WorldWideScience

Sample records for cancer growth invasion

  1. Downregulation of connective tissue growth factor inhibits the growth and invasion of gastric cancer cells and attenuates peritoneal dissemination.

    Science.gov (United States)

    Jiang, Cheng-Gang; Lv, Ling; Liu, Fu-Rong; Wang, Zhen-Ning; Liu, Fu-Nan; Li, Yan-Shu; Wang, Chun-Yu; Zhang, Hong-Yan; Sun, Zhe; Xu, Hui-Mian

    2011-09-28

    Connective tissue growth factor (CTGF) has been shown to be implicated in tumor development and progression. However, the role of CTGF in gastric cancer remains largely unknown. In this study, we showed that CTGF was highly expressed in gastric cancer tissues compared with matched normal gastric tissues. The CTGF expression in tumor tissue was associated with histologic grade, lymph node metastasis and peritoneal dissemination (P cancer cells and decreased cyclin D1 expression. Moreover, knockdown of CTGF expression also markedly reduced the migration and invasion of gastric cancer cells and decreased the expression of matrix metalloproteinase (MMP)-2 and MMP-9. Animal studies revealed that nude mice injected with the CTGF knockdown stable cell lines featured a smaller number of peritoneal seeding nodules than the control cell lines. These data suggest that CTGF plays an important role in cell growth and invasion in human gastric cancer and it appears to be a potential prognostic marker for patients with gastric cancer.

  2. Downregulation of connective tissue growth factor inhibits the growth and invasion of gastric cancer cells and attenuates peritoneal dissemination

    Directory of Open Access Journals (Sweden)

    Zhang Hong-Yan

    2011-09-01

    Full Text Available Abstract Background Connective tissue growth factor (CTGF has been shown to be implicated in tumor development and progression. However, the role of CTGF in gastric cancer remains largely unknown. Results In this study, we showed that CTGF was highly expressed in gastric cancer tissues compared with matched normal gastric tissues. The CTGF expression in tumor tissue was associated with histologic grade, lymph node metastasis and peritoneal dissemination (P 1 expression. Moreover, knockdown of CTGF expression also markedly reduced the migration and invasion of gastric cancer cells and decreased the expression of matrix metalloproteinase (MMP-2 and MMP-9. Animal studies revealed that nude mice injected with the CTGF knockdown stable cell lines featured a smaller number of peritoneal seeding nodules than the control cell lines. Conclusions These data suggest that CTGF plays an important role in cell growth and invasion in human gastric cancer and it appears to be a potential prognostic marker for patients with gastric cancer.

  3. MicroRNA-181b promotes ovarian cancer cell growth and invasion by targeting LATS2

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Ying; Gao, Yan, E-mail: gaoyanhdhos@126.com

    2014-05-09

    Highlights: • miR-181b is upregulated in human ovarian cancer tissues. • miR-181b promotes ovarian cancer cell proliferation and invasion. • LATS2 is a direct target of miR-181b. • LATS2 is involved in miR-181b-induced ovarian cancer cell growth and invasion. - Abstract: MicroRNAs (miRNAs) are strongly implicated in tumorigenesis and metastasis. In this study, we showed significant upregulation of miR-181b in ovarian cancer tissues, compared with the normal ovarian counterparts. Forced expression of miR-181b led to remarkably enhanced proliferation and invasion of ovarian cancer cells while its knockdown induced significant suppression of these cellular events. The tumor suppressor gene, LATS2 (large tumor suppressor 2), was further identified as a novel direct target of miR-181b. Specifically, miR-181b bound directly to the 3′-untranslated region (UTR) of LATS2 and suppressed its expression. Restoration of LATS2 expression partially reversed the oncogenic effects of miR-181b. Our results indicate that miR-181b promotes proliferation and invasion by targeting LATS2 in ovarian cancer cells. These findings support the utility of miR-181b as a potential diagnostic and therapeutic target for ovarian cancer.

  4. Correlation of MRI apparent diffusion coefficient of invasive breast cancer with tumor tissue growth and angiogenesis

    Directory of Open Access Journals (Sweden)

    Ze-Hong Fu

    2017-08-01

    Full Text Available Objective: To study the correlation of MRI apparent diffusion coefficient (ADC value of invasive breast cancer with tumor tissue growth and angiogenesis. Methods: Patients with breast mass who were treated in Wuhan No. 6 Hospital between March 2014 and May 2017 were selected as the research subjects and divided into group A with invasive ductal carcinoma, group B with intraductal carcinoma and group C with benign lesion according to the biopsy results, magnetic resonance diffusion-weighted imaging was conducted to determine ADC values, and biopsy tissue was taken to determine the expression of proliferation genes and angiogenesis genes. Results: USP39, CyclinD1, VEGF, bFGF, Angplt-2, Angplt-3 and Angplt-4 protein expression levels in lesions of group A and group B were significantly higher than those of group C while ADC value as well as ALEX1 and Bax protein expression levels were significantly lower than those of group C; USP39, CyclinD1, VEGF, bFGF, Angplt-2, Angplt-3 and Angplt-4 protein expression levels in lesions of group A were significantly higher than those of group B while ADC value as well as ALEX1 and Bax protein expression levels was significantly lower than those of group B; USP39, CyclinD1, VEGF, bFGF, Angplt-2, Angplt-3 and Angplt-4 protein expression levels in invasive breast cancer tissue with high ADC value were significantly lower than those in invasive breast cancer tissue with low ADC value while ALEX1 and Bax protein expression levels were significantly higher than those in invasive breast cancer tissue with low ADC value. Conclusion: The decrease of ADC value of invasive breast cancer is closely related to cancer cell proliferation and angiogenesis.

  5. EBP1 suppresses growth, migration, and invasion of thyroid cancer cells through upregulating RASAL expression.

    Science.gov (United States)

    Liu, Hongyan; Li, Zhenjie; Li, Liujuan; Peng, Haiying; Zhang, Zhijun

    2015-11-01

    Ebp1, a protein identified by its interactions with the ErbB3 receptor, has been characterized as a negative regulator of cancers. RAS GTPase-activating protein (RasGAP), RASAL1, was recently identified as a major tumor suppressor in thyroid cancer. In this study, we examined EBP1 expression in papillary and follicular thyroid cancer cells. We found that compared with normal thyroid cells, TPC1, WRO, and FTC133 thyroid tumor cells exhibited lower EBP1 expression at messenger RNA (mRNA) and protein levels. We then investigated the effects of forced EBP1 expression on growth, migration, and invasiveness of thyroid tumor cells. By using MTT and Boyden chamber assays, we showed that EBP1 overexpression dramatically reduced growth rate, migration, and invasiveness of K1 and FTC133 thyroid tumor cells. Furthermore, we explored the molecular mechanism underlying the effects of EBP1 on the cells by disclosing the correlation of EBP1 and RASAL1 expression. RASAL expression was elevated in thyroid tumor cells overexpressing EBP1. Knockdown RASAL by transduction of RASAL1 shRNA lentiviral particles markedly reduced RASAL levels with restoration of EBP1, and RASAL1 knockdown abrogated the effects of forced EBP1 expression on cell growth, migration, and invasiveness of thyroid tumor cells. These findings suggest that Ebp1 suppressed thyroid cancer cell lines by upregulating RASRAL expression.

  6. BGLAP is expressed in pancreatic cancer cells and increases their growth and invasion

    Directory of Open Access Journals (Sweden)

    Michalski Christoph W

    2007-12-01

    Full Text Available Abstract Background Bone gamma-carboxyglutamate protein (BGLAP; osteocalcin is a small, highly conserved molecule first identified in the mineralized matrix of bone. It has been implicated in the pathophysiology of various malignancies. In this study, we analyzed the expression and role of BGLAP in the normal human pancreas, chronic pancreatitis (CP, and pancreatic ductal adenocarcinoma (PDAC using quantitative RT-PCR, immunohistochemistry, immunocytochemistry and enzyme immunoassays, as well as cell proliferation and invasion assays. Gene silencing was carried out using specific siRNA molecules. Results Compared to the normal pancreas, BGLAP mRNA and protein levels were not significantly different in CP and PDAC tissues. BGLAP was faintly present in the cytoplasm of normal acinar cells but was strongly expressed in the cytoplasm and nuclei of tubular complexes and PanIN lesions of CP and PDAC tissues. Furthermore, BGLAP expression was found in the cancer cells in PDAC tissues as well as in 4 cultured pancreatic cancer cell lines. TNFalpha reduced BGLAP mRNA and protein expression levels in pancreatic cancer cell lines. In addition, BGLAP silencing led to reduction of both cell growth and invasion in those cells. Conclusion BGLAP is expressed in pancreatic cancer cells, where it potentially increases pancreatic cancer cell growth and invasion through autocrine and/or paracrine mechanisms.

  7. Gastrin-releasing peptide receptor (GRPr) promotes EMT, growth, and invasion in canine prostate cancer.

    Science.gov (United States)

    Elshafae, Said M; Hassan, Bardes B; Supsavhad, Wachiraphan; Dirksen, Wessel P; Camiener, Rachael Y; Ding, Haiming; Tweedle, Michael F; Rosol, Thomas J

    2016-06-01

    The gastrin-releasing peptide receptor (GRPr) is upregulated in early and late-stage human prostate cancer (PCa) and other solid tumors of the mammary gland, lung, head and neck, colon, uterus, ovary, and kidney. However, little is known about its role in prostate cancer. This study examined the effects of a heterologous GRPr agonist, bombesin (BBN), on growth, motility, morphology, gene expression, and tumor phenotype of an osteoblastic canine prostate cancer cell line (Ace-1) in vitro and in vivo. The Ace-1 cells were stably transfected with the human GRPr and tumor cells were grown in vitro and as subcutaneous and intratibial tumors in nude mice. The effect of BBN was measured on cell proliferation, cell migration, tumor growth (using bioluminescence), tumor cell morphology, bone tumor phenotype, and epithelial-mesenchymal transition (EMT) and metastasis gene expression (quantitative RT-PCR). GRPr mRNA expression was measured in primary canine prostate cancers and normal prostate glands. Bombesin (BBN) increased tumor cell proliferation and migration in vitro and tumor growth and invasion in vivo. BBN upregulated epithelial-to-mesenchymal transition (EMT) markers (TWIST, SNAIL, and SLUG mRNA) and downregulated epithelial markers (E-cadherin and β-catenin mRNA), and modified tumor cell morphology to a spindle cell phenotype. Blockade of GRPr upregulated E-cadherin and downregulated VIMENTIN and SNAIL mRNA. BBN altered the in vivo tumor phenotype in bone from an osteoblastic to osteolytic phenotype. Primary canine prostate cancers had increased GRPr mRNA expression compared to normal prostates. These data demonstrated that the GRPr is important in prostate cancer growth and progression and targeting GRPr may be a promising strategy for treatment of prostate cancer. Prostate 76:796-809, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Effect of NCAM-transfection on growth and invasion of a human cancer cell line

    DEFF Research Database (Denmark)

    Edvardsen, K; Bock, E; Jirus, S

    1997-01-01

    of modulating NCAM expression in vivo. In nude mice, NCAM-transfected cells developed tumors with longer latency periods and slower growth rates than tumors induced by NCAM-negative control cells, implying that NCAM may be involved not only in adhesive and motile behavior of tumor cells but also in their growth......-transfected cells. The fact that NCAM expression influences growth regulation attributes a pivotal role to this cell adhesion molecule during ontogenesis and tumor development.......A cDNA encoding the human transmembrane 140 kDa isoform of the neural cell adhesion molecule (NCAM) was transfected into the highly invasive MDA-MB-231 human breast cancer cell line. Transfectants with a homogeneous expression of NCAM showed a restricted capacity for penetration of an artificial...

  9. Inhibitory effect of maple syrup on the cell growth and invasion of human colorectal cancer cells.

    Science.gov (United States)

    Yamamoto, Tetsushi; Uemura, Kentaro; Moriyama, Kaho; Mitamura, Kuniko; Taga, Atsushi

    2015-04-01

    Maple syrup is a natural sweetener consumed by individuals of all ages throughout the world. Maple syrup contains not only carbohydrates such as sucrose but also various components such as organic acids, amino acids, vitamins and phenolic compounds. Recent studies have shown that these phenolic compounds in maple syrup may possess various activities such as decreasing the blood glucose level and an anticancer effect. In this study, we examined the effect of three types of maple syrup, classified by color, on the cell proliferation, migration and invasion of colorectal cancer (CRC) cells in order to investigate whether the maple syrup is suitable as a phytomedicine for cancer treatment. CRC cells that were administered maple syrup showed significantly lower growth rates than cells that were administered sucrose. In addition, administration of maple syrup to CRC cells caused inhibition of cell invasion, while there was no effect on cell migration. Administration of maple syrup clearly inhibited AKT phosphorylation, while there was no effect on ERK phosphorylation. These data suggest that maple syrup might inhibit cell proliferation and invasion through suppression of AKT activation and be suitable as a phytomedicine for CRC treatment, with fewer adverse effects than traditional chemotherapy.

  10. Placental Growth Factor Promotes Ovarian Cancer Cell Invasion via ZEB2

    Directory of Open Access Journals (Sweden)

    Ning Song

    2016-01-01

    Full Text Available Background/Aims: The aggressive manner of ovarian cancer (OVC cells accounts for the majority of its lethality. Recently, we have shown that placental growth factor (PLGF promotes metastases of OVC cells through miR-543-regulated MMP7. In the current study, we analyzed the effects of PLGF on another cell invasion associated protein, ZEB2, in OVC cells. Methods: The PLGF and ZEB2 levels in OVC tissues were compared to the paired adjacent non-tumor ovary tissue. We modified ZEB2 levels in OVC cells, and examined its effects on PLGF mRNA and protein levels by RT-qPCR and by Western blot, respectively. We also modified PLGF levels in OVC cells, and examined its effects on ZEB2 mRNA and protein levels by RT-qPCR and by Western blot, respectively. Then, we examined the cell invasiveness in PLGF-modified OVC cells in a transwell cell invasion assay. Finally, we used specific signal pathway inhibitors to treat PLGF-modified OVC cells and examined the effects on ZEB2 activation. Results: PLGF and ZEB2 levels were both significantly increased in OVC tissues, compared to the paired adjacent non-tumor ovary tissue. The PLGF and ZEB2 levels were strongly correlated. ZEB2 modification did not alter PLGF levels. Overexpression of PLGF in OVC cells significantly increased ZEB2 levels and cell invasiveness, while PLGF depletion in OVC cells significantly decreased ZEB2 levels and cell invasiveness. Application of a specific MAPK-p38 inhibitor, but not application of specific inhibitors for MAPK-p42/p44, PI3k/Akt, or JNK signaling pathways, to PLGF-overexpressing OVC cells substantially abolished the PLGF-induced ZEB2 activation. Conclusion: PLGF enhances OVC cell invasion through MAPK-p38-dependent activation of ZEB2.

  11. Functional proteomic analysis reveals the involvement of KIAA1199 in breast cancer growth, motility and invasiveness

    International Nuclear Information System (INIS)

    Jami, Mohammad-Saeid; Huang, Xin; Peng, Hong; Fu, Kai; Li, Yan; Singh, Rakesh K; Ding, Shi-Jian; Hou, Jinxuan; Liu, Miao; Varney, Michelle L; Hassan, Hesham; Dong, Jixin; Geng, Liying; Wang, Jing; Yu, Fang

    2014-01-01

    KIAA1199 is a recently identified novel gene that is up-regulated in human cancer with poor survival. Our proteomic study on signaling polarity in chemotactic cells revealed KIAA1199 as a novel protein target that may be involved in cellular chemotaxis and motility. In the present study, we examined the functional significance of KIAA1199 expression in breast cancer growth, motility and invasiveness. We validated the previous microarray observation by tissue microarray immunohistochemistry using a TMA slide containing 12 breast tumor tissue cores and 12 corresponding normal tissues. We performed the shRNA-mediated knockdown of KIAA1199 in MDA-MB-231 and HS578T cells to study the role of this protein in cell proliferation, migration and apoptosis in vitro. We studied the effects of KIAA1199 knockdown in vivo in two groups of mice (n = 5). We carried out the SILAC LC-MS/MS based proteomic studies on the involvement of KIAA1199 in breast cancer. KIAA1199 mRNA and protein was significantly overexpressed in breast tumor specimens and cell lines as compared with non-neoplastic breast tissues from large-scale microarray and studies of breast cancer cell lines and tumors. To gain deeper insights into the novel role of KIAA1199 in breast cancer, we modulated KIAA1199 expression using shRNA-mediated knockdown in two breast cancer cell lines (MDA-MB-231 and HS578T), expressing higher levels of KIAA1199. The KIAA1199 knockdown cells showed reduced motility and cell proliferation in vitro. Moreover, when the knockdown cells were injected into the mammary fat pads of female athymic nude mice, there was a significant decrease in tumor incidence and growth. In addition, quantitative proteomic analysis revealed that knockdown of KIAA1199 in breast cancer (MDA-MB-231) cells affected a broad range of cellular functions including apoptosis, metabolism and cell motility. Our findings indicate that KIAA1199 may play an important role in breast tumor growth and invasiveness, and that it

  12. Suppression of SOX18 by siRNA inhibits cell growth and invasion of breast cancer cells.

    Science.gov (United States)

    Zhang, Jianxiang; Ma, Yanmei; Wang, Shoujun; Chen, Fu; Gu, Yuanting

    2016-06-01

    Breast cancer is the most common malignancy in women around the world, and its incidence and mortality rates are still rising. An increasing number of studies have reported that SOX18 plays an important role in various cancers. However, the role of SOX18 in breast cancer remains poorly understood. In this study, we aimed to investigate the biological role and potential molecular mechanism of SOX18 in breast cancer. We found that the mRNA and protein expression levels of SOX18 were prevalently and significantly overexpressed in human breast cancer cell lines. Next, we performed loss-of-function experiments by transfection of two breast cancer cell lines, BT-474 and MCF-7, with SOX18 small interfering RNAs (siRNA). Results showed that SOX18 siRNA transfection significantly suppressed mRNA and protein expression of SOX18 in breast cancer cells. Furthermore, knockdown of SOX18 significantly inhibited cell proliferation and invasion, but promoted apoptosis in breast cancer cells. Importantly, several oncogenic proteins, including the Ras homolog gene family member A (RhoA), platelet-derived growth factor B (PDGFB), Insulin-like growth factor 1 receptor (IGF-1R), and matrix metalloproteinase-7 (MMP-7), were markedly decreased by SOX18 siRNA. Taken together, the results of our study suggest that knockdown of SOX18 inhibits breast cancer cell growth and invasion, possibly by downregulating downstream oncogenic proteins, providing novel insights into the development of breast cancer therapy through targeting of SOX18.

  13. TRPM7 is required for ovarian cancer cell growth, migration and invasion

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing; Liao, Qian-jin [The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013 (China); Zhang, Yi [Department of Obstetrics and Gynaecology, Xiangya Hospital, Central South University, Changsha 410078 (China); Zhou, Hui; Luo, Chen-hui; Tang, Jie; Wang, Ying; Tang, Yan; Zhao, Min; Zhao, Xue-heng [The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013 (China); Zhang, Qiong-yu [Department of Basic Medical Science, Yongzhou Vocational Technical College, Yong Zhou 425100 (China); Xiao, Ling, E-mail: lingxiaocsu@126.com [Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha 410013 (China); Institute of Clinical Pharmacology, Central South University, Changsha 410018 (China)

    2014-11-28

    Highlights: • Silence of TRPM7 in ovarian cancer cells inhibits cell proliferation, migration and invasion. • Silence of TRPM7 decreases phosphorylation levels of Akt, Src and p38 in ovarian cancer cells. • Silence of TRPM7 increases expression of filamentous actin and number of focal adhesions in ovarian cancer cells. - Abstract: Our previous study demonstrated that the melastatin-related transient receptor potential channel 7 (TRPM7) was highly expressed in ovarian carcinomas and its overexpression was significantly associated with poor prognosis in ovarian cancer patients. However, the function of TRPM7 in ovarian cancer is mostly unknown. In this study, we examined the roles of TRPM7 in ovarian cancer cell proliferation, migration and invasion. We found that short hairpin RNA interference-mediated silence of TRPM7 significantly inhibited cell proliferation, colony formation, migration and invasion in multiple ovarian cancer cell lines. Mechanistic investigation revealed that silence of TRPM7 decreased phosphorylation levels of Akt, Src and p38 and increased filamentous actin and focal adhesion number in ovarian cancer cells. Thus, our results suggest that TRPM7 is required for proliferation, migration and invasion of ovarian cancer cells through regulating multiple signaling transduction pathways and the formation of focal adhesions.

  14. ROCK1 and ROCK2 are Required for Non-Small Cell Lung Cancer Anchorage-Independent Growth and Invasion

    OpenAIRE

    Vigil, Dominico; Kim, Tai Young; Plachco, Ana; Garton, Andrew J.; Castaldo, Linda; Pachter, Jonathan A.; Dong, Hanqing; Chen, Xin; Tokar, Brianna; Campbell, Sharon L.; Der, Channing J.

    2012-01-01

    Evidence is emerging that the closely related ROCK1 and ROCK2 serine/threonine kinases support the invasive and metastatic growth of a spectrum of human cancer types. Therefore, inhibitors of ROCK are under preclinical development. However, a key step in their development involves the identification of genetic biomarkers that will predict ROCK inhibitor anti-tumor activity. One identified mechanism for ROCK activation in cancer involves the loss of function of the DLC1 tumor suppressor gene, ...

  15. Phenotype-dependent effects of EpCAM expression on growth and invasion of human breast cancer cell lines

    International Nuclear Information System (INIS)

    Martowicz, Agnieszka; Spizzo, Gilbert; Gastl, Guenther; Untergasser, Gerold

    2012-01-01

    The epithelial cell adhesion molecule (EpCAM) has been shown to be overexpressed in breast cancer and stem cells and has emerged as an attractive target for immunotherapy of breast cancer patients. This study analyzes the effects of EpCAM on breast cancer cell lines with epithelial or mesenchymal phenotype. For this purpose, shRNA-mediated knockdown of EpCAM gene expression was performed in EpCAM high breast cancer cell lines with epithelial phenotype (MCF-7, T47D and SkBR3). Moreover, EpCAM low breast carcinoma cell lines with mesenchymal phenotype (MDA-MB-231, Hs578t) and inducible overexpression of EpCAM were used to study effects on proliferation, migration and in vivo growth. In comparison to non-specific silencing controls (n/s-crtl) knockdown of EpCAM (E#2) in EpCAM high cell lines resulted in reduced cell proliferation under serum-reduced culture conditions. Moreover, DNA synthesis under 3D culture conditions in collagen was significantly reduced. Xenografts of MCF-7 and T47D cells with knockdown of EpCAM formed smaller tumors that were less invasive. EpCAM low cell lines with tetracycline-inducible overexpression of EpCAM showed no increased cell proliferation or migration under serum-reduced growth conditions. MDA-MB-231 xenografts with EpCAM overexpression showed reduced invasion into host tissue and more infiltrates of chicken granulocytes. The role of EpCAM in breast cancer strongly depends on the epithelial or mesenchymal phenotype of tumor cells. Cancer cells with epithelial phenotype need EpCAM as a growth- and invasion-promoting factor, whereas tumor cells with a mesenchymal phenotype are independent of EpCAM in invasion processes and tumor progression. These findings might have clinical implications for EpCAM-based targeting strategies in patients with invasive breast cancer

  16. microRNA-495 promotes bladder cancer cell growth and invasion by targeting phosphatase and tensin homolog

    International Nuclear Information System (INIS)

    Tan, Mingyue; Mu, Xingyu; Liu, Zhihong; Tao, Le; Wang, Jun; Ge, Jifu; Qiu, Jianxin

    2017-01-01

    Accumulating evidence has linked deregulation of microRNA-495 (miR-495) to tumorigenesis; however, its function in tumor progression is controversial. This work was undertaken to explore the expression and biological roles of miR-495 in bladder cancer. The expression of miR-495 was examined in 67 pairs of bladder cancer and adjacent normal bladder tissues. The roles of miR-495 in bladder cancer cell proliferation and invasion in vitro and tumorigenesis in vivo were determined. Direct target gene(s) mediating the activity of miR-495 in bladder cancer cells was identified. It was found that miR-495 was expressed at greater levels in bladder tissues and cell lines. High expression of miR-495 was significantly associated with larger tumor size, advanced TNM stage, and lymph node metastasis. Overexpression of miR-495 significantly promoted bladder cancer cell proliferation and invasion, whereas inhibition of miR-495 suppressed cell proliferation and invasion. PTEN, a well-defined tumor suppressor was identified to be a target gene of miR-495. A significant inverse correlation between miR-495 and PTEN expression was noted in bladder cancer tissues (r = −0.3094, P = 0.0125). Overexpression of miR-495 led to reduction of PTEN expression in bladder cancer cells. Rescue experiments showed that enforced expression of PTEN impaired miR-495-mediated bladder cancer proliferation and invasion. In vivo mouse studies demonstrated that overexpression of miR-495 accelerated the growth of subcutaneous bladder cancer xenografts, which was associated with downregulation of PTEN. Overall, these findings indicate that miR-495 upregulation contributes to bladder cancer cell growth, invasion, and tumorigenesis by targeting PTEN and offer a potential therapeutic target for bladder cancer. - Highlights: • miR-495 upregulation induces aggressive phenotype in bladder cancer. • miR-495 is inversely correlated with PTEN in bladder cancer. • miR-495 promotes bladder cancer cell

  17. Evaluation of aqueous extracts of Taraxacum officinale on growth and invasion of breast and prostate cancer cells.

    Science.gov (United States)

    Sigstedt, Sophia C; Hooten, Carla J; Callewaert, Manika C; Jenkins, Aaron R; Romero, Anntherese E; Pullin, Michael J; Kornienko, Alexander; Lowrey, Timothy K; Slambrouck, Severine Van; Steelant, Wim F A

    2008-05-01

    Ethnotraditional use of plant-derived natural products plays a significant role in the discovery and development of potential medicinal agents. Plants of the genus Taraxacum, commonly known as dandelions, have a history of use in Chinese, Arabian and Native American traditional medicine, to treat a variety of diseases including cancer. To date, however, very few studies have been reported on the anti-carcinogenic activity of Taraxacum officinale (TO). In the present study, three aqueous extracts were prepared from the mature leaves, flowers and roots, and investigated on tumor progression related processes such as proliferation and invasion. Our results show that the crude extract of dandelion leaf (DLE) decreased the growth of MCF-7/AZ breast cancer cells in an ERK-dependent manner, whereas the aqueous extracts of dandelion flower (DFE) and root (DRE) had no effect on the growth of either cell line. Furthermore, DRE was found to block invasion of MCF-7/AZ breast cancer cells while DLE blocked the invasion of LNCaP prostate cancer cells, into collagen type I. Inhibition of invasion was further evidenced by decreased phosphorylation levels of FAK and src as well as reduced activities of matrix metalloproteinases, MMP-2 and MMP-9. This study provides new scientific data on TO and suggests that TO extracts or individual components present in the extracts may be of value as novel anti-cancer agents.

  18. Ionizing Radiation Promotes Migration and Invasion of Cancer Cells Through Transforming Growth Factor-Beta–Mediated Epithelial–Mesenchymal Transition

    International Nuclear Information System (INIS)

    Zhou Yongchun; Liu Junye; Li Jing; Zhang Jie; Xu Yuqiao; Zhang Huawei; Qiu Lianbo; Ding Guirong; Su Xiaoming; Mei Shi; Guo Guozhen

    2011-01-01

    Purpose: To examine whether ionizing radiation enhances the migratory and invasive abilities of cancer cells through transforming growth factor (TGF-β)–mediated epithelial–mesenchymal transition (EMT). Methods and Materials: Six cancer cell lines originating from different human organs were irradiated by 60 Co γ-ray at a total dose of 2 Gy, and the changes associated with EMT, including morphology, EMT markers, migration and invasion, were observed by microscope, Western blot, immunofluorescence, scratch assay, and transwell chamber assay, respectively. Then the protein levels of TGF-β in these cancer cells were detected by enzyme-linked immunosorbent assay, and the role of TGF-β signaling pathway in the effect of ionizing radiation on EMT was investigate by using the specific inhibitor SB431542. Results: After irradiation with γ-ray at a total dose of 2 Gy, cancer cells presented the mesenchymal phenotype, and compared with the sham-irradiation group the expression of epithelial markers was decreased and of mesenchymal markers was increased, the migratory and invasive capabilities were strengthened, and the protein levels of TGF-β were enhanced. Furthermore, events associated with EMT induced by IR in A549 could be reversed through inhibition of TGF-β signaling. Conclusions: These results suggest that EMT mediated by TGF-β plays a critical role in IR-induced enhancing of migratory and invasive capabilities in cancer cells.

  19. Ionizing Radiation Promotes Migration and Invasion of Cancer Cells Through Transforming Growth Factor-Beta-Mediated Epithelial-Mesenchymal Transition

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Yongchun [Department of Radiation Oncology, Xijing Hospital Fourth Military Medical University, Xi' an (China); Department of Radiation Medicine, College of Preventive Medicine, Xijing Hospital Fourth Military Medical University, Xi' an (China); Liu Junye; Li Jing; Zhang Jie [Department of Radiation Medicine, College of Preventive Medicine, Xijing Hospital Fourth Military Medical University, Xi' an (China); Xu Yuqiao [Department of Pathology, Xijing Hospital Fourth Military Medical University, Xi' an (China); Zhang Huawei; Qiu Lianbo; Ding Guirong [Department of Radiation Medicine, College of Preventive Medicine, Xijing Hospital Fourth Military Medical University, Xi' an (China); Su Xiaoming [Department of Radiation Oncology, 306th Hospital of PLA, Beijing (China); Mei Shi [Department of Radiation Oncology, Xijing Hospital Fourth Military Medical University, Xi' an (China); Guo Guozhen, E-mail: guozhenguo@hotmail.com [Department of Radiation Medicine, College of Preventive Medicine, Xijing Hospital Fourth Military Medical University, Xi' an (China)

    2011-12-01

    Purpose: To examine whether ionizing radiation enhances the migratory and invasive abilities of cancer cells through transforming growth factor (TGF-{beta})-mediated epithelial-mesenchymal transition (EMT). Methods and Materials: Six cancer cell lines originating from different human organs were irradiated by {sup 60}Co {gamma}-ray at a total dose of 2 Gy, and the changes associated with EMT, including morphology, EMT markers, migration and invasion, were observed by microscope, Western blot, immunofluorescence, scratch assay, and transwell chamber assay, respectively. Then the protein levels of TGF-{beta} in these cancer cells were detected by enzyme-linked immunosorbent assay, and the role of TGF-{beta} signaling pathway in the effect of ionizing radiation on EMT was investigate by using the specific inhibitor SB431542. Results: After irradiation with {gamma}-ray at a total dose of 2 Gy, cancer cells presented the mesenchymal phenotype, and compared with the sham-irradiation group the expression of epithelial markers was decreased and of mesenchymal markers was increased, the migratory and invasive capabilities were strengthened, and the protein levels of TGF-{beta} were enhanced. Furthermore, events associated with EMT induced by IR in A549 could be reversed through inhibition of TGF-{beta} signaling. Conclusions: These results suggest that EMT mediated by TGF-{beta} plays a critical role in IR-induced enhancing of migratory and invasive capabilities in cancer cells.

  20. Regorafenib inhibited gastric cancer cells growth and invasion via CXCR4 activated Wnt pathway.

    Science.gov (United States)

    Lin, Xiao-Lin; Xu, Qi; Tang, Lei; Sun, Li; Han, Ting; Wang, Li-Wei; Xiao, Xiu-Ying

    2017-01-01

    Regorafenib is an oral small-molecule multi kinase inhibitor. Recently, several clinical trials have revealed that regorafenib has an anti-tumor activity in gastric cancer. However, only part of patients benefit from regorafenib, and the mechanisms of regorafenib's anti-tumor effect need further demonstrating. In this study, we would assess the potential anti-tumor effects and the underlying mechanisms of regorafenib in gastric cancer cells, and explore novel biomarkers for patients selecting of regorafenib. The anti-tumor effects of regorafenib on gastric cancer cells were analyzed via cell proliferation and invasion. The underlying mechanisms were demonstrated using molecular biology techniques. We found that regorafenib inhibited cell proliferation and invasion at the concentration of 20μmol/L and in a dose dependent manner. The anti-tumor effects of regorafenib related to the decreased expression of CXCR4, and elevated expression and activation of CXCR4 could reverse the inhibition effect of regorafenib on gastric cancer cells. Further studies revealed that regorafenib reduced the transcriptional activity of Wnt/β-Catenin pathway and led to decreased expression of Wnt pathway target genes, while overexpression and activation of CXCR4 could attenuate the inhibition effect of regorafenib on Wnt/β-Catenin pathway. Our findings demonstrated that regorafenib effectively inhibited cell proliferation and invasion of gastric cancer cells via decreasing the expression of CXCR4 and further reducing the transcriptional activity of Wnt/β-Catenin pathway.

  1. Vascular endothelial growth factor C promotes cervical cancer cell invasiveness via regulation of microRNA-326/cortactin expression.

    Science.gov (United States)

    Cheng, Yang; Jiang, Shuyi; Yuan, Jin; Liu, Junxiu; Simoncini, Tommaso

    2018-04-16

    Vascular endothelial growth factor C (VEGF-C) accelerates cervical cancer metastasis, while the detailed mechanism remains largely unknown. Recent evidence indicates that microRNA play a crucial role in controlling cancer cell invasiveness. In the present study, we investigated the role of miR-326 in VEGF-C-induced cervical cancer cell invasion. VEGF-C expression was higher and miR-326 was much lower in primary cervical cancer specimens than that in non-cancerous specimens, and a negative correlation between VEGF-C and miR-326 was found. On cervical carcinoma cell line SiHa cells, treatment with VEGF-C downregulated miR-326 level and increased cortactin protein expression. Transfection with miR-326 mimic reversed cortactin expression induced by VEGF-C, suggesting that VEGF-C increased cortactin via downregulation of miR-326. VEGF-C activated c-Src and c-Src inhibitor PP2 abolished VEGF-C effect on miR-326 and cortactin expression, implying that VEGF-C regulated miR-326/cortactin via c-Src signaling. VEGF-C promoted SiHa cell invasion index, which was largely inhibited by transfection with miR-326 antagonist or by siRNA against cortactin. In conclusion, our findings implied that VEGF-C reduced miR-326 expression and increased cortactin expression through c-Src signaling, leading to enhanced cervical cancer invasiveness. This may shed light on potential therapeutic strategies for cervical cancer therapy.

  2. MicroRNA-338 inhibits growth, invasion and metastasis of gastric cancer by targeting NRP1 expression.

    Directory of Open Access Journals (Sweden)

    Yang Peng

    Full Text Available NRP1 as multifunctional non-tyrosine-kinase receptors play critical roles in tumor progression. MicroRNAs (miRNAs are an important class of pervasive genes that are involved in a variety of biological functions, particularly cancer. It remains unclear whether miRNAs can regulate the expression of NRP1. The goal of this study was to identify miRNAs that could inhibit the growth, invasion and metastasis of gastric cancer by targeting NRP1 expression. We found that miR-338 expression was reduced in gastric cancer cell lines and in gastric cancer tissues. Moreover, we found that miR-338 inhibited gastric cancer cell migration, invasion, proliferation and promoted apoptosis by targeting NRP1 expression. As an upstream regulator of NRP1, miR-338 directly targets NRP1. The forced expression of miR-338 inhibited the phosphorylation of Erk1/2, P38 MAPK and Akt; however, the expression of phosphorylated Erk1/2, P38 MAPK and Akt was restored by the overexpression of NRP1. In AGS cells infected with miR-338 or transfected with SiNRP1, the protein levels of fibronectin, vimentin, N-cadherin and SNAIL were decreased, but the expression of E-cadherin was increased. The expression of mesenchymal markers in miR-338-expressing cells was restored to normal levels by the restoration of NRP1 expression. In vivo, miR-338 also decreased tumor growth and suppressed D-MVA by targeting NRP1. Therefore, we conclude that miR-338 acts as a novel tumor suppressor gene in gastric cancer. miR-338 can decrease migratory, invasive, proliferative and apoptotic behaviors, as well as gastric cancer EMT, by attenuating the expression of NRP1.

  3. Met inactivation by S-allylcysteine suppresses the migration and invasion of nasopharyngeal cancer cells induced by hepatocyte growth factor

    Energy Technology Data Exchange (ETDEWEB)

    Cho, O Yeon; Hwang, Hye Sook; Lee, Bok Soon; Oh, Young Taek; Kim, Chul Ho; Chun, Mi Son [Ajou University School of Medicine, Suwon (Korea, Republic of)

    2015-12-15

    Past studies have reported that S-allylcysteine (SAC) inhibits the migration and invasion of cancer cells through the restoration of E-cadherin, the reduction of matrix metalloproteinase (MMP) and Slug protein expression, and inhibition of the production of reactive oxygen species (ROS). Furthermore, evidence is emerging that shows that ROS induced by radiation could increase Met activation. Following on these reports of SAC and Met, we investigated whether SAC could suppress Met activation. Wound healing, invasion, 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium (MTT), soft agar colony forming, western blotting, and gelatin zymography assays were performed in the human nasopharyngeal cancer cell lines HNE1 and HONE1 treated with SAC (0, 10, 20, or 40 mM) and hepatocyte growth factor (HGF). This study showed that SAC could suppress the migration and invasion of HNE1 and HONE1 cell lines by inhibiting p-Met. An increase of migration and invasion induced by HGF and its decrease in a dose dependent manner by SAC in wound healing and invasion assays was observed. The reduction of p-Met by SAC was positively correlated with p-focal adhesion kinase (p-FAK) and p-extracellular related kinase (p-ERK in both cell lines). SAC reduced Slug, MMP2, and MMP9 involved in migration and invasion with the inhibition of Met-FAK signaling. These results suggest that SAC inhibited not only Met activation but also the downstream FAK, Slug, and MMP expression. Finally, SAC may be a potent anticancer compound for nasopharyngeal cancer treated with radiotherapy.

  4. Olive phenolics as c-Met inhibitors: (--Oleocanthal attenuates cell proliferation, invasiveness, and tumor growth in breast cancer models.

    Directory of Open Access Journals (Sweden)

    Mohamed R Akl

    Full Text Available Dysregulation of the Hepatocyte growth factor (HGF/c-Met signaling axis upregulates diverse tumor cell functions, including cell proliferation, survival, scattering and motility, epithelial-to-mesenchymal transition (EMT, angiogenesis, invasion, and metastasis. (--Oleocanthal is a naturally occurring secoiridoid from extra-virgin olive oil, which showed antiproliferative and antimigratory activity against different cancer cell lines. The aim of this study was to characterize the intracellular mechanisms involved in mediating the anticancer effects of (--oleocanthal treatment and the potential involvement of c-Met receptor signaling components in breast cancer. Results showed that (--oleocanthal inhibits the growth of human breast cancer cell lines MDA-MB-231, MCF-7 and BT-474 while similar treatment doses were found to have no effect on normal human MCF10A cell growth. In addition, (--oleocanthal treatment caused a dose-dependent inhibition of HGF-induced cell migration, invasion and G1/S cell cycle progression in breast cancer cell lines. Moreover, (--oleocanthal treatment effects were found to be mediated via inhibition of HGF-induced c-Met activation and its downstream mitogenic signaling pathways. This growth inhibitory effect is associated with blockade of EMT and reduction in cellular motility. Further results from in vivo studies showed that (--oleocanthal treatment suppressed tumor cell growth in an orthotopic model of breast cancer in athymic nude mice. Collectively, the findings of this study suggest that (--oleocanthal is a promising dietary supplement lead with potential for therapeutic use to control malignancies with aberrant c-Met activity.

  5. miR-409-3p suppresses breast cancer cell growth and invasion by targeting Akt1

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guoqiang [Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan 250012 (China); Department of Thyroid and Breast Surgery, Hospital Affiliated to Binzhou Medical University, 661 Second Huanghe Street, Binzhou 256603 (China); Liu, Zengyan [Department of Hematology, Hospital Affiliated to Binzhou Medical University, 661 Second Huanghe Street, Binzhou 256603 (China); Xu, Hao [Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029 (China); Yang, Qifeng, E-mail: qifengy_sdu1@163.com [Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan 250012 (China)

    2016-01-08

    Altered levels and functions of microRNAs (miRNAs) are correlated with carcinogenesis. While miR-409-3p has been shown to play important roles in several cancer types, its function in the context of breast cancer (BC) remains unknown. In this study, miR-409-3p was significantly downregulated in BC tissues and cell lines, compared with the corresponding control counterparts. Overexpression of miR-409-3p inhibited BC cell proliferation, migration and invasion in vitro and suppressed tumor growth in vivo. Notably, miR-409-3p induced downregulation of Akt1 protein through binding to its 3′ untranslated region (UTR). Conversely, restoring Akt1 expression rescued the suppressive effects of miR-409-3p. Our data collectively indicate that miR-409-3p functions as a tumor suppressor in BC through downregulating Akt1, supporting the targeting of the novel miR-409-3p/Akt1 axis as a potentially effective therapeutic approach for BC. - Highlights: • miR-409-3p inhibits proliferation, migration and invasion of BC cells. • miR-409-3p suppresses tumor growth in nude mice. • Akt1 is a direct downstream target of miR-409-3p. • Ectopic expression of Akt1 reverses the effects of miR-409-3p on cell proliferation, migration and invasion.

  6. A novel uPAg-KPI fusion protein inhibits the growth and invasion of human ovarian cancer cells in vitro.

    Science.gov (United States)

    Zhao, Li-Ping; Xu, Tian-Min; Kan, Mu-Jie; Xiao, Ye-Chen; Cui, Man-Hua

    2016-05-01

    Urokinase-type plasminogen activator (uPA) acts by breaking down the basement membrane and is involved in cell proliferation, migration and invasion. These actions are mediated by binding to the uPA receptor (uPAR) via its growth factor domain (GFD). The present study evaluated the effects of uPAg-KPI, a fusion protein of uPA-GFD and a kunitz protease inhibitor (KPI) domain that is present in the amyloid β-protein precursor. Using SKOV-3 cells, an ovarian cancer cell line, we examined cell viability, migration, invasion and also protein expression. Furthermore, we examined wound healing, and migration and invasion using a Transwell assay. Our data showed that uPAg-KPI treatment reduced the viability of ovarian cancer SKOV-3 cells in both a concentration and time-dependent manner by arresting tumor cells at G1/G0 phase of the cell cycle. The IC50 of uPAg-KPI was 0.5 µg/µl after 48 h treatment. At this concentration, uPAg-KPI also inhibited tumor cell colony formation, wound closure, as well as cell migration and invasion capacity. At the protein level, western blot analysis demonstrated that uPAg-KPI exerted no significant effect on the expression of total extracellular signal-regulated kinase (ERK)1/ERK2 and AKT, whereas it suppressed levels of phosphorylated ERK1/ERK2 and AKT. Thus, we suggest that this novel uPAg-KPI fusion protein reduced cell viability, colony formation, wound healing and the invasive ability of human ovarian cancer SKOV-3 cells in vitro by regulating ERK and AKT signaling. Further studies using other cell lines will confirm these findings.

  7. CTNNB1-mutant colorectal carcinomas with immediate invasive growth: a model of interval cancers in Lynch syndrome.

    Science.gov (United States)

    Ahadova, Aysel; von Knebel Doeberitz, Magnus; Bläker, Hendrik; Kloor, Matthias

    2016-10-01

    The implementation of regular colonoscopy programs has significantly decreased the mortality associated with colorectal cancer (CRC) in Lynch syndrome patients. However, interval CRCs in Lynch syndrome that remain undetected by colonoscopy still represent a substantial problem in the management of the syndrome. One possible reason of interval cancers could be a non-polypous pathway of cancer development. To examine the possibility of a non-polypous pathway of CRC development in Lynch syndrome, we analyzed the histological appearance of 46 Lynch syndrome-associated CRCs and compared them to 34 sporadic microsatellite unstable cancers. We observed that 25 (62.5 %) out of 40 assessable Lynch syndrome-associated carcinomas lacked evidence of polypous growth, compared to 17 (50 %) out of 34 sporadic MSI-H cancers. We detected CTNNB1 mutations in 8 (17.4 %) out of 46 Lynch syndrome-associated cancers compared to 0 out of 34 sporadic MSI-H cancers (p = 0.01). The majority of CTNNB1-mutant cancers presented with a histological appearance suggesting immediate invasive growth. Our results suggest that a distinct subgroup of CRCs in Lynch syndrome may in fact emerge from a non-polypous precursor, thus potentially explaining the phenomenon of interval cancers. Such a non-polypous precursor may be the recently described mismatch repair-deficient crypt focus, which remains invisible for the examiner during colonoscopy. This calls for considering the implementation of active, primary preventive measures in the management of Lynch syndrome. Future studies on pathogenic pathways and precursor lesions in Lynch syndrome are strongly encouraged, and the clinical efficacy of new prevention approaches should be evaluated in prospective clinical trials.

  8. PTTG1, A novel androgen responsive gene is required for androgen-induced prostate cancer cell growth and invasion

    International Nuclear Information System (INIS)

    Zhang, Zheng; Jin, Bo; Jin, Yaqiong; Huang, Shengquan; Niu, Xiaohua; Mao, Zebin; Xin, Dianqi

    2017-01-01

    Androgens (AR) play an important role in initiation and progression of prostate cancer. It has been shown that AR exert their effects mainly through the androgen-activated AR which binds to androgen response elements (AREs) in the regulatory regions of target genes to regulate the transcription of androgen-responsive genes, thus, identification of AR downstream target gene is critical to understand androgen function in prostate cancer. In this study, our results showed that androgen treatment of LNCaP cells induced PTTG1 expression, which was blocked by the androgen receptor antagonist, Casodex. Bioinformatics analysis and experiments using PTTG1 promoter deletion mutants showed that the PTTG1 promoter contains a putative androgen response element (ARE), which localizes in the −851 to −836 region of the promoter. Androgen activated androgen receptor (AR) binding to this ARE was confirmed by Chromatin immunoprecipitation (ChIP) assay. Furthermore, Knockdown of PTTG1 expression using short hairpin RNA significantly reduced androgen-induced LNCaP cell growth and invasion. In addition, we showed PTTG1 is highly expressed in metastasis prostate cancer tissue. These results suggest that PTTG1 is a novel downstream target gene of androgen receptor and take part in prostate cancer proliferation and metastasis. - Highlights: • Androgen treatment of LNCaP cells induced PTTG1 expression. • Knockdown of PTTG1 expression significantly reduced androgen-induced LNCaP cell growth and invasion. • PTTG1 is highly expressed in metastasis prostate cancer tissue. • PTTG1 is a novel downstream target gene of androgen receptor.

  9. DMH1, a small molecule inhibitor of BMP type i receptors, suppresses growth and invasion of lung cancer.

    Directory of Open Access Journals (Sweden)

    Jijun Hao

    Full Text Available The bone morphogenetic protein (BMP signaling cascade is aberrantly activated in human non-small cell lung cancer (NSCLC but not in normal lung epithelial cells, suggesting that blocking BMP signaling may be an effective therapeutic approach for lung cancer. Previous studies demonstrated that some BMP antagonists, which bind to extracellular BMP ligands and prevent their association with BMP receptors, dramatically reduced lung tumor growth. However, clinical application of protein-based BMP antagonists is limited by short half-lives, poor intra-tumor delivery as well as resistance caused by potential gain-of-function mutations in the downstream of the BMP pathway. Small molecule BMP inhibitors which target the intracellular BMP cascades would be ideal for anticancer drug development. In a zebrafish embryo-based structure and activity study, we previously identified a group of highly selective small molecule inhibitors specifically antagonizing the intracellular kinase domain of BMP type I receptors. In the present study, we demonstrated that DMH1, one of such inhibitors, potently reduced lung cell proliferation, promoted cell death, and decreased cell migration and invasion in NSCLC cells by blocking BMP signaling, as indicated by suppression of Smad 1/5/8 phosphorylation and gene expression of Id1, Id2 and Id3. Additionally, DMH1 treatment significantly reduced the tumor growth in human lung cancer xenograft model. In conclusion, our study indicates that small molecule inhibitors of BMP type I receptors may offer a promising novel strategy for lung cancer treatment.

  10. Transforming Growth Factor-β Is an Upstream Regulator of Mammalian Target of Rapamycin Complex 2-Dependent Bladder Cancer Cell Migration and Invasion.

    Science.gov (United States)

    Gupta, Sounak; Hau, Andrew M; Al-Ahmadie, Hikmat A; Harwalkar, Jyoti; Shoskes, Aaron C; Elson, Paul; Beach, Jordan R; Hussey, George S; Schiemann, William P; Egelhoff, Thomas T; Howe, Philip H; Hansel, Donna E

    2016-05-01

    Our prior work identified the mammalian target of rapamycin complex 2 (mTORC2) as a key regulator of bladder cancer cell migration and invasion, although upstream growth factor mediators of this pathway in bladder cancer have not been well delineated. We tested whether transforming growth factor (TGF)-β, which can function as a promotility factor in bladder cancer cells, could regulate mTORC2-dependent bladder cancer cell motility and invasion. In human bladder cancers, the highest levels of phosphorylated SMAD2, a TGF-β signaling intermediate, were present in high-grade invasive bladder cancers and associated with more frequent recurrence and decreased disease-specific survival. Increased expression of TGF-β isoforms, receptors, and signaling components was detected in invasive high-grade bladder cancer cells that expressed Vimentin and lacked E-cadherin. Application of TGF-β induced phosphorylation of the Ser473 residue of AKT, a selective target of mTORC2, in a SMAD2- and SMAD4-independent manner and increased bladder cancer cell migration in a modified scratch wound assay and invasion through Matrigel. Inhibition of TGF-β receptor I using SB431542 ablated TGF-β-induced migration and invasion. A similar effect was seen when Rictor, a key mTORC2 component, was selectively silenced. Our results suggest that TGF-β can induce bladder cancer cell invasion via mTORC2 signaling, which may be applicable in most bladder cancers. Copyright © 2016. Published by Elsevier Inc.

  11. Extracellular Molecules Involved in Cancer Cell Invasion

    International Nuclear Information System (INIS)

    Stivarou, Theodora; Patsavoudi, Evangelia

    2015-01-01

    Nowadays it is perfectly clear that understanding and eradicating cancer cell invasion and metastasis represent the crucial, definitive points in cancer therapeutics. During the last two decades there has been a great interest in the understanding of the extracellular molecular mechanisms involved in cancer cell invasion. In this review, we highlight the findings concerning these processes, focusing in particular on extracellular molecules, including extracellular matrix proteins and their receptors, growth factors and their receptors, matrix metalloproteinases and extracellular chaperones. We report the molecular mechanisms underlying the important contribution of this pool of molecules to the complex, multi-step phenomenon of cancer cell invasion

  12. Extracellular Molecules Involved in Cancer Cell Invasion

    Directory of Open Access Journals (Sweden)

    Theodora Stivarou

    2015-01-01

    Full Text Available Nowadays it is perfectly clear that understanding and eradicating cancer cell invasion and metastasis represent the crucial, definitive points in cancer therapeutics. During the last two decades there has been a great interest in the understanding of the extracellular molecular mechanisms involved in cancer cell invasion. In this review, we highlight the findings concerning these processes, focusing in particular on extracellular molecules, including extracellular matrix proteins and their receptors, growth factors and their receptors, matrix metalloproteinases and extracellular chaperones. We report the molecular mechanisms underlying the important contribution of this pool of molecules to the complex, multi-step phenomenon of cancer cell invasion.

  13. In vitro invasion of small-cell lung cancer cell lines correlates with expression of epidermal growth factor receptor

    DEFF Research Database (Denmark)

    Damstrup, L; Rude Voldborg, B; Spang-Thomsen, M

    1998-01-01

    receptor (EGFR) in a panel of 21 small-cell lung cancer (SCLC) cell lines. We have previously reported that ten of these cell lines expressed EGFR protein detected by radioreceptor and affinity labelling assays. In 11 small-cell lung cancer (SCLC) cell lines, EGFR mRNA was detected by Northern blot...... analysis. In vitro invasion in a Boyden chamber assay was found in all EGFR-positive cell lines, whereas no invasion was detected in the EGFR-negative cell lines. Quantification of the in vitro invasion in 12 selected SCLC cell lines demonstrated that, in the EGFR-positive cell lines, between 5% and 16......-PCR). However, in vitro invasive SCLC cell lines could not be distinguished from non-invasive cell lines based on the expression pattern of these molecules. In six SCLC cell lines, in vitro invasion was also determined in the presence of the EGFR-neutralizing monoclonal antibody mAb528. The addition...

  14. Platelet-derived growth factor receptor beta: a novel urinary biomarker for recurrence of non-muscle-invasive bladder cancer.

    Science.gov (United States)

    Feng, Jiayu; He, Weifeng; Song, Yajun; Wang, Ying; Simpson, Richard J; Zhang, Xiaorong; Luo, Gaoxing; Wu, Jun; Huang, Chibing

    2014-01-01

    Non-muscle-invasive bladder cancer (NMIBC) is one of the most common malignant tumors in the urological system with a high risk of recurrence, and effective non-invasive biomarkers for NMIBC relapse are still needed. The human urinary proteome can reflect the status of the microenvironment of the urinary system and is an ideal source for clinical diagnosis of urinary system diseases. Our previous work used proteomics to identify 1643 high-confidence urinary proteins in the urine from a healthy population. Here, we used bioinformatics to construct a cancer-associated protein-protein interaction (PPI) network comprising 16 high-abundance urinary proteins based on the urinary proteome database. As a result, platelet-derived growth factor receptor beta (PDGFRB) was selected for further validation as a candidate biomarker for NMIBC diagnosis and prognosis. Although the levels of urinary PDGFRB showed no significant difference between patients pre- and post-surgery (n = 185, P>0.05), over 3 years of follow-up, urinary PDGFRB was shown to be significantly higher in relapsed patients (n = 68) than in relapse-free patients (n = 117, P<0.001). The levels of urinary PDGFRB were significantly correlated with the risk of 3-year recurrence of NMIBC, and these levels improved the accuracy of a NMIBC recurrence risk prediction model that included age, tumor size, and tumor number (area under the curve, 0.862; 95% CI, 0.809 to 0.914) compared to PDGFR alone. Therefore, we surmise that urinary PDGFRB could serve as a non-invasive biomarker for predicting NMIBC recurrence.

  15. Ganodermanontriol (GDNT) exerts its effect on growth and invasiveness of breast cancer cells through the down-regulation of CDC20 and uPA

    International Nuclear Information System (INIS)

    Jiang, Jiahua; Jedinak, Andrej; Sliva, Daniel

    2011-01-01

    Highlights: ► Ganodermanontriol (GDNT), a Ganoderma mushroom alcohol, inhibits growth of breast cancer cells. ► CDC20 is over-expressed in tumors but not in the tumor surrounding tissue in breast cancer patients. ► GDNT inhibits expression of CDC20 in breast cancer cells. ► GDNT inhibits cell adhesion, cell migration and cell invasion of breast cancer cells. ► GDNT inhibits secretion of uPA and down-regulates expression of uPAR in breast cancer cells. -- Abstract: Ganoderma lucidum is a medicinal mushroom that has been recognized by Traditional Chinese Medicine (TCM). Although some of the direct anticancer activities are attributed to the presence of triterpenes—ganoderic and lucidenic acids—the activity of other compounds remains elusive. Here we show that ganodermanontriol (GDNT), a Ganoderma alcohol, specifically suppressed proliferation (anchorage-dependent growth) and colony formation (anchorage-independent growth) of highly invasive human breast cancer cells MDA-MB-231. GDNT suppressed expression of the cell cycle regulatory protein CDC20, which is over-expressed in precancerous and breast cancer cells compared to normal mammary epithelial cells. Moreover, we found that CDC20 is over-expressed in tumors when compared to the tissue surrounding the tumor in specimens from breast cancer patients. GDNT also inhibited invasive behavior (cell adhesion, cell migration, and cell invasion) through the suppression of secretion of urokinase-plasminogen activator (uPA) and inhibited expression of uPA receptor. In conclusion, mushroom GDNT is a natural agent that has potential as a therapy for invasive breast cancers.

  16. Ganodermanontriol (GDNT) exerts its effect on growth and invasiveness of breast cancer cells through the down-regulation of CDC20 and uPA

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Jiahua; Jedinak, Andrej [Cancer Research Laboratory, Methodist Research Institute, Indiana University Health, Indianapolis, IN (United States); Sliva, Daniel, E-mail: dsliva@iuhealth.org [Cancer Research Laboratory, Methodist Research Institute, Indiana University Health, Indianapolis, IN (United States); Department of Medicine, School of Medicine, Indiana University, Indianapolis, IN (United States); Indiana University Simon Cancer Center, School of Medicine, Indiana University, Indianapolis, IN (United States)

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Ganodermanontriol (GDNT), a Ganoderma mushroom alcohol, inhibits growth of breast cancer cells. Black-Right-Pointing-Pointer CDC20 is over-expressed in tumors but not in the tumor surrounding tissue in breast cancer patients. Black-Right-Pointing-Pointer GDNT inhibits expression of CDC20 in breast cancer cells. Black-Right-Pointing-Pointer GDNT inhibits cell adhesion, cell migration and cell invasion of breast cancer cells. Black-Right-Pointing-Pointer GDNT inhibits secretion of uPA and down-regulates expression of uPAR in breast cancer cells. -- Abstract: Ganoderma lucidum is a medicinal mushroom that has been recognized by Traditional Chinese Medicine (TCM). Although some of the direct anticancer activities are attributed to the presence of triterpenes-ganoderic and lucidenic acids-the activity of other compounds remains elusive. Here we show that ganodermanontriol (GDNT), a Ganoderma alcohol, specifically suppressed proliferation (anchorage-dependent growth) and colony formation (anchorage-independent growth) of highly invasive human breast cancer cells MDA-MB-231. GDNT suppressed expression of the cell cycle regulatory protein CDC20, which is over-expressed in precancerous and breast cancer cells compared to normal mammary epithelial cells. Moreover, we found that CDC20 is over-expressed in tumors when compared to the tissue surrounding the tumor in specimens from breast cancer patients. GDNT also inhibited invasive behavior (cell adhesion, cell migration, and cell invasion) through the suppression of secretion of urokinase-plasminogen activator (uPA) and inhibited expression of uPA receptor. In conclusion, mushroom GDNT is a natural agent that has potential as a therapy for invasive breast cancers.

  17. Inhibition of Calcium-Activated Chloride Channel ANO1/TMEM16A Suppresses Tumor Growth and Invasion in Human Lung Cancer.

    Directory of Open Access Journals (Sweden)

    Linghan Jia

    Full Text Available Lung cancer or pulmonary carcinoma is primarily derived from epithelial cells that are thin and line on the alveolar surfaces of the lung for gas exchange. ANO1/TMEM16A, initially identified from airway epithelial cells, is a member of Ca2+-activated Cl- channels (CaCCs that function to regulate epithelial secretion and cell volume for maintenance of ion and tissue homeostasis. ANO1/TMEM16A has recently been shown to be highly expressed in several epithelium originated carcinomas. However, the role of ANO1 in lung cancer remains unknown. In this study, we show that inhibition of calcium-activated chloride channel ANO1/TMEM16A suppresses tumor growth and invasion in human lung cancer. ANO1 is upregulated in different human lung cancer cell lines. Knocking-down ANO1 by small hairpin RNAs inhibited proliferation, migration and invasion of GLC82 and NCI-H520 cancel cells evaluated by CCK-8, would-healing, transwell and 3D soft agar assays. ANO1 protein is overexpressed in 77.3% cases of human lung adenocarcinoma tissues detected by immunohistochemistry. Furthermore, the tumor growth in nude mice implanted with GLC82 cells was significantly suppressed by ANO1 silencing. Taken together, our findings provide evidence that ANO1 overexpression contributes to tumor growth and invasion of lung cancer; and suppressing ANO1 overexpression may have therapeutic potential in lung cancer therapy.

  18. miR-214 down-regulates ARL2 and suppresses growth and invasion of cervical cancer cells

    International Nuclear Information System (INIS)

    Peng, Ruiqing; Men, Jianlong; Ma, Rui; Wang, Qian; Wang, Yang; Sun, Ying; Ren, Jing

    2017-01-01

    Increasing evidence has shown that miRNAs are implicated in carcinogenesis and can function as oncogenes or tumor suppressor genes in human cancers. In this study, we confirmed that miR-214 is frequently down-regulated in cervical cancer compared with normal cervical tissues. Ectopic expression of miR-214 suppressed proliferation, migration and invasion of HeLa and C33A cervical cancer cells. Bioinformatics analysis revealed that ADP ribosylation factor like 2 (ARL2) was a potential target of miR-214 and was remarkably up-regulated in cervical cancer. Knockdown of ARL2 markedly inhibited cervical cancer cell proliferation, migration and invasion, similarly to over-expression of miR-214, indicating that ARL2 may function as an oncogene in cervical cancer. In conclusion, our study revealed that miR-214 acts as a tumor suppressor via inhibiting proliferation, migration and invasion of cervical cancer cells through targeting ARL2, and that both miR-214 and ARL2 may serve as prognostic or therapeutic targets for cervical cancer. - Highlights: • miR-214 targets ARL2. • ARL2 maybe an oncogene in cervical cancer. • ARL2 rescues miR-214.

  19. Regorafenib inhibited gastric cancer cells growth and invasion via CXCR4 activated Wnt pathway

    OpenAIRE

    Lin, Xiao-Lin; Xu, Qi; Tang, Lei; Sun, Li; Han, Ting; Wang, Li-Wei; Xiao, Xiu-Ying

    2017-01-01

    Aim Regorafenib is an oral small-molecule multi kinase inhibitor. Recently, several clinical trials have revealed that regorafenib has an anti-tumor activity in gastric cancer. However, only part of patients benefit from regorafenib, and the mechanisms of regorafenib?s anti-tumor effect need further demonstrating. In this study, we would assess the potential anti-tumor effects and the underlying mechanisms of regorafenib in gastric cancer cells, and explore novel biomarkers for patients selec...

  20. Expression profiling of migrated and invaded breast cancer cells predicts early metastatic relapse and reveals Krüppel-like factor 9 as a potential suppressor of invasive growth in breast cancer

    Science.gov (United States)

    Limame, Ridha; de Beeck, Ken Op; Van Laere, Steven; Croes, Lieselot; De Wilde, Annemieke; Dirix, Luc; Van Camp, Guy; Peeters, Marc; De Wever, Olivier; Lardon, Filip; Pauwels, Patrick

    2014-01-01

    Cell motility and invasion initiate metastasis. However, only a subpopulation of cancer cells within a tumor will ultimately become invasive. Due to this stochastic and transient nature, in an experimental setting, migrating and invading cells need to be isolated from the general population in order to study the gene expression profiles linked to these processes. This report describes microarray analysis on RNA derived from migrated or invaded subpopulations of triple negative breast cancer cells in a Transwell set-up, at two different time points during motility and invasion, pre-determined as “early” and “late” in real-time kinetic assessments. Invasion- and migration-related gene expression signatures were generated through comparison with non-invasive cells, remaining at the upper side of the Transwell membranes. Late-phase signatures of both invasion and migration indicated poor prognosis in a series of breast cancer data sets. Furthermore, evaluation of the genes constituting the prognostic invasion-related gene signature revealed Krüppel-like factor 9 (KLF9) as a putative suppressor of invasive growth in breast cancer. Next to loss in invasive vs non-invasive cell lines, KLF9 also showed significantly lower expression levels in the “early” invasive cell population, in several public expression data sets and in clinical breast cancer samples when compared to normal tissue. Overexpression of EGFP-KLF9 fusion protein significantly altered morphology and blocked invasion and growth of MDA-MB-231 cells in vitro. In addition, KLF9 expression correlated inversely with mitotic activity in clinical samples, indicating anti-proliferative effects. PMID:25593984

  1. Expression profiling of nuclear receptors in breast cancer identifies TLX as a mediator of growth and invasion in triple-negative breast cancer.

    Science.gov (United States)

    Lin, Meng-Lay; Patel, Hetal; Remenyi, Judit; Banerji, Christopher R S; Lai, Chun-Fui; Periyasamy, Manikandan; Lombardo, Ylenia; Busonero, Claudia; Ottaviani, Silvia; Passey, Alun; Quinlan, Philip R; Purdie, Colin A; Jordan, Lee B; Thompson, Alastair M; Finn, Richard S; Rueda, Oscar M; Caldas, Carlos; Gil, Jesus; Coombes, R Charles; Fuller-Pace, Frances V; Teschendorff, Andrew E; Buluwela, Laki; Ali, Simak

    2015-08-28

    The Nuclear Receptor (NR) superfamily of transcription factors comprises 48 members, several of which have been implicated in breast cancer. Most important is estrogen receptor-α (ERα), which is a key therapeutic target. ERα action is facilitated by co-operativity with other NR and there is evidence that ERα function may be recapitulated by other NRs in ERα-negative breast cancer. In order to examine the inter-relationships between nuclear receptors, and to obtain evidence for previously unsuspected roles for any NRs, we undertook quantitative RT-PCR and bioinformatics analysis to examine their expression in breast cancer. While most NRs were expressed, bioinformatic analyses differentiated tumours into distinct prognostic groups that were validated by analyzing public microarray data sets. Although ERα and progesterone receptor were dominant in distinguishing prognostic groups, other NR strengthened these groups. Clustering analysis identified several family members with potential importance in breast cancer. Specifically, RORγ is identified as being co-expressed with ERα, whilst several NRs are preferentially expressed in ERα-negative disease, with TLX expression being prognostic in this subtype. Functional studies demonstrated the importance of TLX in regulating growth and invasion in ERα-negative breast cancer cells.

  2. The Long Non-Coding RNA XIST Interacted with MiR-124 to Modulate Bladder Cancer Growth, Invasion and Migration by Targeting Androgen Receptor (AR).

    Science.gov (United States)

    Xiong, Yaoyao; Wang, Long; Li, Yuan; Chen, Minfeng; He, Wei; Qi, Lin

    2017-01-01

    Long non-coding RNA (lncRNA) X-inactive specific transcript (XIST) is involved in the progression of several tumors. The interaction between lncRNA and miRNA or miRNA's target genes is reported to play crucial roles in malignancy. In addition, Androgen receptor (AR) is considered to be involved in bladder cancer progression. In this study, we investigated the role of XIST in human bladder cancer and its interaction with miR-124 and AR. XIST and AR expression was detected in bladder tumor samples and cell lines. Effects of XIST and AR on bladder cancer cells growth, invasion and migration were analyzed. Bioinformatic analysis and luciferase assays were used to identify the interaction among XIST, AR and miR-124. The correlations of miR-124 with XIST and AR in bladder cancer samples were statistically analyzed. XIST and AR were upregulated in bladder cancer tissues and positively correlated. Higher XIST and AR expression were related to poorer TNM stage of bladder cancer. XIST knockdown reduced bladder cancer cells' proliferation, invasion and migration. While this inhibitory effect could be partially restored by AR overexpression. XIST inhibited miR-124 expression by directly targeting. Moreover, miR-124 could bind to the 3'UTR of AR to regulate its expression. MiR-124 inhibition partially restored the XIST knockdown-induced reduction of AR, c-myc, p27, MMP13 and MMP9 expression. In bladder cancer tissues, miR-124 level was inversely correlated with the expression of XIST and AR, respectively. These findings indicated that XIST might be an oncogenic lncRNA that promoted the bladder cancer growth, invasion and migration via miR-124 dependent AR regulation. © 2017 The Author(s). Published by S. Karger AG, Basel.

  3. The Long Non-Coding RNA XIST Interacted with MiR-124 to Modulate Bladder Cancer Growth, Invasion and Migration by Targeting Androgen Receptor (AR

    Directory of Open Access Journals (Sweden)

    Yaoyao Xiong

    2017-08-01

    Full Text Available Backgrounds/Aims: Long non-coding RNA (lncRNA X-inactive specific transcript (XIST is involved in the progression of several tumors. The interaction between lncRNA and miRNA or miRNA’s target genes is reported to play crucial roles in malignancy. In addition, Androgen receptor (AR is considered to be involved in bladder cancer progression. In this study, we investigated the role of XIST in human bladder cancer and its interaction with miR-124 and AR. Methods: XIST and AR expression was detected in bladder tumor samples and cell lines. Effects of XIST and AR on bladder cancer cells growth, invasion and migration were analyzed. Bioinformatic analysis and luciferase assays were used to identify the interaction among XIST, AR and miR-124. The correlations of miR-124 with XIST and AR in bladder cancer samples were statistically analyzed. Results: XIST and AR were upregulated in bladder cancer tissues and positively correlated. Higher XIST and AR expression were related to poorer TNM stage of bladder cancer. XIST knockdown reduced bladder cancer cells’ proliferation, invasion and migration. While this inhibitory effect could be partially restored by AR overexpression. XIST inhibited miR-124 expression by directly targeting. Moreover, miR-124 could bind to the 3’UTR of AR to regulate its expression. MiR-124 inhibition partially restored the XIST knockdown-induced reduction of AR, c-myc, p27, MMP13 and MMP9 expression. In bladder cancer tissues, miR-124 level was inversely correlated with the expression of XIST and AR, respectively. Conclusion: These findings indicated that XIST might be an oncogenic lncRNA that promoted the bladder cancer growth, invasion and migration via miR-124 dependent AR regulation.

  4. Transforming growth factor-beta1 promotes the migration and invasion of sphere-forming stem-like cell subpopulations in esophageal cancer

    International Nuclear Information System (INIS)

    Yue, Dongli; Zhang, Zhen; Li, Jieyao; Chen, Xinfeng; Ping, Yu; Liu, Shasha; Shi, Xiaojuan; Li, Lifeng; Wang, Liping; Huang, Lan; Zhang, Bin; Sun, Yan

    2015-01-01

    Esophageal cancer is one of the most lethal solid malignancies. Mounting evidence demonstrates that cancer stem cells (CSCs) are able to cause tumor initiation, metastasis and responsible for chemotherapy and radiotherapy failures. As CSCs are thought to be the main reason of therapeutic failure, these cells must be effectively targeted to elicit long-lasting therapeutic responses. We aimed to enrich and identify the esophageal cancer cell subpopulation with stem-like properties and help to develop new target therapy strategies for CSCs. Here, we found esophageal cancer cells KYSE70 and TE1 could form spheres in ultra low attachment surface culture and be serially passaged. Sphere-forming cells could redifferentiate and acquire morphology comparable to parental cells, when return to adherent culture. The sphere-forming cells possessed the key criteria that define CSCs: persistent self-renewal, overexpression of stemness genes (SOX2, ALDH1A1 and KLF4), reduced expression of differentiation marker CK4, chemoresistance, strong invasion and enhanced tumorigenic potential. SB525334, transforming growth factor-beta 1(TGF-β1) inhibitor, significantly inhibited migration and invasion of sphere-forming stem-like cells and had no effect on sphere-forming ability. In conclusion, esophageal cancer sphere-forming cells from KYSE70 and TE1 cultured in ultra low attachment surface possess cancer stem cell properties, providing a model for CSCs targeted therapy. TGF-β1 promotes the migration and invasion of sphere-forming stem-like cells, which may guide future studies on therapeutic strategies targeting these cells. - Highlights: • Esophageal cancer sphere-forming cells possess cancer stem cell properties. • Sphere-forming cells enhance TGF-β1 pathway activity. • TGF-β 1 inhibitor suppresses the migration and invasion of sphere-forming cells

  5. Transforming growth factor-beta1 promotes the migration and invasion of sphere-forming stem-like cell subpopulations in esophageal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Dongli; Zhang, Zhen; Li, Jieyao; Chen, Xinfeng [Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Road, Zhengzhou 450052, Henan, PR China (China); Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 (China); Ping, Yu; Liu, Shasha [Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Road, Zhengzhou 450052, Henan, PR China (China); School of Life Sciences, Zhengzhou University, Zhengzhou 450000 (China); Shi, Xiaojuan; Li, Lifeng [Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Road, Zhengzhou 450052, Henan, PR China (China); Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 (China); Wang, Liping [Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 (China); Huang, Lan [Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Road, Zhengzhou 450052, Henan, PR China (China); Zhang, Bin [Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Road, Zhengzhou 450052, Henan, PR China (China); Robert H. Lurie Comprehensive Cancer Center, Department of Medicine-Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 (United States); Sun, Yan [Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 (China); Department of Medical Oncology, Cancer Hospital, Chinese Academy of Medical Sciences (China); and others

    2015-08-01

    Esophageal cancer is one of the most lethal solid malignancies. Mounting evidence demonstrates that cancer stem cells (CSCs) are able to cause tumor initiation, metastasis and responsible for chemotherapy and radiotherapy failures. As CSCs are thought to be the main reason of therapeutic failure, these cells must be effectively targeted to elicit long-lasting therapeutic responses. We aimed to enrich and identify the esophageal cancer cell subpopulation with stem-like properties and help to develop new target therapy strategies for CSCs. Here, we found esophageal cancer cells KYSE70 and TE1 could form spheres in ultra low attachment surface culture and be serially passaged. Sphere-forming cells could redifferentiate and acquire morphology comparable to parental cells, when return to adherent culture. The sphere-forming cells possessed the key criteria that define CSCs: persistent self-renewal, overexpression of stemness genes (SOX2, ALDH1A1 and KLF4), reduced expression of differentiation marker CK4, chemoresistance, strong invasion and enhanced tumorigenic potential. SB525334, transforming growth factor-beta 1(TGF-β1) inhibitor, significantly inhibited migration and invasion of sphere-forming stem-like cells and had no effect on sphere-forming ability. In conclusion, esophageal cancer sphere-forming cells from KYSE70 and TE1 cultured in ultra low attachment surface possess cancer stem cell properties, providing a model for CSCs targeted therapy. TGF-β1 promotes the migration and invasion of sphere-forming stem-like cells, which may guide future studies on therapeutic strategies targeting these cells. - Highlights: • Esophageal cancer sphere-forming cells possess cancer stem cell properties. • Sphere-forming cells enhance TGF-β1 pathway activity. • TGF-β 1 inhibitor suppresses the migration and invasion of sphere-forming cells.

  6. CREB mediates ICAM-3: inducing radio-resistance, cell growth and migration/invasion of the human nonsmall cell lung cancer cell

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Kuk; So, Kwang Sup; Bae, In Hwa; Um, Hong Duck [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2009-05-15

    The ICAM family proteins comprises cell surface molecules that are homologous to NCAM and are members of the single passed type 1 immunoglobulin superfamily (IgSF) that are anchored at the cellular membrane. The ICAM family consists of five subfamilies (ICAM-1 to ICAM-5) of heavily glycosylated cell surface receptors with common functional or structural homology. The extracellular domains of ICAM protein have roles in immune response and inflammation through various cell-cell interactions. The cytoplasmic tail residues of ICAM-3 participate in intracellular signaling such as calcium mobilization and tyrosine phosphorylation. Interestingly, the ICAM proteins appear to have a dual role in cancer. ICAM molecules may target and block tumor progression by stimulation of an immune response such as leukocyte activation. Conversely, other investigations have shown that ICAM molecules are involved in cancer malignancy because their increased expressions are associated with a poor diagnosis, lower survival rates and invasion in several cancers including melanoma, breast cancer and leukemia. We have also reported that an increase of ICAM-3 expression in several cancer cells and specimens of cervical cancer patient induce enhanced radio-resistance by the activation of focal adhesion kinase (FAK) and promote cancer cell proliferation by the activation of Akt and p44/42 MAPK. Therefore, these previous reports imply that ICAM-3 has various undefined roles in cancer. In this study, we investigated whether ICAM-3 increase cell migration and invasion through CREB activation and CREB has a role of increase of radioresistance and cell growth.

  7. Prognostic significance of equivocal human epidermal growth factor receptor 2 results and clinical utility of alternative chromosome 17 genes in patients with invasive breast cancer: A cohort study.

    Science.gov (United States)

    Sneige, Nour; Hess, Kenneth R; Multani, Asha S; Gong, Yun; Ibrahim, Nuhad K

    2017-04-01

    The 2013 testing guidelines for determining the human epidermal growth factor receptor 2 (HER2) status include new cutoff points for the HER2/chromosome enumeration probe 17 (CEP17) ratio and the average HER2 copy number per cell, and they recommend using a reflex test with alternative chromosome 17 probes (Ch17Ps) to resolve equivocal HER2 results. This study sought to determine the clinical utility of alternative Ch17Ps in equivocal cases and the effects of equivocal results and/or a change in the HER2 status on patients' outcomes. The University of Texas MD Anderson Cancer Center database of HER2 dual-probe fluorescence in situ hybridization results from 2000 to 2010 was searched for cases of invasive breast cancer with HER2/CEP17 ratios Cancer 2017;123:1115-1123. © 2016 American Cancer Society. © 2016 American Cancer Society.

  8. The HLJ1-targeting drug screening identified Chinese herb andrographolide that can suppress tumour growth and invasion in non-small-cell lung cancer.

    Science.gov (United States)

    Lai, Yi-Hua; Yu, Sung-Liang; Chen, Hsuan-Yu; Wang, Chi-Chung; Chen, Huei-Wen; Chen, Jeremy J W

    2013-05-01

    HLJ1 is a novel tumour suppressor and is a potential druggable target for non-small-cell lung cancer (NSCLC). In this report, using a promoter-containing enhancer region as the HLJ1-targeting drug-screening platform, we identified several herbal compounds from a Chinese herbal bank with the capacity to enhance HLJ1 promoter activity and suppress tumour growth and invasion of NSCLC. Among the herbal drugs identified, the andrographolide (from Andrographis paniculata [Burm. f.] Nees.) most significantly induced HLJ1 expression and suppressed tumorigenesis both in vitro and in vivo. The andrographolide upregulates HLJ1 via JunB activation, which modulates AP-2α binding at the MMP-2 promoter and represses the expression of MMP-2. In addition, silencing of HLJ1 partially reverses the inhibition of cancer-cell invasion by andrographolide. Microarray transcriptomic analysis was performed to comprehensively depict the andrographolide-regulated signalling pathways. We showed that andrographolide can affect 939 genes (analysis of variance, false discovery rate andrographolide on anticancer invasion and proliferation. In conclusion, the HLJ1-targeting drug-screening platform is useful for screening of novel anticancer compounds. Using this platform, we identified andrographolide is a promising new anticancer agent that could suppress tumour growth and invasion in NSCLC.

  9. Suppression of growth and invasive behavior of human prostate cancer cells by ProstaCaid™: mechanism of activity.

    Science.gov (United States)

    Jiang, Jiahua; Eliaz, Isaac; Sliva, Daniel

    2011-06-01

    Since the use of dietary supplements as alternative treatments or adjuvant therapies in cancer treatment is growing, a scientific verification of their biological activity and the detailed mechanisms of their action are necessary for the acceptance of dietary supplements in conventional cancer treatments. In the present study we have evaluated the anti-cancer effects of dietary supplement ProstaCaid™ (PC) which contains mycelium from medicinal mushrooms (Ganoderma lucidum, Coriolus versicolor, Phellinus linteus), saw palmetto berry, pomegranate, pumpkin seed, green tea [40% epigallocatechin-3-gallate (EGCG)], Japanese knotweed (50% resveratrol), extracts of turmeric root (BCM-95®), grape skin, pygeum bark, sarsaparilla root, Scutellaria barbata, eleuthero root, Job's tears, astragalus root, skullcap, dandelion, coptis root, broccoli, and stinging nettle, with purified vitamin C, vitamin D3, selenium, quercetin, citrus bioflavonoid complex, β sitosterolzinc, lycopene, α lipoic acid, boron, berberine and 3.3'-diinodolymethane (DIM). We show that PC treatment resulted in the inhibition of cell proliferation of the highly invasive human hormone refractory (independent) PC-3 prostate cancer cells in a dose- and time-dependent manner with IC50 56.0, 45.6 and 39.0 µg/ml for 24, 48 and 72 h, respectively. DNA-microarray analysis demonstrated that PC inhibits proliferation through the modulation of expression of CCND1, CDK4, CDKN1A, E2F1, MAPK6 and PCNA genes. In addition, PC also suppresses metastatic behavior of PC-3 by the inhibition of cell adhesion, cell migration and cell invasion, which was associated with the down-regulation of expression of CAV1, IGF2, NR2F1, and PLAU genes and suppressed secretion of the urokinase plasminogen activator (uPA) from PC-3 cells. In conclusion, the dietary supplement PC is a promising natural complex with the potency to inhibit invasive human prostate cancer.

  10. [Lobular neoplasms and invasive lobular breast cancer].

    Science.gov (United States)

    Sinn, H-P; Helmchen, B; Heil, J; Aulmann, S

    2014-02-01

    The term lobular neoplasia (LN) comprises both atypical lobular hyperplasia (ALH), and lobular carcinoma in situ (LCIS) and thus a spectrum of morphologically heterogeneous but clinically and biologically related lesions. LN is regarded as a nonobligatory precursor lesion of invasive breast cancer and at the same time as an indicator lesion for ipsilateral and contralateral breast cancer risk of the patient. Rare pleomorphic or florid variants of LCIS must be differentiated from classical LCIS. The classical type of invasive lobular carcinoma (ILC) can be distinguished from the non-special type of invasive breast cancer (NST) by E-cadherin inactivation, loss of E-cadherin related cell adhesion and the subsequent discohesive growth pattern. Variant forms of ILC may show different molecular features, and solid and pleomorphic differentiation patterns in cases of high grade variants. Important parameters for the prognostic assessment of ILC are tumor grading and the recognition of morphological variants.

  11. Pre-diagnosis insulin-like growth factor-I and risk of epithelial invasive ovarian cancer by histological subtypes : A collaborative re-analysis from the Ovarian Cancer Cohort Consortium

    NARCIS (Netherlands)

    Ose, Jennifer; Schock, Helena; Poole, Elizabeth M; Lehtinen, Matti; Visvanathan, Kala; Helzlsouer, Kathy; Buring, Julie E; Lee, I-Min; Tjønneland, Anne; Boutron-Ruault, Marie-Christine; Trichopoulou, Antonia; Mattiello, Amalia; Onland-Moret, N Charlotte; Weiderpass, Elisabete; Sánchez, María-José; Idahl, Annika; Travis, Ruth C; Rinaldi, Sabina; Merritt, Melissa A; Wentzensen, Nicolas; Tworoger, Shelley S; Kaaks, Rudolf; Fortner, Renée T

    PURPOSE: Biologic evidence suggests that the Insulin-like growth factor (IGF)-family may be involved in the etiology of epithelial invasive ovarian cancer (EOC). However, prospective studies investigating the role of IGF-I in ovarian carcinogenesis have yielded conflicting results. METHODS: We

  12. Silencing NPAS2 promotes cell growth and invasion in DLD-1 cells and correlated with poor prognosis of colorectal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Xiaofeng [Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006 (China); Liu, Fei [Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou 215006 (China); Han, Ye [Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006 (China); Li, Pu [Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Department of Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025 (China); Yuan, Bin; Wang, Xu; Chen, Yan; Kuang, Yuting [Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006 (China); Zhi, Qiaoming, E-mail: strexboy@163.com [Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006 (China); Zhao, Hong, E-mail: zhaohong600@sina.com [Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006 (China)

    2014-07-25

    Highlights: • NPAS2 mRNA was down-regulated in clinical colorectal cancer tissues. • Low NPAS2 level was associated with the tumor size, TNM stage and distance metastasis in CRC. • Silencing NPAS2 promoted cell proliferation, the wound healing and cell invasion abilities. - Abstract: Emerging evidences show that circadian rhythm disorder is an important factor of tumor initiation and development. Neuronal PAS domain protein2 (NPAS2), which is the largest circadian gene, has been proved to be a novel prognostic biomarker in breast cancer and non-Hodgkin’s lymphoma. However, the potential functions of NPAS2 in colorectal cancer are still unknown. In our present study, we detected the mRNA expressions of NPAS2 in 108 CRC patients by RT-PCR, and found that NPAS2 expression was significantly down-regulated in tumor tissues than that in NATs. Clinicopathologic analysis revealed that low expression of NPAS2 was associated with the tumor size, TNM stage and tumor distance metastasis in colorectal cancer (p < 0.05). Furthermore, we effectively down-regulated NPAS2 mRNA expression by transfecting RNA interfere fragments into DLD-1 cells, and our results in vitro demonstrated that silencing NPAS2 expression could promote cell proliferation, cell invasion and increase the wound healing ability (p < 0.05). However, down-regulating NPAS2 expression did not influence the apoptotic rate in DLD-1 cells (p > 0.05). In conclusion, our study suggested that NPAS2, functioned as a potential tumor suppressor gene, could serve as a promising target and potential prognostic indicator for colorectal cancer.

  13. Silencing NPAS2 promotes cell growth and invasion in DLD-1 cells and correlated with poor prognosis of colorectal cancer

    International Nuclear Information System (INIS)

    Xue, Xiaofeng; Liu, Fei; Han, Ye; Li, Pu; Yuan, Bin; Wang, Xu; Chen, Yan; Kuang, Yuting; Zhi, Qiaoming; Zhao, Hong

    2014-01-01

    Highlights: • NPAS2 mRNA was down-regulated in clinical colorectal cancer tissues. • Low NPAS2 level was associated with the tumor size, TNM stage and distance metastasis in CRC. • Silencing NPAS2 promoted cell proliferation, the wound healing and cell invasion abilities. - Abstract: Emerging evidences show that circadian rhythm disorder is an important factor of tumor initiation and development. Neuronal PAS domain protein2 (NPAS2), which is the largest circadian gene, has been proved to be a novel prognostic biomarker in breast cancer and non-Hodgkin’s lymphoma. However, the potential functions of NPAS2 in colorectal cancer are still unknown. In our present study, we detected the mRNA expressions of NPAS2 in 108 CRC patients by RT-PCR, and found that NPAS2 expression was significantly down-regulated in tumor tissues than that in NATs. Clinicopathologic analysis revealed that low expression of NPAS2 was associated with the tumor size, TNM stage and tumor distance metastasis in colorectal cancer (p < 0.05). Furthermore, we effectively down-regulated NPAS2 mRNA expression by transfecting RNA interfere fragments into DLD-1 cells, and our results in vitro demonstrated that silencing NPAS2 expression could promote cell proliferation, cell invasion and increase the wound healing ability (p < 0.05). However, down-regulating NPAS2 expression did not influence the apoptotic rate in DLD-1 cells (p > 0.05). In conclusion, our study suggested that NPAS2, functioned as a potential tumor suppressor gene, could serve as a promising target and potential prognostic indicator for colorectal cancer

  14. Role of MiR-3619-5p in β-Catenin-Mediated Non-Small Cell Lung Cancer Growth and Invasion

    Directory of Open Access Journals (Sweden)

    Xuecai Niu

    2015-10-01

    Full Text Available Background/Aims: The malignancy of non-small cell lung cancer (NSCLC is largely due to its fast growth and invasion. WNT/β-catenin signaling plays a critical role in regulating NSCLC carcinogenesis. Hence, suppression of β-catenin signal transduction in NSCLC cells may improve the therapeutic outcome. Methods: We analyzed the levels of β-catenin and miR-3619-5p in NSCLC specimens, compared to paired non-tumor normal lung tissue (NT. We did Bioinformatics analyses on the binding sites of 3'-UTR of β-catenin mRNA by miR-3619-5p. We modified the levels of miR-3619-5p in NSCLC cells and examined their effects on β-catenin levels, and on the growth and invasion of NSCLC cells in an MTT assay and a transwell cell migration assay, respectively. Results: NSCLC specimens had significant higher levels of β-catenin, and significantly lower levels of miR-3619-5p, compared to NT. The levels of β-catenin and miR-3619-5p were inversely correlated in NSCLC specimens. Bioinformatics analyses showed that miR-3619-5p bound to 3'-UTR of β-catenin mRNA in NSCLC cells to inhibit its translation. Overexpression of miR-3619-5p decreased β-catenin protein, while depletion of miR-3619-5p increased β-catenin protein in NSCLC cells, without altering β-catenin mRNA levels. Overexpression of miR-3619-5p in NSCLC cells inhibited cell growth and invasion, while depletion of miR-3619-5p in NSCLC lines increased cell growth and invasion. Conclusion: Our data demonstrate a previously unappreciated role for miR-3619-5p in suppression of β-catenin-mediated cancer growth and invasion in NSCLC cells, and highlight miR-3619-5p as a novel cancer suppressor in NSCLC.

  15. Invasive cancer cells and metastasis

    Science.gov (United States)

    Mierke, Claudia Tanja

    2013-12-01

    the biophysical state of the primary tumor cell. To determine the cytoskeletal dynamics they chose magnetic twisting cytometry, where the spontaneous motion of surface bound marker beads was measured, which is a measure for the cytoskeletal remodeling dynamics. The group of Katarina Wolf measured the stiffness of the cell nucleus because it is the largest and stiffest organelle, which may hinder the migration of invasive tumor cells through dense connective tissue [2]. They combined atomic force confocal microscopy for measurement of bulk nuclear stiffness (the inverse of the compressibility) with simultaneous visualization of the cantilever-nucleus contact as well as monitoring of the cell's fate. The dynamics of tissue topology such as the mixing of compartments during cancer invasion and metastasis were theoretically analyzed by Lance L Munn [3]. In particular, he presented a mathematical model of tissue repair and tumor growth based on collective cell migration that simulates a wide range of tumor behaviors using correct tissue compartmentalization and connectivity. In the future, the topological analysis could be helpful for tumor diagnosis or monitoring tumor therapy. The group of Cynthia A Reinhart-King analyzed how the topological guidance of a 3D tumor cell migration at an interface of collagen densities affects cell motility [4]. In particular, they mimicked the heterogeneities in density of the tumor stroma by preparing gels with an interface of high and low density collagen gels and investigated how this affects cell motility. The author's review paper details the effect of focal adhesion proteins such as focal adhesion kinase (FAK) on cell motility and how this effect is driven by mechanical alterations of cells expressing FAK compared to cells with FAK knock-out [5]. In particular, it focused on mechanical properties regulated by FAK in comparison to the mechano-regulating protein vinculin. This article highlights that both focal adhesion proteins

  16. Positive fibroblast growth factor receptor 3 immunoreactivity is associated with low-grade non-invasive urothelial bladder cancer

    NARCIS (Netherlands)

    C. Poyet (Cédric); T. Hermanns (Thomas); Q. Zhong (Qing); E. Drescher (Eva); D. Eberli (Daniel); M. Burger (Maximilian); F. Hofstaedter (Ferdinand); A. Hartmann (Arndt); R. Stöhr (Robert); E.C. Zwarthoff (Ellen); T. Sulser (Tullio); P.J. Wild (Peter J.)

    2015-01-01

    textabstractIn addition to conventional clinicopathological parameters, molecular markers are also required in order to predict the course of disease in patients with urothelial bladder cancer (BC). Little is known about fibroblast growth factor receptor 3 (FGFR3) immunoreactivity and the clinical

  17. Strong adverse effect of epidermal growth factor receptor 2 overexpression on prognosis of patients with invasive lobular breast cancer: a comparative study with invasive ductal breast cancer in Chinese population.

    Science.gov (United States)

    Wang, Tong; Ma, Yuanyuan; Wang, Liang; Liu, Hong; Chen, Meixuan; Niu, Ruifang

    2015-08-01

    The data on the outcome of breast invasive lobular carcinoma (ILC) are conflicting. In addition, the prognostic effect of molecular subtypes on ILC remains unclear. In this study, the clinicopathological and prognostic data between 269 ILC and 816 invasive ductal carcinoma (IDC) cases in a Chinese population were extensively compared, with a median follow-up time of 7.8 years. Compared with the IDC group, ILC tumors had more lymph node invasion, hormonal receptor positivity, and human epidermal growth factor receptor 2 (HER2) negativity. ILC patients showed overall survival (OS) and recurrence/metastasis-free survival (RFS) rates similar to those of IDC patients but exhibited worse disease-free survival (DFS) rate because of the higher rate of contralateral breast cancer (BC). Further analysis showed that OS, RFS, and DFS were similar between ILC and IDC patients in the subgroups of luminal A and triple-negative BC with HER2 negativity but were worse in ILC patients than those in IDC patients in the subgroups of luminal B and HER2 overexpression with positive HER2 expression. Multivariate analysis indicated HER2 positivity as an independent risk factor for OS, RFS, and DFS of ILC patients, which increased the risk in the ILC group than that in IDC group. The interaction of HER2 and ILC was also defined as an independent risk factor for OS, RFS, and DFS of the entire population. In conclusion, overexpression of HER2 exhibited stronger negative effect on the prognosis of ILC patients than that in IDC patients, suggesting that treatment targeting HER2 is crucial for this BC subgroup.

  18. An Anti-Urokinase Plasminogen Activator Receptor Antibody (ATN-658 Blocks Prostate Cancer Invasion, Migration, Growth, and Experimental Skeletal Metastasis In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Shafaat A. Rabbani

    2010-10-01

    Full Text Available Urokinase plasminogen activator receptor (uPAR is a multidomain protein that plays important roles in the growth, invasion, and metastasis of a number of cancers. In the present study, we examined the effects of administration of a monoclonal anti-uPAR antibody (ATN-658 on prostate cancer progression in vitro and in vivo. We examined the effect of treatment of ATN-658 on human prostate cancer cell invasion, migration, proliferation, and regulation of intracellular signaling pathways. For in vivo studies, PC-3 cells (1 x 106 were inoculated into the right flank of male Balb C nu/nu mice through subcutaneous or through intratibial route (2 x 105 of male Fox Chase severe combined immunodeficient mice to monitor the effect on tumor growth and skeletal metastasis. Treatment with ATN-658 resulted in a significant dose-dependent decrease in PC-3 cell invasion and migration without affecting cell doubling time. Western blot analysis showed that ATN-658 treatment decreased the phosphorylation of serine/threonine protein kinase B (AKT, mitogen-activated protein kinase (MAPK, and focal adhesion kinase (FAK without affecting AKT, MAPK, and FAK total protein expression. In in vivo studies, ATN-658 caused a significant decrease in tumor volume and a marked reduction in skeletal lesions as determined by Faxitron x-ray and micro-computed tomography. Immunohistochemical analysis of subcutaneous and tibial tumors showed a marked decrease in the levels of expression of pAKT, pMAPK, and pFAK, consistent with the in vitro observations. Results from these studies provide compelling evidence for the continued development of ATN-658 as a potential therapeutic agent for the treatment of prostate and other cancers expressing uPAR.

  19. p53-stabilizing Agent CP-31398 Prevents Growth and Invasion of Urothelial Cancer of the Bladder in Transgenic UPII-SV40T Mice

    Directory of Open Access Journals (Sweden)

    Venkateshwar Madka

    2013-08-01

    Full Text Available The high prevalence of bladder cancer and its recurrence make it an important target for chemoprevention. About half of invasive urothelial tumors have mutations in p53. We determined the chemopreventive efficacy of a p53-stabilizing agent, CP-31398, in a transgenic UPII-SV40T mouse model of bladder transitional cell carcinoma (TCC that strongly resembles human TCC. After genotyping, six-week-old UPII-SV40T mice (n = 30/group were fed control (AIN-76A or experimental diets containing 150 or 300 ppm of CP-31398 for 34 weeks. Progression of bladder cancer growth was monitored by magnetic resonance imaging. At 40 weeks of age, all mice were killed; urinary bladders were collected to determine weights, tumor incidence, and histopathology. There was a significant increase in bladder weights of transgenic versus wild-type mice (male: 140.2 mg vs 27.3 mg, P < .0001; female: 34.2 mg vs 14.8 mg, P < .0001. A significant decrease in the bladder tumor weights (by 68.6–80.2%, P < .0001 in males and by 36.9–55.3%, P < .0001 in females was observed in CP-31398-treated mice. Invasive papillary TCC incidence was 100% in transgenic mice fed control diet. Both male and female mice exposed to CP-31398 showed inhibition of invasive TCC. CP-31398 (300 ppm completely blocked invasion in female mice. Molecular analysis of the bladder tumors showed an increase in apoptosis markers (p53, p21, Bax, and Annexin V with a decrease in vascular endothelial growth factor in transgenic mice fed CP-31398. These results suggest that p53-modulating agents can serve as potential chemopreventive agents for bladder TCC.

  20. Protein-bound polysaccharide from Phellinus linteus inhibits tumor growth, invasion, and angiogenesis and alters Wnt/β-catenin in SW480 human colon cancer cells

    Directory of Open Access Journals (Sweden)

    Park Hae-Duck

    2011-07-01

    Full Text Available Abstract Background Polysaccharides extracted from the Phellinus linteus (PL mushroom are known to possess anti-tumor effects. However, the molecular mechanisms responsible for the anti-tumor properties of PL remain to be explored. Experiments were carried out to unravel the anticancer effects of PL. Methods The anti-cancer effects of PL were examined in SW480 colon cancer cells by evaluating cell proliferation, invasion and matrix metallo-proteinase (MMP activity. The anti-angiogenic effects of PL were examined by assessing human umbilical vein endothelial cell (HUVEC proliferation and capillary tube formation. The in vivo effect of PL was evaluated in an athymic nude mouse SW480 tumor engraft model. Results PL (125-1000 μg/mL significantly inhibited cell proliferation and decreased β-catenin expression in SW480 cells. Expression of cyclin D1, one of the downstream-regulated genes of β-catenin, and T-cell factor/lymphocyte enhancer binding factor (TCF/LEF transcription activity were also significantly reduced by PL treatment. PL inhibited in vitro invasion and motility as well as the activity of MMP-9. In addition, PL treatment inhibited HUVEC proliferation and capillary tube formation. Tumor growth of SW480 cells implanted into nude mice was significantly decreased as a consequence of PL treatment, and tumor tissues from treated animals showed an increase in the apoptotic index and a decrease in β-catenin expression. Moreover, the proliferation index and microvessel density were significantly decreased. Conclusions These data suggest that PL suppresses tumor growth, invasion, and angiogenesis through the inhibition of Wnt/β-catenin signaling in certain colon cancer cells.

  1. Genetic ablation of Bcl-x attenuates invasiveness without affecting apoptosis or tumor growth in a mouse model of pancreatic neuroendocrine cancer.

    Directory of Open Access Journals (Sweden)

    Jeffrey H Hager

    Full Text Available Tumor cell death is modulated by an intrinsic cell death pathway controlled by the pro- and anti-apoptotic members of the Bcl-2 family. Up-regulation of anti-apoptotic Bcl-2 family members has been shown to suppress cell death in pre-clinical models of human cancer and is implicated in human tumor progression. Previous gain-of-function studies in the RIP1-Tag2 model of pancreatic islet carcinogenesis, involving uniform or focal/temporal over-expression of Bcl-x(L, demonstrated accelerated tumor formation and growth. To specifically assess the role of endogenous Bcl-x in regulating apoptosis and tumor progression in this model, we engineered a pancreatic beta-cell-specific knockout of both alleles of Bcl-x using the Cre-LoxP system of homologous recombination. Surprisingly, there was no appreciable effect on tumor cell apoptosis rates or on tumor growth in the Bcl-x knockout mice. Other anti-apoptotic Bcl-2 family members were expressed but not substantively altered at the mRNA level in the Bcl-x-null tumors, suggestive of redundancy without compensatory transcriptional up-regulation. Interestingly, the incidence of invasive carcinomas was reduced, and tumor cells lacking Bcl-x were impaired in invasion in a two-chamber trans-well assay under conditions mimicking hypoxia. Thus, while the function of Bcl-x in suppressing apoptosis and thereby promoting tumor growth is evidently redundant, genetic ablation implicates Bcl-x in selectively facilitating invasion, consistent with a recent report documenting a pro-invasive capability of Bcl-x(L upon exogenous over-expression.

  2. Comprehensive Evaluation of the Role of EZH2 in the Growth, Invasion, and Aggression of a Panel of Prostate Cancer Cell Lines

    Science.gov (United States)

    Karanikolas, Breanne D.W.; Figueiredo, Marxa L.; Wu, Lily

    2010-01-01

    Background Although most prostate cancers respond well to initial treatments, a fraction of prostate cancers are more aggressive and will recur and metastasize. At that point, there are few treatment options available. Significant efforts have been made to identify biomarkers that will identify these more aggressive cancers to tailor a more vigorous treatment in order to improve outcome. Polycomb Group protein Enhancer of Zeste 2 (EZH2) was found to be overexpressed in metastatic prostate tumors, and is considered an excellent candidate for such a biomarker. Scattered studies have found that EZH2 overexpression causes neoplastic transformation, invasion, and growth of prostate cells. However, these studies utilized different systems and cell lines, and so are difficult to correlate with one another. Methods In this study, a comprehensive evaluation of the phenotypic effects of EZH2 in a panel of five prostate cancer cell lines was performed. By using multiple cell lines, and examining overexpression and knockdown of EZH2 concurrently, a broad view of EZH2's role in prostate cancer was achieved. Results Overexpression of EZH2 led to more aggressive behaviors in all prostate cell lines tested. In contrast, downregulation of EZH2 reduced invasion and tumorigenicity of androgen-independent cell lines CWR22Rv1, PC3, and DU145, but not of androgen-dependent cell lines LAPC4 and LNCaP. Conclusions Findings from this study suggest androgen-independent prostate tumors are more dependent on EZH2 expression than androgen-dependent tumors. Our observations provide an explanation for the strong correlation between EZH2 overexpression and advanced stage, aggressive prostate cancers. PMID:20087897

  3. Stable alterations of CD44 isoform expression in prostate cancer cells decrease invasion and growth and alter ligand binding and chemosensitivity

    International Nuclear Information System (INIS)

    Yang, Kui; Tang, Yaqiong; Habermehl, Gabriel K; Iczkowski, Kenneth A

    2010-01-01

    Dysregulated CD44 expression characterizes most human cancers, including prostate cancer (PCa). PCa loses expression of CD44 standard (CD44s) that is present in benign epithelium, and overexpresses the novel splice variant isoform, CD44v7-10. Using retroviral gene delivery to PC-3M PCa cells, we expressed luciferase-only, enforced CD44s re-expression as a fusion protein with luciferase at its C-terminus or as a protein separate from luciferase, or knocked down CD44v7-10 by RNAi. Invasion, migration, proliferation, soft agar colony formation, adhesion, Docetaxel sensitivity, and xenograft growth assays were carried out. Expression responses of merlin, a CD44 binding partner, and growth-permissive phospho-merlin, were assessed by western blot. Compared to luciferase-only PC-3M cells, all three treatments reduced invasion and migration. Growth and soft agar colony formation were reduced only by re-expression of CD44s as a separate or fusion protein but not CD44v7-10 RNAi. Hyaluronan and osteopontin binding were greatly strengthened by CD44s expression as a separate protein, but not a fusion protein. CD44v7-10 RNAi in PC-3M cells caused marked sensitization to Docetaxel; the two CD44s re-expression approaches caused minimal sensitization. In limited numbers of mouse subcutaneous xenografts, all three alterations produced only nonsignificant trends toward slower growth compared with luciferase-only controls. The expression of CD44s as a separate protein, but not a fusion protein, caused emergence of a strongly-expressed, hypophosphorylated species of phospho-merlin. Stable re-expression of CD44s reduces PCa growth and invasion in vitro, and possibly in vivo, suggesting CD44 alterations have potential as gene therapy. When the C-terminus of CD44s is fused to another protein, most phenotypic effects are lessened, particularly hyaluronan adhesion. Finally, CD44v7-10, although it was not functionally significant for growth, may be a target for chemosensitization

  4. Inhibitory Effects of Salinomycin on Cell Survival, Colony Growth, Migration, and Invasion of Human Non-Small Cell Lung Cancer A549 and LNM35: Involvement of NAG-1.

    Directory of Open Access Journals (Sweden)

    Kholoud Arafat

    Full Text Available A major challenge for oncologists and pharmacologists is to develop more potent and less toxic drugs that will decrease the tumor growth and improve the survival of lung cancer patients. Salinomycin is a polyether antibiotic used to kill gram-positive bacteria including mycobacteria, protozoans such as plasmodium falciparum, and the parasites responsible for the poultry disease coccidiosis. This old agent is now a serious anti-cancer drug candidate that selectively inhibits the growth of cancer stem cells. We investigated the impact of salinomycin on survival, colony growth, migration and invasion of the differentiated human non-small cell lung cancer lines LNM35 and A549. Salinomycin caused concentration- and time-dependent reduction in viability of LNM35 and A549 cells through a caspase 3/7-associated cell death pathway. Similarly, salinomycin (2.5-5 µM for 7 days significantly decreased the growth of LNM35 and A549 colonies in soft agar. Metastasis is the main cause of death related to lung cancer. In this context, salinomycin induced a time- and concentration-dependent inhibition of cell migration and invasion. We also demonstrated for the first time that salinomycin induced a marked increase in the expression of the pro-apoptotic protein NAG-1 leading to the inhibition of lung cancer cell invasion but not cell survival. These findings identify salinomycin as a promising novel therapeutic agent for lung cancer.

  5. Aberrant over-expression of TRPM7 ion channels in pancreatic cancer: required for cancer cell invasion and implicated in tumor growth and metastasis

    Directory of Open Access Journals (Sweden)

    Nelson S. Yee

    2015-03-01

    Full Text Available Our previous studies in zebrafish development have led to identification of the novel roles of the transient receptor potential melastatin-subfamily member 7 (TRPM7 ion channels in human pancreatic cancer. However, the biological significance of TRPM7 channels in pancreatic neoplasms was mostly unexplored. In this study, we determined the expression levels of TRPM7 in pancreatic tissue microarrays and correlated these measurements in pancreatic adenocarcinoma with the clinicopathological features. We also investigated the role of TRPM7 channels in pancreatic cancer cell invasion using the MatrigelTM-coated transwell assay. In normal pancreas, TRPM7 is expressed at a discernable level in the ductal cells and centroacinar cells and at a relatively high level in the islet endocrine cells. In chronic pancreatitis, pre-malignant tissues, and malignant neoplasms, there is variable expression of TRPM7. In the majority of pancreatic adenocarcinoma specimens examined, TRPM7 is expressed at either moderate-level or high-level. Anti-TRPM7 immunoreactivity in pancreatic adenocarcinoma significantly correlates with the size and stages of tumors. In human pancreatic adenocarcinoma cells in which TRPM7 is highly expressed, short hairpin RNA-mediated suppression of TRPM7 impairs cell invasion. The results demonstrate that TRPM7 channels are over-expressed in a proportion of the pre-malignant lesions and malignant tumors of the pancreas, and they are necessary for invasion by pancreatic cancer cells. We propose that TRPM7 channels play important roles in development and progression of pancreatic neoplasm, and they may be explored as clinical biomarkers and targets for its prevention and treatment.

  6. Nucleostemin expression in invasive breast cancer

    International Nuclear Information System (INIS)

    Kobayashi, Takayuki; Masutomi, Kenkichi; Tamura, Kenji; Moriya, Tomoyuki; Yamasaki, Tamio; Fujiwara, Yasuhiro; Takahashi, Shunji; Yamamoto, Junji; Tsuda, Hitoshi

    2014-01-01

    Recently, the cancer stem cell hypothesis has become widely accepted. Cancer stem cells are thought to possess the ability to undergo self-renewal and differentiation, similar to normal stem cells. Nucleostemin (NS), initially cloned from rat neural stem cells, binds to various proteins, including p53, in the nucleus and is thought to be a key molecule for stemness. NS is expressed in various types of cancers; therefore, its role in cancer pathogenesis is thought to be important. This study was conducted to clarify the clinicopathological and prognostic impact of NS in invasive breast cancers. The correlation between NS immunoreactivity and clinicopathological parameters was examined in 220 consecutive surgically resected invasive breast cancer tissue samples by using tissue microarrays. The presence of nuclear NS and p53 immunoreactivity in 10% or more of cancer cells was considered as a positive result. Among the 220 patients, 154 were hormone-receptor (HR)-positive, 22 HER2-positive/HR-negative, and 44 HR-negative/HER2-negative. One hundred and forty-two tumors (64.5%) showed NS positivity, and this positivity was significantly correlated with estrogen receptor (ER) (P = 0.050), human epidermal growth factor receptor 2 (HER2) (P = 0.021), and p53 (P = 0.031) positivity. The patients with NS-positive tumors showed significantly shorter disease-free survival than those with NS-negative tumors. Furthermore, the patient group with NS- and p53-positive tumors showed significantly poorer prognosis than other patient groups. Multivariate analysis showed that NS status was an independent prognostic indicator. NS may play a significant role in the determination of breast cancer progression in association with p53 alterations. The NS status of patients with luminal and HER2 type breast cancers may be a useful prognostic marker

  7. SNAI2/Slug promotes growth and invasion in human gliomas

    International Nuclear Information System (INIS)

    Yang, Hong Wei; Menon, Lata G; Black, Peter M; Carroll, Rona S; Johnson, Mark D

    2010-01-01

    Numerous factors that contribute to malignant glioma invasion have been identified, but the upstream genes coordinating this process are poorly known. To identify genes controlling glioma invasion, we used genome-wide mRNA expression profiles of primary human glioblastomas to develop an expression-based rank ordering of 30 transcription factors that have previously been implicated in the regulation of invasion and metastasis in cancer. Using this approach, we identified the oncogenic transcriptional repressor, SNAI2/Slug, among the upper tenth percentile of invasion-related transcription factors overexpressed in glioblastomas. SNAI2 mRNA expression correlated with histologic grade and invasive phenotype in primary human glioma specimens, and was induced by EGF receptor activation in human glioblastoma cells. Overexpression of SNAI2/Slug increased glioblastoma cell proliferation and invasion in vitro and promoted angiogenesis and glioblastoma growth in vivo. Importantly, knockdown of endogenous SNAI2/Slug in glioblastoma cells decreased invasion and increased survival in a mouse intracranial human glioblastoma transplantation model. This genome-scale approach has thus identified SNAI2/Slug as a regulator of growth and invasion in human gliomas

  8. Hexachlorobenzene modulates the crosstalk between the aryl hydrocarbon receptor and transforming growth factor-β1 signaling, enhancing human breast cancer cell migration and invasion

    International Nuclear Information System (INIS)

    Miret, Noelia; Pontillo, Carolina; Ventura, Clara; Carozzo, Alejandro; Chiappini, Florencia

    2016-01-01

    Highlights: • HCB enhances TGF-β1 expression and activation levels in breast cancer cells. • HCB activates TGF-β1 pathways: Smad3, JNK and p38. • The HCB- induced migration and invasion involves TGF-β1 signaling pathways. • HCB modulates AhR levels and activation. • HCB enhances TGF-β1 mRNA expression in an AhR-dependent manner. - Abstract: Given the number of women affected by breast cancer, considerable interest has been raised in understanding the relationships between environmental chemicals and disease onset. Hexachlorobenzene (HCB) is a dioxin-like compound that is widely distributed in the environment and is a weak ligand of the aryl hydrocarbon receptor (AhR). We previously demonstrated that HCB acts as an endocrine disruptor capable of stimulating cell proliferation, migration, invasion, and metastasis in different breast cancer models. In addition, increasing evidence indicates that transforming growth factor-β1 (TGF-β1) can contribute to tumor maintenance and progression. In this context, this work investigated the effect of HCB (0.005, 0.05, 0.5, and 5 μM) on TGF-β1 signaling and AhR/TGF-β1 crosstalk in the human breast cancer cell line MDA-MB-231 and analyzed whether TGF-β1 pathways are involved in HCB-induced cell migration and invasion. RT-qPCR results indicated that HCB reduces AhR mRNA expression through TGF-β1 signaling but enhances TGF-β1 mRNA levels involving AhR signaling. Western blot analysis demonstrated that HCB could increase TGF-β1 protein levels and activation, as well as Smad3, JNK, and p38 phosphorylation. In addition, low and high doses of HCB were determined to exert differential effects on AhR protein levels, localization, and activation, with a high dose (5 μM) inducing AhR nuclear translocation and AhR-dependent CYP1A1 expression. These findings also revealed that c-Src and AhR are involved in HCB-mediated activation of Smad3. HCB enhances cell migration (scratch motility assay) and invasion (Transwell

  9. Apigenin inhibits HGF-promoted invasive growth and metastasis involving blocking PI3K/Akt pathway and β4 integrin function in MDA-MB-231 breast cancer cells

    International Nuclear Information System (INIS)

    Lee, W.-J.; Chen, W.-K.; Wang, C.-J.; Lin, W.-L.; Tseng, T.-H.

    2008-01-01

    Hepatocyte growth factor (HGF) and its receptor, Met, known to control invasive growth program have recently been shown to play crucial roles in the survival of breast cancer patients. The diet-derived flavonoids have been reported to possess anti-invasion properties; however, knowledge on the pharmacological and molecular mechanisms in suppressing HGF/Met-mediated tumor invasion and metastasis is poorly understood. In our preliminary study, we use HGF as an invasive inducer to investigate the effect of flavonoids including apigenin, naringenin, genistein and kaempferol on HGF-dependent invasive growth of MDA-MB-231 human breast cancer cells. Results show that apigenin presents the most potent anti-migration and anti-invasion properties by Boyden chamber assay. Furthermore, apigenin represses the HGF-induced cell motility and scattering and inhibits the HGF-promoted cell migration and invasion in a dose-dependent manner. The effect of apigenin on HGF-induced signaling activation involving invasive growth was evaluated by immunoblotting analysis, it shows that apigenin blocks the HGF-induced Akt phosphorylation but not Met, ERK, and JNK phosphorylation. In addition to MDA-MB-231 cells, apigenin exhibits inhibitory effect on HGF-induced Akt phosphorylation in hepatoma SK-Hep1 cells and lung carcinoma A549 cells. By indirect immunofluorescence microscopy assay, apigenin inhibits the HGF-induced clustering of β4 integrin at actin-rich adhesive site and lamellipodia through PI3K-dependent manner. Treatment of apigenin inhibited HGF-stimulated integrin β4 function including cell-matrix adhesion and cell-endothelial cells adhesion in MDA-MB-231 cells. By Akt-siRNA transfection analysis, it confirmed that apigenin inhibited HGF-promoted invasive growth involving blocking PI3K/Akt pathway. Finally, we evaluated the effect of apigenin on HGF-promoted metastasis by lung colonization of tumor cells in nude mice and organ metastasis of tumor cells in chick embryo. By

  10. Suppression of tumor growth, invasion and angiogenesis of human gastric cancer by adenovirus-mediated expression of NK4

    NARCIS (Netherlands)

    Heideman, Daniëlle A. M.; van Beusechem, Victor W.; Bloemena, Elisabeth; Snijders, Peter J. F.; Craanen, Mikael E.; Offerhaus, G. Johan A.; Derksen, Patrick W. B.; de Bruin, Michiel; Witlox, M. Adhiambo; Molenaar, Bonnie; Meijer, Chris J. L. M.; Gerritsen, Winald R.

    2004-01-01

    Background To improve the prognosis of patients with gastric cancer it is important to develop novel treatment modalities targeting the malignant behavior of tumor cells. Concerning this, NK4, which acts as HGF-antagonist and angiogenesis inhibitor, might be a potential therapeutic agent for gastric

  11. Human epidermal growth factor receptor 2 testing in invasive breast cancer: should histological grade, type and oestrogen receptor status influence the decision to repeat testing?

    Science.gov (United States)

    Rakha, Emad A; Pigera, Marian; Shin, Sandra J; D'Alfonso, Timothy; Ellis, Ian O; Lee, Andrew H S

    2016-07-01

    The recent American Society of Clinical Oncology/College of American Pathologists guidelines for human epidermal growth factor receptor 2 (HER2) testing in breast cancer recommend repeat testing based on tumour grade, tumour type, and hormone receptor status. The aim of this study was to test the value of these criteria. HER2 status was concordant in the core biopsies and excision specimens in 392 of 400 invasive carcinomas. The major reasons for discordance were amplification around the cut-off for positivity and tumour heterogeneity. Of 116 grade 3 carcinomas that were HER2-negative in the core biopsy, four were HER2-positive in the excision specimen. Three of these four either showed borderline negative amplification in the core biopsy or were heterogeneous. None of the 55 grade 1 carcinomas were HER2-positive. Review of repeat testing of HER2 in routine practice suggested that it may also be of value for multifocal tumours and if recommended by the person assessing the in-situ hybridization. Mandatory repeat HER2 testing of grade 3 HER2-negative carcinomas is not appropriate. This is particularly true if repeat testing is performed after borderline negative amplification in the core biopsy or in HER2-negative heterogeneous carcinomas. © 2015 John Wiley & Sons Ltd.

  12. Alterations in integrin expression modulates invasion of pancreatic cancer cells.

    LENUS (Irish Health Repository)

    Walsh, Naomi

    2009-01-01

    BACKGROUND: Factors mediating the invasion of pancreatic cancer cells through the extracellular matrix (ECM) are not fully understood. METHODS: In this study, sub-populations of the human pancreatic cancer cell line, MiaPaCa-2 were established which displayed differences in invasion, adhesion, anoikis, anchorage-independent growth and integrin expression. RESULTS: Clone #3 displayed higher invasion with less adhesion, while Clone #8 was less invasive with increased adhesion to ECM proteins compared to MiaPaCa-2. Clone #8 was more sensitive to anoikis than Clone #3 and MiaPaCa-2, and displayed low colony-forming efficiency in an anchorage-independent growth assay. Integrins beta 1, alpha 5 and alpha 6 were over-expressed in Clone #8. Using small interfering RNA (siRNA), integrin beta1 knockdown in Clone #8 cells increased invasion through matrigel and fibronectin, increased motility, decreased adhesion and anoikis. Integrin alpha 5 and alpha 6 knockdown also resulted in increased motility, invasion through matrigel and decreased adhesion. CONCLUSION: Our results suggest that altered expression of integrins interacting with different extracellular matrixes may play a significant role in suppressing the aggressive invasive phenotype. Analysis of these clonal populations of MiaPaCa-2 provides a model for investigations into the invasive properties of pancreatic carcinoma.

  13. Immune Infiltration in Invasive Lobular Breast Cancer.

    Science.gov (United States)

    Desmedt, Christine; Salgado, Roberto; Fornili, Marco; Pruneri, Giancarlo; Van den Eynden, Gert; Zoppoli, Gabriele; Rothé, Françoise; Buisseret, Laurence; Garaud, Soizic; Willard-Gallo, Karen; Brown, David; Bareche, Yacine; Rouas, Ghizlane; Galant, Christine; Bertucci, François; Loi, Sherene; Viale, Giuseppe; Di Leo, Angelo; Green, Andrew R; Ellis, Ian O; Rakha, Emad A; Larsimont, Denis; Biganzoli, Elia; Sotiriou, Christos

    2018-02-20

    Invasive lobular breast cancer (ILC) is the second most common histological subtype of breast cancer after invasive ductal cancer (IDC). Here, we aimed at evaluating the prevalence, levels, and composition of tumor-infiltrating lymphocytes (TILs) and their association with clinico-pathological and outcome variables in ILC, and to compare them with IDC. We considered two patient series with TIL data: a multicentric retrospective series (n = 614) and the BIG 02-98 study (n = 149 ILC and 807 IDC). We compared immune subsets identified by immuno-histochemistry in the ILC (n = 159) and IDC (n = 468) patients from the Nottingham series, as well as the CIBERSORT immune profiling of the ILC (n = 98) and IDC (n = 388) METABRIC and The Cancer Genome Atlas patients. All ILC/IDC comparisons were done in estrogen receptor (ER)-positive/human epidermal growth factor receptor 2 (HER2)-negative tumors. All statistical tests were two-sided. TIL levels were statistically significantly lower in ILC compared with IDC (fold-change = 0.79, 95% confidence interval = 0.70 to 0.88, P lobular series, although they did not reach statistical significance in the latter. The Nottingham series revealed that the levels of intratumoral but not total CD8+ were statistically significantly lower in ILC compared with IDC. Comparison of the CIBERSORT profiles highlighted statistically significant differences in terms of immune composition. This study shows differences between the immune infiltrates of ER-positive/HER2-negative ILC and IDC in terms of prevalence, levels, localization, composition, and clinical associations.

  14. Chemotherapeutic Targeting of Fibulin-5 to Suppress Breast Cancer Invasion and Metastasis Stimulated by Transforming Growth Factor-Beta

    Science.gov (United States)

    2012-10-22

    al [224] observed the loss of p16INH4a expression to depress that of the polycomb genes, EZH2 and SUZ12, which collectively enhance DNA...selection of metastasis within the life history of a tumor. Cancer Res. 2007;67(24):11471–5. 13. Talmadge JE, Fidler IJ. AACR centennial series: the biology...members of the TGF-β family in vascular morpho- on the functions of natural killer cells: Depressed cy- tolytic activity and blunting of interferon

  15. Isorhapontigenin (ISO) Inhibits Invasive Bladder Cancer Formation In Vivo and Human Bladder Cancer Invasion In Vitro by Targeting STAT1/FOXO1 Axis.

    Science.gov (United States)

    Jiang, Guosong; Wu, Amy D; Huang, Chao; Gu, Jiayan; Zhang, Liping; Huang, Haishan; Liao, Xin; Li, Jingxia; Zhang, Dongyun; Zeng, Xingruo; Jin, Honglei; Huang, Haojie; Huang, Chuanshu

    2016-07-01

    Although our most recent studies have identified Isorhapontigenin (ISO), a novel derivative of stilbene that isolated from a Chinese herb Gnetum cleistostachyum, for its inhibition of human bladder cancer growth, nothing is known whether ISO possesses an inhibitory effect on bladder cancer invasion. Thus, we addressed this important question in current study and discovered that ISO treatment could inhibit mouse-invasive bladder cancer development following bladder carcinogen N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN) exposure in vivo We also found that ISO suppressed human bladder cancer cell invasion accompanied by upregulation of the forkhead box class O 1 (FOXO1) mRNA transcription in vitro Accordingly, FOXO1 was profoundly downregulated in human bladder cancer tissues and was negatively correlated with bladder cancer invasion. Forced expression of FOXO1 specifically suppressed high-grade human bladder cancer cell invasion, whereas knockdown of FOXO1 promoted noninvasive bladder cancer cells becoming invasive bladder cancer cells. Moreover, knockout of FOXO1 significantly increased bladder cancer cell invasion and abolished the ISO inhibition of invasion in human bladder cancer cells. Further studies showed that the inhibition of Signal transducer and activator of transcription 1 (STAT1) phosphorylation at Tyr701 was crucial for ISO upregulation of FOXO1 transcription. Furthermore, this study revealed that metalloproteinase-2 (MMP-2) was a FOXO1 downstream effector, which was also supported by data obtained from mouse model of ISO inhibition BBN-induced mouse-invasive bladder cancer formation. These findings not only provide a novel insight into the understanding of mechanism of bladder cancer's propensity to invasion, but also identify a new role and mechanisms underlying the natural compound ISO that specifically suppresses such bladder cancer invasion through targeting the STAT1-FOXO1-MMP-2 axis. Cancer Prev Res; 9(7); 567-80. ©2016 AACR. ©2016 American

  16. URG11 Regulates Prostate Cancer Cell Proliferation, Migration, and Invasion

    Directory of Open Access Journals (Sweden)

    Bin Pan

    2018-01-01

    Full Text Available Upregulated gene 11 (URG11, a new gene upregulated by hepatitis B virus X protein, is involved in the development and progression of several tumors, including liver, stomach, lung, and colon cancers. However, the role of URG11 in prostate cancer remains yet to be elucidated. By determined expression in human prostate cancer tissues, URG11 was found significantly upregulated and positively correlated with the severity of prostate cancer, compared with that in benign prostatic hyperplasia tissues. Further, the mRNA and protein levels of URG11 were significantly upregulated in human prostate cancer cell lines (DU145, PC3, and LNCaP, compared with human prostate epithelial cell line (RWPE-1. Moreover, by the application of siRNA against URG11, the proliferation, migration, and invasion of prostate cancer cells were markedly inhibited. Genetic knockdown of URG11 also induced cell cycle arrest at G1/S phase, induced apoptosis, and decreased the expression level of β-catenin in prostate cancer cells. Overexpression of URG11 promoted the expression of β-catenin, the growth, the migration, and invasion ability of prostate cancer cells. Taken together, this study reveals that URG11 is critical for the proliferation, migration, and invasion in prostate cancer cells, providing the evidence of URG11 to be a novel potential therapeutic target of prostate cancer.

  17. Integrating intracellular dynamics using CompuCell3D and Bionetsolver: applications to multiscale modelling of cancer cell growth and invasion.

    Directory of Open Access Journals (Sweden)

    Vivi Andasari

    Full Text Available In this paper we present a multiscale, individual-based simulation environment that integrates CompuCell3D for lattice-based modelling on the cellular level and Bionetsolver for intracellular modelling. CompuCell3D or CC3D provides an implementation of the lattice-based Cellular Potts Model or CPM (also known as the Glazier-Graner-Hogeweg or GGH model and a Monte Carlo method based on the metropolis algorithm for system evolution. The integration of CC3D for cellular systems with Bionetsolver for subcellular systems enables us to develop a multiscale mathematical model and to study the evolution of cell behaviour due to the dynamics inside of the cells, capturing aspects of cell behaviour and interaction that is not possible using continuum approaches. We then apply this multiscale modelling technique to a model of cancer growth and invasion, based on a previously published model of Ramis-Conde et al. (2008 where individual cell behaviour is driven by a molecular network describing the dynamics of E-cadherin and β-catenin. In this model, which we refer to as the centre-based model, an alternative individual-based modelling technique was used, namely, a lattice-free approach. In many respects, the GGH or CPM methodology and the approach of the centre-based model have the same overall goal, that is to mimic behaviours and interactions of biological cells. Although the mathematical foundations and computational implementations of the two approaches are very different, the results of the presented simulations are compatible with each other, suggesting that by using individual-based approaches we can formulate a natural way of describing complex multi-cell, multiscale models. The ability to easily reproduce results of one modelling approach using an alternative approach is also essential from a model cross-validation standpoint and also helps to identify any modelling artefacts specific to a given computational approach.

  18. Pepducin Based Intervention of Breast Cancer Invasion

    Science.gov (United States)

    2006-08-01

    Metalloprotease-1 Receptor that Promotes Invasion and Tumorigenesis of Breast Cancer Cells. Cell 120, 303-313. (6) Arribas , J. (2005) Matrix Metalloproteases...promotes invasion and tumorigenesis of breast cancer cells. Cell 2005;120:303–13. 6. Arribas J. Matrix metalloproteases and tumor inva- sion. N Engl J Med...to ala - provide a model for more aggressive, tamoxifen-insen- nine. The F43A PAR1 mutant does not transduce a sig- sitive, breast cancers. MDA-MB-231

  19. Prognostic factors in invasive bladder cancer

    International Nuclear Information System (INIS)

    Maulard-Durdux, C.; Housset, M.

    1998-01-01

    In France, invasive bladder cancer is the more frequent urologic malignancy after prostate carcinoma. Treatment of bladder cancer is radical cystectomy. New therapeutic approaches such as chemo-radiation combination for a conservative procedure, neo-adjuvant or adjuvant chemotherapy are still developing. In this way, a rigorous selection of patients is needed. This selection is based on prognostic criteria that could be divided into four groups: the volume of the tumor including the tumor infiltration depth, the nodal status, the presence or not of hydronephrosis and the residual tumor mass after trans-urethral resection; the histologic aspects of the tumor including histologic grading, the presence or not of an epidermoid metaplasia, of in situ carcinoma or of thrombi; the expression of tumor markers tissue polypeptide antigen, bladder tumor antigen; the biologic aspects of the tumor as ploidy, cytogenetic abnormalities, expression of Ki67, expression of oncogenes or tumor suppressor genes, expression of tumor antigens or growth factor receptors. This paper reviews the prognostic value of the various parameters. (authors)

  20. Single nucleotide polymorphisms in the TP53 region and susceptibility to invasive epithelial ovarian cancer

    DEFF Research Database (Denmark)

    Schildkraut, Joellen M; Goode, Ellen L; Clyde, Merlise A

    2009-01-01

    The p53 protein is critical for multiple cellular functions including cell growth and DNA repair. We assessed whether polymorphisms in the region encoding TP53 were associated with risk of invasive ovarian cancer. The study population includes a total of 5,206 invasive ovarian cancer cases (2,829...

  1. Non-muscle-invasive bladder cancer

    DEFF Research Database (Denmark)

    Malmström, Per-Uno; Agrawal, Sachin; Bläckberg, Mats

    2017-01-01

    The management of non-muscle-invasive bladder cancer (NMIBC) has evolved from the first reports on bladder endoscopy and transurethral resection to the introduction of adjuvant intravesical treatment. However, disease recurrence and progression remain an ongoing risk, placing a heavy burden...

  2. HPV genotypes in invasive cervical cancer in Danish women

    DEFF Research Database (Denmark)

    Kirschner, Benny; Junge, Jette; Holl, Katsiaryna

    2013-01-01

    Human papillomavirus (HPV) genotype distribution in invasive cervical cancers may differ by geographic region. The primary objective of this study was to estimate HPV-genotype distribution in Danish women with a diagnosis of invasive cervical cancer.......Human papillomavirus (HPV) genotype distribution in invasive cervical cancers may differ by geographic region. The primary objective of this study was to estimate HPV-genotype distribution in Danish women with a diagnosis of invasive cervical cancer....

  3. The role of the tissue microenvironment in the regulation of cancer cell motility and invasion

    Directory of Open Access Journals (Sweden)

    Brábek Jan

    2010-09-01

    Full Text Available Abstract During malignant neoplastic progression the cells undergo genetic and epigenetic cancer-specific alterations that finally lead to a loss of tissue homeostasis and restructuring of the microenvironment. The invasion of cancer cells through connective tissue is a crucial prerequisite for metastasis formation. Although cell invasion is foremost a mechanical process, cancer research has focused largely on gene regulation and signaling that underlie uncontrolled cell growth. More recently, the genes and signals involved in the invasion and transendothelial migration of cancer cells, such as the role of adhesion molecules and matrix degrading enzymes, have become the focus of research. In this review we discuss how the structural and biomechanical properties of extracellular matrix and surrounding cells such as endothelial cells influence cancer cell motility and invasion. We conclude that the microenvironment is a critical determinant of the migration strategy and the efficiency of cancer cell invasion.

  4. Gallic acid inhibits gastric cancer cells metastasis and invasive growth via increased expression of RhoB, downregulation of AKT/small GTPase signals and inhibition of NF-κB activity

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Hsieh-Hsun [Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung 402, Taiwan (China); Chang, Chi-Sen [Department of Medicine, Chung Shan Medical University, Taichung 402, Taiwan (China); Division of Gastroenterology, Taichung Veterans General Hospital, Taichung 402, Taiwan (China); Ho, Wei-Chi [Division of Gastroenterology, Jen-Ai Hospital, Taichung 402, Taiwan (China); Liao, Sheng-You [Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung 402, Taiwan (China); Lin, Wea-Lung [Department of Pathology, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan (China); Department of Pathology, Chung Shan Medical University Hospital, Taichung 402, Taiwan (China); Wang, Chau-Jong, E-mail: wcj@csmu.edu.tw [Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung 402, Taiwan (China); Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan (China)

    2013-01-01

    Our previous study demonstrated the therapeutic potential of gallic acid (GA) for controlling tumor metastasis through its inhibitory effect on the motility of AGS cells. A noteworthy finding in our previous experiment was increased RhoB expression in GA-treated cells. The aim of this study was to evaluate the role of RhoB expression on the inhibitory effects of GA on AGS cells. By applying the transfection of RhoB siRNA into AGS cells and an animal model, we tested the effect of GA on inhibition of tumor growth and RhoB expression. The results confirmed that RhoB-siRNA transfection induced GA to inhibit AGS cells’ invasive growth involving blocking the AKT/small GTPase signals pathway and inhibition of NF-κB activity. Finally, we evaluated the effect of GA on AGS cell metastasis by colonization of tumor cells in nude mice. It showed GA inhibited tumor cells growth via the expression of RhoB. These data support the inhibitory effect of GA which was shown to inhibit gastric cancer cell metastasis and invasive growth via increased expression of RhoB, downregulation of AKT/small GTPase signals and inhibition of NF-κB activity. Thus, GA might be a potential agent in treating gastric cancer. Highlights: ► GA could downregulate AKT signal via increased expression of RhoB. ► GA inhibits metastasis in vitro in gastric carcinoma. ► GA inhibits tumor growth in nude mice model.

  5. Epigenetic suppression of neprilysin regulates breast cancer invasion.

    Science.gov (United States)

    Stephen, H M; Khoury, R J; Majmudar, P R; Blaylock, T; Hawkins, K; Salama, M S; Scott, M D; Cosminsky, B; Utreja, N K; Britt, J; Conway, R E

    2016-03-07

    In women, invasive breast cancer is the second most common cancer and the second cause of cancer-related death. Therefore, identifying novel regulators of breast cancer invasion could lead to additional biomarkers and therapeutic targets. Neprilysin, a cell-surface enzyme that cleaves and inactivates a number of substrates including endothelin-1 (ET1), has been implicated in breast cancer, but whether neprilysin promotes or inhibits breast cancer cell progression and metastasis is unclear. Here, we asked whether neprilysin expression predicts and functionally regulates breast cancer cell invasion. RT-PCR and flow cytometry analysis of MDA-MB-231 and MCF-7 breast cancer cell lines revealed decreased neprilysin expression compared with normal epithelial cells. Expression was also suppressed in invasive ductal carcinoma (IDC) compared with normal tissue. In addition, in vtro invasion assays demonstrated that neprilysin overexpression decreased breast cancer cell invasion, whereas neprilysin suppression augmented invasion. Furthermore, inhibiting neprilysin in MCF-7 breast cancer cells increased ET1 levels significantly, whereas overexpressing neprilysin decreased extracellular-signal related kinase (ERK) activation, indicating that neprilysin negatively regulates ET1-induced activation of mitogen-activated protein kinase (MAPK) signaling. To determine whether neprilysin was epigenetically suppressed in breast cancer, we performed bisulfite conversion analysis of breast cancer cells and clinical tumor samples. We found that the neprilysin promoter was hypermethylated in breast cancer; chemical reversal of methylation in MDA-MB-231 cells reactivated neprilysin expression and inhibited cancer cell invasion. Analysis of cancer databases revealed that neprilysin methylation significantly associates with survival in stage I IDC and estrogen receptor-negative breast cancer subtypes. These results demonstrate that neprilysin negatively regulates the ET axis in breast cancer

  6. Immunophenotyping invasive breast cancer: paving the road for molecular imaging

    International Nuclear Information System (INIS)

    Vermeulen, Jeroen F; Brussel, Aram SA van; Groep, Petra van der; Morsink, Folkert HM; Bult, Peter; Wall, Elsken van der; Diest, Paul J van

    2012-01-01

    Mammographic population screening in The Netherlands has increased the number of breast cancer patients with small and non-palpable breast tumors. Nevertheless, mammography is not ultimately sensitive and specific for distinct subtypes. Molecular imaging with targeted tracers might increase specificity and sensitivity of detection. Because development of new tracers is labor-intensive and costly, we searched for the smallest panel of tumor membrane markers that would allow detection of the wide spectrum of invasive breast cancers. Tissue microarrays containing 483 invasive breast cancers were stained by immunohistochemistry for a selected set of membrane proteins known to be expressed in breast cancer. The combination of highly tumor-specific markers glucose transporter 1 (GLUT1), epidermal growth factor receptor (EGFR), insulin-like growth factor-1 receptor (IGF1-R), human epidermal growth factor receptor 2 (HER2), hepatocyte growth factor receptor (MET), and carbonic anhydrase 9 (CAIX) 'detected' 45.5% of tumors, especially basal/triple negative and HER2-driven ductal cancers. Addition of markers with a 2-fold tumor-to-normal ratio increased the detection rate to 98%. Including only markers with >3 fold tumor-to-normal ratio (CD44v6) resulted in an 80% detection rate. The detection rate of the panel containing both tumor-specific and less tumor-specific markers was not dependent on age, tumor grade, tumor size, or lymph node status. In search of the minimal panel of targeted probes needed for the highest possible detection rate, we showed that 80% of all breast cancers express at least one of a panel of membrane markers (CD44v6, GLUT1, EGFR, HER2, and IGF1-R) that may therefore be suitable for molecular imaging strategies. This study thereby serves as a starting point for further development of a set of antibody-based optical tracers with a high breast cancer detection rate

  7. Immunophenotyping invasive breast cancer: paving the road for molecular imaging

    Directory of Open Access Journals (Sweden)

    Vermeulen Jeroen F

    2012-06-01

    Full Text Available Abstract Background Mammographic population screening in The Netherlands has increased the number of breast cancer patients with small and non-palpable breast tumors. Nevertheless, mammography is not ultimately sensitive and specific for distinct subtypes. Molecular imaging with targeted tracers might increase specificity and sensitivity of detection. Because development of new tracers is labor-intensive and costly, we searched for the smallest panel of tumor membrane markers that would allow detection of the wide spectrum of invasive breast cancers. Methods Tissue microarrays containing 483 invasive breast cancers were stained by immunohistochemistry for a selected set of membrane proteins known to be expressed in breast cancer. Results The combination of highly tumor-specific markers glucose transporter 1 (GLUT1, epidermal growth factor receptor (EGFR, insulin-like growth factor-1 receptor (IGF1-R, human epidermal growth factor receptor 2 (HER2, hepatocyte growth factor receptor (MET, and carbonic anhydrase 9 (CAIX 'detected' 45.5% of tumors, especially basal/triple negative and HER2-driven ductal cancers. Addition of markers with a 2-fold tumor-to-normal ratio increased the detection rate to 98%. Including only markers with >3 fold tumor-to-normal ratio (CD44v6 resulted in an 80% detection rate. The detection rate of the panel containing both tumor-specific and less tumor-specific markers was not dependent on age, tumor grade, tumor size, or lymph node status. Conclusions In search of the minimal panel of targeted probes needed for the highest possible detection rate, we showed that 80% of all breast cancers express at least one of a panel of membrane markers (CD44v6, GLUT1, EGFR, HER2, and IGF1-R that may therefore be suitable for molecular imaging strategies. This study thereby serves as a starting point for further development of a set of antibody-based optical tracers with a high breast cancer detection rate.

  8. Tetraspanin 1 promotes invasiveness of cervical cancer cells.

    Science.gov (United States)

    Hölters, Sebastian; Anacker, Jelena; Jansen, Lars; Beer-Grondke, Katrin; Dürst, Matthias; Rubio, Ignacio

    2013-08-01

    Tetraspanins are a heterogeneous group of 4-transmembrane proteins that segregate into so-called tetraspanin-enriched microdomains (TEMs) along with other cell surface proteins such as integrins. TEMs of various types are reportedly involved in the regulation of cell growth, migration and invasion of several tumour cell types, both as suppressors or supporting structures. Tetraspanin 1 (Tspan1, NET-1), a member of the transmembrane 4 superfamily (TM4SF) of tetraspanins, is overexpressed in high-grade cervical intraepithelial neoplasia (CIN) and terminal carcinomas but its precise function in the context of carcinoma of the cervix uteri is not known. Here, we present a comprehensive investigation of the role of tetraspanin 1 in the cervical cancer cell lines SiHa and HeLa. We document that tetraspanin 1 increases the invasive potential of cervical cancer cells, whereas proliferation, growth in soft agar and adhesion are largely unaffected. In line with the latter findings, our data exclude the participation of testraspanin in integrin-mediated activation of focal adhesion kinase (FAK), paxillin and phosphoinositide-3-kinase (PI3K) and in EGFR-dependent signalling to the Ras/Erk pathway. In conclusion, our data argue against a role for tetraspanin 1 as a genuine mediator of cell surface receptor signalling but rather document a role for tetraspanin 1 in the control of cervical cancer cell motility and invasion.

  9. Tumor heterogeneity of fibroblast growth factor receptor 3 (FGFR3) mutations in invasive bladder cancer: implications for perioperative anti-FGFR3 treatment.

    Science.gov (United States)

    Pouessel, D; Neuzillet, Y; Mertens, L S; van der Heijden, M S; de Jong, J; Sanders, J; Peters, D; Leroy, K; Manceau, A; Maille, P; Soyeux, P; Moktefi, A; Semprez, F; Vordos, D; de la Taille, A; Hurst, C D; Tomlinson, D C; Harnden, P; Bostrom, P J; Mirtti, T; Horenblas, S; Loriot, Y; Houédé, N; Chevreau, C; Beuzeboc, P; Shariat, S F; Sagalowsky, A I; Ashfaq, R; Burger, M; Jewett, M A S; Zlotta, A R; Broeks, A; Bapat, B; Knowles, M A; Lotan, Y; van der Kwast, T H; Culine, S; Allory, Y; van Rhijn, B W G

    2016-07-01

    Fibroblast growth factor receptor 3 (FGFR3) is an actionable target in bladder cancer. Preclinical studies show that anti-FGFR3 treatment slows down tumor growth, suggesting that this tyrosine kinase receptor is a candidate for personalized bladder cancer treatment, particularly in patients with mutated FGFR3. We addressed tumor heterogeneity in a large multicenter, multi-laboratory study, as this may have significant impact on therapeutic response. We evaluated possible FGFR3 heterogeneity by the PCR-SNaPshot method in the superficial and deep compartments of tumors obtained by transurethral resection (TUR, n = 61) and in radical cystectomy (RC, n = 614) specimens and corresponding cancer-positive lymph nodes (LN+, n = 201). We found FGFR3 mutations in 13/34 (38%) T1 and 8/27 (30%) ≥T2-TUR samples, with 100% concordance between superficial and deeper parts in T1-TUR samples. Of eight FGFR3 mutant ≥T2-TUR samples, only 4 (50%) displayed the mutation in the deeper part. We found 67/614 (11%) FGFR3 mutations in RC specimens. FGFR3 mutation was associated with pN0 (P < 0.001) at RC. In 10/201 (5%) LN+, an FGFR3 mutation was found, all concordant with the corresponding RC specimen. In the remaining 191 cases, RC and LN+ were both wild type. FGFR3 mutation status seems promising to guide decision-making on adjuvant anti-FGFR3 therapy as it appeared homogeneous in RC and LN+. Based on the results of TUR, the deep part of the tumor needs to be assessed if neoadjuvant anti-FGFR3 treatment is considered. We conclude that studies on the heterogeneity of actionable molecular targets should precede clinical trials with these drugs in the perioperative setting. © The Author 2016. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. Tensile Forces Originating from Cancer Spheroids Facilitate Tumor Invasion.

    Directory of Open Access Journals (Sweden)

    Katarzyna S Kopanska

    Full Text Available The mechanical properties of tumors and the tumor environment provide important information for the progression and characterization of cancer. Tumors are surrounded by an extracellular matrix (ECM dominated by collagen I. The geometrical and mechanical properties of the ECM play an important role for the initial step in the formation of metastasis, presented by the migration of malignant cells towards new settlements as well as the vascular and lymphatic system. The extent of this cell invasion into the ECM is a key medical marker for cancer prognosis. In vivo studies reveal an increased stiffness and different architecture of tumor tissue when compared to its healthy counterparts. The observed parallel collagen organization on the tumor border and radial arrangement at the invasion zone has raised the question about the mechanisms organizing these structures. Here we study the effect of contractile forces originated from model tumor spheroids embedded in a biomimetic collagen I matrix. We show that contractile forces act immediately after seeding and deform the ECM, thus leading to tensile radial forces within the matrix. Relaxation of this tension via cutting the collagen does reduce invasion, showing a mechanical relation between the tensile state of the ECM and invasion. In turn, these results suggest that tensile forces in the ECM facilitate invasion. Furthermore, simultaneous contraction of the ECM and tumor growth leads to the condensation and reorientation of the collagen at the spheroid's surface. We propose a tension-based model to explain the collagen organization and the onset of invasion by forces originating from the tumor.

  11. Syndecan-2 promotes perineural invasion and cooperates with K-ras to induce an invasive pancreatic cancer cell phenotype

    Directory of Open Access Journals (Sweden)

    De Oliveira Tiago

    2012-04-01

    Full Text Available Abstract Background We have identified syndecan-2 as a protein potentially involved in perineural invasion of pancreatic adenocarcinoma (PDAC cells. Methods Syndecan-2 (SDC-2 expression was analyzed in human normal pancreas, chronic pancreatitis and PDAC tissues. Functional in vitro assays were carried out to determine its role in invasion, migration and signaling. Results SDC-2 was expressed in the majority of the tested pancreatic cancer cell lines while it was upregulated in nerve-invasive PDAC cell clones. There were 2 distinct expression patterns of SDC-2 in PDAC tissue samples: SDC-2 positivity in the cancer cell cytoplasm and a peritumoral expression. Though SDC-2 silencing (using specific siRNA oligonucleotides did not affect anchorage-dependent growth, it significantly reduced cell motility and invasiveness in the pancreatic cancer cell lines T3M4 and Su8686. On the transcriptional level, migration-and invasion-associated genes were down-regulated following SDC-2 RNAi. Furthermore, SDC-2 silencing reduced K-ras activity, phosphorylation of Src and - further downstream - phosphorylation of ERK2 while levels of the putative SDC-2 signal transducer p120GAP remained unaltered. Conclusion SDC-2 is a novel (perineural invasion-associated gene in PDAC which cooperates with K-ras to induce a more invasive phenotype.

  12. Urinary high molecular weight matrix metalloproteinases as non-invasive biomarker for detection of bladder cancer

    OpenAIRE

    Mohammed, Mohammed A; Seleim, Manar F; Abdalla, Mohga S; Sharada, Hayat M; Abdel Wahab, Abdel Hady A

    2013-01-01

    Background Matrix Metalloproteinases (MMPs) are key molecules for tumor growth, invasion and metastasis. Over-expression of different MMPs in tumor tissues can disturb the homeostasis and increase the level of various body fluids. Many MMPs including high molecular weights (HMWs) were detected in the urine of prostate and bladder cancer patients. Our aim here is to assess the usefulness of HMW MMPs as non invasive biomarkers in bilharzial bladder cancer in Egyptian patients. Methods The activ...

  13. Density-dependent growth in invasive Lionfish (Pterois volitans).

    Science.gov (United States)

    Benkwitt, Cassandra E

    2013-01-01

    Direct demographic density dependence is necessary for population regulation and is a central concept in ecology, yet has not been studied in many invasive species, including any invasive marine fish. The red lionfish (Pterois volitans) is an invasive predatory marine fish that is undergoing exponential population growth throughout the tropical western Atlantic. Invasive lionfish threaten coral-reef ecosystems, but there is currently no evidence of any natural population control. Therefore, a manipulative field experiment was conducted to test for density dependence in lionfish. Juvenile lionfish densities were adjusted on small reefs and several demographic rates (growth, recruitment, immigration, and loss) were measured throughout an 8-week period. Invasive lionfish exhibited direct density dependence in individual growth rates, as lionfish grew slower at higher densities throughout the study. Individual growth in length declined linearly with increasing lionfish density, while growth in mass declined exponentially with increasing density. There was no evidence, however, for density dependence in recruitment, immigration, or loss (mortality plus emigration) of invasive lionfish. The observed density-dependent growth rates may have implications for which native species are susceptible to lionfish predation, as the size and type of prey that lionfish consume is directly related to their body size. The absence of density-dependent loss, however, contrasts with many native coral-reef fish species and suggests that for the foreseeable future manual removals may be the only effective local control of this invasion.

  14. Density-dependent growth in invasive Lionfish (Pterois volitans.

    Directory of Open Access Journals (Sweden)

    Cassandra E Benkwitt

    Full Text Available Direct demographic density dependence is necessary for population regulation and is a central concept in ecology, yet has not been studied in many invasive species, including any invasive marine fish. The red lionfish (Pterois volitans is an invasive predatory marine fish that is undergoing exponential population growth throughout the tropical western Atlantic. Invasive lionfish threaten coral-reef ecosystems, but there is currently no evidence of any natural population control. Therefore, a manipulative field experiment was conducted to test for density dependence in lionfish. Juvenile lionfish densities were adjusted on small reefs and several demographic rates (growth, recruitment, immigration, and loss were measured throughout an 8-week period. Invasive lionfish exhibited direct density dependence in individual growth rates, as lionfish grew slower at higher densities throughout the study. Individual growth in length declined linearly with increasing lionfish density, while growth in mass declined exponentially with increasing density. There was no evidence, however, for density dependence in recruitment, immigration, or loss (mortality plus emigration of invasive lionfish. The observed density-dependent growth rates may have implications for which native species are susceptible to lionfish predation, as the size and type of prey that lionfish consume is directly related to their body size. The absence of density-dependent loss, however, contrasts with many native coral-reef fish species and suggests that for the foreseeable future manual removals may be the only effective local control of this invasion.

  15. TRPV2 mediates adrenomedullin stimulation of prostate and urothelial cancer cell adhesion, migration and invasion.

    Directory of Open Access Journals (Sweden)

    Agathe Oulidi

    Full Text Available Adrenomedullin (AM is a 52-amino acid peptide initially isolated from human pheochromocytoma. AM is expressed in a variety of malignant tissues and cancer cell lines and was shown to be a mitogenic factor capable of stimulating growth of several cancer cell types. In addition, AM is a survival factor for certain cancer cells. Some data suggest that AM might be involved in the progression cancer metastasis via angiogenesis and cell migration and invasion control. The Transient Receptor Potential channel TRPV2 is known to promote in prostate cancer cell migration and invasive phenotype and is correlated with the stage and grade of bladder cancer. In this work we show that AM induces prostate and urothelial cancer cell migration and invasion through TRPV2 translocation to plasma membrane and the subsequent increase in resting calcium level.

  16. Impact of ER520, a candidate of selective estrogen receptor modulators, on in vitro cell growth, migration, invasion, angiogenesis and in vivo tumor xenograft of human breast cancer cells.

    Science.gov (United States)

    Wang, Lijun; Wang, Ying; Du, Huaqing; Jiang, Yao; Tang, Zhichao; Liu, Hongyi; Xiang, Hua; Xiao, Hong

    2015-12-01

    ER520, a derivative of indenoisoquinoline, is a patented compound. This study was designed to screen its biological properties and to evaluate its antineoplastic and antiangiogenic effect. Western blot was employed to monitor the ERα and ERβ protein expression in human breast cancer MCF-7 cells and endometrial carcinoma Ishikawa cells. MTT assay was employed to determine cell proliferation. Cell adhesion, scratch and Transwell assay were utilized to estimate the ability of cellular adhesion, migration and invasion. ELISA kit was applied to detect the VEGF products in culture medium. In addition, the inhibitory effect of ER520 on the vessel-like construction of HUVEC cells and the angiogenesis of chicken embryos was investigated. The efficiency of ER520 on tumor growth in nude mice was also assessed. ER520 inhibited the expression of ERα in MCF-7 and Ishikawa cells, while it increased ERβ protein level. ER520 also suppressed the proliferation of MCF-7 and Ishikawa cells. Due to its remarkably negative role in cell adhesion, migration and invasion, ER520 showed a potential ability of inhibiting tumor metastasis. Meanwhile, ER520 reduced the VEGF secretion of MCF-7 and Ishikawa cells, prevented the formation of VEGF-stimulated tubular structure and the cell migration of HUVEC cells, and inhibited the angiogenesis of chicken chorioallantoic membrane. Animal experiment also demonstrated that ER520 could frustrate the in vivo tumor growth and the inhibitory ratio was 48.5 % compared with control group. Our findings indicate that ER520 possesses the competence to be a candidate against breast cancer and angiogenesis.

  17. Locally advanced colon cancer with cutaneous invasion: case report.

    Science.gov (United States)

    Tenreiro, Nádia; Ferreira, Cátia; Silva, Silvia; Marques, Rita; Ribeiro, Artur; Sousa, Paulo Jorge; Luís, Fernando Próspero

    2017-03-01

    Locally advanced colon cancer with direct abdominal wall and skin invasion is an extremely rare finding with most data being derived from case reports, historical autopsy-based or single-center retrospective studies. We present a unique case of a colon cancer with direct cutaneous invasion and colocutaneous fistulization. Eighty-six year old Caucasian female with multiple comorbidities, referred to Surgical Consultation due to ulcerated skin lesion in the abdomen. She had a long-standing large umbilical hernia but with no previous episodes of incarceration or occlusive symptoms. She denied any digestive or constitutional symptoms. Physical examination showed a large non-reducible umbilical hernia, with an associated painless firm mass within the hernia sac and cutaneous ulcerated growth. Colonoscopy revealed transverse colon cancer (endoscopic biopsy of the tumor and skin punch biopsy confirmed adenocarcinoma of the colon). Computed tomography showed a tumoral mass within the umbilical hernia, with cutaneous infiltration and enlarged regional lymph nodes. Rapid local progression led to colocutaneous fistula with total fecal diversion. We performed an extended right hemicolectomy with en bloc excision of the hernia sac and infiltrating cutaneous mass. In the current era of widespread use of screening colonoscopies, initial diagnosis of locally advanced colon cancer is decreasing. However, this unique case presented an opportunity to recall the advantages of multivisceral resections.

  18. Suppression of progranulin expression inhibits bladder cancer growth and sensitizes cancer cells to cisplatin

    OpenAIRE

    Buraschi, Simone; Xu, Shi-Qiong; Stefanello, Manuela; Moskalev, Igor; Morcavallo, Alaide; Genua, Marco; Tanimoto, Ryuta; Birbe, Ruth; Peiper, Stephen C.; Gomella, Leonard G.; Belfiore, Antonino; Black, Peter C.; Iozzo, Renato V.; Morrione, Andrea

    2016-01-01

    We have recently demonstrated a critical role for progranulin in bladder cancer. Progranulin contributes, as an autocrine growth factor, to the transformed phenotype by modulating Akt-and MAPK-driven motility, invasion and anchorage-independent growth. Progranulin also induces F-actin remodeling by interacting with the F-actin binding protein drebrin. In addition, progranulin is overexpressed in invasive bladder cancer compared to normal tissue controls, suggesting that progranulin might play...

  19. Cancer invasion and the microenvironment: plasticity and reciprocity.

    NARCIS (Netherlands)

    Friedl, P.H.A.; Alexander, S.

    2011-01-01

    Cancer invasion is a cell- and tissue-driven process for which the physical, cellular, and molecular determinants adapt and react throughout the progression of the disease. Cancer invasion is initiated and maintained by signaling pathways that control cytoskeletal dynamics in tumor cells and the

  20. SLUG promotes prostate cancer cell migration and invasion via CXCR4/CXCL12 axis.

    Science.gov (United States)

    Uygur, Berna; Wu, Wen-Shu

    2011-11-10

    SLUG is a zinc-finger transcription factor of the Snail/Slug zinc-finger family that plays a role in migration and invasion of tumor cells. Mechanisms by which SLUG promotes migration and invasion in prostate cancers remain elusive. Expression level of CXCR4 and CXCL12 was examined by Western blot, RT-PCR, and qPCR analyses. Forced expression of SLUG was mediated by retroviruses, and SLUG and CXCL12 was downregulated by shRNAs-expressing lentiviruses. Migration and invasion of prostate cancer were measured by scratch-wound assay and invasion assay, respectively. We demonstrated that forced expression of SLUG elevated CXCR4 and CXCL12 expression in human prostate cancer cell lines PC3, DU145, 22RV1, and LNCaP; conversely, reduced expression of SLUG by shRNA downregulated CXCR4 and CXCL12 expression at RNA and protein levels in prostate cancer cells. Furthermore, ectopic expression of SLUG increased MMP9 expression and activity in PC3, 22RV1, and DU-145 cells, and SLUG knockdown by shRNA downregulated MMP9 expression. We showed that CXCL12 is required for SLUG-mediated MMP9 expression in prostate cancer cells. Moreover, we found that migration and invasion of prostate cancer cells was increased by ectopic expression of SLUG and decreased by SLUG knockdown. Notably, knockdown of CXCL12 by shRNA impaired SLUG-mediated migration and invasion in prostate cancer cells. Lastly, our data suggest that CXCL12 and SLUG regulate migration and invasion of prostate cancer cells independent of cell growth. We provide the first compelling evidence that upregulation of autocrine CXCL12 is a major mechanism underlying SLUG-mediated migration and invasion of prostate cancer cells. Our findings suggest that CXCL12 is a therapeutic target for prostate cancer metastasis.

  1. Adipose tissue-derived stem cells promote pancreatic cancer cell proliferation and invasion

    International Nuclear Information System (INIS)

    Ji, S.Q.; Cao, J.; Zhang, Q.Y.; Li, Y.Y.; Yan, Y.Q.; Yu, F.X.

    2013-01-01

    To explore the effects of adipose tissue-derived stem cells (ADSCs) on the proliferation and invasion of pancreatic cancer cells in vitro and the possible mechanism involved, ADSCs were cocultured with pancreatic cancer cells, and a cell counting kit (CCK-8) was used to detect the proliferation of pancreatic cancer cells. ELISA was used to determine the concentration of stromal cell-derived factor-1 (SDF-1) in the supernatants. RT-PCR was performed to detect the expression of the chemokine receptor CXCR4 in pancreatic cancer cells and ADSCs. An in vitro invasion assay was used to measure invasion of pancreatic cancer cells. SDF-1 was detected in the supernatants of ADSCs, but not in pancreatic cancer cells. Higher CXCR4 mRNA levels were detected in the pancreatic cancer cell lines compared with ADSCs (109.3±10.7 and 97.6±7.6 vs 18.3±1.7, respectively; P<0.01). In addition, conditioned medium from ADSCs promoted the proliferation and invasion of pancreatic cancer cells, and AMD3100, a CXCR4 antagonist, significantly downregulated these growth-promoting effects. We conclude that ADSCs can promote the proliferation and invasion of pancreatic cancer cells, which may involve the SDF-1/CXCR4 axis

  2. Adipose tissue-derived stem cells promote pancreatic cancer cell proliferation and invasion

    Energy Technology Data Exchange (ETDEWEB)

    Ji, S.Q.; Cao, J. [Department of Liver Surgery I, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai (China); Zhang, Q.Y.; Li, Y.Y. [Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Wenzhou Medical College, Wenzhou (China); Yan, Y.Q. [Department of Liver Surgery I, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai (China); Yu, F.X. [Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Wenzhou Medical College, Wenzhou (China)

    2013-09-27

    To explore the effects of adipose tissue-derived stem cells (ADSCs) on the proliferation and invasion of pancreatic cancer cells in vitro and the possible mechanism involved, ADSCs were cocultured with pancreatic cancer cells, and a cell counting kit (CCK-8) was used to detect the proliferation of pancreatic cancer cells. ELISA was used to determine the concentration of stromal cell-derived factor-1 (SDF-1) in the supernatants. RT-PCR was performed to detect the expression of the chemokine receptor CXCR4 in pancreatic cancer cells and ADSCs. An in vitro invasion assay was used to measure invasion of pancreatic cancer cells. SDF-1 was detected in the supernatants of ADSCs, but not in pancreatic cancer cells. Higher CXCR4 mRNA levels were detected in the pancreatic cancer cell lines compared with ADSCs (109.3±10.7 and 97.6±7.6 vs 18.3±1.7, respectively; P<0.01). In addition, conditioned medium from ADSCs promoted the proliferation and invasion of pancreatic cancer cells, and AMD3100, a CXCR4 antagonist, significantly downregulated these growth-promoting effects. We conclude that ADSCs can promote the proliferation and invasion of pancreatic cancer cells, which may involve the SDF-1/CXCR4 axis.

  3. Mechanisms of Twist 1-Induced Invasion in Breast Cancer Metastasis

    Science.gov (United States)

    2011-01-01

    affect breast cancer metastasis with a subcutaneous mouse tumor implantation model of breast cancer metastasis. HMLE -Twist1 cells expressing shRNAs...13 4 Introduction Distant metastases are responsible for the vast majority of breast cancer deaths. This process...to migrate and invade is therefore essential to the metastatic process. The initial steps of breast cancer metastasis, local invasion and

  4. Cell-ECM Interactions During Cancer Invasion

    Science.gov (United States)

    Jiang, Yi

    The extracellular matrix (ECM), a fibrous material that forms a network in a tissue, significantly affects many aspects of cellular behavior, including cell movement and proliferation. Transgenic mouse tumor studies indicate that excess collagen, a major component of ECM, enhances tumor formation and invasiveness. Clinically, tumor associated collagen signatures are strong markers for breast cancer survival. However, the underlying mechanisms are unclear since the properties of ECM are complex, with diverse structural and mechanical properties depending on various biophysical parameters. We have developed a three-dimensional elastic fiber network model, and parameterized it with in vitro collagen mechanics. Using this model, we study ECM remodeling as a result of local deformation and cell migration through the ECM as a network percolation problem. We have also developed a three-dimensional, multiscale model of cell migration and interaction with ECM. Our model reproduces quantitative single cell migration experiments. This model is a first step toward a fully biomechanical cell-matrix interaction model and may shed light on tumor associated collagen signatures in breast cancer. This work was partially supported by NIH-U01CA143069.

  5. Hypofractionated radiotherapy for invasive bladder cancer

    International Nuclear Information System (INIS)

    Scholten, Astrid N.; Leer, Jan-Willem H.; Collins, C. David; Wondergem, Jan; Hermans, Jo; Timothy, Adrian

    1997-01-01

    Background and purpose: The policy of the Radiotherapy Department of St. Thomas' Hospital in London for patients with invasive bladder cancer, used to be treatment with hypofractionated radiotherapy. The advantages of this fractionation scheme included reduction of the number of treatment sessions and better use of limited resources. Our results after hypofractionation were compared to series with more conventional radiotherapy. Material and methods: Between 1975 and 1985, 123 patients with a T2-T3 transitional cell carcinoma of the bladder were treated by a radical course of hypofractionated radiotherapy. Local control, survival and morbidity rates were analysed retrospectively. Results: The actuarial local control rates at 5 and 10 years were 31 and 29%, respectively. The actuarial cancer-specific 5- and 10-year survival rates were 48 and 39%, respectively. Acute side effects were observed in 87% of patients. The actuarial overall and severe late complication rates at 5 years were 33 and 9%, respectively. The local control, survival and early side effect rates we found, were in the same range as those reported in literature. Late radiation side effects however, were more common after hypofractionated radiotherapy compared to conventional radiotherapy schedules. Conclusions: We conclude that the potential advantage of a reduced number of treatment sessions may be lost in the long term, because of the higher incidence of late morbidity after hypofractionated radiotherapy. Hypofractionation however, remains a valuable technique for palliation and deserves further investigation for radical treatment where access to equipment is difficult or resources are limited

  6. Protocols for Migration and Invasion Studies in Prostate Cancer.

    Science.gov (United States)

    van de Merbel, Arjanneke F; van der Horst, Geertje; Buijs, Jeroen T; van der Pluijm, Gabri

    2018-01-01

    Prostate cancer is the most common malignancy diagnosed in men in the western world. The development of distant metastases and therapy resistance are major clinical problems in the management of prostate cancer patients. In order for prostate cancer to metastasize to distant sites in the human body, prostate cancer cells have to migrate and invade neighboring tissue. Cancer cells can acquire a migratory and invasive phenotype in several ways, including single cell and collective migration. As a requisite for migration, epithelial prostate cancer cells often need to acquire a motile, mesenchymal-like phenotype. This way prostate cancer cells often lose polarity and epithelial characteristics (e.g., expression of E-cadherin homotypic adhesion receptor), and acquire mesenchymal phenotype (for example, cytoskeletal rearrangements, enhanced expression of proteolytic enzymes and other repertory of integrins). This process is referred to as epithelial-to-mesenchymal transition (EMT). Cellular invasion, one of the hallmarks of cancer, is characterized by the movement of cells through a three-dimensional matrix, resulting in remodeling of the cellular environment. Cellular invasion requires adhesion, proteolysis of the extracellular matrix, and migration of cells. Studying the migratory and invasive ability of cells in vitro represents a useful tool to assess the aggressiveness of solid cancers, including those of the prostate.This chapter provides a comprehensive description of the Transwell migration assay, a commonly used technique to investigate the migratory behavior of prostate cancer cells in vitro. Furthermore, we will provide an overview of the adaptations to the Transwell migration protocol to study the invasive capacity of prostate cancer cells, i.e., the Transwell invasion assay. Finally, we will present a detailed description of the procedures required to stain the Transwell filter inserts and quantify the migration and/or invasion.

  7. Effects of Vietnamese Sophora root on growth, adhesion, invasion ...

    African Journals Online (AJOL)

    Background: Vietnamese Sophora Root mainly contains active constituents such as alkaloids, and it has anti-tumour, antibacterial, and anti-inflammatory effects. The objective of the paper was to study the effects of Vietnamese Sophora Root on growth, adhesion, invasion and motility of mouse melanoma B16BL6 cells, and ...

  8. Experiments on growth interactions between two invasive macrophyte species

    NARCIS (Netherlands)

    Barrat-Segretain, M-H.; Elger, A.F.

    2004-01-01

    The success of invasive species has been attributed to the ability to displace other species by direct competition. We studied growth and possible competition between the two macrophyte species Elodea nuttallii and E. canadensis, because the former has been observed to replace the latter in the

  9. Perspectives of Nanotechnology in Minimally Invasive Therapy of Breast Cancer

    Directory of Open Access Journals (Sweden)

    Yamin Yang

    2013-01-01

    Full Text Available Breast cancer, the most common type of cancer among women in the western world, affects approximately one out of every eight women over their lifetime. In recognition of the high invasiveness of surgical excision and severe side effects of chemical and radiation therapies, increasing efforts are made to seek minimally invasive modalities with fewer side effects. Nanoparticles (<100 nm in size have shown promising capabilities for delivering targeted therapeutic drugs to cancer cells and confining the treatment mainly within tumors. Additionally, some nanoparticles exhibit distinct properties, such as conversion of photonic energy into heat, and these properties enable eradication of cancer cells. In this review, current utilization of nanostructures for cancer therapy, especially in minimally invasive therapy, is summarized with a particular interest in breast cancer.

  10. miR-146a Suppresses Invasion of Pancreatic Cancer Cells

    Science.gov (United States)

    Li, Yiwei; VandenBoom, Timothy G.; Wang, Zhiwei; Kong, Dejuan; Ali, Shadan; Philip, Philip A.; Sarkar, Fazlul H.

    2010-01-01

    The aggressive course of pancreatic cancer is believed to reflect its unusually invasive and metastatic nature, which is associated with epidermal growth factor receptor (EGFR) overexpression and NF-κB activation. MicroRNAs (miRNA) have been implicated in the regulation of various pathobiological processes in cancer, including metastasis in pancreatic cancer and in other human malignancies. In this study, we report lower expression of miR-146a in pancreatic cancer cells compared with normal human pancreatic duct epithelial cells. Reexpression of miR-146a inhibited the invasive capacity of pancreatic cancer cells with concomitant downregulation of EGFR and the NF-κB regulatory kinase interleukin 1 receptor–associated kinase 1 (IRAK-1). Cellular mechanism studies revealed crosstalk between EGFR, IRAK-1, IκBα, NF-κB, and MTA-2, a transcription factor that regulates metastasis. Treatment of pancreatic cancer cells with the natural products 3,3′-diinodolylmethane (DIM) or isoflavone, which increased miR-146a expression, caused a downregulation of EGFR, MTA-2, IRAK-1, and NF-κB, resulting in an inhibition of pancreatic cancer cell invasion. Our findings reveal DIM and isoflavone as nontoxic activators of a miRNA that can block pancreatic cancer cell invasion and metastasis, offering starting points to design novel anticancer agents. PMID:20124483

  11. Urinary long noncoding RNAs in nonmuscle-invasive bladder cancer: new architects in cancer prognostic biomarkers.

    Science.gov (United States)

    Terracciano, Daniela; Ferro, Matteo; Terreri, Sara; Lucarelli, Giuseppe; D'Elia, Carolina; Musi, Gennaro; de Cobelli, Ottavio; Mirone, Vincenzo; Cimmino, Amelia

    2017-06-01

    Several reports over the last 10 years provided evidence that long noncoding RNAs (lncRNAs) are often altered in bladder cancers. lncRNAs are longer than 200 nucleotides and function as important regulators of gene expression, interacting with the major pathways of cell growth, proliferation, differentiation, and survival. A large number of lncRNAs has oncogenic function and is more expressed in tumor compared with normal tissues. Their overexpression may be associated with tumor formation, progression, and metastasis in a variety of tumors including bladder cancer. Although lncRNAs have been shown to have critical regulatory roles in cancer biology, the biological functions and prognostic values in nonmuscle-invasive bladder cancer remain largely unknown. Nevertheless, a growing body of evidence suggests that several lncRNAs expression profiles in bladder malignancies are associated with poor prognosis, and they can be detected in biological fluids, such as urines. Here, we review current progress in the biology and the implication of lncRNAs associated with bladder cancer, and we discuss their potential use as diagnosis and prognosis biomarkers in bladder malignancies with a focus on their role in high-risk nonmuscle-invasive tumors. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Genomic Characterization of Primary Invasive Lobular Breast Cancer.

    Science.gov (United States)

    Desmedt, Christine; Zoppoli, Gabriele; Gundem, Gunes; Pruneri, Giancarlo; Larsimont, Denis; Fornili, Marco; Fumagalli, Debora; Brown, David; Rothé, Françoise; Vincent, Delphine; Kheddoumi, Naima; Rouas, Ghizlane; Majjaj, Samira; Brohée, Sylvain; Van Loo, Peter; Maisonneuve, Patrick; Salgado, Roberto; Van Brussel, Thomas; Lambrechts, Diether; Bose, Ron; Metzger, Otto; Galant, Christine; Bertucci, François; Piccart-Gebhart, Martine; Viale, Giuseppe; Biganzoli, Elia; Campbell, Peter J; Sotiriou, Christos

    2016-06-01

    Invasive lobular breast cancer (ILBC) is the second most common histologic subtype after invasive ductal breast cancer (IDBC). Despite clinical and pathologic differences, ILBC is still treated as IDBC. We aimed to identify genomic alterations in ILBC with potential clinical implications. From an initial 630 ILBC primary tumors, we interrogated oncogenic substitutions and insertions and deletions of 360 cancer genes and genome-wide copy number aberrations in 413 and 170 ILBC samples, respectively, and correlated those findings with clinicopathologic and outcome features. Besides the high mutation frequency of CDH1 in 65% of tumors, alterations in one of the three key genes of the phosphatidylinositol 3-kinase pathway, PIK3CA, PTEN, and AKT1, were present in more than one-half of the cases. HER2 and HER3 were mutated in 5.1% and 3.6% of the tumors, with most of these mutations having a proven role in activating the human epidermal growth factor receptor/ERBB pathway. Mutations in FOXA1 and ESR1 copy number gains were detected in 9% and 25% of the samples. All these alterations were more frequent in ILBC than in IDBC. The histologic diversity of ILBC was associated with specific alterations, such as enrichment for HER2 mutations in the mixed, nonclassic, and ESR1 gains in the solid subtype. Survival analyses revealed that chromosome 1q and 11p gains showed independent prognostic value in ILBC and that HER2 and AKT1 mutations were associated with increased risk of early relapse. This study demonstrates that we can now begin to individualize the treatment of ILBC, with HER2, HER3, and AKT1 mutations representing high-prevalence therapeutic targets and FOXA1 mutations and ESR1 gains deserving urgent dedicated clinical investigation, especially in the context of endocrine treatment. © 2016 by American Society of Clinical Oncology.

  13. Calorie restriction as an anti-invasive therapy for malignant brain cancer in the VM mouse.

    Science.gov (United States)

    Shelton, Laura M; Huysentruyt, Leanne C; Mukherjee, Purna; Seyfried, Thomas N

    2010-07-23

    GBM (glioblastoma multiforme) is the most aggressive and invasive form of primary human brain cancer. We recently developed a novel brain cancer model in the inbred VM mouse strain that shares several characteristics with human GBM. Using bioluminescence imaging, we tested the efficacy of CR (calorie restriction) for its ability to reduce tumour size and invasion. CR targets glycolysis and rapid tumour cell growth in part by lowering circulating glucose levels. The VM-M3 tumour cells were implanted intracerebrally in the syngeneic VM mouse host. Approx. 12-15 days post-implantation, brains were removed and both ipsilateral and contralateral hemispheres were imaged to measure bioluminescence of invading tumour cells. CR significantly reduced the invasion of tumour cells from the implanted ipsilateral hemisphere into the contralateral hemisphere. The total percentage of Ki-67-stained cells within the primary tumour and the total number of blood vessels was also significantly lower in the CR-treated mice than in the mice fed ad libitum, suggesting that CR is anti-proliferative and anti-angiogenic. Our findings indicate that the VM-M3 GBM model is a valuable tool for studying brain tumour cell invasion and for evaluating potential therapeutic approaches for managing invasive brain cancer. In addition, we show that CR can be effective in reducing malignant brain tumour growth and invasion.

  14. Calorie Restriction as an Anti-Invasive Therapy for Malignant Brain Cancer in the VM Mouse

    Directory of Open Access Journals (Sweden)

    Laura M Shelton

    2010-07-01

    Full Text Available GBM (glioblastoma multiforme is the most aggressive and invasive form of primary human brain cancer. We recently developed a novel brain cancer model in the inbred VM mouse strain that shares several characteristics with human GBM. Using bioluminescence imaging, we tested the efficacy of CR (calorie restriction for its ability to reduce tumour size and invasion. CR targets glycolysis and rapid tumour cell growth in part by lowering circulating glucose levels. The VM-M3 tumour cells were implanted intracerebrally in the syngeneic VM mouse host. Approx. 12-15 days post-implantation, brains were removed and both ipsilateral and contralateral hemispheres were imaged to measure bioluminescence of invading tumour cells. CR significantly reduced the invasion of tumour cells from the implanted ipsilateral hemisphere into the contralateral hemisphere. The total percentage of Ki-67-stained cells within the primary tumour and the total number of blood vessels was also significantly lower in the CR-treated mice than in the mice fed ad libitum, suggesting that CR is anti-proliferative and anti-angiogenic. Our findings indicate that the VM-M3 GBM model is a valuable tool for studying brain tumour cell invasion and for evaluating potential therapeutic approaches for managing invasive brain cancer. In addition, we show that CR can be effective in reducing malignant brain tumour growth and invasion.

  15. Protein kinase Cδ signaling downstream of the EGF receptor mediates migration and invasiveness of prostate cancer cells

    International Nuclear Information System (INIS)

    Kharait, Sourabh; Dhir, Rajiv; Lauffenburger, Douglas; Wells, Alan

    2006-01-01

    Tumor progression to the invasive phenotype occurs secondary to upregulated signaling from growth factor receptors that drive key cellular responses like proliferation, migration, and invasion. We hypothesized that Protein kinase Cδ (PKCδ)-mediated transcellular contractility is required for migration and invasion of prostate tumor cells. Two invasive human prostate cancer cell lines, DU145 cells overexpressing wildtype human EGFR (DU145WT) and PC3 cells, were studied. PKCδ is overexpressed in these cells relative to normal prostate epithelial cells, and is activated downstream of EGFR leading to cell motility via modulation of myosin light chain activity. Abrogation of PKCδ using Rottlerin and specific siRNA significantly decreased migration and invasion of both cell lines in vitro. Both PKCδ and phosphorylated PKCδ protein levels were higher in human prostate cancer tissue relative to normal donor prostate as assessed by Western blotting and immunohistochemistry. Thus, we conclude that PKCδ inhibition can limit migration and invasion of prostate cancer cells

  16. Fibroblast growth factor receptor 4 regulates tumor invasion by coupling fibroblast growth factor signaling to extracellular matrix degradation

    DEFF Research Database (Denmark)

    Sugiyama, Nami; Varjosalo, Markku; Meller, Pipsa

    2010-01-01

    /stroma border and tumor invasion front. The strongest overall coexpression was found in prostate carcinoma. Studies with cultured prostate carcinoma cell lines showed that the FGFR4-R388 variant, which has previously been associated with poor cancer prognosis, increased MT1-MMP-dependent collagen invasion......Aberrant expression and polymorphism of fibroblast growth factor receptor 4 (FGFR4) has been linked to tumor progression and anticancer drug resistance. We describe here a novel mechanism of tumor progression by matrix degradation involving epithelial-to-mesenchymal transition in response...... to membrane-type 1 matrix metalloproteinase (MT1-MMP, MMP-14) induction at the edge of tumors expressing the FGFR4-R388 risk variant. Both FGFR4 and MT1-MMP were upregulated in tissue biopsies from several human cancer types including breast adenocarcinomas, where they were partially coexpressed at the tumor...

  17. CT evaluation of gastric cancer. Depth of tumor invasion and pancreas invasion

    International Nuclear Information System (INIS)

    Banba, Yoshihisa; Kanazawa, Tadayoshi; Seto, Hikaru

    1998-01-01

    To compare the internal structure of tumor and the contiguous organ configuration on computed tomography (CT) with the depth of tumor invasion on the pathological specimen. Sixty-four gastric cancers depicted on incremental dynamic CT were classified according to the internal structure of the tumor, and correlated with the depth of tumor invasion. In addition, the cancers were classified according to the contiguous pancreatic configuration, and correlated with the degree of pancreatic invasion. Eleven tumors with thickened gastric wall consisting of both a thick inner layer of high attenuation and a thin outer layer of low attenuation (two-layered tumor with a thin outer layer) did not invade the serosa: mucosa (n=5) and submucosa (n=6). Of 59 gastric cancers with a regular margin to the contiguous pancreas, pancreatic invasion was absent in 58 and present in one. Pancreatic invasion was present in all of five gastric cancers with an irregular margin. Our results indicate that two-layered gastric tumors with a thin outer layer never invade the serosa. Furthermore, pancreatic invasion is predicted only when the margin of the contiguous pancreas is irregular. (author)

  18. Tyk2 expression and its signaling enhances the invasiveness of prostate cancer cells

    International Nuclear Information System (INIS)

    Ide, Hisamitsu; Nakagawa, Takashi; Terado, Yuichi; Kamiyama, Yutaka; Muto, Satoru; Horie, Shigeo

    2008-01-01

    Protein tyrosine kinase plays a central role in the proliferation and differentiation of various types of cells. One of these protein kinases, Tyk2, a member of the Jak family kinases, is known to play important roles in receptor signal transduction by interferons, interleukins, growth factors, and other hormones. In the present study, we investigated Tyk2 expression and its role in the growth and invasiveness of human prostate cancer cells. We used a small interfering RNA targeting Tyk2 and an inhibitor of Tyk2, tyrphostin A1, to suppress the expression and signaling of Tyk2 in prostate cancer cells. We detected mRNAs for Jak family kinases in prostate cancer cell lines by RT-PCR and Tyk2 protein in human prostate cancer specimens by immunohistochemistry. Inhibition of Tyk2 signaling resulted in attenuation of the urokinase-type plasminogen activator-enhanced invasiveness of prostate cancer cells in vitro without affecting the cellular growth rate. These results suggest that Tyk2 signaling in prostate cancer cells facilitate invasion of these cells, and interference with this signaling may be a potential therapeutic pathway

  19. Overexpressed ubiquitin ligase Cullin7 in breast cancer promotes cell proliferation and invasion via down-regulating p53

    International Nuclear Information System (INIS)

    Guo, Hongsheng; Wu, Fenping; Wang, Yan; Yan, Chong; Su, Wenmei

    2014-01-01

    Highlights: • Cullin7 is overexpressed in human breast cancer samples. • Cullin7 stimulated proliferation and invasion of breast cancer cells. • Inhibition of p53 contributes to Cullin7-induced proliferation and invasion. - Abstract: Ubiquitin ligase Cullin7 has been identified as an oncogene in some malignant diseases such as choriocarcinoma and neuroblastoma. However, the role of Cullin7 in breast cancer carcinogenesis remains unclear. In this study, we compared Cullin7 protein levels in breast cancer tissues with normal breast tissues and identified significantly higher expression of Cullin7 protein in breast cancer specimens. By overexpressing Cullin7 in breast cancer cells HCC1937, we found that Cullin7 could promote cell growth and invasion in vitro. In contrast, the cell growth and invasion was inhibited by silencing Cullin7 in breast cancer cell BT474. Moreover, we demonstrated that Cullin7 promoted breast cancer cell proliferation and invasion via down-regulating p53 expression. Thus, our study provided evidence that Cullin7 functions as a novel oncogene in breast cancer and may be a potential therapeutic target for breast cancer management

  20. Overexpressed ubiquitin ligase Cullin7 in breast cancer promotes cell proliferation and invasion via down-regulating p53

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Hongsheng [Department of Histology and Embryology, Guangdong Medical College, Dongguan 523808, Guangdong (China); Wu, Fenping [The 7th People’s Hospital of Chengdu, Chengdu 610041, Sichuan (China); Wang, Yan [The Second School of Clinical Medicine, Guangdong Medical College, Dongguan 523808, Guangdong (China); Yan, Chong [School of Pharmacy, Guangdong Medical College, Dongguan 523808, Guangdong (China); Su, Wenmei, E-mail: wenmeisutg@126.com [Oncology of Affiliated Hospital Guangdong Medical College, Zhanjiang 524000, Guangdong (China)

    2014-08-08

    Highlights: • Cullin7 is overexpressed in human breast cancer samples. • Cullin7 stimulated proliferation and invasion of breast cancer cells. • Inhibition of p53 contributes to Cullin7-induced proliferation and invasion. - Abstract: Ubiquitin ligase Cullin7 has been identified as an oncogene in some malignant diseases such as choriocarcinoma and neuroblastoma. However, the role of Cullin7 in breast cancer carcinogenesis remains unclear. In this study, we compared Cullin7 protein levels in breast cancer tissues with normal breast tissues and identified significantly higher expression of Cullin7 protein in breast cancer specimens. By overexpressing Cullin7 in breast cancer cells HCC1937, we found that Cullin7 could promote cell growth and invasion in vitro. In contrast, the cell growth and invasion was inhibited by silencing Cullin7 in breast cancer cell BT474. Moreover, we demonstrated that Cullin7 promoted breast cancer cell proliferation and invasion via down-regulating p53 expression. Thus, our study provided evidence that Cullin7 functions as a novel oncogene in breast cancer and may be a potential therapeutic target for breast cancer management.

  1. Nuclear translocation of the cytoplasmic domain of HB-EGF induces gastric cancer invasion

    International Nuclear Information System (INIS)

    Shimura, Takaya; Higashiyama, Shigeki; Joh, Takashi; Yoshida, Michihiro; Fukuda, Shinji; Ebi, Masahide; Hirata, Yoshikazu; Mizoshita, Tsutomu; Tanida, Satoshi; Kataoka, Hiromi; Kamiya, Takeshi

    2012-01-01

    Membrane-anchored heparin-binding epidermal growth factor-like growth factor (proHB-EGF) yields soluble HB-EGF, which is an epidermal growth factor receptor (EGFR) ligand, and a carboxy-terminal fragment of HB-EGF (HB-EGF-CTF) after ectodomain shedding. We previously reported that HB-EGF-CTF and unshed proHB-EGF which has the cytoplasmic domain of proHB-EGF (HB-EGF-C), translocate from the plasma membrane to the nucleus and regulate cell cycle after shedding stimuli. However, the significance of nuclear exported HB-EGF-C in human gastric cancer is unclear. We investigated the relationship between intracellular localization of HB-EGF-C and clinical outcome in 96 gastric cancer patients treated with gastrectomy. Moreover, we established stable gastric cancer cell lines overexpressing wild-type HB-EGF (wt-HB-EGF) and mutated HB-EGF (HB-EGF-mC), which prevented HB-EGF-C nuclear translocation after shedding. Cell motility between these 2 gastric cancer cell lines was investigated using a transwell invasion assay and a wound healing assay. Of the 96 gastric cancer cases, HB-EGF-C immunoreactivity was detected in both the nucleus and cytoplasm in 19 cases (19.8 %) and in the cytoplasm only in 25 cases (26.0 %). The nuclear immunoreactivity of HB-EGF-C was significantly increased in stage pT3/4 tumors compared with pT1/2 tumors (T1/2 vs. T3/4: 11.1 % vs. 36.4 %, P < 0.01). The growth of wt-HB-EGF- and HB-EGF-mC-expressing cells significantly increased compared with control cells, but the growth of HB-EGF-mC-expressing cells was significantly decreased compared with wt-HB-EGF-expressing cells. Gastric cancer cell invasion obviously increased in wt-HB-EGF-expressing cells, but invasion in HB-EGF-mC-expressing cells showed a slight increase compared with control cells. Moreover, wt-HB-EGF overexpression increased the effectiveness of wound healing, but had no significant effect in HB-EGF-mC-expressing cells. Both the function of HB-EGF as an EGFR ligand and a novel signal for

  2. Perioperative management of nonmuscle-invasive bladder cancer

    NARCIS (Netherlands)

    Falke, J.; Witjes, J.A.

    2011-01-01

    PURPOSE OF REVIEW: The management of nonmuscle-invasive bladder cancer is a challenge. Despite current guidelines, the treatment is suboptimal as illustrated by the high risk of recurrence and progression. Transurethral resection plays a pivotal role in the management of bladder cancer, but the

  3. The thioredoxin system in breast cancer cell invasion and migration

    Directory of Open Access Journals (Sweden)

    Maneet Bhatia

    2016-08-01

    Full Text Available Metastasis is the most life threatening aspect of breast cancer. It is a multi-step process involving invasion and migration of primary tumor cells with a subsequent colonization of these cells at a secondary location. The aim of the present study was to investigate the role of thioredoxin (Trx1 in the invasion and migration of breast cancer cells and to assess the strength of the association between high levels of Trx1 and thioredoxin reductase (TrxR1 expression with breast cancer patient survival. Our results indicate that the expression of both Trx1 and TrxR1 are statistically significantly increased in breast cancer patient cells compared with paired normal breast tissue from the same patient. Over-expression of Trx1 in MDA-MB-231 breast cancer cell lines enhanced cell invasion in in vitro assays while expression of a redox inactive mutant form of Trx1 (designated 1SS or the antisense mRNA inhibited cell invasion. Addition of exogenous Trx1 also enhanced cell invasion, while addition of a specific monoclonal antibody that inhibits Trx1 redox function decreased cell invasion. Over-expression of intracellular Trx1 did not increase cell migration but expression of intracellular 1SS inhibited migration. Addition of exogenous Trx1 enhanced cell migration while 1SS had no effect. Treatment with auranofin inhibited TrxR activity, cell migration and clonogenic activity of MDA-MB-231 cells, while increasing reactive oxygen species (ROS levels. Analysis of 25 independent cohorts with 5910 patients showed that Trx1 and TrxR1 were both associated with a poor patient prognosis in terms of overall survival, distant metastasis free survival and disease free survival. Therefore, targeting the Trx system with auranofin or other specific inhibitors may provide improved breast cancer patient outcomes through inhibition of cancer invasion and migration.

  4. Physical break-down of the classical view on cancer cell invasion and metastasis.

    Science.gov (United States)

    Mierke, Claudia T

    2013-03-01

    Eight classical hallmarks of cancer have been proposed and are well-defined by using biochemical or molecular genetic methods, but are not yet precisely defined by cellular biophysical processes. To define the malignant transformation of neoplasms and finally reveal the functional pathway, which enables cancer cells to promote cancer progression, these classical hallmarks of cancer require the inclusion of specific biomechanical properties of cancer cells and their microenvironment such as the extracellular matrix and embedded cells such as fibroblasts, macrophages or endothelial cells. Nonetheless a main novel ninth hallmark of cancer is still elusive in classical tumor biological reviews, which is the aspect of physics in cancer disease by the natural selection of an aggressive (highly invasive) subtype of cancer cells. The physical aspects can be analyzed by using state-of-the-art biophysical methods. Thus, this review will present current cancer research in a different light and will focus on novel physical methods to investigate the aggressiveness of cancer cells from a biophysicist's point of view. This may lead to novel insights into cancer disease and will overcome classical views on cancer. In addition, this review will discuss how physics of cancer can help to reveal whether cancer cells will invade connective tissue and metastasize. In particular, this review will point out how physics can improve, break-down or support classical approaches to examine tumor growth even across primary tumor boundaries, the invasion of single or collective cancer cells, transendothelial migration of cancer cells and metastasis in targeted organs. Finally, this review will show how physical measurements can be integrated into classical tumor biological analysis approaches. The insights into physical interactions between cancer cells, the primary tumor and the microenvironment may help to solve some "old" questions in cancer disease progression and may finally lead to novel

  5. Identification of genes regulating migration and invasion using a new model of metastatic prostate cancer

    International Nuclear Information System (INIS)

    Banyard, Jacqueline; Chung, Ivy; Migliozzi, Matthew; Phan, Derek T; Wilson, Arianne M; Zetter, Bruce R; Bielenberg, Diane R

    2014-01-01

    Understanding the complex, multistep process of metastasis remains a major challenge in cancer research. Metastasis models can reveal insights in tumor development and progression and provide tools to test new intervention strategies. To develop a new cancer metastasis model, we used DU145 human prostate cancer cells and performed repeated rounds of orthotopic prostate injection and selection of subsequent lymph node metastases. Tumor growth, metastasis, cell migration and invasion were analyzed. Microarray analysis was used to identify cell migration- and cancer-related genes correlating with metastasis. Selected genes were silenced using siRNA, and their roles in cell migration and invasion were determined in transwell migration and Matrigel invasion assays. Our in vivo cycling strategy created cell lines with dramatically increased tumorigenesis and increased ability to colonize lymph nodes (DU145LN1-LN4). Prostate tumor xenografts displayed increased vascularization, enlarged podoplanin-positive lymphatic vessels and invasive margins. Microarray analysis revealed gene expression profiles that correlated with metastatic potential. Using gene network analysis we selected 3 significantly upregulated cell movement and cancer related genes for further analysis: EPCAM (epithelial cell adhesion molecule), ITGB4 (integrin β4) and PLAU (urokinase-type plasminogen activator (uPA)). These genes all showed increased protein expression in the more metastatic DU145-LN4 cells compared to the parental DU145. SiRNA knockdown of EpCAM, integrin-β4 or uPA all significantly reduced cell migration in DU145-LN4 cells. In contrast, only uPA siRNA inhibited cell invasion into Matrigel. This role of uPA in cell invasion was confirmed using the uPA inhibitors, amiloride and UK122. Our approach has identified genes required for the migration and invasion of metastatic tumor cells, and we propose that our new in vivo model system will be a powerful tool to interrogate the metastatic

  6. Invasive cancer incidence - Puerto Rico, 2007-2011.

    Science.gov (United States)

    O'Neil, Mary Elizabeth; Henley, S Jane; Singh, Simple D; Wilson, Reda J; Ortiz-Ortiz, Karen J; Ríos, Naydi Pérez; Torres Cintrón, Carlos R; Luna, Guillermo Tortolero; Zavala Zegarra, Diego E; Ryerson, A Blythe

    2015-04-17

    Cancer is a leading cause of morbidity and death in Puerto Rico. To set a baseline for identifying new trends and patterns of cancer incidence, Puerto Rico Central Cancer Registry staff and CDC analyzed data from Puerto Rico included in U.S. Cancer Statistics (USCS) for 2007-2011, the most recent data available. This is the first report of invasive cancer incidence rates for 2007-2011 among Puerto Rican residents by sex, age, cancer site, and municipality. Cancer incidence rates in Puerto Rico were compared with those in the U.S. population for 2011. A total of 68,312 invasive cancers were diagnosed and reported in Puerto Rico during 2007-2011. The average annual incidence rate was 330 cases per 100,000 persons. The cancer sites with the highest cancer incidence rates included prostate (152), female breast (84), and colon and rectum (43). Cancer incidence rates varied by municipality, particularly for prostate, lung and bronchus, and colon and rectum cancers. In 2011, cancer incidence rates in Puerto Rico were lower for all cancer sites and lung and bronchus, but higher for prostate and thyroid cancers, compared with rates within the U.S. Identifying these variations can aid evaluation of factors associated with high incidence, such as cancer screening practices, and development of targeted cancer prevention and control efforts. Public health professionals can monitor cancer incidence trends and use these findings to evaluate the impact of prevention efforts, such as legislation prohibiting tobacco use in the workplace and public places and the Puerto Rico Cessation Quitline in decreasing lung and other tobacco-related cancers.

  7. Dynamics of tissue topology during cancer invasion and metastasis

    International Nuclear Information System (INIS)

    Munn, Lance L

    2013-01-01

    During tumor progression, cancer cells mix with other cell populations including epithelial and endothelial cells. Although potentially important clinically as well as for our understanding of basic tumor biology, the process of mixing is largely a mystery. Furthermore, there is no rigorous, analytical measure available for quantifying the mixing of compartments within a tumor. I present here a mathematical model of tissue repair and tumor growth based on collective cell migration that simulates a wide range of observed tumor behaviors with correct tissue compartmentalization and connectivity. The resulting dynamics are analyzed in light of the Euler characteristic number (χ), which describes key topological features such as fragmentation, looping and cavities. The analysis predicts a number of regimes in which the cancer cells can encapsulate normal tissue, form a co-interdigitating mass, or become fragmented and encapsulated by endothelial or epithelial structures. Key processes that affect the topological changes are the production of provisional matrix in the tumor, and the migration of endothelial or epithelial cells on this matrix. Furthermore, the simulations predict that topological changes during tumor invasion into blood vessels may contribute to metastasis. The topological analysis outlined here could be useful for tumor diagnosis or monitoring response to therapy and would only require high resolution, 3D image data to resolve and track the various cell compartments. (paper)

  8. Dynamics of tissue topology during cancer invasion and metastasis

    Science.gov (United States)

    Munn, Lance L.

    2013-12-01

    During tumor progression, cancer cells mix with other cell populations including epithelial and endothelial cells. Although potentially important clinically as well as for our understanding of basic tumor biology, the process of mixing is largely a mystery. Furthermore, there is no rigorous, analytical measure available for quantifying the mixing of compartments within a tumor. I present here a mathematical model of tissue repair and tumor growth based on collective cell migration that simulates a wide range of observed tumor behaviors with correct tissue compartmentalization and connectivity. The resulting dynamics are analyzed in light of the Euler characteristic number (χ), which describes key topological features such as fragmentation, looping and cavities. The analysis predicts a number of regimes in which the cancer cells can encapsulate normal tissue, form a co-interdigitating mass, or become fragmented and encapsulated by endothelial or epithelial structures. Key processes that affect the topological changes are the production of provisional matrix in the tumor, and the migration of endothelial or epithelial cells on this matrix. Furthermore, the simulations predict that topological changes during tumor invasion into blood vessels may contribute to metastasis. The topological analysis outlined here could be useful for tumor diagnosis or monitoring response to therapy and would only require high resolution, 3D image data to resolve and track the various cell compartments.

  9. Chemokine receptor CXCR7 regulates the invasion, angiogenesis and tumor growth of human hepatocellular carcinoma cells

    Directory of Open Access Journals (Sweden)

    Li Fan

    2010-04-01

    Full Text Available Abstract Background In spite of recent advances in diagnostic and therapeutic measures, the prognosis of hepatocellular carcinoma (HCC patients remains poor. Therefore, it is crucial to understand what factors are involved in promoting development of HCC. Evidence is accumulating that members of the chemokine receptor family are viewed as promising therapeutic targets in the fight against cancer. More recent studies have revealed that chemokine receptor CXCR7 plays an important role in cancer development. However, little is known about the effect of CXCR7 on the process of HCC cell invasion and angiogenesis. The aim of this study is to investigate the expression of CXCR7 in hepatocellular carcinoma tissues and cell lines and to evaluate the role of CXCR7 in tumor growth, angiogenesis and invasion of HCC cells. Methods We constructed CXCR7 expressing shRNA, and CXCR7shRNA was subsequently stably transfected into human HCC cells. We evaluated the effect of CXCR7 inhibition on cell invasion, adhesion, VEGF secretion, tube formation and tumor growth. Immunohistochemistry was done to assess the expression of CXCR7 in human hepatocellular carcinoma tissues and CD31 in tumor of mice. We also evaluated the effect of VEGF stimulation on expression of CXCR7. Results CXCR7 was overexpressed in hepatocellular carcinoma tissues. We showed that high invasive potential HCC cell lines express high levels of CXCR7. In vitro, CXCL12 was found to induce invasion, adhesion, tube formation, and VEGF secretion in SMMC-7721 cells. These biological effects were inhibited by silencing of CXCR7 in SMMC-7721 cells. In addition, we also found that VEGF stimulation can up-regulate CXCR7 expression in SMMC-7721 cells and HUVECs. More importantly, enhanced expression of CXCR7 by VEGF was founctional. In vivo, tumor growth and angiogenesis were suppressed by knockdown of CXCR7 in SMMC-7721 cells. However, silencing of CXCR7 did not affect metastasis of tumor in vivo

  10. MicroRNA-21 directly targets MARCKS and promotes apoptosis resistance and invasion in prostate cancer cells

    International Nuclear Information System (INIS)

    Li, Tao; Li, Dong; Sha, Jianjun; Sun, Peng; Huang, Yiran

    2009-01-01

    Prostate cancer is one of the most common malignant cancers in men. Recent studies have shown that microRNA-21 (miR-21) is overexpressed in various types of cancers including prostate cancer. Studies on glioma, colon cancer cells, hepatocellular cancer cells and breast cancer cells have indicated that miR-21 is involved in tumor growth, invasion and metastasis. However, the roles of miR-21 in prostate cancer are poorly understood. In this study, the effects of miR-21 on prostate cancer cell proliferation, apoptosis, and invasion were examined. In addition, the targets of miR-21 were identified by a reported RISC-coimmunoprecipitation-based biochemical method. Inactivation of miR-21 by antisense oligonucleotides in androgen-independent prostate cancer cell lines DU145 and PC-3 resulted in sensitivity to apoptosis and inhibition of cell motility and invasion, whereas cell proliferation were not affected. We identified myristoylated alanine-rich protein kinase c substrate (MARCKS), which plays key roles in cell motility, as a new target in prostate cancer cells. Our data suggested that miR-21 could promote apoptosis resistance, motility, and invasion in prostate cancer cells and these effects of miR-21 may be partly due to its regulation of PDCD4, TPM1, and MARCKS. Gene therapy using miR-21 inhibition strategy may therefore be useful as a prostate cancer therapy.

  11. DEGRO practical guidelines for radiotherapy of breast cancer IV. Radiotherapy following mastectomy for invasive breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Wenz, Frederik; Sperk, Elena [Universitaetsmedizin Mannheim, Klinik fuer Strahlentherapie und Radioonkologie, Mannheim (Germany); Budach, Wilfried [Heinrich-Heine-University, Duesseldorf (Germany); Dunst, Juergen [University Hospital Schleswig-Holstein, Luebeck (Germany); Feyer, Petra [Vivantes Hospital Neukoelln, Berlin (Germany); Fietkau, Rainer; Sauer, Rolf [University Hospital Erlangen, Erlangen (Germany); Haase, Wulf [Formerly St.-Vincentius-Hospital, Karlsruhe (Germany); Harms, Wolfgang [St. Clara Hospital, Basel (Switzerland); Piroth, Marc D. [Helios Hospital, Wuppertal (Germany); Sautter-Bihl, Marie-Luise [Municipal Hospital, Karlsruhe (Germany); Sedlmayer, Felix; Fussl, Christoph [Paracelsus Medical University Hospital, Salzburg (Germany); Souchon, Rainer; Collaboration: Breast Cancer Expert Panel of the German Society of Radiation Oncology (DEGRO)

    2014-08-15

    Since the last recommendations from the Breast Cancer Expert Panel of the German Society for Radiation Oncology (DEGRO) in 2008, evidence for the effectiveness of postmastectomy radiotherapy (PMRT) has grown. This growth is based on updates of the national S3 and international guidelines, as well as on new data and meta-analyses. New aspects were considered when updating the DEGRO recommendations. The authors performed a comprehensive survey of the literature. Data from recently published (meta-)analyses, randomized clinical trials and international cancer societies' guidelines yielding new aspects compared to 2008 were reviewed and discussed. New aspects were included in the current guidelines. Specific issues relating to particular PMRT constellations, such as the presence of risk factors (lymphovascular invasion, blood vessel invasion, positive lymph node ratio > 20 %, resection margins < 3 mm, G3 grading, young age/premenopausal status, extracapsular invasion, negative hormone receptor status, invasive lobular cancer, size > 2 cm or a combination of ≥ 2 risk factors) and 1-3 positive lymph nodes are emphasized. The evidence for improved overall survival and local control following PMRT for T4 tumors, positive resection margins, > 3 positive lymph nodes and in T3 N0 patients with risk factors such as lymphovascular invasion, G3 grading, close margins, and young age has increased. Recently identified risk factors such as invasive lobular subtype and negative hormone receptor status were included. For patients with 1-3 positive lymph nodes, the recommendation for PMRT has reached the 1a level of evidence. PMRT is mandatory in patients with T4 tumors and/or positive lymph nodes and/or positive resection margins. PMRT should be strongly considered in patients with T3 N0 tumors and risk factors, particularly when two or more risk factors are present. (orig.) [German] Seit der letzten Aktualisierung der 2008 publizierten Leitlinie der &apos

  12. Fibroblast growth factor receptors in breast cancer.

    Science.gov (United States)

    Wang, Shuwei; Ding, Zhongyang

    2017-05-01

    Fibroblast growth factor receptors are growth factor receptor tyrosine kinases, exerting their roles in embryogenesis, tissue homeostasis, and development of breast cancer. Recent genetic studies have identified some subtypes of fibroblast growth factor receptors as strong genetic loci associated with breast cancer. In this article, we review the recent epidemiological findings and experiment results of fibroblast growth factor receptors in breast cancer. First, we summarized the structure and physiological function of fibroblast growth factor receptors in humans. Then, we discussed the common genetic variations in fibroblast growth factor receptors that affect breast cancer risk. In addition, we also introduced the potential roles of each fibroblast growth factor receptors isoform in breast cancer. Finally, we explored the potential therapeutics targeting fibroblast growth factor receptors for breast cancer. Based on the biological mechanisms of fibroblast growth factor receptors leading to the pathogenesis in breast cancer, targeting fibroblast growth factor receptors may provide new opportunities for breast cancer therapeutic strategies.

  13. Nuclear translocation of the cytoplasmic domain of HB-EGF induces gastric cancer invasion.

    Science.gov (United States)

    Shimura, Takaya; Yoshida, Michihiro; Fukuda, Shinji; Ebi, Masahide; Hirata, Yoshikazu; Mizoshita, Tsutomu; Tanida, Satoshi; Kataoka, Hiromi; Kamiya, Takeshi; Higashiyama, Shigeki; Joh, Takashi

    2012-05-30

    Membrane-anchored heparin-binding epidermal growth factor-like growth factor (proHB-EGF) yields soluble HB-EGF, which is an epidermal growth factor receptor (EGFR) ligand, and a carboxy-terminal fragment of HB-EGF (HB-EGF-CTF) after ectodomain shedding. We previously reported that HB-EGF-CTF and unshed proHB-EGF which has the cytoplasmic domain of proHB-EGF (HB-EGF-C), translocate from the plasma membrane to the nucleus and regulate cell cycle after shedding stimuli. However, the significance of nuclear exported HB-EGF-C in human gastric cancer is unclear. We investigated the relationship between intracellular localization of HB-EGF-C and clinical outcome in 96 gastric cancer patients treated with gastrectomy. Moreover, we established stable gastric cancer cell lines overexpressing wild-type HB-EGF (wt-HB-EGF) and mutated HB-EGF (HB-EGF-mC), which prevented HB-EGF-C nuclear translocation after shedding. Cell motility between these 2 gastric cancer cell lines was investigated using a transwell invasion assay and a wound healing assay. Of the 96 gastric cancer cases, HB-EGF-C immunoreactivity was detected in both the nucleus and cytoplasm in 19 cases (19.8 %) and in the cytoplasm only in 25 cases (26.0 %). The nuclear immunoreactivity of HB-EGF-C was significantly increased in stage pT3/4 tumors compared with pT1/2 tumors (T1/2 vs. T3/4: 11.1 % vs. 36.4 %, P Gastric cancer cell invasion obviously increased in wt-HB-EGF-expressing cells, but invasion in HB-EGF-mC-expressing cells showed a slight increase compared with control cells. Moreover, wt-HB-EGF overexpression increased the effectiveness of wound healing, but had no significant effect in HB-EGF-mC-expressing cells. Both the function of HB-EGF as an EGFR ligand and a novel signal for HB-EGF-C nuclear translocation induce gastric cancer growth, whereas HB-EGF-C nuclear translocation independently plays a critical role in gastric cancer invasion. The present study demonstrated that HB-EGF-C nuclear translocation

  14. Migrastatin analogues inhibit canine mammary cancer cell migration and invasion.

    Directory of Open Access Journals (Sweden)

    Kinga Majchrzak

    Full Text Available BACKGROUND: Cancer spread to other organs is the main cause of death of oncological patients. Migration of cancer cells from a primary tumour is the crucial step in the complex process of metastasis, therefore blocking this process is currently the main treatment strategy. Metastasis inhibitors derived from natural products, such as, migrastatin, are very promising anticancer agents. Thus, the aim of our study was to investigate the effect of six migrastatin analogues (MGSTA-1 to 6 on migration and invasion of canine mammary adenocarcinoma cell lines isolated from primary tumours and their metastases to the lungs. Canine mammary tumours constitute a valuable tool for studying multiple aspect of human cancer. RESULTS: OUR RESULTS SHOWED THAT TWO OF SIX FULLY SYNTHETIC ANALOGUES OF MIGRASTATIN: MGSTA-5 and MGSTA-6 were potent inhibitors of canine mammary cancer cells migration and invasion. These data were obtained using the wound healing test, as well as trans-well migration and invasion assays. Furthermore, the treatment of cancer cells with the most effective compound (MGSTA-6 disturbed binding between filamentous F-actin and fascin1. Confocal microscopy analyses revealed that treatment with MGSTA-6 increased the presence of unbound fascin1 and reduced co-localization of F-actin and fascin1 in canine cancer cells. Most likely, actin filaments were not cross-linked by fascin1 and did not generate the typical filopodial architecture of actin filaments in response to the activity of MGSTA-6. Thus, administration of MGSTA-6 results in decreased formation of filopodia protrusions and stress fibres in canine mammary cancer cells, causing inhibition of cancer migration and invasion. CONCLUSION: Two synthetic migrastatin analogues (MGSTA-5 and MGSTA-6 were shown to be promising compounds for inhibition of cancer metastasis. They may have beneficial therapeutic effects in cancer therapy in dogs, especially in combination with other anticancer drugs

  15. High expression of PTBP1 promote invasion of colorectal cancer by alternative splicing of cortactin.

    Science.gov (United States)

    Wang, Zhi-Na; Liu, Dan; Yin, Bin; Ju, Wen-Yi; Qiu, Hui-Zhong; Xiao, Yi; Chen, Yuan-Jia; Peng, Xiao-Zhong; Lu, Chong-Mei

    2017-05-30

    Polypyrimidine tract-binding protein 1 (PTBP1) involving in almost all steps of mRNA regulation including alternative splicing metabolism during tumorigenesis due to its RNA-binding activity. Initially, we found that high expressed PTBP1 and poor prognosis was interrelated in colorectal cancer (CRC) patients with stages II and III CRC, which widely different in prognosis and treatment, by immunohistochemistry. PTBP1 was also upregulated in colon cancer cell lines. In our study, knockdown of PTBP1 by siRNA transfection decreased cell proliferation and invasion in vitro. Denovirus shRNA knockdown of PTBP1 inhibited colorectal cancer growth in vivo. Furthermore, PTBP1 regulates alternative splicing of many target genes involving in tumorgenesis in colon cancer cells. We confirmed that the splicing of cortactin exon 11 which was only contained in cortactin isoform-a, as a PTBP1 target. Knockdown of PTBP1 decreased the expression of cortactin isoform-a by exclusion of exon 11. Also the mRNA levels of PTBP1 and cortactin isoform-a were cooperatively expressed in colorectal cancer tissues. Knocking down cortactin isoform-a significantly decreased cell migration and invasion in colorectal cancer cells. Overexpression of cortactin isoform-a could rescue PTBP1-knockdown effect of cell motility. In summary the study revealed that PTBP1 facilitates colorectal cancer migration and invasion activities by inclusion of cortactin exon 11.

  16. The Atypical Kinase RIOK1 Promotes Tumor Growth and Invasive Behavior

    Directory of Open Access Journals (Sweden)

    Florian Weinberg

    2017-06-01

    Full Text Available Despite being overexpressed in different tumor entities, RIO kinases are hardly characterized in mammalian cells. We investigated the role of these atypical kinases in different cancer cells. Using isogenic colon-, breast- and lung cancer cell lines, we demonstrate that knockdown of RIOK1, but not of RIOK2 or RIOK3, strongly impairs proliferation and invasiveness in conventional and 3D culture systems. Interestingly, these effects were mainly observed in RAS mutant cancer cells. In contrast, growth of RAS wildtype Caco-2 and Bcr-Abl-driven K562 cells is not affected by RIOK1 knockdown, suggesting a specific requirement for RIOK1 in the context of oncogenic RAS signaling. Furthermore, we show that RIOK1 activates NF-κB signaling and promotes cell cycle progression. Using proteomics, we identified the pro-invasive proteins Metadherin and Stathmin1 to be regulated by RIOK1. Additionally, we demonstrate that RIOK1 promotes lung colonization in vivo and that RIOK1 is overexpressed in different subtypes of human lung- and breast cancer. Altogether, our data suggest RIOK1 as a potential therapeutic target, especially in RAS-driven cancers.

  17. DEGRO practical guidelines for radiotherapy of breast cancer IV. Radiotherapy following mastectomy for invasive breast cancer

    International Nuclear Information System (INIS)

    Wenz, Frederik; Sperk, Elena; Budach, Wilfried; Dunst, Juergen; Feyer, Petra; Fietkau, Rainer; Sauer, Rolf; Haase, Wulf; Harms, Wolfgang; Piroth, Marc D.; Sautter-Bihl, Marie-Luise; Sedlmayer, Felix; Fussl, Christoph; Souchon, Rainer

    2014-01-01

    Since the last recommendations from the Breast Cancer Expert Panel of the German Society for Radiation Oncology (DEGRO) in 2008, evidence for the effectiveness of postmastectomy radiotherapy (PMRT) has grown. This growth is based on updates of the national S3 and international guidelines, as well as on new data and meta-analyses. New aspects were considered when updating the DEGRO recommendations. The authors performed a comprehensive survey of the literature. Data from recently published (meta-)analyses, randomized clinical trials and international cancer societies' guidelines yielding new aspects compared to 2008 were reviewed and discussed. New aspects were included in the current guidelines. Specific issues relating to particular PMRT constellations, such as the presence of risk factors (lymphovascular invasion, blood vessel invasion, positive lymph node ratio > 20 %, resection margins 2 cm or a combination of ≥ 2 risk factors) and 1-3 positive lymph nodes are emphasized. The evidence for improved overall survival and local control following PMRT for T4 tumors, positive resection margins, > 3 positive lymph nodes and in T3 N0 patients with risk factors such as lymphovascular invasion, G3 grading, close margins, and young age has increased. Recently identified risk factors such as invasive lobular subtype and negative hormone receptor status were included. For patients with 1-3 positive lymph nodes, the recommendation for PMRT has reached the 1a level of evidence. PMRT is mandatory in patients with T4 tumors and/or positive lymph nodes and/or positive resection margins. PMRT should be strongly considered in patients with T3 N0 tumors and risk factors, particularly when two or more risk factors are present. (orig.) [de

  18. Invasive Aspergillosis Mimicking Metastatic Lung Cancer

    Directory of Open Access Journals (Sweden)

    Michiel J. E. G. W. Vanfleteren

    2018-06-01

    Full Text Available In a patient with a medical history of cancer, the most probable diagnosis of an 18FDG-avid pulmonary mass combined with intracranial abnormalities on brain imaging is metastasized cancer. However, sometimes a differential diagnosis with an infectious cause such as aspergillosis can be very challenging as both cancer and infection are sometimes difficult to distinguish. Pulmonary aspergillosis can present as an infectious pseudotumour with clinical and imaging characteristics mimicking lung cancer. Even in the presence of cerebral lesions, radiological appearance of abscesses can look like brain metastasis. These similarities can cause significant diagnostic difficulties with a subsequent therapeutic delay and a potential adverse outcome. Awareness of this infectious disease that can mimic lung cancer, even in an immunocompetent patient, is important. We report a case of a 65-year-old woman with pulmonary aspergillosis disseminated to the brain mimicking metastatic lung cancer.

  19. Enhanced caveolin-1 expression increases migration, anchorage-independent growth and invasion of endometrial adenocarcinoma cells

    International Nuclear Information System (INIS)

    Diaz-Valdivia, Natalia; Bravo, Denisse; Huerta, Hernán; Henriquez, Soledad; Gabler, Fernando; Vega, Margarita; Romero, Carmen; Calderon, Claudia; Owen, Gareth I.; Leyton, Lisette; Quest, Andrew F. G.

    2015-01-01

    Caveolin-1 (CAV1) has been implicated both in tumor suppression and progression, whereby the specific role appears to be context dependent. Endometrial cancer is one of the most common malignancies of the female genital tract; however, little is known about the role of CAV1 in this disease. Here, we first determined by immunohistochemistry CAV1 protein levels in normal proliferative human endometrium and endometrial tumor samples. Then using two endometrial cancer cell lines (ECC: Ishikawa and Hec-1A) we evaluated mRNA and protein levels of CAV1 by real time qPCR and Western blot analysis, respectively. The role of CAV1 expression in ECC malignancy was further studied by either inducing its expression in endometrial cancer cells with the tumor promotor 12-O-tetradecanoyl-phorbol-13-acetate (4β-TPA) or decreasing expression using short-hairpin RNA constructs, and then evaluating the effects of these changes on ECC proliferation, transmigration, matrigel invasion, and colony formation in soft agar. Immunohistochemical analysis of endometrial epithelia revealed that substantially higher levels of CAV1 were present in endometrial tumors than the normal proliferative epithelium. Also, in Ishikawa and Hec-1A endometrial cancer cells CAV1 expression was readily detectable. Upon treatment with 4β-TPA CAV1 levels increased and coincided with augmented cell transmigration, matrigel invasion, as well as colony formation in soft agar. Reduction of CAV1 expression using short-hairpin RNA constructs ablated these effects in both cell types whether treated or not with 4β-TPA. Alternatively, CAV1 expression appeared not to modulate significantly proliferation of these cells. Our study shows that elevated CAV1, observed in patients with endometrial cancer, is linked to enhanced malignancy of endometrial cancer cells, as evidenced by increased migration, invasion and anchorage-independent growth. The online version of this article (doi:10.1186/s12885-015-1477-5) contains

  20. Thiazolidinediones abrogate cervical cancer growth

    Energy Technology Data Exchange (ETDEWEB)

    Wuertz, Beverly R., E-mail: knier003@umn.edu; Darrah, Lindsay, E-mail: ldarrah@obgynmn.com; Wudel, Justin, E-mail: drwudel@drwudel.com; Ondrey, Frank G., E-mail: ondre002@umn.edu

    2017-04-15

    Peroxisome proliferator-activated receptor gamma (PPAR γ) is activated by thiazolidinedione drugs (TZDs) and can promote anti-cancer properties. We used three TZDs (pioglitazone, rosiglitazone, and ciglitazone) to target cervical cancer cell lines and a nude mouse animal model. Each agent increased activation of PPAR γ, as judged by a luciferase reporter gene assay in three HPV-associated cell lines (CaSki, SiHa, and HeLa cells) while decreasing cellular proliferation in a dose-dependent manner. They also promoted Oil Red O accumulation in treated cell lines and upregulated the lipid differentiation marker adipsin. Interestingly, xenograft HeLa tumors in nude mice treated with 100 mg/kg/day pioglitazone exhibited decreased growth compared to control mice or mice treated with standard cervical chemotherapy. In conclusion, TZDs slow tumor cell growth in vitro and in vivo with decreases in cell proliferation and increases in PPAR γ and adipsin. These agents may be interesting treatments or treatment adjuncts for HPV-associated cancers or perhaps even precancerous conditions. - Highlights: • Thiazolidinediones decreases cervical cancer proliferation. • Pioglitazone increases cervical cancer differentiation. • Pioglitazone decreases tumor growth in mice. • Pioglitazone may be a useful treatment adjunct.

  1. Human bone marrow mesenchymal stem cells induce collagen production and tongue cancer invasion.

    Directory of Open Access Journals (Sweden)

    Sirpa Salo

    Full Text Available Tumor microenvironment (TME is an active player in carcinogenesis and changes in its composition modify cancer growth. Carcinoma-associated fibroblasts, bone marrow-derived multipotent mesenchymal stem cells (BMMSCs, and inflammatory cells can all affect the composition of TME leading to changes in proliferation, invasion and metastasis formation of carcinoma cells. In this study, we confirmed an interaction between BMMSCs and oral tongue squamous cell carcinoma (OTSCC cells by analyzing the invasion progression and gene expression pattern. In a 3-dimensional myoma organotypic invasion model the presence of BMMSCs inhibited the proliferation but increased the invasion of OTSCC cells. Furthermore, the signals originating from OTSCC cells up-regulated the expression of inflammatory chemokines by BMMSCs, whereas BMMSC products induced the expression of known invasion linked molecules by carcinoma cells. Particularly, after the cell-cell interactions, the chemokine CCL5 was abundantly secreted from BMMSCs and a function blocking antibody against CCL5 inhibited BMMSC enhanced cancer invasion area. However, CCL5 blocking antibody did not inhibit the depth of invasion. Additionally, after exposure to BMMSCs, the expression of type I collagen mRNA in OTSCC cells was markedly up-regulated. Interestingly, also high expression of type I collagen N-terminal propeptide (PINP in vivo correlated with the cancer-specific mortality of OTSCC patients, whereas there was no association between cancer tissue CCL5 levels and the clinical parameters. In conclusion, our results suggest that the interaction between BMMSC and carcinoma cells induce cytokine and matrix molecule expression, of which high level of type I collagen production correlates with the prognosis of OTSCC patients.

  2. Natural biology and management of nonmuscle invasive bladder cancer

    DEFF Research Database (Denmark)

    Scarpato, Kristen R; Tyson, Mark D; Clark, Peter E

    2016-01-01

    PURPOSE OF REVIEW: This article reviews the natural biology of noninvasive bladder cancer and its management strategies while summarizing the most recent advances in the field. RECENT FINDINGS: Nonmuscle invasive bladder cancer (NMIBC) has a tendency to recur and progress. Risk stratification has...... in low-risk patients. SUMMARY: NMIBC represents a variety of disease states and continues to pose management challenges. As our understanding of tumor biology improves and technology advances, achieving better outcomes through individualized care may be possible.......PURPOSE OF REVIEW: This article reviews the natural biology of noninvasive bladder cancer and its management strategies while summarizing the most recent advances in the field. RECENT FINDINGS: Nonmuscle invasive bladder cancer (NMIBC) has a tendency to recur and progress. Risk stratification has...... helped triage patients but improved tools, including biomarkers, are still needed. Enhanced endoscopy with photodynamic imaging, narrow band imaging, optical coherence tomography and confocal laser endomicroscopy show promise for diagnosis, risk stratification and disease monitoring. Attempts at better...

  3. Transcription factor HBP1 is a direct anti-cancer target of transcription factor FOXO1 in invasive oral cancer.

    Science.gov (United States)

    Chan, Chien-Yi; Huang, Shih-Yi; Sheu, Jim Jinn-Chyuan; Roth, Mendel M; Chou, I-Tai; Lien, Chia-Hsien; Lee, Ming-Fen; Huang, Chun-Yin

    2017-02-28

    Either FOXO1 or HBP1 transcription factor is a downstream effector of the PI3K/Akt pathway and associated with tumorigenesis. However, the relationship between FOXO1 and HBP1 in oral cancer remains unclear. Analysis of 30 oral tumor specimens revealed that mean mRNA levels of both FOXO1 and HBP1 in non-invasive and invasive oral tumors were found to be significantly lower than that of the control tissues, and the status of low FOXO1 and HBP1 (oral tumors. To investigate if HBP1 is a direct transcription target of FOXO1, we searched potential FOXO1 binding sites in the HBP1 promoter using the MAPPER Search Engine, and two putative FOXO1 binding sites located in the HBP1 promoter -132 to -125 bp and -343 to -336 bp were predicted. These binding sites were then confirmed by both reporter gene assays and the in cellulo ChIP assay. In addition, Akt activity manipulated by PI3K inhibitor LY294002 or Akt mutants was shown to negatively affect FOXO1-mediated HBP1 promoter activation and gene expression. Last, the biological significance of the FOXO1-HBP1 axis in oral cancer malignancy was evaluated in cell growth, colony formation, and invasiveness. The results indicated that HBP1 knockdown potently promoted malignant phenotypes of oral cancer and the suppressive effect of FOXO1 on cell growth, colony formation, and invasion was alleviated upon HBP1 knockdown in invasive oral cancer cells. Taken together, our data provide evidence for HBP1 as a direct downstream target of FOXO1 in oral cancer malignancy.

  4. Molecular Landscape of Non-Muscle Invasive Bladder Cancer.

    Science.gov (United States)

    Meeks, Joshua J; Lerner, Seth P

    2017-11-13

    In this issue of Cancer Cell, Hurst et al. report an integrated analysis of non-invasive (stage Ta) bladder cancer. Two genomic subtypes are distinguished by chromosome 9q loss, resulting in increased AKT/PI3K/mTOR signaling. Tumors from female patients have a higher frequency of KDM6A mutations. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Targeting Insulin-Like Growth Factor 1 Receptor Inhibits Pancreatic Cancer Growth and Metastasis

    Science.gov (United States)

    Subramani, Ramadevi; Lopez-Valdez, Rebecca; Arumugam, Arunkumar; Nandy, Sushmita; Boopalan, Thiyagarajan; Lakshmanaswamy, Rajkumar

    2014-01-01

    Pancreatic cancer is one of the most lethal cancers. Increasing incidence and mortality indicates that there is still much lacking in detection and management of the disease. This is partly due to a lack of specific symptoms during early stages of the disease. Several growth factor receptors have been associated with pancreatic cancer. Here, we have investigated if an RNA interference approach targeted to IGF-IR could be effective and efficient against pancreatic cancer growth and metastasis. For that, we evaluated the effects of IGF-1R inhibition using small interfering RNA (siRNAs) on tumor growth and metastasis in HPAC and PANC-1 pancreatic cancer cell lines. We found that silencing IGF-1R inhibits pancreatic cancer growth and metastasis by blocking key signaling pathways such AKT/PI3K, MAPK, JAK/STAT and EMT. Silencing IGF-1R resulted in an anti-proliferative effect in PANC-1 and HPAC pancreatic cancer cell lines. Matrigel invasion, transwell migration and wound healing assays also revealed a role for IGF-1R in metastatic properties of pancreatic cancer. These results were further confirmed using Western blotting analysis of key intermediates involved in proliferation, epithelial mesenchymal transition, migration, and invasion. In addition, soft agar assays showed that silencing IGF-1R also blocks the colony forming capabilities of pancreatic cancer cells in vitro. Western blots, as well as, flow cytometric analysis revealed the induction of apoptosis in IGF-1R silenced cells. Interestingly, silencing IGF-1R also suppressed the expression of insulin receptor β. All these effects together significantly control pancreatic cancer cell growth and metastasis. To conclude, our results demonstrate the significance of IGF-1R in pancreatic cancer. PMID:24809702

  6. Results of radiotherapy on ureteric obstruction in muscle-invasive bladder cancer

    DEFF Research Database (Denmark)

    Honnens De Lichtenberg, Mette; Miskowiak, J; Rolff, H

    1995-01-01

    To evaluate the effect of radiotherapy on ureteric obstruction due to muscle-invasive bladder cancer.......To evaluate the effect of radiotherapy on ureteric obstruction due to muscle-invasive bladder cancer....

  7. Invasive bladder cancer treated by radical external radiotherapy

    International Nuclear Information System (INIS)

    Corcoran, M.O.; Thomas, D.M.; Lim, A.; Berry, R.J.; Milroy, E.J.G.

    1985-01-01

    Fifty-three consecutive unselected patients with invasive bladder cancer, Stage T2 to T3, treated by radical radiotherapy have been reviewed. Cystectomy was reserved for patients with significant worsening of disease during treatment, histologically confirmed persistent or recurrent invasive tumour after treatment, or patients with intolerable symptoms due to radiation cystitis. In 64% of our patients a favourable tumour response to radiotherapy was seen, while a further 31% showed disease progression either during or on completion of radiotherapy. Cystectomy was performed on 22% of patients, mainly for radiation cystitis, and was not associated with a significant operative mortality rate. The crude 5-year survival rate was 42%. We conclude that radical radiotherapy is as effective as other forms of treatment for invasive bladder cancer, but that there remains a need to identify those bladder tumours destined to respond poorly to radiotherapy at an earlier stage. (author)

  8. Global solution for a chemotactic haptotactic model of cancer invasion

    Science.gov (United States)

    Tao, Youshan; Wang, Mingjun

    2008-10-01

    This paper deals with a mathematical model of cancer invasion of tissue recently proposed by Chaplain and Lolas. The model consists of a reaction-diffusion-taxis partial differential equation (PDE) describing the evolution of tumour cell density, a reaction-diffusion PDE governing the evolution of the proteolytic enzyme concentration and an ordinary differential equation modelling the proteolysis of the extracellular matrix (ECM). In addition to random motion, the tumour cells are directed not only by haptotaxis (cellular locomotion directed in response to a concentration gradient of adhesive molecules along the ECM) but also by chemotaxis (cellular locomotion directed in response to a concentration gradient of the diffusible proteolytic enzyme). In one space dimension, the global existence and uniqueness of a classical solution to this combined chemotactic-haptotactic model is proved for any chemotactic coefficient χ > 0. In two and three space dimensions, the global existence is proved for small χ/μ (where μ is the logistic growth rate of the tumour cells). The fundamental point of proof is to raise the regularity of a solution from L1 to Lp (p > 1). Furthermore, the existence of blow-up solutions to a sub-model in two space dimensions for large χ shows, to some extent, that the condition that χ/μ is small is necessary for the global existence of a solution to the full model.

  9. Minimally invasive diagnostics and immunotherapy of lung cancer

    NARCIS (Netherlands)

    Talebian-Yazdi, M.

    2017-01-01

    This thesis deals with aspects of diagnostics and immunotherapy of lung cancer. The first aim of this thesis is to investigate how the implementation of minimally invasive endoscopic ultrasound techniques (EUS and EBUS) in the staging algorithm of NSCLC can be optimized. The second aim of this

  10. Suppression of progranulin expression inhibits bladder cancer growth and sensitizes cancer cells to cisplatin.

    Science.gov (United States)

    Buraschi, Simone; Xu, Shi-Qiong; Stefanello, Manuela; Moskalev, Igor; Morcavallo, Alaide; Genua, Marco; Tanimoto, Ryuta; Birbe, Ruth; Peiper, Stephen C; Gomella, Leonard G; Belfiore, Antonino; Black, Peter C; Iozzo, Renato V; Morrione, Andrea

    2016-06-28

    We have recently demonstrated a critical role for progranulin in bladder cancer. Progranulin contributes, as an autocrine growth factor, to the transformed phenotype by modulating Akt-and MAPK-driven motility, invasion and anchorage-independent growth. Progranulin also induces F-actin remodeling by interacting with the F-actin binding protein drebrin. In addition, progranulin is overexpressed in invasive bladder cancer compared to normal tissue controls, suggesting that progranulin might play a key role in driving the transition to the invasive phenotype of urothelial cancer. However, it is not established whether targeting progranulin could have therapeutic effects on bladder cancer. In this study, we stably depleted urothelial cancer cells of endogenous progranulin by shRNA approaches and determined that progranulin depletion severely inhibited the ability of tumorigenic urothelial cancer cells to migrate, invade and grow in anchorage-independency. We further demonstrate that progranulin expression is critical for tumor growth in vivo, in both xenograft and orthotopic tumor models. Notably, progranulin levels correlated with response to cisplatin treatment and were upregulated in bladder tumors. Our data indicate that progranulin may constitute a novel target for therapeutic intervention in bladder tumors. In addition, progranulin may serve as a novel biomarker for bladder cancer.

  11. Preventing invasive breast cancer using endocrine therapy.

    Science.gov (United States)

    Thorat, Mangesh A; Cuzick, Jack

    2017-08-01

    Developments in breast cancer treatment have resulted in reduction in breast cancer mortality in the developed world. However incidence continues to rise and greater use of preventive interventions including the use of therapeutic agents is needed to control this burden. High quality evidence from 9 major trials involving more than 83000 participants shows that selective oestrogen receptor modulators (SERMs) reduce breast cancer incidence by 38%. Combined results from 2 large trials with 8424 participants show that aromatase inhibitors (AIs) reduce breast cancer incidence by 53%. These benefits are restricted to prevention of ER positive breast cancers. Restricting preventive therapy to high-risk women improves the benefit-harm balance and many guidelines now encourage healthcare professionals to discuss preventive therapy in these women. Further research is needed to improve our risk-prediction models for the identification of high risk women for preventive therapy with greater accuracy and to develop surrogate biomarkers of response. Long-term follow-up of the IBIS-I trial has provided valuable insights into the durability of benefits from preventive therapy, and underscores the need for such follow up to fully evaluate other agents. Full utilisation of preventive therapy also requires greater knowledge and awareness among both doctors and patients about benefits, harms and risk factors. Healthcare professionals should routinely discuss preventive therapy with women at high-risk of breast cancer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Role of Seprase in Breast Cancer Invasion

    Science.gov (United States)

    1998-09-01

    length cDNA as quickly as possible, we have arranged to get help from Dr. Barbara L. Parsons at the National Center for Toxicological Research with...ctin Nvas si~paratcd frorn free (𔃻ýI1 by get I tra - iwtvdopodWa prateolysis )f e.TtraceLlular mnatrix~ tion osmAg sa. excellulose GS colunin (Pi.erce...invadopodia. MMP-2 is secreted istry of proteinas :. in tumor invasion. Physicl Revs 73, as a soluble enzyme that can be found within the 161-45, oytoplasm

  13. STAT6 expression in glioblastoma promotes invasive growth

    Directory of Open Access Journals (Sweden)

    Silva Corinne M

    2011-05-01

    Full Text Available Abstract Background Glioblastoma (GBM is a highly aggressive malignant primary brain tumor, characterized by rapid growth, diffuse infiltration of cells into both adjacent and remote brain regions, and a generalized resistance to currently available treatment modalities. Recent reports in the literature suggest that Signal Transducers and Activators of Transcription (STATs play important roles in the regulation of GBM pathophysiology. Methods STAT6 protein expression was analyzed by Western blotting in GBM cell lines and by immunohistochemistry in a tissue microarray (TMA of glioma patient tissues. We utilized shRNA against STAT6 to investigate the effects of prolonged STAT6 depletion on the growth and invasion of two STAT6-positive GBM cell lines. Cell proliferation was assessed by measuring 3H-Thymidine uptake over time. Invasion was measured using an in vitro transwell assay in which cells invade through a type IV collagen matrix toward a chemoattractant (Fetal Bovine Serum. Cells were then stained and counted. Kaplan-Meyer survival curves were generated to show the correlation between STAT6 gene expression and patient survival in 343 glioma patients and in a subset of patients with only GBM. Gene expression microarray and clinical data were acquired from the Rembrandt 1 public data depository (https://caintegrator.nci.nih.gov/rembrandt/. Lastly, a genome-wide expression microarray analysis was performed to compare gene expression in wild-type GBM cells to expression in stable STAT6 knockdown clones. Results STAT6 was expressed in 2 GBM cell lines, U-1242MG and U-87MG, and in normal astrocytes (NHA but not in the U-251MG GBM cell line. In our TMA study, STAT6 immunostaining was visible in the majority of astrocytomas of all grades (I-IV but not in normal brain tissue. In positive cells, STAT6 was localized exclusively in the nuclei over 95% of the time. STAT6-deficient GBM cells showed a reduction in 3H-Thymidine uptake compared to the wild

  14. STAT6 expression in glioblastoma promotes invasive growth

    International Nuclear Information System (INIS)

    Merk, Barbara C; Owens, Jennifer L; Lopes, Maria-Beatriz S; Silva, Corinne M; Hussaini, Isa M

    2011-01-01

    Glioblastoma (GBM) is a highly aggressive malignant primary brain tumor, characterized by rapid growth, diffuse infiltration of cells into both adjacent and remote brain regions, and a generalized resistance to currently available treatment modalities. Recent reports in the literature suggest that Signal Transducers and Activators of Transcription (STATs) play important roles in the regulation of GBM pathophysiology. STAT6 protein expression was analyzed by Western blotting in GBM cell lines and by immunohistochemistry in a tissue microarray (TMA) of glioma patient tissues. We utilized shRNA against STAT6 to investigate the effects of prolonged STAT6 depletion on the growth and invasion of two STAT6-positive GBM cell lines. Cell proliferation was assessed by measuring 3 H-Thymidine uptake over time. Invasion was measured using an in vitro transwell assay in which cells invade through a type IV collagen matrix toward a chemoattractant (Fetal Bovine Serum). Cells were then stained and counted. Kaplan-Meyer survival curves were generated to show the correlation between STAT6 gene expression and patient survival in 343 glioma patients and in a subset of patients with only GBM. Gene expression microarray and clinical data were acquired from the Rembrandt [1] public data depository (https://caintegrator.nci.nih.gov/rembrandt/). Lastly, a genome-wide expression microarray analysis was performed to compare gene expression in wild-type GBM cells to expression in stable STAT6 knockdown clones. STAT6 was expressed in 2 GBM cell lines, U-1242MG and U-87MG, and in normal astrocytes (NHA) but not in the U-251MG GBM cell line. In our TMA study, STAT6 immunostaining was visible in the majority of astrocytomas of all grades (I-IV) but not in normal brain tissue. In positive cells, STAT6 was localized exclusively in the nuclei over 95% of the time. STAT6-deficient GBM cells showed a reduction in 3 H-Thymidine uptake compared to the wild-type. There was some variation among the

  15. Targeting SPARC by lentivirus-mediated RNA interference inhibits cervical cancer cell growth and metastasis

    International Nuclear Information System (INIS)

    Chen, Jie; Shi, Dehuan; Liu, Xiaoyan; Fang, Shuang; Zhang, Jie; Zhao, Yueran

    2012-01-01

    Secreted protein acidic and rich in cysteine (SPARC), a calcium-binding matricellular glycoprotein, is implicated in the progressions of some cancers. However, no information has been available to date regarding the function of SPARC in cervical cancer cell growth and metastasis. In this study, we isolated and established high invasive subclones and low invasive subclones from human cervical cancer cell lines HeLa and SiHa by the limited dilution method. Real-time q-RT-PCR, Western Blot and ICC were performed to investigate SPARC mRNA and protein expressions in high invasive subclones and low invasive subclones. Then lentivirus vector with SPARC shRNA was constructed and infected the highly invasive subclones. Real-time q-RT-PCR, Western Blot and ICC were also performed to investigate the changes of SPARC expression after viral infection. In functional assays, effects of SPARC knockdown on the biological behaviors of cervical cancer cells were investigated. The mechanisms of SPARC in cervical cancer proliferation, apoptosis and invasion were also researched. SPARC was over-expressed in the highly invasive subclones compared with the low invasive subclones. Knockdown of SPARC significantly suppressed cervical cancer cell proliferation, and induced cell cycle arrest at the G1/G0 phase through the p53/p21 pathway, also caused cell apoptosis accompanied by the decreased ratio of Bcl-2/Bax, and inhibited cell invasion and metastasis accompanied by down-regulated MMP2 and MMP9 expressions and up-regulated E-cadherin expression. SPARC is related to the invasive phenotype of cervical cancer cells. Knockdown of SPARC significantly suppresses cervical cancer cell proliferation, induces cell apoptosis and inhibits cell invasion and metastasis. SPARC as a promoter improves cervical cancer cell growth and metastasis

  16. Targeting SPARC by lentivirus-mediated RNA interference inhibits cervical cancer cell growth and metastasis

    Directory of Open Access Journals (Sweden)

    Chen Jie

    2012-10-01

    Full Text Available Abstract Background Secreted protein acidic and rich in cysteine (SPARC, a calcium-binding matricellular glycoprotein, is implicated in the progressions of some cancers. However, no information has been available to date regarding the function of SPARC in cervical cancer cell growth and metastasis. Methods In this study, we isolated and established high invasive subclones and low invasive subclones from human cervical cancer cell lines HeLa and SiHa by the limited dilution method. Real-time q-RT-PCR, Western Blot and ICC were performed to investigate SPARC mRNA and protein expressions in high invasive subclones and low invasive subclones. Then lentivirus vector with SPARC shRNA was constructed and infected the highly invasive subclones. Real-time q-RT-PCR, Western Blot and ICC were also performed to investigate the changes of SPARC expression after viral infection. In functional assays, effects of SPARC knockdown on the biological behaviors of cervical cancer cells were investigated. The mechanisms of SPARC in cervical cancer proliferation, apoptosis and invasion were also researched. Results SPARC was over-expressed in the highly invasive subclones compared with the low invasive subclones. Knockdown of SPARC significantly suppressed cervical cancer cell proliferation, and induced cell cycle arrest at the G1/G0 phase through the p53/p21 pathway, also caused cell apoptosis accompanied by the decreased ratio of Bcl-2/Bax, and inhibited cell invasion and metastasis accompanied by down-regulated MMP2 and MMP9 expressions and up-regulated E-cadherin expression. Conclusion SPARC is related to the invasive phenotype of cervical cancer cells. Knockdown of SPARC significantly suppresses cervical cancer cell proliferation, induces cell apoptosis and inhibits cell invasion and metastasis. SPARC as a promoter improves cervical cancer cell growth and metastasis.

  17. Invasive ductal breast cancer metastatic to the sigmoid colon

    Directory of Open Access Journals (Sweden)

    Zhou Xiao-cong

    2012-11-01

    Full Text Available Abstract The most common sites of breast cancer metastasis are the bone, lung, liver and brain. However, colonic metastases from breast cancer are very rare in the clinic. We describe an unusual case of sigmoid colonic metastasis from invasive ductal breast cancer. With this report, we should increase the clinical awareness that any patient with a colorectal lesion and a history of malignancy should be considered to have a metastasis until proven otherwise. Early diagnosis is very important, which enables prompt initiation of systemic treatment, such as chemotherapy, endocrine therapy or both, thus avoiding unnecessary radical surgical resection and improving the prognosis.

  18. Hepatocyte growth factor profile with breast cancer

    Directory of Open Access Journals (Sweden)

    Hoda A EL-Attar

    2011-01-01

    Full Text Available Background: The multifunctional hepatocyte growth factor (HGF is the ligand of c-Met receptor; it plays important role in mammary differentiation. HGF-Met signaling is a critical downstream function of c-Src-Stat3 pathway in mammalian tumorigenesis. Aim: Evaluation of tissue c-Met receptor hepatocyte growth factor receptor (HGFR and serum level of HGF in female breast ductal carcinoma. Materials and Methods: Sixty-eight premenopausal females were divided as 30 control females subdivided into: [Group 1] 15 healthy volunteer females and [Group 2] five with fibrocystic disease and 10 having fibroadenoma of the breast and patients group [Group 3] consisted of 38 female patients with breast ductal carcinoma. Thorough clinical examination, preoperative fine needle aspiration cytology, estimation of fasting serum glucose, urea, creatinine, and uric acid levels, alanine aminotransferase activities, C-reactive protein, HGF level, before surgery and histopathological examination of the breast masses, and immunohistochemical detection of HGFR were done. Results and Conclusions: Significant increase in serum HGF levels were found in patients with breast cancer as compared with controls. Significant increase was also seen in patients with breast cancer with and without lymph node metastasis when each subgroup was compared with controls. Serum level of HGF is an independent prognostic indicator of breast cancer. Fibrocystic disease of the breast showed weak HGFR expression, while in normal tissue, HGFR was scanty; meanwhile, breast invasive ductal carcinoma showed homogenous strong reaction to HGFR. HGF is only one of a number of key factors involved in breast cancer and preoperative high serum HGF levels and malignancy occur usually together.

  19. CD147, CD44, and the epidermal growth factor receptor (EGFR) signaling pathway cooperate to regulate breast epithelial cell invasiveness.

    Science.gov (United States)

    Grass, G Daniel; Tolliver, Lauren B; Bratoeva, Momka; Toole, Bryan P

    2013-09-06

    The immunoglobulin superfamily glycoprotein CD147 (emmprin; basigin) is associated with an invasive phenotype in various types of cancers, including malignant breast cancer. We showed recently that up-regulation of CD147 in non-transformed, non-invasive breast epithelial cells is sufficient to induce an invasive phenotype characterized by membrane type-1 matrix metalloproteinase (MT1-MMP)-dependent invadopodia activity (Grass, G. D., Bratoeva, M., and Toole, B. P. (2012) Regulation of invadopodia formation and activity by CD147. J. Cell Sci. 125, 777-788). Here we found that CD147 induces breast epithelial cell invasiveness by promoting epidermal growth factor receptor (EGFR)-Ras-ERK signaling in a manner dependent on hyaluronan-CD44 interaction. Furthermore, CD147 promotes assembly of signaling complexes containing CD147, CD44, and EGFR in lipid raftlike domains. We also found that oncogenic Ras regulates CD147 expression, hyaluronan synthesis, and formation of CD147-CD44-EGFR complexes, thus forming a positive feedback loop that may amplify invasiveness. Last, we showed that malignant breast cancer cells are heterogeneous in their expression of surface-associated CD147 and that high levels of membrane CD147 correlate with cell surface EGFR and CD44 levels, activated EGFR and ERK1, and activated invadopodia. Future studies should evaluate CD147 as a potential therapeutic target and disease stratification marker in breast cancer.

  20. CD147, CD44, and the Epidermal Growth Factor Receptor (EGFR) Signaling Pathway Cooperate to Regulate Breast Epithelial Cell Invasiveness*

    Science.gov (United States)

    Grass, G. Daniel; Tolliver, Lauren B.; Bratoeva, Momka; Toole, Bryan P.

    2013-01-01

    The immunoglobulin superfamily glycoprotein CD147 (emmprin; basigin) is associated with an invasive phenotype in various types of cancers, including malignant breast cancer. We showed recently that up-regulation of CD147 in non-transformed, non-invasive breast epithelial cells is sufficient to induce an invasive phenotype characterized by membrane type-1 matrix metalloproteinase (MT1-MMP)-dependent invadopodia activity (Grass, G. D., Bratoeva, M., and Toole, B. P. (2012) Regulation of invadopodia formation and activity by CD147. J. Cell Sci. 125, 777–788). Here we found that CD147 induces breast epithelial cell invasiveness by promoting epidermal growth factor receptor (EGFR)-Ras-ERK signaling in a manner dependent on hyaluronan-CD44 interaction. Furthermore, CD147 promotes assembly of signaling complexes containing CD147, CD44, and EGFR in lipid raftlike domains. We also found that oncogenic Ras regulates CD147 expression, hyaluronan synthesis, and formation of CD147-CD44-EGFR complexes, thus forming a positive feedback loop that may amplify invasiveness. Last, we showed that malignant breast cancer cells are heterogeneous in their expression of surface-associated CD147 and that high levels of membrane CD147 correlate with cell surface EGFR and CD44 levels, activated EGFR and ERK1, and activated invadopodia. Future studies should evaluate CD147 as a potential therapeutic target and disease stratification marker in breast cancer. PMID:23888049

  1. Adipose-derived mesenchymal stem cells promote cell proliferation and invasion of epithelial ovarian cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Yijing; Tang, Huijuan; Guo, Yan; Guo, Jing; Huang, Bangxing; Fang, Fang; Cai, Jing, E-mail: caijingmmm@hotmail.com; Wang, Zehua, E-mail: zehuawang@163.net

    2015-09-10

    Adipose-derived mesenchymal stem cell (ADSC) is an important component of tumor microenvironment. However, whether ADSCs have a hand in ovarian cancer progression remains unclear. In this study, we investigated the impact of human ADSCs derived from the omentum of normal donors on human epithelial ovarian cancer (EOC) cells in vitro and in vivo. Direct and indirect co-culture models including ADSCs and human EOC cell lines were established and the effects of ADSCs on EOC cell proliferation were evaluated by EdU incorporation and flow cytometry. Transwell migration assays and detection of MMPs were performed to assess the invasion activity of EOC cells in vitro. Mouse models were established by intraperitoneal injection of EOC cells with or without concomitant ADSCs to investigate the role of ADSCs in tumor progression in vivo. We found that ADSCs significantly promoted proliferation and invasion of EOC cells in both direct and indirect co-culture assays. In addition, after co-culture with ADSCs, EOC cells secreted higher levels of matrix metalloproteinases (MMPs), and inhibition of MMP2 and MMP9 partially relieved the tumor-promoting effects of ADSCs in vitro. In mouse xenograft models, we confirmed that ADSCs promoted EOC growth and metastasis and elevated the expression of MMP2 and MMP9. Our findings indicate that omental ADSCs play a promotive role during ovarian cancer progression. - Highlights: • Omental adipose derived stem cells enhanced growth and invasion properties of ovarian cancer cells. • Adipose derived stem cells promoted the growth and metastasis of ovarian cancer in mice models. • Adipose derived stem cells promoted MMPs expression and secretion of ovarian cancer cells. • Elevated MMPs mediated the tumor promoting effects of ADSCs.

  2. Adipose-derived mesenchymal stem cells promote cell proliferation and invasion of epithelial ovarian cancer

    International Nuclear Information System (INIS)

    Chu, Yijing; Tang, Huijuan; Guo, Yan; Guo, Jing; Huang, Bangxing; Fang, Fang; Cai, Jing; Wang, Zehua

    2015-01-01

    Adipose-derived mesenchymal stem cell (ADSC) is an important component of tumor microenvironment. However, whether ADSCs have a hand in ovarian cancer progression remains unclear. In this study, we investigated the impact of human ADSCs derived from the omentum of normal donors on human epithelial ovarian cancer (EOC) cells in vitro and in vivo. Direct and indirect co-culture models including ADSCs and human EOC cell lines were established and the effects of ADSCs on EOC cell proliferation were evaluated by EdU incorporation and flow cytometry. Transwell migration assays and detection of MMPs were performed to assess the invasion activity of EOC cells in vitro. Mouse models were established by intraperitoneal injection of EOC cells with or without concomitant ADSCs to investigate the role of ADSCs in tumor progression in vivo. We found that ADSCs significantly promoted proliferation and invasion of EOC cells in both direct and indirect co-culture assays. In addition, after co-culture with ADSCs, EOC cells secreted higher levels of matrix metalloproteinases (MMPs), and inhibition of MMP2 and MMP9 partially relieved the tumor-promoting effects of ADSCs in vitro. In mouse xenograft models, we confirmed that ADSCs promoted EOC growth and metastasis and elevated the expression of MMP2 and MMP9. Our findings indicate that omental ADSCs play a promotive role during ovarian cancer progression. - Highlights: • Omental adipose derived stem cells enhanced growth and invasion properties of ovarian cancer cells. • Adipose derived stem cells promoted the growth and metastasis of ovarian cancer in mice models. • Adipose derived stem cells promoted MMPs expression and secretion of ovarian cancer cells. • Elevated MMPs mediated the tumor promoting effects of ADSCs

  3. Fentanyl inhibits proliferation and invasion of colorectal cancer via β-catenin

    Science.gov (United States)

    Zhang, Xiu-Lai; Chen, Min-Li; Zhou, Sheng-Li

    2015-01-01

    Background and aim: Fentanyl is widely used for relieving pain and narcotizing in cancer patients. However, there are few published reports regarding the effects of fentanyl on tumor control and treatment. Here we investigated the effects of fentanyl on tumor growth and cell invasion in the human colorectal carcinoma (HCT116) cells. Methods: Nude mice xenografts of HCT116 cells were established to assess the inhibition effect on tumor growth by fentanyl. MTT and Transwell were employed to determine the cell survival rate and cell invasion, respectively. MicroRNAs and mRNAs expression were quantified by real-time PCR. β-catenin and matrix metalloproteinases (MMP-2 and MMP-9) expression were assayed by western blotting. β-Catenin-specific small interfering RNA (Si-β-catenin) and miR-182 mimics were transfected in cells to investigate the mechanism underlying the effects of fentanyl on the colorectal tumor and HCT116 cells. Results: Treatment with fentanyl inhibited the tumor growth and HCT116 cells invasion. Fentanyl also downregulated the expression of β-catenin and miR-182 in both xenograft tumors and HCT116 cells, and decreased the protein level of MMP-9 in HCT116 cells. Downregulation of β-Catenin resulted in the decrease of miR-182 expression in colorectal cells. In addition, the overexpression of miR-182 reversed the effect of fentanyl on MMP-9 expression and cell invasion of HCT116 cells. Conclusions: The current study demonstrated that the inhibition of tumor growth and cell invasion in colorectal cancer by fentanyl is probably due to downregulation of miR-182 and MMP-9 expression by β-catenin. PMID:25755709

  4. Minimally invasive approaches for gastric cancer-Korean experience.

    Science.gov (United States)

    Yang, Han-Kwang; Suh, Yun-Suhk; Lee, Hyuk-Joon

    2013-03-01

    Laparoscopic surgery in Korea increased rapidly because of the early detection of gastric cancer by the development of diagnostic tools and nationwide screening. The Korean Laparoscopic Gastrointestinal Surgery Study Group (KLASS group) played a leading role in various projects related with minimally invasive surgery. The justification of minimally invasive procedures including robotic surgery, sentinel-node biopsy, or single-port surgery/Natural Orifice Transluminal Endoscopic Surgery (NOTES) must be predetermined by the clinical trial before a wide application, and the medical industry as well as surgeons should have great responsibility. Copyright © 2012 Wiley Periodicals, Inc.

  5. RKIP Inhibits Local Breast Cancer Invasion by Antagonizing the Transcriptional Activation of MMP13.

    Directory of Open Access Journals (Sweden)

    Ila Datar

    Full Text Available Raf Kinase Inhibitory Protein or RKIP was initially identified as a Raf-1 binding protein using the yeast 2-hybrid screen. RKIP inhibits the activation phosphorylation of MEK by Raf-1 by competitively inhibiting the binding of MEK to Raf-1 and thus exerting an inhibitory effect on the Raf-MEK-Erk pathway. RKIP has been identified as a metastasis suppressor gene. Expression of RKIP is low in cancer metastases. Although primary tumor growth remains unaffected, re- expression of RKIP inhibits cancer metastasis. Mechanistically, RKIP constrains metastasis by inhibiting angiogenesis, local invasion, intravasation, and colonization. The molecular mechanism of how RKIP inhibits these individual steps remains undefined. In our present study, using an unbiased PCR based screening and by analyzing DNA microarray expression datasets we observe that the expression of multiple metalloproteases (MMPs including MMP1, MMP3, MMP10 and MMP13 are negatively correlated with RKIP expression in breast cancer cell lines and clinical samples. Since expression of MMPs by cancer cells is important for cancer metastasis, we hypothesize that RKIP may mediate suppression of breast cancer metastasis by inhibiting multiple MMPs. We show that the expression signature of RKIP and MMPs is better at predicting high metastatic risk than the individual gene. Using a combination of loss- and gain-of-function approaches, we find that MMP13 is the cause of RKIP-mediated inhibition of local cancer invasion. Interestingly expression of MMP13 alone is not sufficient to reverse the inhibition of breast cancer cell metastasis to the lung due to the expression of RKIP. We find that RKIP negatively regulates MMP13 through the Erk2 signaling pathway and the repression of MMP13 by RKIP is transcription factor AP-1 independent. Together, our findings indicate that RKIP inhibits cancer cell invasion, in part, via MMP13 inhibition. These data also implicate RKIP in the regulation of MMP

  6. Optimization of Invasion-Specific Effects of Betulin Derivatives on Prostate Cancer Cells through Lead Development.

    Directory of Open Access Journals (Sweden)

    Ville Härmä

    Full Text Available The anti-invasive and anti-proliferative effects of betulins and abietane derivatives was systematically tested using an organotypic model system of advanced, castration-resistant prostate cancers. A preliminary screen of the initial set of 93 compounds was performed in two-dimensional (2D growth conditions using non-transformed prostate epithelial cells (EP156T, an androgen-sensitive prostate cancer cell line (LNCaP, and the castration-resistant, highly invasive cell line PC-3. The 25 most promising compounds were all betulin derivatives. These were selected for a focused secondary screen in three-dimensional (3D growth conditions, with the goal to identify the most effective and specific anti-invasive compounds. Additional sensitivity and cytotoxicity tests were then performed using an extended cell line panel. The effects of these compounds on cell cycle progression, mitosis, proliferation and unspecific cytotoxicity, versus their ability to specifically interfere with cell motility and tumor cell invasion was addressed. To identify potential mechanisms of action and likely compound targets, multiplex profiling of compound effects on a panel of 43 human protein kinases was performed. These target de-convolution studies, combined with the phenotypic analyses of multicellular organoids in 3D models, revealed specific inhibition of AKT signaling linked to effects on the organization of the actin cytoskeleton as the most likely driver of altered cell morphology and motility.

  7. Non-Invasive Nanodiagnostics of Cancer (NINOC)

    Science.gov (United States)

    2010-04-01

    tested. CONCLUSIONS Well-defined diblock copolymers of poly(ethylene glycol) and polymethacrylic acid (PEG-b-PMA) with aldehyde functionality were...treatment of cancer, tumor-specific targeting has been proposed using a variety of targeting moieties such as folic acid , transferrin, RGD-peptides...tert-butyl and PEG groups (Table 1). In order to obtain the final block copolymer 6, the hydrolysis of copolymer 5 was carried out in the acidic

  8. Is axillary sonographic staging less accurate in invasive lobular breast cancer than in ductal breast cancer?

    Science.gov (United States)

    Sankaye, Prashant; Chhatani, Sharmila; Porter, Gareth; Steel, Jim; Doyle, Sarah

    2014-10-01

    The purpose of this study was to determine whether axillary sonography is less accurate in invasive lobular breast cancer than in ductal breast cancer. Patients with invasive breast cancer were retrospectively identified from histologic records from 2010 to 2012. Staging axillary sonograms from 96 patients with primary breast cancer in each of 2 subgroups, invasive lobular carcinoma (ILC) and invasive ductal carcinoma (IDC), were reviewed. Preoperative sonographically guided 14-gauge core biopsy was performed on morphologically abnormal lymph nodes. Thirty-one of 96 patients (32%) in each subgroup were node positive on final postoperative histopathologic analysis. Axillary staging sensitivity was 17 of 31 patients (54%) in the IDC subgroup and 15 of 31(48%) in the ILC subgroup. Further analysis of the data showed no statistically significant differences between these subgroups. We found that there was no statistically significant difference in the accuracy of axillary sonographic staging between ILC and IDC. © 2014 by the American Institute of Ultrasound in Medicine.

  9. Expression of cancer-associated fibroblast-related proteins differs between invasive lobular carcinoma and invasive ductal carcinoma.

    Science.gov (United States)

    Park, Cheol Keun; Jung, Woo Hee; Koo, Ja Seung

    2016-08-01

    Cancer-associated fibroblasts (CAFs) are classified into various functional subtypes such as fibroblast activation protein-α (FAP-α), fibroblast specific protein-1 (FSP-1), platelet-derived growth factor receptor-α (PDGFR-α), and PDGFR-β. In this study, we compared the expression of CAF-related proteins in invasive lobular carcinoma (ILC) with those in invasive carcinoma of no special type (NST) and assessed the implications of the differences observed. Using tissue microarrays of 104 ILC and 524 invasive carcinoma (NST) cases, immunohistochemistry for CAF-related proteins [podoplanin, prolyl 4-hydroxylase, FAP-α, FSP-1/S100A4, PDGFR-α, PDGFR-β, and chondroitin sulfate proteoglycan (NG2)] was conducted. In invasive carcinoma (NST), tumor cells expressed a high level of PDGFR-α, whereas ILC tumor cells expressed high levels of podoplanin, prolyl 4-hydroxylase, FAP-α, and FSP-1/S100A4. In stromal cells of invasive carcinoma (NST), high expression levels of prolyl 4-hydroxylase, PDGFR-α, and NG2 were observed, whereas ILC stromal cells expressed high levels of FAP-α, FSP-1/S100A4, and PDGFR-β. In ILC, tumoral FSP-1/S100A4 positivity was associated with higher Ki-67 labeling index (p = 0.010) and non-luminal A type cancer (p = 0.014). Stromal PDGFR-α positivity was associated with lymph node metastasis (p = 0.011). On survival analysis of entire cases, tumoral FSP-1/S100A4 positivity (p = 0.002), stromal podoplanin positivity (p = 0.041), and stromal FSP-1/S100A4 negativity (p = 0.041) were associated with shorter disease-free survival; only tumoral FSP-1/S100A4 positivity (p = 0.044) was associated with shorter overall survival. In ILC, the expression of FAP-α and FSP-1/S100A4 was higher in both tumor and stromal cells than that observed in invasive carcinoma (NST). These results indicate that CAFs are a potential target in ILC treatment.

  10. Knockdown of ZFR suppresses cell proliferation and invasion of human pancreatic cancer

    Directory of Open Access Journals (Sweden)

    Xiaolan Zhao

    Full Text Available BACKGROUND: Zinc finger RNA binding protein (ZFR is involved in the regulation of growth and cancer development. However, little is known about ZFR function in pancreatic cancer. METHODS: Herein, to investigate whether ZFR is involved in tumor growth, Oncomine microarray data was firstly used to evaluate ZFR gene expression in human pancreatic tumors. Then short hairpin RNA (shRNA targeting ZFR was designed and delivered into PANC-1 pancreatic cancer cells to knock down ZFR expression. Cell viability, cell proliferation and cell cycle analysis after ZFR knockdown were determined by MTT, colony forming and FACS, respectively. In addition, cell migration and invasion were assessed using the Transwell system. RESULTS: The expression of ZFR was significantly higher in pancreatic tumors than normal pancreas tissues by Oncomine database analysis. Knockdown of ZFR by shRNA-expressing lentivirus significantly decreased the viability and invasion ability of pancreatic cancer cells. Moreover, FACS analysis showed that knockdown of ZFR in PANC-1 cells caused a significant cell cycle arrest at G0/G1 phase. Furthermore, knockdown of ZFR decreased the levels of CDK2, CDK4, CyclinA and CyclinD1 and enhanced the expression of p27, which has evidenced by qRT-PCR and Western blot analysis. CONCLUSIONS: Knockdown of ZFR might provide a novel alternative to targeted therapy of pancreatic cancer and deserves further investigation.

  11. Total RNA Sequencing Analysis of DCIS Progressing to Invasive Breast Cancer

    Science.gov (United States)

    2017-09-01

    AWARD NUMBER: W81XWH-14-1-0080 TITLE: Total RNA Sequencing Analysis of DCIS Progressing to Invasive Breast Cancer . PRINCIPAL INVESTIGATOR...TITLE AND SUBTITLE Total RNA Sequencing Analysis of DCIS Progressing to Invasive Breast Cancer . 5a. CONTRACT NUMBER 5b. GRANT NUMBER GRANT11489...institutional, NIH-funded study of genetic and epigenetic alterations of pre-invasive DCIS that did or did not progress to invasive breast cancer , with an

  12. Bladder preservation using chemoradiation therapy for locally invasive bladder cancer

    International Nuclear Information System (INIS)

    Abe, Toyofumi; Yoshioka, Toshiaki; Sato, Mototaka; Mori, Naoki; Sekii, Ken-Ichiro; Itatani, Hiroaki

    2011-01-01

    We investigated the long-term results and molecular markers of outcome with selective organ preservation in invasive bladder cancer using chemoradiation therapy. We examined locally invasive bladder cancer in 32 patients (30 men, 2 women; mean age at treatment 68.1 years) who underwent bladder-sparing protocols in the Department of Urology at Sumitomo Hospital between 2000 and 2005. The clinical stage was T2, T3, and T4 in 13, 16, and 3 patients, respectively. Our protocol includes aggressive transurethral resection of the bladder tumor (TURBT) and 46 Gy radiotherapy (2 Gy/fraction, 5 fractions/week) to the pelvis with concurrent cisplatin chemotherapy (20 mg/body/day, 5 days/week, the first and fourth week, intravenously). The initial evaluation included magnetic resonance imaging (MRI), urine cytology, and cystoscopy with a biopsy. During follow-up, if the patients developed superficial recurrence, they was treated with TURBT and intravesical Bacillus Calmette-Guerin (BCG), while patients with invasive recurrence were advised to undergo a salvage cystectomy. We examined the association between the expression of the Bcl-2 family in pretreatment TUR specimens and patient outcome. The mean follow-up was 54.6 months. The first assessment after the induction chemoradiotherapy showed that bladder preservation was achieved in 27 patients (84.4%). The actuarial local control rate with an intact bladder was 56.3% (18 patients) at 3 years. The 1-, 3-, and 5-year cancer-specific survival rate was 90.6, 84.0, and 66.9%, respectively. The 5-year cancer-specific survival rate was 75.0, 67.2, and 33.3% in T2, T3, and T4, respectively. Bcl-x positivity was significantly associated with a poor cancer-specific survival rate (log-rank test, p=0.038). Chemoradiation therapy for invasive bladder cancer can achieve survival rates similar to those in patients treated with radical cystectomy, with successful bladder preservation. Our results suggest that the expression of Bcl-x is a

  13. Gα12/13 signaling promotes cervical cancer invasion through the RhoA/ROCK-JNK signaling axis

    International Nuclear Information System (INIS)

    Yuan, Bo; Cui, Jinquan; Wang, Wuliang; Deng, Kehong

    2016-01-01

    Several reports have indicated a role for the members of the G12 family of heterotrimeric G proteins (Gα12 and Gα13) in oncogenesis and tumor cell growth. The aims of the present study were to evaluate the role of G12 signaling in cervical cancer. We demonstrated that expression of the G12 proteins was highly upregulated in cervical cancer cells. Additionally, expression of the activated forms of Gα12/Gα13 but not expression of activated Gαq induced cell invasion through the activation of the RhoA family of G proteins, but had no effect on cell proliferation in the cervical cancer cells. Inhibition of G12 signaling by expression of the RGS domain of the p115-Rho-specific guanine nucleotide exchange factor (p115-RGS) blocked thrombin-stimulated cell invasion, but did not inhibit cell proliferation in cervical cells, whereas the inhibition of Gαq (RGS2) had no effect. Furthermore, G12 signaling was able to activate Rho proteins, and this stimulation was inhibited by p115-RGS, and Gα12-induced invasion was blocked by an inhibitor of RhoA/B/C (C3 toxin). Pharmacological inhibition of JNK remarkably decreased G12-induced JNK activation. Both a JNK inhibitor (SP600125) and a ROCK inhibitor (Y27632) reduced G12-induced JNK and c-Jun activation, and markedly inhibited G12-induced cellular invasion. Collectively, these findings demonstrate that stimulation of G12 proteins is capable of promoting invasion through RhoA/ROCK-JNK activation. -- Highlights: •Gα12/Gα13 is upregulated in cervical cancer cell lines. •Gα12/Gα13 is not involved in cervical cancer cell proliferation. •Gα12/Gα13 promotes cervical cancer cell invasion. •The role of Rho G proteins in G12-promoted cervical cancer cell invasion. •G12 promotes cell invasion through activation of the ROCK-JNK signaling axis.

  14. Autocrine HBEGF expression promotes breast cancer intravasation, metastasis and macrophage-independent invasion in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Z. N.; Sharma, V. P.; Beaty, B. T.; Roh-Johnson, M.; Peterson, E. A.; Van Rooijen, N.; Kenny, P. A.; Wiley, H. S.; Condeelis, J. S.; Segall, J. E.

    2014-10-13

    Increased expression of HBEGF in estrogen receptor-negative breast tumors is correlated with enhanced metastasis to distant organ sites and more rapid disease recurrence upon removal of the primary tumor. Our previous work has demonstrated a paracrine loop between breast cancer cells and macrophages in which the tumor cells are capable of stimulating macrophages through the secretion of colony-stimulating factor-1 while the tumor-associated macrophages (TAMs), in turn, aid in tumor cell invasion by secreting epidermal growth factor. To determine how the autocrine expression of epidermal growth factor receptor (EGFR) ligands by carcinoma cells would affect this paracrine loop mechanism, and in particular whether tumor cell invasion depends on spatial ligand gradients generated by TAMs, we generated cell lines with increased HBEGF expression. We found that autocrine HBEGF expression enhanced in vivo intravasation and metastasis and resulted in a novel phenomenon in which macrophages were no longer required for in vivo invasion of breast cancer cells. In vitro studies revealed that expression of HBEGF enhanced invadopodium formation, thus providing a mechanism for cell autonomous invasion. The increased invadopodium formation was directly dependent on EGFR signaling, as demonstrated by a rapid decrease in invadopodia upon inhibition of autocrine HBEGF/EGFR signaling as well as inhibition of signaling downstream of EGFR activation. HBEGF expression also resulted in enhanced invadopodium function via upregulation of matrix metalloprotease 2 (MMP2) and MMP9 expression levels. We conclude that high levels of HBEGF expression can short-circuit the tumor cell/macrophage paracrine invasion loop, resulting in enhanced tumor invasion that is independent of macrophage signaling.

  15. Serum Hepatocyte Growth Factor as A Non-Invasive Marker For Evaluation of Hepatocellular Carcinoma

    International Nuclear Information System (INIS)

    Abdelgawad, M.R.; Wahba, M.A.

    2012-01-01

    The change and the prognostic value of serum hepatocyte growth factor and AFP level in patients with cirrhosis and/or primary liver cancer (HCC) were investigated. The level of serum hepatocyte growth factor was determined by using enzyme-linked immunosorbent assay, and AFP was determined by using radioimmunoassay in 29 patients with cirrhosis. Twenty five patients with primary liver cancer (13 patients without nodular cirrhosis and 12 patients with nodular cirrhosis) were categorized according to tumour size (≤ or >5 cm) and the level of AFP (≤ or > 200 ng/dl). The correlation between serum AFP and hepatocyte growth factor were significantly increased (P 0.05). Serum AFP can significantly discriminate between all studied groups (P 0.001) except for the comparison between control and cirrhosis (P>0.05), and also between HCC and HCC without nodular cirrhosis and HCC with cirrhosis (P>0.05). Serum HGF and AFP levels were positively affected by tumour size and nodular cirrhosis (P<0.001). Also, serum HGF level was highly affected by the levels of serum AFP in HCC patients. Non-significant correlation was observed between serum hepatocyte growth factor and AFP in control, cirrhosis, cirrhosis and HCC patients with AFP ? 200 ng/dl. It could be concluded that the over expressions of the hepatocyte growth factor and AFP may indicate an adverse prognosis for patients with cirrhosis and/or liver cancer. The sustained high level of serum hepatocyte growth factor in cirrhosis and/or HCC could be considered a factor related to early tumour diagnosis, so, serum HGF level may be used as a non-invasive marker in diagnosis and prognosis of liver malignancy. However, further studies are highly recommended to evaluate the role of HGF or its constituents in diagnosis and/or therapy in the future in a larger cohort of patients with different stages of liver malignancy

  16. Collective cell migration: Implications for wound healing and cancer invasion

    Directory of Open Access Journals (Sweden)

    Li Li

    2013-07-01

    Full Text Available During embryonic morphogenesis, wound repair and cancer invasion, cells often migrate collectively via tight cell-cell junctions, a process named collective migration. During such migration, cells move as coherent groups, large cell sheets, strands or tubes rather than individually. One unexpected finding regarding collective cell migration is that being a "multicellular structure" enables cells to better respond to chemical and physical cues, when compared with isolated cells. This is important because epithelial cells heal wounds via the migration of large sheets of cells with tight intercellular connections. Recent studies have gained some mechanistic insights that will benefit the clinical understanding of wound healing in general. In this review, we will briefly introduce the role of collective cell migration in wound healing, regeneration and cancer invasion and discuss its underlying mechanisms as well as implications for wound healing.

  17. Enzalutamide inhibits androgen receptor-positive bladder cancer cell growth.

    Science.gov (United States)

    Kawahara, Takashi; Ide, Hiroki; Kashiwagi, Eiji; El-Shishtawy, Kareem A; Li, Yi; Reis, Leonardo O; Zheng, Yichun; Miyamoto, Hiroshi

    2016-10-01

    Emerging preclinical evidence suggests that androgen-mediated androgen receptor (AR) signals promote bladder cancer progression. However, little is known about the efficacy of an AR signaling inhibitor, enzalutamide, in the growth of bladder cancer cells. In this study, we compared the effects of enzalutamide and 2 other classic antiandrogens, flutamide and bicalutamide, on androgen-induced bladder cancer cell proliferation, migration, and invasion as well as tumor growth in vivo. Thiazolyl blue cell viability assay, flow cytometry, scratch wound-healing assay, transwell invasion assay, real-time polymerase chain reaction, and reporter gene assay were performed in AR-positive (e.g., UMUC3, TCCSUP, and 647V-AR) and AR-negative (e.g., UMUC3-AR-short hairpin RNA [shRNA], TCCSUP-AR-shRNA, 647V) bladder cancer lines treated with dihydrotestosterone and each AR antagonist. We also used a mouse xenograft model for bladder cancer. Dihydrotestosterone increased bladder cancer cell proliferation, migration, and invasion indicating that endogenous or exogenous AR was functional. Enzalutamide, hydroxyflutamide, and bicalutamide showed similar inhibitory effects, without significant agonist activity, on androgen-mediated cell viability/apoptosis, cell migration, and cell invasion in AR-positive lines. No significant effects of dihydrotestosterone as well as AR antagonists on the growth of AR-negative cells were seen. Correspondingly, in UMUC3 cells, these AR antagonists down-regulated androgen-induced expression of AR, matrix metalloproteinase-2, and interleukin-6. Androgen-enhanced AR-mediated transcriptional activity was also blocked by each AR antagonist exhibiting insignificant agonist activity. In UMUC3 xenograft-bearing mice, oral gavage treatment with each antiandrogen retarded tumor growth, and only enzalutamide demonstrated a statistically significant suppression compared with mock treatment. Our current data support recent observations indicating the involvement of

  18. Nuclear translocation of the cytoplasmic domain of HB-EGF induces gastric cancer invasion

    Directory of Open Access Journals (Sweden)

    Shimura Takaya

    2012-05-01

    Full Text Available Abstract Background Membrane-anchored heparin-binding epidermal growth factor-like growth factor (proHB-EGF yields soluble HB-EGF, which is an epidermal growth factor receptor (EGFR ligand, and a carboxy-terminal fragment of HB-EGF (HB-EGF-CTF after ectodomain shedding. We previously reported that HB-EGF-CTF and unshed proHB-EGF which has the cytoplasmic domain of proHB-EGF (HB-EGF-C, translocate from the plasma membrane to the nucleus and regulate cell cycle after shedding stimuli. However, the significance of nuclear exported HB-EGF-C in human gastric cancer is unclear. Methods We investigated the relationship between intracellular localization of HB-EGF-C and clinical outcome in 96 gastric cancer patients treated with gastrectomy. Moreover, we established stable gastric cancer cell lines overexpressing wild-type HB-EGF (wt-HB-EGF and mutated HB-EGF (HB-EGF-mC, which prevented HB-EGF-C nuclear translocation after shedding. Cell motility between these 2 gastric cancer cell lines was investigated using a transwell invasion assay and a wound healing assay. Results Of the 96 gastric cancer cases, HB-EGF-C immunoreactivity was detected in both the nucleus and cytoplasm in 19 cases (19.8 % and in the cytoplasm only in 25 cases (26.0 %. The nuclear immunoreactivity of HB-EGF-C was significantly increased in stage pT3/4 tumors compared with pT1/2 tumors (T1/2 vs. T3/4: 11.1 % vs. 36.4 %, P  Conclusions Both the function of HB-EGF as an EGFR ligand and a novel signal for HB-EGF-C nuclear translocation induce gastric cancer growth, whereas HB-EGF-C nuclear translocation independently plays a critical role in gastric cancer invasion. The present study demonstrated that HB-EGF-C nuclear translocation might be crucial in gastric cancer invasion. HB-EGF-C nuclear translocation may offer a prognostic marker and a new molecular target for gastric cancer therapy.

  19. Metastatic Invasive Lobular Breast Cancer Presenting Clinically with Esophageal Dysphagia

    OpenAIRE

    Lilit Karapetyan; Heather Laird-Fick; Reuben Cuison

    2017-01-01

    Background. Intra-abdominal metastases of invasive lobular breast cancer (ILBC) may be insidious. We report a case of metastatic ILBC that presented with dysphagia within weeks of a negative mammogram and before the development of intra-abdominal symptoms. Case. A 70-year-old female developed esophageal dysphagia. She underwent EGD which showed a short segment of stricture of the distal esophagus without significant mucosal changes. Biopsy was unremarkable and patient underwent lower esophage...

  20. Methyl jasmonate abolishes the migration, invasion and angiogenesis of gastric cancer cells through down-regulation of matrix metalloproteinase 14

    International Nuclear Information System (INIS)

    Zheng, Liduan; Li, Dan; Xiang, Xuan; Tong, Ling; Qi, Meng; Pu, Jiarui; Huang, Kai; Tong, Qiangsong

    2013-01-01

    Recent evidence indicates that methyl jasmonate (MJ), a plant stress hormone, exhibits anti-cancer activity on human cancer cells. The aim of this study is to determine whether sub-cytotoxic MJ can abolish the migration, invasion and angiogenesis gastric cancer cells. Human gastric cancer cell lines SGC-7901 and MKN-45 were treated with diverse concentrations of MJ. Cell viability, proliferation, migration, invasion and angiogenesis capabilities of cancer cells were measured by MTT colorimetry, EdU incorporation, scratch assay, matrigel invasion assay, and tube formation assay. Gene expression was detected by western blot and real-time quantitative RT-PCR. Binding of transcription factor on gene promoter was detected by chromatin immunoprecipitation. Sub-cytotoxic (0.05 to 0.2 mM) MJ attenuated the migration, invasion and angiogenesis, but not the cell viability or proliferation, of gastric cancer cells in a time- and dose-dependent manner, with down-regulation of matrix metalloproteinase 14 (MMP-14) and its downstream gene vascular endothelial growth factor. Restoration of MMP-14 expression rescued the SGC-7901 and MKN-45 cells from sub-cytotoxic MJ-inhibited migration, invasion and angiogenesis. In addition, sub-cytotoxic MJ decreased the specificity protein 1 (Sp1) expression and binding on MMP-14 promoter, while restoration of Sp1 expression rescued the cancer cells from sub-cytotoxic MJ-mediated defects in MMP-14 expression, migration, invasion and angiogenesis. Sub-cytotoxic MJ attenuates the MMP-14 expression via decreasing the Sp1 expression and binding on MMP-14 promoter, thus inhibiting the migration, invasion and angiogenesis of gastric cancer cells

  1. Radiotherapy of invasive breast cancer: French national guidelines

    International Nuclear Information System (INIS)

    Besnard, S.; Mazeau-Woynar, V.; Verdoni, L.; Cutuli, B.; Fourquet, A.; Giard, S.; Hennequin, C.; Leblanc-Onfroy, M.

    2012-01-01

    The French National Cancer Institute (INCa) and Societe francaise de senologie et pathologie mammaire (SFSPM), in collaboration with a multidisciplinary experts group, have published the French national clinical practice guidelines on a selection of 11 currently debated questions regarding the management of invasive breast cancer. Those guidelines are based on a comprehensive analysis of the current published evidence dealing with those issues, secondly reviewed by 100 reviewers. Radiotherapy was concerned by five of the 11 questions: indications for the boost after whole gland irradiation; hypo-fractionated radiotherapy; partial breast irradiation; indications for mammary internal nodes irradiation, and indications of radiotherapy after neo-adjuvant chemotherapy. (authors)

  2. Technetium-99m sestamibi: an indicator of breast cancer invasiveness

    Energy Technology Data Exchange (ETDEWEB)

    Scopinaro, F. (Section of Nuclear Medicine, Dept. of Experimental Medicine, Univ. ' La Sapienza' , Rome (Italy)); Schillaci, O. (Section of Nuclear Medicine, Dept. of Experimental Medicine, Univ. ' La Sapienza' , Rome (Italy)); Scarpini, M. (1st Inst. of Surgery, Univ. ' La Sapienza' , Rome (Italy)); Mingazzini, P.L. (1st Inst. of Surgery, Univ. ' La Sapienza' , Rome (Italy)); Di Macio, L. (Section of Nuclear Medicine, Dept. of Experimental Medicine, Univ. ' La Sapienza' , Rome (Italy)); Banci, M. (Section of Nuclear Medicine, Dept. of Experimental Medicine, Univ. ' La Sapienza' , Rome (Italy)); Danieli, R. (Section of Nuclear Medicine, Dept. of Experimental Medicine, Univ. ' La Sapienza' , Rome (Italy)); Zerilli, M. (1st Inst. of Surgery, Univ. ' La Sapienza' , Rome (Italy)); Limiti, M.R. (1st Inst. of Surgery, Univ. ' La Sapienza' , Rome (Italy)); Centi Colella, A. (Section of Nuclear Medicine, Dept. of Experimental Medicine, Univ. ' La Sapienza' , Rome (Italy))

    1994-09-01

    As recently shown, angiogenesis is the most reliable marker of breast cancer invasiveness. Unfortunately it must be assessed by immunohistochemistry on tissue specimens. We have used technetium-99m sestamibi, a marker of regional blood flow in other organs that often but not always images breast cancer, to assess the invasiveness of this tumour. Nineteen patients, ten with nodal metastases and nine without any metastases, were studied with [sup 99m]Tc-sestamibi scintigraphy before operation. Angiogenesis was quantitatively assessed by immunohistochemical staining of endothelia for factor VIII. All the node-positive (N+) patients at surgical revesion showed a positive [sup 99m]Tc-sestamibi scan of the primary tumour and all the N-patients were negative. Nine out of ten N+ and sestamibi-positive tumours showed more than 135 microvessels/mm[sup 2] and one showed 99 microvessels/mm[sup 2]; by contrast there were 71.6[+-]12.1 microvessels/mm[sup 2] in the nine N- and sestamibi-negative tumours. Our study suggests that [sup 99m]Tc-sestamibi is a marker of breast cancer invasiveness: its uptake is related to angiogenesis and, possibly, to oxidative metabolism of the tumour. (orig.)

  3. Multidetector CT of Locally Invasive Advanced Gastric Cancer: Value of Oblique Coronal Reconstructed Images for the Assessment of Local Invasion

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jin Hee; Kim, Ah Yong; Kim, Hye Jin; Yook, Jeong Hwan; Yu, Eun Sil; Jang, Yoon Jin; Park, Seong Ho; Shin, Yong Moon; Ha, Hyun Kwon [Asan Medical Center, Seoul (Korea, Republic of)

    2010-01-15

    To evaluate the diagnostic value of oblique coronal reconstructed CT images to determine the local invasion of advanced gastric cancer (AGC). Thirty-four consecutive patients, who were suspected to have locally invasive advanced gastric cancer (more than T3 stage) on a preoperative MDCT scan and underwent a diagnostic or curative laparotomy, were enrolled in this study. Two reviewers performed an independent blind review of three series of MDCT images in random order; axial (AXI), conventional coronal (CCI), and oblique coronal (OCI) (parallel to long axis of gastric body and pancreas) images. In assessing the local invasion, the reader's confidence for the local invasion of AGC was graded using a five point scale (1 = definitely negative, 5 = definitely positive: T4). With surgical findings and histopathological proofs as reference standards, the diagnostic performance of the three different plans of CT images was employed for the verification of local invasion of AGC on a preoperative CT scan using the receiver operating characteristic (ROC) method. Agreements between the two reviewers were analyzed using weighted kappa statistics. Results: In 19 out of 34 patients, local invasion was confirmed surgically or histopathologically (13 pancreas invasion, 6 liver invasion, 4 major vascular invasion, 3 colon and mesocolon invasion, and 2 spleen invasion). The diagnostic performance of OCI was superior to AXI or CCI in the local invasion of AGC. The differences in the area under the curve of AXI (0.770 {+-} 0.087, 0.700 {+-} 0.094), CCI (0.884 {+-} 0.058, 0.958 {+-} 0.038), and OCI (0.954 {+-} 0.050, 0.956 {+-} 0.049), were statistically significant for both reviewers. Inter-observer agreement was excellent for OCI ({kappa}= .973), which was greater than CCI (({kappa}= .839), and AXI (({kappa}= .763). On a CT scan, OCI might be a useful imaging technique in evaluating locally invasive advanced gastric cancer.

  4. Prostate Cancer Susceptibility Polymorphism rs2660753 Is Not Associated with Invasive Ovarian Cancer

    DEFF Research Database (Denmark)

    Amankwah, Ernest K; Kelemen, Linda E; Wang, Qinggang

    2011-01-01

    BACKGROUND: We previously reported an association between rs2660753, a prostate cancer susceptibility polymorphism, and invasive epithelial ovarian cancer (EOC; OR = 1.2, 95% CI=1.0-1.4, P(trend) = 0.01) that showed a stronger association with the serous histological subtype (OR = 1.3, 95% CI = 1...

  5. Riboflavin at high doses enhances lung cancer cell proliferation, invasion, and migration.

    Science.gov (United States)

    Yang, Hui-ting; Chao, Pei-chun; Yin, Mei-chin

    2013-02-01

    The influence of riboflavin (vitamin B(2) ) upon growth, invasion, and migration in non-small cell lung cancer cell lines was evaluated. Riboflavin at 1, 10, 25, 50, 100, 200, or 400 μmol/L was added into A549, H3255, or Calu-6 cells. The effects of this compound upon level and/or expression of reactive oxygen species (ROS), inflammatory cytokines, intercellular adhesion molecule (ICAM)-1, fibronectin, matrix metalloproteinase (MMP)-9, MMP-2, focal adhesion kinase (FAK), nuclear factor kappa B (NF-κB), and mitogen-activated protein kinase (MAPK) were examined. Results showed that riboflavin at test doses did not affect the level of ROS and glutathione. Riboflavin at 200 and 400 μmol/L significantly enhanced cell growth in test lung cancer cell lines, and at 400 μmol/L significantly increased the release of interleukin-6, tumor necrosis factor-alpha, and vascular endothelial growth factor. This agent at 200 and 400 μmol/L also upregulated protein production of ICAM-1, fibronectin, MMP-9, MMP-2, NF-κB p50, p-p38 MAPK, and FAK; and at 400 μmol/L enhanced invasion and migration in test cell lines. These findings suggested that riboflavin at high doses might promote lung cancer progression. © 2013 Institute of Food Technologists®

  6. PTK6 promotes cancer migration and invasion in pancreatic cancer cells dependent on ERK signaling.

    Directory of Open Access Journals (Sweden)

    Hiroaki Ono

    Full Text Available Protein Tyrosine Kinase 6 (PTK6 is a non-receptor type tyrosine kinase that may be involved in some cancers. However, the biological role and expression status of PTK6 in pancreatic cancer is unknown. Therefore in this study, we evaluated the functional role of PTK6 on pancreatic cancer invasion. Five pancreatic cancer cell lines expressed PTK6 at varying levels. PTK6 expression was also observed in human pancreatic adenocarcinomas. PTK6 suppression by siRNA significantly reduced both cellular migration and invasion (0.59/0.49 fold for BxPC3, 0.61/0.62 for Panc1, 0.42/0.39 for MIAPaCa2, respectively, p<0.05 for each. In contrast, forced overexpression of PTK6 by transfection of a PTK6 expression vector in Panc1 and MIAPaCa2 cells increased cellular migration and invasion (1.57/1.67 fold for Panc1, 1.44/1.57 for MIAPaCa2, respectively, p<0.05. Silencing PTK6 reduced ERK1/2 activation, but not AKT or STAT3 activation, while PTK6 overexpression increased ERK1/2 activation. U0126, a specific inhibitor of ERK1/2, completely abolished the effect of PTK6 overexpression on cellular migration and invasion. These results suggest that PTK6 regulates cellular migration and invasion in pancreatic cancer via ERK signaling. PTK6 may be a novel therapeutic target for pancreatic cancer.

  7. Quality of life in patients with muscle invasive and non-muscle invasive bladder cancer.

    Science.gov (United States)

    Singer, S; Ziegler, C; Schwalenberg, T; Hinz, A; Götze, H; Schulte, T

    2013-05-01

    Compared to the literature on other malignancies, data on quality of life (QoL) in bladder cancer are sparse. This study sought answers to the following questions: In what QoL domains do patients with bladder cancer differ from the general population? Do patients with radical cystectomy differ in QoL compared to those who received conservative treatment? Do patients with neobladder generally have better QoL compared to patients with other diversion methods? At the beginning of inpatient rehabilitation, N = 823 patients with bladder cancer were assessed. Data of a representative community sample (N = 2037) were used for comparison. The questionnaire EORTC QLQ-C30 was used to measure QoL. Multivariate linear regression models were computed to investigate differences between groups. Patients with both non-muscle invasive and muscle invasive bladder cancer reported significantly more problems and worse functioning than the general population. Radiotherapy is associated with clinically relevant more pain, dyspnoea, constipation, appetite loss and decreased social functioning while chemotherapy is associated more with dyspnoea. Cystectomy patients reported more fatigue, appetite loss and decreased role functioning. Male patients ≥70 years with conduit experienced more sleep and emotional problems. These effects of urinary diversion were not observed in women and younger patients. Patients with bladder cancer experience various QoL concerns at the beginning of inpatient rehabilitation. These problems can partly be explained by the type of treatment the patients receive. Type of urinary diversion is relevant for QoL in subgroups of patients.

  8. ERβ inhibits proliferation and invasion of breast cancer cells

    Science.gov (United States)

    Lazennec, Gwendal; Bresson, Damien; Lucas, Annick; Chauveau, Corine; Vignon, Françoise

    2001-01-01

    Recent studies indicate that the expression of ERβ in breast cancer is lower than in normal breast, suggesting that ERβ could play an important role in carcinogenesis. To investigate this hypothesis, we engineered estrogen-receptor negative MDA-MB-231 breast cancer cells to reintroduce either ERα or ERβ protein with an adenoviral vector. In these cells, ERβ (as ERα) expression was monitored using RT-PCR and Western blot. ERβ protein was localized in the nucleus (immunocytochemistry) and able to transactivate estrogen-responsive reporter constructs in the presence of estradiol. ERβ and ERα induced the expression of several endogenous genes such as pS2, TGFα or the cyclin kinase inhibitor p21, but in contrast to ERα, ERβ was unable to regulate c-myc proto-oncogene expression. The pure antiestrogen ICI 164, 384 completely blocked ERα and ERβ estrogen-induced activities. ERβ inhibited MDA-MB-231 cell proliferation in a ligand-independent manner, whereas ERα inhibition of proliferation is hormone-dependent. Moreover, ERβ and ERα, decreased cell motility and invasion. Our data bring the first evidence that ERβ is an important modulator of proliferation and invasion of breast cancer cells and support the hypothesis that the loss of ERβ expression could be one of the events leading to the development of breast cancer. PMID:11517191

  9. Nuclear translocation of the cytoplasmic domain of HB-EGF induces gastric cancer invasion

    Science.gov (United States)

    2012-01-01

    Background Membrane-anchored heparin-binding epidermal growth factor-like growth factor (proHB-EGF) yields soluble HB-EGF, which is an epidermal growth factor receptor (EGFR) ligand, and a carboxy-terminal fragment of HB-EGF (HB-EGF-CTF) after ectodomain shedding. We previously reported that HB-EGF-CTF and unshed proHB-EGF which has the cytoplasmic domain of proHB-EGF (HB-EGF-C), translocate from the plasma membrane to the nucleus and regulate cell cycle after shedding stimuli. However, the significance of nuclear exported HB-EGF-C in human gastric cancer is unclear. Methods We investigated the relationship between intracellular localization of HB-EGF-C and clinical outcome in 96 gastric cancer patients treated with gastrectomy. Moreover, we established stable gastric cancer cell lines overexpressing wild-type HB-EGF (wt-HB-EGF) and mutated HB-EGF (HB-EGF-mC), which prevented HB-EGF-C nuclear translocation after shedding. Cell motility between these 2 gastric cancer cell lines was investigated using a transwell invasion assay and a wound healing assay. Results Of the 96 gastric cancer cases, HB-EGF-C immunoreactivity was detected in both the nucleus and cytoplasm in 19 cases (19.8 %) and in the cytoplasm only in 25 cases (26.0 %). The nuclear immunoreactivity of HB-EGF-C was significantly increased in stage pT3/4 tumors compared with pT1/2 tumors (T1/2 vs. T3/4: 11.1 % vs. 36.4 %, P HB-EGF- and HB-EGF-mC-expressing cells significantly increased compared with control cells, but the growth of HB-EGF-mC-expressing cells was significantly decreased compared with wt-HB-EGF-expressing cells. Gastric cancer cell invasion obviously increased in wt-HB-EGF-expressing cells, but invasion in HB-EGF-mC-expressing cells showed a slight increase compared with control cells. Moreover, wt-HB-EGF overexpression increased the effectiveness of wound healing, but had no significant effect in HB-EGF-mC-expressing cells. Conclusions Both the function of HB-EGF as an EGFR ligand

  10. Small invasive colon cancer with systemic metastasis: A case report

    Directory of Open Access Journals (Sweden)

    Sakamoto Taku

    2011-05-01

    Full Text Available ABSTRACT Background Recently, especially in Japan, several researchers have suggested that colorectal cancer can develop not only through an adenoma-carcinoma sequence but also from normal mucosa via a de novo pathway, and that these de novo cancers have more aggressive malignant potential. We report a case of aggressive colon cancer resulting in systemic metastasis despite small tumour size. Case Presentation A 35-year-old woman presented at the referring hospital with swelling of the left cervical lymph node. Biopsy of the lymph node revealed metastatic adenocarcinoma; however, CT scan and mammography were unable to identify the site of the primary lesion. She was diagnosed with unknown primary cancer and referred to our hospital for further examination. Immunohistochemical reevaluation showed the cervical lymph node biopsy specimen to be positive for CDX2 and CK20 and negative for CK7 expression, leading us to suspect the presence of a primary colorectal cancer. We performed a total colonoscopy, and detected a small protruding lesion in the transverse colon. The tumour was only 12 mm in diameter, with a central depressed component and a severely thickened stalk, which suggested direct cancer invasion of the deep submucosa. We concluded that this lesion was the site of origin of the metastasis despite the small tumour size, and performed diagnostic endoscopic mucosal resection. The lesion was found to have an intramucosal cancer component, demonstrating that this lesion represented primary colon cancer. The patient was referred to the gastrointestinal oncology division for systemic chemotherapy. Conclusions In this case, immunohistochemical findings strongly suggested the existence of a colorectal cancer. The non-polypoid gross appearance of the tumour suggested that it can originate de novo , thus providing a valuable case in support of the aggressive malignant potential of a de novo colorectal cancer pathway.

  11. Roles of TRPM8 Ion Channels in Cancer: Proliferation, Survival, and Invasion

    Directory of Open Access Journals (Sweden)

    Nelson S. Yee

    2015-10-01

    Full Text Available The goal of this article is to provide a critical review of the transient receptor potential melastatin-subfamily member 8 (TRPM8 in cancers, with an emphasis on its roles in cellular proliferation, survival, and invasion. The TRPM8 ion channels regulate Ca²⁺ homeostasis and function as a cellular sensor and transducer of cold temperature. Accumulating evidence has demonstrated that TRPM8 is aberrantly expressed in a variety of malignant solid tumors. Clinicopathological analysis has shown that over-expression of TRPM8 correlates with tumor progression. Experimental data have revealed important roles of TRPM8 channels in cancer cells proliferation, survival, and invasion, which appear to be dependent on the cancer type. Recent reports have begun to reveal the signaling mechanisms that mediate the biological roles of TRPM8 in tumor growth and metastasis. Determining the mechanistic roles of TRPM8 in cancer is expected to elucidate the impact of thermal and chemical stimuli on the formation and progression of neoplasms. Translational research and clinical investigation of TRPM8 in malignant diseases will help exploit these ion channels as molecular biomarkers and therapeutic targets for developing precision cancer medicine.

  12. Histology and Immunophenotype of Invasive Lobular Breast Cancer. Daily Practice and Pitfalls

    OpenAIRE

    Varga, Z; Mallon, E

    2009-01-01

    Invasive lobular carcinomas (ILC) represent the most common subtype of invasive breast cancer and account for about 5-15% of all breast cancer cases. Invasive lobular carcinoma is often accompanied by in situ lesions, by lobular neoplasia (LN). Invasive lobular carcinomas display diverse histologic patterns varying from classical through solid to pleomorphic subtypes. When analyzing histological subtypes, the classical variant is reported to have a more favorable outcome. The majority of inva...

  13. Analysis of intravesical recurrence after bladder-preserving therapy for muscle-invasive bladder cancer

    International Nuclear Information System (INIS)

    Onozawa, Mizuki; Miyanaga, Naoto; Hinotsu, Shiro

    2012-01-01

    The aim of the present study was to analyze the pattern of recurrences after bladder-preserving therapy for muscle-invasive bladder cancer. The subjects were 77 patients with T2-3N0M0 bladder cancer whose bladder was preserved by intra-arterial chemotherapy and radiation. The patterns of the first recurrences were retrospectively analyzed. With a median follow-up of 38.5 months, 17 patients (22.1%) experienced intravesical recurrence without metastasis, 14 (82.4%) of which were cases of non-muscle-invasive bladder cancer recurrence and 3 (17.6%) of which were muscle-invasive bladder cancer recurrences. Muscle-invasive bladder cancer recurred at the same site as the initial tumor site in all three cases, whereas non-muscle-invasive bladder cancer recurred at different sites in 64% of the patients in that group. The peak hazard of the non-muscle-invasive bladder cancer recurrence was observed at around a year after treatment. Recurrent non-muscle-invasive bladder cancer was of a significantly lower histological grade with lower Ki-67-labeling indices than the initial muscle-invasive bladder cancer. Twelve (85.7%) of 14 patients with non-muscle-invasive bladder cancer recurrence achieved disease-free status. The multivariate analysis revealed that multiplicity, grade and tumor size were significantly correlated with the recurrence (P=0.0001, 0.0442 and 0.0412, respectively). Most of the recurrences after bladder-preserving therapy were cases of non-muscle-invasive bladder cancer. The recurrence pattern and characteristics of the tumors did not differ from those of primary non-muscle-invasive bladder cancer. Patients with high-risk factors would be candidates for prophylactic intravesical therapy for non-muscle-invasive bladder cancer recurrence. (author)

  14. Enhanced shoot investment makes invasive plants exhibit growth advantages in high nitrogen conditions.

    Science.gov (United States)

    Liu, X A; Peng, Y; Li, J J; Peng, P H

    2018-03-12

    Resource amendments commonly promote plant invasions, raising concerns over the potential consequences of nitrogen (N) deposition; however, it is unclear whether invaders will benefit from N deposition more than natives. Growth is among the most fundamental inherent traits of plants and thus good invaders may have superior growth advantages in response to resource amendments. We compared the growth and allocation between invasive and native plants in different N regimes including controls (ambient N concentrations). We found that invasive plants always grew much larger than native plants in varying N conditions, regardless of growth- or phylogeny-based analyses, and that the former allocated more biomass to shoots than the latter. Although N addition enhanced the growth of invasive plants, this enhancement did not increase with increasing N addition. Across invasive and native species, changes in shoot biomass allocation were positively correlated with changes in whole-plant biomass; and the slope of this relationship was greater in invasive plants than native plants. These findings suggest that enhanced shoot investment makes invasive plants retain a growth advantage in high N conditions relative to natives, and also highlight that future N deposition may increase the risks of plant invasions.

  15. Imaging Prostate Cancer Invasion with Multi-Nuclear Magnetic Resonance Methods: The Metabolic Boyden Chamber

    Directory of Open Access Journals (Sweden)

    Ulrich Pilatus

    2000-05-01

    Full Text Available The physiological milieu within solid tumors can influence invasion and metastasis. To determine the impact of the physiological environment and cellular metabolism on cancer cell invasion, it is necessary to measure invasion during well-controlled modulation of the physiological environment. Recently, we demonstrated that magnetic resonance imaging can be used to monitor cancer cell invasion into a Matrigel layer [Artemov D, Pilatus U, Chou S, Mori N, Nelson JB, and Bhujwalla ZM. (1999. Dynamics of prostate cancer cell invasion studied in vitro by NMR microscopy. Mag Res Med 42, 277–282.]. Here we have developed an invasion assay (“Metabolic Boyden Chamber” that combines this capability with the properties of our isolated cell perfusion system. Long-term experiments can be performed to determine invasion as well as cellular metabolism under controlled environmental conditions. To characterize the assay, we performed experiments with prostate cancer cell lines preselected for different invasive characteristics. The results showed invasion into, and degradation of the Matrigel layer, by the highly invasive/metastatic line (MatLyLu, whereas no significant changes were observed for the less invasive/metastatic cell line (DU-145. With this assay, invasion and metabolism was measured dynamically, together with oxygen tensions within the cellular environment and within the Matrigel layer. Such a system can be used to identify physiological and metabolic characteristics that promote invasion, and evaluate therapeutic interventions to inhibit invasion.

  16. Squamous cell carcinoma - invasive (image)

    Science.gov (United States)

    This irregular red nodule is an invasive squamous cell carcinoma (a form of skin cancer). Initial appearance, shown here, may be very similar to a noncancerous growth called a keratoacanthoma. Squamous cell cancers ...

  17. Transcriptomic and genomic features of invasive lobular breast cancer.

    Science.gov (United States)

    Desmedt, Christine; Zoppoli, Gabriele; Sotiriou, Christos; Salgado, Roberto

    2017-06-01

    Accounting for 10-15% of all breast neoplasms, invasive lobular breast cancer (ILC) is the second most common histological subtype of breast cancer after invasive ductal breast cancer (IDC). Understanding ILC biology, which differs from IDC in terms of clinical presentation, treatment response, relapse timing and patterns, is essential in order to adopt novel, disease-specific management strategies. While the contribution of the histological subtypes to tumour biology has been poorly investigated and acknowledged in the past, recently several major, independent efforts have led to the assembly and molecular characterization of well-annotated ILC case sets. In this review, we provide a critical overview of the literature exploring ILC, through comprehensive and multiomic methods. The first part specifically focuses on ILC transcriptomic features by reviewing the intrinsic molecular subtypes, the application of gene expression scores for the prediction of recurrence, and the identification of gene expression subtypes. The second part describes the main research efforts that lead to the identification of the genomic landscape of ILC, with a special focus to findings that differentiate ILC from IDC and carry potential clinical relevance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Prostaglandins in Cancer Cell Adhesion, Migration, and Invasion

    Directory of Open Access Journals (Sweden)

    David G. Menter

    2012-01-01

    Full Text Available Prostaglandins exert a profound influence over the adhesive, migratory, and invasive behavior of cells during the development and progression of cancer. Cyclooxygenase-2 (COX-2 and microsomal prostaglandin E2 synthase-1 (mPGES-1 are upregulated in inflammation and cancer. This results in the production of prostaglandin E2 (PGE2, which binds to and activates G-protein-coupled prostaglandin E1-4 receptors (EP1-4. Selectively targeting the COX-2/mPGES-1/PGE2/EP1-4 axis of the prostaglandin pathway can reduce the adhesion, migration, invasion, and angiogenesis. Once stimulated by prostaglandins, cadherin adhesive connections between epithelial or endothelial cells are lost. This enables cells to invade through the underlying basement membrane and extracellular matrix (ECM. Interactions with the ECM are mediated by cell surface integrins by “outside-in signaling” through Src and focal adhesion kinase (FAK and/or “inside-out signaling” through talins and kindlins. Combining the use of COX-2/mPGES-1/PGE2/EP1-4 axis-targeted molecules with those targeting cell surface adhesion receptors or their downstream signaling molecules may enhance cancer therapy.

  19. Modelling breast cancer tumour growth for a stable disease population.

    Science.gov (United States)

    Isheden, Gabriel; Humphreys, Keith

    2017-01-01

    Statistical models of breast cancer tumour progression have been used to further our knowledge of the natural history of breast cancer, to evaluate mammography screening in terms of mortality, to estimate overdiagnosis, and to estimate the impact of lead-time bias when comparing survival times between screen detected cancers and cancers found outside of screening programs. Multi-state Markov models have been widely used, but several research groups have proposed other modelling frameworks based on specifying an underlying biological continuous tumour growth process. These continuous models offer some advantages over multi-state models and have been used, for example, to quantify screening sensitivity in terms of mammographic density, and to quantify the effect of body size covariates on tumour growth and time to symptomatic detection. As of yet, however, the continuous tumour growth models are not sufficiently developed and require extensive computing to obtain parameter estimates. In this article, we provide a detailed description of the underlying assumptions of the continuous tumour growth model, derive new theoretical results for the model, and show how these results may help the development of this modelling framework. In illustrating the approach, we develop a model for mammography screening sensitivity, using a sample of 1901 post-menopausal women diagnosed with invasive breast cancer.

  20. Trichomonas vaginalis homolog of macrophage migration inhibitory factor induces prostate cell growth, invasiveness, and inflammatory responses.

    Science.gov (United States)

    Twu, Olivia; Dessí, Daniele; Vu, Anh; Mercer, Frances; Stevens, Grant C; de Miguel, Natalia; Rappelli, Paola; Cocco, Anna Rita; Clubb, Robert T; Fiori, Pier Luigi; Johnson, Patricia J

    2014-06-03

    The human-infective parasite Trichomonas vaginalis causes the most prevalent nonviral sexually transmitted infection worldwide. Infections in men may result in colonization of the prostate and are correlated with increased risk of aggressive prostate cancer. We have found that T. vaginalis secretes a protein, T. vaginalis macrophage migration inhibitory factor (TvMIF), that is 47% similar to human macrophage migration inhibitory factor (HuMIF), a proinflammatory cytokine. Because HuMIF is reported to be elevated in prostate cancer and inflammation plays an important role in the initiation and progression of cancers, we have explored a role for TvMIF in prostate cancer. Here, we show that TvMIF has tautomerase activity, inhibits macrophage migration, and is proinflammatory. We also demonstrate that TvMIF binds the human CD74 MIF receptor with high affinity, comparable to that of HuMIF, which triggers activation of ERK, Akt, and Bcl-2-associated death promoter phosphorylation at a physiologically relevant concentration (1 ng/mL, 80 pM). TvMIF increases the in vitro growth and invasion through Matrigel of benign and prostate cancer cells. Sera from patients infected with T. vaginalis are reactive to TvMIF, especially in males. The presence of anti-TvMIF antibodies indicates that TvMIF is released by the parasite and elicits host immune responses during infection. Together, these data indicate that chronic T. vaginalis infections may result in TvMIF-driven inflammation and cell proliferation, thus triggering pathways that contribute to the promotion and progression of prostate cancer.

  1. Ebselen inhibits QSOX1 enzymatic activity and suppresses invasion of pancreatic and renal cancer cell lines.

    Science.gov (United States)

    Hanavan, Paul D; Borges, Chad R; Katchman, Benjamin A; Faigel, Douglas O; Ho, Thai H; Ma, Chen-Ting; Sergienko, Eduard A; Meurice, Nathalie; Petit, Joachim L; Lake, Douglas F

    2015-07-30

    Quiescin sulfhydryl oxidase 1 (QSOX1) is a highly conserved disulfide bond-generating enzyme that is overexpressed in diverse tumor types. Its enzymatic activity promotes the growth and invasion of tumor cells and alters extracellular matrix composition. In a nude mouse-human tumor xenograft model, tumors containing shRNA for QSOX1 grew significantly more slowly than controls, suggesting that QSOX1 supports a proliferative phenotype in vivo. High throughput screening experiments identified ebselen as an in vitro inhibitor of QSOX1 enzymatic activity. Ebselen treatment of pancreatic and renal cancer cell lines stalled tumor growth and inhibited invasion through Matrigel in vitro. Daily oral treatment with ebselen resulted in a 58% reduction in tumor growth in mice bearing human pancreatic tumor xenografts compared to controls. Mass spectrometric analysis of ebselen-treated QSOX1 mechanistically revealed that C165 and C237 of QSOX1 covalently bound to ebselen. This report details the anti-neoplastic properties of ebselen in pancreatic and renal cancer cell lines. The results here offer a "proof-of-principle" that enzymatic inhibition of QSOX1 may have clinical relevancy.

  2. Radiation induces invasiveness of pancreatic cancer via up-regulation of heparanase

    International Nuclear Information System (INIS)

    Lerner, I.; Bensoussan, E.; Meirovitz, A.; Elkin, M.; Vlodavsky, I.

    2013-01-01

    The full text of the publication follows. Pancreatic cancer is one of the most aggressive neoplasms with an extremely low survival rate. Because most pancreatic carcinoma patients miss the opportunity for complete surgical resection at the time of diagnosis, radiotherapy remains a major component of treatment modalities. However, pancreatic cancer often shows resistance to radiation therapy. Ionizing radiation (IR)-induced aggressiveness is emerging as one of the important mechanisms responsible for the limited benefit of radiation therapy in pancreatic cancer, but the identity of downstream effectors responsible for this effect remains poorly investigated. Here we report that IR promotes pancreatic cancer aggressiveness through up-regulation of the heparanase. Heparanase is a predominant mammalian enzyme capable of degrading heparan sulfate (HS), the main polysaccharide component of the basement membrane and other types of extracellular matrix (ECM). Cleavage of HS by heparanase leads to disassembly of ECM, enables cell invasion, releases HS-bound angiogenic and growth factors from the ECM depots, and generates bioactive HS fragments. We found that clinically relevant doses of IR augment invasive ability of pancreatic cells in vitro and in vivo via induction of heparanase. Our results indicate that the effect of IR on heparanase expression is mediated by Egr1 transcription factor. Moreover, specific inhibitor of heparanase enzymatic activity abolished IR-induced invasiveness of pancreatic carcinoma cells in vitro, while combined treatment with IR and the heparanase inhibitor, but not IR alone, attenuated ortho-topic pancreatic tumor progression in vivo. The proposed up-regulation of heparanase by IR represents a new molecular pathway through which IR may promote pancreatic tumor aggressiveness, providing explanation for the limited benefit from radiation therapy in pancreatic cancer. Our research is expected to offer a new approach to improve the efficacy of

  3. Growth dependence of conjugation explains limited plasmid invasion in biofilms: an individual‐based modelling study

    DEFF Research Database (Denmark)

    Merkey, Brian; Lardon, Laurent; Seoane, Jose Miguel

    2011-01-01

    Plasmid invasion in biofilms is often surprisingly limited in spite of the close contact of cells in a biofilm. We hypothesized that this poor plasmid spread into deeper biofilm layers is caused by a dependence of conjugation on the growth rate (relative to the maximum growth rate) of the donor......, we find that invasion of a resident biofilm is indeed limited when plasmid transfer depends on growth, but not so in the absence of growth dependence. Using sensitivity analysis we also find that parameters related to timing (i.e. a lag before the transconjugant can transfer, transfer proficiency...... and scan speed) and spatial reach (EPS yield, conjugal pilus length) are more important for successful plasmid invasion than the recipients' growth rate or the probability of segregational loss. While this study identifies one factor that can limit plasmid invasion in biofilms, the new individual...

  4. Met tyrosine kinase inhibitor, PF-2341066, suppresses growth and invasion of nasopharyngeal carcinoma

    Directory of Open Access Journals (Sweden)

    Zhao Y

    2015-08-01

    Full Text Available Yuanyuan Zhao,1,* Jing Zhang,2,* Ying Tian,1,* Cong Xue,1 Zhihuang Hu,1 Li Zhang1,3 1Department of Medical Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, and Collaborative Innovation Center for Cancer Medicine, 2Department of Medical Oncology, the First Affiliated Hospital of Guang Zhou Traditional Chinese Medicine University, 3National Anti-Cancer Drug Research Centre, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, and Collaborative Innovation Center for Cancer Medicine, Guangzhou, People’s Republic of China*These authors contributed equally to this work Purpose: We explored the effect of hepatocyte growth factor (HGF/Met signaling pathway on nasopharyngeal carcinoma (NPC cells in vitro and in vivo, and investigated the ability of Met tyrosine kinase inhibitor (TKI to block HGF-induced biological signaling.Experimental design: Met TKI inhibitor PF-2341066 alone, or in combination with cisplatin, was investigated for its ability to block HGF-induced signaling and biological effects in vitro and in vivo. HGF/Met expression and activation of signaling in NPC cells were detected by using Western blot and immunohistochemistry. Biological evaluation, including wound healing, cell proliferation, and invasion of NPC cells, was also examined, and the correlation between HGF/Met expression of primary and metastatic tumor in NPC patients and clinical prognosis were also analyzed.Results: Met TKI inhibitor, PF-2341066, inhibited growth of NPC cells in vivo with half maximal inhibitory concentration of 0.79±0.21 µmol/L, and suppressed invasion and migration of NPC cells; also, the inhibition of PF-2341066 was synergized with cisplatin treatment. Compared with the control group, Met TKI inhibited metastasis of transplanted NPC in nude mice (the number of live metastases [mean ± SD]: 5.8±2.2 versus 11.8±2.2, P=0.03; the number of lung metastases: 2.3±1.5 versus

  5. Targeting fibroblast growth factor receptor signaling inhibits prostate cancer progression.

    Science.gov (United States)

    Feng, Shu; Shao, Longjiang; Yu, Wendong; Gavine, Paul; Ittmann, Michael

    2012-07-15

    Extensive correlative studies in human prostate cancer as well as studies in vitro and in mouse models indicate that fibroblast growth factor receptor (FGFR) signaling plays an important role in prostate cancer progression. In this study, we used a probe compound for an FGFR inhibitor, which potently inhibits FGFR-1-3 and significantly inhibits FGFR-4. The purpose of this study is to determine whether targeting FGFR signaling from all four FGFRs will have in vitro activities consistent with inhibition of tumor progression and will inhibit tumor progression in vivo. Effects of AZ8010 on FGFR signaling and invasion were analyzed using immortalized normal prostate epithelial (PNT1a) cells and PNT1a overexpressing FGFR-1 or FGFR-4. The effect of AZ8010 on invasion and proliferation in vitro was also evaluated in prostate cancer cell lines. Finally, the impact of AZ8010 on tumor progression in vivo was evaluated using a VCaP xenograft model. AZ8010 completely inhibits FGFR-1 and significantly inhibits FGFR-4 signaling at 100 nmol/L, which is an achievable in vivo concentration. This results in marked inhibition of extracellular signal-regulated kinase (ERK) phosphorylation and invasion in PNT1a cells expressing FGFR-1 and FGFR-4 and all prostate cancer cell lines tested. Treatment in vivo completely inhibited VCaP tumor growth and significantly inhibited angiogenesis and proliferation and increased cell death in treated tumors. This was associated with marked inhibition of ERK phosphorylation in treated tumors. Targeting FGFR signaling is a promising new approach to treating aggressive prostate cancer.

  6. Delphinidin inhibits BDNF-induced migration and invasion in SKOV3 ovarian cancer cells.

    Science.gov (United States)

    Lim, Won-Chul; Kim, Hyunhee; Kim, Young-Joo; Park, Seung-Ho; Song, Ji-Hye; Lee, Ki Heon; Lee, In Ho; Lee, Yoo-Kyung; So, Kyeong A; Choi, Kyung-Chul; Ko, Hyeonseok

    2017-12-01

    Brain-derived neurotrophic factor (BDNF), the TrkB ligand, is associated with aggressive malignant behavior, including migration and invasion, in tumor cells and a poor prognosis in patients with various types of cancer. Delphinidin is a diphenylpropane-based polyphenolic ring structure-harboring compound, which exhibits a wide range of pharmacological activities, anti-tumor, anti-oxidant, anti-inflammatory, anti-angiogenic and anti-mutagenic activity. However, the possible role of delphinidin in the cancer migration and invasion is unclear. We investigated the suppressive effect of delphinidin on the cancer migration and invasion. Thus, we found that BDNF enhanced cancer migration and invasion in SKOV3 ovarian cancer cell. To exam the inhibitory role of delphinidin in SKOV3 ovarian cancer migration and invasion, we investigated the use of delphinidin as inhibitors of BDNF-induced motility and invasiveness in SKOV3 ovarian cancer cells in vitro. Here, we found that delphinidin prominently inhibited the BDNF-induced increase in cell migration and invasion of SKOV3 ovarian cancer cells. Furthermore, delphinidin remarkably inhibited BDNF-stimulated expression of MMP-2 and MMP-9. Also, delphinidin antagonized the phosphorylation of Akt and nuclear translocation of NF-κB permitted by the BDNF in SKOV3 ovarian cancer cells. Taken together, our findings provide new evidence that delphinidin suppressed the BDNF-induced ovarian cancer migration and invasion through decreasing of Akt activation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. [An analysis of 68 invasive lobular breast cancer cases in clinicopathological characteristics and the prognostic determinants].

    Science.gov (United States)

    Liu, Q; Xiang, H Y; Ye, J M; Xu, L; Zhang, H; Zhang, S; Duan, X N; Liu, Y H

    2018-02-01

    Objective: To study the clinicopathological characteristics and the prognostic determinants of the invasive lobular carcinoma breast cancer. Methods: This was a retrospective single-center study of invasive lobular breast cancer cases diagnosed from January 2008 to December 2014 at Peking University First Hospital Breast Disease Center. The study enrolled 68 invasive lobular breast cancer patients, which represented 3.64% (68/1 870) of total invasive breast cancer. The median age of all selected patients was 46 years ranging from 36 to 83 years. All patients were restaged based on the 8(th) edition of AJCC cancer staging system and follow-up data including disease-free survival (DFS) and overall survival (OS) were analyzed to explore the prognostic determinants. The 5-year OS and DFS were calculated using Kaplan-Meier method; the significance of correlations between clinicopathological features and prognostic factors was estimated using log-rank test. Results: There were significant differences in OS between patients with different anatomic stage, prognostic stage, lymph node metastasis, progesterone receptor (PR) expression, lymphvascular invasion and perineural invasion (χ(2:) 4.318 to 32.394, all P invasion (χ(2:) 4.347 to 27.369, all P invasion are the prognostic factors of invasive lobular breast cancer. Regard to invasive lobular breast cancer patients, clinicians should pay close attention to the differences between prognostic stage and anatomic stage.

  8. Raddeanin A induces human gastric cancer cells apoptosis and inhibits their invasion in vitro

    International Nuclear Information System (INIS)

    Xue, Gang; Zou, Xi; Zhou, Jin-Yong; Sun, Wei; Wu, Jian; Xu, Jia-Li; Wang, Rui-Ping

    2013-01-01

    Highlights: •Raddeanin A is a triterpenoid saponin in herb medicine Anemone raddeana Regel. •Raddeanin A can inhibit 3 kinds of gastric cancer cells’ proliferation and invasion. •Caspase-cascades’ activation indicates apoptosis induced by Raddeanin A. •MMPs, RECK, Rhoc and E-cad are involved in Raddeanin A-induced invasion inhibition. -- Abstract: Raddeanin A is one of the triterpenoid saponins in herbal medicine Anemone raddeana Regel which was reported to suppress the growth of liver and lung cancer cells. However, little was known about its effect on gastric cancer (GC) cells. This study aimed to investigate its inhibitory effect on three kinds of different differentiation stage GC cells (BGC-823, SGC-7901 and MKN-28) in vitro and the possible mechanisms. Proliferation assay and flow cytometry demonstrated Raddeanin A’s dose-dependent inhibitory effect and determined its induction of cells apoptosis, respectively. Transwell assay, wounding heal assay and cell matrix adhesion assay showed that Raddeanin A significantly inhibited the abilities of the invasion, migration and adhesion of the BGC-823 cells. Moreover, quantitative real time PCR and Western blot analysis found that Raddeanin A increased Bax expression while reduced Bcl-2, Bcl-xL and Survivin expressions and significantly activated caspase-3, caspase-8, caspase-9 and poly-ADP ribose polymerase (PARP). Besides, Raddeanin A could also up-regulate the expression of reversion inducing cysteine rich protein with Kazal motifs (RECK), E-cadherin (E-cad) and down-regulate the expression of matrix metalloproteinases-2 (MMP-2), MMP-9, MMP-14 and Rhoc. In conclusion, Raddeanin A inhibits proliferation of human GC cells, induces their apoptosis and inhibits the abilities of invasion, migration and adhesion, exhibiting potential to become antitumor drug

  9. Raddeanin A induces human gastric cancer cells apoptosis and inhibits their invasion in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Gang [Department of Oncology, Nanjing University of Chinese Medicine, Nanjing (China); Zou, Xi [Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing (China); Zhou, Jin-Yong [Laboratory Center, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing (China); Sun, Wei [Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing (China); Wu, Jian [Laboratory Center, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing (China); Xu, Jia-Li [Department of Oncology, Nanjing University of Chinese Medicine, Nanjing (China); Wang, Rui-Ping, E-mail: ruipingwang61@hotmail.com [Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing (China)

    2013-09-20

    Highlights: •Raddeanin A is a triterpenoid saponin in herb medicine Anemone raddeana Regel. •Raddeanin A can inhibit 3 kinds of gastric cancer cells’ proliferation and invasion. •Caspase-cascades’ activation indicates apoptosis induced by Raddeanin A. •MMPs, RECK, Rhoc and E-cad are involved in Raddeanin A-induced invasion inhibition. -- Abstract: Raddeanin A is one of the triterpenoid saponins in herbal medicine Anemone raddeana Regel which was reported to suppress the growth of liver and lung cancer cells. However, little was known about its effect on gastric cancer (GC) cells. This study aimed to investigate its inhibitory effect on three kinds of different differentiation stage GC cells (BGC-823, SGC-7901 and MKN-28) in vitro and the possible mechanisms. Proliferation assay and flow cytometry demonstrated Raddeanin A’s dose-dependent inhibitory effect and determined its induction of cells apoptosis, respectively. Transwell assay, wounding heal assay and cell matrix adhesion assay showed that Raddeanin A significantly inhibited the abilities of the invasion, migration and adhesion of the BGC-823 cells. Moreover, quantitative real time PCR and Western blot analysis found that Raddeanin A increased Bax expression while reduced Bcl-2, Bcl-xL and Survivin expressions and significantly activated caspase-3, caspase-8, caspase-9 and poly-ADP ribose polymerase (PARP). Besides, Raddeanin A could also up-regulate the expression of reversion inducing cysteine rich protein with Kazal motifs (RECK), E-cadherin (E-cad) and down-regulate the expression of matrix metalloproteinases-2 (MMP-2), MMP-9, MMP-14 and Rhoc. In conclusion, Raddeanin A inhibits proliferation of human GC cells, induces their apoptosis and inhibits the abilities of invasion, migration and adhesion, exhibiting potential to become antitumor drug.

  10. Estrogen Receptor α Is Crucial in Zearalenone-Induced Invasion and Migration of Prostate Cancer Cells

    Directory of Open Access Journals (Sweden)

    Karolina Kowalska

    2018-02-01

    Full Text Available Zearalenone (ZEA, a mycotoxin produced in the genus Fusarium, binds to estrogen receptors (ER and is therefore regarded as an endocrine disruptor. ZEA has also been found to modulate the proliferation and apoptosis of prostate cancer cells in a dose-dependent manner. This study evaluates whether the effect of a low dose of ZEA (0.1 and 0.001 nM on the invasion and migration of prostate cancer cell line PC3 is associated with ERs expression. The invasion and migration was evaluated by modified Boyden chamber assay, scratch assay, gelatin zymography, Real Time qPCR (RTqPCR and Western blot. The involvement of ERs was evaluated with the selective ER antagonists: estrogen receptor α (ERα antagonist 1,3-bis (4-hydroxyphenyl-4-methyl-5-[4-(2-piperidinylethoxy phenol]-1H-pyrazole dihydrochloride (MPP and estrogen receptor β (ERβ antagonist 4-[2–phenyl-5,7–bis (trifluoromethyl pyrazolo [1,5-a]-pyrimidin-3-yl] phenol (PHTPP. ZEA was found to modulate cell motility dependent on estrogen receptors, particularly ERα. Increased cell migration and invasion were associated with increased MMP-2 and MMP-9 activity as well as the up-regulation of the EMT-associated genes vimentin (VIM, zinc finger E-box-binding homeobox 1/2 (ZEB1/2 and transforming growth factor β 1 (TGFβ1. In conclusion, ZEA might modulate the invasiveness of prostate cancer cells dependently on ERα expression.

  11. Radiation-induced relief of pain in an animal model with bone invasion from cancer

    International Nuclear Information System (INIS)

    Seong, J.; Kim, J.; Kim, K.H.; Kim, U.J.; Lee, B.W.

    2003-01-01

    In clinic, local radiation is effective for relief of pain from cancer invasion into the bones. This effect is usually observed before the regression of tumor occurs, which implies radiation-induced pain relief by mechanisms other than tumor irradication. In this study, possible mechanisms were explored in animal model system. To establish an animal model, syngeneic hepatocarcinoma, HCa-I was transplanted on femoral periosteum of C3H/HeJ male mice and bone-invasive tumor growth was identified through the histological analysis. Development of tumor-induced pain was assessed by von Frey filament test, acetone test, and radiant heat test. Animals were also irradiated for their tumors. Any change in pain was analyzed by above tests for the quantitative change and by immunohistochemical stain for the expression of molecules such as c-fos, substance P, and calcitonin gene-related peptide (CGRP) in lumbar spinal cord. Cancer invasion into the bone was started from 7th day after transplantation and became evident at day 14. Objective increase of pain in the ipsilateral thigh was observed at day 14 on von Frey filament test and acetone test, while there was no remarkable regression of the tumors. In this model system, local radiation of tumor resulted in decrease in objective pain on von Frey filament test and acetone test. In the immunohistochemical stain for lumbar spinal cord, the expression of substance P and CGRP but not c-fos increased in tumor-bearing animal compared to the control. The expression of these molecules decreased in animals given local radiation. In summary, an animal model system was established for objective pain from cancer invasion into the bones. Local radiation of tumor induced objective pain relief and this effect seems to be mediated not by tumor regression but through altered production of pain-related molecules

  12. Radiation-induced relief of pain in an animal model with bone invasion from cancer

    Energy Technology Data Exchange (ETDEWEB)

    Seong, J; Kim, J; Kim, K H; Kim, U J; Lee, B W [Yonsei University Medical College, (Korea, Republic of)

    2003-07-01

    In clinic, local radiation is effective for relief of pain from cancer invasion into the bones. This effect is usually observed before the regression of tumor occurs, which implies radiation-induced pain relief by mechanisms other than tumor irradication. In this study, possible mechanisms were explored in animal model system. To establish an animal model, syngeneic hepatocarcinoma, HCa-I was transplanted on femoral periosteum of C3H/HeJ male mice and bone-invasive tumor growth was identified through the histological analysis. Development of tumor-induced pain was assessed by von Frey filament test, acetone test, and radiant heat test. Animals were also irradiated for their tumors. Any change in pain was analyzed by above tests for the quantitative change and by immunohistochemical stain for the expression of molecules such as c-fos, substance P, and calcitonin gene-related peptide (CGRP) in lumbar spinal cord. Cancer invasion into the bone was started from 7th day after transplantation and became evident at day 14. Objective increase of pain in the ipsilateral thigh was observed at day 14 on von Frey filament test and acetone test, while there was no remarkable regression of the tumors. In this model system, local radiation of tumor resulted in decrease in objective pain on von Frey filament test and acetone test. In the immunohistochemical stain for lumbar spinal cord, the expression of substance P and CGRP but not c-fos increased in tumor-bearing animal compared to the control. The expression of these molecules decreased in animals given local radiation. In summary, an animal model system was established for objective pain from cancer invasion into the bones. Local radiation of tumor induced objective pain relief and this effect seems to be mediated not by tumor regression but through altered production of pain-related molecules.

  13. Concomitant boost radiotherapy for muscle invasive bladder cancer

    Energy Technology Data Exchange (ETDEWEB)

    Pos, Floris J; Tienhoven, Geertjan van; Hulshof, Maarten C.C.M.; Koedooder, Kees; Gonzalez Gonzalez, Dionisio

    2003-07-01

    Purpose: To evaluate the feasibility and efficacy of a concomitant partial bladder boost schedule in radiotherapy for invasive bladder cancer, coupling a limited boost volume with shortening of the overall treatment time. Methods and materials: Between 1994 and 1999, 50 patients with a T2-T4 N0M0 transitional cell carcinoma of the bladder received radiotherapy delivered in a short overall treatment time with a concomitant boost technique. With this technique a dose of 40 Gy in 2-Gy fractions was administered to the small pelvis with a concomitant boost limited to the bladder tumor area plus margin of 15 Gy in fractions of 0.75 Gy. The total tumor dose was 55 Gy in 20 fractions in 4 weeks. Toxicity was scored according to EORTC/RTOG toxicity criteria. Results: The feasibility of the treatment was good. Severe acute toxicity {>=}G3 was observed in seven patients (14%). Severe late toxicity {>=}G3 was observed in six patients (13%). Thirty-seven patients (74%) showed a complete and five (10 %) a partial remission after treatment. The actuarial 3-year freedom of local progression was 55%. Conclusion: In external radiotherapy for muscle invasive bladder cancer a concomitant boost technique coupling a partial bladder boost with shortening of the overall treatment time provides a high probability of local control with acceptable toxicity.

  14. Concomitant boost radiotherapy for muscle invasive bladder cancer

    International Nuclear Information System (INIS)

    Pos, Floris J.; Tienhoven, Geertjan van; Hulshof, Maarten C.C.M.; Koedooder, Kees; Gonzalez Gonzalez, Dionisio

    2003-01-01

    Purpose: To evaluate the feasibility and efficacy of a concomitant partial bladder boost schedule in radiotherapy for invasive bladder cancer, coupling a limited boost volume with shortening of the overall treatment time. Methods and materials: Between 1994 and 1999, 50 patients with a T2-T4 N0M0 transitional cell carcinoma of the bladder received radiotherapy delivered in a short overall treatment time with a concomitant boost technique. With this technique a dose of 40 Gy in 2-Gy fractions was administered to the small pelvis with a concomitant boost limited to the bladder tumor area plus margin of 15 Gy in fractions of 0.75 Gy. The total tumor dose was 55 Gy in 20 fractions in 4 weeks. Toxicity was scored according to EORTC/RTOG toxicity criteria. Results: The feasibility of the treatment was good. Severe acute toxicity ≥G3 was observed in seven patients (14%). Severe late toxicity ≥G3 was observed in six patients (13%). Thirty-seven patients (74%) showed a complete and five (10 %) a partial remission after treatment. The actuarial 3-year freedom of local progression was 55%. Conclusion: In external radiotherapy for muscle invasive bladder cancer a concomitant boost technique coupling a partial bladder boost with shortening of the overall treatment time provides a high probability of local control with acceptable toxicity

  15. Preoperative breast MRI in patients with invasive lobular breast cancer

    International Nuclear Information System (INIS)

    Schelfout, K.; Colpaert, C.; Van Goethem, M.; Verslegers, I.; Biltjes, I.; De Schepper, A.; Kersschot, E.; Leyman, P.; Thienpont, L.; Van den Haute, J.; Gillardin, J.P.; Tjalma, W.; Buytaert, Ph.

    2004-01-01

    To investigate the use of MRI in preoperative characterization of invasive lobular breast cancer (ILC) and in detection of multifocal/multicentric disease. We retrospectively reviewed T1-weighted FLASH 3D precontrast and postcontrast MR images together with subtraction images of 26 women with histopathologically proven invasive lobular cancer. Two experienced radiologists described tumor patterns of ILC independently. MR findings of unifocal, multifocal, single quadrant and multiquadrant disease were correlated with results of other imaging techniques and compared with histopathological findings as gold standard. Most ILC presented on MRI as a single spiculated/irregular, inhomogeneous mass (pattern 1, n=12) or as a dominant lesion surrounded by multiple small enhancing foci (pattern 2, n=8). Multiple small enhancing foci with interconnecting enhancing strands (pattern 3) and an architectural distortion (pattern 4) were both described in three cases. There was one case of a focal area of inhomogeneous enhancement (pattern 5) and one normal MR examination (pattern 6). Unifocal and multifocal lesions were identified on MRI in four patients with normal conventional imaging. In nine women, multiple additional lesions or more extensive multiquadrant disease were correctly identified only on MRI. MRI may play an important role in the evaluation of patients with ILC, which is often difficult to diagnose on clinical examination and conventional imaging and more likely occur in multiple sites and in both breasts. However, false-negative MR findings do occur in a small percentage of ILC. (orig.)

  16. Comprehensive Molecular Portraits of Invasive Lobular Breast Cancer.

    Science.gov (United States)

    Ciriello, Giovanni; Gatza, Michael L; Beck, Andrew H; Wilkerson, Matthew D; Rhie, Suhn K; Pastore, Alessandro; Zhang, Hailei; McLellan, Michael; Yau, Christina; Kandoth, Cyriac; Bowlby, Reanne; Shen, Hui; Hayat, Sikander; Fieldhouse, Robert; Lester, Susan C; Tse, Gary M K; Factor, Rachel E; Collins, Laura C; Allison, Kimberly H; Chen, Yunn-Yi; Jensen, Kristin; Johnson, Nicole B; Oesterreich, Steffi; Mills, Gordon B; Cherniack, Andrew D; Robertson, Gordon; Benz, Christopher; Sander, Chris; Laird, Peter W; Hoadley, Katherine A; King, Tari A; Perou, Charles M

    2015-10-08

    Invasive lobular carcinoma (ILC) is the second most prevalent histologic subtype of invasive breast cancer. Here, we comprehensively profiled 817 breast tumors, including 127 ILC, 490 ductal (IDC), and 88 mixed IDC/ILC. Besides E-cadherin loss, the best known ILC genetic hallmark, we identified mutations targeting PTEN, TBX3, and FOXA1 as ILC enriched features. PTEN loss associated with increased AKT phosphorylation, which was highest in ILC among all breast cancer subtypes. Spatially clustered FOXA1 mutations correlated with increased FOXA1 expression and activity. Conversely, GATA3 mutations and high expression characterized luminal A IDC, suggesting differential modulation of ER activity in ILC and IDC. Proliferation and immune-related signatures determined three ILC transcriptional subtypes associated with survival differences. Mixed IDC/ILC cases were molecularly classified as ILC-like and IDC-like revealing no true hybrid features. This multidimensional molecular atlas sheds new light on the genetic bases of ILC and provides potential clinical options. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Preoperative breast MRI in patients with invasive lobular breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Schelfout, K.; Colpaert, C. [Department of Pathology, University Hospital Antwerp, Wilrijkstraat 10, 2650, Edegem (Belgium); Van Goethem, M.; Verslegers, I.; Biltjes, I.; De Schepper, A. [Department of Radiology, University Hospital Antwerp, Wilrijkstraat 10, 2650, Edegem (Belgium); Kersschot, E.; Leyman, P. [Department of Radiology, O.L.V. Hospital Aalst, Moorselbaan 164, 9000, Aalst (Belgium); Thienpont, L. [Department of Pathology, O.L.V. Hospital Aalst, Moorselbaan 164, 9000, Aalst (Belgium); Van den Haute, J. [Department of Gynecology, O.L.V. Hospital Aalst, Moorselbaan 164, 9000, Aalst (Belgium); Gillardin, J.P. [Department of Surgery, O.L.V. Hospital Aalst, Moorselbaan 164, 9000, Aalst (Belgium); Tjalma, W.; Buytaert, Ph. [Department of Gynecology, University Hospital Antwerp, Wilrijkstraat 10, 2650, Edegem (Belgium)

    2004-07-01

    To investigate the use of MRI in preoperative characterization of invasive lobular breast cancer (ILC) and in detection of multifocal/multicentric disease. We retrospectively reviewed T1-weighted FLASH 3D precontrast and postcontrast MR images together with subtraction images of 26 women with histopathologically proven invasive lobular cancer. Two experienced radiologists described tumor patterns of ILC independently. MR findings of unifocal, multifocal, single quadrant and multiquadrant disease were correlated with results of other imaging techniques and compared with histopathological findings as gold standard. Most ILC presented on MRI as a single spiculated/irregular, inhomogeneous mass (pattern 1, n=12) or as a dominant lesion surrounded by multiple small enhancing foci (pattern 2, n=8). Multiple small enhancing foci with interconnecting enhancing strands (pattern 3) and an architectural distortion (pattern 4) were both described in three cases. There was one case of a focal area of inhomogeneous enhancement (pattern 5) and one normal MR examination (pattern 6). Unifocal and multifocal lesions were identified on MRI in four patients with normal conventional imaging. In nine women, multiple additional lesions or more extensive multiquadrant disease were correctly identified only on MRI. MRI may play an important role in the evaluation of patients with ILC, which is often difficult to diagnose on clinical examination and conventional imaging and more likely occur in multiple sites and in both breasts. However, false-negative MR findings do occur in a small percentage of ILC. (orig.)

  18. Bladder cancer: overview and disease management. Part 1: non-muscle-invasive bladder cancer.

    Science.gov (United States)

    Anderson, Beverley

    2018-05-10

    Part 1 of this two-part article provides an overview of bladder cancer and discusses its management. Since publication of a previous article entitled 'Understanding the role of smoking in the aetiology of bladder cancer' ( Anderson, 2009 ), the author has received many requests for an update. This article provides an overview of bladder cancer and its current management practices, underlining the continued role of smoking as the predominant risk factor in the disease's development. The management of bladder cancer is governed by specific guidelines. Management of non-muscle-invasive cancers, including surgical intervention with transurethral resection, and intravesical therapy using chemotherapy and immunotherapy agents, is discussed. Cystectomy (removal of the bladder), is sometimes necessary. Treatments are effective in reducing tumour recurrence, but the effects of the risks and side-effects on the individual's quality of life can be significant. The prevalence of bladder cancer, and the nature of its management make this cancer one of the most expensive for the NHS to treat. The effectiveness of health promotional strategies in increasing peoples' awareness of their risk of developing the disease, and in enabling them to change long-term health behaviours is discussed. The role of the multidisciplinary team is explored, along with that of the uro-oncology cancer nurse specialist. Part 2 will consider the management of muscle-invasive and metastatic bladder cancer.

  19. Divergent effects of insulin-like growth factor-1 receptor expression on prognosis of estrogen receptor positive versus triple negative invasive ductal breast carcinoma

    NARCIS (Netherlands)

    Hartog, Hermien; Horlings, Hugo M; van der Vegt, Bert; Kreike, Bas; Ajouaou, Abderrahim; van de Vijver, Marc J; Boezen, Hendrika; de Bock, Geertruida H; van der Graaf, Wilhelmina; Wesseling, Jelle

    2011-01-01

    The insulin-like growth factor type 1 receptor (IGF1R) is involved in progression of breast cancer and resistance to systemic treatment. Targeting IGF1R signaling may, therefore, be beneficial in systemic treatment. We report the effect of IGF1R expression on prognosis in invasive ductal breast

  20. Barium promotes anchorage-independent growth and invasion of human HaCaT keratinocytes via activation of c-SRC kinase.

    Science.gov (United States)

    Thang, Nguyen Dinh; Yajima, Ichiro; Kumasaka, Mayuko Y; Ohnuma, Shoko; Yanagishita, Takeshi; Hayashi, Rumiko; Shekhar, Hossain U; Watanabe, Daisuke; Kato, Masashi

    2011-01-01

    Explosive increases in skin cancers have been reported in more than 36 million patients with arsenicosis caused by drinking arsenic-polluted well water. This study and previous studies showed high levels of barium as well as arsenic in the well water. However, there have been no reports showing a correlation between barium and cancer. In this study, we examined whether barium (BaCl(2)) may independently have cancer-related effects on human precancerous keratinocytes (HaCaT). Barium (5-50 µM) biologically promoted anchorage-independent growth and invasion of HaCaT cells in vitro. Barium (5 µM) biochemically enhanced activities of c-SRC, FAK, ERK and MT1-MMP molecules, which regulate anchorage-independent growth and/or invasion. A SRC kinase specific inhibitor, protein phosphatase 2 (PP2), blocked barium-mediated promotion of anchorage-independent growth and invasion with decreased c-SRC kinase activity. Barium (2.5-5 µM) also promoted anchorage-independent growth and invasion of fibroblasts (NIH3T3) and immortalized nontumorigenic melanocytes (melan-a), but not transformed cutaneous squamous cell carcinoma (HSC5 and A431) and malignant melanoma (Mel-ret) cells, with activation of c-SRC kinase. Taken together, our biological and biochemical findings newly suggest that the levels of barium shown in drinking well water independently has the cancer-promoting effects on precancerous keratinocytes, fibroblast and melanocytes in vitro.

  1. Effect of brain- and tumor-derived connective tissue growth factor on glioma invasion.

    Science.gov (United States)

    Edwards, Lincoln A; Woolard, Kevin; Son, Myung Jin; Li, Aiguo; Lee, Jeongwu; Ene, Chibawanye; Mantey, Samuel A; Maric, Dragan; Song, Hua; Belova, Galina; Jensen, Robert T; Zhang, Wei; Fine, Howard A

    2011-08-03

    Tumor cell invasion is the principal cause of treatment failure and death among patients with malignant gliomas. Connective tissue growth factor (CTGF) has been previously implicated in cancer metastasis and invasion in various tumors. We explored the mechanism of CTGF-mediated glioma cell infiltration and examined potential therapeutic targets. Highly infiltrative patient-derived glioma tumor-initiating or tumor stem cells (TIC/TSCs) were harvested and used to explore a CTGF-induced signal transduction pathway via luciferase reporter assays, chromatin immunoprecipitation (ChIP), real-time polymerase chain reaction, and immunoblotting. Treatment of TIC/TSCs with small-molecule inhibitors targeting integrin β1 (ITGB1) and the tyrosine kinase receptor type A (TrkA), and short hairpin RNAs targeting CTGF directly were used to reduce the levels of key protein components of CTGF-induced cancer infiltration. TIC/TSC infiltration was examined in real-time cell migration and invasion assays in vitro and by immunohistochemistry and in situ hybridization in TIC/TSC orthotopic xenograft mouse models (n = 30; six mice per group). All statistical tests were two-sided. Treatment of TIC/TSCs with CTGF resulted in CTGF binding to ITGB1-TrkA receptor complexes and nuclear factor kappa B (NF-κB) transcriptional activation as measured by luciferase reporter assays (mean relative luciferase activity, untreated vs CTGF(200 ng/mL): 0.53 vs 1.87, difference = 1.34, 95% confidence interval [CI] = 0.69 to 2, P < .001). NF-κB activation resulted in binding of ZEB-1 to the E-cadherin promoter as demonstrated by ChIP analysis with subsequent E-cadherin suppression (fold increase in ZEB-1 binding to the E-cadherin promoter region: untreated + ZEB-1 antibody vs CTGF(200 ng/mL) + ZEB-1 antibody: 1.5 vs 6.4, difference = 4.9, 95% CI = 4.8 to 5.0, P < .001). Immunohistochemistry and in situ hybridization revealed that TrkA is selectively expressed in the most infiltrative glioma cells in situ

  2. Del-1 overexpression potentiates lung cancer cell proliferation and invasion

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung-Hwan; Kim, Dong-Young; Jing, Feifeng; Kim, Hyesoon [Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Yun, Chae-Ok [Department of Bioengineering, College of Engineering, Hanyang University, Seoul (Korea, Republic of); Han, Deok-Jong [Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Choi, Eun Young, E-mail: choieun@ulsan.ac.kr [Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul (Korea, Republic of)

    2015-12-04

    Developmental endothelial locus-1 (Del-1) is an endogenous anti-inflammatory molecule that is highly expressed in the lung and the brain and limits leukocyte migration to these tissues. We previously reported that the expression of Del-1 is positively regulated by p53 in lung endothelial cells. Although several reports have implicated the altered expression of Del-1 gene in cancer patients, little is known about its role in tumor cells. We here investigated the effect of Del-1 on the features of human lung carcinoma cells. Del-1 mRNA was found to be significantly decreased in the human lung adenocarcinoma cell lines A549 (containing wild type of p53), H1299 (null for p53) and EKVX (mutant p53), compared to in human normal lung epithelial BEAS-2B cells and MRC-5 fibroblasts. The decrease of Del-1 expression was dependent on the p53 activity in the cell lines, but not on the expression of p53. Neither treatment with recombinant human Del-1 protein nor the introduction of adenovirus expressing Del-1 altered the expression of the apoptosis regulators BAX, PUMA and Bcl-2. Unexpectedly, the adenovirus-mediated overexpression of Del-1 gene into the lung carcinoma cell lines promoted proliferation and invasion of the lung carcinoma cells, as revealed by BrdU incorporation and transwell invasion assays, respectively. In addition, overexpression of the Del-1 gene enhanced features of epithelial–mesenchymal transition (EMT), such as increasing vimentin while decreasing E-cadherin in A549 cells, and increases in the level of Slug, an EMT-associated transcription regulator. Our findings demonstrated for the first time that there are deleterious effects of high levels of Del-1 in lung carcinoma cells, and suggest that Del-1 may be used as a diagnostic or prognostic marker for cancer progression, and as a novel therapeutic target for lung carcinoma. - Highlights: • Developmental Endothelial Locus-1 (Del-1) expression is downregulated in human lung cancer cells.

  3. Del-1 overexpression potentiates lung cancer cell proliferation and invasion

    International Nuclear Information System (INIS)

    Lee, Seung-Hwan; Kim, Dong-Young; Jing, Feifeng; Kim, Hyesoon; Yun, Chae-Ok; Han, Deok-Jong; Choi, Eun Young

    2015-01-01

    Developmental endothelial locus-1 (Del-1) is an endogenous anti-inflammatory molecule that is highly expressed in the lung and the brain and limits leukocyte migration to these tissues. We previously reported that the expression of Del-1 is positively regulated by p53 in lung endothelial cells. Although several reports have implicated the altered expression of Del-1 gene in cancer patients, little is known about its role in tumor cells. We here investigated the effect of Del-1 on the features of human lung carcinoma cells. Del-1 mRNA was found to be significantly decreased in the human lung adenocarcinoma cell lines A549 (containing wild type of p53), H1299 (null for p53) and EKVX (mutant p53), compared to in human normal lung epithelial BEAS-2B cells and MRC-5 fibroblasts. The decrease of Del-1 expression was dependent on the p53 activity in the cell lines, but not on the expression of p53. Neither treatment with recombinant human Del-1 protein nor the introduction of adenovirus expressing Del-1 altered the expression of the apoptosis regulators BAX, PUMA and Bcl-2. Unexpectedly, the adenovirus-mediated overexpression of Del-1 gene into the lung carcinoma cell lines promoted proliferation and invasion of the lung carcinoma cells, as revealed by BrdU incorporation and transwell invasion assays, respectively. In addition, overexpression of the Del-1 gene enhanced features of epithelial–mesenchymal transition (EMT), such as increasing vimentin while decreasing E-cadherin in A549 cells, and increases in the level of Slug, an EMT-associated transcription regulator. Our findings demonstrated for the first time that there are deleterious effects of high levels of Del-1 in lung carcinoma cells, and suggest that Del-1 may be used as a diagnostic or prognostic marker for cancer progression, and as a novel therapeutic target for lung carcinoma. - Highlights: • Developmental Endothelial Locus-1 (Del-1) expression is downregulated in human lung cancer cells.

  4. Connective tissue growth factor (CTGF) and cancer progression.

    Science.gov (United States)

    Chu, Chia-Yu; Chang, Cheng-Chi; Prakash, Ekambaranellore; Kuo, Min-Liang

    2008-11-01

    Connective tissue growth factor (CTGF) is a member of the CCN family of secreted, matrix-associated proteins encoded by immediate early genes that play various roles in angiogenesis and tumor growth. CCN family proteins share uniform modular structure which mediates various cellular functions such as regulation of cell division, chemotaxis, apoptosis, adhesion, motility, angiogenesis, neoplastic transformation, and ion transport. Recently, CTGF expression has been shown to be associated with tumor development and progression. There is growing body of evidence that CTGF may regulate cancer cell migration, invasion, angiogenesis, and anoikis. In this review, we will highlight the influence of CTGF expression on the biological behavior and progression of various cancer cells, as well as its regulation on various types of protein signals and their mechanisms.

  5. Tiamulin inhibits breast cancer growth and pulmonary metastasis by decreasing the activity of CD73.

    Science.gov (United States)

    Yang, Xu; Pei, Shimin; Wang, Huanan; Jin, Yipeng; Yu, Fang; Zhou, Bin; Zhang, Hong; Zhang, Di; Lin, Degui

    2017-04-11

    Metastasis is the leading cause of death in breast cancer patients. CD73, also known as ecto-5'-nucleotidase, plays a critical role in cancer development including metastasis. The existing researches indicate that overexpression of CD73 promotes growth and metastasis of breast cancer. Therefore, CD73 inhibitor can offer a promising treatment for breast cancer. Here, we determined whether tiamulin, which was found to inhibit CD73, was able to suppress breast cancer development and explored the related mechanisms. We firstly measured the effect of tiamulin hydrogen fumarate (THF) on CD73 using high performance liquid chromatography (HPLC). Then, we investigated cell proliferation, migration and invasion in MDA-MB-231 human breast cancer cell line and 4 T1 mouse breast cancer cell line treated with THF by migration assay, invasion assay and activity assay. Besides, we examined the effect of THF on syngeneic mammary tumors of mice by immunohistochemistry. Our data demonstrated that THF inhibited CD73 by decreasing the activity instead of the expression of CD73. In vitro, THF inhibited the proliferation, migration and invasion of MDA-MB-231 and 4 T1 cells by suppressing CD73 activity. In vivo, animal experiments showed that THF treatment resulted in significant reduction in syngeneic tumor growth, microvascular density and lung metastasis rate. Our results indicate that THF inhibits growth and metastasis of breast cancer by blocking the activity of CD73, which may offer a promising treatment for breast cancer therapy.

  6. Comprehensive Molecular Characterization of Muscle-Invasive Bladder Cancer. | Office of Cancer Genomics

    Science.gov (United States)

    We report a comprehensive analysis of 412 muscle-invasive bladder cancers characterized by multiple TCGA analytical platforms. Fifty-eight genes were significantly mutated, and the overall mutational load was associated with APOBEC-signature mutagenesis. Clustering by mutation signature identified a high-mutation subset with 75% 5-year survival.

  7. Muscle invasive bladder cancer: examining survivor burden and unmet needs.

    Science.gov (United States)

    Mohamed, Nihal E; Chaoprang Herrera, Phapichaya; Hudson, Shawna; Revenson, Tracey A; Lee, Cheryl T; Quale, Diane Z; Zarcadoolas, Christina; Hall, Simon J; Diefenbach, Michael A

    2014-01-01

    Although improvements in perioperative care have decreased surgical morbidity after radical cystectomy for muscle invasive bladder cancer, treatment side effects still have a negative impact on patient quality of life. We examined unmet patient needs along the illness trajectory. A total of 30 patients (26.7% women) treated with cystectomy and urinary diversion for muscle invasive bladder cancer participated in the study. Patients were recruited from the Department of Urology at Mount Sinai and through advertisements on the Bladder Cancer Advocacy Network (BCAN) website between December 2011 and September 2012. Data were collected at individual interviews, which were audiotaped and transcribed. Transcribed data were quantitatively analyzed to explore key unmet needs. At diagnosis unmet informational needs were predominant, consisting of insufficient discussion of certain topics, including urinary diversion options and their side effects, self-care, the recovery process and medical insurance. Unmet psychological needs related to depression, and worries about changes in body image and sexual function were reported. Postoperative unmet needs revolved around medical needs (eg pain and bowel dysfunction) and instrumental needs (eg need of support for stomal appliances, catheters and incontinence). During survivorship (ie 6 to 72 months postoperatively) unmet needs centered around psychological support (ie depression, poor body image and sexual dysfunction) and instrumental support (eg difficulty adjusting to changes in daily living). Meeting patient needs is imperative to ensure adequate patient involvement in health care and enhance postoperative quality of life. An effective support provision plan should follow changes in patient needs. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  8. Results of chemoradiotherapyfor muscle-invasive bladder cancer

    Directory of Open Access Journals (Sweden)

    Yu. V. Gumenetskaya

    2013-01-01

    Full Text Available This study presents the results of chemoradiotherapy (CRT in 108 patients with muscle-invasive bladder cancer in whom surgery was contraindicated. The efficacies and toxicities of three variants of CRT were evaluated. Group 1 (neoadjuvant chemotherapy: 2–3 cycles of cisplatin-containing combination chemotherapy followed by a continuous course of external beam radiation therapy (EBRT. Group 2: concurrent CRT – cisplatin i.v., 70–100 mg/m 2 during the first and last weeks of continuous-course EBRT. Group 3: sequential neoadjuvant chemotherapy, 2–3 cycles and concurrent CRT. The comparative analysis of long-term outcomes following CRT indicated an improvement in survival rates in group 3 in which the 5-and 10-year cancer-specific survival rates were 42,3 ± 8,8 % and 31,3 ± 9,4 %, respectively, compared with 28,6 ± 9,7 % and 28,6 ± 9,7 % in group 1, and 29,5 ± 8,5 % and 14,8 ± 7,4 % in group 2, respectively (р=0,093. Acute toxicity (GU Grade 1 or 2 arose more often from concurrent radiation and chemotherapy: in 40,0 % and 40,5 % of cases in groups 2 and 3, respectively, whereas in group 1 it occurred in 25,9 % of cases (р<0,2. Late radiation toxicity (GU Grade 2 occurred more often in the concurrent CRT groups: 11,4 % and 11,9 % versus 3,2 % in the neoadjuvant chemotherapy group; Grade 3 was noted in 5,7 % and 2,4 % of patients in groups 2 and 3, respectively. The results indicated that chemoradiotherapy including neoadjuvant and concomitant chemotherapy improved the outcomes in patients with muscle-invasive bladder cancer in whom surgery was contraindicated. There was an acceptable rate of clinically significant complications.

  9. Probing cooperative force generation in collective cancer invasion

    Science.gov (United States)

    Alobaidi, Amani A.; Xu, Yaopengxiao; Chen, Shaohua; Jiao, Yang; Sun, Bo

    2017-08-01

    Collective cellular dynamics in the three-dimensional extracellular matrix (ECM) plays a crucial role in many physiological processes such as cancer invasion. Both chemical and mechanical signaling support cell-cell communications on a variety of length scales, leading to collective migratory behaviors. Here we conduct experiments using 3D in vitro tumor models and develop a phenomenological model in order to probe the cooperativity of force generation in the collective invasion of breast cancer cells. In our model, cell-cell communication is characterized by a single parameter that quantifies the correlation length of cellular migration cycles. We devise a stochastic reconstruction method to generate realizations of cell colonies with specific contraction phase correlation functions and correlation length a. We find that as a increases, the characteristic size of regions containing cells with similar contraction phases grows. For small a values, the large fluctuations in individual cell contraction phases smooth out the temporal fluctuations in the time-dependent deformation field in the ECM. For large a values, the periodicity of an individual cell contraction cycle is clearly manifested in the temporal variation of the overall deformation field in the ECM. Through quantitative comparisons of the simulated and experimentally measured deformation fields, we find that the correlation length for collective force generation in the breast cancer diskoid in geometrically micropatterned ECM (DIGME) system is a≈ 25~μ \\text{m} , which is roughly twice the linear size of a single cell. One possible mechanism for this intermediate cell correlation length is the fiber-mediated stress propagation in the 3D ECM network in the DIGME system.

  10. Gastric metastasis from invasive lobular breast cancer, mimicking primary gastric cancer: A case report.

    Science.gov (United States)

    Kim, Dae Hoon; Son, Seung-Myoung; Choi, Young Jin

    2018-03-01

    Gastric metastasis from invasive lobular breast cancer is relatively rare, commonly presented among multiple metastases, several years after primary diagnosis of breast cancer. Importantly, gastric cancer that is synchronously presented with lobular breast cancer can be misdiagnosed as primary gastric cancer; therefore, accurate differential diagnosis is required. A 39-year-old woman was visited to our hospital because of right breast mass and progressive dyspepsia. Invasive lobular carcinoma of breast was diagnosed on core needle biopsy. Gastroscopy revealed a diffuse scirrhous mass at the prepyloric antrum and diagnosed as poorly differentiated adenocarcinoma on biopsy. Synchronous double primary breast and gastric cancers were considered. Detailed pathological analysis focused on immunohistochemical studies of selected antibodies, including those of estrogen receptors, gross cystic disease fluid protein-15, and caudal-type homeobox transcription factor 2, were studied. As a result, gastric lesion was diagnosed as metastatic gastric cancer originating from breast. Right breast conserving surgery was performed, and duodenal stent was inserted under endoscopic guidance to relieve the patient's symptoms. Systemic chemotherapy with combined administration of paclitaxel and trastuzumab was initiated. Forty-one months after the diagnosis, the patient is still undergoing the same therapy. No recurrent lesion has been identified in the breast and evidence of a partial remission of gastric wall thickening has been observed on follow-up studies without new metastatic lesions. Clinical suspicion, repeat endoscopic biopsy, and detailed histological analysis, including immunohistochemistry, are necessary for diagnosis of metastatic gastric cancer from the breast.

  11. Updated 2016 EAU Guidelines on Muscle-invasive and Metastatic Bladder Cancer

    NARCIS (Netherlands)

    Witjes, J.A.; Lebret, T.; Comperat, E.M.; Cowan, N.C.; Santis, M. de; Bruins, H.M.; Hernandez, V.; Espinos, E.L.; Dunn, J.; Rouanne, M.; Neuzillet, Y.; Veskimae, E.; Heijden, A.G. van der; Gakis, G.; Ribal, M.J.

    2017-01-01

    CONTEXT: Invasive bladder cancer is a frequently occurring disease with a high mortality rate despite optimal treatment. The European Association of Urology (EAU) Muscle-invasive and Metastatic Bladder Cancer (MIBC) Guidelines are updated yearly and provides information to optimise diagnosis,

  12. BCG-unresponsive non-muscle-invasive bladder cancer: recommendations from the IBCG

    NARCIS (Netherlands)

    Kamat, A.M.; Colombel, M.; Sundi, D.; Lamm, D.; Boehle, A.; Brausi, M.; Buckley, R.; Persad, R.; Palou, J.; Soloway, M.; Witjes, J.A.

    2017-01-01

    Intravesical immunotherapy with live attenuated BCG remains the standard of care for patients with high-risk and intermediate-risk non-muscle-invasive bladder cancer (NMIBC). Most patients initially respond, but recurrence is frequent and progression to invasive cancer is a concern. No established

  13. Contrasting growth phenology of native and invasive forest shrubs mediated by genome size.

    Science.gov (United States)

    Fridley, Jason D; Craddock, Alaä

    2015-08-01

    Examination of the significance of genome size to plant invasions has been largely restricted to its association with growth rate. We investigated the novel hypothesis that genome size is related to forest invasions through its association with growth phenology, as a result of the ability of large-genome species to grow more effectively through cell expansion at cool temperatures. We monitored the spring leaf phenology of 54 species of eastern USA deciduous forests, including native and invasive shrubs of six common genera. We used new measurements of genome size to evaluate its association with spring budbreak, cell size, summer leaf production rate, and photosynthetic capacity. In a phylogenetic hierarchical model that differentiated native and invasive species as a function of summer growth rate and spring budbreak timing, species with smaller genomes exhibited both faster growth and delayed budbreak compared with those with larger nuclear DNA content. Growth rate, but not budbreak timing, was associated with whether a species was native or invasive. Our results support genome size as a broad indicator of the growth behavior of woody species. Surprisingly, invaders of deciduous forests show the same small-genome tendencies of invaders of more open habitats, supporting genome size as a robust indicator of invasiveness. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  14. An invasive plant alters phenotypic selection on the vegetative growth of a native congener.

    Science.gov (United States)

    Beans, Carolyn M; Roach, Deborah A

    2015-02-01

    The ecological consequences of plant competition have frequently been tested, but the evolutionary outcomes of these interactions have gone largely unexplored. The study of species invasions can make an important contribution to this field of research by allowing us to watch ecological and evolutionary processes unfold as a novel species is integrated into a plant community. We explored the ecological and evolutionary impact of an invasive jewelweed, Impatiens glandulifera, on a closely related native congener, I. capensis and asked: (1) Does the presence of the invasive jewelweed alter the fitness of native jewelweed populations? (2) Does the invasive jewelweed affect the vegetative growth of the native congener? and (3) Does the invasive jewelweed alter phenotypic selection on the vegetative traits of the native congener? We used a greenhouse competition experiment, an invasive species removal field experiment, and a survey of natural populations. We show that when the invasive jewelweed is present, phenotypic selection favors native jewelweed individuals investing less in rapid upward growth and more in branching and fruiting potential through the production of nodes. This research demonstrates that invasive plants have the potential to greatly alter natural selection on native competitors. Studies investigating altered selection in invaded communities can reveal the potential evolutionary impact of invasive competitors, while deepening our understanding of the more general role of competition in driving plant evolution and permitting species coexistence. © 2015 Botanical Society of America, Inc.

  15. Siegesbeckia orientalis Extract Inhibits TGFβ1-Induced Migration and Invasion of Endometrial Cancer Cells

    Directory of Open Access Journals (Sweden)

    Chi-Chang Chang

    2016-08-01

    Full Text Available Type II endometrial carcinoma typically exhibits aggressive metastasis and results in a poor prognosis. Siegesbeckia orientalis Linne is a traditional Chinese medicinal herb with several medicinal benefits, including the cytotoxicity against various cancers. This study investigates the inhibitory effects of S. orientalis ethanol extract (SOE on the migration and invasion of endometrial cancer cells, which were stimulated by transforming growth factor β (TGFβ. The inhibitory effects were evaluated by determining wound healing and performing the Boyden chamber assay. This study reveals that SOE can inhibit TGFβ1-induced cell wound healing, cell migration, and cell invasion in a dose-dependent manner in RL95-2 and HEC-1A endometrial cancer cells. SOE also reversed the TGFβ1-induced epithelial-mesenchymal transition, including the loss of the cell-cell junction and the lamellipodia-like structures. Western blot analysis revealed that SOE inhibited the phosphorylation of ERK1/2, JNK1/2, and Akt, as well as the expression of MMP-9, MMP-2, and u-PA in RL95-2 cells dose-dependently. The results of this investigation suggest that SOE is a potential anti-metastatic agent against human endometrial tumors.

  16. Conflicting Roles of Connexin43 in Tumor Invasion and Growth in the Central Nervous System

    Directory of Open Access Journals (Sweden)

    Miaki Uzu

    2018-04-01

    Full Text Available The tumor microenvironment is known to have increased levels of cytokines and metabolites, such as glutamate, due to their release from the surrounding cells. A normal cell around the tumor that responds to the inflammatory environment is likely to be subsequently altered. We discuss how these abnormalities will support tumor survival via the actions of gap junctions (GJs and hemichannels (HCs which are composed of hexamer of connexin43 (Cx43 protein. In particular, we discuss how GJ intercellular communication (GJIC in glioma cells, the primary brain tumor, is a regulatory factor and its attenuation leads to tumor invasion. In contrast, the astrocytes, which are normal cells around the glioma, are “hijacked” by tumor cells, either by receiving the transmission of malignant substances from the cancer cells via GJIC, or perhaps via astrocytic HC activity through the paracrine signaling which enable the delivery of these substances to the distal astrocytes. This astrocytic signaling would promote tumor expansion in the brain. In addition, brain metastasis from peripheral tissues has also been known to be facilitated by GJs formed between cerebral vascular endothelial cells and cancer cells. Astrocytes and microglia are generally thought to eliminate cancer cells at the blood–brain barrier. In contrast, some reports suggest they facilitate tumor progression as tumor cells take advantage of the normal functions of astrocytes that support the survival of the neurons by exchanging nutrients and metabolites. In summary, GJIC is essential for the normal physiological function of growth and allowing the diffusion of physiological substances. Therefore, whether GJIC is cancer promoting or suppressing may be dependent on what permeates through GJs, when it is active, and to which cells. The nature of GJs, which has been ambiguous in brain tumor progression, needs to be revisited and understood together with new findings on Cx proteins and HC

  17. CT Accuracy of Extrinsic Tongue Muscle Invasion in Oral Cavity Cancer.

    Science.gov (United States)

    Junn, J C; Baugnon, K L; Lacayo, E A; Hudgins, P A; Patel, M R; Magliocca, K R; Corey, A S; El-Deiry, M; Wadsworth, J T; Beitler, J J; Saba, N F; Liu, Y; Aiken, A H

    2017-02-01

    Extrinsic tongue muscle invasion in oral cavity cancer upstages the primary tumor to a T4a. Despite this American Joint Committee on Cancer staging criterion, no studies have investigated the accuracy or prognostic importance of radiologic extrinsic tongue muscle invasion, the feasibility of standardizing extrinsic tongue muscle invasion reporting, or the degree of agreement across different disciplines: radiology, surgery, and pathology. The purpose of this study was to assess the agreement among radiology, surgery, and pathology for extrinsic tongue muscle invasion and to determine the imaging features most predictive of extrinsic tongue muscle invasion with surgical/pathologic confirmation. Thirty-three patients with untreated primary oral cavity cancer were included. Two head and neck radiologists, 3 otolaryngologists, and 1 pathologist prospectively evaluated extrinsic tongue muscle invasion. Fourteen of 33 patients had radiologic extrinsic tongue muscle invasion; however, only 8 extrinsic tongue muscle invasions were confirmed intraoperatively. Pathologists were unable to determine extrinsic tongue muscle invasion in post-formalin-fixed samples. Radiologic extrinsic tongue muscle invasion had 100% sensitivity, 76% specificity, 57% positive predictive value, and 100% negative predictive value with concurrent surgical-pathologic evaluation of extrinsic tongue muscle invasion as the criterion standard. On further evaluation, the imaging characteristic most consistent with surgical-pathologic evaluation positive for extrinsic tongue muscle invasion was masslike enhancement. Evaluation of extrinsic tongue muscle invasion is a subjective finding for all 3 disciplines. For radiology, masslike enhancement of extrinsic tongue muscle invasion most consistently corresponded to concurrent surgery/pathology evaluation positive for extrinsic tongue muscle invasion. Intraoperative surgical and pathologic evaluation should be encouraged to verify radiologic extrinsic tongue

  18. Posttraumatic growth in Iranian cancer patients

    OpenAIRE

    A Rahmani; R Mohammadian; C Ferguson; L Golizadeh; M Zirak; H Chavoshi

    2012-01-01

    Objectives: To investigate the level and determinants of posttraumatic growth in Iranian cancer patients. Materials and Methods: This descriptive-correlational design study was conducted within a university-affiliated oncology hospital in Iran. A convenience sample of 450 patients with a definitive diagnosis of cancer of any type completed a demographic questionnaire and a posttraumatic growth inventory. Some disease-related information was obtained from patients′ medical records. Results: Th...

  19. The Expression of BTS-2 Enhances Cell Growth and Invasiveness in Renal Cell Carcinoma.

    Science.gov (United States)

    Pham, Quoc Thang; Oue, Naohide; Yamamoto, Yuji; Shigematsu, Yoshinori; Sekino, Yohei; Sakamoto, Naoya; Sentani, Kazuhiro; Uraoka, Naohiro; Tiwari, Mamata; Yasui, Wataru

    2017-06-01

    Renal cell carcinoma (RCC) is one of the most common types of cancer in developed countries. Bone marrow stromal cell antigen 2 (BST2) gene, which encodes BST2 transmembrane glycoprotein, is overexpressed in several cancer types. In the present study, we analyzed the expression and function of BST2 in RCC. BST2 expression was analyzed by immunohistochemistry in 123 RCC cases. RNA interference was used to inhibit BST2 expression in a RCC cell line. Immunohistochemical analysis showed that 32% of the 123 RCC cases were positive for BST2. BST2 expression was positively associated with tumour stage. Furthermore, BST2 expression was an independent predictor of survival in patients with RCC. BST2 siRNA-transfected Caki-1 cells displayed significantly reduced cell growth and invasive activity relative to negative control siRNA-transfected cells. These results suggest that BST2 plays an important role in the progression of RCC. Because BST2 is expressed on the cell membrane, BST2 is a good therapeutic target for RCC. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  20. Estrogen switches pure mucinous breast cancer to invasive lobular carcinoma with mucinous features.

    Science.gov (United States)

    Jambal, Purevsuren; Badtke, Melanie M; Harrell, J Chuck; Borges, Virginia F; Post, Miriam D; Sollender, Grace E; Spillman, Monique A; Horwitz, Kathryn B; Jacobsen, Britta M

    2013-01-01

    Mucinous breast cancer (MBC) is mainly a disease of postmenopausal women. Pure MBC is rare and augurs a good prognosis. In contrast, MBC mixed with other histological subtypes of invasive disease loses the more favorable prognosis. Because of the relative rarity of pure MBC, little is known about its cell and tumor biology and relationship to invasive disease of other subtypes. We have now developed a human breast cancer cell line called BCK4, in which we can control the behavior of MBC. BCK4 cells were derived from a patient whose poorly differentiated primary tumor was treated with chemotherapy, radiation and tamoxifen. Malignant cells from a recurrent pleural effusion were xenografted in mammary glands of a nude mouse. Cells from the solid tumor xenograft were propagated in culture to generate the BCK4 cell line. Multiple marker and chromosome analyses demonstrate that BCK4 cells are human, near diploid and luminal, expressing functional estrogen, androgen, and progesterone receptors. When xenografted back into immunocompromised cycling mice, BCK4 cells grow into small pure MBC. However, if mice are supplemented with continuous estradiol, tumors switch to invasive lobular carcinoma (ILC) with mucinous features (mixed MBC), and growth is markedly accelerated. Tamoxifen prevents the expansion of this more invasive component. The unexpected ability of estrogens to convert pure MBC into mixed MBC with ILC may explain the rarity of the pure disease in premenopausal women. These studies show that MBC can be derived from lobular precursors and that BCK4 cells are new, unique models to study the phenotypic plasticity, hormonal regulation, optimal therapeutic interventions, and metastatic patterns of MBC.

  1. [Epithelial cadherins and associated molecules in invasive lobular breast cancer].

    Science.gov (United States)

    Brilliant, Yu M; Brilliant, A A; Sazonov, S V

    to estimate the expression of cell adhesion molecules E- and P-cadherin, as well as that of cadherin-catenin complexes in invasive lobular breast cancer (BC) cells. 250 cases of postoperative material from patients diagnosed with invasive lobular BC were studied. The expressions of cell adhesion molecules E-cadherin, P-cadherin, β-catenin, p120 catenin, and vimentin were determined by immunohistochemical assay in all cases. The examined cases were divided into molecular biological subtypes, based on the evaluation of estrogen receptors (ER), progesterone receptors (PR), HER-2/neu, and Ki-67 proliferative index. The membrane expression of E-cadherin on the tumor cells was found to be preserved in 93%; the cytoplasmic expression of β-catenin and p120-catenin appeared in 60 and 72% of cases, respectively. The expression of P-cadherin was detected in 82% of cases. The coexpression of E- and P-cadherin was noted in 90% of all the examined cases. There was a correlation between the expression of E- and P-cadherins (V=0.34; pcancer and its metastasis.

  2. Comprehensive Molecular Characterization of Muscle-Invasive Bladder Cancer.

    Science.gov (United States)

    Robertson, A Gordon; Kim, Jaegil; Al-Ahmadie, Hikmat; Bellmunt, Joaquim; Guo, Guangwu; Cherniack, Andrew D; Hinoue, Toshinori; Laird, Peter W; Hoadley, Katherine A; Akbani, Rehan; Castro, Mauro A A; Gibb, Ewan A; Kanchi, Rupa S; Gordenin, Dmitry A; Shukla, Sachet A; Sanchez-Vega, Francisco; Hansel, Donna E; Czerniak, Bogdan A; Reuter, Victor E; Su, Xiaoping; de Sa Carvalho, Benilton; Chagas, Vinicius S; Mungall, Karen L; Sadeghi, Sara; Pedamallu, Chandra Sekhar; Lu, Yiling; Klimczak, Leszek J; Zhang, Jiexin; Choo, Caleb; Ojesina, Akinyemi I; Bullman, Susan; Leraas, Kristen M; Lichtenberg, Tara M; Wu, Catherine J; Schultz, Nicholaus; Getz, Gad; Meyerson, Matthew; Mills, Gordon B; McConkey, David J; Weinstein, John N; Kwiatkowski, David J; Lerner, Seth P

    2017-10-19

    We report a comprehensive analysis of 412 muscle-invasive bladder cancers characterized by multiple TCGA analytical platforms. Fifty-eight genes were significantly mutated, and the overall mutational load was associated with APOBEC-signature mutagenesis. Clustering by mutation signature identified a high-mutation subset with 75% 5-year survival. mRNA expression clustering refined prior clustering analyses and identified a poor-survival "neuronal" subtype in which the majority of tumors lacked small cell or neuroendocrine histology. Clustering by mRNA, long non-coding RNA (lncRNA), and miRNA expression converged to identify subsets with differential epithelial-mesenchymal transition status, carcinoma in situ scores, histologic features, and survival. Our analyses identified 5 expression subtypes that may stratify response to different treatments. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Contemporary management of muscle-invasive bladder cancer

    Science.gov (United States)

    Dall’Era, Marc A; Cheng, Liang; Pan, Chong-Xian

    2012-01-01

    The current standard treatment for muscle-invasive nonmetastatic bladder cancer is neoadjuvant platinum-based chemotherapy followed by radical cystectomy. However, neoadjuvant chemotherapy is not widely accepted even with level 1 evidence. Adjuvant chemotherapy should be discussed if patients have not received neoadjuvant chemotherapy before surgery and have high-risk pathologic features. Although not considered standard of care, bladder-sparing therapy can be considered for highly selected patients and for those medically unfit for surgery. Even though there are no level 1 data, the treatment outcomes for highly select patients given bladder-sparing therapy appear promising, with many patients retaining a functional bladder. Personalized chemotherapy is currently being actively pursued to target the underlying molecular changes and tailor to individual needs. PMID:22845409

  4. [Clinical guidelines for diagnosis, treatment and monitoring of patients with non-invasive breast cancer].

    Science.gov (United States)

    Brnijć, Zoran; Brkljacić, Boris; Drinković, Ivan; Jakić-Razumović, Jasminka; Kardum-Skelin, Ika; Krajina, Zdenko; Margaritoni, Marko; Strnad, Marija; Sarcević, Bozena; Tomić, Snjezana; Zic, Rado

    2012-01-01

    Breast cancer is the most common malignancy in women. Early diagnosis and more effective treatment of invasive breast cancer resulted in significant mortality reduction, improvement of survival and the quality of life of the patients. The management od non-invasive breast cancer, on the contrary, is still controversial and the problem of overdiagnosis and overtreatment of patients come to evidence. In the following text a multidisciplinary team of experts brings the first consensus guidelines aimed to standardize and optimize the criteria and management in diagnosis, treatment and monitoring of non-invasive breast cancer patients in the Republic of Croatia.

  5. Minimally invasive surgery in the treatment of esophageal cancer

    International Nuclear Information System (INIS)

    Janik, M.; Lucenic, M.; Juhos, P.; Harustiak, S.

    2016-01-01

    Esophageal cancer represents the sixth most common cause of the death caused by malignant diseases. The incidence is 11.5/100 000 in men population and 4.7/100 000 in women. It is the eighth most common malignancy. The incidence grows up, it doubled in Slovakia in last period and 5-year survival is only 18 %. Esophagectomy is a huge burden for organism. Mortality varies from 8.1 % to 23 % in low-volume departments in comparison with high-volume centres, where it is lower then 5 %. Complications range after operations is 30 – 80 %. Minimally invasive approach leads to the reduction of mortality and morbidity according to lot of studies. We performed 121 esophagectomies in cancer in period 2010 – 2015 and in 2015 it was 32 operations. We performed 29 totally minimally invasive esophagectomies, 16 hybrid MIE and 66 open esophagectomies. The chylothorax occurs twice, we managed it by surgery. The anastomotic dehiscence represents 9.09 %. Cardiovascular system complications occur in 43 %, need for vasopressors caused by hypotensia was in 44 %. It concluded from that we started with restrictive management of patients during the operation and need for vasopressors last only for two days after the operation and did not cause renal failure or any other complications.30 days mortality was related to MODS evolved by sepsis caused by pneumonia, most common in cirrhotic patients in very poor condition. Tracheoneoesophageal fistula occur in three patients, they all underwent operation, one of them died because of severe pneumonia. We recorded grow number of patient in our institution, which is probably related to better cooperation with gastroenterologists all over Slovakia. (author)

  6. Defining progression in nonmuscle invasive bladder cancer: it is time for a new, standard definition.

    Science.gov (United States)

    Lamm, Donald; Persad, Raj; Brausi, Maurizio; Buckley, Roger; Witjes, J Alfred; Palou, Joan; Böhle, Andreas; Kamat, Ashish M; Colombel, Marc; Soloway, Mark

    2014-01-01

    Despite being one of the most important clinical outcomes in nonmuscle invasive bladder cancer, there is currently no standard definition of disease progression. Major clinical trials and meta-analyses have used varying definitions or have failed to define this end point altogether. A standard definition of nonmuscle invasive bladder cancer progression as determined by reproducible and reliable procedures is needed. We examine current definitions of nonmuscle invasive bladder cancer progression, and propose a new definition that will be more clinically useful in determining patient prognosis and comparing treatment options. The IBCG (International Bladder Cancer Group) analyzed published clinical trials and meta-analyses that examined nonmuscle invasive bladder cancer progression as of December 2012. The limitations of the definitions of progression used in these trials were considered, as were additional parameters associated with the advancement of nonmuscle invasive bladder cancer. The most commonly used definition of nonmuscle invasive bladder cancer progression is an increase in stage from nonmuscle invasive to muscle invasive disease. Although this definition is clinically important, it fails to include other important parameters of advancing disease such as progression to lamina propria invasion and increase in grade. The IBCG proposes the definition of nonmuscle invasive bladder cancer progression as an increase in T stage from CIS or Ta to T1 (lamina propria invasion), development of T2 or greater or lymph node (N+) disease or distant metastasis (M1), or an increase in grade from low to high. Investigators should consider the use of this new definition to help standardize protocols and improve the reporting of progression. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  7. Up-regulation of METCAM/MUC18 promotes motility, invasion, and tumorigenesis of human breast cancer cells

    International Nuclear Information System (INIS)

    Zeng, Guo-fang; Cai, Shao-xi; Wu, Guang-Jer

    2011-01-01

    Conflicting research has identified METCAM/MUC18, an integral membrane cell adhesion molecule (CAM) in the Ig-like gene super-family, as both a tumor promoter and a tumor suppressor in the development of breast cancer. To resolve this, we have re-investigated the role of this CAM in the progression of human breast cancer cells. Three breast cancer cell lines were used for the tests: one luminal-like breast cancer cell line, MCF7, which did not express any METCAM/MUC18, and two basal-like breast cancer cell lines, MDA-MB-231 and MDA-MB-468, which expressed moderate levels of the protein. MCF7 cells were transfected with the human METCAM/MUC18 cDNA to obtain G418-resistant clones which expressed the protein and were used for testing effects of human METCAM/MUC18 expression on in vitro motility and invasiveness, and in vitro and in vivo tumorigenesis. Both MDA-MB-231 and MDA-MB-468 cells already expressed METCAM/MUC18. They were directly used for in vitro tests in the presence and absence of an anti-METCAM/MUC18 antibody. In MCF7 cells, enforced METCAM/MUC18 expression increased in vitro motility, invasiveness, anchorage-independent colony formation (in vitro tumorigenesis), and in vivo tumorigenesis. In both MDA-MB-231 and MDA-MB-468 cells, the anti-METCAM/MUC18 antibody inhibited both motility and invasiveness. Though both MDA-MB-231 and MDA-MB-468 cells established a disorganized growth in 3D basement membrane culture assay, the introduction of the anti-METCAM/MUC18 antibody completely destroyed their growth in the 3D culture. These findings support the notion that human METCAM/MUC18 expression promotes the progression of human breast cancer cells by increasing their motility, invasiveness and tumorigenesis

  8. Calycosin Inhibits the Migration and Invasion of Human Breast Cancer Cells by Down-Regulation of Foxp3 Expression

    Directory of Open Access Journals (Sweden)

    Shuangxi Li

    2017-12-01

    Full Text Available Background/Aims: Calycosin, a phytoestrogenic compound, has recently emerged as a promising antitumor drug. It has been shown that calycosin suppresses growth and induces apoptosis of breast cancer cells. However, the effect of calycosin on migration and invasion of breast cancer cells and the underlying molecular mechanisms have not been elucidated. Methods: Human breast cancer cells MCF-7 and T47D were treated with, or without, different doses (0, 6.25, 12.5, 25, 50, 100 or 150 μM of calycosin, and the viability of different groups was determined by MTT assay. Next, the inhibitory effect of higher doses (50, 100 or 150 μM of calycosin on migration and invasion of the two cell lines was determined by wound healing and transwell assay. The relative expression levels of forkhead box P3 (Foxp3, vascular endothelial growth factor (VEGF and matrix metalloproteinase-9 (MMP-9 in MCF-7 and T47D cells were determined by quantitative RT-PCR and Western blot. Results: Treatment with lower doses (6.25 or 12.5 μM promoted proliferation of breast cancer cells, but with higher doses significantly reduced the viability of MCF-7 and T47D cells. Furthermore, higher doses of calycosin were found to inhibit migration and invasion of the two cell lines in a dose-dependent manner. Additionally, treatment with a higher dose of calycosin significantly reduced the expression levels of Foxp3, followed by down-regulation of VEGF and MMP-9 in both MCF-7 and T47D breast cancer cells. Conclusion: Treatment with a higher dose of calycosin tends to reduce migration and invasion capacity of human breast cancer cells, by targeting Foxp3-mediated VEGF and MMP-9 expression.

  9. Up-regulation of METCAM/MUC18 promotes motility, invasion, and tumorigenesis of human breast cancer cells

    Directory of Open Access Journals (Sweden)

    Cai Shao-xi

    2011-03-01

    Full Text Available Abstract Background Conflicting research has identified METCAM/MUC18, an integral membrane cell adhesion molecule (CAM in the Ig-like gene super-family, as both a tumor promoter and a tumor suppressor in the development of breast cancer. To resolve this, we have re-investigated the role of this CAM in the progression of human breast cancer cells. Methods Three breast cancer cell lines were used for the tests: one luminal-like breast cancer cell line, MCF7, which did not express any METCAM/MUC18, and two basal-like breast cancer cell lines, MDA-MB-231 and MDA-MB-468, which expressed moderate levels of the protein. MCF7 cells were transfected with the human METCAM/MUC18 cDNA to obtain G418-resistant clones which expressed the protein and were used for testing effects of human METCAM/MUC18 expression on in vitro motility and invasiveness, and in vitro and in vivo tumorigenesis. Both MDA-MB-231 and MDA-MB-468 cells already expressed METCAM/MUC18. They were directly used for in vitro tests in the presence and absence of an anti-METCAM/MUC18 antibody. Results In MCF7 cells, enforced METCAM/MUC18 expression increased in vitro motility, invasiveness, anchorage-independent colony formation (in vitro tumorigenesis, and in vivo tumorigenesis. In both MDA-MB-231 and MDA-MB-468 cells, the anti-METCAM/MUC18 antibody inhibited both motility and invasiveness. Though both MDA-MB-231 and MDA-MB-468 cells established a disorganized growth in 3D basement membrane culture assay, the introduction of the anti-METCAM/MUC18 antibody completely destroyed their growth in the 3D culture. Conclusion These findings support the notion that human METCAM/MUC18 expression promotes the progression of human breast cancer cells by increasing their motility, invasiveness and tumorigenesis.

  10. NME2 reduces proliferation, migration and invasion of gastric cancer cells to limit metastasis.

    Directory of Open Access Journals (Sweden)

    Yan-fei Liu

    Full Text Available Gastric cancer is one of the most common malignancies and has a high rate of metastasis. We hypothesize that NME2 (Nucleoside Diphosphate Kinase 2, which has previously been considered as an anti-metastatic gene, plays a role in the invasiveness of gastric cancer cells. Using a tissue chip technology and immunohistochemistry, we demonstrated that NME2 expression was associated with levels of differentiation of gastric cancer cells and their metastasis into the lymph nodes. When the NME2 gene product was over-expressed by ;in vitro stable transfection, cells from BGC823 and MKN45 gastric cancer cell lines had reduced rates of proliferation, migration, and invasion through the collagen matrix, suggesting an inhibitory activity of NME2 in the propagation and invasion of gastric cancer. NME2 could, therefore, severe as a risk marker for gastric cancer invasiveness and a potential new target for gene therapy to enhance or induce NME2 expression.

  11. Downregulation of NEDD9 by apigenin suppresses migration, invasion, and metastasis of colorectal cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Jin; Van Wie, Peter G.; Fai, Leonard Yenwong; Kim, Donghern [Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536 (United States); Wang, Lei; Poyil, Pratheeshkumar [Center for Research on Environmental Disease, University of Kentucky, Lexington, KY 40536 (United States); Luo, Jia [Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536 (United States); Zhang, Zhuo, E-mail: Zhuo.Zhang@uky.edu [Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536 (United States)

    2016-11-15

    Apigenin is a natural flavonoid which possesses multiple anti-cancer properties such as anti-proliferation, anti-inflammation, and anti-metastasis in many types of cancers including colorectal cancer. Neural precursor cell expressed developmentally downregulated 9 (NEDD9) is a multi-domain scaffolding protein of the Cas family which has been shown to correlate with cancer metastasis and progression. The present study investigates the role of NEDD9 in apigenin-inhibited cell migration, invasion, and metastasis of colorectal adenocarcinoma DLD1 and SW480 cells. The results show that knockdown of NEDD9 inhibited cell migration, invasion, and metastasis and that overexpression of NEDD9 promoted cell migration and invasion of DLD1 cells and SW4890 cells. Apigenin treatment attenuated NEDD9 expression at protein level, resulting in reduced phosphorylations of FAK, Src, and Akt, leading to inhibition on cell migration, invasion, and metastasis of both DLD1 and SW480 cells. The present study has demonstrated that apigenin inhibits cell migration, invasion, and metastasis through NEDD9/Src/Akt cascade in colorectal cancer cells. NEDD9 may function as a biomarker for evaluation of cancer aggressiveness and for selection of therapeutic drugs against cancer progression. - Highlights: • Apigenin inhibits migration, invasion, and metastasis of colorectal cancer cells. • Apigenin downregulates NEDD9. • Apigenin decreases phosphorylations of FAK, Src, and Akt. • Apigenin inhibits cell migration, invasion, and metastasis through NEDD9/Src/Akt.

  12. Downregulation of NEDD9 by apigenin suppresses migration, invasion, and metastasis of colorectal cancer cells

    International Nuclear Information System (INIS)

    Dai, Jin; Van Wie, Peter G.; Fai, Leonard Yenwong; Kim, Donghern; Wang, Lei; Poyil, Pratheeshkumar; Luo, Jia; Zhang, Zhuo

    2016-01-01

    Apigenin is a natural flavonoid which possesses multiple anti-cancer properties such as anti-proliferation, anti-inflammation, and anti-metastasis in many types of cancers including colorectal cancer. Neural precursor cell expressed developmentally downregulated 9 (NEDD9) is a multi-domain scaffolding protein of the Cas family which has been shown to correlate with cancer metastasis and progression. The present study investigates the role of NEDD9 in apigenin-inhibited cell migration, invasion, and metastasis of colorectal adenocarcinoma DLD1 and SW480 cells. The results show that knockdown of NEDD9 inhibited cell migration, invasion, and metastasis and that overexpression of NEDD9 promoted cell migration and invasion of DLD1 cells and SW4890 cells. Apigenin treatment attenuated NEDD9 expression at protein level, resulting in reduced phosphorylations of FAK, Src, and Akt, leading to inhibition on cell migration, invasion, and metastasis of both DLD1 and SW480 cells. The present study has demonstrated that apigenin inhibits cell migration, invasion, and metastasis through NEDD9/Src/Akt cascade in colorectal cancer cells. NEDD9 may function as a biomarker for evaluation of cancer aggressiveness and for selection of therapeutic drugs against cancer progression. - Highlights: • Apigenin inhibits migration, invasion, and metastasis of colorectal cancer cells. • Apigenin downregulates NEDD9. • Apigenin decreases phosphorylations of FAK, Src, and Akt. • Apigenin inhibits cell migration, invasion, and metastasis through NEDD9/Src/Akt.

  13. Prognosis of muscle-invasive bladder cancer: difference between primary and progressive tumours and implications for therapy.

    NARCIS (Netherlands)

    Schrier, B.P.; Hollander, M.P.; Rhijn, B.W. van; Kiemeney, L.A.L.M.; Witjes, J.A.

    2004-01-01

    OBJECTIVE: To evaluate the difference in prognosis between progressive and primary muscle-invasive bladder cancer. MATERIALS AND METHODS: From 1986 to 2000, 74 patients with progressive muscle-invasive bladder cancer were identified. Eighty-nine patients with primary muscle-invasive bladder cancer

  14. Skin invasion and prognosis in node negative breast cancer: a retrospective study

    Directory of Open Access Journals (Sweden)

    Horii Rie

    2008-01-01

    Full Text Available Abstract Background The impact of skin invasion in node negative breast cancer is uncertain. Methods We determined the prognosis in 97 node negative breast cancer patients (case group who had tumors with skin invasion. Then we compared these patients with 4500 node negative invasive breast cancer patients treated surgically in the same period. Results Patients with skin invasion tended to be older, had more invasive lobular carcinoma and larger tumor size, and were less likely to have breast conserving surgery than those in the control group. The 5-year disease-free survival rate in the case group was 94.0%. There was no significant difference in the 10-year disease-specific overall survival rates in terms of skin invasion in node negative patients (90.7% in the case group, 92.9% in the control group; p = 0.2032. Conclusion Results suggest that skin invasion has no impact on survival in node negative invasive breast cancer patients. The adjuvant regimens which the individual institute applies for node negative breast cancer should be used regardless of skin invasion.

  15. Bladder cancer: utility of MRI in detection of occult muscle-invasive disease

    International Nuclear Information System (INIS)

    Rosenkrantz, Andrew B.; Mussi, Thais C.; Melamed, Jonathan; Taneja, Samir S.; Huang, William C.

    2012-01-01

    Background. The presence of muscularis propria invasion by bladder cancer is a key factor in prognosis and treatment decisions, although may be missed by biopsy due to sampling error. MRI has shown potential for detection of muscle invasion but has not specifically been evaluated for this purpose in the setting of bladder cancer patients without evidence of muscle invasion on initial biopsy. Purpose. To evaluate the role of MRI in detection of muscularis propria invasion by bladder cancer following a pathologic diagnosis of non-invasive tumor. Material and Methods. This retrospective study included 23 patients who underwent pelvic MRI following a pathologic diagnosis of bladder cancer without muscularis propria invasion and in whom additional histologic evaluation was performed following MRI. Two radiologists in consensus reviewed T2-weighted images to identify those cases suspicious for muscle invasion on MRI. The radiologists identified whether cases suspicious for invasion demonstrated disruption of the T2-hypointense muscularis layer of the bladder wall, peri-vesical fat stranding, and peri-vesical soft tissue nodularity. Findings were compared with pathologic results obtained after MRI. Results. Suspicion was raised for muscle invasion in eight of 23 cases, four of which exhibited invasion on follow-up pathology. No case without suspicion on MRI exhibited invasion on follow-up pathology. Therefore, sensitivity and specificity were 100% and 79%, respectively. Among individual findings, muscularis disruption on T2WI exhibited sensitivity of 100% and specificity of 79%, peri-vesical fat stranding exhibited sensitivity and specificity of 50% and 84%, and peri-vesical soft tissue nodularity exhibited sensitivity and specificity of 25% and 100%. Conclusion. MRI demonstrated high sensitivity for detection of muscle invasion in cases of bladder cancer without invasion on initial histologic assessment. Muscularis disruption on T2WI appeared to exhibit a better

  16. Bladder cancer: utility of MRI in detection of occult muscle-invasive disease

    Energy Technology Data Exchange (ETDEWEB)

    Rosenkrantz, Andrew B. [Dept. of Radiology, NYU Langone Medical Center, New York (United States)], E-mail: Andrew.rosenkrantz@nyumc.org; Mussi, Thais C. [Dept. of Radiology, NYU Langone Medical Center, New York (United States); Hospital Israelita Albert Einstein, Sao Paulo (Brazil); Melamed, Jonathan [Dept. of Pathology, NYU Langone Medical Center, New York (United States); Taneja, Samir S.; Huang, William C. [Dept. of Urology, Div. of Urologic Oncology, NYU Langone Medical Center, New York (United States)

    2012-07-15

    Background. The presence of muscularis propria invasion by bladder cancer is a key factor in prognosis and treatment decisions, although may be missed by biopsy due to sampling error. MRI has shown potential for detection of muscle invasion but has not specifically been evaluated for this purpose in the setting of bladder cancer patients without evidence of muscle invasion on initial biopsy. Purpose. To evaluate the role of MRI in detection of muscularis propria invasion by bladder cancer following a pathologic diagnosis of non-invasive tumor. Material and Methods. This retrospective study included 23 patients who underwent pelvic MRI following a pathologic diagnosis of bladder cancer without muscularis propria invasion and in whom additional histologic evaluation was performed following MRI. Two radiologists in consensus reviewed T2-weighted images to identify those cases suspicious for muscle invasion on MRI. The radiologists identified whether cases suspicious for invasion demonstrated disruption of the T2-hypointense muscularis layer of the bladder wall, peri-vesical fat stranding, and peri-vesical soft tissue nodularity. Findings were compared with pathologic results obtained after MRI. Results. Suspicion was raised for muscle invasion in eight of 23 cases, four of which exhibited invasion on follow-up pathology. No case without suspicion on MRI exhibited invasion on follow-up pathology. Therefore, sensitivity and specificity were 100% and 79%, respectively. Among individual findings, muscularis disruption on T2WI exhibited sensitivity of 100% and specificity of 79%, peri-vesical fat stranding exhibited sensitivity and specificity of 50% and 84%, and peri-vesical soft tissue nodularity exhibited sensitivity and specificity of 25% and 100%. Conclusion. MRI demonstrated high sensitivity for detection of muscle invasion in cases of bladder cancer without invasion on initial histologic assessment. Muscularis disruption on T2WI appeared to exhibit a better

  17. Posttraumatic growth in Iranian cancer patients.

    Science.gov (United States)

    Rahmani, A; Mohammadian, R; Ferguson, C; Golizadeh, L; Zirak, M; Chavoshi, H

    2012-01-01

    To investigate the level and determinants of posttraumatic growth in Iranian cancer patients. This descriptive-correlational design study was conducted within a university-affiliated oncology hospital in Iran. A convenience sample of 450 patients with a definitive diagnosis of cancer of any type completed a demographic questionnaire and a posttraumatic growth inventory. Some disease-related information was obtained from patients' medical records. The mean of posttraumatic growth reported by participants was 76.1. There was a statistically significant association between experience of posttraumatic growth and age (r = - 0.21, P=0.001), education at university level (F = 8.9, P=0.001) and history of treatment by radiotherapy (t = 2.1, P=0.03). The findings of this study suggest that Iranian cancer patients experience a moderate to high level of posttraumatic growth and confirm the hypothesis that the level of posttraumatic growth in non-Western cancer patients is more than that of Western cancer patients. Although, assessing the reasons for this difference needs more investigations.

  18. Epidermal Growth Factor Receptor in Pancreatic Cancer

    International Nuclear Information System (INIS)

    Oliveira-Cunha, Melissa; Newman, William G.; Siriwardena, Ajith K.

    2011-01-01

    Pancreatic cancer is the fourth leading cause of cancer related death. The difficulty in detecting pancreatic cancer at an early stage, aggressiveness and the lack of effective therapy all contribute to the high mortality. Epidermal growth factor receptor (EGFR) is a transmembrane glycoprotein, which is expressed in normal human tissues. It is a member of the tyrosine kinase family of growth factors receptors and is encoded by proto-oncogenes. Several studies have demonstrated that EGFR is over-expressed in pancreatic cancer. Over-expression correlates with more advanced disease, poor survival and the presence of metastases. Therefore, inhibition of the EGFR signaling pathway is an attractive therapeutic target. Although several combinations of EGFR inhibitors with chemotherapy demonstrate inhibition of tumor-induced angiogenesis, tumor cell apoptosis and regression in xenograft models, these benefits remain to be confirmed. Multimodality treatment incorporating EGFR-inhibition is emerging as a novel strategy in the treatment of pancreatic cancer

  19. PET/MR in invasive ductal breast cancer: correlation between imaging markers and histological phenotype.

    Science.gov (United States)

    Catalano, Onofrio Antonio; Horn, Gary Lloyd; Signore, Alberto; Iannace, Carlo; Lepore, Maria; Vangel, Mark; Luongo, Angelo; Catalano, Marco; Lehman, Constance; Salvatore, Marco; Soricelli, Andrea; Catana, Ciprian; Mahmood, Umar; Rosen, Bruce Robert

    2017-03-28

    Differences in genetics and receptor expression (phenotypes) of invasive ductal breast cancer (IDC) impact on prognosis and treatment response. Immunohistochemistry (IHC), the most used technique for IDC phenotyping, has some limitations including its invasiveness. We explored the possibility of contrast-enhanced positron emission tomography magnetic resonance (CE-FDG PET/MR) to discriminate IDC phenotypes. 21 IDC patients with IHC assessment of oestrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor-2 (HER2), and antigen Ki-67 (Ki67) underwent CE-FDG PET/MR. Magnetic resonance-perfusion biomarkers, apparent diffusion coefficient (ADC), and standard uptake value (SUV) were compared with IHC markers and phenotypes, using a Student's t-test and one-way ANOVA. ER/PR- tumours demonstrated higher Kep mean and SUV max than ER or PR+ tumours. HER2- tumours displayed higher ADC mean , Kep mean , and SUV max than HER2+tumours. Only ADC mean discriminated Ki67⩽14% tumours (lower ADC mean ) from Ki67>14% tumours. PET/MR biomarkers correlated with IHC phenotype in 13 out of 21 patients (62%; P=0.001). Positron emission tomography magnetic resonance might non-invasively help discriminate IDC phenotypes, helping to optimise individual therapy options.

  20. MicroRNA-96 Promotes Tumor Invasion in Colorectal Cancer via RECK.

    Science.gov (United States)

    Iseki, Yasuhito; Shibutani, Masatsune; Maeda, Kiyoshi; Nagahara, Hisashi; Fukuoka, Tatsunari; Matsutani, Shinji; Hirakawa, Kosei; Ohira, Masaichi

    2018-04-01

    miR-96 is reported to inhibit reversion cysteine-rich Kazal motif (RECK), which is associated with tumor invasion, in solid cancer types (e.g. breast cancer, non-small cell lung cancer, esophageal cancer). The purpose of this study is to clarify whether miR-96 is similarly associated with tumor invasion in colorectal cancer. We performed western blotting to investigate the expression of RECK when miR-96 mimics or inhibitors were transferred into HCT-116 colorectal cancer cells. The RECK mRNA level was assessed by a reverse transcription polymerase chain reaction. An invasion assay was used to evaluate tumor invasion. The expression of RECK was inhibited by the transfection of miR-96 mimics. RECK mRNA level was reduced by miR-96 mimics and increased by miR-96 inhibitor. In the invasion assay, miR-96 mimics were shown to promote tumor invasion. miR-96 may be associated with tumor invasion through inhibition of RECK expression in colorectal cancer. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  1. CSF-1R as an inhibitor of apoptosis and promoter of proliferation, migration and invasion of canine mammary cancer cells

    Science.gov (United States)

    2013-01-01

    Background Tumor-associated macrophages (TAMs) have high impact on the cancer development because they can facilitate matrix invasion, angiogenesis, and tumor cell motility. It gives cancer cells the capacity to invade normal tissues and metastasize. The signaling of colony-stimulating factor-1 receptor (CSF-1R) which is an important regulator of proliferation and differentiation of monocytes and macrophages regulates most of the tissue macrophages. However, CSF-1R is expressed also in breast epithelial tissue during some physiological stages i.g.: pregnancy and lactation. Its expression has been also detected in various cancers. Our previous study has showed the expression of CSF-1R in all examined canine mammary tumors. Moreover, it strongly correlated with grade of malignancy and ability to metastasis. This study was therefore designed to characterize the role of CSF-1R in canine mammary cancer cells proliferation, apoptosis, migration, and invasion. As far as we know, the study presented hereby is a pioneering experiment in this field of veterinary medicine. Results We showed that csf-1r silencing significantly increased apoptosis (Annexin V test), decreased proliferation (measured as Ki67 expression) and decreased migration (“wound healing” assay) of canine mammary cancer cells. Treatment of these cells with CSF-1 caused opposite effect. Moreover, csf-1r knock-down changed growth characteristics of highly invasive cell lines on Matrigel matrix, and significantly decreased the ability of these cells to invade matrix. CSF-1 treatment increased invasion of cancer cells. Conclusion The evidence of the expression and functional role of the CSF-1R in canine mammary cancer cells indicate that CSF-1R targeting may be a good therapeutic approach. PMID:23561040

  2. miR-206 inhibits cell proliferation, migration, and invasion by targeting BAG3 in human cervical cancer.

    Science.gov (United States)

    Wang, Yingying; Tian, Yongjie

    2018-01-02

    miR-206 and bcl2-associated athanogene 3 (BAG3) have been suggested as important regulators in various cancer types. However, the biological role of miR-206 and BAG3 in cervical cancer (CC) remains unclear. Here, we investigated the expressions and mechanisms of miR-206 and BAG3 in cervical cancer using in vitro and in vivo assays. In the present study, miR-206 expression was expressed at a lower level in CC tissues and cells than adjacent normal tissues and NEEC cells. By contrast, BAG3 mRNA and protein were expressed at higher levels in CC tissues and cells. Furthermore, miR-206 overexpression repressed cell proliferation, migration and invasion in vitro, and the 3'-untranslated region (3'-UTR) of BAG3 was a direct target of miR-206. miR-206 overexpression also inhibited EGFR, Bcl-2 and MMP2/9 protein expression, but promoted Bax protein expression. Besides, BAG3 over-expression partially abrogated miR-206-inhibited cell proliferation and invasion, while BAG3 silencing enhanced miR206-mediated inhibition. In vivo assay revealed that miR-206 repressed tumor growth in nude mice xenograft model. In conclusion, miR-206 inhibits cell proliferation, migration, and invasion by targeting BAG3 in human cervical cancer. Thus, miR-206-BAG3 can be used as a useful target for cervical cancer.

  3. BAG3 regulates cell proliferation, migration, and invasion in human colorectal cancer.

    Science.gov (United States)

    Shi, Huiyong; Xu, Haidong; Li, Zengjun; Zhen, Yanan; Wang, Bin; Huo, Shoujun; Xiao, Ruixue; Xu, Zhongfa

    2016-04-01

    Bcl2-associated athanogene 3 (BAG3) has been reported to be elevated in various tumors. However, it is unclear whether BAG3 has a functional role in the initiation and progression of colorectal cancer (CRC). Here, we collected CRC samples and cell lines to validate the pathway by using gene and protein assays. RT-PCR showed that the expression of BAG3 mRNA in CRC tissues was obviously higher than that in non-tumor tissues (p BAG3 was found in most CRC tissues and strongly correlated with TNM stage (p = 0.001), differentiation (p = 0.003), and metastasis (p = 0.010). Low expression of BAG3 in HCT-8 significantly reduced cellular proliferation, migration, and invasion. The analysis of in vitro cell showed that HCT-8 cells were exposed to si-BAG3, and its growth was inhibited depending on modulation of cell cycle G1/S checkpoints and cell cycle regulators, involving cyclin D1, cyclin A2, and cyclin B1. Furthermore, suppression of the epithelial-mesenchymal transition (EMT) by si-BAG3 is linked to the decreased expression of E-cadherin and the increased expression of N-cadherin, vimentin, and MMP9. In conclusion, in the present study, we demonstrated that BAG3 overexpression plays a critical role in cell proliferation, migration, and invasion of colorectal cancer. Our data suggests targeted inhibition of BAG3 may be useful for patients with CRC.

  4. Non-invasive spectroscopic techniques in the diagnosis of non-melanoma skin cancer

    Science.gov (United States)

    Drakaki, E.; Sianoudis, IA; Zois, EN; Makropoulou, M.; Serafetinides, AA; Dessinioti, C.; Stefanaki, E.; Stratigos, AJ; Antoniou, C.; Katsambas, A.; Christofidou, E.

    2017-11-01

    The number of non-melanoma skin cancers is increasing worldwide and has become an important health and economic issue. Early detection and treatment of skin cancer can significantly improve patient outcome. Therefore there is an increase in the demand for proper management and effective non-invasive diagnostic modalities in order to avoid relapses or unnecessary treatments. Although the gold standard of diagnosis for non-melanoma skin cancers is biopsy followed by histopathology evaluation, optical non-invasive diagnostic tools have obtained increased attention. Emerging non-invasive or minimal invasive techniques with possible application in the diagnosis of non-melanoma skin cancers include high-definition optical coherence tomography, fluorescence spectroscopy, oblique incidence diffuse reflectance spectrometry among others spectroscopic techniques. Our findings establish how those spectrometric techniques can be used to more rapidly and easily diagnose skin cancer in an accurate and automated manner in the clinic.

  5. MiR-26a enhances invasive capacity by suppressing GSK3β in human lung cancer cells

    International Nuclear Information System (INIS)

    Lin, Gaoyang; Liu, Boning; Meng, Zhaowei; Liu, Yunde; Li, Xuebing; Wu, Xiang; Zhou, Qinghua; Xu, Ke

    2017-01-01

    Lung cancer is the common cause of death from cancer, and most lung cancer patients die of metastasis. MicroRNAs (miRNAs) function as either oncogenes or tumor suppressors, playing crucial role not only in tumorigenesis, but also in tumor invasion and metastasis. There are several studies showed that miR-26a is involved in carcinogenesis, however, its role in tumor metastasis need to be elucidated. In this study, we showed that ectopic expression of miR-26a enhanced migration and invasion of lung cancer cells. Glycogen synthase kinase-3β (GSK3β) was identified as a direct target of miR-26a. GSK3β expression negatively correlated with miR-26a expression in lung cancer tissues. Silencing of GSK3β achieved similar effect as miR-26a over-expression; over-expression of GSK3β reversed the enhanced effect of miR-26a on lung cancer cell migration and invasion. Further study indicated that miR-26a increased β-catenin expression and nuclear translocation. C-myc and cyclin D1, the downstream genes of β-catenin, were also up-regulated by miR-26a. Furthermore, xenograft study showed that miR-26a promoted lung cancer cell growth in vivo, and suppressed GSK3β expression. Collectively, our results demonstrated that miR-26a enhanced metastatic potential of lung cancer cells via activation of β-catenin pathway by targeting GSK3β, suggesting the potential applicability of miR-26a as a target for cancer treatment. - Highlights: • miR-26a enhances migration and invasion of lung cancer cells. • GSK3β is identified as a direct target of miR-26a. • miR-26a activates β-catenin pathway by targeting GSK3β. • miR-26a promotes lung cancer cell growth in vivo.

  6. MiR-26a enhances invasive capacity by suppressing GSK3β in human lung cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Gaoyang; Liu, Boning [Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenviroment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052 (China); Meng, Zhaowei [Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin 300052 (China); Liu, Yunde [School of Laboratory Medicine, Tianjin Medical University, Tianjin 300052 (China); Li, Xuebing [Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenviroment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052 (China); Wu, Xiang [Core Facility Center, Tianjin Medical University General Hospital, Tianjin 300052 (China); Zhou, Qinghua [Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenviroment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052 (China); Xu, Ke, E-mail: ke_xu@hotmail.com [Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenviroment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052 (China)

    2017-03-15

    Lung cancer is the common cause of death from cancer, and most lung cancer patients die of metastasis. MicroRNAs (miRNAs) function as either oncogenes or tumor suppressors, playing crucial role not only in tumorigenesis, but also in tumor invasion and metastasis. There are several studies showed that miR-26a is involved in carcinogenesis, however, its role in tumor metastasis need to be elucidated. In this study, we showed that ectopic expression of miR-26a enhanced migration and invasion of lung cancer cells. Glycogen synthase kinase-3β (GSK3β) was identified as a direct target of miR-26a. GSK3β expression negatively correlated with miR-26a expression in lung cancer tissues. Silencing of GSK3β achieved similar effect as miR-26a over-expression; over-expression of GSK3β reversed the enhanced effect of miR-26a on lung cancer cell migration and invasion. Further study indicated that miR-26a increased β-catenin expression and nuclear translocation. C-myc and cyclin D1, the downstream genes of β-catenin, were also up-regulated by miR-26a. Furthermore, xenograft study showed that miR-26a promoted lung cancer cell growth in vivo, and suppressed GSK3β expression. Collectively, our results demonstrated that miR-26a enhanced metastatic potential of lung cancer cells via activation of β-catenin pathway by targeting GSK3β, suggesting the potential applicability of miR-26a as a target for cancer treatment. - Highlights: • miR-26a enhances migration and invasion of lung cancer cells. • GSK3β is identified as a direct target of miR-26a. • miR-26a activates β-catenin pathway by targeting GSK3β. • miR-26a promotes lung cancer cell growth in vivo.

  7. Direct-Conversion Molecular Breast Imaging of Invasive Breast Cancer: Imaging Features, Extent of Invasive Disease, and Comparison Between Invasive Ductal and Lobular Histology.

    Science.gov (United States)

    Conners, Amy Lynn; Jones, Katie N; Hruska, Carrie B; Geske, Jennifer R; Boughey, Judy C; Rhodes, Deborah J

    2015-09-01

    The purposes of this study were to compare the tumor appearance of invasive breast cancer on direct-conversion molecular breast imaging using a standardized lexicon and to determine how often direct-conversion molecular breast imaging identifies all known invasive tumor foci in the breast, and whether this differs for invasive ductal versus lobular histologic profiles. Patients with prior invasive breast cancer and concurrent direct-conversion molecular breast imaging examinations were retrospectively reviewed. Blinded review of direct-conversion molecular breast imaging examinations was performed by one of two radiologists, according to a validated lexicon. Direct-conversion molecular breast imaging findings were matched with lesions described on the pathology report to exclude benign reasons for direct-conversion molecular breast imaging findings and to document direct-conversion molecular breast imaging-occult tumor foci. Associations between direct-conversion molecular breast imaging findings and tumor histologic profiles were examined using chi-square tests. In 286 patients, 390 invasive tumor foci were present in 294 breasts. A corresponding direct-conversion molecular breast imaging finding was present for 341 of 390 (87%) tumor foci described on the pathology report. Invasive ductal carcinoma (IDC) tumor foci were more likely to be a mass (40% IDC vs 15% invasive lobular carcinoma [ILC]; p < 0.001) and to have marked intensity than were ILC foci (63% IDC vs 32% ILC; p < 0.001). Direct-conversion molecular breast imaging correctly revealed all pathology-proven foci of invasive disease in 79.8% of cases and was more likely to do so for IDC than for ILC (86.1% vs 56.7%; p < 0.0001). Overall, direct-conversion molecular breast imaging showed all known invasive foci in 249 of 286 (87%) patients. Direct-conversion molecular breast imaging features of invasive cancer, including lesion type and intensity, differ by histologic subtype. Direct-conversion molecular

  8. Cell cycle-dependent Rho GTPase activity dynamically regulates cancer cell motility and invasion in vivo.

    Science.gov (United States)

    Kagawa, Yoshinori; Matsumoto, Shinji; Kamioka, Yuji; Mimori, Koshi; Naito, Yoko; Ishii, Taeko; Okuzaki, Daisuke; Nishida, Naohiro; Maeda, Sakae; Naito, Atsushi; Kikuta, Junichi; Nishikawa, Keizo; Nishimura, Junichi; Haraguchi, Naotsugu; Takemasa, Ichiro; Mizushima, Tsunekazu; Ikeda, Masataka; Yamamoto, Hirofumi; Sekimoto, Mitsugu; Ishii, Hideshi; Doki, Yuichiro; Matsuda, Michiyuki; Kikuchi, Akira; Mori, Masaki; Ishii, Masaru

    2013-01-01

    The mechanism behind the spatiotemporal control of cancer cell dynamics and its possible association with cell proliferation has not been well established. By exploiting the intravital imaging technique, we found that cancer cell motility and invasive properties were closely associated with the cell cycle. In vivo inoculation of human colon cancer cells bearing fluorescence ubiquitination-based cell cycle indicator (Fucci) demonstrated an unexpected phenomenon: S/G2/M cells were more motile and invasive than G1 cells. Microarray analyses showed that Arhgap11a, an uncharacterized Rho GTPase-activating protein (RhoGAP), was expressed in a cell-cycle-dependent fashion. Expression of ARHGAP11A in cancer cells suppressed RhoA-dependent mechanisms, such as stress fiber formation and focal adhesion, which made the cells more prone to migrate. We also demonstrated that RhoA suppression by ARHGAP11A induced augmentation of relative Rac1 activity, leading to an increase in the invasive properties. RNAi-based inhibition of Arhgap11a reduced the invasion and in vivo expansion of cancers. Additionally, analysis of human specimens showed the significant up-regulation of Arhgap11a in colon cancers, which was correlated with clinical invasion status. The present study suggests that ARHGAP11A, a cell cycle-dependent RhoGAP, is a critical regulator of cancer cell mobility and is thus a promising therapeutic target in invasive cancers.

  9. Cell cycle-dependent Rho GTPase activity dynamically regulates cancer cell motility and invasion in vivo.

    Directory of Open Access Journals (Sweden)

    Yoshinori Kagawa

    Full Text Available The mechanism behind the spatiotemporal control of cancer cell dynamics and its possible association with cell proliferation has not been well established. By exploiting the intravital imaging technique, we found that cancer cell motility and invasive properties were closely associated with the cell cycle. In vivo inoculation of human colon cancer cells bearing fluorescence ubiquitination-based cell cycle indicator (Fucci demonstrated an unexpected phenomenon: S/G2/M cells were more motile and invasive than G1 cells. Microarray analyses showed that Arhgap11a, an uncharacterized Rho GTPase-activating protein (RhoGAP, was expressed in a cell-cycle-dependent fashion. Expression of ARHGAP11A in cancer cells suppressed RhoA-dependent mechanisms, such as stress fiber formation and focal adhesion, which made the cells more prone to migrate. We also demonstrated that RhoA suppression by ARHGAP11A induced augmentation of relative Rac1 activity, leading to an increase in the invasive properties. RNAi-based inhibition of Arhgap11a reduced the invasion and in vivo expansion of cancers. Additionally, analysis of human specimens showed the significant up-regulation of Arhgap11a in colon cancers, which was correlated with clinical invasion status. The present study suggests that ARHGAP11A, a cell cycle-dependent RhoGAP, is a critical regulator of cancer cell mobility and is thus a promising therapeutic target in invasive cancers.

  10. The effects of curcumin on proliferation, apoptosis, invasion, and NEDD4 expression in pancreatic cancer.

    Science.gov (United States)

    Su, Jingna; Zhou, Xiuxia; Yin, Xuyuan; Wang, Lixia; Zhao, Zhe; Hou, Yingying; Zheng, Nana; Xia, Jun; Wang, Zhiwei

    2017-09-15

    Pancreatic cancer (PC) is one of the most fatal cancers worldwide. The incidence and death rates are still increasing for PC. Curcumin is the biologically active diarylheptanoid constituent of the spice turmeric, which exerts its anticancer properties in various human cancers including PC. In particular, accumulating evidence has proved that curcumin targets numerous therapeutically important proteins in cell signaling pathways. The neural precursor cell expressed developmentally down-regulated protein 4 (NEDD4) is an E3 HECT ubiquitin ligase and is frequently over-expressed in various cancers. It has reported that NEDD4 might facilitate tumorigenesis via targeting and degradation of multiple tumor suppressor proteins including PTEN. Hence, in the present study we explore whether curcumin inhibits NEDD4, resulting in the suppression of cell growth, migration and invasion in PC cells. We found that curcumin inhibited cell proliferation and triggered apoptosis in PC, which is associated with increased expression of PTEN and p73. These results suggested that inhibition of NEDD4 might be beneficial to the antitumor properties of curcumin on PC treatments. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Rapamycin causes growth arrest and inhibition of invasion in human chondrosarcoma cells.

    Science.gov (United States)

    Song, Jian; Wang, Xiaobo; Zhu, Jiaxue; Liu, Jun

    2016-01-01

    Chondrosarcoma is a highly malignant tumor that is characterized by a potent capacity to invade locally and cause distant metastasis and notable for its lack of response to conventional chemotherapy or radiotherapy. Rapamycin, the inhibitor of mammalian target of rapamycin (mTOR), is a valuable drug with diverse clinical applications and regulates many cellular processes. However, the effects of rapamycin on cell growth and invasion of human chondrosarcoma cells are not well known. We determined the effect of rapamycin on cell proliferation, cell cycle arrest and invasion by using MTS, flow cytometry and invasion assays in two human chondrosarcoma cell lines, SW1353 and JJ012. Cell cycle regulatory and invasion-related genes' expression analysis was performed by quantitative RT-PCR (qRT-PCR). We also evaluated the effect of rapamycin on tumor growth by using mice xenograph models. Rapamycin significantly inhibited the cell proliferation, induced cell cycle arrest and decreased the invasion ability of human chondrosarcoma cells. Meanwhile, rapamycin modulated the cell cycle regulatory and invasion-related genes' expression. Furthermore, the tumor growth of mice xenograph models with human chondrosarcoma cells was significantly inhibited by rapamycin. These results provided further insight into the role of rapamycin in chondrosarcoma. Therefore, rapamycin targeted therapy may be a potential treatment strategy for chondrosarcoma.

  12. Invasive lobular breast cancer: the prognostic impact of histopathological grade, E-cadherin and molecular subtypes.

    Science.gov (United States)

    Engstrøm, Monica J; Opdahl, Signe; Vatten, Lars J; Haugen, Olav A; Bofin, Anna M

    2015-02-01

    The aim of this study was to compare breast cancer specific survival (BCSS) for invasive lobular carcinoma (ILC) and invasive ductal carcinoma (IDC) and, further, to evaluate critically the prognostic value of histopathological grading of ILC and examine E-cadherin as a prognostic marker in ILC. The study comprised 116 lobular and 611 ductal breast carcinomas occurring between 1961 and 2008. All cases had been classified previously according to histopathological type and grade, stained for oestrogen receptor (ER), progesterone receptor (PR), antigen Ki67 (Ki67), epithelial growth factor receptor (EGFR), cytokeratin 5 (CK5) and human epidermal growth factor receptor 2 (HER2) and classified into molecular subtypes. For the present study, immunohistochemical staining for E-cadherin was performed. The Kaplan-Meier method and Cox proportional hazards models were used in the analyses. Grade 2 tumours comprised 85.3% of the lobular tumours and 51.9% of the ductal tumours. BCSS in ILC grade 2 was comparable to that of IDC grade 3. E-cadherin-negative ILC had a poorer prognosis compared to E-cadherin positive ILC and to IDC regardless of E-cadherin status. The implication of histopathological grading may differ in ILC compared to IDC. E-cadherin may be useful in prognostication in ILC and thereby influence the determination of treatment strategies for this group of women. © 2014 The Authors. Histopathology published by John Wiley & Sons Ltd.

  13. Epstein-Barr virus infection is equally distributed across the invasive ductal and invasive lobular forms of breast cancer.

    Science.gov (United States)

    Ballard, Ashley James

    2015-12-01

    The role of Epstein-Barr virus (EBV) in the pathogenesis of breast cancer is still unclear, although a growing body of evidence supports a link. The aim of this study was to investigate if EBV infection was more prevalent in invasive ductal carcinoma or invasive lobular carcinoma. An immunohistochemical marker for EBV (Epstein-Barr virus nuclear antigen 1 (EBNA1) clone E1-2.5) was applied to a tissue micro array section. The tissue micro array contained 80 cases of invasive ductal carcinoma, and 80 cases of invasive lobular carcinoma. Each case was scored as positive or negative for nuclear expression of EBNA1 in tumor cells using standard light microscopy. EBNA1 staining was evident in the tumor cells of 63 cases (39.4% of tumor cases). By tumor type (ductal/lobular) EBV infection was noted in 34 (42.5%) cases of invasive ductal carcinoma and 29 (36.2%) cases of invasive lobular carcinoma, this difference was not found to be significant (P=0.518). This study indicates that EBV infection is equally distributed across the ductal and lobular tumor types. Copyright © 2015 Elsevier GmbH. All rights reserved.

  14. Estrogen Receptor and Progesterone Receptor Expression in Normal Terminal Duct Lobular Units Surrounding Invasive Breast Cancer

    Science.gov (United States)

    Yang, Xiaohong R.; Figueroa, Jonine D.; Hewitt, Stephen M.; Falk, Roni T.; Pfeiffer, Ruth M.; Lissowska, Jolanta; Peplonska, Beata; Brinton, Louise A.; Garcia-Closas, Montserrat; Sherman, Mark E.

    2014-01-01

    Introduction Molecular and morphological alterations related to carcinogenesis have been found in terminal duct lobular units (TDLUs), the microscopic structures from which most breast cancer precursors and cancers develop, and therefore, analysis of these structures may reveal early changes in breast carcinogenesis and etiologic heterogeneity. Accordingly, we evaluated relationships of breast cancer risk factors and tumor pathology to estrogen receptor (ER) and progesterone receptor (PR) expression in TDLUs surrounding breast cancers. Methods We analyzed 270 breast cancer cases included in a population-based breast cancer case-control study conducted in Poland. TDLUs were mapped in relation to breast cancer: within the same block as the tumor (TDLU-T), proximal to tumor (TDLU-PT), or distant from (TDLU-DT). ER/PR was quantitated using image analysis of immunohistochemically stained TDLUs prepared as tissue microarrays. Results In surgical specimens containing ER-positive breast cancers, ER and PR levels were significantly higher in breast cancer cells than in normal TDLUs, and higher in TDLU-T than in TDLU-DT or TDLU-PT, which showed similar results. Analyses combining DT-/PT TDLUs within subjects demonstrated that ER levels were significantly lower in premenopausal women vs. postmenopausal women (odds ratio [OR]=0.38, 95% confidence interval [CI]=0.19, 0.76, P=0.0064) and among recent or current menopausal hormone therapy users compared with never users (OR=0.14, 95% CI=0.046–0.43, Ptrend=0.0006). Compared with premenopausal women, TDLUs of postmenopausal women showed lower levels of PR (OR=0.90, 95% CI=0.83–0.97, Ptrend=0.007). ER and PR expression in TDLUs was associated with epidermal growth factor receptor (EGFR) expression in invasive tumors (P=0.019 for ER and P=0.03 for PR), but not with other tumor features. Conclusions Our data suggest that TDLUs near breast cancers reflect field effects, whereas those at a distance demonstrate influences of breast

  15. Effects of omega-3 fatty acids on progestin stimulation of invasive properties in breast cancer.

    Science.gov (United States)

    Moore, Michael R; King, Rebecca A

    2012-12-01

    Clinical studies have shown that progestins increase breast cancer risk in hormone replacement therapy, while we and others have previously reported that progestins stimulate invasive properties in progesterone receptor (PR)-rich human breast cancer cell lines. Based on others' reports that omega-3 fatty acids inhibit metastatic properties of breast cancer, we have reviewed the literature for possible connections between omega-3 fatty-acid-driven pathways and progestin-stimulated pathways in an attempt to suggest theoretical mechanisms for possible omega-3 fatty acid inhibition of progestin stimulation of breast cancer invasion. We also present some data suggesting that fatty acids regulate progestin stimulation of invasive properties in PR-rich T47D human breast cancer cells, and that an appropriate concentration of the omega-3 fatty acid eicosapentaenoic acid inhibits progestin stimulation of invasive properties. It is hoped that focus on the inter-relationship between pathways by which omega-3 fatty acids inhibit and progestins stimulate breast cancer invasive properties will lead to further in vitro, in vivo, and clinical studies testing the hypothesis that omega-3 fatty acids can inhibit progestin stimulation of invasive properties in breast cancer, and ameliorate harmful effects of progestins which occur in combined progestin-estrogen hormone replacement therapy.

  16. Naringenin decreases invasiveness and metastasis by inhibiting TGF-β-induced epithelial to mesenchymal transition in pancreatic cancer cells.

    Directory of Open Access Journals (Sweden)

    Changjie Lou

    Full Text Available Epithelial to mesenchymal transition (EMT promotes cellular motility, invasiveness and metastasis during embryonic development and tumorigenesis. Transforming growth factor-β (TGF-β signaling pathway is a key regulator of EMT. A lot of evidences suggest that this process is Smad3-dependent. Herein we showed that exposure of aspc-1 and panc-1 pancreatic cancer cells to TGF-β1 resulted in characteristic morphological alterations of EMT, and enhancement of cell motility and gemcitabine (Gem resistance along with an up-regulation of EMT markers genes such as vimentin, N-cadherin, MMP2 and MMP9. Naringenin (Nar down-regulated EMT markers expression in both mRNA and protein levels by inhibiting TGF-β1/Smad3 signal pathway in the pancreatic cancer cells. Consequently, Nar suppressed the cells migration and invasion and reversed their resistance to Gem.

  17. Mechanisms of Glioma Formation: Iterative Perivascular Glioma Growth and Invasion Leads to Tumor Progression, VEGF-Independent Vascularization, and Resistance to Antiangiogenic Therapy

    Directory of Open Access Journals (Sweden)

    Gregory J. Baker

    2014-07-01

    Full Text Available As glioma cells infiltrate the brain they become associated with various microanatomic brain structures such as blood vessels, white matter tracts, and brain parenchyma. How these distinct invasion patterns coordinate tumor growth and influence clinical outcomes remain poorly understood. We have investigated how perivascular growth affects glioma growth patterning and response to antiangiogenic therapy within the highly vascularized brain. Orthotopically implanted rodent and human glioma cells are shown to commonly invade and proliferate within brain perivascular space. This form of brain tumor growth and invasion is also shown to characterize de novo generated endogenous mouse brain tumors, biopsies of primary human glioblastoma (GBM, and peripheral cancer metastasis to the human brain. Perivascularly invading brain tumors become vascularized by normal brain microvessels as individual glioma cells use perivascular space as a conduit for tumor invasion. Agent-based computational modeling recapitulated biological perivascular glioma growth without the need for neoangiogenesis. We tested the requirement for neoangiogenesis in perivascular glioma by treating animals with angiogenesis inhibitors bevacizumab and DC101. These inhibitors induced the expected vessel normalization, yet failed to reduce tumor growth or improve survival of mice bearing orthotopic or endogenous gliomas while exacerbating brain tumor invasion. Our results provide compelling experimental evidence in support of the recently described failure of clinically used antiangiogenics to extend the overall survival of human GBM patients.

  18. CD166/ALCAM expression is characteristic of tumorigenicity and invasive and migratory activities of pancreatic cancer cells.

    Directory of Open Access Journals (Sweden)

    Kenji Fujiwara

    Full Text Available CD166, also known as activated leukocyte cell adhesion molecule (ALCAM, is expressed by various cells in several tissues including cancer. However, the role of CD166 in malignant tumors is controversial, especially in pancreatic cancer. This study aimed to clarify the role and significance of CD166 expression in pancreatic cancer.We performed immunohistochemistry and flow cytometry to analyze the expression of CD166 in surgical pancreatic tissues and pancreatic cancer cell lines. The differences between isolated CD166+ and CD166- pancreatic cancer cells were analyzed by invasion and migration assays, and in mouse xenograft models. We also performed quantitative RT-PCR and microarray analyses to evaluate the expression levels of CD166 and related genes in cultured cells.Immunohistochemistry revealed high expression of CD166 in pancreatic cancer tissues (12.2%; 12/98 compared with that in normal pancreas controls (0%; 0/17 (p = 0.0435. Flow cytometry indicated that CD166 was expressed in 33.8-70.2% of cells in surgical pancreatic tissues and 0-99.5% of pancreatic cancer cell lines. Invasion and migration assays demonstrated that CD166- pancreatic cancer cells showed stronger invasive and migratory activities than those of CD166+ cancer cells (p<0.05. On the other hand, CD166+ Panc-1 cells showed a significantly stronger colony formation activity than that of CD166- Panc-1 cells (p<0.05. In vivo analysis revealed that CD166+ cells elicited significantly greater tumor growth than that of CD166- cells (p<0.05 in both subcutaneous and orthotopic mouse tumor models. mRNA expression of the epithelial-mesenchymal transition activator Zeb1 was over-expressed in CD166- cells (p<0.001. Microarray analysis showed that TSPAN8 and BST2 were over-expressed in CD166+ cells, while BMP7 and Col6A1 were over-expressed in CD166- cells.CD166+ pancreatic cancer cells are strongly tumorigenic, while CD166- pancreatic cancer cells exhibit comparatively stronger

  19. Combined intraarterial chemotherapy and radiotherapy for invasive bladder cancer

    International Nuclear Information System (INIS)

    Koike, Hidekazu; Okamura, Keigo; Matsuo, Yasushige; Yajima, Hisanori

    2003-01-01

    A total of 9 patients with invasive bladder cancer (T2b, n=2; T3a, n=0; T3b, n=3; T4, n=4) were treated with intra-arterial cisplatin (CDDP) and pirarubicin (THP)-doxorubicin (ADM), in combination with external radiotherapy. Clinical response was as follows: complete response (CR) was obtained in 3 patients, partial response (PR) in 2 patients, no change (NC) in 3 patients and no progressive disease (PD). One patient died during the treatment because of pneumonia caused by myelosuppression and overall response rate was 62.5%. Total cystectomy was performed for 4 patients after chemo-radiotherapy. Overall survival rate was 75.0% for 1-year, 62.5% for 2-year, and 41.7% for 5-year. In group with cystectomy survival rate was 100% for 1-year, 100% for 2-year, and 50.0% for 5-year. In group without cystectomy, 50.0% for 1-year, and 25.0% for 2-year. Overall no recurrence rate was 87.5% for 6-months, 58.3% for 1-year, and 58.3% for 5-year. Main side effects were myelosuppression, appetite loss, diarrhea, thigh pain and contracted bladder. (author)

  20. Metastatic Invasive Lobular Breast Cancer Presenting Clinically with Esophageal Dysphagia

    Directory of Open Access Journals (Sweden)

    Lilit Karapetyan

    2017-01-01

    Full Text Available Background. Intra-abdominal metastases of invasive lobular breast cancer (ILBC may be insidious. We report a case of metastatic ILBC that presented with dysphagia within weeks of a negative mammogram and before the development of intra-abdominal symptoms. Case. A 70-year-old female developed esophageal dysphagia. She underwent EGD which showed a short segment of stricture of the distal esophagus without significant mucosal changes. Biopsy was unremarkable and patient underwent lower esophageal sphincter (LES dilation. Severe progressive dysphagia led to esophageal impaction and three LES dilatations. CT scan showed bilateral pleural effusions, more prominent on right side, and ascites. The pleural effusions were transudative. Repeat EGD with biopsy showed lymphocytic esophagitis, and she was started on swallowed fluticasone. Abdominal ultrasound with Doppler showed that the main portal vein had atypical turbulent flow that was felt to possibly be due to retroperitoneal process. The patient underwent diagnostic laparoscopy which revealed diffuse punctate lesions on the peritoneum. Pathology was consistent with metastatic ILBC. Conclusion. Dysphagia in the setting of peritoneal carcinomatosis from metastatic ILBC is a rare finding. The case highlights the importance of metastatic ILBC as a differential diagnosis for female patients with progressive dysphagia and associated ascites or pleural effusions.

  1. Effect of adjuvant chemotherapy in postmenopausal patients with invasive ductal versus lobular breast cancer

    NARCIS (Netherlands)

    Truin, W.; Voogd, A.C.; Vreugdenhil, G.; van der Heiden-van der Loo, M.; Siesling, Sabine; Roumen, R.M.

    2012-01-01

    Background On the basis of the lack of response of invasive lobular breast cancer to neoadjuvant chemotherapy, we questioned the effectiveness of adjuvant chemotherapy in relation to histology. Patients and methods Women with primary nonmetastatic invasive ductal or (mixed type) lobular breast

  2. MMP28 (epilysin) as a novel promoter of invasion and metastasis in gastric cancer

    International Nuclear Information System (INIS)

    Jian, Pan; Yanfang, Tao; Zhuan, Zhou; Jian, Wang; Xueming, Zhu; Jian, Ni

    2011-01-01

    The purpose of this study was to investigate invasion and metastasis related genes in gastric cancer. The transwell migration assay was used to select a highly invasive sub-line from minimally invasive parent gastric cancer cells, and gene expression was compared using a microarray. MMP28 upregulation was confirmed using qRT-PCR. MMP28 immunohistochemistry was performed in normal and gastric cancer specimens. Invasiveness and tumor formation of stable cells overexpressing MMP28 were tested in vitro and in vivo. MMP28 was overexpressed in the highly invasive sub-cell line. Immunohistochemistry revealed MMP28 expression was markedly increased in gastric carcinoma relative to normal epithelia, and was significantly associated with depth of tumor invasion, lymph node metastasis and poorer overall survival. Ectopic expression of MMP28 indicated MMP28 promoted tumor cell invasion in vitro and increased gastric carcinoma metastasis in vivo. This study indicates MMP28 is frequently overexpressed during progression of gastric carcinoma, and contributes to tumor cell invasion and metastasis. MMP28 may be a novel therapeutic target for prevention and treatment of metastases in gastric cancer

  3. GPU-based RFA simulation for minimally invasive cancer treatment of liver tumours

    NARCIS (Netherlands)

    Mariappan, P.; Weir, P.; Flanagan, R.; Voglreiter, P.; Alhonnoro, T.; Pollari, M.; Moche, M.; Busse, H.; Futterer, J.J.; Portugaller, H.R.; Sequeiros, R.B.; Kolesnik, M.

    2017-01-01

    PURPOSE: Radiofrequency ablation (RFA) is one of the most popular and well-standardized minimally invasive cancer treatments (MICT) for liver tumours, employed where surgical resection has been contraindicated. Less-experienced interventional radiologists (IRs) require an appropriate planning tool

  4. Accuracy and consequences of same-day, invasive lung cancer workup

    DEFF Research Database (Denmark)

    Madsen, Kirsten Riis; Høegholm, Asbjørn; Bodtger, Uffe

    2016-01-01

    BACKGROUND: Though widely used, little is known about accuracy and efficacy of same-day, invasive workup of suspected lung cancer. OBJECTIVE: To evaluate the accuracy and efficacy of same-day, invasive lung cancer workup (diagnosis and mediastinal staging), and to identify differences between...... patients without (Group A) or with (Group B) need for resampling. METHODS: A retrospective study was performed on all consecutive patients referred for surgical treatment for localised lung cancer after invasive diagnostic and staging workup at our unit. Data were extracted from electronic medical files...... pulmonary disease. Tumour located in right upper lobe was associated with need for resampling. DISCUSSION: Our retrospective study suggests that same-day, invasive workup for lung cancer is safe, accurate, and efficacious in reducing time to therapy, even in patients with small lesions and low tumour burden....

  5. The situation of radiotherapy in the treatment of lymph node invasion of gynecological cancers

    International Nuclear Information System (INIS)

    Dubois, J.B.; Gerbaulet, A.

    1993-01-01

    In this article, the authors explain the role and possibilities of radiotherapy in the treatment of lymph node invasion in gynecological cancers as uterine cervix carcinoma, uterus carcinoma, ovary carcinoma and vulva carcinoma

  6. Growth and control of invasive weeds under elevated CO2

    Science.gov (United States)

    Atmospheric concentrations of CO2 have been increasing since the onset of the industrial revolution. Regardless of the debate on the effects of this rise on climate, most plants exhibit a positive growth response to elevated CO2 due to increased photosynthesis, resource use efficiency, and/or alloca...

  7. Physical View on the Interactions Between Cancer Cells and the Endothelial Cell Lining During Cancer Cell Transmigration and Invasion

    Science.gov (United States)

    Mierke, Claudia T.

    There exist many reviews on the biological and biochemical interactions of cancer cells and endothelial cells during the transmigration and tissue invasion of cancer cells. For the malignant progression of cancer, the ability to metastasize is a prerequisite. In particular, this means that certain cancer cells possess the property to migrate through the endothelial lining into blood or lymph vessels, and are possibly able to transmigrate through the endothelial lining into the connective tissue and follow up their invasion path in the targeted tissue. On the molecular and biochemical level the transmigration and invasion steps are well-defined, but these signal transduction pathways are not yet clear and less understood in regards to the biophysical aspects of these processes. To functionally characterize the malignant transformation of neoplasms and subsequently reveal the underlying pathway(s) and cellular properties, which help cancer cells to facilitate cancer progression, the biomechanical properties of cancer cells and their microenvironment come into focus in the physics-of-cancer driven view on the metastasis process of cancers. Hallmarks for cancer progression have been proposed, but they still lack the inclusion of specific biomechanical properties of cancer cells and interacting surrounding endothelial cells of blood or lymph vessels. As a cancer cell is embedded in a special environment, the mechanical properties of the extracellular matrix also cannot be neglected. Therefore, in this review it is proposed that a novel hallmark of cancer that is still elusive in classical tumor biological reviews should be included, dealing with the aspect of physics in cancer disease such as the natural selection of an aggressive (highly invasive) subtype of cancer cells displaying a certain adhesion or chemokine receptor on their cell surface. Today, the physical aspects can be analyzed by using state-of-the-art biophysical methods. Thus, this review will present

  8. Synchronous lobular carcinoma in situ and invasive lobular cancer: marker or precursor for invasive lobular carcinoma.

    Science.gov (United States)

    Wallace, A S; Xiang, D; Hockman, L; Arya, M; Jeffress, J; Wang, Z; Dale, P S

    2014-10-01

    Lobular carcinoma in situ (LCIS) is a known risk factor for invasive breast carcinoma, but there is increasing data indicating a possible precursor relationship. This study investigates the incidence of lobular carcinoma in situ that occurs with invasive lobular carcinoma (ILC). Women diagnosed with ILC or LCIS from 2000 to 2010 were retrospectively identified and reviewed after institutional review board approval. This group was divided into two cohorts: ILC alone, and LCIS and ILC (ILC/LCIS). Patient demographics, disease characteristics, and treatment modalities were captured. p invasive ductal carcinoma at ∼40%. The association of pre-invasive and invasive lobular lesions should be further studied in a large scale prospective study to assess for a precursor relationship. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Functional Assay of Cancer Cell Invasion Potential Based on Mechanotransduction of Focused Ultrasound

    Directory of Open Access Journals (Sweden)

    Andrew C. Weitz

    2017-08-01

    Full Text Available Cancer cells undergo a number of biophysical changes as they transform from an indolent to an aggressive state. These changes, which include altered mechanical and electrical properties, can reveal important diagnostic information about disease status. Here, we introduce a high-throughput, functional technique for assessing cancer cell invasion potential, which works by probing for the mechanically excitable phenotype exhibited by invasive cancer cells. Cells are labeled with fluorescent calcium dye and imaged during stimulation with low-intensity focused ultrasound, a non-contact mechanical stimulus. We show that cells located at the focus of the stimulus exhibit calcium elevation for invasive prostate (PC-3 and DU-145 and bladder (T24/83 cancer cell lines, but not for non-invasive cell lines (BPH-1, PNT1A, and RT112/84. In invasive cells, ultrasound stimulation initiates a calcium wave that propagates from the cells at the transducer focus to other cells, over distances greater than 1 mm. We demonstrate that this wave is mediated by extracellular signaling molecules and can be abolished through inhibition of transient receptor potential channels and inositol trisphosphate receptors, implicating these proteins in the mechanotransduction process. If validated clinically, our technology could provide a means to assess tumor invasion potential in cytology specimens, which is not currently possible. It may therefore have applications in diseases such as bladder cancer, where cytologic diagnosis of tumor invasion could improve clinical decision-making.

  10. Exosomes Promote Ovarian Cancer Cell Invasion through Transfer of CD44 to Peritoneal Mesothelial Cells.

    Science.gov (United States)

    Nakamura, Koji; Sawada, Kenjiro; Kinose, Yasuto; Yoshimura, Akihiko; Toda, Aska; Nakatsuka, Erika; Hashimoto, Kae; Mabuchi, Seiji; Morishige, Ken-Ichirou; Kurachi, Hirohisa; Lengyel, Ernst; Kimura, Tadashi

    2017-01-01

    Epithelial ovarian cancer (EOC) cells metastasize within the peritoneal cavity and directly encounter human peritoneal mesothelial cells (HPMC) as the initial step of metastasis. The contact between ovarian cancer cells and the single layer of mesothelial cells involves direct communications that modulate cancer progression but the mechanisms are unclear. One candidate mediating cell-cell communications is exosomes, 30-100 nm membrane vesicles of endocytic origin, through the cell-cell transfer of proteins, mRNAs, or microRNAs. Therefore, the goal was to mechanistically characterize how EOC-derived exosomes modulate metastasis. Exosomes from ovarian cancer cells were fluorescently labeled and cocultured with HPMCs which internalized the exosomes. Upon exosome uptake, HPMCs underwent a change in cellular morphology to a mesenchymal, spindle phenotype. CD44, a cell surface glycoprotein, was found to be enriched in the cancer cell-derived exosomes, transferred, and internalized to HPMCs, leading to high levels of CD44 in HPMCs. This increased CD44 expression in HPMCs promoted cancer invasion by inducing the HPMCs to secrete MMP9 and by cleaning the mesothelial barrier for improved cancer cell invasion. When CD44 expression was knocked down in cancer cells, exosomes had fewer effects on HPMCs. The inhibition of exosome release from cancer cells blocked CD44 internalization in HPMCs and suppressed ovarian cancer invasion. In ovarian cancer omental metastasis, positive CD44 expression was observed in those mesothelial cells that directly interacted with cancer cells, whereas CD44 expression was negative in the mesothelial cells remote from the invading edge. This study indicates that ovarian cancer-derived exosomes transfer CD44 to HPMCs, facilitating cancer invasion. Mechanistic insight from the current study suggests that therapeutic targeting of exosomes may be beneficial in treating ovarian cancer. Mol Cancer Res; 15(1); 78-92. ©2016 AACR. ©2016 American

  11. Role of ErbB receptors in cancer cell migration and invasion

    Directory of Open Access Journals (Sweden)

    Aline eAppert-Collin

    2015-11-01

    Full Text Available Growth factors mediate their diverse biologic responses (regulation of cellular proliferation, differentiation, migration and survival by binding to and activating cell-surface receptors with intrinsic protein kinase activity named Receptor Tyrosine Kinases (RTKs. About 60 RTKs have been identified and can be classified into more than 16 different receptor families. Their activity is normally tightly controlled and regulated. Overexpression of RTK proteins or functional alterations caused by mutations in the corresponding genes or abnormal stimulation by autocrine growth factor loops contribute to constitutive RTK signaling, resulting in alterations in the physiological activities of cells. The ErbB receptor family of RTKs comprises four distinct receptors: the EGFR (also known as ErbB1/HER1, ErbB2 (neu, HER2, ErbB3 (HER3 and ErbB4 (HER4. ErbB family members are often overexpressed, amplified, or mutated in many forms of cancer, making them important therapeutic targets. EGFR has been found to be amplified in gliomas and non-small-cell lung carcinoma while ErbB2 amplifications are seen in breast, ovarian, bladder, non-small-cell lung carcinoma, as well as several other tumor types. Several data have shown that ErbB receptor family and its downstream pathway regulate epithelial-mesenchymal transition, migration, and tumor invasion by modulating extracellular matrix components. Recent findings indicate that extracellular matrix components such as matrikines bind specifically to EGF receptor and promote cell invasion. In this review, we will present an in-depth overview of the structure, mechanisms, cell signaling, and functions of ErbB family receptors in cell adhesion and migration. Furthermore, we will describe in a last part the new strategies developed in anti-cancer therapy to inhibit ErbB family receptor activation.

  12. Risk communication and decision-making in the prevention of invasive breast cancer.

    Science.gov (United States)

    Partridge, Ann H

    2017-08-01

    Risk communication surrounding the prevention of invasive breast cancer entails not only understanding of the disease, risks and opportunities for intervention. But it also requires understanding and implementation of optimal strategies for communication with patients who are making these decisions. In this article, available evidence for the issues surrounding risk communication and decision making in the prevention of invasive breast cancer are reviewed and strategies for improvement are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Chemokine CXCL16 Expression Suppresses Migration and Invasiveness and Induces Apoptosis in Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Yeying Fang

    2014-01-01

    Full Text Available Background. Increasing evidence argues that soluble CXCL16 promotes proliferation, migration, and invasion of cancer cells in vitro. However, the role of transmembrane or cellular CXCL16 in cancer remains relatively unknown. In this study, we determine the function of cellular CXCL16 as tumor suppressor in breast cancer cells. Methods. Expression of cellular CXCL16 in breast cancer cell lines was determined at both RNA and protein levels. In vitro and in vivo studies that overexpressed or downregulated CXCL16 were conducted in breast cancer cells. Results. We report differential expression of cellular CXCL16 in breast cancer cell lines that was negatively correlated with cell invasiveness and migration. Overexpression of CXCL16 in MDA-MB-231 cells led to a decrease in cell invasion and migration and induced apoptosis of the cells; downregulation of CXCL16 in MCF-7 cells increased cell migration and invasiveness. Consistent with the in vitro data, CXCL16 overexpression inhibited tumorigenesis in vivo. Conclusions. Cellular CXCL16 suppresses invasion and metastasis of breast cancer cells in vitro and inhibits tumorigenesis in vivo. Targeting of cellular CXCL16 expression is a potential therapeutic strategy for breast cancer.

  14. Nuclear localization of the transcriptional coactivator YAP is associated with invasive lobular breast cancer.

    Science.gov (United States)

    Vlug, Eva J; van de Ven, Robert A H; Vermeulen, Jeroen F; Bult, Peter; van Diest, Paul J; Derksen, Patrick W B

    2013-10-01

    Yes Associated Protein (YAP) has been implicated in the control of organ size by regulating cell proliferation and survival. YAP is a transcriptional coactivator that controls cellular responses through interaction with TEAD transcription factors in the nucleus, while its transcriptional functions are inhibited by phosphorylation-dependent translocation to the cytosol. YAP overexpression has been associated with different types of cancer, such as lung, skin, prostate, ovary and liver cancer. Recently, YAP was linked to E-cadherin-dependent regulation of contact inhibition in breast cancer cells. In this study we examined YAP protein expression and cellular localization in 237 cases of human invasive breast cancer by immunohistochemistry and related its expression to clinicopathological features and E-cadherin expression. We observed that invasive lobular carcinoma is characterized by higher expression levels of both nuclear and cytosolic YAP (p invasive breast cancer. We observed that high nuclear and cytosolic YAP expression are associated with the E-cadherin deficient breast cancer subtype ILC (p cancers and conditional mouse models of human lobular breast cancer. Since our data indicate that nuclear YAP localization is more common in breast cancers lacking functional adherens junctions, it suggests that YAP-mediated transcription may be involved in the development and progression of invasive lobular breast cancer.

  15. The nuclear invasion hinders coal's growth

    Energy Technology Data Exchange (ETDEWEB)

    Soras, C.G.; Stodden, J.R.

    1986-09-01

    Although there were favourable signs for coal at the start of the year, coal exports for the USA are now down and industry employment continues to dwindle; coal's prospects have been hurt by the arrival of more nuclear generating capacity and also the fall in world oil prices. Coal inventories have come under pressure: Discusses the possibility of growth in the context of the world economy and the effect of interest rates on the coal market.

  16. Environmental Influences on Growth and Reproduction of Invasive Commelina benghalensis

    Directory of Open Access Journals (Sweden)

    Mandeep K. Riar

    2016-01-01

    Full Text Available Commelina benghalensis (Benghal dayflower is a noxious weed that is invading agricultural systems in the southeastern United States. We investigated the influences of nutrition, light, and photoperiod on growth and reproductive output of C. benghalensis. In the first experimental series, plants were grown under high or low soil nutrition combined with either full light or simulated shade. Lowered nutrition strongly inhibited vegetative growth and aboveground spathe production. Similar but smaller effects were exerted by a 50% reduction in light, simulating conditions within a developing canopy. In the second series of experiments, C. benghalensis plants were exposed to different photoperiod conditions that produced short- and long-day plants growing in similar photosynthetic periods. A short-day photoperiod decreased time to flowering by several days and led to a 40 to 60% reduction in vegetative growth, but reproduction above and below ground was unchanged. Collectively, the results indicate that (1 fertility management in highly weathered soils may strongly constrain competitiveness of C. benghalensis; (2 shorter photoperiods will limit vegetative competitiveness later in the growing seasons of most crops; and (3 the high degree of reproductive plasticity and output possessed by C. benghalensis will likely cause continual persistence problems in agricultural fields.

  17. Differential nuclear shape dynamics of invasive andnon-invasive breast cancer cells are associated with actin cytoskeleton organization and stability.

    Science.gov (United States)

    Chiotaki, Rena; Polioudaki, Hara; Theodoropoulos, Panayiotis A

    2014-08-01

    Cancer cells often exhibit characteristic aberrations in their nuclear architecture, which are indicative of their malignant potential. In this study, we have examined the nuclear and cytoskeletal composition, attachment configuration dynamics, and osmotic or drug treatment response of invasive (Hs578T and MDA-MB-231) and non-invasive (MCF-10A and MCF-7) breast cancer cell lines. Unlike MCF-10A and MCF-7, Hs578T and MDA-MB-231 cells showed extensive nuclear elasticity and deformability and displayed distinct kinetic profiles during substrate attachment. The nuclear shape of MCF-10A and MCF-7 cells remained almost unaffected upon detachment, hyperosmotic shock, or cytoskeleton depolymerization, while Hs578T and MDA-MB-231 revealed dramatic nuclear contour malformations following actin reorganization.

  18. Orbital invasion routes of non-melanoma skin cancers and survival outcomes.

    Science.gov (United States)

    Dundar, Yusuf; Cannon, Richard; Wiggins, Richard; Monroe, Marcus M; Buchmann, Luke O; Hunt, Jason P

    2018-02-21

    Overall non-melanoma head and neck skin cancer has a good prognosis; however, rarely patients have an aggressive variant which results in orbital invasion via perineural spread or direct extension. Despite these consequences, there are limited published studies defining this clinical entity. The main objectives of the current study are to describe orbital invasion patterns of non-melanoma head and neck skin cancers and their impact on survival. Retrospective case series from a tertiary-care, academic institution performed between 2004 and 2014. Demographic and tumour characteristics are reported as well as patterns of orbital invasion, types of treatments received, and survival outcomes. There were 17 consecutive patients with non-melanoma skin cancer and orbital invasion who met inclusion criteria. Average age at orbital invasion diagnosis was 70.8 years old. 76% were male. Mean follow-up time was 28.5 months. Of these patients, 71% had squamous cell carcinoma and 29% had basal cell carcinoma. Brow (41%) was the most common primary sub-site followed by cheek (23%) and temple (12%). 76% of patients had a history of prior treatment. The lateral orbital wall (41%) was the most common site of invasion, followed by the medial orbital wall (29%) and antero-superior invasion (23%). Age, histology, and location of orbital invasion were associated with disease-specific and overall survival. Orbital invasion for non-melanoma head and neck skin cancers creates a treatment dilemma and the patterns of invasion are described. In addition, the location of orbital invasion is associated with survival outcomes.

  19. Differentiating invasive and pre-invasive lung cancer by quantitative analysis of histopathologic images

    Science.gov (United States)

    Zhou, Chuan; Sun, Hongliu; Chan, Heang-Ping; Chughtai, Aamer; Wei, Jun; Hadjiiski, Lubomir; Kazerooni, Ella

    2018-02-01

    We are developing automated radiopathomics method for diagnosis of lung nodule subtypes. In this study, we investigated the feasibility of using quantitative methods to analyze the tumor nuclei and cytoplasm in pathologic wholeslide images for the classification of pathologic subtypes of invasive nodules and pre-invasive nodules. We developed a multiscale blob detection method with watershed transform (MBD-WT) to segment the tumor cells. Pathomic features were extracted to characterize the size, morphology, sharpness, and gray level variation in each segmented nucleus and the heterogeneity patterns of tumor nuclei and cytoplasm. With permission of the National Lung Screening Trial (NLST) project, a data set containing 90 digital haematoxylin and eosin (HE) whole-slide images from 48 cases was used in this study. The 48 cases contain 77 regions of invasive subtypes and 43 regions of pre-invasive subtypes outlined by a pathologist on the HE images using the pathological tumor region description provided by NLST as reference. A logistic regression model (LRM) was built using leave-one-case-out resampling and receiver operating characteristic (ROC) analysis for classification of invasive and pre-invasive subtypes. With 11 selected features, the LRM achieved a test area under the ROC curve (AUC) value of 0.91+/-0.03. The results demonstrated that the pathologic invasiveness of lung adenocarcinomas could be categorized with high accuracy using pathomics analysis.

  20. Association study of prostate cancer susceptibility variants with risks of invasive ovarian, breast, and colorectal cancer

    DEFF Research Database (Denmark)

    Song, H.; Koessler, T.; Ahmed, S.

    2008-01-01

    allele OR, 0.95; 95% CI, 0.91-0.99; P(trend) = 0.028). This association was somewhat stronger for estrogen receptor-positive tumors (OR, 0.92; 95% CI, 0.87-0.98; P = 0.011). None of these tag SNPs were associated with risk of colorectal cancer. In conclusion, loci associated with risk of prostate cancer......Several prostate cancer susceptibility loci have recently been identified by genome-wide association studies. These loci are candidates for susceptibility to other epithelial cancers. The aim of this study was to test these tag single nucleotide polymorphisms (SNP) for association with invasive...... ovarian, colorectal, and breast cancer. Twelve prostate cancer-associated tag SNPs were genotyped in ovarian (2,087 cases/3,491 controls), colorectal (2,148 cases/2,265 controls) and breast (first set, 4,339 cases/4,552 controls; second set, 3,800 cases/3,995 controls) case-control studies. The primary...

  1. Five-Year Risk of Interval-Invasive Second Breast Cancer

    Science.gov (United States)

    Buist, Diana S. M.; Houssami, Nehmat; Dowling, Emily C.; Halpern, Elkan F.; Gazelle, G. Scott; Lehman, Constance D.; Henderson, Louise M.; Hubbard, Rebecca A.

    2015-01-01

    Background: Earlier detection of second breast cancers after primary breast cancer (PBC) treatment improves survival, yet mammography is less accurate in women with prior breast cancer. The purpose of this study was to examine women presenting clinically with second breast cancers after negative surveillance mammography (interval cancers), and to estimate the five-year risk of interval-invasive second cancers for women with varying risk profiles. Methods: We evaluated a prospective cohort of 15 114 women with 47 717 surveillance mammograms diagnosed with stage 0-II unilateral PBC from 1996 through 2008 at facilities in the Breast Cancer Surveillance Consortium. We used discrete time survival models to estimate the association between odds of an interval-invasive second breast cancer and candidate predictors, including demographic, PBC, and imaging characteristics. All statistical tests were two-sided. Results: The cumulative incidence of second breast cancers after five years was 54.4 per 1000 women, with 325 surveillance-detected and 138 interval-invasive second breast cancers. The five-year risk of interval-invasive second cancer for women with referent category characteristics was 0.60%. For women with the most and least favorable profiles, the five-year risk ranged from 0.07% to 6.11%. Multivariable modeling identified grade II PBC (odds ratio [OR] = 1.95, 95% confidence interval [CI] = 1.15 to 3.31), treatment with lumpectomy without radiation (OR = 3.27, 95% CI = 1.91 to 5.62), interval PBC presentation (OR = 2.01, 95% CI 1.28 to 3.16), and heterogeneously dense breasts on mammography (OR = 1.54, 95% CI = 1.01 to 2.36) as independent predictors of interval-invasive second breast cancers. Conclusions: PBC diagnosis and treatment characteristics contribute to variation in subsequent-interval second breast cancer risk. Consideration of these factors may be useful in developing tailored post-treatment imaging surveillance plans. PMID:25904721

  2. Using Remote Sensing Mapping and Growth Response to Environmental Variability to Aide Aquatic Invasive Plant Management

    Science.gov (United States)

    Bubenheim, David L.; Schlick, Greg; Genovese, Vanessa; Wilson, Kenneth D.

    2018-01-01

    Management of aquatic weeds in complex watersheds and river systems present many challenges to assessment, planning and implementation of management practices for floating and submerged aquatic invasive plants. The Delta Region Areawide Aquatic Weed Project (DRAAWP), a USDA sponsored area-wide project, is working to enhance planning, decision-making and operational efficiency in the California Sacramento-San Joaquin Delta. Satellite and airborne remote sensing are used map (area coverage and biomass density), direct operations, and assess management impacts on plant communities. Archived satellite records enable review of results following previous climate and management events and aide in developing long-term strategies. Examples of remote sensing aiding effectiveness of aquatic weed management will be discussed as well as areas for potential technological improvement. Modeling at local and watershed scales using the SWAT modeling tool provides insight into land-use effects on water quality (described by Zhang in same Symposium). Controlled environment growth studies have been conducted to quantify the growth response of invasive aquatic plants to water quality and other environmental factors. Environmental variability occurs across a range of time scales from long-term climate and seasonal trends to short-term water flow mediated variations. Response time for invasive species response are examined at time scales of weeks, day, and hours using a combination of study duration and growth assessment techniques to assess water quality, temperature (air and water), nitrogen, phosphorus, and light effects. These provide response parameters for plant growth models in response to the variation and interact with management and economic models associated with aquatic weed management. Plant growth models are to be informed by remote sensing and applied spatially across the Delta to balance location and type of aquatic plant, growth response to altered environments and

  3. FAP-overexpressing fibroblasts produce an extracellular matrix that enhances invasive velocity and directionality of pancreatic cancer cells

    International Nuclear Information System (INIS)

    Lee, Hyung-Ok; Mullins, Stefanie R; Franco-Barraza, Janusz; Valianou, Matthildi; Cukierman, Edna; Cheng, Jonathan D

    2011-01-01

    Alterations towards a permissive stromal microenvironment provide important cues for tumor growth, invasion, and metastasis. In this study, Fibroblast activation protein (FAP), a serine protease selectively produced by tumor-associated fibroblasts in over 90% of epithelial tumors, was used as a platform for studying tumor-stromal interactions. We tested the hypothesis that FAP enzymatic activity locally modifies stromal ECM (extracellular matrix) components thus facilitating the formation of a permissive microenvironment promoting tumor invasion in human pancreatic cancer. We generated a tetracycline-inducible FAP overexpressing fibroblastic cell line to synthesize an in vivo-like 3-dimensional (3D) matrix system which was utilized as a stromal landscape for studying matrix-induced cancer cell behaviors. A FAP-dependent topographical and compositional alteration of the ECM was characterized by measuring the relative orientation angles of fibronectin fibers and by Western blot analyses. The role of FAP in the matrix-induced permissive tumor behavior was assessed in Panc-1 cells in assorted matrices by time-lapse acquisition assays. Also, FAP + matrix-induced regulatory molecules in cancer cells were determined by Western blot analyses. We observed that FAP remodels the ECM through modulating protein levels, as well as through increasing levels of fibronectin and collagen fiber organization. FAP-dependent architectural/compositional alterations of the ECM promote tumor invasion along characteristic parallel fiber orientations, as demonstrated by enhanced directionality and velocity of pancreatic cancer cells on FAP + matrices. This phenotype can be reversed by inhibition of FAP enzymatic activity during matrix production resulting in the disorganization of the ECM and impeded tumor invasion. We also report that the FAP + matrix-induced tumor invasion phenotype is β 1 -integrin/FAK mediated. Cancer cell invasiveness can be affected by alterations in the tumor

  4. ATM regulation of IL-8 links oxidative stress to cancer cell migration and invasion.

    Science.gov (United States)

    Chen, Wei-Ta; Ebelt, Nancy D; Stracker, Travis H; Xhemalce, Blerta; Van Den Berg, Carla L; Miller, Kyle M

    2015-06-01

    Ataxia-telangiectasia mutated (ATM) protein kinase regulates the DNA damage response (DDR) and is associated with cancer suppression. Here we report a cancer-promoting role for ATM. ATM depletion in metastatic cancer cells reduced cell migration and invasion. Transcription analyses identified a gene network, including the chemokine IL-8, regulated by ATM. IL-8 expression required ATM and was regulated by oxidative stress. IL-8 was validated as an ATM target by its ability to rescue cell migration and invasion defects in ATM-depleted cells. Finally, ATM-depletion in human breast cancer cells reduced lung tumors in a mouse xenograft model and clinical data validated IL-8 in lung metastasis. These findings provide insights into how ATM activation by oxidative stress regulates IL-8 to sustain cell migration and invasion in cancer cells to promote metastatic potential. Thus, in addition to well-established roles in tumor suppression, these findings identify a role for ATM in tumor progression.

  5. Invasive growth patterns of juvenile nasopharyngeal angiofibroma: radiological imaging and clinical implications.

    Science.gov (United States)

    Szymańska, Anna; Szymański, Marcin; Czekajska-Chehab, Elżbieta; Szczerbo-Trojanowska, Małgorzata

    2014-07-01

    Juvenile nasopharyngeal angiofibroma is a benign lesion with locally aggressive nature. Knowledge of its typical growth patterns is crucial for precise preoperative staging and adequate preoperative patient counseling. This pictorial essay focuses on characteristic radiological features and paths of invasive growth of this rare tumor. Also, the impact of accurate preoperative evaluation of tumor extensions on surgical planning and results of treatment are discussed. © The Foundation Acta Radiologica 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  6. [Lobular invasive breast cancer prognostic factors: About 940 patients].

    Science.gov (United States)

    Jauffret, C; Houvenaeghel, G; Classe, J-M; Garbay, J-R; Giard, S; Charitansky, H; Cohen, M; Bélichard, C; Faure, C; Darai, É; Hudry, D; Azuar, P; Villet, R; Gimbergues, P; Tunon de Lara, C; Martino, M; Coutant, C; Dravet, F; Chauvet, M-P; Chéreau Ewald, E; Penault-Llorca, F; Goncalves, A; Lambaudie, É

    2015-11-01

    To assess the prognostic factors of T1 and T2 infiltrating lobular breast cancers, and to investigate predictive factors of axillary lymph node involvement. This is a retrospective multicentric study, conducted from 1999 to 2008, among 13 french centers. All data concerning patients with breast cancer who underwent a primary surgical treatment including a sentinel lymph node procedure have been collected (tumors was stage T1 or T2). Patients underwent partial or radical mastectomy. Axillary lymph node dissection was done systematically (at the time of sentinel procedure evaluation), or in case of sentinel lymph node involvement. Among all the 8100 patients, 940 cases of lobular infiltrating tumors were extracted. Univariate analysis was done to identify significant prognosis factors, and then a Cox regression was applied. Analysis interested factors that improved disease free survival, overall survival and factors that influenced the chemotherapy indication. Different factors that may be related with lymph node involvement have been tested with univariate than multivariate analysis, to highlight predictive factors of axillary involvement. Median age was 60 years (27-89). Most of patients had tumours with a size superior to 10mm (n=676, 72%), with a minority of high SBR grade (n=38, 4%), and a majority of positive hormonal status (n = 880, 93, 6%). The median duration of follow-up was 59 months (1-131). Factors significantly associated with decreased disease free survival was histological grade 3 (hazard ratio [HR]: 3,85, IC 1,21-12,21), tumour size superior to 2cm (HR: 2,85, IC: 1,43-5,68) and macrometastatic lymph node status (HR: 3,11, IC: 1,47-6,58). Concerning overall survival, multivariate analysis demonstrated a significant impact of age less than 50 years (HR: 5,2, IC: 1,39-19,49), histological grade 3 (HR: 5,03, IC: 1,19-21,25), tumour size superior to 2cm (HR: 2,53, IC: 1,13-5,69). Analysis concerning macrometastatic lymph node status nearly reached

  7. High resolution MR imaging of bladder cancer: new criteria for determining depth of wall invasion

    International Nuclear Information System (INIS)

    Suh, Chang Hae; Kressel, Herbert Y

    1993-01-01

    To establish new criteria to determine the depth of bladder cancer as well as to obtain the findings of each stage of bladder cancer we reviewed high resolution MR images of 18 bladder cancer patients including seven cases (26%) with superficial bladder wall invasion. All MR scans were done before biopsy or surgery. Multiple layers of the bladder wall (inner black, middle white, outer black) were demonstrated in 11 cases out of a total 18 cases. Thickening of the middle layer caused by tumor infiltration or edema of lamina propria was seen in 8 of 12 patients with stage T2 or greater, and was suggestive of superficial muscle invasion when multiple layers were demonstrated. Disruption of outer layer (as well as inner layer) and external protrusion of tumor itself were indicative of perivesical invasion. When multiple layers were not demonstrated, the depth of tumor invasion could not be judged. High resolution MR imaging can depict submucosal invasion, muscle invasion, and perivesical invasion secondary to bladder cancer

  8. Growth and progression of colorectal cancer

    International Nuclear Information System (INIS)

    Yamada, T.; Ushio, K.; Hirota, T.

    1988-01-01

    There is an increasing interest in the natural history of colorectal carcinoma, now that small polypoid lesions of the large intestine can be detected effectively by radiology and endoscopy. The problems of this histo- and morphogenesis of colorectal cancer have, however, remained unsettled because the observation of the sequential change of a lesion with time by follow-up radiology and/or endoscopy is impossible once its malignancy is proved. Clinically the retrospective review of radiographic findings in overlooked cases is the only means to evaluate the natural history of colorectal cancer. This paper attempts to estimate the growth rate of colorectal cancer, based on a retrospective review of radiographic findings of overlooked cases, and analyses of the radiographic features of small polypoid lesions which may develop into advanced cancers

  9. Rb suppresses collective invasion, circulation and metastasis of breast cancer cells in CD44-dependent manner.

    Directory of Open Access Journals (Sweden)

    Kui-Jin Kim

    Full Text Available Basal-like breast carcinomas (BLCs present with extratumoral lymphovascular invasion, are highly metastatic, presumably through a hematogenous route, have augmented expression of CD44 oncoprotein and relatively low levels of retinoblastoma (Rb tumor suppressor. However, the causal relation among these features is not clear. Here, we show that Rb acts as a key suppressor of multiple stages of metastatic progression. Firstly, Rb suppresses collective cell migration (CCM and CD44-dependent formation of F-actin positive protrusions in vitro and cell-cluster based lymphovascular invasion in vivo. Secondly, Rb inhibits the release of single cancer cells and cell clusters into the hematogenous circulation and subsequent metastatic growth in lungs. Finally, CD44 expression is required for collective motility and all subsequent stages of metastatic progression initiated by loss of Rb function. Altogether, our results suggest that Rb/CD44 pathway is a crucial regulator of CCM and metastatic progression of BLCs and a promising target for anti-BLCs therapy.

  10. Minimally invasive treatment of peristomal metastases from gastric cancer at an ileostomy site by electrochemotherapy

    International Nuclear Information System (INIS)

    Campana, Luca G.; Scarpa, Marco; Sommariva, Antonio; Bonandini, Elena; Valpione, Sara; Sartore, Leonardo; Rossi, Carlo R.

    2013-01-01

    Peristomal metastases are rare, but potentially associated with relevant morbidity. Surgical resection, followed by stoma relocation, represent the gold standard in most patients. We describe electrochemotherapy (ECT), a minimally invasive method for locally-enhancing drug delivery by means of electric pulses, as an alternative approach. A 49-year-old man with advanced gastric cancer developed skin metastases around an ileostomy site. The ulcerated and oozing tumor growth impaired patient’s quality of life due to continuous trouble in fitting the ostomy appliance, its poor adherence and consequent stools spillage. ECT consisted of a 20-minute course under mild general sedation. A bleomycin bolus of 15 000 IU/m 2 was followed by the percutaneous application of multiple, 1.5 ms -long electric pulses by means of a needle electrode. Post ECT course was uneventful and the patient was discharged on the same day. After one week, tumor nodules were flattened and partial tumor regression was appreciable at one-month follow-up. More importantly, peristomal skin conditions significantly improved, thus allowing for an effective application of the ostomy appliance during the following moths, until patient’s death. This report suggests the feasibility of ECT as a minimally invasive approach for peristomal tumors. In selected cases, ECT, by achieving a rapid tumor control, may ensure effective ostomy management and preserve patients’ quality of life

  11. Minimally invasive treatment of peristomal metastases from gastric cancer at an ileostomy site by electrochemotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Campana, Luca G., E-mail: maximizing@hotmail.com [Sarcoma and Melanoma Unit, Veneto Institute of Oncology (IOV-IRCCS), Padova (Italy); Scarpa, Marco [Surgical Oncology Unit, Veneto Institute of Oncology (IOV-IRCCS), Padova (Italy); Sommariva, Antonio [Sarcoma and Melanoma Unit, Veneto Institute of Oncology (IOV-IRCCS), Padova (Italy); Bonandini, Elena [Department of Pathology, University of Padova, Padova (Italy); Valpione, Sara [Melanoma Cancer Unit, Veneto Institute of Oncology (IOV-IRCCS), Padova (Italy); Sartore, Leonardo [Plastic Surgery Unit, University of Padova, Padova (Italy); Rossi, Carlo R. [Sarcoma and Melanoma Unit, Veneto Institute of Oncology (IOV-IRCCS), Padova (Italy)

    2013-01-01

    Peristomal metastases are rare, but potentially associated with relevant morbidity. Surgical resection, followed by stoma relocation, represent the gold standard in most patients. We describe electrochemotherapy (ECT), a minimally invasive method for locally-enhancing drug delivery by means of electric pulses, as an alternative approach. A 49-year-old man with advanced gastric cancer developed skin metastases around an ileostomy site. The ulcerated and oozing tumor growth impaired patient’s quality of life due to continuous trouble in fitting the ostomy appliance, its poor adherence and consequent stools spillage. ECT consisted of a 20-minute course under mild general sedation. A bleomycin bolus of 15 000 IU/m{sup 2} was followed by the percutaneous application of multiple, 1.5 ms -long electric pulses by means of a needle electrode. Post ECT course was uneventful and the patient was discharged on the same day. After one week, tumor nodules were flattened and partial tumor regression was appreciable at one-month follow-up. More importantly, peristomal skin conditions significantly improved, thus allowing for an effective application of the ostomy appliance during the following moths, until patient’s death. This report suggests the feasibility of ECT as a minimally invasive approach for peristomal tumors. In selected cases, ECT, by achieving a rapid tumor control, may ensure effective ostomy management and preserve patients’ quality of life.

  12. A non-invasive modality: the US virtual touch tissue quantification (VTTQ) for evaluation of breast cancer.

    Science.gov (United States)

    Tamaki, Kentaro; Tamaki, Nobumitsu; Kamada, Yoshihiko; Uehara, Kano; Miyashita, Minoru; Ishida, Takanori; Sasano, Hironobu

    2013-09-01

    We evaluated the biologic features of breast tissues using a newly developed non-invasive diagnostic system, named virtual touch tissue quantification. A total of 180 patients including 115 invasive ductal carcinoma, 30 ductal carcinoma in situ, 4 mucinous carcinoma, 7 invasive lobular carcinoma, 8 fibroadenoma, 12 fibrocystic change and 4 intraductal papilloma were studied at Nahanishi Clinic, Okinawa. We first compared the results of virtual touch tissue quantification according to each histologic subtype and determined the optimal cutoff values for virtual touch tissue quantification to distinguish benign from malignant tissues, using the receiver operating characteristic method. In addition, we also examined the correlation between virtual touch tissue quantification velocities and Ki-67, estrogen receptor, progesterone receptor or human epidermal growth factor receptor 2 in cases of invasive ductal carcinoma using linear regression analyses and Student's t-test. Virtual touch tissue quantification velocities were statistically higher in malignant cases than in benign cases (P breast cancer pathology in a non-invasive fashion.

  13. The value of CT in the detection of mural invasion in colon cancer

    International Nuclear Information System (INIS)

    Katayama, Hiroshi; Totani, Kimiaki; Fujikawa, Koichi; Kagemoto, Masayuki; Itoh, Sachiko.

    1984-01-01

    Thirty five patients with rectal and rectosigmoid cancer were evaluated by computed tomography using olive oil enema method. All of them underwent surgical operation and were grouped into 4 groups (PM, A 1 .S 1 , A 2 .S 2 , Ai.Si,) according to the degree of macroscopic mural invasion classified by Japan Colon Cancer Society. The results of CT exam and macroscopic mural invading findings were compared in all of 4 groups. The overall accuracy rate CT exam was 86.1% for the estimation of mural and extramural invasion. In each group classified by the degree of mural invasion, the accuracy rate of CT was 71.4% in PM + A 1 .S 1 , 86.4% in A 2 .S 2 , and 100% in Ai.Si. In conclusion, CT using olive oil enema method in useful for the estimation of extramural invasion of rectal and rectosigmoid cancer. (author)

  14. Inhibition of Zoledronic Acid on Cell Proliferation and Invasion of Lung Cancer Cell Line 95D

    Directory of Open Access Journals (Sweden)

    Mingming LI

    2009-03-01

    Full Text Available Background and objective Abnormal proliferation and metastasis is the basic characteristic of malignant tumors. The aim of this work is to explore the effects of zoledronic acid on cell proliferation and invasion in lung cancer cell line 95D. Methods The effect of zoledrnic acid (ZOL on proliferation of lung cancer cell line 95D was detected by MTT. The expression of proliferation and invasion-relation genes and proteins were detected by Western blot, RT-PCR and immunofluorescence. Changes of invasion of lung cancer cell numbers were measured by polycarbonates coated with Matrigel. Results ZOL could inhibit the proliferation of lung cancer cell line 95D in vitro in a time-dependant and a dose-dependant manner. With time extending after ZOL treated, the mRNA expresion of VEGF, MMP9, MMP2 and protein expression of VEGF, MMP9, ERK1/ ERK2 were decreased. The results of Tanswell invasion showed the numbers of invasive cells were significantly reduced in 95D cells treated with ZOL 4 d and 6 d later. Conclusion ZOL could inhibit cell proliferation and invasion of lung cancer cell line 95D.

  15. Minimally invasive radical pancreatectomy for left-sided pancreatic cancer: Current status and future perspectives

    Science.gov (United States)

    Kang, Chang Moo; Lee, Sung Hwan; Lee, Woo Jung

    2014-01-01

    Minimally invasive distal pancreatectomy with splenectomy has been regarded as a safe and effective treatment for benign and borderline malignant pancreatic lesions. However, its application for left-sided pancreatic cancer is still being debated. The clinical evidence for radical antegrade modular pancreatosplenectomy (RAMPS)-based minimally invasive approaches for left-sided pancreatic cancer was reviewed. Potential indications and surgical concepts for minimally invasive RAMPS were suggested. Despite the limited clinical evidence for minimally invasive distal pancreatectomy in left-sided pancreatic cancer, the currently available clinical evidence supports the use of laparoscopic distal pancreatectomy under oncologic principles in well-selected left sided pancreatic cancers. A pancreas-confined tumor with an intact fascia layer between the pancreas and left adrenal gland/kidney positioned more than 1 or 2 cm away from the celiac axis is thought to constitute a good condition for the use of margin-negative minimally invasive RAMPS. The use of minimally invasive (laparoscopic or robotic) anterior RAMPS is feasible and safe for margin-negative resection in well-selected left-sided pancreatic cancer. The oncologic feasibility of the procedure remains to be determined; however, the currently available interim results indicate that even oncologic outcomes will not be inferior to those of open radical distal pancreatosplenectomy. PMID:24605031

  16. Hypoxia stimulates invasion and migration of human cervical cancer ...

    Indian Academy of Sciences (India)

    Here we show that hypoxiaincreases tumour cell invasion and migration by the modulation of Rab11, an important molecule for vesicular trafficking.In our study, we found that Rab11, together with the activation of Rac1, could stimulate invasion and migration of cervicalcancer cell lines HeLa/SiHa in hypoxia. Activation of ...

  17. An mDia2/ROCK signaling axis regulates invasive egress from epithelial ovarian cancer spheroids.

    Science.gov (United States)

    Pettee, Krista M; Dvorak, Kaitlyn M; Nestor-Kalinoski, Andrea L; Eisenmann, Kathryn M

    2014-01-01

    Multi-cellular spheroids are enriched in ascites of epithelial ovarian cancer (OvCa) patients. They represent an invasive and chemoresistant cellular population fundamental to metastatic dissemination. The molecular mechanisms triggering single cell invasive egress from spheroids remain enigmatic. mDia formins are Rho GTPase effectors that are key regulators of F-actin cytoskeletal dynamics. We hypothesized that mDia2-driven F-actin dynamics promote single cell invasive transitions in clinically relevant three-dimensional (3D) OvCa spheroids. The current study is a dissection of the contribution of the F-actin assembly factor mDia2 formin in invasive transitions and using a clinically relevant ovarian cancer spheroid model. We show that RhoA-directed mDia2 activity is required for tight spheroid organization, and enrichment of mDia2 in the invasive cellular protrusions of collagen-embedded OVCA429 spheroids. Depleting mDia2 in ES-2 spheroids enhanced invasive dissemination of single amoeboid-shaped cells. This contrasts with spheroids treated with control siRNA, where a mesenchymal invasion program predominated. Inhibition of another RhoA effector, ROCK, had no impact on ES-2 spheroid formation but dramatically inhibited spheroid invasion through induction of a highly elongated morphology. Concurrent inhibition of ROCK and mDia2 blocked single cell invasion from ES-2 spheroids more effectively than inhibition of either protein alone, indicating that invasive egress of amoeboid cells from mDia2-depleted spheroids is ROCK-dependent. Our findings indicate that multiple GTPase effectors must be suppressed in order to fully block invasive egress from ovarian cancer spheroids. Furthermore, tightly regulated interplay between ROCK and mDia2 signaling pathways dictates the invasive capacities and the type of invasion program utilized by motile spheroid-derived ovarian cancer cells. As loss of the gene encoding mDia2, DRF3, has been linked to cancer progression and

  18. An mDia2/ROCK signaling axis regulates invasive egress from epithelial ovarian cancer spheroids.

    Directory of Open Access Journals (Sweden)

    Krista M Pettee

    Full Text Available Multi-cellular spheroids are enriched in ascites of epithelial ovarian cancer (OvCa patients. They represent an invasive and chemoresistant cellular population fundamental to metastatic dissemination. The molecular mechanisms triggering single cell invasive egress from spheroids remain enigmatic. mDia formins are Rho GTPase effectors that are key regulators of F-actin cytoskeletal dynamics. We hypothesized that mDia2-driven F-actin dynamics promote single cell invasive transitions in clinically relevant three-dimensional (3D OvCa spheroids. The current study is a dissection of the contribution of the F-actin assembly factor mDia2 formin in invasive transitions and using a clinically relevant ovarian cancer spheroid model. We show that RhoA-directed mDia2 activity is required for tight spheroid organization, and enrichment of mDia2 in the invasive cellular protrusions of collagen-embedded OVCA429 spheroids. Depleting mDia2 in ES-2 spheroids enhanced invasive dissemination of single amoeboid-shaped cells. This contrasts with spheroids treated with control siRNA, where a mesenchymal invasion program predominated. Inhibition of another RhoA effector, ROCK, had no impact on ES-2 spheroid formation but dramatically inhibited spheroid invasion through induction of a highly elongated morphology. Concurrent inhibition of ROCK and mDia2 blocked single cell invasion from ES-2 spheroids more effectively than inhibition of either protein alone, indicating that invasive egress of amoeboid cells from mDia2-depleted spheroids is ROCK-dependent. Our findings indicate that multiple GTPase effectors must be suppressed in order to fully block invasive egress from ovarian cancer spheroids. Furthermore, tightly regulated interplay between ROCK and mDia2 signaling pathways dictates the invasive capacities and the type of invasion program utilized by motile spheroid-derived ovarian cancer cells. As loss of the gene encoding mDia2, DRF3, has been linked to cancer

  19. Heat shock protein 90β stabilizes focal adhesion kinase and enhances cell migration and invasion in breast cancer cells

    International Nuclear Information System (INIS)

    Xiong, Xiangyang; Wang, Yao; Liu, Chengmei; Lu, Quqin; Liu, Tao; Chen, Guoan; Rao, Hai; Luo, Shiwen

    2014-01-01

    Focal adhesion kinase (FAK) acts as a regulator of cellular signaling and may promote cell spreading, motility, invasion and survival in malignancy. Elevated expression and activity of FAK frequently correlate with tumor cell metastasis and poor prognosis in breast cancer. However, the mechanisms by which the turnover of FAK is regulated remain elusive. Here we report that heat shock protein 90β (HSP90β) interacts with FAK and the middle domain (amino acids 233–620) of HSP90β is mainly responsible for this interaction. Furthermore, we found that HSP90β regulates FAK stability since HSP90β inhibitor 17-AAG triggers FAK ubiquitylation and subsequent proteasome-dependent degradation. Moreover, disrupted FAK-HSP90β interaction induced by 17-AAG contributes to attenuation of tumor cell growth, migration, and invasion. Together, our results reveal how HSP90β regulates FAK stability and identifies a potential therapeutic strategy to breast cancer. - Highlights: • HSP90β protects FAK from degradation by the ubiquitin-proteasome pathway. • Inhibition of HSP90β or FAK attenuates tumorigenesis of breast cancer cells. • Genetic repression of HSP90β or FAK inhibits tumor cell migration and proliferation. • Inhibition of HSP90β or FAK interferes cell invasion and cytoskeleton

  20. Heat shock protein 90β stabilizes focal adhesion kinase and enhances cell migration and invasion in breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Xiangyang [Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Donghu District, Nanchang, Jiangxi 330006 (China); Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330006 (China); State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047 (China); Wang, Yao [Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Donghu District, Nanchang, Jiangxi 330006 (China); Liu, Chengmei [State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047 (China); Lu, Quqin [Department of Biostatistics and Epidemiology, School of Public Health, Nanchang University, Nanchang, Jiangxi 330006 (China); Liu, Tao [Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Donghu District, Nanchang, Jiangxi 330006 (China); Chen, Guoan [Department of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006 (China); Rao, Hai [Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX 78229 (United States); Luo, Shiwen, E-mail: shiwenluo@ncu.edu.cn [Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Donghu District, Nanchang, Jiangxi 330006 (China)

    2014-08-01

    Focal adhesion kinase (FAK) acts as a regulator of cellular signaling and may promote cell spreading, motility, invasion and survival in malignancy. Elevated expression and activity of FAK frequently correlate with tumor cell metastasis and poor prognosis in breast cancer. However, the mechanisms by which the turnover of FAK is regulated remain elusive. Here we report that heat shock protein 90β (HSP90β) interacts with FAK and the middle domain (amino acids 233–620) of HSP90β is mainly responsible for this interaction. Furthermore, we found that HSP90β regulates FAK stability since HSP90β inhibitor 17-AAG triggers FAK ubiquitylation and subsequent proteasome-dependent degradation. Moreover, disrupted FAK-HSP90β interaction induced by 17-AAG contributes to attenuation of tumor cell growth, migration, and invasion. Together, our results reveal how HSP90β regulates FAK stability and identifies a potential therapeutic strategy to breast cancer. - Highlights: • HSP90β protects FAK from degradation by the ubiquitin-proteasome pathway. • Inhibition of HSP90β or FAK attenuates tumorigenesis of breast cancer cells. • Genetic repression of HSP90β or FAK inhibits tumor cell migration and proliferation. • Inhibition of HSP90β or FAK interferes cell invasion and cytoskeleton.

  1. Risk factors for the development of invasive cancer in unresected ductal carcinoma in situ.

    Science.gov (United States)

    Maxwell, Anthony J; Clements, Karen; Hilton, Bridget; Dodwell, David J; Evans, Andrew; Kearins, Olive; Pinder, Sarah E; Thomas, Jeremy; Wallis, Matthew G; Thompson, Alastair M

    2018-04-01

    The natural history of ductal carcinoma in situ (DCIS) remains uncertain. The risk factors for the development of invasive cancer in unresected DCIS are unclear. Women diagnosed with DCIS on needle biopsy after 1997 who did not undergo surgical resection for ≥1 year after diagnosis were identified by breast centres and the cancer registry and outcomes were reviewed. Eighty-nine women with DCIS diagnosed 1998-2010 were identified. The median age at diagnosis was 75 (range 44-94) years with median follow-up (diagnosis to death, invasive disease or last review) of 59 (12-180) months. Twenty-nine women (33%) developed invasive breast cancer after a median interval of 45 (12-144) months. 14/29 (48%) with high grade, 10/31 (32%) with intermediate grade and 3/17 (18%) with low grade DCIS developed invasive cancer after median intervals of 38, 60 and 51 months. The cumulative incidence of invasion was significantly higher in high grade DCIS than other grades (p = .0016, log-rank test). Invasion was more frequent in lesions with calcification as the predominant feature (23/50 v. 5/25; p = .042) and in younger women (p = .0002). Endocrine therapy was associated with a lower rate of invasive breast cancer (p = .048). High cytonuclear grade, mammographic microcalcification, young age and lack of endocrine therapy were risk factors for DCIS progression to invasive cancer. Surgical excision of high grade DCIS remains the treatment of choice. Given the uncertain long-term natural history of non-high grade DCIS, the option of active surveillance of women with this condition should be offered within a clinical trial. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  2. Muscarinic receptor agonists stimulate matrix metalloproteinase 1-dependent invasion of human colon cancer cells

    International Nuclear Information System (INIS)

    Raufman, Jean-Pierre; Cheng, Kunrong; Saxena, Neeraj; Chahdi, Ahmed; Belo, Angelica; Khurana, Sandeep; Xie, Guofeng

    2011-01-01

    Highlights: ► Muscarinic receptor agonists stimulated robust human colon cancer cell invasion. ► Anti-matrix metalloproteinase1 antibody pre-treatment blocks cell invasion. ► Bile acids stimulate MMP1 expression, cell migration and MMP1-dependent invasion. -- Abstract: Mammalian matrix metalloproteinases (MMPs) which degrade extracellular matrix facilitate colon cancer cell invasion into the bloodstream and extra-colonic tissues; in particular, MMP1 expression correlates strongly with advanced colon cancer stage, hematogenous metastasis and poor prognosis. Likewise, muscarinic receptor signaling plays an important role in colon cancer; muscarinic receptors are over-expressed in colon cancer compared to normal colon epithelial cells. Muscarinic receptor activation stimulates proliferation, migration and invasion of human colon cancer cells. In mouse intestinal neoplasia models genetic ablation of muscarinic receptors attenuates carcinogenesis. In the present work, we sought to link these observations by showing that MMP1 expression and activation plays a mechanistic role in muscarinic receptor agonist-induced colon cancer cell invasion. We show that acetylcholine, which robustly increases MMP1 expression, stimulates invasion of HT29 and H508 human colon cancer cells into human umbilical vein endothelial cell monolayers – this was abolished by pre-incubation with atropine, a non-selective muscarinic receptor inhibitor, and by pre-incubation with anti-MMP1 neutralizing antibody. Similar results were obtained using a Matrigel chamber assay and deoxycholyltaurine (DCT), an amidated dihydroxy bile acid associated with colon neoplasia in animal models and humans, and previously shown to interact functionally with muscarinic receptors. DCT treatment of human colon cancer cells resulted in time-dependent, 10-fold increased MMP1 expression, and DCT-induced cell invasion was also blocked by pre-treatment with anti-MMP1 antibody. This study contributes to understanding

  3. Muscarinic receptor agonists stimulate matrix metalloproteinase 1-dependent invasion of human colon cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Raufman, Jean-Pierre, E-mail: jraufman@medicine.umaryland.edu [Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD (United States); Cheng, Kunrong; Saxena, Neeraj; Chahdi, Ahmed; Belo, Angelica; Khurana, Sandeep; Xie, Guofeng [Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD (United States)

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Muscarinic receptor agonists stimulated robust human colon cancer cell invasion. Black-Right-Pointing-Pointer Anti-matrix metalloproteinase1 antibody pre-treatment blocks cell invasion. Black-Right-Pointing-Pointer Bile acids stimulate MMP1 expression, cell migration and MMP1-dependent invasion. -- Abstract: Mammalian matrix metalloproteinases (MMPs) which degrade extracellular matrix facilitate colon cancer cell invasion into the bloodstream and extra-colonic tissues; in particular, MMP1 expression correlates strongly with advanced colon cancer stage, hematogenous metastasis and poor prognosis. Likewise, muscarinic receptor signaling plays an important role in colon cancer; muscarinic receptors are over-expressed in colon cancer compared to normal colon epithelial cells. Muscarinic receptor activation stimulates proliferation, migration and invasion of human colon cancer cells. In mouse intestinal neoplasia models genetic ablation of muscarinic receptors attenuates carcinogenesis. In the present work, we sought to link these observations by showing that MMP1 expression and activation plays a mechanistic role in muscarinic receptor agonist-induced colon cancer cell invasion. We show that acetylcholine, which robustly increases MMP1 expression, stimulates invasion of HT29 and H508 human colon cancer cells into human umbilical vein endothelial cell monolayers - this was abolished by pre-incubation with atropine, a non-selective muscarinic receptor inhibitor, and by pre-incubation with anti-MMP1 neutralizing antibody. Similar results were obtained using a Matrigel chamber assay and deoxycholyltaurine (DCT), an amidated dihydroxy bile acid associated with colon neoplasia in animal models and humans, and previously shown to interact functionally with muscarinic receptors. DCT treatment of human colon cancer cells resulted in time-dependent, 10-fold increased MMP1 expression, and DCT-induced cell invasion was also blocked by pre

  4. Src-homology 2 domain-containing tyrosine phosphatase 2 promotes oral cancer invasion and metastasis

    Science.gov (United States)

    2014-01-01

    Background Tumor invasion and metastasis represent a major unsolved problem in cancer pathogenesis. Recent studies have indicated the involvement of Src-homology 2 domain-containing tyrosine phosphatase 2 (SHP2) in multiple malignancies; however, the role of SHP2 in oral cancer progression has yet to be elucidated. We propose that SHP2 is involved in the progression of oral cancer toward metastasis. Methods SHP2 expression was evaluated in paired oral cancer tissues by using immunohistochemical staining and real-time reverse transcription polymerase chain reaction. Isogenic highly invasive oral cancer cell lines from their respective low invasive parental lines were established using a Boyden chamber assay, and changes in the hallmarks of the epithelial-mesenchymal transition (EMT) were assessed to evaluate SHP2 function. SHP2 activity in oral cancer cells was reduced using si-RNA knockdown or enforced expression of a catalytically deficient mutant to analyze migratory and invasive ability in vitro and metastasis toward the lung in mice in vivo. Results We observed the significant upregulation of SHP2 in oral cancer tissues and cell lines. Following SHP2 knockdown, the oral cancer cells markedly attenuated migratory and invasion ability. We observed similar results in phosphatase-dead SHP2 C459S mutant expressing cells. Enhanced invasiveness was associated with significant upregulation of E-cadherin, vimentin, Snail/Twist1, and matrix metalloproteinase-2 in the highly invasive clones. In addition, we determined that SHP2 activity is required for the downregulation of phosphorylated ERK1/2, which modulates the downstream effectors, Snail and Twist1 at a transcript level. In lung tissue sections of mice, we observed that HSC3 tumors with SHP2 deletion exhibited significantly reduced metastatic capacity, compared with tumors administered control si-RNA. Conclusions Our data suggest that SHP2 promotes the invasion and metastasis of oral cancer cells. These results

  5. Role of the extracellular matrix in variations of invasive pathways in lung cancers

    Energy Technology Data Exchange (ETDEWEB)

    Sá, V.K. de [Universidade de São Paulo, Departamento de Patologia, Faculdade de Medicina, São Paulo, SP (Brazil); Carvalho, L.; Gomes, A.; Alarcão, A.; Silva, M.R.; Couceiro, P.; Sousa, V. [Universidade de Coimbra, Coimbra (Portugal); Soares, F.A. [Hospital A.C. Camargo, São Paulo, SP (Brazil); Capelozzi, V.L. [Universidade de São Paulo, Departamento de Patologia, Faculdade de Medicina, São Paulo, SP (Brazil)

    2013-01-11

    Among the most common features of highly invasive tumors, such as lung adenocarcinomas (AD) and squamous cell carcinomas (SqCC), is the massive degradation of the extracellular matrix. The remarkable qualitative and quantitative modifications of hyaluronidases (HAases), hyaluronan synthases (HAS), E-cadherin adhesion molecules, and the transforming growth factor β (TGF-β) may favor invasion, cellular motility, and proliferation. We examined HAase proteins (Hyal), HAS, E-cadherin, and TGF-β profiles in lung AD subtypes and SqCC obtained from smokers and non-smokers. Fifty-six patients, median age 64 years, who underwent lobectomy for AD (N = 31) and SqCC (N = 25) were included in the study. HAS-1, -2 and -3, and Hyal-1 and -3 were significantly more expressed by tumor cells than normal and stroma cells (P < 0.01). When stratified according to histologic types, HAS-3 and Hyal-1 immunoreactivity was significantly increased in tumor cells of AD (P = 0.01) and stroma of SqCC (P = 0.002), respectively. Tobacco history in patients with AD was significantly associated with increased HAS-3 immunoreactivity in tumor cells (P < 0.01). Stroma cells of SqCC from non-smokers presented a significant association with HAS-3 (P < 0.01). Hyal, HAS, E-cadherin, and TGF-β modulate a different tumor-induced invasive pathway in lung AD subgroups and SqCC. HAases in resected AD and SqCC were strongly related to the prognosis. Therefore, our findings suggest that strategies aimed at preventing high HAS-3 and Hyal-1 synthesis, or local responses to low TGF-β and E-cadherin, may have a greater impact in lung cancer prognosis.

  6. Influence of picosecond pulse electric field to invasive ability of cervical cancer

    Directory of Open Access Journals (Sweden)

    Li-mei WU

    2015-10-01

    Full Text Available Objective To investigate the influence of picosecond pulse electric field (psPEF to the invasive ability of cervical cancer. Methods The model of cervical cancer was reproduced in BALB/c nude mice (n=24, and they were randomly divided into four groups (n=6 when the xenografts had grown reaching a diameter of 0.8-1.0cm: control group (psPEF was not given, low field intensity group (50kV/cm, moderate field intensity group (60kV/cm and high field intensity group (70kV/cm. Seven days after the psPEF treatment, the histomorphological changes were observed with HE staining and transmission electron microscopy (TEM, the expressions of vascular endothelial growth factor (VEGF and matrix metalloproteinases-9 (MMP-9 were determined with immunohistochemical (IHC staining, and the changes in protein level of VEGF and MMP-9 were assessed with Western blotting. Results After psPEF treatment, the area of necrosis was found to be increased with an increase in psPEF intensity. With TEM different degrees of apoptosis and necrosis in tumor cells with an increase of psPEF intensity were found. IHC showed that the number of VEGF and MMP-9 positive cells in cancer tissue was decreased with an increase in psPEF intensity. The average optical density (AOD of VEGF and MMP-9 proteins decreased significantly in psPEF treatment groups compared with that in control group, and the AOD values in psPEF treatment groups decreased with an increase in psPEF intensity, and the decrease was statistically significant (P<0.05. Western blotting showed the expressive levels of VEGF and MMP-9 proteins declined gradually with an increase in psPEF intensity, and the difference between groups was statistically significant (P<0.05. Conclusion psPEF may have anti-cervical cancer effects by inhibiting the secretion of VEGF and MMP-9 and reducing the invasive ability of cervical cancer cells. DOI: 10.11855/j.issn.0577-7402.2015.09.03

  7. Patient Preferences for Minimally Invasive and Open Locoregional Treatment for Early-Stage Breast Cancer

    NARCIS (Netherlands)

    Knuttel, Floor; van den Bosch, Maurice A A J; Young-Afat, Danny A.; Emaus, Marleen J.; van den Bongard, Desirée H J G; Witkamp, Arjen J.; Verkooijen, Helena M.

    Background: Noninvasive or minimally invasive treatments are being developed as alternatives to surgery for patients with early-stage breast cancer. Patients' preferences with regard to these new treatments have not been investigated. Objectives: To assess preferences of patients with breast cancer

  8. Risk of cervical intra-epithelial neoplasia and invasive cancer of the cervix in DES daughters

    NARCIS (Netherlands)

    H. Verloop (Herman); F.E. van Leeuwen (F.); T.J.M. Helmerhorst (Theo); I.M.C.M. de Kok (Inge); van Erp, E.J.M.; H.H. van Boven (Hester); M.A. Rookus (Matti)

    2017-01-01

    textabstractObjective: Women exposed to diethylstilbestrol in utero (DES) have an increased risk of clear cell adenocarcinoma (CCA) of the vagina and cervix, while their risk of non-CCA invasive cervical cancer is still unclear. Methods: We studied the risk of pre-cancerous (CIN) lesions and non-CCA

  9. Moscatilin Inhibits Lung Cancer Cell Motility and Invasion via Suppression of Endogenous Reactive Oxygen Species

    Directory of Open Access Journals (Sweden)

    Akkarawut Kowitdamrong

    2013-01-01

    Full Text Available Lung cancer is the leading cause of death among cancer patients worldwide, and most of them have died from metastasis. Migration and invasion are prerequisite processes associated with high metastasis potential in cancers. Moscatilin, a bibenzyl derivative isolated from the Thai orchid Dendrobium pulchellum, has been shown to have anticancer effect against numerous cancer cell lines. However, little is known regarding the effect of moscatilin on cancer cell migration and invasion. The present study demonstrates that nontoxic concentrations of moscatilin were able to inhibit human nonsmall cell lung cancer H23 cell migration and invasion. The inhibitory effect of moscatilin was associated with an attenuation of endogenous reactive oxygen species (ROS, in which hydroxyl radical (OH∙ was identified as a dominant species in the suppression of filopodia formation. Western blot analysis also revealed that moscatilin downregulated activated focal adhesion kinase (phosphorylated FAK, Tyr 397 and activated ATP-dependent tyrosine kinase (phosphorylated Akt, Ser 473, whereas their parental counterparts were not detectable changed. In conclusion, our results indicate the novel molecular basis of moscalitin-inhibiting lung cancer cell motility and invasion and demonstrate a promising antimetastatic potential of such an agent for lung cancer therapy.

  10. HIF1 Contributes to Hypoxia-Induced Pancreatic Cancer Cells Invasion via Promoting QSOX1 Expression

    Directory of Open Access Journals (Sweden)

    Chen-Ye Shi

    2013-08-01

    Full Text Available Background: Quiescin sulfhydryl oxidase 1 (QSOX1, which oxidizes sulfhydryl groups to form disulfide bonds in proteins, is found to be over-expressed in various pancreatic cancer cell lines and patients. QSOX1 promotes invasion of pancreatic cancer cells by activating MMP-2 and MMP-9. However, its regulatory mechanism remains largely undefined. Methods: Real-time PCR and Western blot were employed to detect the expression of QSOX1 in human pancreatic cancer cell lines under hypoxic condition. Luciferase reporter and ChIP assays were used to assess the regulation of QSOX1 by hypoxia-inducible factor 1 (HIF-1. Small interfering RNA (siRNA was applied to knock down endogenous expression of QSOX1. Matrigel-coated invasion chamber essays were conducted to detect the invasion capacity of QSOX1-depleted cells. Results: Both hypoxia and hypoxia mimicking reagent up-regulated the expression of QSOX1 in human pancreatic cancer cell lines. Knockdown of HIF-1α eliminated hypoxia induced QSOX1 expression. HIF-1α was found directly bound to two hypoxia-response elements (HRE of QSOX1 gene, both of which were required for HIF-1 induced QSOX1 expression. Moreover, QSOX1 silencing blocked hypoxia-induced pancreatic cancer cells invasion. Conclusion: QSOX1 is a direct target of HIF-1 and may contribute to hypoxia-induced pancreatic cancer cells invasion.

  11. Invasive plant suppresses the growth of native tree seedlings by disrupting belowground mutualisms.

    Directory of Open Access Journals (Sweden)

    Kristina A Stinson

    2006-05-01

    Full Text Available The impact of exotic species on native organisms is widely acknowledged, but poorly understood. Very few studies have empirically investigated how invading plants may alter delicate ecological interactions among resident species in the invaded range. We present novel evidence that antifungal phytochemistry of the invasive plant, Alliaria petiolata, a European invader of North American forests, suppresses native plant growth by disrupting mutualistic associations between native canopy tree seedlings and belowground arbuscular mycorrhizal fungi. Our results elucidate an indirect mechanism by which invasive plants can impact native flora, and may help explain how this plant successfully invades relatively undisturbed forest habitat.

  12. A Unique Case of Muscle Invasive Metastatic Breast Cancer Mimicking Myositis

    Science.gov (United States)

    2017-06-28

    TYPE 08/ 03/20 17 Publ ication/Journal 4. TITLE AND SUBTITLE A unique case of muscle-invasive metastatic breast cancer mimicking myositis 6...Rev. 8/98) Prescnbed by ANSI Std Z39. 18 Adobe Profes11on11 7.0 Title: A Unique Case of M uscle-Invasive Metastatic Breast Cancer M imicking...an 84-year-old female who presented with neck swelling and upper airway obstruction due to metastatic breast cancer invading the sternocleidomastoid

  13. Endoglin-mediated suppression of prostate cancer invasion is regulated by activin and bone morphogenetic protein type II receptors.

    Directory of Open Access Journals (Sweden)

    Michael J Breen

    Full Text Available Mortality from prostate cancer (PCa is due to the formation of metastatic disease. Understanding how that process is regulated is therefore critical. We previously demonstrated that endoglin, a type III transforming growth factor β (TGFβ superfamily receptor, suppresses human PCa cell invasion and metastasis. Endoglin-mediated suppression of invasion was also shown by us to be dependent upon the type I TGFβ receptor, activin receptor-like kinase 2 (ALK2, and the downstream effector, Smad1. In this study we demonstrate for the first time that two type II TGFβ receptors are required for endoglin-mediated suppression of invasion: activin A receptor type IIA (ActRIIA and bone morphogenetic protein receptor type II (BMPRII. Downstream signaling through these receptors is predominantly mediated by Smad1. ActRIIA stimulates Smad1 activation in a kinase-dependent manner, and this is required for suppression of invasion. In contrast BMPRII regulates Smad1 in a biphasic manner, promoting Smad1 signaling through its kinase domain but suppressing it through its cytoplasmic tail. BMPRII's Smad1-regulatory effects are dependent upon its expression level. Further, its ability to suppress invasion is independent of either kinase function or tail domain. We demonstrate that ActRIIA and BMPRII physically interact, and that each also interacts with endoglin. The current findings demonstrate that both BMPRII and ActRIIA are necessary for endoglin-mediated suppression of human PCa cell invasion, that they have differential effects on Smad1 signaling, that they make separate contributions to regulation of invasion, and that they functionally and physically interact.

  14. Minimally invasive esthetic ridge preservation with growth-factor enhanced bone matrix.

    Science.gov (United States)

    Nevins, Marc L; Said, Sherif

    2017-12-28

    Extraction socket preservation procedures are critical to successful esthetic implant therapy. Conventional surgical approaches are technique sensitive and often result in alteration of the soft tissue architecture, which then requires additional corrective surgical procedures. This case series report presents the ability of flapless surgical techniques combined with a growth factor-enhanced bone matrix to provide esthetic ridge preservation at the time of extraction for compromised sockets. When considering esthetic dental implant therapy, preservation, or further enhancement of the available tissue support at the time of tooth extraction may provide an improved esthetic outcome with reduced postoperative sequelae and decreased treatment duration. Advances in minimally invasive surgical techniques combined with recombinant growth factor technology offer an alternative for bone reconstruction while maintaining the gingival architecture for enhanced esthetic outcome. The combination of freeze-dried bone allograft (FDBA) and rhPDGF-BB (platelet-derived growth factor-BB) provides a growth-factor enhanced matrix to induce bone and soft tissue healing. The use of a growth-factor enhanced matrix is an option for minimally invasive ridge preservation procedures for sites with advanced bone loss. Further studies including randomized clinical trials are needed to better understand the extent and limits of these procedures. The use of minimally invasive techniques with growth factors for esthetic ridge preservation reduces patient morbidity associated with more invasive approaches and increases the predictability for enhanced patient outcomes. By reducing the need for autogenous bone grafts the use of this technology is favorable for patient acceptance and ease of treatment process for esthetic dental implant therapy. © 2017 Wiley Periodicals, Inc.

  15. Does shear wave ultrasound independently predict axillary lymph node metastasis in women with invasive breast cancer?

    Science.gov (United States)

    Evans, Andrew; Rauchhaus, Petra; Whelehan, Patsy; Thomson, Kim; Purdie, Colin A; Jordan, Lee B; Michie, Caroline O; Thompson, Alastair; Vinnicombe, Sarah

    2014-01-01

    Shear wave elastography (SWE) shows promise as an adjunct to greyscale ultrasound examination in assessing breast masses. In breast cancer, higher lesion stiffness on SWE has been shown to be associated with features of poor prognosis. The purpose of this study was to assess whether lesion stiffness at SWE is an independent predictor of lymph node involvement. Patients with invasive breast cancer treated by primary surgery, who had undergone SWE examination were eligible. Data were retrospectively analysed from 396 consecutive patients. The mean stiffness values were obtained using the Aixplorer® ultrasound machine from SuperSonic Imagine Ltd. Measurements were taken from a region of interest positioned over the stiffest part of the abnormality. The average of the mean stiffness value obtained from each of two orthogonal image planes was used for analysis. Associations between lymph node involvement and mean lesion stiffness, invasive cancer size, histologic grade, tumour type, ER expression, HER-2 status and vascular invasion were assessed using univariate and multivariate logistic regression. At univariate analysis, invasive size, histologic grade, HER-2 status, vascular invasion, tumour type and mean stiffness were significantly associated with nodal involvement. Nodal involvement rates ranged from 7 % for tumours with mean stiffness 150 kPa. At multivariate analysis, invasive size, tumour type, vascular invasion, and mean stiffness maintained independent significance. Mean stiffness at SWE is an independent predictor of lymph node metastasis and thus can confer prognostic information additional to that provided by conventional preoperative tumour assessment and staging.

  16. Urokinase plasminogen activator receptor on invasive cancer cells: A prognostic factor in distal gastric adenocarcinoma

    DEFF Research Database (Denmark)

    Alpizar, Warner Enrique Alpizar; Christensen, Ib Jarle; Santoni-Rugiu, Eric

    2012-01-01

    Gastric cancer is the second cancer causing death worldwide. The five-year survival for this malignancy is below 25% and few parameters have shown an impact on the prognosis of the disease. The receptor for urokinase plasminogen activator (uPAR) is involved in extracellular matrix degradation...... by mediating cell surface associated plasminogen activation, and its presence on gastric cancer cells is linked to micrometastasis and poor prognosis. Using immunohistochemistry, the prognostic significance of uPAR was evaluated in tissue samples from a retrospective series of 95 gastric cancer patients. u...... association between the expression of uPAR on tumor cells in the peripheral invasion zone and overall survival of gastric cancer patients (HR = 2.16; 95% CI: 1.13-4.14; p = 0.02). Multivariate analysis showed that uPAR immunoreactivity in cancer cells at the invasive front is an independent prognostic factor...

  17. New method for evaluation of perigastric invasion of gastric cancer by right lateral position CT

    International Nuclear Information System (INIS)

    Shirakawa, T.; Fukuda, K.; Tada, S.

    1996-01-01

    The purpose of this study was to evaluate usefulness of right lateral position CT in determining invasion of gastric cancer into adjacent organs. We assessed whether position shift, a change in the relative location of a gastric tumor and adjacent organs between the supine position and right lateral position CT, was a useful sign for absence of invasion into perigastric organs. In 37 patients with advanced gastric cancer with doubtful invasion into adjacent organs by conventional CT after 500 ml water oral intake, additive right lateral CT was performed. Of 24 cases of lesions in the gastric body, 16 had a position shift and no invasion into adjacent organs at surgery (T3), and 8 had no position shift and invasion (T4). The accuracy was 100%. Six gastric cardial and 7 pyloric tumors showed no position shift, and 3 cardial and 2 pyloric tumors were proved to be nonivasive (T3). The accuracy of cardial and pyloric tumor was 50 and 71%. We concluded that position shift may be useful in the diagnosis of invasion of adjacent organs by gastric cancer, limited to in cases with gastric body cancer. (orig.)

  18. Crosstalk between EGFR and integrin affects invasion and proliferation of gastric cancer cell line, SGC7901

    Directory of Open Access Journals (Sweden)

    Dan L

    2012-10-01

    Full Text Available Li Dan,1,* Ding Jian,2,* Lin Na,1 Wang Xiaozhong,1 1Digestive Department, the Union Hospital of Fujian Medical University, Fujian, People’s Republic of China; 2Digestive Department, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, People’s Republic of China*These authors contributed equally to this workBackground/objective: To investigate the crosstalk between epidermal growth factor receptor (EGFR and integrin-mediated signal transduction pathways in human gastric adenocarcinoma cells.Methods: EGF was used as a ligand of EGFR to stimulate the gastric adenocarcinoma cell, SGC7901. Signal molecules downstream of the integrin, FAK(Y397 and p130cas(Y410 phosphorylation, were measured by immunoprecipitation and western blot. Fibronectin (Fn was used as a ligand of integrin to stimulate the same cell line. Signal molecules downstream of EGFR and extracellular signal-regulated kinase (ERK general phosphorylation were also measured. Focal adhesion kinase (FAK small-interfering RNA was designed and transfected into SGC7901 cells to decrease the expression of FAK. Modified Boyden chambers and MTT assay were used to examine the effect of FAK inhibition on the invasiveness and proliferation of SGC7901.Results: EGF activated FAK(Y397 and p130cas(Y410 phosphorylation, while Fn activated ERK general phosphorylation. Inhibition of FAK expression decreased p130cas(Y410 phosphorylation activated by EGF and ERK general phosphorylation activated by Fn, also decreased the invasiveness and proliferation of SGC7901 cells activated by EGF or Fn.Conclusion: There is crosstalk between EGFR and integrin signal transduction. FAK may be a key cross point of the two signal pathways and acts as a potential target for human gastric cancer therapy.Keywords: gastric adenocarcinoma, epidermal growth factor receptor, integrin, focal adhesion kinase, crosstalk

  19. miR-216b suppresses breast cancer growth and metastasis by targeting SDCBP

    International Nuclear Information System (INIS)

    Jana, Samir; Sengupta, Suman; Biswas, Subir; Chatterjee, Annesha; Roy, Himansu; Bhattacharyya, Arindam

    2017-01-01

    Breast cancer is the most deadly cancer among women and the second leading cause of cancer death worldwide. Treatment effectiveness is complicated with tumor invasiveness/drug resistance. To tailor treatments more effectively to individual patients, it is important to define tumor growth and metastasis at molecular levels. SDCBP is highly overexpressed and associated with a strikingly poor prognosis in breast cancer. However the post transcriptional regulation of SDCBP overexpression remains to be an unexplored area. Our study reveals that miR-216b directly regulates SDCBP expression by binding to its 3′UTR region. miR-216b is a tumor suppressive miRNA and it is underexpressed during metastatic breast cancer. Consequently, overexpression of miR-216b resulted in decreased proliferation, migration and invasion in BC cell lines by modulating the expression of SDCBP. Inhibition of miR-216b divergent the tumor suppressive role by inducing the growth proliferation, migration and invasion in vitro. There is therefore a negative correlation between the expression of miR-216b and its target gene SDCBP in the BC tissue samples as well as cell lines. Simultaneous expression of miR-216b and SDCBP rescued the growth, migration and invasion effect suggesting that tumor suppressive action of miR-216b may be directly mediated by SDCBP. In summary, the study identifies miR-216b as a regulator of SDCBP expression in breast cancer which can potentially be targeted for developing newer therapies for the effective treatment of this killer disease.

  20. Chapter 27 -- Breast Cancer Genomics, Section VI, Pathology and Biological Markers of Invasive Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Spellman, Paul T.; Heiser, Laura; Gray, Joe W.

    2009-06-18

    Breast cancer is predominantly a disease of the genome with cancers arising and progressing through accumulation of aberrations that alter the genome - by changing DNA sequence, copy number, and structure in ways that that contribute to diverse aspects of cancer pathophysiology. Classic examples of genomic events that contribute to breast cancer pathophysiology include inherited mutations in BRCA1, BRCA2, TP53, and CHK2 that contribute to the initiation of breast cancer, amplification of ERBB2 (formerly HER2) and mutations of elements of the PI3-kinase pathway that activate aspects of epidermal growth factor receptor (EGFR) signaling and deletion of CDKN2A/B that contributes to cell cycle deregulation and genome instability. It is now apparent that accumulation of these aberrations is a time-dependent process that accelerates with age. Although American women living to an age of 85 have a 1 in 8 chance of developing breast cancer, the incidence of cancer in women younger than 30 years is uncommon. This is consistent with a multistep cancer progression model whereby mutation and selection drive the tumor's development, analogous to traditional Darwinian evolution. In the case of cancer, the driving events are changes in sequence, copy number, and structure of DNA and alterations in chromatin structure or other epigenetic marks. Our understanding of the genetic, genomic, and epigenomic events that influence the development and progression of breast cancer is increasing at a remarkable rate through application of powerful analysis tools that enable genome-wide analysis of DNA sequence and structure, copy number, allelic loss, and epigenomic modification. Application of these techniques to elucidation of the nature and timing of these events is enriching our understanding of mechanisms that increase breast cancer susceptibility, enable tumor initiation and progression to metastatic disease, and determine therapeutic response or resistance. These studies also

  1. Gallic acid reduces cell viability, proliferation, invasion and angiogenesis in human cervical cancer cells

    OpenAIRE

    ZHAO, BING; HU, MENGCAI

    2013-01-01

    Gallic acid is a trihydroxybenzoic acid, also known as 3,4,5-trihydroxybenzoic acid, which is present in plants worldwide, including Chinese medicinal herbs. Gallic acid has been shown to have cytotoxic effects in certain cancer cells, without damaging normal cells. The objective of the present study was to determine whether gallic acid is able to inhibit human cervical cancer cell viability, proliferation and invasion and suppress cervical cancer cell-mediated angiogenesis. Treatment of HeLa...

  2. Lifetime growth and risk of testicular cancer.

    Science.gov (United States)

    Richiardi, Lorenzo; Vizzini, Loredana; Pastore, Guido; Segnan, Nereo; Gillio-Tos, Anna; Fiano, Valentina; Grasso, Chiara; Ciuffreda, Libero; Lista, Patrizia; Pearce, Neil; Merletti, Franco

    2014-08-01

    Adult height is associated with testicular cancer risk. We studied to what extent this association is explained by parental height, childhood height and age at puberty. We conducted a case-control study on germ-cell testicular cancer patients diagnosed in 1997-2008 and resident in the Province of Turin. Information was collected using mailed questionnaires in 2008-2011. Specifically, we asked for adult height (in cm), height at age 9 and 13 (compared to peers) and age at puberty (compared to peers). We also asked for paternal and maternal height (in cm) as indicators of genetic components of adult height. The analysis included 255 cases and 459 controls. Odds ratios (ORs) of testicular cancer were estimated for the different anthropometric variables. Adult height was associated with testicular cancer risk [OR: 1.16, 95% confidence interval (CI): 1.03-1.31 per 5-cm increase]. The risk of testicular cancer was only slightly increased for being taller vs. shorter than peers at age 9 (OR: 1.55, 95% CI: 0.91-2.64) or age 13 (OR: 1.26, 95% CI: 0.78-2.01), and parental height was not associated with testicular cancer risk. The OR for adult height was 1.32 (95% CI: 1.12-1.56) after adjustment for parental height. Among participants with small average parental height (testicular cancer for tall (>180 cm) vs. short (testicular cancer is likely to be explained by environmental factors affecting growth in early life, childhood and adolescence. © 2013 UICC.

  3. Effects of Src on Proliferation and Invasion of Lung Cancer Cells

    Directory of Open Access Journals (Sweden)

    Rui ZHENG

    2011-04-01

    Full Text Available Background and objective It has been proven that Src played pivotal roles in carcinogenesis, cancer progression and metastasis. The aim of this study is to explore the roles of Src phosphorylation on lung cancer cells. Methods Western blot and immunoprecipitation was used to detect the expression and phosphorylation of Src in lung cancer cells. MTT and Boyden chamber assay was used to examine the effects of inhibition of Src phosphorylation on proliferation and invasion of lung cancer cells in vitro, respectively. Results pp60src was expressed in all lung cancer cell lines in this study. All 5 non-small cell lung cancer (NSCLC cell lines had increased autophosphorylated tyrosine-418, while nearly no phosphorylated Src in small cell lung cancer SBC5 cell line was detected. The effect of inhibition of Src tyrosine kinase on cell proliferation varied among the lung cancer cell lines. Submicromolar Src tyrosine kinase inhibitor (≤1 μM remarkably suppressed the proliferation of PC-9 and A549 cells in a dose dependent manner (P < 0.05, while the same concentration of Src tyrosine kinase inhibitor had no significant effect on proliferation of H226, PC14PE6 and RERFLCOK cells. Invasiveness of lung cancer cells was significantly suppressed by Src tyrosine kinase in a dose-dependent manner (P < 0.05. Conclusion Phosphorylation of Src, but not over-expression, plays a pivotal role in proliferation and invasion of NSCLC cell lines in vitro.

  4. Recent advances in high-throughput molecular marker identification for superficial and invasive bladder cancers

    DEFF Research Database (Denmark)

    Andersen, Lars Dyrskjøt; Zieger, Karsten; Ørntoft, Torben Falck

    2007-01-01

    individually contributed to the management of the disease. However, the development of high-throughput techniques for simultaneous assessment of a large number of markers has allowed classification of tumors into clinically relevant molecular subgroups beyond those possible by pathological classification. Here......Bladder cancer is the fifth most common neoplasm in industrialized countries. Due to frequent recurrences of the superficial form of this disease, bladder cancer ranks as one of the most common cancers. Despite the description of a large number of tumor markers for bladder cancers, none have......, we review the recent advances in high-throughput molecular marker identification for superficial and invasive bladder cancers....

  5. miRNA-135a promotes breast cancer cell migration and invasion by targeting HOXA10

    International Nuclear Information System (INIS)

    Chen, Yating; Zhang, Hongwei; Ma, Duan; Zhang, Jin; Wang, Huijun; Zhao, Jiayi; Xu, Cheng; Du, Yingying; Luo, Xin; Zheng, Fengyun; Liu, Rui

    2012-01-01

    miRNAs are a group of small RNA molecules regulating target genes by inducing mRNA degradation or translational repression. Aberrant expression of miRNAs correlates with various cancers. Although miR-135a has been implicated in several other cancers, its role in breast cancer is unknown. HOXA10 however, is associated with multiple cancer types and was recently shown to induce p53 expression in breast cancer cells and reduce their invasive ability. Because HOXA10 is a confirmed miR-135a target in more than one tissue, we examined miR-135a levels in relation to breast cancer phenotypes to determine if miR-135a plays role in this cancer type. Expression levels of miR-135a in tissues and cells were determined by poly (A)-RT PCR. The effect of miR-135a on proliferation was evaluated by CCK8 assay, cell migration and invasion were evaluated by transwell migration and invasion assays, and target protein expression was determined by western blotting. GFP and luciferase reporter plasmids were constructed to confirm the action of miR-135a on downstream target genes including HOXA10. Results are reported as means ± S.D. and differences were tested for significance using 2-sided Student's t-test. Here we report that miR-135a was highly expressed in metastatic breast tumors. We found that the expression of miR-135a was required for the migration and invasion of breast cancer cells, but not their proliferation. HOXA10, which encodes a transcription factor required for embryonic development and is a metastasis suppressor in breast cancer, was shown to be a direct target of miR-135a in breast cancer cells. Our analysis showed that miR-135a suppressed the expression of HOXA10 both at the mRNA and protein level, and its ability to promote cellular migration and invasion was partially reversed by overexpression of HOXA10. In summary, our results indicate that miR-135a is an onco-miRNA that can promote breast cancer cell migration and invasion. HOXA10 is a target gene for mi

  6. Identification of a novel polyprenylated acylphloroglucinol-derived SIRT1 inhibitor with cancer-specific anti-proliferative and invasion-suppressing activities

    Science.gov (United States)

    ZHU, LIJIA; QI, JI; CHIAO, CHRISTINE YA-CHI; ZHANG, QIANG; PORCO, JOHN A.; FALLER, DOUGLAS V.; DAI, YAN

    2014-01-01

    SIRT1, a class III histone deacetylase, plays a critical role in regulating cancer cell growth, migration and invasion, which makes it a potential target for cancer therapeutics. In this study, we screened derivatives of several groups of natural products and identified a novel SIRT1 inhibitor JQ-101, a synthetic derivative of the polyprenylated acylphloroglucinol (PPAP) natural products, with an IC50 for SIRT1 of 30 μM in vitro, with 5-fold higher activity for SIRT1 vs. SIRT2. Exposure of tumor cells to JQ-101 significantly enhanced acetylation of p53 and histone H4K16 at known sites of SIRT1 deacetylation, validating SIRT1 as its cellular target. JQ-101 suppressed cancer cell growth and survival by targeting SIRT1, and also exhibited selective cytotoxicity towards a panel of human tumor cell lines, while producing no toxicity in two normal human cell types at comparable concentrations. JQ-101 induced both apoptosis and cell senescence, and suppressed cancer cell invasion in vitro. In summary, we have identified JQ-101 as a new SIRT1 inhibitor which may have potential application in cancer treatment through its ability to induce tumor cell apoptosis and senescence and suppress cancer cell invasion. PMID:25189993

  7. Spiral (Helical) computed tomographic imaging for the diagnosis of bile duct cancer. Vascular and pancreatic invasions

    International Nuclear Information System (INIS)

    Kon, Masanori

    1997-01-01

    The development of several imaging techniques for diagnosing bile duct cancer have improved, however, its diagnosis at the early stage is still difficult. We discuss the significance of the spiral (helical) computed tomography (SCT) imaging for the diagnosis of bile duct cancer at an early stage. We performed, as a preoperative examination, SCT under intravenous angiography (IV-SCT) for all cases, which included 233 cases of benign bile duct diseases, 42 cases of gallbladder cancer and 22 cases of bile duct cancer. The accuracy rate of diagnosis ability of 42 cases of gallbladder cancer by IV-SCT was 91%, and that of portal vein invasion was 91%. In the cases of bile duct cancer, IV-SCT showed destructive images of the bile duct wall and the tumor images invaded into the pancreatic parenchyma, in the cases of invasion at the splenic vein and confluence site of the portal vein, IV-SCT gave clearer 3D images than conventional angiography. The accuracy rate of diagnosing pancreatic invasion in bile duct cancer by IV-SCT was 80%. However, it is still difficult to determine completely the layer structures of the bile duct and the invasion into the walls along the long axis. As the future development of SCT for the diagnosis of bile duct cancer, we expect further progression of diagnosis ability of bile duct cancer and the invasion level by the applying high resolution thin-section CT images or endoscopical images of the luminal organs in examining the bile duct. (K.H.)

  8. Downregulation of Connective Tissue Growth Factor by Three-Dimensional Matrix Enhances Ovarian Carcinoma Cell Invasion

    Science.gov (United States)

    Barbolina, Maria V.; Adley, Brian P.; Kelly, David L.; Shepard, Jaclyn; Fought, Angela J.; Scholtens, Denise; Penzes, Peter; Shea, Lonnie D.; Sharon Stack, M

    2010-01-01

    Epithelial ovarian carcinoma (EOC) is a leading cause of death from gynecologic malignancy, due mainly to the prevalence of undetected metastatic disease. The process of cell invasion during intra-peritoneal anchoring of metastatic lesions requires concerted regulation of many processes, including modulation of adhesion to the extracellular matrix and localized invasion. Exploratory cDNA microarray analysis of early response genes (altered after 4 hours of 3-dimensional collagen culture) coupled with confirmatory real-time RT-PCR, multiple three-dimensional cell culture matrices, Western blot, immunostaining, adhesion, migration, and invasion assays were used to identify modulators of adhesion pertinent to EOC progression and metastasis. cDNA microarray analysis indicated a dramatic downregulation of connective tissue growth factor (CTGF) in EOC cells placed in invasion-mimicking conditions (3-dimensional type I collagen). Examination of human EOC specimens revealed that CTGF expression was absent in 46% of the tested samples (n=41), but was present in 100% of normal ovarian epithelium samples (n=7). Reduced CTGF expression occurs in many types of cells and may be a general phenomenon displayed by cells encountering a 3D environment. CTGF levels were inversely correlated with invasion such that downregulation of CTGF increased, while its upregulation reduced, collagen invasion. Cells adhered preferentially to a surface comprised of both collagen I and CTGF relative to either component alone using α6β1 and α3β1 integrins. Together these data suggest that downregulation of CTGF in EOC cells may be important for cell invasion through modulation of cell-matrix adhesion. PMID:19382180

  9. Competition from native hydrophytes reduces establishment and growth of invasive dense-flowered cordgrass (Spartina densiflora

    Directory of Open Access Journals (Sweden)

    Ahmed M. Abbas

    2015-10-01

    Full Text Available Experimental studies to determine the nature of ecological interactions between invasive and native species are necessary for conserving and restoring native species in impacted habitats. Theory predicts that species boundaries along environmental gradients are determined by physical factors in stressful environments and by competitive ability in benign environments, but little is known about the mechanisms by which hydrophytes exclude halophytes and the life history stage at which these mechanisms are able to operate. The ongoing invasion of the South American Spartina densiflora in European marshes is causing concern about potential impacts to native plants along the marsh salinity gradient, offering an opportunity to evaluate the mechanisms by which native hydrophytes may limit, or even prevent, the expansion of invasive halophytes. Our study compared S. densiflora seedling establishment with and without competition with Phragmites australis and Typha domingensis, two hydrophytes differing in clonal architecture. We hypothesized that seedlings of the stress tolerant S. densiflora would be out-competed by stands of P. australis and T. domingensis. Growth, survivorship, biomass patterns and foliar nutrient content were recorded in a common garden experiment to determine the effect of mature P. australis and T. domingensis on the growth and colonization of S. densiflora under fresh water conditions where invasion events are likely to occur. Mature P. australis stands prevented establishment of S. densiflora seedlings and T. domingensis reduced S. densiflora establishment by 38%. Seedlings grown with P. australis produced fewer than five short shoots and all plants died after ca. 2 yrs. Our results showed that direct competition, most likely for subterranean resources, was responsible for decreased growth rate and survivorship of S. densiflora. The presence of healthy stands of P. australis, and to some extent T. domingensis, along river channels

  10. Propolin C Inhibited Migration and Invasion via Suppression of EGFR-Mediated Epithelial-to-Mesenchymal Transition in Human Lung Cancer Cells

    Directory of Open Access Journals (Sweden)

    Jih-Tung Pai

    2018-01-01

    Full Text Available Controlling lung cancer cell migration and invasion via epithelial-to-mesenchymal transition (EMT through the regulation of epidermal growth factor receptor (EGFR signaling pathway has been demonstrated. Searching biological active phytochemicals to repress EGFR-regulated EMT might prevent lung cancer progression. Propolis has been used as folk medicine in many countries and possesses anti-inflammatory, antioxidant, and anticancer activities. In this study, the antimigration and anti-invasion activities of propolin C, a c-prenylflavanone from Taiwanese propolis, were investigated on EGFR-regulated EMT signaling pathway. Cell migration and invasion activities were dose-dependently suppressed by noncytotoxic concentration of propolin C. Downregulations of vimentin and snail as well as upregulation of E-cadherin expressions were through the inhibition of EGFR-mediated phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt and extracellular signal-regulated kinase (ERK signaling pathway in propolin C-treated cells. In addition, EGF-induced migration and invasion were suppressed by propolin C-treated A549 lung cancer cells. No significant differences in E-cadherin expression were observed in EGF-stimulated cells. Interestingly, EGF-induced expressions of vimentin, snail, and slug were suppressed through the inhibition of PI3K/Akt and ERK signaling pathway in propolin C-treated cells. Inhibition of cell migration and invasion by propolin C was through the inhibition of EGF/EGFR-mediated signaling pathway, followed by EMT suppression in lung cancer.

  11. Silencing cathepsin S gene expression inhibits growth, invasion and angiogenesis of human hepatocellular carcinoma in vitro

    International Nuclear Information System (INIS)

    Fan, Qi; Wang, Xuedi; Zhang, Hanguang; Li, Chuanwei; Fan, Junhua; Xu, Jing

    2012-01-01

    Highlights: ► Cat S is highly expressed in HCC cells with high metastatic potential. ► Knockdown of Cat S inhibits growth and invasion of HCC cells. ► Knockdown of Cat S inhibits HCC-associated angiogenesis. ► Cat S might be a potential target for HCC therapy. -- Abstract: Cathepsin S (Cat S) plays an important role in tumor invasion and metastasis by its ability to degrade extracellular matrix (ECM). Our previous study suggested there could be a potential association between Cat S and hepatocellular carcinoma (HCC) metastasis. The present study was designed to determine the role of Cat S in HCC cell growth, invasion and angiogenesis, using RNA interference technology. Small interfering RNA (siRNA) sequences for the Cat S gene were synthesized and transfected into human HCC cell line MHCC97-H. The Cat S gene targeted siRNA-mediated knockdown of Cat S expression, leading to potent suppression of MHCC97-H cell proliferation, invasion and angiogenesis. These data suggest that Cat S might be a potential target for HCC therapy.

  12. Smurf2 E3 ubiquitin ligase modulates proliferation and invasiveness of breast cancer cells in a CNKSR2 dependent manner.

    Science.gov (United States)

    David, Diana; Jagadeeshan, Sankar; Hariharan, Ramkumar; Nair, Asha Sivakumari; Pillai, Radhakrishna Madhavan

    2014-01-01

    Smurf2 is a member of the HECT family of E3 ubiquitin ligases that play important roles in determining the competence of cells to respond to TGF- β/BMP signaling pathway. However, besides TGF-β/BMP pathway, Smurf2 regulates a repertoire of other signaling pathways ranging from planar cell polarity during embryonic development to cell proliferation, migration, differentiation and senescence. Expression of Smurf2 is found to be dysregulated in many cancers including breast cancer. The purpose of the present study is to examine the effect of Smurf2 knockdown on the tumorigenic potential of human breast cancer cells emphasizing more on proliferative signaling pathway. siRNAs targeting different regions of the Smurf2 mRNA were employed to knockdown the expression of Smurf2. The biological effects of synthetic siRNAs on human breast cancer cells were investigated by examining the cell proliferation, migration, invasion, focus formation, anchorage-independent growth, cell cycle arrest, and cell cycle and cell proliferation related protein expressions upon Smurf2 silencing. Smurf2 silencing in human breast cancer cells resulted in a decreased focus formation potential and clonogenicity as well as in vitro cell migration/invasion capabilities. Moreover, knockdown of Smurf2 suppressed cell proliferation. Cell cycle analysis showed that the anti-proliferative effect of Smurf2 siRNA was mediated by arresting cells in the G0/G1 phase, which was caused by decreased expression of cyclin D1and cdk4, followed by upregulation p21 and p27. Furthermore, we demonstrated that silencing of Smurf2 downregulated the proliferation of breast cancer cells by modulating the PI3K- PTEN-AKT-FoxO3a pathway via the scaffold protein CNKSR2 which is involved in RAS-dependent signaling pathways. The present study provides the first evidence that silencing Smurf2 using synthetic siRNAs can regulate the tumorigenic properties of human breast cancer cells in a CNKSR2 dependent manner. Our results

  13. Biologic effects of platelet-derived growth factor receptor α blockade in uterine cancer.

    Science.gov (United States)

    Roh, Ju-Won; Huang, Jie; Hu, Wei; Yang, XiaoYun; Jennings, Nicholas B; Sehgal, Vasudha; Sohn, Bo Hwa; Han, Hee Dong; Lee, Sun Joo; Thanapprapasr, Duangmani; Bottsford-Miller, Justin; Zand, Behrouz; Dalton, Heather J; Previs, Rebecca A; Davis, Ashley N; Matsuo, Koji; Lee, Ju-Seog; Ram, Prahlad; Coleman, Robert L; Sood, Anil K

    2014-05-15

    Platelet-derived growth factor receptor α (PDGFRα) expression is frequently observed in many kinds of cancer and is a candidate for therapeutic targeting. This preclinical study evaluated the biologic significance of PDGFRα and PDGFRα blockade (using a fully humanized monoclonal antibody, 3G3) in uterine cancer. Expression of PDGFRα was examined in uterine cancer clinical samples and cell lines, and biologic effects of PDGFRα inhibition were evaluated using in vitro (cell viability, apoptosis, and invasion) and in vivo (orthotopic) models of uterine cancer. PDGFRα was highly expressed and activated in uterine cancer samples and cell lines. Treatment with 3G3 resulted in substantial inhibition of PDGFRα phosphorylation and of downstream signaling molecules AKT and mitogen-activated protein kinase (MAPK). Cell viability and invasive potential of uterine cancer cells were also inhibited by 3G3 treatment. In orthotopic mouse models of uterine cancer, 3G3 monotherapy had significant antitumor effects in the PDGFRα-positive models (Hec-1A, Ishikawa, Spec-2) but not in the PDGFRα-negative model (OVCA432). Greater therapeutic effects were observed for 3G3 in combination with chemotherapy than for either drug alone in the PDGFRα-positive models. The antitumor effects of therapy were related to increased apoptosis and decreased proliferation and angiogenesis. These findings identify PDGFRα as an attractive target for therapeutic development in uterine cancer. ©2014 American Association for Cancer Research.

  14. Endocide-Induced Abnormal Growth Forms of Invasive Giant Salvinia (Salvinia molesta).

    Science.gov (United States)

    Li, Shiyou; Wang, Ping; Su, Zushang; Lozano, Emily; LaMaster, Olivia; Grogan, Jason B; Weng, Yuhui; Decker, Thomas; Findeisen, John; McGarrity, Monica

    2018-05-22

    Giant salvinia (Salvinia molesta) is one of the most noxious invasive species in the world. The fern is known to have primary, secondary, and tertiary growth forms, which are also commonly hypothesized as growth stages. The identification of these forms is primarily based on the size and folding status of the floating leaves. However, we identified 12 forms in the greenhouse and the field. Our experiments showed that the folding of floating leaves is a reversible trait dependent on water access. The floating leaves quickly fold in response to water shortage, reducing water loss and needs, decreasing growth, and avoiding trichome damage. The leaves re-open to allow trichomes repel water and enhance growth when having adequate water supply. Larger secondary or tertiary forms do not produce small-leaf primary forms without high intensity stress. These results do not support the hypothesis that three growth forms represent sequential growth stages. The abnormal small-leaf forms are the result of endocide-induced autotoxicity and some of them never grow into other forms. The development of abnormal forms and reversible leaf folding strategy in response to high stress along with rapid asexual reproduction are major adaptive traits contributing to the invasiveness of S. molesta.

  15. Lemur Tyrosine Kinase-3 Suppresses Growth of Prostate Cancer Via the AKT and MAPK Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Pengcheng Sun

    2017-08-01

    Full Text Available Background/Aims: Lemur tyrosine kinase (LMTK-3 is a member of the receptor tyrosine kinase (RTK family. Abnormal expression of LMTK-3 exists in various types of cancers, especially in endocrine-resistant breast cancers; however, the precise level of expression and the biological function in prostate cancer are poorly understood. Methods: In the present study, we determined the expression of LMTK-3 in prostate cancer using immunohistochemistry and Western blotting. We infected PC3 and LNCaP cells with lentivirus-LMTK-3 and observed the biologic characteristics of the PC3 and LNCaP cells in vitro with TUNEL, and migration and invasion assays, respectively. We also established a transplant tumor model of human prostate cancer with infected cells in 15 BALB/c-nu/nu nude mice. Results: LMTK-3 was expressed in prostate epithelial cells. There was a significant decline in the level of LMTK-3 expression in prostate cancers compared to normal tissues. LMTK-3 inhibited PC3 and LNCaP cell growth, migration, and invasion, and induced cell apoptosis in vitro. We also observed that LMTK-3 induced PC3 cell apoptosis in vivo. Further study showed that LMTK-3 inhibited phosphorylation of AKT and ERK, and promoted phosphorylation and activation of p38 kinase and Jun kinase (JNK. Conclusion: Recombinant lentivirus with enhanced expression of LMTK-3 inhibited prostate cancer cell growth and induced apoptosis in vitro and in vivo. AKT and MAPK signaling pathways may contribute to the process.

  16. 3D-CRT, Proton, or Brachytherapy APBI in Treating Patients With Invasive and Non-invasive Breast Cancer

    Science.gov (United States)

    2017-12-29

    Ductal Breast Carcinoma In Situ; Estrogen Receptor Positive; Grade 1 Invasive Breast Carcinoma; Grade 2 Invasive Breast Carcinoma; Grade 3 Invasive Breast Carcinoma; Invasive Ductal and Lobular Carcinoma In Situ; Mucinous Breast Carcinoma; Tubular Breast Carcinoma

  17. Complication of radiotherapy in the management of invasive cancer ...

    African Journals Online (AJOL)

    Background: Cancer of the cervix is not only the second most common cancer affecting women worldwide but is also the most common gynecological cancer in Kenya. An estimated 500,000 cases occur every year of which 80% are from the developing countries. Presentation is usually during late stages requiring ...

  18. Identification of NDRG1-regulated genes associated with invasive potential in cervical and ovarian cancer cells

    International Nuclear Information System (INIS)

    Zhao, Gang; Chen, Jiawei; Deng, Yanqiu; Gao, Feng; Zhu, Jiwei; Feng, Zhenzhong; Lv, Xiuhong; Zhao, Zheng

    2011-01-01

    Highlights: → NDRG1 was knockdown in cervical and ovarian cancer cell lines by shRNA technology. → NDRG1 knockdown resulted in increased cell invasion activities. → Ninety-six common deregulated genes in both cell lines were identified by cDNA microarray. → Eleven common NDRG1-regulated genes might enhance cell invasive activity. → Regulation of invasion by NDRG1 is an indirect and complicated process. -- Abstract: N-myc downstream regulated gene 1 (NDRG1) is an important gene regulating tumor invasion. In this study, shRNA technology was used to suppress NDRG1 expression in CaSki (a cervical cancer cell line) and HO-8910PM (an ovarian cancer cell line). In vitro assays showed that NDRG1 knockdown enhanced tumor cell adhesion, migration and invasion activities without affecting cell proliferation. cDNA microarray analysis revealed 96 deregulated genes with more than 2-fold changes in both cell lines after NDRG1 knockdown. Ten common upregulated genes (LPXN, DDR2, COL6A1, IL6, IL8, FYN, PTP4A3, PAPPA, ETV5 and CYGB) and one common downregulated gene (CLCA2) were considered to enhance tumor cell invasive activity. BisoGenet network analysis indicated that NDRG1 regulated these invasion effector genes/proteins in an indirect manner. Moreover, NDRG1 knockdown also reduced pro-invasion genes expression such as MMP7, TMPRSS4 and CTSK. These results suggest that regulation of invasion and metastasis by NDRG1 is a highly complicated process.

  19. Profiling Invasiveness in Head and Neck Cancer: Recent Contributions of Genomic and Transcriptomic Approaches

    International Nuclear Information System (INIS)

    Nisa, Lluís; Aebersold, Daniel Matthias; Giger, Roland; Caversaccio, Marco Domenico; Borner, Urs; Medová, Michaela; Zimmer, Yitzhak

    2015-01-01

    High-throughput molecular profiling approaches have emerged as precious research tools in the field of head and neck translational oncology. Such approaches have identified and/or confirmed the role of several genes or pathways in the acquisition/maintenance of an invasive phenotype and the execution of cellular programs related to cell invasion. Recently published new-generation sequencing studies in head and neck squamous cell carcinoma (HNSCC) have unveiled prominent roles in carcinogenesis and cell invasion of mutations involving NOTCH1 and PI3K-patwhay components. Gene-expression profiling studies combined with systems biology approaches have allowed identifying and gaining further mechanistic understanding into pathways commonly enriched in invasive HNSCC. These pathways include antigen-presenting and leucocyte adhesion molecules, as well as genes involved in cell-extracellular matrix interactions. Here we review the major insights into invasiveness in head and neck cancer provided by high-throughput molecular profiling approaches

  20. Profiling Invasiveness in Head and Neck Cancer: Recent Contributions of Genomic and Transcriptomic Approaches

    Directory of Open Access Journals (Sweden)

    Lluís Nisa

    2015-03-01

    Full Text Available High-throughput molecular profiling approaches have emerged as precious research tools in the field of head and neck translational oncology. Such approaches have identified and/or confirmed the role of several genes or pathways in the acquisition/maintenance of an invasive phenotype and the execution of cellular programs related to cell invasion. Recently published new-generation sequencing studies in head and neck squamous cell carcinoma (HNSCC have unveiled prominent roles in carcinogenesis and cell invasion of mutations involving NOTCH1 and PI3K-patwhay components. Gene-expression profiling studies combined with systems biology approaches have allowed identifying and gaining further mechanistic understanding into pathways commonly enriched in invasive HNSCC. These pathways include antigen-presenting and leucocyte adhesion molecules, as well as genes involved in cell-extracellular matrix interactions. Here we review the major insights into invasiveness in head and neck cancer provided by high-throughput molecular profiling approaches.

  1. KIF20A-Mediated RNA Granule Transport System Promotes the Invasiveness of Pancreatic Cancer Cells

    Directory of Open Access Journals (Sweden)

    Keisuke Taniuchi

    2014-12-01

    Full Text Available Pancreatic cancers are aggressive because they are highly invasive and highly metastatic; moreover, effective treatments for aggressive pancreatic cancers are lacking. Here, we report that the motor kinesin protein KIF20A promoted the motility and invasiveness of pancreatic cancer cells through transporting the RNA-binding protein IGF2BP3 and IGF2BP3-bound transcripts toward cell protrusions along microtubules. We previously reported that IGF2BP3 and its target transcripts are assembled into cytoplasmic stress granules of pancreatic cancer cells, and that IGF2BP3 promotes the motility and invasiveness of pancreatic cancer cells through regulation of localized translation of IGF2BP3-bound transcripts in cell protrusions. We show that knockdown of KIF20A inhibited accumulation of IGF2BP3-containing stress granules in cell protrusions and suppressed local protein expression from specific IGF2BP3-bound transcripts, ARF6 and ARHGEF4, in the protrusions. Our results provide insight into the link between regulation of KIF20A-mediated trafficking of IGF2BP3-containing stress granules and modulation of the motility and invasiveness in pancreatic cancers.

  2. Mechanisms underlying the growth inhibitory effects of the cyclo-oxygenase-2 inhibitor celecoxib in human breast cancer cells

    International Nuclear Information System (INIS)

    Basu, Gargi D; Pathangey, Latha B; Tinder, Teresa L; Gendler, Sandra J; Mukherjee, Pinku

    2005-01-01

    Inhibitors of cyclo-oxygenase (COX)-2 are being extensively studied as anticancer agents. In the present study we evaluated the mechanisms by which a highly selective COX-2 inhibitor, celecoxib, affects tumor growth of two differentially invasive human breast cancer cell lines. MDA-MB-231 (highly invasive) and MDA-MB-468 (moderately invasive) cell lines were treated with varying concentrations of celecoxib in vitro, and the effects of this agent on cell growth and angiogenesis were monitored by evaluating cell proliferation, apoptosis, cell cycle arrest, and vasculogenic mimicry. The in vitro results of MDA-MB-231 cell line were further confirmed in vivo in a mouse xenograft model. The highly invasive MDA-MB-231 cells express higher levels of COX-2 than do the less invasive MDA-MB-468 cells. Celecoxib treatment inhibited COX-2 activity, indicated by prostaglandin E 2 secretion, and caused significant growth arrest in both breast cancer cell lines. In the highly invasive MDA-MB-231 cells, the mechanism of celecoxib-induced growth arrest was by induction of apoptosis, associated with reduced activation of protein kinase B/Akt, and subsequent activation of caspases 3 and 7. In the less invasive MDA-MB-468 cells, growth arrest was a consequence of cell cycle arrest at the G 0 /G 1 checkpoint. Celecoxib-induced growth inhibition was reversed by addition of exogenous prostaglandin E 2 in MDA-MB-468 cells but not in MDA-MB-231 cells. Furthermore, MDA-MB-468 cells formed significantly fewer extracellular matrix associated microvascular channels in vitro than did the high COX-2 expressing MDA-MB-231 cells. Celecoxib treatment not only inhibited cell growth and vascular channel formation but also reduced vascular endothelial growth factor levels. The in vitro findings corroborated in vivo data from a mouse xenograft model in which daily administration of celecoxib significantly reduced tumor growth of MDA-MB-231 cells, which was associated with reduced vascularization and

  3. Managing the risk of invasive breast cancer in women at risk for breast cancer and osteoporosis: the role of raloxifene

    Directory of Open Access Journals (Sweden)

    Victor G Vogel

    2008-12-01

    Full Text Available Victor G VogelThe University of Pittsburgh Cancer Institute, Magee-Womens Hospital, Pittsburgh, PA, USAAbstract: Raloxifene hydrochloride is a selective estrogen receptor modulator (SERM that has antiestrogenic effects on breast and endometrial tissue and estrogenic effects on bone, lipid metabolism, and blood clotting. Raloxifene significantly improves serum lipids and serum markers of cardiovascular disease risk, but it has no significant effect on the risk of primary coronary events. A meta-analysis of randomized, double-blind, placebo-controlled trials of raloxifene for osteoporosis showed the odds of fracture risk were 0.60 (95% confidence interval [CI] = 0.49–0.74 for raloxifene 60 mg/day compared with placebo. During 8 years of follow-up in an osteoporosis trial, the raloxifene group had a 76% reduction in the incidence of invasive ER-positive breast cancer compared with the placebo group. In the STAR trial, the incidence of invasive breast cancer was 4.30 per 1000 women-years with raloxifene and 4.41 per 1000 with tamoxifen; RR = 1.02; 95% CI, 0.82–1.28. The effect of raloxifene on invasive breast cancer was, therefore, equivalent to that of tamoxifen with more favorable rates of adverse effects including uterine malignancy and clotting events. Millions of postmenopausal women could derive net benefit from raloxifene through reduced rates of fracture and invasive breast cancer.Keywords: raloxifene, osteoporosis, breast cancer risk reduction

  4. Molecular Features of Subtype-Specific Progression from Ductal Carcinoma In Situ to Invasive Breast Cancer

    Directory of Open Access Journals (Sweden)

    Robert Lesurf

    2016-07-01

    Full Text Available Breast cancer consists of at least five main molecular “intrinsic” subtypes that are reflected in both pre-invasive and invasive disease. Although previous studies have suggested that many of the molecular features of invasive breast cancer are established early, it is unclear what mechanisms drive progression and whether the mechanisms of progression are dependent or independent of subtype. We have generated mRNA, miRNA, and DNA copy-number profiles from a total of 59 in situ lesions and 85 invasive tumors in order to comprehensively identify those genes, signaling pathways, processes, and cell types that are involved in breast cancer progression. Our work provides evidence that there are molecular features associated with disease progression that are unique to the intrinsic subtypes. We additionally establish subtype-specific signatures that are able to identify a small proportion of pre-invasive tumors with expression profiles that resemble invasive carcinoma, indicating a higher likelihood of future disease progression.

  5. Results of radiotherapy for ureteric obstruction in muscle-invasive bladder cancer

    International Nuclear Information System (INIS)

    Holm, M.; Miskowiak, J.; Rolff, H.

    1996-01-01

    Retrospective evaluation of the records of 574 patients with muscle-invasive bladder cancer revealed 90 patients (16%) with ureteric obstruction; the obstruction was bilateral in 24%. The effect of radiotherapy was assessed in 55 patients with 68 obstructed kidneys. Six patients with eight obstructed kidneys required percutaneous nephrostomy or ureteric catheters in addition to radiotherapy. Drainage improved in only 20% of kidneys and the diverting catheter could be withdrawn permanently in only one (17%) of the diverted patients. The median survival was 11 months. Irradiation was followed by significant complications in 37 patients (67%). This raises doubts about the assumed beneficial effect of irradiation on ureteric obstruction due to muscle invasive bladder cancer. The short median survival of 11 months confirms that ureteric obstruction is a poor prognostic factor in muscle invasive bladder cancer. (au) 10 refs

  6. DIXDC1 activates the Wnt signaling pathway and promotes gastric cancer cell invasion and metastasis.

    Science.gov (United States)

    Tan, Cong; Qiao, Fan; Wei, Ping; Chi, Yayun; Wang, Weige; Ni, Shujuan; Wang, Qifeng; Chen, Tongzhen; Sheng, Weiqi; Du, Xiang; Wang, Lei

    2016-04-01

    DIXDC1 (Dishevelled-Axin domain containing 1) is a DIX (Dishevelled-Axin) domain-possessing protein that promotes colon cancer cell proliferation and increases the invasion and migration ability of non-small-cell lung cancer via the PI3K pathway. As a positive regulator of the Wnt/β-catenin pathway, the biological role of DIXDC1 in human gastric cancer and the relationship between DIXDC1 and the Wnt pathway are unclear. In the current study, the upregulation of DIXDC1 was detected in gastric cancer and was associated with advanced TNM stage cancer, lymph node metastasis, and poor prognosis. We also found that the overexpression of DIXDC1 could promote the invasion and migration of gastric cancer cells. The upregulation of MMPs and the downregulation of E-cadherin were found to be involved in the process. DIXDC1 enhanced β-catenin nuclear accumulation, which activated the Wnt pathway. Additionally, the inhibition of β-catenin in DIXDC1-overexpressing cells reversed the metastasis promotion effects of DIXDC1. These results demonstrate that the expression of DIXDC1 is associated with poor prognosis of gastric cancer patients and that DIXDC1 promotes gastric cancer invasion and metastasis through the activation of the Wnt pathway; E-cadherin and MMPs are also involved in this process. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  7. MicroRNA-613 represses prostate cancer cell proliferation and invasion through targeting Frizzled7

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Wei [Medical College of Xi' an Jiao Tong University, Xi' an 710061 (China); Department of Urology, Shaanxi Provincial People' s Hospital, The Third Affiliated Hospital of Xi' an Jiaotong University, Xi' an 710068 (China); Li, Chan [Department of Ophthalmology, Shaanxi Provincial People' s Hospital, The Third Affiliated Hospital of Xi' an Jiaotong University, Xi' an 710068 (China); Duan, Wanli; Du, Shuangkuan; Yang, Fan; Zhou, Jiancheng [Department of Urology, Shaanxi Provincial People' s Hospital, The Third Affiliated Hospital of Xi' an Jiaotong University, Xi' an 710068 (China); Xing, Junping, E-mail: junpingxing@163.com [Department of Urology, The First Affiliated Hospital of Xi' an Jiaotong University, Xi' an 710061 (China)

    2016-01-15

    A growing number of studies have indicated that microRNAs (miRNAs) are critical regulators of carcinogenesis and cancer progression and may serve as potential therapeutic tools for cancer therapy. Frizzled7 (Fzd7), the most important receptor of the Wnt signaling pathway, is extensively involved in cancer development and progression. However, the role of Fzd7 in prostate cancer remains unclear. In this study, we aimed to explore the expression of Fzd7 in prostate cancer and test whether modulating Fzd7 expression by miR-613 would have an impact on prostate cancer cell proliferation and invasion. We found that Fzd7 was highly expressed in prostate cancer cell lines. Through bioinformatics analysis, Fzd7 was predicted as a target gene of miR-613, which was validated by dual-luciferase reporter assays, real-time quantitative polymerase chain reaction and Western blot analysis. By gain of function experiments, we showed that overexpression of miR-613 significantly suppressed prostate cancer cell proliferation and invasion. Furthermore, miR-613 overexpression markedly downregulated the Wnt signaling pathway. Through a rescue experiment, we showed that overexpression of Fzd7 could abrogate the inhibitory effect of miR-613 on cell proliferation and invasion as well as Wnt signaling. Additionally, these results were further strengthened by data showing that miR-613 was significantly downregulated in prostate cancer tissues, exhibiting an inverse correlation with Fzd7 expression. In conclusion, our study suggests that miR-613 functions as a tumor suppressor, partially through targeting Fzd7, and is a potential therapeutic target for prostate cancer. - Highlights: • Fzd7 was highly expressed in prostate cancer. • Fzd7 was predicted as a target gene of miR-613. • MiR-613 negatively regulated prostate cancer by Fzd7. • MiR-613 inversely correlated with Fzd7 in prostate cancer.

  8. MicroRNA-613 represses prostate cancer cell proliferation and invasion through targeting Frizzled7

    International Nuclear Information System (INIS)

    Ren, Wei; Li, Chan; Duan, Wanli; Du, Shuangkuan; Yang, Fan; Zhou, Jiancheng; Xing, Junping

    2016-01-01

    A growing number of studies have indicated that microRNAs (miRNAs) are critical regulators of carcinogenesis and cancer progression and may serve as potential therapeutic tools for cancer therapy. Frizzled7 (Fzd7), the most important receptor of the Wnt signaling pathway, is extensively involved in cancer development and progression. However, the role of Fzd7 in prostate cancer remains unclear. In this study, we aimed to explore the expression of Fzd7 in prostate cancer and test whether modulating Fzd7 expression by miR-613 would have an impact on prostate cancer cell proliferation and invasion. We found that Fzd7 was highly expressed in prostate cancer cell lines. Through bioinformatics analysis, Fzd7 was predicted as a target gene of miR-613, which was validated by dual-luciferase reporter assays, real-time quantitative polymerase chain reaction and Western blot analysis. By gain of function experiments, we showed that overexpression of miR-613 significantly suppressed prostate cancer cell proliferation and invasion. Furthermore, miR-613 overexpression markedly downregulated the Wnt signaling pathway. Through a rescue experiment, we showed that overexpression of Fzd7 could abrogate the inhibitory effect of miR-613 on cell proliferation and invasion as well as Wnt signaling. Additionally, these results were further strengthened by data showing that miR-613 was significantly downregulated in prostate cancer tissues, exhibiting an inverse correlation with Fzd7 expression. In conclusion, our study suggests that miR-613 functions as a tumor suppressor, partially through targeting Fzd7, and is a potential therapeutic target for prostate cancer. - Highlights: • Fzd7 was highly expressed in prostate cancer. • Fzd7 was predicted as a target gene of miR-613. • MiR-613 negatively regulated prostate cancer by Fzd7. • MiR-613 inversely correlated with Fzd7 in prostate cancer.

  9. Factors associated with peritoneal metastasis in non-serosa-invasive gastric cancer: a retrospective study of a prospectively-collected database

    International Nuclear Information System (INIS)

    Huang, Baojun; Sun, Zhe; Wang, Zhenning; Lu, Chong; Xing, Chengzhong; Zhao, Bo; Xu, Huimian

    2013-01-01

    Peritoneal dissemination is the most common type of recurrence in advanced gastric cancer. The main mechanism is thought to be via the exfoliation of free cancer cells (FCCs) from tumor in the gastric serosa. The frequency of recurrence thus increases once the tumor cells penetrate the serosa. However, this type of recurrence also occurs in patients without serosal invasion, though the mechanisms responsible for have not been fully established. We therefore investigated the factors associated with peritoneal dissemination in patients with non-serosa-invasive gastric cancer. A total of 685 patients with non-serosa-invasive gastric cancer who underwent curative resection with retrieval of more than 15 nodes were selected. The associations between clinicopathological features and peritoneal dissemination were analyzed. Among them, the tumor infiltrating growth pattern (INF) were classified into α, β and γ according to the Japanese Classification of Gastric Carcinoma (JCGC). The overall incidence of peritoneal metastasis was 20% (137/685). Age, Borrmann type, differentiation, INF, nodal status and free cancer cells (FCCs) were correlated with peritoneal dissemination using univariate analysis. However, only INF, Borrmann type and TNM node stage were identified as independent correlated factors with peritoneal metastasis by multivariate analysis when FCCs were excluded, and these were also prognostic factors. Peritoneal dissemination was more common in patients with INFγ, Borrmann III/IV and N3 stage. Among patients without FCCs, nodal involvement or vessel invasion, only INF remained an independent associated factor according to multivariate analysis. Tumor infiltrating growth pattern (INF), together with Borrmann type and TNM node stage, are important factors associated with peritoneal metastasis in non-serosa-invasive gastric cancer

  10. Pilot Study to Measure the Effects of NSAID Use on Angiogenesis and Apoptosis in Female Invasive Breast Cancer

    National Research Council Canada - National Science Library

    Richardson, John

    2003-01-01

    To examine the effects of NASIDs on invasive breast cancer we are performing a immunohistochemical analysis on 220 cases of breast cancer from Saskatchewan which has provided a complete drug history of each patient...

  11. Selective bladder preservation with curative intent for muscle-invasive bladder cancer. A contemporary review

    International Nuclear Information System (INIS)

    Koga, Fumitaka; Kihara, Kazunori

    2012-01-01

    Radical cystectomy plus urinary diversion, the reference standard treatment for muscle-invasive bladder cancer, associates with high complication rates and compromises quality of life as a result of long-term effects on urinary, gastrointestinal and sexual function, and changes in body image. As a society ages, the number of elderly patients unfit for radical cystectomy as a result of comorbidity will increase, and thus the demand for bladder-sparing approaches for muscle-invasive bladder cancer will also inevitably increase. Trimodality bladder-sparing approaches consisting of transurethral resection, chemotherapy and radiotherapy (Σ55-65 Gy) yield overall survival rates comparable with those of radical cystectomy series (50-70% at 5 years), while preserving the native bladder in 40-60% of muscle-invasive bladder cancer patients, contributing to an improvement in quality of life for such patients. Limitations of the trimodality therapy include muscle-invasive bladder cancer recurrence in the preserved bladder, which most often arises in the original muscle-invasive bladder cancer site; potential lack of curative intervention for regional lymph nodes; and increased morbidity in the event of salvage radical cystectomy for remaining or recurrent disease as a result of high-dose pelvic irradiation. Consolidative partial cystectomy with pelvic lymph node dissection followed by induction chemoradiotherapy at lower dose (exempli gratia (e.g.) 40 Gy) is a rational strategy for overcoming such limitations by strengthening locoregional control and reducing radiation dosage. Molecular profiling of the tumor and functional imaging might play important roles in optimal patient selection for bladder preservation. Refinement of radiation techniques, intensified concurrent or adjuvant chemotherapy, and novel sensitizers, including molecular targeting agent, are also expected to improve outcomes and consequently provide more muscle-invasive bladder cancer patients with favorable

  12. Development of epidermal growth factor receptor targeted therapy in pancreatic cancer.

    Science.gov (United States)

    Qing, Liu; Qing, Wang

    2018-02-01

    The epidermal growth factor receptor (EGFR) family are a series of important cancer therapeutic targets involved in cancer biology. These genes play an important role in tumor biological characteristics including angiogenesis, cell survival, invasion and glucose metabolism. In recent years, progresses have been achieved upon the cellular and molecular biological characteristics of EGFR and its role in cancer development based on the study of tumor specimens and experimental animal model. EGFR(HER1/ErbB) is overexpressed in over sixty percent of triple-negative breast cancers and occurs in pancreatic, bladder, lung and head-and-neck cancers. Up to now, EGFR inhibitors have been applied in various of cancer, such as lung, breast, bladder and head and neck cancers etc., in which the combination of EGFR inhibitors plus chemotherapeutic agents is now seen as the standard of care for advanced/metastatic pancreatic cancer. For these reasons, EGFR inhibitors and their therapeutic effect for pancreatic cancer is becoming the focus in Laboratory and clinical research. In this paper, research progress of the development of epidermal growth factor receptor targeted therapy in pancreatic cancer is introduced.

  13. A novel pre-clinical in vivo mouse model for malignant brain tumor growth and invasion.

    Science.gov (United States)

    Shelton, Laura M; Mukherjee, Purna; Huysentruyt, Leanne C; Urits, Ivan; Rosenberg, Joshua A; Seyfried, Thomas N

    2010-09-01

    Glioblastoma multiforme (GBM) is a rapidly progressive disease of morbidity and mortality and is the most common form of primary brain cancer in adults. Lack of appropriate in vivo models has been a major roadblock to developing effective therapies for GBM. A new highly invasive in vivo GBM model is described that was derived from a spontaneous brain tumor (VM-M3) in the VM mouse strain. Highly invasive tumor cells could be identified histologically on the hemisphere contralateral to the hemisphere implanted with tumor cells or tissue. Tumor cells were highly expressive for the chemokine receptor CXCR4 and the proliferation marker Ki-67 and could be identified invading through the pia mater, the vascular system, the ventricular system, around neurons, and over white matter tracts including the corpus callosum. In addition, the brain tumor cells were labeled with the firefly luciferase gene, allowing for non-invasive detection and quantitation through bioluminescent imaging. The VM-M3 tumor has a short incubation time with mortality occurring in 100% of the animals within approximately 15 days. The VM-M3 brain tumor model therefore can be used in a pre-clinical setting for the rapid evaluation of novel anti-invasive therapies.

  14. Effects of glyphosate-based herbicides on survival, development and growth of invasive snail (Pomacea canaliculata).

    Science.gov (United States)

    Xu, Yanggui; Li, Adela Jing; Li, Kaibin; Qin, Junhao; Li, Huashou

    2017-12-01

    This study tests the hypotheses that whether environmental relevance of glyphosate would help control spread of the invasive snail Pomacea canaliculata, or benefit its population growth worldwide. Our results showed that glyphosate induced acute toxicity to the snail only at high concentrations (96h LC50 at 175mg/L) unlikely to occur in the environment. Long-term exposures to glyphosate at sublethal levels (20 and 120mg/L) caused inhibition of food intake, limitation of growth performance and alterations in metabolic profiles of the snail. It is worth noting that glyphosate at 2mg/L benefited growth performance in P. canaliculata. Chronic exposures of glyphosate significantly enhanced overall metabolic rate and altered catabolism from protein to carbohydrate/lipid mode. Cellular responses in enzyme activities showed that the exposed snails could increase tolerance by their defense system against glyphosate-induced oxidative stress, and adjustment of metabolism to mitigate energy crisis. Our study displayed that sublethal concentrations of glyphosate might be helpful in control of the invasive species by food intake, growth performance and metabolic interruption; whether environmental relevance of glyphosate (≤2mg/L) benefits population growth of P. canaliculata is still inconclusive, which requires further field study. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Cell polarity signaling in the plasticity of cancer cell invasiveness

    Czech Academy of Sciences Publication Activity Database

    Gandalovičová, A.; Vomastek, Tomáš; Rosel, D.; Brábek, J.

    2016-01-01

    Roč. 7, č. 18 (2016), s. 25022-25049 ISSN 1949-2553 R&D Projects: GA ČR GA13-06405S; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61388971 Keywords : polarity * invasion * plasticity Subject RIV: EE - Microbiology, Virology Impact factor: 5.168, year: 2016

  16. Extra-pancreatic invasion induces lipolytic and fibrotic changes in the adipose microenvironment, with released fatty acids enhancing the invasiveness of pancreatic cancer cells

    Science.gov (United States)

    Okumura, Takashi; Ohuchida, Kenoki; Sada, Masafumi; Abe, Toshiya; Endo, Sho; Koikawa, Kazuhiro; Iwamoto, Chika; Miura, Daisuke; Mizuuchi, Yusuke; Moriyama, Taiki; Nakata, Kohei; Miyasaka, Yoshihiro; Manabe, Tatsuya; Ohtsuka, Takao; Nagai, Eishi; Mizumoto, Kazuhiro; Oda, Yoshinao; Hashizume, Makoto; Nakamura, Masafumi

    2017-01-01

    Pancreatic cancer progression involves components of the tumor microenvironment, including stellate cells, immune cells, endothelial cells, and the extracellular matrix. Although peripancreatic fat is the main stromal component involved in extra-pancreatic invasion, its roles in local invasion and metastasis of pancreatic cancer remain unclear. This study investigated the role of adipose tissue in pancreatic cancer progression using genetically engineered mice (Pdx1-Cre; LSL-KrasG12D; Trp53R172H/+) and an in vitro model of organotypic fat invasion. Mice fed a high fat diet had significantly larger primary pancreatic tumors and a significantly higher rate of distant organ metastasis than mice fed a standard diet. In the organotypic fat invasion model, pancreatic cancer cell clusters were smaller and more elongated in shape and showed increased fibrosis. Adipose tissue-derived conditioned medium enhanced pancreatic cancer cell invasiveness and gemcitabine resistance, as well as inducing morphologic changes in cancer cells and increasing the numbers of lipid droplets in their cytoplasm. The concentrations of oleic, palmitoleic, and linoleic acids were higher in adipose tissue-derived conditioned medium than in normal medium, with these fatty acids significantly enhancing the migration of cancer cells. Mature adipocytes were smaller and the concentration of fatty acids in the medium higher when these cells were co-cultured with cancer cells. These findings indicate that lipolytic and fibrotic changes in peripancreatic adipose tissue enhance local invasiveness and metastasis via adipocyte-released fatty acids. Inhibition of fatty acid uptake by cancer cells may be a novel therapy targeting interactions between cancer and stromal cells. PMID:28407685

  17. Effect of adjuvant chemotherapy in postmenopausal patients with invasive ductal versus lobular breast cancer.

    Science.gov (United States)

    Truin, W; Voogd, A C; Vreugdenhil, G; van der Heiden-van der Loo, M; Siesling, S; Roumen, R M

    2012-11-01

    On the basis of the lack of response of invasive lobular breast cancer to neoadjuvant chemotherapy, we questioned the effectiveness of adjuvant chemotherapy in relation to histology. Women with primary nonmetastatic invasive ductal or (mixed type) lobular breast cancer, aged 50-70 years, diagnosed between 1995 and 2008, were selected from the Netherlands Cancer Registry and followed until January 1, 2010. The patients were divided in two groups: one group receiving adjuvant hormonal therapy only and the other receiving adjuvant hormonal therapy in combination with adjuvant chemotherapy. In total, 19,609 patients had ductal cancer and 3685 had lobular cancer. The 10-year overall survival rate in ductal cancer when treated with hormonal therapy alone was 69%, compared with 74% with the combination therapy (P lobular cancer, 10-year survival rates were 68% after hormonal treatment alone and 66% after the combination therapy (P = 0.45). The hazard ratio (HR) for mortality in ductal cancer after combination therapy was 0.70 [95% confidence interval (CI) 0.64-0.76; P lobular cancer was 1.00 (95% CI 0.82-1.21; P = 0.97). Adjuvant chemotherapy seems to confer no additional beneficial effects in postmenopausal patients with pure or mixed type lobular breast cancer receiving hormonal therapy.

  18. Adjuvant Treatment for Older Women with Invasive Breast Cancer

    Science.gov (United States)

    Jolly, Trevor A; Williams, Grant R; Bushan, Sita; Pergolotti, Mackenzi; Nyrop, Kirsten A; Jones, Ellen L; Muss, Hyman B

    2016-01-01

    Older women experience a large share of breast cancer incidence and death. With the projected rise in the number of older cancer patients, adjuvant chemo-, radiation and endocrine therapy management will become a key component of breast cancer treatment in older women. Many factors influence adjuvant treatment decisions including patient preferences, life expectancy and tumor biology. Geriatric assessment predicts important outcomes, identifies key deficits, and can aid in the decision making process. This review utilizes clinical vignettes to illustrate core principles in adjuvant management of breast cancer in older women and suggests an approach incorporating life expectancy and geriatric assessment. PMID:26767315

  19. A Comparative Proteomic Analysis of Erinacine A’s Inhibition of Gastric Cancer Cell Viability and Invasiveness

    Directory of Open Access Journals (Sweden)

    Hsing-Chun Kuo

    2017-08-01

    Full Text Available Background / Aims: Erinacine A, isolated from the ethanol extract of the Hericium erinaceus mycelium, has been demonstrated as a new alternative anticancer medicine. Drawing upon current research, this study presents an investigation of the molecular mechanism of erinacine A inhibition associated with gastric cancer cell growth. Methods: Cell viability was determined by Annexin V–FITC/propidium iodide staining and migration using a Boyden chamber assay to determine the effects of erinacine A treatment on the proliferation capacity and invasiveness of gastric cancer cells. A proteomic assay provided information that was used to identify the differentially-expressed proteins following erinacine A treatment, as well as the mechanism of its targets in the apoptotic induction of erinacine A. Results: Our results demonstrate that erinacine A treatment of TSGH 9201 cells increased cytotoxicity and the generation of reactive oxygen species (ROS, as well as decreased the invasiveness. Treatment of TSGH 9201 cells with erinacine A resulted in the activation of caspases and the expression of TRAIL. Erinacine A induction of apoptosis was accompanied by sustained phosphorylation of FAK/AKT/p70S6K and the PAK1 pathways, as well as the generation of ROS. Furthermore, the induction of apoptosis and anti-invasion properties by erinacine A could involve the differential expression of the 14-3-3 sigma protein (1433S and microtubule-associated tumor suppressor candidate 2 (MTUS2, with the activation of the FAK/AKT/p70S6K and PAK1 signaling pathways. Conclusions: These results lead us to speculate that erinacine A may generate an apoptotic cascade in TSGH 9201 cells by activating the FAK/AKT/p70S6K/PAK1 pathway and upregulating proteins 1433S and MTUS2, providing a new mechanism underlying the anti-cancer effects of erinacine A in human gastric cancer cells.

  20. Human papillomavirus genotypes distribution in 175 invasive cervical cancer cases from Brazil

    International Nuclear Information System (INIS)

    Oliveira, Cristina Mendes de; Fregnani, José Humberto Tavares Guerreiro; Carvalho, Jesus Paula; Longatto-Filho, Adhemar; Levi, José Eduardo

    2013-01-01

    Invasive cervical cancer is the second most common malignant tumor affecting Brazilian women. Knowledge on Human Papillomavirus (HPV) genotypes in invasive cervical cancer cases is crucial to guide the introduction and further evaluate the impact of new preventive strategies based on HPV. We aimed to provide updated comprehensive data about the HPV types’ distribution in patients with invasive cervical cancer. Fresh tumor tissue samples of histologically confirmed invasive cervical cancer were collected from 175 women attending two cancer reference hospitals from São Paulo State: ICESP and Hospital de Câncer de Barretos. HPV detection and genotyping were performed by the Linear Array HPV Genotyping Test (Roche Molecular Diagnostics, Pleasanton,USA). 170 out of 172 valid samples (99%) were HPV DNA positive. The most frequent types were HPV16 (77.6%), HPV18 (12.3%), HPV31 (8.8%), HPV33 (7.1%) and HPV35 (5.9%). Most infections (75%) were caused by individual HPV types. Women with adenocarcinoma were not younger than those with squamous cell carcinoma, as well, as women infected with HPV33 were older than those infected by other HPV types. Some differences between results obtained in the two hospitals were observed: higher overall prevalence of HPV16, absence of single infection by HPV31 and HPV45 was verified in HC-Barretos in comparison to ICESP patients. To our knowledge, this is one of the largest studies made with fresh tumor tissues of invasive cervical cancer cases in Brazil. This study depicted a distinct HPV genotype distribution between two centers that may reflect the local epidemiology of HPV transmission among these populations. Due to the impact of these findings on cervical cancer preventive strategies, extension of this investigation to routine screening populations is warranted

  1. BCL-2 family protein, BAD is down-regulated in breast cancer and inhibits cell invasion

    Energy Technology Data Exchange (ETDEWEB)

    Cekanova, Maria, E-mail: mcekanov@utk.edu [Department of Small Animal Clinical Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN (United States); Fernando, Romaine I. [Department of Obstetrics and Gynecology, Graduate School of Medicine, Medical Center, The University of Tennessee, Knoxville, TN (United States); Siriwardhana, Nalin [Department of Animal Science, The University of Tennessee, Knoxville, TN (United States); Sukhthankar, Mugdha [Department of Biomedical and Diagnostics Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN (United States); Parra, Columba de la [Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, PR (United States); Woraratphoka, Jirayus [Department of Obstetrics and Gynecology, Graduate School of Medicine, Medical Center, The University of Tennessee, Knoxville, TN (United States); Malone, Christine [Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, Research Triangle Park, NC (United States); Ström, Anders [Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX (United States); Baek, Seung J. [Department of Biomedical and Diagnostics Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN (United States); Wade, Paul A. [Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, Research Triangle Park, NC (United States); Saxton, Arnold M. [Department of Animal Science, The University of Tennessee, Knoxville, TN (United States); Donnell, Robert M. [Department of Biomedical and Diagnostics Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN (United States); Pestell, Richard G. [Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA (United States); and others

    2015-02-01

    We have previously demonstrated that the anti-apoptotic protein BAD is expressed in normal human breast tissue and shown that BAD inhibits expression of cyclin D1 to delay cell-cycle progression in breast cancer cells. Herein, expression of proteins in breast tissues was studied by immunohistochemistry and results were analyzed statistically to obtain semi-quantitative data. Biochemical and functional changes in BAD-overexpressing MCF7 breast cancer cells were evaluated using PCR, reporter assays, western blotting, ELISA and extracellular matrix invasion assays. Compared to normal tissues, Grade II breast cancers expressed low total/phosphorylated forms of BAD in both cytoplasmic and nuclear compartments. BAD overexpression decreased the expression of β-catenin, Sp1, and phosphorylation of STATs. BAD inhibited Ras/MEK/ERK and JNK signaling pathways, without affecting the p38 signaling pathway. Expression of the metastasis-related proteins, MMP10, VEGF, SNAIL, CXCR4, E-cadherin and TlMP2 was regulated by BAD with concomitant inhibition of extracellular matrix invasion. Inhibition of BAD by siRNA increased invasion and Akt/p-Akt levels. Clinical data and the results herein suggest that in addition to the effect on apoptosis, BAD conveys anti-metastatic effects and is a valuable prognostic marker in breast cancer. - Highlights: • BAD and p-BAD expressions are decreased in breast cancer compared with normal breast tissue. • BAD impedes breast cancer invasion and migration. • BAD inhibits the EMT and transcription factors that promote cancer cell migration. • Invasion and migration functions of BAD are distinct from the BAD's role in apoptosis.

  2. BCL-2 family protein, BAD is down-regulated in breast cancer and inhibits cell invasion

    International Nuclear Information System (INIS)

    Cekanova, Maria; Fernando, Romaine I.; Siriwardhana, Nalin; Sukhthankar, Mugdha; Parra, Columba de la; Woraratphoka, Jirayus; Malone, Christine; Ström, Anders; Baek, Seung J.; Wade, Paul A.; Saxton, Arnold M.; Donnell, Robert M.; Pestell, Richard G.

    2015-01-01

    We have previously demonstrated that the anti-apoptotic protein BAD is expressed in normal human breast tissue and shown that BAD inhibits expression of cyclin D1 to delay cell-cycle progression in breast cancer cells. Herein, expression of proteins in breast tissues was studied by immunohistochemistry and results were analyzed statistically to obtain semi-quantitative data. Biochemical and functional changes in BAD-overexpressing MCF7 breast cancer cells were evaluated using PCR, reporter assays, western blotting, ELISA and extracellular matrix invasion assays. Compared to normal tissues, Grade II breast cancers expressed low total/phosphorylated forms of BAD in both cytoplasmic and nuclear compartments. BAD overexpression decreased the expression of β-catenin, Sp1, and phosphorylation of STATs. BAD inhibited Ras/MEK/ERK and JNK signaling pathways, without affecting the p38 signaling pathway. Expression of the metastasis-related proteins, MMP10, VEGF, SNAIL, CXCR4, E-cadherin and TlMP2 was regulated by BAD with concomitant inhibition of extracellular matrix invasion. Inhibition of BAD by siRNA increased invasion and Akt/p-Akt levels. Clinical data and the results herein suggest that in addition to the effect on apoptosis, BAD conveys anti-metastatic effects and is a valuable prognostic marker in breast cancer. - Highlights: • BAD and p-BAD expressions are decreased in breast cancer compared with normal breast tissue. • BAD impedes breast cancer invasion and migration. • BAD inhibits the EMT and transcription factors that promote cancer cell migration. • Invasion and migration functions of BAD are distinct from the BAD's role in apoptosis

  3. MicroRNA-410 suppresses migration and invasion by targeting MDM2 in gastric cancer.

    Directory of Open Access Journals (Sweden)

    Jianjun Shen

    Full Text Available Gastric cancer is one of the most frequent malignancies in tumors in the East Asian countries. Identifying precise prognostic markers and effective therapeutic targets is important in the treatment of gastric cancer. microRNAs (miRNAs play important roles in tumorigenesis. However, the mechanisms by which miRNAs regulate gastric cancer metastasis remain poorly understood. In this study, we found that the levels of miR-410 in gastric cancer and cell lines were much lower than that in the normal control, respectively, and the lower level of miR-410 was significantly associated with lymph-node metastasis. Transfection of miR-410 mimics could significantly inhibit the cell proliferation, migration and invasion in the HGC-27 gastric cancer cell lines. In contrast, knockdown of miR-410 had the opposite effect on the cell proliferation, migration and invasion. Moreover, we also found that MDM2 was negatively regulated by miR-410 at the post-transcriptional level, via a specific target site with the 3'UTR by luciferase reporter assay. The expression of MDM2 was inversely correlated with miR-410 expression in gastric cancer tissues, and overexpression of MDM2 in miR-410-transfected gastric cancer cells effectively rescued the inhibition of cell proliferation and invasion caused by miR-410. Thus, our findings suggested that miR-410 acted as a new tumor suppressor by targeting the MDM2 gene and inhibiting gastric cancer cells proliferation, migration and invasion. The findings of this study contributed to the current understanding of these functions of miR-410 in gastric cancer.

  4. Targeting ILK and β4 integrin abrogates the invasive potential of ovarian cancer

    International Nuclear Information System (INIS)

    Choi, Yoon Pyo; Kim, Baek Gil; Gao, Ming-Qing; Kang, Suki; Cho, Nam Hoon

    2012-01-01

    Highlights: ► The potential of targeting ILK and integrins for highly aggressive ovarian cancer. ► Unanticipated synergistic effect for the combination of ILK/β4 integrin. ► Combination of ILK/β4 integrin effectively inhibited the PI3K/Akt/Rac1 cascade. ► Targeting of β4 integrin/ILK had potent inhibitory effects in ovarian cancer. -- Abstract: Integrins and integrin-linked kinase (ILK) are essential to cancerous invasion because they mediate physical interactions with the extracellular matrix, and regulate oncogenic signaling pathways. The purpose of our study is to determine whether deletion of β1 and β4 integrin and ILK, alone or in combination, has antitumoral effects in ovarian cancer. Expression of β1 and β4 integrin and ILK was analyzed by immunohistochemistry in 196 ovarian cancer tissue samples. We assessed the effects of depleting these molecules with shRNAs in ovarian cancer cells by Western blot, conventional RT-PCR, cell proliferation, migration, invasion, and in vitro Rac1 activity assays, and in vivo xenograft formation assays. Overexpression of β4 integrin and ILK in human ovarian cancer specimens was found to correlate with tumor aggressiveness. Depletion of these targets efficiently suppresses ovarian cancer cell proliferation, migration, and invasion in vitro and xenograft tumor formation in vivo. We also demonstrated that single depletion of ILK or combination depletion of β4 integrin/ILK inhibits phosphorylation of downstream signaling targets, p-Ser 473 Akt and p-Thr202/Tyr204 Erk1/2, and activation of Rac1, as well as reduce expression of MMP-2 and MMP-9 and increase expression of caspase-3 in vitro. In conclusion, targeting β4 integrin combined with ILK can instigate the latent tumorigenic potential and abrogate the invasive potential in ovarian cancer.

  5. Targeting ILK and {beta}4 integrin abrogates the invasive potential of ovarian cancer

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yoon Pyo; Kim, Baek Gil [BK21 Project for Medical Science, Yonsei University College of Medicine, Seoul (Korea, Republic of); Department of Pathology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Gao, Ming-Qing; Kang, Suki [Department of Pathology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Cho, Nam Hoon, E-mail: cho1988@yuhs.ac [BK21 Project for Medical Science, Yonsei University College of Medicine, Seoul (Korea, Republic of); Department of Pathology, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer The potential of targeting ILK and integrins for highly aggressive ovarian cancer. Black-Right-Pointing-Pointer Unanticipated synergistic effect for the combination of ILK/{beta}4 integrin. Black-Right-Pointing-Pointer Combination of ILK/{beta}4 integrin effectively inhibited the PI3K/Akt/Rac1 cascade. Black-Right-Pointing-Pointer Targeting of {beta}4 integrin/ILK had potent inhibitory effects in ovarian cancer. -- Abstract: Integrins and integrin-linked kinase (ILK) are essential to cancerous invasion because they mediate physical interactions with the extracellular matrix, and regulate oncogenic signaling pathways. The purpose of our study is to determine whether deletion of {beta}1 and {beta}4 integrin and ILK, alone or in combination, has antitumoral effects in ovarian cancer. Expression of {beta}1 and {beta}4 integrin and ILK was analyzed by immunohistochemistry in 196 ovarian cancer tissue samples. We assessed the effects of depleting these molecules with shRNAs in ovarian cancer cells by Western blot, conventional RT-PCR, cell proliferation, migration, invasion, and in vitro Rac1 activity assays, and in vivo xenograft formation assays. Overexpression of {beta}4 integrin and ILK in human ovarian cancer specimens was found to correlate with tumor aggressiveness. Depletion of these targets efficiently suppresses ovarian cancer cell proliferation, migration, and invasion in vitro and xenograft tumor formation in vivo. We also demonstrated that single depletion of ILK or combination depletion of {beta}4 integrin/ILK inhibits phosphorylation of downstream signaling targets, p-Ser 473 Akt and p-Thr202/Tyr204 Erk1/2, and activation of Rac1, as well as reduce expression of MMP-2 and MMP-9 and increase expression of caspase-3 in vitro. In conclusion, targeting {beta}4 integrin combined with ILK can instigate the latent tumorigenic potential and abrogate the invasive potential in ovarian cancer.

  6. Dominant Expression of DCLK1 in Human Pancreatic Cancer Stem Cells Accelerates Tumor Invasion and Metastasis.

    Directory of Open Access Journals (Sweden)

    Hiromitsu Ito

    Full Text Available Patients with pancreatic cancer typically develop tumor invasion and metastasis in the early stage. These malignant behaviors might be originated from cancer stem cells (CSCs, but the responsible target is less known about invisible CSCs especially for invasion and metastasis. We previously examined the proteasome activity of CSCs and constructed a real-time visualization system for human pancreatic CSCs. In the present study, we found that CSCs were highly metastatic and dominantly localized at the invading tumor margins in a liver metastasis model. Microarray and siRNA screening assays showed that doublecortin-like kinase 1 (DCLK1 was predominantly expressed with histone modification in pancreatic CSCs with invasive and metastatic potential. Overexpression of DCLK1 led to amoeboid morphology, which promotes the migration of pancreatic cancer cells. Knockdown of DCLK1 profoundly suppressed in vivo liver metastasis of pancreatic CSCs. Clinically, DCLK1 was overexpressed in the metastatic tumors in patients with pancreatic cancer. Our studies revealed that DCLK1 is essential for the invasive and metastatic properties of CSCs and may be a promising epigenetic and therapeutic target in human pancreatic cancer.

  7. miR-613 inhibits proliferation and invasion of breast cancer cell via VEGFA

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Junzhao; Yuan, Peng; Mao, Qixin [Breast Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan (China); Lu, Peng [Gastrointestinal Surgery Department, People' s Hospital of Zhengzhou, Henan (China); Xie, Tian; Yang, Hanzhao [Breast Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan (China); Wang, Chengzheng, E-mail: wangchengzheng@126.com [Breast Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan (China)

    2016-09-09

    MicroRNAs (miRNAs) play important roles in the pathogenesis of many types of cancers by negatively regulating gene expression at posttranscriptional level. However, the role of microRNAs in breast cancer, has remained elusive. Here, we identified that miR-613 inhibits breast cancer cell proliferation by negatively regulates its target gene VEGFA. In breast cancer cell lines, CCK-8 proliferation assay indicated that the cell proliferation was inhibited by miR-613, while miR-613 inhibitor significantly promoted the cell proliferation. Transwell assay showed that miR-613 mimics significantly inhibited the migration and invasion of breast cancer cells, whereas miR-613 inhibitors significantly increased cell migration and invasion. Luciferase assays confirmed that miR-613 directly bound to the 3′ untranslated region of VEGFA, and western blotting showed that miR-613 suppressed the expression of VEGFA at the protein levels. This study indicated that miR-613 negatively regulates VEGFA and inhibits proliferation and invasion of breast cancer cell lines. Thus, miR-613 may represent a potential therapeutic molecule for breast cancer intervention.

  8. p63 expression defines a lethal subset of muscle-invasive bladder cancers.

    Directory of Open Access Journals (Sweden)

    Woonyoung Choi

    Full Text Available p63 is a member of the p53 family that has been implicated in maintenance of epithelial stem cell compartments. Previous studies demonstrated that p63 is downregulated in muscle-invasive bladder cancers, but the relationship between p63 expression and survival is not clear.We used real-time PCR to characterize p63 expression and several genes implicated in epithelial-to-mesenchymal transition (EMT in human bladder cancer cell lines (n = 15 and primary tumors (n = 101. We correlated tumor marker expression with stage, disease-specific (DSS, and overall survival (OS. Expression of E-cadherin and p63 correlated directly with one another and inversely with expression of the mesenchymal markers Zeb-1, Zeb-2, and vimentin. Non-muscle-invasive (Ta and T1 bladder cancers uniformly expressed high levels of E-cadherin and p63 and low levels of the mesenchymal markers. Interestingly, a subset of muscle-invasive (T2-T4 tumors maintained high levels of E-cadherin and p63 expression. As expected, there was a strongly significant correlation between EMT marker expression and muscle invasion (p<0.0001. However, OS was shorter in patients with muscle-invasive tumors that retained p63 (p = 0.007.Our data confirm that molecular markers of EMT are elevated in muscle-invasive bladder cancers, but interestingly, retention of the "epithelial" marker p63 in muscle-invasive tumors is associated with a worse outcome.

  9. MiR-339-5p inhibits breast cancer cell migration and invasion in vitro and may be a potential biomarker for breast cancer prognosis

    International Nuclear Information System (INIS)

    Wu, Zheng-sheng; Xu, Xiao-chun; Wu, Qiang; Wang, Chao-qun; Wang, Xiao-nan; Wang, Yan; Zhao, Jing-jing; Mao, Shan-shan; Zhang, Gui-hong; Zhang, Nong

    2010-01-01

    MicroRNAs (miRNAs) play an important role in the regulation of cell growth, differentiation, apoptosis, and carcinogenesis. Detection of their expression may lead to identifying novel markers for breast cancer. We profiled miRNA expression in three breast cancer cell lines (MCF-7, MDA-MB-231, and MDA-MB-468) and then focused on one miRNA, miR-339-5p, for its role in regulation of tumor cell growth, migration, and invasion and target gene expression. We then analyzed miR-339-5p expression in benign and cancerous breast tissue specimens. A number of miRNAs were differentially expressed in these cancer cell lines. Real-time PCR indicated that miR-339-5p expression was downregulated in the aggressive cell lines MDA-MB-468 and MDA-MB-231 and in breast cancer tissues compared with benign tissues. Transfection of miR-339-5p oligonucleotides reduced cancer cell growth only slightly but significantly decreased tumor cell migration and invasion capacity compared with controls. Real-time PCR analysis showed that BCL-6, a potential target gene of miR-339-5p, was downregulated in MDA-MB-231 cells by miR-339-5p transfection. Furthermore, the reduced miR-339-5p expression was associated with an increase in metastasis to lymph nodes and with high clinical stages. Kaplan-Meier analyses found that the patients with miR-339-5p expression had better overall and relapse-free survivals compared with those without miR-339-5p expression. Cox proportional hazards analyses showed that miR-339-5p expression was an independent prognostic factor for breast cancer patients. MiR-339-5p may play an important role in breast cancer progression, suggesting that miR-339-5p should be further evaluated as a biomarker for predicting the survival of breast cancer patients

  10. Clinicopathological correlation of keratinocyte growth factor and matrix metalloproteinase-9 expression in human gastric cancer.

    Science.gov (United States)

    Zhang, Qing; Wang, Ping; Shao, Ming; Chen, Shi-Wen; Xu, Zhi-Feng; Xu, Feng; Yang, Zhong-Yin; Liu, Bing-Ya; Gu, Qin-Long; Zhang, Wen-Jian; Li, Yong

    2015-01-01

    Keratinocyte growth factor (KGF) is reported to be implicated in the growth of some cancer cells. Matrix metalloproteinase 9 (MMP-9) is thought to enhance the tumor invasion and metastasis ability. This study was aimed at analyzing the relationship between KGF and MMP-9 expression and patients' clinicopathological characteristics to clarify the clinical significance of the expression of KGF and MMP-9 in gastric cancer. Tissue samples from 161 patients with primary gastric cancer were investigated using immunohistochemistry. The relationship between KGF and/or MMP-9 expression and clinicopathological characteristics was analyzed. KGF expression and MMP-9 expression in gastric cancer tissue were observed in 62 cases (38.5%) and 97 cases (60.2%), respectively. MMP-9 was significantly associated with depth of invasion, lymph node metastasis and TNM stage. The prognosis of MMP-9-positive patients was significantly poorer than that of MMP-9-negative patients (p = 0.009). KGF expression was positively correlated with MMP-9 expression in gastric cancer, and the prognosis of patients with both KGF- and MMP-9-positive tumors was significantly worse than that of patients with negative tumors for either factor (p = 0.045). Expression of MMP-9 was revealed to be an independent prognostic factor (p = 0.026). Coexpression of KGF and MMP-9 in gastric cancer could be a useful prognostic factor, and MMP-9 might also serve as a novel target for both prognostic prediction and therapeutics.

  11. Five-year risk of interval-invasive second breast cancer.

    Science.gov (United States)

    Lee, Janie M; Buist, Diana S M; Houssami, Nehmat; Dowling, Emily C; Halpern, Elkan F; Gazelle, G Scott; Lehman, Constance D; Henderson, Louise M; Hubbard, Rebecca A

    2015-07-01

    Earlier detection of second breast cancers after primary breast cancer (PBC) treatment improves survival, yet mammography is less accurate in women with prior breast cancer. The purpose of this study was to examine women presenting clinically with second breast cancers after negative surveillance mammography (interval cancers), and to estimate the five-year risk of interval-invasive second cancers for women with varying risk profiles. We evaluated a prospective cohort of 15 114 women with 47 717 surveillance mammograms diagnosed with stage 0-II unilateral PBC from 1996 through 2008 at facilities in the Breast Cancer Surveillance Consortium. We used discrete time survival models to estimate the association between odds of an interval-invasive second breast cancer and candidate predictors, including demographic, PBC, and imaging characteristics. All statistical tests were two-sided. The cumulative incidence of second breast cancers after five years was 54.4 per 1000 women, with 325 surveillance-detected and 138 interval-invasive second breast cancers. The five-year risk of interval-invasive second cancer for women with referent category characteristics was 0.60%. For women with the most and least favorable profiles, the five-year risk ranged from 0.07% to 6.11%. Multivariable modeling identified grade II PBC (odds ratio [OR] = 1.95, 95% confidence interval [CI] = 1.15 to 3.31), treatment with lumpectomy without radiation (OR = 3.27, 95% CI = 1.91 to 5.62), interval PBC presentation (OR = 2.01, 95% CI 1.28 to 3.16), and heterogeneously dense breasts on mammography (OR = 1.54, 95% CI = 1.01 to 2.36) as independent predictors of interval-invasive second breast cancers. PBC diagnosis and treatment characteristics contribute to variation in subsequent-interval second breast cancer risk. Consideration of these factors may be useful in developing tailored post-treatment imaging surveillance plans. © The Author 2015. Published by Oxford University Press. All rights reserved

  12. ER-α36 mediates estrogen-stimulated MAPK/ERK activation and regulates migration, invasion, proliferation in cervical cancer cells

    International Nuclear Information System (INIS)

    Sun, Qing; Liang, Ying; Zhang, Tianli; Wang, Kun; Yang, Xingsheng

    2017-01-01

    Objective: Estrogen receptor alpha 36 (ER-α36), a truncated variant of ER-α, is different from other nuclear receptors of the ER-α family. Previous findings indicate that ER-α36 might be involved in cell growth, proliferation, and differentiation in carcinomas and primarily mediates non-genomic estrogen signaling. However, studies on ER-α36 and cervical cancer are rare. This study aimed to detect the expression of ER-α36 in cervical cancer; the role of ER-α36 in 17-β-estradiol (E2)-induced invasion, migration and proliferation of cervical cancer; and their probable molecular mechanisms. Methods: Immunohistochemistry and immunofluorescence were used to determine the location of ER-α36 in cervical cancer tissues and cervical cell lines. CaSki and HeLa cell lines were transfected with lentiviruses to establish stable cell lines with knockdown and overexpression of ER-α36. Wound healing assay, transwell invasion assay, and EdU incorporation proliferation assay were performed to evaluate the migration, invasion, and proliferation ability. The phosphorylation levels of mitogen-activated protein kinases/extracellular signal-regulated kinase (MAPK/ERK) signaling molecules were examined with western blot analysis. Results: ER-α36 expression was detected in both cervical cell lines and cervical cancer tissues. Downregulation of ER-α36 significantly inhibited cell invasion, migration, and proliferation. Moreover, upregulation of ER-α36 increased the invasion, migration, and proliferation ability of CaSki and HeLa cell lines. ER-α36 mediates estrogen-stimulated MAPK/ERK activation. Conclusion: ER-α36 is localized on the plasma membrane and cytoplasm in both cervical cancer tissues and cell lines. ER-α36 mediates estrogen-stimulated MAPK/ERK activation and regulates migration, invasion, proliferation in cervical cancer cells. - Highlights: • ER-α36 is expressed on both cervical cell lines and cervical cancer tissues. • ER-α36 mediates estrogen

  13. Risk prediction scores for recurrence and progression of non-muscle invasive bladder cancer : An international validation in primary tumours

    NARCIS (Netherlands)

    M.M. Vedder (Moniek); M. Márquez (Mirari); E.W. de Bekker-Grob (Esther); M.L. Calle (Malu); L. Dyrskjot (Lars); M. Kogevinas (Manolis); U. Segersten (Ulrika); P.-U. Malmström (Per-Uno); F. Algaba (Ferran); W. Beukers (Willemien); T.F. Orntoft (Torben); E.C. Zwarthoff (Ellen); F.X. Real (Francisco); N. Malats (Núria); E.W. Steyerberg (Ewout)

    2014-01-01

    textabstractObjective: We aimed to determine the validity of two risk scores for patients with non-muscle invasive bladder cancer in different European settings, in patients with primary tumours. Methods: We included 1,892 patients with primary stage Ta or T1 non-muscle invasive bladder cancer who

  14. Glucocorticoids and histone deacetylase inhibitors cooperate to block the invasiveness of basal-like breast cancer cells through novel mechanisms

    DEFF Research Database (Denmark)

    Law, M E; Corsino, P E; Jahn, S C

    2013-01-01

    Aggressive cancers often express E-cadherin in cytoplasmic vesicles rather than on the plasma membrane and this may contribute to the invasive phenotype of these tumors. Therapeutic strategies are not currently available that restore the anti-invasive function of E-cadherin in cancers. MDA-MB-231...

  15. Inherent phenotypic plasticity facilitates progression of head and neck cancer: Endotheliod characteristics enable angiogenesis and invasion

    International Nuclear Information System (INIS)

    Tong, Meng; Han, Byungdo B.; Holpuch, Andrew S.; Pei, Ping; He, Lingli; Mallery, Susan R.

    2013-01-01

    The presence of the EMT (epithelial-mesenchymal transition), EndMT (endothelial-mesenchymal transition) and VM (vasculogenic mimicry) demonstrates the multidirectional extent of phenotypic plasticity in cancers. Previous findings demonstrating the crosstalk between head and neck squamous cell carcinoma (HNSCC) and vascular endothelial growth factor (VEGF) imply that HNSCC cells share some functional commonalities with endothelial cells. Our current results reveal that cultured HNSCC cells not only possess endothelial-specific markers, but also display endotheliod functional features including low density lipoprotein uptake, formation of tube-like structures on Matrigel and growth state responsiveness to VEGF and endostatin. HNSCC cell subpopulations are also highly responsive to transforming growth factor-β1 and express its auxiliary receptor, endoglin. Furthermore, the endotheliod characteristics observed in vitro recapitulate phenotypic features observed in human HNSCC tumors. Conversely, cultured normal human oral keratinocytes and intact or ulcerated human oral epithelia do not express comparable endotheliod characteristics, which imply that assumption of endotheliod features is restricted to transformed keratinocytes. In addition, this phenotypic state reciprocity facilitates HNSCC progression by increasing production of factors that are concurrently pro-proliferative and pro-angiogenic, conserving cell energy stores by LDL internalization and enhancing cell mobility. Finally, recognition of this endotheliod phenotypic transition provides a solid rationale to evaluate the antitumorigenic potential of therapeutic agents formerly regarded as exclusively angiostatic in scope. - Highlights: ► HNSCC tumor cells express endothelial specific markers VE-cadherin, CD31 and vimentin. ► Similarly, cultured HNSCC cells retain expression of these markers. ► HNSCC cells demonstrate functional endotheliod characteristics i.e. AcLDL uptake. ► HNSCC cell

  16. Inherent phenotypic plasticity facilitates progression of head and neck cancer: Endotheliod characteristics enable angiogenesis and invasion

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Meng, E-mail: tong.59@osu.edu [Division of Oral Pathology and Radiology, The Ohio State University College of Dentistry, Columbus, OH 43210 (United States); Han, Byungdo B.; Holpuch, Andrew S.; Pei, Ping; He, Lingli; Mallery, Susan R. [Division of Oral Pathology and Radiology, The Ohio State University College of Dentistry, Columbus, OH 43210 (United States)

    2013-04-15

    The presence of the EMT (epithelial-mesenchymal transition), EndMT (endothelial-mesenchymal transition) and VM (vasculogenic mimicry) demonstrates the multidirectional extent of phenotypic plasticity in cancers. Previous findings demonstrating the crosstalk between head and neck squamous cell carcinoma (HNSCC) and vascular endothelial growth factor (VEGF) imply that HNSCC cells share some functional commonalities with endothelial cells. Our current results reveal that cultured HNSCC cells not only possess endothelial-specific markers, but also display endotheliod functional features including low density lipoprotein uptake, formation of tube-like structures on Matrigel and growth state responsiveness to VEGF and endostatin. HNSCC cell subpopulations are also highly responsive to transforming growth factor-β1 and express its auxiliary receptor, endoglin. Furthermore, the endotheliod characteristics observed in vitro recapitulate phenotypic features observed in human HNSCC tumors. Conversely, cultured normal human oral keratinocytes and intact or ulcerated human oral epithelia do not express comparable endotheliod characteristics, which imply that assumption of endotheliod features is restricted to transformed keratinocytes. In addition, this phenotypic state reciprocity facilitates HNSCC progression by increasing production of factors that are concurrently pro-proliferative and pro-angiogenic, conserving cell energy stores by LDL internalization and enhancing cell mobility. Finally, recognition of this endotheliod phenotypic transition provides a solid rationale to evaluate the antitumorigenic potential of therapeutic agents formerly regarded as exclusively angiostatic in scope. - Highlights: ► HNSCC tumor cells express endothelial specific markers VE-cadherin, CD31 and vimentin. ► Similarly, cultured HNSCC cells retain expression of these markers. ► HNSCC cells demonstrate functional endotheliod characteristics i.e. AcLDL uptake. ► HNSCC cell

  17. MicroRNA-218 inhibits cell invasion and migration of pancreatic cancer via regulating ROBO1.

    Science.gov (United States)

    He, Hang; Hao, Si-Jie; Yao, Lie; Yang, Feng; Di, Yang; Li, Ji; Jiang, Yong-Jian; Jin, Chen; Fu, De-Liang

    2014-10-01

    miRNA-218 is a highlighted tumor suppressor and its underlying role in tumor progression is still unknown. Here, we restored the expression of miRNA-218 in pancreatic cancer to clarify the function and potent downstream pathway of miRNA-218. The expressions of both miRNA-218 and its potent target gene ROBO1 were revealed by RT-PCR and western blotting analysis. Transfection of miRNA-218 precursor mimics and luciferase assay were performed to elucidate the regulation mechanism between miRNA-218 and ROBO1. Cells, stably expressing miRNA-218 followed by forced expression of mutant ROBO1, were established through co-transfections of both lentivirus vector and plasmid vector. The cell migration and invasion abilities were evaluated by migration assay and invasion assay respectively. An increased expression of ROBO1 was revealed in cell BxPC-3-LN compared with cell BxPC-3. Elevated expression of miRNA-218 would suppress the expression of ROBO1 via complementary binding to a specific region within 3'UTR of ROBO1 mRNA (sites 971-978) in pancreatic cancer cells. Stably restoring the expression of miRNA-218 in pancreatic cancer significantly downregulated the expression of ROBO1 and effectively inhibited cell migration and invasion. Forced expression of mutant ROBO1 could reverse the repression effects of miRNA-218 on cell migration and invasion. Consequently, miRNA-218 acted as a tumor suppressor in pancreatic cancer by inhibiting cell invasion and migration. ROBO1 was a functional target of miRNA-218's downstream pathway involving in cell invasion and migration of pancreatic cancer.

  18. Relative growth rates of three woody legumes: implications in the process of ecological invasion

    Directory of Open Access Journals (Sweden)

    J. A. Crisóstomo

    2007-03-01

    Full Text Available Acacia longifolia, an Australian leguminous tree, is one of the main invasive plant species in the coast of Portugal and a major threat to the native vegetation in the Reserva Natural das Dunas de São Jacinto. With the establishment of this exotic species, other native woody leguminous species such as Cytisus grandiflorus and Ulex europaeus have been displaced from their original areas. Several factors are involved in the process of biological invasion by exotic species. Plant physiology and development, characteristic of each species, can give certain advantages in the establishment and colonization of new areas. We tested if there are differences in the Relative Growth Rate (RGR of the exotic and native species because this could be relevant in the first stages of the invasion process. Our results showed that A. longifolia was the species with lowest RGR. Therefore, other factors apart from RGR might explain the invasion of coastal dunes by this species. We propose that A. longifolia might be a better competitor than the two native legumes and that this process might be mediated by the interaction with soil organisms.

  19. Magnetic resonance imaging of invasive breast cancer | Corr | SA ...

    African Journals Online (AJOL)

    ... mammographic findings, and screening for breast cancer in younger women with familial breast cancer. Interpretation of MR images requires a meticulous imaging technique including the use of contrast enhancement and fat suppression MR sequences using a good breast coil. South African Journal of Radiology Vol.

  20. Loss of cadherin-based cell adhesion and the progression of Invasive Lobular Breast Cancer

    NARCIS (Netherlands)

    Vlug, E.J.

    2015-01-01

    Lobular breast cancer is a type of breast cancer that is histologically characterized by a noncohesive growth pattern of small regular cells, where single cells infiltrate as one-layered strands of cells. This noncohesive growth pattern is due to inactivation of the E-cadherin complex and a

  1. PREDICT: a new UK prognostic model that predicts survival following surgery for invasive breast cancer.

    Science.gov (United States)

    Wishart, Gordon C; Azzato, Elizabeth M; Greenberg, David C; Rashbass, Jem; Kearins, Olive; Lawrence, Gill; Caldas, Carlos; Pharoah, Paul D P

    2010-01-01

    The aim of this study was to develop and validate a prognostication model to predict overall and breast cancer specific survival for women treated for early breast cancer in the UK. Using the Eastern Cancer Registration and Information Centre (ECRIC) dataset, information was collated for 5,694 women who had surgery for invasive breast cancer in East Anglia from 1999 to 2003. Breast cancer mortality models for oestrogen receptor (ER) positive and ER negative tumours were derived from these data using Cox proportional hazards, adjusting for prognostic factors and mode of cancer detection (symptomatic versus screen-detected). An external dataset of 5,468 patients from the West Midlands Cancer Intelligence Unit (WMCIU) was used for validation. Differences in overall actual and predicted mortality were detection for the first time. The model is well calibrated, provides a high degree of discrimination and has been validated in a second UK patient cohort.

  2. Relation of erythrocyte and iron indices to oral cancer growth

    International Nuclear Information System (INIS)

    Bhattathiri, Vasudevaru Narayanan

    2001-01-01

    Background and purpose: Anaemia is known to influence prognosis of head and neck cancer patients, but how anaemia and tumour growth influences each other is not clear. The present study investigates the relation of erythrocyte and iron indices of oral cancer patients to primary tumour size (Tsize), invasiveness and lymph node involvement. Materials and methods: The haemoglobin (Hb), erythrocyte count (RBC), packed cell volume (PCV), mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCH), mean corpuscular haemoglobin concentration (MCHC), Serum iron (SFe), transferrin iron-binding capacity (TIBC) and transferrin saturation (%Fe) were evaluated in 217 untreated patients with epidermoid cancer of the bucco-gingivo-palatine area. The association of erythrocyte and iron indices with sex, tumour size groups, invasion of adjacent structures and lymph node involvement, as well as the relation of SFe to Hb were analyzed. Results: Most of the patients were anaemic in terms of Hb (63%), RBC (43%) and PCV (48.4%) but almost all had normal or higher MCH (97.3%) and MCV (93.3%) though MCHC was less than normal in 70.7%. Normal or higher SFe was seen in nearly 70% and TIBC in 45% of patients. Hb, RBC and PCV were significantly lower in women, but there was no difference between men and women in the case of MCV, MCH and MCHC. Primary tumour size showed negative association with Hb, RBC and PCV but positive association with MCH ( 4 cm: 31. 7 pg; P=0.04) and MCHC ( 4 cm: 32.1; P=0.006). MCV, SFe, TIBC and %Fe did not show any relation to primary tumour size. None of the indices had any relation to invasion of adjacent structures or lymph node involvement. MCH, MCHC and MCV were not different in men and women but women had significantly lower Hb, RBC and PCV. The SFe showed poor correlation with Hb. Conclusions: The negative association of Hb, RBC and PCV with tumour size is most likely due to chronic RBC destruction, probably tumour induced, with the products of

  3. CENPI is overexpressed in colorectal cancer and regulates cell migration and invasion.

    Science.gov (United States)

    Ding, Na; Li, Rongxin; Shi, Wenhao; He, Cui

    2018-06-21

    Centromere protein I (CENPI),an important member of centromere protein family, has been suggest to serve as a oncogene in breast cancer, but the clinical significance and biological function of CENPI in colorectal cancer (CRC) is still unclear. In our results, we found CENPI was overexpressed in CRC tissues and cells, and associated with clinical stage, tumor depth, lymph node metastasis, distant metastasis and differentiation in CRC patients. However, there was no significant association between CENPI protein expression and overall survival time in colon cancer patients and rectal cancer patients through analyzing TCGA survival data. Moreover, CENPI mRNA and protein were increased in metastatic lymph nodes compared with primary CRC tissues. Down-regulation of CENPI expression suppresses CRC cell migration, invasion and epithelial mesenchymal transition process. In conclusion, CENPI is overexpressed in CRC and functions as oncogene in modulating CRC cell migration, invasion and EMT process. Copyright © 2018. Published by Elsevier B.V.

  4. Differential Expression of Growth-, Angiogenesis- and Invasion-Related Factors in The Development of Placenta Accreta

    Directory of Open Access Journals (Sweden)

    Jenn-Jhy Tseng

    2006-06-01

    Full Text Available Placenta accreta is the major cause of maternal death complicated by massive peripartum hemorrhage. Its development is traditionally considered to be related to a decidual defect caused by previous cesarean deliveries or uterine curettages. Usually, placental villi firmly adhere to the superficial myometrium and deeply invade, or even penetrate, the uterine wall. Abnormal uteroplacental neovascularization is another characteristic. Therefore, we hypothesized that placenta accreta develops as a result of abnormal expressions of growth-, angiogenesis- and invasion-related factors in trophoblast populations. We have found, in pregnancies complicated by placenta accreta: upregulated epidermal growth factor receptor and downregulated c-erbB-2 oncoprotein in syncytiotrophoblasts; downregulated vasculoendothelial growth factor receptor-2 expression in syncytiotrophoblasts and increased vasculoendothelial growth factor in placental lysates; and downregulated Tie-2 expression in syncytiotrophoblasts and enhanced angiopoietin-2 level in placental lysates. However, matrix metalloproteinase expression was not upregulated, so the association of these invasion-related molecules with placenta accreta is less likely. Taken together, these findings imply that complex factors, either alone or in combination, might be responsible for the development of placenta accreta. Further studies are needed to understand the signaling pathways and possible genetic events.

  5. Our approach for breast cancer screening using both mammography and echography, with special reference to detection of nonpalpable minute invasive cancer

    International Nuclear Information System (INIS)

    Takebe, Koji; Izumori, Ayumi; Yasumo, Naomi

    2007-01-01

    We present the results of our approach for breast cancer screening using both mammography and echography. A total of 4,632 participants underwent screening with our own combined method using mammography and echography at our clinic during a two-year period in 2005 and 2006. Recall studies were carried out in 364 women (recall rate, 79%), and breast cancer was detected in 36 women (cancer detection rate, 0.78%). When the detected cancers were classified histopathologically, 22 were invasive ductal cancers and the remaining 14 were non-invasive cancers. Of the 22 women who proved to have invasive cancers, 14 had been unaware of their tumors, which were non-palpable. If an invasive cancer is overlooked, the consequences may be more serious than if a non-invasive cancer is missed, because the former is can be potentially fatal. In order to decrease breast cancer mortality, invasive cancers must be detected when they are small. Since we were able to detect many small and non-palpable breast cancers that had not been noticed by the participants, our current breast cancer screening system appears to be more efficient for life-saving than other systems. (author)

  6. Oridonin inhibits breast cancer growth and metastasis through blocking the Notch signaling

    Directory of Open Access Journals (Sweden)

    Shixin Xia

    2017-05-01

    Full Text Available Background: Oridonin is a diterpenoid isolated from Rabdosia rubescens with potent anticancer activity. The aim of our study is to investigate the role of oridonin to inhibit growth and metastasis of human breast cancer cells. Methods: The effect of oridonin on proliferation was evaluated by MTT assay, cell migration and invasion were evaluated by transwell migration and invasion assays in human breast cancer cells. The inhibitive effect of oridonin in vivo was determined by using xenografted nude mice. In addition, the expression of Notch receptors (Notch 1–4 was detected by western blot. Results: Oridonin inhibited human breast cancer cells in vitro and in vivo. In addition, oridonin significantly induced human breast cancer cells apoptosis. Furthermore, the oridonin treatment not only inhibited cancer cell migration and invasion, but more significantly, decreased the expression of Notch 1-4 protein. Conclusion: Our results suggest that the inhibitive effect of oridonin is likely to be driven by the inhibition of Notch signaling pathway and the resulting increased apoptosis.

  7. Non-muscle invasive bladder cancer risk stratification

    Directory of Open Access Journals (Sweden)

    Sumit Isharwal

    2015-01-01

    Conclusion: EORTC and CUETO risk tables are the two best-established models to predict recurrence and progression in patients with NMIBC though they tend to overestimate risk and have poor discrimination for prognostic outcomes in external validation. Future research should focus on enhancing the predictive accuracy of risk assessment tools by incorporating additional prognostic factors such as depth of lamina propria invasion and molecular biomarkers after rigorous validation in multi-institutional cohorts.

  8. Does shear wave ultrasound independently predict axillary lymph node metastasis in women with invasive breast cancer?

    OpenAIRE

    Evans, Andrew; Rauchhaus, Petra; Whelehan, Patsy; Thomson, Kim; Purdie, Colin A.; Jordan, Lee B.; Michie, Caroline O.; Thompson, Alastair; Vinnicombe, Sarah

    2013-01-01

    Shear wave elastography (SWE) shows promise as an adjunct to greyscale ultrasound examination in assessing breast masses. In breast cancer, higher lesion stiffness on SWE has been shown to be associated with features of poor prognosis. The purpose of this study was to assess whether lesion stiffness at SWE is an independent predictor of lymph node involvement. Patients with invasive breast cancer treated by primary surgery, who had undergone SWE examination were eligible. Data were retrospect...

  9. Potential role of p21 Activated Kinase 1 (PAK1) in the invasion and motility of oral cancer cells

    International Nuclear Information System (INIS)

    Parvathy, Muraleedharan; Sreeja, Sreeharshan; Kumar, Rakesh; Pillai, Madhavan Radhakrishna

    2016-01-01

    Oral cancer malignancy consists of uncontrolled division of cells primarily in and around the floor of the oral cavity, gingiva, oropharynx, lower lip and base of the tongue. According to GLOBOCAN 2012 report, oral cancer is one of the most common cancers among males and females in India. Even though significant advancements have been made in the field of oral cancer treatment modalities, the overall prognosis for the patients has not improved in the past few decades and hence, this demands a new thrust for the identification of novel therapeutic targets in oral cancer. p21 Activated Kinases (PAKs) are potential therapeutic targets that are involved in numerous physiological functions. PAKs are serine-threonine kinases and they serve as important regulators of cytoskeletal dynamics and cell motility, transcription through MAP kinase cascades, death and survival signalling, and cell-cycle progression. Although PAKs are known to play crucial roles in cancer progression, the role and clinical significance of PAKs in oral cancer remains poorly understood. Our results suggest that PAK1 is over-expressed in oral cancer cell lines. Stimulation of Oral Squamous Cell Carcinoma (OSCC) cells with serum growth factors leads to PAK1 re-localization and might cause a profound cytoskeletal remodelling. PAK1 was also found to be involved in the invasion, migration and cytoskeletal remodelling of OSCC cells. Our study revealed that PAK1 may play a crucial role in the progression of OSCC. Studying the role of PAK1 and its substrates is likely to enhance our understanding of oral carcinogenesis and potential therapeutic value of PAKs in oral cancer. The online version of this article (doi:10.1186/s12885-016-2263-8) contains supplementary material, which is available to authorized users

  10. A combination therapy of selective intraarterial anti-cancer drug infusion and radiation therapy for muscle-invasive bladder cancer

    International Nuclear Information System (INIS)

    Okuno, Yumiko; Zaitsu, Masayoshi; Mikami, Koji; Takeuchi, Takumi; Matsuda, Izuru; Arahira, Satoko

    2017-01-01

    The gold standard for the treatment of muscle-invasive bladder cancer Without metastasis is radical cystectomy. However, there increase patients very elderly and with serious complications. They are not good candidates for invasive surgical operation. Intraarterial infusion of 70 mg/m"2 of cisplatin and 30 mg/m"2 of pirarubicin into bilateral bladder arteries was conducted for 5 patients diagnosed with muscle invasive bladder cancers without distant metastasis. Right and left distribution of anti-cancer drugs was determined based on the location of bladder tumor(s). External beam radiation therapy was commenced immediately following intraarterial infusion. The patients were followed up with clinical and radiographic investigations and bladderbiopsy was performed as needed. Patients were all males who are smoking or with smoking history ranging from 73 to 85 years of age (median 82). The duration between transurethral resection of bladder tumors (TUR-Bt) and intraarterial infusion of anti-cancer drugs was 47.4 days (range 26-68), the median follow-up period after intraarterial infusion was 21.5 months (range 87-547) without death. Total radiation dose was 59.2 ±3.0 Gy. Complete remission was accomplished in all cases. One patient showed intravesical recurrence of non muscle-invasive tumors 45.8 months following intraarterial infusion and underwent TUR-Bt. Two cases underwent bladder biopsies showing no tumors. All patients but one case with bladder recurrence were free of tumor recurrence with radiographic investigation. For adverse events, acute renal failure was in one case and leukocytopenia was in all 5 cases, Grade 2 for one and Grade 3 for 4 cases. Follow-up periods are not long enough, but early results of a combination therapy of selective intraarterial anti-cancer drug infusion and radiation therapy for muscle-invasive bladder cancer were good. (author)

  11. Role of KCNMA1 gene in breast cancer invasion and metastasis to brain

    International Nuclear Information System (INIS)

    Khaitan, Divya; Sankpal, Umesh T; Weksler, Babette; Meister, Edward A; Romero, Ignacio A; Couraud, Pierre-Olivier; Ningaraj, Nagendra S

    2009-01-01

    The prognosis for patients with breast tumor metastases to brain is extremely poor. Identification of prognostic molecular markers of the metastatic process is critical for designing therapeutic modalities for reducing the occurrence of metastasis. Although ubiquitously present in most human organs, large-conductance calcium- and voltage-activated potassium channel (BK Ca ) channels are significantly upregulated in breast cancer cells. In this study we investigated the role of KCNMA1 gene that encodes for the pore-forming α-subunit of BK Ca channels in breast cancer metastasis and invasion. We performed Global exon array to study the expression of KCNMA1 in metastatic breast cancer to brain, compared its expression in primary breast cancer and breast cancers metastatic to other organs, and validated the findings by RT-PCR. Immunohistochemistry was performed to study the expression and localization of BK Ca channel protein in primary and metastatic breast cancer tissues and breast cancer cell lines. We performed matrigel invasion, transendothelial migration and membrane potential assays in established lines of normal breast cells (MCF-10A), non-metastatic breast cancer (MCF-7), non-brain metastatic breast cancer cells (MDA-MB-231), and brain-specific metastatic breast cancer cells (MDA-MB-361) to study whether BK Ca channel inhibition attenuates breast tumor invasion and metastasis using KCNMA1 knockdown with siRNA and biochemical inhibition with Iberiotoxin (IBTX). The Global exon array and RT-PCR showed higher KCNMA1 expression in metastatic breast cancer in brain compared to metastatic breast cancers in other organs. Our results clearly show that metastatic breast cancer cells exhibit increased BK Ca channel activity, leading to greater invasiveness and transendothelial migration, both of which could be attenuated by blocking KCNMA1. Determining the relative abundance of BK Ca channel expression in breast cancer metastatic to brain and the mechanism of its

  12. Role of KCNMA1 gene in breast cancer invasion and metastasis to brain

    Directory of Open Access Journals (Sweden)

    Couraud Pierre-Olivier

    2009-07-01

    Full Text Available Abstract Background The prognosis for patients with breast tumor metastases to brain is extremely poor. Identification of prognostic molecular markers of the metastatic process is critical for designing therapeutic modalities for reducing the occurrence of metastasis. Although ubiquitously present in most human organs, large-conductance calcium- and voltage-activated potassium channel (BKCa channels are significantly upregulated in breast cancer cells. In this study we investigated the role of KCNMA1 gene that encodes for the pore-forming α-subunit of BKCa channels in breast cancer metastasis and invasion. Methods We performed Global exon array to study the expression of KCNMA1 in metastatic breast cancer to brain, compared its expression in primary breast cancer and breast cancers metastatic to other organs, and validated the findings by RT-PCR. Immunohistochemistry was performed to study the expression and localization of BKCa channel protein in primary and metastatic breast cancer tissues and breast cancer cell lines. We performed matrigel invasion, transendothelial migration and membrane potential assays in established lines of normal breast cells (MCF-10A, non-metastatic breast cancer (MCF-7, non-brain metastatic breast cancer cells (MDA-MB-231, and brain-specific metastatic breast cancer cells (MDA-MB-361 to study whether BKCa channel inhibition attenuates breast tumor invasion and metastasis using KCNMA1 knockdown with siRNA and biochemical inhibition with Iberiotoxin (IBTX. Results The Global exon array and RT-PCR showed higher KCNMA1 expression in metastatic breast cancer in brain compared to metastatic breast cancers in other organs. Our results clearly show that metastatic breast cancer cells exhibit increased BKCa channel activity, leading to greater invasiveness and transendothelial migration, both of which could be attenuated by blocking KCNMA1. Conclusion Determining the relative abundance of BKCa channel expression in breast

  13. Inhibitory effect of blue light emitting diode on migration and invasion of cancer cells.

    Science.gov (United States)

    Oh, Phil-Sun; Kim, Hyun-Soo; Kim, Eun-Mi; Hwang, Hyosook; Ryu, Hyang Hwa; Lim, SeokTae; Sohn, Myung-Hee; Jeong, Hwan-Jeong

    2017-12-01

    The aim of this study was to determine the effects and molecular mechanism of blue light emitting diode (LED) in tumor cells. A migration and invasion assay for the metastatic behavior of mouse colon cancer CT-26 and human fibrosarcoma HT-1080 cells was performed. Cancer cell migration-related proteins were identified by obtaining a 2-dimensional gel electrophoresis (2-DE) in total cellular protein profile of blue LED-irradiated cancer cells, followed by matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) analysis of proteins. Protein levels were examined by immunoblotting. Irradiation with blue LED inhibited CT-26 and HT-1080 cell migration and invasion. The anti-metastatic effects of blue LED irradiation were associated with inhibition of matrix metalloproteinase (MMP)-2 and MMP-9 expression. P38 MAPK phosphorylation was increased in blue LED-irradiated CT-26 and HT-1080 cells, but was inhibited after pretreatment with SB203580, a specific inhibitor of p38 MAPK. Inhibition of p38 MAPK phosphorylation by SB203580 treatment increased number of migratory cancer cells in CT-26 and HT-1080 cells, indicating that blue LED irradiation inhibited cancer cell migration via phosphorylation of p38 MAPK. Additionally blue LED irradiation of mice injected with CT-26 cells expressing luciferase decreased early stage lung metastasis compared to untreated control mice. These results indicate that blue LED irradiation inhibits cancer cell migration and invasion in vitro and in vivo. © 2017 Wiley Periodicals, Inc.

  14. Diosgenin, a steroidal saponin, inhibits migration and invasion of human prostate cancer PC-3 cells by reducing matrix metalloproteinases expression.

    Directory of Open Access Journals (Sweden)

    Pin-Shern Chen

    Full Text Available BACKGROUND: Diosgenin, a steroidal saponin obtained from fenugreek (Trigonella foenum graecum, was found to exert anti-carcinogenic properties, such as inhibiting proliferation and inducing apoptosis in a variety of tumor cells. However, the effect of diosgenin on cancer metastasis remains unclear. The aim of the study is to examine the effect of diosgenin on migration and invasion in human prostate cancer PC-3 cells. METHODS AND PRINCIPAL FINDINGS: Diosgenin inhibited proliferation of PC-3 cells in a dose-dependent manner. When treated with non-toxic doses of diosgenin, cell migration and invasion were markedly suppressed by in vitro wound healing assay and Boyden chamber invasion assay, respectively. Furthermore, diosgenin reduced the activities of matrix metalloproteinase-2 (MMP-2 and MMP-9 by gelatin zymography assay. The mRNA level of MMP-2, -9, -7 and extracellular inducer of matrix metalloproteinase (EMMPRIN were also suppressed while tissue inhibitor of metalloproteinase-2 (TIMP-2 was increased by diosgenin. In addition, diosgenin abolished the expression of vascular endothelial growth factor (VEGF in PC-3 cells and tube formation of endothelial cells. Our immunoblotting assays indicated that diosgenin potently suppressed the phosphorylation of phosphatidylinositide-3 kinase (PI3K, Akt, extracellular signal regulating kinase (ERK and c-Jun N-terminal kinase (JNK. In addition, diosgenin significantly decreased the nuclear level of nuclear factor kappa B (NF-κB, suggesting that diosgenin inhibited NF-κB activity. CONCLUSION/SIGNIFICANCE: The results suggested that diosgenin inhibited migration and invasion of PC-3 cells by reducing MMPs expression. It also inhibited ERK, JNK and PI3K/Akt signaling pathways as well as NF-κB activity. These findings reveal new therapeutic potential for diosgenin in anti-metastatic therapy.

  15. The invasive cervical cancer review: psychological issues surrounding disclosure.

    Science.gov (United States)

    Sherman, S M; Moss, E; Redman, C W E

    2013-04-01

    An audit of the screening history of all new cervical cancer cases has been a requirement since April 2007. While NHS cervical screening programmes (NHSCSP) guidance requires that women diagnosed with cervical cancer are offered the findings of the audit, as yet there has been no research to investigate the psychological impact that meeting to discuss the findings might have on patients. This is in spite of the fact that cytological under-call may play a role in as many as 20% of cervical cancer cases. This review draws on the literature concerning breaking bad news, discussing cancer and disclosing medical errors, in order to gain insight into both the negative and positive consequences that may accompany a cervical screening review meeting. We conclude that while patients are likely to experience some distress at disclosure, there are also likely to be positive aspects, such as greater trust and improved perception of care. © 2013 Blackwell Publishing Ltd.

  16. Hypoxia-Targeting Fluorescent Nanobodies for Optical Molecular Imaging of Pre-Invasive Breast Cancer

    NARCIS (Netherlands)

    van Brussel, Aram S A; Adams, Arthur; Oliveira, Sabrina; Dorresteijn, Bram; El Khattabi, Mohamed; Vermeulen, J. F.; van der Wall, Elsken; Mali, Willem P Th M; Derksen, Patrick W B; van Diest, Paul J; van Bergen En Henegouwen, Paul M P

    PURPOSE: The aim of this work was to develop a CAIX-specific nanobody conjugated to IRDye800CW for molecular imaging of pre-invasive breast cancer. PROCEDURES: CAIX-specific nanobodies were selected using a modified phage display technology, conjugated site-specifically to IRDye800CW and evaluated

  17. Hypoxia-Targeting Fluorescent Nanobodies for Optical Molecular Imaging of Pre-Invasive Breast Cancer

    NARCIS (Netherlands)

    van Brussel, Aram S A; Adams, Arthur; Oliveira, Sabrina; Dorresteijn, Bram; El Khattabi, Mohamed; Vermeulen, Jeroen F.; van der Wall, Elsken; Mali, W.P.T.M.; Derksen, Patrick W B; van Diest, Paul J.; van Bergen En Henegouwen, Paul M P

    Purpose: The aim of this work was to develop a CAIX-specific nanobody conjugated to IRDye800CW for molecular imaging of pre-invasive breast cancer. Procedures: CAIX-specific nanobodies were selected using a modified phage display technology, conjugated site-specifically to IRDye800CW and evaluated

  18. Factors influencing treatment results of definitive radiotherapy following transurethral surgery for muscle-invasive bladder cancer

    International Nuclear Information System (INIS)

    Abe, Tatsuyuki; Kanehira Chihiro

    1999-01-01

    To determine the prognostic factors influencing the outcome of bladder cancer patients treated with definitive radiotherapy following transurethral tumor resection (TURBT). From March 1977 through August 1991, 83 patients with muscle-invasive bladder cancer were treated with TURBT (as thoroughly as possible) and definitive radiotherapy (median total dose: 64 Gy, median fractional dose: 2 Gy). Cystectomy was performed when possible for the residual or recurrent invasive cancer following radiotherapy. The median follow-up period was 76 months. The overall survival (OS) and bladder-preserving survival (BPS) rates at 5 years were 38% and 28%, respectively. Univariate analysis indicated that depth of invasion (T2 vs T3), tumor diameter (<3 cm vs. ≥3 cm), and visible (R1) or not visible (R0) residual tumor after TURBT influenced both OS and BPS. In multivariate analysis, absence of visible residual tumor after TURBT was the only significant prognostic factor related to OS (p<0.001) and BPS (p=0.002). Five-year OS and BPS were 54% and 43% in T2-3R0 and 14% and 7% in T2-3R1, respectively. Absence of visible residual tumor after TURBT was significantly associated with better overall survival and bladder-preserving survival for muscle-invasive bladder cancer patients treated with definitive radiotherapy following TURBT. (author)

  19. Intra-arterial chemotherapy combined with irradiation for invasive bladder cancer

    International Nuclear Information System (INIS)

    Fujimoto, Na