%, P=0.039, and correlated with lymph node metastases (P=0.026. Knockdown of RAGE reduced cell proliferation and invasion of gastric cancer with decreased expression of AKT, PCNA and MMP-2, and induced cell apoptosis and cycle arrest. Altogether, upregulation of RAGE expression is associated with lymph node metastases of gastric cancer, and blockade of RAGE signaling suppresses growth and invasion of gastric cancer cells through AKT pathway, suggesting that RAGE may represent a potential therapeutic target for this aggressive malignancy.

  2. Silencing of HMGA2 promotes apoptosis and inhibits migration and invasion of prostate cancer cells

    Indian Academy of Sciences (India)

    Zhan Shi; Ding Wu; Run Tang; Xiang Li; Renfu Chen; Song Xue; Chengjing Zhang; Xiaoqing Sun

    2016-06-01

    The high mobility group protein A2 (HMGA2) has been demonstrated as an architectural transcription factor that is associated with pathogenesis of many malignant cancers, however, its role in prostate cancer cells remains largely unknown. To explore whether HMGA2 participates in the development and progression of prostate cancer, small interfering RNA (siRNA) targeted on human HMGA2 was transfected to suppress the HMGA2 expression in prostate cancer PC3 and DU145 cells, and then we examined the cellular biology changes after decreased the expression of HMGA2. Our results showed that knockdown of HMGA2 markedly inhibited cell proliferation, this reduced cell proliferation was due to the promotion of cell apoptosis as the Bcl-xl was decreased, whereas Bax was up-regulated. In addition, we found that HMGA2 knockdown resulted in reduction of cell migration and invasion, as well as repressed the expression of matrix metalloproteinases (MMPs) and affected the occurrence of epithelial-mesenchymal transition (EMT) in both cell types. We further found that decreased HMGA2 expression inhibited the transforming growth factor-β (TGF-β)/Smad signaling pathway in cancer cells. In conclusion, our data indicated that HMGA2 was associated with apoptosis, migration and invasion of prostate cancer, which might be a promising therapeutic target for prostate cancer.

  3. miR-29b regulates cell proliferation and invasion in human ovarian clear cell carcinoma by targeting Lysyl oxidase (LOX

    Directory of Open Access Journals (Sweden)

    Wang Xuan

    2016-01-01

    Full Text Available Ovarian cancer is the leading cause of death from gynecologic cancer, reflecting its chemoresistance and frequent late diagnosis, and suggesting that a more effective treatment approach is needed. Lysyl oxidase (LOX is involved in important biological processes such as gene regulation, cell signaling and cell motility, its deregulation contributing to tumor formation and development. Although it is known that LOX is involved in proliferation, migration and invasion in several types of tumors, studies of LOX in ovarian cancers are scarce. To explore the molecular regulation mechanisms in ovarian cancer tumorigenesis, the expression change and the function of LOX was confirmed in ovarian tissues and cells, which suggested that LOX is a tumor suppressor gene. To further understand how LOX expression is regulated in ovarian cancer, microRNAs(miRNAs were considered because of their role in post-transcriptional regulation of many genes. Recent work has described differential expression of mature miRNAs in human cancers. Bioinformatics prediction which was used to find the appropriate miRNA regulating LOX, revealed that miR-29b regulates LOX protein level via its binding site on the 3'UTR of LOX mRNAin ES-2 cells, a human ovarian clear cell carcinoma cell line. miR-29b knockdown inhibited proliferation and invasion in ES-2 cells. Taken together, these findings suggest that influencing LOX regulation bychanging the level of miR-29b expression could provide a novel potential approachfor treating human ovarian clear cell carcinoma.

  4. Epigenetic regulation of proliferation and invasion in hepatocellular carcinoma cells by CBP/p300 histone acetyltransferase activity.

    Science.gov (United States)

    Inagaki, Yuji; Shiraki, Katsuya; Sugimoto, Kazushi; Yada, Takazumi; Tameda, Masahiko; Ogura, Suguru; Yamamoto, Norihiko; Takei, Yoshiyuki; Ito, Masaaki

    2016-02-01

    Altered epigenetic control of gene expression plays a substantial role in tumor development and progression. Accumulating studies suggest that somatic mutations of CREB binding proteins (CBP)/p300 occur in some cancer cells. CBP/p300 possess histone acetyltransferase (HAT) activity, and are involved in many cellular processes. In this study, we investigated the expression and functional role of CBP/p300 in hepatocellular carcinoma (HCC) using the specific inhibitor C646 of CBP/p300 HAT activity. We examined its effect on several apoptosis-related proteins and invasion-related genes. The results showed that CBP/p300 were highly expressed in HCC tissues and that expression of p300, but not of CBP, was strongly correlated with the malignant character of HCC. C646 inhibited proliferation of HCC cell lines in a dose dependent manner. C646 significantly augmented TRAIL-induced apoptotic sensitivity, which was accompanied by reduced levels of survivin, in HepG2, HLE and SK-HEP1 cells. C646 significantly inhibited invasion of Huh7, HLE and SK-HEP1 cells. The level of matrix metallopeptidase 15 (MMP15) mRNA expression was significantly reduced, whereas the level of laminin alpha 3 (LAMA3) and secreted phosphoprotein 1 (SPP1) mRNA expression was significantly increased in Huh7 cells following exposure to C646. In conclusion, our results suggest that CBP/p300 HAT activity has an important role in malignant transformation, proliferation, apoptotic sensitivity and invasion in HCC. CBP/p300 could be a promising therapeutic target in HCC. PMID:26676548

  5. A Nanoprinted Model of Interstitial Cancer Migration Reveals a Link between Cell Deformability and Proliferation.

    Science.gov (United States)

    Panagiotakopoulou, Magdalini; Bergert, Martin; Taubenberger, Anna; Guck, Jochen; Poulikakos, Dimos; Ferrari, Aldo

    2016-07-26

    Metastatic progression of tumors requires the coordinated dissemination of cancerous cells through interstitial tissues and their replication in distant body locations. Despite their importance in cancer treatment decisions, key factors, such as cell shape adaptation and the role it plays in dense tissue invasion by cancerous cells, are not well understood. Here, we employ a 3D electrohydrodynamic nanoprinting technology to generate vertical arrays of topographical pores that mimic interstitial tissue resistance to the mesenchymal migration of cancerous cells, in order to determine the effect of nuclear size, cell deformability, and cell-to-substrate adhesion on tissue invasion efficiency. The high spatial and temporal resolution of our analysis demonstrates that the ability of cells to deform depends on the cell cycle phase, peaks immediately after mitosis, and is key to the invasion process. Increased pore penetration efficiency by cells in early G1 phase also coincided with their lower nuclear volume and higher cell deformability, compared with the later cell cycle stages. Furthermore, artificial decondensation of chromatin induced an increase in cell and nuclear deformability and improved pore penetration efficiency of cells in G1. Together, these results underline that along the cell cycle cells have different abilities to dynamically remodel their actin cytoskeleton and induce nuclear shape changes, which determines their pore penetration efficiency. Thus, our results support a mechanism in which cell proliferation and pore penetration are functionally linked to favor the interstitial dissemination of metastatic cells. PMID:27268411

  6. RNA interference targeting raptor inhibits proliferation of gastric cancer cells

    International Nuclear Information System (INIS)

    Mammalian target of rapamycin complex 1 (mTORC1) is dysregulated in gastric cancer. The biologic function of mTORC1 in gastric carcinogenesis is unclear. Here, we demonstrate that disruption of mTORC1 function by RNA interference-mediated downregulation of raptor substantially inhibited gastric cancer cell proliferation through induction of G0/G1-phase cell cycle arrest. The anti-proliferative effect was accompanied by concomitant downregulation of activator protein-1 and upregulation of Smad2/3 transcriptional activities. In addition, the expression of cyclin D3 and p21Waf1, which stabilizes cyclin D/cdk4 complex for G1-S transition, was reduced by raptor knockdown. In conclusion, disruption of mTORC1 inhibits gastric cancer cell proliferation through multiple pathways. This discovery may have an implication in the application of mTORC1-directed therapy for the treatment of gastric cancer.

  7. Inverse PPARβ/δ agonists suppress oncogenic signaling to the ANGPTL4 gene and inhibit cancer cell invasion

    OpenAIRE

    Adhikary, T; Brandt, D T; Kaddatz, K; Stockert, J; Naruhn, S; Meissner, W.; Finkernagel, F; Obert, J.; Lieber, S; Scharfe, M.; Jarek, M; Toth, P M; Scheer, F; Diederich, W E; Reinartz, S

    2012-01-01

    Besides its established functions in intermediary metabolism and developmental processes, the nuclear receptor peroxisome proliferator-activated receptor β/δ (PPARβ/δ) has a less defined role in tumorigenesis. In the present study, we have identified a function for PPARβ/δ in cancer cell invasion. We show that two structurally divergent inhibitory ligands for PPARβ/δ, the inverse agonists ST247 and DG172, strongly inhibit the serum- and transforming growth factor β (TGFβ)-induced invasion of ...

  8. miR-208-3p promotes hepatocellular carcinoma cell proliferation and invasion through regulating ARID2 expression

    International Nuclear Information System (INIS)

    MicroRNAs (miRNAs) are small non-coding RNAs that negatively regulate gene expression at post-transcriptional level. miRNA dysregulation plays a causal role in cancer progression. In this study, miR-208-3p was highly expressed and directly repressed ARID2 expression. As a result, ARID2 expression in hepatocellular carcinoma (HCC) was decreased. In vitro, miR-208-3p down-regulation and ARID2 over-expression elicited similar inhibitory effects on HCC cell proliferation and invasion. In vivo test results revealed that miR-208-3p down-regulation inhibited HCC tumorigenesis in Hep3B cells. Moreover, ARID2 was possibly a downstream element of transforming growth factor beta1 (TGFβ1)/miR-208-3p/ARID2 regulatory pathway. These findings suggested that miR-208-3p up-regulation is associated with HCC cell progression and may provide a new target for liver cancer treatment. - Highlights: • miR-208-3p was highly expressed and directly repressed the expression of ARID2 in HCC. • miR-208-3p contributed to HCC cell progression both in vitro and in vivo. • Over-expression of ARID2 inhibited the HCC cell proliferation and invasion. • Restoration of ARID2 partly reversed the the effect of miR-208-3p down-regulation on HCC cells. • Newly regulatory pathway: miR-208-3p mediated the repression of ARID2 by TGFβ1 in HCC cells

  9. miR-208-3p promotes hepatocellular carcinoma cell proliferation and invasion through regulating ARID2 expression

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Peng; Wu, Dingguo; You, Yu; Sun, Jing; Lu, Lele; Tan, Jiaxing; Bie, Ping, E-mail: bieping2010@163.com

    2015-08-15

    MicroRNAs (miRNAs) are small non-coding RNAs that negatively regulate gene expression at post-transcriptional level. miRNA dysregulation plays a causal role in cancer progression. In this study, miR-208-3p was highly expressed and directly repressed ARID2 expression. As a result, ARID2 expression in hepatocellular carcinoma (HCC) was decreased. In vitro, miR-208-3p down-regulation and ARID2 over-expression elicited similar inhibitory effects on HCC cell proliferation and invasion. In vivo test results revealed that miR-208-3p down-regulation inhibited HCC tumorigenesis in Hep3B cells. Moreover, ARID2 was possibly a downstream element of transforming growth factor beta1 (TGFβ1)/miR-208-3p/ARID2 regulatory pathway. These findings suggested that miR-208-3p up-regulation is associated with HCC cell progression and may provide a new target for liver cancer treatment. - Highlights: • miR-208-3p was highly expressed and directly repressed the expression of ARID2 in HCC. • miR-208-3p contributed to HCC cell progression both in vitro and in vivo. • Over-expression of ARID2 inhibited the HCC cell proliferation and invasion. • Restoration of ARID2 partly reversed the the effect of miR-208-3p down-regulation on HCC cells. • Newly regulatory pathway: miR-208-3p mediated the repression of ARID2 by TGFβ1 in HCC cells.

  10. PPARγ inhibits ovarian cancer cells proliferation through upregulation of miR-125b

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Shuang, E-mail: luoshuangsch@163.com [Department of Obstetrics and Gynecology, Suining Central Hospital, Suining (China); Wang, Jidong [Department of Gynecology and Obsterics, Jinan Central Hospital, Jinan (China); Ma, Ying [Department of Otorhinolaryngolgy, Suining Central Hospital, Suining (China); Yao, Zhenwei [Department of Gynecology and Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing (China); Pan, Hongjuan [Department of Gynecology and Obsterics, Zhongshan Hospital, Wuhan (China)

    2015-06-26

    miR-125b has essential roles in coordinating tumor proliferation, angiogenesis, invasiveness, metastasis and chemotherapy recurrence. In ovarian cancer miR-125b has been shown to be downregulated and acts as a tumor suppressor by targeting proto-oncogene BCL3. PPARγ, a multiple functional transcription factor, has been reported to have anti-tumor effects through inhibition of proliferation and induction of differentiation and apoptosis by targeting the tumor related genes. However, it is unclear whether miR-125b is regulated by PPARγ in ovarian cancer. In this study, we demonstrated that the miR-125b downregulated in ovarian cancer tissues and cell lines. Ligands-activated PPARγ suppressed proliferation of ovarian cancer cells and this PPARγ-induced growth inhibition is mediated by the upregulation of miR-125b. PPARγ promoted the expression of miR-125b by directly binding to the responsive element in miR-125b gene promoter region. Thus, our results suggest that PPARγ can induce growth suppression of ovarian cancer by upregulating miR-125b which inhibition of proto-oncogene BCL3. These findings will extend our understanding of the function of PPARγ in tumorigenesis and miR-125b may be a therapeutic intervention of ovarian cancer. - Highlights: • miR-125b is down-regulated in ovarian cancer tissues and cells. • PPARγ upregulates miR-125b and downregulates its target gene BCL3 expression. • Silence of miR-125b attenuates PPARγ-mediated growth suppression of ovarian cancer cells. • PPARγ promotes the transcription of miR-125b via binding to PPARE in miR-125b gene promoter region.

  11. PPARγ inhibits ovarian cancer cells proliferation through upregulation of miR-125b

    International Nuclear Information System (INIS)

    miR-125b has essential roles in coordinating tumor proliferation, angiogenesis, invasiveness, metastasis and chemotherapy recurrence. In ovarian cancer miR-125b has been shown to be downregulated and acts as a tumor suppressor by targeting proto-oncogene BCL3. PPARγ, a multiple functional transcription factor, has been reported to have anti-tumor effects through inhibition of proliferation and induction of differentiation and apoptosis by targeting the tumor related genes. However, it is unclear whether miR-125b is regulated by PPARγ in ovarian cancer. In this study, we demonstrated that the miR-125b downregulated in ovarian cancer tissues and cell lines. Ligands-activated PPARγ suppressed proliferation of ovarian cancer cells and this PPARγ-induced growth inhibition is mediated by the upregulation of miR-125b. PPARγ promoted the expression of miR-125b by directly binding to the responsive element in miR-125b gene promoter region. Thus, our results suggest that PPARγ can induce growth suppression of ovarian cancer by upregulating miR-125b which inhibition of proto-oncogene BCL3. These findings will extend our understanding of the function of PPARγ in tumorigenesis and miR-125b may be a therapeutic intervention of ovarian cancer. - Highlights: • miR-125b is down-regulated in ovarian cancer tissues and cells. • PPARγ upregulates miR-125b and downregulates its target gene BCL3 expression. • Silence of miR-125b attenuates PPARγ-mediated growth suppression of ovarian cancer cells. • PPARγ promotes the transcription of miR-125b via binding to PPARE in miR-125b gene promoter region

  12. Decreased stathmin-1 expression inhibits trophoblast proliferation and invasion and is associated with recurrent miscarriage.

    Science.gov (United States)

    Tian, Fu-Ju; Qin, Chuan-Mei; Li, Xiao-Cui; Wu, Fan; Liu, Xiao-Rui; Xu, Wang-Ming; Lin, Yi

    2015-10-01

    Fetal trophoblasts invade endometrium and establish a complex interaction with the maternal microenvironment during early pregnancy. However, the molecular mechanisms regulating trophoblast migration and invasion at the maternal-fetal interface remain poorly understood. Immunohistochemistry and immunoblotting have shown that stathmin-1 (STMN1) was down-regulated significantly in placental villi tissue and trophoblasts from patients with recurrent miscarriage. In vitro, overexpression of STMN1 promoted human trophoblast proliferation, migration, and invasion, whereas knockdown of STMN1 inhibited these processes. In addition, knockdown of STMN1 down-regulated N-cadherin and up-regulated E-cadherin in trophoblasts, whereas E-cadherin was up-regulated and N-cadherin was down-regulated in recurrent miscarriage villi tissue. Knockdown of STMN1 attenuated cytoplasmic-nuclear translocation of β-catenin and in turn down-regulated trophoblast matrix metalloproteases. Furthermore, tumor necrosis factor-α (TNF-α) down-regulated STMN1 expression, and serum TNF-α expression correlated inversely with trophoblast STMN1 levels. Interestingly, M1 macrophage-derived TNF-α reduced trophoblast migration and invasion, and an anti-TNF-α antibody reversed this effect. Collectively, this study indicated that STMN1 may play a key role in regulating trophoblast invasion, and that impaired STMN1 expression may lead to abnormal trophoblast invasion and result in recurrent miscarriage. PMID:26272359

  13. (-)-Gossypol reduces invasiveness in metastatic prostate cancer cells

    Science.gov (United States)

    Acquisition of metastatic ability by prostatic cancer cells is the most lethal aspect of prostatic cancer progression. (-)-Gossypol, a polyphenolic compound present in cottonseeds, possesses anti-proliferation and pro-apoptotic effects in various cancer cells. In this study, the differences betwee...

  14. Targeting the ROR1 and ROR2 receptors in epithelial ovarian cancer inhibits cell migration and invasion

    Science.gov (United States)

    Henry, Claire; Llamosas, Estelle; Knipprath-Mészáros, Alexandra; Schoetzau, Andreas; Obermann, Ellen; Fuenfschilling, Maya; Caduff, Rosemarie; Fink, Daniel; Hacker, Neville; Ward, Robyn; Heinzelmann-Schwarz, Viola; Ford, Caroline

    2015-01-01

    AIM In recent years, the Wnt signalling pathway has been implicated in epithelial ovarian cancer and its members have potential as diagnostic, prognostic and therapeutic targets. Here we investigated the role of two Wnt receptor tyrosine kinases (RTKs), ROR1 and ROR2, and their putative ligand, Wnt5a, in ovarian cancer. METHODS Immunohistochemistry for ROR2 was performed in a large patient cohort, including benign controls, borderline tumours and epithelial ovarian cancer. In addition, siRNA was used to silence ROR1, ROR2 and Wnt5a individually, and together, in two ovarian cancer cell lines, and the effects on cell proliferation, adhesion, migration and invasion were measured. RESULTS ROR2 expression is significantly increased in ovarian cancer patients compared to patients with benign disease. In vitro assays showed that silencing either receptor inhibits ovarian cancer cell migration and invasion, and concurrently silencing both receptors has an even stronger inhibitory effect on proliferation, migration and invasion. CONCLUSIONS ROR2 expression is increased in epithelial ovarian cancer, and silencing ROR2 and its sister receptor ROR1 has a strong inhibitory effect on the ability of ovarian cancer cells to proliferate, migrate and invade through an extracellular matrix. PMID:26515598

  15. Small RNA interference-mediated gene silencing of heparanase abolishes the invasion, metastasis and angiogenesis of gastric cancer cells

    International Nuclear Information System (INIS)

    Heparanase facilitates the invasion and metastasis of cancer cells, and is over-expressed in many kinds of malignancies. Our studies indicated that heparanase was frequently expressed in advanced gastric cancers. The aim of this study is to determine whether silencing of heparanase expression can abolish the malignant characteristics of gastric cancer cells. Three heparanase-specific small interfering RNA (siRNAs) were designed, synthesized, and transfected into cultured gastric cancer cell line SGC-7901. Heparanase expression was measured by RT-PCR, real-time quantitative PCR and Western blot. Cell proliferation was detected by MTT colorimetry and colony formation assay. The in vitro invasion and metastasis of cancer cells were measured by cell adhesion assay, scratch assay and matrigel invasion assay. The angiogenesis capabilities of cancer cells were measured by tube formation of endothelial cells. Transfection of siRNA against 1496-1514 bp of encoding regions resulted in reduced expression of heparanase, which started at 24 hrs and lasted for 120 hrs post-transfection. The siRNA-mediated silencing of heparanase suppressed the cellular proliferation of SGC-7901 cells. In addition, the in vitro invasion and metastasis of cancer cells were attenuated after knock-down of heparanase. Moreover, transfection of heparanase-specific siRNA attenuated the in vitro angiogenesis of cancer cells in a dose-dependent manner. These results demonstrated that gene silencing of heparanase can efficiently abolish the proliferation, invasion, metastasis and angiogenesis of human gastric cancer cells in vitro, suggesting that heparanase-specific siRNA is of potential values as a novel therapeutic agent for human gastric cancer

  16. Cell migration or cytokinesis and proliferation? – Revisiting the “go or grow” hypothesis in cancer cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Garay, Tamás; Juhász, Éva; Molnár, Eszter [2nd Department of Pathology, Semmelweis University, Budapest (Hungary); Eisenbauer, Maria [Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna (Austria); Czirók, András [Department of Biological Physics, Eötvös University, Budapest (Hungary); Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS (United States); Dekan, Barbara; László, Viktória; Hoda, Mir Alireza [Department of Thoracic Surgery, Medical University of Vienna, Vienna (Austria); Döme, Balázs [Department of Thoracic Surgery, Medical University of Vienna, Vienna (Austria); National Korányi Institute of TB and Pulmonology, Budapest (Hungary); Tímár, József [2nd Department of Pathology, Semmelweis University, Budapest (Hungary); MTA-SE Tumor Progression Research Group, Hungarian Academy of Sciences, Budapest (Hungary); Klepetko, Walter [Department of Thoracic Surgery, Medical University of Vienna, Vienna (Austria); Berger, Walter [Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna (Austria); Hegedűs, Balázs, E-mail: balazs.hegedus@meduniwien.ac.at [Department of Thoracic Surgery, Medical University of Vienna, Vienna (Austria); MTA-SE Tumor Progression Research Group, Hungarian Academy of Sciences, Budapest (Hungary)

    2013-12-10

    The mortality of patients with solid tumors is mostly due to metastasis that relies on the interplay between migration and proliferation. The “go or grow” hypothesis postulates that migration and proliferation spatiotemporally excludes each other. We evaluated this hypothesis on 35 cell lines (12 mesothelioma, 13 melanoma and 10 lung cancer) on both the individual cell and population levels. Following three-day-long videomicroscopy, migration, proliferation and cytokinesis-length were quantified. We found a significantly higher migration in mesothelioma cells compared to melanoma and lung cancer while tumor types did not differ in mean proliferation or duration of cytokinesis. Strikingly, we found in melanoma and lung cancer a significant positive correlation between mean proliferation and migration. Furthermore, non-dividing melanoma and lung cancer cells displayed slower migration. In contrast, in mesothelioma there were no such correlations. Interestingly, negative correlation was found between cytokinesis-length and migration in melanoma. FAK activation was higher in melanoma cells with high motility. We demonstrate that the cancer cells studied do not defer proliferation for migration. Of note, tumor cells from various organ systems may differently regulate migration and proliferation. Furthermore, our data is in line with the observation of pathologists that highly proliferative tumors are often highly invasive. - Highlights: • We investigated the “go or grow” hypothesis in human cancer cells in vitro. • Proliferation and migration positively correlate in melanoma and lung cancer cells. • Duration of cytokinesis and migration shows inverse correlation. • Increased FAK activation is present in highly motile melanoma cells.

  17. Perspectives of Nanotechnology in Minimally Invasive Therapy of Breast Cancer

    Directory of Open Access Journals (Sweden)

    Yamin Yang

    2013-01-01

    Full Text Available Breast cancer, the most common type of cancer among women in the western world, affects approximately one out of every eight women over their lifetime. In recognition of the high invasiveness of surgical excision and severe side effects of chemical and radiation therapies, increasing efforts are made to seek minimally invasive modalities with fewer side effects. Nanoparticles (<100 nm in size have shown promising capabilities for delivering targeted therapeutic drugs to cancer cells and confining the treatment mainly within tumors. Additionally, some nanoparticles exhibit distinct properties, such as conversion of photonic energy into heat, and these properties enable eradication of cancer cells. In this review, current utilization of nanostructures for cancer therapy, especially in minimally invasive therapy, is summarized with a particular interest in breast cancer.

  18. KLF8 knockdown suppresses proliferation and invasion in human osteosarcoma cells

    Science.gov (United States)

    LIN, FENG; SHEN, ZAN; TANG, LI-NA; ZHENG, SHUI-ER; SUN, YUAN-JUE; MIN, DA-LIU; YAO, YANG

    2014-01-01

    Krüppel-like factor 8 (KLF8) is a transcription factor that is important in the regulation of the cell cycle and has a critical role in oncogenic transformation and epithelial to mesenchymal transition (EMT). EMT is a key process in tumor metastasis. Although overexpression of KLF8 has been observed in a variety of human tumor types, the role of KLF8 in human osteosarcoma is yet to be elucidated. The present study aimed to investigate the biological impact of KLF8 on Saos-2 osteosarcoma cells. KLF8 gene expression was knocked down in vitro using a lentivirus-mediated small interfering (si)RNA method. Cell proliferation and cell cycle distribution were evaluated using 3-(4,5)-dimethylthiahiazo(-z-yl)-3,5-di-phenytetrazoliumromide and colony formation assays, and flow cytometry, respectively. Cell invasion was analyzed using a Transwell® invasion assay. Knockdown of KLF8 was found to significantly inhibit proliferation and invasion in osteosarcoma cells. These data suggest that KLF8 may exhibit an important role in osteosarcoma tumorigenesis and that KLF8 may be a potential therapeutic target for the treatment of osteosarcoma. PMID:24604387

  19. Minimally Invasive Treatment for Lung Cancer

    Medline Plus

    Full Text Available ... of cancer-related deaths in this country. It far exceeds breast cancer, colon cancer, and prostate cancer, ... enough information to give patients good advice as far as what sort of treatments they need for ...

  20. Minimally Invasive Treatment for Lung Cancer

    Medline Plus

    Full Text Available ... for Lung Cancer June 15, 2009 Welcome to this “OR-Live” webcast presentation, premiering from Beth Israel ... number one cause of cancer-related deaths in this country. It far exceeds breast cancer, colon cancer, ...

  1. A microscopic landscape of the invasive breast cancer genome

    OpenAIRE

    Zheng Ping; Yuchao Xia; Tiansheng Shen; Vishwas Parekh; Siegal, Gene P; Isam-Eldin Eltoum; Jianbo He; Dongquan Chen; Minghua Deng; Ruibin Xi; Dejun Shen

    2016-01-01

    Histologic grade is one of the most important microscopic features used to predict the prognosis of invasive breast cancer and may serve as a marker for studying cancer driving genomic abnormalities in vivo. We analyzed whole genome sequencing data from 680 cases of TCGA invasive ductal carcinomas of the breast and correlated them to corresponding pathology information. Ten genetic abnormalities were found to be statistically associated with histologic grade, including three most prevalent ca...

  2. High-risk nonmuscle invasive bladder cancer: Definition and epidemiology

    OpenAIRE

    Porten, SP; Cooperberg, MR

    2012-01-01

    PURPOSE OF REVIEW: Nonmuscle invasive bladder cancer represents a large majority of patients diagnosed with this disease. Precise definition and risk stratification are paramount in this group as high-risk patients have higher rates of progression and mortality and may benefit from early identification and aggressive treatment. RECENT FINDINGS: The mainstay definitions of high-risk nonmuscle invasive bladder cancer are based on grade and stage. Recently, efforts have been made to incorporate ...

  3. Nonmuscle invasive bladder cancer: a primer on immunotherapy

    Science.gov (United States)

    Maruf, Mahir; Brancato, Sam J.; Agarwal, Piyush K.

    2016-01-01

    Intravesical Bacillus Calmette-Guérin (BCG) has long been the gold standard treatment of nonmuscle invasive bladder cancer. Recently, there has been an emergence of novel immunotherapeutic agents, which have shown promise in the treatment of urothelial cell carcinoma. These agents aim to augment, modify, or enhance the immune response. Such strategies include recombinant BCG, monoclonal antibodies, vaccines, gene therapy, and adoptive T-cell therapy. Here, we review the emerging immunotherapeutics in the treatment of nonmuscle invasive bladder cancer.

  4. Invasive thymoma associated with lung cancer: report of a case.

    Science.gov (United States)

    Shimada, T; Terashima, H; Shimizu, T; Hirayama, K

    2001-01-01

    We report herein a case of invasive thymoma simultaneously associated with lung cancer. A 64-year-old man presented with a cough and anterior chest pain, and preoperative examinations revealed an anterior mediastinal tumor as well as lung cancer. The patient underwent a total thymectomy, partial resection of the right lung, left lower lobectomy, and mediastinal lymph node dissection, followed by radiotherapy. Although it is well known that thymomas may be accompanied by nonthymic cancers, invasive thymomas occurring coincidentally with lung cancer are rarely reported in Japan. This case is very interesting in its relation to the oncogenesis of thymomas. PMID:11428602

  5. Buformin exhibits anti-proliferative and anti-invasive effects in endometrial cancer cells

    Science.gov (United States)

    Kilgore, Joshua; Jackson, Amanda L; Clark, Leslie H; Guo, Hui; Zhang, Lu; Jones, Hannah M; Gilliam, Timothy P; Gehrig, Paola A; Zhou, Chunxiao; Bae-Jump, Victoria L

    2016-01-01

    Objective: Biguanides are anti-diabetic drugs that are thought to have anti-tumorigenic effects. Most pre-clinical studies have focused on metformin for cancer treatment and prevention; however, buformin may be potentially more potent than metformin. Given this, our goal was to evaluate the effects of buformin on cell growth, adhesion and invasion in endometrial cancer cell lines. Methods: The ECC-1 and Ishikawa endometrial cancer cell lines were used. Cell proliferation was assessed by MTT assay. Apoptosis and cell cycle analysis was performed by FITC Annexin V assay and propidium iodide staining, respectively. Adhesion was analyzed using the laminin adhesion assay. Invasion was assessed using the transwell invasion assay. The effects of buformin on the AMPK/mTOR pathway were determined by Western immunoblotting. Results: Buformin and metformin inhibited cell proliferation in a dose-dependent manner in both endometrial cancer cell lines. IC50s were 1.4-1.6 mM for metformin and 8-150 μM for buformin. Buformin induced cell cycle G1 phase arrest in the ECC-1 cells and G2 phase arrest in the Ishikawa cells. For both ECC-1 and Ishikawa cells, treatment with buformin resulted in induction of apoptosis, reduction in adhesion and invasion, activation of AMPK and inhibition of phosphorylated-S6. Buformin potentiated the anti-proliferative effects of paclitaxel in both cell lines. Conclusion: Buformin has significant anti-proliferative and anti-metastatic effects in endometrial cancer cells through modulation of the AMPK/mTOR pathway. IC50 values were lower for buformin than metformin, suggesting that buformin may be more potent for endometrial cancer treatment and worthy of further investigation. PMID:27398153

  6. Obesity is associated with increased risk of invasive penile cancer

    OpenAIRE

    Barnes, Kerri T.; McDowell, Bradley D.; Button, Anna; Smith, Brian J.; Lynch, Charles F.; Gupta, Amit

    2016-01-01

    Background To validate the association between obesity and penile cancer at a population level, we conducted a matched case–control study linking the Iowa Department of Motor Vehicles Drivers’ License Database (DLD) with cancer surveillance data collected by the State Health Registry of Iowa (SHRI). Methods All men diagnosed with invasive penile squamous cell carcinoma from 1985 to 2010 were identified by SHRI. Two hundred sixty-six cancer cases and 816 cancer-free male controls, selected fro...

  7. [Grape seed proanthocyanidins inhibits the invasion and migration of A549 lung cancer cells].

    Science.gov (United States)

    Zhou, Yehan; Ye, Xiufeng; Shi, Yao; Wang, Ke; Wan, Dan

    2016-02-01

    Objective To explore the effect of grape seed proanthocyanidins (GSPs) on the invasion and migration of A549 lung cancer cells and the underlying mechanism. Methods Trypan blue dye exclusion assay was used to determine the cytotoxic effect of varying doses of GSPs on the BEAS-2B normal human pulmonary epithelial cells. After treated with 0, 10, 20, 40, 80 μg/mL GSP, the proliferation of A549 cells was detected by MTT assay; the invasion and migration of A549 cells were determined by Transwell(TM) assay and scratch wound assay, respectively. The levels of epithelial growth factor receptor (EGFR), E-cadherin, N-cadherin in A549 cells treated with GSPs were detected by Western blotting. Results (0-40) μg/mL GSPs had no significant toxic effect on BEAS-2B cells, while 80 μg/mL GSPs had significant cytotoxicity to BEAS-2B cells. The proliferation of A549 cells was significantly inhibited within limited dosage in a dose-dependent manner, and the abilities of invasion and migration of A549 cells were also inhibited. Western blotting showed that the expression of EGFR and N-cadherin decreased, while E-cadherin increased after GSPs treatment. Conclusion GSPs could inhibit the abilities of proliferation, invasion and migration of A549 cells, which might be related to the dow-regulation of EGFR and N-cadherin and the up-regulation of E-cadherin. PMID:26927375

  8. Methyl jasmonate abolishes the migration, invasion and angiogenesis of gastric cancer cells through down-regulation of matrix metalloproteinase 14

    International Nuclear Information System (INIS)

    Recent evidence indicates that methyl jasmonate (MJ), a plant stress hormone, exhibits anti-cancer activity on human cancer cells. The aim of this study is to determine whether sub-cytotoxic MJ can abolish the migration, invasion and angiogenesis gastric cancer cells. Human gastric cancer cell lines SGC-7901 and MKN-45 were treated with diverse concentrations of MJ. Cell viability, proliferation, migration, invasion and angiogenesis capabilities of cancer cells were measured by MTT colorimetry, EdU incorporation, scratch assay, matrigel invasion assay, and tube formation assay. Gene expression was detected by western blot and real-time quantitative RT-PCR. Binding of transcription factor on gene promoter was detected by chromatin immunoprecipitation. Sub-cytotoxic (0.05 to 0.2 mM) MJ attenuated the migration, invasion and angiogenesis, but not the cell viability or proliferation, of gastric cancer cells in a time- and dose-dependent manner, with down-regulation of matrix metalloproteinase 14 (MMP-14) and its downstream gene vascular endothelial growth factor. Restoration of MMP-14 expression rescued the SGC-7901 and MKN-45 cells from sub-cytotoxic MJ-inhibited migration, invasion and angiogenesis. In addition, sub-cytotoxic MJ decreased the specificity protein 1 (Sp1) expression and binding on MMP-14 promoter, while restoration of Sp1 expression rescued the cancer cells from sub-cytotoxic MJ-mediated defects in MMP-14 expression, migration, invasion and angiogenesis. Sub-cytotoxic MJ attenuates the MMP-14 expression via decreasing the Sp1 expression and binding on MMP-14 promoter, thus inhibiting the migration, invasion and angiogenesis of gastric cancer cells

  9. Tyk2 expression and its signaling enhances the invasiveness of prostate cancer cells

    International Nuclear Information System (INIS)

    Protein tyrosine kinase plays a central role in the proliferation and differentiation of various types of cells. One of these protein kinases, Tyk2, a member of the Jak family kinases, is known to play important roles in receptor signal transduction by interferons, interleukins, growth factors, and other hormones. In the present study, we investigated Tyk2 expression and its role in the growth and invasiveness of human prostate cancer cells. We used a small interfering RNA targeting Tyk2 and an inhibitor of Tyk2, tyrphostin A1, to suppress the expression and signaling of Tyk2 in prostate cancer cells. We detected mRNAs for Jak family kinases in prostate cancer cell lines by RT-PCR and Tyk2 protein in human prostate cancer specimens by immunohistochemistry. Inhibition of Tyk2 signaling resulted in attenuation of the urokinase-type plasminogen activator-enhanced invasiveness of prostate cancer cells in vitro without affecting the cellular growth rate. These results suggest that Tyk2 signaling in prostate cancer cells facilitate invasion of these cells, and interference with this signaling may be a potential therapeutic pathway

  10. MicroRNA-124-3p regulates cell proliferation, invasion, apoptosis, and bioenergetics by targeting PIM1 in astrocytoma.

    Science.gov (United States)

    Deng, Danni; Wang, Lei; Chen, Yao; Li, Bowen; Xue, Lian; Shao, Naiyuan; Wang, Qiang; Xia, Xiwei; Yang, Yilin; Zhi, Feng

    2016-07-01

    The PIM1 protein is an important regulator of cell proliferation, the cell cycle, apoptosis, and metabolism in various human cancers. MicroRNAs (miRNAs) are powerful post-transcriptional gene regulators that function through translational repression or transcript destabilization. Therefore, we aimed to identify whether a close relationship exists between PIM1 and miRNAs. PIM1 protein levels and mRNA levels were significantly upregulated in astrocytoma tissues, indicating the oncogenic role of PIM1 in astrocytoma. Further bioinformatics analysis indicated that miR-124-3p targeted the 3'-UTR of PIM1. We also observed an inverse correlation between the miR-124-3p levels and PIM1 protein or mRNA levels in astrocytoma samples. Next, we experimentally confirmed that miR-124-3p directly recognizes the 3'-UTR of the PIM1 transcript and regulates PIM1 expression at both the protein and mRNA levels. Furthermore, we examined the biological consequences of miR-124-3p targeting PIM1 in vitro. We showed that the repression of PIM1 in astrocytoma cancer cells by miR-124-3p suppressed proliferation, invasion, and aerobic glycolysis and promoted apoptosis. We observed that the restoration or inhibition of PIM1 activity resulted in effects that were similar to those induced by miR-124-3p inhibitors or mimics in cancer cells. Finally, overexpression of PIM1 rescued the inhibitory effects of miR-124-3p. In summary, these findings aid in understanding the tumor-suppressive role of miR-124-3p in astrocytoma pathogenesis through the inhibition of PIM1 translation. PMID:27088547

  11. siRNA targeting RBP2 inhibits expression, proliferation, tumorigenicity and invasion in thyroid carcinoma cells

    OpenAIRE

    KONG, LING-LING; MAN, DONG-MEI; Wang, Tian; ZHANG, GUO-AN; Cui, Wen

    2015-01-01

    In order to estimate the effects of small interfering RNA (siRNA) targeting retinoblastoma binding protein 2 (RBP2) on the proliferation, expression, invasion, migration and tumorigenicity abilities of papillary thyroid carcinoma K1 cells, siRNA targeting RBP2 (RBP2-siRNA) and negative control siRNA were transfected into K1 cells. The mRNA levels of RBP2 in the transfected cells were estimated by reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and the protein levels of...

  12. Neoplastic extracellular matrix environment promotes cancer invasion in vitro.

    Science.gov (United States)

    Sundquist, Elias; Renko, Outi; Salo, Sirpa; Magga, Johanna; Cervigne, Nilva K; Nyberg, Pia; Risteli, Juha; Sormunen, Raija; Vuolteenaho, Olli; Zandonadi, Flávia; Paes Leme, Adriana F; Coletta, Ricardo D; Ruskoaho, Heikki; Salo, Tuula

    2016-06-10

    The invasion of carcinoma cells is a crucial feature in carcinogenesis. The penetration efficiency not only depends on the cancer cells, but also on the composition of the tumor microenvironment. Our group has developed a 3D invasion assay based on human uterine leiomyoma tissue. Here we tested whether human, porcine, mouse or rat hearts as well as porcine tongue tissues could be similarly used to study carcinoma cell invasion in vitro. Three invasive human oral tongue squamous cell carcinoma (HSC-3, SCC-25 and SCC-15), melanoma (G-361) and ductal breast adenocarcinoma (MDA-MB-231) cell lines, and co-cultures of HSC-3 and carcinoma-associated or normal oral fibroblasts were assayed. Myoma tissue, both native and lyophilized, promoted invasion and growth of the cancer cells. However, the healthy heart or tongue matrices were unable to induce the invasion of any type of cancer cells tested. Moreover, when studied in more detail, small molecular weight fragments derived from heart tissue rinsing media inhibited HSC-3 horizontal migration. Proteome analysis of myoma rinsing media, on the other hand, revealed migration enhancing factors. These results highlight the important role of matrix composition for cancer invasion studies in vitro and further demonstrate the unique properties of human myoma organotypic model. PMID:27090016

  13. Inhibition of nuclear factor-kappa B differentially affects thyroid cancer cell growth, apoptosis, and invasion

    Directory of Open Access Journals (Sweden)

    Schweppe Rebecca E

    2010-05-01

    Full Text Available Abstract Background Nuclear factor-κB (NF-κB is constitutively activated in many cancers and plays a key role in promoting cell proliferation, survival, and invasion. Our understanding of NF-κB signaling in thyroid cancer, however, is limited. In this study, we have investigated the role of NF-κB signaling in thyroid cancer cell proliferation, invasion, and apoptosis using selective genetic inhibition of NF-κB in advanced thyroid cancer cell lines. Results Three pharmacologic inhibitors of NF-κB differentially inhibited growth in a panel of advanced thyroid cancer cell lines, suggesting that these NF-κB inhibitors may have off-target effects. We therefore used a selective genetic approach to inhibit NF-κB signaling by overexpression of a dominant-negative IκBα (mIκBα. These studies revealed decreased cell growth in only one of five thyroid cancer cell lines (8505C, which occurred through a block in the S-G2/M transition. Resistance to TNFα-induced apoptosis was observed in all cell lines, likely through an NF-κB-dependent mechanism. Inhibition of NF-κB by mIκBα sensitized a subset of cell lines to TNFα-induced apoptosis. Sensitive cell lines displayed sustained activation of the stress-activated protein kinase/c-Jun NH2-terminal kinase (SAPK/JNK pathway, defining a potential mechanism of response. Finally, NF-κB inhibition by mIκBα expression differentially reduced thyroid cancer cell invasion in these thyroid cancer cell lines. Sensitive cell lines demonstrated approximately a two-fold decrease in invasion, which was associated with differential expression of MMP-13. MMP-9 was reduced by mIκBα expression in all cell lines tested. Conclusions These data indicate that selective inhibition of NF-κB represents an attractive therapeutic target for the treatment of advanced thyroid. However, it is apparent that global regulation of thyroid cancer cell growth and invasion is not achieved by NF-κB signaling alone. Instead, our

  14. Inhibition of RUNX2 transcriptional activity blocks the proliferation, migration and invasion of epithelial ovarian carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Zhi-Qiang Wang

    Full Text Available Previously, we have identified the RUNX2 gene as hypomethylated and overexpressed in post-chemotherapy (CT primary cultures derived from serous epithelial ovarian cancer (EOC patients, when compared to primary cultures derived from matched primary (prior to CT tumors. However, we found no differences in the RUNX2 methylation in primary EOC tumors and EOC omental metastases, suggesting that DNA methylation-based epigenetic mechanisms have no impact on RUNX2 expression in advanced (metastatic stage of the disease. Moreover, RUNX2 displayed significantly higher expression not only in metastatic tissue, but also in high-grade primary tumors and even in low malignant potential tumors. Knockdown of the RUNX2 expression in EOC cells led to a sharp decrease of cell proliferation and significantly inhibited EOC cell migration and invasion. Gene expression profiling and consecutive network and pathway analyses confirmed these findings, as various genes and pathways known previously to be implicated in ovarian tumorigenesis, including EOC tumor invasion and metastasis, were found to be downregulated upon RUNX2 suppression, while a number of pro-apoptotic genes and some EOC tumor suppressor genes were induced. Taken together, our data are indicative for a strong oncogenic potential of the RUNX2 gene in serous EOC progression and suggest that RUNX2 might be a novel EOC therapeutic target. Further studies are needed to more completely elucidate the functional implications of RUNX2 and other members of the RUNX gene family in ovarian tumorigenesis.

  15. Knockdown of Rhotekin 2 expression suppresses proliferation and invasion and induces apoptosis in hepatocellular carcinoma cells.

    Science.gov (United States)

    Wei, Wei; Chen, Huabing; Liu, Sibin

    2016-06-01

    Hepatocellular carcinoma (HCC), which is one of the most common types of cancer worldwide, has been ranked as the third leading cause of cancer‑associated mortality worldwide. Rhotekin 2 (RTKN2), a Rho‑guanosine triphosphatase (GTPase) effector, has been reported to be anti‑apoptotic. However, the molecular mechanism underlying the biological function of RTKN2 in HCC is poorly defined. The current study reported that RTKN2 was overexpressed in 83% of HCC specimens compared with adjacent noncancerous tissues (n=30). Depletion of RTKN2 in HCC cells, HepG2 and BEL‑7404 by RNA interference led to marked inhibition of cell proliferation and cell cycle progression. Notably, RTKN2 silencing significantly reduced the levels of cell cycle‑associated proteins, proliferating cell nuclear antigen and cyclin‑dependent kinase 1. Additionally, it was identified that downregulation of RTKN2 in HCC cells notably induced cell apoptosis, while significantly repressing cell invasion. These data suggest that RTKN2 may act as an oncogene and inhibition of RTKN2 may be part of a novel therapeutic strategy for targeted HCC therapy. PMID:27081789

  16. LPA Induces Colon Cancer Cell Proliferation through a Cooperation between the ROCK and STAT-3 Pathways.

    Directory of Open Access Journals (Sweden)

    Fernanda Leve

    Full Text Available Lysophosphatidic acid (LPA plays a critical role in the proliferation and migration of colon cancer cells; however, the downstream signaling events underlying these processes remain poorly characterized. The aim of this study was to investigate the signaling pathways triggered by LPA to regulate the mechanisms involved in the progression of colorectal cancer (CRC. We have used three cell line models of CRC, and initially analyzed the expression profile of LPA receptors (LPAR. Then, we treated the cells with LPA and events related to their tumorigenic potential, such as migration, invasion, anchorage-independent growth, proliferation as well as apoptosis and cell cycle were evaluated. We used the Chip array technique to analyze the global gene expression profiling that occurs after LPA treatment, and we identified cell signaling pathways related to the cell cycle. The inhibition of these pathways verified the conclusions of the transcriptomic analysis. We found that the cell lines expressed LPAR1, -2 and -3 in a differential manner and that 10 μM LPA did not affect cell migration, invasion and anchorage-independent growth, but it did induce proliferation and cell cycle progression in HCT-116 cells. Although LPA in this concentration did not induce transcriptional activity of β-catenin, it promoted the activation of Rho and STAT-3. Moreover, ROCK and STAT-3 inhibitors prevented LPA-induced proliferation, but ROCK inhibition did not prevent STAT-3 activation. Finally, we observed that LPA regulates the expression of genes related to the cell cycle and that the combined inhibition of ROCK and STAT-3 prevented cell cycle progression and increased the LPA-induced expression of cyclins E1, A2 and B1 to a greater degree than either inhibitor alone. Overall, these results demonstrate that LPA increases the proliferative potential of colon adenocarcinoma HCT-116 cells through a mechanism involving cooperation between the Rho-ROCK and STAT3 pathways

  17. Targeting EMP3 suppresses proliferation and invasion of hepatocellular carcinoma cells through inactivation of PI3K/Akt pathway.

    Science.gov (United States)

    Hsieh, Yi-Hsien; Hsieh, Shu-Ching; Lee, Chien-Hsing; Yang, Shun-Fa; Cheng, Chun-Wen; Tang, Meng-Ju; Lin, Chia-Liang; Lin, Chu-Liang; Chou, Ruey-Hwang

    2015-10-27

    Epithelial membrane protein-3 (EMP3), a typical member of the epithelial membrane protein (EMP) family, is epigenetically silenced in some cancer types, and has been proposed to be a tumor suppressor gene. However, its effects on tumor suppression are controversial and its roles in development and malignancy of hepatocellular carcinoma (HCC) remain unclear. In the present study, we found that EMP3 was highly expressed in the tumorous tissues comparing to the matched normal tissues, and negatively correlated with differentiated degree of HCC patients. Knockdown of EMP3 significantly reduced cell proliferation, arrested cell cycle at G1 phase, and inhibited the motility and invasiveness in accordance with the decreased expression and activity of urokinase plasminogen activator (uPA) and matrix metalloproteinase 9 (MMP-9) in HCC cells. The in vivo tumor growth of HCC was effectively suppressed by knockdown of EMP3 in a xenograft mouse model. The EMP3 knockdown-reduced cell proliferation and invasion were attenuated by inhibition of phosphatidylinositol 3-kinase (PI3K) or knockdown of Akt, and rescued by overexpression of Akt in HCC cells. Clinical positive correlations of EMP3 with p85 regulatory subunit of PI3K, p-Akt, uPA, as well as MMP-9 were observed in the tissue sections from HCC patients. Here, we elucidated the tumor progressive effects of EMP3 through PI3K/Akt pathway and uPA/MMP-9 cascade in HCC cells. The findings provided a new insight into EMP3, which might be a potential molecular target for diagnosis and treatment of HCC. PMID:26472188

  18. 间充质干细胞对非小细胞肺癌细胞增殖和侵袭能力的初步探讨%Investigational Study of Mesenchymal Stem Cells on Lung Cancer Cell Proliferation and Invasion

    Institute of Scientific and Technical Information of China (English)

    李梅; 武毅; 刘仁旺; 郭丽丽; 徐婷婷; 陈军; 徐嵩

    2015-01-01

    Background and objective Mesenchymal stem cells (MSC) are adult stem cells derived from meso-derm. Evidence has shown that MSC could migrate towards tumor tissue and differentiate into tumor associated ifbroblast in tumor microenvironment, which inlfuences tumor growth and metastasis. However, the reports of MSC in non-small cell lung cancer (NSCLC) are few and controversial. hTe aim of this study is to explore the chemotaxis of MSC towards NSCLC and to test the effects of MSC on the proliferation and invasion ability of NSCLC.MethodsTranswell assay was used to test MSC and NSCLC migration and invasion, and hTymidine incorporation assay was adopted to measure NSCLC cells proliferation. hTe expression of interleukin-6 (IL-6), insulinlike growth factor (IGF-1), vascular endothelial growth factor (VEGF) and dickkopf-related protein 1 (DKK1) of MSCs were determined by real time PCR. A549 lung cancer xenogratf animal tumor model was set up to evaluate the MSC effectin vivo.ResultsLung cancer cells could attract MSC tropism. MSC conditioned medium fa-vored lung cancer cell proliferation and lung cancer cells stimulated the expression of IL-6, IGF-1, VEGF and DKK1 on MSCs. In vivo animal study showed that the tumor with MSC injection grew much faster compared to control group.Conclusion MSCs could migrate towards NSCLC cells and favor tumor growth. In turn, NSCLC cells could stimulate the overexpression of cytokines on MSCs which are essential for the tumor growth.%背景与目的间充质干细胞(mesenchymal stem cells, MSC)是来源于中胚层的成体干细胞。有文献报道MSC通过向肿瘤组织的归巢和向间质成分分化,改变肿瘤微环境,影响肿瘤的生长和转移。但MSC在非小细胞肺癌(non-small cell lung cancer, NSCLC)中的作用报道较少,且不一致。本研究旨在探讨MSC向NSCLC细胞的趋化能力,以及其对NSCLC细胞的增殖和侵袭能力的作用。方法 Transwell法检测MSC向肺癌细胞迁移

  19. Minimally Invasive Treatment for Lung Cancer

    Medline Plus

    Full Text Available ... 2009, lung cancer is really the number one cause of cancer-related deaths in this country. It ... that, you know, lung cancer is the leading cause of mortality. And unfortunately, it’s normally detected in ...

  20. Minimally Invasive Treatment for Lung Cancer

    Medline Plus

    Full Text Available ... related deaths in this country. It far exceeds breast cancer, colon cancer, and prostate cancer, and, in fact, ... and try and get a biopsy of the lesion. There are other ways to approach the lesion, ...

  1. Minimally Invasive Treatment for Lung Cancer

    Medline Plus

    Full Text Available ... related deaths in this country. It far exceeds breast cancer, colon cancer, and prostate cancer, and, in fact, ... when detected, you know, and when patients get treatment. Okay. So it’s very important, you know, to ...

  2. Minimally Invasive Treatment for Lung Cancer

    Medline Plus

    Full Text Available ... really the number one cause of cancer-related deaths in this country. It far exceeds breast cancer, ... is still less than the total number of deaths from lung cancer in general. I hope that ...

  3. Raddeanin A induces human gastric cancer cells apoptosis and inhibits their invasion in vitro

    International Nuclear Information System (INIS)

    Highlights: •Raddeanin A is a triterpenoid saponin in herb medicine Anemone raddeana Regel. •Raddeanin A can inhibit 3 kinds of gastric cancer cells’ proliferation and invasion. •Caspase-cascades’ activation indicates apoptosis induced by Raddeanin A. •MMPs, RECK, Rhoc and E-cad are involved in Raddeanin A-induced invasion inhibition. -- Abstract: Raddeanin A is one of the triterpenoid saponins in herbal medicine Anemone raddeana Regel which was reported to suppress the growth of liver and lung cancer cells. However, little was known about its effect on gastric cancer (GC) cells. This study aimed to investigate its inhibitory effect on three kinds of different differentiation stage GC cells (BGC-823, SGC-7901 and MKN-28) in vitro and the possible mechanisms. Proliferation assay and flow cytometry demonstrated Raddeanin A’s dose-dependent inhibitory effect and determined its induction of cells apoptosis, respectively. Transwell assay, wounding heal assay and cell matrix adhesion assay showed that Raddeanin A significantly inhibited the abilities of the invasion, migration and adhesion of the BGC-823 cells. Moreover, quantitative real time PCR and Western blot analysis found that Raddeanin A increased Bax expression while reduced Bcl-2, Bcl-xL and Survivin expressions and significantly activated caspase-3, caspase-8, caspase-9 and poly-ADP ribose polymerase (PARP). Besides, Raddeanin A could also up-regulate the expression of reversion inducing cysteine rich protein with Kazal motifs (RECK), E-cadherin (E-cad) and down-regulate the expression of matrix metalloproteinases-2 (MMP-2), MMP-9, MMP-14 and Rhoc. In conclusion, Raddeanin A inhibits proliferation of human GC cells, induces their apoptosis and inhibits the abilities of invasion, migration and adhesion, exhibiting potential to become antitumor drug

  4. Raddeanin A induces human gastric cancer cells apoptosis and inhibits their invasion in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Gang [Department of Oncology, Nanjing University of Chinese Medicine, Nanjing (China); Zou, Xi [Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing (China); Zhou, Jin-Yong [Laboratory Center, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing (China); Sun, Wei [Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing (China); Wu, Jian [Laboratory Center, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing (China); Xu, Jia-Li [Department of Oncology, Nanjing University of Chinese Medicine, Nanjing (China); Wang, Rui-Ping, E-mail: ruipingwang61@hotmail.com [Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing (China)

    2013-09-20

    Highlights: •Raddeanin A is a triterpenoid saponin in herb medicine Anemone raddeana Regel. •Raddeanin A can inhibit 3 kinds of gastric cancer cells’ proliferation and invasion. •Caspase-cascades’ activation indicates apoptosis induced by Raddeanin A. •MMPs, RECK, Rhoc and E-cad are involved in Raddeanin A-induced invasion inhibition. -- Abstract: Raddeanin A is one of the triterpenoid saponins in herbal medicine Anemone raddeana Regel which was reported to suppress the growth of liver and lung cancer cells. However, little was known about its effect on gastric cancer (GC) cells. This study aimed to investigate its inhibitory effect on three kinds of different differentiation stage GC cells (BGC-823, SGC-7901 and MKN-28) in vitro and the possible mechanisms. Proliferation assay and flow cytometry demonstrated Raddeanin A’s dose-dependent inhibitory effect and determined its induction of cells apoptosis, respectively. Transwell assay, wounding heal assay and cell matrix adhesion assay showed that Raddeanin A significantly inhibited the abilities of the invasion, migration and adhesion of the BGC-823 cells. Moreover, quantitative real time PCR and Western blot analysis found that Raddeanin A increased Bax expression while reduced Bcl-2, Bcl-xL and Survivin expressions and significantly activated caspase-3, caspase-8, caspase-9 and poly-ADP ribose polymerase (PARP). Besides, Raddeanin A could also up-regulate the expression of reversion inducing cysteine rich protein with Kazal motifs (RECK), E-cadherin (E-cad) and down-regulate the expression of matrix metalloproteinases-2 (MMP-2), MMP-9, MMP-14 and Rhoc. In conclusion, Raddeanin A inhibits proliferation of human GC cells, induces their apoptosis and inhibits the abilities of invasion, migration and adhesion, exhibiting potential to become antitumor drug.

  5. Doxycycline reverses epithelial-to-mesenchymal transition and suppresses the proliferation and metastasis of lung cancer cells

    OpenAIRE

    Qin, Yuan; Zhang, Qiang; Lee, Shan; Zhong, Wei-long; Liu, Yan-rong; Liu, Hui-Juan; Zhao, Dong; Chen, Shuang; Xiao, Ting; Meng, Jing; Jing, Xue-shuang; Jing WANG; Sun, Bo; Dai, Ting-ting; Yang, Cheng

    2015-01-01

    The gelatinase inhibitor doxycycline is the prototypical antitumor antibiotic. We investigated the effects of doxycycline on the migration, invasion, and metastasis of human lung cancer cell lines and in a mouse model. We also measured the effect of doxycycline on the transcription of epithelial-mesenchymal transition (EMT) markers, and used immunohistochemistry to determine whether EMT reversal was associated with doxycycline inhibition. Doxycycline dose-dependently inhibited proliferation, ...

  6. Down-Regulation of NDUFB9 Promotes Breast Cancer Cell Proliferation, Metastasis by Mediating Mitochondrial Metabolism.

    Science.gov (United States)

    Li, Liang-Dong; Sun, He-Fen; Liu, Xue-Xiao; Gao, Shui-Ping; Jiang, Hong-Lin; Hu, Xin; Jin, Wei

    2015-01-01

    Despite advances in basic and clinical research, metastasis remains the leading cause of death in breast cancer patients. Genetic abnormalities in mitochondria, including mutations affecting complex I and oxidative phosphorylation, are found in breast cancers and might facilitate metastasis. Genes encoding complex I components have significant breast cancer prognostic value. In this study, we used quantitative proteomic analyses to compare a highly metastatic cancer cell line and a parental breast cancer cell line; and observed that NDUFB9, an accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (complex I), was down-regulated in highly metastatic breast cancer cells. Furthermore, we demonstrated that loss of NDUFB9 promotes MDA-MB-231 cells proliferation, migration, and invasion because of elevated levels of mtROS, disturbance of the NAD+/NADH balance, and depletion of mtDNA. We also showed that, the Akt/mTOR/p70S6K signaling pathway and EMT might be involved in this mechanism. Thus, our findings contribute novel data to support the hypothesis that misregulation of mitochondrial complex I NADH dehydrogenase activity can profoundly enhance the aggressiveness of human breast cancer cells, suggesting that complex I deficiency is a potential and important biomarker for further basic research or clinical application. PMID:26641458

  7. Atrazine promotes RM1 prostate cancer cell proliferation by activating STAT3 signaling.

    Science.gov (United States)

    Hu, Kebang; Tian, Yong; Du, Yanwei; Huang, Liandi; Chen, Junyu; Li, Na; Liu, Wei; Liang, Zuowen; Zhao, Lijing

    2016-05-01

    Atrazine, a widely used pesticide, is frequently detected in soil and surface water, which alarms epidemiologists and medical professionals because of its potential deleterious effects on health. Indeed, atrazine is a potent endocrine disruptor that increases aromatase expression in some human cancer cell lines. Both animal and human studies have suggested that atrazine is possibly carcinogenic, although discrepant results have been reported. In this study, RM1 cells were used to explore the atrazine effects on prostate cancer. Proliferation, migration and invasion of RM1 cells were assessed by colony formation, wound-healing and invasion assays, respectively, after in vitro exposure to atrazine. In addition, an RM1 cell xenograft model was generated to evaluate the effects of atrazine in vivo. To explore the molecular mechanisms, qRT‑PCR, immunohistochemistry, and western blot analyses were employed to detect mRNA and protein levels of STAT3 signaling and cell cycle related proteins, including p53, p21, cyclin B1 and cyclin D1. Interestingly, RM1 cell proliferation was increased after treatment with atrazine, concomitantly with STAT3 signaling activation. These results suggest that atrazine promotes RM1 cell growth in vitro and in vivo by activating STAT3 signaling. PMID:26984284

  8. The thioredoxin system in breast cancer cell invasion and migration.

    Science.gov (United States)

    Bhatia, Maneet; McGrath, Kelly L; Di Trapani, Giovanna; Charoentong, Pornpimol; Shah, Fenil; King, Mallory M; Clarke, Frank M; Tonissen, Kathryn F

    2016-08-01

    Metastasis is the most life threatening aspect of breast cancer. It is a multi-step process involving invasion and migration of primary tumor cells with a subsequent colonization of these cells at a secondary location. The aim of the present study was to investigate the role of thioredoxin (Trx1) in the invasion and migration of breast cancer cells and to assess the strength of the association between high levels of Trx1 and thioredoxin reductase (TrxR1) expression with breast cancer patient survival. Our results indicate that the expression of both Trx1 and TrxR1 are statistically significantly increased in breast cancer patient cells compared with paired normal breast tissue from the same patient. Over-expression of Trx1 in MDA-MB-231 breast cancer cell lines enhanced cell invasion in in vitro assays while expression of a redox inactive mutant form of Trx1 (designated 1SS) or the antisense mRNA inhibited cell invasion. Addition of exogenous Trx1 also enhanced cell invasion, while addition of a specific monoclonal antibody that inhibits Trx1 redox function decreased cell invasion. Over-expression of intracellular Trx1 did not increase cell migration but expression of intracellular 1SS inhibited migration. Addition of exogenous Trx1 enhanced cell migration while 1SS had no effect. Treatment with auranofin inhibited TrxR activity, cell migration and clonogenic activity of MDA-MB-231 cells, while increasing reactive oxygen species (ROS) levels. Analysis of 25 independent cohorts with 5910 patients showed that Trx1 and TrxR1 were both associated with a poor patient prognosis in terms of overall survival, distant metastasis free survival and disease free survival. Therefore, targeting the Trx system with auranofin or other specific inhibitors may provide improved breast cancer patient outcomes through inhibition of cancer invasion and migration. PMID:26760912

  9. The thioredoxin system in breast cancer cell invasion and migration

    Directory of Open Access Journals (Sweden)

    Maneet Bhatia

    2016-08-01

    Full Text Available Metastasis is the most life threatening aspect of breast cancer. It is a multi-step process involving invasion and migration of primary tumor cells with a subsequent colonization of these cells at a secondary location. The aim of the present study was to investigate the role of thioredoxin (Trx1 in the invasion and migration of breast cancer cells and to assess the strength of the association between high levels of Trx1 and thioredoxin reductase (TrxR1 expression with breast cancer patient survival. Our results indicate that the expression of both Trx1 and TrxR1 are statistically significantly increased in breast cancer patient cells compared with paired normal breast tissue from the same patient. Over-expression of Trx1 in MDA-MB-231 breast cancer cell lines enhanced cell invasion in in vitro assays while expression of a redox inactive mutant form of Trx1 (designated 1SS or the antisense mRNA inhibited cell invasion. Addition of exogenous Trx1 also enhanced cell invasion, while addition of a specific monoclonal antibody that inhibits Trx1 redox function decreased cell invasion. Over-expression of intracellular Trx1 did not increase cell migration but expression of intracellular 1SS inhibited migration. Addition of exogenous Trx1 enhanced cell migration while 1SS had no effect. Treatment with auranofin inhibited TrxR activity, cell migration and clonogenic activity of MDA-MB-231 cells, while increasing reactive oxygen species (ROS levels. Analysis of 25 independent cohorts with 5910 patients showed that Trx1 and TrxR1 were both associated with a poor patient prognosis in terms of overall survival, distant metastasis free survival and disease free survival. Therefore, targeting the Trx system with auranofin or other specific inhibitors may provide improved breast cancer patient outcomes through inhibition of cancer invasion and migration.

  10. h-prune affects anaplastic thyroid cancer invasion and metastasis.

    Science.gov (United States)

    Nambu, Junko; Kobayashi, Tsuyoshi; Hashimoto, Masakazu; Tashiro, Hirotaka; Sugino, Keizo; Shimamoto, Fumio; Kikuchi, Akira; Ohdan, Hideki

    2016-06-01

    Anaplastic thyroid cancer is one of the most aggressive human malignancies and is resistant to multimodal treatments. The expression of h-prune, the human homologue of Drosophila prune, has been reported to be correlated with progression and aggressiveness in various cancers including breast, colorectal and pancreatic cancers. We examined the role of h-prune in anaplastic thyroid cancer cell migration, invasion and metastasis. Immunohistochemical analysis of h-prune was performed with 15 surgically resected specimens of anaplastic thyroid cancers. To investigate cell motility, Boyden chamber, wound healing and matrigel invasion assays were performed using cells from anaplastic thyroid cancer cell lines. A murine orthotopic thyroid cancer model was used to investigate metastatic ability. In the immunohistochemical analysis, only weak focal or no staining of h-prune was observed in non-tumor tissue. In contrast, diffuse staining of h-prune was observed in anaplastic thyroid cancer and lymph node metastasis samples. Both inhibition of h-prune phosphodiesterase activity with dipyridamole and small interfering RNA for h-prune suppressed 8505C and KTC-3 cell motility. In addition, treatment with dipyridamole and decreased expression of h-prune suppressed tumor invasion and pulmonary metastasis in a NOD/Shi-scid, IL-2Rγnull (NOG) mouse orthotopic thyroid cancer model. In conclusion, h-prune is frequently expressed in anaplastic thyroid cancer cells and lymph nodes metastasis, and promotes migration and invasion of anaplastic thyroid cancer cells and metastasis in an anaplastic thyroid cancer model. Thus, h-prune shows promise as a targeting candidate against anaplastic thyroid cancer. PMID:27109060

  11. The thioredoxin system in breast cancer cell invasion and migration

    OpenAIRE

    Maneet Bhatia; Kelly L. McGrath; Giovanna Di Trapani; Pornpimol Charoentong; Fenil Shah; Mallory M. King; Clarke, Frank M.; Tonissen, Kathryn F

    2016-01-01

    Metastasis is the most life threatening aspect of breast cancer. It is a multi-step process involving invasion and migration of primary tumor cells with a subsequent colonization of these cells at a secondary location. The aim of the present study was to investigate the role of thioredoxin (Trx1) in the invasion and migration of breast cancer cells and to assess the strength of the association between high levels of Trx1 and thioredoxin reductase (TrxR1) expression with breast cancer patient ...

  12. Migration and invasion is inhibited by silencing ROR1 and ROR2 in chemoresistant ovarian cancer.

    Science.gov (United States)

    Henry, C E; Llamosas, E; Djordjevic, A; Hacker, N F; Ford, C E

    2016-01-01

    Ovarian cancer survival remains poor despite recent advances in our understanding of genetic profiles. Unfortunately, the majority of ovarian cancer patients have recurrent disease after chemotherapy and lack other treatment options. Wnt signalling has been extensively implicated in cancer progression and chemoresistance. Therefore, we investigated the previously described Wnt receptors ROR1 and ROR2 as regulators of epithelial-to-mesenchymal transition (EMT) in a clinically relevant cell line model. The parental A2780- and cisplatin-resistant A2780-cis cell lines were used as a model of ovarian cancer chemoresistance. Proliferation, adhesion, migration and invasion were measured after transient overexpression of ROR1 and ROR2 in the parental A2780 cell line, and silencing of ROR1 and ROR2 in the A2780-cis cell line. Here we show that ROR1 and ROR2 expression is increased in A2780-cis cells, alongside β-catenin-independent Wnt targets. Knockdown of ROR1 and ROR2 significantly inhibited cell migration and invasion and simultaneous knockdown of ROR1 and ROR2 significantly sensitised cells to cisplatin, whilereas ROR overexpression in the parental cell line increased cell invasion. Therefore, ROR1 and ROR2 have the potential as novel drug targets in metastatic and recurrent ovarian cancer patients. PMID:27239958

  13. Subcurative radiation significantly increases cell proliferation, invasion, and migration of primary glioblastoma multiforme in vivo

    Directory of Open Access Journals (Sweden)

    Adarsh Shankar

    2014-03-01

    Full Text Available Tumor cell proliferation, infiltration, migration, and neovascularization are known causes of treatment resistance in glioblastoma multiforme (GBM. The purpose of this study was to determine the effect of radiation on the growth characteristics of primary human GBM developed in a nude rat. Primary GBM cells grown from explanted GBM tissues were implanted orthotopically in nude rats. Tumor growth was confirmed by magnetic resonance imaging on day 77 (baseline after implantation. The rats underwent irradiation to a dose of 50 Gy delivered subcuratively on day 84 postimplantation (n = 8, or underwent no radiation (n = 8. Brain tissues were obtained on day 112 (nonirradiated or day 133 (irradiated. Immunohistochemistry was performed to determine tumor cell proliferation (Ki-67 and to assess the expression of infiltration marker (matrix metalloproteinase-2, MMP-2 and cell migration marker (CD44. Tumor neovascularization was assessed by microvessel density using von-Willebrand factor (vWF staining. Magnetic resonance imaging showed well-developed, infiltrative tumors in 11 weeks postimplantation. The proportion of Ki-67-positive cells in tumors undergoing radiation was (71+/- 15% compared with (25 +/- 12% in the nonirradiated group (P = 0.02. The number of MMP-2-positive areas and proportion of CD44-positive cells were also high in tumors receiving radiation, indicating great invasion and infiltration. Microvessel density analysis did not show a significant difference between nonirradiated and irradiated tumors. Taken together, we found that subcurative radiation significantly increased proliferation, invasion, and migration of primary GBM. Our study provides insights into possible mechanisms of treatment resistance following radiation therapy for GBM.

  14. Growth factor modulation of fibroblast proliferation, differentiation, and invasion: implications for tissue valve engineering.

    Science.gov (United States)

    Narine, Kishan; De Wever, Olivier; Van Valckenborgh, Dillis; Francois, Katrien; Bracke, Marc; DeSmet, Stefaan; Mareel, Marc; Van Nooten, Guido

    2006-10-01

    We have previously shown that transforming growth factor-beta1 (TGF-beta1) stimulates transdifferentiation of fibroblasts into smooth muscle alpha-actin (alpha-SMA) positive myofibroblasts. However, TGF-beta, as such, is unsuitable for effective population of a heart valve matrix, because it dose-dependently inhibits growth of fibroblasts. The aim of this study was to investigate combinations of other growth factors with TGF-beta to stimulate the proliferation of suitably differentiated cells and to enhance their invasion into aortic valve matrices. Human dermal mesenchymal cells (hDMC1.1) were treated with combinations of growth factors to stimulate these cells to trans-differentiate into myofibroblasts, to proliferate, and to invade. Growth factors were chosen after expression of their respective receptors was confirmed in hDMC1.1 using reverse transcriptase polymerase chain reaction. We combined TGF-beta with several growth factors such as insulin-like growth factor (IGF-1, IGF-2), epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), and platelet-derived growth factor (PDGF-AA, PDGF-BB, and PDGFAB). Nuclear Ki67 staining, MTT assay, and cell counting revealed that only EGF and bFGF were capable of overcoming TGF-beta-induced growth inhibition. However, bFGF but not EGF inhibited TGF-beta-induced alpha-SMA expression, as evidenced by immuno-cytochemistry and Western blotting. A growth factor cocktail (TGF-beta, EGF, bFGF) has been established that maintains TGF-beta-induced trans-differentiation but overcomes TGF-beta-induced growth inhibition while stimulating fibroblast proliferation and invasion. PMID:17518640

  15. Alterations in integrin expression modulates invasion of pancreatic cancer cells.

    LENUS (Irish Health Repository)

    Walsh, Naomi

    2009-01-01

    BACKGROUND: Factors mediating the invasion of pancreatic cancer cells through the extracellular matrix (ECM) are not fully understood. METHODS: In this study, sub-populations of the human pancreatic cancer cell line, MiaPaCa-2 were established which displayed differences in invasion, adhesion, anoikis, anchorage-independent growth and integrin expression. RESULTS: Clone #3 displayed higher invasion with less adhesion, while Clone #8 was less invasive with increased adhesion to ECM proteins compared to MiaPaCa-2. Clone #8 was more sensitive to anoikis than Clone #3 and MiaPaCa-2, and displayed low colony-forming efficiency in an anchorage-independent growth assay. Integrins beta 1, alpha 5 and alpha 6 were over-expressed in Clone #8. Using small interfering RNA (siRNA), integrin beta1 knockdown in Clone #8 cells increased invasion through matrigel and fibronectin, increased motility, decreased adhesion and anoikis. Integrin alpha 5 and alpha 6 knockdown also resulted in increased motility, invasion through matrigel and decreased adhesion. CONCLUSION: Our results suggest that altered expression of integrins interacting with different extracellular matrixes may play a significant role in suppressing the aggressive invasive phenotype. Analysis of these clonal populations of MiaPaCa-2 provides a model for investigations into the invasive properties of pancreatic carcinoma.

  16. EphrinB2 drives perivascular invasion and proliferation of glioblastoma stem-like cells

    Science.gov (United States)

    Krusche, Benjamin; Ottone, Cristina; Clements, Melanie P; Johnstone, Ewan R; Goetsch, Katrin; Lieven, Huang; Mota, Silvia G; Singh, Poonam; Khadayate, Sanjay; Ashraf, Azhaar; Davies, Timothy; Pollard, Steven M; De Paola, Vincenzo; Roncaroli, Federico; Martinez-Torrecuadrada, Jorge; Bertone, Paul; Parrinello, Simona

    2016-01-01

    Glioblastomas (GBM) are aggressive and therapy-resistant brain tumours, which contain a subpopulation of tumour-propagating glioblastoma stem-like cells (GSC) thought to drive progression and recurrence. Diffuse invasion of the brain parenchyma, including along preexisting blood vessels, is a leading cause of therapeutic resistance, but the mechanisms remain unclear. Here, we show that ephrin-B2 mediates GSC perivascular invasion. Intravital imaging, coupled with mechanistic studies in murine GBM models and patient-derived GSC, revealed that endothelial ephrin-B2 compartmentalises non-tumourigenic cells. In contrast, upregulation of the same ephrin-B2 ligand in GSC enabled perivascular migration through homotypic forward signalling. Surprisingly, ephrin-B2 reverse signalling also promoted tumourigenesis cell-autonomously, by mediating anchorage-independent cytokinesis via RhoA. In human GSC-derived orthotopic xenografts, EFNB2 knock-down blocked tumour initiation and treatment of established tumours with ephrin-B2-blocking antibodies suppressed progression. Thus, our results indicate that targeting ephrin-B2 may be an effective strategy for the simultaneous inhibition of invasion and proliferation in GBM. DOI: http://dx.doi.org/10.7554/eLife.14845.001 PMID:27350048

  17. Phenotype-dependent effects of EpCAM expression on growth and invasion of human breast cancer cell lines

    International Nuclear Information System (INIS)

    The epithelial cell adhesion molecule (EpCAM) has been shown to be overexpressed in breast cancer and stem cells and has emerged as an attractive target for immunotherapy of breast cancer patients. This study analyzes the effects of EpCAM on breast cancer cell lines with epithelial or mesenchymal phenotype. For this purpose, shRNA-mediated knockdown of EpCAM gene expression was performed in EpCAMhigh breast cancer cell lines with epithelial phenotype (MCF-7, T47D and SkBR3). Moreover, EpCAMlow breast carcinoma cell lines with mesenchymal phenotype (MDA-MB-231, Hs578t) and inducible overexpression of EpCAM were used to study effects on proliferation, migration and in vivo growth. In comparison to non-specific silencing controls (n/s-crtl) knockdown of EpCAM (E#2) in EpCAMhigh cell lines resulted in reduced cell proliferation under serum-reduced culture conditions. Moreover, DNA synthesis under 3D culture conditions in collagen was significantly reduced. Xenografts of MCF-7 and T47D cells with knockdown of EpCAM formed smaller tumors that were less invasive. EpCAMlow cell lines with tetracycline-inducible overexpression of EpCAM showed no increased cell proliferation or migration under serum-reduced growth conditions. MDA-MB-231 xenografts with EpCAM overexpression showed reduced invasion into host tissue and more infiltrates of chicken granulocytes. The role of EpCAM in breast cancer strongly depends on the epithelial or mesenchymal phenotype of tumor cells. Cancer cells with epithelial phenotype need EpCAM as a growth- and invasion-promoting factor, whereas tumor cells with a mesenchymal phenotype are independent of EpCAM in invasion processes and tumor progression. These findings might have clinical implications for EpCAM-based targeting strategies in patients with invasive breast cancer

  18. Novel medicinal mushroom blend suppresses growth and invasiveness of human breast cancer cells.

    Science.gov (United States)

    Jiang, Jiahua; Sliva, Daniel

    2010-12-01

    Mushrooms are an integral part of Traditional Chinese Medicine (TCM), and have been used for millennia to prevent or treat a variety of diseases. Currently mushrooms or their extracts are used globally in the form of dietary supplements. In the present study we have evaluated the anticancer effects of the dietary supplement, MycoPhyto® Complex (MC), a novel medicinal mushroom blend which consists of a blend of mushroom mycelia from the species Agaricus blazei, Cordyceps sinensis, Coriolus versicolor, Ganoderma lucidum, Grifola frondosa and Polyporus umbellatus, and β-1,3-glucan isolated from the yeast, Saccharomyces cerevisiae. Here, we show that MC demonstrates cytostatic effects through the inhibition of cell proliferation and cell cycle arrest at the G2/M phase of highly invasive human breast cancer cells MDA-MB-231. DNA-microarray analysis revealed that MC inhibits expression of cell cycle regulatory genes (ANAPC2, ANAPC2, BIRC5, Cyclin B1, Cyclin H, CDC20, CDK2, CKS1B, Cullin 1, E2F1, KPNA2, PKMYT1 and TFDP1). Moreover, MC also suppresses the metastatic behavior of MDA-MB-231 by the inhibition of cell adhesion, cell migration and cell invasion. The potency of MC to inhibit invasiveness of breast cancer cells is linked to the suppression of secretion of the urokinase plasminogen activator (uPA) from MDA-MB-231 cells. In conclusion, the MC dietary supplement could have potential therapeutic value in the treatment of invasive human breast cancer. PMID:21042722

  19. Minimally Invasive Treatment for Lung Cancer

    Medline Plus

    Full Text Available ... the effects of years and years of tobacco exposure and maybe a lifetime of living in the ... and minimally-invasive surgery to have the best exposure that you can. What we like about our ...

  20. Minimally Invasive Treatment for Lung Cancer

    Medline Plus

    Full Text Available ... kinds of impossible crevices, and it’s really a big advantage to have these flexible instruments versus some ... cannot tolerate, you know, large incisions, you know, big lobes being removed. And using the minimally invasive ...

  1. Sweat but no gain: inhibiting proliferation of multidrug resistant cancer cells with "ersatzdroges".

    Science.gov (United States)

    Kam, Yoonseok; Das, Tuhin; Tian, Haibin; Foroutan, Parastou; Ruiz, Epifanio; Martinez, Gary; Minton, Susan; Gillies, Robert J; Gatenby, Robert A

    2015-02-15

    ATP-binding cassette (ABC) drug transporters consuming ATPs for drug efflux is a common mechanism by which clinical cancers develop multidrug resistance (MDR). We hypothesized that MDR phenotypes could be suppressed by administration of "ersatzdroges," nonchemotherapy drugs that are, nevertheless, ABC substrates. We reasoned that, through prolonged activation of the ABC pumps, ersatzdroges will force MDR cells to divert limited resources from proliferation and invasion thus delaying disease progression. We evaluated ABC substrates as ersatzdroge by comparing their effects on proliferation and survival of MDR cell lines (MCF-7/Dox and 8226/Dox40) with the effects on the drug-sensitive parental lines (MCF-7 and 8226/s, respectively) in glucose-limited condition. The changes in glucose and energy demands were also examined in vitro and in vivo. MCF-7/Dox showed higher ATP demand and susceptibility to glucose resource limitation. Ersatzdroges significantly decreased proliferation of MCF-7/Dox when the culture media contained physiological glucose concentrations (1.0 g/L) or less, but had no effect on MCF-7. Similar evidence was obtained from 8226/Dox40 and 8226/s comparison. In vivo 18F-FDG-PET imaging demonstrated that glucose uptake was increased by systemic administration of an ersatzdroge in tumors composed of MDR. These results suggest that administration of ersatzdroges, by increasing the metabolic cost of resistance, can suppress proliferation of drug-resistance phenotypes. This provides a novel and relatively simple application model of evolution-based strategy, which can exploit the cost of resistance to delay proliferation of drug-resistant cancer phenotypes. Furthermore, suggested is the potential of ersatzdroges to identify tumors or regions of tumors that express the MDR phenotype. PMID:25156304

  2. Sweat but no gain: Inhibiting proliferation of multidrug resistant cancer cells with “Ersatzdroges”

    Science.gov (United States)

    Kam, Yoonseok; Das, Tuhin; Tian, Haibin; Foroutan, Parastou; Ruiz, Epifanio; Martinez, Gary; Minton, Susan; Gillies, Robert J.; Gatenby, Robert A.

    2014-01-01

    ATP-binding cassette (ABC) drug transporters consuming ATPs for drug efflux is a common mechanism by which clinical cancers develop multidrug resistance (MDR). We hypothesized that MDR phenotypes could be suppressed by administration of “ersatzdroges”, non-chemotherapy drugs that are, nevertheless, ABC substrates. We reasoned that, through prolonged activation of the ABC pumps, ersatzdroges will force MDR cells to divert limited resources from proliferation and invasion thus delaying disease progression. We evaluated ABC substrates as ersatzdroge by comparing their effects on proliferation and survival of MDR cell lines (MCF-7/Dox and 8226/Dox40) with the effects on the drug-sensitive parental lines (MCF-7 and 8226/s, respectively) in glucose-limited condition. The changes in glucose and energy demands were also examined in vitro and in vivo. MCF-7/Dox showed higher ATP demand and susceptibility to glucose resource limitation. Ersatzdroges significantly decreased proliferation of MCF-7/Dox when the culture media contained physiological glucose concentrations (1.0 g/L) or less, but had no effect on MCF-7. Similar evidence was obtained from 8226/Dox40 and 8226/s comparison. In vivo 18F-FDG-PET imaging demonstrated that glucose uptake was increased by systemic administration of an ersatzdroge in tumors composed of MDR. These results suggest that administration of ersatzdroges, by increasing the metabolic cost of resistance, can suppress proliferation of drug-resistance phenotypes. This provides a novel and relatively simple application model of evolution-based strategy which can exploit the cost of resistance to delay proliferation of drug-resistant cancer phenotypes. Furthermore, suggested is the potential of ersatzdroges to identify tumors or regions of tumors that express the MDR phenotype. PMID:25156304

  3. Minimally Invasive Treatment for Lung Cancer

    Medline Plus

    Full Text Available ... is still less than the total number of deaths from lung cancer in general. I hope that our discussion today will be informative to you and help us to help you understand lung cancer as it ...

  4. Minimally Invasive Treatment for Lung Cancer

    Medline Plus

    Full Text Available ... to try and determine if the cancer has spread beyond the primary lesion itself, you know. And ... Okay. And with most cancers, you know, they spread first by going through what we call the “ ...

  5. Minimally Invasive Treatment for Lung Cancer

    Medline Plus

    Full Text Available ... an oropharyngeal cancer, the cancer of the upper airway here in the throat. And during the workup ... room and performed a thoracoscopic lobectomy because we wanted to minimize the effects of surgery, major lung ...

  6. Minimally Invasive Treatment for Lung Cancer

    Medline Plus

    Full Text Available ... and prostate cancer, and, in fact, if you add up the mortalities from those three cancers alone, ... for this patient or in other cases a combined approach of radiation, with or without chemotherapy, in ...

  7. Minimally Invasive Treatment for Lung Cancer

    Medline Plus

    Full Text Available ... Center in New York City. During the program, it’s easy for you to make referrals, make appointments ... to try to tackle the lung cancer as it stands in 2009. In 2009, lung cancer is ...

  8. Voltage-Gated Ion Channels in Cancer Cell Proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Vidhya R.; Perez-Neut, Mathew [Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago 2160 S. 1st Ave, Maywood, IL 60153 (United States); Kaja, Simon [Department of Ophthalmology and Vision Research Center, School of Medicine, University of Missouri-Kansas City, 2411 Holmes St., Kansas City, MO 64108 (United States); Gentile, Saverio, E-mail: sagentile@luc.edu [Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago 2160 S. 1st Ave, Maywood, IL 60153 (United States)

    2015-05-22

    Changes of the electrical charges across the surface cell membrane are absolutely necessary to maintain cellular homeostasis in physiological as well as in pathological conditions. The opening of ion channels alter the charge distribution across the surface membrane as they allow the diffusion of ions such as K{sup +}, Ca{sup ++}, Cl{sup −}, Na{sup +}. Traditionally, voltage-gated ion channels (VGIC) are known to play fundamental roles in controlling rapid bioelectrical signaling including action potential and/or contraction. However, several investigations have revealed that these classes of proteins can also contribute significantly to cell mitotic biochemical signaling, cell cycle progression, as well as cell volume regulation. All these functions are critically important for cancer cell proliferation. Interestingly, a variety of distinct VGICs are expressed in different cancer cell types, including metastasis but not in the tissues from which these tumors were generated. Given the increasing evidence suggesting that VGIC play a major role in cancer cell biology, in this review we discuss the role of distinct VGIC in cancer cell proliferation and possible therapeutic potential of VIGC pharmacological manipulation.

  9. RNA interference targeting raptor inhibits proliferation of gastric cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu, William Ka Kei; Lee, Chung Wa [Institute of Digestive Diseases, LKS Institute of Health Sciences and Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong (China); Cho, Chi Hin [Institute of Digestive Diseases, LKS Institute of Health Sciences and Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong (China); School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong (China); Chan, Francis Ka Leung [Institute of Digestive Diseases, LKS Institute of Health Sciences and Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong (China); Yu, Jun, E-mail: junyu@cuhk.edu.hk [Institute of Digestive Diseases, LKS Institute of Health Sciences and Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong (China); Sung, Joseph Jao Yiu, E-mail: joesung@cuhk.edu.hk [Institute of Digestive Diseases, LKS Institute of Health Sciences and Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong (China)

    2011-06-10

    Mammalian target of rapamycin complex 1 (mTORC1) is dysregulated in gastric cancer. The biologic function of mTORC1 in gastric carcinogenesis is unclear. Here, we demonstrate that disruption of mTORC1 function by RNA interference-mediated downregulation of raptor substantially inhibited gastric cancer cell proliferation through induction of G{sub 0}/G{sub 1}-phase cell cycle arrest. The anti-proliferative effect was accompanied by concomitant downregulation of activator protein-1 and upregulation of Smad2/3 transcriptional activities. In addition, the expression of cyclin D{sub 3} and p21{sup Waf1}, which stabilizes cyclin D/cdk4 complex for G{sub 1}-S transition, was reduced by raptor knockdown. In conclusion, disruption of mTORC1 inhibits gastric cancer cell proliferation through multiple pathways. This discovery may have an implication in the application of mTORC1-directed therapy for the treatment of gastric cancer.

  10. A genome-wide systematic analysis reveals different and predictive proliferation expression signatures of cancerous vs. non-cancerous cells.

    Directory of Open Access Journals (Sweden)

    Yedael Y Waldman

    Full Text Available Understanding cell proliferation mechanisms has been a long-lasting goal of the scientific community and specifically of cancer researchers. Previous genome-scale studies of cancer proliferation determinants have mainly relied on knockdown screens aimed to gauge their effects on cancer growth. This powerful approach has several limitations such as off-target effects, partial knockdown, and masking effects due to functional backups. Here we employ a complementary approach and assign each gene a cancer Proliferation Index (cPI that quantifies the association between its expression levels and growth rate measurements across 60 cancer cell lines. Reassuringly, genes found essential in cancer gene knockdown screens exhibit significant positive cPI values, while tumor suppressors exhibit significant negative cPI values. Cell cycle, DNA replication, splicing and protein production related processes are positively associated with cancer proliferation, while cellular migration is negatively associated with it - in accordance with the well known "go or grow" dichotomy. A parallel analysis of genes' non-cancerous proliferation indices (nPI across 224 lymphoblastoid cell lines reveals surprisingly marked differences between cancerous and non-cancerous proliferation. These differences highlight genes in the translation and spliceosome machineries as selective cancer proliferation-associated proteins. A cross species comparison reveals that cancer proliferation resembles that of microorganisms while non-cancerous proliferation does not. Furthermore, combining cancerous and non-cancerous proliferation signatures leads to enhanced prediction of patient outcome and gene essentiality in cancer. Overall, these results point to an inherent difference between cancerous and non-cancerous proliferation determinants, whose understanding may contribute to the future development of novel cancer-specific anti-proliferative drugs.

  11. Non-anti-mitotic concentrations of taxol reduce breast cancer cell invasiveness

    International Nuclear Information System (INIS)

    Taxol is widely used in breast cancer chemotherapy. Its effects are primarily attributed to its anti-mitotic activity. Microtubule perturbators also exert antimetastatic activities which cannot be explained solely by the inhibition of proliferation. Voltage-dependent sodium channels (NaV) are abnormally expressed in the highly metastatic breast cancer cell line MDA-MB-231 and not in MDA-MB-468 cell line. Inhibiting NaV activity with tetrodotoxin is responsible for an approximately 0.4-fold reduction of MDA-MB-231 cell invasiveness. In this study, we focused on the effect of a single, 2-h application of 10 nM taxol on the two cell lines MDA-MB-231 and MDA-MB-468. At this concentration, taxol had no effect on proliferation after 7 days and on migration in any cell line. However it led to a 40% reduction of transwell invasion of MDA-MB-231 cells. There was no additive effect when taxol and tetrodotoxin were simultaneously applied. NaV activity, as assessed by patch-clamp, indicates that it was changed by taxol pre-treatment. We conclude that taxol can exert anti-tumoral activities, in cells expressing NaV, at low doses that have no effect on cell proliferation. This effect might be due to a modulation of signalling pathways involving sodium channels.

  12. Influence of BMSCs-derived exosome on proliferation and invasion of mouse breast cancer cells 4 T1 and the mechanism%BMSCs 来源的外泌体对小鼠乳腺癌细胞4 T1增殖、侵袭的影响及机制探讨

    Institute of Scientific and Technical Information of China (English)

    王丹丹; 陈建中; 亢春彦

    2015-01-01

    目的:观察骨髓间充质干细胞(BMSCs)来源的外泌体(exosome)对小鼠乳腺癌细胞4T1增殖、侵袭的影响,并探讨其可能机制。方法将小鼠乳腺癌细胞4T1随机分为3组,4T1+vehicle组仅加入400μL无血清培养基,4T1+exosome组加入400μL由无血清培养基配置的exosome,4T1+exosome+磷脂酰肌醇3激酶( PI3K)/Akt信号通路阻断剂( Y294002)组加入400μL终浓度为5μmol/mL Y294002及400μg/mL exosome的培养基。分别采用MTT法、细胞划痕实验、Western blotting法检测各组细胞增殖、迁移和侵袭能力以及PI3K/Akt信号通路相关蛋白。结果4T1+exosome组、4T1+vehicle组、4T1+exosome+Y294002组细胞增殖抑制率分别为0.713%±0.050%、0.401%±0.030%、0.459%±0.800%,4T1+exosome组分别与4T1+vehicle组、4T1+exosome+Y294002组比较,P均<0.05。4T1+exosome组、4T1+vehicle组、4T1+exosome+Y294002组细胞迁移距离分别为(388.0±36.1)、(295.0±34.2)、(275.0±63.5)μm,4T1+exosome组分别与4T1+vehicle组、4T1+exosome+Y294002组比较,P均<0.05。4T1+exosome组p-AKT、β-catenin OD值分别为0.30±0.11、0.30±0.08,4T1+vehicle组分别为1.10±0.41、0.70±0.08,4T1+exosome+Y294002组分别为0.40±0.13、0.30±0.07,4T1+exosome组分别与4T1+vehicle组、4T1+exosome+Y294002组比较,P均<0.05。结论 BMSCs来源的exosome能够增加小鼠乳腺癌细胞4T1的增殖、迁移及侵袭能力,其机制可能与上调PI3K/Akt信号通路有关。%Objective To observe the influence of bone marrow mesenchymal stem cells ( BMSCs)-derived exosome on the proliferation and invasion of mouse breast cancer cells 4T1 and to investigate the mechanism.Methods The mouse breast cancer cells 4T1 were randomly divided into three groups:4T1+vehicle group, 4T1+exosome group and 4T1+exosome+Y294002 (an

  13. Perineural Invasion in Pancreatic Cancer: Advanced Research in the Neuro-cancer Interactions

    Directory of Open Access Journals (Sweden)

    Xiao-hong SHEN

    2010-12-01

    Full Text Available Pancreatic Cancer (PCa is characterized by prominently local nerve alterations and perineural invasion (PNI, which frequently affects the extrapancreatic nerve plexus, causing severe pain and retropancreatic tumor extension. It precludes curative resection, promotes local recurrence, and at the last negatively influences the prognosis of patients. Recent research on PNI in PCa has revealed the critical involvement of numerous nerve- or cancer cell-derived molecules in vitro and in vivo. However, the mechanisms contributing to alteration and invasion of intrapancreatic nerves and the spread of cancer cells along extrapancreatic nerves in pancreatic cancer patients are still poorly understood. This review focuses on perineural invasion in pancreatic cancer and provides an outline of the characteristics and molecular mechanisms of perineural invasion in pancreatic cancer.

  14. Minimally Invasive Esophagectomy for Cancer -Short Up-to-Date

    Directory of Open Access Journals (Sweden)

    Radu Mircea Neagoe

    2014-07-01

    Full Text Available Surgery remains the main treatment for localized resectable esophageal cancer. Open esophagectomy is still the standard surgical approach for esophageal cancer but it has a lower patient satisfaction when compared with other treatment options. In the era of “key-hole” surgeries, minimally invasive esophagectomy (MIE stands as a solution to improve the results after standard open esophagectomies. The aim of the present paper is to provide a short update regarding the minimally invasive esophagectomy, with special emphasis on its indications, results and current controversies.

  15. URG11 promotes gastric cancer growth and invasion by activation of β-catenin signalling pathway

    Science.gov (United States)

    Du, Rui; Xia, Lin; Sun, Shiren; Lian, Zhaorui; Zou, Xue; Gao, Juan; Xie, Huahong; Fan, Rui; Song, Jiugang; Li, Xiaohua; Liu, Jie; Fan, Daiming

    2010-01-01

    Abstract Upregulated gene 11 (URG11), a new gene upregulated by Heptatitis B Virus X protein (HBx), was previously shown to activate β-catenin and promote hepatocellular growth and tumourigenesis. Although the oncogenic role of URG11 in the development of hepatocellular carcinoma has been well documented, its relevance to other human malignancies and the underlying molecular mechanisms remain largely unknown. Here we reported a novel function of URG11 to promote gastric cancer growth and metastasis. URG11 was found to be highly expressed in gastric cancer tissues compared with adjacent nontumourous ones by immunohistochemical staining and western blot. Knockdown of URG11 expression by small interfering RNA (siRNA) effectively attenuated the proliferation, anchorage-independent growth, invasiveness and metastatic potential of gastric cancer cells. URG11 inhibition led to decreased expression of β-catenin and its nuclear accumulation in gastric cancer cells and extensive costaining between URG11 and β-catenin was observed in gastric cancer tissues. Transient transfection assays with the β-catenin promoter showed that it was inhibited by URG11-specific small inhibitory RNA. Moreover, suppression of endogenous URG11 expression results in decreased activation of β-catenin/TCF and its downstream effector genes, cyclinD1 and membrane type 1 matrix metallopeptidase (MT1-MMP), which are known to be involved in cell proliferation and invasion, respectively. Taken together, our data suggest that URG11 contributes to gastric cancer growth and metastasis at least partially through activation of β-catenin signalling pathway. These findings also propose a promising target for gene therapy in gastric cancer. PMID:19413886

  16. Subcurative radiation significantly increases cell proliferation, invasion, and migration of primary glioblastoma multiforme in vivo

    Institute of Scientific and Technical Information of China (English)

    Adarsh Shankar; Robert A. Knight; Stephen Brown; Ali S. Arbab; Sanath Kumar; Asm Iskander; Nadimpalli RS Varma; Branislava Janic; Ana deCarvalho; Tom Mikkelsen; Joseph A. Frank; Meser M. Ali

    2014-01-01

    Tumor cellproliferation, infiltration, migration, and neovascularization are known causes of treatment resistance in glioblastoma multiforme (GBM). The purpose of this study was to determine the effect of radiation on the growth characteristics of primary human GBM developed in a nude rat. Primary GBM cells grown from explanted GBM tissues were implanted orthotopically in nude rats. Tumor growth was confirmed by magnetic resonance imaging on day 77 (baseline) after implantation. The rats underwent irradiation to a dose of 50 Gy delivered subcuratively on day 84 postimplantation (n= 8), or underwent no radiation (n= 8). Brain tissues were obtained on day 112 (nonirradiated) or day 133 (irradiated). Immunohistochemistry was performed to determine tumor cell proliferation (Ki-67) and to assess the expression of infiltration marker (matrix metalloproteinase-2, MMP-2) and cell migration marker (CD44). Tumor neovascularization was assessed by microvessel density using von-Willebrand factor (vWF) staining. Magnetic resonance imaging showed well-developed, infiltrative tumors in 11 weeks postimplantation. The proportion of Ki-67-positive cells in tumors undergoing radiation was (71 ± 15)%compared with (25 ± 12)%in the nonirradiated group (P=0.02). The number of MMP-2-positive areas and proportion of CD44-positive cells were also high in tumors receiving radiation, indicating great invasion and infiltration. Microvessel density analysis did not show a significant difference between nonirradiated and irradiated tumors. Taken together, we found that subcurative radiation significantly increased proliferation, invasion, and migration of primary GBM. Our study provides insights into possible mechanisms of treatment resistance fol owing radiation therapy for GBM.

  17. A microscopic landscape of the invasive breast cancer genome

    Science.gov (United States)

    Ping, Zheng; Xia, Yuchao; Shen, Tiansheng; Parekh, Vishwas; Siegal, Gene P.; Eltoum, Isam-Eldin; He, Jianbo; Chen, Dongquan; Deng, Minghua; Xi, Ruibin; Shen, Dejun

    2016-01-01

    Histologic grade is one of the most important microscopic features used to predict the prognosis of invasive breast cancer and may serve as a marker for studying cancer driving genomic abnormalities in vivo. We analyzed whole genome sequencing data from 680 cases of TCGA invasive ductal carcinomas of the breast and correlated them to corresponding pathology information. Ten genetic abnormalities were found to be statistically associated with histologic grade, including three most prevalent cancer driver events, TP53 and PIK3CA mutations and MYC amplification. A distinct genetic interaction among these genomic abnormalities was revealed as measured by the histologic grading score. While TP53 mutation and MYC amplification were synergistic in promoting tumor progression, PIK3CA mutation was found to have alleviated the oncogenic effect of either the TP53 mutation or MYC amplification, and was associated with a significant reduction in mitotic activity in TP53 mutated and/or MYC amplified breast cancer. Furthermore, we discovered that different types of genetic abnormalities (mutation versus amplification) within the same cancer driver gene (PIK3CA or GATA3) were associated with opposite histologic changes in invasive breast cancer. In conclusion, our study suggests that histologic grade may serve as a biomarker to define cancer driving genetic events in vivo. PMID:27283966

  18. A microscopic landscape of the invasive breast cancer genome.

    Science.gov (United States)

    Ping, Zheng; Xia, Yuchao; Shen, Tiansheng; Parekh, Vishwas; Siegal, Gene P; Eltoum, Isam-Eldin; He, Jianbo; Chen, Dongquan; Deng, Minghua; Xi, Ruibin; Shen, Dejun

    2016-01-01

    Histologic grade is one of the most important microscopic features used to predict the prognosis of invasive breast cancer and may serve as a marker for studying cancer driving genomic abnormalities in vivo. We analyzed whole genome sequencing data from 680 cases of TCGA invasive ductal carcinomas of the breast and correlated them to corresponding pathology information. Ten genetic abnormalities were found to be statistically associated with histologic grade, including three most prevalent cancer driver events, TP53 and PIK3CA mutations and MYC amplification. A distinct genetic interaction among these genomic abnormalities was revealed as measured by the histologic grading score. While TP53 mutation and MYC amplification were synergistic in promoting tumor progression, PIK3CA mutation was found to have alleviated the oncogenic effect of either the TP53 mutation or MYC amplification, and was associated with a significant reduction in mitotic activity in TP53 mutated and/or MYC amplified breast cancer. Furthermore, we discovered that different types of genetic abnormalities (mutation versus amplification) within the same cancer driver gene (PIK3CA or GATA3) were associated with opposite histologic changes in invasive breast cancer. In conclusion, our study suggests that histologic grade may serve as a biomarker to define cancer driving genetic events in vivo. PMID:27283966

  19. Cancer-Associated Adipocytes Exhibit an ActivatedPhenotype and Contribute to Breast Cancer Invasion

    OpenAIRE

    2011-01-01

    Early local tumor invasion in breast cancer results in a likely encounter between cancer cells and matureadipocytes, but the role of these fat cells in tumor progression remains unclear. We show that murine and humantumor cells cocultivated with mature adipocytes exhibit increased invasive capacities in vitro and in vivo, usingan original two-dimensional coculture system. Likewise, adipocytes cultivated with cancer cells also exhibit analtered phenotype in terms of delipidation and decreased ...

  20. Effect of salinomycin on metastasis and invasion of bladder cancer cell line T24

    Institute of Scientific and Technical Information of China (English)

    Hu; Qu; Bo; Ma; Hao-Feng; Yuan; Zhong-Yang; Wang; Sheng-Jie; Guo; Jing; Zhang

    2015-01-01

    Objective: To explore the effect of salinomycin on the metastasis and invasion of bladder cancer cell line T24 by regulating the related protein expression in the process of epithelialmesenchymal transition(EMT), and to provide experimental basis for the treatment of urological tumors. Methods: The bladder cancer cell line T24 was cultured in vitro. The rat bladder tumor model was established in vivo. The rats were randomized into two groups, among which the rats in the experiment group were given intraperitoneal injection of salinomycin, while the rats in the control group were given intraperitoneal injection of normal saline. The change of tumor cells in the two groups was observed. Transwell was used to detect the cell migration and invasion abilities, Real-time PCR was used to detect the expression of m RNA, while Western-blot was utilized for the determination of the expressions of E-cadherin and vimentin proteins. Results: The metastasis and invasion abilities of serum bladder cancer cell line T24 after salinomycin treatment in the experiment group were significantly reduced when compared with those in the control group, and the tumor metastasis lesions were decreased from an average of 1.59 to 0.6(P<0.05). T24 cell proliferation in the experiment group was gradually decreasing. T24 cell proliferation at 48 h was significantly lower than that at 12 h and 24 h(P<0.05). T24 cell proliferation at 24 h was significantly lower than that at 12 h(P<0.05). T24 cell proliferation at each timing point in the experiment group was significantly lower than that in the control group(P<0.05). The serum m RNA level and E-cadherin expression in the tumor tissues in the experiment group were significantly higher than those in the control group, while vimentin expression level was significantly lower than that in the control group(P<0.05). Conclusions: Salinomycin can suppress the metastasis and invasion of bladder cancer cells, of which the mechanism is probably associated

  1. Long non-coding RNA Loc554202 regulates proliferation and migration in breast cancer cells

    International Nuclear Information System (INIS)

    Highlights: • First, we have shown that upregulated of the Loc554202 in breast cancer tissues. • Second, we demonstrated the function of Loc554202 in breast cancer cell. • Finally, we demonstrated that LOC554202 knockdown could inhibit tumor growth in vivo. - Abstract: Data derived from massive cloning and traditional sequencing methods have revealed that long non-coding RNAs (lncRNA) play important roles in the development and progression of cancer. Although many studies suggest that the lncRNAs have different cellular functions, many of them are not yet to be identified and characterized for the mechanism of their functions. To address this question, we assay the expression level of lncRNAs–Loc554202 in breast cancer tissues and find that Loc554202 is significantly increased compared with normal control, and associated with advanced pathologic stage and tumor size. Moreover, knockdown of Loc554202 decreased breast cancer cell proliferation, induced apoptosis and inhibits migration/invasion in vitro and impeded tumorigenesis in vivo. These data suggest an important role of Loc554202 in breast tumorigenesis

  2. Long non-coding RNA Loc554202 regulates proliferation and migration in breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yongguo, E-mail: 1138303166@qq.com [Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu (China); Lu, Jianwei, E-mail: jianwei2010077@163.com [Cancer Hospital of Jiangsu Province, Nanjing, Jiangsu (China); Zhou, Jing, E-mail: 2310848@163.com [Department of Oncology, Taizhou People’ Hospital, Taizhou, Jiangsu (China); Tan, Xueming, E-mail: 843039795@qq.com [Department of Gastroenterology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu (China); He, Ye, E-mail: 2825636@qq.com [Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu (China); Ding, Jie, E-mail: 9111165@qq.com [Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu (China); Tian, Yun, E-mail: 1815857@qq.com [Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu (China); Wang, Li, E-mail: 2376737@qq.com [Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu (China); Wang, Keming, E-mail: wkmys@sohu.com [Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu (China)

    2014-04-04

    Highlights: • First, we have shown that upregulated of the Loc554202 in breast cancer tissues. • Second, we demonstrated the function of Loc554202 in breast cancer cell. • Finally, we demonstrated that LOC554202 knockdown could inhibit tumor growth in vivo. - Abstract: Data derived from massive cloning and traditional sequencing methods have revealed that long non-coding RNAs (lncRNA) play important roles in the development and progression of cancer. Although many studies suggest that the lncRNAs have different cellular functions, many of them are not yet to be identified and characterized for the mechanism of their functions. To address this question, we assay the expression level of lncRNAs–Loc554202 in breast cancer tissues and find that Loc554202 is significantly increased compared with normal control, and associated with advanced pathologic stage and tumor size. Moreover, knockdown of Loc554202 decreased breast cancer cell proliferation, induced apoptosis and inhibits migration/invasion in vitro and impeded tumorigenesis in vivo. These data suggest an important role of Loc554202 in breast tumorigenesis.

  3. Minimally Invasive Treatment for Lung Cancer

    Medline Plus

    Full Text Available ... be very, very effective, and most of the data, you know, show that it’s a 90 percent, ... the chest cavity, and it’s important in both open and minimally-invasive surgery to have the best ...

  4. Leptin promotes proliferation and metastasis of human gallbladder cancer through OB-Rb leptin receptor.

    Science.gov (United States)

    Zou, Hao; Liu, Yunxia; Wei, Dong; Wang, Tao; Wang, Kun; Huang, Songquan; Liu, Lixin; Li, Yuehua; Ge, Jiayun; Li, Xiao; Zhu, Hong; Wang, Lianmin; Zhao, Songling; Zhang, Xiaowen; Wang, Lin

    2016-07-01

    Emerging evidence has shown that leptin, an adipocyte-derived cytokine that is closely associated with obesity, play a significant role in carcinogenesis and tumorigenesis. However, its impact on gallbladder cancer (GBC) remains unclear. In this study, we firstly found that leptin and its functional receptor OB-Rb were significantly co-expressed in human GBC tissues and cell lines, the content of which were higher than those in normal human gallbladder tissues. Treatment with leptin promoted the proliferation, migration and invasion of GBC cells, which were attenuated by OB-Rb shRNA. Blocking in the G2/M period of cell cycle, increasing of MMP3 and MMP9, increasing of VEGF-C/D, activation of SOCS3/JAK2/p-STAT3 pathway was demonstrated after treatment with leptin. All of these positive responses were attenuated by OB-Rb receptor shRNA. Taken together, our findings suggest that leptin promoted the proliferation, migration and invasion of GBC cells by increasing OB-Rb expression through the SOCS3/JAK2/p-STAT3 signal pathway. Targeting the leptin/OB-Rb axis could be an attractive therapeutic strategy for treatment of GBC. PMID:27211817

  5. MicroRNA-154 inhibits growth and invasion of breast cancer cells through targeting E2F5

    Science.gov (United States)

    Xu, Hui; Fei, Dan; Zong, Shan; Fan, Zhimin

    2016-01-01

    Accumulating evidence suggested that microRNA-154 (miR-154) might play important roles in the development of various cancer types. However, the role of miR-154 in breast cancer progression remains largely unknown. Here, miR-154 expression level was measured via quantitative real-time RT-PCR (qRT-PCR) in 36 pairs of human breast cancer tissues and adjacent normal breast tissues and in a panel of human breast cancer cell lines. Cell proliferation, cycle, migration, and invasion were assessed by CCK8 assay, flow cytometer assay, wound healing assay and transwell invasion assay, respectively. Luciferase reporter assay and Western blot was used to verify E2F transcription factor 5 protein (E2F5) as a novel target gene of miR-154. Our results showed that miR-154 was frequently downregulated in breast cancer tissues and cell lines. Overexpression of miR-154 in MCF-7 cells significantly inhibited cell proliferation, migration, and invasion, and increased cell arrest at G0/G1 stage in vitro. E2F5 was identified as a target of miR-154, and its expression was inversely correlated with miR-154 expression in clinical breast cancer tissues. In addition, downregulation of E2F5 in MCF7 cells had similar effect on cell proliferation, cycle, migration and invasion by miR-154 induced. These findings indicate that miR-154 acts as a tumor suppressor by targeting E2F5, suggesting miR-154 as a potential therapeutic target for the treatment of breast cancer. PMID:27398145

  6. Skp2 is over-expressed in breast cancer and promotes breast cancer cell proliferation.

    Science.gov (United States)

    Zhang, Wenwen; Cao, Lulu; Sun, Zijia; Xu, Jing; Tang, Lin; Chen, Weiwei; Luo, Jiayan; Yang, Fang; Wang, Yucai; Guan, Xiaoxiang

    2016-05-18

    The F box protein Skp2 is oncogenic. Skp2 and Skp2B, an isoform of Skp2 are overexpressed in breast cancer. However, little is known regarding the mechanism by which Skp2B promotes the occurrence and development of breast cancer. Here, we determined the expression and clinical outcomes of Skp2 in breast cancer samples and cell lines using breast cancer database, and investigated the role of Skp2 and Skp2B in breast cancer cell growth, apoptosis and cell cycle arrest. We obtained Skp2 is significantly overexpressed in breast cancer samples and cell lines, and high Skp2 expression positively correlated with poor prognosis of breast cancer. Both Skp2 and Skp2B could promote breast cancer cell proliferation, inhibit cell apoptosis, change the cell cycle distribution and induce the increased S phase cells and therefore induce cell proliferation in breast cancer cells. Moreover, the 2 isoforms could both suppress PIG3 expression via independent pathways in the breast cancer cells. Skp2 suppressed p53 and inhibited PIG3-induced apoptosis, while Skp2B attenuated the function of PIG3 by inhibiting PHB. Our results indicate that Skp2 and Skp2B induce breast cancer cell development and progression, making Skp2 and Skp2B potential molecular targets for breast cancer therapy. PMID:27111245

  7. Regulatory effects of ΔFosB on proliferation and apoptosis of MCF-7 breast cancer cells.

    Science.gov (United States)

    Li, Hui; Li, Lihui; Zheng, Huiling; Yao, Xiaotong; Zang, Wenjuan

    2016-05-01

    Matrix metalloproteinase-9 (MMP-9) plays a vital role in tumor angiogenesis, cell migration, and invasiveness because it can degrade almost all basement membrane and extracellular matrix components. MMP-9 has been reported in many cancers including breast cancer, lung cancer, and colon cancer. ΔFosB in mammary epithelial cells has been shown to regulate cell proliferation, differentiation, and death. We found that ΔFosB increased the expression of MMP-9 in MCF-7 breast cancer cells. ΔFosB overexpression in MCF-7 cells increased cellular viability and decreased cell apoptosis. SB-3CT, an inhibitor of MMP-9, promoted apoptosis, inhibited cell proliferation, induced cell cycle arrest, and downregulated the expression of antiapoptotic genes Bcl-2 and Bcl-xl in MCF-7 cells. ΔFosB increased the number of MCF-7 cells in G2/M and S phases, upregulated the expression of Bcl-2 and Bcl-xl, and protected MCF-7 cells from apoptosis induced by MMP-9 inhibition. We also found that ΔFosB overexpression in MCF-7 cells inhibited Ca(2+)-induced apoptosis and promoted cell proliferation. Therefore, ΔFosB may be a potential target in breast cancer cell apoptosis by regulating the expression of MMP-9. PMID:26608367

  8. Minimally Invasive Treatment for Lung Cancer

    Science.gov (United States)

    ... me reiterate what Sam was saying about the importance of a multidisciplinary team when managing such a complicated disease as lung cancer, and we really do have a great team here to do that because we work so closely together so often. My role, after Sam assists in diagnosing cancers, is to ...

  9. Minimally Invasive Treatment for Lung Cancer

    Medline Plus

    Full Text Available ... me reiterate what Sam was saying about the importance of a multidisciplinary team when managing such a complicated disease as lung cancer, and we really do have a great team here to do that because we work so closely together so often. My role, after Sam assists in diagnosing cancers, is to ...

  10. Minimally Invasive Treatment for Lung Cancer

    Medline Plus

    Full Text Available ... glucose into the patient’s body and the cancer cells, you know, take up glucose more than the regular cells in the body, and it will give us ... high-energy X-rays that preferentially kill cancer cells with minimal damage overall to the normal surrounding ...

  11. Optimization of Invasion-Specific Effects of Betulin Derivatives on Prostate Cancer Cells through Lead Development

    Science.gov (United States)

    Virtanen, Johannes; Ahonen, Ilmari; Schukov, Hannu-Pekka; Alakurtti, Sami; Purev, Enkhee; Rischer, Heiko; Yli-Kauhaluoma, Jari; Moreira, Vânia M.; Nees, Matthias; Oksman-Caldentey, Kirsi-Marja

    2015-01-01

    The anti-invasive and anti-proliferative effects of betulins and abietane derivatives was systematically tested using an organotypic model system of advanced, castration-resistant prostate cancers. A preliminary screen of the initial set of 93 compounds was performed in two-dimensional (2D) growth conditions using non-transformed prostate epithelial cells (EP156T), an androgen-sensitive prostate cancer cell line (LNCaP), and the castration-resistant, highly invasive cell line PC-3. The 25 most promising compounds were all betulin derivatives. These were selected for a focused secondary screen in three-dimensional (3D) growth conditions, with the goal to identify the most effective and specific anti-invasive compounds. Additional sensitivity and cytotoxicity tests were then performed using an extended cell line panel. The effects of these compounds on cell cycle progression, mitosis, proliferation and unspecific cytotoxicity, versus their ability to specifically interfere with cell motility and tumor cell invasion was addressed. To identify potential mechanisms of action and likely compound targets, multiplex profiling of compound effects on a panel of 43 human protein kinases was performed. These target de-convolution studies, combined with the phenotypic analyses of multicellular organoids in 3D models, revealed specific inhibition of AKT signaling linked to effects on the organization of the actin cytoskeleton as the most likely driver of altered cell morphology and motility. PMID:25965345

  12. Optimization of Invasion-Specific Effects of Betulin Derivatives on Prostate Cancer Cells through Lead Development.

    Directory of Open Access Journals (Sweden)

    Ville Härmä

    Full Text Available The anti-invasive and anti-proliferative effects of betulins and abietane derivatives was systematically tested using an organotypic model system of advanced, castration-resistant prostate cancers. A preliminary screen of the initial set of 93 compounds was performed in two-dimensional (2D growth conditions using non-transformed prostate epithelial cells (EP156T, an androgen-sensitive prostate cancer cell line (LNCaP, and the castration-resistant, highly invasive cell line PC-3. The 25 most promising compounds were all betulin derivatives. These were selected for a focused secondary screen in three-dimensional (3D growth conditions, with the goal to identify the most effective and specific anti-invasive compounds. Additional sensitivity and cytotoxicity tests were then performed using an extended cell line panel. The effects of these compounds on cell cycle progression, mitosis, proliferation and unspecific cytotoxicity, versus their ability to specifically interfere with cell motility and tumor cell invasion was addressed. To identify potential mechanisms of action and likely compound targets, multiplex profiling of compound effects on a panel of 43 human protein kinases was performed. These target de-convolution studies, combined with the phenotypic analyses of multicellular organoids in 3D models, revealed specific inhibition of AKT signaling linked to effects on the organization of the actin cytoskeleton as the most likely driver of altered cell morphology and motility.

  13. Mixed lineage kinase 3 is required for matrix metalloproteinase expression and invasion in ovarian cancer cells

    International Nuclear Information System (INIS)

    Mixed lineage kinase 3 (MLK3) is a mitogen-activated protein kinase kinase kinase (MAP3K) that activates MAPK signaling pathways and regulates cellular responses such as proliferation, migration and apoptosis. Here we report high levels of total and phospho-MLK3 in ovarian cancer cell lines in comparison to immortalized nontumorigenic ovarian epithelial cell lines. Using small interfering RNA (siRNA)-mediated gene silencing, we determined that MLK3 is required for the invasion of SKOV3 and HEY1B ovarian cancer cells. Furthermore, mlk3 silencing substantially reduced matrix metalloproteinase (MMP)-1, -2, -9 and -12 gene expression and MMP-2 and -9 activities in SKOV3 and HEY1B ovarian cancer cells. MMP-1, -2, -9 and-12 expression, and MLK3-induced activation of MMP-2 and MMP-9 requires both extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) activities. In addition, inhibition of activator protein-1 (AP-1) reduced MMP-1, MMP-9 and MMP-12 gene expression. Collectively, these findings establish MLK3 as an important regulator of MMP expression and invasion in ovarian cancer cells. -- Highlights: ► Ovarian cancer cell lines have high levels of total and phosphorylated MLK3. ► MLK3 is required for MMP expression and activity in ovarian cancer cells. ► MLK3 is required for invasion of SKOV3 and HEY1B ovarian cancer cells. ► MLK3-dependent regulation of MMP-2 and MMP-9 activities requires ERK and JNK.

  14. Numerical simulation of a contractivity based multiscale cancer invasion model

    OpenAIRE

    Kolbe, Niklas; Lukacova-Medvidova, Maria; Sfakianakis, Nikolaos; Wiebe, Bettina

    2016-01-01

    We present a problem-suited numerical method for a particularly challenging cancer invasion model. This model is a multiscale haptotaxis advection-reaction-diffusion system that describes the macroscopic dynamics of two types of cancer cells coupled with microscopic dynamics of the cells adhesion on the extracellular matrix. The difficulties to overcome arises from the non-constant advection and diffusion coefficients, a time delay term, as well as stiff reaction terms. Our numerical method i...

  15. Delphinidin inhibits cell proliferation and invasion via modulation of Met receptor phosphorylation

    International Nuclear Information System (INIS)

    The HGF/Met signaling pathway is deregulated in majority of cancers and is associated with poor prognosis in breast cancer. Delphinidin, present in pigmented fruits and vegetables possesses potent anti-oxidant, anti-inflammatory and anti-angiogenic properties. Here, we assessed the anti-proliferative and anti-invasive effects of delphinidin on HGF-mediated responses in the immortalized MCF-10A breast cell line. Treatment of cells with delphinidin prior to exposure to exogenous HGF resulted in the inhibition of HGF-mediated (i) tyrosyl-phosphorylation and increased expression of Met receptor, (ii) phosphorylation of downstream regulators such as FAK and Src and (iii) induction of adaptor proteins including paxillin, Gab-1 and GRB-2. In addition, delphinidin treatment resulted in significant inhibition of HGF-activated (i) Ras-ERK MAPKs and (ii) PI3K/AKT/mTOR/p70S6K pathways. Delphinidin was found to repress HGF-activated NFκB transcription with a decrease in (i) phosphorylation of IKKα/β and IκBα, and (ii) activation and nuclear translocation of NFκB/p65. Inhibition of HGF-mediated membrane translocation of PKCα as well as decreased phosphorylation of STAT3 was further observed in delphinidin treated cells. Finally, decreased cell viability of Met receptor expressing breast cancer cells treated with delphinidin argues for a potential role of the agent in the prevention of HGF-mediated activation of various signaling pathways implicated in breast cancer

  16. Axl glycosylation mediates tumor cell proliferation, invasion and lymphatic metastasis in murine hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Yong-Fu Zhao

    2012-01-01

    Full Text Available AIM: To investigate the effects of Axl deglycosylation on tumor lymphatic metastases in mouse hepatocellular carcinoma cell lines. METHODS: Western blotting was used to analyze the expression profile of Axl glycoprotein in mouse hepatocellular carcinoma cell line Hca-F treated with tunicamycin and PNGase F 3-(4,5-dimethylthiazol(-zyl-3,5-diphenyltetrazolium bromide (MTT assay, extracellular matrix (ECM invasion assay (in vitro and tumor metastasis assay (in vivo were utilized to evaluate the effect of Axl deglycosylation on the Hca-F cell proliferation, invasion and lymphatic metastasis. RESULTS: Tunicamycin and PNGase F treatment markedly inhibited Axl glycoprotein synthesis and expression, proliferation, invasion, and lymphatic metastasis both in vitro and in vivo. In the MTT assay, proliferation was apparent in untreated Hca-F cells compared with treated Hca-F cells. In the ECM invasion assay (in vitro, treated cells passed through the ECMatrix gel in significantly smaller numbers than untreated cells (tunicamycin 5 μg/mL: 68 ± 8 vs 80 ± 9, P = 0.0222; 10 μg/mL: 50 ± 6 vs 80 ± 9, P = 0.0003; 20 μg/mL: 41 ± 4 vs 80 ± 9, P = 0.0001; (PNGase F 8 h: 66 ± 7 vs 82 ± 8, P = 0.0098; 16 h: 49 ± 4 vs 82 ± 8, P = 0.0001; 24 h: 34 ± 3 vs 82 ± 8, P = 0.0001. In the tumor metastasis assay (in vivo, average lymph node weights of the untreated Hca-F group compared with treated Hca-F groups (tunicamycin 5 μg/mL: 0.84 ± 0.21 g vs 0.72 ± 0.19 g, P = 0.3237; 10 μg/mL: 0.84 ± 0.21 g vs 0.54 ± 0.11 g, P = 0.0113; 20 μg/mL: 0.84 ± 0.21 g vs 0.42 ± 0.06 g, P = 0.0008; (PNGase F 8 h: 0.79 ± 0.15 g vs 0.63 ± 0.13 g, P = 0.0766; 16 h: 0.79 ± 0.15 g vs 0.49 ± 0.10 g, P = 0.0022; 24 h: 0.79 ± 0.15 g vs 0.39 ± 0.05 g, P = 0.0001. Also, average lymph node volumes of the untreated Hca-F group compared with treated Hca-F groups (tunicamycin 5 μg/mL: 815 ± 61 mm3 vs 680 ± 59 mm3, P = 0.0613; 10 μg/mL: 815 ± 61 mm3 vs 580 ± 29 mm3, P = 0

  17. Inhibition of cell proliferation, migration and invasion of B16-F10 melanoma cells by α-mangostin

    Energy Technology Data Exchange (ETDEWEB)

    Beninati, Simone, E-mail: beninati@bio.uniroma2.it [Department of Biology, University “Tor Vergata”, Rome (Italy); Oliverio, Serafina [Department of Biology, University “Tor Vergata”, Rome (Italy); Cordella, Martina [Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome (Italy); Rossi, Stefania; Senatore, Cinzia [Regina Elena National Cancer Institute, Rome (Italy); Liguori, Immacolata; Lentini, Alessandro; Piredda, Lucia [Department of Biology, University “Tor Vergata”, Rome (Italy); Tabolacci, Claudio [Department of Biology, University “Tor Vergata”, Rome (Italy); Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome (Italy)

    2014-08-08

    Highlights: • We studied the anticancer potential of a new emerging molecule, α-mangostin (α-M). • We provide first evidences on the effects of α-M on transglutaminase activity. • We deeply examined the antimetastatic effects of α-M through many in vitro assays. • Proteomic analysis revealed that α-M promotes a reorganization at cellular level. - Abstract: In this study, we have evaluated the potential antineoplastic effects of α-mangostin (α-M), the most representative xanthone in Garcinia mangostana pericarp, on melanoma cell lines. This xanthone markedly inhibits the proliferation of high-metastatic B16-F10 melanoma cells. Furthermore, by deeply analyzing which steps in the metastatic process are influenced by xanthone it was observed that α-M strongly interferes with homotypic aggregation, adhesion, plasticity and invasion ability of B16-F10 cells, probably by the observed reduction of metalloproteinase-9 activity. The antiproliferative and antimetastatic properties of α-M have been established in human SK-MEL-28 and A375 melanoma cells. In order to identify pathways potentially involved in the antineoplastic properties of α-M, a comparative mass spectrometry proteomic approach was employed. These findings may improve our understanding of the molecular mechanisms underlying the anti-cancer effects of α-M on melanoma.

  18. Inhibition of cell proliferation, migration and invasion of B16-F10 melanoma cells by α-mangostin

    International Nuclear Information System (INIS)

    Highlights: • We studied the anticancer potential of a new emerging molecule, α-mangostin (α-M). • We provide first evidences on the effects of α-M on transglutaminase activity. • We deeply examined the antimetastatic effects of α-M through many in vitro assays. • Proteomic analysis revealed that α-M promotes a reorganization at cellular level. - Abstract: In this study, we have evaluated the potential antineoplastic effects of α-mangostin (α-M), the most representative xanthone in Garcinia mangostana pericarp, on melanoma cell lines. This xanthone markedly inhibits the proliferation of high-metastatic B16-F10 melanoma cells. Furthermore, by deeply analyzing which steps in the metastatic process are influenced by xanthone it was observed that α-M strongly interferes with homotypic aggregation, adhesion, plasticity and invasion ability of B16-F10 cells, probably by the observed reduction of metalloproteinase-9 activity. The antiproliferative and antimetastatic properties of α-M have been established in human SK-MEL-28 and A375 melanoma cells. In order to identify pathways potentially involved in the antineoplastic properties of α-M, a comparative mass spectrometry proteomic approach was employed. These findings may improve our understanding of the molecular mechanisms underlying the anti-cancer effects of α-M on melanoma

  19. Prognostic significance of kynurenine 3-monooxygenase and effects on proliferation, migration, and invasion of human hepatocellular carcinoma.

    Science.gov (United States)

    Jin, Haojie; Zhang, Yurong; You, Haiyan; Tao, Xuemei; Wang, Cun; Jin, Guangzhi; Wang, Ning; Ruan, Haoyu; Gu, Dishui; Huo, Xisong; Cong, Wenming; Qin, Wenxin

    2015-01-01

    Kynurenine 3-monooxygenase (KMO) is a pivotal enzyme in the kynurenine pathway of tryptophan degradation and plays a critical role in Huntington's and Alzheimer's diseases. This study aimed to examine the expression of KMO in human hepatocellular carcinoma (HCC) and investigate the relationship between its expression and prognosis of HCC patients. We first analyzed KMO expression in 120 paired HCC samples (HCC tissues vs matched adjacent non-cancerous liver tissues), and 205 clinical HCC specimens using immunohistochemistry (IHC). Kaplan-Meier survival and Cox regression analyses were executed to evaluate the prognosis of HCC. The results of IHC analysis showed that KMO expression was significantly higher in HCC tissues than that in normal liver tissues (all p KMO was an independent prognostic factor for overall survival (OS) and time to recurrence (TTR) (both pKMO positively regulated proliferation, migration, and invasion of HCC cells. These results suggest that KMO exhibits tumor-promoting effects towards HCC and it may serve as a novel prognostic marker in HCC. PMID:26099564

  20. Low concentrations of metformin selectively inhibit CD133⁺ cell proliferation in pancreatic cancer and have anticancer action.

    Science.gov (United States)

    Gou, Shanmiao; Cui, Pengfei; Li, Xiangsheng; Shi, Pengfei; Liu, Tao; Wang, Chunyou

    2013-01-01

    Pancreatic cancer is the fourth leading cause of cancer related deaths in the United States. The prognosis remains dismal with little advance in treatment. Metformin is a drug widely used for the treatment of type II diabetes. Recent epidemiologic data revealed that oral administration of metformin is associated with a reduced risk of pancreatic cancer, suggesting its potential as a novel drug for this disease. Many studies have demonstrated the in vitro anticancer action of metformin, but the typically used concentrations were much higher than the in vivo plasma and tissue concentrations achieved with recommended therapeutic doses of metformin, and low concentrations of metformin had little effect on the proliferation of pancreatic cancer cells. We examined the effect of low concentrations of metformin on different subpopulations of pancreatic cancer cells and found that these selectively inhibited the proliferation of CD133⁺ but not CD24⁺CD44⁺ESA⁺ cells. We also examined the effect of low concentrations of metformin on cell invasion and in vivo tumor formation, demonstrating in vitro and in vivo anticancer action. Metformin was associated with a reduction of phospho-Erk and phospho-mTOR independent of Akt and AMPK phosphorylation. CD133⁺ pancreatic cancer cells are considered to be cancer stem cells that contribute to recurrence, metastasis and resistance to adjuvant therapies in pancreatic cancer. Our results provide a basis for combination of metformin with current therapies to improve the prognosis of this disease. PMID:23667692

  1. Eukaryotic Translation Initiation Factor 3a (eIF3a) Promotes Cell Proliferation and Motility in Pancreatic Cancer.

    Science.gov (United States)

    Wang, Shu Qian; Liu, Yu; Yao, Min Ya; Jin, Jing

    2016-10-01

    Identifying a target molecule that is crucially involved in pancreatic tumor growth and metastasis is necessary in developing an effective treatment. The study aimed to investigate the role of the eukaryotic translation initiation factor 3a (eIF3a) in the cell proliferation and motility in pancreatic cancer. Our data showed that the expression of eIF3a was upregulated in pancreatic ductal adenocarcinoma as compared with its expression in normal pancreatic tissues. Knockdown of eIF3a by a specific shRNA caused significant decreases in cell proliferation and clonogenic abilities in pancreatic cancer SW1990 and Capan-1 cells. Consistently, the pancreatic cancer cell growth rates were also impaired in xenotransplanted mice. Moreover, wound-healing assay showed that depletion of eIF3a significantly slowed down the wound recovery processes in SW1990 and Capan-1 cells. Transwell migration and invasion assays further showed that cell migration and invasion abilities were significantly inhibited by knockdown of eIF3a in SW1990 and Capan-1 cells. Statistical analysis of eIF3a expression in 140 cases of pancreatic ductal adenocarcinoma samples revealed that eIF3a expression was significantly associated with tumor metastasis and TNM staging. These analyses suggest that eIF3a contributes to cell proliferation and motility in pancreatic ductal adenocarcinoma. PMID:27550487

  2. INTRAVESICAL BCG THERAPY FOR NON-MUSCLE INVASIVE BLADDER CANCER

    OpenAIRE

    K. M. Figurin

    2014-01-01

    The paper considers the state-of-the-art of BCG vaccine treatment for non-muscle invasive bladder cancer. It gives data on the meta-analyses of foreign studies of the efficiency of BCG therapy in this pathology.

  3. INTRAVESICAL BCG THERAPY FOR NON-MUSCLE INVASIVE BLADDER CANCER

    Directory of Open Access Journals (Sweden)

    K. M. Figurin

    2014-07-01

    Full Text Available The paper considers the state-of-the-art of BCG vaccine treatment for non-muscle invasive bladder cancer. It gives data on the meta-analyses of foreign studies of the efficiency of BCG therapy in this pathology.

  4. CT of invasive pulmonary aspergillosis in children with cancer

    International Nuclear Information System (INIS)

    In treating cases of malignancy, the use of chemotherapy carries a high risk of lower respiratory tract infections, especially fungal pneumonopathy. This complication is a major cause of mortality and is often difficult to diagnose because of non-specific clinical or radiological changes, but the early recognition of invasive fungal disease is imperative. CT is an important non-invasive method for the detection and evaluation of opportunistic fungal infections. In these patients am improved survival rate can be achieved when early detection by CT leads to the prompt institution of high-dose antifungal therapy. We illustrate the spectrum of CT findings of invasive pulmonary aspergillosis encountered in children with cancer. These patients had previously been treated with high-dose chemotherapy with or without bone marrow rescue, and underwent radiological examinations because of clinical evidence of pneumonopathy. Representative cases demonstrate the clinical applications of CT in the evaluation and management of invasive fungal disease. (orig.)

  5. CT of invasive pulmonary aspergillosis in children with cancer

    Energy Technology Data Exchange (ETDEWEB)

    Taccone, A. (Dept. of Radiology, Gaslini Children' s Hospital, Genoa (Italy)); Occhi, M. (Dept. of Radiology, Gaslini Children' s Hospital, Genoa (Italy)); Garaventa, A. (Div. of Hematology and Oncology, Gaslini Children' s Hospital, Genoa (Italy)); Manfredini, L. (Div. of Hematology and Oncology, Gaslini Children' s Hospital, Genoa (Italy)); Viscoli, C. (Dept. of Infectious Diseases, Gaslini Children' s Hospital, Genoa (Italy))

    1993-06-01

    In treating cases of malignancy, the use of chemotherapy carries a high risk of lower respiratory tract infections, especially fungal pneumonopathy. This complication is a major cause of mortality and is often difficult to diagnose because of non-specific clinical or radiological changes, but the early recognition of invasive fungal disease is imperative. CT is an important non-invasive method for the detection and evaluation of opportunistic fungal infections. In these patients am improved survival rate can be achieved when early detection by CT leads to the prompt institution of high-dose antifungal therapy. We illustrate the spectrum of CT findings of invasive pulmonary aspergillosis encountered in children with cancer. These patients had previously been treated with high-dose chemotherapy with or without bone marrow rescue, and underwent radiological examinations because of clinical evidence of pneumonopathy. Representative cases demonstrate the clinical applications of CT in the evaluation and management of invasive fungal disease. (orig.)

  6. Minimally Invasive Treatment for Lung Cancer

    Medline Plus

    Full Text Available ... she actually could have gone home on the second day after surgery, but we were a little ... ve got to fight it. This was my second bout with cancer, so I’ve had experience ...

  7. Minimally Invasive Treatment for Lung Cancer

    Medline Plus

    Full Text Available ... fact that, you know, lung cancer is the leading cause of mortality. And unfortunately, it’s normally detected ... CAT scan with you, Angelo. And the main question we have at that point is whether or ...

  8. Minimally Invasive Treatment for Lung Cancer

    Medline Plus

    Full Text Available ... chief of thoracic surgery in their Brooklyn division. We would like to talk to you today about out multidisciplinary approach to lung cancer, how we help to support the patients, how we help ...

  9. Minimally Invasive Treatment for Lung Cancer

    Medline Plus

    Full Text Available ... lung cancer, how we help to support the patients, how we help to treat them both before, ... and how they apply their expertise to our patients. Sam, why don’t you start. Thanks, Dr. ...

  10. Minimally Invasive Treatment for Lung Cancer

    Medline Plus

    Full Text Available ... was saying about the importance of a multidisciplinary team when managing such a complicated disease as lung cancer, and we really do have a great team here to do that because we work so ...

  11. Minimally Invasive Treatment for Lung Cancer

    Medline Plus

    Full Text Available ... any further adieu, I’d like to maybe introduce you to Sister Sullivan, and let’s listen to some of her words. Larynx cancer. PET scan and CAT was ordered. And from that PET ...

  12. CHEMOTHERAPY FOR MUSCLE INVASIVE BLADDER CANCER

    Directory of Open Access Journals (Sweden)

    I. G. Rusakov

    2014-08-01

    Full Text Available The paper considers treatment regimens for metastatic bladder cancer (MBC and gives the data of trials of the efficiency of using different chemotherapy schemes and regimens in patients with MBC.

  13. Minimally Invasive Treatment for Lung Cancer

    Medline Plus

    Full Text Available ... need to try and determine if the cancer has spread beyond the primary lesion itself, you know. ... As Dr. Reyes mentioned, you know, traditionally staging has been done by surgical mean, which means doing ...

  14. Minimally Invasive Treatment for Lung Cancer

    Medline Plus

    Full Text Available ... the physicians, the nurse practitioners and the nursing staff, but we’re also very rigorous in maintaining ... both cancers, my case was taken before the staff board and I was discussed at the staff ...

  15. Minimally Invasive Treatment for Lung Cancer

    Medline Plus

    Full Text Available ... abnormality is due to cancer or do to something else. Okay. Once we’ve done that, you ... half centimeters in greatest diameter, and that’s about something about like this, maybe the size of a ...

  16. Minimally Invasive Treatment for Lung Cancer

    Medline Plus

    Full Text Available ... unit and the director of the endobronchial ultrasound service on the pulmonary division of Beth Israel. Our ... the lung cancer division of the radiation oncology service. Good morning, Walter? Good morning. How are you? ...

  17. Minimally Invasive Treatment for Lung Cancer

    Medline Plus

    Full Text Available ... medical conditions and are also relatively advanced in age. Here you can see me just trying to ... function tests and preoperative evaluation and her young age that we would address the lung cancer -- the ...

  18. Minimally Invasive Treatment for Lung Cancer

    Medline Plus

    Full Text Available ... sedition and sleeping. We’ll go through your mouth and go through your main windpipe and go ... Sullivan, and let’s listen to some of her words. Larynx cancer. PET scan and CAT was ordered. ...

  19. Minimally Invasive Treatment for Lung Cancer

    Medline Plus

    Full Text Available ... like each of them to tell you some words about what they do and how they apply ... Sullivan, and let’s listen to some of her words. Larynx cancer. PET scan and CAT was ordered. ...

  20. Minimally Invasive Treatment for Lung Cancer

    Medline Plus

    Full Text Available ... she turned out to be a very happy person. Now she had two cancers, which makes her ... recommend Dr. Reyes, and I would tell the person, make an appointment as soon as possible, get ...

  1. Minimally Invasive Treatment for Lung Cancer

    Medline Plus

    Full Text Available ... in between the ribs. We divide just the soft tissue of the thorax, the chest wall. And, ... therapy is is the use of high-energy X-rays that preferentially kill cancer cells with minimal damage ...

  2. Minimally Invasive Treatment for Lung Cancer

    Medline Plus

    Full Text Available ... presented in a multidisciplinary fashion to our tumor board, and we discussed her case, as we do ... cancers, my case was taken before the staff board and I was discussed at the staff meeting. ...

  3. Minimally Invasive Treatment for Lung Cancer

    Medline Plus

    Full Text Available ... history, as well as her very, very excellent pulmonary function tests and preoperative evaluation and her young age that we would address the lung cancer -- the lung mass first, and that’s essentially all ...

  4. Minimally Invasive Treatment for Lung Cancer

    Medline Plus

    Full Text Available ... a multidisciplinary team when managing such a complicated disease as lung cancer, and we really do have ... a preoperative evaluation of the extent of the disease that you’re dealing with, especially when you ...

  5. Minimally Invasive Treatment for Lung Cancer

    Medline Plus

    Full Text Available ... need for their cancer. I’d like to stress to everyone that what we do here at ... is really on target. You know it’s pretty anxiety provoking for a patient to be sitting in ...

  6. Minimally Invasive Treatment for Lung Cancer

    Medline Plus

    Full Text Available ... rigid instruments that are applicable in an earlier generation of thoracic and thoracoscopic devices and definitely better ... therapy is is the use of high-energy X-rays that preferentially kill cancer cells with minimal ...

  7. Minimally Invasive Treatment for Lung Cancer

    Medline Plus

    Full Text Available ... cancer surgery was done. It’s really an elaborate video game, and I would like to show you ... a whole lobe, you know, by doing the video-assisted thorascopic surgery alone? Absolutely. And you know ...

  8. Minimally Invasive Treatment for Lung Cancer

    Medline Plus

    Full Text Available ... is really the number one cause of cancer-related deaths in this country. It far exceeds breast ... we approach everything really with thoracoscopic surgery in mind because it’s a way to minimize postoperative pain, ...

  9. Biological markers of invasive breast cancer.

    Science.gov (United States)

    Matsumoto, Akiko; Jinno, Hiromitsu; Ando, Tomofumi; Fujii, Taku; Nakamura, Tetsuya; Saito, Junichi; Takahashi, Maiko; Hayashida, Tetsu; Kitagawa, Yuko

    2016-02-01

    Biological markers for breast cancer are biomolecules that result from cancer-related processes and are associated with particular clinical outcomes; they thus help predict responses to therapy. In recent years, gene expression profiling has made the molecular classification of breast cancer possible. Classification of breast cancer by immunohistochemical expression of estrogen receptor, progesterone receptor, human epidermal growth factor receptor 2 and Ki-67 is standard practice for clinical decision-making. Assessments of hormone receptor expression and human epidermal growth factor receptor 2 overexpression help estimate benefits from targeted therapies and have greatly improved prognoses for women with these breast cancer types. Although Ki-67 positivity is associated with an adverse outcome, its clear identification is an aid to optimal disease management. Standardization of testing methodology to minimize inter-laboratory measurement variations is a remaining issue. Multi-gene assays provide prognostic information and identify those most likely to benefit from systemic chemotherapy. Incorporating molecular profiles with conventional pathological classification would be more precise, and could enhance the clinical development of personalized therapy in breast cancer. PMID:26486826

  10. Effects of platycodin D in combination with different active ingredients of Chinese herbs on proliferation and invasion of 4T1 and MDA-MB-231 breast cancer cell lines%桔梗皂苷D配伍不同中药有效成分对乳腺癌4T1和MDA-MB-231细胞增殖及侵袭的影响

    Institute of Scientific and Technical Information of China (English)

    韩向晖; 叶依依; 郭保凤; 刘胜

    2012-01-01

    OBJECTIVE: To investigate the effects of platycodin D in combination with different active ingredients of Chinese herbs under different therapeutic principles on proliferation and invasion of 4T1 and MDA-MB-231 breast cancer cell lines.METHODS: The effective doses of platycodin D, Ophiopogon total saponins, curcumenol and osthole in inhibiting proliferation of breast cancer cell lines 4T1 and MDA-MB-231 were detected by methyl thiazolyl tetrazolium (MTT) assay, respectively. Optimized combinations of platycodin D with Ophiopogon total saponins, curcumenol, or osthole were determined by uniform design method. Effects of the optimized combinations of platycodin D with the three ingredients on proliferation and invasion of 4T1 and MDA-MB-231 cells were verified and evaluated by MTT assay and Transwell chamber test, respectively.RESULTS: Verifying study showed that the inhibitory effects of platycodin D in combination with curcumenol or osthole on proliferation of 4T1 and MDA-MB-231 cells were better than those of platycodin D in combination with Ophiopogon total saponins and each ingredient used alone (P<0.05 or P<0.01). The inhibitory effect of platycodin D in combination with Ophiopogon total saponins or osthole on invasion of 4T1 cells was significantly better than those of platycodin D in combination with curcumenol and each ingredient used alone (P<0.05 or P<0.01). Moreover, the inhibitory effect of platycodin D in combination with curcumenol or osthole on invasion of MDA-MB-231 cells was significantly better than that of platycodin D in combination with Ophiopogon total saponins (P<0.01).CONCLUSION: The optimized combinations of platycodin D with three different active ingredients of Chinese herbs under different therapeutic principles can significantly inhibit the proliferation and decrease the invasion of 4T1 and MDA-MB-231 cells. Different platycodin D combinations have different potency in suppressing breast cancer cell proliferation and invasion.%目的:

  11. Regulation of lamellipodia formation and cell invasion by CLIP-170 in invasive human breast cancer cells.

    Science.gov (United States)

    Suzuki, Katsuo; Takahashi, Kazuhide

    2008-04-01

    Lamellipodia formation necessary for cell invasion is regulated by Rac1. We report here that lamellipodia formation and three-dimensional invasion were significantly promoted by HGF and serum, respectively, in invasive human breast cancer cells. Rac1 formed a complex with CLIP-170, IQGAP1, and kinesin in serum-starved cells, and stimulation of the cells with HGF and serum caused the partial release of IQGAP1 and kinesin from Rac1-CLIP-170 complex. The HGF-induced release of the proteins and promotion of lamellipodia formation were inhibited by an inhibitor of PI3K. Moreover, downregulation of CLIP-170 by siRNA released IQGAP1 and kinesin from Rac1 and promoted lamellipodia formation and invasion, independent of HGF and serum. The results suggest that promotion of lamellipodia formation and invasion by HGF or serum requires PI3K-dependent release of IQGAP1 and kinesin from Rac1-CLIP-170 complex and that CLIP-170 prevents cells from the extracellular stimulus-independent lamellipodia formation and invasion by tethering IQGAP1 and kinesin to Rac1. PMID:18237546

  12. Proliferation and Polarity in Breast Cancer: Untying the GordianKnot

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hong; Radisky, Derek C.; Bissell, Mina J.

    2005-05-09

    Epithelial cancers are associated with genomic instability and alterations in signaling pathways that affect proliferation, apoptosis, and integrity of tissue structure. Overexpression of a number of oncogenic protein kinases has been shown to malignantly transform cells in culture and to cause tumors in vivo, but the interconnected signaling events induced by transformation still awaits detailed dissection. We propose that the network of cellular signaling pathways can be classified into functionally distinct branches, and that these pathways are rewired in transformed cells and tissues after they lose tissue-specific architecture to favor tumor expansion and invasion. Using three-dimensional (3D) culture systems, we recently demonstrated that polarity and proliferation of human mammary epithelial cancer cells were separable consequences of signaling pathways downstream of PI3 kinase.These, and results from a number of other laboratories are beginning to provide insight into how different signaling pathways may become interconnected in normal tissues to allow homeostasis, and how they are disrupted during malignant progression.

  13. Presence of an in situ component is associated with reduced biological aggressiveness of size-matched invasive breast cancer

    OpenAIRE

    Wong, H.; Lau, S.; Yau, T; Cheung, P; Epstein, R. J.

    2010-01-01

    Background:The metastatic propensity of invasive ductal carcinoma (IDC) of the breast correlates with axillary node involvement and with expression of the proliferation antigen Ki-67, whereas ductal carcinoma in situ (DCIS) is non-metastasising. To clarify whether concomitant DCIS affects IDC prognosis, we compared Ki-67 expression and node status of size-matched IDC subgroups either with DCIS (IDC-DCIS) or without DCIS (pure IDC).Methods:We analysed data from 1355 breast cancer patients. End...

  14. Invasive ductal breast cancer metastatic to the sigmoid colon

    Directory of Open Access Journals (Sweden)

    Zhou Xiao-cong

    2012-11-01

    Full Text Available Abstract The most common sites of breast cancer metastasis are the bone, lung, liver and brain. However, colonic metastases from breast cancer are very rare in the clinic. We describe an unusual case of sigmoid colonic metastasis from invasive ductal breast cancer. With this report, we should increase the clinical awareness that any patient with a colorectal lesion and a history of malignancy should be considered to have a metastasis until proven otherwise. Early diagnosis is very important, which enables prompt initiation of systemic treatment, such as chemotherapy, endocrine therapy or both, thus avoiding unnecessary radical surgical resection and improving the prognosis.

  15. Modulators of estrogen receptor inhibit proliferation and migration of prostate cancer cells.

    Science.gov (United States)

    Piccolella, Margherita; Crippa, Valeria; Messi, Elio; Tetel, Marc J; Poletti, Angelo

    2014-01-01

    In the initial stages, human prostate cancer (PC) is an androgen-sensitive disease, which can be pharmacologically controlled by androgen blockade. This therapy often induces selection of androgen-independent PC cells with increased invasiveness. We recently demonstrated, both in cells and mice, that a testosterone metabolite locally synthetized in prostate, the 5α-androstane-3β, 17β-diol (3β-Adiol), inhibits PC cell proliferation, migration and invasion, acting as an anti-proliferative/anti-metastatic agent. 3β-Adiol is unable to bind androgen receptor (AR), but exerts its protection against PC by specifically interacting with estrogen receptor beta (ERβ). Because of its potential retro-conversion to androgenic steroids, 3β-Adiol cannot be used "in vivo", thus, the aims of this study were to investigate the capability of four ligands of ERβ (raloxifen, tamoxifen, genistein and curcumin) to counteract PC progression by mimicking the 3β-Adiol activity. Our results demonstrated that raloxifen, tamoxifen, genistein and curcumin decreased DU145 and PC3 cell proliferation in a dose-dependent manner; in addition, all four compounds significantly decreased the detachment of cells seeded on laminin or fibronectin. Moreover, raloxifen, tamoxifen, genistein and curcumin-treated DU145 and PC3 cells showed a significant decrease in cell migration. Notably, all these effects were reversed by the anti-estrogen, ICI 182,780, suggesting that their actions are mediated by the estrogenic pathway, via the ERβ, the only isoform present in these PCs. In conclusion, these data demonstrate that by selectively activating the ERβ, raloxifen, tamoxifen, genistein and curcumin inhibit human PC cells proliferation and migration favoring cell adesion. These synthetic and natural modulators of ER action may exert a potent protective activity against the progression of PC even in its androgen-independent status. PMID:24184124

  16. miR-124 inhibits cell proliferation, migration and invasion by directly targeting SOX9 in lung adenocarcinoma.

    Science.gov (United States)

    Wang, Xiaoying; Liu, Yanli; Liu, Xiaoli; Yang, Jingyan; Teng, Guoxin; Zhang, Lulu; Zhou, Chengjun

    2016-05-01

    Accumulating evidence indicates that dysregulation of microRNAs (miRNAs) may contribute to the initiation and progression of cancer. However, the role of miR-124 in lung adenocarcinoma (ADC) and the underlying mechanisms through which miR-124 exerts its functions are not completely understood. In the present study, we detected miR-124 and SOX9 expression in lung ADC tissues. The results showed that miR-124 was significantly downregulated in the lung ADC tissues compared with that noted in the corresponding non-cancerous lung tissues and the level of SOX9 protein was inversely associated with the expression of miR-124. The study in human lung ADC cell line A549 demonstrated that upregulation of miR-124 could inhibit cell proliferation, migration and invasion. The bioinformatic analysis showed that there was a putative miR-124 binding site in the 3' untranslated region (3'UTR) of SOX9. Using a luciferase reporter assay, we verified that SOX9 is a direct target of miR-124. Furthermore, overexpression of miR-124 repressed SOX9 expression, whereas inhibition of miR-124 increased expression of SOX9 in the A549 cells. Finally, we identified that SOX9 was a functional mediator of miR-124 in A549 cells. Taken together, our results suggest that miR-124 functions as a tumor suppressor in lung ADC by directly targeting SOX9 and it may be a promising candidate for miR‑based therapy against lung ADC. PMID:26935152

  17. Effects of Curcumin on Invasion and Metastasis in the Human Cervical Cancer Cells Caski

    Institute of Scientific and Technical Information of China (English)

    Fang XU; Xiao-ling MU; Jing ZHAO

    2009-01-01

    Objective: To explore the effects of curcumin on invasion and metastasis in the human cervical cancer cells Caski.Methods: Caski cells were treated with 10, 25, 50μmol/L curcumin for 24, 48, 72 h. Proliferation of Caski cells was measured with MTT assay. When treated with 50μmol/L curcumin for 72 h, the expressions of MMP-2, MT1-MMP and NF-κB of cells were detected by Western-blot, and invasion and metastasis of Caski cells were evaluated with transwell chamber.Results: After being treated with 10μmol/L, 25μmol/L, 50μmol/L curcumin for 24, 48 and 72 h, the proliferation of Caski cells was inhibited in a dose-and time-dependent manner. The expression of MMP-2, MT1-MMP and NF-κB were decreased when being treated with 50μmol/L curcumin for 72 h. After treatment with 50μmol/L curcumin, in invasion assay, the number of cells in curcumin treated group to migrate to filter coated with Matrigel was reduced compared with control group(P<0.05). Meanwhile, in migration assay, the number of cells in curcumin treated group to migrate to filter was also decreased compared with control group (P<0.05).Conclusion: Curcumin could affect the invasion and metastasis of the human cervical cancer cells Caski. Inhibiting the expression of MMP-2, MT1-MMP and NF-κB was probably one of its molecular mechanisms.

  18. Outcome and human epidermal growth factor receptor (HER) 1–4 status in invasive breast carcinomas with proliferation indices evaluated by bromodeoxyuridine labelling

    International Nuclear Information System (INIS)

    We have shown previously that whereas overexpression of human epidermal growth factor receptor (HER)1, HER2 and HER3 is associated with poor prognosis in breast cancer, HER4 is associated with a good prognosis. Cell proliferation is a key component of aggressive cancers and is driven by growth factors. In this study, bromodeoxyuridine (BrdU)-derived proliferation indices are correlated with clinical outcome and HER1–4 status for further clarification of the differing roles for the HER family at a biological level. Seventy-eight invasive breast cancers had BrdU labelling in vivo to determine the BrdU labelling index (BLI) and the potential tumour doubling time (Tpot). Long-term clinical follow-up was available for these patients. We used immunohistochemistry to establish the HER1–4 status in 55 patients from the BrdU cohort. We demonstrate a significant correlation between high BLI values and breast cancer-specific death (P = 0.0174). Low Tpot times were also significantly correlated with breast cancer-specific death (P = 0.0258). However, BLI did not independently predict survival in Cox's multiple regression analysis when combined with other prognostic factors such as size, grade and nodal status. Tumours found to be positive for HER1, HER2 or HER3 had significantly (P = 0.041) higher labelling indices, with HER1 also showing significantly higher indices when considered independently (P = 0.024). Conversely, HER4 positivity was significantly correlated (P = 0.013) with low BLI values, in line with previous data associating this receptor with good prognosis tumours. These results support the hypothesis that HER1–3 are associated with driving tumour proliferation, whereas HER4 is involved in a non-proliferative or even protective role

  19. Expression of BNIP3 in invasive breast cancer: correlations with the hypoxic response and clinicopathological features

    International Nuclear Information System (INIS)

    Bcl-2/adenovirus E1B 19 kDa-interacting protein 3 (BNIP3) is a pro-apoptotic member of the Bcl-2 family induced under hypoxia. Low or absent expression has recently been described in human tumors, including gastrointestinal tumors, resulting in poor prognosis. Little is known about BNIP3 expression in invasive breast cancer. The aim of the present study was to investigate the expression of BNIP3 in invasive breast cancer at the mRNA and protein level in correlation with the hypoxic response and clinicopathological features. In 40 cases of invasive breast cancer, BNIP3 mRNA in situ hybridization was performed on frozen sections with a digoxigenin labeled anti-BNIP3 probe. Paraffin embedded sections of the same specimens were used to determine protein expression of BNIP3, Hypoxia Inducible Factor 1 alpha (HIF-1α) and its downstream targets Glucose Transporter 1 (Glut-1) and Carbonic Anhydrase (CAIX) by immunohistochemistry. BNIP3 mRNA was expressed in 16/40 (40%) of the cases and correlated with BNIP3 protein expression (p = 0.0218). Neither BNIP3 protein nor mRNA expression correlated with expression of HIF-1α expression or its downstream targets. Tumors which showed loss of expression of BNIP3 had significantly more often lymph node metastases (82% vs 39%, p = 0.010) and showed a higher mitotic activity index (p = 0.027). BNIP3 protein expression was often nuclear in normal breast, but cytoplasmic in tumor cells. BNIP3 expression is lost in a significant portion of invasive breast cancers, which is correlated with poor prognostic features such as positive lymph node status and high proliferation, but not with the hypoxic response

  20. Expression of BNIP3 in invasive breast cancer: correlations with the hypoxic response and clinicopathological features

    Directory of Open Access Journals (Sweden)

    de Weger Roel A

    2009-06-01

    Full Text Available Abstract Background Bcl-2/adenovirus E1B 19 kDa-interacting protein 3 (BNIP3 is a pro-apoptotic member of the Bcl-2 family induced under hypoxia. Low or absent expression has recently been described in human tumors, including gastrointestinal tumors, resulting in poor prognosis. Little is known about BNIP3 expression in invasive breast cancer. The aim of the present study was to investigate the expression of BNIP3 in invasive breast cancer at the mRNA and protein level in correlation with the hypoxic response and clinicopathological features. Methods In 40 cases of invasive breast cancer, BNIP3 mRNA in situ hybridization was performed on frozen sections with a digoxigenin labeled anti-BNIP3 probe. Paraffin embedded sections of the same specimens were used to determine protein expression of BNIP3, Hypoxia Inducible Factor 1 alpha (HIF-1α and its downstream targets Glucose Transporter 1 (Glut-1 and Carbonic Anhydrase (CAIX by immunohistochemistry. Results BNIP3 mRNA was expressed in 16/40 (40% of the cases and correlated with BNIP3 protein expression (p = 0.0218. Neither BNIP3 protein nor mRNA expression correlated with expression of HIF-1α expression or its downstream targets. Tumors which showed loss of expression of BNIP3 had significantly more often lymph node metastases (82% vs 39%, p = 0.010 and showed a higher mitotic activity index (p = 0.027. BNIP3 protein expression was often nuclear in normal breast, but cytoplasmic in tumor cells. Conclusion BNIP3 expression is lost in a significant portion of invasive breast cancers, which is correlated with poor prognostic features such as positive lymph node status and high proliferation, but not with the hypoxic response.

  1. Transcription factor activity of estrogen receptor α activation upon nonylphenol or bisphenol A treatment enhances the in vitro proliferation, invasion, and migration of neuroblastoma cells

    Science.gov (United States)

    Ma, Hongda; Yao, Yao; Wang, Changli; Zhang, Liyu; Cheng, Long; Wang, Yiren; Wang, Tao; Liang, Erguang; Jia, Hui; Ye, Qinong; Hou, Mingxiao; Feng, Fan

    2016-01-01

    Many kinds of endocrine-disrupting chemicals (EDCs), for example, the environmental estrogens bisphenol A and nonylphenol, may regulate the activity of estrogen receptor α (ERα) and therefore induce potential disruption of normal endocrine function. However, the involvement of EDCs in human cancers, especially in endocrine-related cancer neuroblastoma regulation, is not very clear. In this work, results showed that upon bisphenol A or nonylphenol treatment, the transcription factor activity of ERα was significantly increased in neuroblastoma cell line SH-SY5Y. Bisphenol A and nonylphenol could enhance ERα activity via recruiting it to the target gene promoter. Furthermore, treatment of bisphenol A and nonylphenol enhanced the in vitro proliferation, invasion, and migration ability of neuroblastoma cells. By investigating the role of EDC-induced ERα upregulation, our data extend the understanding of the function of EDCs and further suggest that ERα might be a potential therapeutic target in human neuroblastoma treatment. PMID:27366082

  2. Nck2 promotes human melanoma cell proliferation, migration and invasion in vitro and primary melanoma-derived tumor growth in vivo

    International Nuclear Information System (INIS)

    Nck1 and Nck2 adaptor proteins are involved in signaling pathways mediating proliferation, cytoskeleton organization and integrated stress response. Overexpression of Nck1 in fibroblasts has been shown to be oncogenic. Through the years this concept has been challenged and the consensus is now that overexpression of either Nck cooperates with strong oncogenes to transform cells. Therefore, variations in Nck expression levels in transformed cells could endorse cancer progression. Expression of Nck1 and Nck2 proteins in various cancer cell lines at different stages of progression were analyzed by western blots. We created human primary melanoma cell lines overexpressing GFP-Nck2 and investigated their ability to proliferate along with metastatic characteristics such as migration and invasion. By western blot analysis, we compared levels of proteins phosphorylated on tyrosine as well as cadherins and integrins in human melanoma cells overexpressing or not Nck2. Finally, in mice we assessed tumor growth rate of human melanoma cells expressing increasing levels of Nck2. We found that expression of Nck2 is consistently increased in various metastatic cancer cell lines compared with primary counterparts. Particularly, we observed significant higher levels of Nck2 protein and mRNA, as opposed to no change in Nck1, in human metastatic melanoma cell lines compared with non-metastatic melanoma and normal melanocytes. We demonstrated the involvement of Nck2 in proliferation, migration and invasion in human melanoma cells. Moreover, we discovered that Nck2 overexpression in human primary melanoma cells correlates with higher levels of proteins phosphorylated on tyrosine residues, assembly of Nck2-dependent pY-proteins-containing molecular complexes and downregulation of cadherins and integrins. Importantly, we uncovered that injection of Nck2-overexpressing human primary melanoma cells into mice increases melanoma-derived tumor growth rate. Collectively, our data indicate that

  3. Up-regulation of CHAF1A, a poor prognostic factor, facilitates cell proliferation of colon cancer

    International Nuclear Information System (INIS)

    Highlights: • We identified that CHAF1A was up-regulated in colon tumor mucosa in TMA. • The expression pattern of CHAF1A was validated with qPCR and western-blot. • CHAF1A overexpression is an independent indicator for poor colon cancer survival. • CHAF1A facilitates cell proliferation of colon cancer both in vitro and in vivo. - Abstract: Deregulation of chromatin assembly factor 1, p150 subunit A (CHAF1A) has recently been reported to be involved in the development of some cancer types. In this study, we identified that the frequency of positive CHAF1A staining in primary tumor mucosa (45.8%, 93 of 203 samples) was significantly elevated compared to that in paired normal mucosa (18.7%, 38 of 203 samples). The increased expression was strongly associated with cancer stage, tumor invasion, and histological grade. The five-year survival rate of patients with CHAF1A-positive tumors was remarkably lower than that of patients with CHAF1A-negative tumors. Colon cancer cells with CHAF1A knockdown exhibited decreased cell growth index, reduction in colony formation ability, elevated cell apoptosis rate as well as impaired colon tumorigenicity in nude mice. Hence, CHAF1A upregulation functions as a poor prognostic indicator of colon cancer, potentially contributing to its progression by mediating cancer cell proliferation

  4. Up-regulation of CHAF1A, a poor prognostic factor, facilitates cell proliferation of colon cancer

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Zehua; Cui, Feifei; Yu, Fudong; Peng, Xiao; Jiang, Tao; Chen, Dawei [Department of General Surgery, Shanghai Jiaotong University Affiliated First People’s Hospital, 85 Wujin Road, Shanghai 200080 (China); Lu, Su [Department of Pathology, Shanghai Jiaotong University Affiliated First People’s Hospital, 85 Wujin Road, Shanghai 200080 (China); Tang, Huamei, E-mail: tanghuamei@gmail.com [Department of Pathology, Shanghai Jiaotong University Affiliated First People’s Hospital, 85 Wujin Road, Shanghai 200080 (China); Peng, Zhihai, E-mail: zhihai.peng@hotmail.com [Department of General Surgery, Shanghai Jiaotong University Affiliated First People’s Hospital, 85 Wujin Road, Shanghai 200080 (China)

    2014-06-27

    Highlights: • We identified that CHAF1A was up-regulated in colon tumor mucosa in TMA. • The expression pattern of CHAF1A was validated with qPCR and western-blot. • CHAF1A overexpression is an independent indicator for poor colon cancer survival. • CHAF1A facilitates cell proliferation of colon cancer both in vitro and in vivo. - Abstract: Deregulation of chromatin assembly factor 1, p150 subunit A (CHAF1A) has recently been reported to be involved in the development of some cancer types. In this study, we identified that the frequency of positive CHAF1A staining in primary tumor mucosa (45.8%, 93 of 203 samples) was significantly elevated compared to that in paired normal mucosa (18.7%, 38 of 203 samples). The increased expression was strongly associated with cancer stage, tumor invasion, and histological grade. The five-year survival rate of patients with CHAF1A-positive tumors was remarkably lower than that of patients with CHAF1A-negative tumors. Colon cancer cells with CHAF1A knockdown exhibited decreased cell growth index, reduction in colony formation ability, elevated cell apoptosis rate as well as impaired colon tumorigenicity in nude mice. Hence, CHAF1A upregulation functions as a poor prognostic indicator of colon cancer, potentially contributing to its progression by mediating cancer cell proliferation.

  5. Griffipavixanthone, a dimeric xanthone extracted from edible plants, inhibits tumor metastasis and proliferation via downregulation of the RAF pathway in esophageal cancer.

    Science.gov (United States)

    Ding, Zhijie; Lao, Yuanzhi; Zhang, Hong; Fu, Wenwei; Zhu, Lunlun; Tan, Hongsheng; Xu, Hongxi

    2016-01-12

    Metastasis causes a large number of deaths among esophageal cancer patients. The activation of RAF family proteins elevates tumor metastasis and proliferation. In screen targeting the RAF protein, we identified that Griffipavixanthone (GPX), a dimeric xanthone isolated from Garcinia esculenta, is a B-RAF and C-RAF inhibitor against esophageal cancer cells. Using wound healing, transwell migration and matrigel invasion assays, we confirmed that GPX significantly inhibited cell migration and invasion. Furthermore, exposure to GPX rendered cell proliferation and induced G2/M cell cycle arrest. Our mechanistic study showed that GPX suppressed cancer metastasis and proliferation through downregulation of RAF-MEK-ERK cascades proteins as well as RAF mRNA levels. In a pulmonary metastasis model, the intraperitoneal injection of GPX significantly suppressed esophageal tumor metastasis and ERK protein level in vivo. In conclusion, our present study suggested that GPX could inhibit tumor migration, invasion and proliferation in vitro and in vivo, which indicated the potential of GPX for preventing and treating esophageal cancer. PMID:26646323

  6. ROLE OF PANCREATIC STELLATE CELLS AND GALECTIN-3 ON PROLIFERATION AND INFILTRATION OF HUMAN PANCREATIC CANCER CELL LINE SW1990

    Institute of Scientific and Technical Information of China (English)

    JIANG Hai-biao; XU Ming; WANG Xing-peng

    2008-01-01

    Objective To investigate the role of pancreatic stellate cells (PSCs) and galectin-3 (GAL-3)on the proliferation and infiltration of pancreatic cancer cell line SW1990. Methods Human pancreatic cancercell line SW1990 and PSCs were cultured in vitro. Supernatant of cultured PSCs and SW1990 cells was collected.Expressions of GAL-3 in SW1990 cells and PSCs were detected by ELISA, RT-PCR and Western blot. Theproliferation of those cultured PSCs and SW1990 cells were measured by MTT assay and flowcytometry. Infiltrationof SW1990 cells was detected by cell infiltration kit. Results SW1990 cells expressed GAL-3 and the expressionwas up-regulated by the supernatant fluid of cultured PSCs. PSCs did not express GAL-3. SW1990 cells couldstimulate the proliferation of PSCs via GAL-3. GAL-3 antibody could inhibit SW1990 cells proliferation andinfiltration, which indicated that supernatant of PSCs might stimulate the proliferation of SW1990 cells through theinteraction with GAL-3 protein. The supernatant fluid of PSCs could enhance the invasiveness of SW1990 cellsthrough the interaction with GAL-3. Conclusion GAL-3 and PSCs was involved in the proliferation andinfiltration process of pancreatic cancer.

  7. Minimally Invasive Treatment for Lung Cancer

    Medline Plus

    Full Text Available ... blade come across there. See how nice and clean the staple line is? Yeah. There’s just a ... radiation therapy is is the use of high-energy X-rays that preferentially kill cancer cells with ...

  8. Minimally Invasive Treatment for Lung Cancer

    Medline Plus

    Full Text Available ... cancer surgery was done. It’s really an elaborate video game, and I would like to show you some of the images from some of our operations. Right here you’re looking at ... thorascopic surgery alone? Absolutely. And you know ...

  9. Minimally Invasive Treatment for Lung Cancer

    Medline Plus

    Full Text Available ... today is Dr. Walter Choi who is the director of the lung cancer division of the radiation oncology service. Good morning, Walter? Good morning. How are you? Morning Sam, thank you for coming. I really appreciate that you took time out of your day to come. As an ...

  10. Minimally Invasive Treatment for Lung Cancer

    Medline Plus

    Full Text Available ... medical doctor, you know, with an abnormal chest X-ray. As you know, the suspicion of lung cancer, ... to reach a diagnosis. Once you have abnormal X-ray, I think the next thing to do would ...

  11. Minimally Invasive Treatment for Lung Cancer

    Medline Plus

    Full Text Available ... out multidisciplinary approach to lung cancer, how we help to support the patients, how we help to treat them both before, during, and after ... you to some members of our team and help you understand some of the things that we ...

  12. Exploring molecular links between lymph node invasion and cancer prognosis in human breast cancer

    OpenAIRE

    Kim, Sangwoo; Nam, Hojung; Lee, Doheon

    2011-01-01

    Abstract Background Lymph node invasion is one of the most powerful clinical factors in cancer prognosis. However, molecular level signatures of their correlation are remaining poorly understood. Here, we propose a new approach, monotonically expressed gene analysis (MEGA), to correlate transcriptional patterns of lymph node invasion related genes with clinical outcome of breast cancer patients. Results Using MEGA, we scored all genes with their transcriptional patterns ov...

  13. Exploring molecular links between lymph node invasion and cancer prognosis in human breast cancer

    OpenAIRE

    Kim Sangwoo; Nam Hojung; Lee Doheon

    2011-01-01

    Abstract Background Lymph node invasion is one of the most powerful clinical factors in cancer prognosis. However, molecular level signatures of their correlation are remaining poorly understood. Here, we propose a new approach, monotonically expressed gene analysis (MEGA), to correlate transcriptional patterns of lymph node invasion related genes with clinical outcome of breast cancer patients. Results Using MEGA, we scored all genes with their transcriptional patterns over progression level...

  14. Enhanced invasion of metastatic cancer cells via extracellular matrix interface.

    Directory of Open Access Journals (Sweden)

    Jiangrui Zhu

    Full Text Available Cancer cell invasion is a major component of metastasis and is responsible for extensive cell diffusion into and major destruction of tissues. Cells exhibit complex invasion modes, including a variety of collective behaviors. This phenomenon results in the structural heterogeneity of the extracellular matrix (ECM in tissues. Here, we systematically investigated the environmental heterogeneity facilitating tumor cell invasion via a combination of in vitro cell migration experiments and computer simulations. Specifically, we constructed an ECM microenvironment in a microfabricated biochip and successfully created a three-dimensional (3D funnel-like matrigel interface inside. Scanning electron microscopy demonstrated that the interface was at the interior defects of the nano-scale molecular anisotropic orientation and the localized structural density variations in the matrigel. Our results, particularly the correlation of the collective migration pattern with the geometric features of the funnel-like interface, indicate that this heterogeneous in vitro ECM structure strongly guides and promotes aggressive cell invasion in the rigid matrigel space. A cellular automaton model was proposed based on our experimental observations, and the associated quantitative analysis indicated that cell invasion was initiated and controlled by several mechanisms, including microenvironment heterogeneity, long-range cell-cell homotype and gradient-driven directional cellular migration. Our work shows the feasibility of constructing a complex and heterogeneous in vitro 3D ECM microenvironment that mimics the in vivo environment. Moreover, our results indicate that ECM heterogeneity is essential in controlling collective cell invasive behaviors and therefore determining metastasis efficiency.

  15. Lysine-specific demethylase-1 contributes to malignant behavior by regulation of invasive activity and metabolic shift in esophageal cancer.

    Science.gov (United States)

    Kosumi, Keisuke; Baba, Yoshifumi; Sakamoto, Akihisa; Ishimoto, Takatsugu; Harada, Kazuto; Nakamura, Kenichi; Kurashige, Junji; Hiyoshi, Yukiharu; Iwatsuki, Masaaki; Iwagami, Shiro; Sakamoto, Yasuo; Miyamoto, Yuji; Yoshida, Naoya; Oki, Eiji; Watanabe, Masayuki; Hino, Shinjiro; Nakao, Mitsuyoshi; Baba, Hideo

    2016-01-15

    Lysine-specific demethylase-1 (LSD1) removes the methyl groups from mono- and di-methylated lysine 4 of histone H3. Previous studies have linked LSD1 to malignancy in several human tumors, and LSD1 is considered to epigenetically regulate the energy metabolism genes in adipocytes and hepatocellular carcinoma. This study investigates the function of LSD1 in the invasive activity and the metabolism of esophageal cancer cells. We investigated whether LSD1 immunohistochemical expression levels are related to clinical and pathological features, including the maximum standard uptake value in fluorodeoxyglucose positron emission tomography assay. The influence of LSD1 on cell proliferation, invasion and glucose uptake was evaluated in vitro by using specific small interfering RNA for LSD1, and an LSD1 inhibitor. We also evaluated two major energy pathways (glycolytic pathway and mitochondrial respiration) by measuring the extracellular acidification rate (ECAR) and the oxygen consumption rate (OCR) with an extracellular flux analyzer. High LSD1 immunohistochemical expression was significantly associated with high tumor stage, lymphovascular invasion, poor prognosis, and high maximum standard uptake value in esophageal cancer patients. In the in vitro analysis, LSD1 knockdown significantly suppressed the invasive activity and glucose uptake of cancerous cells, reduced their ECAR and increased their OCR and OCR/ECAR. LSD1 may contribute to malignant behavior by regulating the invasive activity and metabolism, activating the glycolytic pathway and inhibiting the mitochondrial respiration of esophageal cancer cells. The results support LSD1 as a potential therapeutic target. PMID:26240060

  16. Predictors of Outcome of Non–Muscle-Invasive and Muscle-Invasive Bladder Cancer

    Directory of Open Access Journals (Sweden)

    Ramy F. Youssef

    2011-01-01

    Full Text Available Bladder cancer is a major cause of morbidity and mortality. At initial diagnosis, 75% of patients present with non–muscle-invasive disease and 25% of patients have muscle-invasive or metastatic disease.Patients with noninvasive disease suffer from a high rate of recurrence and 10–30% will have disease progression. Patients with muscle-invasive disease are primarily treated with radical cystectomy, but frequently succumb to their disease despite improvements in surgical technique. In non–muscle-invasive disease, multiplicity, tumor size, and prior recurrence rates are the most important predictors for recurrence, while tumor grade, stage, and carcinoma in situ are the most important predictors for progression. The most common tool that clinicians use to predict outcomes after radical cystectomy is still the tumor-node-metastasis (TNM staging system, with lymph node involvement representing the most important prognostic factor. However, the predictive accuracy of staging and grading systems are limited, and nomograms incorporating clinical and pathologic factors can improve prediction of bladder cancer outcomes. One limitation of current staging is the fact that tumors of a similar stage and grade can have significantly different biology. The integration of molecular markers, especially in a panel approach, has the potential to further improve the accuracy of predictive models and may also identify targets for therapeutic intervention or patients who will respond to systemic therapies.

  17. Overexpression of miR-155 promotes the proliferation and invasion of oral squamous carcinoma cells by regulating BCL6/cyclin D2

    Science.gov (United States)

    ZENG, QI; TAO, XIAOAN; HUANG, FANG; WU, TONG; WANG, JUAN; JIANG, XIAO; KUANG, ZIRONG; CHENG, BIN

    2016-01-01

    Although microRNA-155 (miR-155) is known to play an important role in many cancers, its expression and function in oral squamous cell carcinoma (OSCC) was not fully understood. Thus, in the present study, we investigated the expression of miR-155 and also the role this miR plays in OSCC. We used the OSCC cell line (CAL27) and paired tumor and non-tumor tissue samples from patients with OSCC in order to detect the expression of miR-155. Cell proliferation, migration and invasion assays were then undertaken in order to determine the effect of miR-155 on the biological behavior of CAL27 cells following transient transfection with miR-155 mimic and antagomir. The regulatory effect of miR-155 on its target gene B-cell CLL/lymphoma 6 (BCL6) and downstream gene cyclin D2 (CCND2) was also analyzed. We found that miR-155 expression in OSCC cell and tumor tissues was significantly higher than that of the controls. We noted that the miR-155 mimic enhanced CAL27 cell proliferation, migration and invasion ability, downregulated BCL6 levels, and increased cyclin D2 expression. However, we noted that abrogating miR-155 with the miR-155 antagomir suppressed CAL27 cell proliferation, migration and invasion, upregulated BCL6 and reduced cyclin D2 expression. These results indicate that miR-155 plays a tumor-promoting role in OSCC by regulating the BCL6/cyclin D2 axis. PMID:26986233

  18. Decorin-Mediated Inhibition of Human Trophoblast Cells Proliferation, Migration, and Invasion and Promotion of Apoptosis In Vitro.

    Science.gov (United States)

    Zou, Yanfen; Yu, Xiang; Lu, Jing; Jiang, Ziyan; Zuo, Qing; Fan, Mingsong; Huang, Shiyun; Sun, Lizhou

    2015-01-01

    Preeclampsia (PE) is a unique complication of pregnancy, the pathogenesis of which has been generally accepted to be associated with the dysfunctions of extravillous trophoblast (EVT) including proliferation, apoptosis, and migration and invasion. Decorin (DCN) has been proved to be a decidua-derived TGF-binding proteoglycan, which negatively regulates proliferation, migration, and invasiveness of human extravillous trophoblast cells. In this study, we identified a higher expression level of decorin in severe PE placentas by both real-time reverse transcription-polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC). And an inhibitory effect of decorin on proliferation, migration, and invasion and an enhanced effect on apoptosis in trophoblast cells HTR-8/SVneo and JEG-3 were validated in vitro. Also the modulations of decorin on trophoblast cells' metastasis and invasion functions were detected through regulating the matrix metalloproteinases (MMP2 and MMP9). Thus, we suggested that the contribution of decorin to the modulation of trophoblast cells might have implications for the pathogenesis of preeclampsia. PMID:26357650

  19. Decorin-Mediated Inhibition of Human Trophoblast Cells Proliferation, Migration, and Invasion and Promotion of Apoptosis In Vitro

    Directory of Open Access Journals (Sweden)

    Yanfen Zou

    2015-01-01

    Full Text Available Preeclampsia (PE is a unique complication of pregnancy, the pathogenesis of which has been generally accepted to be associated with the dysfunctions of extravillous trophoblast (EVT including proliferation, apoptosis, and migration and invasion. Decorin (DCN has been proved to be a decidua-derived TGF-binding proteoglycan, which negatively regulates proliferation, migration, and invasiveness of human extravillous trophoblast cells. In this study, we identified a higher expression level of decorin in severe PE placentas by both real-time reverse transcription-polymerase chain reaction (qRT-PCR and immunohistochemistry (IHC. And an inhibitory effect of decorin on proliferation, migration, and invasion and an enhanced effect on apoptosis in trophoblast cells HTR-8/SVneo and JEG-3 were validated in vitro. Also the modulations of decorin on trophoblast cells’ metastasis and invasion functions were detected through regulating the matrix metalloproteinases (MMP2 and MMP9. Thus, we suggested that the contribution of decorin to the modulation of trophoblast cells might have implications for the pathogenesis of preeclampsia.

  20. FGFR1 amplification and the progression of non-invasive to invasive breast cancer

    OpenAIRE

    Gru, Alejandro A.; Allred, D. Craig

    2012-01-01

    The incidence of invasive breast cancer (IBC) can be dramatically reduced by improving our abilities to detect and treat ductal carcinoma in situ (DCIS). Progress will be based on a detailed understanding of molecular mechanisms responsible for tumor progression. An interesting study by Jang and colleagues evaluated and compared the frequency of amplification of four oncogenes (HER2, c-MYC, CCND1 and FGFR1) in large cohorts of pure DCIS, in the DCIS component of IBC, and in corresponding IBC....

  1. SUZ12 Depletion Suppresses the Proliferation of Gastric Cancer Cells

    Directory of Open Access Journals (Sweden)

    Yingjun Cui

    2013-05-01

    Full Text Available Background/Aims: SUZ12 and EZH2 are two main components of polycomb repressive complex 2 (PRC2 that is known to be of great importance in tumorigenesis. EZH2 has been reported to play a vital role in pathogenesis of human cancer. However, whether SUZ12 has equivalent roles in tumorigenesis has not been demonstrated. Here, we investigated a possible role of SUZ12 for the proliferation of gastric cancer cells. Methods: Western-blot analysis was used to detected the levels of SUZ12, H3K27me3, EZH2 and p27 in ten gastric cell lines. SUZ12 was depleted by RNA interference. Cell cycle was detected by flow cytometry. Luciferase assays was to analyze whether miR-200b directly regulate SUZ12. Results: We found that SUZ12 depletion mediated by RNA interference (RNAi led to a reduction of gastric cell numbers and arrested the cell cycle at G1/S point. As an important G1/S phase inhibitory gene, p27 is re-induced to some extent by SUZ12 knockdown. Furthermore, we demonstrated that SUZ12 was directly downregulated by miR-200b. Conclusion: We provide evidence suggesting that SUZ12 may be a potential therapeutic target for gastric cancer.

  2. Diabetes, cancer, and metformin: connections of metabolism and cell proliferation.

    Science.gov (United States)

    Gallagher, Emily Jane; LeRoith, Derek

    2011-12-01

    Diabetes is associated with an increased risk of developing and dying from cancer. This increased risk may be due to hyperglycemia, hyperinsulinemia, and insulin resistance or other factors. Metformin has recently gained much attention as it appears to reduce cancer incidence and improve prognosis of patients with diabetes. In vitro data and animal studies support these findings from human epidemiological studies. Metformin has multiple potential mechanisms by which it inhibits cancer development and growth. For example, metaformin inhibits hepatic gluconeogenesis, thus decreasing circulating glucose levels, and it increases insulin sensitivity, thus reducing circulating insulin levels. Intracellularly, metformin activates AMPK, which decreases protein synthesis and cell proliferation. Metaformin also reduces aromatase activity in the stromal cells of the mammary gland. Finally, metformin may diminish the recurrence and aggressiveness of tumors by reducing the stem cell population and inhibiting epithelial to mesenchymal transition. Here, we discuss the metabolic abnormalities that occur in tumor development and some of the mechanisms through which metformin may alter these pathways and reduce tumor growth. PMID:22211893

  3. Plexin-B1 silencing inhibits ovarian cancer cell migration and invasion

    International Nuclear Information System (INIS)

    Elevated Plexin-B1 expression has been found in diverse human cancers and in non-neoplastic tissues, and it mediates diverse biological and pathological activities. However, whether or not Plexin-B1 expression is involved in human ovarian tumors remains unclear. In the present study, Plexin-B1 expression was explored in benign and malignant human ovarian tumor tissues. In addition, the impact of Plexin-B1 expression on ovarian cancer cell proliferation, migration and invasion were investigated in vitro. Plexin-B1 expression was analyzed in normal and benign ovarian tissues and serous ovarian tumors (both borderline and malignant) by immunohistochemical staining, as well as in four human ovarian cancer cell lines (A2780, C13*, SKOV3, and OV2008) by RT-PCR and western blot analyses. Furthermore, endogenous Plexin-B1 expression was suppressed by Plexin-B1 siRNA in SKOV3 cells, which overexpress Plexin-B1. Protein levels of Plexin-B1, AKT and AKTSer473 were examined by western blot analysis. Cell proliferation, migration and invasion were measured with MTT, wound healing and boyden chamber assays, respectively, and the cytoskeleton was monitored via F-actin staining. Expression levels of Plexin-B1 protein were significantly higher in serous ovarian carcinomas than in normal ovaries or benign ovarian neoplasms, and in the former, Plexin-B1 expression was positively correlated with lymphatic metastasis, and the membrane and cytoplasm of cancer cells stained positively. SKOV3 cells displayed the highest Plexin-B1 expression at both the mRNA and protein levels among the four tested human ovarian cancer cell lines and was selected as a cell model for further in vitro experiments. Plexin-B1 siRNA significantly suppressed phosphorylation of AKT at Ser473 in SKOV3 cells, but it did not alter total AKT expression. In addition, silencing of Plexin-B1 in SKOV3 cells inhibited cell migration and invasion and reorganized the cytoskeleton, whereas cell proliferation was not affected

  4. The natural compound magnolol inhibits invasion and exhibits potential in human breast cancer therapy

    OpenAIRE

    Liu, Ying; Cao, Wei; Zhang, Bo; Liu, Yong-Qiang; Wang, Zhong-yuan; Wu, Yan-ping; Yu, Xian-jun; Zhang, Xu-Dong; Ming, Ping-hong; Zhou, Guang-Biao; Huang, Laiqiang

    2013-01-01

    Invasion and metastasis are the main causes of treatment failure and death in breast cancer. Thus, novel invasion-based therapies such as those involving natural agents are urgently required. In this study, we examined the effects of magnolol (Mag), a compound extracted from medicinal herbs, on breast cancer cells in vitro and in vivo. Highly invasive cancer cells were found to be highly sensitive to treatment. Mag markedly inhibited the activity of highly invasive MDA-MB-231 cells. Furthermo...

  5. Synchronous unilateral triple breast cancers composed of invasive ductal carcinoma, invasive lobular carcinoma, and Paget's disease.

    Science.gov (United States)

    Onoe, Shunsuke; Tsuda, Hitoshi; Akashi-Tanaka, Sadako; Hasebe, Takahiro; Iwamoto, Eriko; Hojo, Takashi; Kinoshita, Takayuki

    2014-03-01

    We report a case of synchronous unilateral triple breast cancers comprising invasive ductal carcinoma (IDC), invasive lobular carcinoma (ILC), and Paget's disease. A 57-year-old woman with a left breast mass was referred to our hospital. Mammography revealed only an isodense area with foci of microcalcification in the lateral area of the left breast. Ultrasonography revealed 2 hypoechoic masses in the outer lower and inner upper areas, and these 2 lesions were diagnosed by core needle biopsy as ILC and IDC, respectively. Left total mastectomy with sentinel lymph node biopsies was performed. In addition to the ILC and IDC, histological examination also identified Paget's disease. Breast cancer often manifests as multiple unilateral lesions; however, it is sometimes difficult to determine whether these tumors have developed multicentrically or have multifocally invaded from an intraductal carcinoma. This case was clearly diagnosed to have occurred multicentrically because of the absence of continuity among the 3 tumors, the presence of a non-invasive component in all 3 tumors, and different histopathological findings. The synchronous unilateral development of ILCs is well known. Cases of synchronous unilateral triple or more breast cancers were reviewed, and their histopathological characteristics, including the incidence of Paget's disease, is discussed. PMID:21140247

  6. Acetylcholine release by human colon cancer cells mediates autocrine stimulation of cell proliferation

    OpenAIRE

    Cheng, Kunrong; Samimi, Roxana; Xie, Guofeng; Shant, Jasleen; Drachenberg, Cinthia; Wade, Mark; Davis, Richard J.; Nomikos, George; Raufman, Jean-Pierre

    2008-01-01

    Most colon cancers overexpress M3 muscarinic receptors (M3R), and post-M3R signaling stimulates human colon cancer cell proliferation. Acetylcholine (ACh), a muscarinic receptor ligand traditionally regarded as a neurotransmitter, may be produced by nonneuronal cells. We hypothesized that ACh release by human colon cancer cells results in autocrine stimulation of proliferation. H508 human colon cancer cells, which have robust M3R expression, were used to examine effects of muscarinic receptor...

  7. miR-194 targets RBX1 gene to modulate proliferation and migration of gastric cancer cells.

    Science.gov (United States)

    Chen, Xiaonan; Wang, Yuanyuan; Zang, Wenqiao; Du, Yuwen; Li, Min; Zhao, Guoqiang

    2015-04-01

    RING box protein1 (RBX1), an essential component of SCF E3 ubiquitin ligases, plays an important role in gastric cancer. In the study, miR-194 and RBX1 expression was evaluated in 76 pairs of gastric tumor and non-tumor tissue samples by qRT-PCR, and clinicopathological characteristics were analyzed. CCK8, transwell assay, wound healing assay, and flow cytometry assay were performed to evaluate the effect of miR-194 on gastric cancer (GC) cellular proliferation, invasion, migration, apoptosis, and cell cycle, respectively. Luciferase reporter assays and Western blotting were used to evaluate whether RBX1 is a direct target of miR-194. The Kaplan-Meier method and log-rank test were used to evaluate the correlation between miR-194 or RBX1 expression and patient survival. Then, we found that miR-194 was significantly downregulated and RBX1 upregulated in GC tissues; both of which showed significant association with tumor size, location, invasion, and tumor node metastasis. Cell proliferation, invasion, and migration were significantly restricted with miR-194 overexpression. miR-194 downregulated RBX1 protein expression, and luciferase assays showed that binding sites in the RBX1 3'UTR were required for miR-194-mediated repression of RBX1, indicating that RBX1 was a direct target of miR-194. Transfection of RBX1 without the 3'UTR restored the miR-194-inhibiting migration function. miR-194 overexpression or RBX1 lowexpression was associated with prolonged survival of GC patients. In conclusion, upregulation of miR-194 can inhibit proliferation, migration, and invasion of GC cells, possibly by targeting RBX1. Aberrant expression of miR-194 and RBX1 is correlated to GC patient survival time. PMID:25412959

  8. A bioluminescent mouse model of proliferation to highlight early stages of pancreatic cancer: A suitable tool for preclinical studies.

    Science.gov (United States)

    de Latouliere, Luisa; Manni, Isabella; Iacobini, Carla; Pugliese, Giuseppe; Grazi, Gian Luca; Perri, Pasquale; Cappello, Paola; Novelli, Franco; Menini, Stefano; Piaggio, Giulia

    2016-09-01

    Transgenic mouse models designed to recapitulate genetic and pathologic aspects of cancer are useful to study early stages of disease as well as its progression. Among several, two of the most sophisticated models for pancreatic ductal adenocarcinoma (PDAC) are the LSL-Kras(G12D/+);Pdx-1-Cre (KC) and LSL-Kras(G12D/+);LSL-Trp53(R172H/+);Pdx-1-Cre (KPC) mice, in which the Cre-recombinase regulated by a pancreas-specific promoter activates the expression of oncogenic Kras alone or in combination with a mutant p53, respectively. Non-invasive in vivo imaging offers a novel approach to preclinical studies introducing the possibility to investigate biological events in the spatio/temporal dimension. We recently developed a mouse model, MITO-Luc, engineered to express the luciferase reporter gene in cells undergoing active proliferation. In this model, proliferation events can be visualized non-invasively by bioluminescence imaging (BLI) in every body district in vivo. Here, we describe the development and characterization of MITO-Luc-KC- and -KPC mice. In these mice we have now the opportunity to follow PDAC evolution in the living animal in a time frame process. Moreover, by relating in vivo and ex vivo BLI and histopathological data we provide evidence that these mice could represents a suitable tool for pancreatic cancer preclinical studies. Our data also suggest that aberrant proliferation events take place early in pancreatic carcinogenesis, before tumour appearance. PMID:26704357

  9. Bladder preservation using chemoradiation therapy for locally invasive bladder cancer

    International Nuclear Information System (INIS)

    We investigated the long-term results and molecular markers of outcome with selective organ preservation in invasive bladder cancer using chemoradiation therapy. We examined locally invasive bladder cancer in 32 patients (30 men, 2 women; mean age at treatment 68.1 years) who underwent bladder-sparing protocols in the Department of Urology at Sumitomo Hospital between 2000 and 2005. The clinical stage was T2, T3, and T4 in 13, 16, and 3 patients, respectively. Our protocol includes aggressive transurethral resection of the bladder tumor (TURBT) and 46 Gy radiotherapy (2 Gy/fraction, 5 fractions/week) to the pelvis with concurrent cisplatin chemotherapy (20 mg/body/day, 5 days/week, the first and fourth week, intravenously). The initial evaluation included magnetic resonance imaging (MRI), urine cytology, and cystoscopy with a biopsy. During follow-up, if the patients developed superficial recurrence, they was treated with TURBT and intravesical Bacillus Calmette-Guerin (BCG), while patients with invasive recurrence were advised to undergo a salvage cystectomy. We examined the association between the expression of the Bcl-2 family in pretreatment TUR specimens and patient outcome. The mean follow-up was 54.6 months. The first assessment after the induction chemoradiotherapy showed that bladder preservation was achieved in 27 patients (84.4%). The actuarial local control rate with an intact bladder was 56.3% (18 patients) at 3 years. The 1-, 3-, and 5-year cancer-specific survival rate was 90.6, 84.0, and 66.9%, respectively. The 5-year cancer-specific survival rate was 75.0, 67.2, and 33.3% in T2, T3, and T4, respectively. Bcl-x positivity was significantly associated with a poor cancer-specific survival rate (log-rank test, p=0.038). Chemoradiation therapy for invasive bladder cancer can achieve survival rates similar to those in patients treated with radical cystectomy, with successful bladder preservation. Our results suggest that the expression of Bcl-x is a

  10. Advanced Glycation End-Products Enhance Lung Cancer Cell Invasion and Migration

    Science.gov (United States)

    Hsia, Te-Chun; Yin, Mei-Chin; Mong, Mei-Chin

    2016-01-01

    Effects of carboxymethyllysine (CML) and pentosidine, two advanced glycation end-products (AGEs), upon invasion and migration in A549 and Calu-6 cells, two non-small cell lung cancer (NSCLC) cell lines were examined. CML or pentosidine at 1, 2, 4, 8 or 16 μmol/L were added into cells. Proliferation, invasion and migration were measured. CML or pentosidine at 4–16 μmol/L promoted invasion and migration in both cell lines, and increased the production of reactive oxygen species, tumor necrosis factor-α, interleukin-6 and transforming growth factor-β1. CML or pentosidine at 2–16 μmol/L up-regulated the protein expression of AGE receptor, p47phox, intercellular adhesion molecule-1 and fibronectin in test NSCLC cells. Matrix metalloproteinase-2 protein expression in A549 and Calu-6 cells was increased by CML or pentosidine at 4–16 μmol/L. These two AGEs at 2–16 μmol/L enhanced nuclear factor κ-B (NF-κ B) p65 protein expression and p38 phosphorylation in A549 cells. However, CML or pentosidine at 4–16 μmol/L up-regulated NF-κB p65 and p-p38 protein expression in Calu-6 cells. These findings suggest that CML and pentosidine, by promoting the invasion, migration and production of associated factors, benefit NSCLC metastasis. PMID:27517907

  11. Prostate Cancer Susceptibility Polymorphism rs2660753 Is Not Associated with Invasive Ovarian Cancer

    DEFF Research Database (Denmark)

    Amankwah, Ernest K; Kelemen, Linda E; Wang, Qinggang;

    2011-01-01

    BACKGROUND: We previously reported an association between rs2660753, a prostate cancer susceptibility polymorphism, and invasive epithelial ovarian cancer (EOC; OR = 1.2, 95% CI=1.0-1.4, P(trend) = 0.01) that showed a stronger association with the serous histological subtype (OR = 1.3, 95% CI = 1.......0-1.2, P(trend) = 0.11). There was no evidence for statistical heterogeneity in ORs across the studies. CONCLUSIONS: Although rs2660753 is a strong prostate cancer susceptibility polymorphism, the association with another hormonally related cancer, invasive EOC, is not supported by this replication study.......1-1.5, P(trend) = 0.003). METHODS: We sought to replicate this association in 12 other studies comprising 4,482 cases and 6,894 controls of white non-Hispanic ancestry in the Ovarian Cancer Association Consortium. RESULTS: No evidence for an association with all cancers or serous cancers was observed in a...

  12. CAP1 (Cyclase-Associated Protein 1) Exerts Distinct Functions in the Proliferation and Metastatic Potential of Breast Cancer Cells Mediated by ERK

    Science.gov (United States)

    Zhang, Haitao; Zhou, Guo-Lei

    2016-01-01

    The actin-regulating protein CAP1 is implicated in the invasiveness of human cancers. However, the exact role remains elusive and controversial given lines of conflicting evidence. Moreover, a potential role in the proliferative transformation has largely been overlooked. Further establishing the role and dissecting underlying mechanisms are imperative before targeting CAP1 can become a possibility for cancer treatment. Here we report our findings that CAP1 exerts cell type-dependent functions in the invasiveness of breast cancer cells. Depletion of CAP1 in the metastatic MDA-MB-231 and BT-549 cancer cells stimulated the metastatic potential while it actually inhibited it in the non-metastatic MCF-7 cancer cells or in normal cells. Moreover, we demonstrate functions for CAP1 in cancer cell proliferation and anchorage-independent growth, again in a cell context-dependent manner. Importantly, we identify pivotal roles for the ERK-centered signaling in mediating both CAP1 functions. Phosphor mutants of CAP1 at the S307/S309 regulatory site had compromised rescue effects for both the invasiveness and proliferation in CAP1-knockdown cells, suggesting that CAP1 likely mediates upstream cell signals to control both functions. These novel mechanistic insights may ultimately open up avenues for strategies targeting CAP1 in the treatment of breast cancer, tailored for specific types of the highly diverse disease. PMID:27173014

  13. Matrix metalloproteinases in cancer invasion, metastasis and angiogenesis.

    Science.gov (United States)

    Foda, H D.; Zucker, S

    2001-05-01

    Matrix metalloproteinases (MMPs) are a family of proteinases that play an important role in cancer as well as in numerous other diseases. In this article, we summarize the current views on the role of MMPs in cancer with respect to invasion, metastasis and angiogenesis. A positive correlation between tumor progression and the expression of multiple MMP family members in tumor tissues has been demonstrated in numerous human and animal studies. It has been assumed that cancer cells are responsible for producing the MMPs in human tumors. However, recent evidence suggests that tumor cells have docking sites that bind stromal-cell-secreted MMPs. Furthermore, the role of MMPs produced by endothelial cells, especially MMP-2 and MT1-MMP, appear to be crucial for tumor angiogenesis, which is a requirement for cancer growth and dissemination. PMID:11344033

  14. Contemporary management of muscle-invasive bladder cancer

    OpenAIRE

    Dall’Era, Marc A; Cheng, Liang; Pan, Chong-xian

    2012-01-01

    The current standard treatment for muscle-invasive nonmetastatic bladder cancer is neoadjuvant platinum-based chemotherapy followed by radical cystectomy. However, neoadjuvant chemotherapy is not widely accepted even with level 1 evidence. Adjuvant chemotherapy should be discussed if patients have not received neoadjuvant chemotherapy before surgery and have high-risk pathologic features. Although not considered standard of care, bladder-sparing therapy can be considered for highly selected p...

  15. Downregulation of ROS-FIG inhibits cell proliferation, colony-formation, cell cycle progression, migration and invasion, while inducing apoptosis in intrahepatic cholangiocarcinoma cells

    Science.gov (United States)

    DENG, GANG; HU, CHENGHUAN; ZHU, LEI; HUANG, FEIZHOU; HUANG, WEI; XU, HONGBO; NIE, WANPIN

    2014-01-01

    Intrahepatic cholangiocarcinoma (ICC) is the second most common primary liver cancer with poor responsiveness to existing drug therapies. Therefore, novel treatment strategies against ICC are required to improve survival. The aim of this study was to demonstrate the role of fused-in-glioblastoma-c-ros-oncogene1 (FIG-ROS) fusion gene in ICC. ROS was positively expressed in ICC tissues and HUCCT1 cells. Plasmids expressing ROS- and FIG-specific shRNAs were constructed and transfected into HUCCT1 cells. The results showed that single transfection of ROS- or FIG-specific shRNA inhibited HUCCT1 cell proliferation, colony formation, cell cycle progression, migration and invasion, while inducing apoptosis. Moreover, the co-inhibition of ROS- and FIG-specific shRNA exhibited stronger effects on HUCCT1 cell proliferation, apoptosis, colony formation, cell cycle progression, migration and invasion, when compared to single inhibition of ROS and FIG. Furthermore, findings of this study suggested that the AKT signaling pathway was involved in the ROS-FIG-mediated biological processes of HUCCT1 cells. In summary, the results suggest that FIG-ROS plays an oncogenic role in ICC. Additionally, ROS1-6290 and FIG-363 segments may become effective therapeutic targets for ICC harboring ROS-FIG fusion protein. PMID:24968753

  16. Technetium-99m sestamibi: an indicator of breast cancer invasiveness

    International Nuclear Information System (INIS)

    As recently shown, angiogenesis is the most reliable marker of breast cancer invasiveness. Unfortunately it must be assessed by immunohistochemistry on tissue specimens. We have used technetium-99m sestamibi, a marker of regional blood flow in other organs that often but not always images breast cancer, to assess the invasiveness of this tumour. Nineteen patients, ten with nodal metastases and nine without any metastases, were studied with 99mTc-sestamibi scintigraphy before operation. Angiogenesis was quantitatively assessed by immunohistochemical staining of endothelia for factor VIII. All the node-positive (N+) patients at surgical revesion showed a positive 99mTc-sestamibi scan of the primary tumour and all the N-patients were negative. Nine out of ten N+ and sestamibi-positive tumours showed more than 135 microvessels/mm2 and one showed 99 microvessels/mm2; by contrast there were 71.6±12.1 microvessels/mm2 in the nine N- and sestamibi-negative tumours. Our study suggests that 99mTc-sestamibi is a marker of breast cancer invasiveness: its uptake is related to angiogenesis and, possibly, to oxidative metabolism of the tumour. (orig.)

  17. Technetium-99m sestamibi: an indicator of breast cancer invasiveness

    Energy Technology Data Exchange (ETDEWEB)

    Scopinaro, F. (Section of Nuclear Medicine, Dept. of Experimental Medicine, Univ. ' La Sapienza' , Rome (Italy)); Schillaci, O. (Section of Nuclear Medicine, Dept. of Experimental Medicine, Univ. ' La Sapienza' , Rome (Italy)); Scarpini, M. (1st Inst. of Surgery, Univ. ' La Sapienza' , Rome (Italy)); Mingazzini, P.L. (1st Inst. of Surgery, Univ. ' La Sapienza' , Rome (Italy)); Di Macio, L. (Section of Nuclear Medicine, Dept. of Experimental Medicine, Univ. ' La Sapienza' , Rome (Italy)); Banci, M. (Section of Nuclear Medicine, Dept. of Experimental Medicine, Univ. ' La Sapienza' , Rome (Italy)); Danieli, R. (Section of Nuclear Medicine, Dept. of Experimental Medicine, Univ. ' La Sapienza' , Rome (Italy)); Zerilli, M. (1st Inst. of Surgery, Univ. ' La Sapienza' , Rome (Italy)); Limiti, M.R. (1st Inst. of Surgery, Univ. ' La Sapienza' , Rome (Italy)); Centi Colella, A. (Section of Nuclear Medicine, Dept. of Experimental Medicine, Univ. ' La Sapienza' , Rome (Italy))

    1994-09-01

    As recently shown, angiogenesis is the most reliable marker of breast cancer invasiveness. Unfortunately it must be assessed by immunohistochemistry on tissue specimens. We have used technetium-99m sestamibi, a marker of regional blood flow in other organs that often but not always images breast cancer, to assess the invasiveness of this tumour. Nineteen patients, ten with nodal metastases and nine without any metastases, were studied with [sup 99m]Tc-sestamibi scintigraphy before operation. Angiogenesis was quantitatively assessed by immunohistochemical staining of endothelia for factor VIII. All the node-positive (N+) patients at surgical revesion showed a positive [sup 99m]Tc-sestamibi scan of the primary tumour and all the N-patients were negative. Nine out of ten N+ and sestamibi-positive tumours showed more than 135 microvessels/mm[sup 2] and one showed 99 microvessels/mm[sup 2]; by contrast there were 71.6[+-]12.1 microvessels/mm[sup 2] in the nine N- and sestamibi-negative tumours. Our study suggests that [sup 99m]Tc-sestamibi is a marker of breast cancer invasiveness: its uptake is related to angiogenesis and, possibly, to oxidative metabolism of the tumour. (orig.)

  18. Tumor associated fibroblasts enhance head and neck squamous cell carcinoma proliferation, invasion, and metastasis in preclinical models

    Science.gov (United States)

    Wheeler, Sarah Elizabeth; Shi, Huifang; Lin, Fangchen; Dasari, Sumana; Bednash, Joseph; Thorne, Stephen; Watkins, Simon; Joshi, Radhika; Thomas, Sufi Mary

    2014-01-01

    Background Head and neck squamous cell carcinoma (HNSCC) has had little improvement in mortality rates in decades. A clearer understanding of the HNSCC tumor microenvironment will aid in finding more effective targeted therapies for this disease. Tumor associated fibroblasts (TAFs) are the largest stromal cellular components of the tumor microenvironment in HNSCC. Methods We isolated TAFs from clinical HNSCC cases and propagated in vitro. The effects of TAF secreted paracrine factors on in vitro HNSCC migration, invasion and proliferation was assessed. The effect of TAFs on HNSCC growth and metastases was determined in an orthotopic floor of mouth tumor model. Results TAF conditioned media increased HNSCC cell migration, invasion and proliferation. TAFs increased HNSCC tumor growth and metastases in vivo. Conclusions TAFs play a major role in increasing tumor growth and metastasis in HNSCC. Targeting the tumor stroma may be important to reduce the rate of HNSCC metastasis. PMID:23728942

  19. Downregulated TIPE2 is associated with poor prognosis and promotes cell proliferation in non-small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuexia [Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052 (China); Li, Xiaohui [Department of Cardiovascular Surgery, Henan Provincial People’s Hospital, Zhengzhou, Henan 450003 (China); Liu, Gang; Sun, Rongqing; Wang, Lirui [Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052 (China); Wang, Jing, E-mail: jing_wang1980@163.com [Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052 (China); Wang, Hongmin, E-mail: hmwangzz@126.com [Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052 (China)

    2015-01-30

    Highlights: • TIPE2 is down-regulated in NSCLC tissues. • TIPE2 inhibits NSCLC cell proliferation, colony formation and invasion. • TIPE2 reduces the anti-apoptotic Bcl-XL protein and mesenchymal marker N-cadherin expression. - Abstract: The present study aims to investigate the expression pattern of TIPE2 protein and its clinical significance in human non-small cell lung cancer (NSCLC). We investigated the expression levels of TIPE2 in 96 NSCLC tumor samples by immunohistochemistry and then analyzed its clinical significance. Furthermore, the role of TIPE2 on the biological properties of the NSCLC cell line H1299 and A549 was experimentally tested in vitro and in vivo. We found that the expression level of TIPE2 was significantly higher in normal lung tissues compared with NSCLC tissues (P < 0.001), and TIPE2 downregulation was significantly correlated with advanced TNM stage (P = 0.006). TIPE2 expression was lower in lung cancer cell lines than normal bronchial cell line HBE. Transfection of TIPE2 plasmid was performed in H1299 and A549 cells. TIPE2 overexpression inhibited lung cancer cell proliferation, colony formation and cell invasive in vitro, and prevented lung tumor growth in vivo. In addition, TIPE2 transfection reduced the anti-apoptotic Bcl-XL protein and mesenchymal marker N-cadherin expression. Taken together, our results demonstrate that TIPE2 might serve as a tumor suppressor in NSCLC progression.

  20. Downregulated TIPE2 is associated with poor prognosis and promotes cell proliferation in non-small cell lung cancer

    International Nuclear Information System (INIS)

    Highlights: • TIPE2 is down-regulated in NSCLC tissues. • TIPE2 inhibits NSCLC cell proliferation, colony formation and invasion. • TIPE2 reduces the anti-apoptotic Bcl-XL protein and mesenchymal marker N-cadherin expression. - Abstract: The present study aims to investigate the expression pattern of TIPE2 protein and its clinical significance in human non-small cell lung cancer (NSCLC). We investigated the expression levels of TIPE2 in 96 NSCLC tumor samples by immunohistochemistry and then analyzed its clinical significance. Furthermore, the role of TIPE2 on the biological properties of the NSCLC cell line H1299 and A549 was experimentally tested in vitro and in vivo. We found that the expression level of TIPE2 was significantly higher in normal lung tissues compared with NSCLC tissues (P < 0.001), and TIPE2 downregulation was significantly correlated with advanced TNM stage (P = 0.006). TIPE2 expression was lower in lung cancer cell lines than normal bronchial cell line HBE. Transfection of TIPE2 plasmid was performed in H1299 and A549 cells. TIPE2 overexpression inhibited lung cancer cell proliferation, colony formation and cell invasive in vitro, and prevented lung tumor growth in vivo. In addition, TIPE2 transfection reduced the anti-apoptotic Bcl-XL protein and mesenchymal marker N-cadherin expression. Taken together, our results demonstrate that TIPE2 might serve as a tumor suppressor in NSCLC progression

  1. Pepper seed extract suppresses invasion and migration of human breast cancer cells.

    Science.gov (United States)

    Kim, Hyeon-A; Kim, Min-Sook; Kim, Sang-Hyun; Kim, Yoo Kyeong

    2014-01-01

    This study was performed to determine the antimetastatic activities of chili pepper seed on human breast cancer cells. The water extract of chili pepper seeds was prepared and it contained a substantial amount of phenols (131.12 mg%) and no capsaicinoids. Pepper seed extract (PSE) suppressed the proliferation of MDA-MB-231 and MCF-7 cells at the concentration of 10, 25, and 50 μg/ml (MDA-MB-231: IC50 = 20.1 μg/ml, MCF-7: IC50 = 14.7 μg/ml). PSE increased the expression level of E-cadherin up to 1.2-fold of the control in MCF-7 cells. PSE also decreased the secretion of matrix metalloproteinase (MMP)-2 and MMP-9 in MDA-MB-231 and MCF-7 cells at the concentration of 25 and 50 μg/ml. PSE treatment significantly suppressed the invasion of MDA-MB-231 and MCF-7 cells in a dose-dependent manner. The motility of cancer cells was apparently retarded in the wound healing assay by the PSE treatment. Although our data collectively demonstrate that PSE inhibits invasion and migration of breast cancer cells, further study is needed to identify specific mechanisms and bioactive components contributing to antimetastatic effects of chili pepper seed. PMID:24341783

  2. A Milk Protein, Casein, as a Proliferation Promoting Factor in Prostate Cancer Cells

    OpenAIRE

    Park, Sung-Woo; Kim, Joo-Young; Kim, You-sun; Lee, Sang Jin; Lee, Sang Don; CHUNG, MOON KEE

    2014-01-01

    Purpose Despite most epidemiologic studies reporting that an increase in milk intake affects the growth of prostate cancer, the results of experimental studies are not consistent. In this study, we investigated the proliferation of prostate cancer cells treated with casein, the main protein in milk. Materials and Methods Prostate cancer cells (LNCaP and PC3), lung cancer cells (A459), stomach cancer cells (SNU484), breast cancer cells (MCF7), immortalized human embryonic kidney cells (HEK293)...

  3. Exogenous IGFBP-2 promotes proliferation, invasion, and chemoresistance to temozolomide in glioma cells via the integrin β1-ERK pathway

    OpenAIRE

    Han, S.; Z. Li; Master, L M; Master, Z W; Wu, A

    2014-01-01

    Background: Insulin-like growth factor binding protein-2 (IGFBP-2) is significantly increased in the serum of patients with malignant gliomas. High plasma IGFBP-2 levels are correlated with poor prognosis in glioma patients. However, the exact role of exogenous IGFBP-2 in gliomas is unclear. Methods and results: Using the MTT cell viability assay, cell cycle analysis, and the transwell migration assay, it was demonstrated that IGFBP-2 treatment stimulated proliferation and invasion in U87 and...

  4. A common promoter hypomethylation signature in invasive breast, liver and prostate cancer cell lines reveals novel targets involved in cancer invasiveness

    Science.gov (United States)

    Yi, Cao; Li, Chen Chen; Yu, Patricia; Arakelian, Ani; Tanvir, Imrana; Khan, Haseeb Ahmed; Rabbani, Shafaat

    2015-01-01

    Cancer invasion and metastasis is the most morbid aspect of cancer and is governed by different cellular mechanisms than those driving the deregulated growth of tumors. We addressed here the question of whether a common DNA methylation signature of invasion exists in cancer cells from different origins that differentiates invasive from non-invasive cells. We identified a common DNA methylation signature consisting of hyper- and hypomethylation and determined the overlap of differences in DNA methylation with differences in mRNA expression using expression array analyses. A pathway analysis reveals that the hypomethylation signature includes some of the major pathways that were previously implicated in cancer migration and invasion such as TGF beta and ERBB2 triggered pathways. The relevance of these hypomethylation events in human tumors was validated by identification of the signature in several publicly available databases of human tumor transcriptomes. We shortlisted novel invasion promoting candidates and tested the role of four genes in cellular invasiveness from the list C11orf68, G0S2, SHISA2 and TMEM156 in invasiveness using siRNA depletion. Importantly these genes are upregulated in human cancer specimens as determined by immunostaining of human normal and cancer breast, liver and prostate tissue arrays. Since these genes are activated in cancer they constitute a group of targets for specific pharmacological inhibitors of cancer invasiveness. SUMMARY Our study provides evidence that common DNA hypomethylation signature exists between cancer cells derived from different tissues, pointing to a common mechanism of cancer invasiveness in cancer cells from different origins that could serve as drug targets. PMID:26427334

  5. Histone methylation-mediated silencing of miR-139 enhances invasion of non-small-cell lung cancer

    International Nuclear Information System (INIS)

    MicroRNA expression is frequently altered in human cancers, and some microRNAs act as oncogenes or tumor suppressors. MiR-139-5p (denoted thereafter as miR-139) has recently been reported to function as a tumor suppressor in several types of human cancer (hepatocellular carcinoma, colorectal cancer, breast cancer, and gastric cancer), but its function in non-small-cell lung cancer (NSCLC) and the mechanism of its suppression have not been studied in detail. MiR-139 was suppressed frequently in primary NSCLCs. MiR-139 is located within the intron of PDE2A and its expression was significantly correlated with the expression of PDE2A. A chromatin immunoprecipitation assay revealed that miR-139 was epigenetically silenced by histone H3 lysine 27 trimethylation (H3K27me3) of its host gene PDE2A and this process was independent of promoter DNA methylation. Pharmacological inhibition of both histone methylation and deacetylation-induced miR-139 with its host gene PDE2A. Ectopic expression of miR-139 in lung cancer cell lines did not affect the proliferation nor the migration but significantly suppressed the invasion through the extracellular matrix. In primary NSCLCs, decreased expression of miR-139 was significantly associated with distant lymph node metastasis and histological invasiveness (lymphatic invasion and vascular invasion) on both univariate and multivariate analyses. Collectively, these results suggest that H3K27me3-mediated silencing of miR-139 enhances an invasive and metastatic phenotype of NSCLC

  6. NLRC5 regulates cell proliferation, migration and invasion in hepatocellular carcinoma by targeting the Wnt/β-catenin signaling pathway.

    Science.gov (United States)

    Peng, Yun-Yun; He, Ying-Hua; Chen, Chen; Xu, Tao; Li, Lin; Ni, Ming-Ming; Meng, Xiao-Ming; Huang, Cheng; Li, Jun

    2016-06-28

    NLRC5, the largest member of nucleotide-binding and oligomerization domain (NOD)-like receptor (NLR) family, has been reported to regulate immune responses and is associated with chronic inflammatory diseases. However, the biological function of NLRC5 in hepatocellular carcinoma (HCC) has not yet been well demonstrated. In this study, the role of NLRC5 in hepatocellular carcinoma cell proliferation, migration and invasion capacities was evaluated by using MTT, flow cytometry, wound healing, transwell assay, and tumor formation assay in nude mice. Western blot analysis and qPCR assay were performed to assess NLRC5 interacting with the activation of Wnt/β-catenin signaling pathway. Here, we demonstrate that NLRC5 was highly expressed in HCC. Knockdown of NLRC5 significantly inhibited cell proliferation, migration, invasion and the tumor formation in nude mice, and arrested the cell cycle at G0/G1 phase. Furthermore, overexpression of NLRC5 promoted the proliferation, migration and invasion of HCC cells in vitro. Interestingly, we found that up-regulation of NLRC5 not only positively correlates with the increase of β-catenin but also coordinates the activation of downstream Wnt/β-catenin signaling pathway. Thus, our findings suggest that NLRC5 may play an important role in progression of HCC and provide a potential therapeutic value in this tumor. PMID:26975630

  7. Functional proteomic analysis reveals the involvement of KIAA1199 in breast cancer growth, motility and invasiveness

    International Nuclear Information System (INIS)

    KIAA1199 is a recently identified novel gene that is up-regulated in human cancer with poor survival. Our proteomic study on signaling polarity in chemotactic cells revealed KIAA1199 as a novel protein target that may be involved in cellular chemotaxis and motility. In the present study, we examined the functional significance of KIAA1199 expression in breast cancer growth, motility and invasiveness. We validated the previous microarray observation by tissue microarray immunohistochemistry using a TMA slide containing 12 breast tumor tissue cores and 12 corresponding normal tissues. We performed the shRNA-mediated knockdown of KIAA1199 in MDA-MB-231 and HS578T cells to study the role of this protein in cell proliferation, migration and apoptosis in vitro. We studied the effects of KIAA1199 knockdown in vivo in two groups of mice (n = 5). We carried out the SILAC LC-MS/MS based proteomic studies on the involvement of KIAA1199 in breast cancer. KIAA1199 mRNA and protein was significantly overexpressed in breast tumor specimens and cell lines as compared with non-neoplastic breast tissues from large-scale microarray and studies of breast cancer cell lines and tumors. To gain deeper insights into the novel role of KIAA1199 in breast cancer, we modulated KIAA1199 expression using shRNA-mediated knockdown in two breast cancer cell lines (MDA-MB-231 and HS578T), expressing higher levels of KIAA1199. The KIAA1199 knockdown cells showed reduced motility and cell proliferation in vitro. Moreover, when the knockdown cells were injected into the mammary fat pads of female athymic nude mice, there was a significant decrease in tumor incidence and growth. In addition, quantitative proteomic analysis revealed that knockdown of KIAA1199 in breast cancer (MDA-MB-231) cells affected a broad range of cellular functions including apoptosis, metabolism and cell motility. Our findings indicate that KIAA1199 may play an important role in breast tumor growth and invasiveness, and that it

  8. Metformin inhibits the proliferation of human prostate cancer PC-3 cells via the downregulation of insulin-like growth factor 1 receptor

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Haruo, E-mail: hal.kato@gunma-u.ac.jp; Sekine, Yoshitaka; Furuya, Yosuke; Miyazawa, Yoshiyuki; Koike, Hidekazu; Suzuki, Kazuhiro

    2015-05-22

    Metformin is a biguanide drug that is widely used for the treatment of type 2 diabetes. Recent studies have shown that metformin inhibits cancer cell proliferation and tumor growth both in vitro and in vivo. The anti-tumor mechanisms of metformin include activation of the AMP-activated protein kinase/mTOR pathway and direct inhibition of insulin/insulin-like growth factor (IGF)-mediated cellular proliferation. However, the anti-tumor mechanism in prostate cancer remains unclear. Because activation of the IGF-1 receptor (IGF-1R) is required for prostate cell proliferation, IGF-1R inhibitors may be of therapeutic value. Accordingly, we examined the effects of metformin on IGF-1R signaling in prostate cancer cells. Metformin significantly inhibited PC-3 cell proliferation, migration, and invasion. IGF-1R mRNA expression decreased significantly after 48 h of treatment, and IGF-1R protein expression decreased in a similar manner. IGF-1R knockdown by siRNA transfection led to inhibited proliferation, migration and invasion of PC-3 cells. IGF-1 activated both ERK1/2 and Akt, but these effects were attenuated by metformin treatment. In addition, intraperitoneal treatment with metformin significantly reduced tumor growth and IGF-1R mRNA expression in PC-3 xenografts. Our results suggest that metformin is a potent inhibitor of the IGF-1/IGF-1R system and may be beneficial in prostate cancer treatment. - Highlights: • Metformin inhibited PC-3 cell proliferation, migration, and invasion. • Metformin decreased IGF-1R mRNA and protein expressions in PC-3 cells. • Metformin inhibited IGF-1 induced ERK and Akt phosphorylations in PC-3 cells. • Metformin treatment inhibited PC-3 cell growth and IGF-1R expression in vivo. • Metformin may be a potent inhibitor of the IGF-1/IGF-1R signaling.

  9. Metformin inhibits the proliferation of human prostate cancer PC-3 cells via the downregulation of insulin-like growth factor 1 receptor

    International Nuclear Information System (INIS)

    Metformin is a biguanide drug that is widely used for the treatment of type 2 diabetes. Recent studies have shown that metformin inhibits cancer cell proliferation and tumor growth both in vitro and in vivo. The anti-tumor mechanisms of metformin include activation of the AMP-activated protein kinase/mTOR pathway and direct inhibition of insulin/insulin-like growth factor (IGF)-mediated cellular proliferation. However, the anti-tumor mechanism in prostate cancer remains unclear. Because activation of the IGF-1 receptor (IGF-1R) is required for prostate cell proliferation, IGF-1R inhibitors may be of therapeutic value. Accordingly, we examined the effects of metformin on IGF-1R signaling in prostate cancer cells. Metformin significantly inhibited PC-3 cell proliferation, migration, and invasion. IGF-1R mRNA expression decreased significantly after 48 h of treatment, and IGF-1R protein expression decreased in a similar manner. IGF-1R knockdown by siRNA transfection led to inhibited proliferation, migration and invasion of PC-3 cells. IGF-1 activated both ERK1/2 and Akt, but these effects were attenuated by metformin treatment. In addition, intraperitoneal treatment with metformin significantly reduced tumor growth and IGF-1R mRNA expression in PC-3 xenografts. Our results suggest that metformin is a potent inhibitor of the IGF-1/IGF-1R system and may be beneficial in prostate cancer treatment. - Highlights: • Metformin inhibited PC-3 cell proliferation, migration, and invasion. • Metformin decreased IGF-1R mRNA and protein expressions in PC-3 cells. • Metformin inhibited IGF-1 induced ERK and Akt phosphorylations in PC-3 cells. • Metformin treatment inhibited PC-3 cell growth and IGF-1R expression in vivo. • Metformin may be a potent inhibitor of the IGF-1/IGF-1R signaling

  10. Immunophenotyping invasive breast cancer: paving the road for molecular imaging

    International Nuclear Information System (INIS)

    Mammographic population screening in The Netherlands has increased the number of breast cancer patients with small and non-palpable breast tumors. Nevertheless, mammography is not ultimately sensitive and specific for distinct subtypes. Molecular imaging with targeted tracers might increase specificity and sensitivity of detection. Because development of new tracers is labor-intensive and costly, we searched for the smallest panel of tumor membrane markers that would allow detection of the wide spectrum of invasive breast cancers. Tissue microarrays containing 483 invasive breast cancers were stained by immunohistochemistry for a selected set of membrane proteins known to be expressed in breast cancer. The combination of highly tumor-specific markers glucose transporter 1 (GLUT1), epidermal growth factor receptor (EGFR), insulin-like growth factor-1 receptor (IGF1-R), human epidermal growth factor receptor 2 (HER2), hepatocyte growth factor receptor (MET), and carbonic anhydrase 9 (CAIX) 'detected' 45.5% of tumors, especially basal/triple negative and HER2-driven ductal cancers. Addition of markers with a 2-fold tumor-to-normal ratio increased the detection rate to 98%. Including only markers with >3 fold tumor-to-normal ratio (CD44v6) resulted in an 80% detection rate. The detection rate of the panel containing both tumor-specific and less tumor-specific markers was not dependent on age, tumor grade, tumor size, or lymph node status. In search of the minimal panel of targeted probes needed for the highest possible detection rate, we showed that 80% of all breast cancers express at least one of a panel of membrane markers (CD44v6, GLUT1, EGFR, HER2, and IGF1-R) that may therefore be suitable for molecular imaging strategies. This study thereby serves as a starting point for further development of a set of antibody-based optical tracers with a high breast cancer detection rate

  11. Immunophenotyping invasive breast cancer: paving the road for molecular imaging

    Directory of Open Access Journals (Sweden)

    Vermeulen Jeroen F

    2012-06-01

    Full Text Available Abstract Background Mammographic population screening in The Netherlands has increased the number of breast cancer patients with small and non-palpable breast tumors. Nevertheless, mammography is not ultimately sensitive and specific for distinct subtypes. Molecular imaging with targeted tracers might increase specificity and sensitivity of detection. Because development of new tracers is labor-intensive and costly, we searched for the smallest panel of tumor membrane markers that would allow detection of the wide spectrum of invasive breast cancers. Methods Tissue microarrays containing 483 invasive breast cancers were stained by immunohistochemistry for a selected set of membrane proteins known to be expressed in breast cancer. Results The combination of highly tumor-specific markers glucose transporter 1 (GLUT1, epidermal growth factor receptor (EGFR, insulin-like growth factor-1 receptor (IGF1-R, human epidermal growth factor receptor 2 (HER2, hepatocyte growth factor receptor (MET, and carbonic anhydrase 9 (CAIX 'detected' 45.5% of tumors, especially basal/triple negative and HER2-driven ductal cancers. Addition of markers with a 2-fold tumor-to-normal ratio increased the detection rate to 98%. Including only markers with >3 fold tumor-to-normal ratio (CD44v6 resulted in an 80% detection rate. The detection rate of the panel containing both tumor-specific and less tumor-specific markers was not dependent on age, tumor grade, tumor size, or lymph node status. Conclusions In search of the minimal panel of targeted probes needed for the highest possible detection rate, we showed that 80% of all breast cancers express at least one of a panel of membrane markers (CD44v6, GLUT1, EGFR, HER2, and IGF1-R that may therefore be suitable for molecular imaging strategies. This study thereby serves as a starting point for further development of a set of antibody-based optical tracers with a high breast cancer detection rate.

  12. Radix Tetrastigma hemsleyani flavone inhibits proliferation, migration, and invasion of human lung carcinoma A549 cells

    Directory of Open Access Journals (Sweden)

    Zhong LR

    2016-02-01

    Full Text Available Liangrui Zhong,1 Junxian Zheng,2 Qianqian Sun,3 Kemin Wei,2 Yijuan Hu2 1Department of Oncology, Tongde Hospital of Zhejiang Province, Affiliated to Zhejiang Chinese Medical University, 2Department of Chinese Medicine, Zhejiang Academy of Traditional Chinese Medicine, 3Department of Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China Abstract: Radix Tetrastigma hemsleyani flavone (RTHF is widely used as a traditional herb and has detoxification and anti-inflammatory effects. In this study, we investigated the potential effects of RTHF on the growth and metastasis of human lung adenocarcinoma A549 cells and evaluated its mechanisms. A549 cells were treated with RTHF at various concentrations for different periods. In vitro Cell Counting Kit-8 assay and colony formation methods showed that RTHF had dose- and time-dependent antiproliferation effects on A549 cells. A cell adhesion assay showed that RTHF decreased A549 cell adhesion in a dose-dependent manner. Cell invasion and migration were investigated using the Transwell assay and observed using an inverted microscope; the results showed that cell metastasis was significantly lower in the treatment group than that in the control group (P<0.01. Expression of metastasis-related matrix metalloproteinases (MMPs and tissue inhibitors of metalloproteinases (TIMPs was detected by real-time polymerase chain reaction and Western blotting. The results showed that the expression of MMP-2, MMP-9, and TIMP-1 decreased, while that of TIMP-2 increased significantly in the RTHF group when compared with the results of the control group. These results show that RTHF exhibits antigrowth and antimetastasis activity in lung cancer A549 cells by decreasing the expression of MMP-2/-9 and TIMP-1 and increasing that of TIMP-2. Keywords: flavone, radix Tetrastigma hemsleyani, metastasis, lung cancer

  13. Paeonol Inhibits the Proliferation, Invasion, and Inflammatory Reaction Induced by TNF-α in Vascular Smooth Muscle Cells.

    Science.gov (United States)

    Meng, Liang; Xu, Weidong; Guo, Lihong; Ning, Wenqi; Zeng, Xiandong

    2015-11-01

    The aim of this study was to evaluate the effect of paeonol on the proliferation, migration, and inflammation induced by tumor necrosis factor (TNF-α) of rat vascular smooth muscle cells (VSMCs). Primary rat VSMCs were identified by immunofluorescence assay. The inhibition of VSMCs proliferation induced by TNF-α was observed after paeonol treatment in a dose-dependent manner. Treatment with 100 μM paeonol significantly reduced the expression of proliferating cell nuclear antigen (PCNA). On the other hand, transwell assay showed that treatment with paeonol suppressed the invasion of TNF-α-induced VSMCs and the production of inflammation factors stimulated by TNF-α. For apoptosis induced by paeonol, Western blot analysis showed that cleaved caspase-3 and -9 were detected, and pro-apoptotic protein Bax was up-regulated, whereas anti-apoptotic protein Bcl-2 was down-regulated by paeonol in TNF-α-stimulated VSMCs. ELISA analysis data showed that both levels of IL-1β and IL-6 produced by the stimulation of TNF-α were decreased by paeonol in a dose-dependent manner in VSMCs. These results suggest that paeonol can effectively inhibit the proliferation through apoptotic induction through caspase pathway in VSMCs induced by TNF-α. Also, paeonol significantly reduced the invasion and the inflammation stimulated by TNF-α in VSMCs. PMID:27352344

  14. miR-493-5p attenuates the invasiveness and tumorigenicity in human breast cancer by targeting FUT4.

    Science.gov (United States)

    Zhao, Lifen; Feng, Xiaobin; Song, Xiaobo; Zhou, Huimin; Zhao, Yongfu; Cheng, Lei; Jia, Li

    2016-08-01

    Breast cancer is a leading cause of cancer-related mortality among women. Altered fucosylation was found to be closely associated with tumorigenesis and metastasis of breast cancer. MicroRNAs (miRNAs) are important regulators of cell proliferation and metastasis, and aberrant miRNA expression has been observed in breast cancer. The present study aimed to evaluate the level of fucosyltransferase IV (FUT4) and miR-493-5p in breast cancer and investigate their relationship. In the present study, we demonstrated the differential expressional profiles of FUT4 and miR‑493-5p in 29 clinical breast cancer tissues, matched adjacent tissue samples and two breast carcinoma cell lines (MCF-7 and MDA-MB-231). Briefly, altered expression levels of FUT4 modified the invasive activities and tumorigenicity of the MCF-7 and MDA-MB-231 cells. Further study demonstrated that miR-493-5p plays a role as a suppressor in breast cancer cell invasion and tumorigenicity. Moreover, the expression levels of miR-493-5p were inversely proportional to those of FUT4 both at the mRNA and protein levels. Luciferase reporter assays confirmed that miR‑493-5p bound to the 3'-untranslated (3'-UTR) region of FUT4, and inhibited the expression of FUT4 in breast cancer cells. Taken together, our data suggest that FUT4 may have a potential role in the treatment of breast cancer, as well as miR-493-5p is a novel regulator of invasiveness and tumorigenicity of breast cancer cells through targeting FUT4. The miR-493-5p/FUT4 pathway has therapeutic potential in breast cancer. PMID:27375041

  15. Cancer exosomes trigger mesenchymal stem cell differentiation into pro-angiogenic and pro-invasive myofibroblasts.

    Science.gov (United States)

    Chowdhury, Ridwana; Webber, Jason P; Gurney, Mark; Mason, Malcolm D; Tabi, Zsuzsanna; Clayton, Aled

    2015-01-20

    Stromal fibroblasts become altered in response to solid cancers, to exhibit myofibroblastic characteristics, with disease promoting influence. Infiltrating mesenchymal stem cells (MSC) may contribute towards these changes, but the factors secreted by cancer cells that impact MSC differentiation are poorly understood. We investigated the role of nano-metre sized vesicles (exosomes), secreted by prostate cancer cells, on the differentiation of bone-marrow MSC (BM-MSC), and the subsequent functional consequences of such changes. Purified exosomes impaired classical adipogenic differentiation, skewing differentiation towards alpha-smooth muscle actin (αSMA) positive myofibroblastic cells. A single exosomes treatment generated myofibroblasts secreting high levels of VEGF-A, HGF and matrix regulating factors (MMP-1, -3 and -13). Differentiated MSC had pro-angiogenic functions and enhanced tumour proliferation and invasivity assessed in a 3D co-culture model. Differentiation was dependent on exosomal-TGFβ, but soluble TGFβ at matched dose could not generate the same phenotype. Exosomes present in the cancer cell secretome were the principal factors driving this phenotype. Prostate cancer exosomes dominantly dictate a programme of MSC differentiation generating myofibroblasts with functional properties consistent with disease promotion. PMID:25596732

  16. Leucine Leucine-37 Uses Formyl Peptide Receptor–Like 1 to Activate Signal Transduction Pathways, Stimulate Oncogenic Gene Expression, and Enhance the Invasiveness of Ovarian Cancer Cells

    OpenAIRE

    Coffelt, Seth B.; Tomchuck, Suzanne L.; Zwezdaryk, Kevin J.; Danka, Elizabeth S; Scandurro, Aline B.

    2009-01-01

    Emerging evidence suggests that the antimicrobial peptide, leucine leucine-37 (LL-37), could play a role in the progression of solid tumors. LL-37 is expressed as the COOH terminus of human cationic antimicrobial protein-18 (hCAP-18) in ovarian, breast, and lung cancers. Previous studies have shown that the addition of LL-37 to various cancer cell lines in vitro stimulates proliferation, migration, and invasion. Similarly, overexpression of hCAP-18/LL-37 in vivo accelerates tumor growth. Howe...

  17. Small interfering RNA targeted to secretory clusterin blocks tumor growth, motility, and invasion in breast cancer

    Institute of Scientific and Technical Information of China (English)

    Zhaohe Niu; Xinhui Li; Bin Hu; Rong Li; Ligang Wang; Lilin Wu; Xingang Wang

    2012-01-01

    Clusterin/apolipoprotein J (Clu) is a ubiquitously expressed secreted heterodimeric glycoprotein that is implicated in several physiological processes.It has been reported that the elevated level of secreted clusterin (sClu) protein is associated with poor survival in breast cancer patients and can induce metastasis in rodent models.In this study,we investigated the effects of sClu inhibition with small interfering RNAs (siRNAs) on cell motility,invasion,and growth in vitro and in vivo.MDA-MB-231 cells were transfected with pSuper-siRNA/sClu.Cell survival and proliferation were examined by 3-(4,5-dimethyl-thiazol-2yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium and clonogenic survival assay.The results showed that sClu silencing significantly inhibited the proliferation of MDA-MB-231 cells.The invasion and migration ability were also dramatically decreased,which was detected by matrigel assays.TUNEL staining and caspase-3 activity assay demonstrated that sClu silencing also could increase the apoptosis rate of cells,resulting in the inhibition of cell growth.We also determined the effects of sClu silencing on tumor growth and metastatic progression in an orthotopic breast cancer model.The results showed that orthotopic primary tumors derived from MDA-MB-231/pSuper sClu siRNA cells grew significantly slower than tumors derived from parental MDA-MB-231 or MDA-MB-231/pSuper scramble siRNA cells,and metastasize less to the lungs.These data suggest that secretory clusterin plays a significant role in tumor growth and metastatic progression.Knocking-down sClu gene expression may provide a valuable method for breast cancer therapy.

  18. SNAIL transcription factor increases the motility and invasive capacity of prostate cancer cells.

    Science.gov (United States)

    Osorio, Luis A; Farfán, Nancy M; Castellón, Enrique A; Contreras, Héctor R

    2016-01-01

    The incidence and mortality rates of prostate cancer (PCa) are increasing, and PCa is almost the second‑leading cause of cancer‑associated mortality in men. During tumor progression, epithelial cells decrease the number of adhesion molecules, change their polarity and position, rearrange their cytoskeleton and increase their migratory and invasive capacities. These changes are known under the concept of epithelial‑mesenchymal transition (EMT). EMT is characterized by an upregulation of certain transcription factors, including SNAIL1, which represses genes that are characteristic of an epithelial phenotype, including E‑cadherin, and indirectly increase the expression levels of genes, which are associated with the mesenchymal phenotype. It has been suggested that the transcription factor, SNAIL1, decreases the proliferation and increases the migratory and invasive capacities of PCa cell lines. The present study was performed using LNCaP and PC3 cell lines, in which the expression levels of SNAIL1 were increased or silenced through the use of lentiviral vectors. The expression levels of EMT markers were quantified using reverse transcription‑quantitative polymerase chain reaction and western blot analysis. In addition, cell survival was analyzed using an MTS assay; cell proliferation was examined using an antibody targeting Ki‑67; migration on plates with 8 µm pores to allow the passage of cells; and invasiveness was analyzed using a membrane chamber covered in dried basement membrane matrix solution. The levels of apoptosis were determined using a Caspase 3/7 assay containing a substrate modified by caspases 3 and 7. The results demonstrated that the overexpression and silencing of SNAIL1 decreased cell proliferation and survival. However, the overexpression of SNAIL1 decreased apoptosis, compared with cells with the SNAIL1‑silenced cells, in which cell apoptosis increased. The migration and invasive capacities increased in the cells overexpressing

  19. Non-invasive Optical Molecular Imaging for Cancer Detection

    Science.gov (United States)

    Luo, Zhen

    Cancer is a leading cause of death worldwide. It remains the second most common cause of death in the US, accounting for nearly 1 out of every 4 deaths. Improved fundamental understanding of molecular processes and pathways resulting in cancer development has catalyzed a shift towards molecular analysis of cancer using imaging technologies. It is expected that the non-invasive or minimally invasive molecular imaging analysis of cancer can significantly aid in improving the early detection of cancer and will result in reduced mortality and morbidity associated with the disease. The central hypothesis of the proposed research is that non-invasive imaging of changes in metabolic activity of individual cells, and extracellular pH within a tissue will improve early stage detection of cancer. The specific goals of this research project were to: (a) develop novel optical imaging probes to image changes in choline metabolism and tissue pH as a function of progression of cancer using clinically isolated tissue biopsies; (b) correlate changes in tissue extracellular pH and metabolic activity of tissues as a function of disease state using clinically isolated tissue biopsies; (c) provide fundamental understanding of relationship between tumor hypoxia, acidification of the extracellular space and altered cellular metabolism with progression of cancer. Three novel molecular imaging probes were developed to detect changes in choline and glucose metabolism and extracellular pH in model systems and clinically isolated cells and biopsies. Glucose uptake and metabolism was measured using a fluorescence analog of glucose, 2-NBDG (2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-D-glucose), while choline metabolism was measured using a click chemistry analog of choline, propargyl choline, which can be in-situ labeled with a fluorophore Alexa-488 azide via a click chemistry reaction. Extracellular pH in tissue were measured by Alexa-647 labeled pHLIP (pH low insertion peptide

  20. miR-503 suppresses tumor cell proliferation and metastasis by directly targeting RNF31 in prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jia; Liu, Xiuheng, E-mail: l_xiuheng@163.com; Wang, Min

    2015-09-04

    Microarray data analyses were performed to search for metastasis-associated oncogenes in prostate cancer (PCa). RNF31 mRNA expressions in tumor tissues and benign prostate tissues were evaluated. The RNF31 protein expression levels were also analyzed by western blot and immunohistochemistry. Luciferase reporter assays were used to identify miRNAs that can regulate RNF31. The effect of RNF31 on PCa progression was studied in vitro and in vivo. We found that RNF31 was significantly increased in PCa and its expression level was highly correlated with seminal vesicle invasion, clinical stage, prostate specific antigen (PSA) level, Gleason score, and BCR. Silence of RNF31 suppressed PCa cell proliferation and metastasis in vitro and in vivo. miR-503 can directly regulate RNF31. Enforced expression of miR-503 inhibited the expression of RNF31 significantly and the restoration of RNF31 expression reversed the inhibitory effects of miR-503 on PCa cell proliferation and metastasis. These findings collectively indicated an oncogene role of RNF31 in PCa progression which can be regulated by miR-503, suggesting that RNF31 could serve as a potential prognostic biomarker and therapeutic target for PCa. - Highlights: • RNF31 is a potential metastasis associated gene and is associated with prostate cancer progression. • Silence of RNF31 inhibits PCa cell colony formation, migration and invasion. • RNF31 as a direct target of miR-503. • miR-503 can regulate cell proliferation, invasion and migration by targeting RNF31. • RNF31 plays an important role in PCa growth and metastasis in vivo.

  1. miR-503 suppresses tumor cell proliferation and metastasis by directly targeting RNF31 in prostate cancer

    International Nuclear Information System (INIS)

    Microarray data analyses were performed to search for metastasis-associated oncogenes in prostate cancer (PCa). RNF31 mRNA expressions in tumor tissues and benign prostate tissues were evaluated. The RNF31 protein expression levels were also analyzed by western blot and immunohistochemistry. Luciferase reporter assays were used to identify miRNAs that can regulate RNF31. The effect of RNF31 on PCa progression was studied in vitro and in vivo. We found that RNF31 was significantly increased in PCa and its expression level was highly correlated with seminal vesicle invasion, clinical stage, prostate specific antigen (PSA) level, Gleason score, and BCR. Silence of RNF31 suppressed PCa cell proliferation and metastasis in vitro and in vivo. miR-503 can directly regulate RNF31. Enforced expression of miR-503 inhibited the expression of RNF31 significantly and the restoration of RNF31 expression reversed the inhibitory effects of miR-503 on PCa cell proliferation and metastasis. These findings collectively indicated an oncogene role of RNF31 in PCa progression which can be regulated by miR-503, suggesting that RNF31 could serve as a potential prognostic biomarker and therapeutic target for PCa. - Highlights: • RNF31 is a potential metastasis associated gene and is associated with prostate cancer progression. • Silence of RNF31 inhibits PCa cell colony formation, migration and invasion. • RNF31 as a direct target of miR-503. • miR-503 can regulate cell proliferation, invasion and migration by targeting RNF31. • RNF31 plays an important role in PCa growth and metastasis in vivo

  2. A Genome-Wide Systematic Analysis Reveals Different and Predictive Proliferation Expression Signatures of Cancerous vs. Non-Cancerous Cells

    OpenAIRE

    Waldman, Yedael Y.; Geiger, Tamar; Ruppin, Eytan

    2013-01-01

    Understanding cell proliferation mechanisms has been a long-lasting goal of the scientific community and specifically of cancer researchers. Previous genome-scale studies of cancer proliferation determinants have mainly relied on knockdown screens aimed to gauge their effects on cancer growth. This powerful approach has several limitations such as off-target effects, partial knockdown, and masking effects due to functional backups. Here we employ a complementary approach and assign each gene ...

  3. Human Nanog pseudogene8 promotes the proliferation of gastrointestinal cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Uchino, Keita, E-mail: uchino13@intmed1.med.kyushu-u.ac.jp [Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Hirano, Gen [Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Hirahashi, Minako [Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka (Japan); Isobe, Taichi; Shirakawa, Tsuyoshi; Kusaba, Hitoshi; Baba, Eishi [Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Tsuneyoshi, Masazumi [Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka (Japan); Akashi, Koichi [Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan)

    2012-09-10

    There is emerging evidence that human solid tumor cells originate from cancer stem cells (CSCs). In cancer cell lines, tumor-initiating CSCs are mainly found in the side population (SP) that has the capacity to extrude dyes such as Hoechst 33342. We found that Nanog is expressed specifically in SP cells of human gastrointestinal (GI) cancer cells. Nucleotide sequencing revealed that NanogP8 but not Nanog was expressed in GI cancer cells. Transfection of NanogP8 into GI cancer cell lines promoted cell proliferation, while its inhibition by anti-Nanog siRNA suppressed the proliferation. Immunohistochemical staining of primary GI cancer tissues revealed NanogP8 protein to be strongly expressed in 3 out of 60 cases. In these cases, NanogP8 was found especially in an infiltrative part of the tumor, in proliferating cells with Ki67 expression. These data suggest that NanogP8 is involved in GI cancer development in a fraction of patients, in whom it presumably acts by supporting CSC proliferation. -- Highlights: Black-Right-Pointing-Pointer Nanog maintains pluripotency by regulating embryonic stem cells differentiation. Black-Right-Pointing-Pointer Nanog is expressed in cancer stem cells of human gastrointestinal cancer cells. Black-Right-Pointing-Pointer Nucleotide sequencing revealed that Nanog pseudogene8 but not Nanog was expressed. Black-Right-Pointing-Pointer Nanog pseudogene8 promotes cancer stem cells proliferation. Black-Right-Pointing-Pointer Nanog pseudogene8 is involved in gastrointestinal cancer development.

  4. Transmembrane Protease Serine 4 Promotes Thyroid Cancer Proliferation via CREB Phosphorylation

    Science.gov (United States)

    Guan, Hongyu; Liang, Weiwei; Liu, Juan; Wei, Guohong; Li, Hai; Xiu, Lingling; Xiao, Haipeng

    2015-01-01

    Background: Transmembrane protease serine 4 (TMPRSS4), one of the type II transmembrane serine proteases (TTSPs), is elevated in various cancers and is associated with multiple malignant phenotypes. However, the expression pattern and biologic significance of TMPRSS4 in thyroid cancer are largely unknown. In this study, we investigated the expression of TMPRSS4 in thyroid cancer and assessed the pro-proliferative role of TMPRSS4 in thyroid cancer. Methods: Immunohistochemistry and real-time reverse transcription-polymerase chain reaction (RT-PCR) assays were performed to assess the expression of TMPRSS4 in thyroid cancer. We evaluated in vitro cell proliferation using MTT, colony formation, anchorage-independent growth, flow cytometry analysis, and 5-ethynyl-2'-deoxyuridine (EdU) incorporation assays. Western blot, real-time RT-PCR, and luciferase assays were conducted to reveal the underlying mechanisms. Results: TMPRSS4 is overexpressed in thyroid cancer and is associated with the grade of malignancy. Depletion of TMPRSS4 in thyroid cancer cells significantly suppressed proliferation. Moreover, the proliferation of thyroid cancer cells with TMPRSS4 overexpression was significantly enhanced. We also show that cyclic adenosine monophosphate response element-binding protein (CREB)-cyclin D1 signaling mediates, at least partially, the role of TMPRSS4 in thyroid cancer cell proliferation. Conclusions: TMPRSS4 is overexpressed in thyroid cancer and TMPRSS4-CREB signaling is needed to sustain thyroid cancer cell proliferation. PMID:25244400

  5. Reviewing and reconsidering invasion assays in head and neck cancer.

    Science.gov (United States)

    Inglehart, Ronald C; Scanlon, Christina S; D'Silva, Nisha J

    2014-12-01

    Head and neck squamous cell carcinomas (HNSCC) are malignant tumors that arise from the surface epithelium of the oral cavity, oropharynx and larynx, primarily due to exposure to chemical carcinogens or the human papilloma virus. Due to their location, dental practitioners are well-positioned to detect the lesions. Deadlier than lymphoma or melanoma, HNSCC is incompletely understood. For these reasons, dental practitioners and researchers are focused on understanding HNSCC and the processes driving it. One of these critical processes is invasion, the degradation of the basement membrane by HNSCC cells with subsequent movement into the underlying connective tissue, blood vessels or nerves. Cancer cells metastasize to distant sites via the blood vessels, lymphatics and nerves. Metastasis is associated with poor survival. Since invasion is essential for development and metastasis of HNSCC, it is essential to understand the mechanism(s) driving this process. Elucidation of the mechanisms involved will facilitate the development of targeted treatment, thereby accelerating development of precision/personalized medicine to treat HNSCC. Robust in vitro and in vivo assays are required to investigate the mechanistic basis of invasion. This review will focus on in vitro and in vivo assays used to study invasion in HNSCC, with special emphasis on some of the latest assays to study HNSCC. PMID:25448226

  6. The effect of BTG1 expression on proliferation, apoptosis and invasion of non-small cell lung cancer cells%BTG1在非小细胞肺癌中的表达及其对肺癌细胞增殖、凋亡和侵袭转移的作用

    Institute of Scientific and Technical Information of China (English)

    孙国贵; 张洁; 崔大为; 李成林; 杨从容; 张钧; 程云杰

    2014-01-01

    Objective To investigate the expression of B⁃cell translocation gene 1 ( BTG1 ) in non⁃small cell lung cancer ( NSCLC) and its biological effect in NSCLC cell line by BTG1 overexpression. Methods Immunohistochemistry and Western blotting were used to detect BTG1 protein expression in 82 cases of NSCLC and 38 cases of adjacent normal lung tissues, and the relationship between BTG1 expression and clinicopathological characteristics was analyzed. BTG1 lentiviral vector and empty vector were respectively transfected into NSCLC H1299 cell line. Quantitative real⁃time RT⁃PCR( qRT⁃PCR) and Western blotting were used to de⁃tect the mRNA and protein level of BTG1. MTT assay, flow cytometry and Transwell assay were also used to detect the effects of the up⁃regulated expression of BTG1 on H1299 cell proliferation, apoptosis and invasion. Results The positive expression rate of BTG1 pro⁃tein was 37�8%(31/82) in NSCLC tissues, significantly lower than 84�2%(32/38) in adjacent normal lung tissues(P<0�05). The relative amount of BTG1 protein in NSCLC tissues was 0�331±0�035, significantly lower than 0�673±0�072 in adjacent normal lung tissues( P<0�05) . The level of BTG1 protein expression was correlated with lymph node metastasis, clinical stage and histological grade( P<0�05) . The result of biological function had shown that H1299 cell transfected BTG1 had a lower survival fraction, higher cell apoptosis, and significant decrease in migration and invasion, and lower Bcl⁃2, MMP⁃9 protein expression compared with H1299 cell untransfected BTG1( P<0�05) . Conclusion BTG1 expression is decreased in NSCLC tissues, suggesting that BTG1 may play an important role as a negative regulator to NSCLC H1299 cell by promoting degradation of Bcl⁃2 and MMP⁃9 protein.%目的:探讨B细胞易位基因1( BTG1)在非小细胞肺癌( NSCLC)组织中的表达及其对NSCLC细胞生物学行为的影响。方法采用

  7. Analysis of intravesical recurrence after bladder-preserving therapy for muscle-invasive bladder cancer

    International Nuclear Information System (INIS)

    The aim of the present study was to analyze the pattern of recurrences after bladder-preserving therapy for muscle-invasive bladder cancer. The subjects were 77 patients with T2-3N0M0 bladder cancer whose bladder was preserved by intra-arterial chemotherapy and radiation. The patterns of the first recurrences were retrospectively analyzed. With a median follow-up of 38.5 months, 17 patients (22.1%) experienced intravesical recurrence without metastasis, 14 (82.4%) of which were cases of non-muscle-invasive bladder cancer recurrence and 3 (17.6%) of which were muscle-invasive bladder cancer recurrences. Muscle-invasive bladder cancer recurred at the same site as the initial tumor site in all three cases, whereas non-muscle-invasive bladder cancer recurred at different sites in 64% of the patients in that group. The peak hazard of the non-muscle-invasive bladder cancer recurrence was observed at around a year after treatment. Recurrent non-muscle-invasive bladder cancer was of a significantly lower histological grade with lower Ki-67-labeling indices than the initial muscle-invasive bladder cancer. Twelve (85.7%) of 14 patients with non-muscle-invasive bladder cancer recurrence achieved disease-free status. The multivariate analysis revealed that multiplicity, grade and tumor size were significantly correlated with the recurrence (P=0.0001, 0.0442 and 0.0412, respectively). Most of the recurrences after bladder-preserving therapy were cases of non-muscle-invasive bladder cancer. The recurrence pattern and characteristics of the tumors did not differ from those of primary non-muscle-invasive bladder cancer. Patients with high-risk factors would be candidates for prophylactic intravesical therapy for non-muscle-invasive bladder cancer recurrence. (author)

  8. Hispidulin inhibits proliferation and enhances chemosensitivity of gallbladder cancer cells by targeting HIF-1α

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Hui; Xie, Jing [Medical College, Qingdao University, Qingdao, Shandong 266071 (China); Peng, Jianjun, E-mail: jianjunpeng@126.com [College of Life Sciences, Chongqing Normal University, Chongqing 401331 (China); Han, Yantao, E-mail: hanyt19@126.com [Medical College, Qingdao University, Qingdao, Shandong 266071 (China); Jiang, Qixiao; Han, Mei; Wang, Chunbo [Medical College, Qingdao University, Qingdao, Shandong 266071 (China)

    2015-03-15

    Gallbladder cancer (GBC) is an aggressive malignancy of the bile duct, which is associated with a low (5-year) survival and poor prognosis. The transcription factor HIF-1α is implicated in the angiogenesis, cell survival, epithelial mesenchymal transition (EMT) and invasiveness of GBC. In this study, we have investigated the role of HIF-1α in the pathobilogy of GBC and effect of hispidulin on the molecular events controlled by this transcription factor. We observed that hispidulin caused induction of apoptosis, blockade of growth and cell cycle progression in GBC cells. Our results have demonstrated for the first time that hispidulin-exerted anti-tumor effect involved the suppression of HIF-1α signaling. Hispidulin was found to repress the expression of HIF-1α protein dose-dependently without affecting the HIF-1α mRNA expression. In addition, the inhibition of HIF-1α protein synthesis was revealed to be mediated through the activation of AMPK signaling. Hispidulin also sensitized the tumor cells to Gemcitabine and 5-Fluoroucil by down-regulating HIF-1α/P-gp signaling. Given the low cost and exceedingly safe profile, hispidulin appears to be a promising and novel chemosensitizer for GBC treatment. - Highlights: • Hispidulin inhibits proliferation of gallbladder cancer cells by targeting HIF-1α. • Hispidulin regulates HIF-1α via activating AMPK signaling. • Hispidulin sensitized the GBC cells to chemotherapeutics by down-regulating P-gp.

  9. Hispidulin inhibits proliferation and enhances chemosensitivity of gallbladder cancer cells by targeting HIF-1α

    International Nuclear Information System (INIS)

    Gallbladder cancer (GBC) is an aggressive malignancy of the bile duct, which is associated with a low (5-year) survival and poor prognosis. The transcription factor HIF-1α is implicated in the angiogenesis, cell survival, epithelial mesenchymal transition (EMT) and invasiveness of GBC. In this study, we have investigated the role of HIF-1α in the pathobilogy of GBC and effect of hispidulin on the molecular events controlled by this transcription factor. We observed that hispidulin caused induction of apoptosis, blockade of growth and cell cycle progression in GBC cells. Our results have demonstrated for the first time that hispidulin-exerted anti-tumor effect involved the suppression of HIF-1α signaling. Hispidulin was found to repress the expression of HIF-1α protein dose-dependently without affecting the HIF-1α mRNA expression. In addition, the inhibition of HIF-1α protein synthesis was revealed to be mediated through the activation of AMPK signaling. Hispidulin also sensitized the tumor cells to Gemcitabine and 5-Fluoroucil by down-regulating HIF-1α/P-gp signaling. Given the low cost and exceedingly safe profile, hispidulin appears to be a promising and novel chemosensitizer for GBC treatment. - Highlights: • Hispidulin inhibits proliferation of gallbladder cancer cells by targeting HIF-1α. • Hispidulin regulates HIF-1α via activating AMPK signaling. • Hispidulin sensitized the GBC cells to chemotherapeutics by down-regulating P-gp

  10. Silencing of RTKN2 by siRNA suppresses proliferation, and induces G1 arrest and apoptosis in human bladder cancer cells.

    Science.gov (United States)

    Liao, Yi-Xiang; Zeng, Jin-Min; Zhou, Jia-Jie; Yang, Guang-Hua; Ding, Kun; Zhang, Xian-Jue

    2016-06-01

    Human bladder cancer is the most common urological malignancy in China. One of the causes of carcinogenesis in the cancer may be gene mutation. Therefore, the present study investigated the expression levels of Rhotekin 2 (RTKN2), a Rho effector protein, in human bladder cancer tissues and cell lines, and examined the effect of RTKN2 on the proliferation, cell cycle, apoptosis and invasion of human bladder cancer cell lines. The mRNA expression levels of RTKN2 in 30 human bladder cancer tissue samples were significantly higher, compared with those in 30 normal human bladder tissue samples. The protein expression levels of RTKN2 was markedly higher in T24 and 5637 cells, compared with those in four other human bladder cancer cell lines. The silencing of RTKN2 by small interfering (si)RNA inhibited cell proliferation and arrested cell cycle at the G1 phase, via reducing the expression levels of the MCM10, CDK2, CDC24A and CDC6 cell cycle‑associated proteins in the T24 and 5637 cells. Furthermore, RTKN2 knockdown in the cells led to cell apoptosis and the suppression of invasion. These results suggested that RTKN2 is involved in the carcinogenesis and progression of human bladder cancer, indicating that RTKN2 may be a molecular target in cancer therapy. PMID:27082503

  11. Role of ATF5 in the invasive potential of diverse human cancer cell lines.

    Science.gov (United States)

    Nukuda, Akihiro; Endoh, Hiroki; Yasuda, Motoaki; Mizutani, Takeomi; Kawabata, Kazushige; Haga, Hisashi

    2016-06-01

    Activating transcription factor 5 (ATF5) is a member of the ATF/cAMP response element-binding protein family. Our research group recently revealed that ATF5 expression increases the invasiveness of human lung carcinoma cells. However, the effects of ATF5 on the invasive potential of other cancer cells lines remain unclear. Therefore, in this study, we investigated the role of ATF5 in the invasive activity of diverse human cancer cell lines. Invasiveness was assessed using Matrigel invasion assays. ATF5 knockdown resulted in decreased invasiveness in seven of eight cancer cell lines tested. These results suggest that ATF5 promotes invasiveness in several cancer cell lines. Furthermore, the roles of ATF5 in the invasiveness were evaluated in three-dimensional (3D) culture conditions. In 3D collagen gel, HT-1080 and MDA-MB-231 cells exhibited high invasiveness, with spindle morphology and high invasion speed. In both cell lines, knockdown of ATF5 resulted in rounded morphology and decreased invasion speed. Next, we showed that ATF5 induced integrin-α2 and integrin-β1 expression and that the depletion of integrin-α2 or integrin-β1 resulted in round morphology and decreased invasion speed. Our results suggest that ATF5 promotes invasion by inducing the expression of integrin-α2 and integrin-β1 in several human cancer cell lines. PMID:27125458

  12. Differential effects of miR-34c-3p and miR-34c-5p on SiHa cells proliferation apoptosis, migration and invasion

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Jesus Adrian [Laboratorio de Terapia Genica, Departamento de Genetica y Biologia Molecular, CINVESTAV, Av. IPN 2508, Mexico 07360 D.F. (Mexico); Alvarez-Salas, Luis Marat, E-mail: lalvarez@cinvestav.mx [Laboratorio de Terapia Genica, Departamento de Genetica y Biologia Molecular, CINVESTAV, Av. IPN 2508, Mexico 07360 D.F. (Mexico)

    2011-06-10

    Highlights: {yields} In this study we examine miR-34c-3p and miR-34c-5p functions in SiHa cells. {yields} We study miRNA effect on cell proliferation, anchorage independent growth, apoptosis, cell motility and invasion. {yields} We find that miR-34c-3p and miR-34c-5p inhibition of proliferation and anchorage independent growth are exclusive to SiHa cells. {yields} miR-34c-3p induces apoptosis and inhibits cell motility and invasion in SiHa cells. {yields} In this study we conclude that miR-34c-3p functions as a tumor suppressor differ from miR-34c-5p. -- Abstract: MicroRNAs (miRNA) regulate expression of several genes associated with human cancer. Here, we analyzed the function of miR-34c, an effector of p53, in cervical carcinoma cells. Expression of either miR-34c-3p or miR-34c-5p mimics caused inhibition of cell proliferation in the HPV-containing SiHa cells but not in other cervical cells irrespective of tumorigenicity and HPV content. These results suggest that SiHa cells may lack of regulatory mechanisms for miR-34c. Monolayer proliferation results showed that miR-34c-3p produced a more pronounced inhibitory effect although both miRNAs caused inhibition of anchorage independent growth at similar extent. However, ectopic expression of pre-miR-34c-3p, but not pre-miR-34c-5p, caused S-phase arrest in SiHa cells triggering a strong dose-dependent apoptosis. A significant inhibition was observed only for miR-34c-3p on SiHa cells migration and invasion, therefore implying alternative regulatory pathways and targets. These results suggest differential tumor suppressor roles for miR-34c-3p and miR-34c-5p and provide new insights in the understanding of miRNA biology.

  13. Differential effects of miR-34c-3p and miR-34c-5p on SiHa cells proliferation apoptosis, migration and invasion

    International Nuclear Information System (INIS)

    Highlights: → In this study we examine miR-34c-3p and miR-34c-5p functions in SiHa cells. → We study miRNA effect on cell proliferation, anchorage independent growth, apoptosis, cell motility and invasion. → We find that miR-34c-3p and miR-34c-5p inhibition of proliferation and anchorage independent growth are exclusive to SiHa cells. → miR-34c-3p induces apoptosis and inhibits cell motility and invasion in SiHa cells. → In this study we conclude that miR-34c-3p functions as a tumor suppressor differ from miR-34c-5p. -- Abstract: MicroRNAs (miRNA) regulate expression of several genes associated with human cancer. Here, we analyzed the function of miR-34c, an effector of p53, in cervical carcinoma cells. Expression of either miR-34c-3p or miR-34c-5p mimics caused inhibition of cell proliferation in the HPV-containing SiHa cells but not in other cervical cells irrespective of tumorigenicity and HPV content. These results suggest that SiHa cells may lack of regulatory mechanisms for miR-34c. Monolayer proliferation results showed that miR-34c-3p produced a more pronounced inhibitory effect although both miRNAs caused inhibition of anchorage independent growth at similar extent. However, ectopic expression of pre-miR-34c-3p, but not pre-miR-34c-5p, caused S-phase arrest in SiHa cells triggering a strong dose-dependent apoptosis. A significant inhibition was observed only for miR-34c-3p on SiHa cells migration and invasion, therefore implying alternative regulatory pathways and targets. These results suggest differential tumor suppressor roles for miR-34c-3p and miR-34c-5p and provide new insights in the understanding of miRNA biology.

  14. Imaging Prostate Cancer Invasion with Multi-Nuclear Magnetic Resonance Methods: The Metabolic Boyden Chamber

    Directory of Open Access Journals (Sweden)

    Ulrich Pilatus

    2000-05-01

    Full Text Available The physiological milieu within solid tumors can influence invasion and metastasis. To determine the impact of the physiological environment and cellular metabolism on cancer cell invasion, it is necessary to measure invasion during well-controlled modulation of the physiological environment. Recently, we demonstrated that magnetic resonance imaging can be used to monitor cancer cell invasion into a Matrigel layer [Artemov D, Pilatus U, Chou S, Mori N, Nelson JB, and Bhujwalla ZM. (1999. Dynamics of prostate cancer cell invasion studied in vitro by NMR microscopy. Mag Res Med 42, 277–282.]. Here we have developed an invasion assay (“Metabolic Boyden Chamber” that combines this capability with the properties of our isolated cell perfusion system. Long-term experiments can be performed to determine invasion as well as cellular metabolism under controlled environmental conditions. To characterize the assay, we performed experiments with prostate cancer cell lines preselected for different invasive characteristics. The results showed invasion into, and degradation of the Matrigel layer, by the highly invasive/metastatic line (MatLyLu, whereas no significant changes were observed for the less invasive/metastatic cell line (DU-145. With this assay, invasion and metabolism was measured dynamically, together with oxygen tensions within the cellular environment and within the Matrigel layer. Such a system can be used to identify physiological and metabolic characteristics that promote invasion, and evaluate therapeutic interventions to inhibit invasion.

  15. Selection of a MCF-7 Breast Cancer Cell Subpopulation with High Sensitivity to IL-1β: Characterization of and Correlation between Morphological and Molecular Changes Leading to Increased Invasiveness

    OpenAIRE

    Eloy Andres Pérez-Yépez; Jorge-Tonatiuh Ayala-Sumuano; Alicia Maria Reveles-Espinoza; Isaura Meza

    2012-01-01

    Cancer and inflammation are closely related in tumor malignancy prognosis. Breast cancer MCF-7 cells have a poor invasive phenotype, although, under IL-1 β stimulus, acquire invasive features. Cell response heterogeneity has precluded precise evaluation of the malignant transition. MCF-7A3 cells were selected for high sensitivity to IL-1 β stimulus, uniform expression of CXCR4, and stability of IL1-RI. Structural changes, colony formation ability, proliferation rate, chemotaxis, Matrigel inva...

  16. Prostaglandins in Cancer Cell Adhesion, Migration, and Invasion

    Directory of Open Access Journals (Sweden)

    David G. Menter

    2012-01-01

    Full Text Available Prostaglandins exert a profound influence over the adhesive, migratory, and invasive behavior of cells during the development and progression of cancer. Cyclooxygenase-2 (COX-2 and microsomal prostaglandin E2 synthase-1 (mPGES-1 are upregulated in inflammation and cancer. This results in the production of prostaglandin E2 (PGE2, which binds to and activates G-protein-coupled prostaglandin E1-4 receptors (EP1-4. Selectively targeting the COX-2/mPGES-1/PGE2/EP1-4 axis of the prostaglandin pathway can reduce the adhesion, migration, invasion, and angiogenesis. Once stimulated by prostaglandins, cadherin adhesive connections between epithelial or endothelial cells are lost. This enables cells to invade through the underlying basement membrane and extracellular matrix (ECM. Interactions with the ECM are mediated by cell surface integrins by “outside-in signaling” through Src and focal adhesion kinase (FAK and/or “inside-out signaling” through talins and kindlins. Combining the use of COX-2/mPGES-1/PGE2/EP1-4 axis-targeted molecules with those targeting cell surface adhesion receptors or their downstream signaling molecules may enhance cancer therapy.

  17. Restoration of miR-20a expression suppresses cell proliferation, migration, and invasion in HepG2 cells

    Science.gov (United States)

    Chen, Guang Shun; Zhou, Ning; Li, Jie-Qun; Li, Ting; Zhang, Zhong-Qiang; Si, Zhong-Zhou

    2016-01-01

    Objective To study microRNA (miR)-20a expression in hepatocellular carcinoma (HCC) and its effects on the proliferation, migration, and invasion of HepG2. Methods The real-time polymerase chain reaction was used to detect the expression of miR-20a in HCC tissue and normal tissue, as well as in HCC cell lines and normal liver cells. miR-20a mimic and miR negative control (NC) were transfected into HepG2 cells. MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide) assay was used to detect cell proliferation. Annexin fluorescein isothiocyanate/propidium iodide assay was run to examine the early apoptosis of cells. Transwell chamber assay was carried out to investigate the cell invasion and migration abilities. Results miR-20a was lowly expressed both in HCC tissues and HCC cell lines. After transfection of exogenous miR-20 mimics, miR-20a expression in HepG2 cells was significantly increased by 61.29% compared to the blank group (Pmigration and invasion were 0.459 and 0.501 times that of the blank group (both Pmigration and inhibition rates were 54.1% and 51.4%, respectively. After closing target gene CCND1 in HepG2 cells, the number of cell migration and invasion in the small interfering (si)-CCND1 group were 0.444 and 0.435 times that of the si-NC group (Pmigration and inhibition rates were 55.6% and 56.5%, respectively. Conclusion miR-20a can inhibit the growth, invasion, and migration of HepG2 cells, and is therefore promising as a new molecular target for diagnosis and therapy of HCC.

  18. Topography induces differential sensitivity on cancer cell proliferation via Rho-ROCK-Myosin contractility

    Science.gov (United States)

    Chaudhuri, Parthiv Kant; Pan, Catherine Qiurong; Low, Boon Chuan; Lim, Chwee Teck

    2016-01-01

    Although the role of stiffness on proliferative response of cancer cells has been well studied, little is known about the effect of topographic cues in guiding cancer cell proliferation. Here, we examined the effect of topographic cues on cancer cell proliferation using micron scale topographic features and observed that anisotropic features like microgratings at specific dimension could reduce proliferation of non-cancer breast epithelial cells (MCF-10A) but not that for malignant breast cancer cells (MDA-MB-231 and MCF-7). However, isotropic features such as micropillars did not affect proliferation of MCF-10A, indicating that the anisotropic environmental cues are essential for this process. Interestingly, acto-myosin contraction inhibitory drugs, Y-27632 and blebbistatin prevented micrograting-mediated inhibition on proliferation. Here, we propose the concept of Mechanically-Induced Dormancy (MID) where topographic cues could activate Rho-ROCK-Myosin signaling to suppress non-cancerous cells proliferation whereas malignant cells are resistant to this inhibitory barrier and therefore continue uncontrolled proliferation. PMID:26795068

  19. All-Trans Retinoic Acid Induces Proliferation, Survival, and Migration in A549 Lung Cancer Cells by Activating the ERK Signaling Pathway through a Transcription-Independent Mechanism

    Science.gov (United States)

    Quintero Barceinas, Reyna Sara; García-Regalado, Alejandro; Aréchaga-Ocampo, Elena; Villegas-Sepúlveda, Nicolás; González-De la Rosa, Claudia Haydée

    2015-01-01

    All-trans retinoic acid (ATRA) has been used as an antineoplastic because of its ability to promote proliferation, inhibition, and differentiation, primarily in leukemia; however, in other types of cancer, such as lung cancer, treatment with ATRA is restricted because not all the patients experience the same results. The ERK signaling pathway is dysregulated in cancer cells, including lung cancer, and this dysregulation promotes proliferation and cell invasion. In this study, we demonstrate that treatment with ATRA can activate the ERK signaling pathway by a transcription-independent mechanism through a signaling cascade that involves RARα and PI3K, promoting growth, survival, and migration in lung cancer cells. Until now, this mechanism was unknown in lung cancer cells. The inhibition of the ERK signaling pathway restores the beneficial effects of ATRA, reduces proliferation, increases apoptosis, and blocks the cell migration process in lung cancer cells. In conclusion, our results suggest that the combination of ATRA with ERK inhibitor in clinical trials for lung cancer is warranted. PMID:26557664

  20. An EP4 antagonist ONO-AE3-208 suppresses cell invasion, migration, and metastasis of prostate cancer.

    Science.gov (United States)

    Xu, Song; Zhang, Zhengyu; Ogawa, Osamu; Yoshikawa, Takeshi; Sakamoto, Hiromasa; Shibasaki, Noboru; Goto, Takayuki; Wang, Liming; Terada, Naoki

    2014-09-01

    EP4 is one of the prostaglandin E2 receptors, which is the most common prostanoid and is associated with inflammatory disease and cancer. We previously reported that over-expression of EP4 was one of the mechanisms responsible for progression to castration-resistant prostate cancer, and an EP4 antagonist ONO-AE3-208 in vivo suppressed the castration-resistant progression regulating the activation of androgen receptor. The aim of this study was to analyze the association of EP4 with prostate cancer metastasis and the efficacy of ONO-AE3-208 for suppressing the metastasis. The expression levels of EP4 mRNA were evaluated in prostate cancer cell lines, LNCaP, and PC3. EP4 over-expressing LNCaP was established, and their cell invasiveness was compared with the control LNCaP (LNCaP/mock). The in vitro cell proliferation, invasion, and migration of these cells were examined under different concentrations of ONO-AE3-208. An in vivo bone metastatic mouse model was constructed by inoculating luciferase expressing PC3 cells into left ventricle of nude mice. Their bone metastasis was observed by bioluminescent imaging with or without ONO-AE3-208 administration. The EP4 mRNA expression levels were higher in PC3 than in LNCaP, and EP4 over-expression of LNCaP cells enhanced their cell invasiveness. The in vitro cell invasion and migration were suppressed by ONO-AE3-208 in a dose-dependent manner without affecting cell proliferation. The in vivo bone metastasis of PC3 was also suppressed by ONO-AE3-208 treatment. EP4 expression levels were correlated with prostate cancer cell invasiveness and EP4 specific antagonist ONO-AE3-208 suppressed cell invasion, migration, and bone metastasis, indicating that it is a potential novel therapeutic modality for the treatment of metastatic prostate cancer. PMID:24744183

  1. DNA From Dead Cancer Cells Induces TLR9-Mediated Invasion and Inflammation In Living Cancer Cells

    Science.gov (United States)

    Tuomela, Johanna; Sandholm, Jouko; Kaakinen, Mika; Patel, Ankita; Kauppila, Joonas H.; Ilvesaro, Joanna; Chen, Dongquan; Harris, Kevin W.; Graves, David; Selander, Katri S.

    2014-01-01

    TLR9 is a cellular DNA-receptor, which is widely expressed in breast and other cancers. Although synthetic TLR9-ligands induce cancer cell invasion in vitro, the role of TLR9 in cancer pathophysiology has remained unclear. We show here that living cancer cells uptake DNA from chemotherapy-killed cancer cells. We discovered that such DNA induces TLR9- and cathepsin-mediated invasion in living cancer cells. To study whether this phenomenon contributes to treatment responses, triple negative, human MDA-MB-231 breast cancer cells stably expressing control or TLR9 siRNA were inoculated orthotopically into nude mice. The mice were treated with vehicle or doxorubicin. The tumor groups exhibited equal decreases in size in response to doxorubicin. However, while the weights of vehicle-treated mice were similar, mice bearing control siRNA tumors became significantly more cachectic in response to doxorubicin, as compared with similarly treated mice bearing TLR9 siRNA tumors, suggesting a TLR9-mediated inflammation at the site of the tumor. In conclusion, our findings propose that DNA released from chemotherapy-killed cancer cells has significant influence on TLR9-mediated biological effects in living cancer cells. Through these mechanisms, tumor TLR9 expression may affect treatment responses to chemotherapy. PMID:24212717

  2. Homeobox A7 stimulates breast cancer cell proliferation by up-regulating estrogen receptor-alpha

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yu [Department of Reproductive Endocrinology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310006 (China); Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4 (Canada); Cheng, Jung-Chien [Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4 (Canada); Huang, He-Feng, E-mail: huanghefg@hotmail.com [Department of Reproductive Endocrinology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310006 (China); Leung, Peter C.K., E-mail: peter.leung@ubc.ca [Department of Reproductive Endocrinology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310006 (China); Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4 (Canada)

    2013-11-01

    Highlights: •HOXA7 regulates MCF7 cell proliferation. •HOXA7 up-regulates ERα expression. •HOXA7 mediates estrogen-induced MCF7 cell proliferation. -- Abstract: Breast cancer is the most common hormone-dependent malignancy in women. Homeobox (HOX) transcription factors regulate many cellular functions, including cell migration, proliferation and differentiation. The aberrant expression of HOX genes has been reported to be associated with human reproductive cancers. Estradiol (E2) and its nuclear receptors, estrogen receptor (ER)-alpha and ER-beta, are known to play critical roles in the regulation of breast cancer cell growth. However, an understanding of the potential relationship between HOXA7 and ER in breast cancer cells is limited. In this study, our results demonstrate that knockdown of HOXA7 in MCF7 cells significantly decreased cell proliferation and ERα expression. In addition, HOXA7 knockdown attenuated E2-induced cell proliferation as well as progesterone receptor (PR) expression. The stimulatory effects of E2 on cell proliferation and PR expression were abolished by co-treatment with ICI 182780, a selective ERα antagonist. In contrast, overexpression of HOXA7 significantly stimulated cell proliferation and ERα expression. Moreover, E2-induced cell proliferation, as well as PR expression, was enhanced by the overexpression of HOXA7. Neither knockdown nor overexpression of HOXA7 affected the ER-beta levels. Our results demonstrate a novel mechanistic role for HOXA7 in modulating breast cancer cell proliferation via regulation of ERα expression. This finding contributes to our understanding of the role HOXA7 plays in regulating the proliferation of ER-positive cancer cells.

  3. Homeobox A7 stimulates breast cancer cell proliferation by up-regulating estrogen receptor-alpha

    International Nuclear Information System (INIS)

    Highlights: •HOXA7 regulates MCF7 cell proliferation. •HOXA7 up-regulates ERα expression. •HOXA7 mediates estrogen-induced MCF7 cell proliferation. -- Abstract: Breast cancer is the most common hormone-dependent malignancy in women. Homeobox (HOX) transcription factors regulate many cellular functions, including cell migration, proliferation and differentiation. The aberrant expression of HOX genes has been reported to be associated with human reproductive cancers. Estradiol (E2) and its nuclear receptors, estrogen receptor (ER)-alpha and ER-beta, are known to play critical roles in the regulation of breast cancer cell growth. However, an understanding of the potential relationship between HOXA7 and ER in breast cancer cells is limited. In this study, our results demonstrate that knockdown of HOXA7 in MCF7 cells significantly decreased cell proliferation and ERα expression. In addition, HOXA7 knockdown attenuated E2-induced cell proliferation as well as progesterone receptor (PR) expression. The stimulatory effects of E2 on cell proliferation and PR expression were abolished by co-treatment with ICI 182780, a selective ERα antagonist. In contrast, overexpression of HOXA7 significantly stimulated cell proliferation and ERα expression. Moreover, E2-induced cell proliferation, as well as PR expression, was enhanced by the overexpression of HOXA7. Neither knockdown nor overexpression of HOXA7 affected the ER-beta levels. Our results demonstrate a novel mechanistic role for HOXA7 in modulating breast cancer cell proliferation via regulation of ERα expression. This finding contributes to our understanding of the role HOXA7 plays in regulating the proliferation of ER-positive cancer cells

  4. Malignant cancer and invasive placentation: A case for positive pleiotropy between endometrial and malignancy phenotypes.

    Science.gov (United States)

    D'Souza, Alaric W; Wagner, Günter P

    2014-01-01

    Cancer metastasis is an invasive process that involves the transplantation of cells into new environments. Since human placentation is also invasive, hypotheses about a relationship between invasive placentation in eutherian mammals and metastasis have been proposed. The relationship between metastatic cancer and invasive placentation is usually presented in terms of antagonistic pleiotropy. According to this hypothesis, evolution of invasive placentation also established the mechanisms for cancer metastasis. Here, in contrast, we argue that the secondary evolution of less invasive placentation in some mammalian lineages may have resulted in positive pleiotropic effects on cancer survival by lowering malignancy rates. These positive pleiotropic effects would manifest themselves as resistance to cancer cell invasion. To provide a preliminary test of this proposal, we re-analyze data from Priester and Mantel (Occurrence of tumors in domestic animals. Data from 12 United States and Canadian colleges of veterinary medicine. J Natl Cancer Inst 1971; 47: :1333-44) about malignancy rates in cows, horses, cats and dogs. From our analysis we found that equines and bovines, animals with less invasive placentation, have lower rates of metastatic cancer than felines and canines in skin and glandular epithelial cancers as well as connective tissue sarcomas. We conclude that a link between type of placentation and species-specific malignancy rates is more likely related to derived mechanisms that suppress invasion rather than different degrees of fetal placental aggressiveness. PMID:25324490

  5. Identification of glucocorticoid-induced leucine zipper as a key regulator of tumor cell proliferation in epithelial ovarian cancer

    Directory of Open Access Journals (Sweden)

    Fernandez Hervé

    2009-10-01

    Full Text Available Abstract Background Little is known about the molecules that contribute to tumor progression of epithelial ovarian cancer (EOC, currently a leading cause of mortality from gynecological malignancies. Glucocorticoid-Induced Leucine Zipper (GILZ, an intracellular protein widely expressed in immune tissues, has been reported in epithelial tissues and controls some of key signaling pathways involved in tumorigenesis. However, there has been no report on GILZ in EOC up to now. The objectives of the current study were to examine the expression of GILZ in EOC and its effect on tumor cell proliferation. Results GILZ expression was measured by immunohistochemical staining in tissue sections from 3 normal ovaries, 7 benign EOC and 50 invasive EOC. GILZ was not detected on the surface epithelium of normal ovaries and benign tumors. In contrast, it was expressed in the cytoplasm of tumor cells in 80% EOC specimens. GILZ immunostaining scores correlated positively to the proliferation marker Ki-67 (Spearman test in univariate analysis, P P Conclusion The present study is the first to identify GILZ as a molecule produced by ovarian cancer cells that promotes cell cycle progression and proliferation. Our findings clearly indicate that GILZ activates AKT, a crucial signaling molecule in tumorigenesis. GILZ thus appears as a potential key molecule in EOC.

  6. Molecular changes in invasive front of oral cancer

    Directory of Open Access Journals (Sweden)

    Mohit Sharma

    2013-01-01

    Full Text Available Treatment planning for oral squamous cell carcinoma (OSCC is based on the clinical TNM (Tumor, Node and Metastasis classification. This system operates on the assumption that small tumours without clinical spread have a better prognosis than larger tumours with metastases. However, it is a well-known fact that some tumours with the same clinical staging show different growth patterns and clinical behaviour. This makes the prognosis for patients with OSCC difficult to predict on the basis of clinical staging alone. Although many histopathological characteristics of OSCC have been identified as prognostic factors, none is believed to be completely infallible. Therefore, a great need exists for more reliable prognostic markers, which will assist in treatment decisions. It is now well documented that several molecular events of significance for tumour spread, such as gain and loss of adhesion molecules, secretion of proteolytic enzymes, increased cell proliferation and initiation of angiogenesis occur at the tumour-host interface or invasive front, where the deepest and presumably most aggressive cells reside. This review describes the various molecular events and interactions, which take place in the invasive front of the OSCC, and elucidates their role as prognostic markers.

  7. The role of the tissue microenvironment in the regulation of cancer cell motility and invasion

    Directory of Open Access Journals (Sweden)

    Brábek Jan

    2010-09-01

    Full Text Available Abstract During malignant neoplastic progression the cells undergo genetic and epigenetic cancer-specific alterations that finally lead to a loss of tissue homeostasis and restructuring of the microenvironment. The invasion of cancer cells through connective tissue is a crucial prerequisite for metastasis formation. Although cell invasion is foremost a mechanical process, cancer research has focused largely on gene regulation and signaling that underlie uncontrolled cell growth. More recently, the genes and signals involved in the invasion and transendothelial migration of cancer cells, such as the role of adhesion molecules and matrix degrading enzymes, have become the focus of research. In this review we discuss how the structural and biomechanical properties of extracellular matrix and surrounding cells such as endothelial cells influence cancer cell motility and invasion. We conclude that the microenvironment is a critical determinant of the migration strategy and the efficiency of cancer cell invasion.

  8. Intra-arterial chemotherapy for invasive bladder cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ozono, Seiichiro; Kim, Sung-Chul; Takashima, Kenji [Nara Medical Univ., Kashihara (Japan)] [and others

    1999-02-01

    The present investigation was conducted to examine the effects of intra-arterial chemotherapy (IAC) for patients with invasive bladder cancer. A total of 37 patients were treated with IAC at Nara Medical University and its affiliated hospitals between January, 1993 and August, 1997. There were 27 patients in the poor risk group. The remaining 10 patients underwent anti-tumor IAC. Thirty of the 37 patients received chemotherapeutic agents via a reservoir, and the remaining 7 patients received a one-shot injection of agents followed by transcatheter arterial embolization (TAE). In the reservoir group, there were 18 patients who received IAC in combination with radiation therapy. As a result, reduction of tumor size was noted in 53%, and the 3-year cause-specific survival rate was 54% in all cases. There was a significant difference in the 3-year survival rate between the radiation-treated group and the group without radiation. The adverse events included anemia, leukopenia, thrombocytopenia and gastrointestinal symptoms, but none of them were severe. The results of the present study indicate that IAC is useful in the treatment of invasive bladder cancer for poor risk patients. (author)

  9. Concomitant boost radiotherapy for muscle invasive bladder cancer

    International Nuclear Information System (INIS)

    Purpose: To evaluate the feasibility and efficacy of a concomitant partial bladder boost schedule in radiotherapy for invasive bladder cancer, coupling a limited boost volume with shortening of the overall treatment time. Methods and materials: Between 1994 and 1999, 50 patients with a T2-T4 N0M0 transitional cell carcinoma of the bladder received radiotherapy delivered in a short overall treatment time with a concomitant boost technique. With this technique a dose of 40 Gy in 2-Gy fractions was administered to the small pelvis with a concomitant boost limited to the bladder tumor area plus margin of 15 Gy in fractions of 0.75 Gy. The total tumor dose was 55 Gy in 20 fractions in 4 weeks. Toxicity was scored according to EORTC/RTOG toxicity criteria. Results: The feasibility of the treatment was good. Severe acute toxicity ≥G3 was observed in seven patients (14%). Severe late toxicity ≥G3 was observed in six patients (13%). Thirty-seven patients (74%) showed a complete and five (10 %) a partial remission after treatment. The actuarial 3-year freedom of local progression was 55%. Conclusion: In external radiotherapy for muscle invasive bladder cancer a concomitant boost technique coupling a partial bladder boost with shortening of the overall treatment time provides a high probability of local control with acceptable toxicity

  10. Intra-arterial chemotherapy for invasive bladder cancer

    International Nuclear Information System (INIS)

    The present investigation was conducted to examine the effects of intra-arterial chemotherapy (IAC) for patients with invasive bladder cancer. A total of 37 patients were treated with IAC at Nara Medical University and its affiliated hospitals between January, 1993 and August, 1997. There were 27 patients in the poor risk group. The remaining 10 patients underwent anti-tumor IAC. Thirty of the 37 patients received chemotherapeutic agents via a reservoir, and the remaining 7 patients received a one-shot injection of agents followed by transcatheter arterial embolization (TAE). In the reservoir group, there were 18 patients who received IAC in combination with radiation therapy. As a result, reduction of tumor size was noted in 53%, and the 3-year cause-specific survival rate was 54% in all cases. There was a significant difference in the 3-year survival rate between the radiation-treated group and the group without radiation. The adverse events included anemia, leukopenia, thrombocytopenia and gastrointestinal symptoms, but none of them were severe. The results of the present study indicate that IAC is useful in the treatment of invasive bladder cancer for poor risk patients. (author)

  11. Downregulation of LSD1 suppresses the proliferation, tumorigenicity and invasion of papillary thyroid carcinoma K1 cells

    OpenAIRE

    KONG, LING-LING; MAN, DONG-MEI; Wang, Tian; ZHANG, GUO-AN; Cui, Wen

    2016-01-01

    The present study aimed to evaluate the effects of lysine-specific demethylase 1 (LSD1) downregulation, induced by small interfering RNA (siRNA) transfection, on the proliferation, colony formation, migration and invasion of the papillary thyroid carcinoma K1 cell line. The siRNA targeting LSD1 and scrambled non-targeting siRNA were each transfected into papillary thyroid carcinoma K1 cells. Downregulation of LSD1 mRNA and protein level was evaluated by reverse transcription-quantitative poly...

  12. MicroRNA-497 inhibits cell proliferation, migration, and invasion by targeting AMOT in human osteosarcoma cells

    Directory of Open Access Journals (Sweden)

    Ruan WD

    2016-01-01

    Full Text Available Wen-Dong Ruan, Pei Wang, Shiqing Feng, Yuan Xue, Bin Zhang Department of Orthopedics, Tianjin Medical University General Hospital, Heping District, Tianjin, People’s Republic of China Abstract: MicroRNAs (miRNAs have a role in the development and progression of human malignancy. The expression of miR-497 is decreased in malignant tumors, which suggests a role for miR-497 as a tumor suppressor. Angiomotin is encoded by the AMOT gene, which is a target for miR-497. Angiomotin has a role in angiogenesis, cell proliferation, and invasion in human malignancies, including osteosarcoma. However, the role of miR-497 in human osteosarcoma is unknown. This preliminary study included human osteosarcoma tissues and normal tissues from 20 patients, the osteosarcoma cell lines, MG-63, SAOS-2, U-2 OS, and the human osteoblast cell line hFOB (OB3. Western blots for angiomotin and quantitative real-time polymerase chain reaction for the expression of miR-497 and AMOT were performed. Knockdown studies were performed using RNA interference and transfection studies used miR-497 mimics. Quantitative cell migration assays were performed, and cell apoptosis was studied by flow cytometry. Osteosarcoma cells and cell lines showed reduced expression of miR-497 and increased expression of angiomotin. Transfection of osteosarcoma cells with miR-497 mimics suppressed the ­expression of angiomotin. Results from a dual-luciferase reporter system supported AMOT as a direct target gene of miR-497. Knockdown of AMOT using RNA interference resulted in inhibition of osteosarcoma cell proliferation, migration, and invasion. These preliminary studies support a role for miR-497 as a suppressor of AMOT gene expression in human osteosarcoma cells, resulting in suppression of tumor cell proliferation and invasion. Further studies are recommended to investigate the role of miR-497 in osteosarcoma and other malignant mesenchymal tumors. Keywords: angiomotin, apoptosis, cell migration

  13. Focal adhesion kinase and Src phosphorylations in HGF-induced proliferation and invasion of human cholangiocarcinoma cell line, HuCCA-1

    Institute of Scientific and Technical Information of China (English)

    Urai Pongchairerk; Jun-Lin Guan; Vijittra Leardkamolkarn

    2005-01-01

    AIM: To study the role of focal adhesion kinase (FAK) and its association with Src in hepatocyte growth factor (HGF)-induced cell signaling in cholangiocarcinoma progression.METHODS: Previously isolated HuCCA-1 cells were re-characterized by immunofluorescent staining and reverse transcriptase-polymerase chain reaction assay for the expression of cytokeratin 19, HGF and c-Met mRNA. Cultured HuCCA-1 cells were treated with HGF and determined for cell proliferation and invasion effects by MTT and invasion assays. Western blotting, immunoprecipitation, and co-immunoprecipitation were also performed to study the phosphorylation and interaction of FAK and Src. A novel Src inhibitor (AZM555130) was applied in cultures to investigate the effects on FAK phosphorylation inhibition and on cell proliferation and invasion.RESULTS: HGF enhanced HuCCA-1 cell proliferation and invasion by mediating FAK and Src phosphorylations.FAK-Src interaction occurred in a time-dependent manner that Src was proved to be an upstream signaling molecule to FAK. The inhibitor to Src decreased FAK phosphorylation level in correlation with the reduction of cell proliferation and invasion.CONCLUSION: FAK plays a significant role in signaling pathway of HGF-responsive cell line derived from cholangiocarcinoma. Autophosphorylated Src, induced by HGF, mediates Src kinase activation, which subsequently phosphorylates its substrate, FAK, and signals to cell proliferation and invasion.

  14. Suppression of growth and invasive behavior of human prostate cancer cells by ProstaCaid™: mechanism of activity.

    Science.gov (United States)

    Jiang, Jiahua; Eliaz, Isaac; Sliva, Daniel

    2011-06-01

    Since the use of dietary supplements as alternative treatments or adjuvant therapies in cancer treatment is growing, a scientific verification of their biological activity and the detailed mechanisms of their action are necessary for the acceptance of dietary supplements in conventional cancer treatments. In the present study we have evaluated the anti-cancer effects of dietary supplement ProstaCaid™ (PC) which contains mycelium from medicinal mushrooms (Ganoderma lucidum, Coriolus versicolor, Phellinus linteus), saw palmetto berry, pomegranate, pumpkin seed, green tea [40% epigallocatechin-3-gallate (EGCG)], Japanese knotweed (50% resveratrol), extracts of turmeric root (BCM-95®), grape skin, pygeum bark, sarsaparilla root, Scutellaria barbata, eleuthero root, Job's tears, astragalus root, skullcap, dandelion, coptis root, broccoli, and stinging nettle, with purified vitamin C, vitamin D3, selenium, quercetin, citrus bioflavonoid complex, β sitosterolzinc, lycopene, α lipoic acid, boron, berberine and 3.3'-diinodolymethane (DIM). We show that PC treatment resulted in the inhibition of cell proliferation of the highly invasive human hormone refractory (independent) PC-3 prostate cancer cells in a dose- and time-dependent manner with IC50 56.0, 45.6 and 39.0 µg/ml for 24, 48 and 72 h, respectively. DNA-microarray analysis demonstrated that PC inhibits proliferation through the modulation of expression of CCND1, CDK4, CDKN1A, E2F1, MAPK6 and PCNA genes. In addition, PC also suppresses metastatic behavior of PC-3 by the inhibition of cell adhesion, cell migration and cell invasion, which was associated with the down-regulation of expression of CAV1, IGF2, NR2F1, and PLAU genes and suppressed secretion of the urokinase plasminogen activator (uPA) from PC-3 cells. In conclusion, the dietary supplement PC is a promising natural complex with the potency to inhibit invasive human prostate cancer. PMID:21468543

  15. Sulforaphane-cysteine suppresses invasion via downregulation of galectin-1 in human prostate cancer DU145 and PC3 cells.

    Science.gov (United States)

    Tian, Hua; Zhou, Yan; Yang, Gaoxiang; Geng, Yang; Wu, Sai; Hu, Yabin; Lin, Kai; Wu, Wei

    2016-09-01

    Our previous study showed that sulforaphane (SFN) inhibits invasion in human prostate cancer DU145 cells; however, the underlying mechanisms were not profoundly investigated. In the present study, we found that sulforaphane-cysteine (SFN-Cys), as a metabolite of SFN, inhibits invasion and possesses a novel mechanism in prostate cancer DU145 and PC3 cells. The scratch and Transwell assays showed that SFN-Cys (15 µM) inhibited both migration and invasion, with cell morphological changes, such as cell shrinkage and pseudopodia shortening. The cell proliferation (MTS) assay indicated that cell viability was markedly suppressed with increasing concentrations of SFN‑Cys. Furthermore, the Transwell assay showed that inhibition of SFN‑Cys‑triggered invasion was tightly linked to the sustained extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation. Western blot analysis revealed that SFN-Cys downregulated galectin-1 protein, an invasion‑related protein, and that the galectin‑1 reduction could be blocked by ERK1/2 inhibitor PD98059 (25 µM). Moreover, immunofluorescence staining showed that the expression level of galectin-1 protein was significantly reduced in the cells treated with SFN‑Cys. Hence, SFN‑Cys‑inhibited invasion resulted from the sustained ERK1/2 phosphorylation and ERK1/2‑triggered galectin-1 downregulation, suggesting that galectin-1 is a new SFN-Cys target inhibiting invasion apart from ERK1/2, in the treatment of prostate cancer. PMID:27430422

  16. Fibronectin-1 expression is increased in aggressive thyroid cancer and favors the migration and invasion of cancer cells.

    Science.gov (United States)

    Sponziello, Marialuisa; Rosignolo, Francesca; Celano, Marilena; Maggisano, Valentina; Pecce, Valeria; De Rose, Roberta Francesca; Lombardo, Giovanni Enrico; Durante, Cosimo; Filetti, Sebastiano; Damante, Giuseppe; Russo, Diego; Bulotta, Stefania

    2016-08-15

    In this study we analyzed the expression levels of markers of epithelial-to-mesenchymal transition (EMT) in several papillary thyroid carcinomas (PTCs) and the relation with tumor genotypes and clinicopathological characteristics. The role of fibronectin-1 (FN1) was investigated by analyzing the effects of FN1 silencing in two human thyroid cancer cell lines. Most of EMT markers were significantly over-expressed in a group of 36 PTCs. In particular, FN1 mRNA levels were higher in tumor vs non-tumor tissue (117.3, p < 0.001) and also in aggressive and BRAF(V600E) samples. Similar results were observed (and confirmed at the protein level) when FN1 expression was analyzed in a validation group of 50 PTCs and six lymph node (LN) metastases. Silencing of FN1 in TPC-1 and BCPAP thyroid cancer cells significantly reduced proliferation, adhesion, migration, and invasion in both cell lines. Collectively, our data indicate that FN1 overexpression is an important determinant of thyroid cancer aggressiveness. PMID:27173027

  17. Effects of Estradiol and Tamoxifen on Proliferation of Human Breast Cancer Cells and Human Endometrial Cells

    Institute of Scientific and Technical Information of China (English)

    张波; 陈道达; 王国斌; 吴毅华

    2003-01-01

    The effects of estradiol and tamoxifen on the proliferation of estrogen receptor positivecells and the relationship between the tamoxifen tolerance and cell origin were investigated. The tis-sues of human endometrium and breast cancer were randomly selected following dissection for pri-mary cell culture. After the breast cancer cells and endometrial cells were treated with 1 × 10-8 mol/L estradiol and/or 1 × 10-6 tamoxifen, a H-labelled thymine nucleotide was used to trace the kineticsof cell proliferation. There was no significant difference in the inhibition on the human endometrialcells between tamoxifen-treated group (6.3%) and control group (6.4%), but tamoxifen could sig-nificantly inhibit the proliferation of the human breast cancer cells (45.84 % ) as compared with con-trol group (52.72%). Moreover, tamoxifen could significantly stimulate the proliferation of tamox-ifen resistant breast cancer cells (9.64%) as compared with control group (6.32 %). Estradiolcould significantly stimulate the proliferation of all the three kinds of cells as compared with controlgroup. The combined use of estradiol and tamoxifen could inhibit the proliferation of the endometri-al cells and breast cancer cells as compared with estradiol used alone, but on the tamoxifen resistantbreast cancer cells, they could more significantly stimulate the proliferation than E2. It was conclu-ded that E2 could stimulate the proliferation of these three kinds of cells. However, the inhibitiveeffects of tamoxifen on the proliferation of these cells were dependent on the estradiol.

  18. Calcitriol inhibits Ether-a go-go potassium channel expression and cell proliferation in human breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Becerra, Rocio [Department of Reproductive Biology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Vasco de Quiroga No. 15, Tlalpan 14000 Mexico, D.F. (Mexico); Diaz, Lorenza, E-mail: lorenzadiaz@gmail.com [Department of Reproductive Biology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Vasco de Quiroga No. 15, Tlalpan 14000 Mexico, D.F. (Mexico); Camacho, Javier [Department of Pharmacology, Centro de Investigacion y de Estudios Avanzados, Instituto Politecnico Nacional, Av. Instituto Politecnico Nacional 2508, San Pedro Zacatenco 07360, Mexico, D.F. (Mexico); Barrera, David; Ordaz-Rosado, David; Morales, Angelica [Department of Reproductive Biology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Vasco de Quiroga No. 15, Tlalpan 14000 Mexico, D.F. (Mexico); Ortiz, Cindy Sharon [Department of Pathology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Vasco de Quiroga No. 15, Tlalpan 14000 Mexico, D.F. (Mexico); Avila, Euclides [Department of Reproductive Biology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Vasco de Quiroga No. 15, Tlalpan 14000 Mexico, D.F. (Mexico); Bargallo, Enrique [Department of Breast Tumors, Instituto Nacional de Cancerologia, Av. San Fernando No. 22, Tlalpan 14080, Mexico, D.F. (Mexico); Arrecillas, Myrna [Department of Pathology, Instituto Nacional de Cancerologia, Av. San Fernando No. 22, Tlalpan 14080, Mexico, D.F. (Mexico); Halhali, Ali; Larrea, Fernando [Department of Reproductive Biology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Vasco de Quiroga No. 15, Tlalpan 14000 Mexico, D.F. (Mexico)

    2010-02-01

    Antiproliferative actions of calcitriol have been shown to occur in many cell types; however, little is known regarding the molecular basis of this process in breast carcinoma. Ether-a-go-go (Eag1) potassium channels promote oncogenesis and are implicated in breast cancer cell proliferation. Since calcitriol displays antineoplastic effects while Eag1 promotes tumorigenesis, and both factors antagonically regulate cell cycle progression, we investigated a possible regulatory effect of calcitriol upon Eag1 as a mean to uncover new molecular events involved in the antiproliferative activity of this hormone in human breast tumor-derived cells. RT real-time PCR and immunocytochemistry showed that calcitriol suppressed Eag1 expression by a vitamin D receptor (VDR)-dependent mechanism. This effect was accompanied by inhibition of cell proliferation, which was potentiated by astemizole, a nonspecific Eag1 inhibitor. Immunohistochemistry and Western blot demonstrated that Eag1 and VDR abundance was higher in invasive-ductal carcinoma than in fibroadenoma, and immunoreactivity of both proteins was located in ductal epithelial cells. Our results provide evidence of a novel mechanism involved in the antiproliferative effects of calcitriol and highlight VDR as a cancer therapeutic target for breast cancer treatment and prevention.

  19. Calcitriol inhibits Ether-a go-go potassium channel expression and cell proliferation in human breast cancer cells

    International Nuclear Information System (INIS)

    Antiproliferative actions of calcitriol have been shown to occur in many cell types; however, little is known regarding the molecular basis of this process in breast carcinoma. Ether-a-go-go (Eag1) potassium channels promote oncogenesis and are implicated in breast cancer cell proliferation. Since calcitriol displays antineoplastic effects while Eag1 promotes tumorigenesis, and both factors antagonically regulate cell cycle progression, we investigated a possible regulatory effect of calcitriol upon Eag1 as a mean to uncover new molecular events involved in the antiproliferative activity of this hormone in human breast tumor-derived cells. RT real-time PCR and immunocytochemistry showed that calcitriol suppressed Eag1 expression by a vitamin D receptor (VDR)-dependent mechanism. This effect was accompanied by inhibition of cell proliferation, which was potentiated by astemizole, a nonspecific Eag1 inhibitor. Immunohistochemistry and Western blot demonstrated that Eag1 and VDR abundance was higher in invasive-ductal carcinoma than in fibroadenoma, and immunoreactivity of both proteins was located in ductal epithelial cells. Our results provide evidence of a novel mechanism involved in the antiproliferative effects of calcitriol and highlight VDR as a cancer therapeutic target for breast cancer treatment and prevention.

  20. MiR-153 inhibits migration and invasion of human non-small-cell lung cancer by targeting ADAM19

    International Nuclear Information System (INIS)

    Highlights: • Decreased miR-153 and up-regulated ADAM19 are correlated with NSCLC pathology. • MiR-153 inhibits the proliferation and migration and invasion of NSCLC cells in vitro. • ADAM19 is a direct target of miR-153. • ADAM19 is involved in miR-153-suppressed migration and invasion of NSCLC cells. - Abstract: MiR-153 was reported to be dysregulated in some human cancers. However, the function and mechanism of miR-153 in lung cancer cells remains unknown. In this study, we investigated the role of miR-153 in human non-small-cell lung cancer (NSCLC). Using qRT-PCR, we demonstrated that miR-153 was significantly decreased in clinical NSCLC tissues and cell lines, and downregulation of miR-153 was significantly correlated with lymph node status. We further found that ectopic expression of miR-153 significantly inhibited the proliferation and migration and invasion of NSCLC cells in vitro, suggesting that miR-153 may be a novel tumor suppressor in NSCLC. Further integrated analysis revealed that ADAM19 is as a direct and functional target of miR-153. Luciferase reporter assay demonstrated that miR-153 directly targeted 3′UTR of ADAM19, and correlation analysis revealed an inverse correlation between miR-153 and ADAM19 mRNA levels in clinical NSCLC tissues. Knockdown of ADAM19 inhibited migration and invasion of NSCLC cells which was similar with effects of overexpression of miR-153, while overexpression of ADAM19 attenuated the function of miR-153 in NSCLC cells. Taken together, our results highlight the significance of miR-153 and ADAM19 in the development and progression of NSCLC

  1. MiR-153 inhibits migration and invasion of human non-small-cell lung cancer by targeting ADAM19

    Energy Technology Data Exchange (ETDEWEB)

    Shan, Nianxi [Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008 (China); Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan 410008 (China); Shen, Liangfang [Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008 (China); Wang, Jun; He, Dan [Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan 410008 (China); Duan, Chaojun, E-mail: duancjxy@163.com [Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008 (China); Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan 410008 (China)

    2015-01-02

    Highlights: • Decreased miR-153 and up-regulated ADAM19 are correlated with NSCLC pathology. • MiR-153 inhibits the proliferation and migration and invasion of NSCLC cells in vitro. • ADAM19 is a direct target of miR-153. • ADAM19 is involved in miR-153-suppressed migration and invasion of NSCLC cells. - Abstract: MiR-153 was reported to be dysregulated in some human cancers. However, the function and mechanism of miR-153 in lung cancer cells remains unknown. In this study, we investigated the role of miR-153 in human non-small-cell lung cancer (NSCLC). Using qRT-PCR, we demonstrated that miR-153 was significantly decreased in clinical NSCLC tissues and cell lines, and downregulation of miR-153 was significantly correlated with lymph node status. We further found that ectopic expression of miR-153 significantly inhibited the proliferation and migration and invasion of NSCLC cells in vitro, suggesting that miR-153 may be a novel tumor suppressor in NSCLC. Further integrated analysis revealed that ADAM19 is as a direct and functional target of miR-153. Luciferase reporter assay demonstrated that miR-153 directly targeted 3′UTR of ADAM19, and correlation analysis revealed an inverse correlation between miR-153 and ADAM19 mRNA levels in clinical NSCLC tissues. Knockdown of ADAM19 inhibited migration and invasion of NSCLC cells which was similar with effects of overexpression of miR-153, while overexpression of ADAM19 attenuated the function of miR-153 in NSCLC cells. Taken together, our results highlight the significance of miR-153 and ADAM19 in the development and progression of NSCLC.

  2. Possible disease remission in patient with invasive bladder cancer with D-fraction regimen

    OpenAIRE

    Rajamahanty, Srinivas; Louie, Brandon; O’Neill, Cormac; Choudhury, Muhammad; Konno, Sensuke

    2009-01-01

    Superficial bladder tumors are the most prevalent form of bladder cancers and transurethral resection is the primary surgical modality for those tumors. However, nearly 65% of patients will have tumor recurrence in five years while about 15% will have progression to muscle invasion. Thus, the primary therapeutic aim is to prevent multiple recurrences and progression to a more advanced, invasive disease. We here report an 87-year-old white male patient with invasive bladder cancer who received...

  3. Molecular subtyping of DCIS: heterogeneity of breast cancer reflected in pre-invasive disease

    OpenAIRE

    Clark, S. E.; Warwick, J.; Carpenter, R.; Bowen, R L; Duffy, S W; Jones, J L

    2010-01-01

    Background: Molecular profiling has identified at least four subtypes of invasive breast carcinoma, which exhibit distinct clinical behaviour. There is good evidence now that DCIS represents the non-obligate precursor to invasive breast cancer and therefore it should be possible to identify similar molecular subtypes at this stage. In addition to a limited five-marker system to identify molecular subtypes in invasive breast cancer, it is evident that other biological molecules may identify di...

  4. DEGRO practical guidelines: radiotherapy of breast cancer II. Radiotherapy of non-invasive neoplasia of the breast

    International Nuclear Information System (INIS)

    To complement and update the 2007 practice guidelines of the breast cancer expert panel of the German Society of Radiation Oncology (DEGRO) for radiotherapy (RT) of breast cancer. Owing to its growing clinical relevance, in the current version, a separate paper is dedicated to non-invasive proliferating epithelial neoplasia of the breast. In addition to the more general statements of the German interdisciplinary S3 guidelines, this paper is especially focused on indication and technique of RT in addition to breast conserving surgery. The DEGRO expert panel performed a comprehensive survey of the literature comprising recently published data from clinical controlled trials, systematic reviews as well as meta-analyses, referring to the criteria of evidence-based medicine yielding new aspects compared to 2005 and 2007. The literature search encompassed the period 2008 to September 2012 using databases of PubMed and Guidelines International Network (G-I-N). Search terms were ''non invasive breast cancer'', ''ductal carcinoma in situ, ''dcis'', ''borderline breast lesions'', ''lobular neoplasia'', ''radiotherapy'' and ''radiation therapy''. In addition to the more general statements of the German interdisciplinary S3 guidelines, this paper is especially focused on indications of RT and decision making of non-invasive neoplasia of the breast after surgery, especially ductal carcinoma in situ. Among different non-invasive neoplasia of the breast only the subgroup of pure ductal carcinoma in situ (DCIS; synonym ductal intraepithelial neoplasia, DIN) is considered for further recurrence risk reduction treatment modalities after complete excision of DCIS, particularly RT following breast conserving surgery (BCS), in order to avoid a mastectomy. About half of recurrences are invasive cancers. Up to 50?% of all recurrences require salvage mastectomy. Randomized clinical trials and a huge number of mostly observational studies have unanimously demonstrated that RT significantly

  5. Mesenchymal stromal cells from female donors enhance breast cancer cell proliferation in vitro.

    Science.gov (United States)

    Pasanen, Ilkka; Pietilä, Mika; Lehtonen, Siri; Lehtilahti, Elisa; Hakkarainen, Tanja; Blanco Sequeiros, Roberto; Lehenkari, Petri; Kuvaja, Paula

    2015-01-01

    The interplay between tumor stroma and breast cancer cells (BCCs) is thought to play a significant role in breast cancer. The current knowledge of human mesenchymal stromal cell (MSC) and BCC interaction is contradictory, and the donor sex issue is not addressed at all. We hypothesized that donor sex could have an effect on proliferation of MSCs or BCCs in co-culture in vitro. Three estrogen receptor-negative BCC lines, 19 primary human MSCs and breast tissue-derived fibroblasts from 4 donors were used. MSCs from female donors enhanced BCC proliferation (p = 0.005). The change in BCC proliferation was only partly due to soluble factors excreted by MSCs. The highly aggressive BCC line MDA-MB- 231 induced the proliferation of MSCs (p < 0.001) and fibroblasts (p = 0.037) in co-culture experiments. The magnitude in proliferation change was cell line dependent and partly sex dependent. PMID:25502907

  6. Suppression of human lung cancer cell proliferation and metastasis in vitro by the transducer of ErbB-2.1 (TOB1)

    OpenAIRE

    Jiao, Yang; SUN, KE-KANG; Zhao, Lin; Xu, Jia-Ying; Wang, Li-Li; Fan, Sai-Jun

    2011-01-01

    Aim: To investigate the effects of the transducer of ErbB-2.1 (TOB1) on the proliferation, migration and invasion of human lung cancer cells in vitro. Methods: Human lung cancer cell lines (95-D, A549, NCI-H1299, NCI-H1975, NCI-H661, NCI-H446, NCI-H1395, and Calu-3) and the normal human bronchial epithelial (HBE) cell line were tested. The expression levels of TOB1 in the cells were determined with Western blot and RT-PCR analyses. TOB1-overexpressing cell line 95-D/TOB1 was constructed using...

  7. The fatty acid binding protein 7 (FABP7) is involved in proliferation and invasion of melanoma cells

    International Nuclear Information System (INIS)

    The molecular mechanisms underlying melanoma tumor development and progression are still not completely understood. One of the new candidates that emerged from a recent gene expression profiling study is fatty acid-binding protein 7 (FABP7), involved in lipid metabolism, gene regulation, cell growth and differentiation. We studied the functional role of FABP7 in human melanoma cell lines and using immunohistochemistry analyzed its expression pattern and clinical role in 11 nevi, 149 primary melanomas and 68 metastases. FABP7 mRNA and protein level is down-regulated following treatment of melanoma cell lines with a PKC activator (PMA) or MEK1 inhibitor (PD98059). Down-regulation of FABP7 using siRNA decreased cell proliferation and invasion but did not affect apoptosis. In clinical specimens, FABP7 was expressed in 91% of nevi, 71% of primary melanomas and 70% of metastases, with a cytoplasmic and/or nuclear localization. FABP7 expression was associated with tumor thickness in superficial spreading melanoma (P = 0.021). In addition, we observed a trend for an association between FABP7 expression and Ki-67 score (P = 0.070) and shorter relapse-free survival (P = 0.069) in this group of patients. Our data suggest that FABP7 can be regulated by PKC and the MAPK/ERK1/2 pathway through independent mechanisms in melanoma cell lines. Furthermore, FABP7 is involved in cell proliferation and invasion in vitro, and may be associated with tumor progression in melanoma

  8. Lattice-based model of ductal carcinoma in situ suggests rules for breast cancer progression to an invasive state.

    Directory of Open Access Journals (Sweden)

    Eline Boghaert

    2014-12-01

    Full Text Available Ductal carcinoma in situ (DCIS is a heterogeneous group of non-invasive lesions of the breast that result from abnormal proliferation of mammary epithelial cells. Pathologists characterize DCIS by four tissue morphologies (micropapillary, cribriform, solid, and comedo, but the underlying mechanisms that distinguish the development and progression of these morphologies are not well understood. Here we explored the conditions leading to the emergence of the different morphologies of DCIS using a two-dimensional multi-cell lattice-based model that incorporates cell proliferation, apoptosis, necrosis, adhesion, and contractility. We found that the relative rates of cell proliferation and apoptosis governed which of the four morphologies emerged. High proliferation and low apoptosis favored the emergence of solid and comedo morphologies. In contrast, low proliferation and high apoptosis led to the micropapillary morphology, whereas high proliferation and high apoptosis led to the cribriform morphology. The natural progression between morphologies cannot be investigated in vivo since lesions are usually surgically removed upon detection; however, our model suggests probable transitions between these morphologies during breast cancer progression. Importantly, cribriform and comedo appear to be the ultimate morphologies of DCIS. Motivated by previous experimental studies demonstrating that tumor cells behave differently depending on where they are located within the mammary duct in vivo or in engineered tissues, we examined the effects of tissue geometry on the progression of DCIS. In agreement with our previous experimental work, we found that cells are more likely to invade from the end of ducts and that this preferential invasion is regulated by cell adhesion and contractility. This model provides additional insight into tumor cell behavior and allows the exploration of phenotypic transitions not easily monitored in vivo.

  9. Knockdown of STAT3 by iRNA Inhibiting Migration and Invasion of Epithelial Ovarian Cancer Cells

    Institute of Scientific and Technical Information of China (English)

    LI Qin-hua; ZHU Ji-hong; LIU Lei; YUE Ying

    2012-01-01

    Signal transducer and activator of transcription 3(STAT3) is a dual functional transcription factor with the functions of signal transduction and transcription regulation.It is reported that the expression of STAT3 in ovarian cancer is significantly higher and STAT3 can facilitate ovarian cancer growth and metastasis.To clarify the definite effect and molecular mechanism of STAT3 involved in ovarian cancer growth and metastasis,STAT3 expression was significantly downregulated by transfeeting ovarian cancer model SK-OV-3 cells with the plasmid vector which express specific RNAi that targets human STAT3.The downregulated STAT3 not only decreased the invasion and migration but also inhibited the proliferation of SK-OV-3 cells.Western blot assay shows that the expression of vascular endothelial growth factor(VEGF) and that of Survivin were reduced in the cells with the plasma vector expressing specific RNAi that targets human STATY These results demonstrate that STAT3 involved in the invasion and migration of SK-OV-3 regulates the expression of VEGF and Survivin.In addition,VEGF and Survivin could play an important role in ovarian cancer growth and metastasis.

  10. Targeting BRAFV600E with PLX4720 Displays Potent Antimigratory and Anti-invasive Activity in Preclinical Models of Human Thyroid Cancer

    OpenAIRE

    Nucera, Carmelo; Nehs, Matthew A.; Nagarkatti, Sushruta S.; Sadow, Peter M.; Mekel, Michal; Fischer, Andrew H.; Lin, Paul S.; Bollag, Gideon E.; Lawler, Jack; Hodin, Richard A.; Parangi, Sareh

    2011-01-01

    Purpose. B-RafV600E may play a role in the progression from papillary thyroid cancer to anaplastic thyroid cancer (ATC). We test