WorldWideScience

Sample records for cancer invasion partly

  1. Interstitial guidance of cancer invasion.

    NARCIS (Netherlands)

    Gritsenko, P.G.; Ilina, O.; Friedl, P.H.

    2012-01-01

    Cancer cell invasion into healthy tissues develops preferentially along pre-existing tracks of least resistance, followed by secondary tissue remodelling and destruction. The tissue scaffolds supporting or preventing guidance of invasion vary in structure and molecular composition between organs. In

  2. Interstitial guidance of cancer invasion.

    Science.gov (United States)

    Gritsenko, Pavlo G; Ilina, Olga; Friedl, Peter

    2012-01-01

    Cancer cell invasion into healthy tissues develops preferentially along pre-existing tracks of least resistance, followed by secondary tissue remodelling and destruction. The tissue scaffolds supporting or preventing guidance of invasion vary in structure and molecular composition between organs. In the brain, the guidance is provided by myelinated axons, astrocyte processes, and blood vessels which are used as invasion routes by glioma cells. In the human breast, containing interstitial collagen-rich connective tissue, disseminating breast cancer cells preferentially invade along bundled collagen fibrils and the surface of adipocytes. In both invasion types, physical guidance prompted by interfaces and space is complemented by molecular guidance. Generic mechanisms shared by most, if not all, tissues include (i) guidance by integrins towards fibrillar interstitial collagen and/or laminins and type IV collagen in basement membranes decorating vessels and adipocytes, and, likely, CD44 engaging with hyaluronan; (ii) haptotactic guidance by chemokines and growth factors; and likely (iii) physical pushing mechanisms. Tissue-specific, resticted guidance cues include ECM proteins with restricted expression (tenascins, lecticans), cell-cell interfaces, and newly secreted matrix molecules decorating ECM fibres (laminin-332, thrombospondin-1, osteopontin, periostin). We here review physical and molecular guidance mechanisms in interstitial tissue and brain parenchyma and explore shared principles and organ-specific differences, and their implications for experimental model design and therapeutic targeting of tumour cell invasion.

  3. SOST Inhibits Prostate Cancer Invasion.

    Directory of Open Access Journals (Sweden)

    Bryan D Hudson

    Full Text Available Inhibitors of Wnt signaling have been shown to be involved in prostate cancer (PC metastasis; however the role of Sclerostin (Sost has not yet been explored. Here we show that elevated Wnt signaling derived from Sost deficient osteoblasts promotes PC invasion, while rhSOST has an inhibitory effect. In contrast, rhDKK1 promotes PC elongation and filopodia formation, morphological changes characteristic of an invasive phenotype. Furthermore, rhDKK1 was found to activate canonical Wnt signaling in PC3 cells, suggesting that SOST and DKK1 have opposing roles on Wnt signaling in this context. Gene expression analysis of PC3 cells co-cultured with OBs exhibiting varying amounts of Wnt signaling identified CRIM1 as one of the transcripts upregulated under highly invasive conditions. We found CRIM1 overexpression to also promote cell-invasion. These findings suggest that bone-derived Wnt signaling may enhance PC tropism by promoting CRIM1 expression and facilitating cancer cell invasion and adhesion to bone. We concluded that SOST and DKK1 have opposing effects on PC3 cell invasion and that bone-derived Wnt signaling positively contributes to the invasive phenotypes of PC3 cells by activating CRIM1 expression and facilitating PC-OB physical interaction. As such, we investigated the effects of high concentrations of SOST in vivo. We found that PC3-cells overexpressing SOST injected via the tail vein in NSG mice did not readily metastasize, and those injected intrafemorally had significantly reduced osteolysis, suggesting that targeting the molecular bone environment may influence bone metastatic prognosis in clinical settings.

  4. Invasive cancer cells and metastasis

    Science.gov (United States)

    Mierke, Claudia Tanja

    2013-12-01

    The physics of cancer is a relatively new emerging field of cancer research. In the last decade it has become a focus of biophysical research as well as becoming a novel focus for classical cancer research. This special section of Physical Biology focusing on invasive cancer cells and metastasis (physical oncology) will give greater insight into the different subfields where physical approaches are being applied to cancer research. This focus on the physical aspects of cancer is necessary because novel approaches in the field of genomics and proteomics have not altered the field of cancer research dramatically, due to the fact that few breakthroughs have been made. It is still not understood why some primary tumors metastasize and thus have a worse outcome compared to others that do not metastasize. As biophysicists, we and others suggest that the mechanical properties of the cancer cells, which possess the ability to transmigrate, are quite different compared to non-metastatic and non-invasive cancer cells. Furthermore, we hypothesize that these cancer cells undergo a selection process within the primary tumor that enables them to weaken their cell-cell adhesions and to alter their cell-matrix adhesions in order to be able to cross the outermost boundary of the primary tumor, as well as the surrounding basement membrane, and to invade the connective tissue. This prerequisite may also help the cancer cells to enter blood or lymph vessels, get transported with the vessel flow and form secondary tumors either within the vessel, directly on the endothelium, or in a different organ after crossing the endothelial lining a second time. This special section begins with a paper by Mark F Coughlin and Jeffrey J Fredberg on the changes in cytoskeletal dynamics and nonlinear rheology due to the metastatic capability of cancer cells from different cancer tissue types such as skin, bladder, prostate and kidney [1]. The hypothesis was that the metastatic outcome is impacted by

  5. Biology of cancer invasion and metastasis.

    Science.gov (United States)

    Mareel, M M; Crombez, R

    1992-01-01

    Current concepts of invasion eventually leading to metastasis are discussed and exemplified by cancers of the head and neck mucosa. Invasion occurs at a number of steps, each step making an ecosystem comprising not only the neoplastic cells but also their normal counterparts, a variety of host cells and the extracellular matrix. The ecosystem concept may explain aspects of metastasis such as site-dependence and organ-specificity of cancer metastasis as well as invasiveness of normal leucocytes. Genes implicated in invasion and metastasis are actively searched for. Recently, the epithelial cell-cell adhesion molecule E-cadherin has been identified as an i- (invasion suppressor) gene product, i.e. a molecule the expression of which counterbalances i+ (invasion promotor) gene activity. Downregulation of E-cadherin in human head and neck cancers may account for their invasive and metastatic behaviour.

  6. Extracellular Molecules Involved in Cancer Cell Invasion

    Energy Technology Data Exchange (ETDEWEB)

    Stivarou, Theodora; Patsavoudi, Evangelia, E-mail: epatsavoudi@pasteur.gr [Department of Biochemistry, Hellenic Pasteur Institute, Athens 11521 (Greece); Technological Educational Institute of Athens, Egaleo, Athens 12210 (Greece)

    2015-01-26

    Nowadays it is perfectly clear that understanding and eradicating cancer cell invasion and metastasis represent the crucial, definitive points in cancer therapeutics. During the last two decades there has been a great interest in the understanding of the extracellular molecular mechanisms involved in cancer cell invasion. In this review, we highlight the findings concerning these processes, focusing in particular on extracellular molecules, including extracellular matrix proteins and their receptors, growth factors and their receptors, matrix metalloproteinases and extracellular chaperones. We report the molecular mechanisms underlying the important contribution of this pool of molecules to the complex, multi-step phenomenon of cancer cell invasion.

  7. Extracellular Molecules Involved in Cancer Cell Invasion

    Directory of Open Access Journals (Sweden)

    Theodora Stivarou

    2015-01-01

    Full Text Available Nowadays it is perfectly clear that understanding and eradicating cancer cell invasion and metastasis represent the crucial, definitive points in cancer therapeutics. During the last two decades there has been a great interest in the understanding of the extracellular molecular mechanisms involved in cancer cell invasion. In this review, we highlight the findings concerning these processes, focusing in particular on extracellular molecules, including extracellular matrix proteins and their receptors, growth factors and their receptors, matrix metalloproteinases and extracellular chaperones. We report the molecular mechanisms underlying the important contribution of this pool of molecules to the complex, multi-step phenomenon of cancer cell invasion.

  8. Dynamics of cancerous tissue correlates with invasiveness

    Science.gov (United States)

    West, Ann-Katrine Vransø; Wullkopf, Lena; Christensen, Amalie; Leijnse, Natascha; Tarp, Jens Magelund; Mathiesen, Joachim; Erler, Janine Terra; Oddershede, Lene Broeng

    2017-01-01

    Two of the classical hallmarks of cancer are uncontrolled cell division and tissue invasion, which turn the disease into a systemic, life-threatening condition. Although both processes are studied, a clear correlation between cell division and motility of cancer cells has not been described previously. Here, we experimentally characterize the dynamics of invasive and non-invasive breast cancer tissues using human and murine model systems. The intrinsic tissue velocities, as well as the divergence and vorticity around a dividing cell correlate strongly with the invasive potential of the tissue, thus showing a distinct correlation between tissue dynamics and aggressiveness. We formulate a model which treats the tissue as a visco-elastic continuum. This model provides a valid reproduction of the cancerous tissue dynamics, thus, biological signaling is not needed to explain the observed tissue dynamics. The model returns the characteristic force exerted by an invading cell and reveals a strong correlation between force and invasiveness of breast cancer cells, thus pinpointing the importance of mechanics for cancer invasion. PMID:28262796

  9. Dynamics of cancerous tissue correlates with invasiveness

    Science.gov (United States)

    West, Ann-Katrine Vransø; Wullkopf, Lena; Christensen, Amalie; Leijnse, Natascha; Tarp, Jens Magelund; Mathiesen, Joachim; Erler, Janine Terra; Oddershede, Lene Broeng

    2017-03-01

    Two of the classical hallmarks of cancer are uncontrolled cell division and tissue invasion, which turn the disease into a systemic, life-threatening condition. Although both processes are studied, a clear correlation between cell division and motility of cancer cells has not been described previously. Here, we experimentally characterize the dynamics of invasive and non-invasive breast cancer tissues using human and murine model systems. The intrinsic tissue velocities, as well as the divergence and vorticity around a dividing cell correlate strongly with the invasive potential of the tissue, thus showing a distinct correlation between tissue dynamics and aggressiveness. We formulate a model which treats the tissue as a visco-elastic continuum. This model provides a valid reproduction of the cancerous tissue dynamics, thus, biological signaling is not needed to explain the observed tissue dynamics. The model returns the characteristic force exerted by an invading cell and reveals a strong correlation between force and invasiveness of breast cancer cells, thus pinpointing the importance of mechanics for cancer invasion.

  10. [Lobular neoplasms and invasive lobular breast cancer].

    Science.gov (United States)

    Sinn, H-P; Helmchen, B; Heil, J; Aulmann, S

    2014-02-01

    The term lobular neoplasia (LN) comprises both atypical lobular hyperplasia (ALH), and lobular carcinoma in situ (LCIS) and thus a spectrum of morphologically heterogeneous but clinically and biologically related lesions. LN is regarded as a nonobligatory precursor lesion of invasive breast cancer and at the same time as an indicator lesion for ipsilateral and contralateral breast cancer risk of the patient. Rare pleomorphic or florid variants of LCIS must be differentiated from classical LCIS. The classical type of invasive lobular carcinoma (ILC) can be distinguished from the non-special type of invasive breast cancer (NST) by E-cadherin inactivation, loss of E-cadherin related cell adhesion and the subsequent discohesive growth pattern. Variant forms of ILC may show different molecular features, and solid and pleomorphic differentiation patterns in cases of high grade variants. Important parameters for the prognostic assessment of ILC are tumor grading and the recognition of morphological variants.

  11. Aquatic invasive species: Lessons from cancer research

    Science.gov (United States)

    Sepulveda, Adam; Ray, Andrew; Al-Chokhachy, Robert K.; Muhlfeld, Clint C.; Gresswell, Robert E.; Gross, Jackson A.; Kershner, Jeffrey L.

    2014-01-01

    Aquatic invasive species are disrupting ecosystems with increasing frequency. Successful control of these invasions has been rare: Biologists and managers have few tools for fighting aquatic invaders. In contrast, the medical community has long worked to develop tools for preventing and fighting cancer. Its successes are marked by a coordinated research approach with multiple steps: prevention, early detection, diagnosis, treatment options and rehabilitation. The authors discuss how these steps can be applied to aquatic invasive species, such as the American bullfrog (Lithobates catesbeianus), in the Northern Rocky Mountain region of the United States, to expedite tool development and implementation along with achievement of biodiversity conservation goals.

  12. HPV genotypes in invasive cervical cancer in Danish women

    DEFF Research Database (Denmark)

    Kirschner, Benny; Junge, Jette; Holl, Katsiaryna;

    2013-01-01

    Human papillomavirus (HPV) genotype distribution in invasive cervical cancers may differ by geographic region. The primary objective of this study was to estimate HPV-genotype distribution in Danish women with a diagnosis of invasive cervical cancer.......Human papillomavirus (HPV) genotype distribution in invasive cervical cancers may differ by geographic region. The primary objective of this study was to estimate HPV-genotype distribution in Danish women with a diagnosis of invasive cervical cancer....

  13. Morphological instability and cancer invasion: a 'splashing water drop' analogy

    Directory of Open Access Journals (Sweden)

    Delsanto Pier P

    2007-01-01

    Full Text Available Abstract Background Tissue invasion, one of the hallmarks of cancer, is a major clinical problem. Recent studies suggest that the process of invasion is driven at least in part by a set of physical forces that may be susceptible to mathematical modelling which could have practical clinical value. Model and conclusion We present an analogy between two unrelated instabilities. One is caused by the impact of a drop of water on a solid surface while the other concerns a tumor that develops invasive cellular branches into the surrounding host tissue. In spite of the apparent abstractness of the idea, it yields a very practical result, i.e. an index that predicts tumor invasion based on a few measurable parameters. We discuss its application in the context of experimental data and suggest potential clinical implications.

  14. Host epithelial geometry regulates breast cancer cell invasiveness

    Science.gov (United States)

    Boghaert, Eline; Gleghorn, Jason P.; Lee, KangAe; Gjorevski, Nikolce; Radisky, Derek C.; Nelson, Celeste M.

    2012-01-01

    Breast tumor development is regulated in part by cues from the local microenvironment, including interactions with neighboring nontumor cells as well as the ECM. Studies using homogeneous populations of breast cancer cell lines cultured in 3D ECM have shown that increased ECM stiffness stimulates tumor cell invasion. However, at early stages of breast cancer development, malignant cells are surrounded by normal epithelial cells, which have been shown to exert a tumor-suppressive effect on cocultured cancer cells. Here we explored how the biophysical characteristics of the host microenvironment affect the proliferative and invasive tumor phenotype of the earliest stages of tumor development, by using a 3D microfabrication-based approach to engineer ducts composed of normal mammary epithelial cells that contained a single tumor cell. We found that the phenotype of the tumor cell was dictated by its position in the duct: proliferation and invasion were enhanced at the ends and blocked when the tumor cell was located elsewhere within the tissue. Regions of invasion correlated with high endogenous mechanical stress, as shown by finite element modeling and bead displacement experiments, and modulating the contractility of the host epithelium controlled the subsequent invasion of tumor cells. Combining microcomputed tomographic analysis with finite element modeling suggested that predicted regions of high mechanical stress correspond to regions of tumor formation in vivo. This work suggests that the mechanical tone of nontumorigenic host epithelium directs the phenotype of tumor cells and provides additional insight into the instructive role of the mechanical tumor microenvironment. PMID:23150585

  15. Mini-invasive surgery for colorectal cancer

    Institute of Scientific and Technical Information of China (English)

    Wei-Gen Zeng; Zhi-Xiang Zhou

    2014-01-01

    Laparoscopic techniques have been extensively used for the surgical management of colorectal cancer during the last two decades. Accumulating data have demonstrated that laparoscopic colectomy is associated with better short-term outcomes and equivalent oncologic outcomes when compared with open surgery. However, some controversies regarding the oncologic quality of mini-invasive surgery for rectal cancer exist. Meanwhile, some progresses in colorectal surgery, such as robotic technology, single-incision laparoscopic surgery, natural orifice specimen extraction, and natural orifice transluminal endoscopic surgery, have been made in recent years. In this article, we review the published data and mainly focus on the current status and latest advances of mini-invasive surgery for colorectal cancer.

  16. Epigenetic suppression of neprilysin regulates breast cancer invasion

    Science.gov (United States)

    Stephen, H M; Khoury, R J; Majmudar, P R; Blaylock, T; Hawkins, K; Salama, M S; Scott, M D; Cosminsky, B; Utreja, N K; Britt, J; Conway, R E

    2016-01-01

    In women, invasive breast cancer is the second most common cancer and the second cause of cancer-related death. Therefore, identifying novel regulators of breast cancer invasion could lead to additional biomarkers and therapeutic targets. Neprilysin, a cell-surface enzyme that cleaves and inactivates a number of substrates including endothelin-1 (ET1), has been implicated in breast cancer, but whether neprilysin promotes or inhibits breast cancer cell progression and metastasis is unclear. Here, we asked whether neprilysin expression predicts and functionally regulates breast cancer cell invasion. RT–PCR and flow cytometry analysis of MDA-MB-231 and MCF-7 breast cancer cell lines revealed decreased neprilysin expression compared with normal epithelial cells. Expression was also suppressed in invasive ductal carcinoma (IDC) compared with normal tissue. In addition, in vtro invasion assays demonstrated that neprilysin overexpression decreased breast cancer cell invasion, whereas neprilysin suppression augmented invasion. Furthermore, inhibiting neprilysin in MCF-7 breast cancer cells increased ET1 levels significantly, whereas overexpressing neprilysin decreased extracellular-signal related kinase (ERK) activation, indicating that neprilysin negatively regulates ET1-induced activation of mitogen-activated protein kinase (MAPK) signaling. To determine whether neprilysin was epigenetically suppressed in breast cancer, we performed bisulfite conversion analysis of breast cancer cells and clinical tumor samples. We found that the neprilysin promoter was hypermethylated in breast cancer; chemical reversal of methylation in MDA-MB-231 cells reactivated neprilysin expression and inhibited cancer cell invasion. Analysis of cancer databases revealed that neprilysin methylation significantly associates with survival in stage I IDC and estrogen receptor-negative breast cancer subtypes. These results demonstrate that neprilysin negatively regulates the ET axis in breast cancer

  17. SRC kinase regulation in progressively invasive cancer.

    Directory of Open Access Journals (Sweden)

    Weichen Xu

    Full Text Available Metastatic progression is a multistep process that involves tumor growth and survival, motility and invasion, and subsequent proliferation in an inappropriate environment. The Src protein tyrosine kinase has been implicated in many of the biochemical pathways that drive these behaviors. Although Src itself is only rarely mutated in human tumors, its aberrant activity has been noted in various cancers and suggested to serve as a barometer of metastatic potential. With these features in mind, we examined Src kinase regulation at the structural, enzymatic, and expression levels as a function of progressively invasive prostate cancer cell lines. Surprisingly, both total Src content and kinase activity decrease with increasing cell line aggressiveness, an observation that appears to be inconsistent with the well-documented role of Src in the signaling pathways that drive growth and invasion. However, we do observe a direct correlation between Src kinase specific activity (total Src kinase activity/total Src content and metastatic aggressiveness, possibly suggesting that in highly aggressive cell lines, key signaling enzymes are globally recruited to drive the cancerous phenotype. In addition, although the expected enhanced phosphorylation of Src at Tyr-416 (activation site is present in the most aggressive prostate cancer cell lines, unexpectedly high phosphorylation levels at the Tyr-527 inhibitory site are observed as well. The latter, rather than representative of inhibited enzyme, is more indicative of primed Src responsive to local phosphorylated binding partners.

  18. Pathologic findings in nonpalpable invasive breast cancer.

    Science.gov (United States)

    McKinney, C D; Frierson, H F; Fechner, R E; Wilhelm, M C; Edge, S B

    1992-01-01

    Previous studies have shown that patients with nonpalpable invasive breast cancer have a favorable prognosis. These studies, however, have not analyzed pathologic features of mammographically detected tumors according to tumor size. We describe the histopathologic features of 77 nonpalpable invasive breast cancers, comparing neoplasms less than or equal to 1 cm with larger clinically occult tumors. Forty-seven lesions (61%) were less than or equal to 1 cm (group A) and 30 (39%) were greater than 1 cm (group B). In group A, there were 30 infiltrating ductal carcinomas (IDC); seven infiltrating lobular carcinomas (ILC); and two cases each of mixed ILC and IDC, mixed tubular carcinoma and ILC, and infiltrating cribriform carcinoma. There was one case each of mucinous carcinoma, apocrine carcinoma, tubular carcinoma, and mixed mucinous and IDC. In group B, there were 23 (77%) IDC, five (17%) ILC, and two mixed IDC and ILC. Tumors in group B were more frequently grade 3 (22% versus 7%), but this was not statistically significant (p = 0.21). There were no important differences in the frequency, subtypes and location of carcinoma in situ, or other histopathologic parameters evaluated in the biopsy specimens. Mastectomy specimens with axillary lymph node dissections were available for review in 64 cases (83%). Group B patients had a higher rate of residual invasive carcinoma (31% versus 13%) and lymph node metastases (31% versus 16%), but these differences were not statistically significant. Residual carcinoma in situ was more frequent in group B (54%) compared with group A (26%) (p = .036). Of seven group B cases with negative biopsy margins, residual invasive carcinoma was present in five (71%). We conclude that small nonpalpable invasive breast cancers differ from larger nonpalpable tumors primarily in size. The finding of negative biopsy margins should not be construed as conclusive evidence for the absence of residual infiltrating disease.

  19. Invasion and metastasis in pancreatic cancer.

    Science.gov (United States)

    Keleg, Shereen; Büchler, Peter; Ludwig, Roman; Büchler, Markus W; Friess, Helmut

    2003-01-22

    Pancreatic cancer remains a challenging disease with an overall cumulative 5-year survival rate below 1%. The process of cancer initiation, progression and metastasis is still not understood well. Invasion and tumor metastasis are closely related and both occur within a tumour-host microecology, where stroma and tumour cells exchange enzymes and cytokines that modify the local extracellular matrix, stimulate cell migration, and promote cell proliferation and tumor cell survival. During the last decade considerable progress has been made in understanding genetic alterations of genes involved in local and systemic tumor growth. The most important changes occur in genes which regulate cell cycle progression, extracellular matrix homeostasis and cell migration. Furthermore, there is growing evidence that epigenetic factors including angiogenesis and lymphangiogenesis may participate in the formation of tumor metastasis. In this review we highlight the most important genetic alterations involved in tumor invasion and metastasis and further outline the role of tumor angiogenesis and lymphangiogenesis in systemic tumor dissemination.

  20. Minimally invasive surgery for esophageal cancer.

    Science.gov (United States)

    Santillan, Alfredo A; Farma, Jeffrey M; Meredith, Kenneth L; Shah, Nilay R; Kelley, Scott T

    2008-10-01

    Esophageal cancer represents a major public health problem worldwide. Several minimally invasive esophagectomy (MIE) techniques have been described and represent a safe alternative for the surgical management of esophageal cancer in selected centers with high volume and expertise in them. This article reviews the most recent and largest series evaluating MIE techniques. Recent larger series have shown MIE to be equivalent in postoperative morbidity and mortality rates to conventional surgery. MIE has been associated with less blood loss, less postoperative pain, and decreased intensive care unit and hospital length of stay compared with conventional surgery. Despite limited data, conventional surgery and MIE have shown no significant difference in survival, stage for stage. The myriad of MIE techniques complicates the debate of defining the optimal surgical approach for treating esophageal cancer. Randomized controlled trials comparing MIE with conventional open esophagectomy are needed to clarify the ideal procedure with the lowest postoperative morbidity, best quality of life after surgery, and long-term survival.

  1. Primary cilia are lost in preinvasive and invasive prostate cancer.

    Directory of Open Access Journals (Sweden)

    Nadia B Hassounah

    Full Text Available Prostate cancer is the second most commonly diagnosed cancer in men worldwide. Little is known about the role of primary cilia in preinvasive and invasive prostate cancer. However, reduced cilia expression has been observed in human cancers including pancreatic cancer, renal cell carcinoma, breast cancer, cholangiocarcinoma, and melanoma. The aim of this study was to characterize primary cilia expression in preinvasive and invasive human prostate cancer, and to investigate the correlation between primary cilia and the Wnt signaling pathway. Human prostate tissues representative of stages of prostate cancer formation (normal prostate, prostatic intraepithelial neoplasia (PIN, and invasive prostate cancer (including perineural invasion were stained for ciliary proteins. The frequency of primary cilia was determined. A decrease in the percentage of ciliated cells in PIN, invasive cancer and perineural invasion lesions was observed when compared to normal. Cilia lengths were also measured to indirectly test functionality. Cilia were shorter in PIN, cancer, and perineural invasion lesions, suggesting dysfunction. Primary cilia have been shown to suppress the Wnt pathway. Increased Wnt signaling has been implicated in prostate cancer. Therefore, we investigated a correlation between loss of primary cilia and increased Wnt signaling in normal prostate and in preinvasive and invasive prostate cancer. To investigate Wnt signaling in our cohort, serial tissue sections were stained for β-catenin as a measure of Wnt signaling. Nuclear β-catenin was analyzed and Wnt signaling was found to be higher in un-ciliated cells in the normal prostate, PIN, a subset of invasive cancers, and perineural invasion. Our results suggest that cilia normally function to suppress the Wnt signaling pathway in epithelial cells and that cilia loss may play a role in increased Wnt signaling in some prostate cancers. These results suggest that cilia are dysfunctional in human

  2. A novel index for preoperative, non-invasive prediction of macro-radical primary surgery in patients with stage IIIC-IV ovarian cancer-a part of the Danish prospective pelvic mass study

    DEFF Research Database (Denmark)

    Karlsen, Mona Aarenstrup; Fagö-Olsen, Carsten; Høgdall, Estrid Vilma Solyom;

    2016-01-01

    The purpose of this study was to develop a novel index for preoperative, non-invasive prediction of complete primary cytoreduction in patients with FIGO stage IIIC-IV epithelial ovarian cancer. Prospectively collected clinical data was registered in the Danish Gynecologic Cancer Database. Blood...... samples were collected within 14 days of surgery and stored by the Danish CancerBiobank. Serum human epididymis protein 4 (HE4), serum cancer antigen 125 (CA125), age, performance status, and presence/absence of ascites at ultrasonography were evaluated individually and combined to predict complete tumor.......688 for age. The multivariate model (Cancer Ovarii Non-invasive Assessment of Treatment Strategy (CONATS) index), consisting of HE4, age, and performance status, demonstrated an AUC of 0.853. According to the Danish indicator level, macro-radical PDS should be achieved in 60 % of patients admitted to primary...

  3. Minimal Invasive Surgery for Esophageal Cancer

    Institute of Scientific and Technical Information of China (English)

    A.H.Hoelscher; Ch.Gutschow

    2004-01-01

    Thoracoscopic esophagectomy is only established in some centers and affords a cervical anastomosis because intrathoracic anastomosis as a routine is technically too difficult. Laparoscopic mobilisation of the stomach (gastrolysis) is an important contribution for minimal invasive surgery of esophageal cancer.This procedure reduces the stress of the two cavity operation for the patient and allows the construction of a comparable gastric conduit like by open surgery. The technique of laparoscopic gastrolysis as preparation for transthoracic en bloc esophagectomy is described in detail and preliminary results are briefly mentioned.

  4. Neoadjuvant chemotherapy for invasive bladder cancer.

    Science.gov (United States)

    Sonpavde, Guru; Sternberg, Cora N

    2012-04-01

    Neoadjuvant cisplatin-based combination chemotherapy is an established standard for resectable muscle-invasive bladder cancer, a disease with a pattern of predominantly distant and early recurrences. Pathologic complete remission appears to be an intermediate surrogate for survival when employing combination chemotherapy. Moreover, baseline host and tumor tissue studies may enable the discovery of biomarkers predictive of activity. The neoadjuvant setting also provides a window of opportunity to evaluate novel biologic agents or rational combinations of biologic agents to obtain a signal of biologic activity. The residual tumor after neoadjuvant therapy may be exploited to study the mechanism of action and resistance. Cisplatin-ineligible patients warrant the evaluation of tolerable neoadjuvant regimens. Given that bladder cancer is characterized by initial localized presentation in the vast majority of cases, the paradigm of neoadjuvant therapy may expedite the development of novel systemic agents.

  5. Minimally invasive local therapies for liver cancer

    Institute of Scientific and Technical Information of China (English)

    David Li; Josephine Kang; Benjamin J Golas; Vincent W Yeung; David C Madoff

    2014-01-01

    Primary and metastatic liver tumors are an increasing global health problem, with hepatocellular carcinoma (HCC) now being the third leading cause of cancer-related mortality worldwide. Systemic treatment options for HCC remain limited, with Sorafenib as the only prospectively validated agent shown to increase overall survival. Surgical resection and/or transplantation, locally ablative therapies and regional or locoregional therapies have iflled the gap in liver tumor treatments, providing improved survival outcomes for both primary and metastatic tumors. Minimally invasive local therapies have an increasing role in the treatment of both primary and metastatic liver tumors. For patients with low volume disease, these therapies have now been established into consensus practice guidelines. This review highlights technical aspects and outcomes of commonly utilized, minimally invasive local therapies including laparoscopic liver resection (LLR), radiofrequency ablation (RFA), microwave ablation (MWA), high-intensity focused ultrasound (HIFU), irreversible electroporation (IRE), and stereotactic body radiation therapy (SBRT). In addition, the role of combination treatment strategies utilizing these minimally invasive techniques is reviewed.

  6. Multiple early gastric cancer with duodenal invasion

    Directory of Open Access Journals (Sweden)

    Okino Tetsuya

    2007-10-01

    Full Text Available Abstract Background Early gastric cancers with duodenal invasion are rare, and no previous case of multiple early gastric cancer, one invading the duodenal bulb, has been reported. Case presentation A 79-year-old woman was investigated for upper abdominal discomfort. Endoscopic examination revealed an irregular nodulated lesion in the antrum area, and a reddish aggregated-type semi-circumferential nodulated lesion extending from the prepyloric area to the duodenal bulb through the normal mucosa with the antrum lesion. Biopsy revealed a tubular adenoma for the antrum lesion and a well-differentiated tubular adenocarcinoma for the prepyloric lesion. Distal gastrectomy with sufficient duodenal resection was performed. Microscopically, the antrum lesion appeared as a papillary adenocarcinoma, and the prepyloric lesion as a mainly papillary adenocarcinoma which partially invaded the submucosa without any sequential elongation for endoscopic findings. The lesion extended into the duodenal bulb, and was 12 mm in length from the oral end of Brunner's gland's area and limited within the duodenal mucosa. Conclusion Here, we present an unusual case of multiple early gastric cancer, one of which invaded the duodenum with relative wide mucosal spreading. This case illustrates that even early stage cancers located in the gastric antrum, particularly in the prepyloric area can invade the duodenum directly.

  7. MLK3 Signaling in Cancer Invasion

    Science.gov (United States)

    Rattanasinchai, Chotirat; Gallo, Kathleen A.

    2016-01-01

    Mixed-lineage kinase 3 (MLK3) was first cloned in 1994; however, only in the past decade has MLK3 become recognized as a player in oncogenic signaling. MLK3 is a mitogen-activated protein kinase kinase kinase (MAP3K) that mediates signals from several cell surface receptors including receptor tyrosine kinases (RTKs), chemokine receptors, and cytokine receptors. Once activated, MLK3 transduces signals to multiple downstream pathways, primarily to c-Jun terminal kinase (JNK) MAPK, as well as to extracellular-signal-regulated kinase (ERK) MAPK, P38 MAPK, and NF-κB, resulting in both transcriptional and post-translational regulation of multiple effector proteins. In several types of cancer, MLK3 signaling is implicated in promoting cell proliferation, as well as driving cell migration, invasion and metastasis. PMID:27213454

  8. A novel index for preoperative, non-invasive prediction of macro-radical primary surgery in patients with stage IIIC-IV ovarian cancer-a part of the Danish prospective pelvic mass study.

    Science.gov (United States)

    Karlsen, Mona Aarenstrup; Fagö-Olsen, Carsten; Høgdall, Estrid; Schnack, Tine Henrichsen; Christensen, Ib Jarle; Nedergaard, Lotte; Lundvall, Lene; Lydolph, Magnus Christian; Engelholm, Svend Aage; Høgdall, Claus

    2016-09-01

    The purpose of this study was to develop a novel index for preoperative, non-invasive prediction of complete primary cytoreduction in patients with FIGO stage IIIC-IV epithelial ovarian cancer. Prospectively collected clinical data was registered in the Danish Gynecologic Cancer Database. Blood samples were collected within 14 days of surgery and stored by the Danish CancerBiobank. Serum human epididymis protein 4 (HE4), serum cancer antigen 125 (CA125), age, performance status, and presence/absence of ascites at ultrasonography were evaluated individually and combined to predict complete tumor removal. One hundred fifty patients with advanced epithelial ovarian cancer were treated with primary debulking surgery (PDS). Complete PDS was achieved in 41 cases (27 %). The receiver operating characteristic curves demonstrated an area under the curve of 0.785 for HE4, 0.678 for CA125, and 0.688 for age. The multivariate model (Cancer Ovarii Non-invasive Assessment of Treatment Strategy (CONATS) index), consisting of HE4, age, and performance status, demonstrated an AUC of 0.853. According to the Danish indicator level, macro-radical PDS should be achieved in 60 % of patients admitted to primary surgery (positive predictive value of 60 %), resulting in a negative predictive value of 87.5 %, sensitivity of 68.3 %, specificity of 83.5 %, and cutoff of 0.63 for the CONATS index. Non-invasive prediction of complete PDS is possible with the CONATS index. The CONATS index is meant as a supplement to the standard preoperative evaluation of each patient. Evaluation of the CONATS index combined with radiological and/or laparoscopic findings may improve the assessment of the optimal treatment strategy in patients with advanced epithelial ovarian cancer.

  9. Gene profiles between non-invasive and invasive colon cancer using laser microdissection and polypeptide analysis

    Institute of Scientific and Technical Information of China (English)

    Jin-Shui Zhu; Hua Guo; Ming-Quan Song; Guo-Qiang Chen; Qun Sun; Qiang Zhang

    2008-01-01

    AIM: To explore the expression of differential gene expression profiles of target cell between non-invasive submucosal and invasive advanced tumor in colon carcinoma using laser microdissection (LMD) in combination with polypeptide analysis.METHODS: Normal colon tissue samples from 20 healthy individuals and 30 cancer tissue samples from early non-invasive colon cancer cells were obtained. The cells from these samples were used LMD independently after P27-based amplification. aRNA from advanced colon cancer cells and metastatic cancer cells of 40 cases were applied to LMD and polypeptide analysis, semiquantitative reverse transcribed polymerase chain reaction (RT-PCR) and immunohistochemical assays were used to verify the results of microarray and further identify differentially expressed genes in non-invasive early stages of colon cancer.RESULTS: Five gene expressions were changed in colon carcinoma cells compared with that of controls. Of the five genes, three genes were downregulated and two were upregulated in invasive submucosal colon carcinoma compared with non-invasive cases. The results were confirmed at the level of aRNA and gene expression. Five genes were further identified as differentially expressed genes in the majority of cases (50%, 25/40) in progression of colon cancer, and their expression patterns of which were similar to tumor suppressor genes or oncogenes.CONCLUSION: This study suggested that combined use of polypeptide analysis might identify early expression profiles of five differential genes associated with the invasion of colon cancer. These results reveal that this gene may be a marker of submucosal invasion in early colon cancer.

  10. Perspectives of Nanotechnology in Minimally Invasive Therapy of Breast Cancer

    Directory of Open Access Journals (Sweden)

    Yamin Yang

    2013-01-01

    Full Text Available Breast cancer, the most common type of cancer among women in the western world, affects approximately one out of every eight women over their lifetime. In recognition of the high invasiveness of surgical excision and severe side effects of chemical and radiation therapies, increasing efforts are made to seek minimally invasive modalities with fewer side effects. Nanoparticles (<100 nm in size have shown promising capabilities for delivering targeted therapeutic drugs to cancer cells and confining the treatment mainly within tumors. Additionally, some nanoparticles exhibit distinct properties, such as conversion of photonic energy into heat, and these properties enable eradication of cancer cells. In this review, current utilization of nanostructures for cancer therapy, especially in minimally invasive therapy, is summarized with a particular interest in breast cancer.

  11. An Analytical Approach Differentiates Between Individual and Collective Cancer Invasion

    Directory of Open Access Journals (Sweden)

    Elad Katz

    2011-01-01

    Full Text Available Tumour cells employ a variety of mechanisms to invade their environment and to form metastases. An important property is the ability of tumour cells to transition between individual cell invasive mode and collective mode. The switch from collective to individual cell invasion in the breast was shown recently to determine site of subsequent metastasis. Previous studies have suggested a range of invasion modes from single cells to large clusters. Here, we use a novel image analysis method to quantify and categorise invasion. We have developed a process using automated imaging for data collection, unsupervised morphological examination of breast cancer invasion using cognition network technology (CNT to determine how many patterns of invasion can be reliably discriminated. We used Bayesian network analysis to probabilistically connect morphological variables and therefore determine that two categories of invasion are clearly distinct from one another. The Bayesian network separated individual and collective invading cell groups based on the morphological measurements, with the level of cell-cell contact the most discriminating morphological feature. Smaller invading groups were typified by smoother cellular surfaces than those invading collectively in larger groups. Interestingly, elongation was evident in all invading cell groups and was not a specific feature of single cell invasion as a surrogate of epithelial-mesenchymal transition. In conclusion, the combination of cognition network technology and Bayesian network analysis provides an insight into morphological variables associated with transition of cancer cells between invasion modes. We show that only two morphologically distinct modes of invasion exist.

  12. Novel non invasive diagnostic strategies in bladder cancer.

    Science.gov (United States)

    Truta, Anamaria; Popon, Tudor Adrian Hodor; Saraci, George; Ghervan, Liviu; Pop, Ioan Victor

    2016-01-01

    Bladder cancer is one of the most commonly diagnosed malignancies worldwide, derived from the urothelium of the urinary bladder and defined by long asymptomatic and atypical clinical picture. Its complex etiopathogenesis is dependent on numerous risk factors that can be divided into three distinct categories: genetic and molecular abnormalities, chemical or environmental exposure and previous genitourinary disorders and family history of different malignancies. Various genetic polymorphisms and microRNA might represent useful diagnostic or prognostic biomarkers. Genetic and molecular abnormalities - risk factors are represented by miRNA or genetic polymorphisms proved to be part of bladder carcinogenesis such as: genetic mutations of oncogenes TP53, Ras, Rb1 or p21 oncoproteins, cyclin D or genetic polymorhisms of XPD,ERCC1, CYP1B1, NQO1C609T, MDM2SNP309, CHEK2, ERCC6, NRF2, NQO1Pro187Ser polymorphism and microRNA (miR-143, -145, -222, -210, -10b, 576-3p). The aim of our article is to highlight the most recent acquisitions via molecular biomarkers (miRNAs and genetic polymorphisms) involved in bladder cancer in order to provide early diagnosis, precise therapy according to the molecular profile of bladder tumors, as well as to improve clinical outcome, survival rates and life quality of oncological patients. These molecular biomarkers play a key role in bladder carcinogenesis, clinical evolution, prognosis and therapeutic response and explain the molecular mechanisms involved in bladder carcinogenesis; they can also be selected as therapeutic targets in developing novel therapeutic strategies in bladder malignancies. Moreover, the purpose in defining these molecular non invasive biomarkers is also to develop non invasive screening programs in bladder malignancies with the result of decreasing bladder cancer incidence in risk population.

  13. TGF-beta and BMP in breast cancer cell invasion

    NARCIS (Netherlands)

    Naber, Hildegonda Petronella Henriëtte

    2012-01-01

    TGF-beta and BMPs are members of the TGF-beta superfamily of cytokines which play an important role in a multitude of processes. In cancer, TGF-beta is known for its dual role: in early stages it inhibits cancer cell proliferation, whereas in later stages it promotes invasion and metastasis. In this

  14. The thioredoxin system in breast cancer cell invasion and migration.

    Science.gov (United States)

    Bhatia, Maneet; McGrath, Kelly L; Di Trapani, Giovanna; Charoentong, Pornpimol; Shah, Fenil; King, Mallory M; Clarke, Frank M; Tonissen, Kathryn F

    2016-08-01

    Metastasis is the most life threatening aspect of breast cancer. It is a multi-step process involving invasion and migration of primary tumor cells with a subsequent colonization of these cells at a secondary location. The aim of the present study was to investigate the role of thioredoxin (Trx1) in the invasion and migration of breast cancer cells and to assess the strength of the association between high levels of Trx1 and thioredoxin reductase (TrxR1) expression with breast cancer patient survival. Our results indicate that the expression of both Trx1 and TrxR1 are statistically significantly increased in breast cancer patient cells compared with paired normal breast tissue from the same patient. Over-expression of Trx1 in MDA-MB-231 breast cancer cell lines enhanced cell invasion in in vitro assays while expression of a redox inactive mutant form of Trx1 (designated 1SS) or the antisense mRNA inhibited cell invasion. Addition of exogenous Trx1 also enhanced cell invasion, while addition of a specific monoclonal antibody that inhibits Trx1 redox function decreased cell invasion. Over-expression of intracellular Trx1 did not increase cell migration but expression of intracellular 1SS inhibited migration. Addition of exogenous Trx1 enhanced cell migration while 1SS had no effect. Treatment with auranofin inhibited TrxR activity, cell migration and clonogenic activity of MDA-MB-231 cells, while increasing reactive oxygen species (ROS) levels. Analysis of 25 independent cohorts with 5910 patients showed that Trx1 and TrxR1 were both associated with a poor patient prognosis in terms of overall survival, distant metastasis free survival and disease free survival. Therefore, targeting the Trx system with auranofin or other specific inhibitors may provide improved breast cancer patient outcomes through inhibition of cancer invasion and migration.

  15. The thioredoxin system in breast cancer cell invasion and migration

    Directory of Open Access Journals (Sweden)

    Maneet Bhatia

    2016-08-01

    Full Text Available Metastasis is the most life threatening aspect of breast cancer. It is a multi-step process involving invasion and migration of primary tumor cells with a subsequent colonization of these cells at a secondary location. The aim of the present study was to investigate the role of thioredoxin (Trx1 in the invasion and migration of breast cancer cells and to assess the strength of the association between high levels of Trx1 and thioredoxin reductase (TrxR1 expression with breast cancer patient survival. Our results indicate that the expression of both Trx1 and TrxR1 are statistically significantly increased in breast cancer patient cells compared with paired normal breast tissue from the same patient. Over-expression of Trx1 in MDA-MB-231 breast cancer cell lines enhanced cell invasion in in vitro assays while expression of a redox inactive mutant form of Trx1 (designated 1SS or the antisense mRNA inhibited cell invasion. Addition of exogenous Trx1 also enhanced cell invasion, while addition of a specific monoclonal antibody that inhibits Trx1 redox function decreased cell invasion. Over-expression of intracellular Trx1 did not increase cell migration but expression of intracellular 1SS inhibited migration. Addition of exogenous Trx1 enhanced cell migration while 1SS had no effect. Treatment with auranofin inhibited TrxR activity, cell migration and clonogenic activity of MDA-MB-231 cells, while increasing reactive oxygen species (ROS levels. Analysis of 25 independent cohorts with 5910 patients showed that Trx1 and TrxR1 were both associated with a poor patient prognosis in terms of overall survival, distant metastasis free survival and disease free survival. Therefore, targeting the Trx system with auranofin or other specific inhibitors may provide improved breast cancer patient outcomes through inhibition of cancer invasion and migration.

  16. HIPK2 downregulates vimentin and inhibits breast cancer cell invasion.

    Science.gov (United States)

    Nodale, Cristina; Sheffer, Michal; Jacob-Hirsch, Jasmine; Folgiero, Valentina; Falcioni, Rita; Aiello, Aurora; Garufi, Alessia; Rechavi, Gideon; Givol, David; D'Orazi, Gabriella

    2012-02-15

    Vimentin, a mesenchymal marker, is frequently overexpressed in epithelial carcinomas undergoing epithelial to mesenchymal transition (EMT), a condition correlated with invasiveness and poor prognosis. Therefore, vimentin is a potential molecular target for anticancer therapy. Emerging studies in experimental models underscore the functions of homeodomain-interacting protein kinase 2 (HIPK2) as potential oncosuppressor by acting as transcriptional corepressor or catalytic activator of molecules involved in apoptosis and response to antitumor drugs. However, an involvement of HIPK2 in limiting tumor invasion remains to be elucidated. This study, by starting with a microarray analysis, demonstrates that HIPK2 downregulates vimentin expression in invasive, vimentin-positive, MDA-MB-231 breast cancer cells and in the non-invasive MCF7 breast cancer cells subjected to chemical hypoxia, a drive for mesenchymal shift and tumor invasion. At functional level, vimentin downregulation by HIPK2 correlates with inhibition of breast tumor cell invasion. Together, these data show that vimentin is a novel target for HIPK2 repressor function and that HIPK2-mediated vimentin downregulation can contribute to inhibition of breast cancer cells invasion that might be applied in clinical therapy.

  17. Alterations in integrin expression modulates invasion of pancreatic cancer cells.

    LENUS (Irish Health Repository)

    Walsh, Naomi

    2009-01-01

    BACKGROUND: Factors mediating the invasion of pancreatic cancer cells through the extracellular matrix (ECM) are not fully understood. METHODS: In this study, sub-populations of the human pancreatic cancer cell line, MiaPaCa-2 were established which displayed differences in invasion, adhesion, anoikis, anchorage-independent growth and integrin expression. RESULTS: Clone #3 displayed higher invasion with less adhesion, while Clone #8 was less invasive with increased adhesion to ECM proteins compared to MiaPaCa-2. Clone #8 was more sensitive to anoikis than Clone #3 and MiaPaCa-2, and displayed low colony-forming efficiency in an anchorage-independent growth assay. Integrins beta 1, alpha 5 and alpha 6 were over-expressed in Clone #8. Using small interfering RNA (siRNA), integrin beta1 knockdown in Clone #8 cells increased invasion through matrigel and fibronectin, increased motility, decreased adhesion and anoikis. Integrin alpha 5 and alpha 6 knockdown also resulted in increased motility, invasion through matrigel and decreased adhesion. CONCLUSION: Our results suggest that altered expression of integrins interacting with different extracellular matrixes may play a significant role in suppressing the aggressive invasive phenotype. Analysis of these clonal populations of MiaPaCa-2 provides a model for investigations into the invasive properties of pancreatic carcinoma.

  18. Cell polarity signaling in the plasticity of cancer cell invasiveness.

    Science.gov (United States)

    Gandalovičová, Aneta; Vomastek, Tomáš; Rosel, Daniel; Brábek, Jan

    2016-05-03

    Apico-basal polarity is typical of cells present in differentiated epithelium while front-rear polarity develops in motile cells. In cancer development, the transition from epithelial to migratory polarity may be seen as the hallmark of cancer progression to an invasive and metastatic disease. Despite the morphological and functional dissimilarity, both epithelial and migratory polarity are controlled by a common set of polarity complexes Par, Scribble and Crumbs, phosphoinositides, and small Rho GTPases Rac, Rho and Cdc42. In epithelial tissues, their mutual interplay ensures apico-basal and planar cell polarity. Accordingly, altered functions of these polarity determinants lead to disrupted cell-cell adhesions, cytoskeleton rearrangements and overall loss of epithelial homeostasis. Polarity proteins are further engaged in diverse interactions that promote the establishment of front-rear polarity, and they help cancer cells to adopt different invasion modes. Invading cancer cells can employ either the collective, mesenchymal or amoeboid invasion modes or actively switch between them and gain intermediate phenotypes. Elucidation of the role of polarity proteins during these invasion modes and the associated transitions is a necessary step towards understanding the complex problem of metastasis. In this review we summarize the current knowledge of the role of cell polarity signaling in the plasticity of cancer cell invasiveness.

  19. RPM peptide conjugated bioreducible polyethylenimine targeting invasive colon cancer.

    Science.gov (United States)

    Lee, Yeong Mi; Lee, Duhwan; Kim, Jihoon; Park, Hansoo; Kim, Won Jong

    2015-05-10

    CPIEDRPMC (RPM) peptide is a peptide that specifically targets invasive colorectal cancer, which is one of the leading causes of cancer-related deaths worldwide. In this study, we exploited RPM peptide as a targeting ligand to produce a novel and efficient gene delivery system that could potentially be used to treat invasive colon cancer. In order to achieve enhanced specificity to colon cancer cells, the RPM peptide was conjugated to a bioreducible gene carrier consisting of a reducible moiety of disulfide-crosslinked low molecular weight polyethylenimine, IR820 dye, and polyethylene glycol. Here, we examined the physiochemical properties, cytotoxicity, in vitro transfection efficiency, and in vivo biodistribution of the RPM-conjugated polyplex. Our results showed that the RPM-conjugated gene carrier formed a compact polyplex with pDNA that had low toxicity. Furthermore, the RPM-conjugated polymer not only had higher cellular uptake in invasive colon cancer than the non-targeted polymer, but also showed enhanced transfection efficiency in invasive colon cancer cells in vitro and in vivo.

  20. Migrastatin analogues inhibit canine mammary cancer cell migration and invasion.

    Directory of Open Access Journals (Sweden)

    Kinga Majchrzak

    Full Text Available BACKGROUND: Cancer spread to other organs is the main cause of death of oncological patients. Migration of cancer cells from a primary tumour is the crucial step in the complex process of metastasis, therefore blocking this process is currently the main treatment strategy. Metastasis inhibitors derived from natural products, such as, migrastatin, are very promising anticancer agents. Thus, the aim of our study was to investigate the effect of six migrastatin analogues (MGSTA-1 to 6 on migration and invasion of canine mammary adenocarcinoma cell lines isolated from primary tumours and their metastases to the lungs. Canine mammary tumours constitute a valuable tool for studying multiple aspect of human cancer. RESULTS: OUR RESULTS SHOWED THAT TWO OF SIX FULLY SYNTHETIC ANALOGUES OF MIGRASTATIN: MGSTA-5 and MGSTA-6 were potent inhibitors of canine mammary cancer cells migration and invasion. These data were obtained using the wound healing test, as well as trans-well migration and invasion assays. Furthermore, the treatment of cancer cells with the most effective compound (MGSTA-6 disturbed binding between filamentous F-actin and fascin1. Confocal microscopy analyses revealed that treatment with MGSTA-6 increased the presence of unbound fascin1 and reduced co-localization of F-actin and fascin1 in canine cancer cells. Most likely, actin filaments were not cross-linked by fascin1 and did not generate the typical filopodial architecture of actin filaments in response to the activity of MGSTA-6. Thus, administration of MGSTA-6 results in decreased formation of filopodia protrusions and stress fibres in canine mammary cancer cells, causing inhibition of cancer migration and invasion. CONCLUSION: Two synthetic migrastatin analogues (MGSTA-5 and MGSTA-6 were shown to be promising compounds for inhibition of cancer metastasis. They may have beneficial therapeutic effects in cancer therapy in dogs, especially in combination with other anticancer drugs

  1. Current therapeutic strategies for invasive and metastatic bladder cancer

    Directory of Open Access Journals (Sweden)

    Vishnu P

    2011-07-01

    Full Text Available Prakash Vishnu, Jacob Mathew, Winston W TanDivision of Hematology Oncology, Mayo Clinic, Jacksonville, FL, USABackground: Bladder cancer is one of the most common cancers in Europe, the United States, and Northern African countries. Muscle-invasive bladder cancer is an aggressive epithelial tumor, with a high rate of early systemic dissemination. Superficial, noninvasive bladder cancer can most often be cured; a good proportion of invasive cases can also be cured by a combined modality approach of surgery, chemotherapy, and radiation. Recurrences are common and mostly manifest as metastatic disease. Those with distant metastatic disease can sometime achieve partial or complete remission with combination chemotherapy.Recent developments: Better understanding of the biology of the disease has led to the incorporation of molecular and genetic features along with factors such as tumor grade, lympho-vascular invasion, and aberrant histology, thereby allowing identification of ‘favorable’ and ‘unfavorable’ cancers which helps a more accurate informed and objective selection of patients who would benefit from neoadjuvant and adjuvant chemotherapy. Gene expression profiling has been used to find molecular signature patterns that can potentially be predictive of drug sensitivity and metastasis. Understanding the molecular pathways of invasive bladder cancer has led to clinical investigation of several targeted therapeutics such as anti-angiogenics, mTOR inhibitors, and anti-EGFR agents.Conclusion: With improvements in the understanding of the biology of bladder cancer, clinical trials studying novel and targeted agents alone or in combination with chemotherapy have increased the armamentarium for the treatment of bladder cancer. Although the novel biomarkers and gene expression profiles have been shown to provide important predictive and prognostic information and are anticipated to be incorporated in clinical decision-making, their exact utility

  2. Results of radiotherapy on ureteric obstruction in muscle-invasive bladder cancer

    DEFF Research Database (Denmark)

    Honnens De Lichtenberg, Mette; Miskowiak, J; Rolff, H

    1995-01-01

    To evaluate the effect of radiotherapy on ureteric obstruction due to muscle-invasive bladder cancer.......To evaluate the effect of radiotherapy on ureteric obstruction due to muscle-invasive bladder cancer....

  3. Limitations of Colposcopy in Early Invasive Cervical Cancer Detection

    OpenAIRE

    Grubišić, Goran

    2007-01-01

    Colposcopy is a key element in the diagnostic chain required to reduce cervical cancer mortality but it has limitations in the diagnosis of malignant disease. In the Republic of Croatia the Croatian Society for Colposcopy and Cervical Pathology started constructing guidelines for early detection, therapy and follow-up of patients with early invasive cervical cancer in order to achieve the best possible results in diagnosis, therapy and follow-up. From 2001 to 2006 Croatian society ...

  4. Role of Seprase in Breast Cancer Invasion

    Science.gov (United States)

    1998-09-01

    ctin Nvas si~paratcd frorn free (𔃻ýI1 by get I tra - iwtvdopodWa prateolysis )f e.TtraceLlular mnatrix~ tion osmAg sa. excellulose GS colunin (Pi.erce...invadopodia. MMP-2 is secreted istry of proteinas :. in tumor invasion. Physicl Revs 73, as a soluble enzyme that can be found within the 161-45, oytoplasm

  5. Global existence for a degenerate haptotaxis model of cancer invasion

    Science.gov (United States)

    Zhigun, Anna; Surulescu, Christina; Uatay, Aydar

    2016-12-01

    We propose and study a strongly coupled PDE-ODE system with tissue-dependent degenerate diffusion and haptotaxis that can serve as a model prototype for cancer cell invasion through the extracellular matrix. We prove the global existence of weak solutions and illustrate the model behavior by numerical simulations for a two-dimensional setting.

  6. Minimally invasive prostate cancer detection test using FISH probes

    Directory of Open Access Journals (Sweden)

    Tinawi-Aljundi R

    2016-07-01

    Full Text Available Rima Tinawi-Aljundi,1 Shannon T Knuth,2 Michael Gildea,2 Joshua Khal,2 Jason Hafron,1 Kenneth Kernen,1 Robert Di Loreto,1 Joan Aurich-Costa2 1Pathology and Research Department, Michigan Institute of Urology, St Clair Shores, MI, USA; 2Research and Development, Cellay, Inc., Cambridge, MA, USA Purpose: The ability to test for and detect prostate cancer with minimal invasiveness has the potential to reduce unnecessary prostate biopsies. This study was conducted as part of a clinical investigation for the development of an OligoFISH® probe panel for more accurate detection of prostate cancer.Materials and methods: One hundred eligible male patients undergoing transrectal ultrasound biopsies were enrolled in the study. After undergoing digital rectal examination with pressure, voided urine was collected in sufficient volume to prepare at least two slides using ThinPrep. Probe panels were tested on the slides, and 500 cells were scored when possible. From the 100 patients recruited, 85 had more than 300 cells scored and were included in the clinical performance calculations.Results: Chromosomes Y, 7, 10, 20, 6, 8, 16, and 18 were polysomic in most prostate carcinoma cases. Of these eight chromosomes, chromosomes 7, 16, 18, and 20 were identified as having the highest clinical performance as a fluorescence in situ hybridization test and used to manufacture the fluorescence in situ hybridization probe panels. The OligoFISH® probes performed with 100% analytical specificity. When the OligoFISH® probes were compared with the biopsy results for each individual, the test results highly correlated with positive and negative prostate biopsy pathology findings, supporting their high specificity and accuracy. Probes for chromosomes 7, 16, 18, and 20 showed in the receiver operator characteristics analysis an area under the curve of 0.83, with an accuracy of 81% in predicting the biopsy result.Conclusion: This investigation demonstrates the ease of use

  7. Isorhapontigenin (ISO) Inhibits Invasive Bladder Cancer Formation In Vivo and Human Bladder Cancer Invasion In Vitro by Targeting STAT1/FOXO1 Axis.

    Science.gov (United States)

    Jiang, Guosong; Wu, Amy D; Huang, Chao; Gu, Jiayan; Zhang, Liping; Huang, Haishan; Liao, Xin; Li, Jingxia; Zhang, Dongyun; Zeng, Xingruo; Jin, Honglei; Huang, Haojie; Huang, Chuanshu

    2016-07-01

    Although our most recent studies have identified Isorhapontigenin (ISO), a novel derivative of stilbene that isolated from a Chinese herb Gnetum cleistostachyum, for its inhibition of human bladder cancer growth, nothing is known whether ISO possesses an inhibitory effect on bladder cancer invasion. Thus, we addressed this important question in current study and discovered that ISO treatment could inhibit mouse-invasive bladder cancer development following bladder carcinogen N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN) exposure in vivo We also found that ISO suppressed human bladder cancer cell invasion accompanied by upregulation of the forkhead box class O 1 (FOXO1) mRNA transcription in vitro Accordingly, FOXO1 was profoundly downregulated in human bladder cancer tissues and was negatively correlated with bladder cancer invasion. Forced expression of FOXO1 specifically suppressed high-grade human bladder cancer cell invasion, whereas knockdown of FOXO1 promoted noninvasive bladder cancer cells becoming invasive bladder cancer cells. Moreover, knockout of FOXO1 significantly increased bladder cancer cell invasion and abolished the ISO inhibition of invasion in human bladder cancer cells. Further studies showed that the inhibition of Signal transducer and activator of transcription 1 (STAT1) phosphorylation at Tyr701 was crucial for ISO upregulation of FOXO1 transcription. Furthermore, this study revealed that metalloproteinase-2 (MMP-2) was a FOXO1 downstream effector, which was also supported by data obtained from mouse model of ISO inhibition BBN-induced mouse-invasive bladder cancer formation. These findings not only provide a novel insight into the understanding of mechanism of bladder cancer's propensity to invasion, but also identify a new role and mechanisms underlying the natural compound ISO that specifically suppresses such bladder cancer invasion through targeting the STAT1-FOXO1-MMP-2 axis. Cancer Prev Res; 9(7); 567-80. ©2016 AACR.

  8. Invasive ductal breast cancer metastatic to the sigmoid colon

    Directory of Open Access Journals (Sweden)

    Zhou Xiao-cong

    2012-11-01

    Full Text Available Abstract The most common sites of breast cancer metastasis are the bone, lung, liver and brain. However, colonic metastases from breast cancer are very rare in the clinic. We describe an unusual case of sigmoid colonic metastasis from invasive ductal breast cancer. With this report, we should increase the clinical awareness that any patient with a colorectal lesion and a history of malignancy should be considered to have a metastasis until proven otherwise. Early diagnosis is very important, which enables prompt initiation of systemic treatment, such as chemotherapy, endocrine therapy or both, thus avoiding unnecessary radical surgical resection and improving the prognosis.

  9. Fascin promotes the motility and invasiveness of pancreatic cancer cells

    Institute of Scientific and Technical Information of China (English)

    Yan-Feng Xu; Shuang-Ni Yu; Zhao-Hui Lu; Jian-Ping Liu; Jie Chen

    2011-01-01

    AIM: To explore the role of actin-bundling protein, fascin during the progression of pancreatic cancer. METHODS: The plasmid expressing human fascin-1 was stably transfected into the pancreatic cancer cell line MIA PaCa-2. The proliferation, cell cycle, motility, scattering, invasiveness and organization of the actin filament system in fascin-transfected MIA PaCa-2 cells and control non-transfected cells were determined. RESULTS: Heterogeneous overexpression of fascin markedly enhanced the motility, scattering, and invasiveness of MIA PaCa-2 cells. However, overexpression of fascin had minimal effect on MIA PaCa-2 cell proliferation and cell cycle. In addition, cell morphology and organization of the actin filament system were distinctly altered in fascin overexpressed cells. When transplanted into BALB/c-nu mice, fascin-transfected pancreatic cancer cells developed solid tumors at a slightly slower rate, but these tumors displayed more aggressive behavior in comparison with control tumors. CONCLUSION: Fascin promotes pancreatic cancer cell migration, invasion and scattering, thus contributes to the aggressive behavior of pancreatic cancer cells.

  10. Use of synthetic isoprenoids to target protein prenylation and Rho GTPases in breast cancer invasion.

    Directory of Open Access Journals (Sweden)

    Min Chen

    Full Text Available Dysregulation of Ras and Rho family small GTPases drives the invasion and metastasis of multiple cancers. For their biological functions, these GTPases require proper subcellular localization to cellular membranes, which is regulated by a series of post-translational modifications that result in either farnesylation or geranylgeranylation of the C-terminal CAAX motif. This concept provided the rationale for targeting farnesyltransferase (FTase and geranylgeranyltransferases (GGTase for cancer treatment. However, the resulting prenyl transferase inhibitors have not performed well in the clinic due to issues with alternative prenylation and toxicity. As an alternative, we have developed a unique class of potential anti-cancer therapeutics called Prenyl Function Inhibitors (PFIs, which are farnesol or geranyl-geraniol analogs that act as alternate substrates for FTase or GGTase. Here, we test the ability of our lead PFIs, anilinogeraniol (AGOH and anilinofarnesol (AFOH, to block the invasion of breast cancer cells. We found that AGOH treatment effectively decreased invasion of MDA-MB-231 cells in a two-dimensional (2D invasion assay at 100 µM while it blocked invasive growth in three-dimensional (3D culture model at as little as 20 µM. Notably, the effect of AGOH on 3D invasive growth was phenocopied by electroporation of cells with C3 exotransferase. To determine if RhoA and RhoC were direct targets of AGOH, we performed Rho activity assays in MDA-MB-231 and MDA-MB-468 cells and found that AGOH blocked RhoA and RhoC activation in response to LPA and EGF stimulation. Notably, the geranylgeraniol analog AFOH was more potent than AGOH in inhibiting RhoA and RhoC activation and invasive growth. Interestingly, neither AGOH nor AFOH impacted 3D growth of MCF10A cells. Collectively, this study demonstrates that AGOH and AFOH dramatically inhibit breast cancer invasion, at least in part by blocking Rho function, thus, suggesting that targeting

  11. Neoadjuvant Chemotherapy in Muscle-Invasive Bladder Cancer

    Directory of Open Access Journals (Sweden)

    Kari T. Syvänen

    2014-05-01

    Full Text Available Neoadjuvant chemotherapy (NAC in muscle-invasive bladder cancer was introduced several years ago. Despite the evidence supporting its use in clinical practice, only a minority of patients who undergo radical cystectomy receive preoperative chemotherapy. In addition, recommendations and methods to detect patients who would benefit the most from NAC are still unclear. The European Association of Urology (EAU guidelines panel on muscle-invasive and metastatic bladder cancer recommends the use of cisplatin-based NAC for T2-T4a, cN0 M0 bladder cancer if the patient has a performance status ≥2 and if the renal function is not impaired, but the American Urological Association, for example, does not have any guideline recommendations on this topic at all. In this review we describe the current literature supporting NAC in association with radical cystectomy in muscle-invasive urothelial carcinoma of the bladder. Evidence acquisition was made searching the Medline database for original articles published before 1st February 2014, with search terms: “neoadjuvant chemotherapy”, “radical cystectomy”, and “invasive bladder cancer”.

  12. Emerging roles of exosomes in cancer invasion and metastasis.

    Science.gov (United States)

    Soung, Young Hwa; Nguyen, Thalia; Cao, Hans; Lee, Janet; Chung, Jun

    2016-01-01

    Recent evidence has indicated that nano-sized vesicles called "exosomes" mediate the interaction between cancer cells and their microenvironment and play a critical role in the development of cancers. Exosomes contain cargo consisting of proteins, lipids, mRNAs, and microRNAs that can be delivered to different types of cells in nascent as well as distant locations. Cancer cell-derived exosomes (CCEs) have been identified in body fluids such as urine, plasma, and saliva from patients with cancer. Although their content depends on tumor type and stage, CCEs merit consideration as prognostic and diagnostic markers, as vehicles for drug delivery, and as potential therapeutic targets because they could transport various oncogenic elements. In this review, we summarize recent advances regarding the role of CCEs in cancer invasion and metastasis, as well as its potential clinical applications.

  13. Prostate Cancer Susceptibility Polymorphism rs2660753 Is Not Associated with Invasive Ovarian Cancer

    DEFF Research Database (Denmark)

    Amankwah, Ernest K; Kelemen, Linda E; Wang, Qinggang;

    2011-01-01

    BACKGROUND: We previously reported an association between rs2660753, a prostate cancer susceptibility polymorphism, and invasive epithelial ovarian cancer (EOC; OR = 1.2, 95% CI=1.0-1.4, P(trend) = 0.01) that showed a stronger association with the serous histological subtype (OR = 1.3, 95% CI = 1.......0-1.2, P(trend) = 0.11). There was no evidence for statistical heterogeneity in ORs across the studies. CONCLUSIONS: Although rs2660753 is a strong prostate cancer susceptibility polymorphism, the association with another hormonally related cancer, invasive EOC, is not supported by this replication study...

  14. Mathematical modeling of cancer cell invasion of tissue: biological insight from mathematical analysis and computational simulation.

    Science.gov (United States)

    Andasari, Vivi; Gerisch, Alf; Lolas, Georgios; South, Andrew P; Chaplain, Mark A J

    2011-07-01

    The ability of cancer cells to break out of tissue compartments and invade locally gives solid tumours a defining deadly characteristic. One of the first steps of invasion is the remodelling of the surrounding tissue or extracellular matrix (ECM) and a major part of this process is the over-expression of proteolytic enzymes, such as the urokinase-type plasminogen activator (uPA) and matrix metalloproteinases (MMPs), by the cancer cells to break down ECM proteins. Degradation of the matrix enables the cancer cells to migrate through the tissue and subsequently to spread to secondary sites in the body, a process known as metastasis. In this paper we undertake an analysis of a mathematical model of cancer cell invasion of tissue, or ECM, which focuses on the role of the urokinase plasminogen activation system. The model consists of a system of five reaction-diffusion-taxis partial differential equations describing the interactions between cancer cells, uPA, uPA inhibitors, plasmin and the host tissue. Cancer cells react chemotactically and haptotactically to the spatio-temporal effects of the uPA system. The results obtained from computational simulations carried out on the model equations produce dynamic heterogeneous spatio-temporal solutions and using linear stability analysis we show that this is caused by a taxis-driven instability of a spatially homogeneous steady-state. Finally we consider the biological implications of the model results, draw parallels with clinical samples and laboratory based models of cancer cell invasion using three-dimensional invasion assay, and go on to discuss future development of the model.

  15. RKIP Inhibits Local Breast Cancer Invasion by Antagonizing the Transcriptional Activation of MMP13.

    Directory of Open Access Journals (Sweden)

    Ila Datar

    Full Text Available Raf Kinase Inhibitory Protein or RKIP was initially identified as a Raf-1 binding protein using the yeast 2-hybrid screen. RKIP inhibits the activation phosphorylation of MEK by Raf-1 by competitively inhibiting the binding of MEK to Raf-1 and thus exerting an inhibitory effect on the Raf-MEK-Erk pathway. RKIP has been identified as a metastasis suppressor gene. Expression of RKIP is low in cancer metastases. Although primary tumor growth remains unaffected, re- expression of RKIP inhibits cancer metastasis. Mechanistically, RKIP constrains metastasis by inhibiting angiogenesis, local invasion, intravasation, and colonization. The molecular mechanism of how RKIP inhibits these individual steps remains undefined. In our present study, using an unbiased PCR based screening and by analyzing DNA microarray expression datasets we observe that the expression of multiple metalloproteases (MMPs including MMP1, MMP3, MMP10 and MMP13 are negatively correlated with RKIP expression in breast cancer cell lines and clinical samples. Since expression of MMPs by cancer cells is important for cancer metastasis, we hypothesize that RKIP may mediate suppression of breast cancer metastasis by inhibiting multiple MMPs. We show that the expression signature of RKIP and MMPs is better at predicting high metastatic risk than the individual gene. Using a combination of loss- and gain-of-function approaches, we find that MMP13 is the cause of RKIP-mediated inhibition of local cancer invasion. Interestingly expression of MMP13 alone is not sufficient to reverse the inhibition of breast cancer cell metastasis to the lung due to the expression of RKIP. We find that RKIP negatively regulates MMP13 through the Erk2 signaling pathway and the repression of MMP13 by RKIP is transcription factor AP-1 independent. Together, our findings indicate that RKIP inhibits cancer cell invasion, in part, via MMP13 inhibition. These data also implicate RKIP in the regulation of MMP

  16. Overweight, Obesity and Postmenopausal Invasive Breast Cancer Risk

    Science.gov (United States)

    Neuhouser, Marian. L; Aragaki, Aaron K.; Prentice, Ross L.; Manson, JoAnn E.; Chlebowski, Rowan; Carty, Cara L.; Ochs-Balcom, Heather M.; Thomson, Cynthia A.; Caan, Bette J.; Tinker, Lesley F.; Urrutia, Rachel Peragallo; Knudtson, Jennifer; Anderson, Garnet L.

    2016-01-01

    IMPORTANCE Over ⅔ of U.S. women are overweight or obese, placing them at increased risk for postmenopausal breast cancer. OBJECTIVE To investigate the associations of overweight and obesity with risk of postmenopausal invasive breast cancer after extended follow-up in the Women’s Health Initiative (WHI) Clinical Trial. DESIGN The WHI protocol incorporated measured height and weight, baseline and annual or biennial mammography, and adjudicated breast cancer endpoints. SETTING 40 U.S. clinical centers. PARTICIPANTS n=67,142 postmenopausal women aged 50–79 years were enrolled from 1993–1998 with a median of 13 years of follow-up through 2010; 3388 invasive breast cancers were observed. MAIN OUTCOMES AND MEASURES Height and weight were measured at baseline and weight was measured annually thereafter. Data were collected on demographic characteristics, personal and family medical history and personal habits (smoking, physical activity). Women underwent annual or biennial mammograms. Breast cancers were verified by medical records reviewed by physician adjudicators. RESULTS Women who were overweight and obese had an increased invasive breast cancer risk vs. normal weight women. Risk was greatest for obesity grades 2+3 (BMI>35.0 kg/m2) (hazard ratio [HR] for invasive breast cancer =1.58, 95% CI 1.40–1.79). BMI ≥ 35.0 kg/m2 was strongly associated with risk for ER+/PR+ breast cancers (HR=1.86 95% CI 1.60–2.17), but was not associated with ER− cancers. Obesity grade 2+3 was also associated with advanced disease including larger tumor size (HR=2.12 95%CI 1.67–2.69). (P=0.02), positive lymph nodes (HR=1.89 95%CI 1.46–2.45), (P=0.06), regional/distant stage (HR=1.94, 95%CI 1.52–2.47) (P=0.05) and deaths after breast cancer (HR=2.11 95%CI 1.57–2.84) (P5% of bodyweight over the follow-up period had an increased breast cancer risk (HR=1.36 95% CI 1.1–1.65), but among women already overweight or obese we found no association of weight change (gain or loss

  17. Precursor lesions of invasive breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Schreer, Ingrid [Breast Center, University Hospital Kiel, Kiel (Germany)]. E-mail: ischreer@email.uni-kiel.de; Luettges, Jutta [Department of Pathology, University Hospital Kiel, Kiel (Germany)

    2005-04-01

    The increasing application of mammography, mainly in screening programs for the early detection of breast cancer, and the high technical standard of imaging has resulted in the detection of clinically occult breast tumors. Considering that only diagnosis at an early stage will be able to change the prognosis of breast cancer, this diagnostic challenge appears to be the most exciting field in both breast imaging and breast pathology. Especially the precursor lesions need to be diagnosed and defined precisely to understand their prognostic significance. In imaging, the morphologic appearance of precursor lesions is usually neither typical nor pathognomonic. They have to be assessed histologically using percutaneous interventions. Recent molecular studies have demonstrated various genetic alterations in the ductal epithelium, with the earliest onset in atypical ductal hyperplasia. The recent WHO classification, which is based on molecular data and histopathological features, attempts to define in particular the precursor lesions and low grade intraductal carcinomas. The clinical importance of the various grades has to be assessed. Intimate cooperation between diagnostic radiologist and pathologist is essential.

  18. Precursor lesions of invasive breast cancer.

    Science.gov (United States)

    Schreer, Ingrid; Lüttges, Jutta

    2005-04-01

    The increasing application of mammography, mainly in screening programs for the early detection of breast cancer, and the high technical standard of imaging has resulted in the detection of clinically occult breast tumors. Considering that only diagnosis at an early stage will be able to change the prognosis of breast cancer, this diagnostic challenge appears to be the most exciting field in both breast imaging and breast pathology. Especially the precursor lesions need to be diagnosed and defined precisely to understand their prognostic significance. In imaging, the morphologic appearance of precursor lesions is usually neither typical nor pathognomonic. They have to be assessed histologically using percutaneous interventions. Recent molecular studies have demonstrated various genetic alterations in the ductal epithelium, with the earliest onset in atypical ductal hyperplasia. The recent WHO classification, which is based on molecular data and histopathological features, attempts to define in particular the precursor lesions and low grade intraductal carcinomas. The clinical importance of the various grades has to be assessed. Intimate cooperation between diagnostic radiologist and pathologist is essential.

  19. Collective cell migration: Implications for wound healing and cancer invasion

    Directory of Open Access Journals (Sweden)

    Li Li

    2013-07-01

    Full Text Available During embryonic morphogenesis, wound repair and cancer invasion, cells often migrate collectively via tight cell-cell junctions, a process named collective migration. During such migration, cells move as coherent groups, large cell sheets, strands or tubes rather than individually. One unexpected finding regarding collective cell migration is that being a "multicellular structure" enables cells to better respond to chemical and physical cues, when compared with isolated cells. This is important because epithelial cells heal wounds via the migration of large sheets of cells with tight intercellular connections. Recent studies have gained some mechanistic insights that will benefit the clinical understanding of wound healing in general. In this review, we will briefly introduce the role of collective cell migration in wound healing, regeneration and cancer invasion and discuss its underlying mechanisms as well as implications for wound healing.

  20. Treatment of Muscle-Invasive Bladder Cancer in Older Patients.

    Science.gov (United States)

    Skinner, Eila C

    2016-01-01

    Treatment of muscle-invasive bladder cancer in older patients is challenging. Definitive therapy of localized disease requires either surgery or radiation therapy, ideally combined with systemic chemotherapy. However, current population data suggest that less than half of patients older than age 70 are offered such treatments. We will review tools available to assess the fitness of older patients for surgery, alternatives, and tips for perioperative patient treatment.

  1. Prostate Cancer Susceptibility Polymorphism rs2660753 Is Not Associated with Invasive Ovarian Cancer

    DEFF Research Database (Denmark)

    Amankwah, Ernest K; Kelemen, Linda E; Wang, Qinggang;

    2011-01-01

    BACKGROUND: We previously reported an association between rs2660753, a prostate cancer susceptibility polymorphism, and invasive epithelial ovarian cancer (EOC; OR = 1.2, 95% CI=1.0-1.4, P(trend) = 0.01) that showed a stronger association with the serous histological subtype (OR = 1.3, 95% CI = 1...

  2. Immunophenotyping invasive breast cancer: paving the road for molecular imaging

    Directory of Open Access Journals (Sweden)

    Vermeulen Jeroen F

    2012-06-01

    Full Text Available Abstract Background Mammographic population screening in The Netherlands has increased the number of breast cancer patients with small and non-palpable breast tumors. Nevertheless, mammography is not ultimately sensitive and specific for distinct subtypes. Molecular imaging with targeted tracers might increase specificity and sensitivity of detection. Because development of new tracers is labor-intensive and costly, we searched for the smallest panel of tumor membrane markers that would allow detection of the wide spectrum of invasive breast cancers. Methods Tissue microarrays containing 483 invasive breast cancers were stained by immunohistochemistry for a selected set of membrane proteins known to be expressed in breast cancer. Results The combination of highly tumor-specific markers glucose transporter 1 (GLUT1, epidermal growth factor receptor (EGFR, insulin-like growth factor-1 receptor (IGF1-R, human epidermal growth factor receptor 2 (HER2, hepatocyte growth factor receptor (MET, and carbonic anhydrase 9 (CAIX 'detected' 45.5% of tumors, especially basal/triple negative and HER2-driven ductal cancers. Addition of markers with a 2-fold tumor-to-normal ratio increased the detection rate to 98%. Including only markers with >3 fold tumor-to-normal ratio (CD44v6 resulted in an 80% detection rate. The detection rate of the panel containing both tumor-specific and less tumor-specific markers was not dependent on age, tumor grade, tumor size, or lymph node status. Conclusions In search of the minimal panel of targeted probes needed for the highest possible detection rate, we showed that 80% of all breast cancers express at least one of a panel of membrane markers (CD44v6, GLUT1, EGFR, HER2, and IGF1-R that may therefore be suitable for molecular imaging strategies. This study thereby serves as a starting point for further development of a set of antibody-based optical tracers with a high breast cancer detection rate.

  3. Multidetector CT of Locally Invasive Advanced Gastric Cancer: Value of Oblique Coronal Reconstructed Images for the Assessment of Local Invasion

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jin Hee; Kim, Ah Yong; Kim, Hye Jin; Yook, Jeong Hwan; Yu, Eun Sil; Jang, Yoon Jin; Park, Seong Ho; Shin, Yong Moon; Ha, Hyun Kwon [Asan Medical Center, Seoul (Korea, Republic of)

    2010-01-15

    To evaluate the diagnostic value of oblique coronal reconstructed CT images to determine the local invasion of advanced gastric cancer (AGC). Thirty-four consecutive patients, who were suspected to have locally invasive advanced gastric cancer (more than T3 stage) on a preoperative MDCT scan and underwent a diagnostic or curative laparotomy, were enrolled in this study. Two reviewers performed an independent blind review of three series of MDCT images in random order; axial (AXI), conventional coronal (CCI), and oblique coronal (OCI) (parallel to long axis of gastric body and pancreas) images. In assessing the local invasion, the reader's confidence for the local invasion of AGC was graded using a five point scale (1 = definitely negative, 5 = definitely positive: T4). With surgical findings and histopathological proofs as reference standards, the diagnostic performance of the three different plans of CT images was employed for the verification of local invasion of AGC on a preoperative CT scan using the receiver operating characteristic (ROC) method. Agreements between the two reviewers were analyzed using weighted kappa statistics. Results: In 19 out of 34 patients, local invasion was confirmed surgically or histopathologically (13 pancreas invasion, 6 liver invasion, 4 major vascular invasion, 3 colon and mesocolon invasion, and 2 spleen invasion). The diagnostic performance of OCI was superior to AXI or CCI in the local invasion of AGC. The differences in the area under the curve of AXI (0.770 {+-} 0.087, 0.700 {+-} 0.094), CCI (0.884 {+-} 0.058, 0.958 {+-} 0.038), and OCI (0.954 {+-} 0.050, 0.956 {+-} 0.049), were statistically significant for both reviewers. Inter-observer agreement was excellent for OCI ({kappa}= .973), which was greater than CCI (({kappa}= .839), and AXI (({kappa}= .763). On a CT scan, OCI might be a useful imaging technique in evaluating locally invasive advanced gastric cancer.

  4. Non-invasive actionable biomarkers for metastatic prostate cancer

    Directory of Open Access Journals (Sweden)

    Jun Luo

    2016-10-01

    Full Text Available In the current clinical setting, many disease management options are available for men diagnosed with prostate cancer. For metastatic prostate cancer, first-line therapies almost always involve agents designed to inhibit androgen receptor (AR signaling. Castration-resistant prostate cancers (CRPCs that arise following first-line androgen deprivation therapies (ADT may continue to respond to additional lines of AR-targeting therapies (abiraterone and enzalutamide, chemotherapies (docetaxel and cabazitaxel, bone-targeting Radium-223 therapy, and immunotherapy sipuleucel-T. The rapidly expanding therapies for CRPC is expected to transform this lethal disease into one that can be managed for prolonged period of time. In the past 3 years, a number of promising biomarkers that may help to guide treatment decisions have been proposed and evaluated, including androgen receptor splice variant-7 (AR-V7, a truncated AR lacking the ligand-binding domain (LBD and mediate constitutively-active AR signaling. Putative treatment selection markers such as AR-V7 may further improve survival benefit of existing therapies and help to accelerate development of new agents for metastatic prostate cancer. In the metastatic setting, it is important to consider compatibility between the putative biomarker with non-invasive sampling. In this review, biomarkers relevant to the setting of metastatic prostate cancer are discussed with respect to a number of key attributes critical for clinical development of non-invasive, actionable markers. It is envisioned that biomarkers for metastatic prostate cancer will continue to be discovered, developed, and refined to meet the unmet needs in both standard-of-care and clinical trial settings.

  5. Imaging Prostate Cancer Invasion with Multi-Nuclear Magnetic Resonance Methods: The Metabolic Boyden Chamber

    Directory of Open Access Journals (Sweden)

    Ulrich Pilatus

    2000-05-01

    Full Text Available The physiological milieu within solid tumors can influence invasion and metastasis. To determine the impact of the physiological environment and cellular metabolism on cancer cell invasion, it is necessary to measure invasion during well-controlled modulation of the physiological environment. Recently, we demonstrated that magnetic resonance imaging can be used to monitor cancer cell invasion into a Matrigel layer [Artemov D, Pilatus U, Chou S, Mori N, Nelson JB, and Bhujwalla ZM. (1999. Dynamics of prostate cancer cell invasion studied in vitro by NMR microscopy. Mag Res Med 42, 277–282.]. Here we have developed an invasion assay (“Metabolic Boyden Chamber” that combines this capability with the properties of our isolated cell perfusion system. Long-term experiments can be performed to determine invasion as well as cellular metabolism under controlled environmental conditions. To characterize the assay, we performed experiments with prostate cancer cell lines preselected for different invasive characteristics. The results showed invasion into, and degradation of the Matrigel layer, by the highly invasive/metastatic line (MatLyLu, whereas no significant changes were observed for the less invasive/metastatic cell line (DU-145. With this assay, invasion and metabolism was measured dynamically, together with oxygen tensions within the cellular environment and within the Matrigel layer. Such a system can be used to identify physiological and metabolic characteristics that promote invasion, and evaluate therapeutic interventions to inhibit invasion.

  6. Invasive Haemophilus influenzae Infection in Patients With Cancer.

    Science.gov (United States)

    Singh, Vivek; Nanjappa, Sowmya; Pabbathi, Smitha; Greene, John N

    2017-01-01

    A major cause of morbidity and mortality in patients with cancer is infection. Since the introduction of the Haemophilus influenzae type b (Hib) vaccine in the United States in the 1990s, invasive H influenzae infection has become less common. We report on 5 patients with cancer and invasive H influenzae infection. A literature review was also performed of the dominant Haemophilus subtype and the clinical features associated with the infection and concomitant cancer. Of the 17 cases found in the literature, had hematological malignancies and 1 case each had thymoma, schwannoma, teratoma, and pancreatic, Merkel cell, pharyngeal, laryngeal, and rectal carcinomas. Two cases occurred with AIDS and Kaposi sarcoma. Pneumonia with bacteremia was seen in 8 cases, whereas pleuritis, neck cellulitis, septic arthritis, meningitis, and mediastinitis were diagnosed in the others. No focus of infection was identified in 2 cases. Nontypable H influenzae (NTHi) occurred in 4 cases, and Hib was isolated in 2 cases; serotyping was not reported in the others. Leukocytosis occurred in 7 cases and lymphopenia in 3; no cases presented with neutropenia. Four isolates were positive for beta-lactamase. Susceptibility data were unavailable in 5 case patients. Among serotyped cases, 67% were of the NTHi strain - a finding consistent with the change in the epidemiology of H influenzae since the introduction of the Hib vaccine.

  7. Prostaglandins in Cancer Cell Adhesion, Migration, and Invasion

    Directory of Open Access Journals (Sweden)

    David G. Menter

    2012-01-01

    Full Text Available Prostaglandins exert a profound influence over the adhesive, migratory, and invasive behavior of cells during the development and progression of cancer. Cyclooxygenase-2 (COX-2 and microsomal prostaglandin E2 synthase-1 (mPGES-1 are upregulated in inflammation and cancer. This results in the production of prostaglandin E2 (PGE2, which binds to and activates G-protein-coupled prostaglandin E1-4 receptors (EP1-4. Selectively targeting the COX-2/mPGES-1/PGE2/EP1-4 axis of the prostaglandin pathway can reduce the adhesion, migration, invasion, and angiogenesis. Once stimulated by prostaglandins, cadherin adhesive connections between epithelial or endothelial cells are lost. This enables cells to invade through the underlying basement membrane and extracellular matrix (ECM. Interactions with the ECM are mediated by cell surface integrins by “outside-in signaling” through Src and focal adhesion kinase (FAK and/or “inside-out signaling” through talins and kindlins. Combining the use of COX-2/mPGES-1/PGE2/EP1-4 axis-targeted molecules with those targeting cell surface adhesion receptors or their downstream signaling molecules may enhance cancer therapy.

  8. Systematic review of prognostic importance of extramural venous invasion in rectal cancer

    Science.gov (United States)

    Chand, Manish; Siddiqui, Muhammed RS; Swift, Ian; Brown, Gina

    2016-01-01

    AIM: To systematically review the survival outcomes relating to extramural venous invasion in rectal cancer. METHODS: A systematic review was conducted using PRISMA guidelines. An electronic search was carried out using MEDLINE, EMBASE, CINAHL, Cochrane library databases, Google scholar and PubMed until October 2014. Search terms were used in combination to yield articles on extramural venous invasion in rectal cancer. Outcome measures included prevalence and 5-year survival rates. These were graphically displayed using Forest plots. Statistical analysis of the data was carried out. RESULTS: Fourteen studies reported the prevalence of extramural venous invasion (EMVI) positive patients. Prevalence ranged from 9%-61%. The pooled prevalence of EMVI positivity was 26% [Random effects: Event rate 0.26 (0.18, 0.36)]. Most studies showed that EMVI related to worse oncological outcomes. The pooled overall survival was 39.5% [Random effects: Event rate 0.395 (0.29, 0.51)]. CONCLUSION: Historically, there has been huge variation in the prevalence of EMVI through inconsistent reporting. However the presence of EMVI clearly leads to worse survival outcomes. As detection rates become more consistent, EMVI may be considered as part of risk-stratification in rectal cancer. Standardised histopathological definitions and the use of magnetic resonance imaging to identify EMVI will improve detection rates in the future. PMID:26819536

  9. Breast cancer. Part 3: advanced cancer and psychological implications.

    Science.gov (United States)

    Harmer, Victoria

    This is the last article in this 3-part series on breast cancer. The previous two articles have outlined the principles behind breast awareness and breast health, detailing common benign breast diseases, types of breast cancer and staging, and treatment for breast cancer, including surgery, chemotherapy, radiotherapy and endocrine treatment. The series concludes by giving information on advanced disease, including when a patient presents late with a fungating breast lesion, or if the disease has metastasized from the breast to other organs. Lymphoedema is also described and discussed, and the latter half of this article discusses psychological implications of breast cancer, from diagnosis through the individual treatments.

  10. Natural biology and management of nonmuscle invasive bladder cancer

    DEFF Research Database (Denmark)

    Scarpato, Kristen R; Tyson, Mark D; Clark, Peter E

    2016-01-01

    PURPOSE OF REVIEW: This article reviews the natural biology of noninvasive bladder cancer and its management strategies while summarizing the most recent advances in the field. RECENT FINDINGS: Nonmuscle invasive bladder cancer (NMIBC) has a tendency to recur and progress. Risk stratification has...... treatment, especially in refractory high-risk cases, include the addition of intravesical hyperthermia, combination and sequential therapy with existing agents and the use of novel agents such as mycobacterial cell wall extract. New data are emerging regarding the potential role of active surveillance...... in low-risk patients. SUMMARY: NMIBC represents a variety of disease states and continues to pose management challenges. As our understanding of tumor biology improves and technology advances, achieving better outcomes through individualized care may be possible....

  11. A Comprehensive Study of Extramural Venous Invasion in Colorectal Cancer.

    Directory of Open Access Journals (Sweden)

    David McClelland

    Full Text Available Colorectal cancer is a common malignancy and a leading cause of cancer related death. Cancer staging following resection is key to determining any adjuvant therapy in those patients with high risk disease. In colorectal cancer, tumour stage and lymph node stage are the main pathological factors which have been considered to influence outcome. Increasing emphasis is now being placed on other factors, especially the presence of extramural venous invasion (EMVI. It is important to understand the relationship of EMVI with other pathological factors and to confirm that in an individual centre that EMVI is being detected at an appropriate rate and is of prognostic significance. This comprehensive study assesses the reporting and prognostic significance of EMVI in a single centre, using prospectively collected data from histopathology reports of a cohort of 2405 patients who underwent surgery for colorectal cancer over a nine year period. Overall, EMVI was reported in 27.9% of colorectal cancer excision specimens. In tumours (n = 1928 that had not received neoadjuvant therapy, the presence of EMVI varied significantly depending on tumour site (χ2 = 12.03, p<0.005, tumour stage (χ2 = 268.188, p<0.001, lymph node stage (χ2 = 294.368, p<0.001 and Dukes' stage (χ2 = 253.753, p<0.001. Multivariate analysis confirmed EMVI as a significant independent prognostic indicator (p<0.001. In conclusion, the presence of EMVI as an independent prognostic indicator is shown and is related to other pathological and prognostic factors. This study emphasises the requirement for the accurate identification of EMVI in colorectal cancer excision specimens and also understanding the relationship of EMVI with other prognostic factors.

  12. Comprehensive Molecular Portraits of Invasive Lobular Breast Cancer.

    Science.gov (United States)

    Ciriello, Giovanni; Gatza, Michael L; Beck, Andrew H; Wilkerson, Matthew D; Rhie, Suhn K; Pastore, Alessandro; Zhang, Hailei; McLellan, Michael; Yau, Christina; Kandoth, Cyriac; Bowlby, Reanne; Shen, Hui; Hayat, Sikander; Fieldhouse, Robert; Lester, Susan C; Tse, Gary M K; Factor, Rachel E; Collins, Laura C; Allison, Kimberly H; Chen, Yunn-Yi; Jensen, Kristin; Johnson, Nicole B; Oesterreich, Steffi; Mills, Gordon B; Cherniack, Andrew D; Robertson, Gordon; Benz, Christopher; Sander, Chris; Laird, Peter W; Hoadley, Katherine A; King, Tari A; Perou, Charles M

    2015-10-08

    Invasive lobular carcinoma (ILC) is the second most prevalent histologic subtype of invasive breast cancer. Here, we comprehensively profiled 817 breast tumors, including 127 ILC, 490 ductal (IDC), and 88 mixed IDC/ILC. Besides E-cadherin loss, the best known ILC genetic hallmark, we identified mutations targeting PTEN, TBX3, and FOXA1 as ILC enriched features. PTEN loss associated with increased AKT phosphorylation, which was highest in ILC among all breast cancer subtypes. Spatially clustered FOXA1 mutations correlated with increased FOXA1 expression and activity. Conversely, GATA3 mutations and high expression characterized luminal A IDC, suggesting differential modulation of ER activity in ILC and IDC. Proliferation and immune-related signatures determined three ILC transcriptional subtypes associated with survival differences. Mixed IDC/ILC cases were molecularly classified as ILC-like and IDC-like revealing no true hybrid features. This multidimensional molecular atlas sheds new light on the genetic bases of ILC and provides potential clinical options.

  13. The role of the tissue microenvironment in the regulation of cancer cell motility and invasion

    Directory of Open Access Journals (Sweden)

    Brábek Jan

    2010-09-01

    Full Text Available Abstract During malignant neoplastic progression the cells undergo genetic and epigenetic cancer-specific alterations that finally lead to a loss of tissue homeostasis and restructuring of the microenvironment. The invasion of cancer cells through connective tissue is a crucial prerequisite for metastasis formation. Although cell invasion is foremost a mechanical process, cancer research has focused largely on gene regulation and signaling that underlie uncontrolled cell growth. More recently, the genes and signals involved in the invasion and transendothelial migration of cancer cells, such as the role of adhesion molecules and matrix degrading enzymes, have become the focus of research. In this review we discuss how the structural and biomechanical properties of extracellular matrix and surrounding cells such as endothelial cells influence cancer cell motility and invasion. We conclude that the microenvironment is a critical determinant of the migration strategy and the efficiency of cancer cell invasion.

  14. Loss of heterozygosity and its correlation with expression profiles in subclasses of invasive breast cancers.

    Science.gov (United States)

    Wang, Zhigang C; Lin, Ming; Wei, Lee-Jen; Li, Cheng; Miron, Alexander; Lodeiro, Gabriella; Harris, Lyndsay; Ramaswamy, Sridhar; Tanenbaum, David M; Meyerson, Matthew; Iglehart, James D; Richardson, Andrea

    2004-01-01

    Gene expression array profiles identify subclasses of breast cancers with different clinical outcomes and different molecular features. The present study attempted to correlate genomic alterations (loss of heterozygosity; LOH) with subclasses of breast cancers having distinct gene expression signatures. Hierarchical clustering of expression array data from 89 invasive breast cancers identified four major expression subclasses. Thirty-four of these cases representative of the four subclasses were microdissected and allelotyped using genome-wide single nucleotide polymorphism detection arrays (Affymetrix, Inc.). LOH was determined by comparing tumor and normal single nucleotide polymorphism allelotypes. A newly developed statistical tool was used to determine the chromosomal regions of frequent LOH. We found that breast cancers were highly heterogeneous, with the proportion of LOH ranging widely from 0.3% to >60% of heterozygous markers. The most common sites of LOH were on 17p, 17q, 16q, 11q, and 14q, sites reported in previous LOH studies. Signature LOH events were discovered in certain expression subclasses. Unique regions of LOH on 5q and 4p marked a subclass of breast cancers with "basal-like" expression profiles, distinct from other subclasses. LOH on 1p and 16q occurred preferentially in a subclass of estrogen receptor-positive breast cancers. Finding unique LOH patterns in different groups of breast cancer, in part defined by expression signatures, adds confidence to newer schemes of molecular classification. Furthermore, exclusive association between biological subclasses and restricted LOH events provides rationale to search for targeted genes.

  15. Mutant p53-associated myosin-X upregulation promotes breast cancer invasion and metastasis.

    Science.gov (United States)

    Arjonen, Antti; Kaukonen, Riina; Mattila, Elina; Rouhi, Pegah; Högnäs, Gunilla; Sihto, Harri; Miller, Bryan W; Morton, Jennifer P; Bucher, Elmar; Taimen, Pekka; Virtakoivu, Reetta; Cao, Yihai; Sansom, Owen J; Joensuu, Heikki; Ivaska, Johanna

    2014-03-01

    Mutations of the tumor suppressor TP53 are present in many forms of human cancer and are associated with increased tumor cell invasion and metastasis. Several mechanisms have been identified for promoting dissemination of cancer cells with TP53 mutations, including increased targeting of integrins to the plasma membrane. Here, we demonstrate a role for the filopodia-inducing motor protein Myosin-X (Myo10) in mutant p53-driven cancer invasion. Analysis of gene expression profiles from 2 breast cancer data sets revealed that MYO10 was highly expressed in aggressive cancer subtypes. Myo10 was required for breast cancer cell invasion and dissemination in multiple cancer cell lines and murine models of cancer metastasis. Evaluation of a Myo10 mutant without the integrin-binding domain revealed that the ability of Myo10 to transport β₁ integrins to the filopodia tip is required for invasion. Introduction of mutant p53 promoted Myo10 expression in cancer cells and pancreatic ductal adenocarcinoma in mice, whereas suppression of endogenous mutant p53 attenuated Myo10 levels and cell invasion. In clinical breast carcinomas, Myo10 was predominantly expressed at the invasive edges and correlated with the presence of TP53 mutations and poor prognosis. These data indicate that Myo10 upregulation in mutant p53-driven cancers is necessary for invasion and that plasma-membrane protrusions, such as filopodia, may serve as specialized metastatic engines.

  16. [Neoadjuvant chemotherapy of invasive cancer of the urinary bladder].

    Science.gov (United States)

    Selivanov, S P; Isaeva, S N; Kovalik, T A; Chén', M N; Aleksandrovich, I N; Kaliev, E A

    2007-01-01

    We studied efficacy of a combination of intraosseous and systemic administration of drugs in patients with invasive cancer of the urinary bladder (UB). A total of 20 patients aged 54-79 years with verified had recurrence, 2 had tumors with continuous growth. T2N0M0 UB carcinoma was diagnosed in 7 patients, T3N0M0--in 12, T6N0M0--in 1 patient. All the patients received systemic chemotherapy with gemzar in a single daily dose 800-1000 mg/m2 on day 1, 7 and 14. On day 2 a single intraosseous 100 mg eloxatin was given. A total of three courses of combined chemotherapy with 4-week interval was used. Intravenous gemzar administration was accompanied with mild leukopenia in 4 patients, moderate leukopenia--in 1, allergic reaction--in 2 patients. This required gemzar discontinuation. No side effects were seen in response to intraosseous administration of eloxatin. The combined chemotherapy produced complete regression of UB cancer in 3 of 18 patients, partial regression--in 12, stabilization--in 3 patients. Neither local nor long-term tumor progression was found. Short-term therapeutic efficacy of combined therapy was 70%. Fifteen patients with partial regression or stabilization have undergone transurethral resection. Duration of a recurrence-free period reached 5 to 72 months (mean 17 months). The neoadjuvant chemotherapy proposed by us allows achievement of a high percentage of regression in patients with invasive UB cancer located in UB cervix and provides concervative surgery including patients over 70 years of age.

  17. Study on Invasion of Artesunate on Inhibiting Human Colon Cancer Cell SW620

    Directory of Open Access Journals (Sweden)

    Yu Fan

    2013-09-01

    Full Text Available Objective: To observe the invasive effect of Chinese extraction artesunate on human colon cancer cell SW620 and explore its possible mechanisms. Methods: Colon cancer cell SW620 was managed by different concentrations of artesunate, and soft agar colony-cultivating trial was applied to detect anchorage independent proliferation of cancer cells, Boyden chamber model method to detect the invasive capability of cancer cells and Western blot method to detect the change of intercellular adhesion molecule-1 (ICAM-1 proteins. Results: Artesunate can effectively inhibit malignant proliferation and invasive capability of colon cancer cell SW620, and was dose-dependent (P < 0.01. Artesunate can effectively inhibit the expression of cancer cell ICAM-1 gene proteins, and was time- and concentration-dependant (P <0.01. Conclusion: Artesunate can significantly inhibit the invasion of colon cancer cell SW620, which can be related to down-regulation of ICAM-1 protein level.

  18. Regulation of cancer cell migration and invasion by sphingosine-1-phosphate

    Institute of Scientific and Technical Information of China (English)

    James; R; Van; Brocklyn

    2010-01-01

    Sphingosine-1-phosphate (S1P) is a bioactive sphingo-lipid that has been implicated in regulation of a number of cancer cell malignant behaviors, including cell proliferation, survival, chemotherapeutic resistance and angiogenesis. However, the effects of S1P on cancer cell migration, invasion and metastasis, are perhaps its most complex, due to the fact that, depending upon the S1P receptors that mediate its responses and the crosstalk with other signaling pathways, S1P can either positively or negatively regulate invasion. This review summarizes the effects of S1P on cancer cell invasion and the mechanisms by which it affects this important aspect of cancer cell behavior.

  19. Early effects of preoperative radiation therapy for invasive bladder cancer

    Energy Technology Data Exchange (ETDEWEB)

    Isaka, Shigeo; Igarashi, Tatsuo; Ito, Haruo

    1983-10-01

    22 patients with high grade invasive bladder cancer were treated with preoperative radiation therapy (910 rad by fast neutron or 3000 rad by X ray during 2 weeks) followed by radical cystectomy and urinary diversion. 62.5 % of patients showed reduction in tumor size more than 50% evaluated by cystogram. Stage down was observed in 38% of patients compared between clinical and pathological stage. Histopathological effect of GII or GIII, according to the criteria described by Ohboshi, was noticed in 79 % of the patients. Better effect seemed to be obtained in fast neutron treated group than in X ray group. 19 patients received curative surgery, and 18 patients were alive without recurrence after 10 months (mean observed term). One died from lung metastasis 4.5 months after surgery. 50% of the patients complained of side effects of irradiation although they were tolerable, and 32% of the patients had major complications of surgery.

  20. Novel Simulation Model of Non-Muscle Invasive Bladder Cancer

    DEFF Research Database (Denmark)

    Patel, Sanjay R; Dinh, Tuan; Noah-Vanhoucke, Joyce

    2015-01-01

    Introduction: There have been no randomized controlled trials (RCTs) evaluating the clinical or economic benefit of mitomycin C intravesical therapy vs. radical cystectomy in patients with high-risk non-muscle invasive bladder cancer (NMIBC). We used the Archimedes computational model to simulate...... RCT comparing radical cystectomy versus intravesical mitomycin C (MMC) therapy to evaluate the clinical and economic outcomes for BCG-refractory NMIBC as well demonstrate the utility of computer based models to simulate a clinical trial. Methods: The Archimedes model was developed to generate...... and is more cost-effective when compared to those undergoing MMC. Simulation of clinical trials using computational models similar to the Archimedes model can overcome shortcomings of real-world clinical trials and may prove useful in the face of current medical cost-conscious era....

  1. Emerging intravesical therapies for management of nonmuscle invasive bladder cancer

    Directory of Open Access Journals (Sweden)

    Jeffrey J Tomaszewski

    2010-05-01

    Full Text Available Jeffrey J Tomaszewski, Marc C SmaldoneDepartment of Urology, University of Pittsburgh School of Medicine, Pennsylvania, USAAbstract: Transitional cell carcinoma (TCC is the second most common urologic malignancy, and 70% of patients present with superficial or nonmuscle invasive bladder cancer (NMIBC. Intravesical bacillus Calmette-Guerin (BCG is the most effective agent for preventing disease recurrence, and the only therapy able to inhibit disease progression. However, recurrence rates as high as 30% and significant local and systemic toxicity have led to increased interest in alternative intravesical therapies. In patients refractory or intolerant to BCG, BCG-interferon α2b, gemcitabine, and anthracyclines (doxorubicin, epirubicin, valrubicin have demonstrated durable clinical responses. Phase I trials investigating alternative cytotoxic agents, such as apaziquone, taxanes (docetaxel, paclitaxel, and suramin are reporting promising data. Novel immunomodulating agents have demonstrated promise as efficacious alternatives in patients refractory to BCG. Optimization of existing chemotherapeutic regimens using hyperthermia, photodynamic therapy, magnetically-targeted carriers, and liposomes remains an area of active investigation. Despite enthusiasm for new intravesical agents, radical cystectomy remains the treatment of choice for patients with NMIBC who have failed intravesical therapy and selected patients with naïve T1 tumors and aggressive features. This report provides a comprehensive review of contemporary intravesical therapy for NMIBC and refractory NMIBC, with an emphasis on emerging agents and novel treatment modalities.Keywords: transitional cell carcinoma, nonmuscle, invasive, intravesical therapy, BCG

  2. GENETIC RISK MARKERS FOR SUPERFICIAL AND INVASIVE BLADDER CANCER

    Directory of Open Access Journals (Sweden)

    V. N. Pavlov

    2011-01-01

    Full Text Available To reveal possible associations of the polymorphic variants of the cytochrome P450 and enzymes glutathione-S-transferase genes with the risk for bladder cancer (BC, the authors analyzed the frequency of genotypes and alleles at the polymorphic loci of the CYP1A1 (A2454G, GSTM1 (del, and GSTP1 (A313G genes in 208 patients diagnosed as having BC (104 patients with invasive BC and 104 with superficial BC and in 367 patients without identified oncopathology. The *1A*2C (OR = 3.42 and *2C*2С (OR = 6.98 genotypes, *2C (OR = 3.73 allele of the CYP1A1 gene and the GG (OR = 2.53 genotype of the GSTP1 gene were ascertained to be genetic markers for a risk for BC. The presence of the *2C (OR = 1.69 allele of the CYP1A1 gene, the G (OR = 2.40 allele and the AG genotype (OR = 2.40 of the GSTP1 gene was associated with the invasive forms of BC. There were no substantial differences in the distribution of the frequency of genotypes of the GSTM1 gene between the samples of patients and healthy individuals.

  3. NME2 reduces proliferation, migration and invasion of gastric cancer cells to limit metastasis.

    Directory of Open Access Journals (Sweden)

    Yan-fei Liu

    Full Text Available Gastric cancer is one of the most common malignancies and has a high rate of metastasis. We hypothesize that NME2 (Nucleoside Diphosphate Kinase 2, which has previously been considered as an anti-metastatic gene, plays a role in the invasiveness of gastric cancer cells. Using a tissue chip technology and immunohistochemistry, we demonstrated that NME2 expression was associated with levels of differentiation of gastric cancer cells and their metastasis into the lymph nodes. When the NME2 gene product was over-expressed by ;in vitro stable transfection, cells from BGC823 and MKN45 gastric cancer cell lines had reduced rates of proliferation, migration, and invasion through the collagen matrix, suggesting an inhibitory activity of NME2 in the propagation and invasion of gastric cancer. NME2 could, therefore, severe as a risk marker for gastric cancer invasiveness and a potential new target for gene therapy to enhance or induce NME2 expression.

  4. Study on Invasion of Artesunate on Inhibiting Human Colon Cancer Cell SW620

    Institute of Scientific and Technical Information of China (English)

    Fan Yu; Zhang Youli; Yao Guangtao; Li Yikui

    2013-01-01

    Objective:To observe the invasive effect of Chinese extraction artesunate on human colon cancer cell SW620 and explore its possible mechanisms. Methods:Colon cancer cell SW620 was managed by different concentrations of artesunate, and soft agar colony-cultivating trial was applied to detect anchorage independent proliferation of cancer cells, Boyden chamber model method to detect the invasive capability of cancer cells and Western blot method to detect the change of intercellular adhesion molecule-1 (ICAM-1) proteins. Results:Artesunate can effectively inhibit malignant proliferation and invasive capability of colon cancer cell SW620, and was dose-dependent (P Conclusion:Artesunate can signiifcantly inhibit the invasion of colon cancer cell SW620, which can be related to down-regulation of ICAM-1 protein level.

  5. Invasive oral cancer stem cells display resistance to ionising radiation.

    Science.gov (United States)

    Gemenetzidis, Emilios; Gammon, Luke; Biddle, Adrian; Emich, Helena; Mackenzie, Ian C

    2015-12-22

    There is a significant amount of evidence to suggest that human tumors are driven and maintained by a sub-population of cells, known as cancer stem cells (CSC). In the case of head and neck cancer, such cells have been characterised by high expression levels of CD44 cell surface glycoprotein, while we have previously shown the presence of two diverse oral CSC populations in vitro, with different capacities for cell migration and proliferation. Here, we examined the response of oral CSC populations to ionising radiation (IR), a front-line measure for the treatment of head and neck tumors. We show that oral CSC initially display resistance to IR-induced growth arrest as well as relative apoptotic resistance. We propose that this is a result of preferential activation of the DNA damagerepair pathway in oral CSC with increased activation of ATM and BRCA1, elevated levels of DNA repair proteins RAD52, XLF, and a significantly faster rate of DNA double-strand-breaks clearance 24 hours following IR. By visually identifying CSC sub-populations undergoing EMT, we show that EMT-CSC represent the majority of invasive cells, and are more radio-resistant than any other population in re-constructed 3D tissues. We provide evidence that IR is not sufficient to eliminate CSC in vitro, and that sensitization of CD44hi/ESAlow cells to IR, followed by secondary EMT blockade, could be critical in order to reduce primary tumor recurrence, but more importantly to be able to eradicate cells capable of invasion and distant metastasis.

  6. Insulin-like growth factor binding protein 2 promotes ovarian cancer cell invasion

    Directory of Open Access Journals (Sweden)

    Liu Jinsong

    2005-02-01

    Full Text Available Abstract Background Insulin-like growth factor binding protein 2 (IGFBP2 is overexpressed in ovarian malignant tissues and in the serum and cystic fluid of ovarian cancer patients, suggesting an important role of IGFBP2 in the biology of ovarian cancer. The purpose of this study was to assess the role of increased IGFBP2 in ovarian cancer cells. Results Using western blotting and tissue microarray analyses, we showed that IGFBP2 was frequently overexpressed in ovarian carcinomas compared with normal ovarian tissues. Furthermore, IGFBP2 was significantly overexpressed in invasive serous ovarian carcinomas compared with borderline serous ovarian tumors. To test whether increased IGFBP2 contributes to the highly invasive nature of ovarian cancer cells, we generated IGFBP2-overexpressing cells from an SKOV3 ovarian cancer cell line, which has a very low level of endogenous IGFBP2. A Matrigel invasion assay showed that these IGFBP2-overexpressing cells were more invasive than the control cells. We then designed small interference RNA (siRNA molecules that attenuated IGFBP2 expression in PA-1 ovarian cancer cells, which have a high level of endogenous IGFBP2. The Matrigel invasion assay showed that the attenuation of IGFBP2 expression indeed decreased the invasiveness of PA-1 cells. Conclusions We therefore showed that IGFBP2 enhances the invasion capacity of ovarian cancer cells. Blockage of IGFBP2 may thus constitute a viable strategy for targeted cancer therapy.

  7. Human Papillomavirus Genotype Distribution in Invasive Cervical Cancer in Pakistan.

    Science.gov (United States)

    Loya, Asif; Serrano, Beatriz; Rasheed, Farah; Tous, Sara; Hassan, Mariam; Clavero, Omar; Raza, Muhammad; De Sanjosé, Silvia; Bosch, F Xavier; Alemany, Laia

    2016-07-30

    Few studies have assessed the burden of human papillomavirus (HPV) infection in Pakistan. We aim to provide specific information on HPV-type distribution in invasive cervical cancer (ICC) in the country. A total of 280 formalin-fixed paraffin-embedded tissue blocks were consecutively selected from Shaukat Khanum Memorial Cancer Hospital and Research Centre (Lahore, Pakistan). HPV-DNA was detected by SPF10 broad-spectrum PCR followed by DNA enzyme immunoassay and genotyping by LiPA25. HPV-DNA prevalence was 87.5% (95%CI: 83.0-91.1), with 96.1% of cases histologically classified as squamous cell carcinoma. Most of the HPV-DNA positive cases presented single infections (95.9%). HPV16 was the most common type followed by HPV18 and 45. Among HPV-DNA positive, a significantly higher contribution of HPV16/18 was detected in Pakistan (78.4%; 72.7-83.3), compared to Asia (71.6%; 69.9-73.4) and worldwide (70.8%; 69.9-71.8) and a lower contribution of HPVs31/33/45/52/58 (11.1%; 7.9-15.7 vs. 19.8%; 18.3-21.3 and 18.5%; 17.7-19.3). HPV18 or HPV45 positive ICC cases were significantly younger than cases infected by HPV16 (mean age: 43.3, 44.4, 50.5 years, respectively). A routine cervical cancer screening and HPV vaccination program does not yet exist in Pakistan; however, the country could benefit from national integrated efforts for cervical cancer prevention and control. Calculated estimations based on our results show that current HPV vaccine could potentially prevent new ICC cases.

  8. c-Ski activates cancer-associated fibroblasts to regulate breast cancer cell invasion.

    Science.gov (United States)

    Wang, Liyang; Hou, Yixuan; Sun, Yan; Zhao, Liuyang; Tang, Xi; Hu, Ping; Yang, Jiajia; Zeng, Zongyue; Yang, Guanglun; Cui, Xiaojiang; Liu, Manran

    2013-12-01

    Aberrant expression of c-Ski oncoprotein in some tumor cells has been shown to be associated with cancer development. However, the role of c-Ski in cancer-associated fibroblasts (CAFs) of tumor microenvironment has not been characterized. In the current study, we found that c-Ski is highly expressed in CAFs derived from breast carcinoma microenvironment and this CAF-associated c-Ski expression is associated with invasion and metastasis of human breast tumors. We showed that c-Ski overexpression in immortalized breast normal fibroblasts (NFs) induces conversion to breast CAFs by repressing p53 and thereby upregulating SDF-1 in NFs. SDF-1 treatment or p53 knockdown in NFs had similar effects on the activation of NFs as c-Ski overexpression. The c-Ski-activated CAFs show increased proliferation, migration, invasion and contraction compared with NFs. Furthermore, c-Ski-activated CAFs facilitated the migration and invasion of MDA-MB-231 breast cancer cells. Our data suggest that c-Ski is an important regulator in the activation of CAFs and may serve as a potential therapeutic target to block breast cancer progression.

  9. Intertwining of Activin A and TGFβ Signaling: Dual Roles in Cancer Progression and Cancer Cell Invasion

    Energy Technology Data Exchange (ETDEWEB)

    Loomans, Holli A. [Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Andl, Claudia D., E-mail: claudia.andl@vanderbilt.edu [Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Vanderbilt Digestive Disease Center, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Vanderbilt Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232 (United States)

    2014-12-30

    In recent years, a significant amount of research has examined the controversial role of activin A in cancer. Activin A, a member of the transforming growth factor β (TGFβ) superfamily, is best characterized for its function during embryogenesis in mesoderm cell fate differentiation and reproduction. During embryogenesis, TGFβ superfamily ligands, TGFβ, bone morphogenic proteins (BMPs) and activins, act as potent morphogens. Similar to TGFβs and BMPs, activin A is a protein that is highly systemically expressed during early embryogenesis; however, post-natal expression is overall reduced and remains under strict spatiotemporal regulation. Of importance, normal post-natal expression of activin A has been implicated in the migration and invasive properties of various immune cell types, as well as endometrial cells. Aberrant activin A signaling during development results in significant morphological defects and premature mortality. Interestingly, activin A has been found to have both oncogenic and tumor suppressor roles in cancer. Investigations into the role of activin A in prostate and breast cancer has demonstrated tumor suppressive effects, while in lung and head and neck squamous cell carcinoma, it has been consistently shown that activin A expression is correlated with increased proliferation, invasion and poor patient prognosis. Activin A signaling is highly context-dependent, which is demonstrated in studies of epithelial cell tumors and the microenvironment. This review discusses normal activin A signaling in comparison to TGFβ and highlights how its dysregulation contributes to cancer progression and cell invasion.

  10. Cannabidiol inhibits cancer cell invasion via upregulation of tissue inhibitor of matrix metalloproteinases-1.

    Science.gov (United States)

    Ramer, Robert; Merkord, Jutta; Rohde, Helga; Hinz, Burkhard

    2010-04-01

    Although cannabinoids exhibit a broad variety of anticarcinogenic effects, their potential use in cancer therapy is limited by their psychoactive effects. Here we evaluated the impact of cannabidiol, a plant-derived non-psychoactive cannabinoid, on cancer cell invasion. Using Matrigel invasion assays we found a cannabidiol-driven impaired invasion of human cervical cancer (HeLa, C33A) and human lung cancer cells (A549) that was reversed by antagonists to both CB(1) and CB(2) receptors as well as to transient receptor potential vanilloid 1 (TRPV1). The decrease of invasion by cannabidiol appeared concomitantly with upregulation of tissue inhibitor of matrix metalloproteinases-1 (TIMP-1). Knockdown of cannabidiol-induced TIMP-1 expression by siRNA led to a reversal of the cannabidiol-elicited decrease in tumor cell invasiveness, implying a causal link between the TIMP-1-upregulating and anti-invasive action of cannabidiol. P38 and p42/44 mitogen-activated protein kinases were identified as upstream targets conferring TIMP-1 induction and subsequent decreased invasiveness. Additionally, in vivo studies in thymic-aplastic nude mice revealed a significant inhibition of A549 lung metastasis in cannabidiol-treated animals as compared to vehicle-treated controls. Altogether, these findings provide a novel mechanism underlying the anti-invasive action of cannabidiol and imply its use as a therapeutic option for the treatment of highly invasive cancers.

  11. Bladder cancer: utility of MRI in detection of occult muscle-invasive disease

    Energy Technology Data Exchange (ETDEWEB)

    Rosenkrantz, Andrew B. [Dept. of Radiology, NYU Langone Medical Center, New York (United States)], E-mail: Andrew.rosenkrantz@nyumc.org; Mussi, Thais C. [Dept. of Radiology, NYU Langone Medical Center, New York (United States); Hospital Israelita Albert Einstein, Sao Paulo (Brazil); Melamed, Jonathan [Dept. of Pathology, NYU Langone Medical Center, New York (United States); Taneja, Samir S.; Huang, William C. [Dept. of Urology, Div. of Urologic Oncology, NYU Langone Medical Center, New York (United States)

    2012-07-15

    Background. The presence of muscularis propria invasion by bladder cancer is a key factor in prognosis and treatment decisions, although may be missed by biopsy due to sampling error. MRI has shown potential for detection of muscle invasion but has not specifically been evaluated for this purpose in the setting of bladder cancer patients without evidence of muscle invasion on initial biopsy. Purpose. To evaluate the role of MRI in detection of muscularis propria invasion by bladder cancer following a pathologic diagnosis of non-invasive tumor. Material and Methods. This retrospective study included 23 patients who underwent pelvic MRI following a pathologic diagnosis of bladder cancer without muscularis propria invasion and in whom additional histologic evaluation was performed following MRI. Two radiologists in consensus reviewed T2-weighted images to identify those cases suspicious for muscle invasion on MRI. The radiologists identified whether cases suspicious for invasion demonstrated disruption of the T2-hypointense muscularis layer of the bladder wall, peri-vesical fat stranding, and peri-vesical soft tissue nodularity. Findings were compared with pathologic results obtained after MRI. Results. Suspicion was raised for muscle invasion in eight of 23 cases, four of which exhibited invasion on follow-up pathology. No case without suspicion on MRI exhibited invasion on follow-up pathology. Therefore, sensitivity and specificity were 100% and 79%, respectively. Among individual findings, muscularis disruption on T2WI exhibited sensitivity of 100% and specificity of 79%, peri-vesical fat stranding exhibited sensitivity and specificity of 50% and 84%, and peri-vesical soft tissue nodularity exhibited sensitivity and specificity of 25% and 100%. Conclusion. MRI demonstrated high sensitivity for detection of muscle invasion in cases of bladder cancer without invasion on initial histologic assessment. Muscularis disruption on T2WI appeared to exhibit a better

  12. Dynamics of tissue topology during cancer invasion and metastasis

    Science.gov (United States)

    Munn, Lance L.

    2013-12-01

    During tumor progression, cancer cells mix with other cell populations including epithelial and endothelial cells. Although potentially important clinically as well as for our understanding of basic tumor biology, the process of mixing is largely a mystery. Furthermore, there is no rigorous, analytical measure available for quantifying the mixing of compartments within a tumor. I present here a mathematical model of tissue repair and tumor growth based on collective cell migration that simulates a wide range of observed tumor behaviors with correct tissue compartmentalization and connectivity. The resulting dynamics are analyzed in light of the Euler characteristic number (χ), which describes key topological features such as fragmentation, looping and cavities. The analysis predicts a number of regimes in which the cancer cells can encapsulate normal tissue, form a co-interdigitating mass, or become fragmented and encapsulated by endothelial or epithelial structures. Key processes that affect the topological changes are the production of provisional matrix in the tumor, and the migration of endothelial or epithelial cells on this matrix. Furthermore, the simulations predict that topological changes during tumor invasion into blood vessels may contribute to metastasis. The topological analysis outlined here could be useful for tumor diagnosis or monitoring response to therapy and would only require high resolution, 3D image data to resolve and track the various cell compartments.

  13. Mitosis Detection for Invasive Breast Cancer Grading in Histopathological Images.

    Science.gov (United States)

    Paul, Angshuman; Mukherjee, Dipti Prasad

    2015-11-01

    Histopathological grading of cancer not only offers an insight to the patients' prognosis but also helps in making individual treatment plans. Mitosis counts in histopathological slides play a crucial role for invasive breast cancer grading using the Nottingham grading system. Pathologists perform this grading by manual examinations of a few thousand images for each patient. Hence, finding the mitotic figures from these images is a tedious job and also prone to observer variability due to variations in the appearances of the mitotic cells. We propose a fast and accurate approach for automatic mitosis detection from histopathological images. We employ area morphological scale space for cell segmentation. The scale space is constructed in a novel manner by restricting the scales with the maximization of relative-entropy between the cells and the background. This results in precise cell segmentation. The segmented cells are classified in mitotic and non-mitotic category using the random forest classifier. Experiments show at least 12% improvement in F1 score on more than 450 histopathological images at 40× magnification.

  14. "Fast-track" and "Minimally Invasive" Surgery for Gastric Cancer

    Institute of Scientific and Technical Information of China (English)

    Xin-Xin Liu; Hua-Feng Pan; Zhi-Wei Jiang; Shu Zhang; Zhi-Ming Wang; Ping Chen; Yan Zhao

    2016-01-01

    Background:Enhanced recovery after surgery (ERAS) protocols or fast-track (FT) programs enable a shorter hospital stay and lower complication rate.Minimally invasive surgery (MIS) is associated with a lesser trauma and a quicker recovery in many elective abdominal surgeries.However,little is known of the safety and effectiveness made by ERAS protocols combined with MIS for gastric cancer.The purpose of this study was to evaluate the safety and effectiveness made by FT programs and MIS in combination or alone.Methods:We summarized an 11-year experience on gastric cancer patients undergoing elective laparotomy or minimally invasive gastric resection in standard cares (SC) or FT programs during January 2004 to December 2014.A total of 984 patients were enrolled and assigned into four groups:open gastrectomies (OG) with SC (OG + SC group,n =167);OG with FT programs (OG + FT group,n =277);laparoscopic gastrectomies (LG) with FT programs (LG + FT group,n =248);and robot-assisted gastrectomies (RG) with FT programs (RG + FT group,n =292).Patients' data were collected to evaluate the clinical outcome.The primary end point was the length of postoperative hospital stay.Results:The OG + SC group showed the longest postoperative hospital stay (mean:12.3 days,median:11 days,interquartile range [IQR]:6-16 days),while OG + FT,LG + FT,and RG + FT groups recovered faster (mean:7.4,6.4,and 6.6 days,median:6,6,and 6 days,IQR:3-9,4-8,and 3-9 days,respectively,all P < 0.001).The postoperative rehabilitation parameters such as flatus time after surgery (4.7 ± 0.9,3.1 ± 0.8,3.0± 0.9,and 3.1 ± 0.9 days) followed the same manner.After 30 postoperative days' follow-up,the total incidence of complications was 9.6% in OG + SC group,10.1% in OG + FT group,8.1% in LG + FT group,and 10.3% in RG + FT group.The complications showed no significant differences between the four groups (all P > 0.05).Conclusions:ERAS protocols alone could significantly bring fast recovery after surgery

  15. Mathematical modelling of the influence of heat shock proteins on cancer invasion of tissue.

    Science.gov (United States)

    Szymańska, Zuzanna; Urbański, Jakub; Marciniak-Czochra, Anna

    2009-04-01

    Tumour cell invasion is crucial for cancer metastasis, which is the main cause of cancer mortality. An important group of proteins involved in cancer invasion are the Heat Shock Proteins (HSPs). According to experimental data, inhibition of one of these proteins, Hsp90, slows down cancer cells while they are invading tissue, but does not affect the synthesis of matrix metalloproteinases (MMP2 and MMP9), which are very important for cancer metastasis, acting as extracellular matrix (ECM) degrading enzymes. To test different biological hypotheses regarding how precisely Hsp90 influences tumour invasion, in this paper we use a model of solid tumour growth which accounts for the interactions between Hsp90 dynamics and the migration of cancer cells and, alternatively, between Hsp90 dynamics and the synthesis of matrix degrading enzymes (MDEs). The model consists of a system of reaction-diffusion-taxis partial differential equations describing interactions between cancer cells, MDE, and the host tissue (ECM). Using numerical simulations we investigate the effects of the administration of Hsp90 inhibitors on the dynamics of tumour invasion. Alternative mechanisms of reduction of cancer invasiveness result in different simulated patterns of the invading tumour cells. Therefore, predictions of the model suggest experiments which might be performed to develop a deeper understanding of the tumour invasion process.

  16. Solar radiation and the incidence and mortality of leading invasive cancers in the United States

    Science.gov (United States)

    Fleischer, Alan B.; Fleischer, Sarah E.

    2016-01-01

    ABSTRACT Invasive cancer risk is inversely related to ultraviolet light exposure. This study explores relationships between cancer and the satellite-derived sunlight energy. We obtained the North America Land Data Assimilation System (NLDAS) daily average sunlight for the continental United States from 1999–2011. US Cancer Statistics age-adjusted-incidence and mortality was also obtained from the Centers for Disease Control and Prevention (CDC). We found that cancer incidence for all invasive cancers and for 11 of 22 leading cancers significantly decreased with increased solar radiation. Cancer mortality for all invasive cancers was not significantly associated with solar radiation, but for 7 of 22 leading cancers, including cancers of the uterus, leukemias, lung, ovary, and urinary bladder, increased solar radiation predicted decreased mortality. With increasing solar radiation, increased incidence and cancer mortality was observed for liver cancer and increased incidence but not mortality was observed for cervical cancer. The current study confirms studies relating UV radiation to the incidence and mortality of a variety of cancer types. We find associations between solar radiation energy and the incidence and mortality of a number of types of cancers. PMID:27195056

  17. Solar radiation and the incidence and mortality of leading invasive cancers in the United States.

    Science.gov (United States)

    Fleischer, Alan B; Fleischer, Sarah E

    2016-01-01

    Invasive cancer risk is inversely related to ultraviolet light exposure. This study explores relationships between cancer and the satellite-derived sunlight energy. We obtained the North America Land Data Assimilation System (NLDAS) daily average sunlight for the continental United States from 1999-2011. US Cancer Statistics age-adjusted-incidence and mortality was also obtained from the Centers for Disease Control and Prevention (CDC). We found that cancer incidence for all invasive cancers and for 11 of 22 leading cancers significantly decreased with increased solar radiation. Cancer mortality for all invasive cancers was not significantly associated with solar radiation, but for 7 of 22 leading cancers, including cancers of the uterus, leukemias, lung, ovary, and urinary bladder, increased solar radiation predicted decreased mortality. With increasing solar radiation, increased incidence and cancer mortality was observed for liver cancer and increased incidence but not mortality was observed for cervical cancer. The current study confirms studies relating UV radiation to the incidence and mortality of a variety of cancer types. We find associations between solar radiation energy and the incidence and mortality of a number of types of cancers.

  18. SLUG promotes prostate cancer cell migration and invasion via CXCR4/CXCL12 axis

    Directory of Open Access Journals (Sweden)

    Uygur Berna

    2011-11-01

    Full Text Available Abstract Background SLUG is a zinc-finger transcription factor of the Snail/Slug zinc-finger family that plays a role in migration and invasion of tumor cells. Mechanisms by which SLUG promotes migration and invasion in prostate cancers remain elusive. Methods Expression level of CXCR4 and CXCL12 was examined by Western blot, RT-PCR, and qPCR analyses. Forced expression of SLUG was mediated by retroviruses, and SLUG and CXCL12 was downregulated by shRNAs-expressing lentiviruses. Migration and invasion of prostate cancer were measured by scratch-wound assay and invasion assay, respectively. Research We demonstrated that forced expression of SLUG elevated CXCR4 and CXCL12 expression in human prostate cancer cell lines PC3, DU145, 22RV1, and LNCaP; conversely, reduced expression of SLUG by shRNA downregulated CXCR4 and CXCL12 expression at RNA and protein levels in prostate cancer cells. Furthermore, ectopic expression of SLUG increased MMP9 expression and activity in PC3, 22RV1, and DU-145 cells, and SLUG knockdown by shRNA downregulated MMP9 expression. We showed that CXCL12 is required for SLUG-mediated MMP9 expression in prostate cancer cells. Moreover, we found that migration and invasion of prostate cancer cells was increased by ectopic expression of SLUG and decreased by SLUG knockdown. Notably, knockdown of CXCL12 by shRNA impaired SLUG-mediated migration and invasion in prostate cancer cells. Lastly, our data suggest that CXCL12 and SLUG regulate migration and invasion of prostate cancer cells independent of cell growth. Conclusion We provide the first compelling evidence that upregulation of autocrine CXCL12 is a major mechanism underlying SLUG-mediated migration and invasion of prostate cancer cells. Our findings suggest that CXCL12 is a therapeutic target for prostate cancer metastasis.

  19. Peripheral blood immunological parameters for use as markers of pre-invasive to invasive colorectal cancer.

    Science.gov (United States)

    Berghella, Anna Maria; Contasta, Ida; Pellegrini, Patrizia; Del Beato, Tiziana; Adorno, Domenico

    2002-02-01

    In cancer, the extent to which the disease has spread is probably the most important factor in determining patient prognosis. Hence practical and non-invasive methods are needed to identify disease stage. In a previous paper we showed how diagnostic and prognostic indices for disease progression could be defined by evaluating parameters in peripheral blood. The aim of this study was to identify further serum parameters that could be used. Serum levels of interferon (IFN) gamma, interleukin (IL)4, IL8, IL7, IL1 beta, tumor necrosis factor (TNF) alpha, granulocyte macrophage-colony stimulating factor (GM-CSF), soluble (s) IL2 receptor (R) and sIL6R were studied but only levels of IL4, sIL2R, IL8 and IL7 were found to be significant and would therefore be of use in defining diagnostic and prognostic indices for disease progression. In further detail, our results indicate that when serum levels of sIL2R 339 pg/ml there is a 95% probability that the disease is in stage I or II where there is no infiltration of lymph nodes; when serum levels of sIL2R > or = 522 Ug/ml, 159 pg/ml or = 431 pg/ml and IL7 > or = 54 pg/ml, there is a 95% probability that the disease is in stage IV and there is metastasis.

  20. FGF19 Contributes to Tumor Progression in Gastric Cancer by Promoting Migration and Invasion.

    Science.gov (United States)

    Wang, Shuang; Zhao, Daqi; Tian, Ruihua; Shi, Hailong; Chen, Xiangming; Liu, Wenzhi; Wei, Lin

    2016-01-01

    Gastric cancer is the fourth most common type of cancer and second leading cause of cancer-related death in the world. Since patients are often diagnosed at a late stage, very few effective therapies are left in the arsenal. FGF19, as a hormone, has been reported to promote tumor growth in various types of cancer; however, its function in gastric cancer remains unknown. In the current study, we showed that FGF19 is overexpressed in gastric cancer and is associated with depth of invasion, lymph node metastasis, and TNM stage. In addition, in vitro experiments demonstrated that FGF19 is able to enhance migration and invasion abilities of gastric cancer cells. Given its great potency in gastric cancer progression, FGF19 may be an effective target of treatment for advanced gastric cancer patients.

  1. CNK1 promotes invasion of cancer cells through NF-kappaB-dependent signaling.

    Science.gov (United States)

    Fritz, Rafael D; Radziwill, Gerald

    2010-03-01

    Hallmarks of cancer cells are uncontrolled proliferation, evasion of apoptosis, angiogenesis, cell invasion, and metastasis, which are driven by oncogenic activation of signaling pathways. Herein, we identify the scaffold protein CNK1 as a mediator of oncogenic signaling that promotes invasion in human breast cancer and cervical cancer cells. Downregulation of CNK1 diminishes the invasiveness of cancer cells and correlates with reduced expression of matrix metalloproteinase 9 (MMP-9) and membrane-type 1 MMP (MT1-MMP). Ectopic expression of CNK1 elevates MT1-MMP promoter activity in a NF-kappaB-dependent manner. Moreover, CNK1 cooperates with the NF-kappaB pathway, but not with the extracellular signal-regulated protein kinase pathway, to promote cell invasion. Mechanistically, CNK1 regulates the alternative branch of the NF-kappaB pathway because knockdown of CNK1 interferes with processing of NF-kappaB2 p100 to p52 and its localization to the nucleus. In agreement with this, the invasion of CNK1-depleted cells is less sensitive to RelB downregulation compared with the invasion of control cells. Moreover, CNK1-dependent MT1-MMP promoter activation is blocked by RelB siRNA. Thus, CNK1 is an essential mediator of an oncogenic pathway involved in invasion of breast and cervical cancer cells and is therefore a putative target for cancer therapy.

  2. DEGRO practical guidelines for radiotherapy of breast cancer IV. Radiotherapy following mastectomy for invasive breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Wenz, Frederik; Sperk, Elena [Universitaetsmedizin Mannheim, Klinik fuer Strahlentherapie und Radioonkologie, Mannheim (Germany); Budach, Wilfried [Heinrich-Heine-University, Duesseldorf (Germany); Dunst, Juergen [University Hospital Schleswig-Holstein, Luebeck (Germany); Feyer, Petra [Vivantes Hospital Neukoelln, Berlin (Germany); Fietkau, Rainer; Sauer, Rolf [University Hospital Erlangen, Erlangen (Germany); Haase, Wulf [Formerly St.-Vincentius-Hospital, Karlsruhe (Germany); Harms, Wolfgang [St. Clara Hospital, Basel (Switzerland); Piroth, Marc D. [Helios Hospital, Wuppertal (Germany); Sautter-Bihl, Marie-Luise [Municipal Hospital, Karlsruhe (Germany); Sedlmayer, Felix; Fussl, Christoph [Paracelsus Medical University Hospital, Salzburg (Germany); Souchon, Rainer; Collaboration: Breast Cancer Expert Panel of the German Society of Radiation Oncology (DEGRO)

    2014-08-15

    Since the last recommendations from the Breast Cancer Expert Panel of the German Society for Radiation Oncology (DEGRO) in 2008, evidence for the effectiveness of postmastectomy radiotherapy (PMRT) has grown. This growth is based on updates of the national S3 and international guidelines, as well as on new data and meta-analyses. New aspects were considered when updating the DEGRO recommendations. The authors performed a comprehensive survey of the literature. Data from recently published (meta-)analyses, randomized clinical trials and international cancer societies' guidelines yielding new aspects compared to 2008 were reviewed and discussed. New aspects were included in the current guidelines. Specific issues relating to particular PMRT constellations, such as the presence of risk factors (lymphovascular invasion, blood vessel invasion, positive lymph node ratio > 20 %, resection margins < 3 mm, G3 grading, young age/premenopausal status, extracapsular invasion, negative hormone receptor status, invasive lobular cancer, size > 2 cm or a combination of ≥ 2 risk factors) and 1-3 positive lymph nodes are emphasized. The evidence for improved overall survival and local control following PMRT for T4 tumors, positive resection margins, > 3 positive lymph nodes and in T3 N0 patients with risk factors such as lymphovascular invasion, G3 grading, close margins, and young age has increased. Recently identified risk factors such as invasive lobular subtype and negative hormone receptor status were included. For patients with 1-3 positive lymph nodes, the recommendation for PMRT has reached the 1a level of evidence. PMRT is mandatory in patients with T4 tumors and/or positive lymph nodes and/or positive resection margins. PMRT should be strongly considered in patients with T3 N0 tumors and risk factors, particularly when two or more risk factors are present. (orig.) [German] Seit der letzten Aktualisierung der 2008 publizierten Leitlinie der &apos

  3. Adipose tissue-derived stem cells promote pancreatic cancer cell proliferation and invasion

    Energy Technology Data Exchange (ETDEWEB)

    Ji, S.Q.; Cao, J. [Department of Liver Surgery I, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai (China); Zhang, Q.Y.; Li, Y.Y. [Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Wenzhou Medical College, Wenzhou (China); Yan, Y.Q. [Department of Liver Surgery I, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai (China); Yu, F.X. [Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Wenzhou Medical College, Wenzhou (China)

    2013-09-27

    To explore the effects of adipose tissue-derived stem cells (ADSCs) on the proliferation and invasion of pancreatic cancer cells in vitro and the possible mechanism involved, ADSCs were cocultured with pancreatic cancer cells, and a cell counting kit (CCK-8) was used to detect the proliferation of pancreatic cancer cells. ELISA was used to determine the concentration of stromal cell-derived factor-1 (SDF-1) in the supernatants. RT-PCR was performed to detect the expression of the chemokine receptor CXCR4 in pancreatic cancer cells and ADSCs. An in vitro invasion assay was used to measure invasion of pancreatic cancer cells. SDF-1 was detected in the supernatants of ADSCs, but not in pancreatic cancer cells. Higher CXCR4 mRNA levels were detected in the pancreatic cancer cell lines compared with ADSCs (109.3±10.7 and 97.6±7.6 vs 18.3±1.7, respectively; P<0.01). In addition, conditioned medium from ADSCs promoted the proliferation and invasion of pancreatic cancer cells, and AMD3100, a CXCR4 antagonist, significantly downregulated these growth-promoting effects. We conclude that ADSCs can promote the proliferation and invasion of pancreatic cancer cells, which may involve the SDF-1/CXCR4 axis.

  4. Enhanced proliferation, invasion, and epithelial-mesenchymal transition of nicotine-promoted gastric cancer by periostin

    Institute of Scientific and Technical Information of China (English)

    Yu Liu; Bao-An Liu

    2011-01-01

    AIM: To investigate the contribution of periostin in nicotine-promoted gastric cancer cell proliferation, survival, invasion, drug resistance, and epithelial-mesenchymal transition (EMT). METHODS: Gastric cancer cells were treated with nicotine and periostin protein expression was determined by immunoblotting. Periostin mRNA in gastric cancer cells was silenced using small interfering RNA (siRNA) techniques and periostin gene expression was evaluated by quantitative reverse transcription-polymerase chain reaction. Gastric cancer cells transfected with control or periostin siRNA plasmid were compared in terms of cell proliferation using the methylthiazolyldiphenyl-tetrazolium bromide assay. Cell apoptosis was compared using annexin V-fluoresceine isothiocyanate and propidium iodine double staining. Tumor invasion was determined using the Boyden chamber invasion assay, and the EMT marker Snail expression was evaluated by immunoblotting. RESULTS: Nicotine upregulated periostin in gastric cancer cells through a COX-2 dependent pathway, which was blocked by the COX-2-specific inhibitor NS398. Periostin mRNA expression was decreased by ~87.2% by siRNA in gastric cancer cells, and stable periostinsilenced cells were obtained by G418 screening. Periostin- silenced gastric cancer cells exhibited reduced cell proliferation, elevated sensitivity to chemotherapy with 5-fluorouracil, and decreased cell invasion and Snail expression (P < 0.05). CONCLUSION: Periostin is a nicotine target gene in gastric cancer and plays a role in gastric cancer cell growth, invasion, drug resistance, and EMT facilitated by nicotine.

  5. [Uniportal VATS: a sublimation of micro-invasive lung cancer resection].

    Science.gov (United States)

    Liu, Chengwu; Liu, Lunxu

    2014-07-20

    Micro-invasive thoracic surgery, especially represented by video-assisted thoracic surgery (VATS), has become the mainstream of lung cancer resection. Traditional multi-portal VATS techniques, including four-port, three-port, and two-port VATS, have been widely used to perform nearly all kinds of lung cancer resections. However, how to make lung cancer resection less invasive is always the subject that all thoracic surgeons never stop pursuing. Compared with multi-portal VATS, uniportal VATS causes less postoperative pain and paresthesia because only one small incision is made and one intercoastal space is involved. In recent years, good clinical results have been obtained from uniportal VATS in lung cancer resections. In this paper, we'd like to present a brief summary about the progresses made in the application of uniportal VATS in lung cancer resection. Uniportal VATS is a sublimation of micro-invasive lung cancer resection.

  6. Time-dependent traction force microscopy for cancer cells as a measure of invasiveness.

    Science.gov (United States)

    Peschetola, Valentina; Laurent, Valérie M; Duperray, Alain; Michel, Richard; Ambrosi, Davide; Preziosi, Luigi; Verdier, Claude

    2013-04-01

    The migration of tumor cells of different degrees of invasivity is studied, on the basis of the traction forces exerted in time on soft substrates (Young modulus∼10 kPa). It is found that the outliers of the traction stresses can be an effective indicator to distinguish cancer cell lines of different invasiveness. Here, we test two different epithelial bladder cancer cell lines, one invasive (T24), and a less invasive one (RT112). Invasive cancer cells move in a nearly periodic motion, with peaks in velocity corresponding to higher traction forces exerted on the substrate, whereas less invasive cells develop traction stresses almost constant in time. The dynamics of focal adhesions (FAs) as well as cytoskeleton features reveals that different mechanisms are activated to migrate: T24 cells show an interconnected cytoskeleton linked to mature adhesion sites, leading to small traction stresses, whereas less invasive cells (RT112) show a less-structured cytoskeleton and unmature adhesions corresponding to higher traction stresses. Migration velocities are smaller in the case of less invasive cells. The mean squared displacement shows super-diffusive motion in both cases with higher exponent for the more invasive cancer cells. Further correlations between traction forces and the actin cytoskeleton reveal an unexpected pattern of a large actin rim at the RT112 cell edge where higher forces are colocalized, whereas a more usual cytoskeleton structure with stress fibers and FAs are found for T24 cancer cells. We conjecture that this kind of analysis can be useful to classify cancer cell invasiveness.

  7. Identification of pancreatic cancer invasion-related proteins by proteomic analysis

    Directory of Open Access Journals (Sweden)

    Clynes Martin

    2009-02-01

    Full Text Available Abstract Background Markers of pancreatic cancer invasion were investigated in two clonal populations of the cell line, MiaPaCa-2, Clone #3 (high invasion and Clone #8 (low invasion using proteomic profiling of an in vitro model of pancreatic cancer. Materials and methods Using 2D-DIGE followed by MALDI-TOF MS, two clonal sub-populations of the pancreatic cancer cell line, MiaPaCa-2 with high and low invasive capacities were incubated on matrigel 24 hours prior to analysis to stimulate cell-ECM contact and mimic in vivo interaction with the basement membrane. Results Sixty proteins were identified as being differentially expressed (> 1.2 fold change and p ≤ 0.05 between Clone #3 and Clone #8. Proteins found to have higher abundance levels in the highly invasive Clone #3 compared to the low invasive Clone #8 include members of the chaperone activity proteins and cytoskeleton constituents whereas metabolism-associated and catalytic proteins had lower abundance levels. Differential protein expression levels of ALDH1A1, VIM, STIP1 and KRT18 and GAPDH were confirmed by immunoblot. Using RNAi technology, STIP1 knockdown significantly reduced invasion and proliferation of the highly invasive Clone #3. Knockdown of another target, VIM by siRNA in Clone #3 cells also resulted in decreased invasion abilities of Clone #3. Elevated expression of STIP1 was observed in pancreatic tumour tissue compared to normal pancreas, whereas ALDH1A1 stained at lower levels in pancreatic tumours, as detected by immunohistochemistry. Conclusion Identification of targets which play a role in the highly invasive phenotype of pancreatic cancer may help to understand the biological behaviour, the rapid progression of this cancer and may be of importance in the development of new therapeutic strategies for pancreatic cancer.

  8. ST3Gal III modulates breast cancer cell adhesion and invasion by altering the expression of invasion-related molecules.

    Science.gov (United States)

    Cui, Hong-Xia; Wang, Honglan; Wang, Yuchun; Song, Juan; Tian, Hua; Xia, Chunhui; Shen, Yetong

    2016-12-01

    Changes in the carbohydrate structure on the surface of tumor cells is an important feature of cancer metastasis. The specific role of sialic acids in the glycoconjugate terminal has not yet been clearly elucidated in these processes. Previously, we reported that α2,3-sialic acid residues in breast cancer are associated with metastatic potential. The α2,3-sialyltransferase ST3Gal III, which adds α2,3-sialic acids to glycoproteins, is overexpressed in various tumors, and enzyme activity is correlated with tumor metastasis, yet its mechanistic role has not been fully evaluated. In the present study, we aimed to investigate the influence of ST3Gal III on key steps in the process of breast cancer metastasis. ST3Gal III-overexpressing and ST3Gal III-silenced breast cancer MDA-MB-231 cell lines were generated. They showed an increase or decrease in the tumor-associated antigen sialyl-Lewis X (SLeX). The E-selectin binding capacity of the transfectants was proportional to cell surface SLeX levels. Cell migration and invasion were positively correlated with ST3Gal III levels. Moreover, ST3Gal III expression modulated the protein expression of invasion-related molecules, including β1 integrin, matrix metalloproteinase (MMP)-2, MMP-9 and cyclooxygenase-2, which may account for the mechanism involved in the effects of ST3Gal III on breast cancer invasiveness. In conclusion, our findings in these novel models of ST3Gal III expression revealed a critical requirement for ST3Gal III in several steps of breast cancer metastasis. ST3Gal III modulates breast cancer cell adhesion and invasion by altering the expression of invasion-related molecules. This study provides novel insights into the mechanisms underlying metastasis and suggests a new target for the effective drug treatment of breast cancer metastasis.

  9. G Protein Coupled Receptor Kinase 3 Regulates Breast Cancer Migration, Invasion, and Metastasis.

    Directory of Open Access Journals (Sweden)

    Matthew J Billard

    Full Text Available Triple negative breast cancer (TNBC is a heterogeneous disease that has a poor prognosis and limited treatment options. Chemokine receptor interactions are important modulators of breast cancer metastasis; however, it is now recognized that quantitative surface expression of one important chemokine receptor, CXCR4, may not directly correlate with metastasis and that its functional activity in breast cancer may better inform tumor pathogenicity. G protein coupled receptor kinase 3 (GRK3 is a negative regulator of CXCR4 activity, and we show that GRK expression correlates with tumorigenicity, molecular subtype, and metastatic potential in human tumor microarray analysis. Using established human breast cancer cell lines and an immunocompetent in vivo mouse model, we further demonstrate that alterations in GRK3 expression levels in tumor cells directly affect migration and invasion in vitro and the establishment of distant metastasis in vivo. The effects of GRK3 modulation appear to be specific to chemokine-mediated migration behaviors without influencing tumor cell proliferation or survival. These data demonstrate that GRK3 dysregulation may play an important part in TNBC metastasis.

  10. Accuracy and consequences of same-day, invasive lung cancer workup

    DEFF Research Database (Denmark)

    Madsen, Kirsten Riis; Høegholm, Asbjørn; Bodtger, Uffe

    2016-01-01

    pulmonary disease. Tumour located in right upper lobe was associated with need for resampling. DISCUSSION: Our retrospective study suggests that same-day, invasive workup for lung cancer is safe, accurate, and efficacious in reducing time to therapy, even in patients with small lesions and low tumour burden.......BACKGROUND: Though widely used, little is known about accuracy and efficacy of same-day, invasive workup of suspected lung cancer. OBJECTIVE: To evaluate the accuracy and efficacy of same-day, invasive lung cancer workup (diagnosis and mediastinal staging), and to identify differences between...... patients without (Group A) or with (Group B) need for resampling. METHODS: A retrospective study was performed on all consecutive patients referred for surgical treatment for localised lung cancer after invasive diagnostic and staging workup at our unit. Data were extracted from electronic medical files...

  11. Evaluation of tissue and urinary survivin expression in non-muscle-invasive bladder cancer

    Directory of Open Access Journals (Sweden)

    S. Sharaf

    2012-12-01

    Conclusion: Urinary survivin is a useful marker for non-invasive detection of non-muscle-invasive bladder cancer recurrence. Its detection is better using ELISA technique than WB and there is no correlation between its expression in tissue and urine.

  12. Phase 2 study of adjuvant intravesical instillations of apaziquone for high risk nonmuscle invasive bladder cancer.

    NARCIS (Netherlands)

    Hendricksen, K.; Cornel, E.B.; Reijke, T.M. de; Arentsen, H.C.; Chawla, S.; Witjes, J.A.

    2012-01-01

    PURPOSE: We studied the safety and efficacy of multiple adjuvant apaziquone instillations in patients with high risk nonmuscle invasive bladder cancer. MATERIALS AND METHODS: Patients with high risk nonmuscle invasive urothelial carcinoma of the bladder underwent transurethral resection of all bladd

  13. Chemokine CXCL16 Expression Suppresses Migration and Invasiveness and Induces Apoptosis in Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Yeying Fang

    2014-01-01

    Full Text Available Background. Increasing evidence argues that soluble CXCL16 promotes proliferation, migration, and invasion of cancer cells in vitro. However, the role of transmembrane or cellular CXCL16 in cancer remains relatively unknown. In this study, we determine the function of cellular CXCL16 as tumor suppressor in breast cancer cells. Methods. Expression of cellular CXCL16 in breast cancer cell lines was determined at both RNA and protein levels. In vitro and in vivo studies that overexpressed or downregulated CXCL16 were conducted in breast cancer cells. Results. We report differential expression of cellular CXCL16 in breast cancer cell lines that was negatively correlated with cell invasiveness and migration. Overexpression of CXCL16 in MDA-MB-231 cells led to a decrease in cell invasion and migration and induced apoptosis of the cells; downregulation of CXCL16 in MCF-7 cells increased cell migration and invasiveness. Consistent with the in vitro data, CXCL16 overexpression inhibited tumorigenesis in vivo. Conclusions. Cellular CXCL16 suppresses invasion and metastasis of breast cancer cells in vitro and inhibits tumorigenesis in vivo. Targeting of cellular CXCL16 expression is a potential therapeutic strategy for breast cancer.

  14. Ionizing Radiation Promotes the Migratory and Invasive Potential of Lung Cancer Cells by Different Mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Jin Nyoung; Kang, Ga Young; Um, Hong Duck [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2008-05-15

    Although radiation therapy is a major therapeutic modality for cancer treatment, previous reports have suggested that ionizing radiation (IR) can promote the invasive and metastatic potential of cancer cells. It was consistently reported that IR can induce certain types of matrix metalloproteinases, which are critical to the degradation of extracellular matrix. Given that the motility of cancer cells is an additional requirement for their metastasis, this study investigated whether IR can also influence the migratory potential of cancer cells.

  15. Microvesicles secreted by macrophages shuttle invasion-potentiating microRNAs into breast cancer cells

    Directory of Open Access Journals (Sweden)

    Lin Ling

    2011-09-01

    Full Text Available Abstract Background Tumor-associated macrophages (TAMs are alternatively activated cells induced by interleukin-4 (IL-4-releasing CD4+ T cells. TAMs promote breast cancer invasion and metastasis; however, the mechanisms underlying these interactions between macrophages and tumor cells that lead to cancer metastasis remain elusive. Previous studies have found microRNAs (miRNAs circulating in the peripheral blood and have identified microvesicles, or exosomes, as mediators of cell-cell communication. Therefore, one alternative mechanism for the promotion of breast cancer cell invasion by TAMs may be through macrophage-secreted exosomes, which would deliver invasion-potentiating miRNAs to breast cancer cells. Results We utilized a co-culture system with IL-4-activated macrophages and breast cancer cells to verify that miRNAs are transported from macrophages to breast cancer cells. The shuttling of fluorescently-labeled exogenous miRNAs from IL-4-activated macrophages to co-cultivated breast cancer cells without direct cell-cell contact was observed. miR-223, a miRNA specific for IL-4-activated macrophages, was detected within the exosomes released by macrophages and was significantly elevated in the co-cultivated SKBR3 and MDA-MB-231 cells. The invasiveness of the co-cultivated breast cancer cells decreased when the IL-4-activated macrophages were treated with a miR-223 antisense oligonucleotide (ASO that would inhibit miR-223 expression. Furthermore, results from a functional assay revealed that miR-223 promoted the invasion of breast cancer cells via the Mef2c-β-catenin pathway. Conclusions We conclude that macrophages regulate the invasiveness of breast cancer cells through exosome-mediated delivery of oncogenic miRNAs. Our data provide insight into the mechanisms underlying the metastasis-promoting interactions between macrophages and breast cancer cells.

  16. Cancer-associated fibroblasts promote non-small cell lung cancer cell invasion by upregulation of glucose-regulated protein 78 (GRP78) expression in an integrated bionic microfluidic device.

    Science.gov (United States)

    Yu, Ting; Guo, Zhe; Fan, Hui; Song, Jing; Liu, Yuanbin; Gao, Zhancheng; Wang, Qi

    2016-05-01

    The tumor microenvironment is comprised of cancer cells and various stromal cells and their respective cellular components. Cancer-associated fibroblasts (CAFs), a major part of the stromal cells, are a key determinant in tumor progression, while glucose-regulated protein (GRP)78 is overexpressed in many human cancers and is involved in tumor invasion and metastasis. This study developed a microfluidic-based three dimension (3D) co-culture device to mimic an in vitro tumor microenvironment in order to investigate tumor cell invasion in real-time. This bionic chip provided significant information regarding the role of GRP78, which may be stimulated by CAFs, to promote non-small cell lung cancer cell invasion in vitro. The data showed that CAF induced migration of NSCLC A549 and SPCA-1 cells in this three-dimensional invasion microdevice, which is confirmed by using the traditional Transwell system. Furthermore, CAF induced GRP78 expression in A549 and SPCA-1 cells to facilitate NSCLC cell migration and invasion, whereas knockdown of GRP78 expression blocked A549 and SPCA-1 cell migration and invasion capacity. In conclusion, these data indicated that CAFs might promote NSCLC cell invasion by up-regulation of GRP78 expression and this bionic chip microdevice is a robust platform to assess the interaction of cancer and stromal cells in tumor environment study.

  17. Modeling invasion of metastasizing cancer cells to bone marrow utilizing ecological principles

    Directory of Open Access Journals (Sweden)

    Chen Kun-Wan

    2011-10-01

    Full Text Available Abstract Background The invasion of a new species into an established ecosystem can be directly compared to the steps involved in cancer metastasis. Cancer must grow in a primary site, extravasate and survive in the circulation to then intravasate into target organ (invasive species survival in transport. Cancer cells often lay dormant at their metastatic site for a long period of time (lag period for invasive species before proliferating (invasive spread. Proliferation in the new site has an impact on the target organ microenvironment (ecological impact and eventually the human host (biosphere impact. Results Tilman has described mathematical equations for the competition between invasive species in a structured habitat. These equations were adapted to study the invasion of cancer cells into the bone marrow microenvironment as a structured habitat. A large proportion of solid tumor metastases are bone metastases, known to usurp hematopoietic stem cells (HSC homing pathways to establish footholds in the bone marrow. This required accounting for the fact that this is the natural home of hematopoietic stem cells and that they already occupy this structured space. The adapted Tilman model of invasion dynamics is especially valuable for modeling the lag period or dormancy of cancer cells. Conclusions The Tilman equations for modeling the invasion of two species into a defined space have been modified to study the invasion of cancer cells into the bone marrow microenvironment. These modified equations allow a more flexible way to model the space competition between the two cell species. The ability to model initial density, metastatic seeding into the bone marrow and growth once the cells are present, and movement of cells out of the bone marrow niche and apoptosis of cells are all aspects of the adapted equations. These equations are currently being applied to clinical data sets for verification and further refinement of the models.

  18. ATM regulation of IL-8 links oxidative stress to cancer cell migration and invasion.

    Science.gov (United States)

    Chen, Wei-Ta; Ebelt, Nancy D; Stracker, Travis H; Xhemalce, Blerta; Van Den Berg, Carla L; Miller, Kyle M

    2015-06-01

    Ataxia-telangiectasia mutated (ATM) protein kinase regulates the DNA damage response (DDR) and is associated with cancer suppression. Here we report a cancer-promoting role for ATM. ATM depletion in metastatic cancer cells reduced cell migration and invasion. Transcription analyses identified a gene network, including the chemokine IL-8, regulated by ATM. IL-8 expression required ATM and was regulated by oxidative stress. IL-8 was validated as an ATM target by its ability to rescue cell migration and invasion defects in ATM-depleted cells. Finally, ATM-depletion in human breast cancer cells reduced lung tumors in a mouse xenograft model and clinical data validated IL-8 in lung metastasis. These findings provide insights into how ATM activation by oxidative stress regulates IL-8 to sustain cell migration and invasion in cancer cells to promote metastatic potential. Thus, in addition to well-established roles in tumor suppression, these findings identify a role for ATM in tumor progression.

  19. TRPM7 is required for ovarian cancer cell growth, migration and invasion

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing; Liao, Qian-jin [The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013 (China); Zhang, Yi [Department of Obstetrics and Gynaecology, Xiangya Hospital, Central South University, Changsha 410078 (China); Zhou, Hui; Luo, Chen-hui; Tang, Jie; Wang, Ying; Tang, Yan; Zhao, Min; Zhao, Xue-heng [The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013 (China); Zhang, Qiong-yu [Department of Basic Medical Science, Yongzhou Vocational Technical College, Yong Zhou 425100 (China); Xiao, Ling, E-mail: lingxiaocsu@126.com [Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha 410013 (China); Institute of Clinical Pharmacology, Central South University, Changsha 410018 (China)

    2014-11-28

    Highlights: • Silence of TRPM7 in ovarian cancer cells inhibits cell proliferation, migration and invasion. • Silence of TRPM7 decreases phosphorylation levels of Akt, Src and p38 in ovarian cancer cells. • Silence of TRPM7 increases expression of filamentous actin and number of focal adhesions in ovarian cancer cells. - Abstract: Our previous study demonstrated that the melastatin-related transient receptor potential channel 7 (TRPM7) was highly expressed in ovarian carcinomas and its overexpression was significantly associated with poor prognosis in ovarian cancer patients. However, the function of TRPM7 in ovarian cancer is mostly unknown. In this study, we examined the roles of TRPM7 in ovarian cancer cell proliferation, migration and invasion. We found that short hairpin RNA interference-mediated silence of TRPM7 significantly inhibited cell proliferation, colony formation, migration and invasion in multiple ovarian cancer cell lines. Mechanistic investigation revealed that silence of TRPM7 decreased phosphorylation levels of Akt, Src and p38 and increased filamentous actin and focal adhesion number in ovarian cancer cells. Thus, our results suggest that TRPM7 is required for proliferation, migration and invasion of ovarian cancer cells through regulating multiple signaling transduction pathways and the formation of focal adhesions.

  20. Risk of subsequent invasive breast cancer after a diagnosis of ductal carcinoma in situ (DCIS).

    Science.gov (United States)

    Cheung, Shan; Booth, Mary E; Kearins, Olive; Dodwell, David

    2014-12-01

    Despite surgical removal of ductal carcinoma in situ (DCIS), recurrences still occur. This retrospective cohort study evaluated the risk of invasive recurrence following surgery and investigated factors which may be predictive of recurrence. We specifically investigated invasive recurrence with respect to mode of detection of DCIS. Patients whose DCIS was detected outside of the NHS Breast Screening Programme have a higher risk of subsequent ipsilateral invasive breast cancer than those whose DCIS is detected through screening. There is no significant difference in risk of subsequent contralateral invasive recurrence according to mode of detection.

  1. Hypoxia-inducible factors and RAB22A mediate formation of microvesicles that stimulate breast cancer invasion and metastasis.

    Science.gov (United States)

    Wang, Ting; Gilkes, Daniele M; Takano, Naoharu; Xiang, Lisha; Luo, Weibo; Bishop, Corey J; Chaturvedi, Pallavi; Green, Jordan J; Semenza, Gregg L

    2014-08-05

    Extracellular vesicles such as exosomes and microvesicles (MVs) are shed by cancer cells, are detected in the plasma of cancer patients, and promote cancer progression, but the molecular mechanisms regulating their production are not well understood. Intratumoral hypoxia is common in advanced breast cancers and is associated with an increased risk of metastasis and patient mortality that is mediated in part by the activation of hypoxia-inducible factors (HIFs). In this paper, we report that exposure of human breast cancer cells to hypoxia augments MV shedding that is mediated by the HIF-dependent expression of the small GTPase RAB22A, which colocalizes with budding MVs at the cell surface. Incubation of naïve breast cancer cells with MVs shed by hypoxic breast cancer cells promotes focal adhesion formation, invasion, and metastasis. In breast cancer patients, RAB22A mRNA overexpression in the primary tumor is associated with decreased overall and metastasis-free survival and, in an orthotopic mouse model, RAB22A knockdown impairs breast cancer metastasis.

  2. Effects of eicosapentaenoic acid and docosahexaenoic acid on prostate cancer cell migration and invasion induced by tumor-associated macrophages.

    Directory of Open Access Journals (Sweden)

    Cheng-Chung Li

    Full Text Available Eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA are the major n-3 polyunsaturated fatty acids (PUFAs in fish oil that decrease the risk of prostate cancer. Tumor-associated macrophages (TAMs are the main leukocytes of intratumoral infiltration, and increased TAMs correlates with poor prostate cancer prognosis. However, the mechanism of n-3 PUFAs on prostate cancer cell progression induced by TAMs is not well understood. In this study, we investigated the effects of EPA and DHA on modulating of migration and invasion of prostate cancer cells induced by TAMs-like M2-type macrophages. PC-3 prostate cancer cells were pretreated with EPA, DHA, or the peroxisome proliferator-activated receptor (PPAR-γ antagonist, GW9662, before exposure to conditioned medium (CM. CM was derived from M2-polarized THP-1 macrophages. The migratory and invasive abilities of PC-3 cells were evaluated using a coculture system of M2-type macrophages and PC-3 cells. EPA/DHA administration decreased migration and invasion of PC-3 cells. The PPAR-γ DNA-binding activity and cytosolic inhibitory factor κBα (IκBα protein expression increased while the nuclear factor (NF-κB p65 transcriptional activity and nuclear NF-κB p65 protein level decreased in PC-3 cells incubated with CM in the presence of EPA/DHA. Further, EPA/DHA downregulated mRNA expressions of matrix metalloproteinase-9, cyclooxygenase-2, vascular endothelial growth factor, and macrophage colony-stimulating factor. Pretreatment with GW9662 abolished the favorable effects of EPA/DHA on PC-3 cells. These results indicate that EPA/DHA administration reduced migration, invasion and macrophage chemotaxis of PC-3 cells induced by TAM-like M2-type macrophages, which may partly be explained by activation of PPAR-γ and decreased NF-κB p65 transcriptional activity.

  3. Muscarinic receptor agonists stimulate matrix metalloproteinase 1-dependent invasion of human colon cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Raufman, Jean-Pierre, E-mail: jraufman@medicine.umaryland.edu [Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD (United States); Cheng, Kunrong; Saxena, Neeraj; Chahdi, Ahmed; Belo, Angelica; Khurana, Sandeep; Xie, Guofeng [Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD (United States)

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Muscarinic receptor agonists stimulated robust human colon cancer cell invasion. Black-Right-Pointing-Pointer Anti-matrix metalloproteinase1 antibody pre-treatment blocks cell invasion. Black-Right-Pointing-Pointer Bile acids stimulate MMP1 expression, cell migration and MMP1-dependent invasion. -- Abstract: Mammalian matrix metalloproteinases (MMPs) which degrade extracellular matrix facilitate colon cancer cell invasion into the bloodstream and extra-colonic tissues; in particular, MMP1 expression correlates strongly with advanced colon cancer stage, hematogenous metastasis and poor prognosis. Likewise, muscarinic receptor signaling plays an important role in colon cancer; muscarinic receptors are over-expressed in colon cancer compared to normal colon epithelial cells. Muscarinic receptor activation stimulates proliferation, migration and invasion of human colon cancer cells. In mouse intestinal neoplasia models genetic ablation of muscarinic receptors attenuates carcinogenesis. In the present work, we sought to link these observations by showing that MMP1 expression and activation plays a mechanistic role in muscarinic receptor agonist-induced colon cancer cell invasion. We show that acetylcholine, which robustly increases MMP1 expression, stimulates invasion of HT29 and H508 human colon cancer cells into human umbilical vein endothelial cell monolayers - this was abolished by pre-incubation with atropine, a non-selective muscarinic receptor inhibitor, and by pre-incubation with anti-MMP1 neutralizing antibody. Similar results were obtained using a Matrigel chamber assay and deoxycholyltaurine (DCT), an amidated dihydroxy bile acid associated with colon neoplasia in animal models and humans, and previously shown to interact functionally with muscarinic receptors. DCT treatment of human colon cancer cells resulted in time-dependent, 10-fold increased MMP1 expression, and DCT-induced cell invasion was also blocked by pre

  4. Vascular endothelial growth factor and microvessel density for detection and prognostic evaluation of invasive breast cancer

    Institute of Scientific and Technical Information of China (English)

    Lukui Yang; Long Li; Xiangyu Cui; Dalei Yang

    2015-01-01

    Objective The purpose of this study was to evaluate the distribution of vascular endothelial growth factor (VEGF) and CD105-microvessel density (MVD) in invasive breast carcinomas. We also aimed to analyze the relationship between VEGF and MVD expression with other standard prognostic parameters associated with invasive breast cancer, such as size, grade, stage of the cancer, metastases, and tumor recurrence. Methods Immunohistochemistry via the Ultra SensitiveTM S-P method was used to detect VEGF and MVD expression in 128 cases of invasive breast carcinoma. Specimens were evaluated for CD105 expres-sion. Positively stained microvessels were counted in dense vascular foci under 400× magnification. MVD in the peripheral area adjacent to the lesion and in the central area within the lesion in invasive breast carcinomas and benign leisions groups were also assessed. Fifty cases of benign breast disease tissue were selected as the control group. Results Results showed that 64.1% of invasive breast cancer samples were VEGF-positive, higher than in benign breast disease tissue (22.0%, P 0.05). MVD of the peripheral area adja-cent to the lesion was significantly higher than those central area within the lesion in both invasive breast cancer and benign breast disease groups (P 50 years) or the two tumor diameter groups (≤2 cm vs.>2 cm), P > 0.05. Conclusion Overexpression of VEGF and MVD may be important biological markers for invasion and lymph node and distant metastases of invasive breast cancer. Combined detection of the two tumor mark-ers could provide better prognostic monitoring for disease recurrence and metastasis, as wel as aid with clinical staging of breast tumors. Prediction of the risk for metastasis and recurrence, as wel as recurrence patterns based on VEGF and MVD post-surgery, could aid design of better fol ow-up regimens and appro-priate treatment strategies for breast cancer patients.

  5. Treatment and outcome in muscle invasive bladder cancer : a population-based survey

    NARCIS (Netherlands)

    Leliveld, Anna M.; Doornweerd, Benjamin H. J.; Bastiaannet, Esther; Schaapveld, Michael; de Jong, Igle J.

    2010-01-01

    OBJECTIVE: To assess treatments and survival of patients with muscle invasive bladder cancer (MIBC) in the Comprehensive Cancer Center Northern Netherlands (CCCN) region. STUDY DESIGN AND SETTING: Retrospective cohort analysis. Data of 548 patients with MIBC diagnosed between 1997 and 2002 were coll

  6. FOXO3a promotes gastric cancer cell migration and invasion through the induction of cathepsin L

    Science.gov (United States)

    Zhang, Wen; Yuan, Wei; Zhao, Naiqing; Li, Qian; Cui, Yuehong; Wang, Yan; Li, Wei; Sun, Yihong; Liu, Tianshu

    2016-01-01

    Forkhead box O3A (FOXO3a) is an important transcription factor involved in various human cancers. However, the role of FOXO3a in regulating the invasion and metastasis of gastric cancer cells has not been clarified. Here, we report that FOXO3a overexpression promoted migration and invasion of gastric cancer cells by upregulating cathepsin L. FOXO3a knockdown suppressed migration and invasion and also downregulated cathepsin L expression in gastric cancer cells. Silencing cathepsin L in these cells suppressed FOXO3a overexpression-induced cell migration and invasion. Mechanistic studies revealed that FOXO3a increased cathepsin L promoter activation, and cathepsin L overexpression repressed E-cadherin expression, causing gastric cancer cells to undergo epithelial-mesenchymal transition (EMT). Our data reveal a previously unexplored function of FOXO3a in gastric cancer invasion by regulating proteins involved in extracellular matrix (ECM) degradation and EMT. We suggest that FOXO3a may be of prognostic value and a potential therapeutic target in blocking tumor metastasis. PMID:27127880

  7. Differentiating pre- and minimally invasive from invasive adenocarcinoma using CT-features in persistent pulmonary part-solid nodules in Caucasian patients

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Julien G., E-mail: JCohen@chu-grenoble.fr [Clinique Universitaire de Radiologie et Imagerie Médicale (CURIM), Université Joseph Fourier, Centre Hospitalier Universitaire de Grenoble, CS 10217, 38043 Grenoble Cedex 9 (France); Reymond, Emilie [Clinique Universitaire de Radiologie et Imagerie Médicale (CURIM), Université Joseph Fourier, Centre Hospitalier Universitaire de Grenoble, CS 10217, 38043 Grenoble Cedex 9 (France); Lederlin, Mathieu [Service de Radiologie, Université Segalen Bordeaux, Centre Hospitalier Universitaire de Bordeaux, 12 rue Dubernat, 33404 Bordeaux Cedex (France); Medici, Maud [Centre d’Investigation Clinique – Innovation Technologique (CIC-IT), Pavillon Taillefer, 38706 La Tronche Cedex (France); Lantuejoul, Sylvie [Departement d’Anatomie et Cytologie Pathologique (DACP), Université Joseph Fourier, Centre Hospitalier Universitaire de Grenoble, CS 10217, 38043 Grenoble Cedex 9 (France); Laurent, François [Service de Radiologie, Université Segalen Bordeaux, Centre Hospitalier Universitaire de Bordeaux, 12 rue Dubernat, 33404 Bordeaux Cedex (France); Arbib, François [Departement de Pneumologie, Université Joseph Fourier, Centre Hospitalier Universitaire de Grenoble, CS 10217, 38043 Grenoble Cedex 9 (France); Jankowski, Adrien [Clinique Universitaire de Radiologie et Imagerie Médicale (CURIM), Université Joseph Fourier, Centre Hospitalier Universitaire de Grenoble, CS 10217, 38043 Grenoble Cedex 9 (France); and others

    2015-04-15

    Highlights: •We analyzed CT-features of part-solid ground glass nodules in Caucasians. •These CT-features were compared to pathology on full resection specimen. •Several CT-features can help differentiating invasive adenocarcinoma. •A solid component larger than 5 mm had 100% sensitivity for invasive adenocarcinoma. -- Abstract: Objective: To retrospectively investigate the diagnostic value of pre-operative CT-features between pre/minimally invasive and invasive lesions in part-solid persistent pulmonary ground glass nodules in a Caucasian population. Materials and methods: Retrospective review of two pre-operative CTs for 31 nodules in 30 patients. There were 10 adenocarcinomas in situ, 1 minimally invasive adenocarcinoma, 20 invasive adenocarcinomas. We analyzed the correlation between histopathology and the following CT-features: maximal axial diameter, maximal orthogonal axial diameter, height, density, size of solid component, air bronchogram, pleural retraction, nodule mass, disappearance rate and their evolution during follow-up. Results: In univariate analysis, invasive adenocarcinomas had a higher maximal height, density, solid component size, mass, a lower disappearance rate and presented more often with pleural retraction (p < 0.05). After logistic regression performed with the uncorrelated parameters using a method of selection of variables, only the size of solid component remained significant, with 100% sensitivity for invasive adenocarcinoma when larger than 5 mm. Conclusion: Preoperative CT-features can help differentiating in situ and minimally invasive adenocarcinomas from invasive adenocarcinomas in Caucasian patients. A solid component larger than 5 mm in diameter had 100% sensitivity for the diagnosis of invasive adenocarcinoma.

  8. Urokinase plasminogen activator receptor on invasive cancer cells: A prognostic factor in distal gastric adenocarcinoma

    DEFF Research Database (Denmark)

    Alpizar, Warner Enrique Alpizar; Christensen, Ib Jarle; Santoni-Rugiu, Eric

    2012-01-01

    Gastric cancer is the second cancer causing death worldwide. The five-year survival for this malignancy is below 25% and few parameters have shown an impact on the prognosis of the disease. The receptor for urokinase plasminogen activator (uPAR) is involved in extracellular matrix degradation...... by mediating cell surface associated plasminogen activation, and its presence on gastric cancer cells is linked to micrometastasis and poor prognosis. Using immunohistochemistry, the prognostic significance of uPAR was evaluated in tissue samples from a retrospective series of 95 gastric cancer patients. u...... association between the expression of uPAR on tumor cells in the peripheral invasion zone and overall survival of gastric cancer patients (HR = 2.16; 95% CI: 1.13-4.14; p = 0.02). Multivariate analysis showed that uPAR immunoreactivity in cancer cells at the invasive front is an independent prognostic factor...

  9. Unique DNA methylation patterns distinguish non-invasive and invasive urothelial cancers and establish an epigenetic field defect in premalignant tissue

    Science.gov (United States)

    Wolff, Erika M.; Chihara, Yoshitomo; Pan, Fei; Weisenberger, Daniel J.; Siegmund, Kimberly D.; Sugano, Kokichi; Kawashima, Kiyotaka; Laird, Peter W.; Jones, Peter A.; Liang, Gangning

    2010-01-01

    Urothelial cancer (UC) develops along two different genetic pathways, resulting in non-invasive or invasive tumors. However, it is unknown whether there are also different epigenetic pathways in UC. UC is also characterized by a high rate of recurrence and the presence of a field defect has been postulated. In this study, we compared the DNA methylation patterns between non-invasive and invasive UC, and the DNA methylation patterns in normal-appearing urothelium from bladders with cancer to urothelium from cancer-free bladders. We used the Illumina GoldenGate methylation assay at 1,370 loci in 49 non-invasive urothelial tumors, 38 invasive tumors with matched normal-appearing urothelium, and urothelium from 12 age-matched urothelial cancer-free patients. We found a distinct pattern of hypomethylation in the non-invasive tumors and widespread hypermethylation in the invasive tumors, confirming that the two pathways differ epigenetically in addition to genetically. We also found that 12% of the loci were hypermethylated in apparently normal urothelium from bladders with cancer, indicating an epigenetic field defect. X-chromosome inactivation analysis indicated that this field defect did not result in clonal expansion but occurred independently across the urothelium of bladders with cancer. The hypomethylation present in non-invasive tumors may counter-intuitively provide a biological explanation for the failure of these tumors to become invasive. In addition, an epithelium-wide epigenetic defect in bladders with cancer may contribute to a loss of epithelial integrity and create a permissible environment for tumors to arise. PMID:20841482

  10. Fibronectin matrix-mediated cohesion suppresses invasion of prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Jia Dongxuan

    2012-03-01

    Full Text Available Abstract Background Invasion is an important early step in the metastatic cascade and is the primary cause of death of prostate cancer patients. In order to invade, cells must detach from the primary tumor. Cell-cell and cell-ECM interactions are important regulators of cohesion - a property previously demonstrated to mediate cell detachment and invasion. The studies reported here propose a novel role for α5β1 integrin - the principle mediator of fibronectin matrix assembly (FNMA - as an invasion suppressor of prostate cancer cells. Methods Using a combination of biophysical and cell biological methods, and well-characterized prostate cancer cell lines of varying invasiveness, we explore the relationship between cohesion, invasiveness, and FNMA. Results We show that cohesion is inversely proportional to invasive capacity. We also show that more invasive cells express lower levels of α5β1 integrin and lack the capacity for FNMA. Cells were generated to over-express either wild-type α5 integrin or an integrin in which the cytoplasmic domain of α5 was replaced with that of α2. The α2 construct does not promote FNMA. We show that only wild-type α5 integrin promotes aggregate compaction, increases cohesion, and reduces invasion of the more aggressive cells, and that these effects can be blocked by the 70-kDa fibronectin fragment. Conclusions We propose that restoring capacity for FNMA in deficient cells can increase tumor intercellular cohesion to a point that significantly reduces cell detachment and subsequent invasion. In prostate cancer, this could be of therapeutic benefit by blocking an early key step in the metastatic cascade.

  11. New method for evaluation of perigastric invasion of gastric cancer by right lateral position CT

    Energy Technology Data Exchange (ETDEWEB)

    Shirakawa, T. [Dept. of Radiology, Jikei Univ. School of Medicine, Tokyo (Japan); Fukuda, K. [Dept. of Radiology, Jikei Univ. School of Medicine, Tokyo (Japan); Tada, S. [Dept. of Radiology, Jikei Univ. School of Medicine, Tokyo (Japan)

    1996-06-01

    The purpose of this study was to evaluate usefulness of right lateral position CT in determining invasion of gastric cancer into adjacent organs. We assessed whether position shift, a change in the relative location of a gastric tumor and adjacent organs between the supine position and right lateral position CT, was a useful sign for absence of invasion into perigastric organs. In 37 patients with advanced gastric cancer with doubtful invasion into adjacent organs by conventional CT after 500 ml water oral intake, additive right lateral CT was performed. Of 24 cases of lesions in the gastric body, 16 had a position shift and no invasion into adjacent organs at surgery (T3), and 8 had no position shift and invasion (T4). The accuracy was 100%. Six gastric cardial and 7 pyloric tumors showed no position shift, and 3 cardial and 2 pyloric tumors were proved to be nonivasive (T3). The accuracy of cardial and pyloric tumor was 50 and 71%. We concluded that position shift may be useful in the diagnosis of invasion of adjacent organs by gastric cancer, limited to in cases with gastric body cancer. (orig.)

  12. Effects of TRPC6 on invasibility of low-differentiated prostate cancer cells

    Institute of Scientific and Technical Information of China (English)

    Dong Wang; Xiang Li; Jing Liu; Jun Li; Li-Jun Li; Ming-Xing Qiu

    2014-01-01

    Objective: To study the expression of TRPC6 among prostate cancer cells, establish high expression cell lines of TRPC6, and to provide potential cell mode for prostate cancer oncogenesis and development. Methods: Occurrence and development of prostate cancer cells, PC3, PC-3 m DU145, 22 rv1, LNCaP and normal prostate epithelial cells in the PrEC TRPC6 expression level were detected by QPCR method. Calcium phosphate transfection method was used to package retrovirus pLEGFP-N1-TRPC6 and pLEGFP-N1-vector and infect the prostate cancer cells, a stable high expression of TRPC6 prostate cancer cells. Sable cell lines of TRPC6, matrix metalloproteinase (MMP) 2, MMP9 expression was detected by QPCR and Western blot. Change of cell invasion ability was detected by Transwell. Results: The expression level of prostate cancer cells TRPC6 were higher than control group PrEC cells. Among TPRC6 the expression of cell line PC 3 transfer potential wre the lowest, and high transfer cell line PC-3M express was the highest. Real-time fluorescent quantitative PCR and western blot results showed that after filter, the seventh generation of cell TRPC6 protein and mRNA expression levels were higher than the control group obviously. Transwell experimental results showed that the overexpression of TRPC6 could promote the invasion ability of PC3 prostate cancer cells. Conclusions: TRPC6 expressed in prostate cancer cells is in disorder, and its action may be associated with the invasion and metastasis of prostate cancer cells; successful establishment of stable high expression of TRPC6 prostate cancer cells primarily confirm the invasion-trigger ability of TRPC6 on prostate cancer, and lay down the foundation for exploring the TRPC6’s role in the occurrence and development of prostate cancer mechanism.

  13. Gallic acid reduces cell viability, proliferation, invasion and angiogenesis in human cervical cancer cells

    OpenAIRE

    Zhao, Bing; HU, MENGCAI

    2013-01-01

    Gallic acid is a trihydroxybenzoic acid, also known as 3,4,5-trihydroxybenzoic acid, which is present in plants worldwide, including Chinese medicinal herbs. Gallic acid has been shown to have cytotoxic effects in certain cancer cells, without damaging normal cells. The objective of the present study was to determine whether gallic acid is able to inhibit human cervical cancer cell viability, proliferation and invasion and suppress cervical cancer cell-mediated angiogenesis. Treatment of HeLa...

  14. Silencing of WWP2 inhibits adhesion, invasion, and migration in liver cancer cells.

    Science.gov (United States)

    Qin, Yong; Xu, Sheng-Qian; Pan, De-Biao; Ye, Guan-Xiong; Wu, Cheng-Jun; Wang, Shi; Wang, Chao-Jun; Jiang, Jin-Yan; Fu, Jing

    2016-05-01

    The role and clinical implication of the WWP2 E3 ubiquitin ligase in liver cancer are poorly understood. In the current study, we investigated the expression level of WWP2 and its functions in cell adhesion, invasion, and migration in liver cancer. We used real-time PCR to detect the expression of WWP2 in liver cancer and adjacent samples from the People's Hospital of Lishui and also analyzed The Cancer Genome Atlas (TCGA) RNA-seq data by bioinformatics. Migration and invasion were detected by transwell analysis. We detected a strong WWP2 expression in tumor tissues of the People's Hospital of Lishui, and the survival rate was significantly higher in patients with lower WWP2-expressing tumors. WWP2 small hairpin RNA (shRNA) lentivirus stably infected cells (shWWP2), Huh7, showed slower growth speed compared with scramble control-infected cells in a xenograft mouse model. Knockdown of WWP2 Huh7 and BEL-7404 cells demonstrated a reduction in adhesion, invasion, and migration. Gene set enrichment analysis (GSEA) showed that WWP2 is positively correlated to cancer-related pathways including the chemokine signaling pathway. WWP2 also regulated MMP-9, caspase-9, CXCR3, and CCR5 expression in liver cancer cells. In addition, knockdown of CXCR3 and CCR5 significantly inhibited cell proliferation, adhesion, invasion, and migration in Huh7 and BEL-7404 cells. Our data suggest that targeting of WWP2 may be a therapeutic strategy for liver cancer treatment.

  15. Grhl2 reduces invasion and migration through inhibition of TGFβ-induced EMT in gastric cancer

    Science.gov (United States)

    Xiang, J; Fu, X; Ran, W; Wang, Z

    2017-01-01

    Metastasis is one of the typical features of malignancy that significantly increases cancer-related mortality. Recent studies have shown that epithelial–mesenchymal transition (EMT) is closely related to the invasion and migration of cancer cells. Grainyhead-like 2 (Grhl2), a transcription factor, has been reported to be associated with several tumor processes including EMT. In the previous study, we have reported that Grhl2 functioned as a tumor suppressor in proliferation and apoptosis of gastric cancer. Here we aim to explore the effects of Grhl2 on invasion and migration of gastric cancer and further clarify its possible underlying mechanisms. As a result, in both SGC7901 and MKN45 cells, Grhl2 overexpression significantly inhibited the ability of invasion and migration. In addition, preliminary experiments showed that Grhl2 reduces the protein expression of matrix metalloproteinase-2, -7 and -9 (MMP-2, MMP-7 and MMP-9). Most importantly, Grhl2 antagonizes transforming growth factor-β (TGFβ)-induced EMT, and inhibition of TGFβ signaling pathways can restore Grhl2 expression. Finally, the results of subcutaneous xenograft model indicated that Grhl2 suppresses the growth of gastric cancer and reverses EMT process in vivo. Meanwhile, the metastatic tumor model further confirmed the inhibition of Grhl2 on metastasis of gastric cancer. Taken together, our findings proved that Grhl2, functioned as a tumor suppressor, reduces the invasion and migration through inhibition of TGFβ-induced EMT in gastric cancer. PMID:28067907

  16. Astrocyte elevated gene-1 induces breast cancer proliferation and invasion through upregulating HER2/neu expression

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xin; ZHANG Ning; ZHANG Mei-xin

    2011-01-01

    Background Astrocyte elevated gene-1 (AEG-1),primarily identified as a late response gene induced by HIV-1 infection,plays multiple roles in the process of oncogenesis.This novel gene has been demonstrated to be involved in the several potent carcinogenic pathways,including PI3K/Akt pathway,nuclear factor (NF)-KB pathway,and Wnt/β-catenin pathway.Although the function of AEG-1 has been intensively investigated in recent years,the molecular mechanism underlying its oncogenic role is largely unknown.The aim of this research was to explore the potential function of AEG-1 in breast cancer development and progression.Methods AEG-1 was ectopically overexpressed in breast cancer MCF-7 cells and its biological effects on the proliferation and invasion of MCF-7 cells were studied by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and invasion assays.The expression of HER2/neu,a crucial oncogene involving in breast cancer carcinogenesis,was also determined.Results Overexpression of the AEG-1 promoted the proliferation and invasion ability of breast cancer cells,and upregulated the expression of HER2/neu,a crucial oncogene involving in breast cancer carcinogenesis.Conclusion AEG-1 might facilitate the proliferation and invasion of breast cancer cells by upregulating HER2/neu expression,which provides a potential target for breast cancer therapy.

  17. MicroRNA-181b promotes ovarian cancer cell growth and invasion by targeting LATS2

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Ying; Gao, Yan, E-mail: gaoyanhdhos@126.com

    2014-05-09

    Highlights: • miR-181b is upregulated in human ovarian cancer tissues. • miR-181b promotes ovarian cancer cell proliferation and invasion. • LATS2 is a direct target of miR-181b. • LATS2 is involved in miR-181b-induced ovarian cancer cell growth and invasion. - Abstract: MicroRNAs (miRNAs) are strongly implicated in tumorigenesis and metastasis. In this study, we showed significant upregulation of miR-181b in ovarian cancer tissues, compared with the normal ovarian counterparts. Forced expression of miR-181b led to remarkably enhanced proliferation and invasion of ovarian cancer cells while its knockdown induced significant suppression of these cellular events. The tumor suppressor gene, LATS2 (large tumor suppressor 2), was further identified as a novel direct target of miR-181b. Specifically, miR-181b bound directly to the 3′-untranslated region (UTR) of LATS2 and suppressed its expression. Restoration of LATS2 expression partially reversed the oncogenic effects of miR-181b. Our results indicate that miR-181b promotes proliferation and invasion by targeting LATS2 in ovarian cancer cells. These findings support the utility of miR-181b as a potential diagnostic and therapeutic target for ovarian cancer.

  18. High level of MT-MMP expression is associated with invasiveness of cervical cancer cells.

    Science.gov (United States)

    Gilles, C; Polette, M; Piette, J; Munaut, C; Thompson, E W; Birembaut, P; Foidart, J M

    1996-01-17

    MMP-2 (gelatinase A) has been associated with the invasive potential of many cancer cells both in vitro and in vivo. It is now becoming clear that the activation of this enzyme might be a key step in tumor invasion. This activation process has been shown to be a membrane-associated pathway inducible by various agents such as collagen type I, concanavalin A or TGF-beta, but its physiological regulation is still largely unresolved. MT-MMP was recently discovered and described as a potential gelatinase-A activator. In the present study, we investigated the expression of MT-MMP (membrane-type metalloproteinase) in cervical cancer cells both in vitro and in vivo. Comparing several in vitro-transformed cervical cell lines, previously shown to display different invasive potentials, our results showed that the ability of cells to overexpress MT-MMP mRNA following ConA induction correlated with their ability to activate gelatinase A and with a highly invasive behavior. Moreover, using immunohistochemistry and in situ hybridization, we found a higher level of MT-MMP expression in invasive cervical carcinoma and lymph node metastases compared to its expression in non-invasive CIN III lesions. Our in vivo observations also clearly demonstrated a cooperation between stromal and tumor cells for the production of MT-MMP. Taken together, our results clearly correlated high level MT-MMP expression with invasiveness, and thus suggested that MT-MMP might play a crucial role in cervical tumor invasion.

  19. Effects of Src on Proliferation and Invasion of Lung Cancer Cells

    Directory of Open Access Journals (Sweden)

    Rui ZHENG

    2011-04-01

    Full Text Available Background and objective It has been proven that Src played pivotal roles in carcinogenesis, cancer progression and metastasis. The aim of this study is to explore the roles of Src phosphorylation on lung cancer cells. Methods Western blot and immunoprecipitation was used to detect the expression and phosphorylation of Src in lung cancer cells. MTT and Boyden chamber assay was used to examine the effects of inhibition of Src phosphorylation on proliferation and invasion of lung cancer cells in vitro, respectively. Results pp60src was expressed in all lung cancer cell lines in this study. All 5 non-small cell lung cancer (NSCLC cell lines had increased autophosphorylated tyrosine-418, while nearly no phosphorylated Src in small cell lung cancer SBC5 cell line was detected. The effect of inhibition of Src tyrosine kinase on cell proliferation varied among the lung cancer cell lines. Submicromolar Src tyrosine kinase inhibitor (≤1 μM remarkably suppressed the proliferation of PC-9 and A549 cells in a dose dependent manner (P < 0.05, while the same concentration of Src tyrosine kinase inhibitor had no significant effect on proliferation of H226, PC14PE6 and RERFLCOK cells. Invasiveness of lung cancer cells was significantly suppressed by Src tyrosine kinase in a dose-dependent manner (P < 0.05. Conclusion Phosphorylation of Src, but not over-expression, plays a pivotal role in proliferation and invasion of NSCLC cell lines in vitro.

  20. Lifetime recreational and occupational physical activity and risk of in situ and invasive breast cancer.

    Science.gov (United States)

    Sprague, Brian L; Trentham-Dietz, Amy; Newcomb, Polly A; Titus-Ernstoff, Linda; Hampton, John M; Egan, Kathleen M

    2007-02-01

    Numerous studies have observed reduced breast cancer risk with increasing levels of physical activity, yet these findings have been inconsistent about optimal times of activity and effect modification by other factors. We investigated the association between recreational and occupational physical activity and breast cancer risk in a population-based case-control study in Massachusetts, New Hampshire, and Wisconsin. During structured telephone interviews, 7,630 controls, 1,689 in situ, and 6,391 invasive breast cancer cases, ages 20 to 69 years, reported lifetime history of recreational physical activity and occupation. Neither lifetime recreational nor strenuous occupational physical activity appeared to be associated with risk of breast carcinoma in situ. In contrast, recreational physical activity was associated with a reduced risk of invasive breast cancer. After adjustment for potentially confounding factors, women averaging >6 h per week of strenuous recreational activity over their lifetime had a 23% reduction in the odds ratio of invasive breast cancer when compared with women reporting no recreational activity (95% confidence interval, 0.65-0.92; P(trend) = 0.05). However, this reduction in risk was limited to women without a first-degree family history of breast cancer (P(interaction) = 0.02). Inverse associations were observed for physical activity early in life, in the postmenopausal years, and in the recent past, but these findings were confined to women without a family history of breast cancer. Lifetime strenuous occupational activity was not associated with invasive breast cancer risk. These results provide further evidence that, for most women, physical activity may reduce the risk of invasive breast cancer.

  1. Role of ErbB receptors in cancer cell migration and invasion

    Directory of Open Access Journals (Sweden)

    Aline eAppert-Collin

    2015-11-01

    Full Text Available Growth factors mediate their diverse biologic responses (regulation of cellular proliferation, differentiation, migration and survival by binding to and activating cell-surface receptors with intrinsic protein kinase activity named Receptor Tyrosine Kinases (RTKs. About 60 RTKs have been identified and can be classified into more than 16 different receptor families. Their activity is normally tightly controlled and regulated. Overexpression of RTK proteins or functional alterations caused by mutations in the corresponding genes or abnormal stimulation by autocrine growth factor loops contribute to constitutive RTK signaling, resulting in alterations in the physiological activities of cells. The ErbB receptor family of RTKs comprises four distinct receptors: the EGFR (also known as ErbB1/HER1, ErbB2 (neu, HER2, ErbB3 (HER3 and ErbB4 (HER4. ErbB family members are often overexpressed, amplified, or mutated in many forms of cancer, making them important therapeutic targets. EGFR has been found to be amplified in gliomas and non-small-cell lung carcinoma while ErbB2 amplifications are seen in breast, ovarian, bladder, non-small-cell lung carcinoma, as well as several other tumor types. Several data have shown that ErbB receptor family and its downstream pathway regulate epithelial-mesenchymal transition, migration, and tumor invasion by modulating extracellular matrix components. Recent findings indicate that extracellular matrix components such as matrikines bind specifically to EGF receptor and promote cell invasion. In this review, we will present an in-depth overview of the structure, mechanisms, cell signaling, and functions of ErbB family receptors in cell adhesion and migration. Furthermore, we will describe in a last part the new strategies developed in anti-cancer therapy to inhibit ErbB family receptor activation.

  2. Managing the risk of invasive breast cancer in women at risk for breast cancer and osteoporosis: the role of raloxifene

    Directory of Open Access Journals (Sweden)

    Victor G Vogel

    2008-12-01

    Full Text Available Victor G VogelThe University of Pittsburgh Cancer Institute, Magee-Womens Hospital, Pittsburgh, PA, USAAbstract: Raloxifene hydrochloride is a selective estrogen receptor modulator (SERM that has antiestrogenic effects on breast and endometrial tissue and estrogenic effects on bone, lipid metabolism, and blood clotting. Raloxifene significantly improves serum lipids and serum markers of cardiovascular disease risk, but it has no significant effect on the risk of primary coronary events. A meta-analysis of randomized, double-blind, placebo-controlled trials of raloxifene for osteoporosis showed the odds of fracture risk were 0.60 (95% confidence interval [CI] = 0.49–0.74 for raloxifene 60 mg/day compared with placebo. During 8 years of follow-up in an osteoporosis trial, the raloxifene group had a 76% reduction in the incidence of invasive ER-positive breast cancer compared with the placebo group. In the STAR trial, the incidence of invasive breast cancer was 4.30 per 1000 women-years with raloxifene and 4.41 per 1000 with tamoxifen; RR = 1.02; 95% CI, 0.82–1.28. The effect of raloxifene on invasive breast cancer was, therefore, equivalent to that of tamoxifen with more favorable rates of adverse effects including uterine malignancy and clotting events. Millions of postmenopausal women could derive net benefit from raloxifene through reduced rates of fracture and invasive breast cancer.Keywords: raloxifene, osteoporosis, breast cancer risk reduction

  3. KIF20A-Mediated RNA Granule Transport System Promotes the Invasiveness of Pancreatic Cancer Cells

    Directory of Open Access Journals (Sweden)

    Keisuke Taniuchi

    2014-12-01

    Full Text Available Pancreatic cancers are aggressive because they are highly invasive and highly metastatic; moreover, effective treatments for aggressive pancreatic cancers are lacking. Here, we report that the motor kinesin protein KIF20A promoted the motility and invasiveness of pancreatic cancer cells through transporting the RNA-binding protein IGF2BP3 and IGF2BP3-bound transcripts toward cell protrusions along microtubules. We previously reported that IGF2BP3 and its target transcripts are assembled into cytoplasmic stress granules of pancreatic cancer cells, and that IGF2BP3 promotes the motility and invasiveness of pancreatic cancer cells through regulation of localized translation of IGF2BP3-bound transcripts in cell protrusions. We show that knockdown of KIF20A inhibited accumulation of IGF2BP3-containing stress granules in cell protrusions and suppressed local protein expression from specific IGF2BP3-bound transcripts, ARF6 and ARHGEF4, in the protrusions. Our results provide insight into the link between regulation of KIF20A-mediated trafficking of IGF2BP3-containing stress granules and modulation of the motility and invasiveness in pancreatic cancers.

  4. Metadherin mediates lipopolysaccharide-induced migration and invasion of breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Yuhan Zhao

    Full Text Available BACKGROUND: Breast cancer is the most prevalent cancer in women worldwide and metastatic breast cancer has very poor prognosis. Inflammation has been implicated in migration and metastasis of breast cancer, although the exact molecular mechanism remains elusive. PRINCIPAL FINDINGS: We show that the pro-inflammatory endotoxin Lipopolysaccharide (LPS upregulates the expression of Metadherin (MTDH, a recently identified oncogene, in a number of breast cancer lines. Stable knockdown of MTDH by shRNA in human breast MDA-MB-231 cells abolishes LPS-induced cell migration and invasion as determined by several in vitro assays. In addition, knockdown of MTDH diminishes Nuclear Factor-kappa B (NF-κB activation by LPS and inhibited LPS-induced IL-8 and MMP-9 production. CONCLUSIONS: These results strongly suggest that MTDH is a pivotal molecule in inflammation-mediated tumor metastasis. Since NF-κB, IL-8 and MMP-9 play roles in LPS-induced invasion or metastasis, the mechanism of MTDH-promoted invasion and metastasis may be through the activation of NF-κB, IL-8 and MMP-9, also suggesting a role of MTDH in regulating both inflammatory responses and inflammation-associated tumor invasion. These findings indicate that MTDH is involved in inflammation-induced tumor progression, and support that MTDH targeting therapy may hold promising prospects in treating breast cancer.

  5. Identification of NDRG1-regulated genes associated with invasive potential in cervical and ovarian cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Gang, E-mail: zhaog69@sjtu.edu.cn [Department of Pathology, The First People' s Hospital, Shanghai Jiaotong University, Shanghai (China); Department of Pathology, Tianjin Cancer Hospital, Tianjin Medical University, Tianjin (China); Chen, Jiawei, E-mail: jiaweichen2000@gmail.com [Department of Pathology, The First People' s Hospital, Shanghai Jiaotong University, Shanghai (China); Deng, Yanqiu [Pathophysiology Department, Tianjin Medical University, Tianjin (China); Gao, Feng [Department of Pathology, The First People' s Hospital, Shanghai Jiaotong University, Shanghai (China); Zhu, Jiwei [Basic Medical College, Harbin Medical University, Harbin (China); Feng, Zhenzhong; Lv, Xiuhong [Department of Pathology, The First People' s Hospital, Shanghai Jiaotong University, Shanghai (China); Zhao, Zheng [SAS Headquarters, S6013, 600 Research Drive, Cary, NC (United States)

    2011-04-29

    Highlights: {yields} NDRG1 was knockdown in cervical and ovarian cancer cell lines by shRNA technology. {yields} NDRG1 knockdown resulted in increased cell invasion activities. {yields} Ninety-six common deregulated genes in both cell lines were identified by cDNA microarray. {yields} Eleven common NDRG1-regulated genes might enhance cell invasive activity. {yields} Regulation of invasion by NDRG1 is an indirect and complicated process. -- Abstract: N-myc downstream regulated gene 1 (NDRG1) is an important gene regulating tumor invasion. In this study, shRNA technology was used to suppress NDRG1 expression in CaSki (a cervical cancer cell line) and HO-8910PM (an ovarian cancer cell line). In vitro assays showed that NDRG1 knockdown enhanced tumor cell adhesion, migration and invasion activities without affecting cell proliferation. cDNA microarray analysis revealed 96 deregulated genes with more than 2-fold changes in both cell lines after NDRG1 knockdown. Ten common upregulated genes (LPXN, DDR2, COL6A1, IL6, IL8, FYN, PTP4A3, PAPPA, ETV5 and CYGB) and one common downregulated gene (CLCA2) were considered to enhance tumor cell invasive activity. BisoGenet network analysis indicated that NDRG1 regulated these invasion effector genes/proteins in an indirect manner. Moreover, NDRG1 knockdown also reduced pro-invasion genes expression such as MMP7, TMPRSS4 and CTSK. These results suggest that regulation of invasion and metastasis by NDRG1 is a highly complicated process.

  6. DIXDC1 activates the Wnt signaling pathway and promotes gastric cancer cell invasion and metastasis.

    Science.gov (United States)

    Tan, Cong; Qiao, Fan; Wei, Ping; Chi, Yayun; Wang, Weige; Ni, Shujuan; Wang, Qifeng; Chen, Tongzhen; Sheng, Weiqi; Du, Xiang; Wang, Lei

    2016-04-01

    DIXDC1 (Dishevelled-Axin domain containing 1) is a DIX (Dishevelled-Axin) domain-possessing protein that promotes colon cancer cell proliferation and increases the invasion and migration ability of non-small-cell lung cancer via the PI3K pathway. As a positive regulator of the Wnt/β-catenin pathway, the biological role of DIXDC1 in human gastric cancer and the relationship between DIXDC1 and the Wnt pathway are unclear. In the current study, the upregulation of DIXDC1 was detected in gastric cancer and was associated with advanced TNM stage cancer, lymph node metastasis, and poor prognosis. We also found that the overexpression of DIXDC1 could promote the invasion and migration of gastric cancer cells. The upregulation of MMPs and the downregulation of E-cadherin were found to be involved in the process. DIXDC1 enhanced β-catenin nuclear accumulation, which activated the Wnt pathway. Additionally, the inhibition of β-catenin in DIXDC1-overexpressing cells reversed the metastasis promotion effects of DIXDC1. These results demonstrate that the expression of DIXDC1 is associated with poor prognosis of gastric cancer patients and that DIXDC1 promotes gastric cancer invasion and metastasis through the activation of the Wnt pathway; E-cadherin and MMPs are also involved in this process. © 2015 Wiley Periodicals, Inc.

  7. Intra-arterial chemotherapy in combination with radiotherapy for invasive bladder cancer and prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Sumiyoshi, Yoshiteru; Hashine, Katsuyoshi; Nakatsuji, Hiroyoshi [National Shikoku Cancer Center Hospital, Matsuyama (Japan)

    1999-02-01

    Forty-five patients with muscle-invasive bladder cancer treated with intra-arterial doxorubicin chemotherapy plus low-dose radiotherapy between September 1979 and March 1990 were retrospectively studied. Twenty-eight (62%) patients achieved a complete response (CR) and in all of them, a functional bladder could be preserved. The 10-year cause-specific survival rate of patients with CR was 95.5%, but that of patients not achieving a CR was 39%. These results demonstrate that in patients who achieve a CR with this treatment, we may be able to preserve a functional bladder. In a prospective study, we designed a new intra-arterial chemotherapy regimen in order to achieve a higher degree of effectiveness and to preserve a functional bladder. Twenty-three patients were treated with concurrent pirarubicin/cisplatin intra-arterial chemotherapy and radiotherapy after complete transurethral resection. Twenty-one (91%) patients achieved CR. One of these patients had relapse with lung metastases and was treated surgically. Two patients who did not achieve a CR died of cancer, and 21 patients are alive with preservation of functional bladder. For treatment of prostate cancer, we now administer only adjuvant intra-arterial chemotherapy plus irradiation for patients after radical prostatectomy. (author)

  8. Anthraquinone emodin inhibits human cancer cell invasiveness by antagonizing P2X7 receptors.

    Science.gov (United States)

    Jelassi, Bilel; Anchelin, Monique; Chamouton, Julie; Cayuela, María Luisa; Clarysse, Lucie; Li, Junying; Goré, Jacques; Jiang, Lin-Hua; Roger, Sébastien

    2013-07-01

    The adenosine 5'-triphosphate (ATP)-gated Ca(2+)-permeable channel P2X7 receptor (P2X7R) is strongly upregulated in many tumors and cancer cells, and has an important role in cancer cell invasion associated with metastases. Emodin (1,3,8-trihydroxy-6-methylanthraquinone) is an anthraquinone derivative originally isolated from Rheum officinale Baill known for decades to possess anticancer properties. In this study, we examined the effects of emodin on P2X7R-dependent Ca(2+) signaling, extracellular matrix degradation, and in vitro and in vivo cancer cell invasiveness using highly aggressive human cancer cells. Inclusion of emodin at doses ≤10 µM in cell culture had no or very mild effect on the cell viability. ATP elicited increases in intracellular Ca(2+) concentration were reduced by 35 and 60% by 1 and 10 µM emodin, respectively. Emodin specifically inhibited P2X7R-mediated currents with an IC50 of 3 µM and did not inhibit the currents mediated by the other human P2X receptors heterologously expressed in human embryonic kidney (HEK293T) cells. ATP-induced increase in gelatinolytic activity, in cancer cell invasiveness in vitro and in cell morphology changes were prevented by 1 µM emodin. Furthermore, such ATP-evoked effects and inhibition by emodin were almost completely ablated in cancer cells transfected with P2X7R-specific small interfering RNA (siRNA) but not with scrambled siRNA. Finally, the in vivo invasiveness of the P2X7R-positive MDA-MB-435s breast cancer cells, assessed using a zebrafish model of micrometastases, was suppressed by 40 and 50% by 1 and 10 µM emodin. Taken together, these results provide consistent evidence to indicate that emodin inhibits human cancer cell invasiveness by specifically antagonizing the P2X7R.

  9. Comparative study of minimally invasive versus open esophagectomy for esophageal cancer in a single cancer center

    Institute of Scientific and Technical Information of China (English)

    Mu Juwei; Yuan Zuyang; Zhang Baihua; Li Ning; Lyu Fang; Mao Yousheng; Xue Qi

    2014-01-01

    Background In order to minimize the injury reaction during the surgery and reduce the morbidity rate,hence reducing the mortality rate of esophagectomy,minimally invasive esophagectomy (MIE) was introduced.The aim of this study was to compare the postoperative outcomes in patients with esophageal squamous cell carcinoma undergoing minimally invasive or open esophagectomy (OE).Methods The medical records of 176 consecutive patients,who underwent minimally invasive esophagectomy (MIE) between January 2009 and August 2013 in Cancer Institute & Hospital,Chinese Academy of Medical Sciences,were retrospectively reviewed.In the same period,142 patients who underwent OE,either Ivor Lewis or McKeown approach,were selected randomly as controls.The clinical variables of paired groups were compared,including age,sex,Charlson score,tumor location,duration of surgery,number of harvested lymph nodes,morbidity rate,the rate of leak,pulmonary morbidity rate,mortality rate,and hospital length of stay (LOS).Results The number of harvested lymph nodes was not significantly different between MIE group and OE group (median 20 vs.16,P=0.740).However,patients who underwent MIE had longer operation time than the OE group (375 vs.300 minutes,P <0.001).Overall morbidity,pulmonary morbidity,the rate of leak,in-hospital death,and hospital LOS were not significantly different between MIE and OE groups.Morbidities including anastomotic leak and pulmonary morbidity,inhospital death,hospital LOS,and hospital expenses were not significantly different between MIE and OE groups as well.Conclusions MIE and OE appear equivalent with regard to early oncological outcomes.There is a trend that hospital LOS and hospital expenses are reduced in the MIE group than the OE group.

  10. Multiplex PCR and Next Generation Sequencing for the Non-Invasive Detection of Bladder Cancer.

    Directory of Open Access Journals (Sweden)

    Douglas G Ward

    Full Text Available Highly sensitive and specific urine-based tests to detect either primary or recurrent bladder cancer have proved elusive to date. Our ever increasing knowledge of the genomic aberrations in bladder cancer should enable the development of such tests based on urinary DNA.DNA was extracted from urine cell pellets and PCR used to amplify the regions of the TERT promoter and coding regions of FGFR3, PIK3CA, TP53, HRAS, KDM6A and RXRA which are frequently mutated in bladder cancer. The PCR products were barcoded, pooled and paired-end 2 x 250 bp sequencing performed on an Illumina MiSeq. Urinary DNA was analysed from 20 non-cancer controls, 120 primary bladder cancer patients (41 pTa, 40 pT1, 39 pT2+ and 91 bladder cancer patients post-TURBT (89 cancer-free.Despite the small quantities of DNA extracted from some urine cell pellets, 96% of the samples yielded mean read depths >500. Analysing only previously reported point mutations, TERT mutations were found in 55% of patients with bladder cancer (independent of stage, FGFR3 mutations in 30% of patients with bladder cancer, PIK3CA in 14% and TP53 mutations in 12% of patients with bladder cancer. Overall, these previously reported bladder cancer mutations were detected in 86 out of 122 bladder cancer patients (70% sensitivity and in only 3 out of 109 patients with no detectable bladder cancer (97% specificity.This simple, cost-effective approach could be used for the non-invasive surveillance of patients with non-muscle-invasive bladder cancers harbouring these mutations. The method has a low DNA input requirement and can detect low levels of mutant DNA in a large excess of normal DNA. These genes represent a minimal biomarker panel to which extra markers could be added to develop a highly sensitive diagnostic test for bladder cancer.

  11. DDRs: receptors that mediate adhesion, migration and invasion in breast cancer cells

    Directory of Open Access Journals (Sweden)

    Emmanuel Reyes-Uribe

    2015-08-01

    Full Text Available Discoidin domain receptors (DDRs are receptor tyrosine kinases that are activated by native collagens and have an important role during cell adhesion, development, differentiation, proliferation, and migration. DDR deregulation is associated with progression of several different cancers. However, there is limited information about the role of DDRs in the progression of breast cancer. In this review we attempt to collect the most relevant information about DDR signaling and their role in various cancer-related processes such as adhesion, epithelial to mesenchymal transition, migration, invasion, and survival, with a focus on breast cancer.

  12. Targeting ILK and {beta}4 integrin abrogates the invasive potential of ovarian cancer

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yoon Pyo; Kim, Baek Gil [BK21 Project for Medical Science, Yonsei University College of Medicine, Seoul (Korea, Republic of); Department of Pathology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Gao, Ming-Qing; Kang, Suki [Department of Pathology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Cho, Nam Hoon, E-mail: cho1988@yuhs.ac [BK21 Project for Medical Science, Yonsei University College of Medicine, Seoul (Korea, Republic of); Department of Pathology, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer The potential of targeting ILK and integrins for highly aggressive ovarian cancer. Black-Right-Pointing-Pointer Unanticipated synergistic effect for the combination of ILK/{beta}4 integrin. Black-Right-Pointing-Pointer Combination of ILK/{beta}4 integrin effectively inhibited the PI3K/Akt/Rac1 cascade. Black-Right-Pointing-Pointer Targeting of {beta}4 integrin/ILK had potent inhibitory effects in ovarian cancer. -- Abstract: Integrins and integrin-linked kinase (ILK) are essential to cancerous invasion because they mediate physical interactions with the extracellular matrix, and regulate oncogenic signaling pathways. The purpose of our study is to determine whether deletion of {beta}1 and {beta}4 integrin and ILK, alone or in combination, has antitumoral effects in ovarian cancer. Expression of {beta}1 and {beta}4 integrin and ILK was analyzed by immunohistochemistry in 196 ovarian cancer tissue samples. We assessed the effects of depleting these molecules with shRNAs in ovarian cancer cells by Western blot, conventional RT-PCR, cell proliferation, migration, invasion, and in vitro Rac1 activity assays, and in vivo xenograft formation assays. Overexpression of {beta}4 integrin and ILK in human ovarian cancer specimens was found to correlate with tumor aggressiveness. Depletion of these targets efficiently suppresses ovarian cancer cell proliferation, migration, and invasion in vitro and xenograft tumor formation in vivo. We also demonstrated that single depletion of ILK or combination depletion of {beta}4 integrin/ILK inhibits phosphorylation of downstream signaling targets, p-Ser 473 Akt and p-Thr202/Tyr204 Erk1/2, and activation of Rac1, as well as reduce expression of MMP-2 and MMP-9 and increase expression of caspase-3 in vitro. In conclusion, targeting {beta}4 integrin combined with ILK can instigate the latent tumorigenic potential and abrogate the invasive potential in ovarian cancer.

  13. Runx2 transcriptome of prostate cancer cells: insights into invasiveness and bone metastasis

    Directory of Open Access Journals (Sweden)

    Gabet Yankel

    2010-09-01

    Full Text Available Abstract Background Prostate cancer (PCa cells preferentially metastasize to bone at least in part by acquiring osteomimetic properties. Runx2, an osteoblast master transcription factor, is aberrantly expressed in PCa cells, and promotes their metastatic phenotype. The transcriptional programs regulated by Runx2 have been extensively studied during osteoblastogenesis, where it activates or represses target genes in a context-dependent manner. However, little is known about the gene regulatory networks influenced by Runx2 in PCa cells. We therefore investigated genome wide mRNA expression changes in PCa cells in response to Runx2. Results We engineered a C4-2B PCa sub-line called C4-2B/Rx2dox, in which Doxycycline (Dox treatment stimulates Runx2 expression from very low to levels observed in other PCa cells. Transcriptome profiling using whole genome expression array followed by in silico analysis indicated that Runx2 upregulated a multitude of genes with prominent cancer associated functions. They included secreted factors (CSF2, SDF-1, proteolytic enzymes (MMP9, CST7, cytoskeleton modulators (SDC2, Twinfilin, SH3PXD2A, intracellular signaling molecules (DUSP1, SPHK1, RASD1 and transcription factors (Sox9, SNAI2, SMAD3 functioning in epithelium to mesenchyme transition (EMT, tissue invasion, as well as homing and attachment to bone. Consistent with the gene expression data, induction of Runx2 in C4-2B cells enhanced their invasiveness. It also promoted cellular quiescence by blocking the G1/S phase transition during cell cycle progression. Furthermore, the cell cycle block was reversed as Runx2 levels declined after Dox withdrawal. Conclusions The effects of Runx2 in C4-2B/Rx2dox cells, as well as similar observations made by employing LNCaP, 22RV1 and PC3 cells, highlight multiple mechanisms by which Runx2 promotes the metastatic phenotype of PCa cells, including tissue invasion, homing to bone and induction of high bone turnover. Runx2 is

  14. Tumor Phagocytes Promote Breast Cancer Invasion and Metastasis

    Science.gov (United States)

    2010-10-14

    passive physiological event to clear unwanted cells, we hypothesize that clearance of apoptotic tumor cells by tumor phagocytes produce soluble...FACS assay. Introduction: The purpose of cancer chemotherapy and immunotherapy is to kill cancer cells, mostly by apoptosis. Phagocytes, which...microenvironment for metastasis. A major barrier to effective anti-cancer immunotherapy is the ability of the host to mount a durable anti-tumor response [4

  15. Identification of Claudin 1 Transcript Variants in Human Invasive Breast Cancer

    Science.gov (United States)

    Zelinski, Teresa; Xie, Jiuyong; Cooper, Steven; Penner, Carla; Leygue, Etienne; Myal, Yvonne

    2016-01-01

    Background The claudin 1 tight junction protein, solely responsible for the barrier function of epithelial cells, is frequently down regulated in invasive human breast cancer. The underlying mechanism is largely unknown, and no obvious mutations in the claudin 1 gene (CLDN1) have been identified to date in breast cancer. Since many genes have been shown to undergo deregulation through splicing and mis-splicing events in cancer, the current study was undertaken to investigate the occurrence of transcript variants for CLDN1 in human invasive breast cancer. Methods RT-PCR analysis of CLDN1 transcripts was conducted on RNA isolated from 12 human invasive breast tumors. The PCR products from each tumor were resolved by agarose gel electrophoresis, cloned and sequenced. Genomic DNA was also isolated from each of the 12 tumors and amplified using PCR CLDN1 specific primers. Sanger sequencing and single nucleotide polymorphism (SNP) analyses were conducted. Results A number of CLDN1 transcript variants were identified in these breast tumors. All variants were shorter than the classical CLDN1 transcript. Sequence analysis of the PCR products revealed several splice variants, primarily in exon 1 of CLDN1; resulting in truncated proteins. One variant, V1, resulted in a premature stop codon and thus likely led to nonsense mediated decay. Interestingly, another transcript variant, V2, was not detected in normal breast tissue samples. Further, sequence analysis of the tumor genomic DNA revealed SNPs in 3 of the 4 coding exons, including a rare missense SNP (rs140846629) in exon 2 which represents an Ala124Thr substitution. To our knowledge this is the first report of CLDN1 transcript variants in human invasive breast cancer. These studies suggest that alternate splicing may also be a mechanism by which claudin 1 is down regulated at both the mRNA and protein levels in invasive breast cancer and may provide novel insights into how CLDN1 is reduced or silenced in human breast

  16. BCL-2 family protein, BAD is down-regulated in breast cancer and inhibits cell invasion

    Energy Technology Data Exchange (ETDEWEB)

    Cekanova, Maria, E-mail: mcekanov@utk.edu [Department of Small Animal Clinical Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN (United States); Fernando, Romaine I. [Department of Obstetrics and Gynecology, Graduate School of Medicine, Medical Center, The University of Tennessee, Knoxville, TN (United States); Siriwardhana, Nalin [Department of Animal Science, The University of Tennessee, Knoxville, TN (United States); Sukhthankar, Mugdha [Department of Biomedical and Diagnostics Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN (United States); Parra, Columba de la [Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, PR (United States); Woraratphoka, Jirayus [Department of Obstetrics and Gynecology, Graduate School of Medicine, Medical Center, The University of Tennessee, Knoxville, TN (United States); Malone, Christine [Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, Research Triangle Park, NC (United States); Ström, Anders [Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX (United States); Baek, Seung J. [Department of Biomedical and Diagnostics Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN (United States); Wade, Paul A. [Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, Research Triangle Park, NC (United States); Saxton, Arnold M. [Department of Animal Science, The University of Tennessee, Knoxville, TN (United States); Donnell, Robert M. [Department of Biomedical and Diagnostics Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN (United States); Pestell, Richard G. [Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA (United States); and others

    2015-02-01

    We have previously demonstrated that the anti-apoptotic protein BAD is expressed in normal human breast tissue and shown that BAD inhibits expression of cyclin D1 to delay cell-cycle progression in breast cancer cells. Herein, expression of proteins in breast tissues was studied by immunohistochemistry and results were analyzed statistically to obtain semi-quantitative data. Biochemical and functional changes in BAD-overexpressing MCF7 breast cancer cells were evaluated using PCR, reporter assays, western blotting, ELISA and extracellular matrix invasion assays. Compared to normal tissues, Grade II breast cancers expressed low total/phosphorylated forms of BAD in both cytoplasmic and nuclear compartments. BAD overexpression decreased the expression of β-catenin, Sp1, and phosphorylation of STATs. BAD inhibited Ras/MEK/ERK and JNK signaling pathways, without affecting the p38 signaling pathway. Expression of the metastasis-related proteins, MMP10, VEGF, SNAIL, CXCR4, E-cadherin and TlMP2 was regulated by BAD with concomitant inhibition of extracellular matrix invasion. Inhibition of BAD by siRNA increased invasion and Akt/p-Akt levels. Clinical data and the results herein suggest that in addition to the effect on apoptosis, BAD conveys anti-metastatic effects and is a valuable prognostic marker in breast cancer. - Highlights: • BAD and p-BAD expressions are decreased in breast cancer compared with normal breast tissue. • BAD impedes breast cancer invasion and migration. • BAD inhibits the EMT and transcription factors that promote cancer cell migration. • Invasion and migration functions of BAD are distinct from the BAD's role in apoptosis.

  17. PFTK1 Promotes Gastric Cancer Progression by Regulating Proliferation, Migration and Invasion.

    Science.gov (United States)

    Yang, Lei; Zhu, Jia; Huang, Hua; Yang, Qichang; Cai, Jing; Wang, Qiuhong; Zhu, Junya; Shao, Mengting; Xiao, Jinzhang; Cao, Jie; Gu, Xiaodan; Zhang, Shusen; Wang, Yingying

    2015-01-01

    PFTK1, also known as PFTAIRE1, CDK14, is a novel member of Cdc2-related serine/threonine protein kinases. Recent studies show that PFTK1 is highly expressed in several malignant tumors such as hepatocellular carcinoma, esophageal cancer, breast cancer, and involved in regulation of cell cycle, tumors proliferation, migration, and invasion that further influence the prognosis of tumors. However, the expression and physiological significance of PFTK1 in gastric cancer remain unclear. In this study, we analyzed the expression and clinical significance of PFTK1 by Western blot in 8 paired fresh gastric cancer tissues, nontumorous gastric mucosal tissues and immunohistochemistry on 161 paraffinembedded slices. High PFTK1 expression was correlated with the tumor grade, lymph node invasion as well as Ki-67. Through Cell Counting Kit (CCK)-8 assay, flow cytometry, colony formation, wound healing and transwell assays, the vitro studies demonstrated that PFTK1 overexpression promoted proliferation, migration and invasion of gastric cancer cells, while PFTK1 knockdown led to the opposite results. Our findings for the first time supported that PFTK1 might play an important role in the regulation of gastric cancer proliferation, migration and would provide a novel promising therapeutic strategy against human gastric cancer.

  18. p53 mediates the suppression of cancer cell invasion by inducing LIMA1/EPLIN.

    Science.gov (United States)

    Ohashi, Tomoko; Idogawa, Masashi; Sasaki, Yasushi; Tokino, Takashi

    2017-04-01

    The tumor suppressor gene p53 is frequently mutated in human cancer. p53 executes various functions, such as apoptosis induction and cell cycle arrest, by modulating transcriptional regulation. In this study, LIM domain and Actin-binding protein 1 (LIMA1) was identified as a target of the p53 family using a cDNA microarray. We also evaluated genome-wide occupancy of the p53 protein by performing chromatin immunoprecipitation-sequencing (ChIP-seq) and identified two p53 response elements in the LIMA1 gene. LIMA1 protein levels were increased by treatment with nutlin-3a, a small molecule that activates endogenous p53. In addition, LIMA1 expression was significantly downregulated in cancers compared with normal tissues. Knockdown of LIMA1 significantly enhanced cancer cell invasion and partially inhibited p53-induced suppression of cell invasion. Furthermore, low expression of LIMA1 in cancer patients correlated with decreased survival and poor prognosis. Thus, p53-induced LIMA1 inhibits cell invasion, and the downregulation of LIMA1 caused by p53 mutation results in decreased survival in cancer patients. Collectively, this study reveals the molecular mechanism of LIMA1 downregulation in various cancers and suggests that LIMA1 may be a novel prognostic predictor and a therapeutic target for cancer.

  19. Nuclear Membrane-Targeted Gold Nanoparticles Inhibit Cancer Cell Migration and Invasion.

    Science.gov (United States)

    Ali, Moustafa R K; Wu, Yue; Ghosh, Deepraj; Do, Brian H; Chen, Kuangcai; Dawson, Michelle R; Fang, Ning; Sulchek, Todd A; El-Sayed, Mostafa A

    2017-03-27

    Most cancer patients die from metastasis. Recent studies have shown that gold nanoparticles (AuNPs) can slow down the migration/invasion speed of cancer cells and suppress metastasis. Since nuclear stiffness of the cell largely decreases cell migration, our hypothesis is that targeting AuNPs to the cell nucleus region could enhance nuclear stiffness, and therefore inhibit cell migration and invasion. Our results showed that upon nuclear targeting of AuNPs, the ovarian cancer cell motilities decrease significantly, compared with nontargeted AuNPs. Furthermore, using atomic force microscopy, we observed an enhanced cell nuclear stiffness. In order to understand the mechanism of cancer cell migration/invasion inhibition, the exact locations of the targeted AuNPs were clearly imaged using a high-resolution three-dimensional imaging microscope, which showed that the AuNPs were trapped at the nuclear membrane. In addition, we observed a greatly increased expression level of lamin A/C protein, which is located in the inner nuclear membrane and functions as a structural component of the nuclear lamina to enhance nuclear stiffness. We propose that the AuNPs that are trapped at the nuclear membrane both (1) add to the mechanical stiffness of the nucleus and (2) stimulate the overexpression of lamin A/C located around the nuclear membrane, thus increasing nuclear stiffness and slowing cancer cell migration and invasion.

  20. Effects of chitosan nanoparticle-mediated BRAF siRNA interference on invasion and metastasis of gastric cancer cells.

    Science.gov (United States)

    Huo, Jian

    2016-08-01

    To observe the changes in invasion capacity of gastric cancer BGC823 cells after being treated with chitosan-encapsulated BRAF siRNA nanoparticles, and to evaluate the effects of the nanoparticle-mediated BRAF siRNA interference on cell invasion and metastasis, BRAF siRNA was encapsulated with chitosan into nanoparticles sized 350 nm to treat gastric cancer cells. Silencing of BRAF was detected by Western blot and PCR, and cell invasion was observed by the Transwell assay. The nanoparticles significantly downregulated BRAF expression in BGC823 cells (P Chitosan nanoparticle-mediated BRAF siRNA interference evidently reduced the invasion capacity of gastric cancers.

  1. Choropleth Map Design for Cancer Incidence, Part 2

    Directory of Open Access Journals (Sweden)

    Thomas B. Richards, MD

    2010-01-01

    Full Text Available Choropleth maps are commonly used in cancer reports and community discussions about cancer rates. Cancer registries increasingly use geographic information system techniques. The Centers for Disease Control and Prevention’s Division of Cancer Prevention and Control convened a Map Work Group to help guide application of geographic information system mapping techniques and to promote choropleth mapping of data from central cancer registries supported by the National Program of Cancer Registries, especially for comprehensive cancer control planning and evaluation purposes. In this 2-part series, we answer frequently asked questions about choropleth map design to display cancer incidence data. We recommend that future initiatives consider more advanced mapping, spatial analysis, and spatial statistics techniques and include usability testing with representatives of state and local programs and other cancer prevention partners.

  2. Choropleth Map Design for Cancer Incidence, Part 1

    Directory of Open Access Journals (Sweden)

    Thomas B. Richards, MD

    2010-01-01

    Full Text Available Choropleth maps are commonly used in cancer reports and community discussions about cancer rates. Cancer registries increasingly use geographic information system techniques. The Centers for Disease Control and Prevention’s Division of Cancer Prevention and Control convened a Map Work Group to help guide application of geographic information systems mapping techniques and to promote choropleth mapping of data from central cancer registries supported by the National Program of Cancer Registries, especially for planning and evaluation of comprehensive cancer control programs. In this 2-part series in this issue of Preventing Chronic Disease, we answer frequently asked questions about choropleth map design to display cancer incidence data. We recommend that future initiatives consider more advanced mapping, spatial analysis, and spatial statistics techniques, and include usability testing with representatives of state and local programs and other cancer prevention partners.

  3. HPV16 oncoproteins promote cervical cancer invasiveness by upregulating specific matrix metalloproteinases.

    Directory of Open Access Journals (Sweden)

    Jittranan Kaewprag

    Full Text Available Production of matrix metalloproteinases (MMPs for degradation of extracellular matrix is a vital step in cancer metastasis. We investigated the effects of HPV16 oncoproteins (16E6, 16E6*I and 16E7, either individually or combined, on the transcription of 7 MMPs implicated in cervical cancer invasiveness. The levels of 7 MMPs reported to be increased in cervical cancer were determined in C33A stably expressing different HPV16 oncoproteins using quantitative RT-PCR and compared with invasion ability of cell lines using in vitro invasion and wound healing assays. Overexpression of MMP-2 and MT1-MMP was detected in HPV16E6E7 expressing cells which correlated with increased cell invasion. Combination of HPV oncoproteins always showed greater effects than its individual form. Inhibition of cell invasion using a specific MMP-2 inhibitor, OA-Hy, and anti-MT1-MMP antibody confirmed that invasion in these cells was dependent on both MMP-2 and MT1-MMP expression. Depletion of HPV16E6E7 by shRNA-mediated knock-down experiments resulted in decreased MMP-2 and MT1-MMP expression levels as well as reduced invasion ability which strongly suggested specific effects of HPV oncoproteins on both MMPs and on cell invasion. Immunohistochemistry study in invasive cervical cancers confirmed the enhanced in vivo expression of these two MMPs in HPV16-infected cells. In addition, possible sites required by HPV16E6E7 on the MMP-2 and MT1-MMP promoters were investigated and PEA3 (at -552/-540 for MMP-2, -303 for MT1-MMP and Sp1 (at -91 for MMP-2, -102 for MT1-MMP binding sites were shown to be essential for mediating their transactivation activity. In conclusion, our study demonstrated that HPV16E6 and E7 oncoproteins cooperate in promoting cervical cancer invasiveness by specifically upregulating MMP-2 and MT1-MMP transcription in a similar manner.

  4. HPV16 oncoproteins promote cervical cancer invasiveness by upregulating specific matrix metalloproteinases.

    Science.gov (United States)

    Kaewprag, Jittranan; Umnajvijit, Wareerat; Ngamkham, Jarunya; Ponglikitmongkol, Mathurose

    2013-01-01

    Production of matrix metalloproteinases (MMPs) for degradation of extracellular matrix is a vital step in cancer metastasis. We investigated the effects of HPV16 oncoproteins (16E6, 16E6*I and 16E7), either individually or combined, on the transcription of 7 MMPs implicated in cervical cancer invasiveness. The levels of 7 MMPs reported to be increased in cervical cancer were determined in C33A stably expressing different HPV16 oncoproteins using quantitative RT-PCR and compared with invasion ability of cell lines using in vitro invasion and wound healing assays. Overexpression of MMP-2 and MT1-MMP was detected in HPV16E6E7 expressing cells which correlated with increased cell invasion. Combination of HPV oncoproteins always showed greater effects than its individual form. Inhibition of cell invasion using a specific MMP-2 inhibitor, OA-Hy, and anti-MT1-MMP antibody confirmed that invasion in these cells was dependent on both MMP-2 and MT1-MMP expression. Depletion of HPV16E6E7 by shRNA-mediated knock-down experiments resulted in decreased MMP-2 and MT1-MMP expression levels as well as reduced invasion ability which strongly suggested specific effects of HPV oncoproteins on both MMPs and on cell invasion. Immunohistochemistry study in invasive cervical cancers confirmed the enhanced in vivo expression of these two MMPs in HPV16-infected cells. In addition, possible sites required by HPV16E6E7 on the MMP-2 and MT1-MMP promoters were investigated and PEA3 (at -552/-540 for MMP-2, -303 for MT1-MMP) and Sp1 (at -91 for MMP-2, -102 for MT1-MMP) binding sites were shown to be essential for mediating their transactivation activity. In conclusion, our study demonstrated that HPV16E6 and E7 oncoproteins cooperate in promoting cervical cancer invasiveness by specifically upregulating MMP-2 and MT1-MMP transcription in a similar manner.

  5. Human bone marrow mesenchymal stem cells induce collagen production and tongue cancer invasion.

    Directory of Open Access Journals (Sweden)

    Sirpa Salo

    Full Text Available Tumor microenvironment (TME is an active player in carcinogenesis and changes in its composition modify cancer growth. Carcinoma-associated fibroblasts, bone marrow-derived multipotent mesenchymal stem cells (BMMSCs, and inflammatory cells can all affect the composition of TME leading to changes in proliferation, invasion and metastasis formation of carcinoma cells. In this study, we confirmed an interaction between BMMSCs and oral tongue squamous cell carcinoma (OTSCC cells by analyzing the invasion progression and gene expression pattern. In a 3-dimensional myoma organotypic invasion model the presence of BMMSCs inhibited the proliferation but increased the invasion of OTSCC cells. Furthermore, the signals originating from OTSCC cells up-regulated the expression of inflammatory chemokines by BMMSCs, whereas BMMSC products induced the expression of known invasion linked molecules by carcinoma cells. Particularly, after the cell-cell interactions, the chemokine CCL5 was abundantly secreted from BMMSCs and a function blocking antibody against CCL5 inhibited BMMSC enhanced cancer invasion area. However, CCL5 blocking antibody did not inhibit the depth of invasion. Additionally, after exposure to BMMSCs, the expression of type I collagen mRNA in OTSCC cells was markedly up-regulated. Interestingly, also high expression of type I collagen N-terminal propeptide (PINP in vivo correlated with the cancer-specific mortality of OTSCC patients, whereas there was no association between cancer tissue CCL5 levels and the clinical parameters. In conclusion, our results suggest that the interaction between BMMSC and carcinoma cells induce cytokine and matrix molecule expression, of which high level of type I collagen production correlates with the prognosis of OTSCC patients.

  6. EXPRESSION OF MATRIX METALLOPROTEINASE-7 INVOLVING IN GROWTH, INVASION, METASTASIS AND ANGIOGENESIS OF GASTRIC CANCER

    Institute of Scientific and Technical Information of China (English)

    郑华川; 李晓晗; 孙晋民; 曹乾; 辛彦; 张荫昌

    2003-01-01

    Objective. To investigate the role of matrix metalloproteinase-7 (MMP-7) expression in caricinogenesisand progression of gastric cancer.Methods. We studied MMP-7 expression and microvessel density (MVD) in adjacent mucosa and pri-mary foci of 113 cases of gastric cancer by streptavidin-biotin-immunoperoxidase method using anti-MMP-7 and anti-CD34 antibodies. MMP-7 expression and mean MVD were compared with clinicopatholog-ical features of gastric cancer, with the relationship between MMP-7 expression and MVD concerned in gastric cancer.Results. MMP-7 showed positive expression in adjacent mucosa of gastric cancer (29.20%, 33/113),less than that in gastric cancer (69.03%, 78/113). MMP-7 expression in primary foci of gastric cancerwas positively correlated with tumor size, invasive depth, metastasis and TNM staging (P<0.05), but notwith differentiation or growth pattern of gastric cancer (P>0.05). Positive correlation of mean MVD withtumor size, invasive depth, metastasis and TNM staging was found (P<0.05), despite no relationshipbetween mean MVD and differentiation of gastric cancer (P>0.05). Mean MVD was dependent on MMP-7expression in gastric cancer (P<0.05).Conclusion. Up-regulated expression of MMP-7 played an important role in carcinogenesis and pro-gression by participating in growth, invasion, metastasis and angiogenesis of gastric cancer. MMP-7 ex-pression could be regarded as an effective and objective marker to reflect the biological behaviors of gas-tric cancer.

  7. Dihydroavenanthramide D inhibits human breast cancer cell invasion through suppression of MMP-9 expression

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young-Rae; Noh, Eun-Mi; Oh, Hyun Ju; Hur, Hyun; Kim, Jeong-Mi; Han, Ji-Hey; Hwang, Jin-Ki; Park, Byung-Hyun; Park, Jin-Woo [Department of Biochemistry and Institute for Medical Sciences, Chonbuk National University, Medical School, Jeonju, Jeonbuk 560-182 (Korea, Republic of); Youn, Hyun Jo; Jung, Sung Hoo [Department of Surgery, Chonbuk National University, Medical School, Jeonju, Jeonbuk 560-182 (Korea, Republic of); Kim, Byeong-Soo; Jung, Ji-Youn; Lee, Sung-Ho [Department of Companion and Laboratory Animal Science, Kongju National University, Yesan 340-702 (Korea, Republic of); Park, Chang-Sik [Division of Animal Science and Resources Research Center for Transgenic Cloned Pigs, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Kim, Jong-Suk, E-mail: jsukim@jbnu.ac.kr [Department of Biochemistry and Institute for Medical Sciences, Chonbuk National University, Medical School, Jeonju, Jeonbuk 560-182 (Korea, Republic of)

    2011-02-25

    Research highlights: {yields} MMP-9 plays a pivotal role in the invasion of MCF-7 breast cancer cells. {yields} TPA stimulates MMP-9 expression through activation of MAPK/NF-{kappa}B and MAPK/AP-1 pathways. {yields} Dihydroavenanthramide D suppresses MMP-9 expression via inhibition of TPA-induced MAPK/NF-{kappa}B and MAPK/AP-1 activations. {yields} Dihydroavenanthramide D blocks cell invasion of MCF-7 breast cancer cells. -- Abstract: Dihydroavenanthramide D (DHAvD) is a synthetic analog to naturally occurring avenanthramide, which is the active component of oat. Previous study demonstrates that DHAvD strongly inhibits activation of nuclear factor-kappa B (NF-{kappa}B), which is a major component in cancer cell invasion. The present study investigated whether DHAvD can modulate MMP-9 expression and cell invasion in MCF-7 human breast cancer cells. MMP-9 expression and cell invasion in response to 12-O-tetradecanoylphorbol-13-acetate (TPA) was increased, whereas these inductions were muted by DHAvD. DHAvD also suppressed activation of mitogen-activated protein kinase (MAPK), and MAPK-mediated nuclear factor-kappa B (NF-{kappa}B) and activator protein-1 (AP-1) activations in TPA-treated MCF-7 cells. The results indicate that DHAvD-mediated inhibition of TPA-induced MMP-9 expression and cell invasion involves the suppression of the MAPK/NF-{kappa}B and MAPK/AP-1 pathways in MCF-7 cells. DHAvD may have potential value in breast cancer metastasis.

  8. Vascular invasion in pancreatic cancer:Imaging modalities,preoperative diagnosis and surgical management

    Institute of Scientific and Technical Information of China (English)

    Nicolas; C; Buchs; Michael; Chilcott; Pierre-Alexandre; Poletti; Leo; H; Buhler; Philippe; Morel

    2010-01-01

    Pancreatic cancer is associated with a poor prognosis,and surgical resection remains the only chance for curative therapy.In the absence of metastatic disease,which would preclude resection,assessment of vascular invasion is an important parameter for determining resectability of pancreatic cancer.A frequent error is to misdiagnose an involved major vessel.Obviously,surgical exploration with pathological examination remains the"gold standard"in terms of evaluation of resectability,especially from the point ...

  9. Anti-invasive activity against cancer cells of phytochemicals in red jasmine rice (Oryza sativa L.).

    Science.gov (United States)

    Pintha, Komsak; Yodkeeree, Supachai; Pitchakarn, Pornsirit; Limtrakul, Pornngarm

    2014-01-01

    Red rice contains pharmacological substances including phenolics, oryzanol, tocotrienol and tocopherol. Recently, red rice extract has been employed as a source of antioxidants for inhibition of tumor growth. This study was carried out to evaluate the anti-invasion effects of red rice extract fractions on cancer cells. It was found that at 100 μg/ml of crude ethanolic extract (CEE), hexane fraction (Hex) and dichloromethane fraction (DCM) could reduce HT1080 and MDA-MB-231 cancer cell invasion. Hex and DCM revealed higher potency levels than CEE, whereas an ethyl acetate fraction (EtOAc) had no effect. Gelatin zymography revealed that Hex decreased the secretion and activity of matrix metalloproteinase-2 and -9 (MMP-2 and-9). In contrast, the DCM fraction exhibited slightly effect on MMPs secretion and had no effect on MMPs activity. Collagenase activity was significantly inhibited by the Hex and DCM fractions. High amounts of γ-oryzanol and γ-tocotrienol were found in the Hex and DCM fractions and demonstrated an anti-invasion property. On the other hand, proanthocyanidin was detected only in the CEE fraction and reduced MDA-MB-231 cells invasion property. These observations suggest that proanthocyanidin, γ-oryzanol and γ-tocotrienol in the red rice fractions might be responsible for the anti invasion activity. The red rice extract may have a potential to serve as a food-derived chemotherapeutic agent for cancer patients.

  10. BLT2 up-regulates interleukin-8 production and promotes the invasiveness of breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Hyunju Kim

    Full Text Available BACKGROUND: The elevated production of interleukin (IL-8 is critically associated with invasiveness and metastatic potential in breast cancer cells. However, the intracellular signaling pathway responsible for up-regulation of IL-8 production in breast cancer cells has remained unclear. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we report that the expression of BLT2 is markedly up-regulated in the highly aggressive human breast cancer cell lines MDA-MB-231 and MDA-MB-435 compared with MCF-10A immortalized human mammary epithelial cells, as determined by RT-PCR, real-time PCR and FACS analysis. Blockade of BLT2 with BLT2 siRNA knockdown or BLT2 inhibitor treatment downregulated IL-8 production and thereby diminished the invasiveness of aggressive breast cancer cells, analyzed by Matrigel invasion chamber assays. We further characterized the downstream signaling mechanism by which BLT2 stimulates IL-8 production and identified critical mediatory roles for the generation of reactive oxygen species (ROS and the consequent activation of the transcription factor NF-κB. Moreover, blockade of BLT2 suppressed the formation of metastatic lung nodules by MDA-MB-231 cells in both experimental and orthotopic metastasis models. CONCLUSIONS/SIGNIFICANCE: Taken together, our study demonstrates that a BLT2-ROS-NF-κB pathway up-regulates IL-8 production in MDA-MB-231 and MDA-MB-435 cells, thereby contributing to the invasiveness of these aggressive breast cancer cells. Our findings provide insight into the molecular mechanism of invasiveness in breast cancer.

  11. Non-small cell lung cancer cyclooxygenase-2-dependent invasion is mediated by CD44.

    Science.gov (United States)

    Dohadwala, M; Luo, J; Zhu, L; Lin, Y; Dougherty, G J; Sharma, S; Huang, M; Pold, M; Batra, R K; Dubinett, S M

    2001-06-15

    Elevated tumor cyclooxygenase (COX-2) expression is associated with increased angiogenesis, tumor invasion, and suppression of host immunity. We have previously shown that genetic inhibition of tumor COX-2 expression reverses the immunosuppression induced by non-small cell lung cancer (NSCLC). To assess the impact of COX-2 expression in lung cancer invasiveness, NSCLC cell lines were transduced with a retroviral vector expressing the human COX-2 cDNA in the sense (COX-2-S) and antisense (COX-2-AS) orientations. COX-2-S clones expressed significantly more COX-2 protein, produced 10-fold more prostaglandin E(2), and demonstrated an enhanced invasive capacity compared with control vector-transduced or parental cells. CD44, the cell surface receptor for hyaluronate, was overexpressed in COX-2-S cells, and specific blockade of CD44 significantly decreased tumor cell invasion. In contrast, COX-2-AS clones had a very limited capacity for invasion and showed diminished expression of CD44. These findings suggest that a COX-2-mediated, CD44-dependent pathway is operative in NSCLC invasion. Because tumor COX-2 expression appears to have a multifaceted role in conferring the malignant phenotype, COX-2 may be an important target for gene or pharmacologic therapy in NSCLC.

  12. Role of KCNMA1 gene in breast cancer invasion and metastasis to brain

    Directory of Open Access Journals (Sweden)

    Couraud Pierre-Olivier

    2009-07-01

    Full Text Available Abstract Background The prognosis for patients with breast tumor metastases to brain is extremely poor. Identification of prognostic molecular markers of the metastatic process is critical for designing therapeutic modalities for reducing the occurrence of metastasis. Although ubiquitously present in most human organs, large-conductance calcium- and voltage-activated potassium channel (BKCa channels are significantly upregulated in breast cancer cells. In this study we investigated the role of KCNMA1 gene that encodes for the pore-forming α-subunit of BKCa channels in breast cancer metastasis and invasion. Methods We performed Global exon array to study the expression of KCNMA1 in metastatic breast cancer to brain, compared its expression in primary breast cancer and breast cancers metastatic to other organs, and validated the findings by RT-PCR. Immunohistochemistry was performed to study the expression and localization of BKCa channel protein in primary and metastatic breast cancer tissues and breast cancer cell lines. We performed matrigel invasion, transendothelial migration and membrane potential assays in established lines of normal breast cells (MCF-10A, non-metastatic breast cancer (MCF-7, non-brain metastatic breast cancer cells (MDA-MB-231, and brain-specific metastatic breast cancer cells (MDA-MB-361 to study whether BKCa channel inhibition attenuates breast tumor invasion and metastasis using KCNMA1 knockdown with siRNA and biochemical inhibition with Iberiotoxin (IBTX. Results The Global exon array and RT-PCR showed higher KCNMA1 expression in metastatic breast cancer in brain compared to metastatic breast cancers in other organs. Our results clearly show that metastatic breast cancer cells exhibit increased BKCa channel activity, leading to greater invasiveness and transendothelial migration, both of which could be attenuated by blocking KCNMA1. Conclusion Determining the relative abundance of BKCa channel expression in breast

  13. Knockdown of RAGE inhibits growth and invasion of gastric cancer cells

    Directory of Open Access Journals (Sweden)

    X.C. Xu

    2013-11-01

    Full Text Available The receptor for advanced glycation endproducts (RAGE is an oncogenic trans-membranous receptor, which is overexpressed in multiple human cancers. However, the role of RAGE in gastric cancer is still elusive. In this study, we investigated the expression and molecular mechanisms of RAGE in gastric cancer cells. Forty cases of gastric cancer and corresponding adjacent non-cancerous tissues (ANCT were collected, and the expression of RAGE was assessed using immunohistochemistry (IHC in biopsy samples. Furthermore, RAGE signaling was blocked by constructed recombinant small hairpin RNA lentiviral vector (Lv-shRAGE used to transfect into human gastric cancer SGC-7901 cells. The expression of AKT, proliferating cell nuclear antigen (PCNA and matrix metallopeptidase-2 (MMP-2 was detected by Real-time PCR and Western blot assays. Cell proliferative activities and invasive capability were respectively determined by MTT and Transwell assays. Cell apoptosis and cycle distribution were analyzed by flow cytometry. As a consequence, RAGE was found highly expressed in cancer tissues compared with the ANCT (70.0% vs 45.0%, P=0.039, and correlated with lymph node metastases (P=0.026. Knockdown of RAGE reduced cell proliferation and invasion of gastric cancer with decreased expression of AKT, PCNA and MMP-2, and induced cell apoptosis and cycle arrest. Altogether, upregulation of RAGE expression is associated with lymph node metastases of gastric cancer, and blockade of RAGE signaling suppresses growth and invasion of gastric cancer cells through AKT pathway, suggesting that RAGE may represent a potential therapeutic target for this aggressive malignancy.

  14. Non-muscle invasive bladder cancer risk stratification

    Directory of Open Access Journals (Sweden)

    Sumit Isharwal

    2015-01-01

    Conclusion: EORTC and CUETO risk tables are the two best-established models to predict recurrence and progression in patients with NMIBC though they tend to overestimate risk and have poor discrimination for prognostic outcomes in external validation. Future research should focus on enhancing the predictive accuracy of risk assessment tools by incorporating additional prognostic factors such as depth of lamina propria invasion and molecular biomarkers after rigorous validation in multi-institutional cohorts.

  15. Collective cancer cell invasion induced by coordinated contractile stresses.

    Science.gov (United States)

    Jimenez Valencia, Angela M; Wu, Pei-Hsun; Yogurtcu, Osman N; Rao, Pranay; DiGiacomo, Josh; Godet, Inês; He, Lijuan; Lee, Meng-Horng; Gilkes, Daniele; Sun, Sean X; Wirtz, Denis

    2015-12-22

    The physical underpinnings of fibrosarcoma cell dissemination from a tumor in a surrounding collagen-rich matrix are poorly understood. Here we show that a tumor spheroid embedded in a 3D collagen matrix exerts large contractile forces on the matrix before invasion. Cell invasion is accompanied by complex spatially and temporally dependent patterns of cell migration within and at the surface of the spheroids that are fundamentally different from migratory patterns of individual fibrosarcoma cells homogeneously distributed in the same type of matrix. Cells display a continuous transition from a round morphology at the spheroid core, to highly aligned elongated morphology at the spheroid periphery, which depends on both β1-integrin-based cell-matrix adhesion and myosin II/ROCK-based cell contractility. This isotropic-to-anisotropic transition corresponds to a shift in migration, from a slow and unpolarized movement at the core, to a fast, polarized and persistent one at the periphery. Our results also show that the ensuing collective invasion of fibrosarcoma cells is induced by anisotropic contractile stresses exerted on the surrounding matrix.

  16. Quantum dots-based double-color imaging of HER2 positive breast cancer invasion

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiu-Li, E-mail: usually.158@163.com [Department of Oncology, Zhongnan Hospital of Wuhan University, No 169 Donghu Road, Wuchang District, Wuhan 430071 (China); Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, No 169 Donghu Road, Wuchang District, Wuhan 430071 (China); Peng, Chun-Wei, E-mail: pqc278@163.com [Department of Oncology, Zhongnan Hospital of Wuhan University, No 169 Donghu Road, Wuchang District, Wuhan 430071 (China); Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, No 169 Donghu Road, Wuchang District, Wuhan 430071 (China); Chen, Chuang, E-mail: chenc2469@163.com [Department of Oncology, Zhongnan Hospital of Wuhan University, No 169 Donghu Road, Wuchang District, Wuhan 430071 (China); Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, No 169 Donghu Road, Wuchang District, Wuhan 430071 (China); Yang, Xue-Qin, E-mail: yxqjenny@126.com [Department of Oncology, Zhongnan Hospital of Wuhan University, No 169 Donghu Road, Wuchang District, Wuhan 430071 (China); Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, No 169 Donghu Road, Wuchang District, Wuhan 430071 (China); Hu, Ming-Bai, E-mail: humingbai@126.com [Department of Oncology, Zhongnan Hospital of Wuhan University, No 169 Donghu Road, Wuchang District, Wuhan 430071 (China); Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, No 169 Donghu Road, Wuchang District, Wuhan 430071 (China); Xia, He-Shun, E-mail: xiaheshun@yahoo.com.cn [Department of Pathology, Hubei Cancer Hospital, Wuhan, Hubei 430079 (China); Liu, Shao-Ping, E-mail: lsp_77@126.com [Department of Oncology, Zhongnan Hospital of Wuhan University, No 169 Donghu Road, Wuchang District, Wuhan 430071 (China); Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, No 169 Donghu Road, Wuchang District, Wuhan 430071 (China); and others

    2011-06-10

    Highlights: {yields} HER2 level is closely related to the biologic behaviors of breast cancer cells. {yields} A new method to simultaneously image HER2 and type IV collagen was established. {yields} HER2 status and type IV collagen degradation predict breast cancer invasion. {yields} The complex interactions between tumor and its environment were revealed. -- Abstract: It has been well recognized that human epidermal growth factor receptor 2 (HER2) level in breast cancer (BC) is closely related to the malignant biologic behaviors of the tumor, including invasion and metastasis. Yet, there has been a lack of directly observable evidence to support such notion. Here we report a quantum dots (QDs)-based double-color imaging technique to simultaneously show the HER2 level on BC cells and the type IV collagen in the tumor matrix. In benign breast tumor, the type IV collagen was intact. With the increasing of HER2 expression level, there has been a progressive decrease in type IV collagen around the cancer nest. At HER2 (3+) expression level, there has virtually been a total destruction of type IV collagen. Moreover, HER2 (3+) BC cells also show direct invasion into the blood vessels. This novel imaging method provides direct observable evidence to support the theory that the HER2 expression level is directly related to BC invasion.

  17. Combined radical prostatectomy and abdominoperineal resection for locally invasive rectal cancer

    Directory of Open Access Journals (Sweden)

    Daniel Fernández-Martínez

    2014-01-01

    CONCLUSION: En bloc radical prostatectomy and proctosigmoidectomy is feasible in selected patients with rectal cancer and invasion limited to the prostate or seminal vesicles because it provides good local tumor control and significantly improves the patient's quality of life in comparison to total pelvic exenteration.

  18. Defining progression in nonmuscle invasive bladder cancer: it is time for a new, standard definition

    NARCIS (Netherlands)

    Lamm, D.; Persad, R.; Brausi, M.; Buckley, R.; Witjes, J.A.; Palou, J.; Bohle, A.; Kamat, A.M.; Colombel, M.; Soloway, M.

    2014-01-01

    PURPOSE: Despite being one of the most important clinical outcomes in nonmuscle invasive bladder cancer, there is currently no standard definition of disease progression. Major clinical trials and meta-analyses have used varying definitions or have failed to define this end point altogether. A stand

  19. Defining and treating the spectrum of intermediate risk nonmuscle invasive bladder cancer

    NARCIS (Netherlands)

    Kamat, A.M.; Witjes, J.A.; Brausi, M.; Soloway, M.; Lamm, D.; Persad, R.; Buckley, R.; Bohle, A.; Colombel, M.; Palou, J.

    2014-01-01

    PURPOSE: Low, intermediate and high risk categories have been defined to help guide the treatment of patients with nonmuscle invasive bladder cancer (Ta, T1, CIS). However, while low and high risk disease has been well classified, the intermediate risk category has traditionally comprised a heteroge

  20. Recent advances in high-throughput molecular marker identification for superficial and invasive bladder cancers

    DEFF Research Database (Denmark)

    Andersen, Lars Dyrskjøt; Zieger, Karsten; Ørntoft, Torben Falck

    2007-01-01

    individually contributed to the management of the disease. However, the development of high-throughput techniques for simultaneous assessment of a large number of markers has allowed classification of tumors into clinically relevant molecular subgroups beyond those possible by pathological classification. Here......, we review the recent advances in high-throughput molecular marker identification for superficial and invasive bladder cancers....

  1. Treatment Options Available for Bacillus Calmette-Guerin Failure in Non-muscle-invasive Bladder Cancer

    NARCIS (Netherlands)

    Yates, D.R.; Brausi, M.A.; Catto, J.W.; Dalbagni, G.; Roupret, M.; Shariat, S.F.; Sylvester, R.J.; Witjes, J.A.; Zlotta, A.R.; Palou-Redorta, J.

    2012-01-01

    CONTEXT: Intravesical bacillus Calmette-Guerin (BCG) is a standard conservative treatment for patients with high-risk non-muscle-invasive bladder cancer (NMIBC). Many patients will experience recurrence or progression following BCG and are termed BCG failures. OBJECTIVE: To summarise the current tre

  2. Cancer invasion and resistance: interconnected processes of disease progression and therapy failure.

    NARCIS (Netherlands)

    Alexander, S.; Friedl, P.H.A.

    2012-01-01

    Cancer progression and outcome depend upon two key functions executed by tumor cells: the growth and survival capability leading to resistance to therapy and the invasion into host tissues resulting in local and metastatic dissemination. Although both processes are widely studied separately, the und

  3. Inhibitory effect of Trolox on the migration and invasion of human lung and cervical cancer cells.

    Science.gov (United States)

    Sung, Ho Joong; Kim, Yoonseo; Kang, Hyereen; Sull, Jae Woong; Kim, Yoon Suk; Jang, Sung-Wuk; Ko, Jesang

    2012-02-01

    The antioxidant 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox) is implicated in migration and invasion of metastatic tumors. However, the molecular mechanism underlying the effect of Trolox on metastatic cancer cells is not known. We found that a non-cytotoxic dose of Trolox decreased phorbol 12-myristate 13-acetate (PMA)-induced invasion and migration of both A549 and HeLa cancer cells. We also found that Trolox suppressed both the expression and the proteolytic activity of matrix metalloproteinase-9 (MMP-9), and that the promoter activity of PMA-induced MMP-9 was inhibited by Trolox. Our results show that Trolox inhibits the transcriptional activity of MMP-9 by suppression of NF-κB transactivation. These results indicate that Trolox inhibits NF-κB-mediated MMP-9 expression, leading to the suppression of migration and invasion in lung and cervical cancer cells. Trolox is a potential agent for clinical use in preventing the invasion and metastasis of human malignant lung and cervical cancers.

  4. Total RNA Sequencing Analysis of DCIS Progressing to Invasive Breast Cancer

    Science.gov (United States)

    2015-09-01

    AWARD NUMBER: W81XWH-14-1-0080 TITLE: Total RNA Sequencing Analysis of DCIS Progressing to Invasive Breast Cancer. PRINCIPAL INVESTIGATOR...extracts. All samples have undergone a comprehensive DNA methylome analysis using the Illumina 450K CpG arrays, with excellent call rates, the

  5. The role of adhesive molecules in endometrial cancer: part II

    Directory of Open Access Journals (Sweden)

    Andrzej Malinowski

    2010-12-01

    Full Text Available The carcinogenesis is a result of both functional and structural disorders in the tissue. It initiates as a mutationin a gene encoding protein that is essential for cellular function. The subsequent cascade of eventsleads to accumulation of mutations and loss of cellular function. The cell loses its tissue-specific morphology,disconnects from other cells and extracellular matrix and migrates – the invasion begins. It is now clear thatadhesive molecules are a key player in this cascade. These proteins of the cell membrane surface are responsiblefor attachment of the cells to each other and to the extracellular matrix. These interactions are crucial forboth structural and functional tissue organization. Lack of this homeostasis destroys the tissue architectureand impairs its function and results in invasion. Abnormal expression of adhesive molecules was reported in allexamined cancers, including endometrial cancer.Endometrial cancer is the most common gynaecological cancer in developed countries. Although in many casesdiagnosed and treated in early stages, and thus with good results, some patients cannot be cured. Completeknowledge of the pathogenesis of the disease will be helpful in identifying the patients with negative prognosticfactors, increased risk of recurrence and, perhaps, to find other therapeutic options. In the paper we are trying tosum up the up-to-date knowledge of the role of adhesive molecules in pathogenesis of endometrial cancer.

  6. The role of adhesive molecules in endometrial cancer: part I

    Directory of Open Access Journals (Sweden)

    Michał Wojciechowski

    2010-10-01

    Full Text Available The carcinogenesis is a result of both functional and structural disorders in the tissue. It initiates as a mutation in a gene encoding protein that is essential for cellular function. The subsequent cascade of events leads to accumulation of mutations and loss of cellular function. The cell loses its tissue-specific morphology, disconnects from other cells and extracellular matrix and migrates – the invasion begins. It is now clear that adhesive molecules are a key player in this cascade. These proteins of the cell membrane surface are responsible for attachment of the cells to each other and to the extracellular matrix. These interactions are crucial for both structural and functional tissue organization. Lack of this homeostasis destroys the tissue architecture, impairs its function and results in invasion. Abnormal expression of adhesive molecules was reported in all examined cancers, including endometrial cancer.Endometrial cancer is the most common gynaecological cancer in developed countries. Although in many cases it is diagnosed and treated in early stages, and thus with good results, some patients cannot be cured. A complete knowledge of the pathogenesis of the disease will be helpful in identifying patients with negative prognostic factors, increased risk of recurrence and, perhaps, finding other therapeutic options. In the paper we are trying to sum up the up-to-date knowledge of the role of adhesive molecules in pathogenesis of endometrial cancer.

  7. HPV16 variant lineage, clinical stage, and survival in women with invasive cervical cancer

    Directory of Open Access Journals (Sweden)

    Zuna Rosemary E

    2011-10-01

    Full Text Available Abstract Background HPV16 variants are associated with different risks for development of CIN3 and invasive cancer, although all are carcinogenic. The relationship of HPV 16 variants to cancer survival has not been studied. Methods 155 HPV16-positive cervical cancers were categorized according to European and non-European variant patterns by DNA sequencing of the E6 open reading frame. Clinico-pathologic parameters and clinical outcome were collected by chart review and death registry data. Results Of the 155 women (mean age 44.7 years; median follow-up 26.7 months, 85.2% harbored European variants while 14.8% had non-European sequences. HPV16 variants differed by histologic cell type (p = 0.03 and stage (1 vs. 2+; p = 0.03. Overall, 107 women (68.0% were alive with no evidence of cancer, 42 (27.1% died from cervical cancer, 2 (1.3% were alive with cervical cancer, and 4 (2.6% died of other causes. Death due to cervical cancer was associated with European variant status (p Conclusions Overall, invasive cervical cancers with non-European variants showed a less aggressive behavior than those with European variants. These findings should be replicated in a population with more non-European cases.

  8. XIAP as a prognostic marker of early recurrence of nonmuscular invasive bladder cancer

    Institute of Scientific and Technical Information of China (English)

    LI Ming; SONG Tao; YIN Zhen-fei; NA Yan-qun

    2007-01-01

    Background Dysregulation of apoptosis has been implicated not only in carcinogenesis and tumor progression but also in tumor recurrence. We investigated whether the expression of X-linked inhibitor of apoptosis (XIAP) might predict early recurrence in patients with non-muscular invasive bladder cancer.Methods The cohort comprised 176 consecutive patients with primary superficial bladder cancer treated with transurethral resection. Immunohistochemical staining using the standard avidin-biotin-peroxidase technique and RT-PCR were used to detect XIAP protein and mRNA expressions in cancer tissues. The relationship between XIAP expression and clinicopathological characteristics, cancer recurrence were analyzed.Results XIAP expression was observed in 108 cases (61.4%) and no expression in 68. There was no correlation between XIAP expression rate and the tumor pathological grade, but was an apparent trend toward the increased XIAP levels from well (G1) to poor (G3) differentiated cancer. Eighty-two (46.6%) patients experienced tumor recurrence at a mean of 28.6 months of the follow-up; 66 of them expressed XIAP (61.1%) and 16 were XIAP negative (23.5%). Twelve patients presented with invasive disease at the time of relapse and all of them expressed XIAP. Patients without XIAP expression or with low tumor grades had significantly higher recurrence-free survival than those with XIAP expression(log rank test P=0.0015) or high tumor grades (log rank test P<0.001). Multivariate analysis revealed that XIAP expression, tumor grade, and tumor number were independent predictors for the recurrence of non-muscular invasive bladder cancer (P=-0.004, 0.016, and 0.043, respectively).Conclusions XIAP may be considered as a new independent prognostic marker for early recurrence of non-muscular invasive bladder cancer.

  9. LOXL2 expression is associated with invasiveness and negatively influences survival in breast cancer patients.

    Science.gov (United States)

    Ahn, Sung Gwe; Dong, Seung Myung; Oshima, Akira; Kim, Woo Ho; Lee, Hak Min; Lee, Seung Ah; Kwon, Seung-Hyun; Lee, Ji-Hae; Lee, Jae Myun; Jeong, Joon; Lee, Hy-De; Green, Jeffrey E

    2013-08-01

    Lysyl oxidase-like 2 (LOXL2) is associated with invasiveness and metastasis in breast cancer. We analyzed the prognostic impact of LOXL2 for breast cancer patients and investigated the role of LOXL2 in breast cancer cell lines. Immunohistochemical study of LOXL2 expression was done in samples from 309 patients. Survival analysis was performed using log-rank test and Cox regression hazard model. After identification of LOXL2 expression in breast cancer cell lines, we performed matrigel invasion and wound-healing assays with LOXL2-silenced cell lines. In the human study, LOXL2 was expressed in 16.2 % of patients. Comparing the LOXL2-positive versus negative groups, there was a significantly higher proportion of estrogen receptor-negative patients (54.0 vs. 37.0 %, respectively; p = 0.029) and triple-negative patients (34.0 vs. 18.0 %; p = 0.022) in the positive group. In multivariate analysis for overall survival and metastasis-free survival, positive LOXL2 was demonstrated as a poor prognostic factor (HR 2.27 and 2.10, respectively). In vitro study indicated that LOXL2 silencing induces a mesenchymal-epithelial transition-like process in basal cell lines (MDA-MB-231 and BT549) associated with decreased invasive and migratory properties. These clinical and preclinical data confirm that higher LOXL2 expression is associated with invasiveness of basal-like breast cancer cells and lower survival of breast cancer patients. Our results suggest the clinical value of LOXL2 as a therapeutic target in breast cancer.

  10. Lamellipodin promotes invasive 3D cancer cell migration via regulated interactions with Ena/VASP and SCAR/WAVE

    Science.gov (United States)

    Carmona, Guillaume; Perera, Upamali; Gillett, Cheryl; Naba, Alexandra; Law, Ah-Lai; Sharma, Ved P.; Wang, Jian; Wyckoff, Jeffrey; Balsamo, Michele; Mosis, Fuad; De Piano, Mario; Monypenny, James; Woodman, Natalie; McConnell, Russell E.; Mouneimne, Ghassan; Van Hemelrijck, Mieke; Cao, Yihai; Condeelis, John; Hynes, Richard O.; Gertler, Frank B.; Krause, Matthias

    2016-01-01

    Cancer invasion is a hallmark of metastasis. The mesenchymal mode of cancer cell invasion is mediated by elongated membrane protrusions driven by the assembly of branched F-actin networks. How deregulation of actin regulators promotes cancer cell invasion is still enigmatic. We report that increased expression and membrane localization of the actin regulator Lamellipodin correlates with reduced metastasis-free survival and poor prognosis in breast cancer patients. In agreement we find that Lamellipodin depletion reduced lung metastasis in an orthotopic mouse breast cancer model. Invasive 3D cancer cell migration as well as invadopodia formation, and matrix degradation were impaired upon Lamellipodin depletion. Mechanistically, we show that Lamellipodin promotes invasive 3D cancer cell migration via both actin-elongating Ena/VASP proteins and the Scar/WAVE complex, which stimulates actin branching. In contrast, Lamellipodin interaction with Scar/WAVE but not Ena/VASP is required for random 2D cell migration. We identify a phosphorylation-dependent mechanism that regulates selective recruitment of these effectors to Lamellipodin: Abl-mediated Lamellipodin phosphorylation promotes its association with both Scar/WAVE and Ena/VASP, while Src-dependent phosphorylation enhances binding to Scar/WAVE but not Ena/VASP. Through these selective, regulated interactions Lamellipodin mediates directional sensing of EGF gradients and invasive 3D migration of breast cancer cells. Our findings imply that increased Lamellipodin levels enhance Ena/VASP and Scar/WAVE activities at the plasma membrane to promote 3D invasion and metastasis. PMID:26996666

  11. Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA.

    Science.gov (United States)

    Murtaza, Muhammed; Dawson, Sarah-Jane; Tsui, Dana W Y; Gale, Davina; Forshew, Tim; Piskorz, Anna M; Parkinson, Christine; Chin, Suet-Feung; Kingsbury, Zoya; Wong, Alvin S C; Marass, Francesco; Humphray, Sean; Hadfield, James; Bentley, David; Chin, Tan Min; Brenton, James D; Caldas, Carlos; Rosenfeld, Nitzan

    2013-05-02

    Cancers acquire resistance to systemic treatment as a result of clonal evolution and selection. Repeat biopsies to study genomic evolution as a result of therapy are difficult, invasive and may be confounded by intra-tumour heterogeneity. Recent studies have shown that genomic alterations in solid cancers can be characterized by massively parallel sequencing of circulating cell-free tumour DNA released from cancer cells into plasma, representing a non-invasive liquid biopsy. Here we report sequencing of cancer exomes in serial plasma samples to track genomic evolution of metastatic cancers in response to therapy. Six patients with advanced breast, ovarian and lung cancers were followed over 1-2 years. For each case, exome sequencing was performed on 2-5 plasma samples (19 in total) spanning multiple courses of treatment, at selected time points when the allele fraction of tumour mutations in plasma was high, allowing improved sensitivity. For two cases, synchronous biopsies were also analysed, confirming genome-wide representation of the tumour genome in plasma. Quantification of allele fractions in plasma identified increased representation of mutant alleles in association with emergence of therapy resistance. These included an activating mutation in PIK3CA (phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha) following treatment with paclitaxel; a truncating mutation in RB1 (retinoblastoma 1) following treatment with cisplatin; a truncating mutation in MED1 (mediator complex subunit 1) following treatment with tamoxifen and trastuzumab, and following subsequent treatment with lapatinib, a splicing mutation in GAS6 (growth arrest-specific 6) in the same patient; and a resistance-conferring mutation in EGFR (epidermal growth factor receptor; T790M) following treatment with gefitinib. These results establish proof of principle that exome-wide analysis of circulating tumour DNA could complement current invasive biopsy approaches to identify

  12. Accessory Breast Cancer Occurring Concurrently with Bilateral Primary Invasive Breast Carcinomas: A Report of Two Cases and Literature Review

    OpenAIRE

    Hao, Jin-yan; Yang, Cui-cui; Liu, Fang-Fang; Yang, Yi-Ling; Li, Shuai; Li, Wei-Dong; LI, YA-QING; Lang, Rong-gang; Fan, Yu; Paulos, Estifanos; Zhang, Xin-Min; Fu, Li

    2012-01-01

    The development of accessory breast tissue, which is found anywhere along the milk line, is attributed to the failure of milk line remnants to regress during embryogenesis. Primary tumors may arise from any ectopic breast tissue. Accessory breast cancer occurring concurrently with primary invasive breast cancer is extremely rare. Two such cases were reported in this article. One was a 43-year-old Chinese female who exhibited bilateral breast cancer (invasive ductal carcinoma, not otherwise sp...

  13. Sublethal Irradiation Promotes Migration and Invasiveness of Prostate Cancer PC-3 Cells: Implications for Radiotherapy of Human Prostate Cancer

    Institute of Scientific and Technical Information of China (English)

    Xiaoyi Zhang; Baofa Hong; Jianguang Zhou; Liquan Zhou; Lian Zou

    2007-01-01

    OBJECTIVE To study the changes in the matrix metalloproteinases-2 and 9 (MMP2, MMP9) induced by 60Co y-ray external irradiation of human prostate cancer PC-3 cells.METHODS Human prostate cancer PC-3 cells were irradiated with different doses of 60Coy-rays. Cell migration and invasiveness were evaluated and the expression of MMP2, and MMP9 was investigated by RT-PCR, Western blotting and flow cytometry(FCM).RESULTS Irradiation enchances invasive protential at the doses of 1,3 and 5 Gy.whereas it significantly inhibits cell migration. CONCLUSION The different doses of 60Co y-ray external irradiation for prostate cancer may have different effects through the changes of MMP2, and MMP9 expression.

  14. Can neutrophil to lymphocyte ratio predict lamina propria invasion in patients with non muscle invasive bladder cancer?

    Science.gov (United States)

    Cimen, Haci Ibrahim; Halis, Fikret; Saglam, Hasan Salih; Gokce, Ahmet

    2017-01-01

    ABSTRACT Objective Recent studies have demonstrated the role of systemic inflammation in the development and progression of cancer. In this study, we evaluated whether preoperatively measured neutrophil-to-lymphocyte ratio (NLR) can predict lamina propria invasion in patients with non-muscle-invasive bladder cancer (NMIBC). Material and Methods We reviewed the medical records of 304 consecutive and newly diagnosed patients with bladder cancer who had been treated with transurethral resection between January 2008 and June 2014. In total, 271 patients were included in the study and the patients were divided into two groups according to the pathological stage (Group 1: Ta, Group 2: T1). NLR was calculated by dividing the absolute neutrophil count (N) by the absolute lymphocyte count (L). Results In total, 271 patients (27 women and 244 men) were enrolled. Mean age was higher in Group 2 than in Group 1 (67.3±10.8 vs. 62.9±10.8, pblood cell (WBC) and N counts were statistically insignificant (7.63±1.87 vs. 7.69±1.93, p=0.780; 4.72±1.54 vs. 4.46±1.38, p=0.140; respectively), L was significantly lower and NLR was significantly higher in Group 2 than in Group 1 (2.07±0.75 vs. 2.4±0.87, p=0.001; 2.62±1.5 vs. 2.19±1.62, p=0.029; respectively). Conclusion Our data indicate that high NLR and low L are statistically associated with T1 stage, whereas low L are able to predict lamina propria invasion in patients with NMIBC. These findings suggest that pretreatment measurement of NLR may provide valuable information for the clinical management of patients with NMIBC. Prospective studies are now required to further validate the role of NLR as a risk factor in NMIBC. PMID:28124528

  15. The Runx transcriptional co-activator, CBFβ, is essential for invasion of breast cancer cells

    Directory of Open Access Journals (Sweden)

    Lopez-Camacho Cesar

    2010-06-01

    Full Text Available Abstract Background The transcription factor Runx2 has an established role in cancers that metastasize to bone. In metastatic breast cancer cells Runx2 is overexpressed and contributes to the invasive capacity of the cells by regulating the expression of several invasion genes. CBFβ is a transcriptional co-activator that is recruited to promoters by Runx transcription factors and there is considerable evidence that CBFβ is essential for the function of Runx factors. However, overexpression of Runx1 can partially rescue the lethal phenotype in CBFβ-deficient mice, indicating that increased levels of Runx factors can, in some situations, overcome the requirement for CBFβ. Since Runx2 is overexpressed in metastatic breast cancer cells, and there are no reports of CBFβ expression in breast cells, we sought to determine whether Runx2 function in these cells was dependent on CBFβ. Such an interaction might represent a viable target for therapeutic intervention to inhibit bone metastasis. Results We show that CBFβ is expressed in the metastatic breast cancer cells, MDA-MB-231, and that it associates with Runx2. Matrigel invasion assays and RNA interference were used to demonstrate that CBFβ contributes to the invasive capacity of these cells. Subsequent analysis of Runx2 target genes in MDA-MB-231 cells revealed that CBFβ is essential for the expression of Osteopontin, Matrixmetalloproteinase-13, Matrixmetalloproteinase-9, and Osteocalcin but not for Galectin-3. Chromatin immunoprecipitation analysis showed that CBFβ is recruited to both the Osteopontin and the Galectin-3 promoters. Conclusions CBFβ is expressed in metastatic breast cancer cells and is essential for cell invasion. CBFβ is required for expression of several Runx2-target genes known to be involved in cell invasion. However, whilst CBFβ is essential for invasion, not all Runx2-target genes require CBFβ. We conclude that CBFβ is required for a subset of Runx2-target genes

  16. PI3K/Akt pathway involving into apoptosis and invasion in human colon cancer cells LoVo.

    Science.gov (United States)

    Jiang, Qun Guang; Li, Tai Yuan; Liu, Dong Ning; Zhang, Hai Tao

    2014-05-01

    In this study we determined the effects of Curcumin on human colon cancer cells line LoVo. We found that Curcumin significantly inhibited the proliferation, migration and invasion, and clone formation of LoVo cells in a dose-dependent manner. Curcumin also dose-dependently reduced the phosphorylation of proteins Akt and increased expression levels of the genes caspase-3, cytochrome-c, Bax mRNA in LoVo cells. In addition, Curcumin dose-dependently decreased gene Bcl-2 mRNA expression. Similar results were observed in LoVo cells treated with LY294002. These in vitro studies suggest that Curcumin may play its anti-cancer actions partly via suppressing PI3K/Akt signal pathway in LoVo cells.

  17. BGLAP is expressed in pancreatic cancer cells and increases their growth and invasion

    Directory of Open Access Journals (Sweden)

    Michalski Christoph W

    2007-12-01

    Full Text Available Abstract Background Bone gamma-carboxyglutamate protein (BGLAP; osteocalcin is a small, highly conserved molecule first identified in the mineralized matrix of bone. It has been implicated in the pathophysiology of various malignancies. In this study, we analyzed the expression and role of BGLAP in the normal human pancreas, chronic pancreatitis (CP, and pancreatic ductal adenocarcinoma (PDAC using quantitative RT-PCR, immunohistochemistry, immunocytochemistry and enzyme immunoassays, as well as cell proliferation and invasion assays. Gene silencing was carried out using specific siRNA molecules. Results Compared to the normal pancreas, BGLAP mRNA and protein levels were not significantly different in CP and PDAC tissues. BGLAP was faintly present in the cytoplasm of normal acinar cells but was strongly expressed in the cytoplasm and nuclei of tubular complexes and PanIN lesions of CP and PDAC tissues. Furthermore, BGLAP expression was found in the cancer cells in PDAC tissues as well as in 4 cultured pancreatic cancer cell lines. TNFalpha reduced BGLAP mRNA and protein expression levels in pancreatic cancer cell lines. In addition, BGLAP silencing led to reduction of both cell growth and invasion in those cells. Conclusion BGLAP is expressed in pancreatic cancer cells, where it potentially increases pancreatic cancer cell growth and invasion through autocrine and/or paracrine mechanisms.

  18. MEK-dependent IL-8 induction regulates the invasiveness of triple-negative breast cancer cells.

    Science.gov (United States)

    Kim, Sangmin; Lee, Jeongmin; Jeon, Myeongjin; Lee, Jeong Eon; Nam, Seok Jin

    2016-04-01

    Interleukin-8 (IL-8) serves as a prognostic marker for breast cancer, and its expression level correlates with metastatic breast cancer and poor prognosis. Here, we investigated the levels of IL-8 expression in a variety of breast cancer cells and the regulatory mechanism of IL-8 in triple-negative breast cancer (TNBC) cells. Our results showed that IL-8 expression correlated positively with overall survival in basal-type breast cancer patients. The levels of IL-8 mRNA expression and protein secretion were significantly increased in TNBC cells compared with non-TNBC cells. In addition, the invasiveness of the TNBC cells was dramatically increased by IL-8 treatment and then augmented invasion-related proteins such as matrix metalloproteinase (MMP)-2 or MMP-9. We observed that elevated IL-8 mRNA expression and protein secretion were suppressed by a specific MEK1/2 inhibitor, UO126. In contrast, the overexpression of constitutively active MEK significantly increased the level of IL-8 mRNA expression in BT474 non-TNBC cells. Finally, we investigated the effect of UO126 on the tumorigenecity of TNBC cells. Our results showed that anchorage-independent growth, cell invasion, and cell migration were also decreased by UO126 in TNBC cells. As such, we demonstrated that IL-8 expression is regulated through MEK/ERK-dependent pathways in TNBC cells. A diversity of MEK blockers, including UO126, may be promising for treating TNBC patients.

  19. Potential of MR mammography to predict tumor grading of invasive breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Dietzel, M.; Baltzer, P.A.; Zoubi, R.; Groeschel, T.; Burmeister, H. [Jena Univ. (Germany). Inst. of Diagnostic and Interventional Radiology; Vag, T. [Technische Univ. Muenchen, Klinikum Rechts der Isar (Germany). Inst. fuer Roentgendiagnostik; Gajda, M. [Jena Univ. (Germany). Inst. of Pathology; Runnebaum, I.B. [Jena Univ. (Germany). Clinic of Gynecology; Kaiser, W.A. [Jena Univ. (Germany). Inst. of Diagnostic and Interventional Radiology; Harvard Univ., Boston, MA (United States). Medical School

    2011-09-15

    Purpose: Tumor grading (TG) is one of the most widely used prognostic factors in the case of breast cancer. This study aims to identify the potential of magnetic resonance mammography (MRM) to non-invasively assess TG. Materials and Methods: 399 invasive breast cancers were included (IRB approval; standardized clinical MRM protocols). All breast cancers were prospectively evaluated by two experienced (> 500 MRM) and blinded radiologists in consensus. In every cancer a set of 18 previously published MRM descriptors was assessed. These were assessed by univariate and multivariate analysis to identify the potential of MRM to predict TG (X2 statistics; binary logistic regression; area under the ROC curve [AUC]). Results: 8 of 18 MRM descriptors were associated with TG, e. g. internal structure, edema (p < 0.001), as well as skin thickening and destruction of the nipple line (p < 0.05). MRM was feasible to predict TG by multivariate analysis (p < 0.001). The highest potential could be identified to predict well differentiated breast cancers with good prognosis (AUC = 0.930). Conclusion: MR mammography was able to non-invasively assess tumor grading in a standard protocol. Since tumor grading is a surrogate for overall survival, these results provide further evidence to the clinical application of MR mammography as a noninvasive prognostic tool. (orig.)

  20. Breast cancer. Part 2: present and future treatment modalities.

    Science.gov (United States)

    Harmer, Victoria

    This is the second article in a series of three on breast cancer. Part 1 discussed breast anatomy, the principles behind breast awareness and breast health, detailing common benign breast diseases, types of breast cancer and staging. In this article, treatment for breast cancer is discussed. The article will follow the usual order of modalities in the trajectory, starting with surgery, then chemotherapy, radiotherapy and endocrine treatment, finishing with a discussion of future and biological treatments.

  1. Single nucleotide polymorphisms in the TP53 region and susceptibility to invasive epithelial ovarian cancer

    DEFF Research Database (Denmark)

    Schildkraut, Joellen M; Goode, Ellen L; Clyde, Merlise A;

    2009-01-01

    The p53 protein is critical for multiple cellular functions including cell growth and DNA repair. We assessed whether polymorphisms in the region encoding TP53 were associated with risk of invasive ovarian cancer. The study population includes a total of 5,206 invasive ovarian cancer cases (2......,829 of which were serous) and 8,790 controls from 13 case-control or nested case-control studies participating in the Ovarian Cancer Association Consortium (OCAC). Three of the studies performed independent discovery investigations involving genotyping of up to 23 single nucleotide polymorphisms (SNP......) in the TP53 region. Significant findings from this discovery phase were followed up for replication in the other OCAC studies. Mixed effects logistic regression was used to generate posterior median per allele odds ratios (OR), 95% probability intervals (PI), and Bayes factors (BF) for genotype associations...

  2. Correlation of microRNA-124 expression in cervical cancer tissue with cancer cell growth and invasion

    Institute of Scientific and Technical Information of China (English)

    Yi Zhu

    2016-01-01

    Objective:To study the correlation of microRNA-124 expression in cervical cancer tissue with cancer cell growth and invasion.Methods: A total of 56 cases of cervical cancer tissue samples and 60 cases of normal cervical tissue samples were selected for study, and microRNA-124 expression levels as well as protein content of proliferation, apoptosis and invasion genes in cervical tissue samples were determined.Results: The relative expression level of miR-124 in cervical cancer tissue was significantly lower than that in normal cervical tissue and the higher the FIGO staging, the lower the relative expression level of miR-124; cervical cancer tissue with different miR-124 expression was divided into group A-D according to quartile, there were differences in the protein content of cyclinD1, CDK4, CDK6, Prdx4, TNFAIP8, Piwil2, p16, p27, Caspase-3, Ezrin, CD44v6, E-cadherin andβ-catenin in cervical cancer tissue of group A, B, C and D, and the lower the relative expression level of miR-124, the higher the protein content of cyclinD1, CDK4, CDK6, Prdx4, TNFAIP8, Piwil2 as well as Ezrin and CD44v6, and the lower the protein content of p16, p27, Caspase-3 as well as E-cadherin andβ-catenin.Conclusions: microRNA-124 shows a trend of lower expression in cervical cancer tissue and is closely related to the excessive proliferation, insufficient apoptosis and invasive growth of cancer cells.

  3. Integrin-linked kinase in gastric cancer cell attachment, invasion and tumor growth

    Institute of Scientific and Technical Information of China (English)

    Gang Zhao; Li-Li Guo; Jing-Yong Xu; Hua Yang; Mei-Xiong Huang; Gang Xiao

    2011-01-01

    AIM: To investigate the effects of integrin-linked kinase (ILK) on gastric cancer cells both in vitro and in vivo . METHODS: ILK small interfering RNA (siRNA) was transfected into human gastric cancer BGC-823 cells and ILK expression was monitored by real-time quantitative polymerase chain reaction, Western blotting analysis and immunocytochemistry. Cell attachment, proliferation, invasion, microfilament dynamics and the secretion of vascular endothelial growth factor (VEGF) were also measured. Gastric cancer cells treated with ILK siRNA were subcutaneously transplanted into nude mice and tumor growth was assessed. RESULTS: Both ILK mRNA and protein levels were significantly down-regulated by ILK siRNA in human gastric cancer cells. This significantly inhibited cell attachment, proliferation and invasion. The knockdown of ILK also disturbed F-actin assembly and reduced VEGF secretion in conditioned medium by 40% (P < 0.05). Four weeks after injection of ILK siRNA-transfected gastric cancer cells into nude mice, tumor volume and weight were significantly reduced compared with that of tumors induced by cells treated with non-silencing siRNA or by untreated cells (P < 0.05). CONCLUSION: Targeting ILK with siRNA suppresses the growth of gastric cancer cells both in vitro and in vivo . ILK plays an important role in gastric cancer progression.

  4. Gallic acid reduces cell viability, proliferation, invasion and angiogenesis in human cervical cancer cells.

    Science.gov (United States)

    Zhao, Bing; Hu, Mengcai

    2013-12-01

    Gallic acid is a trihydroxybenzoic acid, also known as 3,4,5-trihydroxybenzoic acid, which is present in plants worldwide, including Chinese medicinal herbs. Gallic acid has been shown to have cytotoxic effects in certain cancer cells, without damaging normal cells. The objective of the present study was to determine whether gallic acid is able to inhibit human cervical cancer cell viability, proliferation and invasion and suppress cervical cancer cell-mediated angiogenesis. Treatment of HeLa and HTB-35 human cancer cells with gallic acid decreased cell viability in a dose-dependent manner. BrdU proliferation and tube formation assays indicated that gallic acid significantly decreased human cervical cancer cell proliferation and tube formation in human umbilical vein endothelial cells, respectively. Additionally, gallic acid decreased HeLa and HTB-35 cell invasion in vitro. Western blot analysis demonstrated that the expression of ADAM17, EGFR, p-Akt and p-Erk was suppressed by gallic acid in the HeLa and HTB-35 cell lines. These data indicate that the suppression of ADAM17 and the downregulation of the EGFR, Akt/p-Akt and Erk/p-Erk signaling pathways may contribute to the suppression of cancer progression by Gallic acid. Gallic acid may be a valuable candidate for the treatment of cervical cancer.

  5. Silencing of HMGA2 promotes apoptosis and inhibits migration and invasion of prostate cancer cells

    Indian Academy of Sciences (India)

    Zhan Shi; Ding Wu; Run Tang; Xiang Li; Renfu Chen; Song Xue; Chengjing Zhang; Xiaoqing Sun

    2016-06-01

    The high mobility group protein A2 (HMGA2) has been demonstrated as an architectural transcription factor that is associated with pathogenesis of many malignant cancers, however, its role in prostate cancer cells remains largely unknown. To explore whether HMGA2 participates in the development and progression of prostate cancer, small interfering RNA (siRNA) targeted on human HMGA2 was transfected to suppress the HMGA2 expression in prostate cancer PC3 and DU145 cells, and then we examined the cellular biology changes after decreased the expression of HMGA2. Our results showed that knockdown of HMGA2 markedly inhibited cell proliferation, this reduced cell proliferation was due to the promotion of cell apoptosis as the Bcl-xl was decreased, whereas Bax was up-regulated. In addition, we found that HMGA2 knockdown resulted in reduction of cell migration and invasion, as well as repressed the expression of matrix metalloproteinases (MMPs) and affected the occurrence of epithelial-mesenchymal transition (EMT) in both cell types. We further found that decreased HMGA2 expression inhibited the transforming growth factor-β (TGF-β)/Smad signaling pathway in cancer cells. In conclusion, our data indicated that HMGA2 was associated with apoptosis, migration and invasion of prostate cancer, which might be a promising therapeutic target for prostate cancer.

  6. Stromal proteome expression profile and muscle-invasive bladder cancer research

    Directory of Open Access Journals (Sweden)

    Niu Haitao

    2012-08-01

    Full Text Available Abstract Background To globally characterize the cancer stroma expression profile of muscle-invasive transitional cell carcinoma and to discuss the cancer biology as well as biomarker discovery from stroma. Laser capture micro dissection was used to harvest purified muscle-invasive bladder cancer stromal cells and normal urothelial stromal cells from 4 paired samples. Two-dimensional liquid chromatography tandem mass spectrometry was used to identify the proteome expression profile. The differential proteins were further analyzed using bioinformatics tools and compared with the published literature. Results We identified 868/872 commonly expressed proteins and 978 differential proteins from 4 paired cancer and normal stromal samples using laser capture micro dissection coupled with two-dimensional liquid chromatography tandem mass spectrometry. 487/491 proteins uniquely expressed in cancer/normal stroma. Differential proteins were compared with the entire list of the international protein index (IPI, and there were 42/42 gene ontology (GO terms exhibited as enriched and 8/5 exhibited as depleted in cellular Component, respectively. Significantly altered pathways between cancer/normal stroma mainly include metabolic pathways, ribosome, focal adhesion, etc. Finally, descriptive statistics show that the stromal proteins with extremes of PI and MW have the same probability to be a biomarker. Conclusions Based on our results, stromal cells are essential component of the cancer, biomarker discovery and network based multi target therapy should consider neoplastic cells itself and corresponding stroma as whole one.

  7. Nuclear Kaiso expression is associated with high grade and triple-negative invasive breast cancer.

    Directory of Open Access Journals (Sweden)

    Jeroen F Vermeulen

    Full Text Available Kaiso is a BTB/POZ transcription factor that is ubiquitously expressed in multiple cell types and functions as a transcriptional repressor and activator. Little is known about Kaiso expression and localization in breast cancer. Here, we have related pathological features and molecular subtypes to Kaiso expression in 477 cases of human invasive breast cancer. Nuclear Kaiso was predominantly found in invasive ductal carcinoma (IDC (p = 0.007, while cytoplasmic Kaiso expression was linked to invasive lobular carcinoma (ILC (p = 0.006. Although cytoplasmic Kaiso did not correlate to clinicopathological features, we found a significant correlation between nuclear Kaiso, high histological grade (p = 0.023, ERα negativity (p = 0.001, and the HER2-driven and basal/triple-negative breast cancers (p = 0.018. Interestingly, nuclear Kaiso was also abundant in BRCA1-associated breast cancer (p<0.001 and invasive breast cancer overexpressing EGFR (p = 0.019. We observed a correlation between nuclear Kaiso and membrane-localized E-cadherin and p120-catenin (p120 (p<0.01. In contrast, cytoplasmic p120 strongly correlated with loss of E-cadherin and low nuclear Kaiso (p = 0.005. We could confirm these findings in human ILC cells and cell lines derived from conditional mouse models of ILC. Moreover, we present functional data that substantiate a mechanism whereby E-cadherin controls p120-mediated relief of Kaiso-dependent gene repression. In conclusion, our data indicate that nuclear Kaiso is common in clinically aggressive ductal breast cancer, while cytoplasmic Kaiso and a p120-mediated relief of Kaiso-dependent transcriptional repression characterize ILC.

  8. Using of Telomerase Enzyme in Urine as a Non invasive Marker for Cancer Bladder Detection

    Directory of Open Access Journals (Sweden)

    Azza A Hassan*, Fawzia A . El- Sheshtawey** , Seliem A. Seliem

    2008-12-01

    Full Text Available Background: Urinary bladder cancer is one of the major health problem all over the world. Cystoscopy remains the gold standard for identifying bladder cancer but it is invasive and expensive, therefore, a simple, non invasive test for detecting bladder cancer would be helpful. Several biomarkers for bladder cancer have been used, but no single marker has been accurate and conclusive. Aim: The current study aimed to measure telomerase enzyme in urine as a useful non invasive marker for detection of bladder cancer. Methods : Forty eight patients ( 39 males and 9 females were included, They are complaining of urinary symptoms and undergo cystoscopy with biopsy of bladder lesions and histopathological examination. They were divided into groups: Group I: 16 patients ( 11 males and 5 females have benign urologic conditions. Group II: 32 patients (28 males and 4 females have proven bladder cancer patients underwent transurethral resection of bladder tumor or cystoscopy with biopsy of bladder lesions. Also, 15 apparently healthy volunteers with matched age and sex with patients were served as a control group. All subjects were submitted to laboratory estimation of the following in urine: urinary creatinine, urine cytology, telomerase enzyme in urine by telomerase PCR and complete urine examination. Results : The results of this study revealed that a highly significant increase in the frequency of cytolological positive cases for tumor cells in malignant group than each of benign group and healthy subjects, while no significant difference was detected between benign group and healthy subjects. The frequency of telomerase in urine was significantly higher in malignant group than each of benign group and healthy subjects, while no significant difference was detected between benign group and healthy subjects. The telomerase activity has sensitivity of 90.6% for diagnosis of cancer bladder with 93.7% for specificity and PPV was 96.6%, NPV was 83.3% and

  9. Ubiquitin-specific peptidase 22 inhibits colon cancer cell invasion by suppressing the signal transducer and activator of transcription 3/matrix metalloproteinase 9 pathway.

    Science.gov (United States)

    Ao, Ning; Liu, Yanyan; Bian, Xiaocui; Feng, Hailiang; Liu, Yuqin

    2015-08-01

    Colon cancer is associated with increased cell migration and invasion. In the present study, the role of ubiquitin-specific peptidase 22 (USP22) in signal transducer and activator of transcription 3 (STAT3)-mediated colon cancer cell invasion was investigated. The messenger RNA levels of STAT3 target genes were measured by reverse transcription-quantitative polymerase chain reaction, following USP22 knockdown by RNA interference in SW480 colon cancer cells. The matrix metalloproteinase 9 (MMP9) proteolytic activity and invasion potential of SW480 cells were measured by zymography and Transwell assay, respectively, following combined USP22 and STAT3 short interfering (si)RNA treatment or STAT3 siRNA treatment alone. Similarly, a cell counting kit-8 assay was used to detect the proliferation potential of SW480 cells. The protein expression levels of USP22, STAT3 and MMP9 were detected by immunohistochemistry in colon cancer tissue microarrays (TMAs) and the correlation between USP22, STAT3 and MMP9 was analyzed. USP22/STAT3 co-depletion partly rescued the MMP9 proteolytic activity and invasion of SW480 cells, compared with that of STAT3 depletion alone. However, the proliferation of USP22/STAT3si-SW480 cells was decreased compared with that of STAT3si-SW480 cells. USP22 expression was positively correlated with STAT3 and MMP9 expression in colon cancer TMAs. In conclusion, USP22 attenuated the invasion capacity of colon cancer cells by inhibiting the STAT3/MMP9 signaling pathway.

  10. Global tyrosine kinome profiling of human thyroid tumors identifies Src as a promising target for invasive cancers

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Nancy L., E-mail: nlcho@partners.org [Department of Surgery, Brigham and Women' s Hospital, Boston, MA 02115 (United States); Lin, Chi-Iou [Department of Surgery, Brigham and Women' s Hospital, Boston, MA 02115 (United States); Du, Jinyan [Broad Institute, Massachusetts Institute of Technology, Cambridge, MA 02142 (United States); Whang, Edward E. [Department of Surgery, Brigham and Women' s Hospital, Boston, MA 02115 (United States); Ito, Hiromichi [Department of Surgery, Michigan State University, Lansing, MI 48912 (United States); Moore, Francis D.; Ruan, Daniel T. [Department of Surgery, Brigham and Women' s Hospital, Boston, MA 02115 (United States)

    2012-05-11

    Highlights: Black-Right-Pointing-Pointer Kinome profiling is a novel technique for identifying activated kinases in human cancers. Black-Right-Pointing-Pointer Src activity is increased in invasive thyroid cancers. Black-Right-Pointing-Pointer Inhibition of Src activity decreased proliferation and invasion in vitro. Black-Right-Pointing-Pointer Further investigation of Src targeted therapies in thyroid cancer is warranted. -- Abstract: Background: Novel therapies are needed for the treatment of invasive thyroid cancers. Aberrant activation of tyrosine kinases plays an important role in thyroid oncogenesis. Because current targeted therapies are biased toward a small subset of tyrosine kinases, we conducted a study to reveal novel therapeutic targets for thyroid cancer using a bead-based, high-throughput system. Methods: Thyroid tumors and matched normal tissues were harvested from twenty-six patients in the operating room. Protein lysates were analyzed using the Luminex immunosandwich, a bead-based kinase phosphorylation assay. Data was analyzed using GenePattern 3.0 software and clustered according to histology, demographic factors, and tumor status regarding capsular invasion, size, lymphovascular invasion, and extrathyroidal extension. Survival and invasion assays were performed to determine the effect of Src inhibition in papillary thyroid cancer (PTC) cells. Results: Tyrosine kinome profiling demonstrated upregulation of nine tyrosine kinases in tumors relative to matched normal thyroid tissue: EGFR, PTK6, BTK, HCK, ABL1, TNK1, GRB2, ERK, and SRC. Supervised clustering of well-differentiated tumors by histology, gender, age, or size did not reveal significant differences in tyrosine kinase activity. However, supervised clustering by the presence of invasive disease showed increased Src activity in invasive tumors relative to non-invasive tumors (60% v. 0%, p < 0.05). In vitro, we found that Src inhibition in PTC cells decreased cell invasion and proliferation

  11. Hybrid minimally invasive esophagectomy for cancer: impact on postoperative inflammatory and nutritional status.

    Science.gov (United States)

    Scarpa, M; Cavallin, F; Saadeh, L M; Pinto, E; Alfieri, R; Cagol, M; Da Roit, A; Pizzolato, E; Noaro, G; Pozza, G; Castoro, C

    2016-11-01

    The purpose of this case-control study was to evaluate the impact of hybrid minimally invasive esophagectomy for cancer on surgical stress response and nutritional status. All 34 consecutive patients undergoing hybrid minimally invasive esophagectomy for cancer at our surgical unit between 2008 and 2013 were retrospectively compared with 34 patients undergoing esophagectomy with open gastric tubulization (open), matched for neoadjuvant therapy, pathological stage, gender and age. Demographic data, tumor features and postoperative course (including quality of life and systemic inflammatory and nutritional status) were compared. Postoperative course was similar in terms of complication rate. Length of stay in intensive care unit was shorter in patients undergoing hybrid minimally invasive esophagectomy (P = 0.002). In the first postoperative day, patients undergoing hybrid minimally invasive esophagectomy had lower C-reactive protein levels (P = 0.001) and white cell blood count (P = 0.05), and higher albumin serum level (P = 0.001). In this group, albumin remained higher also at third (P = 0.06) and seventh (P = 0.008) postoperative day, and C-reactive protein resulted lower at third post day (P = 0.04). Hybrid minimally invasive esophagectomy significantly improved the systemic inflammatory and catabolic response to surgical trauma, contributing to a shorter length of stay in intensive care unit.

  12. Music therapy as part of the alternative-complementary therapy in cancer patients in hospital

    Directory of Open Access Journals (Sweden)

    Efstratios Athanassakis

    2012-01-01

    Full Text Available Cancer is one of the modern health problems of people living in developed countries. Furthermore, therapeutic approaches to cancer patients is constantly updated with new data. Aim: The aim of the present study was to review the international literature referred to the application of music therapy in the treatment for pediatric and adult patients with cancer. Method and materials: The method of this study included bibliography research from both the review and the research literature on MEDLINE (2000-2010 database and using as key words music, music therapy, alternative-complementary therapy, cancer, children. Results: Music therapy, the last few years, seems to be one of the forms of alternative-complementary therapy for patients treated for cancer. Music therapy is applied as part of complementary therapy in pediatric and adult patients with cancer. Complementary-alternative methods are non-invasive, non-toxic, cheap, safe and can be easily used by the patients themselves. Primarily, the music therapy aimed to the reduction of the emotional trauma and the feeling of the pain during the process of the treatment (radiotherapy, chemotherapy, other painful procedures but also in the whole patients life. Conclusions: Scientific bibliographic databases research concerning the music therapy in patients with cancer seem encouraging, especially in children. Nevertheless, the further study of the role of the music during hospitalization in the outcome of the treatment is essential

  13. Immunophenotyping invasive breast cancer: paving the road for molecular imaging.

    NARCIS (Netherlands)

    Vermeulen, J.F.; Brussel, A.S. van; Groep, P. van der; Morsink, F.H.; Bult, P.; Wall, E. van der; Diest, P.J. van

    2012-01-01

    ABSTRACT: BACKGROUND: Mammographic population screening in The Netherlands has increased the number of breast cancer patients with small and non-palpable breast tumors. Nevertheless, mammography is not ultimately sensitive and specific for distinct subtypes. Molecular imaging with targeted tracers m

  14. Multivitamin supplement use and risk of invasive breast cancer

    NARCIS (Netherlands)

    Meulepas, J.M.; Newcomb, P.A.; Burnett-Hartman, A.N.; Hampton, J.M.; Trentham-Dietz, A.

    2010-01-01

    Objective: Multivitamin supplements are used by nearly half of middle-aged women in the USA. Despite this high prevalence of multivitamin use, little is known about the effects of multivitamins on health outcomes, including cancer risk. Our main objective was to determine the association between mul

  15. Risk Factors of the Invasive Breast Cancer Locoregional Recurrence

    Directory of Open Access Journals (Sweden)

    R. V. Liubota

    2015-01-01

    Full Text Available Background. The aim of the research was to estimate the frequency of the locoregional breast cancer recurrence appearance, the recurrence-free period continuance, and the 3- and 5-year survival depending on the scope of the surgical intervention, menstrual profile, and histological and molecular-biologic characteristics of the primary tumor. Patients and Methods. Among 218 patients with a breast cancer, 99 patients had breast-conserving surgery (BCS and 119 underwent radical mastectomy (RME; all patients had regional lymphatic nodes dissection. The size and the primary tumor differentiation degree, metastasis presence in the regional lymph nodes, ER expression, PR, and Her/2neu were assessed as the prognostics factors. Results. It was defined that the locoregional recurrence appearance frequency in patients with BCS turned out to be 13%, and in patients after RME it turned out to be 9%; the recurrence-free period continuance was 53±8 months and 56±10 months, respectively. Conclusions. The locoregional cancer recurrence frequency is higher in women with the menstrual function being preserved at the moment of the primary tumor detection than in postmenopausal patients and also in patients having the hyperexpression of the Her/2neu. The ipsilateral cancer recurrence decreases the 3-year survival by 7,1% and the 5-year one by 20,3%, respectively.

  16. Inhibitory effect of lanthanum chloride on migration and invasion of cervical cancer cells

    Institute of Scientific and Technical Information of China (English)

    CHEN Hongwei; LIU Sisun; MIAO Lifang; YU Lingfang; WANG Yang; GUO Fei

    2013-01-01

    Tumor metastasis remains the main reason for treatment failure and death of patients with cervical cancer.The present study was designed to explore the effects of lanthanum chloride (LaCl3) on the invasion and migration of cervical cancer cells and the underlying mechanisms.The migration and invasion of tumor cells was evaluated by a modified Transwell/Boyden chamber assays.It is well known that MMPs (Matrix metalloprotcinascs) and NF-κB (Nuclear factor-κB) pathway play important roles in migration and invasion of tumor cells,and also the expression of MMPs were regulated by NF-κB signaling.The expression of MMP-1 and MMP-9 was detected by reverse transcription polymerase chain reaction (RT-PCR); Western blot and the NF-κB-DNA-binding activity assay were used to analyze the NF-κB activity.The results indicated that LaCl3 was capable of inhibiting the cell invasion and migration of human cervical cancer Hela cells by decreasing the expression of MMP-1 and MMP-9 via blocking NF-κB pathway.

  17. The candidate tumor suppressor gene ECRG4 inhibits cancer cells migration and invasion in esophageal carcinoma

    Directory of Open Access Journals (Sweden)

    Lu ShihHsin

    2010-10-01

    Full Text Available Abstract Background The esophageal cancer related gene 4 (ECRG4 was initially identified and cloned in our laboratory from human normal esophageal epithelium (GenBank accession no.AF325503. ECRG4 was a new tumor suppressor gene in esophageal squamous cell carcinoma (ESCC associated with prognosis. In this study, we investigated the novel tumor-suppressing function of ECRG4 in cancer cell migration, invasion, adhesion and cell cycle regulation in ESCC. Methods Transwell and Boyden chamber experiments were utilized to examined the effects of ECRG4 expression on ESCC cells migration, invasion and adhesion. And flow cytometric analysis was used to observe the impact of ECRG4 expression on cell cycle regulation. Finally, the expression levels of cell cycle regulating proteins p53 and p21 in human ESCC cells transfected with ECRG4 gene were evaluated by Western blotting. Results The restoration of ECRG4 expression in ESCC cells inhibited cancer cells migration and invasion (P P > 0.05. Furthermore, ECRG4 could cause cell cycle G1 phase arrest in ESCC (P Conclusion ECRG4 is a candidate tumor suppressor gene which suppressed tumor cells migration and invasion without affecting cell adhesion ability in ESCC. Furthermore, ECRG4 might cause cell cycle G1 phase block possibly through inducing the increased expression of p53 and p21 proteins in ESCC.

  18. Amygdalin influences bladder cancer cell adhesion and invasion in vitro.

    Directory of Open Access Journals (Sweden)

    Jasmina Makarević

    Full Text Available The cyanogenic diglucoside amygdalin, derived from Rosaceae kernels, is employed by many patients as an alternative anti-cancer treatment. However, whether amygdalin indeed acts as an anti-tumor agent is not clear. Metastasis blocking properties of amygdalin on bladder cancer cell lines was, therefore, investigated. Amygdalin (10 mg/ml was applied to UMUC-3, TCCSUP or RT112 bladder cancer cells for 24 h or for 2 weeks. Tumor cell adhesion to vascular endothelium or to immobilized collagen as well as tumor cell migration was examined. Effects of drug treatment on integrin α and β subtypes, on integrin-linked kinase (ILK and total and activated focal adhesion kinase (FAK were also determined. Integrin knock-down was carried out to evaluate integrin influence on migration and adhesion. A 24 h or 2 week amygdalin application distinctly reduced tumor cell adhesion and migration of UMUC-3 and RT112 cells. TCCSUP adhesion was also reduced, but migration was elevated under amygdalin. Integrin subtype expression was significantly and specifically altered by amygdalin depending on the cell line. ILK was moderately, and activated FAK strongly, lost in all tumor cell lines in the presence of amygdalin. Knock down of β1 integrin caused a significant decrease in both adhesion and migration of UMUC-3 cells, but a significant increase in TCCSUP adhesion. Knock down of β4 integrin caused a significant decrease in migration of RT112 cells. Since the different actions of amygdalin on the different cell lines was mirrored by β1 or β4 knock down, it is postulated that amygdalin influences adhesion and migratory properties of bladder cancer cells by modulating β1 or β4 integrin expression. The amygdalin induced increase in TCCSUP migratory behavior indicates that any anti-tumor benefits from amygdalin (seen with the other two cell lines may depend upon the cancer cell type.

  19. Amygdalin influences bladder cancer cell adhesion and invasion in vitro.

    Science.gov (United States)

    Makarević, Jasmina; Rutz, Jochen; Juengel, Eva; Kaulfuss, Silke; Tsaur, Igor; Nelson, Karen; Pfitzenmaier, Jesco; Haferkamp, Axel; Blaheta, Roman A

    2014-01-01

    The cyanogenic diglucoside amygdalin, derived from Rosaceae kernels, is employed by many patients as an alternative anti-cancer treatment. However, whether amygdalin indeed acts as an anti-tumor agent is not clear. Metastasis blocking properties of amygdalin on bladder cancer cell lines was, therefore, investigated. Amygdalin (10 mg/ml) was applied to UMUC-3, TCCSUP or RT112 bladder cancer cells for 24 h or for 2 weeks. Tumor cell adhesion to vascular endothelium or to immobilized collagen as well as tumor cell migration was examined. Effects of drug treatment on integrin α and β subtypes, on integrin-linked kinase (ILK) and total and activated focal adhesion kinase (FAK) were also determined. Integrin knock-down was carried out to evaluate integrin influence on migration and adhesion. A 24 h or 2 week amygdalin application distinctly reduced tumor cell adhesion and migration of UMUC-3 and RT112 cells. TCCSUP adhesion was also reduced, but migration was elevated under amygdalin. Integrin subtype expression was significantly and specifically altered by amygdalin depending on the cell line. ILK was moderately, and activated FAK strongly, lost in all tumor cell lines in the presence of amygdalin. Knock down of β1 integrin caused a significant decrease in both adhesion and migration of UMUC-3 cells, but a significant increase in TCCSUP adhesion. Knock down of β4 integrin caused a significant decrease in migration of RT112 cells. Since the different actions of amygdalin on the different cell lines was mirrored by β1 or β4 knock down, it is postulated that amygdalin influences adhesion and migratory properties of bladder cancer cells by modulating β1 or β4 integrin expression. The amygdalin induced increase in TCCSUP migratory behavior indicates that any anti-tumor benefits from amygdalin (seen with the other two cell lines) may depend upon the cancer cell type.

  20. α-Solanine Inhibits Invasion of Human Prostate Cancer Cell by Suppressing Epithelial-Mesenchymal Transition and MMPs Expression

    Directory of Open Access Journals (Sweden)

    Kun-Hung Shen

    2014-08-01

    Full Text Available α-Solanine, a naturally occurring steroidal glycoalkaloid found in nightshade (Solanum nigrum Linn., was found to inhibit proliferation and induce apoptosis of tumor cells. However, the mechanism involved in suppression of cancer cell metastasis by α-solanine remains unclear. This study investigates the suppression mechanism of α-solanine on motility of the human prostate cancer cell PC-3. Results show that α-solanine reduces the viability of PC-3 cells. When treated with non-toxic doses of α-solanine, cell invasion is markedly suppressed by α-solanine. α-Solanine also significantly elevates epithelial marker E-cadherin expression, while it concomitantly decreases mesenchymal marker vimentin expression, suggesting it suppresses epithelial-mesenchymal transition (EMT. α-Solanine reduces the mRNA level of matrix metalloproteinase-2 (MMP-2, MMP-9 and extracellular inducer of matrix metalloproteinase (EMMPRIN, but increases the expression of reversion-inducing cysteine-rich protein with kazal motifs (RECK, and tissue inhibitor of metalloproteinase-1 (TIMP-1 and TIMP-2. Immunoblotting assays indicate α-solanine is effective in suppressing the phosphorylation of phosphatidylinositide-3 kinase (PI3K, Akt and ERK. Moreover, α-solanine downregulates oncogenic microRNA-21 (miR-21 and upregulates tumor suppressor miR-138 expression. Taken together, the results suggest that inhibition of PC-3 cell invasion by α-solanine may be, at least in part, through blocking EMT and MMPs expression. α-Solanine also reduces ERK and PI3K/Akt signaling pathways and regulates expression of miR-21 and miR-138. These findings suggest an attractive therapeutic potential of α-solanine for suppressing invasion of prostate cancer cell.

  1. α-Solanine inhibits invasion of human prostate cancer cell by suppressing epithelial-mesenchymal transition and MMPs expression.

    Science.gov (United States)

    Shen, Kun-Hung; Liao, Alex Chien-Hwa; Hung, Jui-Hsiang; Lee, Wei-Jiunn; Hu, Kai-Chieh; Lin, Pin-Tsen; Liao, Ruei-Fang; Chen, Pin-Shern

    2014-08-11

    α-Solanine, a naturally occurring steroidal glycoalkaloid found in nightshade (Solanum nigrum Linn.), was found to inhibit proliferation and induce apoptosis of tumor cells. However, the mechanism involved in suppression of cancer cell metastasis by α-solanine remains unclear. This study investigates the suppression mechanism of α-solanine on motility of the human prostate cancer cell PC-3. Results show that α-solanine reduces the viability of PC-3 cells. When treated with non-toxic doses of α-solanine, cell invasion is markedly suppressed by α-solanine. α-Solanine also significantly elevates epithelial marker E-cadherin expression, while it concomitantly decreases mesenchymal marker vimentin expression, suggesting it suppresses epithelial-mesenchymal transition (EMT). α-Solanine reduces the mRNA level of matrix metalloproteinase-2 (MMP-2), MMP-9 and extracellular inducer of matrix metalloproteinase (EMMPRIN), but increases the expression of reversion-inducing cysteine-rich protein with kazal motifs (RECK), and tissue inhibitor of metalloproteinase-1 (TIMP-1) and TIMP-2. Immunoblotting assays indicate α-solanine is effective in suppressing the phosphorylation of phosphatidylinositide-3 kinase (PI3K), Akt and ERK. Moreover, α-solanine downregulates oncogenic microRNA-21 (miR-21) and upregulates tumor suppressor miR-138 expression. Taken together, the results suggest that inhibition of PC-3 cell invasion by α-solanine may be, at least in part, through blocking EMT and MMPs expression. α-Solanine also reduces ERK and PI3K/Akt signaling pathways and regulates expression of miR-21 and miR-138. These findings suggest an attractive therapeutic potential of α-solanine for suppressing invasion of prostate cancer cell.

  2. NDRG1 Controls Gastric Cancer Migration and Invasion through Regulating MMP-9.

    Science.gov (United States)

    Chang, Xiaojing; Xu, Xiaoyang; Xue, Xiaoying; Ma, Jinguo; Li, Zhenhua; Deng, Peng; Chen, Jing; Zhang, Shuanglong; Zhi, Yu; Dai, Dongqiu

    2016-10-01

    The purpose of this study is to detect the clinical significance of NDRG1 and its relationship with MMP-9 in gastric cancer metastatic progression. 101 cases of gastric cancer specimens were utilized to identify the protein expression of NDRG1 and MMP-9 by immunohistochemistry, their clinical significance was also analyzed. The suppression by siRNA-NDRG1 was employed to detect the role of NDRG1 in gastric cancer progression and its relationship with MMP-9. NDRG1 expression was correlated inversely with the degree of tumor cell differentiation (p 0.05). Furthermore, cell proliferation and invasion effect were remarkably enhanced when NDRG1 was silencing, but MMP-9 expression was increased. NDRG1 silencing enhances gastric cancer cells progression through upregulating MMP-9. It suggests that NDRG1 may inhibit the metastasis of gastric cancer via regulating MMP-9.

  3. Functional characterization of E- and P-cadherin in invasive breast cancer cells

    Directory of Open Access Journals (Sweden)

    Cano Amparo

    2009-03-01

    Full Text Available Abstract Background Alterations in the cadherin-catenin adhesion complexes are involved in tumor initiation, progression and metastasis. However, the functional implication of distinct cadherin types in breast cancer biology is still poorly understood. Methods To compare the functional role of E-cadherin and P-cadherin in invasive breast cancer, we stably transfected these molecules into the MDA-MB-231 cell line, and investigated their effects on motility, invasion and gene expression regulation. Results Expression of either E- and P-cadherin significantly increased cell aggregation and induced a switch from fibroblastic to epithelial morphology. Although expression of these cadherins did not completely reverse the mesenchymal phenotype of MDA-MB-231 cells, both E- and P-cadherin decreased fibroblast-like migration and invasion through extracellular matrix in a similar way. Moreover, microarray gene expression analysis of MDA-MB-231 cells after expression of E- and P-cadherins revealed that these molecules can activate signaling pathways leading to significant changes in gene expression. Although the expression patterns induced by E- and P-cadherin showed more similarities than differences, 40 genes were differentially modified by the expression of either cadherin type. Conclusion E- and P-cadherin have similar functional consequences on the phenotype and invasive behavior of MDA-MB-231 cells. Moreover, we demonstrate for the first time that these cadherins can induce both common and specific gene expression programs on invasive breast cancer cells. Importantly, these identified genes are potential targets for future studies on the functional consequences of altered cadherin expression in human breast cancer.

  4. Overexpressed ubiquitin ligase Cullin7 in breast cancer promotes cell proliferation and invasion via down-regulating p53

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Hongsheng [Department of Histology and Embryology, Guangdong Medical College, Dongguan 523808, Guangdong (China); Wu, Fenping [The 7th People’s Hospital of Chengdu, Chengdu 610041, Sichuan (China); Wang, Yan [The Second School of Clinical Medicine, Guangdong Medical College, Dongguan 523808, Guangdong (China); Yan, Chong [School of Pharmacy, Guangdong Medical College, Dongguan 523808, Guangdong (China); Su, Wenmei, E-mail: wenmeisutg@126.com [Oncology of Affiliated Hospital Guangdong Medical College, Zhanjiang 524000, Guangdong (China)

    2014-08-08

    Highlights: • Cullin7 is overexpressed in human breast cancer samples. • Cullin7 stimulated proliferation and invasion of breast cancer cells. • Inhibition of p53 contributes to Cullin7-induced proliferation and invasion. - Abstract: Ubiquitin ligase Cullin7 has been identified as an oncogene in some malignant diseases such as choriocarcinoma and neuroblastoma. However, the role of Cullin7 in breast cancer carcinogenesis remains unclear. In this study, we compared Cullin7 protein levels in breast cancer tissues with normal breast tissues and identified significantly higher expression of Cullin7 protein in breast cancer specimens. By overexpressing Cullin7 in breast cancer cells HCC1937, we found that Cullin7 could promote cell growth and invasion in vitro. In contrast, the cell growth and invasion was inhibited by silencing Cullin7 in breast cancer cell BT474. Moreover, we demonstrated that Cullin7 promoted breast cancer cell proliferation and invasion via down-regulating p53 expression. Thus, our study provided evidence that Cullin7 functions as a novel oncogene in breast cancer and may be a potential therapeutic target for breast cancer management.

  5. MICAL2 is a novel human cancer gene controlling mesenchymal to epithelial transition involved in cancer growth and invasion

    Science.gov (United States)

    Vindigni, Carla; Pucci, Angela; Balsamo, Michele; Libro, Rosaliana; Senchenko, Vera; Dmitriev, Alexey; Jacchetti, Emanuela; Cecchini, Marco; Roviello, Franco; Lai, Michele; Broccoli, Vania; Andreazzoli, Massimiliano; Mazzanti, Chiara M.; Angeloni, Debora

    2016-01-01

    The MICAL (Molecules Interacting with CasL) proteins catalyze actin oxidation-reduction reactions destabilizing F-actin in cytoskeletal dynamics. Here we show for the first time that MICAL2 mRNA is significantly over-expressed in aggressive, poorly differentiated/undifferentiated, primary human epithelial cancers (gastric and renal). Immunohistochemistry showed MICAL2-positive cells on the cancer invasive front and in metastasizing cancer cells inside emboli, but not at sites of metastasis, suggesting MICAL2 expression was 'on' in a subpopulation of primary cancer cells seemingly detaching from the tissue of origin, enter emboli and travel to distant sites, and was turned 'off' upon homing at metastatic sites. In vitro, MICAL2 knock-down resulted in mesenchymal to epithelial transition, reduction of viability, and loss of motility and invasion properties of human cancer cells. Moreover, expression of MICAL2 cDNA in MICAL2-depleted cells induced epithelial to mesenchymal transition. Altogether our data indicate that MICAL2 over-expression is associated with cancer progression and metastatic disease. MICAL2 might be an important regulator of epithelial to mesenchymal transition and therefore a promising target for anti-metastatic therapy. PMID:26689989

  6. MICAL2 is a novel human cancer gene controlling mesenchymal to epithelial transition involved in cancer growth and invasion.

    Science.gov (United States)

    Mariotti, Sara; Barravecchia, Ivana; Vindigni, Carla; Pucci, Angela; Balsamo, Michele; Libro, Rosaliana; Senchenko, Vera; Dmitriev, Alexey; Jacchetti, Emanuela; Cecchini, Marco; Roviello, Franco; Lai, Michele; Broccoli, Vania; Andreazzoli, Massimiliano; Mazzanti, Chiara M; Angeloni, Debora

    2016-01-12

    The MICAL (Molecules Interacting with CasL) proteins catalyze actin oxidation-reduction reactions destabilizing F-actin in cytoskeletal dynamics. Here we show for the first time that MICAL2 mRNA is significantly over-expressed in aggressive, poorly differentiated/undifferentiated, primary human epithelial cancers (gastric and renal). Immunohistochemistry showed MICAL2-positive cells on the cancer invasive front and in metastasizing cancer cells inside emboli, but not at sites of metastasis, suggesting MICAL2 expression was 'on' in a subpopulation of primary cancer cells seemingly detaching from the tissue of origin, enter emboli and travel to distant sites, and was turned 'off' upon homing at metastatic sites. In vitro, MICAL2 knock-down resulted in mesenchymal to epithelial transition, reduction of viability, and loss of motility and invasion properties of human cancer cells. Moreover, expression of MICAL2 cDNA in MICAL2-depleted cells induced epithelial to mesenchymal transition. Altogether our data indicate that MICAL2 over-expression is associated with cancer progression and metastatic disease. MICAL2 might be an important regulator of epithelial to mesenchymal transition and therefore a promising target for anti-metastatic therapy.

  7. Life expectancy of screen-detected invasive breast cancer patients compared with women invited to the Nijmegen Screening Program

    NARCIS (Netherlands)

    J.D.M. Otten; M.J.M. Broeders (Mireille); G.J. den Heeten (Gerard); R. Holland (Roland); J. Fracheboud (Jacques); H.J. de Koning (Harry); A.L.M. Verbeek (Andre)

    2010-01-01

    textabstractBACKGROUND: Screening can lead to earlier detection of breast cancer and thus to an improvement in survival. The authors studied the life expectancy of women with screen-detected invasive breast cancer (patients) compared with women invited to the breast cancer screening program in Nijme

  8. MiR-525-3p enhances the migration and invasion of liver cancer cells by downregulating ZNF395.

    Directory of Open Access Journals (Sweden)

    Fei Pang

    Full Text Available Liver cancer is one of leading causes of cancer-related deaths. A deeper mechanistic understanding of liver cancer could lead to the development of more effective therapeutic strategies. In our previous work, we screened 646 miRNAs and identified 11 that regulate liver cancer cell migration. The current study shows that miR-525-3p is frequently up-regulated in liver cancer tissues, and enhanced expression of miR-525-3p can promote liver cancer cell migration and invasion. Zinc finger protein 395 (ZNF395 is the direct functional target gene for miR-525-3p, and it is frequently down-regulated in liver cancer tissues. High expression of ZNF395 can significantly inhibit while knockdown of ZNF395 expression can markedly enhance the migration and invasion of liver cancer cells, suggesting that ZNF395 suppresses metastasis in liver cancer. Down-regulation of ZNF395 can mediate miR-525-3p induced liver cancer cell migration and invasion. In conclusion, miR-525-3p promotes liver cancer cell migration and invasion by directly targeting ZNF395, and the fact that miR-525-3p and ZNF395 both play important roles in liver cancer progression makes them potential therapeutic targets.

  9. Surgery for invasive gynecologic cancer in the elderly female population.

    Science.gov (United States)

    Lawton, F G; Hacker, N F

    1990-08-01

    Radical, curative surgery may not be considered in elderly patients with gynecologic cancer, yet the morbidity for this population from radiotherapy and cytotoxics may be high. This study compared the feasibility and outcome of such surgery in 226 consecutive patients, 72 women over 70 years old and 154 younger patients, in our institution over a 26-month period. Older patients presented with more advanced-stage cancers and, as a group, had significantly poorer presurgical performance status and more intercurrent medical problems. Nevertheless, the planned radical surgical procedure could be carried out in 90% of elderly patients, with a postoperative mortality of 1.5%. Minor postoperative complication rates were similar for the two groups and, except for vulvectomy patients, the mean inpatient stay was the same for both groups. Chronological age alone is a poor determinant of surgical risk, and elderly patients withstand radical surgery almost as well as their younger counterparts.

  10. STAT3: An Anti-Invasive Factor in Colorectal Cancer?

    Energy Technology Data Exchange (ETDEWEB)

    Jong, Petrus Rudolf de [Department of Medicine, University of California, San Diego, 9500 Gilman Dr. MC 0663, La Jolla, CA 92093 (United States); Mo, Ji-Hun [Department of Otorhinolaryngology, Dankook University College of Medicine, 16-5 Anseo-dong, Cheonan, Chungcheongnam-do 330-715 (Korea, Republic of); Harris, Alexandra R.; Lee, Jongdae, E-mail: j142lee@ucsd.edu; Raz, Eyal [Department of Medicine, University of California, San Diego, 9500 Gilman Dr. MC 0663, La Jolla, CA 92093 (United States)

    2014-07-03

    Signal Transducer and Activator of Transcription 3 (STAT3) is activated in a majority of cancers, and promotes tumorigenesis and even metastasis through transcriptional activation of its target genes. Recently, we discovered that STAT3 suppresses epithelial-to-mesenchymal transition (EMT) and thus metastasis in a mouse model of colorectal cancer (CRC), while it did not affect the overall tumor burden. Furthermore, we found that STAT3 in intestinal epithelial cells (IEC) suppresses EMT by regulating stability of an EMT inducer, SNAI-1 (Snail-1). Here, STAT3 functions as an adaptor rather than a transcription factor in the post-translational modification of SNAI-1. In this review, we discuss the unexpected and contradictory role of STAT3 in metastasis of CRC and its clinical implications.

  11. STAT3: An Anti-Invasive Factor in Colorectal Cancer?

    Directory of Open Access Journals (Sweden)

    Petrus Rudolf de Jong

    2014-07-01

    Full Text Available Signal Transducer and Activator of Transcription 3 (STAT3 is activated in a majority of cancers, and promotes tumorigenesis and even metastasis through transcriptional activation of its target genes. Recently, we discovered that STAT3 suppresses epithelial-to-mesenchymal transition (EMT and thus metastasis in a mouse model of colorectal cancer (CRC, while it did not affect the overall tumor burden. Furthermore, we found that STAT3 in intestinal epithelial cells (IEC suppresses EMT by regulating stability of an EMT inducer, SNAI-1 (Snail-1. Here, STAT3 functions as an adaptor rather than a transcription factor in the post-translational modification of SNAI-1. In this review, we discuss the unexpected and contradictory role of STAT3 in metastasis of CRC and its clinical implications.

  12. Toll Like Receptor-9 Mediated Invasion in Breast Cancer

    Science.gov (United States)

    2012-07-01

    breast cancers because we also recently demon- strated a similar, decreased survival associated with low tumor TLR9 expression in renal cell carcinomas...epithelium in Helicobacter pylori infection . Clin Exp Immunol 136(3):521–526 9. Ilvesaro JM, Merrell MA, Swain TM, Davidson J, Zayzafoon M, Harris KW...KL, Sferruzzi-Perri AN, Thompson JG, Roberts CT (2010) Beyond oxygen: complex regulation and activity of hypoxia inducible factors in pregnancy . Hum

  13. Gemifloxacin, a Fluoroquinolone Antimicrobial Drug, Inhibits Migration and Invasion of Human Colon Cancer Cells

    Directory of Open Access Journals (Sweden)

    Jung-Yu Kan

    2013-01-01

    Full Text Available Gemifloxacin (GMF is an orally administered broad-spectrum fluoroquinolone antimicrobial agent used to treat acute bacterial exacerbation of pneumonia and bronchitis. Although fluoroquinolone antibiotics have also been found to have anti-inflammatory and anticancer effects, studies on the effect of GMF on treating colon cancer have been relatively rare. To the best of our knowledge, this is the first report to describe the antimetastasis activities of GMF in colon cancer and the possible mechanisms involved. Results have shown that GMF inhibits the migration and invasion of colon cancer SW620 and LoVo cells and causes epithelial mesenchymal transition (EMT. In addition, GMF suppresses the activation of NF-κB and cell migration and invasion induced by TNF-α and inhibits the TAK1/TAB2 interaction, resulting in decreased IκB phosphorylation and NF-κB nuclear translocation in SW620 cells. Furthermore, Snail, a critical transcriptional factor of EMT, was downregulated after GMF treatment. Overexpression of Snail by cDNA transfection significantly decreases the inhibitory effect of GMF on EMT and cell migration and invasion. In conclusion, GMF may be a novel anticancer agent for the treatment of metastasis in colon cancer.

  14. Intracellular Expression of PAI-1 Specific Aptamers Alters Breast Cancer Cell Migration, Invasion and Angiogenesis.

    Science.gov (United States)

    Fortenberry, Yolanda M; Brandal, Stephanie M; Carpentier, Gilles; Hemani, Malvi; Pathak, Arvind P

    2016-01-01

    Plasminogen activator inhibitor-1 (PAI-1) is elevated in various cancers, where it has been shown to effect cell migration and invasion and angiogenesis. While, PAI-1 is a secreted protein, its intercellular levels are increased in cancer cells. Consequently, intracellular PAI-1 could contribute to cancer progression. While various small molecule inhibitors of PAI-1 are currently being investigated, none specifically target intracellular PAI-1. A class of inhibitors, termed aptamers, has been used effectively in several clinical applications. We previously generated RNA aptamers that target PAI-1 and demonstrated their ability to inhibit extracellular PAI-1. In the current study we explored the effect of these aptamers on intracellular PAI-1. We transiently transfected the PAI-1 specific aptamers into both MDA-MB-231 human breast cancer cells, and human umbilical vein endothelial cells (HUVECs) and studied their effects on cell migration, invasion and angiogenesis. Aptamer expressing MDA-MB-231 cells exhibited a decrease in cell migration and invasion. Additionally, intracellular PAI-1 and urokinase plasminogen activator (uPA) protein levels decreased, while the PAI-1/uPA complex increased. Moreover, a significant decrease in endothelial tube formation in HUVECs transfected with the aptamers was observed. In contrast, conditioned media from aptamer transfected MDA-MB-231 cells displayed a slight pro-angiogenic effect. Collectively, our study shows that expressing functional aptamers inside breast and endothelial cells is feasible and may exhibit therapeutic potential.

  15. BCL-2 family protein, BAD is down-regulated in breast cancer and inhibits cell invasion.

    Science.gov (United States)

    Cekanova, Maria; Fernando, Romaine I; Siriwardhana, Nalin; Sukhthankar, Mugdha; De la Parra, Columba; Woraratphoka, Jirayus; Malone, Christine; Ström, Anders; Baek, Seung J; Wade, Paul A; Saxton, Arnold M; Donnell, Robert M; Pestell, Richard G; Dharmawardhane, Suranganie; Wimalasena, Jay

    2015-02-01

    We have previously demonstrated that the anti-apoptotic protein BAD is expressed in normal human breast tissue and shown that BAD inhibits expression of cyclin D1 to delay cell-cycle progression in breast cancer cells. Herein, expression of proteins in breast tissues was studied by immunohistochemistry and results were analyzed statistically to obtain semi-quantitative data. Biochemical and functional changes in BAD-overexpressing MCF7 breast cancer cells were evaluated using PCR, reporter assays, western blotting, ELISA and extracellular matrix invasion assays. Compared to normal tissues, Grade II breast cancers expressed low total/phosphorylated forms of BAD in both cytoplasmic and nuclear compartments. BAD overexpression decreased the expression of β-catenin, Sp1, and phosphorylation of STATs. BAD inhibited Ras/MEK/ERK and JNK signaling pathways, without affecting the p38 signaling pathway. Expression of the metastasis-related proteins, MMP10, VEGF, SNAIL, CXCR4, E-cadherin and TlMP2 was regulated by BAD with concomitant inhibition of extracellular matrix invasion. Inhibition of BAD by siRNA increased invasion and Akt/p-Akt levels. Clinical data and the results herein suggest that in addition to the effect on apoptosis, BAD conveys anti-metastatic effects and is a valuable prognostic marker in breast cancer.

  16. RCP induces Slug expression and cancer cell invasion by stabilizing β1 integrin.

    Science.gov (United States)

    Hwang, M H; Cho, K H; Jeong, K J; Park, Y-Y; Kim, J M; Yu, S-L; Park, C G; Mills, G B; Lee, H Y

    2017-02-23

    Rab coupling protein (RCP)-induced tumor cell migration has been implicated in tumor pathophysiology and patient outcomes. In the present study, we demonstrate that RCP stabilizes β1 integrin leading to increased β1 integrin levels and activation of a signaling cascade culminating in Slug induction, epithelial-to-mesenchymal transition and increased invasion. Ectopic expression of RCP induced Slug expression. Silencing β1 integrin efficiently inhibited RCP-induced Slug expression and subsequent cancer cell invasion. Conversely, ectopic expression of β1 integrin was sufficient to induce Slug expression. Pharmacological inhibition of integrin linked kinase (ILK), EGFR and NF-κB, as well as transfection of a dominant-negative mutant of Ras (RasN17), significantly inhibited RCP-induced Slug expression and cancer cell invasion. Strikingly, ectopic expression of RCP was sufficient to enhance metastasis of ovarian cancer cells to the lung. Collectively, we demonstrate a mechanism by which RCP promotes cancer cell aggressiveness through sequential β1 integrin stabilization, activation of an ILK/EGFR/Ras/NF-κB signaling cascade and subsequent Slug expression.

  17. Intracellular Expression of PAI-1 Specific Aptamers Alters Breast Cancer Cell Migration, Invasion and Angiogenesis

    Science.gov (United States)

    Fortenberry, Yolanda M.; Brandal, Stephanie M.; Carpentier, Gilles; Hemani, Malvi; Pathak, Arvind P.

    2016-01-01

    Plasminogen activator inhibitor-1 (PAI-1) is elevated in various cancers, where it has been shown to effect cell migration and invasion and angiogenesis. While, PAI-1 is a secreted protein, its intercellular levels are increased in cancer cells. Consequently, intracellular PAI-1 could contribute to cancer progression. While various small molecule inhibitors of PAI-1 are currently being investigated, none specifically target intracellular PAI-1. A class of inhibitors, termed aptamers, has been used effectively in several clinical applications. We previously generated RNA aptamers that target PAI-1 and demonstrated their ability to inhibit extracellular PAI-1. In the current study we explored the effect of these aptamers on intracellular PAI-1. We transiently transfected the PAI-1 specific aptamers into both MDA-MB-231 human breast cancer cells, and human umbilical vein endothelial cells (HUVECs) and studied their effects on cell migration, invasion and angiogenesis. Aptamer expressing MDA-MB-231 cells exhibited a decrease in cell migration and invasion. Additionally, intracellular PAI-1 and urokinase plasminogen activator (uPA) protein levels decreased, while the PAI-1/uPA complex increased. Moreover, a significant decrease in endothelial tube formation in HUVECs transfected with the aptamers was observed. In contrast, conditioned media from aptamer transfected MDA-MB-231 cells displayed a slight pro-angiogenic effect. Collectively, our study shows that expressing functional aptamers inside breast and endothelial cells is feasible and may exhibit therapeutic potential. PMID:27755560

  18. Schisandrin B attenuates cancer invasion and metastasis via inhibiting epithelial-mesenchymal transition.

    Directory of Open Access Journals (Sweden)

    Zhen Liu

    Full Text Available BACKGROUND: Metastasis is the major cause of cancer related death and targeting the process of metastasis has been proposed as a strategy to combat cancer. Therefore, to develop candidate drugs that target the process of metastasis is very important. In the preliminary studies, we found that schisandrin B (Sch B, a naturally-occurring dibenzocyclooctadiene lignan with very low toxicity, could suppress cancer metastasis. METHODOLOGY: BALB/c mice were inoculated subcutaneously or injected via tail vein with murine breast cancer 4T1 cells. Mice were divided into Sch B-treated and control groups. The primary tumor growth, local invasion, lung and bone metastasis, and survival time were monitored. Tumor biopsies were examined immuno- and histo-pathologically. The inhibitory activity of Sch B on TGF-β induced epithelial-mesenchymal transition (EMT of 4T1 and primary human breast cancer cells was assayed. PRINCIPAL FINDINGS: Sch B significantly suppressed the spontaneous lung and bone metastasis of 4T1 cells inoculated s.c. without significant effect on primary tumor growth and significantly extended the survival time of these mice. Sch B did not inhibit lung metastasis of 4T1 cells that were injected via tail vein. Delayed start of treatment with Sch B in mice with pre-existing tumors did not reduce lung metastasis. These results suggested that Sch B acted at the step of local invasion. Histopathological evidences demonstrated that the primary tumors in Sch B group were significantly less locally invasive than control tumors. In vitro assays demonstrated that Sch B could inhibit TGF-β induced EMT of 4T1 cells and of primary human breast cancer cells. CONCLUSIONS: Sch B significantly suppresses the lung and bone metastasis of 4T1 cells via inhibiting EMT, suggesting its potential application in targeting the process of cancer metastasis.

  19. Mixed lineage kinase 3 is required for matrix metalloproteinase expression and invasion in ovarian cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhan, Yu; Abi Saab, Widian F.; Modi, Nidhi; Stewart, Amanda M. [Department of Biological Sciences, The University of Toledo, 2801 W. Bancroft, Toledo, OH 43606 (United States); Liu, Jinsong [Department of Pathology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030 (United States); Chadee, Deborah N., E-mail: deborah.chadee@utoledo.edu [Department of Biological Sciences, The University of Toledo, 2801 W. Bancroft, Toledo, OH 43606 (United States)

    2012-08-15

    Mixed lineage kinase 3 (MLK3) is a mitogen-activated protein kinase kinase kinase (MAP3K) that activates MAPK signaling pathways and regulates cellular responses such as proliferation, migration and apoptosis. Here we report high levels of total and phospho-MLK3 in ovarian cancer cell lines in comparison to immortalized nontumorigenic ovarian epithelial cell lines. Using small interfering RNA (siRNA)-mediated gene silencing, we determined that MLK3 is required for the invasion of SKOV3 and HEY1B ovarian cancer cells. Furthermore, mlk3 silencing substantially reduced matrix metalloproteinase (MMP)-1, -2, -9 and -12 gene expression and MMP-2 and -9 activities in SKOV3 and HEY1B ovarian cancer cells. MMP-1, -2, -9 and-12 expression, and MLK3-induced activation of MMP-2 and MMP-9 requires both extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) activities. In addition, inhibition of activator protein-1 (AP-1) reduced MMP-1, MMP-9 and MMP-12 gene expression. Collectively, these findings establish MLK3 as an important regulator of MMP expression and invasion in ovarian cancer cells. -- Highlights: Black-Right-Pointing-Pointer Ovarian cancer cell lines have high levels of total and phosphorylated MLK3. Black-Right-Pointing-Pointer MLK3 is required for MMP expression and activity in ovarian cancer cells. Black-Right-Pointing-Pointer MLK3 is required for invasion of SKOV3 and HEY1B ovarian cancer cells. Black-Right-Pointing-Pointer MLK3-dependent regulation of MMP-2 and MMP-9 activities requires ERK and JNK.

  20. VI-14, a novel flavonoid derivative, inhibits migration and invasion of human breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Fanni; Li, Chenglin; Zhang, Haiwei; Lu, Zhijian [State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009 (China); Li, Zhiyu; You, Qidong [Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009 (China); Lu, Na [State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009 (China); Guo, Qinglong, E-mail: anticancer_drug@yahoo.com.cn [State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009 (China)

    2012-06-01

    It has been well characterized that flavonoids possess pronounced anticancer potentials including anti-angiogenesis, anti-metastasis, and pro-apoptosis. Herein, we report, for the first time, that VI-14, a novel flavonoid derivative, possesses anti-cancer properties. The purpose of this study is to investigate the anti-migration and anti-invasion activities of VI-14 in breast cancer cells. Our data indicate that VI-14 inhibits adhesion, migration and invasion of MDA-MB-231 and MDA-MB-435 human breast cancer cells. MDA-MB-231 cells treated with VI-14 display reduced activities and expressions of ECM degradation-associated proteins including matrix metalloproteinase 2 (MMP-2) and 9 (MMP-9) at both the protein and mRNA levels. Meanwhile, VI-14 treatment induces an up-regulated expression of tissue inhibitor of metalloproteinase 1 (TIMP-1) and 2 (TIMP-2) in MDA-MB-231 cells. Western blotting results show that phosphorylation levels of critical components of the MAPK signaling pathway, including ERK, JNK and P38, are dramatically decreased in VI-14-treated MDA-MB-231 cells. Furthermore, treatment of VI-14 significantly decreases the nuclear levels and the binding ability of nuclear factor-kappa B (NF-κB) and activator protein-1 (AP-1). Taken together, our data suggest that VI-14 treatment suppresses migration and motility of breast cancer cells, and VI-14 may be a potential compound for cancer therapy. Highlights: ► We report for the first time that VI-14 possesses anti-cancer properties. ► VI-14 weakens the adhesion, migration and invasion of human breast cancer cells. ► VI-14 decreases the activities and expressions of MMP-2/9. ► VI-14 suppresses the phosphorylation levels of the MAPK signaling pathway. ► VI-14 decreases the nuclear levels and the binding ability of NF-κB and AP-1.

  1. MTA1 promotes proliferation and invasion in human gastric cancer cells

    Directory of Open Access Journals (Sweden)

    Yao Y

    2015-07-01

    Full Text Available Yuan Yao,1 Shuting Feng,1 Mingming Xiao,2 Yan Li,1 Li Yang,1 Jiao Gong1 1Digestive System Department, 2Department of Pathology, The People’s Hospital of Liaoning Province, Shenyang, Liaoning, People’s Republic of China Abstract: Although metastasis-associated protein 1 (MTA1 has been widely li­nked to tumor metastasis, the relevant mechanisms remain to be elucidated, especially in gastric cancer. The aim of this study was to examine whether the MTA1 gene is associated with the process of proliferation and invasion by regulating several molecular targets in gastric cancer. MTA1 expression in 61 gastric cancer tissue and adjacent noncancerous tissues was analyzed by immunohistochemistry. The prognostic value of MTA1 for overall survival and disease-free survival was determined by Kaplan–Meier estimates, and the significance of differences between curves was evaluated by the log-rank test. Furthermore, overexpression of MTA1 in SGC7901 and BGC823 cells promoted cell cycle progression, cell adhesion, and cell invasion. Our study found that MTA1 is overexpressed in gastric cancers, which contributes to malignant cell growth by facilitating cell cycle progression through upregulation of cyclin D1 and accelerates the migration and invasion of human gastric cancer cells by regulating expression of fibronectin and MMP2/MMP9. Taken together, MTA1 was involved in the pathogenesis of gastric cancer and might be a candidate therapeutic target in gastric cancer. Keywords: cell cycle, cell adhesion, migration

  2. The Biological Effect of Hepsin on the Proliferation and Invasion of PC-3 Prostate Cancer Cells

    Institute of Scientific and Technical Information of China (English)

    Yong Xu; Zhiqiang Fan; Jantao Sun; Ranlu Liu; Weiming Zhao; Chunyu Wang; Ju Zhang

    2006-01-01

    OBJECTIVE Recent studies have shown that hepsin, a type of transmembrane serine protease, is highly upregulated in prostate cancer, but, little is known about its role in progression and invasion of this cancer. We constructed a hepsin-expressing plasmid and transfected it into PC-3 cells to investigate the effect of the hepsin gene on the biological behavior of the PC-3 cells.METHODS Plasmid pHepsin-IRES2 was transfected into prostate cancer PC-3 cells using Fugene6, and the cells with stable hepsin expression were screened and selected with Zeocin (600 mg/L). The hepsin mRNA level was measured by real-time PCR and the growth curve of the PC-3-transfected cells assessed using MTT and BrdU assays. A Boyden chamber was used to examine the difference in invasion and metastases between transfected and non-transfected cells.RESULTS The hepsin mRNA level in pHepsin-IRES2 transfected -PC-3 cells was significantly higher than that found in the control PC-3 cells. While the growth curve of the hepsin gene transfected PC-3 cells showed that there was no significant effect on proliferation, the invasive ability of the pHepsin-IRES2 transfected PC-3 cells, as compared with control cells, was significantly increased (P<0.05).CONCLUSION The results suggest that even though hepsin has no effect on the proliferation of prostate cancer PC-3 cells, it does promote cellular invasion and metastasis.Therefore hepsin may have a role in the development of prostate cancer.

  3. Prognosis of invasive breast cancer after adjuvant therapy evaluated with VEGF microvessel density and microvascular imaging.

    Science.gov (United States)

    Li, Ying; Wei, Xi; Zhang, Sheng; Zhang, Jin

    2015-11-01

    The aim of this study was to investigate the role of ultrasonographic microvascular imaging in the evaluation of prognosis of patients with invasive breast cancer treated by adjuvant therapies. A total of 121 patients with invasive breast cancer underwent ultrasonographic contrast-enhanced imaging, vascular endothelial growth factor (VEGF) staining, and microvessel density (MVD) counts. The parameters of microvascular imaging and the expression of VEGF and MVD in primary breast cancer were calculated. The correlation between these factors and the overall and progression-free survival rate were analyzed using the Kaplan-Meier method. Among 121 cases, the positive VEGF cases were 75 and negative ones were 46. The cut point of 52.3 was calculated by the regressive curve for MVD counts. The data showed the mean intensity (MI) was positively associated with both the MVD counts (r = .51, p prognosis of patients, high VEGF expression and MVD counts were associated with reduced progressive and survival times (PFS, p = .032 and p = .034; OS, p = .041 and p = .038, respectively). The correlation between parameters of microvascular imaging, VEGF expressive status, and the MVD counts were established. The cut point of mean intensity (MI = 40) was used to investigate as an independent predictor for PFS (p = .021) and OS (p = .025), respectively, due to a strong correlation between MVD counts and VEGF expression in patients with invasive breast cancer. The microvascular imaging could be a visual and helpful tool to predict the prognosis of patients with invasive breast cancer treated by adjuvant therapies.

  4. Urinary Cadmium and Risk of Invasive Breast Cancer in the Women's Health Initiative.

    Science.gov (United States)

    Adams, Scott V; Shafer, Martin M; Bonner, Matthew R; LaCroix, Andrea Z; Manson, JoAnn E; Meliker, Jaymie R; Neuhouser, Marian L; Newcomb, Polly A

    2016-05-01

    Cadmium is a widespread heavy metal pollutant that may act as an exogenous estrogenic hormone. Environmental cadmium exposure has been associated with risk of breast cancer in retrospective studies. We prospectively assessed the relationship between cadmium exposure, evaluated by creatinine-normalized urinary cadmium concentration, and invasive breast cancer among 12,701 postmenopausal women aged ≥50 years in a Women's Health Initiative study of bone mineral density. After a median of 13.2 years of follow-up (1993-2010), 508 cases of invasive breast cancer and 1,050 comparison women were identified for a case-cohort analysis. Multivariable Cox regression was used to calculate hazard ratios and 95% confidence intervals. Risk of breast cancer was not associated with urinary cadmium parameterized either in quartiles (comparing highest quartile with lowest, hazard ratio = 0.80, 95% confidence interval: 0.56, 1.14; P for trend = 0.20) or as a log-transformed continuous variable (per 2-fold higher urinary cadmium concentration, hazard ratio = 0.94, 95% confidence interval: 0.86, 1.03). We did not observe an association between urinary cadmium and breast cancer risk in any subgroup examined, including never smokers and women with body mass index (weight (kg)/height (m)(2)) less than 25. Results were consistent in both estrogen receptor-positive and estrogen receptor-negative tumors. Our results do not support the hypothesis that environmental cadmium exposure is associated with risk of postmenopausal breast cancer.

  5. DDX39 acts as a suppressor of invasion for bladder cancer.

    Science.gov (United States)

    Kato, Minoru; Wei, Min; Yamano, Shotaro; Kakehashi, Anna; Tamada, Satoshi; Nakatani, Tatsuya; Wanibuchi, Hideki

    2012-07-01

    The object of the present study was to identify markers for predicting urinary bladder cancer progression by comparative proteome analysis of bladder cancers and paired normal mucosas. We found that DDX39 was overexpressed in four of six bladder cancers examined compared with respective control tissues. Immunohistochemical analysis using 303 bladder cancer specimens revealed that DDX39 was inversely correlated to pT stage and histological grade progression. The incidence of DDX39(high) tumors (positive cells ≥50%) was 68.6%, 43.5%, 20.0%, and 5.3% in pTa, pT1, pTis, and ≥pT2 tumors, respectively, and 65.2%, 60.7%, and 19.6% in G1, G2, and G3 tumors, respectively. The incidence of DDX39(high) tumors was significantly lower in pT1 and ≥pT2 compared to pTa tumors, and also significantly lower in G3 compared to G1 and G2 tumors. Follow-up analysis (n = 105) revealed that DDX39(low) tumors (positive cells <50%) were associated with disease progression (hazard ratio 7.485; P = 0.0083). Furthermore, DDX39-knockdown bladder cancer cells increased their invasion ability compared to negative control cells. These results suggest that DDX39 is a suppressor of invasion and loss of its function predicts disease progression in bladder cancers.

  6. Lympho-vascular invasion in BRCA related breast cancer compared to sporadic controls

    Directory of Open Access Journals (Sweden)

    van der Wall Elsken

    2010-04-01

    Full Text Available Abstract Background Germline mutations in the BRCA1 gene predispose to the development of breast cancer, exhibiting a specific histological phenotype. Identification of possible hallmarks of these tumors is important for selecting patients for genetic screening and provides inside in carcinogenetic pathways. Since BRCA1-associated breast cancers have pushing borders that prevent them from easily reaching vessels and are often of the medullary (like type that is known to have a low rate of lympho-vascular invasion (LVI, we hypothesized that absence of LVI could characterize BRCA1 related breast cancer. Methods A population of 68 BRCA1 related invasive breast cancers was evaluated for LVI by an experienced breast pathologist blinded to mutation status, and compared to a control group matched for age, grade and tumor type. Results LVI was present in 25.0% of BRCA1 related cases, compared to 20.6% of controls (P = 0.54, OR = 1.29, CI 0.58-2.78. Conclusion LVI is frequent in BRCA1 germline mutation related breast cancers, but seems to occur as often in sporadic controls matched for age, grade and tumor type. Apparently, these hereditary cancers find their way to the blood and lymph vessels despite their well demarcation and often medullary differentiation.

  7. Risk of invasive cervical cancer after atypical glandular cells in cervical screening: nationwide cohort study

    Science.gov (United States)

    Andrae, Bengt; Sundström, Karin; Ström, Peter; Ploner, Alexander; Elfström, K Miriam; Arnheim-Dahlström, Lisen; Dillner, Joakim; Sparén, Pär

    2016-01-01

    Objectives To investigate the risks of invasive cervical cancer after detection of atypical glandular cells (AGC) during cervical screening. Design Nationwide population based cohort study. Setting Cancer and population registries in Sweden. Participants 3 054 328 women living in Sweden at any time between 1 January 1980 and 1 July 2011 who had any record of cervical cytological testing at ages 23-59. Of these, 2 899 968 women had normal cytology results at the first screening record. The first recorded abnormal result was atypical glandular cells (AGC) in 14 625, high grade squamous intraepithelial lesion (HSIL) in 65 633, and low grade squamous intraepithelial lesions (LSIL) in 244 168. Main outcome measures Cumulative incidence of invasive cervical cancer over 15.5 years; proportion of invasive cervical cancer within six months of abnormality (prevalence); crude incidence rates for invasive cervical cancer over 0.5-15.5 years of follow-up; incidence rate ratios compared with women with normal cytology, estimated with Poisson regression adjusted for age and stratified by histopathology of cancer; distribution of clinical assessment within six months after the abnormality. Results The prevalence of cervical cancer was 1.4% for women with AGC, which was lower than for women with HSIL (2.5%) but higher than for women with LSIL (0.2%); adenocarcinoma accounted for 73.2% of the prevalent cases associated with AGC. The incidence rate of invasive cervical cancer after AGC was significantly higher than for women with normal results on cytology for up to 15.5 years and higher than HSIL and LSIL for up to 6.5 years. The incidence rate of adenocarcinoma was 61 times higher than for women with normal results on cytology in the first screening round after AGC, and remained nine times higher for up to 15.5 years. Incidence and prevalence of invasive cervical cancer was highest when AGC was found at ages 30-39. Only 54% of women with AGC underwent histology assessment

  8. Gelsolin-Cu/ZnSOD interaction alters intracellular reactive oxygen species levels to promote cancer cell invasion

    KAUST Repository

    Tochhawng, Lalchhandami

    2016-07-07

    The actin-binding protein, gelsolin, is a well known regulator of cancer cell invasion. However, the mechanisms by which gelsolin promotes invasion are not well established. As reactive oxygen species (ROS) have been shown to promote cancer cell invasion, we investigated on the hypothesis that gelsolin-induced changes in ROS levels may mediate the invasive capacity of colon cancer cells. Herein, we show that increased gelsolin enhances the invasive capacity of colon cancer cells, and this is mediated via gelsolin\\'s effects in elevating intracellular superoxide (O2 .-) levels. We also provide evidence for a novel physical interaction between gelsolin and Cu/ZnSOD, that inhibits the enzymatic activity of Cu/ZnSOD, thereby resulting in a sustained elevation of intracellular O2 .-. Using microarray data of human colorectal cancer tissues from Gene Omnibus, we found that gelsolin gene expression positively correlates with urokinase plasminogen activator (uPA), an important matrix-degrading protease invovled in cancer invasion. Consistent with the in vivo evidence, we show that increased levels of O2 .- induced by gelsolin overexpression triggers the secretion of uPA. We further observed reduction in invasion and intracellular O2 .- levels in colon cancer cells, as a consequence of gelsolin knockdown using two different siRNAs. In these cells, concurrent repression of Cu/ ZnSOD restored intracellular O2 .- levels and rescued invasive capacity. Our study therefore identified gelsolin as a novel regulator of intracellular O2 .- in cancer cells via interacting with Cu/ZnSOD and inhibiting its enzymatic activity. Taken together, these findings provide insight into a novel function of gelsolin in promoting tumor invasion by directly impacting the cellular redox milieu.

  9. Review of MicroRNA Deregulation in Oral Cancer. Part I

    Directory of Open Access Journals (Sweden)

    Antonia Kolokythas

    2011-04-01

    Full Text Available Objectives: Oral cancer is the sixth most common malignancy worldwide. Cancer development and progression requires inactivation of tumour suppressor genes and activation of proto-oncogenes. Expression of these genes is in part dependant on RNA and microRNA based mechanisms. MicroRNAs are essential regulators of diverse cellular processes including proliferation, differentiation, apoptosis, survival, motility, invasion and morphogenesis. Several microRNAs have been found to be aberrantly expressed in various cancers including oral cancer.Material and Methods: A comprehensive review of the available literature from 2000 to 2011 relevant to microRNA deregulation in oral cancer was undertaken using PubMed, Medline, Scholar Google and Scopus. Keywords for the search were: microRNA and oral cancer, microRNA and squamous cell carcinoma, microRNA deregulation. Only full length articles in the English language were included. Strengths and limitations of each study are presented in this review.Results: Several studies were identified that investigated microRNA alternations in the head and neck/oral cavity cancers. Significant progress has been made in identification of microRNA deregulation in these cancers. It has been evident that several microRNAs were found to be deregulated specifically in oral cavity cancers. Among these, several microRNAs have been functionally validated and their potential target genes have been identified.Conclusions: These findings on microRNA deregulation in cancer further enhance our understanding of the disease progression, response to treatment and may assist with future development of targeted therapy.

  10. A novel minimally invasive dual-modality fiber optic probe for prostate cancer detection

    Science.gov (United States)

    Sharma, Vikrant

    Prostate cancer is the most common form of cancer in males, and is the second leading cause of cancer related deaths in United States. In prostate cancer diagnostics and therapy, there is a critical need for a minimally invasive tool for in vivo evaluation of prostate tissue. Such a tool finds its niche in improving TRUS (trans-rectal ultrasound) guided biopsy procedure, surgical margin assessment during radical prostatectomy, and active surveillance of patients with a certain risk levels. This work is focused on development of a fiber-based dual-modality optical device (dMOD), to differentiate prostate cancer from benign tissue, in vivo. dMOD utilizes two independent optical techniques, LRS (light reflectance spectroscopy) and AFLS (auto-fluorescence lifetime spectroscopy). LRS quantifies scattering coefficient of the tissue, as well as concentrations of major tissue chromophores like hemoglobin derivatives, β-carotene and melanin. AFLS was designed to target lifetime signatures of multiple endogenous fluorophores like flavins, porphyrins and lipo-pigments. Each of these methods was independently developed, and the two modalities were integrated using a thin (1-mm outer diameter) fiber-optic probe. Resulting dMOD probe was implemented and evaluated on animal models of prostate cancer, as well as on human prostate tissue. Application of dMOD to human breast cancer (invasive ductal carcinoma) identification was also evaluated. The results obtained reveal that both LRS and AFLS are excellent techniques to discriminate prostate cancer tissue from surrounding benign tissue in animal models. Each technique independently is capable of providing near absolute (100%) accuracy for cancer detection, indicating that either of them could be used independently without the need of implementing them together. Also, in case of human breast cancer, LRS and AFLS provided comparable accuracies to dMOD, LRS accuracy (96%) being the highest for the studied population. However, the

  11. Comparative Gene Expression Analyses Identify Luminal and Basal Subtypes of Canine Invasive Urothelial Carcinoma That Mimic Patterns in Human Invasive Bladder Cancer.

    Science.gov (United States)

    Dhawan, Deepika; Paoloni, Melissa; Shukradas, Shweta; Choudhury, Dipanwita Roy; Craig, Bruce A; Ramos-Vara, José A; Hahn, Noah; Bonney, Patty L; Khanna, Chand; Knapp, Deborah W

    2015-01-01

    More than 160,000 people are expected to die from invasive urothelial carcinoma (iUC) this year worldwide. Research in relevant animal models is essential to improving iUC management. Naturally-occurring canine iUC closely resembles human iUC in histopathology, metastatic behavior, and treatment response, and could provide a relevant model for human iUC. The molecular characterization of canine iUC, however, has been limited. Work was conducted to compare gene expression array results between tissue samples from iUC and normal bladder in dogs, with comparison to similar expression array data from human iUC and normal bladder in the literature. Considerable similarities between enrichment patterns of genes in canine and human iUC were observed. These included patterns mirroring basal and luminal subtypes initially observed in human breast cancer and more recently noted in human iUC. Canine iUC samples also exhibited enrichment for genes involved in P53 pathways, as has been reported in human iUC. This is particularly relevant as drugs targeting these genes/pathways in other cancers could be repurposed to treat iUC, with dogs providing a model to optimize therapy. As part of the validation of the results and proof of principal for evaluating individualized targeted therapy, the overexpression of EGFR in canine bladder iUC was confirmed. The similarities in gene expression patterns between dogs and humans add considerably to the value of naturally-occurring canine iUC as a relevant and much needed animal model for human iUC. Furthermore, the finding of expression patterns that cross different pathologically-defined cancers could allow studies of dogs with iUC to help optimize cancer management across multiple cancer types. The work is also expected to lead to a better understanding of the biological importance of the gene expression patterns, and the potential application of the cross-species comparisons approach to other cancer types as well.

  12. Comparative Gene Expression Analyses Identify Luminal and Basal Subtypes of Canine Invasive Urothelial Carcinoma That Mimic Patterns in Human Invasive Bladder Cancer.

    Directory of Open Access Journals (Sweden)

    Deepika Dhawan

    Full Text Available More than 160,000 people are expected to die from invasive urothelial carcinoma (iUC this year worldwide. Research in relevant animal models is essential to improving iUC management. Naturally-occurring canine iUC closely resembles human iUC in histopathology, metastatic behavior, and treatment response, and could provide a relevant model for human iUC. The molecular characterization of canine iUC, however, has been limited. Work was conducted to compare gene expression array results between tissue samples from iUC and normal bladder in dogs, with comparison to similar expression array data from human iUC and normal bladder in the literature. Considerable similarities between enrichment patterns of genes in canine and human iUC were observed. These included patterns mirroring basal and luminal subtypes initially observed in human breast cancer and more recently noted in human iUC. Canine iUC samples also exhibited enrichment for genes involved in P53 pathways, as has been reported in human iUC. This is particularly relevant as drugs targeting these genes/pathways in other cancers could be repurposed to treat iUC, with dogs providing a model to optimize therapy. As part of the validation of the results and proof of principal for evaluating individualized targeted therapy, the overexpression of EGFR in canine bladder iUC was confirmed. The similarities in gene expression patterns between dogs and humans add considerably to the value of naturally-occurring canine iUC as a relevant and much needed animal model for human iUC. Furthermore, the finding of expression patterns that cross different pathologically-defined cancers could allow studies of dogs with iUC to help optimize cancer management across multiple cancer types. The work is also expected to lead to a better understanding of the biological importance of the gene expression patterns, and the potential application of the cross-species comparisons approach to other cancer types as well.

  13. Afatinib inhibits proliferation and invasion and promotes apoptosis of the T24 bladder cancer cell line.

    Science.gov (United States)

    Tang, Yunhua; Zhang, Xiangyang; Qi, Fan; Chen, Mingfeng; Li, Yuan; Liu, Longfei; He, Wei; Li, Zhuo; Zu, Xiongbing

    2015-05-01

    Afatinib is a highly selective, irreversible inhibitor of the epidermal growth factor receptor (EGFR) and human EGFR 2 (HER-2). Although preclinical and clinical studies have indicated that afatinib has antitumor activity and clinical efficacy in non-small cell lung carcinoma, head and neck squamous cell carcinoma and breast cancer, there are few studies investigating its inhibitory effect on human bladder carcinoma cells. In this study, the antitumor effect of afatinib was investigated on the T24 bladder cancer cell line. The T24 bladder cancer cell line was treated with afatinib at various concentrations (0, 1, 5, 10 and 20 µmol/l). MTT assay was used to estimate the proliferation of the T24 cells; flow cytometric analysis was used to estimate the effect of afatinib on T24 cell apoptosis; cell invasion ability was assessed by a Transwell invasion assay; and western blot analysis was used to detect the expression of Bcl-2, Bax, Akt, extracellular-signal-regulated kinase (ERK)1/2, matrix metalloproteinase (MMP)-2 and MMP-9. The MTT assay demonstrated that afatinib inhibited the proliferation of T24 cells in a dose- and time-dependent manner. Flow cytometric analysis revealed that the cell apoptosis rate increased as the concentration of afatinib increased. The cell invasion assay indicated that afatinib treatment significantly inhibited the invasive behavior of T24 cells in a dose-dependent manner. Western blot analysis showed that with increasing afatinib concentrations, Bcl-2, phosphorylated (p)-ERK1/2, p-Akt, MMP-2 and MMP-9 expression levels were significantly decreased, whereas total (t)-ERK1/2 and t-Akt expression levels remained basically unchanged, and Bax expression levels were greatly increased. The results indicate that afatinib inhibits the proliferation and invasion of T24 cells in vitro and induces the apoptosis of these cells by inhibiting the EGFR signaling network.

  14. Minimally invasive esophagectomy for cancer: Single center experience after 44 consecutive cases

    Directory of Open Access Journals (Sweden)

    Bjelović Miloš

    2015-01-01

    Full Text Available Introduction. At the Department of Minimally Invasive Upper Digestive Surgery of the Hospital for Digestive Surgery in Belgrade, hybrid minimally invasive esophagectomy (hMIE has been a standard of care for patients with resectable esophageal cancer since 2009. As a next and final step in the change management, from January 2015 we utilized total minimally invasive esophagectomy (tMIE as a standard of care. Objective. The aim of the study was to report initial experiences in hMIE (laparoscopic approach for cancer and analyze surgical technique, major morbidity and 30-day mortality. Methods. A retrospective cohort study included 44 patients who underwent elective hMIE for esophageal cancer at the Department for Minimally Invasive Upper Digestive Surgery, Hospital for Digestive Surgery, Clinical Center of Serbia in Belgrade from April 2009 to December 2014. Results. There were 16 (36% middle thoracic esophagus tumors and 28 (64% tumors of distal thoracic esophagus. Mean duration of the operation was 319 minutes (approximately five hours and 20 minutes. The average blood loss was 173.6 ml. A total of 12 (27% of patients had postoperative complications and mean intensive care unit stay was 2.8 days. Mean hospital stay after surgery was 16 days. The average number of harvested lymph nodes during surgery was 31.9. The overall 30-day mortality rate within 30 days after surgery was 2%. Conclusion. As long as MIE is an oncological equivalent to open esophagectomy (OE, better relation between cost savings and potentially increased effectiveness will make MIE the preferred approach in high-volume esophageal centers that are experienced in minimally invasive procedures.

  15. Endobronchial mucosa invasion predicts survival in patients with small cell lung cancer.

    Directory of Open Access Journals (Sweden)

    Pai-Chien Chou

    Full Text Available BACKGROUND: Current staging system for small cell lung cancer (SCLC categorizes patients into limited- or extensive-stage disease groups according to anatomical localizations. Even so, a wide-range of survival times has been observed among patients in the same staging system. This study aimed to identify whether endobronchial mucosa invasion is an independent predictor for poor survival in patients with SCLC, and to compare the survival time between patients with and without endobronchial mucosa invasion. METHODS: We studied 432 consecutive patients with SCLC based on histological examination of biopsy specimens or on fine-needle aspiration cytology, and received computed tomography and bone scan for staging. All the enrolled patients were assessed for endobronchial mucosa invasion by bronchoscopic and histological examination. Survival days were compared between patients with or without endobronchial mucosa invasion and the predictors of decreased survival days were investigated. RESULTS: 84% (364/432 of SCLC patients had endobronchial mucosal invasion by cancer cells at initial diagnosis. Endobronchial mucosal involvement (Hazard ratio [HR], 2.01; 95% Confidence Interval [CI], 1.30-3.10, age (HR, 1.04; 95% CI, 1.03-1.06, and extensive stage (HR, 1.39; 95% CI, 1.06-1.84 were independent contributing factors for shorter survival time, while received chemotherapy (HR, 0.32; 95% CI, 0.25-0.42 was an independent contributing factor better outcome. The survival days of SCLC patients with endobronchial involvement were markedly decreased compared with patients without (median 145 vs. 290, p<0.0001. Among SCLC patients of either limited (median 180 vs. 460, p<0.0001 or extensive (median 125 vs. 207, p<0.0001 stages, the median survival duration for patients with endobronchial mucosal invasion was shorter than those with intact endobronchial mucosa, respectively. CONCLUSION: Endobronchial mucosal involvement is an independent prognostic factor for SCLC

  16. Autocrine HBEGF expression promotes breast cancer intravasation, metastasis and macrophage-independent invasion in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Z. N.; Sharma, V. P.; Beaty, B. T.; Roh-Johnson, M.; Peterson, E. A.; Van Rooijen, N.; Kenny, P. A.; Wiley, H. S.; Condeelis, J. S.; Segall, J. E.

    2014-10-13

    Increased expression of HBEGF in estrogen receptor-negative breast tumors is correlated with enhanced metastasis to distant organ sites and more rapid disease recurrence upon removal of the primary tumor. Our previous work has demonstrated a paracrine loop between breast cancer cells and macrophages in which the tumor cells are capable of stimulating macrophages through the secretion of colony-stimulating factor-1 while the tumor-associated macrophages (TAMs), in turn, aid in tumor cell invasion by secreting epidermal growth factor. To determine how the autocrine expression of epidermal growth factor receptor (EGFR) ligands by carcinoma cells would affect this paracrine loop mechanism, and in particular whether tumor cell invasion depends on spatial ligand gradients generated by TAMs, we generated cell lines with increased HBEGF expression. We found that autocrine HBEGF expression enhanced in vivo intravasation and metastasis and resulted in a novel phenomenon in which macrophages were no longer required for in vivo invasion of breast cancer cells. In vitro studies revealed that expression of HBEGF enhanced invadopodium formation, thus providing a mechanism for cell autonomous invasion. The increased invadopodium formation was directly dependent on EGFR signaling, as demonstrated by a rapid decrease in invadopodia upon inhibition of autocrine HBEGF/EGFR signaling as well as inhibition of signaling downstream of EGFR activation. HBEGF expression also resulted in enhanced invadopodium function via upregulation of matrix metalloprotease 2 (MMP2) and MMP9 expression levels. We conclude that high levels of HBEGF expression can short-circuit the tumor cell/macrophage paracrine invasion loop, resulting in enhanced tumor invasion that is independent of macrophage signaling.

  17. Suppression of Invasion and Metastasis of Triple-Negative Breast Cancer Lines by Pharmacological or Genetic Inhibition of Slug Activity

    Directory of Open Access Journals (Sweden)

    Giovanna Ferrari-Amorotti

    2014-12-01

    Full Text Available Most triple-negative breast cancers (TNBCs exhibit gene expression patterns associated with epithelial-to-mesenchymal transition (EMT, a feature that correlates with a propensity for metastatic spread. Overexpression of the EMT regulator Slug is detected in basal and mesenchymal-type TNBCs and is associated with reduced E-cadherin expression and aggressive disease. The effects of Slug depend, in part, on the interaction of its N-terminal SNAG repressor domain with the chromatin-modifying protein lysine demethylase 1 (LSD1; thus, we investigated whether tranylcypromine [also known as trans-2-phenylcyclopropylamine hydrochloride (PCPA or Parnate], an inhibitor of LSD1 that blocks its interaction with Slug, suppresses the migration, invasion, and metastatic spread of TNBC cell lines. We show here that PCPA treatment induces the expression of E-cadherin and other epithelial markers and markedly suppresses migration and invasion of TNBC cell lines MDA-MB-231 and BT-549. These effects were phenocopied by Slug or LSD1 silencing. In two models of orthotopic breast cancer, PCPA treatment reduced local tumor growth and the number of lung metastases. In mice injected directly in the blood circulation with MDA-MB-231 cells, PCPA treatment or Slug silencing markedly inhibited bone metastases but had no effect on lung infiltration. Thus, blocking Slug activity may suppress the metastatic spread of TNBC and, perhaps, specifically inhibit homing/colonization to the bone.

  18. Gasdermin-B promotes invasion and metastasis in breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Marta Hergueta-Redondo

    Full Text Available Gasdermin B (GSDMB belongs to the Gasdermin protein family that comprises four members (GSDMA-D. Gasdermin B expression has been detected in some tumor types such as hepatocarcinomas, gastric and cervix cancers; and its over-expression has been related to tumor progression. At least four splicing isoforms of GSDMB have been identified, which may play differential roles in cancer. However, the implication of GSDMB in carcinogenesis and tumor progression is not well understood. Here, we uncover for the first time the functional implication of GSDMB in breast cancer. Our data shows that high levels of GSDMB expression is correlated with reduced survival and increased metastasis in breast cancer patients included in an expression dataset (>1,000 cases. We demonstrate that GSDMB is upregulated in breast carcinomas compared to normal breast tissue, being the isoform 2 (GSDMB-2 the most differentially expressed. In order to evaluate the functional role of GSDMB in breast cancer two GSDMB isoforms were studied (GSDMB-1 and GSDMB-2. The overexpression of both isoforms in the MCF7 breast carcinoma cell line promotes cell motility and invasion, while its silencing in HCC1954 breast carcinoma cells decreases the migratory and invasive phenotype. Importantly, we demonstrate that both isoforms have a differential role on the activation of Rac-1 and Cdc-42 Rho-GTPases. Moreover, our data support that GSMDB-2 induces a pro-tumorigenic and pro-metastatic behavior in mouse xenograft models as compared to GSDMB-1. Finally, we observed that although both GSDMB isoforms interact in vitro with the chaperone Hsp90, only the GSDMB-2 isoform relies on this chaperone for its stability. Taken together, our results provide for the first time evidences that GSDMB-2 induces invasion, tumor progression and metastasis in MCF7 cells and that GSDMB can be considered as a new potential prognostic marker in breast cancer.

  19. Adipose-derived mesenchymal stem cells promote cell proliferation and invasion of epithelial ovarian cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Yijing; Tang, Huijuan; Guo, Yan; Guo, Jing; Huang, Bangxing; Fang, Fang; Cai, Jing, E-mail: caijingmmm@hotmail.com; Wang, Zehua, E-mail: zehuawang@163.net

    2015-09-10

    Adipose-derived mesenchymal stem cell (ADSC) is an important component of tumor microenvironment. However, whether ADSCs have a hand in ovarian cancer progression remains unclear. In this study, we investigated the impact of human ADSCs derived from the omentum of normal donors on human epithelial ovarian cancer (EOC) cells in vitro and in vivo. Direct and indirect co-culture models including ADSCs and human EOC cell lines were established and the effects of ADSCs on EOC cell proliferation were evaluated by EdU incorporation and flow cytometry. Transwell migration assays and detection of MMPs were performed to assess the invasion activity of EOC cells in vitro. Mouse models were established by intraperitoneal injection of EOC cells with or without concomitant ADSCs to investigate the role of ADSCs in tumor progression in vivo. We found that ADSCs significantly promoted proliferation and invasion of EOC cells in both direct and indirect co-culture assays. In addition, after co-culture with ADSCs, EOC cells secreted higher levels of matrix metalloproteinases (MMPs), and inhibition of MMP2 and MMP9 partially relieved the tumor-promoting effects of ADSCs in vitro. In mouse xenograft models, we confirmed that ADSCs promoted EOC growth and metastasis and elevated the expression of MMP2 and MMP9. Our findings indicate that omental ADSCs play a promotive role during ovarian cancer progression. - Highlights: • Omental adipose derived stem cells enhanced growth and invasion properties of ovarian cancer cells. • Adipose derived stem cells promoted the growth and metastasis of ovarian cancer in mice models. • Adipose derived stem cells promoted MMPs expression and secretion of ovarian cancer cells. • Elevated MMPs mediated the tumor promoting effects of ADSCs.

  20. Combined intraarterial cisplatin infusion and radiation therapy for invasive bladder cancer

    Energy Technology Data Exchange (ETDEWEB)

    Mizoguchi, Hiroaki; Nomura, Yoshio; Terada, Katsuhiko; Nakagawa, Masayuki; Ogata, Jiro [Oita Medical Univ., Hasama (Japan)

    1995-03-01

    Twenty-three patients with invasive bladder cancer (T2 in 17, T3 in 6) were treated initially with combined intraarterial cisplatin infusion and radiation therapy. Cisplatin (50 mg) was infused into the internal iliac artery through a subcutaneous reservoir twice a week over three weeks while concurrent radiation therapy with 30 Gy, delivered in 15 fractions, was given. In 23 patients, 6 received additional cisplatin infusion and the other 17 had transurethral resection of bladder tumor (TURBT). Two of the patients undergoing total cystectomy exhibited a complete response (CR). Thus overall response rate was 87% (CR in 13 and partial response in 7). CR was achieved in 53% for T2 patients and 67% for T3 patients. CR was slightly higher in patients with non-papillary cancer than those with papillary one. Toxic reaction included a decrease in bladder capacity in 2 patients and severe diarrhea due to methicillin-resistant Staphylococcus aureus colitis in one. The other toxicities, including nausea, vomiting, neurotoxicity and myelosuppression, were tolerable. All except for one are alive. Seven patients had a local recurrence of bladder cancer. One patient developed invasive bladder cancer reaching the prostatic urethra. One other patient had recurrence at the same site as the previous tumor. Five others had superficial bladder cancer and were managed by TURBT. Bladder function was preserved in 65% at a mean follow-up of 29 months. In conclusion, the combined intraarterial cisplatin infusion and radiation therapy is useful for the initial treatment of invasive bladder cancer. (N.K.).

  1. MiR-203 controls proliferation, migration and invasive potential of prostate cancer cell lines

    DEFF Research Database (Denmark)

    Viticchiè, Giuditta; Lena, Anna Maria; Latina, Alessia;

    2011-01-01

    transition and invasion of healthy tissues (usually bones). MicroRNA-203 (miR-203) is a tumor suppressor microRNA often silenced in different malignancies. Here, we show that miR-203 is downregulated in clinical primary prostatic tumors compared to normal prostate tissue, and in metastatic prostate cancer...... cell lines compared to normal epithelial prostatic cells. Overexpression of miR-203 in brain or bone metastatic prostate cell lines (DU145 and PC3) is sufficient to induce a mesenchymal to epithelial transition with inhibition of cell proliferation, migration and invasiveness. We have identified CKAP2......, LASP1, BIRC5, WASF1, ASAP1 and RUNX2 as new miR-203 direct target mRNAs involved in these events. Therefore, miR-203 could be a potentially new prognostic marker and therapeutic target in metastatic prostate cancer....

  2. Role of prostaglandin receptor EP2 in the regulations of cancer cell proliferation, invasion, and inflammation.

    Science.gov (United States)

    Jiang, Jianxiong; Dingledine, Ray

    2013-02-01

    Population studies, preclinical, and clinical trials suggest a role for cyclooxygenase-2 (COX-2, PTGS2) in tumor formation and progression. The downstream prostanoid receptor signaling pathways involved in tumorigenesis are poorly understood, although prostaglandin E2 (PGE(2)), a major COX-2 metabolite which is usually upregulated in the involved tissues, presumably plays important roles in tumor biology. Taking advantage of our recently identified novel selective antagonist for the EP2 (PTGER2) subtype of PGE(2) receptor, we demonstrated that EP2 receptor activation could promote prostate cancer cell growth and invasion in vitro, accompanied by upregulation of the tumor-promoting inflammatory cytokines, such as IL-1β and IL-6. Our results suggest the involvement of prostaglandin receptor EP2 in cancer cell proliferation and invasion possibly via its inflammatory actions, and indicate that selective blockade of the PGE(2)-EP2 signaling pathway via small molecule antagonists might represent a novel therapy for tumorigenesis.

  3. Rhodanine-based PRL-3 inhibitors blocked the migration and invasion of metastatic cancer cells.

    Science.gov (United States)

    Min, Garam; Lee, Su-Kyung; Kim, Hye-Nan; Han, Young-Min; Lee, Rhan-Hee; Jeong, Dae Gwin; Han, Dong Cho; Kwon, Byoung-Mog

    2013-07-01

    PRL-3, phosphatase of regenerating liver-3, plays a role in cancer progression through its involvement in invasion, migration, metastasis, and angiogenesis. We synthesized rhodanine derivatives, CG-707 and BR-1, which inhibited PRL-3 enzymatic activity with IC50 values of 0.8 μM and 1.1 μM, respectively. CG-707 and BR-1 strongly inhibited the migration and invasion of PRL-3 overexpressing colon cancer cells without exhibiting cytotoxicity. The specificity of the inhibitors on PRL-3 phosphatase activity was confirmed by the phosphorylation recovery of known PRL-3 substrates such as ezrin and cytokeratin 8. The compounds selectively inhibited PRL-3 in comparison with other phosphatases, and CG-707 regulated epithelial-to-mesenchymal transition (EMT) marker proteins. The results of the present study reveal that rhodanine is a specific PRL-3 inhibitor and a good lead molecule for obtaining a selective PRL-3 inhibitor.

  4. The Use of Regenerative Medicine in the Management of Invasive Bladder Cancer

    Directory of Open Access Journals (Sweden)

    Matthew E. Hyndman

    2012-01-01

    Full Text Available Muscle invasive and recurrent nonmuscle invasive bladder cancers have been traditionally treated with a radical cystectomy and urinary diversion. The urinary diversion is generally accomplished through the creation of an incontinent ileal conduit, continent catheterizable reservoir, or orthotopic neobladder utilizing small or large intestine. While radical extirpation of the bladder is often successful from an oncological perspective, there is a significant morbidity associated with enteric interposition within the genitourinary tract. Therefore, there is a great opportunity to decrease the morbidity of the surgical management of bladder cancer through utilization of novel technologies for creating a urinary diversion without the use of intestine. Clinical trials using neourinary conduits (NUC seeded with autologous smooth muscle cells are currently in progress and may represent a significant surgical advance, potentially eliminating the complications associated with the use of gastrointestinal segments in the urinary reconstruction, simplifying the surgical procedure, and greatly facilitating recovery from cystectomy.

  5. Recreational physical inactivity and mortality in women with invasive epithelial ovarian cancer

    DEFF Research Database (Denmark)

    Cannioto, Rikki A; LaMonte, Michael J; Kelemen, Linda E

    2016-01-01

    and mortality. METHODS: Participants included 6806 women with a primary diagnosis of invasive EOC. In accordance with the Physical Activity Guidelines for Americans, women reporting no regular, weekly recreational physical activity were classified as inactive. We utilised Cox proportional hazard models......BACKGROUND: Little is known about modifiable behaviours that may be associated with epithelial ovarian cancer (EOC) survival. We conducted a pooled analysis of 12 studies from the Ovarian Cancer Association Consortium to investigate the association between pre-diagnostic physical inactivity.......12-1.33) further adjustment for residual disease, respectively. CONCLUSION: In this large pooled analysis, lack of recreational physical activity was associated with increased mortality among women with invasive EOC....

  6. Androgen receptor non-nuclear regulation of prostate cancer cell invasion mediated by Src and matriptase.

    Science.gov (United States)

    Zarif, Jelani C; Lamb, Laura E; Schulz, Veronique V; Nollet, Eric A; Miranti, Cindy K

    2015-03-30

    Castration-resistant prostate cancers still depend on nuclear androgen receptor (AR) function despite their lack of dependence on exogenous androgen. Second generation anti-androgen therapies are more efficient at blocking nuclear AR; however resistant tumors still develop. Recent studies indicate Src is highly active in these resistant tumors. By manipulating AR activity in several different prostate cancer cell lines through RNAi, drug treatment, and the use of a nuclear-deficient AR mutant, we demonstrate that androgen acting on cytoplasmic AR rapidly stimulates Src tyrosine kinase via a non-genomic mechanism. Cytoplasmic AR, acting through Src enhances laminin integrin-dependent invasion. Active Matriptase, which cleaves laminin, is elevated within minutes after androgen stimulation, and is subsequently shed into the medium. Matriptase activation and shedding induced by cytoplasmic AR is dependent on Src. Concomitantly, CDCP1/gp140, a Matriptase and Src substrate that controls integrin-based migration, is activated. However, only inhibition of Matriptase, but not CDCP1, suppresses the AR/Src-dependent increase in invasion. Matriptase, present in conditioned medium from AR-stimulated cells, is sufficient to enhance invasion in the absence of androgen. Thus, invasion is stimulated by a rapid but sustained increase in Src activity, mediated non-genomically by cytoplasmic AR, leading to rapid activation and shedding of the laminin protease Matriptase.

  7. Osteopontin knockdown suppresses non-small cell lung cancer cell invasion and metastasis

    Institute of Scientific and Technical Information of China (English)

    SUN Bing-sheng; YOU Jian; LI Yue; ZHANG Zhen-fa; WANG Chang-li

    2013-01-01

    Background Osteopontin (OPN) was identified as one of the leading genes that promote the metastasis of malignant tumor.However,the mechanism by which OPN mediates metastasis in non-small cell lung cancer (NSCLC) remains unknown.The aim of the study is to investigate the biological significance and the related molecular mechanism of OPN expression in lung cancer cell line.Methods Lentiviral-mediated RNA interference was applied to inhibit OPN expression in metastatic human NSCLC cell line (A549).The invasion,proliferation,and metastasis were evaluated OPN-silenced in A549 cells in vitro and in vivo.The related mechanism was further investigated.Results Interestingly,OPN knockdown significantly suppressed the invasiveness of A549 cells,but had only a minor effect on the cellular migration and proliferation.Moreover,we demonstrated that OPN knockdown significantly reduced the levels of matrix metalloproteinase (MMP)-2 and urokinase plasminogen activator (uPA),and led to an obviousinhibition of both in vitro invasion and in vivo lung metastasis of A549 cells (P <0.001).Conclusions Our data demonstrate that OPN contributes to A549 cell metastasis by stimulating cell invasion,independent of cellular migration and proliferation.OPN could be a new treatment target of NSCLC.

  8. Optimization of Invasion-Specific Effects of Betulin Derivatives on Prostate Cancer Cells through Lead Development.

    Directory of Open Access Journals (Sweden)

    Ville Härmä

    Full Text Available The anti-invasive and anti-proliferative effects of betulins and abietane derivatives was systematically tested using an organotypic model system of advanced, castration-resistant prostate cancers. A preliminary screen of the initial set of 93 compounds was performed in two-dimensional (2D growth conditions using non-transformed prostate epithelial cells (EP156T, an androgen-sensitive prostate cancer cell line (LNCaP, and the castration-resistant, highly invasive cell line PC-3. The 25 most promising compounds were all betulin derivatives. These were selected for a focused secondary screen in three-dimensional (3D growth conditions, with the goal to identify the most effective and specific anti-invasive compounds. Additional sensitivity and cytotoxicity tests were then performed using an extended cell line panel. The effects of these compounds on cell cycle progression, mitosis, proliferation and unspecific cytotoxicity, versus their ability to specifically interfere with cell motility and tumor cell invasion was addressed. To identify potential mechanisms of action and likely compound targets, multiplex profiling of compound effects on a panel of 43 human protein kinases was performed. These target de-convolution studies, combined with the phenotypic analyses of multicellular organoids in 3D models, revealed specific inhibition of AKT signaling linked to effects on the organization of the actin cytoskeleton as the most likely driver of altered cell morphology and motility.

  9. Systemic therapy in muscle-invasive and metastatic bladder cancer: current trends and future promises.

    Science.gov (United States)

    Aragon-Ching, Jeanny B; Trump, Donald L

    2016-09-01

    Bladder urothelial cancers remain an important urologic cancer with limited treatment options in the locally advanced and metastatic setting. While neoadjuvant chemotherapy for locally advanced muscle-invasive cancers has shown overall survival benefit, clinical uptake in practice have lagged behind. Controversies surrounding adjuvant chemotherapy use are also ongoing. Systemic therapies for metastatic bladder cancer have largely used platinum-based therapies without effective standard second-line therapy options for those who fail, although vinflunine is approved in Europe as a second-line therapy based on a Phase III trial, and most recently, atezolizumab, a checkpoint inhibitor, was approved by the US FDA. Given increasing recognition of mutational signatures expressed in urothelial carcinomas, several promising agents with use of VEGF-targeted therapies, HER2-directed agents and immunotherapies with PD-1/PD-L1 antibodies in various settings are discussed herein.

  10. MetastamiRs: Non-Coding MicroRNAs Driving Cancer Invasion and Metastasis

    Directory of Open Access Journals (Sweden)

    Sergio Rodriguez-Cuevas

    2012-01-01

    Full Text Available MicroRNAs (miRNAs are small non-coding RNAs of ~22 nucleotides that function as negative regulators of gene expression by either inhibiting translation or inducing deadenylation-dependent degradation of target transcripts. Notably, deregulation of miRNAs expression is associated with the initiation and progression of human cancers where they act as oncogenes or tumor suppressors contributing to tumorigenesis. Abnormal miRNA expression may provide potential diagnostic and prognostic tumor biomarkers and new therapeutic targets in cancer. Recently, several miRNAs have been shown to initiate invasion and metastasis by targeting multiple proteins that are major players in these cellular events, thus they have been denominated as metastamiRs. Here, we present a review of the current knowledge of miRNAs in cancer with a special focus on metastamiRs. In addition we discuss their potential use as novel specific markers for cancer progression.

  11. The Role of Chemokines in Promoting Colorectal Cancer Invasion/Metastasis

    Directory of Open Access Journals (Sweden)

    Yoshiro Itatani

    2016-04-01

    Full Text Available Colorectal cancer (CRC is one of the leading causes of cancer-related death worldwide. Although most of the primary CRC can be removed by surgical resection, advanced tumors sometimes show recurrences in distant organs such as the liver, lung, lymph node, bone or peritoneum even after complete resection of the primary tumors. In these advanced and metastatic CRC, it is the tumor-stroma interaction in the tumor microenvironment that often promotes cancer invasion and/or metastasis through chemokine signaling. The tumor microenvironment contains numerous host cells that may suppress or promote cancer aggressiveness. Several types of host-derived myeloid cells reside in the tumor microenvironment, and the recruitment of them is under the control of chemokine signaling. In this review, we focus on the functions of chemokine signaling that may affect tumor immunity by recruiting several types of bone marrow-derived cells (BMDC to the tumor microenvironment of CRC.

  12. Minimally invasive surgery for rectal cancer:Are we there yet?

    Institute of Scientific and Technical Information of China (English)

    Bradley J Champagne; Rohit Makhija

    2011-01-01

    Laparoscopic colon surgery for select cancers is slowly evolving as the standard of care but minimally invasive approaches for rectal cancer have been viewed with significant skepticism.This procedure has been performed by select surgeons at specialized centers and concerns over local recurrence,sexual dysfunction and appropriate training measures have further hindered widespread acceptance.Data for laparoscopic rectal resection now supports its continued implementation and widespread usage by expeienced surgeons for select patients.The current controversies regarding technical approaches have created ambiguity amongst opinion leaders and are also addressed in this review.

  13. Leptin promotes breast cancer cell migration and invasion via IL-18 expression and secretion.

    Science.gov (United States)

    Li, Kuangfa; Wei, Lan; Huang, Yunxiu; Wu, Yang; Su, Min; Pang, Xueli; Wang, Nian; Ji, Feihu; Zhong, Changli; Chen, Tingmei

    2016-06-01

    In recent years, crosstalk between tumor microenvironment and cancer cells have received increasing attention. Accumulating research data suggests that leptin, a key adipokine secreted from adipocytes, plays important roles in breast cancer development. In our study, the effects of leptin on polarization of tumor-associated macrophages (TAMs) and promotion of the invasiveness of tumor cells were investigated. THP1 cells were used to differentiate M2 polarization macrophages. After stimulated by leptin, we established a co-culture system of tumor cells and macrophages to evaluate the function of leptin-induced macrophages in the migration and invasion of breast cancer cells. The gene and protein expressions were analyzed and the underlying mechanisms were evaluated. Moreover, pathological human specimens, and xenografts in nude mice, were detected to strengthen the in vitro results. Leptin elevated the expression of an array of cytokines in TAMs, IL-18 was the most increased, with an activation of the NF-κB/NF-κB1 signalling pathway. Additionally, after treated with leptin, TAMs significantly promoted the migration and invasion of breast cancer cells. However, these effects of leptin were abolished by the co-incubation of Bay11‑7082, a pharmacological NF-κB inhibitor. Leptin also directly stimulated IL-18 expression in breast cancer cells, which, differently, was via the PI3K/AKT-ATF-2 signaling pathway. In vivo studies showed that malignant breast carcinoma exhibited strong higher expression of Leptin, IL-8, and TAMs markers. Xenograft tumor-bearing mouse models showed that leptin significantly increased tumor volume, enhanced lung metastases, and increased expression of IL-8 and TAM markers, which were abolished by depletion of macrophages by clophosome-clodronate liposomes (CCL). Leptin could induce IL-18 expression both in TAMs and breast cancer cells. Leptin-induced IL-18 expression was regulated via NF-κB/NF-κB1 signaling in TAMs, while via PI3K

  14. Expression of BNIP3 in invasive breast cancer: correlations with the hypoxic response and clinicopathological features

    Directory of Open Access Journals (Sweden)

    de Weger Roel A

    2009-06-01

    Full Text Available Abstract Background Bcl-2/adenovirus E1B 19 kDa-interacting protein 3 (BNIP3 is a pro-apoptotic member of the Bcl-2 family induced under hypoxia. Low or absent expression has recently been described in human tumors, including gastrointestinal tumors, resulting in poor prognosis. Little is known about BNIP3 expression in invasive breast cancer. The aim of the present study was to investigate the expression of BNIP3 in invasive breast cancer at the mRNA and protein level in correlation with the hypoxic response and clinicopathological features. Methods In 40 cases of invasive breast cancer, BNIP3 mRNA in situ hybridization was performed on frozen sections with a digoxigenin labeled anti-BNIP3 probe. Paraffin embedded sections of the same specimens were used to determine protein expression of BNIP3, Hypoxia Inducible Factor 1 alpha (HIF-1α and its downstream targets Glucose Transporter 1 (Glut-1 and Carbonic Anhydrase (CAIX by immunohistochemistry. Results BNIP3 mRNA was expressed in 16/40 (40% of the cases and correlated with BNIP3 protein expression (p = 0.0218. Neither BNIP3 protein nor mRNA expression correlated with expression of HIF-1α expression or its downstream targets. Tumors which showed loss of expression of BNIP3 had significantly more often lymph node metastases (82% vs 39%, p = 0.010 and showed a higher mitotic activity index (p = 0.027. BNIP3 protein expression was often nuclear in normal breast, but cytoplasmic in tumor cells. Conclusion BNIP3 expression is lost in a significant portion of invasive breast cancers, which is correlated with poor prognostic features such as positive lymph node status and high proliferation, but not with the hypoxic response.

  15. Composite Biomarkers For Non-invasive Screening, Diagnosis And Prognosis Of Colorectal Cancer

    KAUST Repository

    Mansour, Hicham

    2014-09-11

    The present invention concerns particular biomarkers for diagnosing and/or prognosticating colorectal cancer, in particular in a non-invasive manner. The methods and compositions concern analysis of methylation patterns of one or more genes from a set of 29 genes identified as described herein. In certain embodiments, the gene set includes at least P15.INK4b, SST, GAS7, CNRIP1, and PIK3CG.

  16. Effectiveness of narrow-band imaging magnification for invasion depth in early colorectal cancer

    Institute of Scientific and Technical Information of China (English)

    Masakatsu; Fukuzawa; Yutaka; Saito; Takahisa; Matsuda; Toshio; Uraoka; Takao; Itoi; Fuminori; Moriyasu

    2010-01-01

    AIM: To evaluate the surface microvascular patterns of early colorectal cancer (ECC) using narrow-band imaging (NBI) with magnification and its effectiveness for invasion depth diagnosis. METHODS: We studied 112 ECC lesions [mucosal/ submucosal superficial (m/sm-s), 69; sm-deep (sm-d), 43] ≥ 10 mm that subsequently underwent endoscopic or surgical treatment at our hospital. We compared microvascular architecture revealed by NBI with magnification to histological findings and then to magnifi- cation colonosc...

  17. Invasive ductal carcinomas of the breast showing partial reversed cell polarity are associated with lymphatic tumor spread and may represent part of a spectrum of invasive micropapillary carcinoma.

    Science.gov (United States)

    Acs, Geza; Esposito, Nicole N; Rakosy, Zsuzsa; Laronga, Christine; Zhang, Paul J

    2010-11-01

    Invasive micropapillary carcinomas (IMPC) of the breast are aggressive tumors frequently associated with lymphatic invasion and nodal metastasis even when micropapillary (MP) differentiation is very focal within the tumors. We have noticed that some breast carcinomas showing lymphatic spread but lacking histologic features of IMPC have occasional tumor cell clusters reminiscent of those of IMPC without the characteristic prominent retraction artifact. To study the clinicopathologic significance of such features, we prospectively selected 1323 invasive ductal carcinomas and determined the presence and extent of MP differentiation and retraction artifact in the tumors. One representative tumor block per case was used for immunostaining for epithelial membrane antigen (EMA). Partial reverse cell polarity (PRCP) was defined as prominent linear EMA reactivity on at least part of the periphery of tumor cell clusters usually associated with decreased cytoplasmic staining. The clinicopathologic features of carcinomas with PRCP were compared with IMPC and invasive ductal (no special type) carcinomas without this feature. Of the 1323 cases, 96 (7.3%) and 92 (7.0%) showed MP features and the presence of PRCP, respectively. We found that the presence of both PRCP and MP features were strongly associated with decreased cytoplasmic EMA immunoreactivity and the presence of lymphatic invasion and nodal metastasis, even if such features were present only very focally. Our results suggest that breast carcinomas with PRCP may have the same implication as MP differentiation and these tumors may represent part of a spectrum of IMPC. Complete or partial reversal of cell polarity may play a significant role in lymphatic tumor spread.

  18. Roles of TRPM8 Ion Channels in Cancer: Proliferation, Survival, and Invasion

    Directory of Open Access Journals (Sweden)

    Nelson S. Yee

    2015-10-01

    Full Text Available The goal of this article is to provide a critical review of the transient receptor potential melastatin-subfamily member 8 (TRPM8 in cancers, with an emphasis on its roles in cellular proliferation, survival, and invasion. The TRPM8 ion channels regulate Ca²⁺ homeostasis and function as a cellular sensor and transducer of cold temperature. Accumulating evidence has demonstrated that TRPM8 is aberrantly expressed in a variety of malignant solid tumors. Clinicopathological analysis has shown that over-expression of TRPM8 correlates with tumor progression. Experimental data have revealed important roles of TRPM8 channels in cancer cells proliferation, survival, and invasion, which appear to be dependent on the cancer type. Recent reports have begun to reveal the signaling mechanisms that mediate the biological roles of TRPM8 in tumor growth and metastasis. Determining the mechanistic roles of TRPM8 in cancer is expected to elucidate the impact of thermal and chemical stimuli on the formation and progression of neoplasms. Translational research and clinical investigation of TRPM8 in malignant diseases will help exploit these ion channels as molecular biomarkers and therapeutic targets for developing precision cancer medicine.

  19. Peritumoral apparent diffusion coefficients for prediction of lymphovascular invasion in clinically node-negative invasive breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Naoko; Mugikura, Shunji; Takasawa, Chiaki; Shimauchi, Akiko; Ota, Hideki; Takase, Kei; Takahashi, Shoki [Tohoku University Graduate School of Medicine, Department of Diagnostic Radiology, Sendai (Japan); Miyashita, Minoru; Ishida, Takanori [Tohoku University Graduate School of Medicine, Department of Surgical Oncology, Sendai (Japan); Kasajima, Atsuko [Tohoku University Graduate School of Medicine, Department of Pathology, Sendai (Japan); Kodama, Tetsuya [Tohoku University Graduate School of Medicine, Department of Biomedical Engineering, Sendai (Japan)

    2016-02-15

    To evaluate whether visual assessment of T2-weighted imaging (T2WI) or an apparent diffusion coefficient (ADC) could predict lymphovascular invasion (LVI) status in cases with clinically node-negative invasive breast cancer. One hundred and thirty-six patients with 136 lesions underwent MRI. Visual assessment of T2WI, tumour-ADC, peritumoral maximum-ADC and the peritumour-tumour ADC ratio (the ratio between them) were compared with LVI status of surgical specimens. No significant relationship was found between LVI and T2WI. Tumour-ADC was significantly lower in the LVI-positive (n = 77, 896 ± 148 x 10{sup -6} mm{sup 2}/s) than the LVI-negative group (n = 59, 1002 ± 163 x 10{sup -6} mm{sup 2}/s; p < 0.0001). Peritumoral maximum-ADC was significantly higher in the LVI-positive (1805 ± 355 x 10{sup -6} mm{sup 2}/s) than the LVI-negative group (1625 ± 346 x 10{sup -6} mm{sup 2}/s; p = 0.0003). Peritumour-tumour ADC ratio was significantly higher in the LVI-positive (2.05 ± 0.46) than the LVI-negative group (1.65 ± 0.40; p < 0.0001). Receiver operating characteristic curve analysis revealed that the area under the curve (AUC) of the peritumour-tumour ADC ratio was the highest (0.81). The most effective threshold for the peritumour-tumour ADC ratio was 1.84, and the sensitivity, specificity, positive predictive value and negative predictive value were 77 % (59/77), 76 % (45/59), 81 % (59/73) and 71 % (45/63), respectively. We suggest that the peritumour-tumour ADC ratio can assist in predicting LVI status on preoperative imaging. (orig.)

  20. Silencing of claudin-11 is associated with increased invasiveness of gastric cancer cells.

    Directory of Open Access Journals (Sweden)

    Rachana Agarwal

    Full Text Available Claudins are membrane proteins that play critical roles in tight junction (TJ formation and function. Members of the claudin gene family have been demonstrated to be aberrantly regulated, and to participate in the pathogenesis of various human cancers. In the present study, we report that claudin-11 (CLDN11 is silenced in gastric cancer via hypermethylation of its promoter region.Levels of CLDN11 methylation and mRNA expression were measured in primary gastric cancer tissues, noncancerous gastric mucosae, and cell lines of gastric origin using quantitative methylation-specific PCR (qMSP and quantitative reverse transcriptase-PCR (qRT-PCR, respectively. Analyses of paired gastric cancers and adjacent normal gastric tissues revealed hypermethylation of the CLDN11 promoter region in gastric cancers, and this hypermethylation was significantly correlated with downregulation of CLDN11 expression vs. normal tissues. The CLDN11 promoter region was also hypermethylated in all gastric cancer cell lines tested relative to immortalized normal gastric epithelial cells. Moreover, CLDN11 mRNA expression was inversely correlated with its methylation level. Treatment of CLDN11-nonexpressing gastric cancer cells with 5-aza-2'-deoxycytidine restored CLDN11 expression. Moreover, siRNA-mediated knockdown of CLDN11 expression in normal gastric epithelial cells increased their motility and invasiveness.These data suggest that hypermethylation of CLDN11, leading to downregulated expression, contributes to gastric carcinogenesis by increasing cellular motility and invasiveness. A further understanding of the mechanisms underlying the role of claudin proteins in gastric carcinogenesis will likely help in the identification of novel approaches for diagnosis and therapy of gastric cancer.

  1. FOXM1 promotes invasion and migration of colorectal cancer cells partially dependent on HSPA5 transactivation

    Science.gov (United States)

    Yang, Zhiyuan; Feng, Hongbo; Chen, Pinjia; Shi, Xinpeng; Zou, Zhengzhi

    2016-01-01

    In this study, to investigate whether endoplastic reticulum (ER) stress correlated with FOXM1 in colorectal cancer, we analysed the mRNA levels of FOXM1 and ER stress markers HSPA5 and spliced XBP1 by qRT-PCR. FOXM1 mRNA levels were found to positively correlate with HSPA5 in colorectal cancer. However, no significant correlation between FOXM1 and spliced XBP1 mRNA levels was found. Theses results suggested the positive correlation between FOXM1 and HSPA5 in colorectal cancer was not associated with ER stress. Next, we provided evidences that FOXM1 promoted HSPA5 transcription by directly binding to and stimulating HSPA5 promoter. Moreover, a FOXM1-binding site mapped between -1019 and -1012 bp of the proximal HSPA5 promoter was identified. In addition, we found that enhancement of cell migration and invasion by FOXM1 was significantly attenuated by depletion of HSPA5 in colorectal cancer cell. Furthermore, FOXM1 triggered colorectal cancer cell migration and invasion was involved in activities of cell-surface HSPA5. Lastly, our results suggested FOXM1 facilitated the activities and expressions of MMP2 and 9 associated with cell-surface HSPA5 in colorectal cancer cells. Moreover, statistically significant positive correlations between FOXM1 and MMP2 mRNA expression, between HSPA5 and MMP2 were found in colorectal cancer tissue specimens. Together, our results suggested that FOXM1-HSPA5 signaling might be considered as a novel molecular target for designing novel therapeutic regimen to control colorectal cancer metastasis and progression. PMID:27034162

  2. Clonal expansion and linear genome evolution through breast cancer progression from pre-invasive stages to asynchronous metastasis

    DEFF Research Database (Denmark)

    Krøigård, Anne Bruun; Larsen, Martin Jakob; Lænkholm, Anne Vibeke;

    2015-01-01

    Evolution of the breast cancer genome from pre-invasive stages to asynchronous metastasis is complex and mostly unexplored, but highly demanded as it may provide novel markers for and mechanistic insights in cancer progression. The increasing use of personalized therapy of breast cancer necessita......Evolution of the breast cancer genome from pre-invasive stages to asynchronous metastasis is complex and mostly unexplored, but highly demanded as it may provide novel markers for and mechanistic insights in cancer progression. The increasing use of personalized therapy of breast cancer...... progression from one breast cancer patient, including two different regions of Ductal Carcinoma In Situ (DCIS), primary tumor and an asynchronous metastasis. We identify a remarkable landscape of somatic mutations, retained throughout breast cancer progression and with new mutational events emerging at each...

  3. Proteomic analysis of urinary biomarker candidates for nonmuscle invasive bladder cancer.

    Science.gov (United States)

    Lindén, Mårten; Lind, Sara Bergström; Mayrhofer, Corina; Segersten, Ulrika; Wester, Kenneth; Lyutvinskiy, Yaroslav; Zubarev, Roman; Malmström, Per-Uno; Pettersson, Ulf

    2012-01-01

    Nonmuscle invasive tumors of the bladder often recur and thereby bladder cancer patients need regular re-examinations which are invasive, unpleasant, and expensive. A noninvasive and less expensive method, e.g. a urine dipstick test, for monitoring recurrence would thus be advantageous. In this study, the complementary techniques mass spectrometry (MS) and Western blotting (WB)/dot blot (DB) were used to screen the urine samples from bladder cancer patients. High resolving MS was used to analyze and quantify the urinary proteome and 29 proteins had a significantly higher abundance (pblot for four selected proteins; fibrinogen β chain precursor, apolipoprotein E, α-1-antitrypsin, and leucine-rich α-2-glycoprotein 1. Dot blot analysis of an independent urine sample set pointed out fibrinogen β chain and α-1-antitrypsin as most interesting biomarkers having sensitivity and specificity values in the range of 66-85%. Exploring the Human Protein Atlas (HPA) also revealed that bladder cancer tumors are the likely source of these proteins. They have the potential of being useful in diagnosis, monitoring of recurrence and thus may improve the treatment of bladder tumors, especially nonmuscle invasive tumors.

  4. The PDZ protein TIP-1 facilitates cell migration and pulmonary metastasis of human invasive breast cancer cells in athymic mice

    Energy Technology Data Exchange (ETDEWEB)

    Han, Miaojun [Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Yunnan (China); Graduate School, Chinese Academy of Sciences, Beijing (China); Department of Radiation Oncology, School of Medicine, Vanderbilt University, Nashville, TN 37232 (United States); Wang, Hailun [Department of Radiation Oncology, School of Medicine, Vanderbilt University, Nashville, TN 37232 (United States); Zhang, Hua-Tang [Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Yunnan (China); Han, Zhaozhong, E-mail: zhaozhong.han@vanderbilt.edu [Department of Radiation Oncology, School of Medicine, Vanderbilt University, Nashville, TN 37232 (United States); Department of Cancer Biology, School of Medicine, Vanderbilt University, Nashville, TN 37232 (United States); Vanderbilt-Ingram Cancer Center, School of Medicine, Vanderbilt University, Nashville, TN 37232 (United States)

    2012-05-25

    Highlights: Black-Right-Pointing-Pointer This study has revealed novel oncogenic functions of TIP-1 in human invasive breast cancer. Black-Right-Pointing-Pointer Elevated TIP-1 expression levels in human breast cancers correlate to the disease prognosis. Black-Right-Pointing-Pointer TIP-1 knockdown suppressed the cell migration and pulmonary metastasis of human breast cancer cells. Black-Right-Pointing-Pointer TIP-1 knockdown suppressed the expression and functionality of motility-related genes. -- Abstract: Tax-interacting protein 1 (TIP-1, also known as Tax1bp3) inhibited proliferation of colon cancer cells through antagonizing the transcriptional activity of beta-catenin. However, in this study, elevated TIP-1 expression levels were detected in human invasive breast cancers. Studies with two human invasive breast cancer cell lines indicated that RNAi-mediated TIP-1 knockdown suppressed the cell adhesion, proliferation, migration and invasion in vitro, and inhibited tumor growth in mammary fat pads and pulmonary metastasis in athymic mice. Biochemical studies showed that TIP-1 knockdown had moderate and differential effects on the beta-catenin-regulated gene expression, but remarkably down regulated the genes for cell adhesion and motility in breast cancer cells. The decreased expression of integrins and paxillin was accompanied with reduced cell adhesion and focal adhesion formation on fibronectin-coated surface. In conclusion, this study revealed a novel oncogenic function of TIP-1 suggesting that TIP-1 holds potential as a prognostic biomarker and a therapeutic target in the treatment of human invasive breast cancers.

  5. Effects of neoadjuvant chemotherapy on pathological parameters and survival in patients undergoing radical cystectomy for muscle-invasive bladder cancer

    OpenAIRE

    ÇAĞLAYAN, Alper; Akbulut, Ziya; Atmaca, Ali Fuat; Altinova,Serkan; KILIÇ, Metin; Balbay, Mevlana Derya

    2012-01-01

    Aim: To evaluate the effect of neoadjuvant chemotherapy on tumor pathology and patient survival in patients with muscle-invasive bladder cancer undergoing radical cystectomy. Neoadjuvant chemotherapy is believed to prevent micrometastasis and provide pathological downstaging. Materials and methods: Between June 2004 and March 2009, 74 patients with muscle-invasive bladder cancer were treated with radical cystectomy. Patients fit to receive chemotherapy were administered systemic chemotherapy...

  6. Comparison of hyaluronidase expression, invasiveness and tubule formation promotion in ER (-) and ER (+) breast cancer cell lines in vitro

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-yi; TAN Jin-xiang; Marc Vasse; Bertrand Delpech; REN Guo-sheng

    2009-01-01

    Background Hyaluronidase (Hyase) is an enzyme which hydrolyses hyaluronan (HA), a large nonsulfated glycosaminoglycan. Several genes have been identified to code for hyaluronidases in humans. Its role has only recently been underlined in the invasion of prostate cancer, colonic cancer, and breast cancer. Moreover, the findings were in agreement with some experimental results which showed that HA-derived oligosaccharides had angiogenesis-promoting activity. All these findings prompted us to investigate factors that had been characterized as putative invasive factors in different human breast cancer-derived cell lines.Methods We selected two series of human breast cancer-derived cell lines whose expression of estrogen receptors (ER) was previously published. Hyaluronidase secretion in culture medium and expression of matrix metallo-proteinase (MMP)-9, cathepsin-D (cath-D) and vascular endothelial growth factor (VEGF) by cells were determined. We also investigated cell invasiveness in the Matrigel invasion assay, and studied the capability of cancer cells to promote in vitro formation of tubules by endothelial cells.Results ER(-) cells secreted significantly more hyaluronidase (P <0.001) and expressed significantly more VEGF (P <0.01), MMP-9 (P <0.05) and cath-D (P <0.0001) than ER(+) cells. Invasion through Matdgel by ER(-) Hyase(+) cells was significantly higher than that by ER(+) Hyase(-) cells (P<0.05). In both cases, invasion was decreased by heparin (P <0.05). When ECV-304 endothelial cells were co-cultivated in millicell chambers with cancer cells, ECV-304 cells were induced to form tubules. Tubule formation was demonstrated to be more prominent with ER(-) Hyase(+) cells than with ER(+) Hyase(-) cells (P <0.05).Conclusion Invasive features of ER(-) breast cancer cells can be characterized in vitro by an invasive Matrigel assay,as the induction of tubule formation by ECV-304 endothelial cells, higher secretion of hyaluronidase, and higher expression of

  7. Epigenetic regulation of CpG promoter methylation in invasive prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Farrar William L

    2010-10-01

    Full Text Available Abstract Background Recently, much attention has been focused on gaining a better understanding of the different populations of cells within a tumor and their contribution to cancer progression. One of the most commonly used methods to isolate a more aggressive sub-population of cells utilizes cell sorting based on expression of certain cell adhesion molecules. A recently established method we developed is to isolate these more aggressive cells based on their properties of increased invasive ability. These more invasive cells have been previously characterized as tumor initiating cells (TICs that have a stem-like genomic signature and express a number of stem cell genes including Oct3/4 and Nanog and are more tumorigenic compared to their 'non-invasive' counterpart. They also have a profile reminiscent of cells undergoing a classic pattern of epithelial to mesenchymal transition or EMT. Using this model of invasion, we sought to investigate which genes are under epigenetic control in this rare population of cells. Epigenetic modifications, specifically DNA methylation, are key events regulating the process of normal human development. To determine the specific methylation pattern in these invasive prostate cells, and if any developmental genes were being differentially regulated, we analyzed differences in global CpG promoter methylation. Results Differentially methylated genes were determined and select genes were chosen for additional analyses. The non-receptor tyrosine kinase BMX and transcription factor SOX1 were found to play a significant role in invasion. Ingenuity pathway analysis revealed the methylated gene list frequently displayed genes from the IL-6/STAT3 pathway. Cells which have decreased levels of the targets BMX and SOX1 also display loss of STAT3 activity. Finally, using Oncomine, it was determined that more aggressive metastatic prostate cancers in humans also have higher levels of both Stat3 and Sox1. Conclusions Using this

  8. Ellagic Acid Inhibits Bladder Cancer Invasiveness and In Vivo Tumor Growth

    Directory of Open Access Journals (Sweden)

    Claudia Ceci

    2016-11-01

    Full Text Available Ellagic acid (EA is a polyphenolic compound that can be found as a naturally occurring hydrolysis product of ellagitannins in pomegranates, berries, grapes, green tea and nuts. Previous studies have reported the antitumor properties of EA mainly using in vitro models. No data are available about EA influence on bladder cancer cell invasion of the extracellular matrix triggered by vascular endothelial growth factor-A (VEGF-A, an angiogenic factor associated with disease progression and recurrence, and tumor growth in vivo. In this study, we have investigated EA activity against four different human bladder cancer cell lines (i.e., T24, UM-UC-3, 5637 and HT-1376 by in vitro proliferation tests (measuring metabolic and foci forming activity, invasion and chemotactic assays in response to VEGF-A and in vivo preclinical models in nude mice. Results indicate that EA exerts anti-proliferative effects as a single agent and enhances the antitumor activity of mitomycin C, which is commonly used for the treatment of bladder cancer. EA also inhibits tumor invasion and chemotaxis, specifically induced by VEGF-A, and reduces VEGFR-2 expression. Moreover, EA down-regulates the expression of programmed cell death ligand 1 (PD-L1, an immune checkpoint involved in immune escape. EA in vitro activity was confirmed by the results of in vivo studies showing a significant reduction of the growth rate, infiltrative behavior and tumor-associated angiogenesis of human bladder cancer xenografts. In conclusion, these results suggest that EA may have a potential role as an adjunct therapy for bladder cancer.

  9. LRP-1 promotes cancer cell invasion by supporting ERK and inhibiting JNK signaling pathways.

    Directory of Open Access Journals (Sweden)

    Benoit Langlois

    Full Text Available BACKGROUND: The low-density lipoprotein receptor-related protein-1 (LRP-1 is an endocytic receptor mediating the clearance of various extracellular molecules involved in the dissemination of cancer cells. LRP-1 thus appeared as an attractive receptor for targeting the invasive behavior of malignant cells. However, recent results suggest that LRP-1 may facilitate the development and growth of cancer metastases in vivo, but the precise contribution of the receptor during cancer progression remains to be elucidated. The lack of mechanistic insights into the intracellular signaling networks downstream of LRP-1 has prevented the understanding of its contribution towards cancer. METHODOLOGY/PRINCIPAL FINDINGS: Through a short-hairpin RNA-mediated silencing approach, we identified LRP-1 as a main regulator of ERK and JNK signaling in a tumor cell context. Co-immunoprecipitation experiments revealed that LRP-1 constitutes an intracellular docking site for MAPK containing complexes. By using pharmacological agents, constitutively active and dominant-negative kinases, we demonstrated that LRP-1 maintains malignant cells in an adhesive state that is favorable for invasion by activating ERK and inhibiting JNK. We further demonstrated that the LRP-1-dependent regulation of MAPK signaling organizes the cytoskeletal architecture and mediates adhesive complex turnover in cancer cells. Moreover, we found that LRP-1 is tethered to the actin network and to focal adhesion sites and controls ERK and JNK targeting to talin-rich structures. CONCLUSIONS: We identified ERK and JNK as the main molecular relays by which LRP-1 regulates focal adhesion disassembly of malignant cells to support invasion.

  10. Options in the local management of invasive breast cancer.

    Science.gov (United States)

    Nixon, A J; Troyan, S L; Harris, J R

    1996-08-01

    Newly diagnosed, early-stage breast cancer confronts the patient and her clinician with multiple treatment decisions. This review examines some of these local treatment options including the choice between breast-conserving treatment (BCT) and mastectomy, how best to treat the axilla, and the optimal sequencing of local and systemic therapy. Key elements in the selection of patients for BCT or mastectomy include preoperative mammography, careful pathological evaluation, and an assessment of patient desires in order to balance the risk of local recurrence against preservation of a cosmetically acceptable breast. Although some absolute contraindications to BCT exist, most patients are candidates for BCT. The role of axillary dissection is currently being redefined, and in the future, more limited procedures may be able to identify patients who can avoid axillary dissection. The relationship between timing of breast surgery with regard to the menstrual cycle and outcome is intriguing but not yet established. As well, the appropriate sequencing of chemotherapy and radiotherapy (RT) after conservative surgery (CS) is uncertain, although randomized trials are beginning to shed some light on this issue. Whether all patients treated with CS require treatment with RT is another question that is currently under investigation. This article addresses these issues, focusing on the specifics of treatment implementation.

  11. Targeting human papillomavirus to reduce the burden of cervical, vulvar and vaginal cancer and pre-invasive neoplasia

    DEFF Research Database (Denmark)

    Nygård, Mari; Hansen, Bo Terning; Dillner, Joakim;

    2014-01-01

    BACKGROUND: Infection with high-risk human papillomavirus (HPV) is causally related to cervical, vulvar and vaginal pre-invasive neoplasias and cancers. Highly effective vaccines against HPV types 16/18 have been available since 2006, and are currently used in many countries in combination...... with cervical cancer screening to control the burden of cervical cancer. We estimated the overall and age-specific incidence rate (IR) of cervical, vulvar and vaginal cancer and pre-invasive neoplasia in Denmark, Iceland, Norway and Sweden in 2004-2006, prior to the availability of HPV vaccines, in order...... to establish a baseline for surveillance. We also estimated the population attributable fraction to determine roughly the expected effect of HPV16/18 vaccination on the incidence of these diseases. METHODS: Information on incident cervical, vulvar and vaginal cancers and high-grade pre-invasive neoplasias...

  12. MicroRNA-106a suppresses proliferation, migration, and invasion of bladder cancer cells by modulating MAPK signaling, cell cycle regulators, and Ets-1-mediated MMP-2 expression.

    Science.gov (United States)

    Shin, Seung-Shick; Park, Sung-Soo; Hwang, Byungdoo; Kim, Won Tae; Choi, Yung Hyun; Kim, Wun-Jae; Moon, Sung-Kwon

    2016-10-01

    Despite the clinical significance of tumorigenesis, little is known about the cellular signaling networks of microRNAs (miRs). Here we report a new finding that mir‑106a regulates the proliferation, migration, and invasion of bladder cancer cells. Basal expression levels of mir‑106a were significantly lower in bladder cancer cells than in normal urothelial cells. Overexpression of mir‑106a suppressed the proliferation of bladder cancer cell line EJ. Transient transfection of mir‑106a into EJ cells led to downregulation of ERK phosphorylation and upregulation of p38 and JNK phosphorylation over their levels in the control. Flow cytometry analysis revealed that mir‑106a-transfected cells accumulated in the G1-phase of the cell cycle, and cyclin D1 and CDK6 were significantly downregulated. This G1-phase cell cycle arrest was due in part to the upregulation of p21CIP1/WAF1. In addition, mir‑106a overexpression blocked the wound-healing migration and invasion of EJ cells. Furthermore, mir‑106a transfection resulted in decreased expression of MMP-2 and diminished binding activity of transcription factor Ets-1 in EJ cells. Collectively, we report the novel mir‑106a-mediated molecular signaling networks that regulate the proliferation, migration, and invasion of bladder cancer cells, suggesting that mir‑106a may be a therapeutic target for treating advanced bladder tumors.

  13. KAI1 inhibits HGF-induced invasion of pancreatic cancer by sphingosine kinase activity

    Institute of Scientific and Technical Information of China (English)

    Xu Liu; Xiao-Zhong Guo; Wei-Wei Zhang; Zhuo-Zhuang Lu; Qun-Wei Zhang; Hai-Feng Duan; d Li-Sheng Wang

    2011-01-01

    BACKGROUND: KAI1/CD82 has been reported to attenuate the process of metastases in a variety of tumors; however, its mechanism of action in invasion has not been fully elucidated. The present study aimed to investigate the importance of KAI1 in invasion and its correlation with activation of sphingosine kinase (SPK) in human pancreatic cancer PANC1 and Miapaca-2 cell lines. METHODS: The expression of KAI1 in PANC1 and Miapaca-2 cells,whichwasmediatedbyrecombinantadenovirus(Ad-KAI1), was assessed by a flow cytometer and Western blotting. After successful infection was established, in vitro growth curve and invasive ability in Boyden Chamber assay were studied. The presence of KAI1 correlating with c-Met and SPK was detected by co-immunoprecipitationand[γ-32P]ATPincorporation. RESULTS: KAI1 genes had no significant effects on the curve representing cell growth. After infection with the KAI1 gene, decreased invasive ability in the Boyden Chamber assay was observed in PANC1 and Miapaca-2 cells that were induced by hepatocyte growth factor. Over-expression of KAI1 in the cells led to the deactivation of SPK and a decreased level of intracellular sphingosine-1-phosphate. No correlation was observed between c-Met and KAI1 during co-immunoprecipitation. CONCLUSION: The results of this study for the first time demonstrated a regulatory role for KAI1 in SPK activation, which leads to decreased invasive ability in disease progression of human pancreatic cancer.

  14. Downregulation of LIMK1–ADF/cofilin by DADS inhibits the migration and invasion of colon cancer

    Science.gov (United States)

    Su, Jian; Zhou, Yujuan; Pan, Zhibing; Shi, Ling; Yang, Jing; Liao, Aijun; Liao, Qianjin; Su, Qi

    2017-01-01

    This study aimed to explore whether the downregulation of LIM kinase 1 (LIMK1)-actin depolymerization factor (ADF, also known as destrin)/cofilin by diallyl disulfide (DADS) inhibited the migration and invasion of colon cancer. Previous studies have shown that silencing LIMK1 could significantly enhance the inhibitory effect of DADS on colon cancer cell migration and invasion, suggesting that LIMK1 was a target molecule of DADS, which needed further confirmation. This study reported that LIMK1 and destrin were highly expressed in colon cancer and associated with poor prognosis of patients with colon cancer. Also, the expression of LIMK1 was positively correlated with the expression of destrin. The overexpression of LIMK1 significantly promoted colon cancer cell migration and invasion. DADS obviously inhibited migration and invasion by suppressing the phosphorylation of ADF/cofilin via downregulation of LIMK1 in colon cancer cells. Furthermore, DADS-induced suppression of cell proliferation was enhanced and antagonized by the knockdown and overexpression of LIMK1 in vitro and in vivo, respectively. Similar results were observed for DADS-induced changes in the expression of vimentin, CD34, Ki-67, and E-cadherin in xenografted tumors. These results indicated that LIMK1 was a potential target molecule for the inhibitory effect of DADS on colon cancer cell migration and invasion. PMID:28358024

  15. Diffusion-Weighted Magnetic Resonance Imaging of Endometrial Cancer: Differentiation from Benign Endometrial Lesions and Preoperative Assessment of Myometrial Invasion

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, M.; Matsuzaki, K.; Nishitani, H. (Dept. of Radiology, Univ. of Tokushima, Tokushima (Japan))

    2009-10-15

    Background: Uterine endometrial cancer is the most common gynecologic malignancy, and benign endometrial hyperplasia or polyps should be differentiated from endometrial cancer. In evaluating endometrial cancer on magnetic resonance imaging (MRI), the assessment of the depth of myometrial invasion is important because it closely correlates with the patient's prognosis. Purpose: To verify the feasibility of diffusion-weighted magnetic resonance imaging (DWI) to distinguish benign and malignant endometrial lesions, and to evaluate myometrial invasion of endometrial cancer. Material and Methods: Sixty-seven endometrial lesions including 45 cancers and 22 benign lesions (hyperplasia and polyps) were evaluated by DWI with apparent diffusion coefficient (ADC) measurement. The staging accuracies of DWI and gadolinium-enhanced T1-weighted images in the assessment of myometrial invasion were evaluated in 33 patients with endometrial cancer. Results: The ADC values (x10-3 mm2/s) in cancer and benign lesions were 0.84+-0.19 and 1.58+-0.36, respectively (P<0.01). The staging accuracy (superficial or deep myometrial invasion) was 94% for DWI and 88% for gadolinium-enhanced T1-weighted images. Coexisting adenomyosis and infiltrative myometrial invasion caused staging errors on gadolinium-enhanced T1-weighted images, whereas DWI could demonstrate the tumor extent correctly. Conclusion: DWI provides helpful information in evaluating benign and malignant endometrial lesions.

  16. Raddeanin A induces human gastric cancer cells apoptosis and inhibits their invasion in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Gang [Department of Oncology, Nanjing University of Chinese Medicine, Nanjing (China); Zou, Xi [Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing (China); Zhou, Jin-Yong [Laboratory Center, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing (China); Sun, Wei [Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing (China); Wu, Jian [Laboratory Center, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing (China); Xu, Jia-Li [Department of Oncology, Nanjing University of Chinese Medicine, Nanjing (China); Wang, Rui-Ping, E-mail: ruipingwang61@hotmail.com [Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing (China)

    2013-09-20

    Highlights: •Raddeanin A is a triterpenoid saponin in herb medicine Anemone raddeana Regel. •Raddeanin A can inhibit 3 kinds of gastric cancer cells’ proliferation and invasion. •Caspase-cascades’ activation indicates apoptosis induced by Raddeanin A. •MMPs, RECK, Rhoc and E-cad are involved in Raddeanin A-induced invasion inhibition. -- Abstract: Raddeanin A is one of the triterpenoid saponins in herbal medicine Anemone raddeana Regel which was reported to suppress the growth of liver and lung cancer cells. However, little was known about its effect on gastric cancer (GC) cells. This study aimed to investigate its inhibitory effect on three kinds of different differentiation stage GC cells (BGC-823, SGC-7901 and MKN-28) in vitro and the possible mechanisms. Proliferation assay and flow cytometry demonstrated Raddeanin A’s dose-dependent inhibitory effect and determined its induction of cells apoptosis, respectively. Transwell assay, wounding heal assay and cell matrix adhesion assay showed that Raddeanin A significantly inhibited the abilities of the invasion, migration and adhesion of the BGC-823 cells. Moreover, quantitative real time PCR and Western blot analysis found that Raddeanin A increased Bax expression while reduced Bcl-2, Bcl-xL and Survivin expressions and significantly activated caspase-3, caspase-8, caspase-9 and poly-ADP ribose polymerase (PARP). Besides, Raddeanin A could also up-regulate the expression of reversion inducing cysteine rich protein with Kazal motifs (RECK), E-cadherin (E-cad) and down-regulate the expression of matrix metalloproteinases-2 (MMP-2), MMP-9, MMP-14 and Rhoc. In conclusion, Raddeanin A inhibits proliferation of human GC cells, induces their apoptosis and inhibits the abilities of invasion, migration and adhesion, exhibiting potential to become antitumor drug.

  17. Mammary adipocytes stimulate breast cancer invasion through metabolic remodeling of tumor cells

    Science.gov (United States)

    Wang, Yuan Yuan; Attané, Camille; Milhas, Delphine; Dirat, Béatrice; Dauvillier, Stéphanie; Guerard, Adrien; Gilhodes, Julia; Lazar, Ikrame; Alet, Nathalie; Laurent, Victor; Le Gonidec, Sophie; Hervé, Caroline; Bost, Frédéric; Ren, Guo Sheng; Bono, Françoise; Escourrou, Ghislaine; Prentki, Marc; Nieto, Laurence; Valet, Philippe

    2017-01-01

    In breast cancer, a key feature of peritumoral adipocytes is their loss of lipid content observed both in vitro and in human tumors. The free fatty acids (FFAs), released by adipocytes after lipolysis induced by tumor secretions, are transferred and stored in tumor cells as triglycerides in lipid droplets. In tumor cell lines, we demonstrate that FFAs can be released over time from lipid droplets through an adipose triglyceride lipase–dependent (ATGL-dependent) lipolytic pathway. In vivo, ATGL is expressed in human tumors where its expression correlates with tumor aggressiveness and is upregulated by contact with adipocytes. The released FFAs are then used for fatty acid β-oxidation (FAO), an active process in cancer but not normal breast epithelial cells, and regulated by coculture with adipocytes. However, in cocultivated cells, FAO is uncoupled from ATP production, leading to AMPK/acetyl-CoA carboxylase activation, a circle that maintains this state of metabolic remodeling. The increased invasive capacities of tumor cells induced by coculture are completely abrogated by inhibition of the coupled ATGL-dependent lipolysis/FAO pathways. These results show a complex metabolic symbiosis between tumor-surrounding adipocytes and cancer cells that stimulate their invasiveness, highlighting ATGL as a potential therapeutic target to impede breast cancer progression. PMID:28239646

  18. 2-Hydroxychalcone and xanthohumol inhibit invasion of triple negative breast cancer cells.

    Science.gov (United States)

    Kim, Sun Young; Lee, Ik-Soo; Moon, Aree

    2013-05-25

    Breast cancer is estimated as one of the most common causes of cancer death among women. In particular, triple negative breast cancers (TNBCs), which do not express the genes for estrogen/progesterone receptors (ER/PR) and human epidermal growth factor receptor 2 (HER2), have been associated with poor prognosis and metastasis. Chalcones, the biosynthetic precursors of flavonoids present in edible plants, exert cytotoxic and chemopreventive activities. Although mounting evidence suggests the anticancer properties of chalcones, limited information is available regarding the inhibitory effects of chalcones on the aggressiveness of breast cancer cells. The present study aimed to investigate the effects of chalcone and its derivatives on the growth and the invasiveness of TNBC cells. Here, we showed that treatment with chalcone, 2-hydroxychalcone, and xanthohumol for 24h inhibited the growth of MDA-MB-231 cells with IC50 values of 18.1, 4.6, and 6.7 μM, respectively. Similarly, Chalcone, 2-hydroxychalcone, and xanthohumol also exerted cytotoxicity in another TNBC cell line, Hs578T. Neohesperidin dihydrochalcone, 4-methoxychalcone, and hesperidin methylchalcone did not show the cytotoxicity on the MDA-MB-231 cells. Xanthohumol and 2-hydroxychalcone induced apoptosis by Bcl-2 downregulation. Importantly, 2-hydroxychalcone and xanthohumol exerted more potent inhibitory effects on the proliferation, MMP-9 expression and invasive phenotype of MDA-MB-231 than chalcone. These results suggest a potential application of these chalcones as anticancer agents that can alleviate malignant progression of TNBC.

  19. MicroRNA-181b promotes ovarian cancer cell growth and invasion by targeting LATS2.

    Science.gov (United States)

    Xia, Ying; Gao, Yan

    2014-05-09

    MicroRNAs (miRNAs) are strongly implicated in tumorigenesis and metastasis. In this study, we showed significant upregulation of miR-181b in ovarian cancer tissues, compared with the normal ovarian counterparts. Forced expression of miR-181b led to remarkably enhanced proliferation and invasion of ovarian cancer cells while its knockdown induced significant suppression of these cellular events. The tumor suppressor gene, LATS2 (large tumor suppressor 2), was further identified as a novel direct target of miR-181b. Specifically, miR-181b bound directly to the 3'-untranslated region (UTR) of LATS2 and suppressed its expression. Restoration of LATS2 expression partially reversed the oncogenic effects of miR-181b. Our results indicate that miR-181b promotes proliferation and invasion by targeting LATS2 in ovarian cancer cells. These findings support the utility of miR-181b as a potential diagnostic and therapeutic target for ovarian cancer.

  20. Lamellipodin promotes invasive 3D cancer cell migration via regulated interactions with Ena/VASP and SCAR/WAVE.

    Science.gov (United States)

    Carmona, G; Perera, U; Gillett, C; Naba, A; Law, A-L; Sharma, V P; Wang, J; Wyckoff, J; Balsamo, M; Mosis, F; De Piano, M; Monypenny, J; Woodman, N; McConnell, R E; Mouneimne, G; Van Hemelrijck, M; Cao, Y; Condeelis, J; Hynes, R O; Gertler, F B; Krause, M

    2016-09-29

    Cancer invasion is a hallmark of metastasis. The mesenchymal mode of cancer cell invasion is mediated by elongated membrane protrusions driven by the assembly of branched F-actin networks. How deregulation of actin regulators promotes cancer cell invasion is still enigmatic. We report that increased expression and membrane localization of the actin regulator Lamellipodin correlate with reduced metastasis-free survival and poor prognosis in breast cancer patients. In agreement, we find that Lamellipodin depletion reduced lung metastasis in an orthotopic mouse breast cancer model. Invasive 3D cancer cell migration as well as invadopodia formation and matrix degradation was impaired upon Lamellipodin depletion. Mechanistically, we show that Lamellipodin promotes invasive 3D cancer cell migration via both actin-elongating Ena/VASP proteins and the Scar/WAVE complex, which stimulates actin branching. In contrast, Lamellipodin interaction with Scar/WAVE but not with Ena/VASP is required for random 2D cell migration. We identified a phosphorylation-dependent mechanism that regulates selective recruitment of these effectors to Lamellipodin: Abl-mediated Lamellipodin phosphorylation promotes its association with both Scar/WAVE and Ena/VASP, whereas Src-dependent phosphorylation enhances binding to Scar/WAVE but not to Ena/VASP. Through these selective, regulated interactions Lamellipodin mediates directional sensing of epidermal growth factor (EGF) gradients and invasive 3D migration of breast cancer cells. Our findings imply that increased Lamellipodin levels enhance Ena/VASP and Scar/WAVE activities at the plasma membrane to promote 3D invasion and metastasis.

  1. Knockdown of OLA1, a regulator of oxidative stress response, inhibits motility and invasion of breast cancer cells

    Institute of Scientific and Technical Information of China (English)

    Jia-wei ZHANG; Valentina RUBIO; Shu ZHENG; Zheng-zheng SHI

    2009-01-01

    To explore the role of a novel Obg-like ATPase 1 (OLA1) in cancer metastasis, small interference RNA (siRNA) was used to knockdown the protein, and the cells were subjected to in vitro cell migration and invasion assays. Knockdown of OLA1 significantly inhibited cell migration and invasion in breast cancer cell line MDA-MB-231. The knockdown caused no changes in cell growth but affected ROS production. In wound-healing assays, decreased ROS in OLA1-knockdown cells were in situ asso-ciated with the cells' decreased motile morphology. Further, treatment of N-acetylcysteine, a general ROS scavenger, blunted the motility and invasiveness of MDA-MB-231 cells, similar to the effect of OLA1-knockdown. These results suggest that knock-down of OLA1 inhibits breast cancer cell migration and invasion through a mechanism that involves the modulation of intracel-lular ROS levels.

  2. THE RECURRENCE AFTER ORGAN-SAVING SURGERY OF PATIENTS WITH MUSCLE-INVASIVE BLADDER CANCER

    Directory of Open Access Journals (Sweden)

    T. A. Sveklina

    2014-08-01

    Full Text Available The article represents the study of frequency and nature of the recurrence and survival rate (common, oncology-specific, disease-free after organ-saving surgery of patients with muscle-invasive bladder cancer stages T2b and T3a. Oncology-speсific and disease-free survival rates were much higher if full diagnosis of bladder mucosa, the adjuvant intravesical chemotherapy had been on pre-operative and intra-operative stages than in the absence of these diagnosis and therapy. Recurrentes of bladder cancer which appeared in the absence of diagnosis and combination therapy, statistically reliably occured at another location other than the zone of operation, stage of recurrentes and degree of differentiation of recurrents were less than the original tumor. This information confirms the existence of foci of cancer in situ which have not been identified on the diagnostic stage.

  3. Role of DNA methylation in miR-200c/141 cluster silencing in invasive breast cancer cells

    Directory of Open Access Journals (Sweden)

    Wernet Peter

    2010-08-01

    Full Text Available Abstract Background The miR-200c/141 cluster has recently been implicated in the epithelial to mesenchymal transition (EMT process. The expression of these two miRNAs is inversely correlated with tumorigenicity and invasiveness in several human cancers. The role of these miRNAs in cancer progression is based in part on their capacity to target the EMT activators ZEB1 and ZEB2, two transcription factors, which in turn repress expression of E-cadherin. Little is known about the regulation of the mir200c/141 cluster, whose targeting has been proposed as a promising new therapy for the most aggressive tumors. Findings We show that the miR-200c/141 cluster is repressed by DNA methylation of a CpG island located in the promoter region of these miRNAs. Whereas in vitro methylation of the miR-200c/141 promoter led to shutdown of promoter activity, treatment with a demethylating agent caused transcriptional reactivation in breast cancer cells formerly lacking expression of miR-200c and miR-141. More importantly, we observed that DNA methylation of the identified miR-200c/141 promoter was tightly correlated with phenotype and the invasive capacity in a panel of 8 human breast cancer cell lines. In line with this, in vitro induction of EMT by ectopic expression of the EMT transcription factor Twist in human immortalized mammary epithelial cells (HMLE was accompanied by increased DNA methylation and concomitant repression of the miR-200c/141 locus. Conclusions The present study demonstrates that expression of the miR-200c/141 cluster is regulated by DNA methylation, suggesting epigenetic regulation of this miRNA locus in aggressive breast cancer cell lines as well as untransformed mammary epithelial cells. This epigenetic silencing mechanism might represent a novel component of the regulatory circuit for the maintenance of EMT programs in cancer and normal cells.

  4. Ets-1 controls breast cancer cell balance between invasion and growth.

    Science.gov (United States)

    Furlan, Alessandro; Vercamer, Chantal; Bouali, Fatima; Damour, Isabelle; Chotteau-Lelievre, Anne; Wernert, Nicolas; Desbiens, Xavier; Pourtier, Albin

    2014-11-15

    Ets-1 overexpression in human breast cancers is associated with invasiveness and poor prognosis. By overexpressing Ets-1 or a dominant negative mutant in MMT breast cancer cells, we previously highlighted the key role of Ets-1 in coordinating multiple invasive features of these cells. Interestingly, we also noticed that Ets-1 decreased the density of breast cancer cells cultured in three-dimensional extracellular matrix gels. The 3D context was instrumental to this phenomenon, as such downregulation was not observed in cells grown on two-dimensional plastic or matrix-coated dishes. Ets-1 overexpression was deleterious to anchorage-independent growth of MMT cells in soft agar, a standard model for in vitro tumorigenicity. The relevance of this mechanism was confirmed in vivo, during primary tumor growth and in a metastatic assay of lung colonization. In these models, Ets-1 was associated with epithelial-to-mesenchymal transition features and modulated the ratio of Ki67-positive cells, while hardly affecting in vivo apoptotic cell death. Finally, siRNA-mediated knockdown of Ets-1 in human breast cancer cell lines also decreased colony growth, both in anchorage-independent assays and 3D extracellular matrix cultures. These in vitro and in vivo observations shed light on an unsuspected facet of Ets-1 in breast tumorigenesis. They show that while promoting malignancy through the acquisition of invasive features, Ets-1 also attenuates breast tumor cell growth and could therefore repress the growth of primary tumors and metastases. This work also demonstrates that 3D models may reveal mechanisms of tumor biology that are cryptic in standard 2D models.

  5. MUC1 enhances invasiveness of pancreatic cancer cells by inducing epithelial to mesenchymal transition.

    Science.gov (United States)

    Roy, L D; Sahraei, M; Subramani, D B; Besmer, D; Nath, S; Tinder, T L; Bajaj, E; Shanmugam, K; Lee, Y Y; Hwang, S I L; Gendler, S J; Mukherjee, P

    2011-03-24

    Increased motility and invasiveness of pancreatic cancer cells are associated with epithelial to mesenchymal transition (EMT). Snai1 and Slug are zinc-finger transcription factors that trigger this process by repressing E-cadherin and enhancing vimentin and N-cadherin protein expression. However, the mechanisms that regulate this activation in pancreatic tumors remain elusive. MUC1, a transmembrane mucin glycoprotein, is associated with the most invasive forms of pancreatic ductal adenocarcinomas (PDA). In this study, we show that over expression of MUC1 in pancreatic cancer cells triggers the molecular process of EMT, which translates to increased invasiveness and metastasis. EMT was significantly reduced when MUC1 was genetically deleted in a mouse model of PDA or when all seven tyrosines in the cytoplasmic tail of MUC1 were mutated to phenylalanine (mutated MUC1 CT). Using proteomics, RT-PCR and western blotting, we revealed a significant increase in vimentin, Slug and Snail expression with repression of E-Cadherin in MUC1-expressing cells compared with cells expressing the mutated MUC1 CT. In the cells that carried the mutated MUC1 CT, MUC1 failed to co-immunoprecipitate with β-catenin and translocate to the nucleus, thereby blocking transcription of the genes associated with EMT and metastasis. Thus, functional tyrosines are critical in stimulating the interactions between MUC1 and β-catenin and their nuclear translocation to initiate the process of EMT. This study signifies the oncogenic role of MUC1 CT and is the first to identify a direct role of the MUC1 in initiating EMT during pancreatic cancer. The data may have implications in future design of MUC1-targeted therapies for pancreatic cancer.

  6. Solitary pulmonary nodule and {sup 18}F-FDG PET/CT. Part 1: epidemiology, morphological evaluation and cancer probability

    Energy Technology Data Exchange (ETDEWEB)

    Mosmann, Marcos Pretto; Borba, Marcelle Alves; Macedo, Francisco Pires Negromonte; Liguori, Adriano de Araujo Lima; Villarim Neto, Arthur, E-mail: mosmann@gmail.com [Liga Norte Riograndense Contra o Cancer, Natal, RN (Brazil); Lima, Kenio Costa de [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Programa de Pos-Graduacao em Saude Coletiva

    2016-01-15

    Solitary pulmonary nodule corresponds to a common radiographic finding, which is frequently detected incidentally. The investigation of this entity remains complex, since characteristics of benign and malignant processes overlap in the differential diagnosis. Currently, many strategies are available to evaluate solitary pulmonary nodules with the main objective of characterizing benign lesions as best as possible, while avoiding to expose patients to the risks inherent to invasive methods, besides correctly detecting cases of lung cancer so as the potential curative treatment is not delayed. This first part of the study focuses on the epidemiology, the morphological evaluation and the methods to determine the likelihood of cancer in cases of indeterminate solitary pulmonary nodule. (author)

  7. MINIMALLY INVASIVE OPEN THYROIDECTOMY IN THYROID CANCER WITH COEXISTENT HASHIMOTO THYROIDITIS

    Directory of Open Access Journals (Sweden)

    Rumen Nenkov

    2013-06-01

    Full Text Available One of the minimally invasive thyroidectomy challenges is the application of this technique in the surgical treatment of thyroid cancer. The use of minimally invasive open approach in co-existence of thyroid cancer with Hashimoto thyroiditis is well known provocation to the skills of the surgeon working in the field of thyroid surgery.Aim: To report our results and to present the possibilities of minimally invasive open approach in the surgical treatment of thyroid carcinoma and coexistent Hashimoto thyroiditis. Patients and methods: For the period from 2008 to 2011, 641 patients were operated on in our clinic using minimally invasive open approach. In 32 of these patients presence of Hashimoto thyroiditis was found in combination with thyroid cancer. All patients were females, 26 to 46 years age. Patients were selected according to designed and accepted for our institution criteria. The procedures were performed using ultrasound (harmonic shears (Harmonic Focus® and Harmonic Ace®, Ethicon Endo-Surgery. The operative time, incidence, type and severity of complications, length of hospital stay, safety and reliability of the surgical procedure were analyzed. Results: The operative incision length in all cases was between 2.0-2.5 cm. In 27 patients papillary thyroid carcinoma and in 5 patients – follicular variant of the neoplasm were found. The tumor size ranged between 0.5 and 1.5 cm. In all patients total thyroidectomy using harmonic scalpel was performed. Lymph node metastases in the central neck compartment were not found in any of the cases. The rate, type and severity of complications did not exceed those for patients who underwent conventional thyroidectomy. All patients leaved the hospital in the first 24 postoperative hours. The follow-up did not reveal remnant thyroid tissue in thyroid gland bed or recurrence of the disease.Conclusions: Our results demonstrate the feasibility and reliability of minimally invasive open approach with

  8. Inhibitory effect of maple syrup on the cell growth and invasion of human colorectal cancer cells.

    Science.gov (United States)

    Yamamoto, Tetsushi; Uemura, Kentaro; Moriyama, Kaho; Mitamura, Kuniko; Taga, Atsushi

    2015-04-01

    Maple syrup is a natural sweetener consumed by individuals of all ages throughout the world. Maple syrup contains not only carbohydrates such as sucrose but also various components such as organic acids, amino acids, vitamins and phenolic compounds. Recent studies have shown that these phenolic compounds in maple syrup may possess various activities such as decreasing the blood glucose level and an anticancer effect. In this study, we examined the effect of three types of maple syrup, classified by color, on the cell proliferation, migration and invasion of colorectal cancer (CRC) cells in order to investigate whether the maple syrup is suitable as a phytomedicine for cancer treatment. CRC cells that were administered maple syrup showed significantly lower growth rates than cells that were administered sucrose. In addition, administration of maple syrup to CRC cells caused inhibition of cell invasion, while there was no effect on cell migration. Administration of maple syrup clearly inhibited AKT phosphorylation, while there was no effect on ERK phosphorylation. These data suggest that maple syrup might inhibit cell proliferation and invasion through suppression of AKT activation and be suitable as a phytomedicine for CRC treatment, with fewer adverse effects than traditional chemotherapy.

  9. Easy Diagnosis of Aortic Invasion in Patients with Lung Cancer Using Cine Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Hidetaka Uramoto

    2015-07-01

    Full Text Available Selecting the proper treatment strategy for locally advanced lung cancer, such as T4 tumors, is difficult. Therefore, obtaining an accurate diagnosis of T4 tumors is required. It can be difficult to determine whether the tumor invades adjacent structures. We describe the case of a patient easily diagnosed to be without aortic invasion using cine magnetic resonance imaging (MRI. We herein report the case of an 80-year-old male who presented a lung tumor. The transbronchial lung washing cytology findings were consistent with those of adenocarcinoma. In addition, the computed tomography findings indicated suspected aortic invasion of the lung tumor, as the mass girdled the descending aorta beyond 120° adjoining at a length of 10 cm. However, cine MRI display clearly demonstrated a clear area of isolation between the aorta and lung tissue based on differences in the heart rhythm from the patient's respiratory movements. Therefore, the lesion was clinically diagnosed as a stage IIB (T3N0M0 tumor. Radiation was administered due to the patient's advanced age and comorbidities such as chronic obstructive pulmonary disease. He remains alive without disease progression 6 months after the therapy. Our findings, therefore, indicate the usefulness of easily diagnosing the absence of aortic invasion in patients with lung cancer using cine MRI without the need for a special software program.

  10. Easy Diagnosis of Aortic Invasion in Patients with Lung Cancer Using Cine Magnetic Resonance Imaging.

    Science.gov (United States)

    Uramoto, Hidetaka; Kinoshita, Hiroyasu; Nakajima, Yuki; Akiyama, Hirohiko

    2015-01-01

    Selecting the proper treatment strategy for locally advanced lung cancer, such as T4 tumors, is difficult. Therefore, obtaining an accurate diagnosis of T4 tumors is required. It can be difficult to determine whether the tumor invades adjacent structures. We describe the case of a patient easily diagnosed to be without aortic invasion using cine magnetic resonance imaging (MRI). We herein report the case of an 80-year-old male who presented a lung tumor. The transbronchial lung washing cytology findings were consistent with those of adenocarcinoma. In addition, the computed tomography findings indicated suspected aortic invasion of the lung tumor, as the mass girdled the descending aorta beyond 120° adjoining at a length of 10 cm. However, cine MRI display clearly demonstrated a clear area of isolation between the aorta and lung tissue based on differences in the heart rhythm from the patient's respiratory movements. Therefore, the lesion was clinically diagnosed as a stage IIB (T3N0M0) tumor. Radiation was administered due to the patient's advanced age and comorbidities such as chronic obstructive pulmonary disease. He remains alive without disease progression 6 months after the therapy. Our findings, therefore, indicate the usefulness of easily diagnosing the absence of aortic invasion in patients with lung cancer using cine MRI without the need for a special software program.

  11. HAI-2 suppresses the invasive growth and metastasis of prostate cancer through regulation of matriptase.

    Science.gov (United States)

    Tsai, C-H; Teng, C-H; Tu, Y-T; Cheng, T-S; Wu, S-R; Ko, C-J; Shyu, H-Y; Lan, S-W; Huang, H-P; Tzeng, S-F; Johnson, M D; Lin, C-Y; Hsiao, P-W; Lee, M-S

    2014-09-18

    Dysregulation of cell surface proteolysis has been strongly implicated in tumorigenicity and metastasis. In this study, we delineated the role of hepatocyte growth factor activator inhibitor-2 (HAI-2) in prostate cancer (PCa) cell migration, invasion, tumorigenicity and metastasis using a human PCa progression model (103E, N1, and N2 cells) and xenograft models. N1 and N2 cells were established through serial intraprostatic propagation of 103E human PCa cells and isolation of the metastatic cells from nearby lymph nodes. The invasion capability of these cells was revealed to gradually increase throughout the serial isolations (103Eover the course of orthotopic tumor growth in mice, which was consistent with the immunohistochemical profiles of matriptase and HAI-2 in archival PCa specimens. Knockdown of matriptase reduced the PCa cell invasion induced by HAI-2 knockdown. HAI-2 overexpression or matriptase silencing in N2 cells downregulated matriptase activity and significantly decreased tumorigenicity and metastatic capability in orthotopically xenografted mice. These results suggest that during the progression of human PCa, matriptase activity is primarily controlled by HAI-2 expression. The imbalance between HAI-2 and matriptase expression led to matriptase activation, thereby increasing cell migration, invasion, tumorigenicity and metastasis.

  12. Myoferlin depletion in breast cancer cells promotes mesenchymal to epithelial shape change and stalls invasion.

    Directory of Open Access Journals (Sweden)

    Ruth Li

    Full Text Available Myoferlin (MYOF is a mammalian ferlin protein with homology to ancestral Fer-1, a nematode protein that regulates spermatic membrane fusion, which underlies the amoeboid-like movements of its sperm. Studies in muscle and endothelial cells have reported on the role of myoferlin in membrane repair, endocytosis, myoblast fusion, and the proper expression of various plasma membrane receptors. In this study, using an in vitro human breast cancer cell model, we demonstrate that myoferlin is abundantly expressed in invasive breast tumor cells. Depletion of MYOF using lentiviral-driven shRNA expression revealed that MDA-MB-231 cells reverted to an epithelial morphology, suggesting at least some features of mesenchymal to epithelial transition (MET. These observations were confirmed by the down-regulation of some mesenchymal cell markers (e.g., fibronectin and vimentin and coordinate up-regulation of the E-cadherin epithelial marker. Cell invasion assays using Boyden chambers showed that loss of MYOF led to a significant diminution in invasion through Matrigel or type I collagen, while cell migration was unaffected. PCR array and screening of serum-free culture supernatants from shRNA(MYOF transduced MDA-MB-231 cells indicated a significant reduction in the steady-state levels of several matrix metalloproteinases. These data when considered in toto suggest a novel role of MYOF in breast tumor cell invasion and a potential reversion to an epithelial phenotype upon loss of MYOF.

  13. Interleukin-8 associates with adhesion, migration, invasion and chemosensitivity of human gastric cancer cells

    Institute of Scientific and Technical Information of China (English)

    Wen-Xia Kuai; Qiong wang; Xiao-Zhong Yang; Yao Zhao; Ren Yu; Xiao-Jun Tang

    2012-01-01

    AIM:To investigate the relationship between Interleukin-8 (IL-8) and proliferation,adhesion,migration,invasion and chemosensitivity of gastric cancer (GC) cells.METHODS:The IL-8 cDNA was stably transfected into human GC cell line MKN-45 and selected IL-8-secreting transfectants.The expression of IL-8 in human GC cell line KATO-Ⅲ was inhibited by RNA interference.The expressions of mRNA and protein of IL-8 in GC cells were detected by real-time reverse transcriptionpolymerase chain reaction or enzyme-linked immunosorbent assay (ELISA).RESULTS:The overexpression of IL-8 resulted in an increased cell adhesion,migration and invasion,and a significant resistance to oxaliplatin in MKN-45 cells.Inhibition of IL-8 expression with small interfering RNA decreased the adhesion,migration and invasion functions and oxaliplatin resistance in KATO-Ⅲ cells.IL-8 increased NF-кB and Akt activities and adhesion molecules ICAM-1,VCAM-1,and CD44 expression in GC cells.CONCLUSION:Overexpression of IL-8 promotes the adhesion,migration,invasion,and chemoresistance of GC cells,indicating that IL-8 is an important therapeutic target in GC.

  14. SDF-1/CXCR7 axis enhances ovarian cancer cell invasion by MMP-9 expression through p38 MAPK pathway.

    Science.gov (United States)

    Yu, Yuecheng; Li, Hongmei; Xue, Baoyao; Jiang, Xia; Huang, Kan; Ge, Junli; Zhang, Hongju; Chen, Biliang

    2014-08-01

    Ovarian cancer is an aggressive gynecological malignancy with high metastatic potential. Recently, the CXC receptor (CXCR7) has been identified as a new receptor for stromal-derived factor-1 (SDF-1), and exerts important roles in cancer development. However, its effect on ovarian cancer and the underlying mechanism remain unknown. In this study, we detected abundant CXCR7 expression in ovarian cancer tissues and cells. Moreover, SDF-1 induced dramatically upregulation of CXCR7 mRNA and protein levels, indicating that the SDF-1/CXCR7 axis existed in ovarian cancer. Further analysis confirmed that SDF-1 enhanced cell adhesion and subsequent invasion, which were significantly attenuated when pretreated with CXCR7 small interference RNA (siRNA), indicating the critical function of SDF-1/CXCR7 in cell invasion. Further mechanistic analysis indicated that SDF-1/CXCR7 enhanced cell invasion by matrix metalloproteinase (MMP)-9, as pretreatment with MMP-9 siRNA significantly abrogated a number of invading cells. Additionally, SDF-1/CXCR7 induced phosphorylation of the p38 MAPK pathway, which was accounted for MMP-9 expression as preconditioning with the p38 MAPK inhibitor SB203580 obviously decreased MMP-9 expression. Together, our data implied that SDF-1/CXCR7 enhanced ovarian cancer cell invasion by MMP-9 expression through the p38 MAPK pathway. Thus, these findings confirmed the critical role of SDF-1/CXCR7 during the pathological processes of ovarian cancer and supported its potential targets for further development of antiovarian cancer therapy.

  15. N-WASP promotes invasion and migration of cervical cancer cells through regulating p38 MAPKs signaling pathway.

    Science.gov (United States)

    Hou, Jinxuan; Yang, Hui; Huang, Xin; Leng, Xiaohua; Zhou, Fuxiang; Xie, Conghua; Zhou, Yunfeng; Xu, Yu

    2017-01-01

    Neural Wiskott-Aldrich syndrome protein (N-WASP) is an important member of the WASP family involved in the actin cytoskeleton reorganization. Recent evidence suggests that N-WASP may play important roles in tumor progression and metastasis. However, the contribution of N-WASP to cervical cancer is still unknown. The present study focused on elucidating the role of N-WASP in the malignant behavior of cervical cancer cells. We found that N-WASP overexpressed in cervical cancer tissues compared with paired paracancerous tissues and normal tissues, and similar results were observed in several cervical cancer cell lines. Furthermore, we demonstrated that overexpression of N-WASP facilitated migration and invasion of cervical cancer cells, while downregulation of N-WASP resulted in decreased cell migration and invasion. In addition, the data showed that N-WASP might promote invasion and migration of cervical cancer cells via regulating the activity of p38 MAPKs pathway. Altogether, the study suggested that N-WASP might serve as an oncogene in cervical cancer, and provided novel insights into the mechanism that how N-WASP promoted invasion and migration of cervical cancer cells.

  16. Coordinated epigenetic repression of the miR-200 family and miR-205 in invasive bladder cancer

    DEFF Research Database (Denmark)

    Wiklund, Erik D; Bramsen, Jesper B; Hulf, Toby

    2011-01-01

    MicroRNAs (miRNA) are small noncoding RNAs commonly deregulated in cancer. The miR-200 family (miR-200a, -200b, -200c, -141 and -429) and miR-205 are frequently silenced in advanced cancer and have been implicated in epithelial to mesenchymal transition (EMT) and tumor invasion by targeting the t...

  17. Trial by Dutch Laboratories for Evaluation of Non-Invasive Prenatal Testing. Part II - Women's Perspectives

    NARCIS (Netherlands)

    van Schendel, Rachel V; Page-Christiaens, Lieve; Beulen, Lean; Bilardo, Catia M; de Boer, Marjon A; Coumans, Audrey B C; Faas, Brigitte H; van Langen, Irene M; Lichtenbelt, Klaske D; van Maarle, Merel C; Macville, Merryn V E; Oepkes, Dick; Pajkrt, Eva; Henneman, Lidewij

    2016-01-01

    OBJECTIVE: To evaluate preferences and decision-making amongst high-risk pregnant women offered a choice between Non-Invasive Prenatal Testing (NIPT), invasive testing or no further testing. METHODS: Nationwide implementation study (TRIDENT) offering NIPT as contingent screening test for women at in

  18. Trial by Dutch Laboratories for Evaluation of Non-Invasive Prenatal Testing. : Part II - Women's Perspectives

    NARCIS (Netherlands)

    van Schendel, Rachel V; Page-Christiaens, Lieve; Beulen, Lean; Bilardo, Catia M; de Boer, Marjon A; Coumans, Audrey B C; Faas, Brigitte H; van Langen, Irene M; Lichtenbelt, Klaske D; van Maarle, Merel C; Macville, Merryn V E; Oepkes, Dick; Pajkrt, Eva; Henneman, Lidewij

    2016-01-01

    OBJECTIVE: To evaluate preferences and decision-making amongst high-risk pregnant women offered a choice between Non-Invasive Prenatal Testing (NIPT), invasive testing or no further testing. METHODS: Nationwide implementation study (TRIDENT) offering NIPT as contingent screening test for women at in

  19. Extrahepatic synthesis of coagulation factor Ⅶ by colorectal cancer cells promotes tumor invasion and metastasis

    Institute of Scientific and Technical Information of China (English)

    TANG Jian-qiang; FAN Qing; WU Wen-han; JIA Zhi-chao; LI Hui; YANG Yin-mo; LIU Yu-cun; WAN Yuan-lian

    2010-01-01

    Background Blood coagulation factor Ⅶ (FⅦ) is physiologically synthesized in the liver and released into the blood. Binding of FⅦ to tissue factor (TF) is related to the metastatic potential of tumor cells, also a significant risk factor in the development of hepatic metastasis in patients with colorectal cancer (CRC). It has been found that some cancer cells can produce FⅦ extrahepatically. However, litte is known about FⅦ and CRC. We therefore hypothesized that CRC cells may synthese FⅦ, leading to tumor invasion and metastasis.Methods We detected the expression of FⅦ protein in 55 CRC specimens by immunohistochemical staining. The FⅦ mRNA in 45 of 55 CRC cases, 6 colon cancer cell lines and one hepatoma cell line was measured by real-time reverse transcription-PCR (RT-PCR). Transwell invasion assays were performed to evaluate the changes of cell migration and invasion of LoVo cancer cells in vitro. We further observed the likely effectors regulated by the TF/FⅦa complex Western blotting assay.Results Extrahepatic synthesis of FⅦ was detected in the cytoplasm of 32 (58.2%) CRC specimens byimmunohistochemistry, but not in normal mucosa. Liver metastasis (P=0.003) and TNM staging (P=0.005) were significantly correlated with FⅦ antigen expression. The positive ratios in stages Ⅰ, Ⅱ, Ⅲ and Ⅳ were 33.3%, 40.0%,52.4% and 87.5%, respectively. The expression of FⅦ mRNA in CRC with hepatic metastasis was significantly higher than CRC without hepatic metastasis (5.33±2.88 vs. 1.47±0.51, P=0.03). Ectopic FⅦa induced a slight increase (1.34-fold) in the number of migrating cells, which was inhibited by the specific TF antibody. The formation of TF/FⅦacomplex resulted in a marked increase in the expression of matrix metalloproteinases (MMP)-2 (3.5-fold) and MMP-9(4.7-fold) in a time-dependent and dose-dependent manner.Conclusions Extrahepatic synthesis of FⅦ by CRC cells may promote tumor invasion and metastasis. MMPs, as downstream

  20. Effects of a human plasma membrane-associated sialidase siRNA on prostate cancer invasion

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaojie [Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Centre, Norman Bethune Medical School, Jilin University, Changchun (China); Taizhou Polytechnic College, Taizhou (China); Zhang, Ling; Shao, Yueting; Liang, Zuowen; Shao, Chen; Wang, Bo; Guo, Baofeng; Li, Na; Zhao, Xuejian [Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Centre, Norman Bethune Medical School, Jilin University, Changchun (China); Li, Yang, E-mail: lyang@jlu.edu.cn [Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Centre, Norman Bethune Medical School, Jilin University, Changchun (China); Xu, Deqi [Laboratory of Enteric and Sexually Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD (United States)

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer Neu3 is as one of the sialidases and regulates cell surface functions. Black-Right-Pointing-Pointer A Neu3-specific siRNA inhibited prostrate cancer cell invasion and migration. Black-Right-Pointing-Pointer The Neu3-specific siRNA inhibited prostate cancer metastasis in mice. Black-Right-Pointing-Pointer Targeting Neu3 may have utility for gene-based therapy of human cancer metastasis. -- Abstract: Human plasma membrane-associated sialidase (Neu3) is one of several sialidases that hydrolyze sialic acids in the terminal position of the carbohydrate groups of glycolipids and glycoproteins. Neu3 is mainly localized in plasma membranes and plays crucial roles in the regulation of cell surface functions. In this study, we investigated the effects and molecular mechanisms of Neu3 on cell invasion and migration in vivo and in vitro. Initially, we found that the levels of Neu3 expression were higher in prostate cancer tissues and cell lines than in normal prostate tissues based on RT-PCR and Western blotting analyses. We then applied a Neu3 siRNA approach to block Neu3 signaling using PC-3M cells as model cells. Transwell invasion assays and wound assays showed significantly decreased invasion and migration potential in the Neu3 siRNA-transfected cells. RT-PCR and Western blotting analyses revealed that Neu3 knockdown decreased the expressions of the matrix metalloproteinases MMP-2 and MMP-9. In vivo, mice injected with PC-3M cell tumors were evaluated by SPECT/CT to determine the presence of bone metastases. Mice treated with attenuated Salmonella carrying the Neu3 siRNA developed fewer bone metastases than mice treated with attenuated Salmonella carrying a control Scramble siRNA, attenuated Salmonella alone or PBS. The results for bone metastasis detection by pathology were consistent with the data obtained by SPECT/CT. Tumor blocks were evaluated by histochemical, RT-PCR and Western blotting analyses. The results revealed

  1. OTUB1 de-ubiquitinating enzyme promotes prostate cancer cell invasion in vitro and tumorigenesis in vivo

    DEFF Research Database (Denmark)

    Iglesias-Gato, Diego; Chuan, Yin-Choy; Jiang, Ning;

    2015-01-01

    BackgroundUbiquitination is a highly dynamic and reversible process with a central role in cell homeostasis. Deregulation of several deubiquitinating enzymes has been linked to tumor development but their specific role in prostate cancer progression remains unexplored.MethodsRNAi screening was used...... to investigate the role of the ovarian tumor proteases (OTU) family of deubiquitinating enzymes on the proliferation and invasion capacity of prostate cancer cells. RhoA activity was measured in relation with OTUB1 effects on prostate cancer cell invasion. Tumor xenograft mouse model with stable OTUB1 knockdown...

  2. ESR1/SYNE1 polymorphism and invasive epithelial ovarian cancer risk: an Ovarian Cancer Association Consortium study

    DEFF Research Database (Denmark)

    Doherty, Jennifer A; Rossing, Mary Anne; Cushing-Haugen, Kara L;

    2010-01-01

    We genotyped 13 single nucleotide polymorphisms (SNPs) in the estrogen receptor alpha gene (ESR1) region in three population-based case-control studies of epithelial ovarian cancer conducted in the United States, comprising a total of 1,128 and 1,866 non-Hispanic white invasive cases and controls......, respectively. A SNP 19 kb downstream of ESR1 (rs2295190, G-to-T change) was associated with invasive ovarian cancer risk, with a per-T-allele odds ratio (OR) of 1.24 [95% confidence interval (CI), 1.06-1.44, P = 0.006]. rs2295190 is a nonsynonymous coding SNP in a neighboring gene called spectrin repeat...... containing, nuclear envelope 1 (SYNE1), which is involved in nuclear organization and structural integrity, function of the Golgi apparatus, and cytokinesis. An isoform encoded by SYNE1 has been reported to be downregulated in ovarian and other cancers. rs2295190 was genotyped in an additional 12 studies...

  3. Optimal Treatment for Intermediate- and High-Risk, Nonmuscle-Invasive Bladder Cancer

    Directory of Open Access Journals (Sweden)

    A.P.M. van der Meijden

    2006-01-01

    Full Text Available According to clinical and pathological factors the prognosis of a patient with non-muscle invasive bladder tumors can be assessed. The prognosis is determined by the likelihood of recurrence(30-70% and/or progression to muscle invasive bladder cancer(1-15%.Trans urethral resection of bladder tumors remains the initial therapy but adjuvant intravesical instillations are necessary.All patients benefit from a single immediate post operative instillation with a chemotherapeutic agent and for low risk tumors this is the optimal therapy.Patients with intermediate and high risk tumors need more intravesical chemo-or immunotherapy. Chemotherapy reduces recurrences but not progression. Intravesical immunotherapy(BCG prevents or delays progression. Patients at high risk for progression may need upfront cystectomy.

  4. Infiltration anesthetic lidocaine inhibits cancer cell invasion by modulating ectodomain shedding of heparin-binding epidermal growth factor-like growth factor (HB-EGF).

    Science.gov (United States)

    Mammoto, Tadanori; Higashiyama, Shigeki; Mukai, Mutsuko; Mammoto, Akiko; Ayaki, Masako; Mashimo, Takashi; Hayashi, Yukio; Kishi, Yoshihiko; Nakamura, Hiroyuki; Akedo, Hitoshi

    2002-09-01

    Although the mechanism is unknown, infiltration anesthetics are believed to have membrane-stabilizing action. We report here that such a most commonly used anesthetic, lidocaine, effectively inhibited the invasive ability of human cancer (HT1080, HOS, and RPMI-7951) cells at concentrations used in surgical operations (5-20 mM). Ectodomain shedding of heparin-binding epidermal growth factor-like growth factor (HB-EGF) from the cell surface plays an important role in invasion by HT1080 cells. Lidocaine reduced the invasion ability of these cells by partly inhibiting the shedding of HB-EGF from the cell surface and modulation of intracellular Ca2+ concentration contributed to this action. The anesthetic action of lidocaine (sodium channel blocking ability) did not contribute to this anti-invasive action. In addition, lidocaine (5-30 mM), infiltrated around the inoculation site, inhibited pulmonary metastases of murine osteosarcoma (LM 8) cells in vivo. These data point to previously unrecognized beneficial actions of lidocaine and suggest that lidocaine might be an ideal infiltration anesthetic for surgical cancer operations.

  5. Mitochondrial dysfunction promotes breast cancer cell migration and invasion through HIF1α accumulation via increased production of reactive oxygen species.

    Directory of Open Access Journals (Sweden)

    Jia Ma

    Full Text Available Although mitochondrial dysfunction has been observed in various types of human cancer cells, the molecular mechanism underlying mitochondrial dysfunction mediated tumorigenesis remains largely elusive. To further explore the function of mitochondria and their involvement in the pathogenic mechanisms of cancer development, mitochondrial dysfunction clones of breast cancer cells were generated by rotenone treatment, a specific inhibitor of mitochondrial electron transport complex I. These clones were verified by mitochondrial respiratory defect measurement. Moreover, those clones exhibited increased reactive oxygen species (ROS, and showed higher migration and invasive behaviors compared with their parental cells. Furthermore, antioxidant N-acetyl cysteine, PEG-catalase, and mito-TEMPO effectively inhibited cell migration and invasion in these clones. Notably, ROS regulated malignant cellular behavior was in part mediated through upregulation of hypoxia-inducible factor-1 α and vascular endothelial growth factor. Our results suggest that mitochondrial dysfunction promotes cancer cell motility partly through HIF1α accumulation mediated via increased production of reactive oxygen species.

  6. Highly sensitive, non-invasive detection of colorectal cancer mutations using single molecule, third generation sequencing.

    Science.gov (United States)

    Russo, Giancarlo; Patrignani, Andrea; Poveda, Lucy; Hoehn, Frederic; Scholtka, Bettina; Schlapbach, Ralph; Garvin, Alex M

    2015-12-01

    Colorectal cancer (CRC) represents one of the most prevalent and lethal malignant neoplasms and every individual of age 50 and above should undergo regular CRC screening. Currently, the most effective preventive screening procedure to detect adenomatous polyps, the precursors to CRC, is colonoscopy. Since every colorectal cancer starts as a polyp, detecting all polyps and removing them is crucial. By exactly doing that, colonoscopy reduces CRC incidence by 80%, however it is an invasive procedure that might have unpleasant and, in rare occasions, dangerous side effects. Despite numerous efforts over the past two decades, a non-invasive screening method for the general population with detection rates for adenomas and CRC similar to that of colonoscopy has not yet been established. Recent advances in next generation sequencing technologies have yet to be successfully applied to this problem, because the detection of rare mutations has been hindered by the systematic biases due to sequencing context and the base calling quality of NGS. We present the first study that applies the high read accuracy and depth of single molecule, real time, circular consensus sequencing (SMRT-CCS) to the detection of mutations in stool DNA in order to provide a non-invasive, sensitive and accurate test for CRC. In stool DNA isolated from patients diagnosed with adenocarcinoma, we are able to detect mutations at frequencies below 0.5% with no false positives. This approach establishes a foundation for a non-invasive, highly sensitive assay to screen the population for CRC and the early stage adenomas that lead to CRC.

  7. Effects of Curcumin on Invasion and Metastasis in the Human Cervical Cancer Cells Caski

    Institute of Scientific and Technical Information of China (English)

    Fang XU; Xiao-ling MU; Jing ZHAO

    2009-01-01

    Objective: To explore the effects of curcumin on invasion and metastasis in the human cervical cancer cells Caski.Methods: Caski cells were treated with 10, 25, 50μmol/L curcumin for 24, 48, 72 h. Proliferation of Caski cells was measured with MTT assay. When treated with 50μmol/L curcumin for 72 h, the expressions of MMP-2, MT1-MMP and NF-κB of cells were detected by Western-blot, and invasion and metastasis of Caski cells were evaluated with transwell chamber.Results: After being treated with 10μmol/L, 25μmol/L, 50μmol/L curcumin for 24, 48 and 72 h, the proliferation of Caski cells was inhibited in a dose-and time-dependent manner. The expression of MMP-2, MT1-MMP and NF-κB were decreased when being treated with 50μmol/L curcumin for 72 h. After treatment with 50μmol/L curcumin, in invasion assay, the number of cells in curcumin treated group to migrate to filter coated with Matrigel was reduced compared with control group(P<0.05). Meanwhile, in migration assay, the number of cells in curcumin treated group to migrate to filter was also decreased compared with control group (P<0.05).Conclusion: Curcumin could affect the invasion and metastasis of the human cervical cancer cells Caski. Inhibiting the expression of MMP-2, MT1-MMP and NF-κB was probably one of its molecular mechanisms.

  8. Alternate estrogen receptors promote invasion of inflammatory breast cancer cells via non-genomic signaling.

    Directory of Open Access Journals (Sweden)

    Kazufumi Ohshiro

    Full Text Available Although Inflammatory Breast Cancer (IBC is a rare and an aggressive type of locally advanced breast cancer with a generally worst prognosis, little work has been done in identifying the status of non-genomic signaling in the invasiveness of IBC. The present study was performed to explore the status of non-genomic signaling as affected by various estrogenic and anti-estrogenic agents in IBC cell lines SUM149 and SUM190. We have identified the presence of estrogen receptor α (ERα variant, ERα36 in SUM149 and SUM190 cells. This variant as well as ERβ was present in a substantial concentration in IBC cells. The treatment with estradiol (E2, anti-estrogenic agents 4-hydroxytamoxifen and ICI 182780, ERβ specific ligand DPN and GPR30 agonist G1 led to a rapid activation of p-ERK1/2, suggesting the involvement of ERα36, ERβ and GPR30 in the non-genomic signaling pathway in these cells. We also found a substantial increase in the cell migration and invasiveness of SUM149 cells upon the treatment with these ligands. Both basal and ligand-induced migration and invasiveness of SUM149 cells were drastically reduced in the presence of MEK inhibitor U0126, implicating that the phosphorylation of ERK1/2 by MEK is involved in the observed motility and invasiveness of IBC cells. We also provide evidence for the upregulation of p-ERK1/2 through immunostaining in IBC patient samples. These findings suggest a role of non-genomic signaling through the activation of p-ERK1/2 in the hormonal dependence of IBC by a combination of estrogen receptors. These findings only explain the failure of traditional anti-estrogen therapies in ER-positive IBC which induces the non-genomic signaling, but also opens newer avenues for design of modified therapies targeting these estrogen receptors.

  9. MiR-200c promotes bladder cancer cell migration and invasion by directly targeting RECK

    Directory of Open Access Journals (Sweden)

    Cheng Y

    2016-08-01

    Full Text Available Yidong Cheng,* Xiaolei Zhang,* Peng Li,* Chengdi Yang, Jinyuan Tang, Xiaheng Deng, Xiao Yang, Jun Tao, Qiang Lu, Pengchao Li Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China *These authors contributed equally to this work Background: Increasing evidence suggests that the dysregulation of certain microRNAs plays an important role in tumorigenesis and metastasis. MiR-200c exhibits a disordered expression in many tumors and presents dual roles in bladder cancer (BC. Therefore, the definite role of miR-200c in BC needs to be investigated further.Materials and methods: Quantitative reverse transcription polymerase chain reaction was used to assess miR-200c expression. Cell invasion and migration were evaluated using wound healing and transwell assays. The luciferase reporter assay was used to identify the direct target of miR-200c. The expression of reversion-inducing cysteine-rich protein with kazal motifs (RECK in BC tissues and adjacent nontumor tissues, as well as in BC cell lines, was detected through quantitative reverse transcription polymerase chain reaction, Western blot assay, and immunohistochemistry.Results: The miR-200c expression was significantly upregulated in the BC tissues compared with the adjacent nontumor tissues. The downregulation of miR-200c significantly inhibited cell migration and invasion in the BC cell lines. The luciferase reporter assay showed that RECK was a direct target of miR-200c. The knockdown of RECK in the BC cell lines treated with anti-miR-200c elevated the previously attenuated cell migration and invasion.Conclusion: Our findings indicated that miR-200c functions as oncogenes in BC and may provide a novel therapeutic strategy for the treatment of BC. Keywords: miR-200c, bladder cancer, migration, invasion, RECK

  10. Cancer-associated fibroblasts predict poor outcome and promote periostin-dependent invasion in oesophageal adenocarcinoma.

    Science.gov (United States)

    Underwood, Timothy J; Hayden, Annette L; Derouet, Mathieu; Garcia, Edwin; Noble, Fergus; White, Michael J; Thirdborough, Steve; Mead, Abbie; Clemons, Nicholas; Mellone, Massimiliano; Uzoho, Chudy; Primrose, John N; Blaydes, Jeremy P; Thomas, Gareth J

    2015-02-01

    Interactions between cancer cells and cancer-associated fibroblasts (CAFs) play an important role in tumour development and progression. In this study we investigated the functional role of CAFs in oesophageal adenocarcinoma (EAC). We used immunochemistry to analyse a cohort of 183 EAC patients for CAF markers related to disease mortality. We characterized CAFs and normal oesophageal fibroblasts (NOFs) using western blotting, immunofluorescence and gel contraction. Transwell assays, 3D organotypic culture and xenograft models were used to examine the effects on EAC cell function and to dissect molecular mechanisms regulating invasion. Most EACs (93%) contained CAFs with a myofibroblastic (α-SMA-positive) phenotype, which correlated significantly with poor survival [p = 0.016; HR 7. 1 (1.7-29.4)]. Primary CAFs isolated from EACs have a contractile, myofibroblastic phenotype and promote EAC cell invasion in vitro (Transwell assays, p ≤ 0.05; organotypic culture, p < 0.001) and in vivo (p ≤ 0.05). In vitro, this pro-invasive effect is modulated through the matricellular protein periostin. Periostin is secreted by CAFs and acts as a ligand for EAC cell integrins αvβ3 and αvβ5, promoting activation of the PI3kinase-Akt pathway. In patient samples, periostin expression at the tumour cell-stromal interface correlates with poor overall and disease-free survival. Our study highlights the importance of the tumour stroma in EAC progression. Paracrine interaction between CAF-secreted periostin and EAC-expressed integrins results in PI3 kinase-Akt activation and increased tumour cell invasion. Most EACs contain a myofibroblastic CAF-rich stroma; this may explain the aggressive, highly infiltrative nature of the disease, and suggests that stromal targeting may produce therapeutic benefit in EAC patients.

  11. Siegesbeckia orientalis Extract Inhibits TGFβ1-Induced Migration and Invasion of Endometrial Cancer Cells

    Directory of Open Access Journals (Sweden)

    Chi-Chang Chang

    2016-08-01

    Full Text Available Type II endometrial carcinoma typically exhibits aggressive metastasis and results in a poor prognosis. Siegesbeckia orientalis Linne is a traditional Chinese medicinal herb with several medicinal benefits, including the cytotoxicity against various cancers. This study investigates the inhibitory effects of S. orientalis ethanol extract (SOE on the migration and invasion of endometrial cancer cells, which were stimulated by transforming growth factor β (TGFβ. The inhibitory effects were evaluated by determining wound healing and performing the Boyden chamber assay. This study reveals that SOE can inhibit TGFβ1-induced cell wound healing, cell migration, and cell invasion in a dose-dependent manner in RL95-2 and HEC-1A endometrial cancer cells. SOE also reversed the TGFβ1-induced epithelial-mesenchymal transition, including the loss of the cell-cell junction and the lamellipodia-like structures. Western blot analysis revealed that SOE inhibited the phosphorylation of ERK1/2, JNK1/2, and Akt, as well as the expression of MMP-9, MMP-2, and u-PA in RL95-2 cells dose-dependently. The results of this investigation suggest that SOE is a potential anti-metastatic agent against human endometrial tumors.

  12. Extracapsular invasion as a risk factor for disease recurrence in colorectal cancer

    Institute of Scientific and Technical Information of China (English)

    Takaaki Fujii; Yuichi Tabe; Reina Yajima; Satoru Yamaguchi; Soichi Tsutsumi; Takayuki Asao; Hiroyuki Kuwano

    2011-01-01

    AIM: To evaluate the presence of extracapsular invasion (ECI) in positive nodes as a predictor of disease recur-rence disease in colorectal cancer. METHODS: Two hundred and twenty-eight consecutive patients who underwent colorectal resection were identi-fied for inclusion in this study, of which 46 had positive lymph nodes. Among 46 cases with stage Ⅲcolorectal cancer, 16 had ECI at positive nodes and 8 had disease recurrence. The clinical and pathological features of these cases were reviewed.RESULTS: In the univariate analysis, the number of positive lymph nodes and depth of tumor invasion were significantly associated with the presence of ECI at posi-tive nodes. Multivariate analysis demonstrated that only ECI was a predictor of recurrence. The recurrence-free interval differed significantly among patients with ECI at positive nodes. CONCLUSION: Our results suggest that ECI at meta-static nodes can identify which cases are at high risk of short-term disease recurrence in colorectal cancer.

  13. Sp1-CD147 positive feedback loop promotes the invasion ability of ovarian cancer.

    Science.gov (United States)

    Zhao, Jing; Ye, Wei; Wu, Juan; Liu, Lijuan; Yang, Lina; Gao, Lu; Chen, Biliang; Zhang, Fanglin; Yang, Hong; Li, Yu

    2015-07-01

    CD147 is a novel cancer biomarker that has been confirmed to be overexpressed in ovarian carcinoma, which is significantly associated with poor prognosis. Although the Sp1 protein regulates the expression level of CD147, it remains unclear whether Sp1 phosphorylation plays a role in this regulation. A dual-luciferase assay revealed that T453 and T739 mutations decreased the activity of Sp1 binding to the promoter of CD147, followed by a decrease in CD147 mRNA and protein expression. Western blot analysis showed that CD147 promoted Sp1 phosphorylation at T453 and T739 through the PI3K/AKT and MAPK/ERK pathways. In addition, blocking the Sp1-CD147 positive feedback loop reduced the invasion ability of HO-8910pm cells. Immunohistochemical staining showed that the components of the feedback loop were overexpressed in ovarian cancer tissues. The correlation analysis revealed a significant correlation between phospho-Sp1 (T453), phospho-Sp1 (T739) and CD147 expression levels, with correlation coefficients of r=0.477 and r=0.461, respectively. Collectively, our results suggest that a Sp1-CD147 positive feedback loop plays a critical role in the invasion ability of ovarian cancer cells.

  14. miR-30b inhibits cancer cell growth, migration, and invasion by targeting homeobox A1 in esophageal cancer.

    Science.gov (United States)

    Li, Qing; Zhang, Xuan; Li, Ning; Liu, Qin; Chen, Dongfeng

    2017-02-09

    Emerging evidence has shown that microRNAs (miRNAs) play important roles in tumor development and progression. In particular, miR-30b is thought to be closely related to the migration, invasion, proliferation, communication, and drug resistance of tumor cells. However, the potential value of miR-30b in human esophageal cancer (EC) remains unclear. In this study, we investigated the biological functions of miR-30b and its potential role in EC. The results indicated that the expression levels of miR-30b were decreased in EC tissues and were correlated with invasion classification (P < 0.01), lymph node metastasis (P < 0.01), and pathological stage (P < 0.05). Log-rank tests demonstrated that low expression of miR-30bwas strongly correlated with poor overall survival in patients with EC (P < 0.05). Moreover, overexpression of miR-30b markedly inhibited the growth, migration, and invasion of ECA109 and TE-1 cells by directly downregulating homeobox A1 (HOXA1). When HOXA1 was reintroduced into miR-30b-transfected ECA109 or TE-1 cells, the inhibitory effects of miR-30b on EC cell growth, migration, and invasion were markedly reversed. In conclusion, our findings demonstrated that miR-30b could inhibit tumor cell growth, migration, and invasion by directly targeting HOXA1 in EC cells.

  15. Small RNA interference-mediated gene silencing of heparanase abolishes the invasion, metastasis and angiogenesis of gastric cancer cells

    Directory of Open Access Journals (Sweden)

    Hou Xiaohua

    2010-02-01

    Full Text Available Abstract Background Heparanase facilitates the invasion and metastasis of cancer cells, and is over-expressed in many kinds of malignancies. Our studies indicated that heparanase was frequently expressed in advanced gastric cancers. The aim of this study is to determine whether silencing of heparanase expression can abolish the malignant characteristics of gastric cancer cells. Methods Three heparanase-specific small interfering RNA (siRNAs were designed, synthesized, and transfected into cultured gastric cancer cell line SGC-7901. Heparanase expression was measured by RT-PCR, real-time quantitative PCR and Western blot. Cell proliferation was detected by MTT colorimetry and colony formation assay. The in vitro invasion and metastasis of cancer cells were measured by cell adhesion assay, scratch assay and matrigel invasion assay. The angiogenesis capabilities of cancer cells were measured by tube formation of endothelial cells. Results Transfection of siRNA against 1496-1514 bp of encoding regions resulted in reduced expression of heparanase, which started at 24 hrs and lasted for 120 hrs post-transfection. The siRNA-mediated silencing of heparanase suppressed the cellular proliferation of SGC-7901 cells. In addition, the in vitro invasion and metastasis of cancer cells were attenuated after knock-down of heparanase. Moreover, transfection of heparanase-specific siRNA attenuated the in vitro angiogenesis of cancer cells in a dose-dependent manner. Conclusions These results demonstrated that gene silencing of heparanase can efficiently abolish the proliferation, invasion, metastasis and angiogenesis of human gastric cancer cells in vitro, suggesting that heparanase-specific siRNA is of potential values as a novel therapeutic agent for human gastric cancer.

  16. UWB based low-cost and non-invasive practical breast cancer early detection

    Science.gov (United States)

    Vijayasarveswari, V.; Khatun, S.; Fakir, M. M.; Jusoh, M.; Ali, S.

    2017-03-01

    Breast cancer is one of the main causes of women death worldwide. Breast tumor is an early stage of cancer that locates in cells of a human breast. As there is no remedy, early detection is crucial. Towards this, Ultra-Wideband (UWB) is a prominent candidate. It is a wireless communication technology which can achieve high bandwidth with low power utilization. UWB is suitable to be used for short range communication systems including breast cancer detection since it is secure, non-invasive and human health friendly. This paper presents the low-cost and non-invasive early breast cancer detection strategy using UWB sensor (or antenna). Emphasis is given here to detect breast tumor in 2D and 3D environments. The developed system consisted of hardware and software. Hardware included UWB transceiver and a pair of home-made directional sensor/antenna. The software included feed-forward back propagation Neural Network (NN) module to detect the tumor existence, size and location along with soft interface between software and hardware. Forward scattering technique was used by placing two sensors diagonally opposite sides of a breast phantom. UWB pulses were transmitted from one side of phantom and received from other side, controlled by the software interface in PC environment. Collected received signals were then fed into the NN module for training, testing and validation. The system exhibited detection efficiency on tumor existence, location (x, y, z), and size were approximately 100%, (78.17%, 70.66%, 92.46%), 85.86% respectively. The proposed UWB based early breast cancer detection system could be more practical with low-cost, user friendly and non-harmful features. This project may help users to monitor their breast health regularly at their home.

  17. Predictive factors of the survival of women with invasive breast cancer in French Guiana: the burden of health inequalities

    OpenAIRE

    Roué, Tristan; Labbé, Sylvain; Belliardo, Sophie; Plenet, Juliette; Douine, Maylis; Nacher, Mathieu

    2016-01-01

    International audience; This study aimed to compare the relative survival of patients with invasive breast cancer between women from French Guiana (a French territory in South America) and metropolitan France. No study hadever compared survival of breast cancer on the basis of immigrant status in France. Our study underlined that access to care for migrants is challenging whichwgenerates health inequalities. Background The prognosis of breast cancer in French Guiana is worse than in France wi...

  18. Breast Cancer Migration and Invasion Depend on Proteasome Degradation of Regulator of G-Protein Signaling 4

    OpenAIRE

    Xie, Yan; Wolff, Dennis W.; Wei, Taotao; Wang, Bo; Deng, Caishu; Kirui, Joseph K.; Jiang, Haihong; Qin, Jianbing; Abel, Peter W.; Tu, Yaping

    2009-01-01

    Aberrant signaling through G-protein coupled receptors promotes metastasis, the major cause of breast cancer death. We identified regulator of G-protein signaling 4 (RGS4) as a novel suppressor of breast cancer migration and invasion, important steps of metastatic cascades. By blocking signals initiated through Gi-coupled receptors, such as protease-activated receptor 1 and CXC chemokine receptor 4, RGS4 disrupted Rac1-dependent lamellipodia formation, a key step involved in cancer migration ...

  19. Novel intravesical therapies for non-muscle-invasive bladder cancer refractory to BCG.

    Science.gov (United States)

    Barlow, Lamont J; Seager, Catherine M; Benson, Mitchell C; McKiernan, James M

    2010-01-01

    The definitive treatment for patients with non-muscle-invasive bladder cancer (NMIBC) who fail to respond to intravesical BCG is cystectomy. When a patient is deemed BCG-refractory and cannot or will not undergo cystectomy, alternative intravesical therapy may be the most effective way to minimize recurrence and progression. A number of immunotherapeutic and chemotherapeutic agents have been given intravesically over the years, and several recently and currently investigated novel agents appear to be particularly promising for the management of BCG-refractory NMIBC. The most effective treatments in the future will likely utilize targeted therapies based on the underlying genetic mutations associated with each individual diagnosis of NMIBC.

  20. Neoadjuvant therapy in muscle-invasive bladder cancer: a model for rational accelerated drug development.

    Science.gov (United States)

    Balar, Arjun V; Milowsky, Matthew I

    2015-05-01

    Since the advent of cisplatin-based combination therapy in the management of muscle-invasive and advanced bladder cancer, there has been little progress in improving outcomes for patients. Novel therapies beyond cytotoxic chemotherapy are needed. The neoadjuvant paradigm lends to acquiring ample pretreatment and posttreatment tumor tissue as a standard of care, which enables comprehensive biomarker analyses to better understand mechanisms of both response and resistance, which will aid drug development. This article discusses the evolution of neoadjuvant therapy as standard treatment and the role it may serve toward the development of novel therapies.

  1. Optimizing the detection of venous invasion in colorectal cancer: The Ontario, Canada, experience and beyond

    Directory of Open Access Journals (Sweden)

    Heather eDawson

    2015-01-01

    Full Text Available Venous invasion (VI is a well-established independent prognostic indicator in colorectal cancer (CRC. Its accurate detection is particularly important in stage II CRC as it may influence the decision to administer adjuvant therapy. The Royal College of Pathologists (RCPath of the United Kingdom state that VI should be detected in at least 30% of CRC resection specimens. However, our experience in Ontario, Canada suggests that this (conservative benchmark is rarely met. This article highlights the Ontario experience with respect to VI reporting and the key role that careful morphologic assessment, elastin staining and knowledge transfer has played in improving VI detection provincially and beyond.

  2. 食管癌的微创术%Minimal Invasive Surgery for Esophageal Cancer

    Institute of Scientific and Technical Information of China (English)

    A.H.H(o)lscher; Ch.Gutschow

    2004-01-01

    Thoracoscopic esophagectomy is only established in some centers and affords a cervical anastomosis because intrathoracic anastomosis as a routine is technically too difficult. Laparoscopic mobilisation of the stomach (gastrolysis) is an important contribution for minimal invasive surgery of esophageal cancer.This procedure reduces the stress of the two cavity operation for the patient and allows the construction of a comparable gastric conduit like by open surgery. The technique of laparoscopic gastrolysis as preparation for transthoracic en bloc esophagectomy is described in detail and preliminary results are briefly mentioned.

  3. Inhibitory effects of Leucaena leucocephala on the metastasis and invasion of human oral cancer cells.

    Science.gov (United States)

    Chung, Hsiao-Hang; Chen, Mu-Kuan; Chang, Yu-Chao; Yang, Shun-Fa; Lin, Chia-Chieh; Lin, Chiao-Wen

    2017-02-09

    Oral cancer is one of the most common cancers worldwide, and metastasis is recognized as a major factor causing its low survival rate. The inhibition of metastasis progress and the improvement of the survival rate for oral cancer are critical research objectives. Leucaena leucocephala from the mimosa branch Leucaena genus is native to Central and South America and has been used as a traditional remedy for treating various disorders. Previous studies have demonstrated antioxidant, anti-inflammatory as well as anticancer properties of L. leucocephala plant materials. However, the molecular mechanism underlying the anticancer effect induced by L. leucocephala remains unclear. In this study, we investigated the effect of L. leucocephala extract (LLE) on SCC-9 and SAS oral cancer cells and examined the potential inhibitory mechanisms involved. The results indicated that LLE attenuated the migration and invasion abilities of both SCC-9 and SAS cells by reducing the activity and protein expression of matrix metalloproteinases-2 (MMP-2). Regarding mitogen-activated protein kinase (MAPK) pathways, the phosphorylation of ERK1/2 and p38 exhibited a significant inhibitory effect in the presence of LLE. The application of ERK inhibitor and p38 inhibitor confirmed that both signalling transduction pathways were involved in the inhibition of cell metastasis. These data indicate that L. leucocephala could be a potent therapeutic agent for the prevention and treatment of oral cancer and a prominent plant source for anticancer research in the future.

  4. Harnessing membrane trafficking to promote cancer spreading and invasion: The case of RAB2A.

    Science.gov (United States)

    Kajiho, Hiroaki; Kajiho, Yuko; Scita, Giorgio

    2017-01-06

    How cancer disseminates and metastasizes remains an outstanding open question. Emerging evidence indicates that membrane trafficking is frequently harnessed by tumors of epithelial origin to acquire a mesenchymal program of invasiveness. However, the critical molecular hubs used by cancer cells this context have only began to be elucidated. Here, we discussed the results of a recent phenotypic screening that led to the identification of the small GTPase RAB2A, not previously involved in cancer dissemination, as pivotal for the acquisition of pericellular proteolysis, cell dissemination and distant metastatic spreading of human breast cancer. At the cellular levels, RAB2A controls both canonical polarized Golgi-to-Plasma membrane trafficking of the junctional protein E-cadherin, and post-endocytic trafficking of the membrane-bound metalloprotease, MT1-MMP. This finding reveals an unexpected plasticity in the control of diverse trafficking routes exerted by RAB2A through canonical (Golgi stacking) and non-canonical (late endosome recycling) functional interactions, contributing to break established membrane trafficking dogma on the rigorous molecular distinction between polarized Golgi and post endocytic routes. Finally, they suggest that epithelial cancers may specifically select for those molecules that enable them to control multiple trafficking routes, in turn essential for the regulation of activities necessary for acquisition of mesenchymal traits.

  5. Phellinus linteus suppresses growth, angiogenesis and invasive behaviour of breast cancer cells through the inhibition of AKT signalling.

    Science.gov (United States)

    Sliva, D; Jedinak, A; Kawasaki, J; Harvey, K; Slivova, V

    2008-04-22

    The antitumour activity of a medicinal mushroom Phellinus linteus (PL), through the stimulation of immune system or the induction of apoptosis, has been recently described. However, the molecular mechanisms responsible for the inhibition of invasive behaviour of cancer cells remain to be addressed. In the present study, we demonstrate that PL inhibits proliferation (anchorage-dependent growth) as well as colony formation (anchorage-independent growth) of highly invasive human breast cancer cells. The growth inhibition of MDA-MB-231 cells is mediated by the cell cycle arrest at S phase through the upregulation of p27(Kip1) expression. Phellinus linteus also suppressed invasive behaviour of MDA-MB-231 cells by the inhibition of cell adhesion, cell migration and cell invasion through the suppression of secretion of urokinase-plasminogen activator from breast cancer cells. In addition, PL markedly inhibited the early event in angiogenesis, capillary morphogenesis of the human aortic endothelial cells, through the downregulation of secretion of vascular endothelial growth factor from MDA-MB-231 cells. These effects are mediated by the inhibition of serine-threonine kinase AKT signalling, because PL suppressed phosphorylation of AKT at Thr(308) and Ser(473) in breast cancer cells. Taken together, our study suggests potential therapeutic effect of PL against invasive breast cancer.

  6. Protein kinase Ciota promotes nicotine-induced migration and invasion of cancer cells via phosphorylation of micro- and m-calpains.

    Science.gov (United States)

    Xu, Lijun; Deng, Xingming

    2006-02-17

    Nicotine is a major component in cigarette smoke that activates the growth-promoting pathways to facilitate the development of lung cancer. However, it is not clear whether nicotine affects cell motility to facilitate tumor metastasis. Here we discovered that nicotine potently induces phosphorylation of both mu- and m-calpains via activation of protein kinase Ciota (PKCiota), which is associated with accelerated migration and invasion of human lung cancer cells. Purified PKCiota directly phosphorylates mu- and m-calpains in vitro. Overexpression of PKCiota results in increased phosphorylation of both mu- and m-calpains in vivo. Nicotine also induces activation of c-Src, which is a known PKCiota upstream kinase. Treatment of cells with the alpha(7) nicotinic acetylcholine receptor inhibitor alpha-bungarotoxin can block nicotine-induced calpain phosphorylation with suppression of calpain activity, wound healing, cell migration, and invasion, indicating that nicotine-induced calpain phosphorylation occurs, at least in part, through a signaling pathway involving the upstream alpha(7) nicotinic acetylcholine receptor. Intriguingly, depletion of PKCiota by RNA interference suppresses nicotine-induced calpain phosphorylation, calpain activity, cell migration, and invasion, indicating that PKCiota is a necessary component in nicotine-mediated cell motility signaling. Importantly, nicotine potently induces secretion of mu- and m-calpains from lung cancer cells into culture medium, which may have potential to cleave substrates in the extracellular matrix. These findings reveal a novel role for PKCiota as a nicotine-activated, physiological calpain kinase that directly phosphorylates and activates calpains, leading to enhanced migration and invasion of human lung cancer cells.

  7. miR-199a-5p regulates β1 integrin through Ets-1 to suppress invasion in breast cancer.

    Science.gov (United States)

    Li, Wentong; Wang, Hui; Zhang, Jinbao; Zhai, Limin; Chen, Weijuan; Zhao, Chunling

    2016-07-01

    Increasing evidence has revealed that miR-199a-5p is actively involved in tumor invasion and metastasis as well as in the decline of breast cancer tissues. In this research, overexpression of miR-199a-5p weakened motility and invasion of breast cancer cells MCF-7 and MDA-MB-231. Upregulation of Ets-1 increased breast cancer cell invasion, but the mechanism by which miR-199a-5p modulates activation of Ets-1 in breast cancer was not clarified. We investigated the relationship between miR-199a-5p and Ets-1 on the basis of 158 primary breast cancer case specimens, and the results showed that Ets-1 expression was inversely correlated with endogenous miR-199a-5p. Overexpression of miR-199a-5p reduced the mRNA and protein levels of Ets-1 in MCF-7 and MDA-MB-231 cells, whereas anti-miR-199a-5p elevated Ets-1. siRNA-mediated Ets-1 knockdown phenocopied the inhibition invasion of miR-199a-5p in vitro. Moreover, luciferase reporter assay revealed that miR-199a-5p directly targeted 3'-UTR of Ets-1 mRNA. This research revealed that miR-199a-5p could descend the levels of β1 integrin by targeting 3'-UTR of Ets-1 to alleviate the invasion of breast cancer via FAK/Src/Akt/mTOR signaling pathway. Our results provide insight into the regulation of β1 integrin through miR-199a-5p-mediated Ets-1 silence and will help in designing new therapeutic strategies to inhibit signal pathways induced by miR-199a-5p in breast cancer invasion.

  8. EFEMP1 Suppresses Growth and Invasion of Lung Cancer Cells 
by Downregulating Matrix Metalloproteinase-7 Expression

    Directory of Open Access Journals (Sweden)

    Yuanyuan LANG

    2015-02-01

    Full Text Available Background and objective EFEMP1, a member of fibulin family proteins, is a very important extracellular matrix protein which is involved in cell metabolism and its role in tumor occurrence and progression is still poorly understood. The aim of this study is to investigate the functional effect and mechanism of EFEMP1 in lung cancer cell growth and invasion. Methods EFEMP1 expression in lung cancer cells was determined by Western blot. The promoter methylation status of EFEMP1 was detected by methylation-specific PCR (MSP. After transfection of control or EFEMP1 vector in lung cancer cells, the ability of colony formation and invasion was detected by colony formation experiment and matrigel invasion method. Western blot and real-time PCR were used to detect matrix metalloproteinase-7 (MMP-7 expression. Luciferase assay was used to detect expression of MMP-7 reporter construct transfected with or without EFEMP1 in lung cancer cells. Results Western blot result showed EFEMP1 expression was downregulated in lung cancer cells. The promoter region of EFEMP1 was methylated in A549 and H1299 and after treatment with 5-aza-2’-deoxycytidine, the EFEMP1 expression was upregulated. The growth and invasion of A549 and H1299 were all significantly suppressed by transfecting with EFEMP1 and the MMP-7 expression was dowanregulated by EFEMP1 as well. Expression activity of MMP-7 reporter construct was decreased by cotransfecting with EFEMP1. Conclusion Collectively, these results suggest that EFEMP1 functions as a suppressor of lung cancer growth and invasion. Epigenetic silencing of EFEMP1 promotes lung cancer invasion and metastasis by activating MMP-7 expression.

  9. Inside the 2016 American Society of Clinical Oncology Genitourinary Cancers Symposium: part 1 - kidney cancer.

    Science.gov (United States)

    Buti, Sebastiano; Ciccarese, Chiara; Iacovelli, Roberto; Bersanelli, Melissa; Scarpelli, Marina; Lopez-Beltran, Antonio; Cheng, Liang; Montironi, Rodolfo; Tortora, Giampaolo; Massari, Francesco

    2016-09-01

    The American Society of Clinical Oncology Genitourinary Cancers Symposium, Moscone West Building, San Francisco, CA, USA, 7-9 January 2016 The American Society of Clinical Oncology (ASCO) Genitourinary Cancers Symposium, held in San Francisco (CA, USA), from 7 to 9 January 2016, focused on 'patient-centric care: translating research to results'. Every year, this meeting is a must for anyone studying genitourinary tumors to keep abreast of the most recent innovations in this field, exchange views on behaviors customarily adopted in daily clinical practice, and discuss future topics of scientific research. This two-part report highlights the key themes presented at the 2016 ASCO Genitourinary Cancers Symposium, with part 1 reporting the main novelties of kidney cancer and part 2 discussing the most relevant issues which have emerged for bladder and prostate tumors.

  10. Chapter 27 -- Breast Cancer Genomics, Section VI, Pathology and Biological Markers of Invasive Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Spellman, Paul T.; Heiser, Laura; Gray, Joe W.

    2009-06-18

    Breast cancer is predominantly a disease of the genome with cancers arising and progressing through accumulation of aberrations that alter the genome - by changing DNA sequence, copy number, and structure in ways that that contribute to diverse aspects of cancer pathophysiology. Classic examples of genomic events that contribute to breast cancer pathophysiology include inherited mutations in BRCA1, BRCA2, TP53, and CHK2 that contribute to the initiation of breast cancer, amplification of ERBB2 (formerly HER2) and mutations of elements of the PI3-kinase pathway that activate aspects of epidermal growth factor receptor (EGFR) signaling and deletion of CDKN2A/B that contributes to cell cycle deregulation and genome instability. It is now apparent that accumulation of these aberrations is a time-dependent process that accelerates with age. Although American women living to an age of 85 have a 1 in 8 chance of developing breast cancer, the incidence of cancer in women younger than 30 years is uncommon. This is consistent with a multistep cancer progression model whereby mutation and selection drive the tumor's development, analogous to traditional Darwinian evolution. In the case of cancer, the driving events are changes in sequence, copy number, and structure of DNA and alterations in chromatin structure or other epigenetic marks. Our understanding of the genetic, genomic, and epigenomic events that influence the development and progression of breast cancer is increasing at a remarkable rate through application of powerful analysis tools that enable genome-wide analysis of DNA sequence and structure, copy number, allelic loss, and epigenomic modification. Application of these techniques to elucidation of the nature and timing of these events is enriching our understanding of mechanisms that increase breast cancer susceptibility, enable tumor initiation and progression to metastatic disease, and determine therapeutic response or resistance. These studies also

  11. Prelamin A causes progeria through cell-extrinsic mechanisms and prevents cancer invasion

    Science.gov (United States)

    de la Rosa, Jorge; Freije, José M. P.; Cabanillas, Rubén; Osorio, Fernando G.; Fraga, Mario F.; Fernández-García, M. Soledad; Rad, Roland; Fanjul, Víctor; Ugalde, Alejandro P.; Liang, Qi; Prosser, Haydn M.; Bradley, Allan; Cadiñanos, Juan; López-Otín, Carlos

    2013-01-01

    Defining the relationship between ageing and cancer is a crucial but challenging task. Mice deficient in Zmpste24, a metalloproteinase mutated in human progeria and involved in nuclear prelamin A maturation, recapitulate multiple features of ageing. However, their short lifespan and serious cell-intrinsic and cell-extrinsic alterations restrict the application and interpretation of carcinogenesis protocols. Here we present Zmpste24 mosaic mice that lack these limitations. Zmpste24 mosaic mice develop normally and keep similar proportions of Zmpste24-deficient (prelamin A accumulating) and Zmpste24-proficient (mature lamin A containing) cells throughout life, revealing that cell-extrinsic mechanisms are preeminent for progeria development. Moreover, prelamin A accumulation does not impair tumour initiation and growth, but it decreases the incidence of infiltrating oral carcinomas. Accordingly, silencing of ZMPSTE24 reduces human cancer cell invasiveness. Our results support the potential of cell-based and systemic therapies for progeria and highlight ZMPSTE24 as a new anticancer target. PMID:23917225

  12. Contrast-enhanced dedicated breast CT detection of invasive breast cancer preceding mammographic diagnosis

    Directory of Open Access Journals (Sweden)

    Nicolas D. Prionas, MD, PhD

    2015-01-01

    Full Text Available Dedicated breast computed tomography (bCT generates high-resolution, three-dimensional images of the pendent uncompressed breast. Intravenous iodinated contrast during bCT provides additional physiologic information. In this case, a 10.0-mm invasive ductal carcinoma was visualized using contrast-enhanced breast CT one year before mammographic detection. Mammography four months before bCT was negative. The bCT contrast enhancement pattern closely matched the dynamic contrast-enhanced MRI obtained after diagnosis. Lesion enhancement at contrast-enhanced breast CT matched previously published enhancement values of breast cancer. Contrast-enhanced dedicated bCT provided high-resolution tomographic images and physiologic contrast enhancement data that facilitated the detection of an early breast cancer.

  13. Rock2 stabilizes β-catenin to promote tumor invasion and metastasis in colorectal cancer.

    Science.gov (United States)

    Qiu, Yumin; Yuan, Rongfa; Zhang, Shouhua; Chen, Leifeng; Huang, Da; Hao, Haibin; Shao, Jianghua

    2015-11-27

    Rho-associated coiled-coil-containing protein kinase 2 (Rock2) is an effector for the small GTPase Rho and plays an important role in tumor progression and metastasis. However, the effect of Rock2 in colorectal cancer (CRC) still remains unclear. In this study, we found that Rock2 expression was markedly increased in clinical CRC tissues compared with adjacent non-cancerous tissues. High expression of Rock2 was correlated with tumor metastasis and poor prognosis in CRC. In addition, the knockdown of Rock2 suppressed the invasion and metastasis of CRC cells both in vitro and in vivo. Furthermore, we found that the β-catenin/TCF4 pathway contributed to the effects of Rock2 in CRC cells, and Rock2 stabilized β-catenin by preventing its ubiquitination and degradation. Taken together, this novel pathway for β-catenin control plays a biologically relevant role in CRC metastasis.

  14. Prelamin A causes progeria through cell-extrinsic mechanisms and prevents cancer invasion.

    Science.gov (United States)

    de la Rosa, Jorge; Freije, José M P; Cabanillas, Rubén; Osorio, Fernando G; Fraga, Mario F; Fernández-García, M Soledad; Rad, Roland; Fanjul, Víctor; Ugalde, Alejandro P; Liang, Qi; Prosser, Haydn M; Bradley, Allan; Cadiñanos, Juan; López-Otín, Carlos

    2013-01-01

    Defining the relationship between ageing and cancer is a crucial but challenging task. Mice deficient in Zmpste24, a metalloproteinase mutated in human progeria and involved in nuclear prelamin A maturation, recapitulate multiple features of ageing. However, their short lifespan and serious cell-intrinsic and cell-extrinsic alterations restrict the application and interpretation of carcinogenesis protocols. Here we present Zmpste24 mosaic mice that lack these limitations. Zmpste24 mosaic mice develop normally and keep similar proportions of Zmpste24-deficient (prelamin A-accumulating) and Zmpste24-proficient (mature lamin A-containing) cells throughout life, revealing that cell-extrinsic mechanisms are preeminent for progeria development. Moreover, prelamin A accumulation does not impair tumour initiation and growth, but it decreases the incidence of infiltrating oral carcinomas. Accordingly, silencing of ZMPSTE24 reduces human cancer cell invasiveness. Our results support the potential of cell-based and systemic therapies for progeria and highlight ZMPSTE24 as a new anticancer target.

  15. [Reinnervation of larynx in surgical treatment of invasive thyroidal gland cancer].

    Science.gov (United States)

    Palamarchuk, V A

    2013-10-01

    The possibilities and efficacy of performance of simultant operations for invasive thyroid gland cancer in initial neuropathic laryngeal stenosis and dysphonic syndrome, aimed at minimization of the residual volume of thyroid gland tissue and surgical laryngeal reinnervation, were studied. The results of laryngeal surgical reinnervation, in accordance to data of videolaryngoscopy, aerodynamical and spectral analysis of the voice, self estimation of the vocal disorders impact on the patients quality of life were analyzed. Postoperatively in all the patients the improvement of phonation and quality of life was noted. Primary neurorhaphia of recurrent laryngeal nerve secures restoration of normal or nearly normal talkative voice due to restoration of the tone and volume of m. cricoarytenoideus lateralis and m. thyroarytenoideus on the side of affection and may be effectively applied for correction of consequences of laryngeal neuropathic paralysis in surgical treatment of the thyroid gland cancer.

  16. Fibronectin 1 promotes migration and invasion of papillary thyroid cancer and predicts papillary thyroid cancer lymph node metastasis

    Science.gov (United States)

    Xia, Shujun; Wang, Chuandong; Postma, Emily Louise; Yang, Yanhua; Ni, Xiaofeng; Zhan, Weiwei

    2017-01-01

    Lymph node metastasis (LNM) is common in papillary thyroid cancer (PTC), and is an indicator of recurrence. The detailed molecular mechanism of LNM in PTC has not been well described. This study aimed to investigate the role of fibronectin 1 in PTC LNM and its clinical relevance. The expression of fibronectin 1 was confirmed in PTC tissues and cell lines. A correlation analysis was conducted and a receiver-operating characteristic curve obtained. The effect of fibronectin 1 on the proliferation of PTC cell lines was performed using a colony-formation assay and Cell Counting Kit 8. Cell-cycle analysis was performed with a flow-cytometry assay. Migration and invasion ability were evaluated by transwell and wound-healing assays. Fibronectin 1 was overexpressed in metastasized PTC. Overexpressed fibronectin 1 was positively correlated with PTC LNM. Receiver-operating characteristic analysis showed that the diagnostic accuracy of fibronectin 1 was 81.1%, with sensitivity of 80% and specificity of 82%. Overexpression of fibronectin 1 promoted proliferation, migration, and invasion in PTC. Fibronectin 1 plays a critical role in PTC metastasis by modulating the proliferation, migration, and invasion ability of PTC cells, and it is a valuable diagnostic biomarker for predicting PTC LNM. PMID:28367057

  17. Robotic radical prostatectomy-a minimally invasive therapy for prostate cancer: results of initial 530 cases

    Directory of Open Access Journals (Sweden)

    A Tewari

    2005-01-01

    Full Text Available Context: In 2000, the number of new cases of prostate cancer was estimated at 5 13 000 worldwide [Eur J Cancer 2001; 37 (Suppl 8: S4]. In next 15 years, prostate cancer is predicted to be the most common cancer in men [Eur J Cancer 2001; 37 (Suppl 8: S4]. Radical prostatectomy is one of the most common surgical treatments for clinically localized prostate cancer. In spite of its excellent oncological results, due to the fear of pain, risk for side effects, and inconvenience (Semin Urol Oncol 2002; 20: 55, many patients seek alternative treatments for their prostate cancer. At Vattikuti Urology institute, we have developed a minimally invasive technique for treating prostate cancer, which achieves oncological results of surgical treatment without causing significant pain, large surgical incision, and side effects (BJU Int, 2003; 92: 205. This technique involves a da Vinci™ (Intuitive Surgical ®, Sunnyvale, CA surgical robot with 3-D stereoscopic visualization and ergonomic multijointed instruments. Presented herein are our results after treating 750 patients. Methods: We prospectively collected baseline demographic data such as age, race, body mass index (BMI, serum prostate specific antigen, prostate volume, Gleason score, percentage cancer, TNM clinical staging, and comorbidities. Urinary symptoms were measured with the international prostate symptom score (IPSS, and sexual health with the sexual health inventory of males (SHIM. In addition, the patients were mailed the expanded prostate inventory composite at baseline and at 1, 3, 6, 12 and 18 months after the procedure. Results: Gleason seven or more cancer grade was noted in 33.5% of patients. The average BMI was high (27.7 and 87% patients had pathological stage PT2a-b. The mean operative time was 160 min and the mean blood loss was 153 cm3. No patient required blood transfusion. At 6 months 82% of the men who were younger and 75% of those older than 60 years had return of sexual

  18. Non-Coding RNAs in Lung Cancer: Contribution of Bioinformatics Analysis to the Development of Non-Invasive Diagnostic Tools

    Science.gov (United States)

    Kunz, Meik; Wolf, Beat; Schulze, Harald; Atlan, David; Walles, Thorsten; Walles, Heike; Dandekar, Thomas

    2016-01-01

    Lung cancer is currently the leading cause of cancer related mortality due to late diagnosis and limited treatment intervention. Non-coding RNAs are not translated into proteins and have emerged as fundamental regulators of gene expression. Recent studies reported that microRNAs and long non-coding RNAs are involved in lung cancer development and progression. Moreover, they appear as new promising non-invasive biomarkers for early lung cancer diagnosis. Here, we highlight their potential as biomarker in lung cancer and present how bioinformatics can contribute to the development of non-invasive diagnostic tools. For this, we discuss several bioinformatics algorithms and software tools for a comprehensive understanding and functional characterization of microRNAs and long non-coding RNAs. PMID:28035947

  19. Downregulation of connective tissue growth factor inhibits the growth and invasion of gastric cancer cells and attenuates peritoneal dissemination

    Directory of Open Access Journals (Sweden)

    Zhang Hong-Yan

    2011-09-01

    Full Text Available Abstract Background Connective tissue growth factor (CTGF has been shown to be implicated in tumor development and progression. However, the role of CTGF in gastric cancer remains largely unknown. Results In this study, we showed that CTGF was highly expressed in gastric cancer tissues compared with matched normal gastric tissues. The CTGF expression in tumor tissue was associated with histologic grade, lymph node metastasis and peritoneal dissemination (P 1 expression. Moreover, knockdown of CTGF expression also markedly reduced the migration and invasion of gastric cancer cells and decreased the expression of matrix metalloproteinase (MMP-2 and MMP-9. Animal studies revealed that nude mice injected with the CTGF knockdown stable cell lines featured a smaller number of peritoneal seeding nodules than the control cell lines. Conclusions These data suggest that CTGF plays an important role in cell growth and invasion in human gastric cancer and it appears to be a potential prognostic marker for patients with gastric cancer.

  20. α-Mangostin inhibits hypoxia-driven ROS-induced PSC activation and pancreatic cancer cell invasion.

    Science.gov (United States)

    Lei, Jianjun; Huo, Xiongwei; Duan, Wanxing; Xu, Qinhong; Li, Rong; Ma, Jiguang; Li, Xuqi; Han, Liang; Li, Wei; Sun, Hao; Wu, Erxi; Ma, Qingyong

    2014-05-28

    Recent advances indicating a key role of microenvironment for tumor progression, we investigated the role of PSCs and hypoxia in pancreatic cancer aggressiveness, and examined the potential protective effect of α-mangostin on hypoxia-driven pancreatic cancer progression. Our data indicate that hypoxic PSCs exploit their oxidative stress due to hypoxia to secrete soluble factors favouring pancreatic cancer invasion. α-Mangostin suppresses hypoxia-induced PSC activation and pancreatic cancer cell invasion through the inhibition of HIF-1α stabilization and GLI1 expression. Increased generation of hypoxic ROS is responsible for HIF-1α stabilization and GLI1 upregulation. Therefore, α-mangostin may be beneficial in preventing hypoxia-induced pancreatic cancer progression.

  1. Diabetes, metformin and incidence of and death from invasive cancer in postmenopausal women: Results from the women's health initiative.

    Science.gov (United States)

    Gong, Zhihong; Aragaki, Aaron K; Chlebowski, Rowan T; Manson, JoAnn E; Rohan, Thomas E; Chen, Chu; Vitolins, Mara Z; Tinker, Lesley F; LeBlanc, Erin S; Kuller, Lewis H; Hou, Lifang; LaMonte, Michael J; Luo, Juhua; Wactawski-Wende, Jean

    2016-04-15

    Findings from studies of metformin use with risk of cancer incidence and outcome provide mixed results; with few studies examined associations by recency of diabetes diagnosis or duration of medication use. Thus, in the Women's Health Initiative, we examined these associations and further explored whether associations differ by recency of diabetes and duration of metformin use. Cox regression models were used to estimate hazard ratios (HR) and their 95% confidence intervals. Diabetes was associated with higher risk of total invasive cancer (HR, 1.13; p metformin users, compared to users of other medications, relative to women without diabetes, overall (HRs, 1.08 vs. 1.45; p = 0.007) and for breast cancer (HRs, 0.50 vs. 1.29; p = 0.05). Results also suggested that lower cancer risk associated with metformin may be evident only for a longer duration of use in certain cancer sites or subgroup populations. We provide further evidence that postmenopausal women with diabetes are at higher risk of invasive cancer and cancer death. Metformin users, particularly long-term users, may be at lower risk of developing certain cancers and dying from cancer, compared to users of other anti-diabetes medications. Future studies are needed to determine the long-term effect of metformin in cancer risk and survival from cancer.

  2. Study on the correlation of helicobacter pylori infection with proliferation, invasion and angiogenesis molecules in gastric cancer tissue

    Institute of Scientific and Technical Information of China (English)

    Sa-Mei Lv; Jian Zhang; You-Wei Wu; Jian Zhou; Li-Ping Shi

    2016-01-01

    Objective:To study the correlation of helicobacter pylori infection with proliferation, invasion and angiogenesis molecules in gastric cancer tissue.Methods: A total of 60 cases of cancer tissue samples and 60 cases of normal tissue samples more than 5 cm away from cancer tissue edge were collected for study from gastric cancer patients treated in our hospital, and according to the testing results of helicobacter pylori (Hp), gastric cancer tissue was divided into Hp-L(+) and Hp-L(-), and the levels of proliferation, invasion and angiogenesis molecules were determined.Results:Bcl-2, Survivin, KLK8, N-cadherin, Vimentin, Snail, Twist, VEGFR, COX-2 and HIF-1α protein levels in gastric cancer tissue were significantly higher than those in normal tissue, and E-cadherin protein level was significantly lower than that in normal tissue; Bcl-2, Survivin, KLK8, N-cadherin, Vimentin, Snail, Twist, VEGF, VEGFR, COX-2 and HIF-1α protein levels in Hp-L(+) gastric cancer tissue were significantly higher than those in Hp-L(-) gastric cancer tissue, and E-cadherin protein level was significantly lower than that in Hp-L(-) gastric cancer tissue.Conclusion:Helicobacter pylori infection in gastric cancer tissue can promote cancer cell proliferation, epithelial-mesenchymal transition and angiogenesis.

  3. Stromal-derived factor-1α/CXCL12-CXCR4 chemotactic pathway promotes perineural invasion in pancreatic cancer.

    Science.gov (United States)

    Xu, Qinhong; Wang, Zheng; Chen, Xin; Duan, Wanxing; Lei, Jianjun; Zong, Liang; Li, Xuqi; Sheng, Liang; Ma, Jiguang; Han, Liang; Li, Wei; Zhang, Lun; Guo, Kun; Ma, Zhenhua; Wu, Zheng; Wu, Erxi; Ma, Qingyong

    2015-03-10

    Perineural invasion (PNI) is considered as an alternative route for the metastatic spread of pancreatic cancer cells; however, the molecular changes leading to PNI are still poorly understood. In this study, we show that the CXCL12/CXCR4 axis plays a pivotal role in the neurotropism of pancreatic cancer cells to local peripheral nerves. Immunohistochemical staining results revealed that CXCR4 elevation correlated with PNI in 78 pancreatic cancer samples. Both in vitro and in vivo PNI models were applied to investigate the function of the CXCL12/CXCR4 signaling in PNI progression and pathogenesis. The results showed that the activation of the CXCL12/CXCR4 axis significantly increased pancreatic cancer cells invasion and promoted the outgrowth of the dorsal root ganglia. CXCL12 derived from the peripheral nerves stimulated the invasion and chemotactic migration of CXCR4-positive cancer cells in a paracrine manner, eventually leading to PNI. In vivo analyses revealed that the abrogation of the activated signaling inhibited tumor growth and invasion of the sciatic nerve toward the spinal cord. These data indicate that the CXCL12/CXCR4 axis may be a novel therapeutic target to prevent the perineural dissemination of pancreatic cancer.

  4. Repositioning "old" drugs for new causes: identifying new inhibitors of prostate cancer cell migration and invasion.

    Science.gov (United States)

    Shah, Esha T; Upadhyaya, Akanksha; Philp, Lisa K; Tang, Tiffany; Skalamera, Dubravka; Gunter, Jennifer; Nelson, Colleen C; Williams, Elizabeth D; Hollier, Brett G

    2016-04-01

    The majority of prostate cancer (PCa) deaths occur due to the metastatic spread of tumor cells to distant organs. Currently, there is a lack of effective therapies once tumor cells have spread outside the prostate. It is therefore imperative to rapidly develop therapeutics to inhibit the metastatic spread of tumor cells. Gain of cell motility and invasive properties is the first step of metastasis and by inhibiting motility one can potentially inhibit metastasis. Using the drug repositioning strategy, we developed a cell-based multi-parameter primary screening assay to identify drugs that inhibit the migratory and invasive properties of metastatic PC-3 PCa cells. Following the completion of the primary screening assay, 33 drugs were identified from an FDA approved drug library that either inhibited migration or were cytotoxic to the PC-3 cells. Based on the data obtained from the subsequent validation studies, mitoxantrone hydrochloride, simvastatin, fluvastatin and vandetanib were identified as strong candidates that can inhibit both the migration and invasion of PC-3 cells without significantly affecting cell viability. By employing the drug repositioning strategy instead of a de novo drug discovery and development strategy, the identified drug candidates have the potential to be rapidly translated into the clinic for the management of men with aggressive forms of PCa.

  5. miR-214 down-regulates ARL2 and suppresses growth and invasion of cervical cancer cells.

    Science.gov (United States)

    Peng, Ruiqing; Men, Jianlong; Ma, Rui; Wang, Qian; Wang, Yang; Sun, Ying; Ren, Jing

    2017-03-11

    Increasing evidence has shown that miRNAs are implicated in carcinogenesis and can function as oncogenes or tumor suppressor genes in human cancers. In this study, we confirmed that miR-214 is frequently down-regulated in cervical cancer compared with normal cervical tissues. Ectopic expression of miR-214 suppressed proliferation, migration and invasion of HeLa and C33A cervical cancer cells. Bioinformatics analysis revealed that ADP ribosylation factor like 2 (ARL2) was a potential target of miR-214 and was remarkably up-regulated in cervical cancer. Knockdown of ARL2 markedly inhibited cervical cancer cell proliferation, migration and invasion, similarly to over-expression of miR-214, indicating that ARL2 may function as an oncogene in cervical cancer. In conclusion, our study revealed that miR-214 acts as a tumor suppressor via inhibiting proliferation, migration and invasion of cervical cancer cells through targeting ARL2, and that both miR-214 and ARL2 may serve as prognostic or therapeutic targets for cervical cancer.

  6. Modulation of invasive phenotype by interstitial pressure-driven convection in aggregates of human breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Joe Tien

    Full Text Available This paper reports the effect of elevated pressure on the invasive phenotype of patterned three-dimensional (3D aggregates of MDA-MB-231 human breast cancer cells. We found that the directionality of the interstitial pressure profile altered the frequency of invasion by cells located at the surface of an aggregate. In particular, application of pressure at one end of an aggregate suppressed invasion at the opposite end. Experimental alteration of the configuration of cell aggregates and computational modeling of the resulting flow and solute concentration profiles revealed that elevated pressure inhibited invasion by altering the chemical composition of the interstitial fluid near the surface of the aggregate. Our data reveal a link between hydrostatic pressure, interstitial convection, and invasion.

  7. Gli-1 is crucial for hypoxia-induced epithelial-mesenchymal transition and invasion of breast cancer.

    Science.gov (United States)

    Lei, Jianjun; Fan, Lin; Wei, Guangbing; Chen, Xin; Duan, Wanxing; Xu, Qinhong; Sheng, Wei; Wang, Kang; Li, Xuqi

    2015-04-01

    Hypoxia can induce HIF-1α expression and promote the epithelial-mesenchymal transition (EMT) and invasion of cancer cells. However, their mechanisms remain unclear. The objective of this study was to evaluate the role of Gli-1, an effector of the Hedgehog pathway, in the hypoxia-induced EMT and invasion of breast cancer cells. Human breast cancer MDA-MB-231 cells were transfected with HIF-1α or Gli-1-specific small interfering RNA (siRNA) and cultured under a normoxic or hypoxic condition. The relative levels of HIF-1α, Gli-1, E-cadherin, and vimentin in the cells were characterized by quantitative RT-PCR and Western blot assays, and the invasion of MDA-MB-231 cells was determined. Data was analyzed by Student T test, one-way ANOVA, and post hoc LSD test or Mann-Whitney U when applicable. We observed that hypoxia significantly upregulated the relative levels of vimentin expression, but downregulated E-cadherin expression and promoted the invasion of MDA-MB-231 cells, associated with upregulated HIF-1α translation and Gil-1 expression. Knockdown of HIF-1α mitigated hypoxia-modulated Gil-1, vimentin and E-cadherin expression, and invasion of MDA-MB-231 cells. Knockdown of Gil-1 did not significantly change hypoxia-upregulated HIF-1α translation but completely eliminated hypoxia-modulated vimentin and E-cadherin expression and invasion of MDA-MB-231 cells. These data indicate that Gil-1 is crucial for hypoxia-induced EMT and invasion of breast cancer cells and may be a therapeutic target for intervention of breast cancer metastasis.

  8. Exosome-bound WD repeat protein Monad inhibits breast cancer cell invasion by degrading amphiregulin mRNA.

    Directory of Open Access Journals (Sweden)

    Makio Saeki

    Full Text Available Increased stabilization of mRNA coding for key cancer genes can contribute to invasiveness. This is achieved by down-regulation of exosome cofactors, which bind to 3'-UTR in cancer-related genes. Here, we identified amphiregulin, an EGFR ligand, as a target of WD repeat protein Monad, a component of R2TP/prefoldin-like complex, in MDA-MB-231 breast cancer cells. Monad specifically interacted with both the 3'-UTR of amphiregulin mRNA and the RNA degrading exosome, and enhanced decay of amphiregulin transcripts. Knockdown of Monad increased invasion and this effect was abolished with anti-amphiregulin neutralizing antibody. These results suggest that Monad could prevent amphiregulin-mediated invasion by degrading amphiregulin mRNA.

  9. AGE-modified basement membrane cooperates with Endo180 to promote epithelial cell invasiveness and decrease prostate cancer survival

    DEFF Research Database (Denmark)

    Rodriguez-Teja, Mercedes; Gronau, Julian H; Breit, Claudia

    2015-01-01

    Biomechanical strain imposed by age-related thickening of the basal lamina and augmented tissue stiffness in the prostate gland coincides with increased cancer risk. Here we hypothesized that the structural alterations in the basal lamina associated with age can induce mechanotransduction pathways...... in prostate epithelial cells (PECs) to promote invasiveness and cancer progression. To demonstrate this, we developed a 3D model of PEC acini in which thickening and stiffening of basal lamina matrix was induced by advanced glycation end-product (AGE)-dependent non-enzymatic crosslinking of its major......(Δ) (Ex2-6/) (Δ) (Ex2-6) mice, with constitutively exposed CTLD2 and decreased survival of men with early (non-invasive) prostate cancer with high epithelial Endo180 expression and levels of AGE. These findings indicate that AGE-dependent modification of the basal lamina induces invasive behaviour...

  10. Role of IGF-1/IGF-1R in regulation of invasion in DU145 prostate cancer cells

    Science.gov (United States)

    Saikali, Zeina; Setya, Hemani; Singh, Gurmit; Persad, Sujata

    2008-01-01

    Background Prostate cancer progression to androgen independence is the primary cause of mortality by this tumor type. The IGF-1/IGF-1R axis is well known to contribute to prostate cancer initiation, but its contribution to invasiveness and the downstream signalling mechanisms that are involved are unclear at present. Results We examined the invasive response of androgen independent DU145 prostate carcinoma cells to IGF-1 stimulation using Matrigel assays. We then examined the signaling mechanisms and protease activities that are associated with this response. IGF-1 significantly increased the invasive capacity of DU145 cells in vitro, and this increase was inhibited by blocking IGF-1R. We further demonstrated that specific inhibitors of the MAPK and PI3-K pathways decrease IGF-1-mediated invasion. To determine potential molecular mechanisms for this change in invasive capacity, we examined changes in expression and activity of matrix metalloproteinases. We observed that IGF-1 increases the enzymatic activity of MMP-2 and MMP-9 in DU145 cells. These changes in activity are due to differences in expression in the case of MMP-9 but not in the case of MMP-2. This observation is corroborated by the fact that correlated changes of expression in a regulator of MMP-2, TIMP-2, were also seen. Conclusion This work identifies a specific effect of IGF-1 on the invasive capacity of DU145 prostate cancer cells, and furthermore delineates mechanisms that contribute to this effect. PMID:18598360

  11. Role of IGF-1/IGF-1R in regulation of invasion in DU145 prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Setya Hemani

    2008-07-01

    Full Text Available Abstract Background Prostate cancer progression to androgen independence is the primary cause of mortality by this tumor type. The IGF-1/IGF-1R axis is well known to contribute to prostate cancer initiation, but its contribution to invasiveness and the downstream signalling mechanisms that are involved are unclear at present. Results We examined the invasive response of androgen independent DU145 prostate carcinoma cells to IGF-1 stimulation using Matrigel assays. We then examined the signaling mechanisms and protease activities that are associated with this response. IGF-1 significantly increased the invasive capacity of DU145 cells in vitro, and this increase was inhibited by blocking IGF-1R. We further demonstrated that specific inhibitors of the MAPK and PI3-K pathways decrease IGF-1-mediated invasion. To determine potential molecular mechanisms for this change in invasive capacity, we examined changes in expression and activity of matrix metalloproteinases. We observed that IGF-1 increases the enzymatic activity of MMP-2 and MMP-9 in DU145 cells. These changes in activity are due to differences in expression in the case of MMP-9 but not in the case of MMP-2. This observation is corroborated by the fact that correlated changes of expression in a regulator of MMP-2, TIMP-2, were also seen. Conclusion This work identifies a specific effect of IGF-1 on the invasive capacity of DU145 prostate cancer cells, and furthermore delineates mechanisms that contribute to this effect.

  12. Phosphatidylinositol 3-kinase mediates the ability of retinol to decrease colorectal cancer cell invasion.

    Science.gov (United States)

    Lengyel, Jennifer N Griffin; Park, Eun Young; Brunson, Anna R; Pinali, Daniel; Lane, Michelle A

    2014-01-01

    Previously, we showed that retinol (vitamin A) decreased both colorectal cancer cell invasion and phosphatidylinositol 3-kinase (PI3K) activity through a retinoic acid receptor-independent mechanism. Here, we determined if these phenomena were related by using parental HCT-116 cells that harbor 1 allele of wild-type PI3K and 1 allele of constitutively active (ca) PI3K and 2 mutant HCT-116 cell lines homozygous for caPI3K. In vitro, treatment of parental HCT-116 cells with 10 μM retinol reduced cell invasion whereas treatment of mutant HCT-116 cell lines with retinol did not. Treatment with 10 μM retinol also decreased the activity of matrixmetalloproteinase-9 and increased tissue inhibitor of matrixmetalloproteinase-I levels in parental, but not mutant, HCT-116 cells. Finally, parental or mutant cells were intrasplenically injected into athymic mice consuming diets with or without supplemental vitamin A. As expected, vitamin A supplementation tended (P = 0.18) to reduce the incidence of metastases in mice injected with the parental cell line and consuming the supplemented diet. In contrast, metastatic incidence was not affected (P = 1.00) by vitamin A supplementation in mice injected with mutant cells. These data indicate that the capacity of retinol to inhibit PI3K activity confers its ability to decrease colorectal cancer metastasis.

  13. Regulator of G protein signaling 20 enhances cancer cell aggregation, migration, invasion and adhesion.

    Science.gov (United States)

    Yang, Lei; Lee, Maggie M K; Leung, Manton M H; Wong, Yung H

    2016-11-01

    Several RGS (regulator of G protein signaling) proteins are known to be upregulated in a variety of tumors but their roles in modulating tumorigenesis remain undefined. Since the expression of RGS20 is elevated in metastatic melanoma and breast tumors, we examined the effects of RGS20 overexpression and knockdown on the cell mobility and adhesive properties of different human cancer cell lines, including cervical cancer HeLa, breast adenocarcinoma MDA-MB-231, and non-small cell lung carcinoma H1299 and A549 cells. Expression of RGS20 enhanced cell aggregation, migration, invasion and adhesion as determined by hanging drop aggregation, wound healing, transwell chamber migration and invasion assays. Conversely, shRNA-mediated knockdown of endogenous RGS20 impaired these responses. In addition, RGS20 elevated the expression of vimentin (a mesenchymal cell marker) but down-regulated the expression of E-cadherin, two indicators commonly associated with metastasis. These results suggest that the expression of RGS20 may promote metastasis of tumor cells.

  14. Non-invasive, serum DNA pregnancy testing leading to incidental discovery of cancer: a good thing?

    Science.gov (United States)

    Prasad, Vinay

    2015-11-01

    Cell-free DNA for perinatal screening is a growing industry. Non-invasive prenatal testing (NIPT) is based on the premise that foetal DNA is able to cross the placental barrier and enter the mother's circulation, where it can be examined for chromosomal abnormalities, such as trisomy 13, 18 or 21. Such tests are expected to be widely used by pregnant women, with the annual market expected to surpass $1 billion. Recently, a number of case reports have emerged in the haematology-oncology literature. The routine use of NIPT has led to the discovery of maternal neoplasms. Most writers have concluded that this is yet another benefit of the test; however, a closer examination of the cases reveals that this incidental detection may not improve patient outcomes. In some cases, early detection provides lead time bias, but does not change the ultimate clinical outcome, and in other cases, detection constitutes earlier knowledge of a cancer whose natural history cannot be altered. Here, we explore in detail cases where cancer was incidentally discovered among women undergoing routine non-invasive pregnancy testing, and investigate whether or not these women were benefitted by the discovery.

  15. Curcumin inhibits LPA-induced invasion by attenuating RhoA/ROCK/MMPs pathway in MCF7 breast cancer cells.

    Science.gov (United States)

    Sun, Kai; Duan, Xiaoyi; Cai, Hui; Liu, Xiaohong; Yang, Ya; Li, Min; Zhang, Xiaoyun; Wang, Jiansheng

    2016-02-01

    Breast cancer generally shows poor prognosis because of its invasion and metastasis. Lysophosphatidic acid (LPA) induces and aggravates cancer invasion and metastasis by activating its downstream signal pathways. RhoA/ROCK/MMP signaling was found one of the LPA-induced pathways, which may be involved in invasion of breast cancer. Furthermore, we investigated whether this pathway was involved in curcumin's effect against LPA-induced invasion. LPA incubation was used to enhance invasion of MCF-7 breast cancer cells. RhoA expression was knocked-down by siRNA technique. MTT assay was used to evaluate the proliferation. Transwell assay was utilized to investigate the invasion ability of MCF-7 cells. Real-time PCR and Western blotting were used to assess the expressions of RhoA, ROCK1, ROCK2, MMP2 and MMP9 at both translational and transcriptional levels. The RhoA and ROCK activities were also evaluated. LPA incubation significantly boosted invasion rate of MCF-7. RhoA silencing by siRNA dramatically inhibited LPA-enhanced invasion. Concurrently, RhoA and ROCK activities and expression levels of RhoA, ROCK1, ROCK2, MMP2 and MMP9 were down-regulated by RhoA siRNA transfection. In order to avoid influence of cytotoxicity of curcumin, concentrations below 45 μmol/L were selected to further investigate the mechanism of curcumin's anti-invasion effect. Invasion of LPA-incubated MCF-7 cells was impaired by curcumin in a concentration-dependent manner. Concurrently, RhoA and ROCK activities and expression levels of RhoA, ROCK1, ROCK2, MMP2 and MMP9 were down-regulated by curcumin in a concentration-dependent manner. In conclusion, RhoA/ROCK/MMPs pathway activation is involved in LPA-induced invasion in MCF-7 cells; curcumin inhibited LPA-induced invasion in MCF-7 cells by attenuating RhoA/ROCK/MMPs pathway.

  16. Epidermal growth factor mediates detachment from and invasion through collagen I and Matrigel in Capan-1 pancreatic cancer cells

    Directory of Open Access Journals (Sweden)

    Kuver Rahul

    2005-03-01

    Full Text Available Abstract Background Pancreatic adenocarcinoma is a highly invasive neoplasm. Epidermal growth factor (EGF and its receptor are over expressed in pancreatic cancer, and expression correlates with invasion and metastasis. We hypothesized that EGF receptor and integrin signalling pathways interact in mediating cellular adhesion and invasion in pancreatic cancer, and that invasiveness correlates temporally with detachment from extracellular matrix. Methods We tested this hypothesis by investigating the role of EGF in mediating adhesion to and invasion through collagen I and Matrigel in the metastatic pancreatic adenocarcinoma cell line Capan-1. Adhesion and invasion were measured using in vitro assays of fluorescently-labeled cells. Adhesion and invasion assays were also performed in the primary pancreatic adenocarcinoma cell line MIA PaCa-2. Results EGF inhibited adhesion to collagen I and Matrigel in Capan-1 cells. The loss of adhesion was reversed by AG825, an inhibitor of erbB2 receptor signalling and by wortmannin, a PI3K inhibitor, but not by the protein synthesis inhibitor cycloheximide. EGF stimulated invasion through collagen I and Matrigel at concentrations and time courses similar to those mediating detachment from these extracellular matrix components. Adhesion to collagen I was different in MIA PaCa-2 cells, with no significant change elicited following EGF treatment, whereas treatment with the EGF family member heregulin-alpha elicited a marked increase in adhesion. Invasion through Matrigel in response to EGF, however, was similar to that observed in Capan-1 cells. Conclusion An inverse relationship exists between adhesion and invasion capabilities in Capan-1 cells but not in MIA PaCa-2 cells. EGF receptor signalling involving the erbB2 and PI3K pathways plays a role in mediating these events in Capan-1 cells.

  17. Heme oxygenase-1 in pregnancy and cancer: similarities in cellular invasion, cytoprotection, angiogenesis, and immunomodulation

    Directory of Open Access Journals (Sweden)

    Hui eZhao

    2015-01-01

    Full Text Available Pregnancy can be defined as a permissible process, where a semi-allogeneic fetus and placenta are allowed to grow and survive within the mother. Similarly, in tumor growth, antigen-specific malignant cells proliferate and evade into normal tissues of the host. The microenvironments of the placenta and tumors are amazingly comparable, sharing similar mechanisms exploited by fetal or cancer cells with regard to surviving in a hypoxic microenvironment, invading tissues via degradation and vasculogenesis, and escaping host attack through immune privilege. Heme oxygease-1 (HO-1 is a stress-response protein that has anti-oxidative, anti-apoptotic, pro-angiogenic, and anti-inflammatory properties. Although a large volume of research has been published in recent years investigating the possible role(s of HO-1 in pregnancy and in cancer development, the molecular mechanisms that regulate these yin-yang processes have still not been fully elucidated. Here, we summarize and compare pregnancy and cancer development, focusing primarily on the function of HO-1 in cellular invasion, cytoprotection, angiogenesis, and immunomodulation. Due to the similarities of both processes, a thorough understanding of the molecular mechanisms of each process may reveal and guide the development of new approaches to prevent not only pregnancy disorders; but also, to study cancer.

  18. Amygdalin-mediated inhibition of non-small cell lung cancer cell invasion in vitro.

    Science.gov (United States)

    Qian, Liyu; Xie, Bo; Wang, Yaguo; Qian, Jun

    2015-01-01

    Lung cancer is a common malignant tumor claiming the highest fatality worldwide for a long period of time. Unfortunately, most of the current treatment methods are still based on the characteristics of cancer cells in the primary lesion and the prognosis is often much poorer in patients with metastatic cancers. Amygdalin, a natural product of glycosides and lots of evidence shows that amygdalin can inhibit the proliferation of some kinds of cancer cells. In this study, we first obtained the highly metastatic NSCLC cell lines H1299/M and PA/M and further treated these cells with amygdalin. We found that the in vitro proliferability of H1299/M and PA/M was inhibited, but such inhibition required higher concentration of amygdalin. When lower concentration of amygdalin was used for the experiments, we observed that the in vitro invasive and migration capacities of H1299/M and PA/M were significantly inhibited. These results strongly suggested that amygdalin was likely to have anti-metastatic NSCLC effect. This study offers information of the role of amygdalin that may be useful as a therapeutic target in lung tumors.

  19. PFTK1 regulates cell proliferation, migration and invasion in epithelial ovarian cancer.

    Science.gov (United States)

    Zhang, Weiwei; Liu, Rong; Tang, Chunhui; Xi, Qinghua; Lu, Shumin; Chen, Wenjuan; Zhu, Lianxin; Cheng, Jialin; Chen, Yannan; Wang, Wei; Zhong, Jianxin; Deng, Yan

    2016-04-01

    PFTK1, also named Cyclin-Dependent Kinase 14 (CDK14), is a member of the cell division cycle 2 (CDC2)-related protein kinase family. It is a serine/threonine-protein kinase involved in the regulation of cell cycle progression and cell proliferation. In this study, we investigated the role of PFTK1 in epithelial ovarian cancer (EOC) development. The expression of PFTK1 was detected by Western blot and immunohistochemistry staining, both of which demonstrated that PFTK1 was overexpressed in EOC tissues and cells. Statistical analysis showed the expression of PFTK1 was associated with multiple clinicopathological factors, including tumor grade, FIGO stage, lymph node metastatis, Ki-67 expression and predicted a poor prognosis of EOC patients. With in vitro studies we found that PFTK1 expression was decreased in serum-starved ovarian cancer cells, and progressively increased after serum-re-feeding. Knocking PFTK1 down by small interfering RNA (siRNA) significantly inhibited ovarian cancer cell proliferation, migration and invasion. Taken together, our study suggested that PFTK1 played an important role in ovarian cancer development.

  20. Relationship between CYP1A1 polymorphisms and invasion and metastasis of breast cancer

    Institute of Scientific and Technical Information of China (English)

    Hua Wang; Wen-Jian Wang

    2013-01-01

    Objective:To investigate the relationship betweenCYP1A1 genetic polymorphisms and the invasion and metastasis of breast cancer.Methods:TheCYP1A1 gene polymorphism(anT-C transversion at nucleotide position3801) was detected by the polymerase chain reaction and restriction fragment length polymorphism in80 cases with breast cancer and60 samples of normal breast tissue.The difference in genotypic distribution frequency between the groups, the correlation between the genotypes and the factors related to prognosis were analyzed.Results:The incidence of homozygous and variant genotypes had no difference between the breast cancer group and controls group(P=0.746).The proportion of variant genotype increased as clinical stage(P=0.006) advanced, as well as with increased numbers of lymph node metastases(P=0.010). Conclusions:In patients with breast cancer there is a correlation between theCYP1A1CC allele and some factors indicating poor prognosis, including more lymph node metastases as well as a more advanced clinical stage.

  1. Mycophenolic acid inhibits migration and invasion of gastric cancer cells via multiple molecular pathways.

    Directory of Open Access Journals (Sweden)

    Boying Dun

    Full Text Available Mycophenolic acid (MPA is the metabolized product and active element of mycophenolate mofetil (MMF that has been widely used for the prevention of acute graft rejection. MPA potently inhibits inosine monophosphate dehydrogenase (IMPDH that is up-regulated in many tumors and MPA is known to inhibit cancer cell proliferation as well as fibroblast and endothelial cell migration. In this study, we demonstrated for the first time MPA's antimigratory and anti-invasion abilities of MPA-sensitive AGS (gastric cancer cells. Genome-wide expression analyses using Illumina whole genome microarrays identified 50 genes with ≥2 fold changes and 15 genes with > 4 fold alterations and multiple molecular pathways implicated in cell migration. Real-time RT-PCR analyses of selected genes also confirmed the expression differences. Furthermore, targeted proteomic analyses identified several proteins altered by MPA treatment. Our results indicate that MPA modulates gastric cancer cell migration through down-regulation of a large number of genes (PRKCA, DOCK1, INF2, HSPA5, LRP8 and PDGFRA and proteins (PRKCA, AKT, SRC, CD147 and MMP1 with promigratory functions as well as up-regulation of a number of genes with antimigratory functions (ATF3, SMAD3, CITED2 and CEAMCAM1. However, a few genes that may promote migration (CYR61 and NOS3 were up-regulated. Therefore, MPA's overall antimigratory role on cancer cells reflects a balance between promigratory and antimigratory signals influenced by MPA treatment.

  2. Non-invasive optical detection of esophagus cancer based on urine surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Huang, Shaohua; Wang, Lan; Chen, Weiwei; Lin, Duo; Huang, Lingling; Wu, Shanshan; Feng, Shangyuan; Chen, Rong

    2014-09-01

    A surface-enhanced Raman spectroscopy (SERS) approach was utilized for urine biochemical analysis with the aim to develop a label-free and non-invasive optical diagnostic method for esophagus cancer detection. SERS spectrums were acquired from 31 normal urine samples and 47 malignant esophagus cancer (EC) urine samples. Tentative assignments of urine SERS bands demonstrated esophagus cancer specific changes, including an increase in the relative amounts of urea and a decrease in the percentage of uric acid in the urine of normal compared with EC. The empirical algorithm integrated with linear discriminant analysis (LDA) were employed to identify some important urine SERS bands for differentiation between healthy subjects and EC urine. The empirical diagnostic approach based on the ratio of the SERS peak intensity at 527 to 1002 cm-1 and 725 to 1002 cm-1 coupled with LDA yielded a diagnostic sensitivity of 72.3% and specificity of 96.8%, respectively. The area under the receive operating characteristic (ROC) curve was 0.954, which further evaluate the performance of the diagnostic algorithm based on the ratio of the SERS peak intensity combined with LDA analysis. This work demonstrated that the urine SERS spectra associated with empirical algorithm has potential for noninvasive diagnosis of esophagus cancer.

  3. Curcumin inhibits invasive capabilities through epithelial mesenchymal transition in breast cancer cell lines.

    Science.gov (United States)

    Gallardo, Marcela; Calaf, Gloria M

    2016-09-01

    Curcumin (diferuloyl methane) is an antioxidant that exerts antiproliferative and apoptotic effects and has anti-invasive and anti-metastatic properties. Evidence strongly implicates that epithelial-mesenchymal transition (EMT) is involved in malignant progression affecting genes such as Slug, AXL and Twist1. These genes are abnormally expressed in many tumors and favor metastasis. The purpose of this study was to determine the potential effect of curcumin on EMT, migration and invasion. Triple-positive and triple-negative breast cancer cell lines for estrogen receptor (ER), progesterone receptor (PgR) and HER/neu were used: i) MCF-10F, a normal immortalized breast epithelial cell line (negative), ii) Tumor2, a malignant and tumorigenic cell line (positive) derived from Alpha5 cell line injected into the immunologically depressed mice and transformed by 60/60 cGy doses of high LET (linear energy transfer) α particles (150 keV/µm) of radiation and estrogen, and iii) a commercially available MDA-MB‑231 (negative). The effect of curcumin (30 µM for 48 h) was evaluated on expression of EMT-related genes by RT-qPCR. Results showed that curcumin decreased E-cadherin, N-cadherin, β-catenin, Slug, AXL, Twist1, Vimentin and Fibronectin protein expression, independently of the positivity of the markers in the cell lines. Curcumin also decreased migration and invasive capabilities in comparison to their own controls. It can be concluded that curcumin influenced biochemical changes associated with EMT-related genes that seems to promote such transition and are at the core of several signaling pathways that mediate the transition. Thus, it can be suggested that curcumin is able to prevent or delay cancer progression through the interruption of this process.

  4. Treatment results of radiation therapy for muscle-invasive bladder cancer

    Energy Technology Data Exchange (ETDEWEB)

    Langsenlehner, Tanja; Doeller, Carmen; Stranzl-Lawatsch, Heidi; Kapp, Karin S. [Univ. Clinic of Therapeutic Radiology and Oncology, Medical Univ. of Graz (Austria); Quehenberger, Franz [Inst. for Medical Informatics, Statistics and Documentation, Medical Univ. of Graz (Austria); Langsenlehner, Uwe [Internal Outpatient Dept., Steiermaerkische GKK, Graz (Austria); Pummer, Karl [Dept. of Urology, Medical Univ. of Graz (Austria)

    2010-04-15

    Purpose: To assess local control and survival rates in patients with muscle-invasive bladder cancer treated with external-beam radiotherapy and to investigate prognostic factors. Patients and methods: Between 1997 and 2007, 75 patients (male, n = 58; female, n = 17, median age, 74.2 years) with localized transitional cell carcinoma of the bladder (T2, n = 34; T3, n = 32; T4, n = 9) not suitable for radical surgery due to advanced age, comorbidity or inoperability underwent external-beam radiotherapy without simultaneous chemotherapy at the University Clinic of Therapeutic Radiology and Oncology, Medical University of Graz, Austria. A conformal four-field technique was used in all patients to treat the tumor and regional lymph nodes with single daily fractions of 1.8-2 Gy to a total dose of 50-50.4 Gy, followed by a cone-down to encompass the empty bladder which was boosted to 70-70.4 Gy. All patients had undergone transurethral tumor resection prior to radiotherapy which was macroscopically incomplete in 62 patients. Results: Complete response was achieved in 65% of patients. Actuarial 3-year local control and metastases-free survival rates were 52.5% and 63.7%, 3-year local recurrence-free survival rate in complete responders was 71%. In univariate analysis, hydronephrosis, lymph vessel invasion, and macroscopic residual tumor were significantly predictive of disease progression. Hydronephrosis and lymph vessel invasion were also associated with a higher risk of local recurrence. The actuarial 3-year progression-free and overall survival rates were 40.1% and 56.9%, respectively. Conclusion: Radiotherapy is an effective treatment option in terms of local control and survival even in elderly patients with locally advanced bladder cancer not suitable for cystectomy. (orig.)

  5. Addressing future challenges for cancer services: part II.

    Science.gov (United States)

    Maher, Jane; Radford, Gina

    2016-02-01

    Jane Maher & Gina Radford speak to Gemma Westcott, Commissioning Editor Jane Maher has been Macmillan's Chief Medical Officer since 1999 and now shares the role as Joint Chief Medical Officer with general practitioner Rosie Loftus, reflecting the growing need for specialists and generalists to work more effectively together. She has been an National Health Service (NHS) improvement clinical leader for over 10 years and is a Consultant Clinical Oncologist at Mount Vernon Cancer Centre and Hillingdon Hospital where she has worked for more than 20 years, during which she helped develop nonsurgical oncology services in five district general hospitals. She is a senior Clinical Lecturer at University College London and Visiting Professor in Cancer and Supportive Care at the Centre for Complexity Management at the University of Hertfordshire. Jane chaired the Maher Committee for the Department of Health in 1995, led the UK National Audit of Late Effects Pelvic Radiotherapy for the Royal College of Radiologists (RCR) in 2000 and, most recently, chaired the National Cancer Survivorship Initiative Consequences of Treatment work stream. She co-founded one of the first Cancer Support and Information services in the UK, winning the Nye Bevan award in 1992 and there are now more than 60 units based on this model. She is a member of the Older People and Cancer Clinical Advisory Group. She has written more than 100 published articles and is a UK representative for cancer survivorship in Europe and advises on cancer survivorship programs in Denmark and Canada. Gina Radford is Deputy Chief Medical Officer for England, a post she took up in January 2015. Prior to that, she has held a number of roles in public health, at local and regional level. Most recently she was Centre Director for Anglia and Essex for Public Health England, and as a part of that role helped lead nationally on the public health response to Ebola. She was until very recently Chair of one of the NICE public health

  6. Biological and clinical implications of nicastrin expression in invasive breast cancer.

    Science.gov (United States)

    Filipović, Aleksandra; Gronau, Julian Hendrik; Green, Andrew R; Wang, Jayson; Vallath, Sabari; Shao, Dongmin; Rasul, Sabeena; Ellis, Ian O; Yagüe, Ernesto; Sturge, Justin; Coombes, R Charles

    2011-01-01

    Nicastrin is an essential component of the gamma secretase (GS) enzyme complex, required for its synthesis and recognition of substrates for proteolytic cleavage. The purpose of this study was to investigate whether nicastrin has prognostic value or potential as a therapeutic target in breast cancer (BC). The suitability of nicastrin as a target in BC was assessed using BC tissue microarrays (TMAs) (n = 1050), and its biological role in vitro was evaluated in BC cell lines following gene silencing. Nicastrin blocking antibodies were developed and evaluated for their suitability as potential clinical therapeutics. TMA and cell line analysis confirmed that nicastrin expression was upregulated in BC compared to normal breast cells. In TMA patient samples, high nicastrin expression was observed in 47.5% of cases and correlated with ERα expression, patient age, and tumor grade. In pre-defined subset analysis, high nicastrin expression predicted for worse BC specific survival in the ERα -ve cohort. In vitro gene silencing of nicastrin resulted in disruption of the GS complex and a decrease in notch1 cleavage. This was sufficient to increase E-cadherin expression and its co-localization with p120 catenin at cell-cell junctions in MCF7 cells. Nicastrin silencing in invasive MDA-MB-231 cells resulted in loss of vimentin expression and a marked reduction in both cell motility and invasion; which was concomitant with the de novo formation of cell-cell junctions characterized by the colocalization of p120 catenin and F-actin. These data indicate that nicastrin can function to maintain epithelial to mesenchymal transition during BC progression. Anti-nicastrin polyclonal and monoclonal antibodies were able to decrease notch1 and vimentin expression and reduced the invasive capacity of BC cells in vitro. This supports our hypothesis that a nicastrin blocking antibody could be used to limit metastatic dissemination in invasive BC.

  7. MAGI1 inhibits migration and invasion via blocking MAPK/ERK signaling pathway in gastric cancer

    Science.gov (United States)

    Jia, Shuqin; Lu, Jiajia; Qu, Tingting; Feng, Yi; Wang, Xiaohong; Liu, Caixia; Ji, Jiafu

    2017-01-01

    Objective To explore the association of membrane-associated guanylate kinase inverted 1 (MAGI1) with gastric cancer (GC) and the related molecular mechanisms. Methods The reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry (IHC) were utilized to measure the MAGI1 expression level in GC tissues. Quantitative real-time PCR and Western blotting were used to ensure the MAGI1 expression in GC cell lines. Small hairpin RNA (shRNA) was applied for knockdown of endogenous MAGI1 in GC cells. MTT assay and colony formation assay, scratch wounding migration assay and transwell chamber migration assay, as well as transwell chamber invasion assay were employed respectively to investigate the GC cell proliferation, migration and invasion in MAGI1-knockdown and control GC cells. The potential molecular mechanism mediated by MAGI1 was studied using Western blotting and RT- PCR. Results RT-PCR and IHC verified MAGI1 was frequently expressed in matched adjacent noncancerous mucosa compared with GC tissues and the expression of MAGI1 was related to clinical pathological parameters. Functional assays indicated that MAGI1 knockdown significantly promoted GC cell migration and invasion. Further mechanism investigation demonstrated that one pathway of MAGI1 inhibiting migration and invasion was mainly by altering the expression of matrix metalloproteinases (MMPs) and epithelial-mesenchymal transition (EMT)-related molecules via inhibiting MAPK/ERK signaling pathway. Conclusions MAGI1 was associated with GC clinical pathological parameters and acted as a tumor suppressor via inhibiting of MAPK/ERK signaling pathway in GC. PMID:28373751

  8. Phosphatidylinositol 4-phosphate in the Golgi apparatus regulates cell-cell adhesion and invasive cell migration in human breast cancer.

    Science.gov (United States)

    Tokuda, Emi; Itoh, Toshiki; Hasegawa, Junya; Ijuin, Takeshi; Takeuchi, Yukiko; Irino, Yasuhiro; Fukumoto, Miki; Takenawa, Tadaomi

    2014-06-01

    Downregulation of cell-cell adhesion and upregulation of cell migration play critical roles in the conversion of benign tumors to aggressive invasive cancers. In this study, we show that changes in cell-cell adhesion and cancer cell migration/invasion capacity depend on the level of phosphatidylinositol 4-phosphate [PI(4)P] in the Golgi apparatus in breast cancer cells. Attenuating SAC1, a PI(4)P phosphatase localized in the Golgi apparatus, resulted in decreased cell-cell adhesion and increased cell migration in weakly invasive cells. In contrast, silencing phosphatidylinositol 4-kinase IIIβ, which generates PI(4)P in the Golgi apparatus, increased cell-cell adhesion and decreased invasion in highly invasive cells. Furthermore, a PI(4)P effector, Golgi phosphoprotein 3, was found to be involved in the generation of these phenotypes in a manner that depends on its PI(4)P-binding ability. Our results provide a new model for breast cancer cell progression in which progression is controlled by PI(4)P levels in the Golgi apparatus.

  9. MicroRNA-124 inhibits cellular proliferation and invasion by targeting Ets-1 in breast cancer.

    Science.gov (United States)

    Li, Wentao; Zang, Wenqiao; Liu, Pei; Wang, Yuanyuan; Du, Yuwen; Chen, Xiaonan; Deng, Meng; Sun, Wencong; Wang, Lei; Zhao, Guoqiang; Zhai, Baoping

    2014-11-01

    MicroRNAs (miRNAs) are small non-coding RNAs that, by targeting certain messenger RNAs (mRNAs) for translational repression or cleavage, can regulate the expression of these genes. In addition, miRNAs may also function as oncogenes and tumor-suppressor genes, as the abnormal expression of miRNAs is associated with various human tumors. However, the effects of the expression of miR-124 in breast cancer remain unclear. The present study was conducted to study the expression of miR-124 in breast cancer, paying particular attention to miR-124's relation to the proliferation, invasion, and apoptosis in breast cancer cell MCF-7 and MDA-MB-231. Real-time quantitative RT-PCR (qRT-PCR) was performed to identify miR-124 that was down-regulated in breast cancer tissues. We also showed E26 transformation specific-1 (Ets-1) and miR-124 expression levels in breast cancer tissues that were associated with lymph node metastases. With transfected synthetic miR-124 agomir into MCF-7 and MDA-MB-231, a significant reduction (P Ets-1 as a potential major target gene of miR-124, and the result showed that miR-124 can bind to putative binding sites within the Ets-1 mRNA 3' untranslated region (UTR) to reduce its expression. Based on these findings, we propose that miR-124 and Ets-1 may serve as a therapeutic agent in breast cancer.

  10. A MAPK-Driven Feedback Loop Suppresses Rac Activity to Promote RhoA-Driven Cancer Cell Invasion.

    OpenAIRE

    2016-01-01

    Cell migration in 3D microenvironments is fundamental to development, homeostasis and the pathobiology of diseases such as cancer. Rab-coupling protein (RCP) dependent co-trafficking of α5β1 and EGFR1 promotes cancer cell invasion into fibronectin (FN) containing extracellular matrix (ECM), by potentiating EGFR1 signalling at the front of invasive cells. This promotes a switch in RhoGTPase signalling to inhibit Rac1 and activate a RhoA-ROCK-Formin homology domain-containing 3 (FHOD3) pathway ...

  11. miR-92a is upregulated in cervical cancer and promotes cell proliferation and invasion by targeting FBXW7

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Chuanyi [Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008 (China); Shen, Liangfang, E-mail: lfshen2008@163.com [Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008 (China); Mao, Lei; Wang, Bing; Li, Yang; Yu, Huizhi [Department of Radiation Oncology, Yueyang Second People' s Hospital, Yueyang 414000 (China)

    2015-02-27

    MicroRNAs (miRNAs) are involved in the cervical carcinogenesis and progression. In this study, we investigated the role of miR-92a in progression and invasion of cervical cancer. MiR-92a was significantly upregulated in cervical cancer tissues and cell lines. Overexpression of miR-92a led to remarkably enhanced proliferation by promoting cell cycle transition from G1 to S phase and significantly enhanced invasion of cervical cancer cells, while its knockdown significantly reversed these cellular events. Bioinformatics analysis suggested F-box and WD repeat domain-containing 7 (FBXW7) as a novel target of miR-92a, and miR-92a suppressed the expression level of FBXW7 mRNA by direct binding to its 3′-untranslated region (3′UTR). Expression of miR-92a was negatively correlated with FBXW7 in cervical cancer tissues. Furthermore, Silencing of FBXW7 counteracted the effects of miR-92a suppression, while its overexpression reversed oncogenic effects of miR-92a. Together, these findings indicate that miR-92a acts as an onco-miRNA and may contribute to the progression and invasion of cervical cancer, suggesting miR-92a as a potential novel diagnostic and therapeutic target of cervical cancer. - Highlights: • miR-92a is elevated in cervical cancer tissues and cell lines. • miR-92a promotes cervical cancer cell proliferation, cell cycle transition from G1 to S phase and invasion. • FBXW7 is a direct target of miR-92a. • FBXW7 counteracts the oncogenic effects of miR-92a on cervical cancer cells.

  12. Dimethylenastron suppresses human pancreatic cancer cell migration and invasion in vitro via allosteric inhibition of mitotic kinesin Eg5

    Institute of Scientific and Technical Information of China (English)

    Xiao-dong SUN; LIU Jun ZHOU; Xing-juan SHl; Xiao-ou SUN; You-guang LUO; Xiao-jing WU; Chang-fu YAO; Hai-yang YU; Deng-wen; LI Min

    2011-01-01

    The mitotic kinesin Eg5 plays a critical role in bipolar spindle assembly,and its inhibitors have shown impressive anticancer activity in preclinical studies.This study was undertaken to investigate the effect of dimethylenastron,a specific inhibitor of Eg5,on the migration and invasion of pancreatic cancer cells.Methods:Human pancreatic cancer cell lines PANC1,EPP85,BxPC3,CFPAC1,and AsPAC1 were used.Eg5 expression was examined using immunofluorescence microscopy.Cell migration and invasion were analyzed with wound healing and transwell assays.Cell pro-liferation was examined using sulforhodamine B and MTT assays.The binding of dimethylenastron to Eg5 was analyzed with a molecular modeling study,and the ADP release rate was examined with the MANT-ADP reagent.Results:Eg5 expression was 9-16-fold up-regulated in the 5 pancreatic cancer cell lines.Treatment of PANC1 pancreatic cancer cells with dimethylenastron (3 and 10 μmol/L) for 24 h suppressed the migratory ability of the cancer cells in a concentration-dependent manner.The invasion ability of the cancer cells was also reduced by the treatment.However,treatment of PANC1 cells with dimeth-ylenastron (3 and 10 μmol/L) for 24 h had no detectable effect on their proliferation,which was inhibited when the cancer cells were treated with the drug for 72 h.Molecular modeling study showed that dimethylenastron could allosterically inhibit the motor domain ATPase of Eg5 by decreasing the rate of ADP release.Conclusion:Dimethylenastron inhibits the migration and invasion of PANC1 pancreatic cancer cells,independent of suppressing the cell proliferation.The findings provide a novel insight into the mechanisms of targeting Eg5 for pancreatic cancer chemotherapy.

  13. KISS1R induces invasiveness of estrogen receptor-negative human mammary epithelial and breast cancer cells.

    Science.gov (United States)

    Cvetkovic, Donna; Dragan, Magdalena; Leith, Sean J; Mir, Zuhaib M; Leong, Hon S; Pampillo, Macarena; Lewis, John D; Babwah, Andy V; Bhattacharya, Moshmi

    2013-06-01

    Kisspeptins (KPs), peptide products of the KISS1 metastasis-suppressor gene, are endogenous ligands for a G protein-coupled receptor (KISS1R). KISS1 acts as a metastasis suppressor in numerous human cancers. However, recent studies have demonstrated that an increase in KISS1 and KISS1R expression in patient breast tumors correlates with higher tumor grade and metastatic potential. We have shown that KP-10 stimulates invasion of estrogen receptor α (ERα)-negative MDA-MB-231 breast cancer cells via transactivation of the epidermal growth factor receptor (EGFR). Here, we report that either KP-10 treatment of ERα-negative nonmalignant mammary epithelial MCF10A cells or expression of KISS1R in MCF10A cells induced a mesenchymal phenotype and stimulated invasiveness. Similarly, exogenous expression of KISS1R in ERα-negative SKBR3 breast cancer cells was sufficient to trigger invasion and induced extravasation in vivo. In contrast, KP-10 failed to transactivate EGFR or stimulate invasiveness in the ERα-positive MCF7 and T47D breast cancer cells. This suggested that ERα negatively regulates KISS1R-dependent breast cancer cell migration, invasion, and EGFR transactivation. In support of this, we found that these KP-10-induced effects were ablated upon exogenous expression of ERα in the MDA-MB-231 cells, by down-regulating KISS1R expression. Lastly, we have identified IQGAP1, an actin cytoskeletal binding protein as a novel binding partner of KISS1R, and have shown that KISS1R regulates EGFR transactivation in breast cancer cells in an IQGAP1-dependent manner. Overall, our data strongly suggest that the ERα status of mammary cells dictates whether KISS1R may be a novel clinical target for treating breast cancer metastasis.

  14. Evaluation of aqueous extracts of Taraxacum officinale on growth and invasion of breast and prostate cancer cells.

    Science.gov (United States)

    Sigstedt, Sophia C; Hooten, Carla J; Callewaert, Manika C; Jenkins, Aaron R; Romero, Anntherese E; Pullin, Michael J; Kornienko, Alexander; Lowrey, Timothy K; Slambrouck, Severine Van; Steelant, Wim F A

    2008-05-01

    Ethnotraditional use of plant-derived natural products plays a significant role in the discovery and development of potential medicinal agents. Plants of the genus Taraxacum, commonly known as dandelions, have a history of use in Chinese, Arabian and Native American traditional medicine, to treat a variety of diseases including cancer. To date, however, very few studies have been reported on the anti-carcinogenic activity of Taraxacum officinale (TO). In the present study, three aqueous extracts were prepared from the mature leaves, flowers and roots, and investigated on tumor progression related processes such as proliferation and invasion. Our results show that the crude extract of dandelion leaf (DLE) decreased the growth of MCF-7/AZ breast cancer cells in an ERK-dependent manner, whereas the aqueous extracts of dandelion flower (DFE) and root (DRE) had no effect on the growth of either cell line. Furthermore, DRE was found to block invasion of MCF-7/AZ breast cancer cells while DLE blocked the invasion of LNCaP prostate cancer cells, into collagen type I. Inhibition of invasion was further evidenced by decreased phosphorylation levels of FAK and src as well as reduced activities of matrix metalloproteinases, MMP-2 and MMP-9. This study provides new scientific data on TO and suggests that TO extracts or individual components present in the extracts may be of value as novel anti-cancer agents.

  15. Triptolide inhibits the migration and invasion of human prostate cancer cells via Caveolin-1/CD147/MMPs pathway.

    Science.gov (United States)

    Yuan, Shiqi; Wang, Liping; Chen, Xixi; Fan, Bo; Yuan, Qingmin; Zhang, Han; Yang, Deyong; Wang, Shujing

    2016-12-01

    Prostate cancer (PCa) is the second most common type of carcinoma and the 5th leading cause of cancer-related death in males. Triptolide, is a main and effective component of Tripterygium wilfordii Hook F, which exerts an broad-spectrum anti-malignant tumor function. However, the effect of triptolide on migration and invasion of human prostate cancer cells is still poorly understood. In this study, we demonstrated that triptolide significantly inhibited the proliferation, migration and invasion of prostate cancer cells in a time- and dose-dependent manner. Caveolin-1 (Cav-1) is regarded as a major structural protein of caveolae and participated in lipid transport, signal transduction and tumor progression. Triptolide treatment inhibited the expression of tumor promoter Cav-1 and reduced CD147 and MMPs activities at both mRNA and protein levels. Meanwhile, triptolide treatment combined with Cav-1 knockdown in PCa cells enhanced the effects of anti-migration and anti-invasion, and those effects were restored following Cav-1-rescued. Together, our research indicates that triptolide represses the migration and invasion through Cav-1/CD147/MMPs pathway in PCa cells, which gives a better understanding of triptolide in clinical aggressive prostate cancer therapy.

  16. P2X(7) receptor activation enhances SK3 channels- and cystein cathepsin-dependent cancer cells invasiveness.

    Science.gov (United States)

    Jelassi, B; Chantôme, A; Alcaraz-Pérez, F; Baroja-Mazo, A; Cayuela, M L; Pelegrin, P; Surprenant, A; Roger, S

    2011-05-05

    ATP-gated P2X(7) receptors (P2X(7)R) are unusual plasma membrane ion channels that have been extensively studied in immune cells. More recently, P2X(7)R have been described as potential cancer cell biomarkers. However, mechanistic links between P2X(7)R and cancer cell processes are unknown. Here, we show, in the highly aggressive human breast cancer cell line MDA-MB-435s, that P2X(7) receptor is highly expressed and fully functional. Its activation is responsible for the extension of neurite-like cellular prolongations, of the increase in cell migration by 35% and in cell invasion through extracellular matrix by 150%. The change in cancer cell morphology and the increased migration appeared to be due to the activation of Ca(2+)-activated SK3 potassium channels. The enhanced invasion through the extracellular matrix was related to the increase of mature forms of cysteine cathepsins in the extracellular medium, which was independent of SK3 channel activity and not associated with cell death. Pharmacological targeting of P2X(7)R in vivo was crucial for cell invasiveness in a zebrafish model of metastases. Our results demonstrate a novel mechanistic link between P2X(7)R functionality in cancer cells and invasiveness, a key parameter in tumour growth and in the development of metastases. They also suggest a potential therapeutic role for the newly developed P2X(7)R antagonists.

  17. Ionizing Radiation Promotes Migration and Invasion of Cancer Cells Through Transforming Growth Factor-Beta-Mediated Epithelial-Mesenchymal Transition

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Yongchun [Department of Radiation Oncology, Xijing Hospital Fourth Military Medical University, Xi' an (China); Department of Radiation Medicine, College of Preventive Medicine, Xijing Hospital Fourth Military Medical University, Xi' an (China); Liu Junye; Li Jing; Zhang Jie [Department of Radiation Medicine, College of Preventive Medicine, Xijing Hospital Fourth Military Medical University, Xi' an (China); Xu Yuqiao [Department of Pathology, Xijing Hospital Fourth Military Medical University, Xi' an (China); Zhang Huawei; Qiu Lianbo; Ding Guirong [Department of Radiation Medicine, College of Preventive Medicine, Xijing Hospital Fourth Military Medical University, Xi' an (China); Su Xiaoming [Department of Radiation Oncology, 306th Hospital of PLA, Beijing (China); Mei Shi [Department of Radiation Oncology, Xijing Hospital Fourth Military Medical University, Xi' an (China); Guo Guozhen, E-mail: guozhenguo@hotmail.com [Department of Radiation Medicine, College of Preventive Medicine, Xijing Hospital Fourth Military Medical University, Xi' an (China)

    2011-12-01

    Purpose: To examine whether ionizing radiation enhances the migratory and invasive abilities of cancer cells through transforming growth factor (TGF-{beta})-mediated epithelial-mesenchymal transition (EMT). Methods and Materials: Six cancer cell lines originating from different human organs were irradiated by {sup 60}Co {gamma}-ray at a total dose of 2 Gy, and the changes associated with EMT, including morphology, EMT markers, migration and invasion, were observed by microscope, Western blot, immunofluorescence, scratch assay, and transwell chamber assay, respectively. Then the protein levels of TGF-{beta} in these cancer cells were detected by enzyme-linked immunosorbent assay, and the role of TGF-{beta} signaling pathway in the effect of ionizing radiation on EMT was investigate by using the specific inhibitor SB431542. Results: After irradiation with {gamma}-ray at a total dose of 2 Gy, cancer cells presented the mesenchymal phenotype, and compared with the sham-irradiation group the expression of epithelial markers was decreased and of mesenchymal markers was increased, the migratory and invasive capabilities were strengthened, and the protein levels of TGF-{beta} were enhanced. Furthermore, events associated with EMT induced by IR in A549 could be reversed through inhibition of TGF-{beta} signaling. Conclusions: These results suggest that EMT mediated by TGF-{beta} plays a critical role in IR-induced enhancing of migratory and invasive capabilities in cancer cells.

  18. Small interfering RNA targeted to secretory clusterin blocks tumor growth, motility, and invasion in breast cancer

    Institute of Scientific and Technical Information of China (English)

    Zhaohe Niu; Xinhui Li; Bin Hu; Rong Li; Ligang Wang; Lilin Wu; Xingang Wang

    2012-01-01

    Clusterin/apolipoprotein J (Clu) is a ubiquitously expressed secreted heterodimeric glycoprotein that is implicated in several physiological processes.It has been reported that the elevated level of secreted clusterin (sClu) protein is associated with poor survival in breast cancer patients and can induce metastasis in rodent models.In this study,we investigated the effects of sClu inhibition with small interfering RNAs (siRNAs) on cell motility,invasion,and growth in vitro and in vivo.MDA-MB-231 cells were transfected with pSuper-siRNA/sClu.Cell survival and proliferation were examined by 3-(4,5-dimethyl-thiazol-2yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium and clonogenic survival assay.The results showed that sClu silencing significantly inhibited the proliferation of MDA-MB-231 cells.The invasion and migration ability were also dramatically decreased,which was detected by matrigel assays.TUNEL staining and caspase-3 activity assay demonstrated that sClu silencing also could increase the apoptosis rate of cells,resulting in the inhibition of cell growth.We also determined the effects of sClu silencing on tumor growth and metastatic progression in an orthotopic breast cancer model.The results showed that orthotopic primary tumors derived from MDA-MB-231/pSuper sClu siRNA cells grew significantly slower than tumors derived from parental MDA-MB-231 or MDA-MB-231/pSuper scramble siRNA cells,and metastasize less to the lungs.These data suggest that secretory clusterin plays a significant role in tumor growth and metastatic progression.Knocking-down sClu gene expression may provide a valuable method for breast cancer therapy.

  19. Preoperative balloon occluded arterial infusion chemotherapy for locally invasive bladder cancer. Accurate staging for bladder preservation

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Norio; Arima, Kiminobu; Kawamura, Juichi [Mie Univ., Tsu (Japan). School of Medicine; Tochigi, Hiromi

    1999-02-01

    The possibility of bladder preservation by preoperative balloon occluded arterial infusion (BOAI) chemotherapy was studied in 111 patients with locally invasive bladder cancer. BOAI was performed by blocking the blood flow of the internal iliac artery and by performing intra-arterial infusion of adriamycin (50 mg/body) and cisplatin (100 mg/body). Before BOAI the clinical diagnosis was T2 in 36, T3a in 29, T3b in 27, T4 in 11 and after BOAI it was T0 in 1, T1 in 27, T2 in 25, T3a in 20, T3b in 20, and T4 in 10. Down staging was observed on diagnostic images in 46.6%. Thirty patients (27.0%) received transurethral resection of bladder tumor (TUR-Bt) and their bladder could be preserved. The 5-year cancer-specific survival rate was 100% in pT0 (n=9), 97.5% in pT1 (n=47), 79.9% in pT2 (n=21), 80.0% in pT3a (n=6), 39.9% in pT3b (n=18) and 51.9% in pT4 cases (n=9). For the bladder preservation, accurate staging diagnosis is required. Since 1992, endorectal magnetic resonance imaging (MRI) has been used in addition to imaging diagnosis for improving the accuracy of staging diagnosis. The accuracies of staging diagnosis with and without endorectal MRI were 62.5% and 44.0%, respectively. BOAI as a neoadjuvant chemotherapy has the possibility of bladder-preserving therapy in locally invasive bladder cancer. Also, the endorectal MRI can improve the accuracy of staging diagnosis, which is important for the bladder preservation. (author)

  20. Invasion and metastasis ability of renal cancer cell strains 786-0: under the influence of miR-141.

    Science.gov (United States)

    Xu, Y; Lv, L N; Guo, Z Y; Zhang, W

    2016-01-01

    This study aimed to explore the invasion and metastasis ability of miR-141 in 786-0 renal cancer tissue cells, as well as identify the key function of endogenous miR-141 in adjustment and control of malignant activities of renal cancer. The renal cancer cell strain with overexpression of miR-141 and its control renal cancer cell line were constructed; methyl thiazolyl tetrazolium (MTT) assay was adopted to measure proliferation of renal cancer cells; Transwell assay was performed to measure the invasion and metastasis ability of cells; MTT assay and fluorescence activated cell sorting (FACS) were used for measurement of cell apoptosis and drug susceptibility. Results indicated that the expression of miR-141 in 786-0 cells could be significantly increased 400-fold by slow viruses that contained miR-141; moreover, c omprehensive functions showed that miR-141 inhibited the invasion and metastasis ability of renal cancer cells to a great extent (p less than 0.001), partially inhibited cell growth (p less than 0.05) and also induced cell cycle to be arrested in G0/G1 as well as reducing the number of cells in S phase (DNA replicative phase). Moreover, miR-141 could not induce morphologic changes of renal cancer cells, had no direct stimulating effect on cell apoptosis and could not improve the drug susceptibility of renal cancer cells to drugs such as cis-Dichlorodiamineplatinum (DDP), 5-fluorouracil (5-FU) and tumor-related apoptosis-inducing ligand (TRAIL). In conclusion, miR-141 can be considered an important cancer suppressor gene of renal cancer by inhibiting proliferation and metastasis of renal cancer cells.

  1. A MAPK-Driven Feedback Loop Suppresses Rac Activity to Promote RhoA-Driven Cancer Cell Invasion.

    Science.gov (United States)

    Hetmanski, Joseph H R; Zindy, Egor; Schwartz, Jean-Marc; Caswell, Patrick T

    2016-05-01

    Cell migration in 3D microenvironments is fundamental to development, homeostasis and the pathobiology of diseases such as cancer. Rab-coupling protein (RCP) dependent co-trafficking of α5β1 and EGFR1 promotes cancer cell invasion into fibronectin (FN) containing extracellular matrix (ECM), by potentiating EGFR1 signalling at the front of invasive cells. This promotes a switch in RhoGTPase signalling to inhibit Rac1 and activate a RhoA-ROCK-Formin homology domain-containing 3 (FHOD3) pathway and generate filopodial actin-spike protrusions which drive invasion. To further understand the signalling network that drives RCP-driven invasive migration, we generated a Boolean logical model based on existing network pathways/models, where each node can be interrogated by computational simulation. The model predicted an unanticipated feedback loop, whereby Raf/MEK/ERK signalling maintains suppression of Rac1 by inhibiting the Rac-activating Sos1-Eps8-Abi1 complex, allowing RhoA activity to predominate in invasive protrusions. MEK inhibition was sufficient to promote lamellipodia formation and oppose filopodial actin-spike formation, and led to activation of Rac and inactivation of RhoA at the leading edge of cells moving in 3D matrix. Furthermore, MEK inhibition abrogated RCP/α5β1/EGFR1-driven invasive migration. However, upon knockdown of Eps8 (to suppress the Sos1-Abi1-Eps8 complex), MEK inhibition had no effect on RhoGTPase activity and did not oppose invasive migration, suggesting that MEK-ERK signalling suppresses the Rac-activating Sos1-Abi1-Eps8 complex to maintain RhoA activity and promote filopodial actin-spike formation and invasive migration. Our study highlights the predictive potential of mathematical modelling approaches, and demonstrates that a simple intervention (MEK-inhibition) could be of therapeutic benefit in preventing invasive migration and metastasis.

  2. A MAPK-Driven Feedback Loop Suppresses Rac Activity to Promote RhoA-Driven Cancer Cell Invasion.

    Directory of Open Access Journals (Sweden)

    Joseph H R Hetmanski

    2016-05-01

    Full Text Available Cell migration in 3D microenvironments is fundamental to development, homeostasis and the pathobiology of diseases such as cancer. Rab-coupling protein (RCP dependent co-trafficking of α5β1 and EGFR1 promotes cancer cell invasion into fibronectin (FN containing extracellular matrix (ECM, by potentiating EGFR1 signalling at the front of invasive cells. This promotes a switch in RhoGTPase signalling to inhibit Rac1 and activate a RhoA-ROCK-Formin homology domain-containing 3 (FHOD3 pathway and generate filopodial actin-spike protrusions which drive invasion. To further understand the signalling network that drives RCP-driven invasive migration, we generated a Boolean logical model based on existing network pathways/models, where each node can be interrogated by computational simulation. The model predicted an unanticipated feedback loop, whereby Raf/MEK/ERK signalling maintains suppression of Rac1 by inhibiting the Rac-activating Sos1-Eps8-Abi1 complex, allowing RhoA activity to predominate in invasive protrusions. MEK inhibition was sufficient to promote lamellipodia formation and oppose filopodial actin-spike formation, and led to activation of Rac and inactivation of RhoA at the leading edge of cells moving in 3D matrix. Furthermore, MEK inhibition abrogated RCP/α5β1/EGFR1-driven invasive migration. However, upon knockdown of Eps8 (to suppress the Sos1-Abi1-Eps8 complex, MEK inhibition had no effect on RhoGTPase activity and did not oppose invasive migration, suggesting that MEK-ERK signalling suppresses the Rac-activating Sos1-Abi1-Eps8 complex to maintain RhoA activity and promote filopodial actin-spike formation and invasive migration. Our study highlights the predictive potential of mathematical modelling approaches, and demonstrates that a simple intervention (MEK-inhibition could be of therapeutic benefit in preventing invasive migration and metastasis.

  3. Protocols for assessing radiofrequency interactions with gold nanoparticles and biological systems for non-invasive hyperthermia cancer therapy.

    Science.gov (United States)

    Corr, Stuart J; Cisneros, Brandon T; Green, Leila; Raoof, Mustafa; Curley, Steven A

    2013-08-28

    Cancer therapies which are less toxic and invasive than their existing counterparts are highly desirable. The use of RF electric-fields that penetrate deep into the body, causing minimal toxicity, are currently being studied as a viable means of non-invasive cancer therapy. It is envisioned that the interactions of RF energy with internalized nanoparticles (NPs) can liberate heat which can then cause overheating (hyperthermia) of the cell, ultimately ending in cell necrosis. In the case of non-biological systems, we present detailed protocols relating to quantifying the heat liberated by highly-concentrated NP colloids. For biological systems, in the case of in vitro experiments, we describe the techniques and conditions which must be adhered to in order to effectively expose cancer cells to RF energy without bulk media heating artifacts significantly obscuring the data. Finally, we give a detailed methodology for in vivo mouse models with ectopic hepatic cancer tumors.

  4. Antibodies against high-risk human papillomavirus proteins as markers for invasive cervical cancer.

    Science.gov (United States)

    Combes, Jean-Damien; Pawlita, Michael; Waterboer, Tim; Hammouda, Doudja; Rajkumar, Thangarajan; Vanhems, Philippe; Snijders, Peter; Herrero, Rolando; Franceschi, Silvia; Clifford, Gary

    2014-11-15

    Different human papillomavirus (HPV) genes are expressed during the various phases of the HPV life cycle and may elicit immune responses in the process towards malignancy. To evaluate their association with cervical cancer, antibodies against proteins from HPV16 (L1, E1, E2, E4, E6 and E7) and HPV18/31/33/35/45/52/58 (L1, E6 and E7) were measured in serum of 307 invasive cervical cancer cases and 327 controls from Algeria and India. Antibody response was evaluated using a glutathione S-transferase-based multiplex serology assay and HPV DNA detected from exfoliated cervical cells using a GP5+/6+-mediated PCR assay. Among HPV16 DNA-positive cases, seroprevalence of HPV16 antibodies ranged from 16% for HPV16 E1 to 50% for HPV16 E6 and all were significantly higher than controls. Seroprevalence of E6, E7 and L1 antibodies for HPV18 and for at least one of HPV31/33/35/45/52/58 were also higher in cases positive for DNA of the corresponding type (50% and 30% for E6 of HPV18 and HPV31/33/35/45/52/58 combined, respectively). E6 and E7 antibodies were rarely found in controls, but cross-reactivity was evident among cancer cases positive for DNA of closely phylogenetically-related HPV types. E6 or E7 antibodies against any of the eight HPV types were detected in 66.1% of all cervical cancer cases, as compared to 10.1% of controls. E6, and to a lesser extent E7, antibodies appear to be specific markers of HPV-related malignancy. However, even among cases positive for the same type of HPV DNA, approximately one-third of cervical cancer cases show no detectable immune response to either E6 or E7.

  5. Influence of picosecond pulse electric field to invasive ability of cervical cancer

    Directory of Open Access Journals (Sweden)

    Li-mei WU

    2015-10-01

    Full Text Available Objective To investigate the influence of picosecond pulse electric field (psPEF to the invasive ability of cervical cancer. Methods The model of cervical cancer was reproduced in BALB/c nude mice (n=24, and they were randomly divided into four groups (n=6 when the xenografts had grown reaching a diameter of 0.8-1.0cm: control group (psPEF was not given, low field intensity group (50kV/cm, moderate field intensity group (60kV/cm and high field intensity group (70kV/cm. Seven days after the psPEF treatment, the histomorphological changes were observed with HE staining and transmission electron microscopy (TEM, the expressions of vascular endothelial growth factor (VEGF and matrix metalloproteinases-9 (MMP-9 were determined with immunohistochemical (IHC staining, and the changes in protein level of VEGF and MMP-9 were assessed with Western blotting. Results After psPEF treatment, the area of necrosis was found to be increased with an increase in psPEF intensity. With TEM different degrees of apoptosis and necrosis in tumor cells with an increase of psPEF intensity were found. IHC showed that the number of VEGF and MMP-9 positive cells in cancer tissue was decreased with an increase in psPEF intensity. The average optical density (AOD of VEGF and MMP-9 proteins decreased significantly in psPEF treatment groups compared with that in control group, and the AOD values in psPEF treatment groups decreased with an increase in psPEF intensity, and the decrease was statistically significant (P<0.05. Western blotting showed the expressive levels of VEGF and MMP-9 proteins declined gradually with an increase in psPEF intensity, and the difference between groups was statistically significant (P<0.05. Conclusion psPEF may have anti-cervical cancer effects by inhibiting the secretion of VEGF and MMP-9 and reducing the invasive ability of cervical cancer cells. DOI: 10.11855/j.issn.0577-7402.2015.09.03

  6. Association study of prostate cancer susceptibility variants with risks of invasive ovarian, breast, and colorectal cancer

    DEFF Research Database (Denmark)

    Song, H.; Koessler, T.; Ahmed, S.

    2008-01-01

    test of association was a comparison of genotype frequencies between cases and controls, and a test for trend stratified by study where appropriate. Genotype-specific odds ratios (OR) were estimated by logistic regression. SNP rs2660753 (chromosome 3p12) showed evidence of association with ovarian...... cancer [per minor allele OR, 1.19; 95% confidence interval (95% CI), 1.04-1.37; P(trend) = 0.012]. This association was stronger for the serous histologic subtype (OR, 1.29; 95% CI, 1.09-1.53; P = 0.003). SNP rs7931342 (chromosome 11q13) showed some evidence of association with breast cancer (per minor...

  7. Requirement of cyclooxygenase-2 expression and prostaglandins for human prostate cancer cell invasion.

    Science.gov (United States)

    Nithipatikom, Kasem; Isbell, Marilyn A; Lindholm, Paul F; Kajdacsy-Balla, Andre; Kaul, Sushma; Campell, William B

    2002-01-01

    The PC-3 Low Invasive cells and the PC-3 High Invasive cells were used to investigate the correlation of the COX-2 expression and its arachidonic acid metabolites, prostaglandins, with their invasiveness through Matrigel using a Boyden chamber assay. The COX-2 expression in PC-3 High Invasive cells was approximately 3-fold higher than in PC-3 Low Invasive cells while the COX-1 expression was similar in both cell sublines. When incubated with arachidonic acid, PGE2 was the major prostaglandin produced by these cells. PC-3 High Invasive cells produced PGE2 approximately 2.5-fold higher than PC-3 Low Invasive cells. PGD2 was the second most abundant prostaglandin produced by these cells. Both indomethacin (a nonspecific COX inhibitor) and NS-398 (a specific COX-2 inhibitor) inhibited the production of prostaglandins and the cell invasion. PGE2 alone did not induce the cell invasion of PC-3 Low Invasive cells. However, PGE2 reversed the inhibition of cell invasion by NS-398 and enhanced the cell invasion of the PC-3 High Invasive cells. In contrast, PGD2 slightly inhibited the cell invasion. These results suggest that in the PC-3 Low Invasive cells, COX-2-derived PGE2 may not be sufficient to induce cell invasion while in the PC-3 High Invasive cells, PGE2 may be sufficient to act as an enhancer for the cell invasion. Further, PGD2 may represent a weak inhibitor and counteracts the effect of PGE2 in the cell invasion.

  8. Differential Proteomic Analysis of Nuclear Matrix in Muscle-Invasive Bladder Cancer: Potential to Improve Diagnosis and Prognosis

    Directory of Open Access Journals (Sweden)

    Paola Barboro

    2008-01-01

    Full Text Available Introduction: Although several molecular markers for bladder cancer have been identified, at present little information on prognostic biomarkers is available in the literature. Prognostication of this tumor is largely based on clinicopathological characteristics. Our aim was to identify nuclear matrix (NM proteins that might serve to better characterize the phenotype of the invasive bladder cancer and to investigate their diagnostic and prognostic roles.

  9. Thymus vulgaris (thyme) inhibits proliferation, adhesion, migration, and invasion of human colorectal cancer cells.

    Science.gov (United States)

    Al-Menhali, Afnan; Al-Rumaihi, Aisha; Al-Mohammed, Hana; Al-Mazrooey, Hana; Al-Shamlan, Maryam; AlJassim, Meaad; Al-Korbi, Noof; Eid, Ali Hussein

    2015-01-01

    Colorectal cancer (CRC) remains one of the most common malignancies and a leading cause of cancer-related deaths. Its prognosis remains poor for patients with several grades of this disease. This underscores the need for alternative modalities, such as herbal medicines, to treat this disease. A commonly used plant that appears to be of high medicinal value is Thymus vulgaris L. However, the effects of this plant on the malignant behavior of human CRC cells remains poorly investigated. This study was undertaken to determine the anticancer efficacy of T. vulgaris extract (TVE) in CRC cells. Our results show that TVE inhibits proliferation in a concentration- and time-dependent fashion. This decreased proliferation was concomitant with increased apoptotic cell death as evidenced by increased caspase3/7 activity. Moreover, TVE also decreased adhesion to fibronectin in a concentration-dependent manner. The migratory and invasive capacities of HCT116 cells were significantly inhibited by TVE. Taken together, these data suggest that the TVE inhibits malignant phenotype of colon cancer cells. Therefore, T. vulgaris could have an anticancer effect and that some of its bioactive compounds may prove to be effective treatment modalities for human CRC.

  10. Multiphoton imaging of low grade, high grade intraepithelial neoplasia and intramucosal invasive cancer of esophagus

    Science.gov (United States)

    Xu, Jian; Jiang, Liwei; Kang, Deyong; Wu, Xuejing; Xu, Meifang; Zhuo, Shuangmu; Zhu, Xiaoqin; Lin, Jiangbo; Chen, Jianxin

    2017-04-01

    Esophageal squamous cell carcinoma (ESCC) is devastating because of its aggressive lymphatic spread and clinical course. It is believed to occur through low-grade intraepithelial neoplasia (LGIN), high-grade intraepithelial neoplasia (HGIN), and intramucosal invasive cancer (IMC) before transforming to submucosal cancer. In particular, these early lesions (LGIN, HGIN and IMC), which involve no lymph node nor distant metastasis, can be cured by endoscopic treatment. Therefore, early identification of these lesions is important so as to offer a curative endoscopic resection, thus slowing down the development of ESCC. In this work, spectral information and morphological features of the normal esophageal mucosa are first studied. Then, the morphological changes of LGIN, HGIN and IMC are described. Lastly, quantitative parameters are also extracted by calculating the nuclear-to-cytoplasmic ratio of epithelial cells and the pixel density of collagen in the lamina propria. These results show that multiphoton microscopy (MPM) has the ability to identify normal esophageal mucosa, LGIN, HGIN and IMC. With the development of multiphoton endoscope systems for in vivo imaging, combined with a laser ablation system, MPM has the potential to provide immediate pathologic diagnosis and curative treatment of ESCC before the transformation to submucosal cancer in the future.

  11. Utility of a Herpes Oncolytic Virus for the Detection of Neural Invasion By Cancer

    Directory of Open Access Journals (Sweden)

    Ziv Gil

    2008-04-01

    Full Text Available Prostate, pancreatic, and head and neck carcinomas have a high propensity to invade nerves. Surgical resection is a treatment modality for these patients, but it may incur significant deficits. The development of an imaging method able to detect neural invasion (NI by cancer cells may guide surgical resection and facilitate preservation of normal nerves. We describe an imaging method for the detection of NI using a herpes simplex virus, NV1066, carrying tyrosine kinase and enhanced green fluorescent protein (eGFP. Infection of pancreatic (MiaPaCa2, prostate (PC3 and DU145, and adenoid cystic carcinoma (ACC3 cell lines with NV1066 induced a high expression of eGFP in vitro. An in vivo murine model of NI was established by implanting tumors into the sciatic nerves of nude mice. Nerves were then injected with NV1066, and infection was confirmed by polymerase chain reaction. Positron emission tomography with [18F]-2′-fluoro-2′-deoxyarabinofuranosyl-5-ethyluracil performed showed significantly higher uptake in NI than in control animals. Intraoperative fluorescent stereoscopic imaging revealed eGFP signal in NI treated with NV1066. These findings show that NV1066 may be an imaging method to enhance the detection of nerves infiltrated by cancer cells. This method may improve the diagnosis and treatment of patients with neurotrophic cancers by reducing injury to normal nerves and facilitating identification of infiltrated nerves requiring resection.

  12. Voltage-gated Na+ Channel Activity Increases Colon Cancer Transcriptional Activity and Invasion Via Persistent MAPK Signaling

    Science.gov (United States)

    House, Carrie D.; Wang, Bi-Dar; Ceniccola, Kristin; Williams, Russell; Simaan, May; Olender, Jacqueline; Patel, Vyomesh; Baptista-Hon, Daniel T.; Annunziata, Christina M.; Silvio Gutkind, J.; Hales, Tim G.; Lee, Norman H.

    2015-06-01

    Functional expression of voltage-gated Na+ channels (VGSCs) has been demonstrated in multiple cancer cell types where channel activity induces invasive activity. The signaling mechanisms by which VGSCs promote oncogenesis remain poorly understood. We explored the signal transduction process critical to VGSC-mediated invasion on the basis of reports linking channel activity to gene expression changes in excitable cells. Coincidentally, many genes transcriptionally regulated by the SCN5A isoform in colon cancer have an over-representation of cis-acting sites for transcription factors phosphorylated by ERK1/2 MAPK. We hypothesized that VGSC activity promotes MAPK activation to induce transcriptional changes in invasion-related genes. Using pharmacological inhibitors/activators and siRNA-mediated gene knockdowns, we correlated channel activity with Rap1-dependent persistent MAPK activation in the SW620 human colon cancer cell line. We further demonstrated that VGSC activity induces downstream changes in invasion-related gene expression via a PKA/ERK/c-JUN/ELK-1/ETS-1 transcriptional pathway. This is the first study illustrating a molecular mechanism linking functional activity of VGSCs to transcriptional activation of invasion-related genes.

  13. Relationship between expression of matrix metalloproteinase-2 and matrix metalloproteinase-9 and invasion ability of cervical cancer cells.

    Science.gov (United States)

    Kato, Yasuhito; Yamashita, Tsuyoshi; Ishikawa, Mutsuo

    2002-01-01

    Constitutive overexpression of matrix metalloproteinases (MMPs) is frequently observed in malignant tumors. MMPs are a family of zinc endopeptidases consisting of at least 20 different members. In particular, MMP-2 and MMP-9 are reported to be closely associated with invasion and metastasis in several cancers. We investigated whether expression of MMP-2 and MMP-9 is associated with invasion ability of seven cervical cancer cells by administration of o-phenanthroline as MMP inhibitor. In two cell lines, Siha and Caski, MMP-2 mRNA and protein were expressed at high levels. After treatment with o-phenanthroline, the rate of invasion in these two cell lines was significantly decreased. In contrast, in the other two cell lines, HT-3 and Caski, high levels of MMP-9 mRNA and protein were expressed but there was no decrease in the rate of invasion in these cells after treatment with o-phenanthroline. The data suggest that expression level of MMP-2 mRNA may regulate with invasion ability of cervical cancer.

  14. Mast Cells in Adjacent Normal Colon Mucosa rather than Those in Invasive Margin are Related to Progression of Colon Cancer

    Institute of Scientific and Technical Information of China (English)

    Qing Xia; Xiao-shi Zhang; Ying-bo Chen; Ya Ding; Xiao-jun Wu; Rui-qing Peng; Qiang Zhou; Jing Zeng; Jing-hui Hou; Xing Zhang; Yi-xin Zeng

    2011-01-01

    Objective:Mast cells (MC) reside in the mucosa of the digestive tract as the first line against bacteria and toxins.Clinical evidence has implied that the infiltration of mast cells in colorectal cancers is related to malignant phenotypes and a poor prognosis.This study compared the role of mast cells in adjacent normal colon mucosa and in the invasive margin during the progression of colon cancer.Methods:Specimens were obtained from 39 patients with colon adenomas and 155 patients with colon cancers treated at the Sun Yat-sen University Cancer Center between January 1999 and July 2004.The density of mast cells was scored by an immunohistochemical assay.The pattern of mast cell distribution and its relationship with dinicopathologic parameters and 5-year survival were analyzed.Results:The majority of mast cells were located in the adjacent normal colon mucosa,followed by the invasive margin and least in the cancer stroma.Mast cell count in adjacent normal colon mucosa (MCCadjacent) was associated with pathologic classification,distant metastases and hepatic metastases,although it was not a prognostic factor.In contrast,mast cell count in the invasive margin (MCCinvasive) was associated with neither the clinicopathlogic parameters nor overall survival.Conclusion:Mast cells in the adjacent normal colon mucosa were related to the progression of colon cancer,suggesting that mast cells might modulate tumor progression via a long-distance mechanism.

  15. Overexpression of ADAMTS5 can regulate the migration and invasion of non-small cell lung cancer.

    Science.gov (United States)

    Gu, Jun; Chen, Jie; Feng, Jian; Liu, Yifei; Xue, Qun; Mao, Guoxin; Gai, Ling; Lu, Xiaoning; Zhang, Rui; Cheng, Jialin; Hu, Yanxia; Shao, Mengting; Shen, Hong; Huang, Jianan

    2016-07-01

    Non-small cell lung cancer (NSCLC) is the major cause of cancer-related lethality among human cancer patients globally, and the poor prognosis of this cancer is mainly explained by metastasis, so it is essential to find out the molecule mechanisms and a novel therapeutic for NSCLC. A disintegrin and metalloprotease with thrombospondin motif 5 (ADAMTS5) belongs to the protease family. It has been reported to participate in tumor migration and invasion. In this study, we showed that the expression of ADAMTS5 was higher in lung cancer tissues by Western blot. The immunohistochemistry analysis was performed in 140 NSCLC cases, and the result indicated that ADAMTS5 was significantly associated with clinical pathologic variables. The Kaplan-Meier curve showed that the high expression of ADAMTS5 was related to poor prognosis of lung cancer patients. Wound healing assays and transwell migration assays revealed that the high expression of ADAMTS5 promoted the migration and invasion of NSCLC. In a word, our findings suggest that ADAMTS5 can regulate the migration and invasion of NSCLC and it may be a useful target of therapy in NSCLC.

  16. miR-103 regulates triple negative breast cancer cells migration and invasion through targeting olfactomedin 4.

    Science.gov (United States)

    Xiong, Bin; Lei, Xuefeng; Zhang, Lei; Fu, Jia

    2017-03-18

    Our previous study showed olfactomedin 4 (OLFM4) suppressed triple-negative breast cancer cells migration, invasion and metastasis-associated protein MMP 9 expression. OLFM4 was identified as a potential target of miR-103 according to microRNA target databases and published studies. The aim of this study is to validate the relationship between miR-103 and OLFM4, and explore the function and clinical significance of miR-103 in triple-negative breast cancer patients. In our results, miR-103 negatively regulated OLFM4 expression by directly targeting its 3'-UTR. OLFM4 was a functional target of miR-103 to regulate triple-negative breast cancer cells migration, invasion and MMP 9 expression. Moreover, miR-103 overexpression was observed in triple-negative breast cancer tissues and cell lines, and associated with lymph node metastasis, distant metastasis and clinical stage. Univariate and multivariate analyses suggested that miR-103 overexpression was a poor independent prognostic factor for triple-negative breast cancer patients. In conclusion, miR-103 acts as an oncogene miRNA to promote triple-negative breast cancer cells migration and invasion through targeting OLFM4.

  17. MiR-132 prohibits proliferation, invasion, migration, and metastasis in breast cancer by targeting HN1

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhan-Guo, E-mail: zhang_zhanguo@hotmail.com; Chen, Wei-Xun, E-mail: chenweixunclark@163.com; Wu, Yan-Hui, E-mail: wuyanhui84@126.com; Liang, Hui-Fang, E-mail: lianghuifang1997@126.com; Zhang, Bi-Xiang, E-mail: bixiangzhang@163.com

    2014-11-07

    Highlights: • MiR-132 is down-regulated in breast cancer tissues and cell lines. • MiR-132 directly regulates HN1 by binding its 3′ UTR. • MiR-132 shows regulatory role in proliferation, invasion, migration and metastasis. • HN1 is involved in miR-132-mediated cell behavior. • Aberrant HN1 is associated with worse overall survival of breast cancer patients. - Abstract: Accumulating evidence indicates that miRNAs play critical roles in tumorigenesis and cancer progression. This study aims to investigate the role and the underlying mechanism of miR-132 in breast cancer. Here, we report that miR-132 is significantly down-regulated in breast cancer tissues and cancer cell lines. Additional study identifies HN1 as a novel direct target of miR-132. MiR-132 down-regulates HN1 expression by binding to the 3′ UTR of HN1 transcript, thereby, suppressing multiple oncogenic traits such as cancer cell proliferation, invasion, migration and metastasis in vivo and in vitro. Overexpression of HN1 restores miR-132-suppressed malignancy. Importantly, higher HN1 expression is significantly associated with worse overall survival of breast cancer patients. Taken together, our data demonstrate a critical role of miR-132 in prohibiting cell proliferation, invasion, migration and metastasis in breast cancer through direct suppression of HN1, supporting the potential utility of miR-132 as a novel therapeutic strategy against breast cancer.

  18. Over-Expression of Platelet-Derived Growth Factor-D Promotes Tumor Growth and Invasion in Endometrial Cancer

    Directory of Open Access Journals (Sweden)

    Yuan Wang

    2014-03-01

    Full Text Available The platelet-derived growth factor-D (PDGF-D was demonstrated to be able to promote tumor growth and invasion in human malignancies. However, little is known about its roles in endometrial cancer. In the present study, we investigated the expression and functions of PDGF-D in human endometrial cancer. Alterations of PDGF-D mRNA and protein were determined by real time PCR, western blot and immunohistochemical staining. Up-regulation of PDGF-D was achieved by stably transfecting the pcDNA3-PDGF-D plasmids into ECC-1 cells; and knockdown of PDGF-D was achieved by transient transfection with siRNA-PDGF-D into Ishikawa cells. The MTT assay, colony formation assay and Transwell assay were used to detect the effects of PDGF-D on cellular proliferation and invasion. The xenograft assay was used to investigate the functions of PDGF-D in vivo. Compared to normal endometrium, more than 50% cancer samples showed over-expression of PDGF-D (p < 0.001, and high level of PDGF-D was correlated with late stage (p = 0.003, deep myometrium invasion (p < 0.001 and lympha vascular space invasion (p = 0.006. In vitro, over-expressing PDGF-D in ECC-1 cells significantly accelerated tumor growth and promoted cellular invasion by increasing the level of MMP2 and MMP9; while silencing PDGF-D in Ishikawa cells impaired cell proliferation and inhibited the invasion, through suppressing the expression of MMP2 and MMP9. Moreover, we also demonstrated that over-expressed PDGF-D could induce EMT and knockdown of PDGF-D blocked the EMT transition. Consistently, in xenografts assay, PDGF-D over-expression significantly promoted tumor growth and tumor weights. We demonstrated that PDGF-D was commonly over-expressed in endometrial cancer, which was associated with late stage deep myometrium invasion and lympha vascular space invasion. Both in vitro and in vivo experiments showed PDGF-D could promote tumor growth and invasion through up-regulating MMP2/9 and inducing EMT. Thus, we

  19. Female breast cancer in Świętokrzyskie Voivodeship in 1999–2012. New cases and the incidence of invasive breast cancer

    Directory of Open Access Journals (Sweden)

    Ewa Błaszkiewicz

    2015-07-01

    Full Text Available Introduction : Breast cancer is the most common malignant tumour among women in Poland. In 2012 invasive breast cancer was diagnosed in 17,000 Polish women. The effective fight against breast cancer is based on activities to prevent its occurrence or to enable early detection of the disease and then its effective treatment (cure. Aim of the research: To assess the prevalence of invasive breast cancer in women in Świętokrzyskie Voivodeship in 1999–2012. Material and methods: A total of 6079 new female invasive breast cancer cases were analysed. Crude rates (CRs and age-standarised rates (ASRs per 100,000 population were calculated. The total value of incidence rates was analysed for all ages (0–85+ and in separate age groups (15–49, 50–69, and 70–85+. Results : In 1999–2012 in Świętokrzyskie Voivodeship 6079 new invasive female breast cancer cases were diagnosed. Fifty-three percent of them were in the age group of 50–69 years, 25.0% in the age group 70–85+, and 21.5% in the age group 15–49 years. The incidence of BC in general (0–85+ increased from 41.2/105 in 1999 to 43.8/105 in 2012. In the women aged 15–49 years the value of ASRs of incidence increased. In the age group of 50–69 years the value of ASRs increased from 146.6/105 in 1999 to 163.5/105 in 2012. The increase in the incidence of breast cancer was reported among women in perimenopausal age and in premenopausal women. The decrease in breast cancer cases was observed among young, premenopausal women (15–49 years as well as among women over 70 years of age. Conclusions: Świętokrzyskie Voivodeship is a region in Poland with moderate risk of breast cancer.

  20. c-Yes enhances tumor migration and invasion via PI3K/AKT pathway in epithelial ovarian cancer.

    Science.gov (United States)

    Jin, Yunfeng; Huang, Menghui; Wang, Yingying; Yi, Changying; Deng, Yan; Chen, Yannan; Jiang, Lifei; Wang, Juan; Shen, Qin; Liu, Rong; QinghuaXi

    2016-08-01

    Overexpression of c-Yes has been noted to correlation with several human cancers. However, the effects of c-Yes on epithelial ovarian cancer (EOC) development remain unclear. The aim of this study is going to prove the effects of c-Yes and related mechanisms in proliferation, metastasis and invasion of EOC. Immunohistochemical analysis was performed in 119 human EOC samples, and the data was correlated with clinic pathologic features. Furthermore, western blot analysis is performed for c-Yes in EOC samples and cell lines to evaluate their protein levels and molecular interaction. Kaplan-Meier survival analysis shows that the strong expression of c-Yes exhibited a significant correlation with poor prognosis in human EOC (PYes by shRNA inhibited the ability of migration and invasion in EOC cells via the PI3K/AKT pathway. In a word, these results suggested that c-Yes plays an important role in migration and invasion of EOC.

  1. Subcutaneous preconditioning increases invasion and metastatic dissemination in mouse colorectal cancer models

    Science.gov (United States)

    Alamo, Patricia; Gallardo, Alberto; Pavón, Miguel A.; Casanova, Isolda; Trias, Manuel; Mangues, Maria A.; Vázquez, Esther; Villaverde, Antonio; Mangues, Ramon; Céspedes, Maria V.

    2014-01-01

    Mouse colorectal cancer (CRC) models generated by orthotopic microinjection of human CRC cell lines reproduce the pattern of lymphatic, haematological and transcoelomic spread but generate low metastatic efficiency. Our aim was to develop a new strategy that could increase the metastatic efficiency of these models. We used subcutaneous implantation of the human CRC cell lines HCT116 or SW48 prior to their orthotopic microinjection in the cecum of nude mice (SC+ORT). This subcutaneous preconditioning significantly enhanced metastatic dissemination. In the HCT116 model it increased the number and size of metastatic foci in lymph nodes, lung, liver and peritoneum, whereas, in the SW48 model, it induced a shift from non-metastatic to metastatic. In both models the number of apoptotic bodies in the primary tumour in the SC+ORT group was significantly reduced compared with that in the direct orthotopic injection (ORT) group. Moreover, in HCT116 tumours the number of keratin-positive tumour buddings and single epithelial cells increased at the invasion front in SC+ORT mice. In the SW48 tumour model, we observed a trend towards a higher number of tumour buds and single cells in the SC+ORT group but this did not reach statistical significance. At a molecular level, the enhanced metastatic efficiency observed in the HCT116 SC+ORT model was associated with an increase in AKT activation, VEGF-A overexpression and downregulation of β1 integrin in primary tumour tissue, whereas, in SW48 SC+ORT mice, the level of expression of these proteins remained unchanged. In summary, subcutaneous preconditioning increased the metastatic dissemination of both orthotopic CRC models by increasing tumour cell survival and invasion at the tumour invasion front. This approach could be useful to simultaneously study the mechanisms of metastases and to evaluate anti-metastatic drugs against CRC. PMID:24487410

  2. The miR-383-LDHA axis regulates cell proliferation, invasion and glycolysis in hepatocellular cancer

    Directory of Open Access Journals (Sweden)

    Zhixiong Fang

    2017-02-01

    Full Text Available Objective(s: To explore the correlation between expression patterns and functions of miR-383 and LDHA in hepatocellular cancer (HCC. Materials and Methods: We detected the expression of miR-383 and LDHA in 30 HCC tissues and their matched adjacent normal tissues using qRT-PCR. Then we performed MTT assay, foci formation assay, transwell migration assay, glucose uptake assay and lactate production assay to explore the function of miR-383 in cell proliferation, invasion and glycolysis in HCC cell lines. Luciferase reporter assay was used to explore whether LDHA was a target gene of miR-383. Western blot and qRT-PCR were used to further confirm LDHA was targeted by miR-383. Then the above functional experiments were repeated to see whether the function of LDHA could be inhibited by miR-383. Results: The results of qRT-PCR showed that miR-383 was down-regulated in HCC tissues compared with their matched adjacent normal tissues. Functional experiments showed that overexpression of miR-383 significantly suppressed cell proliferation, invasion and glycolysis. Luciferase reporter assay showed LDHA was a target gene of miR-383 and expression of LDHA was inversely correlated with that of miR-383 in HCC. Besides, increased cell proliferation, invasion and glycolysis triggered by LDHA could be inhibited by overexpression of miR-383 in HCC cell lines. Conclusion: Our study proved that miR-383 is down-regulated in HCC and acts as a tumor suppressor through targeting LDHA. Targeting the miR-383-LDHA axis might be a promising strategy in HCC treatment.

  3. Role of the extracellular matrix in variations of invasive pathways in lung cancers

    Energy Technology Data Exchange (ETDEWEB)

    Sá, V.K. de [Universidade de São Paulo, Departamento de Patologia, Faculdade de Medicina, São Paulo, SP (Brazil); Carvalho, L.; Gomes, A.; Alarcão, A.; Silva, M.R.; Couceiro, P.; Sousa, V. [Universidade de Coimbra, Coimbra (Portugal); Soares, F.A. [Hospital A.C. Camargo, São Paulo, SP (Brazil); Capelozzi, V.L. [Universidade de São Paulo, Departamento de Patologia, Faculdade de Medicina, São Paulo, SP (Brazil)

    2013-01-11

    Among the most common features of highly invasive tumors, such as lung adenocarcinomas (AD) and squamous cell carcinomas (SqCC), is the massive degradation of the extracellular matrix. The remarkable qualitative and quantitative modifications of hyaluronidases (HAases), hyaluronan synthases (HAS), E-cadherin adhesion molecules, and the transforming growth factor β (TGF-β) may favor invasion, cellular motility, and proliferation. We examined HAase proteins (Hyal), HAS, E-cadherin, and TGF-β profiles in lung AD subtypes and SqCC obtained from smokers and non-smokers. Fifty-six patients, median age 64 years, who underwent lobectomy for AD (N = 31) and SqCC (N = 25) were included in the study. HAS-1, -2 and -3, and Hyal-1 and -3 were significantly more expressed by tumor cells than normal and stroma cells (P < 0.01). When stratified according to histologic types, HAS-3 and Hyal-1 immunoreactivity was significantly increased in tumor cells of AD (P = 0.01) and stroma of SqCC (P = 0.002), respectively. Tobacco history in patients with AD was significantly associated with increased HAS-3 immunoreactivity in tumor cells (P < 0.01). Stroma cells of SqCC from non-smokers presented a significant association with HAS-3 (P < 0.01). Hyal, HAS, E-cadherin, and TGF-β modulate a different tumor-induced invasive pathway in lung AD subgroups and SqCC. HAases in resected AD and SqCC were strongly related to the prognosis. Therefore, our findings suggest that strategies aimed at preventing high HAS-3 and Hyal-1 synthesis, or local responses to low TGF-β and E-cadherin, may have a greater impact in lung cancer prognosis.

  4. Initiation of GalNAc-type O-glycosylation in the endoplasmic reticulum promotes cancer cell invasiveness

    DEFF Research Database (Denmark)

    Gill, David J; Tham, Keit Min; Chia, Joanne

    2013-01-01

    Invasiveness underlies cancer aggressiveness and is a hallmark of malignancy. Most malignant tumors have elevated levels of Tn, an O-GalNAc glycan. Mechanisms underlying Tn up-regulation and its effects remain unclear. Here we show that Golgi-to-endoplasmic reticulum relocation of polypeptide N...

  5. Differences in human papillomavirus type distribution in high-grade cervical intraepithelial neoplasia and invasive cervical cancer in Europe

    DEFF Research Database (Denmark)

    Tjalma, Wiebren A; Fiander, Alison; Reich, Olaf

    2013-01-01

    Knowledge of differences in human papillomavirus (HPV)-type prevalence between high-grade cervical intraepithelial neoplasia (HG-CIN) and invasive cervical cancer (ICC) is crucial for understanding the natural history of HPV-infected cervical lesions and the potential impact of HPV vaccination...

  6. Suppressing effect of resveratrol on the migration and invasion of human metastatic lung and cervical cancer cells.

    Science.gov (United States)

    Kim, Yoon Suk; Sull, Jae Woong; Sung, Ho Joong

    2012-09-01

    The antioxidant 3,4',5 tri-hydroxystilbene (resveratrol), a phytoalexin found in grapes, shows cancer preventive activities, including inhibition of migration and invasion of metastatic tumors. However, the molecular mechanism underlying the effect of resveratrol on tumor metastasis, especially in human metastatic lung and cervical cancers is not clear. A non-cytotoxic dosage of resveratrol causes a reduction in the generation of reactive oxygen species, and suppresses phorbol 12-myristate 13-acetate (PMA)-induced invasion and migration in both A549 and HeLa cells. Resveratrol also decreases both the expression and the enzymatic activity of matrix metalloproteinase-9 (MMP-9), and the promoter activity of PMA-stimulated MMP-9 is also inhibited. However, resveratrol does not affect either the expression or the proteolytic activity of MMP-2. Our results also show that resveratrol suppresses the transcription of MMP-9 by the inhibition of both NF-κB and AP-1 transactivation. These results indicate that resveratrol inhibits both NF-κB and AP-1 mediated MMP-9 expression, leading to suppression of migration and invasion of human metastatic lung and cervical cancer cells. Resveratrol has potential for clinical use in preventing invasion by human metastatic lung and cervical cancers.

  7. Office-Based Transurethral Devascularisation of Low Grade Non-Invasive Urothelial Cancer Using Diode Laser. A Feasibility Study

    DEFF Research Database (Denmark)

    Hermann, Gregers G.; Mogensen, Karin; Lindvold, Lars René;

    2015-01-01

    Frequent recurrence of non‐muscle invasive bladder tumours (NMIBC) requiring transurethral resection of bladder tumour (TUR‐BT) and lifelong monitoring makes the lifetime cost per patient the highest of all cancers. A new method is proposed for the removal of low grade NMIBCs in an office...

  8. lacZ transduced human breast cancer xenografts as an in vivo model for the study of invasion and metastasis

    DEFF Research Database (Denmark)

    Brünner, N; Thompson, E W; Spang-Thomsen, M;

    1992-01-01

    A number of human cancer cell lines have been described as being invasive and metastatic in immune incompetent animals. However, it is difficult to assess metastatic spread of a subcutaneously injected or inoculated cell line, since an exact detection of all microfoci of human tumour cells in the...

  9. Association between BRCA1 and BRCA2 mutations and survival in women with invasive epithelial ovarian cancer

    DEFF Research Database (Denmark)

    Bolton, Kelly L; Chenevix-Trench, Georgia; Goh, Cindy;

    2012-01-01

    Approximately 10% of women with invasive epithelial ovarian cancer (EOC) carry deleterious germline mutations in BRCA1 or BRCA2. A recent article suggested that BRCA2-related EOC was associated with an improved prognosis, but the effect of BRCA1 remains unclear....

  10. Effect of NCAM-transfection on growth and invasion of a human cancer cell line

    DEFF Research Database (Denmark)

    Edvardsen, K; Bock, E; Jirus, S

    1997-01-01

    A cDNA encoding the human transmembrane 140 kDa isoform of the neural cell adhesion molecule (NCAM) was transfected into the highly invasive MDA-MB-231 human breast cancer cell line. Transfectants with a homogeneous expression of NCAM showed a restricted capacity for penetration of an artificial...... of modulating NCAM expression in vivo. In nude mice, NCAM-transfected cells developed tumors with longer latency periods and slower growth rates than tumors induced by NCAM-negative control cells, implying that NCAM may be involved not only in adhesive and motile behavior of tumor cells but also in their growth...... regulation. There was no indication of differences in cell proliferative characteristics between the different NCAM-transfected and the control transfected cells as determined by flow cytometric DNA analysis, suggesting an increased cell loss as the reason for decreased in vivo growth rate of the NCAM...

  11. Go-Smart: Web-based Computational Modeling of Minimally Invasive Cancer Treatments

    CERN Document Server

    Weir, Phil; Ellerweg, Roland; Alhonnoro, Tuomas; Pollari, Mika; Voglreiter, Philip; Mariappan, Panchatcharam; Flanagan, Ronan; Park, Chang Sub; Payne, Stephen; Staerk, Elmar; Voigt, Peter; Moche, Michael; Kolesnik, Marina

    2015-01-01

    The web-based Go-Smart environment is a scalable system that allows the prediction of minimally invasive cancer treatment. Interventional radiologists create a patient-specific 3D model by semi-automatic segmentation and registration of pre-interventional CT (Computed Tomography) and/or MRI (Magnetic Resonance Imaging) images in a 2D/3D browser environment. This model is used to compare patient-specific treatment plans and device performance via built-in simulation tools. Go-Smart includes evaluation techniques for comparing simulated treatment with real ablation lesions segmented from follow-up scans. The framework is highly extensible, allowing manufacturers and researchers to incorporate new ablation devices, mathematical models and physical parameters.

  12. Open radical retropubic prostatectomy 2007: the true minimally invasive surgery for localized prostate cancer?

    Science.gov (United States)

    Nosnik, Israel P; Gan, Tong J; Moul, Judd W

    2007-09-01

    The introduction of robotic laparoscopic assisted prostatectomy at our institution and nationwide has been a great advancement and has caused us to focus and fine-tune our goal for improvements in prostate cancer outcomes whether the patient elects for robotic laparoscopic assisted prostatectomy or open minimally invasive radical retropubic prostatectomy. While these authors favor the open technique performed by highly skilled urologic surgical oncologists, the lessons we have learned to date suggest that it is the skill of the surgeon that determines outcome, regardless of whether or not the operation is performed by an open or robotic laparoscopic technique. The concepts we have articulated here are related to resection and avoidance of positive margins, limited intraoperative blood loss and pain control, which allow equivalence in these outcome areas, regardless of technique.

  13. Intraoperative photodynamic therapy in laryngeal part of pharynx cancers

    Science.gov (United States)

    Loukatch, Erwin V.; Trojan, Vasily; Loukatch, Vjacheslav

    1996-12-01

    In clinic intraoperative photodynamic therapy (IPT) was done in patients with primal squamous cells cancer of the laryngeal part of the pharynx. The He-Ne laser and methylene blue as a photosensibilizator were used. Cobalt therapy in the postoperative period was done in dose 45 Gr. Patients of control groups (1-th group) with only laser and (2-th group) only methylene blue were controlled during three years with the main group. The statistics show certain differences of recidives in the main group compared to the control groups. These facts are allowing us to recommend the use of IPT as an additional method in ENT-oncology diseases treatment.

  14. Modeling invasive breast cancer: growth factors propel progression of HER2-positive premalignant lesions.

    Science.gov (United States)

    Pradeep, C-R; Zeisel, A; Köstler, W J; Lauriola, M; Jacob-Hirsch, J; Haibe-Kains, B; Amariglio, N; Ben-Chetrit, N; Emde, A; Solomonov, I; Neufeld, G; Piccart, M; Sagi, I; Sotiriou, C; Rechavi, G; Domany, E; Desmedt, C; Yarden, Y

    2012-08-01

    The HER2/neu oncogene encodes a receptor-like tyrosine kinase whose overexpression in breast cancer predicts poor prognosis and resistance to conventional therapies. However, the mechanisms underlying aggressiveness of HER2 (human epidermal growth factor receptor 2)-overexpressing tumors remain incompletely understood. Because it assists epidermal growth factor (EGF) and neuregulin receptors, we overexpressed HER2 in MCF10A mammary cells and applied growth factors. HER2-overexpressing cells grown in extracellular matrix formed filled spheroids, which protruded outgrowths upon growth factor stimulation. Our transcriptome analyses imply a two-hit model for invasive growth: HER2-induced proliferation and evasion from anoikis generate filled structures, which are morphologically and transcriptionally analogous to preinvasive patients' lesions. In the second hit, EGF escalates signaling and transcriptional responses leading to invasive growth. Consistent with clinical relevance, a gene expression signature based on the HER2/EGF-activated transcriptional program can predict poorer prognosis of a subgroup of HER2-overexpressing patients. In conclusion, the integration of a three-dimensional cellular model and clinical data attributes progression of HER2-overexpressing lesions to EGF-like growth factors acting in the context of the tumor's microenvironment.

  15. Rb suppresses collective invasion, circulation and metastasis of breast cancer cells in CD44-dependent manner.

    Directory of Open Access Journals (Sweden)

    Kui-Jin Kim

    Full Text Available Basal-like breast carcinomas (BLCs present with extratumoral lymphovascular invasion, are highly metastatic, presumably through a hematogenous route, have augmented expression of CD44 oncoprotein and relatively low levels of retinoblastoma (Rb tumor suppressor. However, the causal relation among these features is not clear. Here, we show that Rb acts as a key suppressor of multiple stages of metastatic progression. Firstly, Rb suppresses collective cell migration (CCM and CD44-dependent formation of F-actin positive protrusions in vitro and cell-cluster based lymphovascular invasion in vivo. Secondly, Rb inhibits the release of single cancer cells and cell clusters into the hematogenous circulation and subsequent metastatic growth in lungs. Finally, CD44 expression is required for collective motility and all subsequent stages of metastatic progression initiated by loss of Rb function. Altogether, our results suggest that Rb/CD44 pathway is a crucial regulator of CCM and metastatic progression of BLCs and a promising target for anti-BLCs therapy.

  16. Promotion of cancer cell invasiveness and metastasis emergence caused by olfactory receptor stimulation.

    Directory of Open Access Journals (Sweden)

    Guenhaël Sanz

    Full Text Available Olfactory receptors (ORs are expressed in the olfactory epithelium, where they detect odorants, but also in other tissues with additional functions. Some ORs are even overexpressed in tumor cells. In this study, we identified ORs expressed in enterochromaffin tumor cells by RT-PCR, showing that single cells can co-express several ORs. Some of the receptors identified were already reported in other tumors, but they are orphan (without known ligand, as it is the case for most of the hundreds of human ORs. Thus, genes coding for human ORs with known ligands were transfected into these cells, expressing functional heterologous ORs. The in vitro stimulation of these cells by the corresponding OR odorant agonists promoted cell invasion of collagen gels. Using LNCaP prostate cancer cells, the stimulation of the PSGR (Prostate Specific G protein-coupled Receptor, an endogenously overexpressed OR, by β-ionone, its odorant agonist, resulted in the same phenotypic change. We also showed the involvement of a PI3 kinase γ dependent signaling pathway in this promotion of tumor cell invasiveness triggered by OR stimulation. Finally, after subcutaneous inoculation of LNCaP cells into NSG immunodeficient mice, the in vivo stimulation of these cells by the PSGR agonist β-ionone significantly enhanced metastasis emergence and spreading.

  17. Effect of 3-bromopyruvate acid on the redox equilibrium in non-invasive MCF-7 and invasive MDA-MB-231 breast cancer cells.

    Science.gov (United States)

    Kwiatkowska, Ewa; Wojtala, Martyna; Gajewska, Agnieszka; Soszyński, Mirosław; Bartosz, Grzegorz; Sadowska-Bartosz, Izabela

    2016-02-01

    Novel approaches to cancer chemotherapy employ metabolic differences between normal and tumor cells, including the high dependence of cancer cells on glycolysis ("Warburg effect"). 3-Bromopyruvate (3-BP), inhibitor of glycolysis, belongs to anticancer drugs basing on this principle. 3-BP was tested for its capacity to kill human non-invasive MCF-7 and invasive MDA-MB-231 breast cancer cells. We found that 3-BP was more toxic for MDA-MB-231 cells than for MCF-7 cells. In both cell lines, a statistically significant decrease of ATP and glutathione was observed in a time- and 3-BP concentration-dependent manner. Transient increases in the level of reactive oxygen species and reactive oxygen species was observed, more pronounced in MCF-7 cells, followed by a decreasing tendency. Activities of glutathione peroxidase, glutathione reductase (GR) and glutathione S-transferase (GST) decreased in 3-BP treated MDA-MB-231 cells. For MCF-7 cells decreases of GR and GST activities were noted only at the highest concentration of 3-BP.These results point to induction of oxidative stress by 3-BP via depletion of antioxidants and inactivation of antioxidant enzymes, more pronounced in MDA-MB-231 cells, more sensitive to 3-BP.

  18. Bmi-1 promotes invasion and metastasis, and its elevated expression is correlated with an advanced stage of breast cancer

    Directory of Open Access Journals (Sweden)

    Kung Hsiang-Fu

    2011-01-01

    Full Text Available Abstract Background B-lymphoma Moloney murine leukemia virus insertion region-1 (Bmi-1 acts as an oncogene in various tumors, and its overexpression correlates with a poor outcome in several human cancers. Ectopic expression of Bmi-1 can induce epithelial-mesenchymal transition (EMT and enhance the motility and invasiveness of human nasopharyngeal epithelial cells (NPECs, whereas silencing endogenous Bmi-1 expression can reverse EMT and reduce the metastatic potential of nasopharyngeal cancer cells (NPCs. Mouse xenograft studies indicate that coexpression of Bmi-1 and H-Ras in breast cancer cells can induce an aggressive and metastatic phenotype with an unusual occurrence of brain metastasis; although, Bmi-1 overexpression did not result in oncogenic transformation of MCF-10A cells. However, the underlying molecular mechanism of Bmi-1-mediated progression and the metastasis of breast cancer are not fully elucidated at this time. Results Bmi-1 expression is more pronouncedly increased in primary cancer tissues compared to matched adjacent non-cancerous tissues. High Bmi-1 expression is correlated with advanced clinicopathologic classifications (T, N, and M and clinical stages. Furthermore, a high level of Bmi-1 indicates an unfavorable overall survival and serves as a high risk marker for breast cancer. In addition, inverse transcriptional expression levels of Bmi-1 and E-cadherin are detected between the primary cancer tissues and the matched adjacent non-cancerous tissues. Higher Bmi-1 levels are found in the cancer tissue, whereas the paired adjacent non-cancer tissue shows higher E-cadherin levels. Overexpression of Bmi-1 increases the motility and invasive properties of immortalized human mammary epithelial cells, which is concurrent with the increased expression of mesenchymal markers, the decreased expression of epithelial markers, the stabilization of Snail and the dysregulation of the Akt/GSK3β pathway. Consistent with these

  19. Silencing of SOX12 by shRNA suppresses migration, invasion and proliferation of breast cancer cells

    Science.gov (United States)

    Ding, Hanzhi; Quan, Hong; Yan, Weiguo; Han, Jing

    2016-01-01

    Sex determining region Y-box protein 12 (SOX12) is essential for embryonic development and cell-fate determination. The role of SOX12 in tumorigenesis of breast cancer is not well-understood. Here, we found that SOX12 mRNA expression was up-regulated in human breast cancer tissues. To clarify the roles of SOX12 in breast cancer, we used lentiviral shRNAs to suppress its expression in two breast cancer cells with relatively higher expression of SOX12 (BT474 and MCF-7). Our findings strongly suggested that SOX12 was critical for cell migration and invasion of breast cancer cells. We found that silencing of SOX12 significantly decreased the mRNA and pr