WorldWideScience

Sample records for cancer genomics identifies

  1. Identifying driver mutations in sequenced cancer genomes

    DEFF Research Database (Denmark)

    Raphael, Benjamin J; Dobson, Jason R; Oesper, Layla;

    2014-01-01

    protein sequence or structure. Finally, we review techniques to identify recurrent combinations of somatic mutations, including approaches that examine mutations in known pathways or protein-interaction networks, as well as de novo approaches that identify combinations of mutations according to......-throughput DNA sequencing data, particularly for tumor samples that comprise heterogeneous populations of cells. Next, we review computational approaches that aim to predict driver mutations according to their frequency of occurrence in a cohort of samples, or according to their predicted functional impact on......, and random mutations. Here, we review computational approaches to identify somatic mutations in cancer genome sequences and to distinguish the driver mutations that are responsible for cancer from random, passenger mutations. First, we describe approaches to detect somatic mutations from high...

  2. Computational approaches to identify functional genetic variants in cancer genomes

    Science.gov (United States)

    Gonzalez-Perez, Abel; Mustonen, Ville; Reva, Boris; Ritchie, Graham R.S.; Creixell, Pau; Karchin, Rachel; Vazquez, Miguel; Fink, J. Lynn; Kassahn, Karin S.; Pearson, John V.; Bader, Gary; Boutros, Paul C.; Muthuswamy, Lakshmi; Ouellette, B.F. Francis; Reimand, Jüri; Linding, Rune; Shibata, Tatsuhiro; Valencia, Alfonso; Butler, Adam; Dronov, Serge; Flicek, Paul; Shannon, Nick B.; Carter, Hannah; Ding, Li; Sander, Chris; Stuart, Josh M.; Stein, Lincoln D.; Lopez-Bigas, Nuria

    2014-01-01

    The International Cancer Genome Consortium (ICGC) aims to catalog genomic abnormalities in tumors from 50 different cancer types. Genome sequencing reveals hundreds to thousands of somatic mutations in each tumor, but only a minority drive tumor progression. We present the result of discussions within the ICGC on how to address the challenge of identifying mutations that contribute to oncogenesis, tumor maintenance or response to therapy, and recommend computational techniques to annotate somatic variants and predict their impact on cancer phenotype. PMID:23900255

  3. Computational approaches to identify functional genetic variants in cancer genomes

    DEFF Research Database (Denmark)

    Gonzalez-Perez, Abel; Mustonen, Ville; Reva, Boris;

    2013-01-01

    The International Cancer Genome Consortium (ICGC) aims to catalog genomic abnormalities in tumors from 50 different cancer types. Genome sequencing reveals hundreds to thousands of somatic mutations in each tumor but only a minority of these drive tumor progression. We present the result of discu...... discussions within the ICGC on how to address the challenge of identifying mutations that contribute to oncogenesis, tumor maintenance or response to therapy, and recommend computational techniques to annotate somatic variants and predict their impact on cancer phenotype....

  4. Genomic analyses identify molecular subtypes of pancreatic cancer.

    Science.gov (United States)

    Bailey, Peter; Chang, David K; Nones, Katia; Johns, Amber L; Patch, Ann-Marie; Gingras, Marie-Claude; Miller, David K; Christ, Angelika N; Bruxner, Tim J C; Quinn, Michael C; Nourse, Craig; Murtaugh, L Charles; Harliwong, Ivon; Idrisoglu, Senel; Manning, Suzanne; Nourbakhsh, Ehsan; Wani, Shivangi; Fink, Lynn; Holmes, Oliver; Chin, Venessa; Anderson, Matthew J; Kazakoff, Stephen; Leonard, Conrad; Newell, Felicity; Waddell, Nick; Wood, Scott; Xu, Qinying; Wilson, Peter J; Cloonan, Nicole; Kassahn, Karin S; Taylor, Darrin; Quek, Kelly; Robertson, Alan; Pantano, Lorena; Mincarelli, Laura; Sanchez, Luis N; Evers, Lisa; Wu, Jianmin; Pinese, Mark; Cowley, Mark J; Jones, Marc D; Colvin, Emily K; Nagrial, Adnan M; Humphrey, Emily S; Chantrill, Lorraine A; Mawson, Amanda; Humphris, Jeremy; Chou, Angela; Pajic, Marina; Scarlett, Christopher J; Pinho, Andreia V; Giry-Laterriere, Marc; Rooman, Ilse; Samra, Jaswinder S; Kench, James G; Lovell, Jessica A; Merrett, Neil D; Toon, Christopher W; Epari, Krishna; Nguyen, Nam Q; Barbour, Andrew; Zeps, Nikolajs; Moran-Jones, Kim; Jamieson, Nigel B; Graham, Janet S; Duthie, Fraser; Oien, Karin; Hair, Jane; Grützmann, Robert; Maitra, Anirban; Iacobuzio-Donahue, Christine A; Wolfgang, Christopher L; Morgan, Richard A; Lawlor, Rita T; Corbo, Vincenzo; Bassi, Claudio; Rusev, Borislav; Capelli, Paola; Salvia, Roberto; Tortora, Giampaolo; Mukhopadhyay, Debabrata; Petersen, Gloria M; Munzy, Donna M; Fisher, William E; Karim, Saadia A; Eshleman, James R; Hruban, Ralph H; Pilarsky, Christian; Morton, Jennifer P; Sansom, Owen J; Scarpa, Aldo; Musgrove, Elizabeth A; Bailey, Ulla-Maja Hagbo; Hofmann, Oliver; Sutherland, Robert L; Wheeler, David A; Gill, Anthony J; Gibbs, Richard A; Pearson, John V; Waddell, Nicola; Biankin, Andrew V; Grimmond, Sean M

    2016-03-01

    Integrated genomic analysis of 456 pancreatic ductal adenocarcinomas identified 32 recurrently mutated genes that aggregate into 10 pathways: KRAS, TGF-β, WNT, NOTCH, ROBO/SLIT signalling, G1/S transition, SWI-SNF, chromatin modification, DNA repair and RNA processing. Expression analysis defined 4 subtypes: (1) squamous; (2) pancreatic progenitor; (3) immunogenic; and (4) aberrantly differentiated endocrine exocrine (ADEX) that correlate with histopathological characteristics. Squamous tumours are enriched for TP53 and KDM6A mutations, upregulation of the TP63∆N transcriptional network, hypermethylation of pancreatic endodermal cell-fate determining genes and have a poor prognosis. Pancreatic progenitor tumours preferentially express genes involved in early pancreatic development (FOXA2/3, PDX1 and MNX1). ADEX tumours displayed upregulation of genes that regulate networks involved in KRAS activation, exocrine (NR5A2 and RBPJL), and endocrine differentiation (NEUROD1 and NKX2-2). Immunogenic tumours contained upregulated immune networks including pathways involved in acquired immune suppression. These data infer differences in the molecular evolution of pancreatic cancer subtypes and identify opportunities for therapeutic development. PMID:26909576

  5. Genome-wide association analysis identifies three new breast cancer susceptibility loci

    DEFF Research Database (Denmark)

    Ghoussaini, Maya; Fletcher, Olivia; Michailidou, Kyriaki;

    2012-01-01

    Breast cancer is the most common cancer among women. To date, 22 common breast cancer susceptibility loci have been identified accounting for ∼8% of the heritability of the disease. We attempted to replicate 72 promising associations from two independent genome-wide association studies (GWAS) in ...

  6. Functional genomics identifies therapeutic targets for MYC-driven cancer

    OpenAIRE

    Toyoshima, Masafumi; Howie, Heather L; Imakura, Maki; Walsh, Ryan M.; Annis, James E.; Chang, Aaron N; Frazier, Jason; Chau, B. Nelson; Loboda, Andrey; Linsley, Peter S; Cleary, Michele A.; Park, Julie R.; Grandori, Carla

    2012-01-01

    MYC oncogene family members are broadly implicated in human cancers, yet are considered “undruggable” as they encode transcription factors. MYC also carries out essential functions in proliferative tissues, suggesting that its inhibition could cause severe side effects. We elected to identify synthetic lethal interactions with c-MYC overexpression (MYC-SL) in a collection of ∼3,300 druggable genes, using high-throughput siRNA screening. Of 49 genes selected for follow-up, 48 were confirmed by...

  7. Seven prostate cancer susceptibility loci identified by a multi-stage genome-wide association study

    DEFF Research Database (Denmark)

    Kote-Jarai, Zsofia; Olama, Ali Amin Al; Giles, Graham G;

    2011-01-01

    Prostate cancer (PrCa) is the most frequently diagnosed male cancer in developed countries. We conducted a multi-stage genome-wide association study for PrCa and previously reported the results of the first two stages, which identified 16 PrCa susceptibility loci. We report here the results of st...

  8. Whole-genome sequencing identifies genomic heterogeneity at a nucleotide and chromosomal level in bladder cancer

    Science.gov (United States)

    Morrison, Carl D.; Liu, Pengyuan; Woloszynska-Read, Anna; Zhang, Jianmin; Luo, Wei; Qin, Maochun; Bshara, Wiam; Conroy, Jeffrey M.; Sabatini, Linda; Vedell, Peter; Xiong, Donghai; Liu, Song; Wang, Jianmin; Shen, He; Li, Yinwei; Omilian, Angela R.; Hill, Annette; Head, Karen; Guru, Khurshid; Kunnev, Dimiter; Leach, Robert; Eng, Kevin H.; Darlak, Christopher; Hoeflich, Christopher; Veeranki, Srividya; Glenn, Sean; You, Ming; Pruitt, Steven C.; Johnson, Candace S.; Trump, Donald L.

    2014-01-01

    Using complete genome analysis, we sequenced five bladder tumors accrued from patients with muscle-invasive transitional cell carcinoma of the urinary bladder (TCC-UB) and identified a spectrum of genomic aberrations. In three tumors, complex genotype changes were noted. All three had tumor protein p53 mutations and a relatively large number of single-nucleotide variants (SNVs; average of 11.2 per megabase), structural variants (SVs; average of 46), or both. This group was best characterized by chromothripsis and the presence of subclonal populations of neoplastic cells or intratumoral mutational heterogeneity. Here, we provide evidence that the process of chromothripsis in TCC-UB is mediated by nonhomologous end-joining using kilobase, rather than megabase, fragments of DNA, which we refer to as “stitchers,” to repair this process. We postulate that a potential unifying theme among tumors with the more complex genotype group is a defective replication–licensing complex. A second group (two bladder tumors) had no chromothripsis, and a simpler genotype, WT tumor protein p53, had relatively few SNVs (average of 5.9 per megabase) and only a single SV. There was no evidence of a subclonal population of neoplastic cells. In this group, we used a preclinical model of bladder carcinoma cell lines to study a unique SV (translocation and amplification) of the gene glutamate receptor ionotropic N-methyl D-aspertate as a potential new therapeutic target in bladder cancer. PMID:24469795

  9. MuSiC: Identifying mutational significance in cancer genomes

    OpenAIRE

    Dees, Nathan D.; Zhang, Qunyuan; Kandoth, Cyriac; Wendl, Michael C.; Schierding, William; Koboldt, Daniel C.; Mooney, Thomas B.; Matthew B Callaway; Dooling, David; Elaine R Mardis; Wilson, Richard K.; Ding, Li

    2012-01-01

    Massively parallel sequencing technology and the associated rapidly decreasing sequencing costs have enabled systemic analyses of somatic mutations in large cohorts of cancer cases. Here we introduce a comprehensive mutational analysis pipeline that uses standardized sequence-based inputs along with multiple types of clinical data to establish correlations among mutation sites, affected genes and pathways, and to ultimately separate the commonly abundant passenger mutations from the truly sig...

  10. A genome-wide association study identifies susceptibility loci for ovarian cancer at 2q31 and 8q24

    DEFF Research Database (Denmark)

    Goode, Ellen L; Chenevix-Trench, Georgia; Song, Honglin;

    2010-01-01

    Ovarian cancer accounts for more deaths than all other gynecological cancers combined. To identify common low-penetrance ovarian cancer susceptibility genes, we conducted a genome-wide association study of 507,094 SNPs in 1,768 individuals with ovarian cancer (cases) and 2,354 controls, with foll...

  11. Identifying common prognostic factors in genomic cancer studies: A novel index for censored outcomes

    Directory of Open Access Journals (Sweden)

    Moreau Thierry

    2010-03-01

    Full Text Available Abstract Background With the growing number of public repositories for high-throughput genomic data, it is of great interest to combine the results produced by independent research groups. Such a combination allows the identification of common genomic factors across multiple cancer types and provides new insights into the disease process. In the framework of the proportional hazards model, classical procedures, which consist of ranking genes according to the estimated hazard ratio or the p-value obtained from a test statistic of no association between survival and gene expression level, are not suitable for gene selection across multiple genomic datasets with different sample sizes. We propose a novel index for identifying genes with a common effect across heterogeneous genomic studies designed to remain stable whatever the sample size and which has a straightforward interpretation in terms of the percentage of separability between patients according to their survival times and gene expression measurements. Results The simulations results show that the proposed index is not substantially affected by the sample size of the study and the censoring. They also show that its separability performance is higher than indices of predictive accuracy relying on the likelihood function. A simulated example illustrates the good operating characteristics of our index. In addition, we demonstrate that it is linked to the score statistic and possesses a biologically relevant interpretation. The practical use of the index is illustrated for identifying genes with common effects across eight independent genomic cancer studies of different sample sizes. The meta-selection allows the identification of four genes (ESPL1, KIF4A, HJURP, LRIG1 that are biologically relevant to the carcinogenesis process and have a prognostic impact on survival outcome across various solid tumors. Conclusion The proposed index is a promising tool for identifying factors having a

  12. Five endometrial cancer risk loci identified through genome-wide association analysis.

    Science.gov (United States)

    Cheng, Timothy H T; Thompson, Deborah J; O'Mara, Tracy A; Painter, Jodie N; Glubb, Dylan M; Flach, Susanne; Lewis, Annabelle; French, Juliet D; Freeman-Mills, Luke; Church, David; Gorman, Maggie; Martin, Lynn; Hodgson, Shirley; Webb, Penelope M; Attia, John; Holliday, Elizabeth G; McEvoy, Mark; Scott, Rodney J; Henders, Anjali K; Martin, Nicholas G; Montgomery, Grant W; Nyholt, Dale R; Ahmed, Shahana; Healey, Catherine S; Shah, Mitul; Dennis, Joe; Fasching, Peter A; Beckmann, Matthias W; Hein, Alexander; Ekici, Arif B; Hall, Per; Czene, Kamila; Darabi, Hatef; Li, Jingmei; Dörk, Thilo; Dürst, Matthias; Hillemanns, Peter; Runnebaum, Ingo; Amant, Frederic; Schrauwen, Stefanie; Zhao, Hui; Lambrechts, Diether; Depreeuw, Jeroen; Dowdy, Sean C; Goode, Ellen L; Fridley, Brooke L; Winham, Stacey J; Njølstad, Tormund S; Salvesen, Helga B; Trovik, Jone; Werner, Henrica M J; Ashton, Katie; Otton, Geoffrey; Proietto, Tony; Liu, Tao; Mints, Miriam; Tham, Emma; Li, Mulin Jun; Yip, Shun H; Wang, Junwen; Bolla, Manjeet K; Michailidou, Kyriaki; Wang, Qin; Tyrer, Jonathan P; Dunlop, Malcolm; Houlston, Richard; Palles, Claire; Hopper, John L; Peto, Julian; Swerdlow, Anthony J; Burwinkel, Barbara; Brenner, Hermann; Meindl, Alfons; Brauch, Hiltrud; Lindblom, Annika; Chang-Claude, Jenny; Couch, Fergus J; Giles, Graham G; Kristensen, Vessela N; Cox, Angela; Cunningham, Julie M; Pharoah, Paul D P; Dunning, Alison M; Edwards, Stacey L; Easton, Douglas F; Tomlinson, Ian; Spurdle, Amanda B

    2016-06-01

    We conducted a meta-analysis of three endometrial cancer genome-wide association studies (GWAS) and two follow-up phases totaling 7,737 endometrial cancer cases and 37,144 controls of European ancestry. Genome-wide imputation and meta-analysis identified five new risk loci of genome-wide significance at likely regulatory regions on chromosomes 13q22.1 (rs11841589, near KLF5), 6q22.31 (rs13328298, in LOC643623 and near HEY2 and NCOA7), 8q24.21 (rs4733613, telomeric to MYC), 15q15.1 (rs937213, in EIF2AK4, near BMF) and 14q32.33 (rs2498796, in AKT1, near SIVA1). We also found a second independent 8q24.21 signal (rs17232730). Functional studies of the 13q22.1 locus showed that rs9600103 (pairwise r(2) = 0.98 with rs11841589) is located in a region of active chromatin that interacts with the KLF5 promoter region. The rs9600103[T] allele that is protective in endometrial cancer suppressed gene expression in vitro, suggesting that regulation of the expression of KLF5, a gene linked to uterine development, is implicated in tumorigenesis. These findings provide enhanced insight into the genetic and biological basis of endometrial cancer. PMID:27135401

  13. Genome-wide association analysis identifies new lung cancer susceptibility loci in never-smoking women in Asia.

    NARCIS (Netherlands)

    Lan, Q.; Hsiung, C.A.; Matsuo, K.; Hong, Y.C.; Seow, A.; Wang, Z.; Hosgood, H.D.; Chen, K.; Wang, J.C.; Chatterjee, N.; Hu, W.; Wong, M.P.; Zheng, W.; Caporaso, N.; Park, J.Y.; Chen, C.J.; Kim, Y.H.; Kim, Y.T.; Landi, M.T.; Shen, H.; Lawrence, C.; Burdett, L.; Yeager, M.; Yuenger, J.; Jacobs, K.B.; Chang, I.S.; Mitsudomi, T.; Kim, H.N.; Chang, G.C.; Bassig, B.A.; Tucker, M.; Wei, F.; Yin, Y.; Wu, C.; An, S.J.; Qian, B.; Lee, V.H.; Lu, D.; Liu, J.; Jeon, H.S.; Hsiao, C.F.; Sung, J.S.; Kim, J.H.; Gao, Y.T.; Tsai, Y.H.; Jung, Y.J.; Guo, H.; Hu, Z.; Hutchinson, A.; Wang, W.C.; Klein, R.; Chung, C.C.; Oh, I.J.; Chen, K.Y.; Berndt, S.I.; He, X.; Wu, W.; Chang, J.; Zhang, X.C.; Huang, M.S.; Zheng, H.; Wang, J.; Zhao, X.; Li, Y.; Choi, J.E.; Su, W.C.; Park, K.H.; Sung, S.W.; Shu, X.O.; Chen, Y.M.; Liu, L.; Kang, C.H.; Hu, L.; Chen, C.H.; Pao, W.; Kim, Y.C.; Yang, T.Y.; Xu, J.; Guan, P.; Tan, W.; Su, J.; Wang, C.L.; Li, H.; Sihoe, A.D.; Zhao, Z.; Chen, Y.; Choi, Y.Y.; Hung, J.Y.; Kim, J.S.; Yoon, H.I.; Cai, Q.; Lin, C.C.; Park, I.K.; Xu, P.; Dong, J.; Kim, C.; He, Q; Perng, R.P.; Kohno, T.; Kweon, S.S.; Chen, C.Y.; Vermeulen, R.; Wu, J.; Lim, W.Y.; Chen, K.C.; Chow, W.H.; Ji, B.T.; Chan, J.K.; Chu, M.; Li, Y.J.; Yokota, J.; Li, J.; Chen, H.; Xiang, Y.B.; Yu, C.J.; Kunitoh, H.; Wu, G.; Jin, L.; Lo, Y.L.; Shiraishi, K.; Chen, Y.H.; Lin, H.C.; Wu, T.; WU, Y.; Yang, P.C.; Zhou, B.; Shin, M.H.; Fraumeni, J.F.; Lin, D.; Chanock, S.J.; Rothman, N.

    2012-01-01

    To identify common genetic variants that contribute to lung cancer susceptibility, we conducted a multistage genome-wide association study of lung cancer in Asian women who never smoked. We scanned 5,510 never-smoking female lung cancer cases and 4,544 controls drawn from 14 studies from mainland Ch

  14. Genome-wide association studies identify four ER negative–specific breast cancer risk loci

    OpenAIRE

    Garcia-Closas, Montserrat; Couch, Fergus J.; Lindstrom, Sara; Michailidou, Kyriaki; Schmidt, Marjanka K.; Brook, Mark N.; Orr, Nick; Rhie, Suhn Kyong; Riboli, Elio; Feigelson, Heather s; Le Marchand, Loic; Buring, Julie E.; Eccles, Diana; Miron, Penelope; Fasching, Peter A.

    2013-01-01

    Estrogen receptor (ER)-negative tumors represent 20–30% of all breast cancers, with a higher proportion occurring in younger women and women of African ancestry1. The etiology2 and clinical behavior3 of ER-negative tumors are different from those of tumors expressing ER (ER positive), including differences in genetic predisposition4. To identify susceptibility loci specific to ER-negative disease, we combined in a meta-analysis 3 genome-wide association studies of 4,193 ER-negative breast can...

  15. Identifying anti-growth factors for human cancer cell lines through genome-scale metabolic modeling

    DEFF Research Database (Denmark)

    Ghaffari, Pouyan; Mardinoglu, Adil; Asplund, Anna;

    2015-01-01

    Human cancer cell lines are used as important model systems to study molecular mechanisms associated with tumor growth, hereunder how genomic and biological heterogeneity found in primary tumors affect cellular phenotypes. We reconstructed Genome scale metabolic models (GEMs) for eleven cell lines...... 85 antimetabolites that can inhibit growth of, or even kill, any of the cell lines, while at the same time not being toxic for 83 different healthy human cell types. 60 of these antimetabolites were found to inhibit growth in all cell lines. Finally, we experimentally validated one of the predicted...... antimetabolites using two cell lines with different phenotypic origins, and found that it is effective in inhibiting the growth of these cell lines. Using immunohistochemistry, we also showed high or moderate expression levels of proteins targeted by the validated antimetabolite. Identified anti-growth factors...

  16. Whole-genome sequencing identifies genomic heterogeneity at a nucleotide and chromosomal level in bladder cancer

    OpenAIRE

    Morrison, Carl D.; Liu, Pengyuan; Woloszynska-Read, Anna; Zhang, Jianmin; Luo, Wei; Qin, Maochun; Bshara, Wiam; Conroy, Jeffrey M; Sabatini, Linda; Vedell, Peter; Xiong, Donghai; Liu, Song; Wang, Jianmin; Shen, He; Li, Yinwei

    2014-01-01

    Genetic alterations are frequently observed in bladder cancer. In this study, we demonstrate that bladder tumors can be classified into two different types based on the spectrum of genetic diversity they confer. In one class of tumors, we observed tumor protein p53 mutations and a large number of single-nucleotide and structural variants. Another characteristic of this group was chromosome shattering, known as chromothripsis, and mutational heterogeneity. The other two bladder tumors did not ...

  17. Integrative genome analyses identify key somatic driver mutations of small cell lung cancer

    Science.gov (United States)

    Peifer, Martin; Fernández-Cuesta, Lynnette; Sos, Martin L; George, Julie; Seidel, Danila; Kasper, Lawryn H; Plenker, Dennis; Leenders, Frauke; Sun, Ruping; Zander, Thomas; Menon, Roopika; Koker, Mirjam; Dahmen, Ilona; Müller, Christian; Di Cerbo, Vincenzo; Schildhaus, Hans-Ulrich; Altmüller, Janine; Baessmann, Ingelore; Becker, Christian; de Wilde, Bram; Vandesompele, Jo; Böhm, Diana; Ansén, Sascha; Gabler, Franziska; Wilkening, Ines; Heynck, Stefanie; Heuckmann, Johannes M; Lu, Xin; Carter, Scott L; Cibulskis, Kristian; Banerji, Shantanu; Getz, Gad; Park, Kwon-Sik; Rauh, Daniel; Grütter, Christian; Fischer, Matthias; Pasqualucci, Laura; Wright, Gavin; Wainer, Zoe; Russell, Prudence; Petersen, Iver; Chen, Yuan; Stoelben, Erich; Ludwig, Corinna; Schnabel, Philipp; Hoffmann, Hans; Muley, Thomas; Brockmann, Michael; Engel-Riedel, Walburga; Muscarella, Lucia A; Fazio, Vito M; Groen, Harry; Timens, Wim; Sietsma, Hannie; Thunnissen, Erik; Smit, Egbert; Heideman, Daniëlle AM; Snijders, Peter JF; Cappuzzo, Federico; Ligorio, Claudia; Damiani, Stefania; Field, John; Solberg, Steinar; Brustugun, Odd Terje; Lund-Iversen, Marius; Sänger, Jörg; Clement, Joachim H; Soltermann, Alex; Moch, Holger; Weder, Walter; Solomon, Benjamin; Soria, Jean-Charles; Validire, Pierre; Besse, Benjamin; Brambilla, Elisabeth; Brambilla, Christian; Lantuejoul, Sylvie; Lorimier, Philippe; Schneider, Peter M; Hallek, Michael; Pao, William; Meyerson, Matthew; Sage, Julien; Shendure, Jay; Schneider, Robert; Büttner, Reinhard; Wolf, Jürgen; Nürnberg, Peter; Perner, Sven; Heukamp, Lukas C; Brindle, Paul K; Haas, Stefan; Thomas, Roman K

    2016-01-01

    Small-cell lung cancer (SCLC) is an aggressive lung tumor subtype with poor survival1–3. We sequenced 29 SCLC exomes, two genomes and 15 transcriptomes and found an extremely high mutation rate of 7.4±1 protein-changing mutations per million basepairs. Therefore, we conducted integrated analyses of the various data sets to identify pathogenetically relevant mutated genes. In all cases we found evidence for inactivation of TP53 and RB1 and identified recurrent mutations in histone-modifying genes, CREBBP, EP300, and MLL. Furthermore, we observed mutations in PTEN, in SLIT2, and EPHA7, as well as focal amplifications of the FGFR1 tyrosine kinase gene. Finally, we detected many of the alterations found in humans in SCLC tumors from p53/Rb1-deficient mice4. Our study implicates histone modification as a major feature of SCLC, reveals potentially therapeutically tractable genome alterations, and provides a generalizable framework for identification of biologically relevant genes in the context of high mutational background. PMID:22941188

  18. Genomic profiling identifies TITF1 as a lineage-specific oncogene amplified in lung cancer

    OpenAIRE

    Kwei, KA; Kim, YH; Girard, L; Kao, J; Pacyna-Gengelbach, M; Salari, K; Lee, J.; Choi, Y-L; Sato, M.; Wang, P.; Hernandez-Boussard, T; Gazdar, AF; Petersen, I. (Inga); Minna, JD; Pollack, JR

    2008-01-01

    Lung cancer is a leading cause of cancer death, where the amplification of oncogenes contributes to tumorigenesis. Genomic profiling of 128 lung cancer cell lines and tumors revealed frequent focal DNA amplification at cytoband 14q13.3, a locus not amplified in other tumor types. The smallest region of recurrent amplification spanned the homeobox transcription factor TITF1 (thyroid transcription factor 1; also called NKX2-1), previously linked to normal lung development and function. When amp...

  19. Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer

    DEFF Research Database (Denmark)

    Michailidou, Kyriaki; Beesley, Jonathan; Lindstrom, Sara;

    2015-01-01

    Genome-wide association studies (GWAS) and large-scale replication studies have identified common variants in 79 loci associated with breast cancer, explaining ∼14% of the familial risk of the disease. To identify new susceptibility loci, we performed a meta-analysis of 11 GWAS, comprising 15,748...

  20. Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer

    NARCIS (Netherlands)

    Peifer, Martin; Fernandez-Cuesta, Lynnette; Sos, Martin L.; George, Julie; Seidel, Danila; Kasper, Lawryn H.; Plenker, Dennis; Leenders, Frauke; Sun, Ruping; Zander, Thomas; Menon, Roopika; Koker, Mirjam; Dahmen, Ilona; Mueller, Christian; Di Cerbo, Vincenzo; Schildhaus, Hans-Ulrich; Altmueller, Janine; Baessmann, Ingelore; Becker, Christian; de Wilde, Bram; Vandesompele, Jo; Boehm, Diana; Ansen, Sascha; Gabler, Franziska; Wilkening, Ines; Heynck, Stefanie; Heuckmann, Johannes M.; Lu, Xin; Carter, Scott L.; Cibulskis, Kristian; Banerji, Shantanu; Getz, Gad; Park, Kwon-Sik; Rauh, Daniel; Gruetter, Christian; Fischer, Matthias; Pasqualucci, Laura; Wright, Gavin; Wainer, Zoe; Russell, Prudence; Petersen, Iver; Chen, Yuan; Stoelben, Erich; Ludwig, Corinna; Schnabel, Philipp; Hoffmann, Hans; Muley, Thomas; Brockmann, Michael; Engel-Riedel, Walburga; Muscarella, Lucia A.; Fazio, Vito M.; Groen, Harry; Timens, Wim; Sietsma, Hannie; Thunnissen, Erik; Smit, Egbert; Heideman, Danielle A. M.; Snijders, Peter J. F.; Cappuzzo, Federico; Ligorio, Claudia; Damiani, Stefania; Field, John; Solberg, Steinar; Brustugun, Odd Terje; Lund-Iversen, Marius; Saenger, Joerg; Clement, Joachim H.; Soltermann, Alex; Moch, Holger; Weder, Walter; Solomon, Benjamin; Soria, Jean-Charles; Validire, Pierre; Besse, Benjamin; Brambilla, Elisabeth; Brambilla, Christian; Lantuejoul, Sylvie; Lorimier, Philippe; Schneider, Peter M.; Hallek, Michael; Pao, William; Meyerson, Matthew; Sage, Julien; Shendure, Jay; Schneider, Robert; Buettner, Reinhard; Wolf, Juergen; Nuernberg, Peter; Perner, Sven; Heukamp, Lukas C.; Brindle, Paul K.; Haas, Stefan; Thomas, Roman K.

    2012-01-01

    Small-cell lung cancer (SCLC) is an aggressive lung tumor subtype with poor prognosis(1-3). We sequenced 29 SCLC exomes, 2 genomes and 15 transcriptomes and found an extremely high mutation rate of 7.4 +/- 1 protein-changing mutations per million base pairs. Therefore, we conducted integrated analys

  1. Genome-wide association analysis identifies new lung cancer susceptibility loci in never-smoking women in Asia

    OpenAIRE

    Lan, Qing; Hsiung, Chao A.; Matsuo, Keitaro; Hong, Yun-Chul; Seow, Adeline; Wang, Zhaoming; Hosgood, H Dean; Chen, Kexin; Wang, Jiu-Cun; Chatterjee, Nilanjan; Hu, Wei; Wong, Maria Pik; Zheng, Wei; Caporaso, Neil; PARK, JAE YONG

    2012-01-01

    To identify common genetic variants that contribute to lung cancer susceptibility, we conducted a multistage genome-wide association study of lung cancer in Asian women who never smoked. We scanned 5,510 never-smoking female lung cancer cases and 4,544 controls drawn from 14 studies from mainland China, South Korea, Japan, Singapore, Taiwan, and Hong Kong. We genotyped the most promising variants (associated at P < 5 × 10-6) in an additional 1,099 cases and 2,913 controls. We identified three...

  2. Integrated Bioinformatics, Environmental Epidemiologic and Genomic Approaches to Identify Environmental and Molecular Links between Endometriosis and Breast Cancer

    OpenAIRE

    Deodutta Roy; Marisa Morgan; Changwon Yoo; Alok Deoraj; Sandhya Roy; Vijay Kumar Yadav; Mohannad Garoub; Hamza Assaggaf; Mayur Doke

    2015-01-01

    We present a combined environmental epidemiologic, genomic, and bioinformatics approach to identify: exposure of environmental chemicals with estrogenic activity; epidemiologic association between endocrine disrupting chemical (EDC) and health effects, such as, breast cancer or endometriosis; and gene-EDC interactions and disease associations. Human exposure measurement and modeling confirmed estrogenic activity of three selected class of environmental chemicals, polychlorinated biphenyls (PC...

  3. Researchers Use a Kinome Screen to Identify New Therapeutic Targets | Office of Cancer Genomics

    Science.gov (United States)

    The tumor suppressor p53 is mutated in over 50% of head and neck squamous cell carcinomas (HNSCC), yet there are currently no available therapies to target it. CTD2 researchers at the Fred Hutchison Cancer Research Center hypothesized that HNSCC cancer cells with p53 mutations are dependent on particular kinases for survival. In a study published in Clinical Cancer Research, they sought to identify these kinases using RNAi against known kinase genes in mouse and human cell lines.

  4. Genome-wide association study of colorectal cancer identifies six new susceptibility loci

    Science.gov (United States)

    Schumacher, Fredrick R.; Schmit, Stephanie L.; Jiao, Shuo; Edlund, Christopher K.; Wang, Hansong; Zhang, Ben; Hsu, Li; Huang, Shu-Chen; Fischer, Christopher P.; Harju, John F.; Idos, Gregory E.; Lejbkowicz, Flavio; Manion, Frank J.; McDonnell, Kevin; McNeil, Caroline E.; Melas, Marilena; Rennert, Hedy S.; Shi, Wei; Thomas, Duncan C.; Van Den Berg, David J.; Hutter, Carolyn M.; Aragaki, Aaron K.; Butterbach, Katja; Caan, Bette J.; Carlson, Christopher S.; Chanock, Stephen J.; Curtis, Keith R.; Fuchs, Charles S.; Gala, Manish; Giovannucci, Edward L.; Gogarten, Stephanie M.; Hayes, Richard B.; Henderson, Brian; Hunter, David J.; Jackson, Rebecca D.; Kolonel, Laurence N.; Kooperberg, Charles; Küry, Sébastien; LaCroix, Andrea; Laurie, Cathy C.; Laurie, Cecelia A.; Lemire, Mathieu; Levine, David; Ma, Jing; Makar, Karen W.; Qu, Conghui; Taverna, Darin; Ulrich, Cornelia M.; Wu, Kana; Kono, Suminori; West, Dee W.; Berndt, Sonja I.; Bezieau, Stéphane; Brenner, Hermann; Campbell, Peter T.; Chan, Andrew T.; Chang-Claude, Jenny; Coetzee, Gerhard A.; Conti, David V.; Duggan, David; Figueiredo, Jane C.; Fortini, Barbara K.; Gallinger, Steven J.; Gauderman, W. James; Giles, Graham; Green, Roger; Haile, Robert; Harrison, Tabitha A.; Hoffmeister, Michael; Hopper, John L.; Hudson, Thomas J.; Jacobs, Eric; Iwasaki, Motoki; Jee, Sun Ha; Jenkins, Mark; Jia, Wei-Hua; Joshi, Amit; Li, Li; Lindor, Noralene M.; Matsuo, Keitaro; Moreno, Victor; Mukherjee, Bhramar; Newcomb, Polly A.; Potter, John D.; Raskin, Leon; Rennert, Gad; Rosse, Stephanie; Severi, Gianluca; Schoen, Robert E.; Seminara, Daniela; Shu, Xiao-Ou; Slattery, Martha L.; Tsugane, Shoichiro; White, Emily; Xiang, Yong-Bing; Zanke, Brent W.; Zheng, Wei; Le Marchand, Loic; Casey, Graham; Gruber, Stephen B.; Peters, Ulrike

    2016-01-01

    Genetic susceptibility to colorectal cancer is caused by rare pathogenic mutations and common genetic variants that contribute to familial risk. Here we report the results of a two-stage association study with 18,299 cases of colorectal cancer and 19,656 controls, with follow-up of the most statistically significant genetic loci in 4,725 cases and 9,969 controls from two Asian consortia. We describe six new susceptibility loci reaching a genome-wide threshold of P<5.0E-08. These findings provide additional insight into the underlying biological mechanisms of colorectal cancer and demonstrate the scientific value of large consortia-based genetic epidemiology studies. PMID:26151821

  5. A genomics approach to identify susceptibilities of breast cancer cells to “fever-range” hyperthermia

    International Nuclear Information System (INIS)

    Preclinical and clinical studies have shown for decades that tumor cells demonstrate significantly enhanced sensitivity to “fever range” hyperthermia (increasing the intratumoral temperature to 42-45°C) than normal cells, although it is unknown why cancer cells exhibit this distinctive susceptibility. To address this issue, mammary epithelial cells and three malignant breast cancer lines were subjected to hyperthermic shock and microarray, bioinformatics, and network analysis of the global transcription changes was subsequently performed. Bioinformatics analysis differentiated the gene expression patterns that distinguish the heat shock response of normal cells from malignant breast cancer cells, revealing that the gene expression profiles of mammary epithelial cells are completely distinct from malignant breast cancer lines following this treatment. Using gene network analysis, we identified altered expression of transcripts involved in mitotic regulators, histones, and non-protein coding RNAs as the significant processes that differed between the hyperthermic response of mammary epithelial cells and breast cancer cells. We confirmed our data via qPCR and flow cytometric analysis to demonstrate that hyperthermia specifically disrupts the expression of key mitotic regulators and G2/M phase progression in the breast cancer cells. These data have identified molecular mechanisms by which breast cancer lines may exhibit enhanced susceptibility to hyperthermic shock

  6. A genome-wide "pleiotropy scan" does not identify new susceptibility loci for estrogen receptor negative breast cancer.

    Directory of Open Access Journals (Sweden)

    Daniele Campa

    Full Text Available Approximately 15-30% of all breast cancer tumors are estrogen receptor negative (ER-. Compared with ER-positive (ER+ disease they have an earlier age at onset and worse prognosis. Despite the vast number of risk variants identified for numerous cancer types, only seven loci have been unambiguously identified for ER-negative breast cancer. With the aim of identifying new susceptibility SNPs for this disease we performed a pleiotropic genome-wide association study (GWAS. We selected 3079 SNPs associated with a human complex trait or disease at genome-wide significance level (P<5 × 10(-8 to perform a secondary analysis of an ER-negative GWAS from the National Cancer Institute's Breast and Prostate Cancer Cohort Consortium (BPC3, including 1998 cases and 2305 controls from prospective studies. We then tested the top ten associations (i.e. with the lowest P-values using three additional populations with a total sample size of 3509 ER+ cases, 2543 ER- cases and 7031 healthy controls. None of the 3079 selected variants in the BPC3 ER-GWAS were significant at the adjusted threshold. 186 variants were associated with ER- breast cancer risk at a conventional threshold of P<0.05, with P-values ranging from 0.049 to 2.3 × 10(-4. None of the variants reached statistical significance in the replication phase. In conclusion, this study did not identify any novel susceptibility loci for ER-breast cancer using a "pleiotropic approach".

  7. Regularized multivariate regression for identifying master predictors with application to integrative genomics study of breast cancer

    OpenAIRE

    PENG, JIE; Zhu, Ji; Bergamaschi, Anna; Han, Wonshik; Noh, Dong-Young; Pollack, Jonathan R; Wang, Pei

    2010-01-01

    In this paper, we propose a new method remMap -- REgularized Multivariate regression for identifying MAster Predictors -- for fitting multivariate response regression models under the high-dimension-low-sample-size setting. remMap is motivated by investigating the regulatory relationships among different biological molecules based on multiple types of high dimensional genomic data. Particularly, we are interested in studying the influence of DNA copy number alterations on RNA transcript level...

  8. Structural analysis of the genome of breast cancer cell line ZR-75-30 identifies twelve expressed fusion genes

    Directory of Open Access Journals (Sweden)

    Schulte Ina

    2012-12-01

    Full Text Available Abstract Background It has recently emerged that common epithelial cancers such as breast cancers have fusion genes like those in leukaemias. In a representative breast cancer cell line, ZR-75-30, we searched for fusion genes, by analysing genome rearrangements. Results We first analysed rearrangements of the ZR-75-30 genome, to around 10kb resolution, by molecular cytogenetic approaches, combining array painting and array CGH. We then compared this map with genomic junctions determined by paired-end sequencing. Most of the breakpoints found by array painting and array CGH were identified in the paired end sequencing—55% of the unamplified breakpoints and 97% of the amplified breakpoints (as these are represented by more sequence reads. From this analysis we identified 9 expressed fusion genes: APPBP2-PHF20L1, BCAS3-HOXB9, COL14A1-SKAP1, TAOK1-PCGF2, TIAM1-NRIP1, TIMM23-ARHGAP32, TRPS1-LASP1, USP32-CCDC49 and ZMYM4-OPRD1. We also determined the genomic junctions of a further three expressed fusion genes that had been described by others, BCAS3-ERBB2, DDX5-DEPDC6/DEPTOR and PLEC1-ENPP2. Of this total of 12 expressed fusion genes, 9 were in the coamplification. Due to the sensitivity of the technologies used, we estimate these 12 fusion genes to be around two-thirds of the true total. Many of the fusions seem likely to be driver mutations. For example, PHF20L1, BCAS3, TAOK1, PCGF2, and TRPS1 are fused in other breast cancers. HOXB9 and PHF20L1 are members of gene families that are fused in other neoplasms. Several of the other genes are relevant to cancer—in addition to ERBB2, SKAP1 is an adaptor for Src, DEPTOR regulates the mTOR pathway and NRIP1 is an estrogen-receptor coregulator. Conclusions This is the first structural analysis of a breast cancer genome that combines classical molecular cytogenetic approaches with sequencing. Paired-end sequencing was able to detect almost all breakpoints, where there was adequate read depth. It supports

  9. Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer

    Science.gov (United States)

    Michailidou, Kyriaki; Beesley, Jonathan; Lindstrom, Sara; Canisius, Sander; Dennis, Joe; Lush, Michael; Maranian, Mel J; Bolla, Manjeet K; Wang, Qin; Shah, Mitul; Perkins, Barbara J; Czene, Kamila; Eriksson, Mikael; Darabi, Hatef; Brand, Judith S; Bojesen, Stig E; Nordestgaard, Børge G; Flyger, Henrik; Nielsen, Sune F; Rahman, Nazneen; Turnbull, Clare; Fletcher, Olivia; Peto, Julian; Gibson, Lorna; dos-Santos-Silva, Isabel; Chang-Claude, Jenny; Flesch-Janys, Dieter; Rudolph, Anja; Eilber, Ursula; Behrens, Sabine; Nevanlinna, Heli; Muranen, Taru A; Aittomäki, Kristiina; Blomqvist, Carl; Khan, Sofia; Aaltonen, Kirsimari; Ahsan, Habibul; Kibriya, Muhammad G; Whittemore, Alice S; John, Esther M; Malone, Kathleen E; Gammon, Marilie D; Santella, Regina M; Ursin, Giske; Makalic, Enes; Schmidt, Daniel F; Casey, Graham; Hunter, David J; Gapstur, Susan M; Gaudet, Mia M; Diver, W Ryan; Haiman, Christopher A; Schumacher, Fredrick; Henderson, Brian E; Le Marchand, Loic; Berg, Christine D; Chanock, Stephen; Figueroa, Jonine; Hoover, Robert N; Lambrechts, Diether; Neven, Patrick; Wildiers, Hans; van Limbergen, Erik; Schmidt, Marjanka K; Broeks, Annegien; Verhoef, Senno; Cornelissen, Sten; Couch, Fergus J; Olson, Janet E; Hallberg, Emily; Vachon, Celine; Waisfisz, Quinten; Meijers-Heijboer, Hanne; Adank, Muriel A; van der Luijt, Rob B; Li, Jingmei; Liu, Jianjun; Humphreys, Keith; Kang, Daehee; Choi, Ji-Yeob; Park, Sue K; Yoo, Keun-Young; Matsuo, Keitaro; Ito, Hidemi; Iwata, Hiroji; Tajima, Kazuo; Guénel, Pascal; Truong, Thérèse; Mulot, Claire; Sanchez, Marie; Burwinkel, Barbara; Marme, Frederik; Surowy, Harald; Sohn, Christof; Wu, Anna H; Tseng, Chiu-chen; Van Den Berg, David; Stram, Daniel O; González-Neira, Anna; Benitez, Javier; Zamora, M Pilar; Perez, Jose Ignacio Arias; Shu, Xiao-Ou; Lu, Wei; Gao, Yu-Tang; Cai, Hui; Cox, Angela; Cross, Simon S; Reed, Malcolm WR; Andrulis, Irene L; Knight, Julia A; Glendon, Gord; Mulligan, Anna Marie; Sawyer, Elinor J; Tomlinson, Ian; Kerin, Michael J; Miller, Nicola; Lindblom, Annika; Margolin, Sara; Teo, Soo Hwang; Yip, Cheng Har; Taib, Nur Aishah Mohd; TAN, Gie-Hooi; Hooning, Maartje J; Hollestelle, Antoinette; Martens, John WM; Collée, J Margriet; Blot, William; Signorello, Lisa B; Cai, Qiuyin; Hopper, John L; Southey, Melissa C; Tsimiklis, Helen; Apicella, Carmel; Shen, Chen-Yang; Hsiung, Chia-Ni; Wu, Pei-Ei; Hou, Ming-Feng; Kristensen, Vessela N; Nord, Silje; Alnaes, Grethe I Grenaker; Giles, Graham G; Milne, Roger L; McLean, Catriona; Canzian, Federico; Trichopoulos, Dmitrios; Peeters, Petra; Lund, Eiliv; Sund, Malin; Khaw, Kay-Tee; Gunter, Marc J; Palli, Domenico; Mortensen, Lotte Maxild; Dossus, Laure; Huerta, Jose-Maria; Meindl, Alfons; Schmutzler, Rita K; Sutter, Christian; Yang, Rongxi; Muir, Kenneth; Lophatananon, Artitaya; Stewart-Brown, Sarah; Siriwanarangsan, Pornthep; Hartman, Mikael; Miao, Hui; Chia, Kee Seng; Chan, Ching Wan; Fasching, Peter A; Hein, Alexander; Beckmann, Matthias W; Haeberle, Lothar; Brenner, Hermann; Dieffenbach, Aida Karina; Arndt, Volker; Stegmaier, Christa; Ashworth, Alan; Orr, Nick; Schoemaker, Minouk J; Swerdlow, Anthony J; Brinton, Louise; Garcia-Closas, Montserrat; Zheng, Wei; Halverson, Sandra L; Shrubsole, Martha; Long, Jirong; Goldberg, Mark S; Labrèche, France; Dumont, Martine; Winqvist, Robert; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Grip, Mervi; Brauch, Hiltrud; Hamann, Ute; Brüning, Thomas; Radice, Paolo; Peterlongo, Paolo; Manoukian, Siranoush; Bernard, Loris; Bogdanova, Natalia V; Dörk, Thilo; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M; Devilee, Peter; Tollenaar, Robert AEM; Seynaeve, Caroline; Van Asperen, Christi J; Jakubowska, Anna; Lubinski, Jan; Jaworska, Katarzyna; Huzarski, Tomasz; Sangrajrang, Suleeporn; Gaborieau, Valerie; Brennan, Paul; McKay, James; Slager, Susan; Toland, Amanda E; Ambrosone, Christine B; Yannoukakos, Drakoulis; Kabisch, Maria; Torres, Diana; Neuhausen, Susan L; Anton-Culver, Hoda; Luccarini, Craig; Baynes, Caroline; Ahmed, Shahana; Healey, Catherine S; Tessier, Daniel C; Vincent, Daniel; Bacot, Francois; Pita, Guillermo; Alonso, M Rosario; Álvarez, Nuria; Herrero, Daniel; Simard, Jacques; Pharoah, Paul PDP; Kraft, Peter; Dunning, Alison M; Chenevix-Trench, Georgia; Hall, Per; Easton, Douglas F

    2015-01-01

    Genome wide association studies (GWAS) and large scale replication studies have identified common variants in 79 loci associated with breast cancer, explaining ~14% of the familial risk of the disease. To identify new susceptibility loci, we performed a meta-analysis of 11 GWAS comprising of 15,748 breast cancer cases and 18,084 controls, and 46,785 cases and 42,892 controls from 41 studies genotyped on a 200K custom array (iCOGS). Analyses were restricted to women of European ancestry. Genotypes for more than 11M SNPs were generated by imputation using the 1000 Genomes Project reference panel. We identified 15 novel loci associated with breast cancer at P<5×10−8. Combining association analysis with ChIP-Seq data in mammary cell lines and ChIA-PET chromatin interaction data in ENCODE, we identified likely target genes in two regions: SETBP1 on 18q12.3 and RNF115 and PDZK1 on 1q21.1. One association appears to be driven by an amino-acid substitution in EXO1. PMID:25751625

  10. Genome-wide analysis identifies novel loci associated with ovarian cancer outcomes: findings from the Ovarian Cancer Association Consortium

    Science.gov (United States)

    Johnatty, Sharon E.; Tyrer, Jonathan P.; Kar, Siddhartha; Beesley, Jonathan; Lu, Yi; Gao, Bo; Fasching, Peter A.; Hein, Alexander; Ekici, Arif B.; Beckmann, Matthias W.; Lambrechts, Diether; Nieuwenhuysen, Els Van; Vergote, Ignace; Lambrechts, Sandrina; Rossing, Mary Anne; Doherty, Jennifer A.; Chang-Claude, Jenny; Modugno, Francesmary; Ness, Roberta B.; Moysich, Kirsten B.; Levine, Douglas A.; Kiemeney, Lambertus A.; Massuger, Leon F.A.G.; Gronwald, Jacek; Lubiński, Jan; Jakubowska, Anna; Cybulski, Cezary; Brinton, Louise; Lissowska, Jolanta; Wentzensen, Nicolas; Song, Honglin; Rhenius, Valerie; Campbell, Ian; Eccles, Diana; Sieh, Weiva; Whittemore, Alice S.; McGuire, Valerie; Rothstein, Joseph H.; Sutphen, Rebecca; Anton-Culver, Hoda; Ziogas, Argyrios; Gayther, Simon A.; Gentry-Maharaj, Aleksandra; Menon, Usha; Ramus, Susan J.; Pearce, Celeste L; Pike, Malcolm C; Stram, Daniel O.; Wu, Anna H.; Kupryjanczyk, Jolanta; Dansonka-Mieszkowska, Agnieszka; Rzepecka, Iwona K.; Spiewankiewicz, Beata; Goodman, Marc T.; Wilkens, Lynne R.; Carney, Michael E.; Thompson, Pamela J; Heitz, Florian; du Bois, Andreas; Schwaab, Ira; Harter, Philipp; Pisterer, Jacobus; Hillemanns, Peter; Karlan, Beth Y.; Walsh, Christine; Lester, Jenny; Orsulic, Sandra; Winham, Stacey J; Earp, Madalene; Larson, Melissa C.; Fogarty, Zachary C.; Høgdall, Estrid; Jensen, Allan; Kjaer, Susanne Kruger; Fridley, Brooke L.; Cunningham, Julie M.; Vierkant, Robert A.; Schildkraut, Joellen M.; Iversen, Edwin S.; Terry, Kathryn L.; Cramer, Daniel W.; Bandera, Elisa V.; Orlow, Irene; Pejovic, Tanja; Bean, Yukie; Høgdall, Claus; Lundvall, Lene; McNeish, Ian; Paul, James; Carty, Karen; Siddiqui, Nadeem; Glasspool, Rosalind; Sellers, Thomas; Kennedy, Catherine; Chiew, Yoke-Eng; Berchuck, Andrew; MacGregor, Stuart; deFazio, Anna; Pharoah, Paul D.P.; Goode, Ellen L.; deFazio, Anna; Webb, Penelope M.; Chenevix-Trench, Georgia

    2015-01-01

    Purpose Chemotherapy resistance remains a major challenge in the treatment of ovarian cancer. We hypothesize that germline polymorphisms might be associated with clinical outcome. Experimental Design We analyzed ~2.8 million genotyped and imputed SNPs from the iCOGS experiment for progression-free survival (PFS) and overall survival (OS) in 2,901 European epithelial ovarian cancer (EOC) patients who underwent firstline treatment of cytoreductive surgery and chemotherapy regardless of regimen, and in a subset of 1,098 patients treated with ≥4 cycles of paclitaxel and carboplatin at standard doses. We evaluated the top SNPs in 4,434 EOC patients including patients from The Cancer Genome Atlas. Additionally we conducted pathway analysis of all intragenic SNPs and tested their association with PFS and OS using gene set enrichment analysis. Results Five SNPs were significantly associated (p≤1.0x10−5) with poorer outcomes in at least one of the four analyses, three of which, rs4910232 (11p15.3), rs2549714 (16q23) and rs6674079 (1q22) were located in long non-coding RNAs (lncRNAs) RP11–179A10.1, RP11–314O13.1 and RP11–284F21.8 respectively (p≤7.1x10−6). ENCODE ChIP-seq data at 1q22 for normal ovary shows evidence of histone modification around RP11–284F21.8, and rs6674079 is perfectly correlated with another SNP within the super-enhancer MEF2D, expression levels of which were reportedly associated with prognosis in another solid tumor. YAP1- and WWTR1 (TAZ)-stimulated gene expression, and HDL-mediated lipid transport pathways were associated with PFS and OS, respectively, in the cohort who had standard chemotherapy (pGSEA≤6x10−3). Conclusion We have identified SNPs in three lncRNAs that might be important targets for novel EOC therapies. PMID:26152742

  11. Genome-wide association study identifies multiple loci associated with both mammographic density and breast cancer risk

    Science.gov (United States)

    Lindström, Sara; Thompson, Deborah J.; Paterson, Andrew D.; Li, Jingmei; Gierach, Gretchen L.; Scott, Christopher; Stone, Jennifer; Douglas, Julie A.; dos-Santos-Silva, Isabel; Fernandez-Navarro, Pablo; Verghase, Jajini; Smith, Paula; Brown, Judith; Luben, Robert; Wareham, Nicholas J.; Loos, Ruth J.F.; Heit, John A.; Pankratz, V. Shane; Norman, Aaron; Goode, Ellen L.; Cunningham, Julie M.; deAndrade, Mariza; Vierkant, Robert A.; Czene, Kamila; Fasching, Peter A.; Baglietto, Laura; Southey, Melissa C.; Giles, Graham G.; Shah, Kaanan P.; Chan, Heang-Ping; Helvie, Mark A.; Beck, Andrew H.; Knoblauch, Nicholas W.; Hazra, Aditi; Hunter, David J.; Kraft, Peter; Pollan, Marina; Figueroa, Jonine D.; Couch, Fergus J.; Hopper, John L.; Hall, Per; Easton, Douglas F.; Boyd, Norman F.; Vachon, Celine M.; Tamimi, Rulla M.

    2015-01-01

    Mammographic density reflects the amount of stromal and epithelial tissues in relation to adipose tissue in the breast and is a strong risk factor for breast cancer. Here we report the results from meta-analysis of genome-wide association studies (GWAS) of three mammographic density phenotypes: dense area, non-dense area and percent density in up to 7,916 women in stage 1 and an additional 10,379 women in stage 2. We identify genome-wide significant (P<5×10−8) loci for dense area (AREG, ESR1, ZNF365, LSP1/TNNT3, IGF1, TMEM184B, SGSM3/MKL1), non-dense area (8p11.23) and percent density (PRDM6, 8p11.23, TMEM184B). Four of these regions are known breast cancer susceptibility loci, and four additional regions were found to be associated with breast cancer (P<0.05) in a large meta-analysis. These results provide further evidence of a shared genetic basis between mammographic density and breast cancer and illustrate the power of studying intermediate quantitative phenotypes to identify putative disease susceptibility loci. PMID:25342443

  12. A target based approach identifies genomic predictors of breast cancer patient response to chemotherapy

    Directory of Open Access Journals (Sweden)

    Hallett Robin M

    2012-05-01

    Full Text Available Abstract Background The efficacy of chemotherapy regimens in breast cancer patients is variable and unpredictable. Whether individual patients either achieve long-term remission or suffer recurrence after therapy may be dictated by intrinsic properties of their breast tumors including genetic lesions and consequent aberrant transcriptional programs. Global gene expression profiling provides a powerful tool to identify such tumor-intrinsic transcriptional programs, whose analyses provide insight into the underlying biology of individual patient tumors. For example, multi-gene expression signatures have been identified that can predict the likelihood of disease reccurrence, and thus guide patient prognosis. Whereas such prognostic signatures are being introduced in the clinical setting, similar signatures that predict sensitivity or resistance to chemotherapy are not currently clinically available. Methods We used gene expression profiling to identify genes that were co-expressed with genes whose transcripts encode the protein targets of commonly used chemotherapeutic agents. Results Here, we present target based expression indices that predict breast tumor response to anthracycline and taxane based chemotherapy. Indeed, these signatures were independently predictive of chemotherapy response after adjusting for standard clinic-pathological variables such as age, grade, and estrogen receptor status in a cohort of 488 breast cancer patients treated with adriamycin and taxotere/taxol. Conclusions Importantly, our findings suggest the practicality of developing target based indices that predict response to therapeutics, as well as highlight the possibility of using gene signatures to guide the use of chemotherapy during treatment of breast cancer patients.

  13. Genome-wide association analysis identifies new lung cancer susceptibility loci in never-smoking women in Asia.

    Science.gov (United States)

    Lan, Qing; Hsiung, Chao A; Matsuo, Keitaro; Hong, Yun-Chul; Seow, Adeline; Wang, Zhaoming; Hosgood, H Dean; Chen, Kexin; Wang, Jiu-Cun; Chatterjee, Nilanjan; Hu, Wei; Wong, Maria Pik; Zheng, Wei; Caporaso, Neil; Park, Jae Yong; Chen, Chien-Jen; Kim, Yeul Hong; Kim, Young Tae; Landi, Maria Teresa; Shen, Hongbing; Lawrence, Charles; Burdett, Laurie; Yeager, Meredith; Yuenger, Jeffrey; Jacobs, Kevin B; Chang, I-Shou; Mitsudomi, Tetsuya; Kim, Hee Nam; Chang, Gee-Chen; Bassig, Bryan A; Tucker, Margaret; Wei, Fusheng; Yin, Zhihua; Wu, Chen; An, She-Juan; Qian, Biyun; Lee, Victor Ho Fun; Lu, Daru; Liu, Jianjun; Jeon, Hyo-Sung; Hsiao, Chin-Fu; Sung, Jae Sook; Kim, Jin Hee; Gao, Yu-Tang; Tsai, Ying-Huang; Jung, Yoo Jin; Guo, Huan; Hu, Zhibin; Hutchinson, Amy; Wang, Wen-Chang; Klein, Robert; Chung, Charles C; Oh, In-Jae; Chen, Kuan-Yu; Berndt, Sonja I; He, Xingzhou; Wu, Wei; Chang, Jiang; Zhang, Xu-Chao; Huang, Ming-Shyan; Zheng, Hong; Wang, Junwen; Zhao, Xueying; Li, Yuqing; Choi, Jin Eun; Su, Wu-Chou; Park, Kyong Hwa; Sung, Sook Whan; Shu, Xiao-Ou; Chen, Yuh-Min; Liu, Li; Kang, Chang Hyun; Hu, Lingmin; Chen, Chung-Hsing; Pao, William; Kim, Young-Chul; Yang, Tsung-Ying; Xu, Jun; Guan, Peng; Tan, Wen; Su, Jian; Wang, Chih-Liang; Li, Haixin; Sihoe, Alan Dart Loon; Zhao, Zhenhong; Chen, Ying; Choi, Yi Young; Hung, Jen-Yu; Kim, Jun Suk; Yoon, Ho-Il; Cai, Qiuyin; Lin, Chien-Chung; Park, In Kyu; Xu, Ping; Dong, Jing; Kim, Christopher; He, Qincheng; Perng, Reury-Perng; Kohno, Takashi; Kweon, Sun-Seog; Chen, Chih-Yi; Vermeulen, Roel; Wu, Junjie; Lim, Wei-Yen; Chen, Kun-Chieh; Chow, Wong-Ho; Ji, Bu-Tian; Chan, John K C; Chu, Minjie; Li, Yao-Jen; Yokota, Jun; Li, Jihua; Chen, Hongyan; Xiang, Yong-Bing; Yu, Chong-Jen; Kunitoh, Hideo; Wu, Guoping; Jin, Li; Lo, Yen-Li; Shiraishi, Kouya; Chen, Ying-Hsiang; Lin, Hsien-Chih; Wu, Tangchun; Wu, Yi-Long; Yang, Pan-Chyr; Zhou, Baosen; Shin, Min-Ho; Fraumeni, Joseph F; Lin, Dongxin; Chanock, Stephen J; Rothman, Nathaniel

    2012-12-01

    To identify common genetic variants that contribute to lung cancer susceptibility, we conducted a multistage genome-wide association study of lung cancer in Asian women who never smoked. We scanned 5,510 never-smoking female lung cancer cases and 4,544 controls drawn from 14 studies from mainland China, South Korea, Japan, Singapore, Taiwan and Hong Kong. We genotyped the most promising variants (associated at P < 5 × 10(-6)) in an additional 1,099 cases and 2,913 controls. We identified three new susceptibility loci at 10q25.2 (rs7086803, P = 3.54 × 10(-18)), 6q22.2 (rs9387478, P = 4.14 × 10(-10)) and 6p21.32 (rs2395185, P = 9.51 × 10(-9)). We also confirmed associations reported for loci at 5p15.33 and 3q28 and a recently reported finding at 17q24.3. We observed no evidence of association for lung cancer at 15q25 in never-smoking women in Asia, providing strong evidence that this locus is not associated with lung cancer independent of smoking. PMID:23143601

  14. Integrated Bioinformatics, Environmental Epidemiologic and Genomic Approaches to Identify Environmental and Molecular Links between Endometriosis and Breast Cancer

    Directory of Open Access Journals (Sweden)

    Deodutta Roy

    2015-10-01

    Full Text Available We present a combined environmental epidemiologic, genomic, and bioinformatics approach to identify: exposure of environmental chemicals with estrogenic activity; epidemiologic association between endocrine disrupting chemical (EDC and health effects, such as, breast cancer or endometriosis; and gene-EDC interactions and disease associations. Human exposure measurement and modeling confirmed estrogenic activity of three selected class of environmental chemicals, polychlorinated biphenyls (PCBs, bisphenols (BPs, and phthalates. Meta-analysis showed that PCBs exposure, not Bisphenol A (BPA and phthalates, increased the summary odds ratio for breast cancer and endometriosis. Bioinformatics analysis of gene-EDC interactions and disease associations identified several hundred genes that were altered by exposure to PCBs, phthalate or BPA. EDCs-modified genes in breast neoplasms and endometriosis are part of steroid hormone signaling and inflammation pathways. All three EDCs–PCB 153, phthalates, and BPA influenced five common genes—CYP19A1, EGFR, ESR2, FOS, and IGF1—in breast cancer as well as in endometriosis. These genes are environmentally and estrogen responsive, altered in human breast and uterine tumors and endometriosis lesions, and part of Mitogen Activated Protein Kinase (MAPK signaling pathways in cancer. Our findings suggest that breast cancer and endometriosis share some common environmental and molecular risk factors.

  15. Genome-wide association analysis identifies new lung cancer susceptibility loci in never-smoking women in Asia

    Science.gov (United States)

    Lan, Qing; Hsiung, Chao A; Matsuo, Keitaro; Hong, Yun-Chul; Seow, Adeline; Wang, Zhaoming; Hosgood, H Dean; Chen, Kexin; Wang, Jiu-Cun; Chatterjee, Nilanjan; Hu, Wei; Wong, Maria Pik; Zheng, Wei; Caporaso, Neil; Park, Jae Yong; Chen, Chien-Jen; Kim, Yeul Hong; Kim, Young Tae; Landi, Maria Teresa; Shen, Hongbing; Lawrence, Charles; Burdett, Laurie; Yeager, Meredith; Yuenger, Jeffrey; Jacobs, Kevin B; Chang, I-Shou; Mitsudomi, Tetsuya; Kim, Hee Nam; Chang, Gee-Chen; Bassig, Bryan A; Tucker, Margaret; Wei, Fusheng; Yin, Zhihua; Wu, Chen; An, She-Juan; Qian, Biyun; Lee, Victor Ho Fun; Lu, Daru; Liu, Jianjun; Jeon, Hyo-Sung; Hsiao, Chin-Fu; Sung, Jae Sook; Kim, Jin Hee; Gao, Yu-Tang; Tsai, Ying-Huang; Jung, Yoo Jin; Guo, Huan; Hu, Zhibin; Hutchinson, Amy; Wang, Wen-Chang; Klein, Robert; Chung, Charles C; Oh, In-Jae; Chen, Kuan-Yu; Berndt, Sonja I; He, Xingzhou; Wu, Wei; Chang, Jiang; Zhang, Xu-Chao; Huang, Ming-Shyan; Zheng, Hong; Wang, Junwen; Zhao, Xueying; Li, Yuqing; Choi, Jin Eun; Su, Wu-Chou; Park, Kyong Hwa; Sung, Sook Whan; Shu, Xiao-Ou; Chen, Yuh-Min; Liu, Li; Kang, Chang Hyun; Hu, Lingmin; Chen, Chung-Hsing; Pao, William; Kim, Young-Chul; Yang, Tsung-Ying; Xu, Jun; Guan, Peng; Tan, Wen; Su, Jian; Wang, Chih-Liang; Li, Haixin; Sihoe, Alan Dart Loon; Zhao, Zhenhong; Chen, Ying; Choi, Yi Young; Hung, Jen-Yu; Kim, Jun Suk; Yoon, Ho-Il; Cai, Qiuyin; Lin, Chien-Chung; Park, In Kyu; Xu, Ping; Dong, Jing; Kim, Christopher; He, Qincheng; Perng, Reury-Perng; Kohno, Takashi; Kweon, Sun-Seog; Chen, Chih-Yi; Vermeulen, Roel; Wu, Junjie; Lim, Wei-Yen; Chen, Kun-Chieh; Chow, Wong-Ho; Ji, Bu-Tian; Chan, John K C; Chu, Minjie; Li1, Yao-Jen; Yokota, Jun; Li, Jihua; Chen, Hongyan; Xiang, Yong-Bing; Yu, Chong-Jen; Kunitoh, Hideo; Wu, Guoping; Jin, Li; Lo, Yen-Li; Shiraishi, Kouya; Chen, Ying-Hsiang; Lin, Hsien-Chih; Wu, Tangchun; Wu, Yi-Long; Yang, Pan-Chyr; Zhou, Baosen; Shin, Min-Ho; Fraumeni, Joseph F; Lin, Dongxin; Chanock, Stephen J; Rothman, Nathaniel

    2014-01-01

    To identify common genetic variants that contribute to lung cancer susceptibility, we conducted a multistage genome-wide association study of lung cancer in Asian women who never smoked. We scanned 5,510 never-smoking female lung cancer cases and 4,544 controls drawn from 14 studies from mainland China, South Korea, Japan, Singapore, Taiwan, and Hong Kong. We genotyped the most promising variants (associated at P < 5 × 10-6) in an additional 1,099 cases and 2,913 controls. We identified three new susceptibility loci at 10q25.2 (rs7086803, P = 3.54 × 10-18), 6q22.2 (rs9387478, P = 4.14 × 10-10) and 6p21.32 (rs2395185, P = 9.51 × 10-9). We also confirmed associations reported for loci at 5p15.33 and 3q28 and a recently reported finding at 17q24.3. We observed no evidence of association for lung cancer at 15q25 in never-smoking women in Asia, providing strong evidence that this locus is not associated with lung cancer independent of smoking. PMID:23143601

  16. Seven novel prostate cancer susceptibility loci identified by a multi-stage genome-wide association study

    Science.gov (United States)

    Kote-Jarai, Zsofia; Olama, Ali Amin Al; Giles, Graham G.; Severi, Gianluca; Schleutker, Johanna; Weischer, Maren; Canzian, Frederico; Riboli, Elio; Key, Tim; Gronberg, Henrik; Hunter, David J.; Kraft, Peter; Thun, Michael J; Ingles, Sue; Chanock, Stephen; Albanes, Demetrius; Hayes, Richard B; Neal, David E.; Hamdy, Freddie C.; Donovan, Jenny L.; Pharoah, Paul; Schumacher, Fredrick; Henderson, Brian E.; Stanford, Janet L.; Ostrander, Elaine A.; Sorensen, Karina Dalsgaard; Dörk, Thilo; Andriole, Gerald; Dickinson, Joanne L.; Cybulski, Cezary; Lubinski, Jan; Spurdle, Amanda; Clements, Judith A.; Chambers, Suzanne; Aitken, Joanne; Frank Gardiner, R. A.; Thibodeau, Stephen N.; Schaid, Dan; John, Esther M.; Maier, Christiane; Vogel, Walther; Cooney, Kathleen A.; Park, Jong Y.; Cannon-Albright, Lisa; Brenner, Hermann; Habuchi, Tomonori; Zhang, Hong-Wei; Lu, Yong-Jie; Kaneva, Radka; Muir, Ken; Benlloch, Sara; Leongamornlert, Daniel A.; Saunders, Edward J.; Tymrakiewicz, Malgorzata; Mahmud, Nadiya; Guy, Michelle; O’Brien, Lynne T.; Wilkinson, Rosemary A.; Hall, Amanda L.; Sawyer, Emma J.; Dadaev, Tokhir; Morrison, Jonathan; Dearnaley, David P.; Horwich, Alan; Huddart, Robert A.; Khoo, Vincent S.; Parker, Christopher C.; Van As, Nicholas; Woodhouse, Christopher J.; Thompson, Alan; Christmas, Tim; Ogden, Chris; Cooper, Colin S.; Lophatonanon, Aritaya; Southey, Melissa C.; Hopper, John L.; English, Dallas; Wahlfors, Tiina; Tammela, Teuvo LJ; Klarskov, Peter; Nordestgaard, Børge G.; Røder, M. Andreas; Tybjærg-Hansen, Anne; Bojesen, Stig E.; Travis, Ruth; Campa, Daniele; Kaaks, Rudolf; Wiklund, Fredrik; Aly, Markus; Lindstrom, Sara; Diver, W Ryan; Gapstur, Susan; Stern, Mariana C; Corral, Roman; Virtamo, Jarmo; Cox, Angela; Haiman, Christopher A.; Le Marchand, Loic; FitzGerald, Liesel; Kolb, Suzanne; Kwon, Erika M.; Karyadi, Danielle M.; Orntoft, Torben Falck; Borre, Michael; Meyer, Andreas; Serth, Jürgen; Yeager, Meredith; Berndt, Sonja I.; Marthick, James R; Patterson, Briony; Wokolorczyk, Dominika; Batra, Jyotsna; Lose, Felicity; McDonnell, Shannon K; Joshi, Amit D.; Shahabi, Ahva; Rinckleb, Antje E.; Ray, Ana; Sellers, Thomas A.; Lin, Huo-Yi; Stephenson, Robert A; Farnham, James; Muller, Heiko; Rothenbacher, Dietrich; Tsuchiya, Norihiko; Narita, Shintaro; Cao, Guang-Wen; Slavov, Chavdar; Mitev, Vanio; Easton, Douglas F.; Eeles, Rosalind A.

    2012-01-01

    Prostate cancer (PrCa) is the most frequently diagnosed male cancer in developed countries. To identify common PrCa susceptibility alleles, we conducted a multi-stage genome-wide association study and previously reported the results of the first two stages, which identified 16 novel susceptibility loci for PrCa. Here we report the results of stage 3 in which we evaluated 1,536 SNPs in 4,574 cases and 4,164 controls. Ten novel association signals were followed up through genotyping in 51,311 samples in 30 studies through the international PRACTICAL consortium. In addition to previously reported loci, we identified a further seven new prostate cancer susceptibility loci on chromosomes 2p, 3q, 5p, 6p, 12q and Xq (P=4.0 ×10−8 to P=2.7 ×10−24). We also identified a SNP in TERT more strongly associated with PrCa than that previously reported. More than 40 PrCa susceptibility loci, explaining ~25% of the familial risk in this disease, have now been identified. PMID:21743467

  17. Integrated genomic and functional analyses of histone demethylases identify oncogenic KDM2A isoform in breast cancer.

    Science.gov (United States)

    Liu, Hui; Liu, Lanxin; Holowatyj, Andreana; Jiang, Yuanyuan; Yang, Zeng-Quan

    2016-05-01

    Histone lysine demethylases (KDMs) comprise a large class of enzymes that catalyze site-specific demethylation of lysine residues on histones and other proteins. They play critical roles in controlling transcription, chromatin architecture, and cellular differentiation. However, the genomic landscape and clinical significance of KDMs in breast cancer remain poorly characterized. Here, we conducted a meta-analysis of 24 KDMs in breast cancer and identified associations among recurrent copy number alterations, gene expression, breast cancer subtypes, and clinical outcome. Two KDMs, KDM2A and KDM5B, had the highest frequency of genetic amplification and overexpression. Furthermore, among the 24 KDM genes, KDM2A had the highest correlation between copy number and mRNA expression, and high mRNA levels of KDM2A were significantly associated with shorter survival of breast cancer patients. KDM2A has two isoforms: the long isoform is comprised of a JmjC domain, CXXC-zinc finger, PHD zinc finger, F-box, and the AMN1 protein domain; whereas the short isoform of KDM2A lacks the N-terminal JmjC domain but contains all other motifs. Detailed characterization of KDM2A in breast cancer revealed that the short isoform of KDM2A is more abundant than the long isoform at DNA, mRNA, and protein levels in a subset of breast cancers. Furthermore, our data indicate that the short isoform of KDM2A has oncogenic potential and functions as an oncogenic isoform in a subset of breast cancers. Taken together, our findings suggest that amplification and overexpression of the KDM2A short isoform is critical in breast cancer progression. © 2015 Wiley Periodicals, Inc. PMID:26207617

  18. Evaluating genome-wide association study-identified breast cancer risk variants in African-American women.

    Directory of Open Access Journals (Sweden)

    Jirong Long

    Full Text Available Genome-wide association studies (GWAS, conducted mostly in European or Asian descendants, have identified approximately 67 genetic susceptibility loci for breast cancer. Given the large differences in genetic architecture between the African-ancestry genome and genomes of Asians and Europeans, it is important to investigate these loci in African-ancestry populations. We evaluated index SNPs in all 67 breast cancer susceptibility loci identified to date in our study including up to 3,300 African-American women (1,231 cases and 2,069 controls, recruited in the Southern Community Cohort Study (SCCS and the Nashville Breast Health Study (NBHS. Seven SNPs were statistically significant (P ≤ 0.05 with the risk of overall breast cancer in the same direction as previously reported: rs10069690 (5p15/TERT, rs999737 (14q24/RAD51L1, rs13387042 (2q35/TNP1, rs1219648 (10q26/FGFR2, rs8170 (19p13/BABAM1, rs17817449 (16q12/FTO, and rs13329835 (16q23/DYL2. A marginally significant association (P<0.10 was found for three additional SNPs: rs1045485 (2q33/CASP8, rs4849887 (2q14/INHBB, and rs4808801 (19p13/ELL. Three additional SNPs, including rs1011970 (9p21/CDKN2A/2B, rs941764 (14q32/CCDC88C, and rs17529111 (6q14/FAM46A, showed a significant association in analyses conducted by breast cancer subtype. The risk of breast cancer was elevated with an increasing number of risk variants, as measured by quintile of the genetic risk score, from 1.00 (reference, to 1.75 (1.30-2.37, 1.56 (1.15-2.11, 2.02 (1.50-2.74 and 2.63 (1.96-3.52, respectively, (P = 7.8 × 10(-10. Results from this study highlight the need for large genetic studies in AAs to identify risk variants impacting this population.

  19. Integrative Functional Genomics Analysis of Sustained Polyploidy Phenotypes in Breast Cancer Cells Identifies an Oncogenic Profile for GINS2

    Directory of Open Access Journals (Sweden)

    Juha K. Rantala

    2010-11-01

    Full Text Available Aneuploidy is among the most obvious differences between normal and cancer cells. However, mechanisms contributing to development and maintenance of aneuploid cell growth are diverse and incompletely understood. Functional genomics analyses have shown that aneuploidy in cancer cells is correlated with diffuse gene expression signatures and aneuploidy can arise by a variety of mechanisms, including cytokinesis failures, DNA endoreplication, and possibly through polyploid intermediate states. To identify molecular processes contributing to development of aneuploidy, we used a cell spot microarray technique to identify genes inducing polyploidy and/or allowing maintenance of polyploid cell growth in breast cancer cells. Of 5760 human genes screened, 177 were found to induce severe DNA content alterations on prolonged transient silencing. Association with response to DNA damage stimulus and DNA repair was found to be the most enriched cellular processes among the candidate genes. Functional validation analysis of these genes highlighted GINS2 as the highest ranking candidate inducing polyploidy, accumulation of endogenous DNA damage, and impairing cell proliferation on inhibition. The cell growth inhibition and induction of polyploidy by suppression of GINS2 was verified in a panel of breast cancer cell lines. Bioinformatic analysis of published gene expression and DNA copy number studies of clinical breast tumors suggested GINS2 to be associated with the aggressive characteristics of a subgroup of breast cancers in vivo. In addition, nuclear GINS2 protein levels distinguished actively proliferating cancer cells suggesting potential use of GINS2 staining as a biomarker of cell proliferation as well as a potential therapeutic target.

  20. Cancer genomics

    DEFF Research Database (Denmark)

    Norrild, Bodil; Guldberg, Per; Ralfkiær, Elisabeth Methner

    2007-01-01

    Almost all cells in the human body contain a complete copy of the genome with an estimated number of 25,000 genes. The sequences of these genes make up about three percent of the genome and comprise the inherited set of genetic information. The genome also contains information that determines whe...

  1. Genome-wide association study identifies variants in the ABO locus associated with susceptibility to pancreatic cancer

    Science.gov (United States)

    Amundadottir, Laufey; Kraft, Peter; Stolzenberg-Solomon, Rachael Z.; Fuchs, Charles S.; Petersen, Gloria M.; Arslan, Alan A.; Bueno-de-Mesquita, H. Bas; Gross, Myron; Helzlsouer, Kathy; Jacobs, Eric J.; LaCroix, Andrea; Zheng, Wei; Albanes, Demetrius; Bamlet, William; Berg, Christine D.; Berrino, Franco; Bingham, Sheila; Buring, Julie E.; Bracci, Paige M.; Canzian, Federico; Clavel-Chapelon, Françoise; Clipp, Sandra; Cotterchio, Michelle; de Andrade, Mariza; Duell, Eric J.; Fox, John W.; Gallinger, Steven; Gaziano, J. Michael; Giovannucci, Edward L.; Goggins, Michael; González, Carlos A.; Hallmans, Göran; Hankinson, Susan E.; Hassan, Manal; Holly, Elizabeth A.; Hunter, David J.; Hutchinson, Amy; Jackson, Rebecca; Jacobs, Kevin B.; Jenab, Mazda; Kaaks, Rudolf; Klein, Alison P.; Kooperberg, Charles; Kurtz, Robert C.; Li, Donghui; Lynch, Shannon M.; Mandelson, Margaret; McWilliams, Robert R.; Mendelsohn, Julie B.; Michaud, Dominique S.; Olson, Sara H.; Overvad, Kim; Patel, Alpa V.; Peeters, Petra H.M.; Rajkovic, Aleksandar; Riboli, Elio; Risch, Harvey A.; Shu, Xiao-Ou; Thomas, Gilles; Tobias, Geoffrey S.; Trichopoulos, Dimitrios; Van Den Eeden, Stephen K.; Virtamo, Jarmo; Wactawski-Wende, Jean; Wolpin, Brian M.; Yu, Herbert; Yu, Kai; Zeleniuch-Jacquotte, Anne; Chanock, Stephen J.; Hartge, Patricia; Hoover, Robert N.

    2010-01-01

    We conducted a two-stage genome-wide association study (GWAS) of pancreatic cancer, a cancer with one of the poorest survival rates worldwide. Initially, we genotyped 558,542 single nucleotide polymorphisms in 1,896 incident cases and 1,939 controls drawn from twelve prospective cohorts plus one hospital-based case-control study. In a combined analysis adjusted for study, sex, ancestry and five principal components that included an additional 2,457 cases and 2,654 controls from eight case-control studies, we identified an association between a locus on 9q34 and pancreatic cancer marked by the single nucleotide polymorphism, rs505922 (combined P=5.37 × 10-8; multiplicative per-allele odds ratio (OR) 1.20; 95% CI 1.12-1.28). This SNP maps to the first intron of the ABO blood group gene. Our results are consistent with earlier epidemiologic evidence suggesting that people with blood group O may have a lower risk of pancreatic cancer than those with groups A or B. PMID:19648918

  2. An RNA interference lethality screen of the human druggable genome to identify molecular vulnerabilities in epithelial ovarian cancer.

    Directory of Open Access Journals (Sweden)

    Geetika Sethi

    Full Text Available Targeted therapies have been used to combat many tumor types; however, few have effectively improved the overall survival in women with epithelial ovarian cancer, begging for a better understanding of this deadly disease and identification of essential drivers of tumorigenesis that can be targeted effectively. Therefore, we used a loss-of-function screening approach to help identify molecular vulnerabilities that may represent key points of therapeutic intervention. We employed an unbiased high-throughput lethality screen using a 24,088 siRNA library targeting over 6,000 druggable genes and studied their effects on growth and/or survival of epithelial ovarian cancer (EOC cell lines. The top 300 "hits" affecting the viability of A1847 cells were rescreened across additional EOC cell lines and non-tumorigenic, human immortalized ovarian epithelial cell lines. Fifty-three gene candidates were found to exhibit effects in all tumorigenic cell lines tested. Extensive validation of these hits refined the list to four high quality candidates (HSPA5, NDC80, NUF2, and PTN. Mechanistic studies show that silencing of three genes leads to increased apoptosis, while HSPA5 silencing appears to alter cell growth through G1 cell cycle arrest. Furthermore, two independent gene expression studies show that NDC80, NUF2 and PTN were significantly aberrantly overexpressed in serous adenocarcinomas. Overall, our functional genomics results integrated with the genomics data provide an important unbiased avenue towards the identification of prospective therapeutic targets for drug discovery, which is an urgent and unmet clinical need for ovarian cancer.

  3. An RNA interference lethality screen of the human druggable genome to identify molecular vulnerabilities in epithelial ovarian cancer.

    Science.gov (United States)

    Sethi, Geetika; Pathak, Harsh B; Zhang, Hong; Zhou, Yan; Einarson, Margret B; Vathipadiekal, Vinod; Gunewardena, Sumedha; Birrer, Michael J; Godwin, Andrew K

    2012-01-01

    Targeted therapies have been used to combat many tumor types; however, few have effectively improved the overall survival in women with epithelial ovarian cancer, begging for a better understanding of this deadly disease and identification of essential drivers of tumorigenesis that can be targeted effectively. Therefore, we used a loss-of-function screening approach to help identify molecular vulnerabilities that may represent key points of therapeutic intervention. We employed an unbiased high-throughput lethality screen using a 24,088 siRNA library targeting over 6,000 druggable genes and studied their effects on growth and/or survival of epithelial ovarian cancer (EOC) cell lines. The top 300 "hits" affecting the viability of A1847 cells were rescreened across additional EOC cell lines and non-tumorigenic, human immortalized ovarian epithelial cell lines. Fifty-three gene candidates were found to exhibit effects in all tumorigenic cell lines tested. Extensive validation of these hits refined the list to four high quality candidates (HSPA5, NDC80, NUF2, and PTN). Mechanistic studies show that silencing of three genes leads to increased apoptosis, while HSPA5 silencing appears to alter cell growth through G1 cell cycle arrest. Furthermore, two independent gene expression studies show that NDC80, NUF2 and PTN were significantly aberrantly overexpressed in serous adenocarcinomas. Overall, our functional genomics results integrated with the genomics data provide an important unbiased avenue towards the identification of prospective therapeutic targets for drug discovery, which is an urgent and unmet clinical need for ovarian cancer. PMID:23056589

  4. Genome-wide association study identifies a common variant in RAD51B associated with male breast cancer risk

    DEFF Research Database (Denmark)

    Orr, Nick; Lemnrau, Alina; Cooke, Rosie;

    2012-01-01

    We conducted a genome-wide association study of male breast cancer comprising 823 cases and 2,795 controls of European ancestry, with validation in independent sample sets totaling 438 cases and 474 controls. A SNP in RAD51B at 14q24.1 was significantly associated with male breast cancer risk (P ...

  5. A new GWAS and meta-analysis with 1000Genomes imputation identifies novel risk variants for colorectal cancer

    Science.gov (United States)

    Al-Tassan, Nada A.; Whiffin, Nicola; Hosking, Fay J.; Palles, Claire; Farrington, Susan M.; Dobbins, Sara E.; Harris, Rebecca; Gorman, Maggie; Tenesa, Albert; Meyer, Brian F.; Wakil, Salma M.; Kinnersley, Ben; Campbell, Harry; Martin, Lynn; Smith, Christopher G.; Idziaszczyk, Shelley; Barclay, Ella; Maughan, Timothy S.; Kaplan, Richard; Kerr, Rachel; Kerr, David; Buchannan, Daniel D.; Ko Win, Aung; Hopper, John; Jenkins, Mark; Lindor, Noralane M.; Newcomb, Polly A.; Gallinger, Steve; Conti, David; Schumacher, Fred; Casey, Graham; Dunlop, Malcolm G.; Tomlinson, Ian P.; Cheadle, Jeremy P.; Houlston, Richard S.

    2015-01-01

    Genome-wide association studies (GWAS) of colorectal cancer (CRC) have identified 23 susceptibility loci thus far. Analyses of previously conducted GWAS indicate additional risk loci are yet to be discovered. To identify novel CRC susceptibility loci, we conducted a new GWAS and performed a meta-analysis with five published GWAS (totalling 7,577 cases and 9,979 controls of European ancestry), imputing genotypes utilising the 1000 Genomes Project. The combined analysis identified new, significant associations with CRC at 1p36.2 marked by rs72647484 (minor allele frequency [MAF] = 0.09) near CDC42 and WNT4 (P = 1.21 × 10−8, odds ratio [OR] = 1.21 ) and at 16q24.1 marked by rs16941835 (MAF = 0.21, P = 5.06 × 10−8; OR = 1.15) within the long non-coding RNA (lncRNA) RP11-58A18.1 and ~500 kb from the nearest coding gene FOXL1. Additionally we identified a promising association at 10p13 with rs10904849 intronic to CUBN (MAF = 0.32, P = 7.01 × 10-8; OR = 1.14). These findings provide further insights into the genetic and biological basis of inherited genetic susceptibility to CRC. Additionally, our analysis further demonstrates that imputation can be used to exploit GWAS data to identify novel disease-causing variants. PMID:25990418

  6. A meta-analysis of genome-wide association studies to identify prostate cancer susceptibility loci associated with aggressive and non-aggressive disease

    DEFF Research Database (Denmark)

    Amin Al Olama, Ali; Kote-Jarai, Zsofia; Schumacher, Fredrick R;

    2013-01-01

    Genome-wide association studies (GWAS) have identified multiple common genetic variants associated with an increased risk of prostate cancer (PrCa), but these explain less than one-third of the heritability. To identify further susceptibility alleles, we conducted a meta-analysis of four GWAS inc...

  7. Genome-wide Analysis Identifies Novel Loci Associated with Ovarian Cancer Outcomes

    DEFF Research Database (Denmark)

    Johnatty, Sharon E; Tyrer, Jonathan P; Kar, Siddhartha;

    2015-01-01

    PURPOSE: Chemotherapy resistance remains a major challenge in the treatment of ovarian cancer. We hypothesize that germline polymorphisms might be associated with clinical outcome. EXPERIMENTAL DESIGN: We analyzed approximately 2.8 million genotyped and imputed SNPs from the iCOGS experiment for ...

  8. Genome-wide association studies identify four ER negative-specific breast cancer risk loci

    DEFF Research Database (Denmark)

    Garcia-Closas, Montserrat; Couch, Fergus J; Lindstrom, Sara;

    2013-01-01

    Estrogen receptor (ER)-negative tumors represent 20-30% of all breast cancers, with a higher proportion occurring in younger women and women of African ancestry. The etiology and clinical behavior of ER-negative tumors are different from those of tumors expressing ER (ER positive), including diff...

  9. UTSW Researchers Identify Potential Therapeutic Targets for High-grade Neuroendocrine Lung Cancers | Office of Cancer Genomics

    Science.gov (United States)

    Neuroendocrine specific lung cancers comprise about 10% of non-small cell lung cancer (NSCLC) cases and all small cell lung cancer (SCLC) cases. Studies have previously shown that the transcription factor achaete-scute homolog 1 (ASCL1) is a cancer “lineage” factor required for the development and survival of SCLC, and is highly expressed in neuroendocrine-specific NSCLC (NE-NSCLC).

  10. Genome-Wide Association Study in BRCA1 Mutation Carriers Identifies Novel Loci Associated with Breast and Ovarian Cancer Risk

    DEFF Research Database (Denmark)

    Couch, Fergus J; Wang, Xianshu; McGuffog, Lesley;

    2013-01-01

    BRCA1-associated breast and ovarian cancer risks can be modified by common genetic variants. To identify further cancer risk-modifying loci, we performed a multi-stage GWAS of 11,705 BRCA1 carriers (of whom 5,920 were diagnosed with breast and 1,839 were diagnosed with ovarian cancer), with a fur...

  11. Genome-wide association study identifies new prostate cancer susceptibility loci

    DEFF Research Database (Denmark)

    Schumacher, Fredrick R.; Berndt, Sonja I.; Siddiq, Afshan;

    2011-01-01

    identified at least 30 distinct loci associated with small differences in risk. We conducted a GWAS in 2782 advanced PrCa cases (Gleason grade ≥ 8 or tumor stage C/D) and 4458 controls with 571 243 single nucleotide polymorphisms (SNPs). Based on in silico replication of 4679 SNPs (Stage 1, P <0.02) in two...... published GWAS with 7358 PrCa cases and 6732 controls, we identified a new susceptibility locus associated with overall PrCa risk at 2q37.3 (rs2292884, P= 4.3 x 10–8). We also confirmed a locus suggested by an earlier GWAS at 12q13 (rs902774, P= 8.6 x 10–9). The estimated per-allele odds ratios for these...

  12. Knowledge-Assisted Approach to Identify Pathways with Differential Dependencies | Office of Cancer Genomics

    Science.gov (United States)

    We have previously developed a statistical method to identify gene sets enriched with condition-specific genetic dependencies. The method constructs gene dependency networks from bootstrapped samples in one condition and computes the divergence between distributions of network likelihood scores from different conditions. It was shown to be capable of sensitive and specific identification of pathways with phenotype-specific dysregulation, i.e., rewiring of dependencies between genes in different conditions.

  13. Cancer associated epigenetic transitions identified by genome-wide histone methylation binding profiles in human colorectal cancer samples and paired normal mucosa

    International Nuclear Information System (INIS)

    Despite their well-established functional roles, histone modifications have received less attention than DNA methylation in the cancer field. In order to evaluate their importance in colorectal cancer (CRC), we generated the first genome-wide histone modification profiles in paired normal colon mucosa and tumor samples. Chromatin immunoprecipitation and microarray hybridization (ChIP-chip) was used to identify promoters enriched for histone H3 trimethylated on lysine 4 (H3K4me3) and lysine 27 (H3K27me3) in paired normal colon mucosa and tumor samples from two CRC patients and for the CRC cell line HT29. By comparing histone modification patterns in normal mucosa and tumors, we found that alterations predicted to have major functional consequences were quite rare. Furthermore, when normal or tumor tissue samples were compared to HT29, high similarities were observed for H3K4me3. However, the differences found for H3K27me3, which is important in determining cellular identity, indicates that cell lines do not represent optimal tissue models. Finally, using public expression data, we uncovered previously unknown changes in CRC expression patterns. Genes positive for H3K4me3 in normal and/or tumor samples, which are typically already active in normal mucosa, became hyperactivated in tumors, while genes with H3K27me3 in normal and/or tumor samples and which are expressed at low levels in normal mucosa, became hypersilenced in tumors. Genome wide histone modification profiles can be used to find epigenetic aberrations in genes associated with cancer. This strategy gives further insights into the epigenetic contribution to the oncogenic process and may identify new biomarkers

  14. Genome-wide association study identifies variants in the ABO locus associated with susceptibility to pancreatic cancer

    OpenAIRE

    Amundadottir, Laufey; Kraft, Peter; Stolzenberg-Solomon, Rachael Z; Fuchs, Charles S; Petersen, Gloria M.; Arslan, Alan A.; Bueno-de-Mesquita, H Bas; Gross, Myron; Helzlsouer, Kathy; Jacobs, Eric J.; LaCroix, Andrea; Zheng, Wei; Albanes, Demetrius; Bamlet, William; Berg, Christine D

    2009-01-01

    We conducted a two-stage genome-wide association study (GWAS) of pancreatic cancer, a cancer with one of the poorest survival rates worldwide. Initially, we genotyped 558,542 single nucleotide polymorphisms in 1,896 incident cases and 1,939 controls drawn from twelve prospective cohorts plus one hospital-based case-control study. In a combined analysis adjusted for study, sex, ancestry and five principal components that included an additional 2,457 cases and 2,654 controls from eight case-con...

  15. Whole-genome bisulfite sequencing of cell-free DNA identifies signature associated with metastatic breast cancer

    OpenAIRE

    Legendre, Christophe; Gooden, Gerald C.; Johnson, Kyle; Martinez, Rae Anne; Liang, Winnie S.; Salhia, Bodour

    2015-01-01

    Background A number of clinico-pathological criteria and molecular profiles have been used to stratify patients into high- and low-risk groups. Currently, there are still no effective methods to determine which patients harbor micrometastatic disease after standard breast cancer therapy and who will eventually develop local or distant recurrence. The purpose of our study was to identify circulating DNA methylation changes that can be used for prediction of metastatic breast cancer (MBC). Resu...

  16. Meta-analysis of genome-wide association studies identifies multiple lung cancer susceptibility loci in never-smoking Asian women.

    Science.gov (United States)

    Wang, Zhaoming; Seow, Wei Jie; Shiraishi, Kouya; Hsiung, Chao A; Matsuo, Keitaro; Liu, Jie; Chen, Kexin; Yamji, Taiki; Yang, Yang; Chang, I-Shou; Wu, Chen; Hong, Yun-Chul; Burdett, Laurie; Wyatt, Kathleen; Chung, Charles C; Li, Shengchao A; Yeager, Meredith; Hutchinson, Amy; Hu, Wei; Caporaso, Neil; Landi, Maria T; Chatterjee, Nilanjan; Song, Minsun; Fraumeni, Joseph F; Kohno, Takashi; Yokota, Jun; Kunitoh, Hideo; Ashikawa, Kyota; Momozawa, Yukihide; Daigo, Yataro; Mitsudomi, Tetsuya; Yatabe, Yasushi; Hida, Toyoaki; Hu, Zhibin; Dai, Juncheng; Ma, Hongxia; Jin, Guangfu; Song, Bao; Wang, Zhehai; Cheng, Sensen; Yin, Zhihua; Li, Xuelian; Ren, Yangwu; Guan, Peng; Chang, Jiang; Tan, Wen; Chen, Chien-Jen; Chang, Gee-Chen; Tsai, Ying-Huang; Su, Wu-Chou; Chen, Kuan-Yu; Huang, Ming-Shyan; Chen, Yuh-Min; Zheng, Hong; Li, Haixin; Cui, Ping; Guo, Huan; Xu, Ping; Liu, Li; Iwasaki, Motoki; Shimazu, Taichi; Tsugane, Shoichiro; Zhu, Junjie; Jiang, Gening; Fei, Ke; Park, Jae Yong; Kim, Yeul Hong; Sung, Jae Sook; Park, Kyong Hwa; Kim, Young Tae; Jung, Yoo Jin; Kang, Chang Hyun; Park, In Kyu; Kim, Hee Nam; Jeon, Hyo-Sung; Choi, Jin Eun; Choi, Yi Young; Kim, Jin Hee; Oh, In-Jae; Kim, Young-Chul; Sung, Sook Whan; Kim, Jun Suk; Yoon, Ho-Il; Kweon, Sun-Seog; Shin, Min-Ho; Seow, Adeline; Chen, Ying; Lim, Wei-Yen; Liu, Jianjun; Wong, Maria Pik; Lee, Victor Ho Fun; Bassig, Bryan A; Tucker, Margaret; Berndt, Sonja I; Chow, Wong-Ho; Ji, Bu-Tian; Wang, Junwen; Xu, Jun; Sihoe, Alan Dart Loon; Ho, James C M; Chan, John K C; Wang, Jiu-Cun; Lu, Daru; Zhao, Xueying; Zhao, Zhenhong; Wu, Junjie; Chen, Hongyan; Jin, Li; Wei, Fusheng; Wu, Guoping; An, She-Juan; Zhang, Xu-Chao; Su, Jian; Wu, Yi-Long; Gao, Yu-Tang; Xiang, Yong-Bing; He, Xingzhou; Li, Jihua; Zheng, Wei; Shu, Xiao-Ou; Cai, Qiuyin; Klein, Robert; Pao, William; Lawrence, Charles; Hosgood, H Dean; Hsiao, Chin-Fu; Chien, Li-Hsin; Chen, Ying-Hsiang; Chen, Chung-Hsing; Wang, Wen-Chang; Chen, Chih-Yi; Wang, Chih-Liang; Yu, Chong-Jen; Chen, Hui-Ling; Su, Yu-Chun; Tsai, Fang-Yu; Chen, Yi-Song; Li, Yao-Jen; Yang, Tsung-Ying; Lin, Chien-Chung; Yang, Pan-Chyr; Wu, Tangchun; Lin, Dongxin; Zhou, Baosen; Yu, Jinming; Shen, Hongbing; Kubo, Michiaki; Chanock, Stephen J; Rothman, Nathaniel; Lan, Qing

    2016-02-01

    Genome-wide association studies (GWAS) of lung cancer in Asian never-smoking women have previously identified six susceptibility loci associated with lung cancer risk. To further discover new susceptibility loci, we imputed data from four GWAS of Asian non-smoking female lung cancer (6877 cases and 6277 controls) using the 1000 Genomes Project (Phase 1 Release 3) data as the reference and genotyped additional samples (5878 cases and 7046 controls) for possible replication. In our meta-analysis, three new loci achieved genome-wide significance, marked by single nucleotide polymorphism (SNP) rs7741164 at 6p21.1 (per-allele odds ratio (OR) = 1.17; P = 5.8 × 10(-13)), rs72658409 at 9p21.3 (per-allele OR = 0.77; P = 1.41 × 10(-10)) and rs11610143 at 12q13.13 (per-allele OR = 0.89; P = 4.96 × 10(-9)). These findings identified new genetic susceptibility alleles for lung cancer in never-smoking women in Asia and merit follow-up to understand their biological underpinnings. PMID:26732429

  17. Genome-wide association study identifies a region on chromosome 11q14.3 associated with late rectal bleeding following radiation therapy for prostate cancer*

    Science.gov (United States)

    Kerns, Sarah L.; Stock, Richard; Stone, Nelson N.; Blacksburg, Seth R.; Rath, Lynda; Vega, Ana; Fachal, Laura; Gómez-Caamaño, Antonio; De Ruysscher, Dirk; Lammering, Guido; Parliament, Matthew; Blackshaw, Michael; Sia, Michael; Cesaretti, Jamie; Terk, Mitchell; Hixson, Rosetta; Rosenstein, Barry S.; Ostrer, Harry

    2013-01-01

    Background and Purpose Rectal bleeding can occur following radiotherapy for prostate cancer and negatively impacts quality of life for cancer survivors. Treatment and clinical factors do not fully predict for rectal bleeding, and genetic factors may be important. Materials and Methods A genome-wide association study (GWAS) was performed to identify SNPs associated with development of late rectal bleeding following radiotherapy for prostate cancer. Logistic regression was used to test association between 614,453 SNPs and rectal bleeding in a discovery cohort (79 cases, 289 controls), and top-ranking SNPs were tested in a replication cohort (108 cases, 673 controls) from four independent sites. Results rs7120482 and rs17630638, which tag a single locus on chromosome 11q14.3, reached genome-wide significance for association with rectal bleeding (combined p-values 5.4×10−8 and 6.9×10−7 respectively). Several other SNPs had p-values trending towards genome-wide significance, and a polygenic risk score including these SNPs shows a strong rank-correlation with rectal bleeding (Sommers’ d = 5.0×10−12 in the replication cohort). Conclusions This GWAS identified novel genetic markers of rectal bleeding following prostate radiotherapy. These findings could lead to development of a predictive assay to identify patients at risk for this adverse treatment outcome so that dose or treatment modality could be modified. PMID:23719583

  18. Genome-wide association study identifies a region on chromosome 11q14.3 associated with late rectal bleeding following radiation therapy for prostate cancer

    International Nuclear Information System (INIS)

    Background and purpose: Rectal bleeding can occur following radiotherapy for prostate cancer and negatively impacts quality of life for cancer survivors. Treatment and clinical factors do not fully predict rectal bleeding, and genetic factors may be important. Materials and methods: A genome-wide association study (GWAS) was performed to identify SNPs associated with the development of late rectal bleeding following radiotherapy for prostate cancer. Logistic regression was used to test the association between 614,453 SNPs and rectal bleeding in a discovery cohort (79 cases, 289 controls), and top-ranking SNPs were tested in a replication cohort (108 cases, 673 controls) from four independent sites. Results: rs7120482 and rs17630638, which tag a single locus on chromosome 11q14.3, reached genome-wide significance for association with rectal bleeding (combined p-values 5.4 × 10−8 and 6.9 × 10−7 respectively). Several other SNPs had p-values trending toward genome-wide significance, and a polygenic risk score including these SNPs shows a strong rank-correlation with rectal bleeding (Sommers’ d = 5.0 × 10−12 in the replication cohort). Conclusions: This GWAS identified novel genetic markers of rectal bleeding following prostate radiotherapy. These findings could lead to the development of a predictive assay to identify patients at risk for this adverse treatment outcome so that dose or treatment modality could be modified

  19. Genome-wide association study in BRCA1 mutation carriers identifies novel loci associated with breast and ovarian cancer risk.

    Directory of Open Access Journals (Sweden)

    Fergus J Couch

    Full Text Available BRCA1-associated breast and ovarian cancer risks can be modified by common genetic variants. To identify further cancer risk-modifying loci, we performed a multi-stage GWAS of 11,705 BRCA1 carriers (of whom 5,920 were diagnosed with breast and 1,839 were diagnosed with ovarian cancer, with a further replication in an additional sample of 2,646 BRCA1 carriers. We identified a novel breast cancer risk modifier locus at 1q32 for BRCA1 carriers (rs2290854, P = 2.7 × 10(-8, HR = 1.14, 95% CI: 1.09-1.20. In addition, we identified two novel ovarian cancer risk modifier loci: 17q21.31 (rs17631303, P = 1.4 × 10(-8, HR = 1.27, 95% CI: 1.17-1.38 and 4q32.3 (rs4691139, P = 3.4 × 10(-8, HR = 1.20, 95% CI: 1.17-1.38. The 4q32.3 locus was not associated with ovarian cancer risk in the general population or BRCA2 carriers, suggesting a BRCA1-specific association. The 17q21.31 locus was also associated with ovarian cancer risk in 8,211 BRCA2 carriers (P = 2×10(-4. These loci may lead to an improved understanding of the etiology of breast and ovarian tumors in BRCA1 carriers. Based on the joint distribution of the known BRCA1 breast cancer risk-modifying loci, we estimated that the breast cancer lifetime risks for the 5% of BRCA1 carriers at lowest risk are 28%-50% compared to 81%-100% for the 5% at highest risk. Similarly, based on the known ovarian cancer risk-modifying loci, the 5% of BRCA1 carriers at lowest risk have an estimated lifetime risk of developing ovarian cancer of 28% or lower, whereas the 5% at highest risk will have a risk of 63% or higher. Such differences in risk may have important implications for risk prediction and clinical management for BRCA1 carriers.

  20. Genome-Wide Association Study in BRCA1 Mutation Carriers Identifies Novel Loci Associated with Breast and Ovarian Cancer Risk

    Science.gov (United States)

    Wang, Xianshu; McGuffog, Lesley; Lee, Andrew; Olswold, Curtis; Kuchenbaecker, Karoline B.; Soucy, Penny; Fredericksen, Zachary; Barrowdale, Daniel; Dennis, Joe; Gaudet, Mia M.; Dicks, Ed; Kosel, Matthew; Healey, Sue; Sinilnikova, Olga M.; Lee, Adam; Bacot, François; Vincent, Daniel; Hogervorst, Frans B. L.; Peock, Susan; Stoppa-Lyonnet, Dominique; Jakubowska, Anna; Investigators, kConFab; Radice, Paolo; Schmutzler, Rita Katharina; Domchek, Susan M.; Piedmonte, Marion; Singer, Christian F.; Friedman, Eitan; Thomassen, Mads; Hansen, Thomas V. O.; Neuhausen, Susan L.; Szabo, Csilla I.; Blanco, Ignacio; Greene, Mark H.; Karlan, Beth Y.; Garber, Judy; Phelan, Catherine M.; Weitzel, Jeffrey N.; Montagna, Marco; Olah, Edith; Andrulis, Irene L.; Godwin, Andrew K.; Yannoukakos, Drakoulis; Goldgar, David E.; Caldes, Trinidad; Nevanlinna, Heli; Osorio, Ana; Terry, Mary Beth; Daly, Mary B.; van Rensburg, Elizabeth J.; Hamann, Ute; Ramus, Susan J.; Ewart Toland, Amanda; Caligo, Maria A.; Olopade, Olufunmilayo I.; Tung, Nadine; Claes, Kathleen; Beattie, Mary S.; Southey, Melissa C.; Imyanitov, Evgeny N.; Tischkowitz, Marc; Janavicius, Ramunas; John, Esther M.; Kwong, Ava; Diez, Orland; Balmaña, Judith; Barkardottir, Rosa B.; Arun, Banu K.; Rennert, Gad; Teo, Soo-Hwang; Ganz, Patricia A.; Campbell, Ian; van der Hout, Annemarie H.; van Deurzen, Carolien H. M.; Seynaeve, Caroline; Gómez Garcia, Encarna B.; van Leeuwen, Flora E.; Meijers-Heijboer, Hanne E. J.; Gille, Johannes J. P.; Ausems, Margreet G. E. M.; Blok, Marinus J.; Ligtenberg, Marjolijn J. L.; Rookus, Matti A.; Devilee, Peter; Verhoef, Senno; van Os, Theo A. M.; Wijnen, Juul T.; Frost, Debra; Ellis, Steve; Fineberg, Elena; Platte, Radka; Evans, D. Gareth; Izatt, Louise; Eeles, Rosalind A.; Adlard, Julian; Eccles, Diana M.; Cook, Jackie; Brewer, Carole; Douglas, Fiona; Hodgson, Shirley; Morrison, Patrick J.; Side, Lucy E.; Donaldson, Alan; Houghton, Catherine; Rogers, Mark T.; Dorkins, Huw; Eason, Jacqueline; Gregory, Helen; McCann, Emma; Murray, Alex; Calender, Alain; Hardouin, Agnès; Berthet, Pascaline; Delnatte, Capucine; Nogues, Catherine; Lasset, Christine; Houdayer, Claude; Leroux, Dominique; Rouleau, Etienne; Prieur, Fabienne; Damiola, Francesca; Sobol, Hagay; Coupier, Isabelle; Venat-Bouvet, Laurence; Castera, Laurent; Gauthier-Villars, Marion; Léoné, Mélanie; Pujol, Pascal; Mazoyer, Sylvie; Bignon, Yves-Jean; Złowocka-Perłowska, Elżbieta; Gronwald, Jacek; Lubinski, Jan; Durda, Katarzyna; Jaworska, Katarzyna; Huzarski, Tomasz; Spurdle, Amanda B.; Viel, Alessandra; Peissel, Bernard; Bonanni, Bernardo; Melloni, Giulia; Ottini, Laura; Papi, Laura; Varesco, Liliana; Tibiletti, Maria Grazia; Peterlongo, Paolo; Volorio, Sara; Manoukian, Siranoush; Pensotti, Valeria; Arnold, Norbert; Engel, Christoph; Deissler, Helmut; Gadzicki, Dorothea; Gehrig, Andrea; Kast, Karin; Rhiem, Kerstin; Meindl, Alfons; Niederacher, Dieter; Ditsch, Nina; Plendl, Hansjoerg; Preisler-Adams, Sabine; Engert, Stefanie; Sutter, Christian; Varon-Mateeva, Raymonda; Wappenschmidt, Barbara; Weber, Bernhard H. F.; Arver, Brita; Stenmark-Askmalm, Marie; Loman, Niklas; Rosenquist, Richard; Einbeigi, Zakaria; Nathanson, Katherine L.; Rebbeck, Timothy R.; Blank, Stephanie V.; Cohn, David E.; Rodriguez, Gustavo C.; Small, Laurie; Friedlander, Michael; Bae-Jump, Victoria L.; Fink-Retter, Anneliese; Rappaport, Christine; Gschwantler-Kaulich, Daphne; Pfeiler, Georg; Tea, Muy-Kheng; Lindor, Noralane M.; Kaufman, Bella; Shimon Paluch, Shani; Laitman, Yael; Skytte, Anne-Bine; Gerdes, Anne-Marie; Pedersen, Inge Sokilde; Moeller, Sanne Traasdahl; Kruse, Torben A.; Jensen, Uffe Birk; Vijai, Joseph; Sarrel, Kara; Robson, Mark; Kauff, Noah; Mulligan, Anna Marie; Glendon, Gord; Ozcelik, Hilmi; Ejlertsen, Bent; Nielsen, Finn C.; Jønson, Lars; Andersen, Mette K.; Ding, Yuan Chun; Steele, Linda; Foretova, Lenka; Teulé, Alex; Lazaro, Conxi; Brunet, Joan; Pujana, Miquel Angel; Mai, Phuong L.; Loud, Jennifer T.; Walsh, Christine; Lester, Jenny; Orsulic, Sandra; Narod, Steven A.; Herzog, Josef; Sand, Sharon R.; Tognazzo, Silvia; Agata, Simona; Vaszko, Tibor; Weaver, Joellen; Stavropoulou, Alexandra V.; Buys, Saundra S.; Romero, Atocha; de la Hoya, Miguel; Aittomäki, Kristiina; Muranen, Taru A.; Duran, Mercedes; Chung, Wendy K.; Lasa, Adriana; Dorfling, Cecilia M.; Miron, Alexander; Benitez, Javier; Senter, Leigha; Huo, Dezheng; Chan, Salina B.; Sokolenko, Anna P.; Chiquette, Jocelyne; Tihomirova, Laima; Friebel, Tara M.; Agnarsson, Bjarni A.; Lu, Karen H.; Lejbkowicz, Flavio; James, Paul A.; Hall, Per; Dunning, Alison M.; Tessier, Daniel; Cunningham, Julie; Slager, Susan L.; Wang, Chen; Hart, Steven; Stevens, Kristen; Simard, Jacques; Pastinen, Tomi; Pankratz, Vernon S.; Offit, Kenneth; Antoniou, Antonis C.

    2013-01-01

    BRCA1-associated breast and ovarian cancer risks can be modified by common genetic variants. To identify further cancer risk-modifying loci, we performed a multi-stage GWAS of 11,705 BRCA1 carriers (of whom 5,920 were diagnosed with breast and 1,839 were diagnosed with ovarian cancer), with a further replication in an additional sample of 2,646 BRCA1 carriers. We identified a novel breast cancer risk modifier locus at 1q32 for BRCA1 carriers (rs2290854, P = 2.7×10−8, HR = 1.14, 95% CI: 1.09–1.20). In addition, we identified two novel ovarian cancer risk modifier loci: 17q21.31 (rs17631303, P = 1.4×10−8, HR = 1.27, 95% CI: 1.17–1.38) and 4q32.3 (rs4691139, P = 3.4×10−8, HR = 1.20, 95% CI: 1.17–1.38). The 4q32.3 locus was not associated with ovarian cancer risk in the general population or BRCA2 carriers, suggesting a BRCA1-specific association. The 17q21.31 locus was also associated with ovarian cancer risk in 8,211 BRCA2 carriers (P = 2×10−4). These loci may lead to an improved understanding of the etiology of breast and ovarian tumors in BRCA1 carriers. Based on the joint distribution of the known BRCA1 breast cancer risk-modifying loci, we estimated that the breast cancer lifetime risks for the 5% of BRCA1 carriers at lowest risk are 28%–50% compared to 81%–100% for the 5% at highest risk. Similarly, based on the known ovarian cancer risk-modifying loci, the 5% of BRCA1 carriers at lowest risk have an estimated lifetime risk of developing ovarian cancer of 28% or lower, whereas the 5% at highest risk will have a risk of 63% or higher. Such differences in risk may have important implications for risk prediction and clinical management for BRCA1 carriers. PMID:23544013

  1. Center for Cancer Genomics | Office of Cancer Genomics

    Science.gov (United States)

    The Center for Cancer Genomics (CCG) was established to unify the National Cancer Institute's activities in cancer genomics, with the goal of advancing genomics research and translating findings into the clinic to improve the precise diagnosis and treatment of cancers. In addition to promoting genomic sequencing approach

  2. Identifying Gene Disruptions in Novel Balanced de novo Constitutional Translocations in Childhood Cancer Patients by Whole Genome Sequencing

    OpenAIRE

    Ritter, Deborah I.; Haines, Katherine; Cheung, Hannah; Davis, Caleb F.; Lau, Ching C.; Berg, Jonathan S.; Brown, Chester W.; Thompson, Patrick A.; Gibbs, Richard; Wheeler, David A.; Plon, Sharon E.

    2015-01-01

    Purpose We applied whole genome sequencing to children diagnosed with neoplasms and found to carry apparently balanced constitutional translocations, to discover novel genic disruptions. Methods We applied SV calling programs CREST, Break Dancer, SV-STAT and CGAP-CNV, and developed an annotative filtering strategy to achieve nucleotide resolution at the translocations. Results We identified the breakpoints for t(6;12) (p21.1;q24.31) disrupting HNF1A in a patient diagnosed with hepatic adenoma...

  3. Genome-wide profiling of HPV integration in cervical cancer identifies clustered genomic hot spots and a potential microhomology-mediated integration mechanism

    DEFF Research Database (Denmark)

    Hu, Zheng; Zhu, Da; Wang, Wei;

    2015-01-01

    Human papillomavirus (HPV) integration is a key genetic event in cervical carcinogenesis1. By conducting whole-genome sequencing and high-throughput viral integration detection, we identified 3,667 HPV integration breakpoints in 26 cervical intraepithelial neoplasias, 104 cervical carcinomas......1B was downregulated when HPV integrated in their introns. Protein expression from MYC and HMGA2 was elevated when HPV integrated into flanking regions. Moreover, microhomologous sequence between the human and HPV genomes was significantly enriched near integration breakpoints, indicating...... that fusion between viral and human DNA may have occurred by microhomology-mediated DNA repair pathways2. Our data provide insights into HPV integration-driven cervical carcinogenesis....

  4. Tumor-specific usage of alternative transcription start sites in colorectal cancer identified by genome-wide exon array analysis

    Directory of Open Access Journals (Sweden)

    Laurila Kirsti

    2011-10-01

    Full Text Available Abstract Background Approximately half of all human genes use alternative transcription start sites (TSSs to control mRNA levels and broaden the transcriptional output in healthy tissues. Aberrant expression patterns promoting carcinogenesis, however, may arise from alternative promoter usage. Results By profiling 108 colorectal samples using exon arrays, we identified nine genes (TCF12, OSBPL1A, TRAK1, ANK3, CHEK1, UGP2, LMO7, ACSL5, and SCIN showing tumor-specific alternative TSS usage in both adenoma and cancer samples relative to normal mucosa. Analysis of independent exon array data sets corroborated these findings. Additionally, we confirmed the observed patterns for selected mRNAs using quantitative real-time reverse-transcription PCR. Interestingly, for some of the genes, the tumor-specific TSS usage was not restricted to colorectal cancer. A comprehensive survey of the nine genes in lung, bladder, liver, prostate, gastric, and brain cancer revealed significantly altered mRNA isoform ratios for CHEK1, OSBPL1A, and TCF12 in a subset of these cancer types. To identify the mechanism responsible for the shift in alternative TSS usage, we antagonized the Wnt-signaling pathway in DLD1 and Ls174T colorectal cancer cell lines, which remarkably led to a shift in the preferred TSS for both OSBPL1A and TRAK1. This indicated a regulatory role of the Wnt pathway in selecting TSS, possibly also involving TP53 and SOX9, as their transcription binding sites were enriched in the promoters of the tumor preferred isoforms together with their mRNA levels being increased in tumor samples. Finally, to evaluate the prognostic impact of the altered TSS usage, immunohistochemistry was used to show deregulation of the total protein levels of both TCF12 and OSBPL1A, corresponding to the mRNA levels observed. Furthermore, the level of nuclear TCF12 had a significant correlation to progression free survival in a cohort of 248 stage II colorectal cancer samples

  5. Identifying cancer genes from cancer mutation profiles by cancer functions

    Institute of Scientific and Technical Information of China (English)

    LI YanHui; GUO Zheng; PENG ChunFang; LIU Qing; MA WenCai; WANG Jing; YAO Chen; ZHANG Min; ZHU Jing

    2008-01-01

    It is of great importance to identify new cancer genes from the data of large scale genome screenings of gene mutations in cancers. Considering the alternations of some essential functions are indispensable for oncogenesis, we define them as cancer functions and select, as their approximations, a group of detailed functions in GO (Gene Ontology) highly enriched with known cancer genes. To evaluate the efficiency of using cancer functions as features to identify cancer genes, we define, in the screened genes, the known protein kinase cancer genes as gold standard positives and the other kinase genes as gold standard negatives. The results show that cancer associated functions are more efficient in identifying cancer genes than the selection pressure feature. Furthermore, combining cancer functions with the number of non-silent mutations can generate more reliable positive predictions. Finally, with precision 0.42, we suggest a list of 46 kinase genes as candidate cancer genes which are annotated to cancer functions and carry at least 3 non-silent mutations.

  6. Genomic and Immunological Tumor Profiling Identifies Targetable Pathways and Extensive CD8+/PDL1+ Immune Infiltration in Inflammatory Breast Cancer Tumors.

    Science.gov (United States)

    Hamm, Christopher A; Moran, Diarmuid; Rao, Kakuturu; Trusk, Patricia B; Pry, Karen; Sausen, Mark; Jones, Siân; Velculescu, Victor E; Cristofanilli, Massimo; Bacus, Sarah

    2016-07-01

    Inflammatory breast cancer (IBC) is a rare and aggressive form of breast cancer that remains poorly understood at the molecular level. Comprehensive tumor profiling was performed to understand clinically actionable alterations in IBC. Targeted next-generation sequencing (NGS) and IHC were performed to identify activated pathways in IBC tumor tissues. siRNA studies examined the impact of IBC genomic variants in cellular models. IBC tumor tissues were further characterized for immune infiltration and immune checkpoint expression by IHC. Genomic analysis identified recurrent alterations in core biologic pathways, including activating and targetable variants in HER/PI3K/mTOR signaling. High rates of activating HER3 point mutations were discovered in IBC tumors. Cell line studies confirmed a role for mutant HER3 in IBC cell proliferation. Immunologic analysis revealed a subset of IBC tumors associated with high CD8(+)/PD-L1(+) lymphocyte infiltration. Immune infiltration positively correlated with an NGS-based estimate of neoantigen exposure derived from the somatic mutation rate and mutant allele frequency, iScore. Additionally, DNA mismatch repair alterations, which may contribute to higher iScores, occurred at greater frequency in tumors with higher immune infiltration. Our study identifies genomic alterations that mechanistically contribute to oncogenic signaling in IBC and provides a genetic basis for the selection of clinically relevant targeted and combination therapeutic strategies. Furthermore, an NGS-based estimate of neoantigen exposure developed in this study (iScore) may be a useful biomarker to predict immune infiltration in IBC and other cancers. The iScore may be associated with greater levels of response to immunotherapies, such as PD-L1/PD-1-targeted therapies. Mol Cancer Ther; 15(7); 1746-56. ©2016 AACR. PMID:27196778

  7. Genomic Data Commons | Office of Cancer Genomics

    Science.gov (United States)

    The NCI’s Center for Cancer Genomics launches the Genomic Data Commons (GDC), a unified data sharing platform for the cancer research community. The mission of the GDC is to enable data sharing across the entire cancer research community, to ultimately support precision medicine in oncology.

  8. Association analysis of a chemo-response signature identified within The Cancer Genome Atlas aimed at predicting genetic risk for chemo-response in ovarian cancer

    Science.gov (United States)

    Salinas, Erin A; Newtson, Andreea M; Leslie, Kimberly K; Gonzalez-Bosquet, Jesus

    2016-01-01

    Background: A gene signature associated with chemo-response in ovarian cancer was created through integration of biological data in The Cancer Genome Atlas (TCGA) and validated in five independent microarray experiments. Our study aimed to determine if single nucleotide polymorphisms (SNPs) within the 422-gene signature were associated with a genetic predisposition to platinum-based chemotherapy response in serous ovarian cancer. Methods: An association analysis between SNPs within the 422-gene signature and chemo-response in serous ovarian cancer was performed under the log-additive genetic model using the ‘SNPassoc’ package within the R environment (p<0.0001). Subsequent validation of statistically significant SNPs was done in the Ovarian Cancer Association Consortium (OCAC) database. Results: 19 SNPs were found to be associated with chemo-response with statistical significance. None of the SNPs found significant in TCGA were validated within OCAC for the outcome of interest, chemo-response. Conclusions: SNPs associated with chemo-response in ovarian cancer within TGCA database were not validated in a larger database of patients and controls from OCAC. New strategies integrating somatic and germline information may help to characterize genetic predictors for treatment response in ovarian cancer. PMID:27186327

  9. A genome-wide association study identifies a new ovarian cancer susceptibility locus on 9p22.2

    DEFF Research Database (Denmark)

    Song, Honglin; Ramus, Susan J; Tyrer, Jonathan;

    2009-01-01

    ,817 cases and 2,353 controls from the UK and approximately 2 million imputed SNPs. We genotyped the 22,790 top ranked SNPs in 4,274 cases and 4,809 controls of European ancestry from Europe, USA and Australia. We identified 12 SNPs at 9p22 associated with disease risk (P < 10(-8)). The most significant SNP...... (rs3814113; P = 2.5 x 10(-17)) was genotyped in a further 2,670 ovarian cancer cases and 4,668 controls, confirming its association (combined data odds ratio (OR) = 0.82, 95% confidence interval (CI) 0.79-0.86, P(trend) = 5.1 x 10(-19)). The association differs by histological subtype, being strongest...

  10. Suppression of pancreatic cancer growth and metastasis by HMP19 identified through genome-wide shRNA screen.

    Science.gov (United States)

    Kurahara, Hiroshi; Bohl, Christopher; Natsugoe, Shoji; Nishizono, Yuka; Harihar, Sitaram; Sharma, Rahul; Iwakuma, Tomoo; Welch, Danny R

    2016-08-01

    Therapeutic effectiveness against metastatic or even locally advanced pancreatic ductal adenocarcinoma (PDAC) is dismal, with 5-year survival less than 5%. Even in patients who undergo potentially curative resection, most patients' tumors recur in the liver. Improving therapies targeting or preventing liver metastases is crucial for improving prognosis. To identify genes suppressing metastasis, a genome-wide shRNA screen was done using the human non-metastatic PDAC cell line, S2-028. After identification of candidates, functional validation was done using intrasplenic and orthotopic injections in athymic mice. HMP19 strongly inhibited metastasis but also partially attenuated tumor growth in the pancreas. Knockdown of HMP19 increased localization of activated ERK1/2 in the nucleus, corresponding to facilitated cell proliferation, decreased p27(Kip1) and increased cyclin E1. Over-expression of HMP19 exerted the opposite effects. Using a tissue microarray of 84 human PDAC, patients with low expression of HMP19 showed significantly higher incidence of liver metastasis (p = 0.0175) and worse prognosis (p = 0.018) after surgery. HMP19, a new metastasis/tumor suppressor in PDAC, appears to alter signaling that leads to cell proliferation and appears to offer prognostic value in human PDAC. PMID:27012470

  11. Genome-wide multi-omics profiling of colorectal cancer identifies immune determinants strongly associated with relapse

    Directory of Open Access Journals (Sweden)

    Subha eMadhavan

    2013-11-01

    Full Text Available The use and benefit of adjuvant chemotherapy to treat state II colorectal cancer (CRC patients is not well understood since the majority of these patients are cured by surgery alone. Identification of biological markers of relapse is a critical challenge to effectively target treatments to the ~20% of patients destined to relapse. We have integrated molecular profiling results of several ‘omics’ data types to determine the most reliable prognostic biomarkers for relapse in CRC, using data from 40 stage I and II CRC patients. We identified 31 multi-omics features that highly correlate with relapse. The data types were integrated using multi-step analytical approach with consecutive elimination of redundant molecular features. For each data type a systems biology analysis was performed to identify pathways, biological processes and disease categories most affected in relapse. The biomarkers detected in tumors, urine and blood of patients indicated a strong association of immune processes, including aberrant regulation of T-cell and B-cell activation that could lead to overall differences in lymphocyte recruitment for tumor infiltration and markers indicating likelihood of future relapse. The immune response was the biologically most coherent signature that emerged from our analyses among several other biological processes, and corroborates other studies showing a strong immune response in patients less likely to relapse.

  12. The Cancer Genome Atlas ovarian cancer analysis

    Science.gov (United States)

    An analysis of genomic changes in ovarian cancer has provided the most comprehensive and integrated view of cancer genes for any cancer type to date. Ovarian serous adenocarcinoma tumors from 500 patients were examined by The Cancer Genome Atlas (TCGA) Re

  13. Collaborators | Office of Cancer Genomics

    Science.gov (United States)

    The TARGET initiative is jointly managed within the National Cancer Institute (NCI) by the Office of Cancer Genomics (OCG)Opens in a New Tab and the Cancer Therapy Evaluation Program (CTEP)Opens in a New Tab.

  14. Genome-Wide Association Study to Identify Single Nucleotide Polymorphisms (SNPs) Associated With the Development of Erectile Dysfunction in African-American Men After Radiotherapy for Prostate Cancer

    International Nuclear Information System (INIS)

    Purpose: To identify single nucleotide polymorphisms (SNPs) associated with erectile dysfunction (ED) among African-American prostate cancer patients treated with external beam radiation therapy. Methods and Materials: A cohort of African-American prostate cancer patients treated with external beam radiation therapy was observed for the development of ED by use of the five-item Sexual Health Inventory for Men (SHIM) questionnaire. Final analysis included 27 cases (post-treatment SHIM score ≤7) and 52 control subjects (post-treatment SHIM score ≥16). A genome-wide association study was performed using approximately 909,000 SNPs genotyped on Affymetrix 6.0 arrays (Affymetrix, Santa Clara, CA). Results: We identified SNP rs2268363, located in the follicle-stimulating hormone receptor (FSHR) gene, as significantly associated with ED after correcting for multiple comparisons (unadjusted p = 5.46 x 10-8, Bonferroni p = 0.028). We identified four additional SNPs that tended toward a significant association with an unadjusted p value -6. Inference of population substructure showed that cases had a higher proportion of African ancestry than control subjects (77% vs. 60%, p = 0.005). A multivariate logistic regression model that incorporated estimated ancestry and four of the top-ranked SNPs was a more accurate classifier of ED than a model that included only clinical variables. Conclusions: To our knowledge, this is the first genome-wide association study to identify SNPs associated with adverse effects resulting from radiotherapy. It is important to note that the SNP that proved to be significantly associated with ED is located within a gene whose encoded product plays a role in male gonad development and function. Another key finding of this project is that the four SNPs most strongly associated with ED were specific to persons of African ancestry and would therefore not have been identified had a cohort of European ancestry been screened. This study demonstrates the

  15. A 2-Stage Genome-Wide Association Study to Identify Single Nucleotide Polymorphisms Associated With Development of Erectile Dysfunction Following Radiation Therapy for Prostate Cancer

    International Nuclear Information System (INIS)

    Purpose: To identify single nucleotide polymorphisms (SNPs) associated with development of erectile dysfunction (ED) among prostate cancer patients treated with radiation therapy. Methods and Materials: A 2-stage genome-wide association study was performed. Patients were split randomly into a stage I discovery cohort (132 cases, 103 controls) and a stage II replication cohort (128 cases, 102 controls). The discovery cohort was genotyped using Affymetrix 6.0 genome-wide arrays. The 940 top ranking SNPs selected from the discovery cohort were genotyped in the replication cohort using Illumina iSelect custom SNP arrays. Results: Twelve SNPs identified in the discovery cohort and validated in the replication cohort were associated with development of ED following radiation therapy (Fisher combined P values 2.1 × 10−5 to 6.2 × 10−4). Notably, these 12 SNPs lie in or near genes involved in erectile function or other normal cellular functions (adhesion and signaling) rather than DNA damage repair. In a multivariable model including nongenetic risk factors, the odds ratios for these SNPs ranged from 1.6 to 5.6 in the pooled cohort. There was a striking relationship between the cumulative number of SNP risk alleles an individual possessed and ED status (Sommers’ D P value = 1.7 × 10−29). A 1-allele increase in cumulative SNP score increased the odds for developing ED by a factor of 2.2 (P value = 2.1 × 10−19). The cumulative SNP score model had a sensitivity of 84% and specificity of 75% for prediction of developing ED at the radiation therapy planning stage. Conclusions: This genome-wide association study identified a set of SNPs that are associated with development of ED following radiation therapy. These candidate genetic predictors warrant more definitive validation in an independent cohort.

  16. A 2-Stage Genome-Wide Association Study to Identify Single Nucleotide Polymorphisms Associated With Development of Erectile Dysfunction Following Radiation Therapy for Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kerns, Sarah L. [Department of Radiation Oncology, Mount Sinai School of Medicine, New York, New York (United States); Departments of Pathology and Genetics, Albert Einstein College of Medicine, Bronx, New York (United States); Stock, Richard [Department of Radiation Oncology, Mount Sinai School of Medicine, New York, New York (United States); Stone, Nelson [Department of Radiation Oncology, Mount Sinai School of Medicine, New York, New York (United States); Department of Urology, Mount Sinai School of Medicine, New York, New York (United States); Buckstein, Michael [Department of Radiation Oncology, Mount Sinai School of Medicine, New York, New York (United States); Shao, Yongzhao [Division of Biostatistics, New York University School of Medicine, New York, New York (United States); Campbell, Christopher [Departments of Pathology and Genetics, Albert Einstein College of Medicine, Bronx, New York (United States); Rath, Lynda [Department of Radiation Oncology, Mount Sinai School of Medicine, New York, New York (United States); De Ruysscher, Dirk; Lammering, Guido [Department of Radiation Oncology, Maastricht University Medical Center, Maastricht (Netherlands); Hixson, Rosetta; Cesaretti, Jamie; Terk, Mitchell [Florida Radiation Oncology Group, Jacksonville, Florida (United States); Ostrer, Harry [Departments of Pathology and Genetics, Albert Einstein College of Medicine, Bronx, New York (United States); Rosenstein, Barry S., E-mail: barry.rosenstein@mssm.edu [Department of Radiation Oncology, Mount Sinai School of Medicine, New York, New York (United States); Department of Radiation Oncology, New York University School of Medicine, New York, New York (United States); Departments of Dermatology and Preventive Medicine, Mount Sinai School of Medicine, New York, New York (United States)

    2013-01-01

    Purpose: To identify single nucleotide polymorphisms (SNPs) associated with development of erectile dysfunction (ED) among prostate cancer patients treated with radiation therapy. Methods and Materials: A 2-stage genome-wide association study was performed. Patients were split randomly into a stage I discovery cohort (132 cases, 103 controls) and a stage II replication cohort (128 cases, 102 controls). The discovery cohort was genotyped using Affymetrix 6.0 genome-wide arrays. The 940 top ranking SNPs selected from the discovery cohort were genotyped in the replication cohort using Illumina iSelect custom SNP arrays. Results: Twelve SNPs identified in the discovery cohort and validated in the replication cohort were associated with development of ED following radiation therapy (Fisher combined P values 2.1 Multiplication-Sign 10{sup -5} to 6.2 Multiplication-Sign 10{sup -4}). Notably, these 12 SNPs lie in or near genes involved in erectile function or other normal cellular functions (adhesion and signaling) rather than DNA damage repair. In a multivariable model including nongenetic risk factors, the odds ratios for these SNPs ranged from 1.6 to 5.6 in the pooled cohort. There was a striking relationship between the cumulative number of SNP risk alleles an individual possessed and ED status (Sommers' D P value = 1.7 Multiplication-Sign 10{sup -29}). A 1-allele increase in cumulative SNP score increased the odds for developing ED by a factor of 2.2 (P value = 2.1 Multiplication-Sign 10{sup -19}). The cumulative SNP score model had a sensitivity of 84% and specificity of 75% for prediction of developing ED at the radiation therapy planning stage. Conclusions: This genome-wide association study identified a set of SNPs that are associated with development of ED following radiation therapy. These candidate genetic predictors warrant more definitive validation in an independent cohort.

  17. Recurrent targeted genes of hepatitis B virus in the liver cancer genomes identified by a next-generation sequencing-based approach.

    Directory of Open Access Journals (Sweden)

    Dong Ding

    Full Text Available Integration of the viral DNA into host chromosomes was found in most of the hepatitis B virus (HBV-related hepatocellular carcinomas (HCCs. Here we devised a massive anchored parallel sequencing (MAPS method using next-generation sequencing to isolate and sequence HBV integrants. Applying MAPS to 40 pairs of HBV-related HCC tissues (cancer and adjacent tissues, we identified 296 HBV integration events corresponding to 286 unique integration sites (UISs with precise HBV-Human DNA junctions. HBV integration favored chromosome 17 and preferentially integrated into human transcript units. HBV targeted genes were enriched in GO terms: cAMP metabolic processes, T cell differentiation and activation, TGF beta receptor pathway, ncRNA catabolic process, and dsRNA fragmentation and cellular response to dsRNA. The HBV targeted genes include 7 genes (PTPRJ, CNTN6, IL12B, MYOM1, FNDC3B, LRFN2, FN1 containing IPR003961 (Fibronectin, type III domain, 7 genes (NRG3, MASP2, NELL1, LRP1B, ADAM21, NRXN1, FN1 containing IPR013032 (EGF-like region, conserved site, and three genes (PDE7A, PDE4B, PDE11A containing IPR002073 (3', 5'-cyclic-nucleotide phosphodiesterase. Enriched pathways include hsa04512 (ECM-receptor interaction, hsa04510 (Focal adhesion, and hsa04012 (ErbB signaling pathway. Fewer integration events were found in cancers compared to cancer-adjacent tissues, suggesting a clonal expansion model in HCC development. Finally, we identified 8 genes that were recurrent target genes by HBV integration including fibronectin 1 (FN1 and telomerase reverse transcriptase (TERT1, two known recurrent target genes, and additional novel target genes such as SMAD family member 5 (SMAD5, phosphatase and actin regulator 4 (PHACTR4, and RNA binding protein fox-1 homolog (C. elegans 1 (RBFOX1. Integrating analysis with recently published whole-genome sequencing analysis, we identified 14 additional recurrent HBV target genes, greatly expanding the HBV recurrent target list

  18. Genome-wide functional genetic screen with the anticancer agent AMPI-109 identifies PRL-3 as an oncogenic driver in triple-negative breast cancers.

    Science.gov (United States)

    Gari, Hamid H; Gearheart, Christy M; Fosmire, Susan; DeGala, Gregory D; Fan, Zeying; Torkko, Kathleen C; Edgerton, Susan M; Lucia, M Scott; Ray, Rahul; Thor, Ann D; Porter, Christopher C; Lambert, James R

    2016-03-29

    Triple-negative breast cancers (TNBC) are among the most aggressive and heterogeneous cancers with a high propensity to invade, metastasize and relapse. Here, we demonstrate that the anticancer compound, AMPI-109, is selectively efficacious in inhibiting proliferation and inducing apoptosis of multiple TNBC subtype cell lines as assessed by activation of pro-apoptotic caspases-3 and 7, PARP cleavage and nucleosomal DNA fragmentation. AMPI-109 had little to no effect on growth in the majority of non-TNBC cell lines examined. We therefore utilized AMPI-109 in a genome-wide shRNA screen in the TNBC cell line, BT-20, to investigate the utility of AMPI-109 as a tool in helping to identify molecular alterations unique to TNBC. Our screen identified the oncogenic phosphatase, PRL-3, as a potentially important driver of TNBC growth, migration and invasion. Through stable lentiviral knock downs and transfection with catalytically impaired PRL-3 in TNBC cells, loss of PRL-3 expression, or functionality, led to substantial growth inhibition. Moreover, AMPI-109 treatment, downregulation of PRL-3 expression or impairment of PRL-3 activity reduced TNBC cell migration and invasion. Histological evaluation of human breast cancers revealed PRL-3 was significantly, though not exclusively, associated with the TNBC subtype and correlated positively with regional and distant metastases, as well as 1 and 3 year relapse free survival. Collectively, our study is proof-of-concept that AMPI-109, a selectively active agent against TNBC cell lines, can be used as a molecular tool to uncover unique drivers of disease progression, such as PRL-3, which we show promotes oncogenic phenotypes in TNBC cells. PMID:26909599

  19. Functional genomics and cancer drug target discovery.

    Science.gov (United States)

    Moody, Susan E; Boehm, Jesse S; Barbie, David A; Hahn, William C

    2010-06-01

    The recent development of technologies for whole-genome sequencing, copy number analysis and expression profiling enables the generation of comprehensive descriptions of cancer genomes. However, although the structural analysis and expression profiling of tumors and cancer cell lines can allow the identification of candidate molecules that are altered in the malignant state, functional analyses are necessary to confirm such genes as oncogenes or tumor suppressors. Moreover, recent research suggests that tumor cells also depend on synthetic lethal targets, which are not mutated or amplified in cancer genomes; functional genomics screening can facilitate the discovery of such targets. This review provides an overview of the tools available for the study of functional genomics, and discusses recent research involving the use of these tools to identify potential novel drug targets in cancer. PMID:20521217

  20. Evolution of the cancer genome

    OpenAIRE

    Yates, Lucy R.; Campbell, Peter J

    2012-01-01

    The advent of massively parallel sequencing technologies has allowed the characterization of cancer genomes at an unprecedented resolution. Investigation of the mutational landscape of tumours is providing new insights into cancer genome evolution, laying bare the interplay of somatic mutation, adaptation of clones to their environment and natural selection. These studies have demonstrated the extent of the heterogeneity of cancer genomes, have allowed inferences to be made about the forces t...

  1. Programs | Office of Cancer Genomics

    Science.gov (United States)

    OCG facilitates cancer genomics research through a series of highly-focused programs. These programs generate and disseminate genomic data for use by the cancer research community. OCG programs also promote advances in technology-based infrastructure and create valuable experimental reagents and tools. OCG programs encourage collaboration by interconnecting with other genomics and cancer projects in order to accelerate translation of findings into the clinic. Below are OCG’s current, completed, and initiated programs:

  2. Genome-wide lentiviral shRNA screen identifies serine/arginine-rich splicing factor 2 as a determinant of oncolytic virus activity in breast cancer cells.

    Science.gov (United States)

    Workenhe, S T; Ketela, T; Moffat, J; Cuddington, B P; Mossman, K L

    2016-05-12

    Oncolytic human herpes simplex virus type 1 (HSV-1) shows promising treatment efficacy in late-stage clinical trials. The anticancer activity of oncolytic viruses relies on deregulated pathways in cancer cells, which make them permissive to oncolysis. To identify pathways that restrict HSV-1 KM100-mediated oncolysis, this study used a pooled genome-wide short hairpin RNA library and found that depletion of the splicing factor arginine-rich splicing factor 2 (SRSF2) leads to enhanced cytotoxicity of breast cancer cells by KM100. Serine/arginine-rich (SR) proteins are a family of RNA-binding phosphoproteins that control both constitutive and alternative pre-mRNA splicing. Further characterization showed that KM100 infection of HS578T cells under conditions of low SRSF2 leads to pronounced apoptosis without a corresponding increase in virus replication. As DNA topoisomerase I inhibitors can limit the phosphorylation of SRSF2, we combined a topoisomerase I inhibitor chemotherapeutic with KM100 and observed synergistic anticancer effect in vitro and prolonged survival of tumor-bearing mice in vivo. PMID:26257065

  3. The database of chromosome imbalance regions and genes resided in lung cancer from Asian and Caucasian identified by array-comparative genomic hybridization

    International Nuclear Information System (INIS)

    Cancer-related genes show racial differences. Therefore, identification and characterization of DNA copy number alteration regions in different racial groups helps to dissect the mechanism of tumorigenesis. Array-comparative genomic hybridization (array-CGH) was analyzed for DNA copy number profile in 40 Asian and 20 Caucasian lung cancer patients. Three methods including MetaCore analysis for disease and pathway correlations, concordance analysis between array-CGH database and the expression array database, and literature search for copy number variation genes were performed to select novel lung cancer candidate genes. Four candidate oncogenes were validated for DNA copy number and mRNA and protein expression by quantitative polymerase chain reaction (qPCR), chromogenic in situ hybridization (CISH), reverse transcriptase-qPCR (RT-qPCR), and immunohistochemistry (IHC) in more patients. We identified 20 chromosomal imbalance regions harboring 459 genes for Caucasian and 17 regions containing 476 genes for Asian lung cancer patients. Seven common chromosomal imbalance regions harboring 117 genes, included gain on 3p13-14, 6p22.1, 9q21.13, 13q14.1, and 17p13.3; and loss on 3p22.2-22.3 and 13q13.3 were found both in Asian and Caucasian patients. Gene validation for four genes including ARHGAP19 (10q24.1) functioning in Rho activity control, FRAT2 (10q24.1) involved in Wnt signaling, PAFAH1B1 (17p13.3) functioning in motility control, and ZNF322A (6p22.1) involved in MAPK signaling was performed using qPCR and RT-qPCR. Mean gene dosage and mRNA expression level of the four candidate genes in tumor tissues were significantly higher than the corresponding normal tissues (P<0.001~P=0.06). In addition, CISH analysis of patients indicated that copy number amplification indeed occurred for ARHGAP19 and ZNF322A genes in lung cancer patients. IHC analysis of paraffin blocks from Asian Caucasian patients demonstrated that the frequency of PAFAH1B1 protein overexpression was 68

  4. The database of chromosome imbalance regions and genes resided in lung cancer from Asian and Caucasian identified by array-comparative genomic hybridization

    Directory of Open Access Journals (Sweden)

    Lo Fang-Yi

    2012-06-01

    Full Text Available Abstract Background Cancer-related genes show racial differences. Therefore, identification and characterization of DNA copy number alteration regions in different racial groups helps to dissect the mechanism of tumorigenesis. Methods Array-comparative genomic hybridization (array-CGH was analyzed for DNA copy number profile in 40 Asian and 20 Caucasian lung cancer patients. Three methods including MetaCore analysis for disease and pathway correlations, concordance analysis between array-CGH database and the expression array database, and literature search for copy number variation genes were performed to select novel lung cancer candidate genes. Four candidate oncogenes were validated for DNA copy number and mRNA and protein expression by quantitative polymerase chain reaction (qPCR, chromogenic in situ hybridization (CISH, reverse transcriptase-qPCR (RT-qPCR, and immunohistochemistry (IHC in more patients. Results We identified 20 chromosomal imbalance regions harboring 459 genes for Caucasian and 17 regions containing 476 genes for Asian lung cancer patients. Seven common chromosomal imbalance regions harboring 117 genes, included gain on 3p13-14, 6p22.1, 9q21.13, 13q14.1, and 17p13.3; and loss on 3p22.2-22.3 and 13q13.3 were found both in Asian and Caucasian patients. Gene validation for four genes including ARHGAP19 (10q24.1 functioning in Rho activity control, FRAT2 (10q24.1 involved in Wnt signaling, PAFAH1B1 (17p13.3 functioning in motility control, and ZNF322A (6p22.1 involved in MAPK signaling was performed using qPCR and RT-qPCR. Mean gene dosage and mRNA expression level of the four candidate genes in tumor tissues were significantly higher than the corresponding normal tissues (PP=0.06. In addition, CISH analysis of patients indicated that copy number amplification indeed occurred for ARHGAP19 and ZNF322A genes in lung cancer patients. IHC analysis of paraffin blocks from Asian Caucasian patients demonstrated that the frequency of

  5. Characterizing the cancer genome in lung adenocarcinoma

    OpenAIRE

    Weir, Barbara A.; Woo, Michele S.; Getz, Gad; Perner, Sven; Ding, Li; Beroukhim, Rameen; Lin, William M.; Province, Michael A; Kraja, Aldi; Johnson, Laura A.; Shah, Kinjal; Sato, Mitsuo; Thomas, Roman K.; Barletta, Justine A; Borecki, Ingrid B

    2007-01-01

    Somatic alterations in cellular DNA underlie almost all human cancers1. The prospect of targeted therapies2 and the development of high-resolution, genome-wide approaches3–8 are now spurring systematic efforts to characterize cancer genomes. Here we report a large-scale project to characterize copy-number alterations in primary lung adenocarcinomas. By analysis of a large collection of tumors (n = 371) using dense single nucleotide polymorphism arrays, we identify a total of 57 significantly ...

  6. Genomic Datasets for Cancer Research

    Science.gov (United States)

    A variety of datasets from genome-wide association studies of cancer and other genotype-phenotype studies, including sequencing and molecular diagnostic assays, are available to approved investigators through the Extramural National Cancer Institute Data Access Committee.

  7. Genomics: Drugs, diabetes and cancer

    OpenAIRE

    Birnbaum, Morris J.; Shaw, Reuben J

    2011-01-01

    Variation in a genomic region that contains the cancer-a ssociated gene ATM affects a patient’s response to the diabetes drug metformin. Two experts discuss the implications for understanding diabetes and the link to cancer.

  8. FGFR2 and other loci identified in genome-wide association studies are associated with breast cancer in African-American and younger women

    OpenAIRE

    Barnholtz-Sloan, Jill S; Shetty, Priya B; Guan, Xiaowei; Nyante, Sarah J; Luo, Jingchun; Brennan, Donal J.; Millikan, Robert C.

    2010-01-01

    Twenty-nine single-nucleotide polymorphisms (SNPs) from previously published genome-wide association studies (GWAS) and multiple ancestry informative markers were genotyped in the Carolina Breast Cancer Study (CBCS) (742 African-American (AA) cases, 1230 White cases; 658 AA controls, 1118 White controls). In the entire study population, 9/10 SNPs in fibroblast growth factor receptor 2 (FGFR2) were significantly associated with breast cancer after adjusting for age, race and European ancestry ...

  9. A meta-analysis of genome-wide association studies to identify prostate cancer susceptibility loci associated with aggressive and non-aggressive disease

    Science.gov (United States)

    Amin Al Olama, Ali; Kote-Jarai, Zsofia; Schumacher, Fredrick R.; Wiklund, Fredrik; Berndt, Sonja I.; Benlloch, Sara; Giles, Graham G.; Severi, Gianluca; Neal, David E.; Hamdy, Freddie C.; Donovan, Jenny L.; Hunter, David J.; Henderson, Brian E.; Thun, Michael J.; Gaziano, Michael; Giovannucci, Edward L.; Siddiq, Afshan; Travis, Ruth C.; Cox, David G.; Canzian, Federico; Riboli, Elio; Key, Timothy J.; Andriole, Gerald; Albanes, Demetrius; Hayes, Richard B.; Schleutker, Johanna; Auvinen, Anssi; Tammela, Teuvo L.J.; Weischer, Maren; Stanford, Janet L.; Ostrander, Elaine A.; Cybulski, Cezary; Lubinski, Jan; Thibodeau, Stephen N.; Schaid, Daniel J.; Sorensen, Karina D.; Batra, Jyotsna; Clements, Judith A.; Chambers, Suzanne; Aitken, Joanne; Gardiner, Robert A.; Maier, Christiane; Vogel, Walther; Dörk, Thilo; Brenner, Hermann; Habuchi, Tomonori; Ingles, Sue; John, Esther M.; Dickinson, Joanne L.; Cannon-Albright, Lisa; Teixeira, Manuel R.; Kaneva, Radka; Zhang, Hong-Wei; Lu, Yong-Jie; Park, Jong Y.; Cooney, Kathleen A.; Muir, Kenneth R.; Leongamornlert, Daniel A.; Saunders, Edward; Tymrakiewicz, Malgorzata; Mahmud, Nadiya; Guy, Michelle; Govindasami, Koveela; O'Brien, Lynne T.; Wilkinson, Rosemary A.; Hall, Amanda L.; Sawyer, Emma J.; Dadaev, Tokhir; Morrison, Jonathan; Dearnaley, David P.; Horwich, Alan; Huddart, Robert A.; Khoo, Vincent S.; Parker, Christopher C.; Van As, Nicholas; Woodhouse, Christopher J.; Thompson, Alan; Dudderidge, Tim; Ogden, Chris; Cooper, Colin S.; Lophatonanon, Artitaya; Southey, Melissa C.; Hopper, John L.; English, Dallas; Virtamo, Jarmo; Le Marchand, Loic; Campa, Daniele; Kaaks, Rudolf; Lindstrom, Sara; Diver, W. Ryan; Gapstur, Susan; Yeager, Meredith; Cox, Angela; Stern, Mariana C.; Corral, Roman; Aly, Markus; Isaacs, William; Adolfsson, Jan; Xu, Jianfeng; Zheng, S. Lilly; Wahlfors, Tiina; Taari, Kimmo; Kujala, Paula; Klarskov, Peter; Nordestgaard, Børge G.; Røder, M. Andreas; Frikke-Schmidt, Ruth; Bojesen, Stig E.; FitzGerald, Liesel M.; Kolb, Suzanne; Kwon, Erika M.; Karyadi, Danielle M.; Orntoft, Torben Falck; Borre, Michael; Rinckleb, Antje; Luedeke, Manuel; Herkommer, Kathleen; Meyer, Andreas; Serth, Jürgen; Marthick, James R.; Patterson, Briony; Wokolorczyk, Dominika; Spurdle, Amanda; Lose, Felicity; McDonnell, Shannon K.; Joshi, Amit D.; Shahabi, Ahva; Pinto, Pedro; Santos, Joana; Ray, Ana; Sellers, Thomas A.; Lin, Hui-Yi; Stephenson, Robert A.; Teerlink, Craig; Muller, Heiko; Rothenbacher, Dietrich; Tsuchiya, Norihiko; Narita, Shintaro; Cao, Guang-Wen; Slavov, Chavdar; Mitev, Vanio; Chanock, Stephen; Gronberg, Henrik; Haiman, Christopher A.; Kraft, Peter; Easton, Douglas F.; Eeles, Rosalind A.

    2013-01-01

    Genome-wide association studies (GWAS) have identified multiple common genetic variants associated with an increased risk of prostate cancer (PrCa), but these explain less than one-third of the heritability. To identify further susceptibility alleles, we conducted a meta-analysis of four GWAS including 5953 cases of aggressive PrCa and 11 463 controls (men without PrCa). We computed association tests for approximately 2.6 million SNPs and followed up the most significant SNPs by genotyping 49 121 samples in 29 studies through the international PRACTICAL and BPC3 consortia. We not only confirmed the association of a PrCa susceptibility locus, rs11672691 on chromosome 19, but also showed an association with aggressive PrCa [odds ratio = 1.12 (95% confidence interval 1.03–1.21), P = 1.4 × 10−8]. This report describes a genetic variant which is associated with aggressive PrCa, which is a type of PrCa associated with a poorer prognosis. PMID:23065704

  10. Researchers Identify Genomic Alterations Associated with Drug-Targetable Kinase Activation in Ph-like Acute Lymphoblastic Leukemia | Office of Cancer Genomics

    Science.gov (United States)

    Acute lymphoblastic leukemia (ALL) is the most prevalent cancer among children and young adults, and standard treatments within this population generally result in favorable outcomes. By contrast, one particular subtype of this disease, Philadelphia chromosome-like ALL (Ph-like ALL), is associated with inferior outcomes. Ph-like ALL exhibits a gene expression profile similar to chromosome 9:22 translocation positive ALL, yet it lacks the characteristic BCR-ABL fusion protein.

  11. Genomic Biomarkers for Breast Cancer Risk.

    Science.gov (United States)

    Walsh, Michael F; Nathanson, Katherine L; Couch, Fergus J; Offit, Kenneth

    2016-01-01

    Clinical risk assessment for cancer predisposition includes a three-generation pedigree and physical examination to identify inherited syndromes. Additionally genetic and genomic biomarkers may identify individuals with a constitutional basis for their disease that may not be evident clinically. Genomic biomarker testing may detect molecular variations in single genes, panels of genes, or entire genomes. The strength of evidence for the association of a genomic biomarker with disease risk may be weak or strong. The factors contributing to clinical validity and utility of genomic biomarkers include functional laboratory analyses and genetic epidemiologic evidence. Genomic biomarkers may be further classified as low, moderate or highly penetrant based on the likelihood of disease. Genomic biomarkers for breast cancer are comprised of rare highly penetrant mutations of genes such as BRCA1 or BRCA2, moderately penetrant mutations of genes such as CHEK2, as well as more common genomic variants, including single nucleotide polymorphisms, associated with modest effect sizes. When applied in the context of appropriate counseling and interpretation, identification of genomic biomarkers of inherited risk for breast cancer may decrease morbidity and mortality, allow for definitive prevention through assisted reproduction, and serve as a guide to targeted therapy . PMID:26987529

  12. Novel patterns of cancer genome evolution

    Institute of Scientific and Technical Information of China (English)

    Xia Zhang; Xiaodi Deng; Yu Zhang; Zhiguang Li

    2015-01-01

    Cells usually undergo a long journey of evolution during the progression from normal to precancerous cells and finally to full-fledged cancer cells. Multiple genomic aberrations are acquired during this journey that could either act as drivers to confer significant growth advantages or act as passengers with little effect on the tumor growth. Recent advances in sequencing technology have made it feasible to decipher the evolutionary course of a cancer cell on a genome-wide level by evaluating the relative number of mutated alleles. Novel terms such as chromothripsis and chromoplexy have been introduced to describe the newly identified patterns of cancer genome evolution. These new insights have greatly expanded our understanding of the initiation and progression of cancers, which should aid in improving the efficiency of cancer management and treatment.

  13. The genomic landscape of prostate cancer

    Directory of Open Access Journals (Sweden)

    Sylvan eBaca

    2012-05-01

    Full Text Available Prostate cancer is a common malignancy in men, with a markedly variable clinical course. Somatic alterations in DNA drive the growth of prostate cancers and may underlie the behavior of aggressive versus indolent tumors. The accelerating application of genomic technologies over the last two decades has identified mutations that drive prostate cancer formation, progression, and therapeutic resistance. Here, we discuss exemplary somatic mutations in prostate cancer, and highlight mutated cellular pathways with biological and possible therapeutic importance. Examples include mutated genes involved in androgen signaling, cell cycle regulation, signal transduction and development. Some genetic alterations may also predict the clinical course of disease or response to therapy, although the molecular heterogeneity of prostate tumors poses challenges to genomic biomarker identification. The widespread application of massively parallel sequencing technology to the analysis of prostate cancer genomes should continue to advance both discovery-oriented and diagnostic avenues.

  14. Contact | Office of Cancer Genomics

    Science.gov (United States)

    For more information about the Office of Cancer Genomics, please contact: Office of Cancer Genomics National Cancer Institute 31 Center Drive, 10A07 Bethesda, Maryland 20892-2580 Phone: (301) 451-8027 Fax: (301) 480-4368 Email: ocg@mail.nih.gov *Please note that this site will not function properly in Internet Explorer unless you completely turn off the Compatibility View*

  15. International network of cancer genome projects

    NARCIS (Netherlands)

    Hudson, Thomas J.; Anderson, Warwick; Aretz, Axel; Barker, Anna D.; Bell, Cindy; Bernabe, Rosa R.; Bhan, M. K.; Calvo, Fabien; Eerola, Iiro; Gerhard, Daniela S.; Guttmacher, Alan; Guyer, Mark; Hemsley, Fiona M.; Jennings, Jennifer L.; Kerr, David; Klatt, Peter; Kolar, Patrik; Kusuda, Jun; Lane, David P.; Laplace, Frank; Lu, Youyong; Nettekoven, Gerd; Ozenberger, Brad; Peterson, Jane; Rao, T. S.; Remacle, Jacques; Schafer, Alan J.; Shibata, Tatsuhiro; Stratton, Michael R.; Vockley, Joseph G.; Watanabe, Koichi; Yang, Huanming; Yuen, Matthew M. F.; Knoppers, M.; Bobrow, Martin; Cambon-Thomsen, Anne; Dressler, Lynn G.; Dyke, Stephanie O. M.; Joly, Yann; Kato, Kazuto; Kennedy, Karen L.; Nicolas, Pilar; Parker, Michael J.; Rial-Sebbag, Emmanuelle; Romeo-Casabona, Carlos M.; Shaw, Kenna M.; Wallace, Susan; Wiesner, Georgia L.; Zeps, Nikolajs; Lichter, Peter; Biankin, Andrew V.; Chabannon, Christian; Chin, Lynda; Clement, Bruno; de Alava, Enrique; Degos, Francoise; Ferguson, Martin L.; Geary, Peter; Hayes, D. Neil; Johns, Amber L.; Nakagawa, Hidewaki; Penny, Robert; Piris, Miguel A.; Sarin, Rajiv; Scarpa, Aldo; Shibata, Tatsuhiro; van de Vijver, Marc; Futreal, P. Andrew; Aburatani, Hiroyuki; Bayes, Monica; Bowtell, David D. L.; Campbell, Peter J.; Estivill, Xavier; Grimmond, Sean M.; Gut, Ivo; Hirst, Martin; Lopez-Otin, Carlos; Majumder, Partha; Marra, Marco; Nakagawa, Hidewaki; Ning, Zemin; Puente, Xose S.; Ruan, Yijun; Shibata, Tatsuhiro; Stratton, Michael R.; Stunnenberg, Hendrik G.; Swerdlow, Harold; Velculescu, Victor E.; Wilson, Richard K.; Xue, Hong H.; Yang, Liu; Spellman, Paul T.; Bader, Gary D.; Boutros, Paul C.; Campbell, Peter J.; Flicek, Paul; Getz, Gad; Guigo, Roderic; Guo, Guangwu; Haussler, David; Heath, Simon; Hubbard, Tim J.; Jiang, Tao; Jones, Steven M.; Li, Qibin; Lopez-Bigas, Nuria; Luo, Ruibang; Pearson, John V.; Puente, Xose S.; Quesada, Victor; Raphael, Benjamin J.; Sander, Chris; Shibata, Tatsuhiro; Speed, Terence P.; Stuart, Joshua M.; Teague, Jon W.; Totoki, Yasushi; Tsunoda, Tatsuhiko; Valencia, Alfonso; Wheeler, David A.; Wu, Honglong; Zhao, Shancen; Zhou, Guangyu; Stein, Lincoln D.; Guigo, Roderic; Hubbard, Tim J.; Joly, Yann; Jones, Steven M.; Lathrop, Mark; Lopez-Bigas, Nuria; Ouellette, B. F. Francis; Spellman, Paul T.; Teague, Jon W.; Thomas, Gilles; Valencia, Alfonso; Yoshida, Teruhiko; Kennedy, Karen L.; Axton, Myles; Dyke, Stephanie O. M.; Futreal, P. Andrew; Gunter, Chris; Guyer, Mark; McPherson, John D.; Miller, Linda J.; Ozenberger, Brad; Kasprzyk, Arek; Zhang, Junjun; Haider, Syed A.; Wang, Jianxin; Yung, Christina K.; Cross, Anthony; Liang, Yong; Gnaneshan, Saravanamuttu; Guberman, Jonathan; Hsu, Jack; Bobrow, Martin; Chalmers, Don R. C.; Hasel, Karl W.; Joly, Yann; Kaan, Terry S. H.; Kennedy, Karen L.; Knoppers, Bartha M.; Lowrance, William W.; Masui, Tohru; Nicolas, Pilar; Rial-Sebbag, Emmanuelle; Rodriguez, Laura Lyman; Vergely, Catherine; Yoshida, Teruhiko; Grimmond, Sean M.; Biankin, Andrew V.; Bowtell, David D. L.; Cloonan, Nicole; Defazio, Anna; Eshleman, James R.; Etemadmoghadam, Dariush; Gardiner, Brooke A.; Kench, James G.; Scarpa, Aldo; Sutherland, Robert L.; Tempero, Margaret A.; Waddell, Nicola J.; Wilson, Peter J.; Gallinger, Steve; Tsao, Ming-Sound; Shaw, Patricia A.; Petersen, Gloria M.; Mukhopadhyay, Debabrata; Chin, Lynda; DePinho, Ronald A.; Thayer, Sarah; Muthuswamy, Lakshmi; Shazand, Kamran; Beck, Timothy; Sam, Michelle; Timms, Lee; Ballin, Vanessa; Lu, Youyong; Ji, Jiafu; Zhang, Xiuqing; Chen, Feng; Hu, Xueda; Zhou, Guangyu; Yang, Qi; Tian, Geng; Zhang, Lianhai; Xing, Xiaofang; Li, Xianghong; Zhu, Zhenggang; Yu, Yingyan; Yu, Jun; Yang, Huanming; Lathrop, Mark; Tost, Joerg; Brennan, Paul; Holcatova, Ivana; Zaridze, David; Brazma, Alvis; Egevad, Lars; Prokhortchouk, Egor; Banks, Rosamonde Elizabeth; Uhlen, Mathias; Cambon-Thomsen, Anne; Viksna, Juris; Ponten, Fredrik; Skryabin, Konstantin; Stratton, Michael R.; Futreal, P. Andrew; Birney, Ewan; Borg, Ake; Borresen-Dale, Anne-Lise; Caldas, Carlos; Foekens, John A.; Martin, Sancha; Reis-Filho, Jorge S.; Richardson, Andrea L.; Sotiriou, Christos; Stunnenberg, Hendrik G.; Thomas, Gilles; van de Vijver, Marc; van't Veer, Laura; Birnbaum, Daniel; Blanche, Helene; Boucher, Pascal; Boyault, Sandrine; Chabannon, Christian; Gut, Ivo; Masson-Jacquemier, Jocelyne D.; Lathrop, Mark; Pauporte, Iris; Pivot, Xavier; Vincent-Salomon, Anne; Tabone, Eric; Theillet, Charles; Thomas, Gilles; Tost, Joerg; Treilleux, Isabelle; Bioulac-Sage, Paulette; Clement, Bruno; Decaens, Thomas; Degos, Francoise; Franco, Dominique; Gut, Ivo; Gut, Marta; Heath, Simon; Lathrop, Mark; Samuel, Didier; Thomas, Gilles; Zucman-Rossi, Jessica; Lichter, Peter; Eils, Roland; Brors, Benedikt; Korbel, Jan O.; Korshunov, Andrey; Landgraf, Pablo; Lehrach, Hans; Pfister, Stefan; Radlwimmer, Bernhard; Reifenberger, Guido; Taylor, Michael D.; von Kalle, Christof; Majumder, Partha P.; Sarin, Rajiv; Scarpa, Aldo; Pederzoli, Paolo; Lawlor, Rita T.; Delledonne, Massimo; Bardelli, Alberto; Biankin, Andrew V.; Grimmond, Sean M.; Gress, Thomas; Klimstra, David; Zamboni, Giuseppe; Shibata, Tatsuhiro; Nakamura, Yusuke; Nakagawa, Hidewaki; Kusuda, Jun; Tsunoda, Tatsuhiko; Miyano, Satoru; Aburatani, Hiroyuki; Kato, Kazuto; Fujimoto, Akihiro; Yoshida, Teruhiko; Campo, Elias; Lopez-Otin, Carlos; Estivill, Xavier; Guigo, Roderic; de Sanjose, Silvia; Piris, Miguel A.; Montserrat, Emili; Gonzalez-Diaz, Marcos; Puente, Xose S.; Jares, Pedro; Valencia, Alfonso; Himmelbaue, Heinz; Quesada, Victor; Bea, Silvia; Stratton, Michael R.; Futreal, P. Andrew; Campbell, Peter J.; Vincent-Salomon, Anne; Richardson, Andrea L.; Reis-Filho, Jorge S.; van de Vijver, Marc; Thomas, Gilles; Masson-Jacquemier, Jocelyne D.; Aparicio, Samuel; Borg, Ake; Borresen-Dale, Anne-Lise; Caldas, Carlos; Foekens, John A.; Stunnenberg, Hendrik G.; van't Veer, Laura; Easton, Douglas F.; Spellman, Paul T.; Martin, Sancha; Chin, Lynda; Collins, Francis S.; Compton, Carolyn C.; Ferguson, Martin L.; Getz, Gad; Gunter, Chris; Guyer, Mark; Hayes, D. Neil; Lander, Eric S.; Ozenberger, Brad; Penny, Robert; Peterson, Jane; Sander, Chris; Speed, Terence P.; Spellman, Paul T.; Wheeler, David A.; Wilson, Richard K.; Chin, Lynda; Knoppers, Bartha M.; Lander, Eric S.; Lichter, Peter; Stratton, Michael R.; Bobrow, Martin; Burke, Wylie; Collins, Francis S.; DePinho, Ronald A.; Easton, Douglas F.; Futreal, P. Andrew; Green, Anthony R.; Guyer, Mark; Hamilton, Stanley R.; Hubbard, Tim J.; Kallioniemi, Olli P.; Kennedy, Karen L.; Ley, Timothy J.; Liu, Edison T.; Lu, Youyong; Majumder, Partha; Marra, Marco; Ozenberger, Brad; Peterson, Jane; Schafer, Alan J.; Spellman, Paul T.; Stunnenberg, Hendrik G.; Wainwright, Brandon J.; Wilson, Richard K.; Yang, Huanming

    2010-01-01

    The International Cancer Genome Consortium (ICGC) was launched to coordinate large-scale cancer genome studies in tumours from 50 different cancer types and/or subtypes that are of clinical and societal importance across the globe. Systematic studies of more than 25,000 cancer genomes at the genomic

  16. Identifying Synonymous Regulatory Elements in Vertebrate Genomes

    Energy Technology Data Exchange (ETDEWEB)

    Ovcharenko, I; Nobrega, M A

    2005-02-07

    Synonymous gene regulation, defined as driving shared temporal and/or spatial expression of groups of genes, is likely predicated on genomic elements that contain similar modules of certain transcription factor binding sites (TFBS). We have developed a method to scan vertebrate genomes for evolutionary conserved modules of TFBS in a predefined configuration, and created a tool, named SynoR that identify synonymous regulatory elements (SREs) in vertebrate genomes. SynoR performs de novo identification of SREs utilizing known patterns of TFBS in active regulatory elements (REs) as seeds for genome scans. Layers of multiple-species conservation allow the use of differential phylogenetic sequence conservation filters in the search of SREs and the results are displayed as to provide an extensive annotation of genes containing detected REs. Gene Ontology categories are utilized to further functionally classify the identified genes, and integrated GNF Expression Atlas 2 data allow the cataloging of tissue-specificities of the predicted SREs. We illustrate how this new tool can be used to establish a linkage between human diseases and noncoding genomic content. SynoR is publicly available at http://synor.dcode.org.

  17. Genomic Resources for Cancer Epidemiology

    Science.gov (United States)

    This page provides links to research resources, complied by the Epidemiology and Genomics Research Program, that may be of interest to genetic epidemiologists conducting cancer research, but is not exhaustive.

  18. Association between novel PLCE1 variants identified in published esophageal cancer genome-wide association studies and risk of squamous cell carcinoma of the head and neck

    International Nuclear Information System (INIS)

    Phospholipase C epsilon 1 (PLCE1) (an effector of Ras) belonging to the phospholipase family plays crucial roles in carcinogenesis and progression of several cancers, including squamous cell carcinoma of the head and neck (SCCHN). A single nucleotide polymorphism (SNP, rs2274223) in PLCE1 has been identified as a novel susceptibility locus in genome-wide association studies (GWAS) of esophageal squamous cell carcinoma (ESCC) and gastric cardia adenocarcinoma (GCA) that share similar risk factors with SCCHN. Therefore, we investigated the association between potentially functional SNPs in PLCE1 and susceptibility to SCCHN. We genotyped three potentially functional SNPs (rs2274223A/G, rs3203713A/G and rs11599672T/G) of PLCE1 in 1,098 SCCHN patients and 1,090 controls matched by age and sex in a non-Hispanic white population. Although none of three SNPs was alone significantly associated with overall risk of SCCHN, their combined effects of risk alleles (rs2274223G, rs3203713G and rs11599672G) were found to be associated with risk of SCCHN in a locus-dose effect manner (Ptrend = 0.046), particularly for non-oropharyngeal tumors (Ptrend = 0.017); specifically, rs2274223 was associated with a significantly increased risk (AG vs. AA: adjusted OR = 1.29, 95% CI = 1.01-1.64; AG/GG vs. AA: adjusted OR = 1.30, 95% CI = 1.03-1.64), while rs11599672 was associated with a significantly decreased risk (GG vs. TT: adjusted OR = 0.54, 95% CI = 0.34-0.86; TG/GG vs. TT: adjusted OR = 0.76, 95% CI = 0.61-0.95). Our findings suggest that PLCE1 variants may have an effect on risk of SCCHN associated with tobacco and alcohol exposure, particularly for those tumors arising at non-oropharyngeal sites. These findings, although need to be validated by larger studies, are consistent with those in esophageal and gastric cancers

  19. Cancer Genome Anatomy Project | Office of Cancer Genomics

    Science.gov (United States)

    The National Cancer Institute (NCI) Cancer Genome Anatomy Project (CGAP) is an online resource designed to provide the research community access to biological tissue characterization data. Request a free copy of the CGAP Website Virtual Tour CD from ocg@mail.nih.gov.

  20. TARGET Researchers Identify Mutations in SIX1/2 and microRNA Processing Genes in Favorable Histology Wilms Tumor | Office of Cancer Genomics

    Science.gov (United States)

    TARGET researchers molecularly characterized favorable histology Wilms tumor (FHWT), a pediatric renal cancer. Comprehensive genome and transcript analyses revealed single-nucleotide substitution/deletion mutations in microRNA processing genes (15% of FHWT patients) and Sine Oculis Homeobox Homolog 1/2 (SIX1/2) genes (7% of FHWT patients). SIX1/2 genes play a critical role in renal development and were not previously associated with FHWT, thus presenting a novel role for SIX1/2 pathway aberrations in this disease.

  1. Researchers Identify Early Sign of Pancreatic Cancer

    Science.gov (United States)

    ... of pancreatic cancer Researchers identify early sign of pancreatic cancer September 28, 2014 Tags: PancreaticCancer Brian Wolpin, MD ... discovered a sign of the early development of pancreatic cancer – an upsurge in certain amino acids that occurs ...

  2. Identifying Network Perturbation in Cancer

    Science.gov (United States)

    Logsdon, Benjamin A.; Gentles, Andrew J.; Lee, Su-In

    2016-01-01

    We present a computational framework, called DISCERN (DIfferential SparsE Regulatory Network), to identify informative topological changes in gene-regulator dependence networks inferred on the basis of mRNA expression datasets within distinct biological states. DISCERN takes two expression datasets as input: an expression dataset of diseased tissues from patients with a disease of interest and another expression dataset from matching normal tissues. DISCERN estimates the extent to which each gene is perturbed—having distinct regulator connectivity in the inferred gene-regulator dependencies between the disease and normal conditions. This approach has distinct advantages over existing methods. First, DISCERN infers conditional dependencies between candidate regulators and genes, where conditional dependence relationships discriminate the evidence for direct interactions from indirect interactions more precisely than pairwise correlation. Second, DISCERN uses a new likelihood-based scoring function to alleviate concerns about accuracy of the specific edges inferred in a particular network. DISCERN identifies perturbed genes more accurately in synthetic data than existing methods to identify perturbed genes between distinct states. In expression datasets from patients with acute myeloid leukemia (AML), breast cancer and lung cancer, genes with high DISCERN scores in each cancer are enriched for known tumor drivers, genes associated with the biological processes known to be important in the disease, and genes associated with patient prognosis, in the respective cancer. Finally, we show that DISCERN can uncover potential mechanisms underlying network perturbation by explaining observed epigenomic activity patterns in cancer and normal tissue types more accurately than alternative methods, based on the available epigenomic data from the ENCODE project. PMID:27145341

  3. Identification of cancer-driver genes in focal genomic alterations from whole genome sequencing data.

    Science.gov (United States)

    Jang, Ho; Hur, Youngmi; Lee, Hyunju

    2016-01-01

    DNA copy number alterations (CNAs) are the main genomic events that occur during the initiation and development of cancer. Distinguishing driver aberrant regions from passenger regions, which might contain candidate target genes for cancer therapies, is an important issue. Several methods for identifying cancer-driver genes from multiple cancer patients have been developed for single nucleotide polymorphism (SNP) arrays. However, for NGS data, methods for the SNP array cannot be directly applied because of different characteristics of NGS such as higher resolutions of data without predefined probes and incorrectly mapped reads to reference genomes. In this study, we developed a wavelet-based method for identification of focal genomic alterations for sequencing data (WIFA-Seq). We applied WIFA-Seq to whole genome sequencing data from glioblastoma multiforme, ovarian serous cystadenocarcinoma and lung adenocarcinoma, and identified focal genomic alterations, which contain candidate cancer-related genes as well as previously known cancer-driver genes. PMID:27156852

  4. Identification of cancer-driver genes in focal genomic alterations from whole genome sequencing data

    Science.gov (United States)

    Jang, Ho; Hur, Youngmi; Lee, Hyunju

    2016-01-01

    DNA copy number alterations (CNAs) are the main genomic events that occur during the initiation and development of cancer. Distinguishing driver aberrant regions from passenger regions, which might contain candidate target genes for cancer therapies, is an important issue. Several methods for identifying cancer-driver genes from multiple cancer patients have been developed for single nucleotide polymorphism (SNP) arrays. However, for NGS data, methods for the SNP array cannot be directly applied because of different characteristics of NGS such as higher resolutions of data without predefined probes and incorrectly mapped reads to reference genomes. In this study, we developed a wavelet-based method for identification of focal genomic alterations for sequencing data (WIFA-Seq). We applied WIFA-Seq to whole genome sequencing data from glioblastoma multiforme, ovarian serous cystadenocarcinoma and lung adenocarcinoma, and identified focal genomic alterations, which contain candidate cancer-related genes as well as previously known cancer-driver genes. PMID:27156852

  5. Cancer Genome Anatomy Project (CGAP) | Office of Cancer Genomics

    Science.gov (United States)

    CGAP generated a wide range of genomics data on cancerous cells that are accessible through easy-to-use online tools. Researchers, educators, and students can find "in silico" answers to biological questions through the CGAP website. Request a free copy of the CGAP Website Virtual Tour CD from ocg@mail.nih.gov to learn how to navigate the website.

  6. Dana-Farber Cancer Institute | Office of Cancer Genomics

    Science.gov (United States)

    Functional Annotation of Cancer Genomes Principal Investigator: William C. Hahn, M.D., Ph.D. The comprehensive characterization of cancer genomes has and will continue to provide an increasingly complete catalog of genetic alterations in specific cancers. However, most epithelial cancers harbor hundreds of genetic alterations as a consequence of genomic instability. Therefore, the functional consequences of the majority of mutations remain unclear.

  7. International network of cancer genome projects.

    OpenAIRE

    Aretz, Axel; Bernabé, Rosa R.; Eerola, Iiro; Hemsley, Fiona M.; Jennings, Jennifer L.; Kerr, David; Klatt, Peter; Kolar, Patrik; Lane, David P; Laplace, Frank; Nettekoven, Gerd; Remacle, Jacques; WATANABE, Koichi; Yuen, Matthew M. F.; Knoppers, Bartha M.

    2010-01-01

    The International Cancer Genome Consortium (ICGC) was launched to coordinate large-scale cancer genome studies in tumours from 50 different cancer types and/or subtypes that are of clinical and societal importance across the globe. Systematic studies of more than 25,000 cancer genomes at the genomic, epigenomic and transcriptomic levels will reveal the repertoire of oncogenic mutations, uncover traces of the mutagenic influences, define clinically relevant subtypes for prognosis and therapeut...

  8. Replication study for the association of seven genome- GWAS-identified Loci with susceptibility to ovarian cancer in the Polish population.

    Science.gov (United States)

    Mostowska, Adrianna; Sajdak, Stefan; Pawlik, Piotr; Markowska, Janina; Pawałowska, Monika; Lianeri, Margarita; Jagodzinski, Paweł P

    2015-04-01

    We investigated the previously-demonstrated association of seven genome-wide association studies (GWAS) single nucleotide polymorphisms (SNPs), including rs2072590 (HOXD-AS1), rs2665390 (TIPARP), rs10088218 and rs10098821 (8q24), rs3814113 (9p22), rs9303542 (SKAP1) and rs2363956 (ANKLE1), as risk factors of epithelial ovarian tumors (EOTs). These SNPs were genotyped in two hundred seventy three patients with EOTs and four hundred sixty four unrelated healthy females from the Polish population. We observed the lowest p values of the trend test for the 9p22 rs3814113 and 8q24 rs10098821 SNPs in patients with all subtypes of ovarian cancer (p(trend) = 0.010 and p(trend) = 0.014, respectively). There were also significant p values for the trend of the 9p22 rs3814113 and the 8q24 rs10098821 SNPs for serous histological subtypes of ovarian cancer (p(trend) = 0.006, p(trend) = 0.033, respectively). Moreover, stratification of the patients based on their histological type of cancer demonstrated, in the dominant hereditary model, a significant association of the 9p22 rs3814113 SNP with serous ovarian carcinoma OR = 0.532 (95% CI = 0.342 - 0.827, p = 0.005, p(corr) = 0.035). Despite the relatively small sample size of cases and controls, our studies confirmed some of the previously-demonstrated GWAS SNPs as genetic risk factors for EOTs. PMID:25173882

  9. Transcriptional consequences of genomic structural aberrations in breast cancer

    OpenAIRE

    Inaki, Koichiro; Hillmer, Axel M.; Ukil, Leena; Yao, Fei; Woo, Xing Yi; Vardy, Leah A; Zawack, Kelson Folkvard Braaten; Lee, Charlie Wah Heng; Ariyaratne, Pramila Nuwantha; Chan, Yang Sun; Desai, Kartiki Vasant; Bergh, Jonas; Hall, Per; Putti, Thomas Choudary; Ong, Wai Loon

    2011-01-01

    Using a long-span, paired-end deep sequencing strategy, we have comprehensively identified cancer genome rearrangements in eight breast cancer genomes. Herein, we show that 40%–54% of these structural genomic rearrangements result in different forms of fusion transcripts and that 44% are potentially translated. We find that single segmental tandem duplication spanning several genes is a major source of the fusion gene transcripts in both cell lines and primary tumors involving adjacent genes ...

  10. Characterizing genomic alterations in cancer by complementary functional associations.

    Science.gov (United States)

    Kim, Jong Wook; Botvinnik, Olga B; Abudayyeh, Omar; Birger, Chet; Rosenbluh, Joseph; Shrestha, Yashaswi; Abazeed, Mohamed E; Hammerman, Peter S; DiCara, Daniel; Konieczkowski, David J; Johannessen, Cory M; Liberzon, Arthur; Alizad-Rahvar, Amir Reza; Alexe, Gabriela; Aguirre, Andrew; Ghandi, Mahmoud; Greulich, Heidi; Vazquez, Francisca; Weir, Barbara A; Van Allen, Eliezer M; Tsherniak, Aviad; Shao, Diane D; Zack, Travis I; Noble, Michael; Getz, Gad; Beroukhim, Rameen; Garraway, Levi A; Ardakani, Masoud; Romualdi, Chiara; Sales, Gabriele; Barbie, David A; Boehm, Jesse S; Hahn, William C; Mesirov, Jill P; Tamayo, Pablo

    2016-05-01

    Systematic efforts to sequence the cancer genome have identified large numbers of mutations and copy number alterations in human cancers. However, elucidating the functional consequences of these variants, and their interactions to drive or maintain oncogenic states, remains a challenge in cancer research. We developed REVEALER, a computational method that identifies combinations of mutually exclusive genomic alterations correlated with functional phenotypes, such as the activation or gene dependency of oncogenic pathways or sensitivity to a drug treatment. We used REVEALER to uncover complementary genomic alterations associated with the transcriptional activation of β-catenin and NRF2, MEK-inhibitor sensitivity, and KRAS dependency. REVEALER successfully identified both known and new associations, demonstrating the power of combining functional profiles with extensive characterization of genomic alterations in cancer genomes. PMID:27088724

  11. Genome-wide identification of significant aberrations in cancer genome

    Directory of Open Access Journals (Sweden)

    Yuan Xiguo

    2012-07-01

    Full Text Available Abstract Background Somatic Copy Number Alterations (CNAs in human genomes are present in almost all human cancers. Systematic efforts to characterize such structural variants must effectively distinguish significant consensus events from random background aberrations. Here we introduce Significant Aberration in Cancer (SAIC, a new method for characterizing and assessing the statistical significance of recurrent CNA units. Three main features of SAIC include: (1 exploiting the intrinsic correlation among consecutive probes to assign a score to each CNA unit instead of single probes; (2 performing permutations on CNA units that preserve correlations inherent in the copy number data; and (3 iteratively detecting Significant Copy Number Aberrations (SCAs and estimating an unbiased null distribution by applying an SCA-exclusive permutation scheme. Results We test and compare the performance of SAIC against four peer methods (GISTIC, STAC, KC-SMART, CMDS on a large number of simulation datasets. Experimental results show that SAIC outperforms peer methods in terms of larger area under the Receiver Operating Characteristics curve and increased detection power. We then apply SAIC to analyze structural genomic aberrations acquired in four real cancer genome-wide copy number data sets (ovarian cancer, metastatic prostate cancer, lung adenocarcinoma, glioblastoma. When compared with previously reported results, SAIC successfully identifies most SCAs known to be of biological significance and associated with oncogenes (e.g., KRAS, CCNE1, and MYC or tumor suppressor genes (e.g., CDKN2A/B. Furthermore, SAIC identifies a number of novel SCAs in these copy number data that encompass tumor related genes and may warrant further studies. Conclusions Supported by a well-grounded theoretical framework, SAIC has been developed and used to identify SCAs in various cancer copy number data sets, providing useful information to study the landscape of cancer genomes

  12. A genome-wide association study identifies pancreatic cancer susceptibility loci on chromosomes 13q22.1, 1q32.1 and 5p15.33

    OpenAIRE

    Petersen, Gloria M.; Amundadottir, Laufey; Fuchs, Charles S; Kraft, Peter; Stolzenberg-Solomon, Rachael Z; Jacobs, Kevin B.; Arslan, Alan A.; Bueno-de-Mesquita, H Bas; Gallinger, Steven; Gross, Myron; Helzlsouer, Kathy; Holly, Elizabeth A.; Jacobs, Eric J.; Klein, Alison P; LaCroix, Andrea

    2010-01-01

    We conducted a genome-wide association study (GWAS) of pancreatic cancer in 3,851 cases and 3,934 controls drawn from twelve prospective cohort studies and eight case-control studies. Based on a logistic regression model for genotype trend effect that was adjusted for study, age, sex, self-described ancestry and five principal components, we identified eight SNPs that map to three loci on chromosomes 13q22.1, 1q32.1 and 5p15.33. Two correlated SNPs, rs9543325 (P=3.27×10−11; per allele odds ra...

  13. Clinical Implications of the Cancer Genome

    OpenAIRE

    MacConaill, Laura E; Garraway, Levi A

    2010-01-01

    Cancer is a disease of the genome. Most tumors harbor a constellation of structural genomic alterations that may dictate their clinical behavior and treatment response. Whereas elucidating the nature and importance of these genomic alterations has been the goal of cancer biologists for several decades, ongoing global genome characterization efforts are revolutionizing both tumor biology and the optimal paradigm for cancer treatment at an unprecedented scope. The pace of advance has been empow...

  14. The Relationship Between Eight GWAS-Identified Single-Nucleotide Polymorphisms and Primary Breast Cancer Outcomes

    OpenAIRE

    Bayraktar, Soley; Thompson, Patricia A.; Yoo, Suk-Young; Do, Kim-Anh; Sahin, Aysegul A.; Arun, Banu K; Bondy, Melissa L.; Brewster, Abenaa M.

    2013-01-01

    Several single-nucleotide polymorphisms (SNPs) associated with breast cancer risk have been identified through genome-wide association studies. This study investigated the association of eight risk SNPs with breast cancer disease-free survival and overall survival rates. Results suggest that two previously identified breast cancer risk susceptibility loci may influence breast cancer prognosis or comorbid conditions associated with overall survival.

  15. Comprehensive genetic testing identifies targetable genomic alterations in most patients with non-small cell lung cancer, specifically adenocarcinoma, single institute investigation

    Science.gov (United States)

    Won, Brian M.; Patton, Kathryn Alexa; Villaflor, Victoria M.; Hoffman, Philip C.; Hensing, Thomas; Hogarth, D. Kyle; Malik, Renuka; MacMahon, Heber; Mueller, Jeffrey; Simon, Cassie A.; Vigneswaran, Wickii T.; Wigfield, Christopher H.; Ferguson, Mark K.; Husain, Aliya N.; Vokes, Everett E.; Salgia, Ravi

    2016-01-01

    This study reviews extensive genetic analysis in advanced non-small cell lung cancer (NSCLC) patients in order to: describe how targetable mutation genes interrelate with the genes identified as variants of unknown significance; assess the percentage of patients with a potentially targetable genetic alterations; evaluate the percentage of patients who had concurrent alterations, previously considered to be mutually exclusive; and characterize the molecular subset of KRAS. Thoracic Oncology Research Program Databases at the University of Chicago provided patient demographics, pathology, and results of genetic testing. 364 patients including 289 adenocarcinoma underwent genotype testing by various platforms such as FoundationOne, Caris Molecular Intelligence, and Response Genetics Inc. For the entire adenocarcinoma cohort, 25% of patients were African Americans; 90% of KRAS mutations were detected in smokers, including current and former smokers; 46% of EGFR and 61% of ALK alterations were detected in never smokers. 99.4% of patients, whose samples were analyzed by next-generation sequencing (NGS), had genetic alterations identified with an average of 10.8 alterations/tumor throughout different tumor subtypes. However, mutations were not mutually exclusive. NGS in this study identified potentially targetable genetic alterations in the majority of patients tested, detected concurrent alterations and provided information on variants of unknown significance at this time but potentially targetable in the future. PMID:26934441

  16. Integration of genomics in cancer care

    DEFF Research Database (Denmark)

    Santos, Erika Maria Monteiro; Edwards, Quannetta T; Floria-Santos, Milena;

    2013-01-01

    PURPOSE: The article aims to introduce nurses to how genetics-genomics is currently integrated into cancer care from prevention to treatment and influencing oncology nursing practice. ORGANIZING CONSTRUCT: An overview of genetics-genomics is described as it relates to cancer etiology, hereditary...... cancer syndromes, epigenetics factors, and management of care considerations. METHODS: Peer-reviewed literature and expert professional guidelines were reviewed to address concepts of genetics-genomics in cancer care. FINDINGS: Cancer is now known to be heterogeneous at the molecular level, with genetic......: Rapidly developing advances in genetics-genomics are changing all aspects of cancer care, with implications for nursing practice. CLINICAL RELEVANCE: Nurses can educate cancer patients and their families about genetic-genomic advances and advocate for use of evidence-based genetic-genomic practice...

  17. A genome-wide association study identifies pancreatic cancer susceptibility loci on chromosomes 13q22.1, 1q32.1 and 5p15.33

    Science.gov (United States)

    Petersen, Gloria M.; Amundadottir, Laufey; Fuchs, Charles S.; Kraft, Peter; Stolzenberg-Solomon, Rachael Z.; Jacobs, Kevin B.; Arslan, Alan A.; Bueno-de-Mesquita, H. Bas; Gallinger, Steven; Gross, Myron; Helzlsouer, Kathy; Holly, Elizabeth A.; Jacobs, Eric J.; Klein, Alison P.; LaCroix, Andrea; Li, Donghui; Mandelson, Margaret T.; Olson, Sara H.; Risch, Harvey A.; Zheng, Wei; Albanes, Demetrius; Bamlet, William R.; Berg, Christine D.; Boutron-Ruault, Marie-Christine; Buring, Julie E.; Bracci, Paige M.; Canzian, Federico; Clipp, Sandra; Cotterchio, Michelle; de Andrade, Mariza; Duell, Eric J.; Gaziano, J. Michael; Giovannucci, Edward L.; Goggins, Michael; Hallmans, Göran; Hankinson, Susan E.; Hassan, Manal; Howard, Barbara; Hunter, David J.; Hutchinson, Amy; Jenab, Mazda; Kaaks, Rudolf; Kooperberg, Charles; Krogh, Vittorio; Kurtz, Robert C.; Lynch, Shannon M.; McWilliams, Robert R.; Mendelsohn, Julie B.; Michaud, Dominique S.; Parikh, Hemang; Patel, Alpa V.; Peeters, Petra H.M.; Rajkovic, Aleksandar; Riboli, Elio; Rodriguez, Laudina; Seminara, Daniela; Shu, Xiao-Ou; Thomas, Gilles; Tjønneland, Anne; Tobias, Geoffrey S.; Trichopoulos, Dimitrios; Van Den Eeden, Stephen K.; Virtamo, Jarmo; Wactawski-Wende, Jean; Wang, Zhaoming; Wolpin, Brian M.; Yu, Herbert; Yu, Kai; Zeleniuch-Jacquotte, Anne; Fraumeni, Joseph F.; Hoover, Robert N.; Hartge, Patricia; Chanock, Stephen J.

    2010-01-01

    We conducted a genome-wide association study (GWAS) of pancreatic cancer in 3,851 cases and 3,934 controls drawn from twelve prospective cohort studies and eight case-control studies. Based on a logistic regression model for genotype trend effect that was adjusted for study, age, sex, self-described ancestry and five principal components, we identified eight SNPs that map to three loci on chromosomes 13q22.1, 1q32.1 and 5p15.33. Two correlated SNPs, rs9543325 (P=3.27×10−11; per allele odds ratio, OR 1.26, 95% CI=1.18-1.35) and rs9564966 (P=5.86×10−8; per allele OR 1.21, 95% CI=1.13-1.30) map to a non-genic region on chromosome 13q22.1. Five SNPs on 1q32.1 map to NR5A2; the strongest signal was rs3790844 (P=2.45×10−10; per allele OR 0.77, 95% CI=0.71-0.84). A single SNP, rs401681 (P=3.66×10−7; per allele OR 1.19, 95% CI=1.11-1.27) maps to the CLPTM1L-TERT locus on 5p15.33, associated with multiple cancers. Our study has identified common susceptibility loci for pancreatic cancer that warrant follow-up studies. PMID:20101243

  18. Genome-Wide analysis of allelic imbalance in laser microdissected prostate cancer tissue using the Affymetrix 50K Mapping array identifies genomic patterns associated with metastasis and differentiation

    DEFF Research Database (Denmark)

    Tørring, Niels; Borre, Michael; Sørensen, Karina;

    2007-01-01

    to be developed for patient stratification based on risk of progression. We analysed laser-microdissected prostate tumour tissue from 43 patients with histologically verified PCa, using the new high-resolution Affymetrix Mapping 50K single-nucleotide polymorphism array. The results showed six major...... loss. However, tumour progression towards a metastatic stage, as well as poor differentiation, was identified by specific patterns of copy number gains of genomic regions located at chromosomes 8q, 1q, 3q and 7q. Androgen ablation therapy was further characterised by copy gain at chromosomes 2p and 10q...

  19. Exploring Cancer's Fractured Genomic Landscape: Searching for Cancer Drivers and Vulnerabilities in Somatic Copy Number Alterations

    OpenAIRE

    Zack, Travis Ian

    2014-01-01

    Somatic copy number alterations (SCNAs) are a class of alterations that lead to deviations from diploidy in developing and established tumors. A feature that distinguishes SCNAs from other alterations is their genomic footprint. The large genomic footprint of SCNAs in a typical cancer's genome presents both a challenge and an opportunity to find targetable vulnerabilities in cancer. Because a single event affects many genes, it is often challenging to identify the tumorigenic targets of SCNAs...

  20. Exome sequencing of contralateral breast cancer identifies metastatic disease.

    Science.gov (United States)

    Klevebring, Daniel; Lindberg, Johan; Rockberg, Julia; Hilliges, Camilla; Hall, Per; Sandberg, Maria; Czene, Kamila

    2015-06-01

    Women with contralateral breast cancer (CBC) have significantly worse prognosis compared to women with unilateral cancer. A possible explanation of the poor prognosis of patients with CBC is that in a subset of patients, the second cancer is not a new primary tumor but a metastasis of the first cancer that has potentially obtained aggressive characteristics through selection of treatment. Exome and whole-genome sequencing of solid tumors has previously been used to investigate the clonal relationship between primary tumors and metastases in several diseases. In order to assess the relationship between the first and the second cancer, we performed exome sequencing to identify somatic mutations in both first and second cancers, and compared paired normal tissue of 25 patients with metachronous CBC. For three patients, we identified shared somatic mutations indicating a common clonal origin thereby demonstrating that the second tumor is a metastasis of the first cancer, rather than a new primary cancer. Accordingly, these patients all developed distant metastasis within 3 years of the second diagnosis, compared with 7 out of 22 patients with non-shared somatic profiles. Genomic profiling of both tumors help the clinicians distinguish between true CBCs and subsequent metastases. PMID:25922084

  1. Identifying Human Genome-Wide CNV, LOH and UPD by Targeted Sequencing of Selected Regions.

    Directory of Open Access Journals (Sweden)

    Wei Li

    Full Text Available Copy-number variations (CNV, loss of heterozygosity (LOH, and uniparental disomy (UPD are large genomic aberrations leading to many common inherited diseases, cancers, and other complex diseases. An integrated tool to identify these aberrations is essential in understanding diseases and in designing clinical interventions. Previous discovery methods based on whole-genome sequencing (WGS require very high depth of coverage on the whole genome scale, and are cost-wise inefficient. Another approach, whole exome genome sequencing (WEGS, is limited to discovering variations within exons. Thus, we are lacking efficient methods to detect genomic aberrations on the whole genome scale using next-generation sequencing technology. Here we present a method to identify genome-wide CNV, LOH and UPD for the human genome via selectively sequencing a small portion of genome termed Selected Target Regions (SeTRs. In our experiments, the SeTRs are covered by 99.73%~99.95% with sufficient depth. Our developed bioinformatics pipeline calls genome-wide CNVs with high confidence, revealing 8 credible events of LOH and 3 UPD events larger than 5M from 15 individual samples. We demonstrate that genome-wide CNV, LOH and UPD can be detected using a cost-effective SeTRs sequencing approach, and that LOH and UPD can be identified using just a sample grouping technique, without using a matched sample or familial information.

  2. Pathway and network analysis of cancer genomes

    DEFF Research Database (Denmark)

    Creixell, Pau; Reimand, Jueri; Haider, Syed;

    2015-01-01

    Genomic information on tumors from 50 cancer types cataloged by the International Cancer Genome Consortium (ICGC) shows that only a few well-studied driver genes are frequently mutated, in contrast to many infrequently mutated genes that may also contribute to tumor biology. Hence there has been ...

  3. Genomic instability and cancer: an introduction

    Institute of Scientific and Technical Information of China (English)

    Zhiyuan Shen

    2011-01-01

    @@ Genomic instability as a major driving force of tumorigenesis.The ultimate goal of cell division for most non-cancerous somatic cells is to accurately duplicate the genome and then evenly divide the duplicated genome into the two daughter cells.This ensures that the daughter cells will have exactly the same genetic material as their parent cell.

  4. A computational approach for identifying pathogenicity islands in prokaryotic genomes

    Directory of Open Access Journals (Sweden)

    Oh Tae Kwang

    2005-07-01

    Full Text Available Abstract Background Pathogenicity islands (PAIs, distinct genomic segments of pathogens encoding virulence factors, represent a subgroup of genomic islands (GIs that have been acquired by horizontal gene transfer event. Up to now, computational approaches for identifying PAIs have been focused on the detection of genomic regions which only differ from the rest of the genome in their base composition and codon usage. These approaches often lead to the identification of genomic islands, rather than PAIs. Results We present a computational method for detecting potential PAIs in complete prokaryotic genomes by combining sequence similarities and abnormalities in genomic composition. We first collected 207 GenBank accessions containing either part or all of the reported PAI loci. In sequenced genomes, strips of PAI-homologs were defined based on the proximity of the homologs of genes in the same PAI accession. An algorithm reminiscent of sequence-assembly procedure was then devised to merge overlapping or adjacent genomic strips into a large genomic region. Among the defined genomic regions, PAI-like regions were identified by the presence of homolog(s of virulence genes. Also, GIs were postulated by calculating G+C content anomalies and codon usage bias. Of 148 prokaryotic genomes examined, 23 pathogenic and 6 non-pathogenic bacteria contained 77 candidate PAIs that partly or entirely overlap GIs. Conclusion Supporting the validity of our method, included in the list of candidate PAIs were thirty four PAIs previously identified from genome sequencing papers. Furthermore, in some instances, our method was able to detect entire PAIs for those only partial sequences are available. Our method was proven to be an efficient method for demarcating the potential PAIs in our study. Also, the function(s and origin(s of a candidate PAI can be inferred by investigating the PAI queries comprising it. Identification and analysis of potential PAIs in prokaryotic

  5. Genomic tumor evolution of breast cancer.

    Science.gov (United States)

    Sato, Fumiaki; Saji, Shigehira; Toi, Masakazu

    2016-01-01

    Owing to recent technical development of comprehensive genome-wide analysis such as next generation sequencing, deep biological insights of breast cancer have been revealed. Information of genomic mutations and rearrangements in patients' tumors is indispensable to understand the mechanism in carcinogenesis, progression, metastasis, and resistance to systemic treatment of breast cancer. To date, comprehensive genomic analyses illustrate not only base substitution patterns and lists of driver mutations and key rearrangements, but also a manner of tumor evolution. Breast cancer genome is dynamically changing and evolving during cancer development course from non-invasive disease via invasive primary tumor to metastatic tumor, and during treatment exposure. The accumulation pattern of base substitution and genomic rearrangement looks gradual and punctuated, respectively, in analogy with contrasting theories for evolution manner of species, Darwin's phyletic gradualism, and Eldredge and Gould's "punctuated equilibrium". Liquid biopsy is a non-invasive method to detect the genomic evolution of breast cancer. Genomic mutation patterns in circulating tumor cells and circulating cell-free tumor DNA represent those of tumors existing in patient body. Liquid biopsy methods are now under development for future application to clinical practice of cancer treatment. In this article, latest knowledge regarding breast cancer genome, especially in terms of 'tumor evolution', is summarized. PMID:25998191

  6. A genome-wide association study identifies colorectal cancer susceptibility loci on chromosomes 10p14 and 8q23.3

    Czech Academy of Sciences Publication Activity Database

    Tomlinson, I.P.M.; Webb, E.; Carvajal-Carmona, L.; Broderick, P.; Howarth, K.; Pittman, A.M.; Spain, S.; Lubbe, S.; Walter, A.; Sullivan, K.; Jaeger, E.; Fielding, S.; Rowan, A.; Vijayakrishnan, J.; Domingo, E.; Chandler, I.; Kemp, Z.; Qureshi, M.; Farrington, S.M.; Tenesa, A.; Prendergast, J.G.D.; Barnetson, R.A.; Penegar, S.; Barclay, E.; Wood, W.; Martin, L.; Gorman, M.; Thomas, H.; Peto, J.; Bishop, D.T.; Gray, R.; Maher, E.R.; Lucassen, A.; Kerr, D.; Evans, D.G.R.; Schafmayer, C.; Buch, S.; Völzke, H.; Hampe, J.; Schreber, S.; John, U.; Koessler, T.; Pharoah, P.; van Wezel, T.; Morreau, H.; Wijnen, J.T.; Hopper, J.L.; Southey, M.C.; Giles, G.G.; Severi, G.; Castellví-Bel, S.; Ruiz-Ponte, C.; Carracedo, A.; Castells, A.; Försti, A.; Hemminki, K.; Vodička, Pavel; Naccarati, Alessio; Lipton, L.; Ho, J.W.C.; Cheng, K.K.; Sham, P.C.; Luk, J.; Agúndez, J.A.G.; Ladero, J.M.; de la Hoya, M.; Caldés, T.; Niittymäki, I.; Tuupanene, S.; Karhu, A.; Aaltonen, L.; Cazier, J.B.; Campbell, H.; Dunlop, M.G.; Houlston, R.S.

    2008-01-01

    Roč. 40, č. 5 (2008), s. 623-630. ISSN 1061-4036 R&D Projects: GA ČR GA310/07/1430 Institutional research plan: CEZ:AV0Z50390703 Keywords : Colorectal cancer Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 30.259, year: 2008

  7. Identifying Network Perturbation in Cancer.

    OpenAIRE

    Maxim Grechkin; Logsdon, Benjamin A.; Gentles, Andrew J.; Su-In Lee

    2016-01-01

    We present a computational framework, called DISCERN (DIfferential SparsE Regulatory Network), to identify informative topological changes in gene-regulator dependence networks inferred on the basis of mRNA expression datasets within distinct biological states. DISCERN takes two expression datasets as input: an expression dataset of diseased tissues from patients with a disease of interest and another expression dataset from matching normal tissues. DISCERN estimates the extent to which each ...

  8. Identifying Network Perturbation in Cancer

    OpenAIRE

    Grechkin, Maxim; Logsdon, Benjamin A.; Gentles, Andrew J.; Lee, Su-In

    2016-01-01

    We present a computational framework, called DISCERN (DIfferential SparsE Regulatory Network), to identify informative topological changes in gene-regulator dependence networks inferred on the basis of mRNA expression datasets within distinct biological states. DISCERN takes two expression datasets as input: an expression dataset of diseased tissues from patients with a disease of interest and another expression dataset from matching normal tissues. DISCERN estimates the extent to which each ...

  9. Preclinical Assays for Identifying Cancer Chemopreventive Phytochemicals

    OpenAIRE

    Oyama, Takeru; Yasui, Yumiko; Sugie, Shigeyuki; Tanaka, Takuji

    2009-01-01

    Dietary factors influence carcinogenesis in a variety of tissues. The consumption of fruits and vegetables is associated with a decreased risk of several types of epithelial malignancies. In addition, there are interrelationships between diet, environmental factors, and genetics that can affect cancer risk. Potential chemopreventive agents against cancer development can be found among nutritive and/or nonnutritive compounds in inedible and edible plants. To identify potential cancer chemoprev...

  10. Genome-wide association study for colorectal cancer identifies risk polymorphisms in German familial cases and implicates MAPK signalling pathways in disease susceptibility

    Czech Academy of Sciences Publication Activity Database

    Lascors, J.; Försti, A.; Chen, B.; Buch, S.; Steinke, V.; Rahner, N.; Holinski-Feder, E.; Morak, M.; Schackert, H. K.; Görgens, H.; Schulmann, K.; Goecke, T.; Kloor, M.; Engel, C.; Büttner, R.; Kunkel, N.; Weires, M.; Hoffmeister, M.; Pardini, Barbara; Naccarati, Alessio; Vodičková, Ludmila; Novotný, J.; Schreiber, S.; Krawczak, M.; Bröring, C. D.; Völzke, H.; Schafmayer, C.; Vodička, Pavel; Chang-Claude, J.; Brenner, H.; Burwinkel, B.; Propping, P.; Hampe, J.; Hemminki, K.

    2010-01-01

    Roč. 31, č. 9 (2010), s. 1612-1619. ISSN 0143-3334 R&D Projects: GA ČR GA310/07/1430 Grant ostatní: EU(XE) HEALTH-F4-2007-200767 Institutional research plan: CEZ:AV0Z50390512 Keywords : colorectal cancer * gene ontology * confidence interval Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.402, year: 2010

  11. TCGA researchers identify 4 subtypes of stomach cancer

    Science.gov (United States)

    Stomach cancers fall into four distinct molecular subtypes, researchers with The Cancer Genome Atlas (TCGA) Network have found. Scientists report that this discovery could change how researchers think about developing treatments for stomach cancer, also c

  12. Genetics and genomics of prostate cancer

    Institute of Scientific and Technical Information of China (English)

    Michael Dean; Hong Lou

    2013-01-01

    Prostate cancer (PCa) is one of the most common malignancies in the world with over 890 000 cases and over 258 000 deaths worldwide each year.Nearly all mortalities from PCa are due to metastatic disease,typically through tumors that evolve to be hormone-refractory or castrate-resistant.Despite intensive epidemiological study,there are few known environmental risk factors,and age and family history are the major determinants.However,there is extreme heterogeneity in PCa incidence worldwide,suggesting that major determining factors have not been described.Genome-wide association studies have been performed and a considerable number of significant,but low-risk loci have been identified.In addition,several groups have analyzed PCa by determination of genomic copy number,fusion gene generation and targeted resequencing of candidate genes,as well as exome and whole genome sequencing.These initial studies have examined both primary and metastatic tumors as well as murine xenografts and identified somatic alterations in TP53 and other potential driver genes,and the disturbance of androgen response and cell cycle pathways.It is hoped that continued characterization of risk factors as well as gene mutation and misregulation in tumors will aid in understanding,diagnosing and better treating PCa.

  13. Genome-wide functional screen identifies a compendium of genes affecting sensitivity to tamoxifen

    OpenAIRE

    Mendes-Pereira, Ana M.; Sims, David; Dexter, Tim; Fenwick, Kerry; Assiotis, Ioannis; Kozarewa, Iwanka; Mitsopoulos, Costas; Hakas, Jarle; Zvelebil, Marketa; Lord, Christopher J; Ashworth, Alan

    2011-01-01

    Therapies that target estrogen signaling have made a very considerable contribution to reducing mortality from breast cancer. However, resistance to tamoxifen remains a major clinical problem. Here we have used a genome-wide functional profiling approach to identify multiple genes that confer resistance or sensitivity to tamoxifen. Combining whole-genome shRNA screening with massively parallel sequencing, we have profiled the impact of more than 56,670 RNA interference reagents targeting 16,4...

  14. Integrated analysis of whole genome and transcriptome sequencing reveals diverse transcriptomic aberrations driven by somatic genomic changes in liver cancers.

    Directory of Open Access Journals (Sweden)

    Yuichi Shiraishi

    Full Text Available Recent studies applying high-throughput sequencing technologies have identified several recurrently mutated genes and pathways in multiple cancer genomes. However, transcriptional consequences from these genomic alterations in cancer genome remain unclear. In this study, we performed integrated and comparative analyses of whole genomes and transcriptomes of 22 hepatitis B virus (HBV-related hepatocellular carcinomas (HCCs and their matched controls. Comparison of whole genome sequence (WGS and RNA-Seq revealed much evidence that various types of genomic mutations triggered diverse transcriptional changes. Not only splice-site mutations, but also silent mutations in coding regions, deep intronic mutations and structural changes caused splicing aberrations. HBV integrations generated diverse patterns of virus-human fusion transcripts depending on affected gene, such as TERT, CDK15, FN1 and MLL4. Structural variations could drive over-expression of genes such as WNT ligands, with/without creating gene fusions. Furthermore, by taking account of genomic mutations causing transcriptional aberrations, we could improve the sensitivity of deleterious mutation detection in known cancer driver genes (TP53, AXIN1, ARID2, RPS6KA3, and identified recurrent disruptions in putative cancer driver genes such as HNF4A, CPS1, TSC1 and THRAP3 in HCCs. These findings indicate genomic alterations in cancer genome have diverse transcriptomic effects, and integrated analysis of WGS and RNA-Seq can facilitate the interpretation of a large number of genomic alterations detected in cancer genome.

  15. Genomic Copy Number Variations in the Genomes of Leukocytes Predict Prostate Cancer Clinical Outcomes.

    Directory of Open Access Journals (Sweden)

    Yan P Yu

    Full Text Available Accurate prediction of prostate cancer clinical courses remains elusive. In this study, we performed whole genome copy number analysis on leukocytes of 273 prostate cancer patients using Affymetrix SNP6.0 chip. Copy number variations (CNV were found across all chromosomes of the human genome. An average of 152 CNV fragments per genome was identified in the leukocytes from prostate cancer patients. The size distributions of CNV in the genome of leukocytes were highly correlative with prostate cancer aggressiveness. A prostate cancer outcome prediction model was developed based on large size ratio of CNV from the leukocyte genomes. This prediction model generated an average prediction rate of 75.2%, with sensitivity of 77.3% and specificity of 69.0% for prostate cancer recurrence. When combined with Nomogram and the status of fusion transcripts, the average prediction rate was improved to 82.5% with sensitivity of 84.8% and specificity of 78.2%. In addition, the leukocyte prediction model was 62.6% accurate in predicting short prostate specific antigen doubling time. When combined with Gleason's grade, Nomogram and the status of fusion transcripts, the prediction model generated a correct prediction rate of 77.5% with 73.7% sensitivity and 80.1% specificity. To our knowledge, this is the first study showing that CNVs in leukocyte genomes are predictive of clinical outcomes of a human malignancy.

  16. Gene Signature in Sessile Serrated Polyps Identifies Colon Cancer Subtype.

    Science.gov (United States)

    Kanth, Priyanka; Bronner, Mary P; Boucher, Kenneth M; Burt, Randall W; Neklason, Deborah W; Hagedorn, Curt H; Delker, Don A

    2016-06-01

    Sessile serrated colon adenoma/polyps (SSA/P) are found during routine screening colonoscopy and may account for 20% to 30% of colon cancers. However, differentiating SSA/Ps from hyperplastic polyps (HP) with little risk of cancer is challenging and complementary molecular markers are needed. In addition, the molecular mechanisms of colon cancer development from SSA/Ps are poorly understood. RNA sequencing (RNA-Seq) was performed on 21 SSA/Ps, 10 HPs, 10 adenomas, 21 uninvolved colon, and 20 control colon specimens. Differential expression and leave-one-out cross-validation methods were used to define a unique gene signature of SSA/Ps. Our SSA/P gene signature was evaluated in colon cancer RNA-Seq data from The Cancer Genome Atlas (TCGA) to identify a subtype of colon cancers that may develop from SSA/Ps. A total of 1,422 differentially expressed genes were found in SSA/Ps relative to controls. Serrated polyposis syndrome (n = 12) and sporadic SSA/Ps (n = 9) exhibited almost complete (96%) gene overlap. A 51-gene panel in SSA/P showed similar expression in a subset of TCGA colon cancers with high microsatellite instability. A smaller 7-gene panel showed high sensitivity and specificity in identifying BRAF-mutant, CpG island methylator phenotype high, and MLH1-silenced colon cancers. We describe a unique gene signature in SSA/Ps that identifies a subset of colon cancers likely to develop through the serrated pathway. These gene panels may be utilized for improved differentiation of SSA/Ps from HPs and provide insights into novel molecular pathways altered in colon cancer arising from the serrated pathway. Cancer Prev Res; 9(6); 456-65. ©2016 AACR. PMID:27026680

  17. The Genomic Landscape and Clinical Relevance of A-to-I RNA Editing in Human Cancers | Office of Cancer Genomics

    Science.gov (United States)

    Adenosine-to-inosine (A-to-I) RNA editing is a widespread post-transcriptional mechanism, but its genomic landscape and clinical relevance in cancer have not been investigated systematically. We characterized the global A-to-I RNA editing profiles of 6,236 patient samples of 17 cancer types from The Cancer Genome Atlas and revealed a striking diversity of altered RNA-editing patterns in tumors relative to normal tissues. We identified an appreciable number of clinically relevant editing events, many of which are in noncoding regions.

  18. Identifying cancer origin using circulating tumor cells.

    Science.gov (United States)

    Lu, Si-Hong; Tsai, Wen-Sy; Chang, Ying-Hsu; Chou, Teh-Ying; Pang, See-Tong; Lin, Po-Hung; Tsai, Chun-Ming; Chang, Ying-Chih

    2016-04-01

    Circulating tumor cells (CTCs) have become an established clinical evaluation biomarker. CTC count provides a good correlation with the prognosis of cancer patients, but has only been used with known cancer patients, and has been unable to predict the origin of the CTCs. This study demonstrates the analysis of CTCs for the identification of their primary cancer source. Twelve mL blood samples were equally dispensed on 6 CMx chips, microfluidic chips coated with an anti-EpCAM-conjugated supported lipid bilayer, for CTC capture and isolation. Captured CTCs were eluted to an immunofluorescence (IF) staining panel consisting of 6 groups of antibodies: anti-panCK, anti-CK18, anti-CK7, anti-TTF-1, anti-CK20/anti-CDX2, and anti-PSA/anti-PSMA. Cancer cell lines of lung (H1975), colorectal (DLD-1, HCT-116), and prostate (PC3, DU145, LNCaP) were selected to establish the sensitivity and specificity for distinguishing CTCs from lung, colorectal, and prostate cancer. Spiking experiments performed in 2mL of culture medium or whole blood proved the CMx platform can enumerate cancer cells of lung, colorectal, and prostate. The IF panel was tested on blood samples from lung cancer patients (n = 3), colorectal cancer patients (n = 5), prostate cancer patients (n = 5), and healthy individuals (n = 12). Peripheral blood samples found panCK(+) and CK18(+) CTCs in lung, colorectal, and prostate cancers. CTCs expressing CK7(+) or TTF-1(+), (CK20/ CDX2)(+), or (PSA/ PSMA)(+) corresponded to lung, colorectal, or prostate cancer, respectively. In conclusion, we have designed an immunofluorescence staining panel to identify CTCs in peripheral blood to correctly identify cancer cell origin. PMID:26828696

  19. Genomic determinants of somatic copy number alterations across human cancers.

    Science.gov (United States)

    Zhang, Yanping; Xu, Hongen; Frishman, Dmitrij

    2016-03-01

    Somatic copy number alterations (SCNAs) play an important role in carcinogenesis. However, the impact of genomic architecture on the global patterns of SCNAs in cancer genomes remains elusive. In this work, we conducted multiple linear regression (MLR) analyses of the pooled SCNA data from The Cancer Genome Atlas (TCGA) Pan-Cancer project. We performed MLR analyses for 11 individual cancer types and three different kinds of SCNAs-amplifications and deletions, telomere-bound and interstitial SCNAs and local SCNAs. Our MLR model explains >30% of the pooled SCNA breakpoint variation, with the explanatory power ranging from 13 to 32% for different cancer types and SCNA types. In addition to confirming previously identified features [e.g. long interspersed element-1 (L1) and short interspersed nuclear elements], we also identified several novel informative features, including distance to telomere, distance to centromere and low-complexity repeats. The results of the MLR analyses were additionally confirmed on an independent SCNA data set obtained from the catalogue of somatic mutations in cancer database. Using a rare-event logistic regression model and an extremely randomized tree classifier, we revealed that genomic features are informative for defining common SCNA breakpoint hotspots. Our findings shed light on the molecular mechanisms of SCNA generation in cancer. PMID:26732428

  20. Large-scale genotyping identifies 41 new loci associated with breast cancer risk

    DEFF Research Database (Denmark)

    Michailidou, Kyriaki; Hall, Per; Gonzalez-Neira, Anna;

    2013-01-01

    Breast cancer is the most common cancer among women. Common variants at 27 loci have been identified as associated with susceptibility to breast cancer, and these account for ∼9% of the familial risk of the disease. We report here a meta-analysis of 9 genome-wide association studies, including 10...

  1. Genome Wide Methylome Alterations in Lung Cancer.

    Directory of Open Access Journals (Sweden)

    Nandita Mullapudi

    Full Text Available Aberrant cytosine 5-methylation underlies many deregulated elements of cancer. Among paired non-small cell lung cancers (NSCLC, we sought to profile DNA 5-methyl-cytosine features which may underlie genome-wide deregulation. In one of the more dense interrogations of the methylome, we sampled 1.2 million CpG sites from twenty-four NSCLC tumor (T-non-tumor (NT pairs using a methylation-sensitive restriction enzyme- based HELP-microarray assay. We found 225,350 differentially methylated (DM sites in adenocarcinomas versus adjacent non-tumor tissue that vary in frequency across genomic compartment, particularly notable in gene bodies (GB; p<2.2E-16. Further, when DM was coupled to differential transcriptome (DE in the same samples, 37,056 differential loci in adenocarcinoma emerged. Approximately 90% of the DM-DE relationships were non-canonical; for example, promoter DM associated with DE in the same direction. Of the canonical changes noted, promoter (PR DM loci with reciprocal changes in expression in adenocarcinomas included HBEGF, AGER, PTPRM, DPT, CST1, MELK; DM GB loci with concordant changes in expression included FOXM1, FERMT1, SLC7A5, and FAP genes. IPA analyses showed adenocarcinoma-specific promoter DMxDE overlay identified familiar lung cancer nodes [tP53, Akt] as well as less familiar nodes [HBEGF, NQO1, GRK5, VWF, HPGD, CDH5, CTNNAL1, PTPN13, DACH1, SMAD6, LAMA3, AR]. The unique findings from this study include the discovery of numerous candidate The unique findings from this study include the discovery of numerous candidate methylation sites in both PR and GB regions not previously identified in NSCLC, and many non-canonical relationships to gene expression. These DNA methylation features could potentially be developed as risk or diagnostic biomarkers, or as candidate targets for newer methylation locus-targeted preventive or therapeutic agents.

  2. Genome Wide Methylome Alterations in Lung Cancer.

    Science.gov (United States)

    Mullapudi, Nandita; Ye, Bin; Suzuki, Masako; Fazzari, Melissa; Han, Weiguo; Shi, Miao K; Marquardt, Gaby; Lin, Juan; Wang, Tao; Keller, Steven; Zhu, Changcheng; Locker, Joseph D; Spivack, Simon D

    2015-01-01

    Aberrant cytosine 5-methylation underlies many deregulated elements of cancer. Among paired non-small cell lung cancers (NSCLC), we sought to profile DNA 5-methyl-cytosine features which may underlie genome-wide deregulation. In one of the more dense interrogations of the methylome, we sampled 1.2 million CpG sites from twenty-four NSCLC tumor (T)-non-tumor (NT) pairs using a methylation-sensitive restriction enzyme- based HELP-microarray assay. We found 225,350 differentially methylated (DM) sites in adenocarcinomas versus adjacent non-tumor tissue that vary in frequency across genomic compartment, particularly notable in gene bodies (GB; pLAMA3, AR]. The unique findings from this study include the discovery of numerous candidate The unique findings from this study include the discovery of numerous candidate methylation sites in both PR and GB regions not previously identified in NSCLC, and many non-canonical relationships to gene expression. These DNA methylation features could potentially be developed as risk or diagnostic biomarkers, or as candidate targets for newer methylation locus-targeted preventive or therapeutic agents. PMID:26683690

  3. Contributing to Tumor Molecular Characterization Projects with a Global Impact | Office of Cancer Genomics

    Science.gov (United States)

    My name is Nicholas Griner and I am the Scientific Program Manager for the Cancer Genome Characterization Initiative (CGCI) in the Office of Cancer Genomics (OCG). Until recently, I spent most of my scientific career working in a cancer research laboratory. In my postdoctoral training, my research focused on identifying novel pathways that contribute to both prostate and breast cancers and studying proteins within these pathways that may be targeted with cancer drugs.

  4. Functional annotation of rare gene aberration drivers of pancreatic cancer | Office of Cancer Genomics

    Science.gov (United States)

    As we enter the era of precision medicine, characterization of cancer genomes will directly influence therapeutic decisions in the clinic. Here we describe a platform enabling functionalization of rare gene mutations through their high-throughput construction, molecular barcoding and delivery to cancer models for in vivo tumour driver screens. We apply these technologies to identify oncogenic drivers of pancreatic ductal adenocarcinoma (PDAC).

  5. Cancer Genome Sequencing and Its Implications for Personalized Cancer Vaccines

    International Nuclear Information System (INIS)

    New DNA sequencing platforms have revolutionized human genome sequencing. The dramatic advances in genome sequencing technologies predict that the $1,000 genome will become a reality within the next few years. Applied to cancer, the availability of cancer genome sequences permits real-time decision-making with the potential to affect diagnosis, prognosis, and treatment, and has opened the door towards personalized medicine. A promising strategy is the identification of mutated tumor antigens, and the design of personalized cancer vaccines. Supporting this notion are preliminary analyses of the epitope landscape in breast cancer suggesting that individual tumors express significant numbers of novel antigens to the immune system that can be specifically targeted through cancer vaccines

  6. Genomic Regions Affecting Cheese Making Properties Identified in Danish Holsteins

    DEFF Research Database (Denmark)

    Gregersen, Vivi Raundahl; Bertelsen, Henriette Pasgaard; Poulsen, Nina Aagaard; Larsen, Lotte Bach; Gustavsson, Frida; Glantz, Maria; Paulsson, Marie; Buitenhuis, Albert Johannes; Bendixen, Christian

    The cheese renneting process is affected by a number of factors associated to milk composition and a number of Danish Holsteins has previously been identified to have poor milk coagulation ability. Therefore, the aim of this study was to identify genomic regions affecting the technological...

  7. Onco-proteogenomics: cancer proteomics joins forces with genomics.

    Science.gov (United States)

    Alfaro, Javier A; Sinha, Ankit; Kislinger, Thomas; Boutros, Paul C

    2014-11-01

    The complexities of tumor genomes are rapidly being uncovered, but how they are regulated into functional proteomes remains poorly understood. Standard proteomics workflows use databases of known proteins, but these databases do not capture the uniqueness of the cancer transcriptome, with its point mutations, unusual splice variants and gene fusions. Onco-proteogenomics integrates mass spectrometry-generated data with genomic information to identify tumor-specific peptides. Linking tumor-derived DNA, RNA and protein measurements into a central-dogma perspective has the potential to improve our understanding of cancer biology. PMID:25357240

  8. Cancer Genome Atlas Pan-cancer Analysis Project

    OpenAIRE

    Zhang, Kun; Wang, Hong

    2015-01-01

    Cancer can exhibit different forms depending on the site of origin, cell types, the different forms of genetic mutations which also affect cancer therapeutic effect. Although many genes have been demonstrated to change a direct result of the change in phenotype, however, many cancers lineage complex molecular mechanisms are still not fully elucidated. Therefore, The Cancer Genome Atlas (TCGA) Research Network analyzed a large human tumors, in order to find the molecular changes in DNA, RNA, p...

  9. CTD² Publication Guidelines | Office of Cancer Genomics

    Science.gov (United States)

    The Cancer Target Discovery and Development (CTD2) Network is a “community resource project” supported by the National Cancer Institute’s Office of Cancer Genomics. Members of the Network release data to the broader research community by depositing data into NCI-supported or public databases. Data deposition is NOT equivalent to publishing in a peer-reviewed journal. Unless there is a manuscript associated with a dataset, the Network considers data to be formally unpublished.

  10. Whole-genome sequencing identifies a recurrent functional synonymous mutation in melanoma

    OpenAIRE

    Gartner, Jared J; Stephen C. J. Parker; Prickett, Todd D.; Dutton-Regester, Ken; Stitzel, Michael L.; Lin, Jimmy C.; Davis, Sean; Simhadri, Vijaya L.; Jha, Sujata; Katagiri, Nobuko; Gotea, Valer; Jamie K. Teer; Wei, Xiaomu; Morken, Mario A; Umesh K Bhanot

    2013-01-01

    Synonymous mutations, which do not alter the protein sequence, have been shown to affect protein function [Sauna ZE, Kimchi-Sarfaty C (2011) Nat Rev Genet 12(10):683–691]. However, synonymous mutations are rarely investigated in the cancer genomics field. We used whole-genome and -exome sequencing to identify somatic mutations in 29 melanoma samples. Validation of one synonymous somatic mutation in BCL2L12 in 285 samples identified 12 cases that harbored the recurrent F17F mutation. This muta...

  11. Genomic rearrangements of PTEN in prostate cancer

    Directory of Open Access Journals (Sweden)

    Sopheap ePhin

    2013-09-01

    Full Text Available The phosphatase and tensin homolog gene on chromosome 10q23.3 (PTEN is a negative regulator of the PIK3/Akt survival pathway and is the most frequently deleted tumor suppressor gene in prostate cancer. Monoallelic loss of PTEN is present in up to 60% of localized prostate cancers and complete loss of PTEN in prostate cancer is linked to metastasis and androgen independent progression. Studies on the genomic status of PTEN in prostate cancer initially used a two-color fluorescence in-situ hybridization (FISH assay for PTEN copy number detection in formalin fixed paraffin embedded tissue preparations. More recently, a four-color FISH assay containing two additional control probes flanking the PTEN locus with a lower false-positive rate was reported. Combined with the detection of other critical genomic biomarkers for prostate cancer such as ERG, AR, and MYC, the evaluation of PTEN genomic status has proven to be invaluable for patient stratification and management. Although less frequent than allelic deletions, point mutations in the gene and epigenetic silencing are also known to contribute to loss of PTEN function, and ultimately to prostate cancer initiation. Overall, it is clear that PTEN is a powerful biomarker for prostate cancer. Used as a companion diagnostic for emerging therapeutic drugs, FISH analysis of PTEN is promisingly moving human prostate cancer closer to more effective cancer management and therapies.

  12. Genomic analysis and selected molecular pathways in rare cancers

    International Nuclear Information System (INIS)

    It is widely accepted that many cancers arise as a result of an acquired genomic instability and the subsequent evolution of tumor cells with variable patterns of selected and background aberrations. The presence and behaviors of distinct neoplastic cell populations within a patient's tumor may underlie multiple clinical phenotypes in cancers. A goal of many current cancer genome studies is the identification of recurring selected driver events that can be advanced for the development of personalized therapies. Unfortunately, in the majority of rare tumors, this type of analysis can be particularly challenging. Large series of specimens for analysis are simply not available, allowing recurring patterns to remain hidden. In this paper, we highlight the use of DNA content-based flow sorting to identify and isolate DNA-diploid and DNA-aneuploid populations from tumor biopsies as a strategy to comprehensively study the genomic composition and behaviors of individual cancers in a series of rare solid tumors: intrahepatic cholangiocarcinoma, anal carcinoma, adrenal leiomyosarcoma, and pancreatic neuroendocrine tumors. We propose that the identification of highly selected genomic events in distinct tumor populations within each tumor can identify candidate driver events that can facilitate the development of novel, personalized treatment strategies for patients with cancer. (paper)

  13. Cancer Genome Atlas Pan-cancer Analysis Project

    Directory of Open Access Journals (Sweden)

    Kun ZHANG

    2015-04-01

    Full Text Available Cancer can exhibit different forms depending on the site of origin, cell types, the different forms of genetic mutations which also affect cancer therapeutic effect. Although many genes have been demonstrated to change a direct result of the change in phenotype, however, many cancers lineage complex molecular mechanisms are still not fully elucidated. Therefore, The Cancer Genome Atlas (TCGA Research Network analyzed a large human tumors, in order to find the molecular changes in DNA, RNA, protein and epigenetic level, The results contain a wealth of data provides us with an opportunity for common, personality and new ideas throughout the cancer lineages form a whole description. Pan-cancer genome program first compares the 12 kinds of cancer types. Analysis of different tumor molecular changes and their functions, will tell us how effective treatment method is applied to a similar phenotype of the tumor.

  14. [Cancer Genome Atlas Pan-cancer Analysis Project].

    Science.gov (United States)

    Zhang, Kun; Wang, Hong

    2015-04-01

    Cancer can exhibit different forms depending on the site of origin, cell types, the different forms of genetic mutations which also affect cancer therapeutic effect. Although many genes have been demonstrated to change a direct result of the change in phenotype, however, many cancers lineage complex molecular mechanisms are still not fully elucidated. Therefore, The Cancer Genome Atlas (TCGA) Research Network analyzed a large human tumors, in order to find the molecular changes in DNA, RNA, protein and epigenetic level, The results contain a wealth of data provides us with an opportunity for common, personality and new ideas throughout the cancer lineages form a whole description. Pan-cancer genome program first compares the 12 kinds of cancer types. Analysis of different tumor molecular changes and their functions, will tell us how effective treatment method is applied to a similar phenotype of the tumor. PMID:25936886

  15. The genomics and genetics of endometrial cancer

    Directory of Open Access Journals (Sweden)

    Bell DW

    2012-03-01

    Full Text Available Andrea J O’Hara,  Daphne W Bell National Human Genome Research Institute, Cancer Genetics Branch, National Institutes of Health, Bethesda, MD, USAAbstract: Most sporadic endometrial cancers (ECs can be histologically classified as endometrioid, serous, or clear cell. Each histotype has a distinct natural history, clinical behavior, and genetic etiology. Endometrioid ECs have an overall favorable prognosis. They are typified by high frequency genomic alterations affecting PIK3CA, PIK3R1, PTEN, KRAS, FGFR2, ARID1A (BAF250a, and CTNNB1 (β-catenin, as well as epigenetic silencing of MLH1 resulting in microsatellite instability. Serous and clear cell ECs are clinically aggressive tumors that are rare at presentation but account for a disproportionate fraction of all endometrial cancer deaths. Serous ECs tend to be aneuploid and are typified by frequent genomic alterations affecting TP53 (p53, PPP2R1A, HER-2/ERBB2, PIK3CA, and PTEN; additionally, they display dysregulation of E-cadherin, p16, cyclin E, and BAF250a. The genetic etiology of clear cell ECs resembles that of serous ECs, but it remains relatively poorly defined. A detailed discussion of the characteristic patterns of genomic alterations that distinguish the three major histotypes of endometrial cancer is reviewed herein.Keywords: endometrial, cancer, genomics, genetics, sporadic

  16. GWAS meta-analysis and replication identifies three new susceptibility loci for ovarian cancer

    DEFF Research Database (Denmark)

    Pharoah, Paul D P; Tsai, Ya-Yu; Ramus, Susan J;

    2013-01-01

    Genome-wide association studies (GWAS) have identified four susceptibility loci for epithelial ovarian cancer (EOC), with another two suggestive loci reaching near genome-wide significance. We pooled data from a GWAS conducted in North America with another GWAS from the UK. We selected the top 24...

  17. Genomic diversity of colorectal cancer: Changing landscape and emerging targets

    Science.gov (United States)

    Ahn, Daniel H; Ciombor, Kristen K; Mikhail, Sameh; Bekaii-Saab, Tanios

    2016-01-01

    Improvements in screening and preventive measures have led to an increased detection of early stage colorectal cancers (CRC) where patients undergo treatment with a curative intent. Despite these efforts, a high proportion of patients are diagnosed with advanced stage disease that is associated with poor outcomes, as CRC remains one of the leading causes of cancer-related deaths in the world. The development of next generation sequencing and collaborative multi-institutional efforts to characterize the cancer genome has afforded us with a comprehensive assessment of the genomic makeup present in CRC. This knowledge has translated into understanding the prognostic role of various tumor somatic variants in this disease. Additionally, the awareness of the genomic alterations present in CRC has resulted in an improvement in patient outcomes, largely due to better selection of personalized therapies based on an individual’s tumor genomic makeup. The benefit of various treatments is often limited, where recent studies assessing the genomic diversity in CRC have identified the development of secondary tumor somatic variants that likely contribute to acquired treatment resistance. These studies have begun to alter the landscape of treatment for CRC that include investigating novel targeted therapies, assessing the role of immunotherapy and prospective, dynamic assessment of changes in tumor genomic alterations that occur during the treatment of CRC. PMID:27433082

  18. Open-Access Cancer Genomics - Office of Cancer Clinical Proteomics Research

    Science.gov (United States)

    The completion of the Human Genome Project sparked a revolution in high-throughput genomics applied towards deciphering genetically complex diseases, like cancer. Now, almost 10 years later, we have a mountain of genomics data on many different cancer type

  19. Childhood Cancer Genomics Gaps and Opportunities - Workshop Summary

    Science.gov (United States)

    NCI convened a workshop of representative research teams that have been leaders in defining the genomic landscape of childhood cancers to discuss the influence of genomic discoveries on the future of childhood cancer research.

  20. Quantification of read species behavior within whole genome sequencing of cancer genomes for the stratification and visualization of genomic variation.

    Science.gov (United States)

    Hibsh, Dror; Buetow, Kenneth H; Yaari, Gur; Efroni, Sol

    2016-05-19

    The cancer genome is abnormal genome, and the ability to monitor its sequence had undergone a technological revolution. Yet prognosis and diagnosis remain an expert-based decision, with only limited abilities to provide machine-based decisions. We introduce a heterogeneity-based method for stratifying and visualizing whole-genome sequencing (WGS) reads. This method uses the heterogeneity within WGS reads to markedly reduce the dimensionality of next-generation sequencing data; it is available through the tool HiBS (Heterogeneity-Based Subclassification) that allows cancer sample classification. We validated HiBS using >200 WGS samples from nine different cancer types from The Cancer Genome Atlas (TCGA). With HiBS, we show progress with two WGS related issues: (i) differentiation between normal (NB) and tumor (TP) samples based solely on the information structure of their WGS data, and (ii) identification of specific regions of chromosomal amplification/deletion and their association with tumor stage. By comparing results to those obtained through available WGS analyses tools, we demonstrate some of the novelties obtained by the approach implemented in HiBS and also show nearly perfect normal/tumor classification, used to identify known and unknown chromosomal aberrations. Finally, the HiBS index has been associated with breast cancer tumor stage. PMID:26809676

  1. Genome organization, instabilities, stem cells, and cancer

    Directory of Open Access Journals (Sweden)

    Senthil Kumar Pazhanisamy

    2009-01-01

    Full Text Available It is now widely recognized that advances in exploring genome organization provide remarkable insights on the induction and progression of chromosome abnormalities. Much of what we know about how mutations evolve and consequently transform into genome instabilities has been characterized in the spatial organization context of chromatin. Nevertheless, many underlying concepts of impact of the chromatin organization on perpetuation of multiple mutations and on propagation of chromosomal aberrations remain to be investigated in detail. Genesis of genome instabilities from accumulation of multiple mutations that drive tumorigenesis is increasingly becoming a focal theme in cancer studies. This review focuses on structural alterations evolve to raise a variety of genome instabilities that are manifested at the nucleotide, gene or sub-chromosomal, and whole chromosome level of genome. Here we explore an underlying connection between genome instability and cancer in the light of genome architecture. This review is limited to studies directed towards spatial organizational aspects of origin and propagation of aberrations into genetically unstable tumors.

  2. Alternative splicing in colon, bladder, and prostate cancer identified by exon-array analysis

    DEFF Research Database (Denmark)

    Thorsen, Kasper; Sørensen, Karina D.; Brems-Eskildsen, Anne Sofie;

    2008-01-01

    Alternative splicing enhances proteome diversity and modulates cancer-associated proteins. To identify tissue- and tumor-specific alternative splicing, we used the GeneChip Human Exon 1.0 ST Array to measure whole-genome exon expression in 102 normal and cancer tissue samples of different stages ...

  3. Whole-genome sequencing identifies a recurrent functional synonymous mutation in melanoma

    Science.gov (United States)

    Gartner, Jared J.; Parker, Stephen C. J.; Prickett, Todd D.; Dutton-Regester, Ken; Stitzel, Michael L.; Lin, Jimmy C.; Davis, Sean; Simhadri, Vijaya L.; Jha, Sujata; Katagiri, Nobuko; Gotea, Valer; Teer, Jamie K.; Morken, Mario A.; Bhanot, Umesh K.; Chen, Guo; Elnitski, Laura L.; Davies, Michael A.; Gershenwald, Jeffrey E.; Carter, Hannah; Karchin, Rachel; Robinson, William; Robinson, Steven; Rosenberg, Steven A.; Collins, Francis S.; Parmigiani, Giovanni; Komar, Anton A.; Kimchi-Sarfaty, Chava; Hayward, Nicholas K.; Margulies, Elliott H.; Samuels, Yardena

    2013-01-01

    Synonymous mutations, which do not alter the protein sequence, have been shown to affect protein function [Sauna ZE, Kimchi-Sarfaty C (2011) Nat Rev Genet 12(10):683–691]. However, synonymous mutations are rarely investigated in the cancer genomics field. We used whole-genome and -exome sequencing to identify somatic mutations in 29 melanoma samples. Validation of one synonymous somatic mutation in BCL2L12 in 285 samples identified 12 cases that harbored the recurrent F17F mutation. This mutation led to increased BCL2L12 mRNA and protein levels because of differential targeting of WT and mutant BCL2L12 by hsa-miR-671–5p. Protein made from mutant BCL2L12 transcript bound p53, inhibited UV-induced apoptosis more efficiently than WT BCL2L12, and reduced endogenous p53 target gene transcription. This report shows selection of a recurrent somatic synonymous mutation in cancer. Our data indicate that silent alterations have a role to play in human cancer, emphasizing the importance of their investigation in future cancer genome studies. PMID:23901115

  4. A meta-analysis of 87,040 individuals identifies 23 new susceptibility loci for prostate cancer

    DEFF Research Database (Denmark)

    Al Olama, Ali Amin; Kote-Jarai, Zsofia; Berndt, Sonja I;

    2014-01-01

    Genome-wide association studies (GWAS) have identified 76 variants associated with prostate cancer risk predominantly in populations of European ancestry. To identify additional susceptibility loci for this common cancer, we conducted a meta-analysis of > 10 million SNPs in 43,303 prostate cancer...

  5. Fenton reaction induced cancer in wild type rats recapitulates genomic alterations observed in human cancer.

    Directory of Open Access Journals (Sweden)

    Shinya Akatsuka

    Full Text Available Iron overload has been associated with carcinogenesis in humans. Intraperitoneal administration of ferric nitrilotriacetate initiates a Fenton reaction in renal proximal tubules of rodents that ultimately leads to a high incidence of renal cell carcinoma (RCC after repeated treatments. We performed high-resolution microarray comparative genomic hybridization to identify characteristics in the genomic profiles of this oxidative stress-induced rat RCCs. The results revealed extensive large-scale genomic alterations with a preference for deletions. Deletions and amplifications were numerous and sometimes fragmented, demonstrating that a Fenton reaction is a cause of such genomic alterations in vivo. Frequency plotting indicated that two of the most commonly altered loci corresponded to a Cdkn2a/2b deletion and a Met amplification. Tumor sizes were proportionally associated with Met expression and/or amplification, and clustering analysis confirmed our results. Furthermore, we developed a procedure to compare whole genomic patterns of the copy number alterations among different species based on chromosomal syntenic relationship. Patterns of the rat RCCs showed the strongest similarity to the human RCCs among five types of human cancers, followed by human malignant mesothelioma, an iron overload-associated cancer. Therefore, an iron-dependent Fenton chemical reaction causes large-scale genomic alterations during carcinogenesis, which may result in distinct genomic profiles. Based on the characteristics of extensive genome alterations in human cancer, our results suggest that this chemical reaction may play a major role during human carcinogenesis.

  6. Genome evolution during progression to breast cancer

    KAUST Repository

    Newburger, D. E.

    2013-04-08

    Cancer evolution involves cycles of genomic damage, epigenetic deregulation, and increased cellular proliferation that eventually culminate in the carcinoma phenotype. Early neoplasias, which are often found concurrently with carcinomas and are histologically distinguishable from normal breast tissue, are less advanced in phenotype than carcinomas and are thought to represent precursor stages. To elucidate their role in cancer evolution we performed comparative whole-genome sequencing of early neoplasias, matched normal tissue, and carcinomas from six patients, for a total of 31 samples. By using somatic mutations as lineage markers we built trees that relate the tissue samples within each patient. On the basis of these lineage trees we inferred the order, timing, and rates of genomic events. In four out of six cases, an early neoplasia and the carcinoma share a mutated common ancestor with recurring aneuploidies, and in all six cases evolution accelerated in the carcinoma lineage. Transition spectra of somatic mutations are stable and consistent across cases, suggesting that accumulation of somatic mutations is a result of increased ancestral cell division rather than specific mutational mechanisms. In contrast to highly advanced tumors that are the focus of much of the current cancer genome sequencing, neither the early neoplasia genomes nor the carcinomas are enriched with potentially functional somatic point mutations. Aneuploidies that occur in common ancestors of neoplastic and tumor cells are the earliest events that affect a large number of genes and may predispose breast tissue to eventual development of invasive carcinoma.

  7. Dr. Marco Marra: Pioneer and Visionary in Cancer Genomics Research | Office of Cancer Genomics

    Science.gov (United States)

    Dr. Marco Marra is a highly distinguished genomics and bioinformatics researcher. He is the Director of Canada’s Michael Smith Genome Sciences Centre at the BC Cancer Agency and holds a faculty position at the University of British Columbia. The Centre is a state-of-the-art sequencing facility in Vancouver, Canada, with a major focus on the study of cancers.  Many of their research projects are undertaken in collaborations with other Canadian and international institutions.

  8. Genome-wide approaches for identifying genes involved in the maintenance of genomic stability

    OpenAIRE

    Segura Wang, Maia

    2015-01-01

    The maintenance of genomic stability and the repair of DNA damage are essential for the survival of all cells. Despite diverse pathways for repair of DNA lesions, different mutations can arise, ranging from Single Nucleotide Variants (SNVs) to larger Structu- ral Variants (SVs). The processes that play a role in the formation of these alterations are not fully understood. In this thesis, I present two complementary approaches for accumulating genomic variants and for identifying pathways invo...

  9. Glossary | Office of Cancer Genomics

    Science.gov (United States)

    A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z     B Bioinformatics The use of computing tools to manage and analyze genomic and molecular biological data.

  10. Integrative prescreening in analysis of multiple cancer genomic studies

    Directory of Open Access Journals (Sweden)

    Song Rui

    2012-07-01

    Full Text Available Abstract Background In high throughput cancer genomic studies, results from the analysis of single datasets often suffer from a lack of reproducibility because of small sample sizes. Integrative analysis can effectively pool and analyze multiple datasets and provides a cost effective way to improve reproducibility. In integrative analysis, simultaneously analyzing all genes profiled may incur high computational cost. A computationally affordable remedy is prescreening, which fits marginal models, can be conducted in a parallel manner, and has low computational cost. Results An integrative prescreening approach is developed for the analysis of multiple cancer genomic datasets. Simulation shows that the proposed integrative prescreening has better performance than alternatives, particularly including prescreening with individual datasets, an intensity approach and meta-analysis. We also analyze multiple microarray gene profiling studies on liver and pancreatic cancers using the proposed approach. Conclusions The proposed integrative prescreening provides an effective way to reduce the dimensionality in cancer genomic studies. It can be coupled with existing analysis methods to identify cancer markers.

  11. Childhood Cancer Genomics (PDQ®)—Health Professional Version

    Science.gov (United States)

    Expert-reviewed information summary about the genomics of childhood cancer. The summary describes the molecular subtypes for specific pediatric cancers and their associated clinical characteristics, the recurring genomic alterations that characterize each subtype at diagnosis or relapse, and the therapeutic and prognostic significance of the genomic alterations. The genomic alterations associated with brain tumors, kidney tumors, leukemias, lymphomas, sarcomas, and other cancers are discussed.

  12. Review of State Comprehensive Cancer Control Plans for Genomics Content

    OpenAIRE

    Robert C. Millikan, DVM, PhD; Tejinder Rakhra-Burris, MA; Erin Shaughnessy Zuiker, MPH; Debra E. Irwin, PhD, MSPH

    2005-01-01

    Introduction The goals of this study were to determine U.S. states with Comprehensive Cancer Control plans that include genomics in some capacity and to review successes with and barriers to implementation of genomics-related cancer control initiatives. Methods This study was conducted in two phases. Phase one included a content analysis of written state Comprehensive Cancer Control plans (n = 30) for terms related to genomics, or genomic components (n = 18). The second phase involved te...

  13. Resources | Office of Cancer Genomics

    Science.gov (United States)

    OCG provides a variety of scientific and educational resources for both cancer researchers and members of the general public. These resources are divided into the following types: OCG-Supported Resources: Tools, databases, and reagents generated by initiated and completed OCG programs for researchers, educators, and students. (Note: Databases for current OCG programs are available through program-specific data matrices)

  14. TARGET Publication Guidelines | Office of Cancer Genomics

    Science.gov (United States)

    Like other NCI large-scale genomics initiatives, TARGET is a community resource project and data are made available rapidly after validation for use by other researchers. To act in accord with the Fort Lauderdale principles and support the continued prompt public release of large-scale genomic data prior to publication, researchers who plan to prepare manuscripts containing descriptions of TARGET pediatric cancer data that would be of comparable scope to an initial TARGET disease-specific comprehensive, global analysis publication, and journal editors who receive such manuscripts, are stron

  15. Genome wide association identifies novel loci involved in fungal communication.

    Science.gov (United States)

    Palma-Guerrero, Javier; Hall, Charles R; Kowbel, David; Welch, Juliet; Taylor, John W; Brem, Rachel B; Glass, N Louise

    2013-01-01

    Understanding how genomes encode complex cellular and organismal behaviors has become the outstanding challenge of modern genetics. Unlike classical screening methods, analysis of genetic variation that occurs naturally in wild populations can enable rapid, genome-scale mapping of genotype to phenotype with a medium-throughput experimental design. Here we describe the results of the first genome-wide association study (GWAS) used to identify novel loci underlying trait variation in a microbial eukaryote, harnessing wild isolates of the filamentous fungus Neurospora crassa. We genotyped each of a population of wild Louisiana strains at 1 million genetic loci genome-wide, and we used these genotypes to map genetic determinants of microbial communication. In N. crassa, germinated asexual spores (germlings) sense the presence of other germlings, grow toward them in a coordinated fashion, and fuse. We evaluated germlings of each strain for their ability to chemically sense, chemotropically seek, and undergo cell fusion, and we subjected these trait measurements to GWAS. This analysis identified one gene, NCU04379 (cse-1, encoding a homolog of a neuronal calcium sensor), at which inheritance was strongly associated with the efficiency of germling communication. Deletion of cse-1 significantly impaired germling communication and fusion, and two genes encoding predicted interaction partners of CSE1 were also required for the communication trait. Additionally, mining our association results for signaling and secretion genes with a potential role in germling communication, we validated six more previously unknown molecular players, including a secreted protease and two other genes whose deletion conferred a novel phenotype of increased communication and multi-germling fusion. Our results establish protein secretion as a linchpin of germling communication in N. crassa and shed light on the regulation of communication molecules in this fungus. Our study demonstrates the power

  16. Identifying elemental genomic track types and representing them uniformly

    Directory of Open Access Journals (Sweden)

    Gundersen Sveinung

    2011-12-01

    Full Text Available Abstract Background With the recent advances and availability of various high-throughput sequencing technologies, data on many molecular aspects, such as gene regulation, chromatin dynamics, and the three-dimensional organization of DNA, are rapidly being generated in an increasing number of laboratories. The variation in biological context, and the increasingly dispersed mode of data generation, imply a need for precise, interoperable and flexible representations of genomic features through formats that are easy to parse. A host of alternative formats are currently available and in use, complicating analysis and tool development. The issue of whether and how the multitude of formats reflects varying underlying characteristics of data has to our knowledge not previously been systematically treated. Results We here identify intrinsic distinctions between genomic features, and argue that the distinctions imply that a certain variation in the representation of features as genomic tracks is warranted. Four core informational properties of tracks are discussed: gaps, lengths, values and interconnections. From this we delineate fifteen generic track types. Based on the track type distinctions, we characterize major existing representational formats and find that the track types are not adequately supported by any single format. We also find, in contrast to the XML formats, that none of the existing tabular formats are conveniently extendable to support all track types. We thus propose two unified formats for track data, an improved XML format, BioXSD 1.1, and a new tabular format, GTrack 1.0. Conclusions The defined track types are shown to capture relevant distinctions between genomic annotation tracks, resulting in varying representational needs and analysis possibilities. The proposed formats, GTrack 1.0 and BioXSD 1.1, cater to the identified track distinctions and emphasize preciseness, flexibility and parsing convenience.

  17. Comprehensive genomic profiles of small cell lung cancer

    Science.gov (United States)

    George, Julie; Lim, Jing Shan; Jang, Se Jin; Cun, Yupeng; Ozretić, Luka; Kong, Gu; Leenders, Frauke; Lu, Xin; Fernández-Cuesta, Lynnette; Bosco, Graziella; Müller, Christian; Dahmen, Ilona; Jahchan, Nadine S.; Park, Kwon-Sik; Yang, Dian; Karnezis, Anthony N.; Vaka, Dedeepya; Torres, Angela; Wang, Maia Segura; Korbel, Jan O.; Menon, Roopika; Chun, Sung-Min; Kim, Deokhoon; Wilkerson, Matt; Hayes, Neil; Engelmann, David; Pützer, Brigitte; Bos, Marc; Michels, Sebastian; Vlasic, Ignacija; Seidel, Danila; Pinther, Berit; Schaub, Philipp; Becker, Christian; Altmüller, Janine; Yokota, Jun; Kohno, Takashi; Iwakawa, Reika; Tsuta, Koji; Noguchi, Masayuki; Muley, Thomas; Hoffmann, Hans; Schnabel, Philipp A.; Petersen, Iver; Chen, Yuan; Soltermann, Alex; Tischler, Verena; Choi, Chang-min; Kim, Yong-Hee; Massion, Pierre P.; Zou, Yong; Jovanovic, Dragana; Kontic, Milica; Wright, Gavin M.; Russell, Prudence A.; Solomon, Benjamin; Koch, Ina; Lindner, Michael; Muscarella, Lucia A.; la Torre, Annamaria; Field, John K.; Jakopovic, Marko; Knezevic, Jelena; Castaños-Vélez, Esmeralda; Roz, Luca; Pastorino, Ugo; Brustugun, Odd-Terje; Lund-Iversen, Marius; Thunnissen, Erik; Köhler, Jens; Schuler, Martin; Botling, Johan; Sandelin, Martin; Sanchez-Cespedes, Montserrat; Salvesen, Helga B.; Achter, Viktor; Lang, Ulrich; Bogus, Magdalena; Schneider, Peter M.; Zander, Thomas; Ansén, Sascha; Hallek, Michael; Wolf, Jürgen; Vingron, Martin; Yatabe, Yasushi; Travis, William D.; Nürnberg, Peter; Reinhardt, Christian; Perner, Sven; Heukamp, Lukas; Büttner, Reinhard; Haas, Stefan A.; Brambilla, Elisabeth; Peifer, Martin; Sage, Julien; Thomas, Roman K.

    2016-01-01

    We have sequenced the genomes of 110 small cell lung cancers (SCLC), one of the deadliest human cancers. In nearly all the tumours analysed we found bi-allelic inactivation of TP53 and RB1, sometimes by complex genomic rearrangements. Two tumours with wild-type RB1 had evidence of chromothripsis leading to overexpression of cyclin D1 (encoded by the CCND1 gene), revealing an alternative mechanism of Rb1 deregulation. Thus, loss of the tumour suppressors TP53 and RB1 is obligatory in SCLC. We discovered somatic genomic rearrangements of TP73 that create an oncogenic version of this gene, TP73Δex2/3. In rare cases, SCLC tumours exhibited kinase gene mutations, providing a possible therapeutic opportunity for individual patients. Finally, we observed inactivating mutations in NOTCH family genes in 25% of human SCLC. Accordingly, activation of Notch signalling in a pre-clinical SCLC mouse model strikingly reduced the number of tumours and extended the survival of the mutant mice. Furthermore, neuroendocrine gene expression was abrogated by Notch activity in SCLC cells. This first comprehensive study of somatic genome alterations in SCLC uncovers several key biological processes and identifies candidate therapeutic targets in this highly lethal form of cancer. PMID:26168399

  18. Comprehensive genomic profiles of small cell lung cancer.

    Science.gov (United States)

    George, Julie; Lim, Jing Shan; Jang, Se Jin; Cun, Yupeng; Ozretić, Luka; Kong, Gu; Leenders, Frauke; Lu, Xin; Fernández-Cuesta, Lynnette; Bosco, Graziella; Müller, Christian; Dahmen, Ilona; Jahchan, Nadine S; Park, Kwon-Sik; Yang, Dian; Karnezis, Anthony N; Vaka, Dedeepya; Torres, Angela; Wang, Maia Segura; Korbel, Jan O; Menon, Roopika; Chun, Sung-Min; Kim, Deokhoon; Wilkerson, Matt; Hayes, Neil; Engelmann, David; Pützer, Brigitte; Bos, Marc; Michels, Sebastian; Vlasic, Ignacija; Seidel, Danila; Pinther, Berit; Schaub, Philipp; Becker, Christian; Altmüller, Janine; Yokota, Jun; Kohno, Takashi; Iwakawa, Reika; Tsuta, Koji; Noguchi, Masayuki; Muley, Thomas; Hoffmann, Hans; Schnabel, Philipp A; Petersen, Iver; Chen, Yuan; Soltermann, Alex; Tischler, Verena; Choi, Chang-min; Kim, Yong-Hee; Massion, Pierre P; Zou, Yong; Jovanovic, Dragana; Kontic, Milica; Wright, Gavin M; Russell, Prudence A; Solomon, Benjamin; Koch, Ina; Lindner, Michael; Muscarella, Lucia A; la Torre, Annamaria; Field, John K; Jakopovic, Marko; Knezevic, Jelena; Castaños-Vélez, Esmeralda; Roz, Luca; Pastorino, Ugo; Brustugun, Odd-Terje; Lund-Iversen, Marius; Thunnissen, Erik; Köhler, Jens; Schuler, Martin; Botling, Johan; Sandelin, Martin; Sanchez-Cespedes, Montserrat; Salvesen, Helga B; Achter, Viktor; Lang, Ulrich; Bogus, Magdalena; Schneider, Peter M; Zander, Thomas; Ansén, Sascha; Hallek, Michael; Wolf, Jürgen; Vingron, Martin; Yatabe, Yasushi; Travis, William D; Nürnberg, Peter; Reinhardt, Christian; Perner, Sven; Heukamp, Lukas; Büttner, Reinhard; Haas, Stefan A; Brambilla, Elisabeth; Peifer, Martin; Sage, Julien; Thomas, Roman K

    2015-08-01

    We have sequenced the genomes of 110 small cell lung cancers (SCLC), one of the deadliest human cancers. In nearly all the tumours analysed we found bi-allelic inactivation of TP53 and RB1, sometimes by complex genomic rearrangements. Two tumours with wild-type RB1 had evidence of chromothripsis leading to overexpression of cyclin D1 (encoded by the CCND1 gene), revealing an alternative mechanism of Rb1 deregulation. Thus, loss of the tumour suppressors TP53 and RB1 is obligatory in SCLC. We discovered somatic genomic rearrangements of TP73 that create an oncogenic version of this gene, TP73Δex2/3. In rare cases, SCLC tumours exhibited kinase gene mutations, providing a possible therapeutic opportunity for individual patients. Finally, we observed inactivating mutations in NOTCH family genes in 25% of human SCLC. Accordingly, activation of Notch signalling in a pre-clinical SCLC mouse model strikingly reduced the number of tumours and extended the survival of the mutant mice. Furthermore, neuroendocrine gene expression was abrogated by Notch activity in SCLC cells. This first comprehensive study of somatic genome alterations in SCLC uncovers several key biological processes and identifies candidate therapeutic targets in this highly lethal form of cancer. PMID:26168399

  19. Genome-wide association study identifies 14 novel risk alleles associated with basal cell carcinoma.

    Science.gov (United States)

    Chahal, Harvind S; Wu, Wenting; Ransohoff, Katherine J; Yang, Lingyao; Hedlin, Haley; Desai, Manisha; Lin, Yuan; Dai, Hong-Ji; Qureshi, Abrar A; Li, Wen-Qing; Kraft, Peter; Hinds, David A; Tang, Jean Y; Han, Jiali; Sarin, Kavita Y

    2016-01-01

    Basal cell carcinoma (BCC) is the most common cancer worldwide with an annual incidence of 2.8 million cases in the United States alone. Previous studies have demonstrated an association between 21 distinct genetic loci and BCC risk. Here, we report the results of a two-stage genome-wide association study of BCC, totalling 17,187 cases and 287,054 controls. We confirm 17 previously reported loci and identify 14 new susceptibility loci reaching genome-wide significance (P<5 × 10(-8), logistic regression). These newly associated SNPs lie within predicted keratinocyte regulatory elements and in expression quantitative trait loci; furthermore, we identify candidate genes and non-coding RNAs involved in telomere maintenance, immune regulation and tumour progression, providing deeper insight into the pathogenesis of BCC. PMID:27539887

  20. Admixture mapping identifies introgressed genomic regions in North American canids.

    Science.gov (United States)

    vonHoldt, Bridgett M; Kays, Roland; Pollinger, John P; Wayne, Robert K

    2016-06-01

    Hybrid zones typically contain novel gene combinations that can be tested by natural selection in a unique genetic context. Parental haplotypes that increase fitness can introgress beyond the hybrid zone, into the range of parental species. We used the Affymetrix canine SNP genotyping array to identify genomic regions tagged by multiple ancestry informative markers that are more frequent in an admixed population than expected. We surveyed a hybrid zone formed in the last 100 years as coyotes expanded their range into eastern North America. Concomitant with expansion, coyotes hybridized with wolves and some populations became more wolflike, such that coyotes in the northeast have the largest body size of any coyote population. Using a set of 3102 ancestry informative markers, we identified 60 differentially introgressed regions in 44 canines across this admixture zone. These regions are characterized by an excess of exogenous ancestry and, in northeastern coyotes, are enriched for genes affecting body size and skeletal proportions. Further, introgressed wolf-derived alleles have penetrated into Southern US coyote populations. Because no wolves currently exist in this area, these alleles are unlikely to have originated from recent hybridization. Instead, they probably originated from intraspecific gene flow or ancient admixture. We show that grey wolf and coyote admixture has far-reaching effects and, in addition to phenotypically transforming admixed populations, allows for the differential movement of alleles from different parental species to be tested in new genomic backgrounds. PMID:27106273

  1. Transcriptome sequencing in prostate cancer identifies inter-tumor heterogeneity

    Directory of Open Access Journals (Sweden)

    Janet Mendonca

    2015-06-01

    Full Text Available Given the dearth of gene mutations in prostate cancer, [1] ,[2] it is likely that genomic rearrangements play a significant role in the evolution of prostate cancer. However, in the search for recurrent genomic alterations, "private alterations" have received less attention. Such alterations may provide insights into the evolution, behavior, and clinical outcome of an individual tumor. In a recent report in "Genome Biology" Wyatt et al. [3] defines unique alterations in a cohort of high-risk prostate cancer patient with a lethal phenotype. Utilizing a transcriptome sequencing approach they observe high inter-tumor heterogeneity; however, the genes altered distill into three distinct cancer-relevant pathways. Their analysis reveals the presence of several non-ETS fusions, which may contribute to the phenotype of individual tumors, and have significance for disease progression.

  2. Identification of genomic alterations in pancreatic cancer using array-based comparative genomic hybridization.

    Directory of Open Access Journals (Sweden)

    Jian-Wei Liang

    Full Text Available BACKGROUND: Genomic aberration is a common feature of human cancers and also is one of the basic mechanisms that lead to overexpression of oncogenes and underexpression of tumor suppressor genes. Our study aims to identify frequent genomic changes in pancreatic cancer. MATERIALS AND METHODS: We used array comparative genomic hybridization (array CGH to identify recurrent genomic alterations and validated the protein expression of selected genes by immunohistochemistry. RESULTS: Sixteen gains and thirty-two losses occurred in more than 30% and 60% of the tumors, respectively. High-level amplifications at 7q21.3-q22.1 and 19q13.2 and homozygous deletions at 1p33-p32.3, 1p22.1, 1q22, 3q27.2, 6p22.3, 6p21.31, 12q13.2, 17p13.2, 17q21.31 and 22q13.1 were identified. Especially, amplification of AKT2 was detected in two carcinomas and homozygous deletion of CDKN2C in other two cases. In 15 independent validation samples, we found that AKT2 (19q13.2 and MCM7 (7q22.1 were amplified in 6 and 9 cases, and CAMTA2 (17p13.2 and PFN1 (17p13.2 were homozygously deleted in 3 and 1 cases. AKT2 and MCM7 were overexpressed, and CAMTA2 and PFN1 were underexpressed in pancreatic cancer tissues than in morphologically normal operative margin tissues. Both GISTIC and Genomic Workbench software identified 22q13.1 containing APOBEC3A and APOBEC3B as the only homozygous deletion region. And the expression levels of APOBEC3A and APOBEC3B were significantly lower in tumor tissues than in morphologically normal operative margin tissues. Further validation showed that overexpression of PSCA was significantly associated with lymph node metastasis, and overexpression of HMGA2 was significantly associated with invasive depth of pancreatic cancer. CONCLUSION: These recurrent genomic changes may be useful for revealing the mechanism of pancreatic carcinogenesis and providing candidate biomarkers.

  3. Interpreting cancer genomes using systematic host network perturbations by tumour virus proteins.

    Science.gov (United States)

    Rozenblatt-Rosen, Orit; Deo, Rahul C; Padi, Megha; Adelmant, Guillaume; Calderwood, Michael A; Rolland, Thomas; Grace, Miranda; Dricot, Amélie; Askenazi, Manor; Tavares, Maria; Pevzner, Samuel J; Abderazzaq, Fieda; Byrdsong, Danielle; Carvunis, Anne-Ruxandra; Chen, Alyce A; Cheng, Jingwei; Correll, Mick; Duarte, Melissa; Fan, Changyu; Feltkamp, Mariet C; Ficarro, Scott B; Franchi, Rachel; Garg, Brijesh K; Gulbahce, Natali; Hao, Tong; Holthaus, Amy M; James, Robert; Korkhin, Anna; Litovchick, Larisa; Mar, Jessica C; Pak, Theodore R; Rabello, Sabrina; Rubio, Renee; Shen, Yun; Singh, Saurav; Spangle, Jennifer M; Tasan, Murat; Wanamaker, Shelly; Webber, James T; Roecklein-Canfield, Jennifer; Johannsen, Eric; Barabási, Albert-László; Beroukhim, Rameen; Kieff, Elliott; Cusick, Michael E; Hill, David E; Münger, Karl; Marto, Jarrod A; Quackenbush, John; Roth, Frederick P; DeCaprio, James A; Vidal, Marc

    2012-07-26

    Genotypic differences greatly influence susceptibility and resistance to disease. Understanding genotype-phenotype relationships requires that phenotypes be viewed as manifestations of network properties, rather than simply as the result of individual genomic variations. Genome sequencing efforts have identified numerous germline mutations, and large numbers of somatic genomic alterations, associated with a predisposition to cancer. However, it remains difficult to distinguish background, or 'passenger', cancer mutations from causal, or 'driver', mutations in these data sets. Human viruses intrinsically depend on their host cell during the course of infection and can elicit pathological phenotypes similar to those arising from mutations. Here we test the hypothesis that genomic variations and tumour viruses may cause cancer through related mechanisms, by systematically examining host interactome and transcriptome network perturbations caused by DNA tumour virus proteins. The resulting integrated viral perturbation data reflects rewiring of the host cell networks, and highlights pathways, such as Notch signalling and apoptosis, that go awry in cancer. We show that systematic analyses of host targets of viral proteins can identify cancer genes with a success rate on a par with their identification through functional genomics and large-scale cataloguing of tumour mutations. Together, these complementary approaches increase the specificity of cancer gene identification. Combining systems-level studies of pathogen-encoded gene products with genomic approaches will facilitate the prioritization of cancer-causing driver genes to advance the understanding of the genetic basis of human cancer. PMID:22810586

  4. Interpreting cancer genomes using systematic host perturbations by tumour virus proteins

    Science.gov (United States)

    Rozenblatt-Rosen, Orit; Deo, Rahul C.; Padi, Megha; Adelmant, Guillaume; Calderwood, Michael A.; Rolland, Thomas; Grace, Miranda; Dricot, Amélie; Askenazi, Manor; Tavares, Maria; Pevzner, Sam; Abderazzaq, Fieda; Byrdsong, Danielle; Carvunis, Anne-Ruxandra; Chen, Alyce A.; Cheng, Jingwei; Correll, Mick; Duarte, Melissa; Fan, Changyu; Feltkamp, Mariet C.; Ficarro, Scott B.; Franchi, Rachel; Garg, Brijesh K.; Gulbahce, Natali; Hao, Tong; Holthaus, Amy M.; James, Robert; Korkhin, Anna; Litovchick, Larisa; Mar, Jessica C.; Pak, Theodore R.; Rabello, Sabrina; Rubio, Renee; Shen, Yun; Singh, Saurav; Spangle, Jennifer M.; Tasan, Murat; Wanamaker, Shelly; Webber, James T.; Roecklein-Canfield, Jennifer; Johannsen, Eric; Barabási, Albert-László; Beroukhim, Rameen; Kieff, Elliott; Cusick, Michael E.; Hill, David E.; Münger, Karl; Marto, Jarrod A.; Quackenbush, John; Roth, Frederick P.; DeCaprio, James A.; Vidal, Marc

    2012-01-01

    Genotypic differences greatly influence susceptibility and resistance to disease. Understanding genotype-phenotype relationships requires that phenotypes be viewed as manifestations of network properties, rather than simply as the result of individual genomic variations1. Genome sequencing efforts have identified numerous germline mutations associated with cancer predisposition and large numbers of somatic genomic alterations2. However, it remains challenging to distinguish between background, or “passenger” and causal, or “driver” cancer mutations in these datasets. Human viruses intrinsically depend on their host cell during the course of infection and can elicit pathological phenotypes similar to those arising from mutations3. To test the hypothesis that genomic variations and tumour viruses may cause cancer via related mechanisms, we systematically examined host interactome and transcriptome network perturbations caused by DNA tumour virus proteins. The resulting integrated viral perturbation data reflects rewiring of the host cell networks, and highlights pathways that go awry in cancer, such as Notch signalling and apoptosis. We show that systematic analyses of host targets of viral proteins can identify cancer genes with a success rate on par with their identification through functional genomics and large-scale cataloguing of tumour mutations. Together, these complementary approaches result in increased specificity for cancer gene identification. Combining systems-level studies of pathogen-encoded gene products with genomic approaches will facilitate prioritization of cancer-causing driver genes so as to advance understanding of the genetic basis of human cancer. PMID:22810586

  5. Review of State Comprehensive Cancer Control Plans for Genomics Content

    Directory of Open Access Journals (Sweden)

    Robert C. Millikan, DVM, PhD

    2005-03-01

    Full Text Available Introduction The goals of this study were to determine U.S. states with Comprehensive Cancer Control plans that include genomics in some capacity and to review successes with and barriers to implementation of genomics-related cancer control initiatives. Methods This study was conducted in two phases. Phase one included a content analysis of written state Comprehensive Cancer Control plans (n = 30 for terms related to genomics, or “genomic components” (n = 18. The second phase involved telephone interviews with the Comprehensive Cancer Control plan coordinators in states with plans that contained genomic components (n = 16. The interview was designed to gather more detailed information about the genomics-related initiatives within the state’s Comprehensive Cancer Control plan and the successes with and barriers to plan implementation, as defined by each state. Results Eighteen of the 30 Comprehensive Cancer Control plans analyzed contained genomics components. We noted a large variability among these 18 plans in the types of genomics components included. Nine (56% of the 16 states interviewed had begun to implement the genomics components in their plan. Most states emphasized educating health care providers and the public about the role of genomics in cancer control. Many states consider awareness of family history to be an important aspect of their Comprehensive Cancer Control plan. Approximately 67% of states with family history components in their plans had begun to implement these goals. Virtually all states reported they would benefit from additional training in cancer genetics and general public health genomics. Conclusion The number of states incorporating genomics into their Comprehensive Cancer Control plans is increasing. Family history is a public health application of genomics that could be implemented more fully into Comprehensive Cancer Control plans.

  6. International Cancer Genome Consortium Data Portal--a one-stop shop for cancer genomics data.

    Science.gov (United States)

    Zhang, Junjun; Baran, Joachim; Cros, A; Guberman, Jonathan M; Haider, Syed; Hsu, Jack; Liang, Yong; Rivkin, Elena; Wang, Jianxin; Whitty, Brett; Wong-Erasmus, Marie; Yao, Long; Kasprzyk, Arek

    2011-01-01

    The International Cancer Genome Consortium (ICGC) is a collaborative effort to characterize genomic abnormalities in 50 different cancer types. To make this data available, the ICGC has created the ICGC Data Portal. Powered by the BioMart software, the Data Portal allows each ICGC member institution to manage and maintain its own databases locally, while seamlessly presenting all the data in a single access point for users. The Data Portal currently contains data from 24 cancer projects, including ICGC, The Cancer Genome Atlas (TCGA), Johns Hopkins University, and the Tumor Sequencing Project. It consists of 3478 genomes and 13 cancer types and subtypes. Available open access data types include simple somatic mutations, copy number alterations, structural rearrangements, gene expression, microRNAs, DNA methylation and exon junctions. Additionally, simple germline variations are available as controlled access data. The Data Portal uses a web-based graphical user interface (GUI) to offer researchers multiple ways to quickly and easily search and analyze the available data. The web interface can assist in constructing complicated queries across multiple data sets. Several application programming interfaces are also available for programmatic access. Here we describe the organization, functionality, and capabilities of the ICGC Data Portal. PMID:21930502

  7. Comparative Genomics Reveals Biomarkers to Identify Lactobacillus Species.

    Science.gov (United States)

    Koul, Shikha; Kalia, Vipin Chandra

    2016-09-01

    Bacteria possessing multiple copies of 16S rRNA (rrs) gene demonstrate high intragenomic heterogeneity. It hinders clear distinction at species level and even leads to overestimation of the bacterial diversity. Fifty completely sequenced genomes belonging to 19 species of Lactobacillus species were found to possess 4-9 copies of rrs each. Multiple sequence alignment of 268 rrs genes from all the 19 species could be classified into 20 groups. Lactobacillus sanfranciscensis TMW 1.1304 was the only species where all the 7 copies of rrs were exactly similar and thus formed a distinct group. In order to circumvent the problem of high heterogeneity arising due to multiple copies of rrs, 19 additional genes (732-3645 nucleotides in size) common to Lactobacillus genomes, were selected and digested with 10 Type II restriction endonucleases (RE), under in silico conditions. The following unique gene-RE combinations: recA (1098 nts)-HpyCH4 V, CviAII, BfuCI and RsaI were found to be useful in identifying 29 strains representing 17 species. Digestion patterns of genes-ruvB (1020 nts), dnaA (1368 nts), purA (1290 nts), dnaJ (1140 nts), and gyrB (1944 nts) in combination with REs-AluI, BfuCI, CviAI, Taq1, and Tru9I allowed clear identification of an additional 14 strains belonging to 8 species. Digestion pattern of genes recA, ruvB, dnaA, purA, dnaJ and gyrB can be used as biomarkers for identifying different species of Lactobacillus. PMID:27407290

  8. Genomic and epigenomic alterations in prostate cancer

    Directory of Open Access Journals (Sweden)

    Anna Maria eAschelter

    2012-11-01

    Full Text Available Prostate cancer (PC is the second most frequently diagnosed cancer and the second leading cause of cancer deaths in man. The treatment of localized PC includes surgery or radiation therapy. In case of relapse after a definitive treatment or in patients with locally advanced or metastatic disease, the standard treatment includes the androgen-deprivation therapy (ADT. By reducing the levels of Testosterone and dihydrotestosterone (DHT under the castration threshold, the ADT acts on the androgen receptor (AR, even if indirectly. The effects of the ADT are usually temporary and nearly all patients, initially sensitive to the androgen ablation therapy, have a disease progression after a 18-24 months medium term. This is probably due to the selection of the cancer cell clones and to their acquisition of critical somatic genome and epigenomic changes. This review aims to provide an overview about the genetic and epigenetic alterations having a crucial role in the carcinogenesis and in the disease progression toward the castration resistant prostate cancer (CRPC. We focused on the role of the androgen receptor, on its signaling cascade and on the clinical implications that the knowledge of these aspects would have on hormonal therapy, on its failure and its toxicity.

  9. Combined and interactive effects of environmental and GWAS-identified risk factors in ovarian cancer

    DEFF Research Database (Denmark)

    Pearce, Celeste Leigh; Rossing, Mary Anne; Lee, Alice W;

    2013-01-01

    There are several well-established environmental risk factors for ovarian cancer, and recent genome-wide association studies have also identified six variants that influence disease risk. However, the interplay between such risk factors and susceptibility loci has not been studied....

  10. Perspectives of integrative cancer genomics in next generation sequencing era.

    Science.gov (United States)

    Kwon, So Mee; Cho, Hyunwoo; Choi, Ji Hye; Jee, Byul A; Jo, Yuna; Woo, Hyun Goo

    2012-06-01

    The explosive development of genomics technologies including microarrays and next generation sequencing (NGS) has provided comprehensive maps of cancer genomes, including the expression of mRNAs and microRNAs, DNA copy numbers, sequence variations, and epigenetic changes. These genome-wide profiles of the genetic aberrations could reveal the candidates for diagnostic and/or prognostic biomarkers as well as mechanistic insights into tumor development and progression. Recent efforts to establish the huge cancer genome compendium and integrative omics analyses, so-called "integromics", have extended our understanding on the cancer genome, showing its daunting complexity and heterogeneity. However, the challenges of the structured integration, sharing, and interpretation of the big omics data still remain to be resolved. Here, we review several issues raised in cancer omics data analysis, including NGS, focusing particularly on the study design and analysis strategies. This might be helpful to understand the current trends and strategies of the rapidly evolving cancer genomics research. PMID:23105932

  11. Whole genome sequencing defines the genetic heterogeneity of familial pancreatic cancer

    Science.gov (United States)

    Roberts, Nicholas J.; Norris, Alexis L.; Petersen, Gloria M.; Bondy, Melissa L.; Brand, Randall; Gallinger, Steven; Kurtz, Robert C.; Olson, Sara H.; Rustgi, Anil K.; Schwartz, Ann G.; Stoffel, Elena; Syngal, Sapna; Zogopoulos, George; Ali, Syed Z.; Axilbund, Jennifer; Chaffee, Kari G.; Chen, Yun-Ching; Cote, Michele L.; Childs, Erica J.; Douville, Christopher; Goes, Fernando S.; Herman, Joseph M.; Iacobuzio-Donahue, Christine; Kramer, Melissa; Makohon-Moore, Alvin; McCombie, Richard W.; McMahon, K. Wyatt; Niknafs, Noushin; Parla, Jennifer; Pirooznia, Mehdi; Potash, James B.; Rhim, Andrew D.; Smith, Alyssa L.; Wang, Yuxuan; Wolfgang, Christopher L.; Wood, Laura D.; Zandi, Peter P.; Goggins, Michael; Karchin, Rachel; Eshleman, James R.; Papadopoulos, Nickolas; Kinzler, Kenneth W.; Vogelstein, Bert; Hruban, Ralph H.; Klein, Alison P.

    2015-01-01

    Pancreatic cancer is projected to become the second leading cause of cancer-related death in the United States by 2020. A familial aggregation of pancreatic cancer has been established, but the cause of this aggregation in most families is unknown. To determine the genetic basis of susceptibility in these families, we sequenced the germline genome of 638 familial pancreatic cancer patients. We also sequenced the exomes of 39 familial pancreatic adenocarcinomas. Our analyses support the role of previously identified familial pancreatic cancer susceptibility genes such as BRCA2, CDKN2A and ATM, and identify novel candidate genes harboring rare, deleterious germline variants for further characterization. We also show how somatic point mutations that occur during hematopoiesis can affect the interpretation of genome-wide studies of hereditary traits. Our observations have important implications for the etiology of pancreatic cancer and for the identification of susceptibility genes in other common cancer types. PMID:26658419

  12. KRAS Genomic Status Predicts the Sensitivity of Ovarian Cancer Cells to Decitabine | Office of Cancer Genomics

    Science.gov (United States)

    Decitabine, a cancer therapeutic that inhibits DNA methylation, produces variable antitumor response rates in patients with solid tumors that might be leveraged clinically with identification of a predictive biomarker. In this study, we profiled the response of human ovarian, melanoma, and breast cancer cells treated with decitabine, finding that RAS/MEK/ERK pathway activation and DNMT1 expression correlated with cytotoxic activity. Further, we showed that KRAS genomic status predicted decitabine sensitivity in low-grade and high-grade serous ovarian cancer cells.

  13. Genome-wide association study identifies shared risk loci common to two malignancies in golden retrievers.

    Science.gov (United States)

    Tonomura, Noriko; Elvers, Ingegerd; Thomas, Rachael; Megquier, Kate; Turner-Maier, Jason; Howald, Cedric; Sarver, Aaron L; Swofford, Ross; Frantz, Aric M; Ito, Daisuke; Mauceli, Evan; Arendt, Maja; Noh, Hyun Ji; Koltookian, Michele; Biagi, Tara; Fryc, Sarah; Williams, Christina; Avery, Anne C; Kim, Jong-Hyuk; Barber, Lisa; Burgess, Kristine; Lander, Eric S; Karlsson, Elinor K; Azuma, Chieko; Modiano, Jaime F; Breen, Matthew; Lindblad-Toh, Kerstin

    2015-02-01

    Dogs, with their breed-determined limited genetic background, are great models of human disease including cancer. Canine B-cell lymphoma and hemangiosarcoma are both malignancies of the hematologic system that are clinically and histologically similar to human B-cell non-Hodgkin lymphoma and angiosarcoma, respectively. Golden retrievers in the US show significantly elevated lifetime risk for both B-cell lymphoma (6%) and hemangiosarcoma (20%). We conducted genome-wide association studies for hemangiosarcoma and B-cell lymphoma, identifying two shared predisposing loci. The two associated loci are located on chromosome 5, and together contribute ~20% of the risk of developing these cancers. Genome-wide p-values for the top SNP of each locus are 4.6×10-7 and 2.7×10-6, respectively. Whole genome resequencing of nine cases and controls followed by genotyping and detailed analysis identified three shared and one B-cell lymphoma specific risk haplotypes within the two loci, but no coding changes were associated with the risk haplotypes. Gene expression analysis of B-cell lymphoma tumors revealed that carrying the risk haplotypes at the first locus is associated with down-regulation of several nearby genes including the proximal gene TRPC6, a transient receptor Ca2+-channel involved in T-cell activation, among other functions. The shared risk haplotype in the second locus overlaps the vesicle transport and release gene STX8. Carrying the shared risk haplotype is associated with gene expression changes of 100 genes enriched for pathways involved in immune cell activation. Thus, the predisposing germ-line mutations in B-cell lymphoma and hemangiosarcoma appear to be regulatory, and affect pathways involved in T-cell mediated immune response in the tumor. This suggests that the interaction between the immune system and malignant cells plays a common role in the tumorigenesis of these relatively different cancers. PMID:25642983

  14. Genome instability in blood cells of a BRCA1+ breast cancer family

    International Nuclear Information System (INIS)

    BRCA1 plays an essential role in maintaining genome stability. Inherited BRCA1 germline mutation (BRCA1+) is a determined genetic predisposition leading to high risk of breast cancer. While BRCA1+ induces breast cancer by causing genome instability, most of the knowledge is known about somatic genome instability in breast cancer cells but not germline genome instability. Using the exome-sequencing method, we analyzed the genomes of blood cells in a typical BRCA1+ breast cancer family with an exon 13-duplicated founder mutation, including six breast cancer-affected and two breast cancer unaffected members. We identified 23 deleterious mutations in the breast cancer-affected family members, which are absent in the unaffected members. Multiple mutations damaged functionally important and breast cancer-related genes, including transcriptional factor BPTF and FOXP1, ubiquitin ligase CUL4B, phosphorylase kinase PHKG2, and nuclear receptor activator SRA1. Analysis of the mutations between the mothers and daughters shows that most mutations were germline mutation inherited from the ancestor(s) while only a few were somatic mutation generated de novo. Our study indicates that BRCA1+ can cause genome instability with both germline and somatic mutations in non-breast cells

  15. Pan-cancer analysis of genomic scar signatures associated with homologous recombination deficiency suggests novel indications for existing cancer drugs

    DEFF Research Database (Denmark)

    Marquard, Andrea Marion; Eklund, Aron Charles; Joshi, Tejal; Krzystanek, Marcin; Favero, Francesco; Wang, Zhigang C; Richardson, Andrea L; Silver, Daniel P; Szallasi, Zoltan Imre; Birkbak, Nicolai Juul

    2015-01-01

    accumulation of similar genomic scars also show increased sensitivity to platinum-based chemotherapy. Therefore, reliable biomarkers to identify DNA repair-deficient cancers prior to treatment may be useful for directing patients to platinum chemotherapy and possibly PARP inhibitors. Recently, three SNP array......-based signatures of chromosomal instability were published that each quantitate a distinct type of genomic scar considered likely to be caused by improper DNA repair. They measure telomeric allelic imbalance (named NtAI), large scale transition (named LST), and loss of heterozygosity (named HRD-LOH), and it is...... suggested that these signatures may act as biomarkers for the state of DNA repair deficiency in a given cancer. We explored the pan-cancer distribution of scores of the three signatures utilizing a panel of 5371 tumors representing 15 cancer types from The Cancer Genome Atlas, and found a good correlation...

  16. MTAP deletion confers enhanced dependency on the PRMT5 arginine methyltransferase in cancer cells | Office of Cancer Genomics

    Science.gov (United States)

    The discovery of cancer dependencies has the potential to inform therapeutic strategies and to identify putative drug targets. Integrating data from comprehensive genomic profiling of cancer cell lines and from functional characterization of cancer cell dependencies, we discovered that loss of the enzyme methylthioadenosine phosphorylase (MTAP) confers a selective dependence on protein arginine methyltransferase 5 (PRMT5) and its binding partner WDR77. MTAP is frequently lost due to its proximity to the commonly deleted tumor suppressor gene, CDKN2A.

  17. Comparison of genomic abnormalities between BRCAX and sporadic breast cancers studied by comparative genomic hybridization.

    Science.gov (United States)

    Gronwald, Jacek; Jauch, Anna; Cybulski, Cezary; Schoell, Brigitte; Böhm-Steuer, Barbara; Lener, Marcin; Grabowska, Ewa; Górski, Bohdan; Jakubowska, Anna; Domagała, Wenancjusz; Chosia, Maria; Scott, Rodney J; Lubiński, Jan

    2005-03-20

    Very little is known about the chromosomal regions harbouring genes involved in initiation and progression of BRCAX-associated breast cancers. We applied comparative genomic hybridization (CGH) to identify the most frequent genomic imbalances in 18 BRCAX hereditary breast cancers and compared them to chromosomal aberrations detected in a group of 27 sporadic breast cancers. The aberrations observed most frequently in BRCAX tumours were gains of 8q (83%), 19q (67%), 19p (61%), 20q (61%), 1q (56%), 17q (56%) and losses of 8p (56%), 11q (44%) and 13q (33%). The sporadic cases most frequently showed gains of 1q (67%), 8q (48%), 17q (37%), 16p (33%), 19q (33%) and losses of 11q (26%), 8p (22%) and 16q (19%). Losses of 8p and gains 8q, 19 as well as gains of 20q (with respect to ductal tumours only) were detected significantly more often in BRCAX than in sporadic breast cancers. Analysis of 8p-losses and 8q-gains showed that these aberrations are early events in the tumorigenesis of BRCAX tumors. The findings of this report indicate similarities between BRCAX and BRCA2 tumours, possibly suggesting a common pathway of disease. These findings need confirmation by more extensive studies because only a limited number of cases were analysed and there are relatively few reports published. PMID:15540206

  18. Genome profiling of ERBB2-amplified breast cancers

    International Nuclear Information System (INIS)

    Around 20% of breast cancers (BC) show ERBB2 gene amplification and overexpression of the ERBB2 tyrosine kinase receptor. They are associated with a poor prognosis but can benefit from targeted therapy. A better knowledge of these BCs, genomically and biologically heterogeneous, may help understand their behavior and design new therapeutic strategies. We defined the high resolution genome and gene expression profiles of 54 ERBB2-amplified BCs using 244K oligonucleotide array-comparative genomic hybridization and whole-genome DNA microarrays. Expression of ERBB2, phosphorylated ERBB2, EGFR, IGF1R and FOXA1 proteins was assessed by immunohistochemistry to evaluate the functional ERBB2 status and identify co-expressions. First, we identified the ERBB2-C17orf37-GRB7 genomic segment as the minimal common 17q12-q21 amplicon, and CRKRS and IKZF3 as the most frequent centromeric and telomeric amplicon borders, respectively. Second, GISTIC analysis identified 17 other genome regions affected by copy number aberration (CNA) (amplifications, gains, losses). The expression of 37 genes of these regions was deregulated. Third, two types of heterogeneity were observed in ERBB2-amplified BCs. The genomic profiles of estrogen receptor-postive (ER+) and negative (ER-) ERBB2-amplified BCs were different. The WNT/β-catenin signaling pathway was involved in ER- ERBB2-amplified BCs, and PVT1 and TRPS1 were candidate oncogenes associated with ER+ ERBB2-amplified BCs. The size of the ERBB2 amplicon was different in inflammatory (IBC) and non-inflammatory BCs. ERBB2-amplified IBCs were characterized by the downregulated and upregulated mRNA expression of ten and two genes in proportion to CNA, respectively. IHC results showed (i) a linear relationship between ERBB2 gene amplification and its gene and protein expressions with a good correlation between ERBB2 expression and phosphorylation status; (ii) a potential signaling cross-talk between EGFR or IGF1R and ERBB2, which could influence

  19. Genomic alterations in pancreatic cancer and their relevance to therapy

    Institute of Scientific and Technical Information of China (English)

    Erina; Takai; Shinichi; Yachida

    2015-01-01

    Pancreatic cancer is a highly lethal cancer type, for which there are few viable therapeutic options. But, with the advance of sequencing technologies for global genomic analysis, the landscape of genomic alterations in pancreatic cancer is becoming increasingly well understood. In this review, we summarize current knowledge of genomic alterations in 12 core signaling pathways or cellular processes in pancreatic ductal adenocarcinoma, which is the most common type of malignancy in the pancreas, including four commonly mutated genes and many other genes that are mutated at low frequencies. We also describe the potential implications of these genomic alterations for development of novel therapeutic approaches in the context of personalized medicine.

  20. Cancer core modules identification through genomic and transcriptomic changes correlation detection at network level

    Directory of Open Access Journals (Sweden)

    Li Wenting

    2012-06-01

    Full Text Available Abstract Background Identification of driver mutations among numerous genomic alternations remains a critical challenge to the elucidation of the underlying mechanisms of cancer. Because driver mutations by definition are associated with a greater number of cancer phenotypes compared to other mutations, we hypothesized that driver mutations could more easily be identified once the genotype-phenotype correlations are detected across tumor samples. Results In this study, we describe a novel network analysis to identify the driver mutation through integrating both cancer genomes and transcriptomes. Our method successfully identified a significant genotype-phenotype change correlation in all six solid tumor types and revealed core modules that contain both significantly enriched somatic mutations and aberrant expression changes specific to tumor development. Moreover, we found that the majority of these core modules contained well known cancer driver mutations, and that their mutated genes tended to occur at hub genes with central regulatory roles. In these mutated genes, the majority were cancer-type specific and exhibited a closer relationship within the same cancer type rather than across cancer types. The remaining mutated genes that exist in multiple cancer types led to two cancer type clusters, one cluster consisted of three neural derived or related cancer types, and the other cluster consisted of two adenoma cancer types. Conclusions Our approach can successfully identify the candidate drivers from the core modules. Comprehensive network analysis on the core modules potentially provides critical insights into convergent cancer development in different organs.

  1. Genomic Copy Number Dictates a Gene-Independent Cell Response to CRISPR/Cas9 Targeting | Office of Cancer Genomics

    Science.gov (United States)

    The CRISPR/Cas9 system enables genome editing and somatic cell genetic screens in mammalian cells. We performed genome-scale loss-of-function screens in 33 cancer cell lines to identify genes essential for proliferation/survival and found a strong correlation between increased gene copy number and decreased cell viability after genome editing. Within regions of copy-number gain, CRISPR/Cas9 targeting of both expressed and unexpressed genes, as well as intergenic loci, led to significantly decreased cell proliferation through induction of a G2 cell-cycle arrest.

  2. Genome-Wide Analysis Identifies Germ-Line Risk Factors Associated with Canine Mammary Tumours

    Science.gov (United States)

    Melin, Malin; Murén, Eva; Gustafson, Ulla; Starkey, Mike; Borge, Kaja Sverdrup; Lingaas, Frode; Saellström, Sara; Rönnberg, Henrik; Lindblad-Toh, Kerstin

    2016-01-01

    Canine mammary tumours (CMT) are the most common neoplasia in unspayed female dogs. CMTs are suitable naturally occurring models for human breast cancer and share many characteristics, indicating that the genetic causes could also be shared. We have performed a genome-wide association study (GWAS) in English Springer Spaniel dogs and identified a genome-wide significant locus on chromosome 11 (praw = 5.6x10-7, pperm = 0.019). The most associated haplotype spans a 446 kb region overlapping the CDK5RAP2 gene. The CDK5RAP2 protein has a function in cell cycle regulation and could potentially have an impact on response to chemotherapy treatment. Two additional loci, both on chromosome 27, were nominally associated (praw = 1.97x10-5 and praw = 8.30x10-6). The three loci explain 28.1±10.0% of the phenotypic variation seen in the cohort, whereas the top ten associated regions account for 38.2±10.8% of the risk. Furthermore, the ten GWAS loci and regions with reduced genetic variability are significantly enriched for snoRNAs and tumour-associated antigen genes, suggesting a role for these genes in CMT development. We have identified several candidate genes associated with canine mammary tumours, including CDK5RAP2. Our findings enable further comparative studies to investigate the genes and pathways in human breast cancer patients. PMID:27158822

  3. Genome-Wide Analysis Identifies Germ-Line Risk Factors Associated with Canine Mammary Tumours.

    Science.gov (United States)

    Melin, Malin; Rivera, Patricio; Arendt, Maja; Elvers, Ingegerd; Murén, Eva; Gustafson, Ulla; Starkey, Mike; Borge, Kaja Sverdrup; Lingaas, Frode; Häggström, Jens; Saellström, Sara; Rönnberg, Henrik; Lindblad-Toh, Kerstin

    2016-05-01

    Canine mammary tumours (CMT) are the most common neoplasia in unspayed female dogs. CMTs are suitable naturally occurring models for human breast cancer and share many characteristics, indicating that the genetic causes could also be shared. We have performed a genome-wide association study (GWAS) in English Springer Spaniel dogs and identified a genome-wide significant locus on chromosome 11 (praw = 5.6x10-7, pperm = 0.019). The most associated haplotype spans a 446 kb region overlapping the CDK5RAP2 gene. The CDK5RAP2 protein has a function in cell cycle regulation and could potentially have an impact on response to chemotherapy treatment. Two additional loci, both on chromosome 27, were nominally associated (praw = 1.97x10-5 and praw = 8.30x10-6). The three loci explain 28.1±10.0% of the phenotypic variation seen in the cohort, whereas the top ten associated regions account for 38.2±10.8% of the risk. Furthermore, the ten GWAS loci and regions with reduced genetic variability are significantly enriched for snoRNAs and tumour-associated antigen genes, suggesting a role for these genes in CMT development. We have identified several candidate genes associated with canine mammary tumours, including CDK5RAP2. Our findings enable further comparative studies to investigate the genes and pathways in human breast cancer patients. PMID:27158822

  4. Genomic instability influences the transcriptome and proteome in endometrial cancer subtypes

    Directory of Open Access Journals (Sweden)

    Habermann Jens K

    2011-10-01

    Full Text Available Abstract Background In addition to clinical characteristics, DNA aneuploidy has been identified as a prognostic factor in epithelial malignancies in general and in endometrial cancers in particular. We mapped ploidy-associated chromosomal aberrations and identified corresponding gene and protein expression changes in endometrial cancers of different prognostic subgroups. Methods DNA image cytometry classified 25 endometrioid cancers to be either diploid (n = 16 or aneuploid (n = 9, and all uterine papillary serous cancers (UPSC to be aneuploid (n = 8. All samples were subjected to comparative genomic hybridization and gene expression profiling. Identified genes were subjected to Ingenuity pathway analysis (IPA and were correlated to protein expression changes. Results Comparative genomic hybridization revealed ploidy-associated specific, recurrent genomic imbalances. Gene expression analysis identified 54 genes between diploid and aneuploid endometrioid carcinomas, 39 genes between aneuploid endometrioid cancer and UPSC, and 76 genes between diploid endometrioid and aneuploid UPSC to be differentially expressed. Protein profiling identified AKR7A2 and ANXA2 to show translational alterations consistent with the transcriptional changes. The majority of differentially expressed genes and proteins belonged to identical molecular functions, foremost Cancer, Cell Death, and Cellular Assembly and Organization. Conclusions We conclude that the grade of genomic instability rather than the histopathological subtype correlates with specific gene and protein expression changes. The identified genes and proteins might be useful as molecular targets for improved diagnostic and therapeutic intervention and merit prospective validation.

  5. Tolerance of Whole-Genome Doubling Propagates Chromosomal Instability and Accelerates Cancer Genome Evolution

    DEFF Research Database (Denmark)

    Dewhurst, Sally M.; McGranahan, Nicholas; Burrell, Rebecca A.; Rowan, Andrew J.; Grönroos, Eva; Endesfelder, David; Joshi, Tejal; Mouradov, Dmitri; Gibbs, Peter; Ward, Robyn L.; Hawkins, Nicholas J.; Szallasi, Zoltan Imre; Sieber, Oliver M.; Swanton, Charles

    2014-01-01

    The contribution of whole-genome doubling to chromosomal instability (CIN) and tumor evolution is unclear. We use long-term culture of isogenic tetraploid cells from a stable diploid colon cancer progenitor to investigate how a genome-doubling event affects genome stability over time. Rare cells ...

  6. Simulated annealing based algorithm for identifying mutated driver pathways in cancer.

    Science.gov (United States)

    Li, Hai-Tao; Zhang, Yu-Lang; Zheng, Chun-Hou; Wang, Hong-Qiang

    2014-01-01

    With the development of next-generation DNA sequencing technologies, large-scale cancer genomics projects can be implemented to help researchers to identify driver genes, driver mutations, and driver pathways, which promote cancer proliferation in large numbers of cancer patients. Hence, one of the remaining challenges is to distinguish functional mutations vital for cancer development, and filter out the unfunctional and random "passenger mutations." In this study, we introduce a modified method to solve the so-called maximum weight submatrix problem which is used to identify mutated driver pathways in cancer. The problem is based on two combinatorial properties, that is, coverage and exclusivity. Particularly, we enhance an integrative model which combines gene mutation and expression data. The experimental results on simulated data show that, compared with the other methods, our method is more efficient. Finally, we apply the proposed method on two real biological datasets. The results show that our proposed method is also applicable in real practice. PMID:24982873

  7. Genomic distance entrained clustering and regression modelling highlights interacting genomic regions contributing to proliferation in breast cancer

    Directory of Open Access Journals (Sweden)

    Dexter Tim J

    2010-09-01

    Full Text Available Abstract Background Genomic copy number changes and regional alterations in epigenetic states have been linked to grade in breast cancer. However, the relative contribution of specific alterations to the pathology of different breast cancer subtypes remains unclear. The heterogeneity and interplay of genomic and epigenetic variations means that large datasets and statistical data mining methods are required to uncover recurrent patterns that are likely to be important in cancer progression. Results We employed ridge regression to model the relationship between regional changes in gene expression and proliferation. Regional features were extracted from tumour gene expression data using a novel clustering method, called genomic distance entrained agglomerative (GDEC clustering. Using gene expression data in this way provides a simple means of integrating the phenotypic effects of both copy number aberrations and alterations in chromatin state. We show that regional metagenes derived from GDEC clustering are representative of recurrent regions of epigenetic regulation or copy number aberrations in breast cancer. Furthermore, detected patterns of genomic alterations are conserved across independent oestrogen receptor positive breast cancer datasets. Sequential competitive metagene selection was used to reveal the relative importance of genomic regions in predicting proliferation rate. The predictive model suggested additive interactions between the most informative regions such as 8p22-12 and 8q13-22. Conclusions Data-mining of large-scale microarray gene expression datasets can reveal regional clusters of co-ordinate gene expression, independent of cause. By correlating these clusters with tumour proliferation we have identified a number of genomic regions that act together to promote proliferation in ER+ breast cancer. Identification of such regions should enable prioritisation of genomic regions for combinatorial functional studies to pinpoint

  8. GWAS-identified colorectal cancer susceptibility loci associated with clinical outcomes

    OpenAIRE

    Dai, Jingyao; Gu, Jian; Huang, Maosheng; Eng, Cathy; Kopetz, E. Scott; Ellis, Lee M.; Hawk, Ernest; Wu, Xifeng

    2012-01-01

    Recent genome-wide association studies (GWAS) have identified several common susceptibility loci associated with the risk of colorectal cancer (CRC). However, whether these loci affect clinical outcomes of CRC is not clear. In this study, we genotyped 26 single nucleotide polymorphisms (SNPs) in 10 GWAS-identified CRC susceptibility regions and evaluated their associations with survival and recurrence in 285 stage II and III patients receiving fluorouracil-based adjuvant chemotherapy. Only on...

  9. The compact Selaginella genome identifies changes in gene content associated with the evolution of vascular plants

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor V.; Banks, Jo Ann; Nishiyama, Tomoaki; Hasebe, Mitsuyasu; Bowman, John L.; Gribskov, Michael; dePamphilis, Claude; Albert, Victor A.; Aono, Naoki; Aoyama, Tsuyoshi; Ambrose, Barbara A.; Ashton, Neil W.; Axtell, Michael J.; Barker, Elizabeth; Barker, Michael S.; Bennetzen, Jeffrey L.; Bonawitz, Nicholas D.; Chapple, Clint; Cheng, Chaoyang; Correa, Luiz Gustavo Guedes; Dacre, Michael; DeBarry, Jeremy; Dreyer, Ingo; Elias, Marek; Engstrom, Eric M.; Estelle, Mark; Feng, Liang; Finet, Cedric; Floyd, Sandra K.; Frommer, Wolf B.; Fujita, Tomomichi; Gramzow, Lydia; Gutensohn, Michael; Harholt, Jesper; Hattori, Mitsuru; Heyl, Alexander; Hirai, Tadayoshi; Hiwatashi, Yuji; Ishikawa, Masaki; Iwata, Mineko; Karol, Kenneth G.; Koehler, Barbara; Kolukisaoglu, Uener; Kubo, Minoru; Kurata, Tetsuya; Lalonde, Sylvie; Li, Kejie; Li, Ying; Litt, Amy; Lyons, Eric; Manning, Gerard; Maruyama, Takeshi; Michael, Todd P.; Mikami, Koji; Miyazaki, Saori; Morinaga, Shin-ichi; Murata, Takashi; Mueller-Roeber, Bernd; Nelson, David R.; Obara, Mari; Oguri, Yasuko; Olmstead, Richard G.; Onodera, Naoko; Petersen, Bent Larsen; Pils, Birgit; Prigge, Michael; Rensing, Stefan A.; Riano-Pachon, Diego Mauricio; Roberts, Alison W.; Sato, Yoshikatsu; Scheller, Henrik Vibe; Schulz, Burkhard; Schulz, Christian; Shakirov, Eugene V.; Shibagaki, Nakako; Shinohara, Naoki; Shippen, Dorothy E.; Sorensen, Iben; Sotooka, Ryo; Sugimoto, Nagisa; Sugita, Mamoru; Sumikawa, Naomi; Tanurdzic, Milos; Theilsen, Gunter; Ulvskov, Peter; Wakazuki, Sachiko; Weng, Jing-Ke; Willats, William W.G.T.; Wipf, Daniel; Wolf, Paul G.; Yang, Lixing; Zimmer, Andreas D.; Zhu, Qihui; Mitros, Therese; Hellsten, Uffe; Loque, Dominique; Otillar, Robert; Salamov, Asaf; Schmutz, Jeremy; Shapiro, Harris; Lindquist, Erika; Lucas, Susan; Rokhsar, Daniel

    2011-04-28

    We report the genome sequence of the nonseed vascular plant, Selaginella moellendorffii, and by comparative genomics identify genes that likely played important roles in the early evolution of vascular plants and their subsequent evolution

  10. The compact Selaginella genome identifies changes in gene content associated with the evolution of vascular plants

    OpenAIRE

    Grigoriev, Igor V.

    2011-01-01

    We report the genome sequence of the nonseed vascular plant, Selaginella moellendorffii, and by comparative genomics identify genes that likely played important roles in the early evolution of vascular plants and their subsequent evolution

  11. Translating the cancer genome: Going beyond p values

    Energy Technology Data Exchange (ETDEWEB)

    Chin, Lynda; Chin, Lynda; Gray, Joe W.

    2008-04-03

    Cancer cells are endowed with diverse biological capabilities driven by myriad inherited and somatic genetic and epigenetic aberrations that commandeer key cancer-relevant pathways. Efforts to elucidate these aberrations began with Boveri's hypothesis of aberrant mitoses causing cancer and continue today with a suite of powerful high-resolution technologies that enable detailed catalogues of genomic aberrations and epigenomic modifications. Tomorrow will likely bring the complete atlas of reversible and irreversible alteration in individual cancers. The challenge now is to discern causal molecular abnormalities from genomic and epigenomic 'noise', to understand how the ensemble of these aberrations collaborate to drive cancer pathophysiology. Here, we highlight lessons learned from now classical examples of successful translation of genomic discoveries into clinical practice, lessons that may be used to guide and accelerate translation of emerging genomic insights into practical clinical endpoints that can impact on practice of cancer medicine.

  12. Genomic leftovers: identifying novel microsatellites, over-represented motifs and functional elements in the human genome.

    Science.gov (United States)

    Fonville, Natalie C; Velmurugan, Karthik Raja; Tae, Hongseok; Vaksman, Zalman; McIver, Lauren J; Garner, Harold R

    2016-01-01

    The human genome is 99% complete. This study contributes to filling the 1% gap by enriching previously unknown repeat regions called microsatellites (MST). We devised a Global MST Enrichment (GME) kit to enrich and nextgen sequence 2 colorectal cell lines and 16 normal human samples to illustrate its utility in identifying contigs from reads that do not map to the genome reference. The analysis of these samples yielded 790 novel extra-referential concordant contigs that are observed in more than one sample. We searched for evidence of functional elements in the concordant contigs in two ways: (1) BLAST-ing each contig against normal RNA-Seq samples, (2) Checking for predicted functional elements using GlimmerHMM. Of the 790 concordant contigs, 37 had an exact match to at least one RNA-Seq read; 15 aligned to more than 100 RNA-Seq reads. Of the 249 concordant contigs predicted by GlimmerHMM to have functional elements, 6 had at least one exact RNA-Seq match. BLAST-ing these novel contigs against all publically available sequences confirmed that they were found in human and chimpanzee BAC and FOSMID clones sequenced as part of the original human genome project. These extra-referential contigs predominantly contained pentameric repeats, especially two motifs: AATGG and GTGGA. PMID:27278669

  13. Identifying patients at risk of emergency admission for colorectal cancer

    OpenAIRE

    Wallace, D.; Walker, K.; Kuryba, A; Finan, P; Scott, N.; Van Der Meulen, J.

    2014-01-01

    Background: Patients whose colorectal cancer is treated after an emergency admission tend to have late-stage cancer and a poor prognosis. We identified risk factors for an emergency admission by linking data from the National Bowel Cancer Audit (NBCA) and the English Hospital Episode Statistics (HES), an administrative database of all admissions to English National Health Service hospitals, which includes data on mode of admission. Methods: We identified all adults included in the NBCA with a...

  14. Deep Learning for Identifying Metastatic Breast Cancer

    OpenAIRE

    Wang, Dayong; Khosla, Aditya; Gargeya, Rishab; Irshad, Humayun; Beck, Andrew H

    2016-01-01

    The International Symposium on Biomedical Imaging (ISBI) held a grand challenge to evaluate computational systems for the automated detection of metastatic breast cancer in whole slide images of sentinel lymph node biopsies. Our team won both competitions in the grand challenge, obtaining an area under the receiver operating curve (AUC) of 0.925 for the task of whole slide image classification and a score of 0.7051 for the tumor localization task. A pathologist independently reviewed the same...

  15. An Integrative Genomics Approach for Associating GWAS Information with Triple-Negative Breast Cancer

    OpenAIRE

    Chindo Hicks; Ranjit Kumar; Antonio Pannuti; Kandis Backus; Alexandra Brown; Jesus Monico; Lucio Miele

    2013-01-01

    Genome-wide association studies (GWAS) have identified genetic variants associated with an increased risk of developing breast cancer. However, the association of genetic variants and their associated genes with the most aggressive subset of breast cancer, the triple-negative breast cancer (TNBC), remains a central puzzle in molecular epidemiology. The objective of this study was to determine whether genes containing single nucleotide polymorphisms (SNPs) associated with an increased risk of ...

  16. Comprehensive copy number profiles of breast cancer cell model genomes

    OpenAIRE

    Shadeo, Ashleen; Lam, Wan L.

    2006-01-01

    Introduction Breast cancer is the most commonly diagnosed cancer in women worldwide and consequently has been extensively investigated in terms of histopathology, immunochemistry and familial history. Advances in genome-wide approaches have contributed to molecular classification with respect to genomic changes and their subsequent effects on gene expression. Cell lines have provided a renewable resource that is readily used as model systems for breast cancer cell biology. A thorough characte...

  17. Tolerance whole of genome doubling propagates chromosomal instability and accelerates cancer genome evolution

    OpenAIRE

    Dewhurst, Sally M; McGranahan, Nicholas; Burrell, Rebecca A.; Rowan, Andrew J.; Grönroos, Eva; Endesfelder, David; Joshi, Tejal; Mouradov, Dmitri; Gibbs, Peter; Ward, Robyn L.; Hawkins, Nicholas J.; Szallasi, Zoltan; Sieber, Oliver M.; Swanton, Charles

    2014-01-01

    The contribution of whole genome doubling to chromosomal instability (CIN) and tumour evolution is unclear. We use long-term culture of isogenic tetraploid cells from a stable diploid colon cancer progenitor to investigate how a genome-doubling event affects genome stability over time. Rare cells that survive genome doubling demonstrate increased tolerance to chromosome aberrations. Tetraploid cells do not exhibit increased frequencies of structural or numerical CIN per chromosome. However, t...

  18. Collaborative Research to Advance Precision Medicine in the Post-Genomic World | Office of Cancer Genomics

    Science.gov (United States)

    My name is Subhashini Jagu, and I am the Scientific Program Manager for the Cancer Target Discovery and Development (CTD2) Network at the Office of Cancer Genomics (OCG). In my new role, I help CTD2 work toward its mission, which is to develop new scientific approaches to accelerate the translation of genomic discoveries into new treatments. Collaborative efforts that bring together a variety of expertise and infrastructure are needed to understand and successfully treat cancer, a highly complex disease.

  19. RNA-Seq accurately identifies cancer biomarker signatures to distinguish tissue of origin.

    Science.gov (United States)

    Wei, Iris H; Shi, Yang; Jiang, Hui; Kumar-Sinha, Chandan; Chinnaiyan, Arul M

    2014-11-01

    Metastatic cancer of unknown primary (CUP) accounts for up to 5% of all new cancer cases, with a 5-year survival rate of only 10%. Accurate identification of tissue of origin would allow for directed, personalized therapies to improve clinical outcomes. Our objective was to use transcriptome sequencing (RNA-Seq) to identify lineage-specific biomarker signatures for the cancer types that most commonly metastasize as CUP (colorectum, kidney, liver, lung, ovary, pancreas, prostate, and stomach). RNA-Seq data of 17,471 transcripts from a total of 3,244 cancer samples across 26 different tissue types were compiled from in-house sequencing data and publically available International Cancer Genome Consortium and The Cancer Genome Atlas datasets. Robust cancer biomarker signatures were extracted using a 10-fold cross-validation method of log transformation, quantile normalization, transcript ranking by area under the receiver operating characteristic curve, and stepwise logistic regression. The entire algorithm was then repeated with a new set of randomly generated training and test sets, yielding highly concordant biomarker signatures. External validation of the cancer-specific signatures yielded high sensitivity (92.0% ± 3.15%; mean ± standard deviation) and specificity (97.7% ± 2.99%) for each cancer biomarker signature. The overall performance of this RNA-Seq biomarker-generating algorithm yielded an accuracy of 90.5%. In conclusion, we demonstrate a computational model for producing highly sensitive and specific cancer biomarker signatures from RNA-Seq data, generating signatures for the top eight cancer types responsible for CUP to accurately identify tumor origin. PMID:25425966

  20. Robust Automatic Breast Cancer Staging Using A Combination of Functional Genomics and Image-Omics

    Science.gov (United States)

    Su, Hai; Shen, Yong; Xing, Fuyong; Qi, Xin; Hirshfield, Kim M.; Yang, Lin; Foran, David J.

    2016-01-01

    Breast cancer is one of the leading cancers worldwide. Precision medicine is a new trend that systematically examines molecular and functional genomic information within each patient's cancer to identify the patterns that may affect treatment decisions and potential outcomes. As a part of precision medicine, computer-aided diagnosis enables joint analysis of functional genomic information and image from pathological images. In this paper we propose an integrated framework for breast cancer staging using image-omics and functional genomic information. The entire biomedical imaging informatics framework consists of image-omics extraction, feature combination, and classification. First, a robust automatic nuclei detection and segmentation is presented to identify tumor regions, delineate nuclei boundaries and calculate a set of image-based morphological features; next, the low dimensional image-omics is obtained through principal component analysis and is concatenated with the functional genomic features identified by a linear model. A support vector machine for differentiating stage I breast cancer from other stages are learned. We experimentally demonstrate that compared with a single type of representation (image-omics), the combination of image-omics and functional genomic feature can improve the classification accuracy by 3%. PMID:26737959

  1. Interest and Informational Preferences Regarding Genomic Testing for Modest Increases in Colorectal Cancer Risk

    Science.gov (United States)

    Anderson, Allison E.; Flores, Kristina G.; Boonyasiriwat, Watcharaporn; Gammon, Amanda; Kohlmann, Wendy; Birmingham, Wendy C.; Schwartz, Marc D.; Samadder, Jewel; Boucher, Ken; Kinney, Anita Y.

    2014-01-01

    Background/Aims To explore interest in genomic testing for modest changes in colorectal cancer risk and preferences for receiving genomic risk communications among individuals with intermediate disease risk due to a family history of colorectal cancer. Methods Surveys were conducted on 278 men and women at intermediate risk for colorectal cancer enrolled in a randomized trial comparing a remote personalized risk communication intervention (TeleCARE) aimed at promoting colonoscopy to a generic print control condition. Guided by Leventhal’s Common Sense Model of Self-regulation, we examined demographic and psychosocial factors possibly associated with interest in SNP testing. Descriptive statistics and logistic regression models were used to identify factors associated with testing interest and preferences for receiving genomic risk communications. Results Three-fourths of participants expressed interest in SNP testing for colorectal cancer risk. Testing interest did not markedly change across behavior modifier scenarios. Participants preferred to receive genomic risk communications from a variety of sources: printed materials, (69.1%), oncologists (59.5%), primary-care physicians (58.1%), and the web (57.9%). Overall, persons who were unmarried (p=0.029), younger (p=0.003), and with greater cancer-related fear (p=0.019) were more likely to express interest in predictive genomic testing for colorectal cancer risk. In a stratified analysis, cancer related fear was associated with interest in predictive genomic testing in the intervention group (p=0.017) but not the control group. Conclusions Individuals with intermediate familial risk for colorectal cancer are highly interested in genomic testing for modest increases in disease risk, specifically unmarried persons, younger age groups, and those with greater cancer fear. PMID:24435063

  2. Genome-wide association study identifies five new schizophrenia loci

    OpenAIRE

    Ripke, Stephan; Sanders, Alan R.; Kendler, Kenneth S.; Levinson, Douglas F.; Sklar, Pamela; Holmans, Peter A.; Lin, Dan-Yu; Duan, Jubao; Ophoff, Roel A.; Andreassen, Ole A; Scolnick, Edward; Cichon, Sven; St. Clair, David; Corvin, Aiden; Gurling, Hugh

    2011-01-01

    We examined the role of common genetic variation in schizophrenia in a genome-wide association study of substantial size: a stage 1 discovery sample of 21,856 individuals of European ancestry and a stage 2 replication sample of 29,839 independent subjects. The combined stage 1 and 2 analysis yielded genome-wide significant associations with schizophrenia for seven loci, five of which are new (1p21.3, 2q32.3, 8p23.2, 8q21.3 and 10q24.32-q24.33) and two of which have been previously implicated ...

  3. Genome-wide association study identifies five new schizophrenia loci.

    OpenAIRE

    Ripke, Stephan; Sanders, Alan R.; Kendler, Kenneth S.; Levinson, Douglas F.; Sklar, Pamela; Holmans, Peter A.; Lin, Dan-Yu; Duan, Jubao; Ophoff, Roel A.; Andreassen, Ole A; Scolnick, Edward; Cichon, Sven; St. Clair, David; Corvin, Aiden; Gurling, Hugh

    2011-01-01

    We examined the role of common genetic variation in schizophrenia in a genome-wide association study of substantial size: a stage 1 discovery sample of 21,856 individuals of European ancestry and a stage 2 replication sample of 29,839 independent subjects. The combined stage 1 and 2 analysis yielded genome-wide significant associations with schizophrenia for seven loci, five of which are new (1p21.3, 2q32.3, 8p23.2, 8q21.3 and 10q24.32-q24.33) and two of which have been previously implicated ...

  4. Significance of duon mutations in cancer genomes

    Science.gov (United States)

    Yadav, Vinod Kumar; Smith, Kyle S.; Flinders, Colin; Mumenthaler, Shannon M.; de, Subhajyoti

    2016-06-01

    Functional mutations in coding regions not only affect the structure and function of the protein products, but may also modulate their expression in some cases. This class of mutations, recently dubbed “duon mutations” due to their dual roles, can potentially have major impacts on downstream pathways. However their significance in diseases such as cancer remain unclear. In a survey covering 4606 samples from 19 cancer types, and integrating allelic expression, overall mRNA expression, regulatory motif perturbation, and chromatin signatures in one composite index called REDACT score, we identified potential duon mutations. Several such mutations are detected in known cancer genes in multiple cancer types. For instance a potential duon mutation in TP53 is associated with increased expression of the mutant allelic gene copy, thereby possibly amplifying the functional effects on the downstream pathways. Another potential duon mutation in SF3B1 is associated with abnormal splicing and changes in angiogenesis and matrix degradation related pathways. Our findings emphasize the need to interrogate the mutations in coding regions beyond their obvious effects on protein structures.

  5. Genomic and expression array profiling of chromosome 20q amplicon in human colon cancer cells

    Directory of Open Access Journals (Sweden)

    Carter Jennifer

    2005-01-01

    Full Text Available Background: Gain of the q arm of chromosome 20 in human colorectal cancer has been associated with poorer survival time and has been reported to increase in frequency from adenomas to metastasis. The increasing frequency of chromosome 20q amplification during colorectal cancer progression and the presence of this amplification in carcinomas of other tissue origin has lead us to hypothesize that 20q11-13 harbors one or more genes which, when over expressed promote tumor invasion and metastasis. Aims: Generate genomic and expression profiles of the 20q amplicon in human cancer cell lines in order to identify genes with increased copy number and expression. Materials and Methods: Utilizing genomic sequencing clones and amplification mapping data from our lab and other previous studies, BAC/ PAC tiling paths spanning the 20q amplicon and genomic microarrays were generated. Array-CGH on the custom array with human cancer cell line DNAs was performed to generate genomic profiles of the amplicon. Expression array analysis with RNA from these cell lines using commercial oligo microarrays generated expression profiles of the amplicon. The data were then combined in order to identify genes with increased copy number and expression. Results: Over expressed genes in regions of increased copy number were identified and a list of potential novel genetic tumor markers was assembled based on biological functions of these genes Conclusions: Performing high-resolution genomic microarray profiling in conjunction with expression analysis is an effective approach to identify potential tumor markers.

  6. Genome-wide functional screen identifies a compendium of genes affecting sensitivity to tamoxifen

    Science.gov (United States)

    Mendes-Pereira, Ana M.; Sims, David; Dexter, Tim; Fenwick, Kerry; Assiotis, Ioannis; Kozarewa, Iwanka; Mitsopoulos, Costas; Hakas, Jarle; Zvelebil, Marketa; Lord, Christopher J.; Ashworth, Alan

    2012-01-01

    Therapies that target estrogen signaling have made a very considerable contribution to reducing mortality from breast cancer. However, resistance to tamoxifen remains a major clinical problem. Here we have used a genome-wide functional profiling approach to identify multiple genes that confer resistance or sensitivity to tamoxifen. Combining whole-genome shRNA screening with massively parallel sequencing, we have profiled the impact of more than 56,670 RNA interference reagents targeting 16,487 genes on the cellular response to tamoxifen. This screen, along with subsequent validation experiments, identifies a compendium of genes whose silencing causes tamoxifen resistance (including BAP1, CLPP, GPRC5D, NAE1, NF1, NIPBL, NSD1, RAD21, RARG, SMC3, and UBA3) and also a set of genes whose silencing causes sensitivity to this endocrine agent (C10orf72, C15orf55/NUT, EDF1, ING5, KRAS, NOC3L, PPP1R15B, RRAS2, TMPRSS2, and TPM4). Multiple individual genes, including NF1, a regulator of RAS signaling, also correlate with clinical outcome after tamoxifen treatment. PMID:21482774

  7. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia

    Science.gov (United States)

    Puente, Xose S.; Pinyol, Magda; Quesada, Víctor; Conde, Laura; Ordóñez, Gonzalo R.; Villamor, Neus; Escaramis, Georgia; Jares, Pedro; Beà, Sílvia; González-Díaz, Marcos; Bassaganyas, Laia; Baumann, Tycho; Juan, Manel; López-Guerra, Mónica; Colomer, Dolors; Tubío, José M. C.; López, Cristina; Navarro, Alba; Tornador, Cristian; Aymerich, Marta; Rozman, María; Hernández, Jesús M.; Puente, Diana A.; Freije, José M. P.; Velasco, Gloria; Gutiérrez-Fernández, Ana; Costa, Dolors; Carrió, Anna; Guijarro, Sara; Enjuanes, Anna; Hernández, Lluís; Yagüe, Jordi; Nicolás, Pilar; Romeo-Casabona, Carlos M.; Himmelbauer, Heinz; Castillo, Ester; Dohm, Juliane C.; de Sanjosé, Silvia; Piris, Miguel A.; de Alava, Enrique; Miguel, Jesús San; Royo, Romina; Gelpí, Josep L.; Torrents, David; Orozco, Modesto; Pisano, David G.; Valencia, Alfonso; Guigó, Roderic; Bayés, Mónica; Heath, Simon; Gut, Marta; Klatt, Peter; Marshall, John; Raine, Keiran; Stebbings, Lucy A.; Futreal, P. Andrew; Stratton, Michael R.; Campbell, Peter J.; Gut, Ivo; López-Guillermo, Armando; Estivill, Xavier; Montserrat, Emili; López-Otín, Carlos; Campo, Elías

    2012-01-01

    Chronic lymphocytic leukaemia (CLL), the most frequent leukaemia in adults in Western countries, is a heterogeneous disease with variable clinical presentation and evolution1,2. Two major molecular subtypes can be distinguished, characterized respectively by a high or low number of somatic hypermutations in the variable region of immunoglobulin genes3,4. The molecular changes leading to the pathogenesis of the disease are still poorly understood. Here we performed whole-genome sequencing of four cases of CLL and identified 46 somatic mutations that potentially affect gene function. Further analysis of these mutations in 363 patients with CLL identified four genes that are recurrently mutated: notch 1 (NOTCH1), exportin 1 (XPO1), myeloid differentiation primary response gene 88 (MYD88) and kelch-like 6 (KLHL6). Mutations in MYD88 and KLHL6 are predominant in cases of CLL with mutated immunoglobulin genes, whereas NOTCH1 and XPO1 mutations are mainly detected in patients with unmutated immunoglobulins. The patterns of somatic mutation, supported by functional and clinical analyses, strongly indicate that the recurrent NOTCH1, MYD88 and XPO1 mutations are oncogenic changes that contribute to the clinical evolution of the disease. To our knowledge, this is the first comprehensive analysis of CLL combining whole-genome sequencing with clinical characteristics and clinical outcomes. It highlights the usefulness of this approach for the identification of clinically relevant mutations in cancer. PMID:21642962

  8. Genome-wide association study identifies five new schizophrenia loci

    DEFF Research Database (Denmark)

    Ripke, Stephan; Sanders, Alan R; Kendler, Kenneth S;

    2011-01-01

    We examined the role of common genetic variation in schizophrenia in a genome-wide association study of substantial size: a stage 1 discovery sample of 21,856 individuals of European ancestry and a stage 2 replication sample of 29,839 independent subjects. The combined stage 1 and 2 analysis...

  9. Genome-wide association study identifies five new schizophrenia loci

    DEFF Research Database (Denmark)

    Ripke, Stephan; Sanders, Alan R; Kendler, Kenneth S;

    2011-01-01

    We examined the role of common genetic variation in schizophrenia in a genome-wide association study of substantial size: a stage 1 discovery sample of 21,856 individuals of European ancestry and a stage 2 replication sample of 29,839 independent subjects. The combined stage 1 and 2 analysis yiel...

  10. Genome-wide association study identifies five new schizophrenia loci.

    LENUS (Irish Health Repository)

    Ripke, Stephan

    2011-10-01

    We examined the role of common genetic variation in schizophrenia in a genome-wide association study of substantial size: a stage 1 discovery sample of 21,856 individuals of European ancestry and a stage 2 replication sample of 29,839 independent subjects. The combined stage 1 and 2 analysis yielded genome-wide significant associations with schizophrenia for seven loci, five of which are new (1p21.3, 2q32.3, 8p23.2, 8q21.3 and 10q24.32-q24.33) and two of which have been previously implicated (6p21.32-p22.1 and 18q21.2). The strongest new finding (P = 1.6 × 10(-11)) was with rs1625579 within an intron of a putative primary transcript for MIR137 (microRNA 137), a known regulator of neuronal development. Four other schizophrenia loci achieving genome-wide significance contain predicted targets of MIR137, suggesting MIR137-mediated dysregulation as a previously unknown etiologic mechanism in schizophrenia. In a joint analysis with a bipolar disorder sample (16,374 affected individuals and 14,044 controls), three loci reached genome-wide significance: CACNA1C (rs4765905, P = 7.0 × 10(-9)), ANK3 (rs10994359, P = 2.5 × 10(-8)) and the ITIH3-ITIH4 region (rs2239547, P = 7.8 × 10(-9)).

  11. TAGCNA: a method to identify significant consensus events of copy number alterations in cancer.

    Science.gov (United States)

    Yuan, Xiguo; Zhang, Junying; Yang, Liying; Zhang, Shengli; Chen, Baodi; Geng, Yaojun; Wang, Yue

    2012-01-01

    Somatic copy number alteration (CNA) is a common phenomenon in cancer genome. Distinguishing significant consensus events (SCEs) from random background CNAs in a set of subjects has been proven to be a valuable tool to study cancer. In order to identify SCEs with an acceptable type I error rate, better computational approaches should be developed based on reasonable statistics and null distributions. In this article, we propose a new approach named TAGCNA for identifying SCEs in somatic CNAs that may encompass cancer driver genes. TAGCNA employs a peel-off permutation scheme to generate a reasonable null distribution based on a prior step of selecting tag CNA markers from the genome being considered. We demonstrate the statistical power of TAGCNA on simulated ground truth data, and validate its applicability using two publicly available cancer datasets: lung and prostate adenocarcinoma. TAGCNA identifies SCEs that are known to be involved with proto-oncogenes (e.g. EGFR, CDK4) and tumor suppressor genes (e.g. CDKN2A, CDKN2B), and provides many additional SCEs with potential biological relevance in these data. TAGCNA can be used to analyze the significance of CNAs in various cancers. It is implemented in R and is freely available at http://tagcna.sourceforge.net/. PMID:22815924

  12. A genome-wide association study of breast and prostate cancer in the NHLBI's Framingham Heart Study

    OpenAIRE

    Kreger Bernard E; Finger Daniel; Rosenberg Carol L; Murabito Joanne M; Levy Daniel; Splansky Greta; Antman Karen; Hwang Shih-Jen

    2007-01-01

    Abstract Background Breast and prostate cancer are two commonly diagnosed cancers in the United States. Prior work suggests that cancer causing genes and cancer susceptibility genes can be identified. Methods We conducted a genome-wide association study (Affymetrix 100K SNP GeneChip) of cancer in the community-based Framingham Heart Study. We report on 2 cancer traits – prostate cancer and breast cancer – in up to 1335 participants from 330 families (54% women, mean entry age 33 years). Multi...

  13. Contributions to Cancer Research: Finding a Niche in Communication | Office of Cancer Genomics

    Science.gov (United States)

    This past July, I started a journey into the fields of communications and cancer research when I joined the Office of Cancer Genomics (OCG) as a fellow in the National Cancer Institute (NCI) Health Communications Internship Program (HCIP). Cancer genomics and working in an office were new and uncharted territory for me: before I came to OCG, I was finishing a Ph.D. in cell biology at Vanderbilt University in Dr. Matthew Tyska’s laboratory.

  14. Clinical application of high-throughput genomic technologies for treatment selection in breast cancer

    OpenAIRE

    Hansen, Aaron R.; Bedard, Philippe L.

    2013-01-01

    Large-scale collaborative initiatives using next-generation DNA sequencing and other high-throughput technologies have begun to characterize the genomic landscape of breast cancer. These landmark studies have identified infrequent driver mutations that are potential targets for therapeutic intervention with approved or investigational drug treatments, among other important discoveries. Recently, many institutions have launched molecular screening programs that apply high-throughput genomic te...

  15. A microscopic landscape of the invasive breast cancer genome

    OpenAIRE

    Zheng Ping; Yuchao Xia; Tiansheng Shen; Vishwas Parekh; Siegal, Gene P; Isam-Eldin Eltoum; Jianbo He; Dongquan Chen; Minghua Deng; Ruibin Xi; Dejun Shen

    2016-01-01

    Histologic grade is one of the most important microscopic features used to predict the prognosis of invasive breast cancer and may serve as a marker for studying cancer driving genomic abnormalities in vivo. We analyzed whole genome sequencing data from 680 cases of TCGA invasive ductal carcinomas of the breast and correlated them to corresponding pathology information. Ten genetic abnormalities were found to be statistically associated with histologic grade, including three most prevalent ca...

  16. Perspectives of Integrative Cancer Genomics in Next Generation Sequencing Era

    OpenAIRE

    Kwon, So Mee; Cho, Hyunwoo; Choi, Ji Hye; Jee, Byul A; Jo, Yuna; Woo, Hyun Goo

    2012-01-01

    The explosive development of genomics technologies including microarrays and next generation sequencing (NGS) has provided comprehensive maps of cancer genomes, including the expression of mRNAs and microRNAs, DNA copy numbers, sequence variations, and epigenetic changes. These genome-wide profiles of the genetic aberrations could reveal the candidates for diagnostic and/or prognostic biomarkers as well as mechanistic insights into tumor development and progression. Recent efforts to establis...

  17. Yersinia pestis genome sequencing identifies patterns of global phylogenetic diversity.

    OpenAIRE

    Morelli, Giovanna; Song, Yajun; Mazzoni, Camila J.; Eppinger, Mark; Roumagnac, Philippe; Wagner, David M.; Feldkamp, Mirjam; Kusecek, Barica; Vogler, Amy J.; Li, Yanjun; Cui, Yujun; Thomson, Nicholas R.; Jombart, Thibaut; Leblois, Raphael; Lichtner, Peter

    2010-01-01

    Plague is a pandemic human invasive disease caused by the bacterial agent Yersinia pestis. We here report a comparison of 17 whole genomes of Y. pestis isolates from global sources. We also screened a global collection of 286 Y. pestis isolates for 933 SNPs using Sequenom MassArray SNP typing. We conducted phylogenetic analyses on this sequence variation dataset, assigned isolates to populations based on maximum parsimony and, from these results, made inferences regarding historical transmiss...

  18. GENOME-WIDE ASSOCIATION ANALYSIS IDENTIFIES LOCI FOR PRODUCTIVE TRAITS IN JERSEY BREED

    Science.gov (United States)

    A major objective of genomic research in dairy cattle at present is to identify, map, and characterize individual quantitative trait loci (QTL) that affects production traits. A genome scan was conducted in the US Jersey population to identify QTL affecting milk, fat and protein production. Data use...

  19. Genome-wide association study of susceptibility loci for breast cancer in Sardinian population

    International Nuclear Information System (INIS)

    Despite progress in identifying genes associated with breast cancer, many more risk loci exist. Genome-wide association analyses in genetically-homogeneous populations, such as that of Sardinia (Italy), could represent an additional approach to detect low penetrance alleles. We performed a genome-wide association study comparing 1431 Sardinian patients with non-familial, BRCA1/2-mutation-negative breast cancer to 2171 healthy Sardinian blood donors. DNA was genotyped using GeneChip Human Mapping 500 K Arrays or Genome-Wide Human SNP Arrays 6.0. To increase genomic coverage, genotypes of additional SNPs were imputed using data from HapMap Phase II. After quality control filtering of genotype data, 1367 cases (9 men) and 1658 controls (1156 men) were analyzed on a total of 2,067,645 SNPs. Overall, 33 genomic regions (67 candidate SNPs) were associated with breast cancer risk at the p < 10−6 level. Twenty of these regions contained defined genes, including one already associated with breast cancer risk: TOX3. With a lower threshold for preliminary significance to p < 10−5, we identified 11 additional SNPs in FGFR2, a well-established breast cancer-associated gene. Ten candidate SNPs were selected, excluding those already associated with breast cancer, for technical validation as well as replication in 1668 samples from the same population. Only SNP rs345299, located in intron 1 of VAV3, remained suggestively associated (p-value, 1.16x10−5), but it did not associate with breast cancer risk in pooled data from two large, mixed-population cohorts. This study indicated the role of TOX3 and FGFR2 as breast cancer susceptibility genes in BRCA1/2-wild-type breast cancer patients from Sardinian population. The online version of this article (doi:10.1186/s12885-015-1392-9) contains supplementary material, which is available to authorized users

  20. Human Cancer Classification: A Systems Biology- Based Model Integrating Morphology, Cancer Stem Cells, Proteomics, and Genomics

    OpenAIRE

    Halliday A Idikio

    2011-01-01

    Human cancer classification is currently based on the idea of cell of origin, light and electron microscopic attributes of the cancer. What is not yet integrated into cancer classification are the functional attributes of these cancer cells. Recent innovative techniques in biology have provided a wealth of information on the genomic, transcriptomic and proteomic changes in cancer cells. The emergence of the concept of cancer stem cells needs to be included in a classification model to capture...

  1. [Genome-wide association study(GWAS) and genetic risk of prostate cancer].

    Science.gov (United States)

    Nakagawa, Hidewaki; Akamatsu, Shusuke; Takata, Ryo

    2016-01-01

    It is evident that genetic factors play critical roles in prostate cancer development. GWAS (genome-wide association studies) in multiple ethnic groups have been identifying more than 100 loci or genes which was significantly associated with prostate cancer susceptibility. They include several loci at 8q24, prostate-specific gene, inflammation gene, and metabolism-related genes. Risk prediction for prostate cancer by combining multiple SNPs is still primitive and not sufficiently accurate for clinical use, but this model could have a potential to affect clinical decision when it is applied to patients with gray-zone PSA or very high risk of prostate cancer. PMID:26793876

  2. Comprehensive genomic characterization of squamous cell lung cancers

    NARCIS (Netherlands)

    Hammerman, Peter S.; Lawrence, Michael S.; Voet, Douglas; Jing, Rui; Cibulskis, Kristian; Sivachenko, Andrey; Stojanov, Petar; McKenna, Aaron; Lander, Eric S.; Gabriel, Stacey; Getz, Gad; Sougnez, Carrie; Imielinski, Marcin; Helman, Elena; Hernandez, Bryan; Pho, Nam H.; Meyerson, Matthew; Chu, Andy; Chun, Hye-Jung E.; Mungall, Andrew J.; Pleasance, Erin; Robertson, A. Gordon; Sipahimalani, Payal; Stoll, Dominik; Balasundaram, Miruna; Birol, Inanc; Butterfield, Yaron S. N.; Chuah, Eric; Coope, Robin J. N.; Corbett, Richard; Dhalla, Noreen; Guin, Ranabir; Hirst, Anhe Carrie; Hirst, Martin; Holt, Robert A.; Lee, Darlene; Li, Haiyan I.; Mayo, Michael; Moore, Richard A.; Mungall, Karen; Nip, Ka Ming; Olshen, Adam; Schein, Jacqueline E.; Slobodan, Jared R.; Tam, Angela; Thiessen, Nina; Varhol, Richard; Zeng, Thomas; Zhao, Yongjun; Jones, Steven J. M.; Marra, Marco A.; Saksena, Gordon; Cherniack, Andrew D.; Schumacher, Stephen E.; Tabak, Barbara; Carter, Scott L.; Pho, Nam H.; Nguyen, Huy; Onofrio, Robert C.; Crenshaw, Andrew; Ardlie, Kristin; Beroukhim, Rameen; Winckler, Wendy; Hammerman, Peter S.; Getz, Gad; Meyerson, Matthew; Protopopov, Alexei; Zhang, Jianhua; Hadjipanayis, Angela; Lee, Semin; Xi, Ruibin; Yang, Lixing; Ren, Xiaojia; Zhang, Hailei; Shukla, Sachet; Chen, Peng-Chieh; Haseley, Psalm; Lee, Eunjung; Chin, Lynda; Park, Peter J.; Kucherlapati, Raju; Socci, Nicholas D.; Liang, Yupu; Schultz, Nikolaus; Borsu, Laetitia; Lash, Alex E.; Viale, Agnes; Sander, Chris; Ladanyi, Marc; Auman, J. Todd; Hoadley, Katherine A.; Wilkerson, Matthew D.; Shi, Yan; Liquori, Christina; Meng, Shaowu; Li, Ling; Turman, Yidi J.; Topal, Michael D.; Tan, Donghui; Waring, Scot; Buda, Elizabeth; Walsh, Jesse; Jones, Corbin D.; Mieczkowski, Piotr A.; Singh, Darshan; Wu, Junyuan; Gulabani, Anisha; Dolina, Peter; Bodenheimer, Tom; Hoyle, Alan P.; Simons, Janae V.; Soloway, Matthew G.; Mose, Lisle E.; Jefferys, Stuart R.; Balu, Saianand; O'Connor, Brian D.; Prins, Jan F.; Liu, Jinze; Chiang, Derek Y.; Hayes, D. Neil; Perou, Charles M.; Cope, Leslie; Danilova, Ludmila; Weisenberger, Daniel J.; Maglinte, Dennis T.; Pan, Fei; Van den Berg, David J.; Triche, Timothy; Herman, James G.; Baylin, Stephen B.; Laird, Peter W.; Getz, Gad; Noble, Michael; Voet, Doug; Saksena, Gordon; Gehlenborg, Nils; DiCara, Daniel; Zhang, Jinhua; Zhang, Hailei; Wu, Chang-Jiun; Liu, Spring Yingchun; Lawrence, Michael S.; Zou, Lihua; Sivachenko, Andrey; Lin, Pei; Stojanov, Petar; Jing, Rui; Cho, Juok; Nazaire, Marc-Danie; Robinson, Jim; Thorvaldsdottir, Helga; Mesirov, Jill; Park, Peter J.; Chin, Lynda; Schultz, Nikolaus; Sinha, Rileen; Ciriello, Giovanni; Cerami, Ethan; Gross, Benjamin; Jacobsen, Anders; Gao, Jianjiong; Aksoy, B. Arman; Weinhold, Nils; Ramirez, Ricardo; Taylor, Barry S.; Antipin, Yevgeniy; Reva, Boris; Shen, Ronglai; Mo, Qianxing; Seshan, Venkatraman; Paik, Paul K.; Ladanyi, Marc; Sander, Chris; Akbani, Rehan; Zhang, Nianxiang; Broom, Bradley M.; Casasent, Tod; Unruh, Anna; Wakefield, Chris; Cason, R. Craig; Baggerly, Keith A.; Weinstein, John N.; Haussler, David; Benz, Christopher C.; Stuart, Joshua M.; Zhu, Jingchun; Szeto, Christopher; Scott, Gary K.; Yau, Christina; Ng, Sam; Goldstein, Ted; Waltman, Peter; Sokolov, Artem; Ellrott, Kyle; Collisson, Eric A.; Zerbino, Daniel; Wilks, Christopher; Ma, Singer; Craft, Brian; Wilkerson, Matthew D.; Auman, J. Todd; Hoadley, Katherine A.; Du, Ying; Cabanski, Christopher; Walter, Vonn; Singh, Darshan; Wu, Junyuan; Gulabani, Anisha; Bodenheimer, Tom; Hoyle, Alan P.; Simons, Janae V.; Soloway, Matthew G.; Mose, Lisle E.; Jefferys, Stuart R.; Balu, Saianand; Marron, J. S.; Liu, Yufeng; Wang, Kai; Liu, Jinze; Prins, Jan F.; Hayes, D. Neil; Perou, Charles M.; Creighton, Chad J.; Zhang, Yiqun; Travis, William D.; Rekhtman, Natasha; Yi, Joanne; Aubry, Marie C.; Cheney, Richard; Dacic, Sanja; Flieder, Douglas; Funkhouser, William; Illei, Peter; Myers, Jerome; Tsao, Ming-Sound; Penny, Robert; Mallery, David; Shelton, Troy; Hatfield, Martha; Morris, Scott; Yena, Peggy; Shelton, Candace; Sherman, Mark; Paulauskis, Joseph; Meyerson, Matthew; Baylin, Stephen B.; Govindan, Ramaswamy; Akbani, Rehan; Azodo, Ijeoma; Beer, David; Bose, Ron; Byers, Lauren A.; Carbone, David; Chang, Li-Wei; Chiang, Derek; Chu, Andy; Chun, Elizabeth; Collisson, Eric; Cope, Leslie; Creighton, Chad J.; Danilova, Ludmila; Ding, Li; Getz, Gad; Hammerman, Peter S.; Hayes, D. Neil; Hernandez, Bryan; Herman, James G.; Heymach, John; Ida, Cristiane; Imielinski, Marcin; Johnson, Bruce; Jurisica, Igor; Kaufman, Jacob; Kosari, Farhad; Kucherlapati, Raju; Kwiatkowski, David; Ladanyi, Marc; Lawrence, Michael S.; Maher, Christopher A.; Mungall, Andy; Ng, Sam; Pao, William; Peifer, Martin; Penny, Robert; Robertson, Gordon; Rusch, Valerie; Sander, Chris; Schultz, Nikolaus; Shen, Ronglai; Siegfried, Jill; Sinha, Rileen; Sivachenko, Andrey; Sougnez, Carrie; Stoll, Dominik; Stuart, Joshua; Thomas, Roman K.; Tomaszek, Sandra; Tsao, Ming-Sound; Travis, William D.; Vaske, Charles; Weinstein, John N.; Weisenberger, Daniel; Wheeler, David; Wigle, Dennis A.; Wilkerson, Matthew D.; Wilks, Christopher; Yang, Ping; Zhang, Jianjua John; Jensen, Mark A.; Sfeir, Robert; Kahn, Ari B.; Chu, Anna L.; Kothiyal, Prachi; Wang, Zhining; Snyder, Eric E.; Pontius, Joan; Pihl, Todd D.; Ayala, Brenda; Backus, Mark; Walton, Jessica; Baboud, Julien; Berton, Dominique L.; Nicholls, Matthew C.; Srinivasan, Deepak; Raman, Rohini; Girshik, Stanley; Kigonya, Peter A.; Alonso, Shelley; Sanbhadti, Rashmi N.; Barletta, Sean P.; Greene, John M.; Pot, David A.; Tsao, Ming-Sound; Bandarchi-Chamkhaleh, Bizhan; Boyd, Jeff; Weaver, JoEllen; Wigle, Dennis A.; Azodo, Ijeoma A.; Tomaszek, Sandra C.; Aubry, Marie Christine; Ida, Christiane M.; Yang, Ping; Kosari, Farhad; Brock, Malcolm V.; Rogers, Kristen; Rutledge, Marian; Brown, Travis; Lee, Beverly; Shin, James; Trusty, Dante; Dhir, Rajiv; Siegfried, Jill M.; Potapova, Olga; Fedosenko, Konstantin V.; Nemirovich-Danchenko, Elena; Rusch, Valerie; Zakowski, Maureen; Iacocca, Mary V.; Brown, Jennifer; Rabeno, Brenda; Czerwinski, Christine; Petrelli, Nicholas; Fan, Zhen; Todaro, Nicole; Eckman, John; Myers, Jerome; Rathmell, W. Kimryn; Thorne, Leigh B.; Huang, Mei; Boice, Lori; Hill, Ashley; Penny, Robert; Mallery, David; Curley, Erin; Shelton, Candace; Yena, Peggy; Morrison, Carl; Gaudioso, Carmelo; Bartlett, Johnm. S.; Kodeeswaran, Sugy; Zanke, Brent; Sekhon, Harman; David, Kerstin; Juhl, Hartmut; Van Le, Xuan; Kohl, Bernard; Thorp, Richard; Tien, Nguyen Viet; Van Bang, Nguyen; Sussman, Howard; Phu, Bui Duc; Hajek, Richard; PhiHung, Nguyen; Khan, Khurram Z.; Muley, Thomas; Shaw, Kenna R. Mills; Sheth, Margi; Yang, Liming; Buetow, Ken; Davidsen, Tanja; Demchok, John A.; Eley, Greg; Ferguson, Martin; Dillon, Laura A. L.; Schaefer, Carl; Guyer, Mark S.; Ozenberger, Bradley A.; Palchik, Jacqueline D.; Peterson, Jane; Sofia, Heidi J.; Thomson, Elizabeth; Meyerson, Matthew

    2012-01-01

    Lung squamous cell carcinoma is a common type of lung cancer, causing approximately 400,000 deaths per year worldwide. Genomic alterations in squamous cell lung cancers have not been comprehensively characterized, and no molecularly targeted agents have been specifically developed for its treatment.

  3. Metabolites production improvement by identifying minimal genomes and essential genes using flux balance analysis.

    Science.gov (United States)

    Salleh, Abdul Hakim Mohamed; Mohamad, Mohd Saberi; Deris, Safaai; Illias, Rosli Md

    2015-01-01

    With the advancement in metabolic engineering technologies, reconstruction of the genome of host organisms to achieve desired phenotypes can be made. However, due to the complexity and size of the genome scale metabolic network, significant components tend to be invisible. We proposed an approach to improve metabolite production that consists of two steps. First, we find the essential genes and identify the minimal genome by a single gene deletion process using Flux Balance Analysis (FBA) and second by identifying the significant pathway for the metabolite production using gene expression data. A genome scale model of Saccharomyces cerevisiae for production of vanillin and acetate is used to test this approach. The result has shown the reliability of this approach to find essential genes, reduce genome size and identify production pathway that can further optimise the production yield. The identified genes and pathways can be extendable to other applications especially in strain optimisation. PMID:26489144

  4. The breast cancer genome - a key for better oncology

    Directory of Open Access Journals (Sweden)

    Vollan Hans

    2011-11-01

    Full Text Available Abstract Molecular classification has added important knowledge to breast cancer biology, but has yet to be implemented as a clinical standard. Full sequencing of breast cancer genomes could potentially refine classification and give a more complete picture of the mutational profile of cancer and thus aid therapy decisions. Future treatment guidelines must be based on the knowledge derived from histopathological sub-classification of tumors, but with added information from genomic signatures when properly clinically validated. The objective of this article is to give some background on molecular classification, the potential of next generation sequencing, and to outline how this information could be implemented in the clinic.

  5. Databases and Web Tools for Cancer Genomics Study

    Institute of Scientific and Technical Information of China (English)

    Yadong Yang; Xunong Dong; Bingbing Xie; Nan Ding; Juan Chen; Yongjun Li; Qian Zhang; Hongzhu Qu; Xiangdong Fang

    2015-01-01

    Publicly-accessible resources have promoted the advance of scientific discovery. The era of genomics and big data has brought the need for collaboration and data sharing in order to make effective use of this new knowledge. Here, we describe the web resources for cancer genomics research and rate them on the basis of the diversity of cancer types, sample size, omics data com-prehensiveness, and user experience. The resources reviewed include data repository and analysis tools;and we hope such introduction will promote the awareness and facilitate the usage of these resources in the cancer research community.

  6. Genome Science and Personalized Cancer Treatment (LBNL Summer Lecture Series)

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Joe

    2009-08-04

    Summer Lecture Series 2009: Results from the Human Genome Project are enabling scientists to understand how individual cancers form and progress. This information, when combined with newly developed drugs, can optimize the treatment of individual cancers. Joe Gray, director of Berkeley Labs Life Sciences Division and Associate Laboratory Director for Life and Environmental Sciences, will focus on this approach, its promise, and its current roadblocks — particularly with regard to breast cancer.

  7. Yersinia pestis genome sequencing identifies patterns of global phylogenetic diversity.

    Science.gov (United States)

    Morelli, Giovanna; Song, Yajun; Mazzoni, Camila J; Eppinger, Mark; Roumagnac, Philippe; Wagner, David M; Feldkamp, Mirjam; Kusecek, Barica; Vogler, Amy J; Li, Yanjun; Cui, Yujun; Thomson, Nicholas R; Jombart, Thibaut; Leblois, Raphael; Lichtner, Peter; Rahalison, Lila; Petersen, Jeannine M; Balloux, Francois; Keim, Paul; Wirth, Thierry; Ravel, Jacques; Yang, Ruifu; Carniel, Elisabeth; Achtman, Mark

    2010-12-01

    Plague is a pandemic human invasive disease caused by the bacterial agent Yersinia pestis. We here report a comparison of 17 whole genomes of Y. pestis isolates from global sources. We also screened a global collection of 286 Y. pestis isolates for 933 SNPs using Sequenom MassArray SNP typing. We conducted phylogenetic analyses on this sequence variation dataset, assigned isolates to populations based on maximum parsimony and, from these results, made inferences regarding historical transmission routes. Our phylogenetic analysis suggests that Y. pestis evolved in or near China and spread through multiple radiations to Europe, South America, Africa and Southeast Asia, leading to country-specific lineages that can be traced by lineage-specific SNPs. All 626 current isolates from the United States reflect one radiation, and 82 isolates from Madagascar represent a second radiation. Subsequent local microevolution of Y. pestis is marked by sequential, geographically specific SNPs. PMID:21037571

  8. Methods for detection of subtle mutations in cancer genomes

    DEFF Research Database (Denmark)

    Dahl, Christina; Ralfkiaer, Ulrik; Guldberg, Per

    With the realization that cancer is a genetic disease, detection of mutations in genomic DNA has become an important discipline in many areas of cancer research. Although the publication of the human genome sequence and the immense technological advancements have facilitated the analysis of cancer...... genomes, detection of mutations in tumor specimens may still be challenging and fraught with technical problems. In this review, we describe current technologies for detection of small DNA mutations, including mutation scanning techniques to search for unknown mutations, and diagnostic techniques to...... detect known cancer mutations. We outline the principles of the different techniques and discuss their advantages and limitations. We also discuss critical issues that must be considered before choosing methodology, including sensitivity, specificity, limit of detection, throughput and cost, quantity and...

  9. An emerging place for lung cancer genomics in 2013.

    Science.gov (United States)

    Daniels, Marissa G; Bowman, Rayleen V; Yang, Ian A; Govindan, Ramaswamy; Fong, Kwun M

    2013-10-01

    Lung cancer is a disease with a dismal prognosis and is the biggest cause of cancer deaths in many countries. Nonetheless, rapid technological developments in genome science promise more effective prevention and treatment strategies. Since the Human Genome Project, scientific advances have revolutionized the diagnosis and treatment of human cancers, including thoracic cancers. The latest, massively parallel, next generation sequencing (NGS) technologies offer much greater sequencing capacity than traditional, capillary-based Sanger sequencing. These modern but costly technologies have been applied to whole genome-, and whole exome sequencing (WGS and WES) for the discovery of mutations and polymorphisms, transcriptome sequencing for quantification of gene expression, small ribonucleic acid (RNA) sequencing for microRNA profiling, large scale analysis of deoxyribonucleic acid (DNA) methylation and chromatin immunoprecipitation mapping of DNA-protein interaction. With the rise of personalized cancer care, based on the premise of precision medicine, sequencing technologies are constantly changing. To date, the genomic landscape of lung cancer has been captured in several WGS projects. Such work has not only contributed to our understanding of cancer biology, but has also provided impetus for technical advances that may improve our ability to accurately capture the cancer genome. Issues such as short read lengths contribute to sequenced libraries that contain challenging gaps in the aligned genome. Emerging platforms promise longer reads as well as the ability to capture a range of epigenomic signals. In addition, ongoing optimization of bioinformatics strategies for data analysis and interpretation are critical, especially for the differentiation between driver and passenger mutations. Moreover, broader deployment of these and future generations of platforms, coupled with an increasing bioinformatics workforce with access to highly sophisticated technologies, could

  10. SIGMA: A System for Integrative Genomic Microarray Analysis of Cancer Genomes

    Directory of Open Access Journals (Sweden)

    Davies Jonathan J

    2006-12-01

    Full Text Available Abstract Background The prevalence of high resolution profiling of genomes has created a need for the integrative analysis of information generated from multiple methodologies and platforms. Although the majority of data in the public domain are gene expression profiles, and expression analysis software are available, the increase of array CGH studies has enabled integration of high throughput genomic and gene expression datasets. However, tools for direct mining and analysis of array CGH data are limited. Hence, there is a great need for analytical and display software tailored to cross platform integrative analysis of cancer genomes. Results We have created a user-friendly java application to facilitate sophisticated visualization and analysis such as cross-tumor and cross-platform comparisons. To demonstrate the utility of this software, we assembled array CGH data representing Affymetrix SNP chip, Stanford cDNA arrays and whole genome tiling path array platforms for cross comparison. This cancer genome database contains 267 profiles from commonly used cancer cell lines representing 14 different tissue types. Conclusion In this study we have developed an application for the visualization and analysis of data from high resolution array CGH platforms that can be adapted for analysis of multiple types of high throughput genomic datasets. Furthermore, we invite researchers using array CGH technology to deposit both their raw and processed data, as this will be a continually expanding database of cancer genomes. This publicly available resource, the System for Integrative Genomic Microarray Analysis (SIGMA of cancer genomes, can be accessed at http://sigma.bccrc.ca.

  11. Genomic profiling toward precision medicine in non-small cell lung cancer: getting beyond EGFR

    Directory of Open Access Journals (Sweden)

    Richer AL

    2015-02-01

    Full Text Available Amanda L Richer,1 Jacqueline M Friel,1 Vashti M Carson,2 Landon J Inge,1 Timothy G Whitsett2 1Norton Thoracic Institute, St Joseph’s Hospital and Medical Center, 2Cancer and Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA Abstract: Lung cancer remains the leading cause of cancer-related mortality worldwide. The application of next-generation genomic technologies has offered a more comprehensive look at the mutational landscape across the different subtypes of non-small cell lung cancer (NSCLC. A number of recurrent mutations such as TP53, KRAS, and epidermal growth factor receptor (EGFR have been identified in NSCLC. While targeted therapeutic successes have been demonstrated in the therapeutic targeting of EGFR and ALK, the majority of NSCLC tumors do not harbor these genomic events. This review looks at the current treatment paradigms for lung adenocarcinomas and squamous cell carcinomas, examining genomic aberrations that dictate therapy selection, as well as novel therapeutic strategies for tumors harboring mutations in KRAS, TP53, and LKB1 which, to date, have been considered “undruggable”. A more thorough understanding of the molecular alterations that govern NSCLC tumorigenesis, aided by next-generation sequencing, will lead to targeted therapeutic options expected to dramatically reduce the high mortality rate observed in lung cancer. Keywords: non-small cell lung cancer, precision medicine, epidermal growth factor receptor, Kirsten rat sarcoma viral oncogene homolog, serine/threonine kinase 11, tumor protein p53

  12. Fine-Scale Mapping at 9p22.2 Identifies Candidate Causal Variants That Modify Ovarian Cancer Risk in BRCA1 and BRCA2 Mutation Carriers

    DEFF Research Database (Denmark)

    Vigorito, Elena; Kuchenbaecker, Karoline B; Beesley, Jonathan;

    2016-01-01

    Population-based genome wide association studies have identified a locus at 9p22.2 associated with ovarian cancer risk, which also modifies ovarian cancer risk in BRCA1 and BRCA2 mutation carriers. We conducted fine-scale mapping at 9p22.2 to identify potential causal variants in BRCA1 and BRCA2 ...

  13. Genomic approaches to identifying transcriptional regulators of osteoblast differentiation

    Science.gov (United States)

    Stains, Joseph P.; Civitelli, Roberto

    2003-01-01

    Recent microarray studies of mouse and human osteoblast differentiation in vitro have identified novel transcription factors that may be important in the establishment and maintenance of differentiation. These findings help unravel the pattern of gene-expression changes that underly the complex process of bone formation.

  14. Characterization of genomic alterations in radiation-associated breast cancer among childhood cancer survivors, using comparative genomic hybridization (CGH arrays.

    Directory of Open Access Journals (Sweden)

    Xiaohong R Yang

    Full Text Available Ionizing radiation is an established risk factor for breast cancer. Epidemiologic studies of radiation-exposed cohorts have been primarily descriptive; molecular events responsible for the development of radiation-associated breast cancer have not been elucidated. In this study, we used array comparative genomic hybridization (array-CGH to characterize genome-wide copy number changes in breast tumors collected in the Childhood Cancer Survivor Study (CCSS. Array-CGH data were obtained from 32 cases who developed a second primary breast cancer following chest irradiation at early ages for the treatment of their first cancers, mostly Hodgkin lymphoma. The majority of these cases developed breast cancer before age 45 (91%, n = 29, had invasive ductal tumors (81%, n = 26, estrogen receptor (ER-positive staining (68%, n = 19 out of 28, and high proliferation as indicated by high Ki-67 staining (77%, n = 17 out of 22. Genomic regions with low-copy number gains and losses and high-level amplifications were similar to what has been reported in sporadic breast tumors, however, the frequency of amplifications of the 17q12 region containing human epidermal growth factor receptor 2 (HER2 was much higher among CCSS cases (38%, n = 12. Our findings suggest that second primary breast cancers in CCSS were enriched for an "amplifier" genomic subgroup with highly proliferative breast tumors. Future investigation in a larger irradiated cohort will be needed to confirm our findings.

  15. Cancer Therapy Evaluation Program | Office of Cancer Genomics

    Science.gov (United States)

    The Cancer Therapy Evaluation Program (CTEP) seeks to improve the lives of cancer patients by finding better treatments, control mechanisms, and cures for cancer. CTEP funds a national program of cancer research, sponsoring clinical trials to evaluate new anti-cancer agents.

  16. A Health Services Research Agenda for Cellular, Molecular and Genomic Technologies in Cancer Care

    Science.gov (United States)

    Wideroff, Louise; Phillips, Kathryn A.; Randhawa, Gurvaneet; Ambs, Anita; Armstrong, Katrina; Bennett, Charles L.; Brown, Martin L.; Donaldson, Molla S.; Follen, Michele; Goldie, Sue J.; Hiatt, Robert A.; Khoury, Muin J.; Lewis, Graham; McLeod, Howard L.; Piper, Margaret; Powell, Isaac; Schrag, Deborah; Schulman, Kevin A.; Scott, Joan

    2009-01-01

    Background In recent decades, extensive resources have been invested to develop cellular, molecular and genomic technologies with clinical applications that span the continuum of cancer care. Methods In December 2006, the National Cancer Institute sponsored the first workshop to uniquely examine the state of health services research on cancer-related cellular, molecular and genomic technologies and identify challenges and priorities for expanding the evidence base on their effectiveness in routine care. Results This article summarizes the workshop outcomes, which included development of a comprehensive research agenda that incorporates health and safety endpoints, utilization patterns, patient and provider preferences, quality of care and access, disparities, economics and decision modeling, trends in cancer outcomes, and health-related quality of life among target populations. Conclusions Ultimately, the successful adoption of useful technologies will depend on understanding and influencing the patient, provider, health care system and societal factors that contribute to their uptake and effectiveness in ‘real-world’ settings. PMID:19367091

  17. Endoplasmic Reticulum Stress, Genome Damage, and Cancer

    OpenAIRE

    Dicks, Naomi; Gutierrez, Karina; Michalak, Marek; Bordignon, Vilceu; Agellon, Luis B.

    2015-01-01

    Endoplasmic reticulum (ER) stress has been linked to many diseases, including cancer. A large body of work has focused on the activation of the ER stress response in cancer cells to facilitate their survival and tumor growth; however, there are some studies suggesting that the ER stress response can also mitigate cancer progression. Despite these contradictions, it is clear that the ER stress response is closely associated with cancer biology. The ER stress response classically encompasses ac...

  18. Endoplasmic reticulum stress, genome damage and cancer

    OpenAIRE

    Naomi eDicks; Karina eGutierrez; Marek eMichalak; Vilceu eBordignon; Agellon, Luis B.

    2015-01-01

    Endoplasmic reticulum (ER) stress has been linked to many diseases, including cancer. A large body of work has focused on the activation of the ER stress response in cancer cells to facilitate their survival and tumor growth, however, there are some studies suggesting that the ER stress response can also mitigate cancer progression. Despite these contradictions, it is clear that the ER stress response is closely associated with cancer biology. The ER stress response classically encompasses ...

  19. Identifying Recent HIV Infections: From Serological Assays to Genomics

    Science.gov (United States)

    Moyo, Sikhulile; Wilkinson, Eduan; Novitsky, Vladimir; Vandormael, Alain; Gaseitsiwe, Simani; Essex, Max; Engelbrecht, Susan; de Oliveira, Tulio

    2015-01-01

    In this paper, we review serological and molecular based methods to identify HIV infection recency. The accurate identification of recent HIV infection continues to be an important research area and has implications for HIV prevention and treatment interventions. Longitudinal cohorts that follow HIV negative individuals over time are the current gold standard approach, but they are logistically challenging, time consuming and an expensive enterprise. Methods that utilize cross-sectional testing and biomarker information have become an affordable alternative to the longitudinal approach. These methods use well-characterized biological makers to differentiate between recent and established HIV infections. However, recent results have identified a number of limitations in serological based assays that are sensitive to the variability in immune responses modulated by HIV subtypes, viral load and antiretroviral therapy. Molecular methods that explore the dynamics between the timing of infection and viral evolution are now emerging as a promising approach. The combination of serological and molecular methods may provide a good solution to identify recent HIV infection in cross-sectional data. As part of this review, we present the advantages and limitations of serological and molecular based methods and their potential complementary role for the identification of HIV infection recency. PMID:26512688

  20. Genome-wide DNA methylation profiling in triple-negative breast cancer reveals epigenetic signatures with important clinical value

    Science.gov (United States)

    Stirzaker, Clare; Zotenko, Elena; Clark, Susan J

    2016-01-01

    abstract Analysis of cancer methylomes has dramatically changed our concept of the potential of diagnostic and prognostic methylation biomarkers in disease stratification. Through whole-genome methylation capture sequencing of triple-negative breast cancers (TNBCs) we recently identified differentially methylated regions with diagnostic and prognostic value that promise to stratify TNBCs for more personalized management. PMID:27308556

  1. Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans

    DEFF Research Database (Denmark)

    Amin Al Olama, Ali; Dadaev, Tokhir; Hazelett, Dennis J;

    2015-01-01

    Genome-wide association studies (GWAS) have identified numerous common prostate cancer (PrCa) susceptibility loci. We have fine-mapped 64 GWAS regions known at the conclusion of the iCOGS study using large-scale genotyping and imputation in 25 723 PrCa cases and 26 274 controls of European ancest...

  2. Genomic insights into a contagious cancer in Tasmanian devils.

    Science.gov (United States)

    Grueber, Catherine E; Peel, Emma; Gooley, Rebecca; Belov, Katherine

    2015-09-01

    The Tasmanian devil faces extinction due to a contagious cancer. Genetic and genomic technologies revealed that the disease arose in a Schwann cell of a female devil. Instead of dying with the original host, the tumour was passed from animal to animal, slipping under the radar of the immune system. Studying the genomes of the devil and the cancer has driven our understanding of this unique disease. From characterising immune genes and immune responses to studying tumour evolution, we have begun to uncover how a cancer can be 'caught' and are using genomic data to manage an insurance population of disease-free devils for the long-term survival of the species. PMID:26027792

  3. Genome-Wide Association Study Identifies Novel Pharmacogenomic Loci For Therapeutic Response to Montelukast in Asthma

    OpenAIRE

    Dahlin, Amber; Litonjua, Augusto; Lima, John J.; Tamari, Mayumi; Kubo, Michiaki; Irvin, Charles G.; Peters, Stephen P.; Tantisira, Kelan G.

    2015-01-01

    Background: Genome-wide association study (GWAS) is a powerful tool to identify novel pharmacogenetic single nucleotide polymorphisms (SNPs). Leukotriene receptor antagonists (LTRAs) are a major class of asthma medications, and genetic factors contribute to variable responses to these drugs. We used GWAS to identify novel SNPs associated with the response to the LTRA, montelukast, in asthmatics. Methods: Using genome-wide genotype and phenotypic data available from American Lung Association -...

  4. Genome-Wide Association Study Identifies Novel Pharmacogenomic Loci For Therapeutic Response to Montelukast in Asthma

    OpenAIRE

    Dahlin, Amber; Litonjua, Augusto; Lima, John J.; Tamari, Mayumi; Kubo, Michiaki; Irvin, Charles G.; Peters, Stephen P.; Tantisira, Kelan G.

    2015-01-01

    Background Genome-wide association study (GWAS) is a powerful tool to identify novel pharmacogenetic single nucleotide polymorphisms (SNPs). Leukotriene receptor antagonists (LTRAs) are a major class of asthma medications, and genetic factors contribute to variable responses to these drugs. We used GWAS to identify novel SNPs associated with the response to the LTRA, montelukast, in asthmatics. Methods Using genome-wide genotype and phenotypic data available from American Lung Association - A...

  5. The evolving role of cancer cell line-based screens to define the impact of cancer genomes on drug response ?

    OpenAIRE

    Garnett, Mathew J.; McDermott, Ultan

    2014-01-01

    Over the last decade we have witnessed the convergence of two powerful experimental designs toward a common goal of defining the molecular subtypes that underpin the likelihood of a cancer patient responding to treatment in the clinic. The first of these ‘experiments’ has been the systematic sequencing of large numbers of cancer genomes through the International Cancer Genome Consortium and The Cancer Genome Atlas. This endeavour is beginning to yield a complete catalogue of the cancer genes ...

  6. A microscopic landscape of the invasive breast cancer genome

    Science.gov (United States)

    Ping, Zheng; Xia, Yuchao; Shen, Tiansheng; Parekh, Vishwas; Siegal, Gene P.; Eltoum, Isam-Eldin; He, Jianbo; Chen, Dongquan; Deng, Minghua; Xi, Ruibin; Shen, Dejun

    2016-01-01

    Histologic grade is one of the most important microscopic features used to predict the prognosis of invasive breast cancer and may serve as a marker for studying cancer driving genomic abnormalities in vivo. We analyzed whole genome sequencing data from 680 cases of TCGA invasive ductal carcinomas of the breast and correlated them to corresponding pathology information. Ten genetic abnormalities were found to be statistically associated with histologic grade, including three most prevalent cancer driver events, TP53 and PIK3CA mutations and MYC amplification. A distinct genetic interaction among these genomic abnormalities was revealed as measured by the histologic grading score. While TP53 mutation and MYC amplification were synergistic in promoting tumor progression, PIK3CA mutation was found to have alleviated the oncogenic effect of either the TP53 mutation or MYC amplification, and was associated with a significant reduction in mitotic activity in TP53 mutated and/or MYC amplified breast cancer. Furthermore, we discovered that different types of genetic abnormalities (mutation versus amplification) within the same cancer driver gene (PIK3CA or GATA3) were associated with opposite histologic changes in invasive breast cancer. In conclusion, our study suggests that histologic grade may serve as a biomarker to define cancer driving genetic events in vivo. PMID:27283966

  7. A microscopic landscape of the invasive breast cancer genome.

    Science.gov (United States)

    Ping, Zheng; Xia, Yuchao; Shen, Tiansheng; Parekh, Vishwas; Siegal, Gene P; Eltoum, Isam-Eldin; He, Jianbo; Chen, Dongquan; Deng, Minghua; Xi, Ruibin; Shen, Dejun

    2016-01-01

    Histologic grade is one of the most important microscopic features used to predict the prognosis of invasive breast cancer and may serve as a marker for studying cancer driving genomic abnormalities in vivo. We analyzed whole genome sequencing data from 680 cases of TCGA invasive ductal carcinomas of the breast and correlated them to corresponding pathology information. Ten genetic abnormalities were found to be statistically associated with histologic grade, including three most prevalent cancer driver events, TP53 and PIK3CA mutations and MYC amplification. A distinct genetic interaction among these genomic abnormalities was revealed as measured by the histologic grading score. While TP53 mutation and MYC amplification were synergistic in promoting tumor progression, PIK3CA mutation was found to have alleviated the oncogenic effect of either the TP53 mutation or MYC amplification, and was associated with a significant reduction in mitotic activity in TP53 mutated and/or MYC amplified breast cancer. Furthermore, we discovered that different types of genetic abnormalities (mutation versus amplification) within the same cancer driver gene (PIK3CA or GATA3) were associated with opposite histologic changes in invasive breast cancer. In conclusion, our study suggests that histologic grade may serve as a biomarker to define cancer driving genetic events in vivo. PMID:27283966

  8. Identifying statistical dependence in genomic sequences via mutual information estimates

    CERN Document Server

    Aktulga, H M; Lyznik, L A; Szpankowski, L; Grama, A Y; Szpankowski, W

    2007-01-01

    Questions of understanding and quantifying the representation and amount of information in organisms have become a central part of biological research, as they potentially hold the key to fundamental advances. In this paper, we demonstrate the use of information-theoretic tools for the task of identifying segments of biomolecules (DNA or RNA) that are statistically correlated. We develop a precise and reliable methodology, based on the notion of mutual information, for finding and extracting statistical as well as structural dependencies. A simple threshold function is defined, and its use in quantifying the level of significance of dependencies between biological segments is explored. These tools are used in two specific applications. First, for the identification of correlations between different parts of the maize zmSRp32 gene. There, we find significant dependencies between the 5' untranslated region in zmSRp32 and its alternatively spliced exons. This observation may indicate the presence of as-yet unkno...

  9. Comprehensive genomic profiles of small cell lung cancer

    OpenAIRE

    George, J.; Lim, J; JANG, S.; Cun, Y.; Ozretic, L.; Kong, G.; Leenders, F.; Lu, X.; Fernandez-Cuesta, L.; Bosco, G.; Müller, C.(Dr. Remeis-Sternwarte and ECAP, Universität Erlangen-Nürnberg, Sternwartstr. 7, 96049 , Bamberg, Germany); Dahmen, I.; Jahchan, N.; K. Park; D. Yang

    2015-01-01

    We have sequenced the genomes of 110 small cell lung cancers (SCLC), one of the deadliest human cancers. In nearly all the tumours analysed we found bi-allelic inactivation of TP53 and RB1, sometimes by complex genomic rearrangements. Two tumours with wild-type RB1 had evidence of chromothripsis leading to overexpression of cyclin D1 (encoded by the CCND1 gene), revealing an alternative mechanism of Rb1 deregulation. Thus, loss of the tumour suppressors TP53 and RB1 is obligatory in SCLC. We ...

  10. Identifying Statistical Dependence in Genomic Sequences via Mutual Information Estimates

    Directory of Open Access Journals (Sweden)

    Wojciech Szpankowski

    2007-12-01

    Full Text Available Questions of understanding and quantifying the representation and amount of information in organisms have become a central part of biological research, as they potentially hold the key to fundamental advances. In this paper, we demonstrate the use of information-theoretic tools for the task of identifying segments of biomolecules (DNA or RNA that are statistically correlated. We develop a precise and reliable methodology, based on the notion of mutual information, for finding and extracting statistical as well as structural dependencies. A simple threshold function is defined, and its use in quantifying the level of significance of dependencies between biological segments is explored. These tools are used in two specific applications. First, they are used for the identification of correlations between different parts of the maize zmSRp32 gene. There, we find significant dependencies between the 5′ untranslated region in zmSRp32 and its alternatively spliced exons. This observation may indicate the presence of as-yet unknown alternative splicing mechanisms or structural scaffolds. Second, using data from the FBI's combined DNA index system (CODIS, we demonstrate that our approach is particularly well suited for the problem of discovering short tandem repeats—an application of importance in genetic profiling.

  11. Leveraging Comparative Genomics to Identify and Functionally Characterize Genes Associated with Sperm Phenotypes in Python bivittatus (Burmese Python)

    OpenAIRE

    Irizarry, Kristopher J. L.; Josep Rutllant

    2016-01-01

    Comparative genomics approaches provide a means of leveraging functional genomics information from a highly annotated model organism's genome (such as the mouse genome) in order to make physiological inferences about the role of genes and proteins in a less characterized organism's genome (such as the Burmese python). We employed a comparative genomics approach to produce the functional annotation of Python bivittatus genes encoding proteins associated with sperm phenotypes. We identify 129 g...

  12. Transcriptome analysis of recurrently deregulated genes across multiple cancers identifies new pan-cancer biomarkers

    DEFF Research Database (Denmark)

    Kaczkowski, Bogumil; Tanaka, Yuji; Kawaji, Hideya; Sandelin, Albin; Andersson, Robin; Itoh, Masayoshi; Lassmann, Timo; Hayashizaki, Yoshihide; Carninci, Piero; Forrest, Alistair R

    2015-01-01

    Genes that are commonly deregulated in cancer are clinically attractive as candidate pan-diagnostic markers and therapeutic targets. To globally identify such targets, we compared Cap Analysis of Gene Expression (CAGE) profiles from 225 different cancer cell lines and 339 corresponding primary cell...... samples to identify transcripts that are deregulated recurrently in a broad range of cancer types. Comparing RNA-seq data from 4,055 tumors and 563 normal tissues profiled in the TCGA and FANTOM5 datasets, we identified a core transcript set with theranostic potential. Our analyses also revealed enhancer...... RNAs which are upregulated in cancer, defining promoters which overlap with repetitive elements (especially SINE/Alu and LTR/ERV1 elements) that are often upregulated in cancer. Lastly, we documented for the first time upregulation of multiple copies of the REP522 interspersed repeat in cancer. Overall...

  13. Comparative genomics of 12 strains of Erwinia amylovora identifies a pan-genome with a large conserved core.

    Directory of Open Access Journals (Sweden)

    Rachel A Mann

    Full Text Available The plant pathogen Erwinia amylovora can be divided into two host-specific groupings; strains infecting a broad range of hosts within the Rosaceae subfamily Spiraeoideae (e.g., Malus, Pyrus, Crataegus, Sorbus and strains infecting Rubus (raspberries and blackberries. Comparative genomic analysis of 12 strains representing distinct populations (e.g., geographic, temporal, host origin of E. amylovora was used to describe the pan-genome of this major pathogen. The pan-genome contains 5751 coding sequences and is highly conserved relative to other phytopathogenic bacteria comprising on average 89% conserved, core genes. The chromosomes of Spiraeoideae-infecting strains were highly homogeneous, while greater genetic diversity was observed between Spiraeoideae- and Rubus-infecting strains (and among individual Rubus-infecting strains, the majority of which was attributed to variable genomic islands. Based on genomic distance scores and phylogenetic analysis, the Rubus-infecting strain ATCC BAA-2158 was genetically more closely related to the Spiraeoideae-infecting strains of E. amylovora than it was to the other Rubus-infecting strains. Analysis of the accessory genomes of Spiraeoideae- and Rubus-infecting strains has identified putative host-specific determinants including variation in the effector protein HopX1(Ea and a putative secondary metabolite pathway only present in Rubus-infecting strains.

  14. Simulated Annealing Based Algorithm for Identifying Mutated Driver Pathways in Cancer

    Directory of Open Access Journals (Sweden)

    Hai-Tao Li

    2014-01-01

    Full Text Available With the development of next-generation DNA sequencing technologies, large-scale cancer genomics projects can be implemented to help researchers to identify driver genes, driver mutations, and driver pathways, which promote cancer proliferation in large numbers of cancer patients. Hence, one of the remaining challenges is to distinguish functional mutations vital for cancer development, and filter out the unfunctional and random “passenger mutations.” In this study, we introduce a modified method to solve the so-called maximum weight submatrix problem which is used to identify mutated driver pathways in cancer. The problem is based on two combinatorial properties, that is, coverage and exclusivity. Particularly, we enhance an integrative model which combines gene mutation and expression data. The experimental results on simulated data show that, compared with the other methods, our method is more efficient. Finally, we apply the proposed method on two real biological datasets. The results show that our proposed method is also applicable in real practice.

  15. The Path(way) Less Traveled: A Pathway-Oriented Approach to Providing Information about Precision Cancer Medicine on My Cancer Genome12

    Science.gov (United States)

    Taylor, Alexandria D.; Micheel, Christine M.; Anderson, Ingrid A.; Levy, Mia A.; Lovly, Christine M.

    2016-01-01

    This perspective describes the motivation, development, and implementation of pathway-based content for My Cancer Genome, an online precision medicine knowledge resource describing clinical implications of genetic alterations in cancer. As researchers uncover more about cancer pathogenesis, we are learning more not only about the specific genes and proteins involved but also about how those genes and proteins interact with others along cell signaling pathways. This knowledge has led researchers and clinicians to begin to think about cancer therapy using a pathway-based approach. To facilitate this approach, My Cancer Genome used a list of more than 800 cancer-related genes to identify 20 cancer-relevant pathways and then created content focused on demonstrating the therapeutic relevance of these pathways. PMID:27084433

  16. The Path(way Less Traveled: A Pathway-Oriented Approach to Providing Information about Precision Cancer Medicine on My Cancer Genome

    Directory of Open Access Journals (Sweden)

    Alexandria D. Taylor

    2016-04-01

    Full Text Available This perspective describes the motivation, development, and implementation of pathway-based content for My Cancer Genome, an online precision medicine knowledge resource describing clinical implications of genetic alterations in cancer. As researchers uncover more about cancer pathogenesis, we are learning more not only about the specific genes and proteins involved but also about how those genes and proteins interact with others along cell signaling pathways. This knowledge has led researchers and clinicians to begin to think about cancer therapy using a pathway-based approach. To facilitate this approach, My Cancer Genome used a list of more than 800 cancer-related genes to identify 20 cancer-relevant pathways and then created content focused on demonstrating the therapeutic relevance of these pathways.

  17. Genetic tests to identify risk for breast cancer

    Science.gov (United States)

    Lynch, Julie; Venne, Vickie; Berse, Brygida

    2016-01-01

    Objectives To describe the currently available genetic tests that identify hereditary risk for breast cancer. Data sources Systematic review of scientific literature, clinical practice guidelines, and data published by test manufacturers. Conclusion Changes in gene patent laws and advances in sequencing technologies have resulted in rapid expansion of genetic testing. While BRCA1/2 are the most recognized genes linked to breast cancer, several laboratories now offer multi-gene panels to detect many risk-related mutations. Implication for Nursing Practice Genetic testing will be increasingly important in the prevention, diagnosis, and treatment of breast cancer. Oncology and advanced practice nurses need to understand risk factors, significance of various genetic tests, and patient counseling. PMID:25951739

  18. Integrated proteomic and genomic analysis of colorectal cancer

    Science.gov (United States)

    Investigators who analyzed 95 human colorectal tumor samples have determined how gene alterations identified in previous analyses of the same samples are expressed at the protein level. The integration of proteomic and genomic data, or proteogenomics, pro

  19. Gamma-retrovirus integration marks cell type-specific cancer genes: a novel profiling tool in cancer genomics

    OpenAIRE

    Gilroy, Kathryn L.; Terry, Anne; Naseer, Asif; De Ridder, Jeroen; Allahyar, Amin; Wang, Weiwei; Carpenter, Eric; Mason, Andrew; Wong, Gane K-S; Cameron, Ewan R; Kilbey, Anna; Neil, James C.

    2016-01-01

    Retroviruses have been foundational in cancer research since early studies identified proto-oncogenes as targets for insertional mutagenesis. Integration of murine gamma-retroviruses into the host genome favours promoters and enhancers and entails interaction of viral integrase with host BET/bromodomain factors. We report that this integration pattern is conserved in feline leukaemia virus (FeLV), a gamma-retrovirus that infects many human cell types. Analysis of FeLV insertion sites in the M...

  20. Microenvironmental Heterogeneity Parallels Breast Cancer Progression: A Histology-Genomic Integration Analysis.

    Directory of Open Access Journals (Sweden)

    Rachael Natrajan

    2016-02-01

    Full Text Available The intra-tumor diversity of cancer cells is under intense investigation; however, little is known about the heterogeneity of the tumor microenvironment that is key to cancer progression and evolution. We aimed to assess the degree of microenvironmental heterogeneity in breast cancer and correlate this with genomic and clinical parameters.We developed a quantitative measure of microenvironmental heterogeneity along three spatial dimensions (3-D in solid tumors, termed the tumor ecosystem diversity index (EDI, using fully automated histology image analysis coupled with statistical measures commonly used in ecology. This measure was compared with disease-specific survival, key mutations, genome-wide copy number, and expression profiling data in a retrospective study of 510 breast cancer patients as a test set and 516 breast cancer patients as an independent validation set. In high-grade (grade 3 breast cancers, we uncovered a striking link between high microenvironmental heterogeneity measured by EDI and a poor prognosis that cannot be explained by tumor size, genomics, or any other data types. However, this association was not observed in low-grade (grade 1 and 2 breast cancers. The prognostic value of EDI was superior to known prognostic factors and was enhanced with the addition of TP53 mutation status (multivariate analysis test set, p = 9 × 10-4, hazard ratio = 1.47, 95% CI 1.17-1.84; validation set, p = 0.0011, hazard ratio = 1.78, 95% CI 1.26-2.52. Integration with genome-wide profiling data identified losses of specific genes on 4p14 and 5q13 that were enriched in grade 3 tumors with high microenvironmental diversity that also substratified patients into poor prognostic groups. Limitations of this study include the number of cell types included in the model, that EDI has prognostic value only in grade 3 tumors, and that our spatial heterogeneity measure was dependent on spatial scale and tumor size.To our knowledge, this is the first

  1. Microenvironmental Heterogeneity Parallels Breast Cancer Progression: A Histology–Genomic Integration Analysis

    Science.gov (United States)

    Natrajan, Rachael; Sailem, Heba; Mardakheh, Faraz K.; Arias Garcia, Mar; Tape, Christopher J.; Dowsett, Mitch; Bakal, Chris; Yuan, Yinyin

    2016-01-01

    Background The intra-tumor diversity of cancer cells is under intense investigation; however, little is known about the heterogeneity of the tumor microenvironment that is key to cancer progression and evolution. We aimed to assess the degree of microenvironmental heterogeneity in breast cancer and correlate this with genomic and clinical parameters. Methods and Findings We developed a quantitative measure of microenvironmental heterogeneity along three spatial dimensions (3-D) in solid tumors, termed the tumor ecosystem diversity index (EDI), using fully automated histology image analysis coupled with statistical measures commonly used in ecology. This measure was compared with disease-specific survival, key mutations, genome-wide copy number, and expression profiling data in a retrospective study of 510 breast cancer patients as a test set and 516 breast cancer patients as an independent validation set. In high-grade (grade 3) breast cancers, we uncovered a striking link between high microenvironmental heterogeneity measured by EDI and a poor prognosis that cannot be explained by tumor size, genomics, or any other data types. However, this association was not observed in low-grade (grade 1 and 2) breast cancers. The prognostic value of EDI was superior to known prognostic factors and was enhanced with the addition of TP53 mutation status (multivariate analysis test set, p = 9 × 10−4, hazard ratio = 1.47, 95% CI 1.17–1.84; validation set, p = 0.0011, hazard ratio = 1.78, 95% CI 1.26–2.52). Integration with genome-wide profiling data identified losses of specific genes on 4p14 and 5q13 that were enriched in grade 3 tumors with high microenvironmental diversity that also substratified patients into poor prognostic groups. Limitations of this study include the number of cell types included in the model, that EDI has prognostic value only in grade 3 tumors, and that our spatial heterogeneity measure was dependent on spatial scale and tumor size. Conclusions To

  2. Whole-genome sequencing of bladder cancers reveals somatic CDKN1A mutations and clinicopathological associations with mutation burden

    OpenAIRE

    Cazier, J.-B.; Rao, S. R.; Mclean, C. M.; A. L. Walker; Wright, B J; Jaeger, E. E. M.; Kartsonaki, C.; Marsden, L.; Yau, C; Camps, C.; Kaisaki, P.; ,; Allan, Christopher; Attar, Moustafa; Bell, John

    2014-01-01

    Bladder cancers are a leading cause of death from malignancy. Molecular markers might predict disease progression and behaviour more accurately than the available prognostic factors. Here we use whole-genome sequencing to identify somatic mutations and chromosomal changes in 14 bladder cancers of different grades and stages. As well as detecting the known bladder cancer driver mutations, we report the identification of recurrent protein-inactivating mutations in CDKN1A and FAT1. The former ar...

  3. Cancer Genomics and Biology 2015 – Meeting Report

    Science.gov (United States)

    Chow, Louis WC.; Costa, Luis; Teh, Bin-Tean; Li, Da-Qiang; Feng, Gu; Guan, Xin-Yuan; Nair, Asha; Zhu, Li; Sugimoto, Masahiro; Dutt, Amit; Toi, Masakazu; Gupta, Sudeep; Badwe, Rajendra; Knapp, Stefan; Pillai, M. Radhakrishna; Kumar, Rakesh

    2016-01-01

    The Cancer Genomics and Biology 2015 meeting embodied a three way collaboration among colleagues from the Global Cancer Genomics Consortium (GCGC), the Unifaith Cancer Institute China and Jiujiang University of China. The meeting marks the fifth and the last meeting of GCGC, which was formed in 2010. Previous four GCGC meetings have been held at the Tata Memorial Center- Mumbai, Institute of Molecular Medicine-Lisbon, and Graduate Medical School Kyoto University-Kyoto. In contrast to the genomic themes of the previous meetings, the 2015 conference theme was at the interface of laboratory and translation research and emerging therapeutics as reflected in the shared interests of all three collaborative entities – Cancer Genomics and Biology 2015. This year's conference was co-organized by the Jiujiang University at the Run Run Shaw building, Jiujiang University, Jiujiang City, China, on November 13 and 14, 2015. The conference attracted over 174 participants with 13 platform presentations. Scientific sessions included a plenary and five platform scientific sessions with themes ranging from biomarkers, stem cells and markers of the tumor microenvironment, proteomics and epigenetics, big data, to hormone and expression profiles. The meeting concluded with closing remarks by conference co-chairs emphasizing with the need to broaden membership across the globe, establishing priorities, and redrafting a white paper to launch a new consortium.

  4. New families of human regulatory RNA structures identified by comparative analysis of vertebrate genomes

    DEFF Research Database (Denmark)

    Parker, Brian John; Moltke, Ida; Roth, Adam;

    2011-01-01

    comparative method, EvoFam, for genome-wide identification of families of regulatory RNA structures, based on primary sequence and secondary structure similarity. We apply EvoFam to a 41-way genomic vertebrate alignment. Genome-wide, we identify 220 human, high-confidence families outside protein......-coding regions comprising 725 individual structures, including 48 families with known structural RNA elements. Known families identified include both noncoding RNAs, e.g., miRNAs and the recently identified MALAT1/MEN β lincRNA family; and cis-regulatory structures, e.g., iron-responsive elements. We also...... identify tens of new families supported by strong evolutionary evidence and other statistical evidence, such as GO term enrichments. For some of these, detailed analysis has led to the formulation of specific functional hypotheses. Examples include two hypothesized auto-regulatory feedback mechanisms: one...

  5. Integrated analysis of copy number variation and genome-wide expression profiling in colorectal cancer tissues.

    Directory of Open Access Journals (Sweden)

    Nur Zarina Ali Hassan

    Full Text Available Integrative analyses of multiple genomic datasets for selected samples can provide better insight into the overall data and can enhance our knowledge of cancer. The objective of this study was to elucidate the association between copy number variation (CNV and gene expression in colorectal cancer (CRC samples and their corresponding non-cancerous tissues. Sixty-four paired CRC samples from the same patients were subjected to CNV profiling using the Illumina HumanOmni1-Quad assay, and validation was performed using multiplex ligation probe amplification method. Genome-wide expression profiling was performed on 15 paired samples from the same group of patients using the Affymetrix Human Gene 1.0 ST array. Significant genes obtained from both array results were then overlapped. To identify molecular pathways, the data were mapped to the KEGG database. Whole genome CNV analysis that compared primary tumor and non-cancerous epithelium revealed gains in 1638 genes and losses in 36 genes. Significant gains were mostly found in chromosome 20 at position 20q12 with a frequency of 45.31% in tumor samples. Examples of genes that were associated at this cytoband were PTPRT, EMILIN3 and CHD6. The highest number of losses was detected at chromosome 8, position 8p23.2 with 17.19% occurrence in all tumor samples. Among the genes found at this cytoband were CSMD1 and DLC1. Genome-wide expression profiling showed 709 genes to be up-regulated and 699 genes to be down-regulated in CRC compared to non-cancerous samples. Integration of these two datasets identified 56 overlapping genes, which were located in chromosomes 8, 20 and 22. MLPA confirmed that the CRC samples had the highest gains in chromosome 20 compared to the reference samples. Interpretation of the CNV data in the context of the transcriptome via integrative analyses may provide more in-depth knowledge of the genomic landscape of CRC.

  6. First Genome Sequences of Porcine Parvovirus 5 Strains Identified in Polish Pigs.

    Science.gov (United States)

    Fan, Jinghui; Cui, Jin; Gerber, Priscilla F; Biernacka, Kinga; Stadejek, Tomasz; Opriessnig, Tanja

    2016-01-01

    Porcine parvovirus type 5 (PPV5) has been recently identified. Here, we report the genome sequences of five PPV5 strains identified in serum samples from Polish pigs, which represent the first PPV5 sequences recovered from European pigs. The PPV5 strains isolated in Poland are most related to the Chinese strain HN01. PMID:27587805

  7. Identifying Driver Genes in Cancer by Triangulating Gene Expression, Gene Location, and Survival Data

    Science.gov (United States)

    Rouam, Sigrid; Miller, Lance D; Karuturi, R Krishna Murthy

    2014-01-01

    Driver genes are directly responsible for oncogenesis and identifying them is essential in order to fully understand the mechanisms of cancer. However, it is difficult to delineate them from the larger pool of genes that are deregulated in cancer (ie, passenger genes). In order to address this problem, we developed an approach called TRIAngulating Gene Expression (TRIAGE through clinico-genomic intersects). Here, we present a refinement of this approach incorporating a new scoring methodology to identify putative driver genes that are deregulated in cancer. TRIAGE triangulates – or integrates – three levels of information: gene expression, gene location, and patient survival. First, TRIAGE identifies regions of deregulated expression (ie, expression footprints) by deriving a newly established measure called the Local Singular Value Decomposition (LSVD) score for each locus. Driver genes are then distinguished from passenger genes using dual survival analyses. Incorporating measurements of gene expression and weighting them according to the LSVD weight of each tumor, these analyses are performed using the genes located in significant expression footprints. Here, we first use simulated data to characterize the newly established LSVD score. We then present the results of our application of this refined version of TRIAGE to gene expression data from five cancer types. This refined version of TRIAGE not only allowed us to identify known prominent driver genes, such as MMP1, IL8, and COL1A2, but it also led us to identify several novel ones. These results illustrate that TRIAGE complements existing tools, allows for the identification of genes that drive cancer and could perhaps elucidate potential future targets of novel anticancer therapeutics. PMID:25949096

  8. Genomic Predictors of Outcome in Prostate Cancer

    NARCIS (Netherlands)

    Bostrom, P.J.; Bjartell, A.S.; Catto, J.W.; Eggener, S.E.; Lilja, H.; Loeb, S.; Schalken, J.A.; Schlomm, T.; Cooperberg, M.R.

    2015-01-01

    CONTEXT: Given the highly variable behavior and clinical course of prostate cancer (PCa) and the multiple available treatment options, a personalized approach to oncologic risk stratification is important. Novel genetic approaches offer additional information to improve clinical decision making. OBJ

  9. Highlights from the prostate cancer genome report

    Institute of Scientific and Technical Information of China (English)

    Shyh-Han Tan; Gyorgy Petrovics; Shiv Srivastava

    2011-01-01

    @@ Prostate cancer (Cap) is the second most frequently diagnosed cancer of men worldwide (899 000 new cases,13.6% of the total),with nearly 75% of the registered cases occurring in developed countries (644000 cases).1 Blood prostate-specific antigen test has revolutionized the early detection of Cap and organ-confined Cap is effectively managed by state-of-the-art treatments including radical prostatectomy or radiation therapy.2 In the past decade,tremendous progress has also been made in our understanding of the biology and common genomicalterations in Cap 3.4 New molecular marker assays have promise in improving CaP diagnosis.Despite these advances,major challenges remain with our ability to distinguish indolent cancers from the more aggressive cancers detected early due to widely used prostate-specific antigen test.Furthermore,development of molecular stratification of CaP for targeted and more effective therapies is critically needed.

  10. Significance of duon mutations in cancer genomes

    OpenAIRE

    Vinod Kumar Yadav; Smith, Kyle S.; Colin Flinders; Mumenthaler, Shannon M.; De, Subhajyoti

    2016-01-01

    Functional mutations in coding regions not only affect the structure and function of the protein products, but may also modulate their expression in some cases. This class of mutations, recently dubbed “duon mutations” due to their dual roles, can potentially have major impacts on downstream pathways. However their significance in diseases such as cancer remain unclear. In a survey covering 4606 samples from 19 cancer types, and integrating allelic expression, overall mRNA expression, regulat...

  11. Deep sequencing and in silico analyses identify MYB-regulated gene networks and signaling pathways in pancreatic cancer.

    Science.gov (United States)

    Azim, Shafquat; Zubair, Haseeb; Srivastava, Sanjeev K; Bhardwaj, Arun; Zubair, Asif; Ahmad, Aamir; Singh, Seema; Khushman, Moh'd; Singh, Ajay P

    2016-01-01

    We have recently demonstrated that the transcription factor MYB can modulate several cancer-associated phenotypes in pancreatic cancer. In order to understand the molecular basis of these MYB-associated changes, we conducted deep-sequencing of transcriptome of MYB-overexpressing and -silenced pancreatic cancer cells, followed by in silico pathway analysis. We identified significant modulation of 774 genes upon MYB-silencing (p RELA was validated by both qPCR and immunoblotting and they were both shown to be under direct transcriptional control of MYB. These observations were further confirmed in a converse approach wherein MYB was overexpressed ectopically in a MYB-null pancreatic cancer cell line. Our findings thus suggest that MYB potentially regulates growth and genomic stability of pancreatic cancer cells via targeting complex gene networks and signaling pathways. Further in-depth functional studies are warranted to fully understand MYB signaling in pancreatic cancer. PMID:27354262

  12. National Cancer Moonshot Initiative platform | Office of Cancer Genomics

    Science.gov (United States)

    As part of the Vice President’s National Cancer Moonshot Initiative, the National Cancer Institute has launched an online engagement platform to enable the research community and the public to submit cancer research ideas to a Blue Ribbon Panel of scientific experts. Any member of the public is encouraged to submit his or her ideas for reducing the incidence of cancer and developing better ways to prevent, treat, and cure all types of cancer. Research ideas may be submitted in the following areas:

  13. Chapter 27 -- Breast Cancer Genomics, Section VI, Pathology and Biological Markers of Invasive Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Spellman, Paul T.; Heiser, Laura; Gray, Joe W.

    2009-06-18

    Breast cancer is predominantly a disease of the genome with cancers arising and progressing through accumulation of aberrations that alter the genome - by changing DNA sequence, copy number, and structure in ways that that contribute to diverse aspects of cancer pathophysiology. Classic examples of genomic events that contribute to breast cancer pathophysiology include inherited mutations in BRCA1, BRCA2, TP53, and CHK2 that contribute to the initiation of breast cancer, amplification of ERBB2 (formerly HER2) and mutations of elements of the PI3-kinase pathway that activate aspects of epidermal growth factor receptor (EGFR) signaling and deletion of CDKN2A/B that contributes to cell cycle deregulation and genome instability. It is now apparent that accumulation of these aberrations is a time-dependent process that accelerates with age. Although American women living to an age of 85 have a 1 in 8 chance of developing breast cancer, the incidence of cancer in women younger than 30 years is uncommon. This is consistent with a multistep cancer progression model whereby mutation and selection drive the tumor's development, analogous to traditional Darwinian evolution. In the case of cancer, the driving events are changes in sequence, copy number, and structure of DNA and alterations in chromatin structure or other epigenetic marks. Our understanding of the genetic, genomic, and epigenomic events that influence the development and progression of breast cancer is increasing at a remarkable rate through application of powerful analysis tools that enable genome-wide analysis of DNA sequence and structure, copy number, allelic loss, and epigenomic modification. Application of these techniques to elucidation of the nature and timing of these events is enriching our understanding of mechanisms that increase breast cancer susceptibility, enable tumor initiation and progression to metastatic disease, and determine therapeutic response or resistance. These studies also

  14. Targeted or whole genome sequencing of formalin fixed tissue samples: potential applications in cancer genomics.

    Science.gov (United States)

    Munchel, Sarah; Hoang, Yen; Zhao, Yue; Cottrell, Joseph; Klotzle, Brandy; Godwin, Andrew K; Koestler, Devin; Beyerlein, Peter; Fan, Jian-Bing; Bibikova, Marina; Chien, Jeremy

    2015-09-22

    Current genomic studies are limited by the poor availability of fresh-frozen tissue samples. Although formalin-fixed diagnostic samples are in abundance, they are seldom used in current genomic studies because of the concern of formalin-fixation artifacts. Better characterization of these artifacts will allow the use of archived clinical specimens in translational and clinical research studies. To provide a systematic analysis of formalin-fixation artifacts on Illumina sequencing, we generated 26 DNA sequencing data sets from 13 pairs of matched formalin-fixed paraffin-embedded (FFPE) and fresh-frozen (FF) tissue samples. The results indicate high rate of concordant calls between matched FF/FFPE pairs at reference and variant positions in three commonly used sequencing approaches (whole genome, whole exome, and targeted exon sequencing). Global mismatch rates and C · G > T · A substitutions were comparable between matched FF/FFPE samples, and discordant rates were low (<0.26%) in all samples. Finally, low-pass whole genome sequencing produces similar pattern of copy number alterations between FF/FFPE pairs. The results from our studies suggest the potential use of diagnostic FFPE samples for cancer genomic studies to characterize and catalog variations in cancer genomes. PMID:26305677

  15. Breakpoint analysis of transcriptional and genomic profiles uncovers novel gene fusions spanning multiple human cancer types.

    Directory of Open Access Journals (Sweden)

    Craig P Giacomini

    2013-04-01

    Full Text Available Gene fusions, like BCR/ABL1 in chronic myelogenous leukemia, have long been recognized in hematologic and mesenchymal malignancies. The recent finding of gene fusions in prostate and lung cancers has motivated the search for pathogenic gene fusions in other malignancies. Here, we developed a "breakpoint analysis" pipeline to discover candidate gene fusions by tell-tale transcript level or genomic DNA copy number transitions occurring within genes. Mining data from 974 diverse cancer samples, we identified 198 candidate fusions involving annotated cancer genes. From these, we validated and further characterized novel gene fusions involving ROS1 tyrosine kinase in angiosarcoma (CEP85L/ROS1, SLC1A2 glutamate transporter in colon cancer (APIP/SLC1A2, RAF1 kinase in pancreatic cancer (ATG7/RAF1 and anaplastic astrocytoma (BCL6/RAF1, EWSR1 in melanoma (EWSR1/CREM, CDK6 kinase in T-cell acute lymphoblastic leukemia (FAM133B/CDK6, and CLTC in breast cancer (CLTC/VMP1. Notably, while these fusions involved known cancer genes, all occurred with novel fusion partners and in previously unreported cancer types. Moreover, several constituted druggable targets (including kinases, with therapeutic implications for their respective malignancies. Lastly, breakpoint analysis identified new cell line models for known rearrangements, including EGFRvIII and FIP1L1/PDGFRA. Taken together, we provide a robust approach for gene fusion discovery, and our results highlight a more widespread role of fusion genes in cancer pathogenesis.

  16. A Bivariate Whole Genome Linkage Study Identified Genomic Regions Influencing Both BMD and Bone Structure

    OpenAIRE

    Liu, Xiao-Gang; Liu, Yong-Jun; Liu, Jianfeng; Pei, Yufang; Xiong, Dong-Hai; Shen, Hui; Deng, Hong-Yi; Papasian, Christopher J.; Drees, Betty M.; Hamilton, James J.; Recker, Robert R.; Deng, Hong-Wen

    2008-01-01

    Areal BMD (aBMD) and areal bone size (ABS) are biologically correlated traits and are each important determinants of bone strength and risk of fractures. Studies showed that aBMD and ABS are genetically correlated, indicating that they may share some common genetic factors, which, however, are largely unknown. To study the genetic factors influencing both aBMD and ABS, bivariate whole genome linkage analyses were conducted for aBMD-ABS at the femoral neck (FN), lumbar spine (LS), and ultradis...

  17. CRISPRi and CRISPRa: New Functional Genomics Tools Provide Complementary Insights into Cancer Biology and Therapeutic Strategies | Office of Cancer Genomics

    Science.gov (United States)

    A central goal of research for targeted cancer therapy, or precision oncology, is to reveal the intrinsic vulnerabilities of cancer cells and exploit them as therapeutic targets. Examples of cancer cell vulnerabilities include driver oncogenes that are essential for the initiation and progression of cancer, or non-oncogene addictions resulting from the cancerous state of the cell. To identify vulnerabilities, scientists perform genetic “loss-of-function” and “gain-of-function” studies to better understand the roles of specific genes in cancer cells.

  18. A genome-wide association study of upper aerodigestive tract cancers conducted within the INHANCE consortium.

    LENUS (Irish Health Repository)

    McKay, James D

    2011-03-01

    Genome-wide association studies (GWAS) have been successful in identifying common genetic variation involved in susceptibility to etiologically complex disease. We conducted a GWAS to identify common genetic variation involved in susceptibility to upper aero-digestive tract (UADT) cancers. Genome-wide genotyping was carried out using the Illumina HumanHap300 beadchips in 2,091 UADT cancer cases and 3,513 controls from two large European multi-centre UADT cancer studies, as well as 4,821 generic controls. The 19 top-ranked variants were investigated further in an additional 6,514 UADT cancer cases and 7,892 controls of European descent from an additional 13 UADT cancer studies participating in the INHANCE consortium. Five common variants presented evidence for significant association in the combined analysis (p ≤ 5 × 10⁻⁷). Two novel variants were identified, a 4q21 variant (rs1494961, p = 1×10⁻⁸) located near DNA repair related genes HEL308 and FAM175A (or Abraxas) and a 12q24 variant (rs4767364, p =2 × 10⁻⁸) located in an extended linkage disequilibrium region that contains multiple genes including the aldehyde dehydrogenase 2 (ALDH2) gene. Three remaining variants are located in the ADH gene cluster and were identified previously in a candidate gene study involving some of these samples. The association between these three variants and UADT cancers was independently replicated in 5,092 UADT cancer cases and 6,794 controls non-overlapping samples presented here (rs1573496-ADH7, p = 5 × 10⁻⁸); rs1229984-ADH1B, p = 7 × 10⁻⁹; and rs698-ADH1C, p = 0.02). These results implicate two variants at 4q21 and 12q24 and further highlight three ADH variants in UADT cancer susceptibility.

  19. A genome-wide association study of upper aerodigestive tract cancers conducted within the INHANCE consortium.

    Directory of Open Access Journals (Sweden)

    James D McKay

    2011-03-01

    Full Text Available Genome-wide association studies (GWAS have been successful in identifying common genetic variation involved in susceptibility to etiologically complex disease. We conducted a GWAS to identify common genetic variation involved in susceptibility to upper aero-digestive tract (UADT cancers. Genome-wide genotyping was carried out using the Illumina HumanHap300 beadchips in 2,091 UADT cancer cases and 3,513 controls from two large European multi-centre UADT cancer studies, as well as 4,821 generic controls. The 19 top-ranked variants were investigated further in an additional 6,514 UADT cancer cases and 7,892 controls of European descent from an additional 13 UADT cancer studies participating in the INHANCE consortium. Five common variants presented evidence for significant association in the combined analysis (p ≤ 5 × 10⁻⁷. Two novel variants were identified, a 4q21 variant (rs1494961, p = 1×10⁻⁸ located near DNA repair related genes HEL308 and FAM175A (or Abraxas and a 12q24 variant (rs4767364, p =2 × 10⁻⁸ located in an extended linkage disequilibrium region that contains multiple genes including the aldehyde dehydrogenase 2 (ALDH2 gene. Three remaining variants are located in the ADH gene cluster and were identified previously in a candidate gene study involving some of these samples. The association between these three variants and UADT cancers was independently replicated in 5,092 UADT cancer cases and 6,794 controls non-overlapping samples presented here (rs1573496-ADH7, p = 5 × 10⁻⁸; rs1229984-ADH1B, p = 7 × 10⁻⁹; and rs698-ADH1C, p = 0.02. These results implicate two variants at 4q21 and 12q24 and further highlight three ADH variants in UADT cancer susceptibility.

  20. Comparative Genomic Analysis of Meningitis- and Bacteremia-Causing Pneumococci Identifies a Common Core Genome.

    Science.gov (United States)

    Kulohoma, Benard W; Cornick, Jennifer E; Chaguza, Chrispin; Yalcin, Feyruz; Harris, Simon R; Gray, Katherine J; Kiran, Anmol M; Molyneux, Elizabeth; French, Neil; Parkhill, Julian; Faragher, Brian E; Everett, Dean B; Bentley, Stephen D; Heyderman, Robert S

    2015-10-01

    Streptococcus pneumoniae is a nasopharyngeal commensal that occasionally invades normally sterile sites to cause bloodstream infection and meningitis. Although the pneumococcal population structure and evolutionary genetics are well defined, it is not clear whether pneumococci that cause meningitis are genetically distinct from those that do not. Here, we used whole-genome sequencing of 140 isolates of S. pneumoniae recovered from bloodstream infection (n = 70) and meningitis (n = 70) to compare their genetic contents. By fitting a double-exponential decaying-function model, we show that these isolates share a core of 1,427 genes (95% confidence interval [CI], 1,425 to 1,435 genes) and that there is no difference in the core genome or accessory gene content from these disease manifestations. Gene presence/absence alone therefore does not explain the virulence behavior of pneumococci that reach the meninges. Our analysis, however, supports the requirement of a range of previously described virulence factors and vaccine candidates for both meningitis- and bacteremia-causing pneumococci. This high-resolution view suggests that, despite considerable competency for genetic exchange, all pneumococci are under considerable pressure to retain key components advantageous for colonization and transmission and that these components are essential for access to and survival in sterile sites. PMID:26259813

  1. New Molecular Features of Colorectal Cancer Identified - Office of Cancer Clinical Proteomics Research

    Science.gov (United States)

    Investigators from the National Cancer Institute's Clinical Proteomic Tumor Analysis Consortium (CPTAC) who comprehensively analyzed 95 human colorectal tumor samples, have determined how gene alterations identified in previous analyses of the same samples

  2. Genome wide association study identifies KCNMA1 contributing to human obesity

    DEFF Research Database (Denmark)

    Jiao, Hong; Arner, Peter; Hoffstedt, Johan;

    2011-01-01

    Recent genome-wide association (GWA) analyses have identified common single nucleotide polymorphisms (SNPs) that are associated with obesity. However, the reported genetic variation in obesity explains only a minor fraction of the total genetic variation expected to be present in the population....... Thus many genetic variants controlling obesity remain to be identified. The aim of this study was to use GWA followed by multiple stepwise validations to identify additional genes associated with obesity....

  3. Identifying parental chromosomes and genomic rearrangements in animal hybrid complexes of species with small genome size using Genomic In Situ Hybridization (GISH

    Directory of Open Access Journals (Sweden)

    Massimiliano Rampin

    2012-09-01

    Full Text Available Genomic In Situ Hybridization (GISH, a powerful tool to identify and to quantify genomic constituents in allopolyploids, has been widely used in plants but not in animals mainly due to technical problems in obtaining informative results. Using the allopolyploid Squalius alburnoides fish complex as a model system, we succeeded in overcoming methodological constraints when dealing with parental species with a small genome size. This hybridogenetic complex has biotypes with different genome compositions and ploidy levels, but parental chromosomes are small, morphologically very similar and therefore cannot be distinguished by conventional cytogenetic approaches. Specimens have a small genome (C-value = 1.2 pg with a low level of highly and moderate repetitive sequences, mainly located at pericentromeric chromosome regions. Since it is well known that probe annealing depends on probe concentration and hybridization time to obtain uniform hybridization signals along the chromosome arms, we progressively increased the amount of labeled probes from 100ng up to 1µg per slide and the incubation time from overnight up to 72 h, among other minor improvements. Results showed a clear enhancement of signals with respect to previous data, allowing an accurate and reproducible assignment of the parental genomes in both diploid and triploid fish. It was thus evidenced that high probes’ concentrations and long incubation time are the key to obtain, without extra image editing, uniform and reliable hybridization signals in metaphase chromosomes of hybrid fish even involving parental species with small genome size.

  4. Genetic variants identified by GWAS was associated with colorectal cancer in the Han Chinese population

    Directory of Open Access Journals (Sweden)

    Hui-Ping Qiao

    2015-01-01

    Full Text Available Aim of Study: Colorectal cancer (CRC, now the third most common cancer across the world, is known to aggregate in families. Recently, genome-wide association studies have identified two single nucleotide polymorphisms (SNP associated with CRC in Caucasians. Materials and Methods: To validate whether the same variations conferred risk to CRC in the Han Chinese population, we genotyped 760 individuals (380 controls and 380 cases samples recruited from the Han Chinese origin. Results: We found rs11987193 in 8p12 (P = 0.0472 after correction, OR = 0.751 was significantly associated with CRC but rs12080929 in 1p33 (P = 0.0650 after correction, OR = 0.750 was not. Conclusion: Our findings supported that rs11987193 is a susceptibility locus for CRC, and gene DUSP4 was possible to play a role in the pathology of CRC.

  5. Identification of seven new prostate cancer susceptibility loci through a genome-wide association study

    Science.gov (United States)

    Eeles, Rosalind A.; Kote-Jarai, Zsofia; Olama, Ali Amin Al; Giles, Graham G.; Guy, Michelle; Severi, Gianluca; Muir, Kenneth; Hopper, John L.; Henderson, Brian E.; Haiman, Christopher A.; Schleutker, Johanna; Hamdy, Freddie C.; Neal, David E.; Donovan, Jenny L.; Stanford, Janet L.; Ostrander, Elaine A.; Ingles, Sue A.; John, Esther M.; Thibodeau, Stephen N.; Schaid, Daniel; Park, Jong Y.; Spurdle, Amanda; Clements, Judith; Dickinson, Joanne L.; Maier, Christiane; Vogel, Walther; Dörk, Thilo; Rebbeck, Timothy R.; Cooney, Kathleen A.; Cannon-Albright, Lisa; Chappuis, Pierre O.; Hutter, Pierre; Zeegers, Maurice; Kaneva, Radka; Zhang, Hong-Wei; Lu, Yong-Jie; Foulkes, William D.; English, Dallas R.; Leongamornlert, Daniel A.; Tymrakiewicz, Malgorzata; Morrison, Jonathan; Ardern-Jones, Audrey T.; Hall, Amanda L.; O’Brien, Lynne T.; Wilkinson, Rosemary A.; Saunders, Edward J.; Page, Elizabeth C.; Sawyer, Emma J.; Edwards, Stephen M.; Dearnaley, David P.; Horwich, Alan; Huddart, Robert A.; Khoo, Vincent S.; Parker, Christopher C.; Van As, Nicholas; Woodhouse, Christopher J.; Thompson, Alan; Christmas, Tim; Ogden, Chris; Cooper, Colin S.; Southey, Melissa C.; Lophatananon, Artitaya; Liu, Jo-Fen; Kolonel, Laurence N.; Le Marchand, Loic; Wahlfors, Tiina; Tammela, Teuvo L.; Auvinen, Anssi; Lewis, Sarah J.; Cox, Angela; FitzGerald, Liesel M.; Koopmeiners, Joseph S.; Karyadi, Danielle M.; Kwon, Erika M.; Stern, Mariana C.; Corral, Roman; Joshi, Amit D.; Shahabi, Ahva; McDonnell, Shannon K.; Sellers, Thomas A; Pow-Sang, Julio; Chambers, Suzanne; Aitken, Joanne; Gardiner, R.A. (Frank); Batra, Jyotsna; Kedda, Mary Anne; Lose, Felicity; Polanowski, Andrea; Patterson, Briony; Serth, Jürgen; Meyer, Andreas; Luedeke, Manuel; Stefflova, Klara; Ray, Anna M.; Lange, Ethan M.; Farnham, Jim; Khan, Humera; Slavov, Chavdar; Mitkova, Atanaska; Cao, Guangwen; Easton, Douglas F.

    2010-01-01

    Prostate cancer (PrCa) is the most frequently diagnosed male cancer in developed countries. To identify common PrCa susceptibility alleles, we have previously conducted a genome-wide association study in which 541, 129 SNPs were genotyped in 1,854 PrCa cases with clinically detected disease and 1,894 controls. We have now evaluated promising associations in a second stage, in which we genotyped 43,671 SNPs in 3,650 PrCa cases and 3,940 controls, and a third stage, involving an additional 16,229 cases and 14,821 controls from 21 studies. In addition to previously identified loci, we identified a further seven new prostate cancer susceptibility loci on chromosomes 2, 4, 8, 11, and 22 (P=1.6×10−8 to P=2.7×10−33). PMID:19767753

  6. Structural variation discovery in the cancer genome using next generation sequencing: Computational solutions and perspectives

    OpenAIRE

    Liu, Biao; Conroy, Jeffrey M; Morrison, Carl D.; Odunsi, Adekunle O.; Qin, Maochun; Wei, Lei; Trump, Donald L.; Johnson, Candace S.; Liu, Song; Wang, Jianmin

    2015-01-01

    Somatic Structural Variations (SVs) are a complex collection of chromosomal mutations that could directly contribute to carcinogenesis. Next Generation Sequencing (NGS) technology has emerged as the primary means of interrogating the SVs of the cancer genome in recent investigations. Sophisticated computational methods are required to accurately identify the SV events and delineate their breakpoints from the massive amounts of reads generated by a NGS experiment. In this review, we provide an...

  7. Clonal expansion and linear genome evolution through breast cancer progression from pre-invasive stages to asynchronous metastasis

    DEFF Research Database (Denmark)

    Krøigård, Anne Bruun; Larsen, Martin Jakob; Lænkholm, Anne-Vibeke; Knoop, Ann S; Jensen, Jeanette D; Bak, Martin; Mollenhauer, Jan; Kruse, Torben A; Thomassen, Mads

    2015-01-01

    necessitates knowledge of the degree of genomic concordance between different steps of malignant progression as primary tumors often are used as surrogates of systemic disease. Based on exome sequencing we performed copy number profiling and point mutation detection on successive steps of breast cancer......Evolution of the breast cancer genome from pre-invasive stages to asynchronous metastasis is complex and mostly unexplored, but highly demanded as it may provide novel markers for and mechanistic insights in cancer progression. The increasing use of personalized therapy of breast cancer...... progression from one breast cancer patient, including two different regions of Ductal Carcinoma In Situ (DCIS), primary tumor and an asynchronous metastasis. We identify a remarkable landscape of somatic mutations, retained throughout breast cancer progression and with new mutational events emerging at each...

  8. Clonal expansion and linear genome evolution through breast cancer progression from pre-invasive stages to asynchronous metastasis

    DEFF Research Database (Denmark)

    Krøigård, Anne Bruun; Larsen, Martin Jakob; Lænkholm, Anne Vibeke; Knoop, Ann; Jensen, Jeanette Dupont; Bak, Martin; Mollenhauer, Jan; Kruse, Torben A; Thomassen, Mads

    necessitates knowledge of the degree of genomic concordance between different steps of malignant progression as primary tumors often are used as surrogates of systemic disease. Based on exome sequencing we performed copy number profiling and point mutation detection on successive steps of breast cancer......Evolution of the breast cancer genome from pre-invasive stages to asynchronous metastasis is complex and mostly unexplored, but highly demanded as it may provide novel markers for and mechanistic insights in cancer progression. The increasing use of personalized therapy of breast cancer...... progression from one breast cancer patient, including two different regions of Ductal Carcinoma In Situ (DCIS), primary tumor and an asynchronous metastasis. We identify a remarkable landscape of somatic mutations, retained throughout breast cancer progression and with new mutational events emerging at each...

  9. Genome Sequencing and Analysis of the Tasmanian Devil and Its Transmissible Cancer

    OpenAIRE

    Murchison, Elizabeth P.; Schulz-Trieglaff, Ole B.; Ning, Zemin; Alexandrov, Ludmil B.; Bauer, Markus J.; Fu, Beiyuan; Hims, Matthew; Ding, Zhihao; Ivakhno, Sergii; Stewart, Caitlin; Ng, Bee Ling; Wong, Wendy; Aken, Bronwen; White, Simon; Alsop, Amber

    2012-01-01

    Summary The Tasmanian devil (Sarcophilus harrisii), the largest marsupial carnivore, is endangered due to a transmissible facial cancer spread by direct transfer of living cancer cells through biting. Here we describe the sequencing, assembly, and annotation of the Tasmanian devil genome and whole-genome sequences for two geographically distant subclones of the cancer. Genomic analysis suggests that the cancer first arose from a female Tasmanian devil and that the clone has subsequently genet...

  10. Integrative genomic analyses of a novel cytokine, interleukin-34 and its potential role in cancer prediction.

    Science.gov (United States)

    Wang, Bo; Xu, Wenming; Tan, Miaolian; Xiao, Yan; Yang, Haiwei; Xia, Tian-Song

    2015-01-01

    Interleukin-34 (IL-34) is a novel cytokine, which is composed of 222 amino acids and forms homodimers. It binds to the macrophage colony-stimulating factor (M-CSF) receptor and plays an important role in innate immunity and inflammatory processes. In the present study, we identified the completed IL-34 gene in 25 various mammalian genomes and found that IL-34 existed in all types of vertebrates, including fish, amphibians, birds and mammals. These species have a similar 7 exon/6 intron gene organization. The phylogenetic tree indicated that the IL-34 gene from the primate lineage, rodent lineage and teleost lineage form a species-specific cluster. It was found mammalian that IL-34 was under positive selection pressure with the identified positively selected site, 196Val. Fifty-five functionally relevant single nucleotide polymorphisms (SNPs), including 32 SNPs causing missense mutations, 3 exonic splicing enhancer SNPs and 20 SNPs causing nonsense mutations were identified from 2,141 available SNPs in the human IL-34 gene. IL-34 was expressed in various types of cancer, including blood, brain, breast, colorectal, eye, head and neck, lung, ovarian and skin cancer. A total of 5 out of 40 tests (1 blood cancer, 1 brain cancer, 1 colorectal cancer and 2 lung cancer) revealed an association between IL-34 gene expression and cancer prognosis. It was found that the association between the expression of IL-34 and cancer prognosis varied in different types of cancer, even in the same types of cancer from different databases. This suggests that the function of IL-34 in these tumors may be multidimensional. The upstream transcription factor 1 (USF1), regulatory factor X-1 (RFX1), the Sp1 transcription factor 1 , POU class 3 homeobox 2 (POU3F2) and forkhead box L1 (FOXL1) regulatory transcription factor binding sites were identified in the IL-34 gene upstream (promoter) region, which may be involved in the effects of IL-34 in tumors. PMID:25395235

  11. Identifying Novel Cancer Therapies Using Chemical Genetics and Zebrafish.

    Science.gov (United States)

    Dang, Michelle; Fogley, Rachel; Zon, Leonard I

    2016-01-01

    Chemical genetics is the use of small molecules to perturb biological pathways. This technique is a powerful tool for implicating genes and pathways in developmental programs and disease, and simultaneously provides a platform for the discovery of novel therapeutics. The zebrafish is an advantageous model for in vivo high-throughput small molecule screening due to translational appeal, high fecundity, and a unique set of developmental characteristics that support genetic manipulation, chemical treatment, and phenotype detection. Chemical genetic screens in zebrafish can identify hit compounds that target oncogenic processes-including cancer initiation and maintenance, metastasis, and angiogenesis-and may serve as cancer therapies. Notably, by combining drug discovery and animal testing, in vivo screening of small molecules in zebrafish has enabled rapid translation of hit anti-cancer compounds to the clinic, especially through the repurposing of FDA-approved drugs. Future technological advancements in automation and high-powered imaging, as well as the development and characterization of new mutant and transgenic lines, will expand the scope of chemical genetics in zebrafish. PMID:27165351

  12. Genome-Wide Association Analysis to Identify Loci for Milk Yield in Gyr Breed

    Science.gov (United States)

    A genome scan was conducted to identify QTL affecting milk yield in a Brazilian Gyr population of progeny test bulls (N=319). Data used in this study was derived from traditional genetic evaluation records computed by the Embrapa Dairy Cattleand released in May/2009 (http://www.cnpgl.embrapa.br/nova...

  13. The Human Genome Project and Eugenics: Identifying the Impact on Individuals with Mental Retardation.

    Science.gov (United States)

    Kuna, Jason

    2001-01-01

    This article explores the impact of the mapping work of the Human Genome Project on individuals with mental retardation and the negative effects of genetic testing. The potential to identify disabilities and the concept of eugenics are discussed, along with ethical issues surrounding potential genetic therapies. (Contains references.) (CR)

  14. Application of Genome-Wide Expression Analysis To Identify Molecular Markers Useful in Monitoring Industrial Fermentations

    OpenAIRE

    Higgins, Vincent J.; Rogers, Peter J.; Dawes, Ian W.

    2003-01-01

    Genome-wide expression analysis of an industrial strain of Saccharomyces cerevisiae identified the YOR387c and YGL258w homologues as highly inducible in zinc-depleted conditions. Induction was specific for zinc deficiency and was dependent on Zap1p. The results indicate that these sequences may be valuable molecular markers for detecting zinc deficiency in industrial fermentations.

  15. Candidate fire blight resistance genes in Malus identified with the use of genomic tools and approaches

    Science.gov (United States)

    The goal of this research is to utilize current advances in Rosaceae genomics to identify DNA markers for use in marker-assisted selection of durable resistance to fire blight. Candidate fire blight resistance genes were selected and ranked based upon differential expression after inoculation with ...

  16. Triangulation of the human, chimpanzee, and Neanderthal genome sequences identifies potentially compensated mutations

    DEFF Research Database (Denmark)

    Zhang, Guojie; Pei, Zhang; Krawczak, Michael;

    2010-01-01

    Triangulation of the human, chimpanzee, and Neanderthal genome sequences with respect to 44,348 disease-causing or disease-associated missense mutations and 1,712 putative regulatory mutations listed in the Human Gene Mutation Database was employed to identify genetic variants that are apparently...

  17. Genomic approaches for identifying DNA damage response pathways in S. cerevisiae

    NARCIS (Netherlands)

    Chang, Michael; Parsons, Ainslie B; Sheikh, Bilal H; Boone, Charles; Brown, Grant W

    2006-01-01

    DNA damage response pathways have been studied extensively in the budding yeast Saccharomyces cerevisiae, yet new genes with roles in the DNA damage response are still being identified. In this chapter we describe the use of functional genomic approaches in the identification of DNA damage response

  18. Genome-wide association scan meta-analysis identifies three loci influencing adiposity and fat distribution

    NARCIS (Netherlands)

    C.M. Lindgren (Cecilia); I.M. Heid (Iris); J.C. Randall (Joshua); C. Lamina (Claudia); V. Steinthorsdottir (Valgerdur); L. Qi (Lu); E.K. Speliotes (Elizabeth); G. Thorleifsson (Gudmar); C.J. Willer (Cristen); B.M. Herrera (Blanca); A.U. Jackson (Anne); N. Lim (Noha); P. Scheet (Paul); N. Soranzo (Nicole); N. Amin (Najaf); Y.S. Aulchenko (Yurii); J.C. Chambers (John); A. Drong (Alexander); J. Luan; H.N. Lyon (Helen); F. Rivadeneira Ramirez (Fernando); S. Sanna (Serena); N. Timpson (Nicholas); M.C. Zillikens (Carola); H.Z. Jing; P. Almgren (Peter); S. Bandinelli (Stefania); A.J. Bennett (Amanda); R.N. Bergman (Richard); L.L. Bonnycastle (Lori); S. Bumpstead (Suzannah); S.J. Chanock (Stephen); L. Cherkas (Lynn); P.S. Chines (Peter); L. Coin (Lachlan); C. Cooper (Charles); G. Crawford (Gabe); A. Doering (Angela); A. Dominiczak (Anna); A.S.F. Doney (Alex); S. Ebrahim (Shanil); P. Elliott (Paul); M.R. Erdos (Michael); K. Estrada Gil (Karol); L. Ferrucci (Luigi); G. Fischer (Guido); N.G. Forouhi (Nita); C. Gieger (Christian); H. Grallert (Harald); C.J. Groves (Christopher); S.M. Grundy (Scott); C. Guiducci (Candace); D. Hadley (David); A. Hamsten (Anders); A.S. Havulinna (Aki); A. Hofman (Albert); R. Holle (Rolf); J.W. Holloway (John); T. Illig (Thomas); B. Isomaa (Bo); L.C. Jacobs (Leonie); K. Jameson (Karen); P. Jousilahti (Pekka); F. Karpe (Fredrik); J. Kuusisto (Johanna); J. Laitinen (Jaana); G.M. Lathrop (Mark); D.A. Lawlor (Debbie); M. Mangino (Massimo); W.L. McArdle (Wendy); T. Meitinger (Thomas); M.A. Morken (Mario); A.P. Morris (Andrew); P. Munroe (Patricia); N. Narisu (Narisu); A. Nordström (Anna); B.A. Oostra (Ben); C.N.A. Palmer (Colin); F. Payne (Felicity); J. Peden (John); I. Prokopenko (Inga); F. Renström (Frida); A. Ruokonen (Aimo); V. Salomaa (Veikko); M.S. Sandhu (Manjinder); L.J. Scott (Laura); A. Scuteri (Angelo); K. Silander (Kaisa); K. Song (Kijoung); X. Yuan (Xin); H.M. Stringham (Heather); A.J. Swift (Amy); T. Tuomi (Tiinamaija); M. Uda (Manuela); P. Vollenweider (Peter); G. Waeber (Gérard); C. Wallace (Chris); G.B. Walters (Bragi); M.N. Weedon (Michael); J.C.M. Witteman (Jacqueline); C. Zhang (Cuilin); M. Caulfield (Mark); F.S. Collins (Francis); G.D. Smith; I.N.M. Day (Ian); P.W. Franks (Paul); A.T. Hattersley (Andrew); F.B. Hu (Frank); M.R. Jarvelin; A. Kong (Augustine); J.S. Kooner (Jaspal); M. Laakso (Markku); E. Lakatta (Edward); V. Mooser (Vincent); L. Peltonen (Leena Johanna); N.J. Samani (Nilesh); T.D. Spector (Timothy); D.P. Strachan (David); T. Tanaka (Toshiko); J. Tuomilehto (Jaakko); A.G. Uitterlinden (André); P. Tikka-Kleemola (Päivi); N.J. Wareham (Nick); H. Watkins (Hugh); D. Waterworth (Dawn); M. Boehnke (Michael); P. Deloukas (Panagiotis); L. Groop (Leif); D.J. Hunter (David); U. Thorsteinsdottir (Unnur); D. Schlessinger (David); H.E. Wichmann (Erich); T.M. Frayling (Timothy); G.R. Abecasis (Gonçalo); J.N. Hirschhorn (Joel); R.J.F. Loos (Ruth); J-A. Zwart (John-Anker); K.L. Mohlke (Karen); I. Barroso (Inês); M.I. McCarthy (Mark)

    2009-01-01

    textabstractTo identify genetic loci influencing central obesity and fat distribution, we performed a meta-analysis of 16 genome-wide association studies (GWAS, N = 38,580) informative for adult waist circumference (WC) and waist-hip ratio (WHR). We selected 26 SNPs for follow-up, for which the evid

  19. Integrating genomics in head and neck cancer treatment: Promises and pitfalls.

    Science.gov (United States)

    Thariat, Juliette; Vignot, Stéphane; Lapierre, Ariane; Falk, Alexander T; Guigay, Joel; Van Obberghen-Schilling, Ellen; Milano, Gerard

    2015-09-01

    Head and neck squamous cell carcinomas (HNSCC) represent a multifactorial disease of poor prognosis. They have lagged behind other cancers in terms of personalized therapy. With expansion and high throughput sequencing methods, recent landmark exonic studies and Cancer Genome Atlas data have identified genes relevant to carcinogenesis and cancer progression. Mutational profiles and rates vary widely depending on exposure to carcinogens, anatomic subsites and human papilloma virus (HPV) infection. Tumors may exhibit specific, tissue-specific, not exclusively HPV-related, gene alterations, such those observed in oral cavity cancers in Asia or Occident. Except for the PI3K pathway, the rate of mutations in HPV+ cancers is much lower than in tobacco/alcohol-related cancers. Somatic driver mutation analyses show that relatively few driver genes are druggable in HNSCC and that tumor suppressor gene alterations prevail. More mature for therapeutic applications is the oncogenic PI3K pathway, with preclinical human xenograft models suggesting that PI3KCA pathway mutations may be used as predictive biomarkers and clinical data showing efficacy of mTOR/Akt inhibitors. Therapeutic guidance, to date, relies on classical histoprognostic factors, anatomic subsite and HPV status, with integration of hierarchized supervised mutational profiling to provide additional therapeutic options in advanced HNSCC in a near future. Unsupervised controlled genomic analyses remain necessary to unravel potentially relevant genes. PMID:25979769

  20. The tandem duplicator phenotype as a distinct genomic configuration in cancer.

    Science.gov (United States)

    Menghi, Francesca; Inaki, Koichiro; Woo, XingYi; Kumar, Pooja A; Grzeda, Krzysztof R; Malhotra, Ankit; Yadav, Vinod; Kim, Hyunsoo; Marquez, Eladio J; Ucar, Duygu; Shreckengast, Phung T; Wagner, Joel P; MacIntyre, George; Murthy Karuturi, Krishna R; Scully, Ralph; Keck, James; Chuang, Jeffrey H; Liu, Edison T

    2016-04-26

    Next-generation sequencing studies have revealed genome-wide structural variation patterns in cancer, such as chromothripsis and chromoplexy, that do not engage a single discernable driver mutation, and whose clinical relevance is unclear. We devised a robust genomic metric able to identify cancers with a chromotype called tandem duplicator phenotype (TDP) characterized by frequent and distributed tandem duplications (TDs). Enriched only in triple-negative breast cancer (TNBC) and in ovarian, endometrial, and liver cancers, TDP tumors conjointly exhibit tumor protein p53 (TP53) mutations, disruption of breast cancer 1 (BRCA1), and increased expression of DNA replication genes pointing at rereplication in a defective checkpoint environment as a plausible causal mechanism. The resultant TDs in TDP augment global oncogene expression and disrupt tumor suppressor genes. Importantly, the TDP strongly correlates with cisplatin sensitivity in both TNBC cell lines and primary patient-derived xenografts. We conclude that the TDP is a common cancer chromotype that coordinately alters oncogene/tumor suppressor expression with potential as a marker for chemotherapeutic response. PMID:27071093

  1. The tandem duplicator phenotype as a distinct genomic configuration in cancer

    Science.gov (United States)

    Menghi, Francesca; Inaki, Koichiro; Woo, XingYi; Kumar, Pooja A.; Grzeda, Krzysztof R.; Malhotra, Ankit; Yadav, Vinod; Kim, Hyunsoo; Marquez, Eladio J.; Ucar, Duygu; Shreckengast, Phung T.; Wagner, Joel P.; MacIntyre, George; Murthy Karuturi, Krishna R.; Scully, Ralph; Keck, James; Chuang, Jeffrey H.; Liu, Edison T.

    2016-01-01

    Next-generation sequencing studies have revealed genome-wide structural variation patterns in cancer, such as chromothripsis and chromoplexy, that do not engage a single discernable driver mutation, and whose clinical relevance is unclear. We devised a robust genomic metric able to identify cancers with a chromotype called tandem duplicator phenotype (TDP) characterized by frequent and distributed tandem duplications (TDs). Enriched only in triple-negative breast cancer (TNBC) and in ovarian, endometrial, and liver cancers, TDP tumors conjointly exhibit tumor protein p53 (TP53) mutations, disruption of breast cancer 1 (BRCA1), and increased expression of DNA replication genes pointing at rereplication in a defective checkpoint environment as a plausible causal mechanism. The resultant TDs in TDP augment global oncogene expression and disrupt tumor suppressor genes. Importantly, the TDP strongly correlates with cisplatin sensitivity in both TNBC cell lines and primary patient-derived xenografts. We conclude that the TDP is a common cancer chromotype that coordinately alters oncogene/tumor suppressor expression with potential as a marker for chemotherapeutic response. PMID:27071093

  2. Genome-Wide Association Mapping in Arabidopsis Identifies Previously Known Flowering Time and Pathogen Resistance Genes.

    Directory of Open Access Journals (Sweden)

    2005-11-01

    Full Text Available There is currently tremendous interest in the possibility of using genome-wide association mapping to identify genes responsible for natural variation, particularly for human disease susceptibility. The model plant Arabidopsis thaliana is in many ways an ideal candidate for such studies, because it is a highly selfing hermaphrodite. As a result, the species largely exists as a collection of naturally occurring inbred lines, or accessions, which can be genotyped once and phenotyped repeatedly. Furthermore, linkage disequilibrium in such a species will be much more extensive than in a comparable outcrossing species. We tested the feasibility of genome-wide association mapping in A. thaliana by searching for associations with flowering time and pathogen resistance in a sample of 95 accessions for which genome-wide polymorphism data were available. In spite of an extremely high rate of false positives due to population structure, we were able to identify known major genes for all phenotypes tested, thus demonstrating the potential of genome-wide association mapping in A. thaliana and other species with similar patterns of variation. The rate of false positives differed strongly between traits, with more clinal traits showing the highest rate. However, the false positive rates were always substantial regardless of the trait, highlighting the necessity of an appropriate genomic control in association studies.

  3. Genome-wide association mapping in Arabidopsis identifies previously known flowering time and pathogen resistance genes.

    Directory of Open Access Journals (Sweden)

    María José Aranzana

    2005-11-01

    Full Text Available There is currently tremendous interest in the possibility of using genome-wide association mapping to identify genes responsible for natural variation, particularly for human disease susceptibility. The model plant Arabidopsis thaliana is in many ways an ideal candidate for such studies, because it is a highly selfing hermaphrodite. As a result, the species largely exists as a collection of naturally occurring inbred lines, or accessions, which can be genotyped once and phenotyped repeatedly. Furthermore, linkage disequilibrium in such a species will be much more extensive than in a comparable outcrossing species. We tested the feasibility of genome-wide association mapping in A. thaliana by searching for associations with flowering time and pathogen resistance in a sample of 95 accessions for which genome-wide polymorphism data were available. In spite of an extremely high rate of false positives due to population structure, we were able to identify known major genes for all phenotypes tested, thus demonstrating the potential of genome-wide association mapping in A. thaliana and other species with similar patterns of variation. The rate of false positives differed strongly between traits, with more clinal traits showing the highest rate. However, the false positive rates were always substantial regardless of the trait, highlighting the necessity of an appropriate genomic control in association studies.

  4. Genome-wide pooling approach identifies SPATA5 as a new susceptibility locus for alopecia areata

    OpenAIRE

    2011-01-01

    Abstract Alopecia areata (AA) is a common hair loss disorder which is thought to be a tissue-specific autoimmune disease. Previous research has identified a few AA susceptibility genes, most of which are implicated in autoimmunity. To identify new genetic variants and further elucidate the genetic basis of AA, we performed a genome-wide association study using the strategy of pooled DNA genotyping (729 cases; 656 controls). The strongest association was for variants in the HLA regi...

  5. Genome-wide RNAi Screen Identifies Networks Involved in Intestinal Stem Cell Regulation in Drosophila

    OpenAIRE

    Xiankun Zeng; Lili Han; Shree Ram Singh; Hanhan Liu; Ralph A. Neumüller; Dong Yan; Yanhui Hu; Ying Liu; Wei Liu; Xinhua Lin; Steven X. Hou

    2015-01-01

    The intestinal epithelium is the most rapidly self-renewing tissue in adult animals and maintained by intestinal stem cells (ISCs) in both Drosophila and mammals. To comprehensively identify genes and pathways that regulate ISC fates, we performed a genome-wide transgenic RNAi screen in adult Drosophila intestine and identified 405 genes that regulate ISC maintenance and lineage-specific differentiation. By integrating these genes into publicly available interaction databases, we further deve...

  6. Genome-wide RNAi Screen Identifies Networks Involved in Intestinal Stem Cell Regulation in Drosophila

    OpenAIRE

    Zeng, Xiankun; Han, Lili; Singh, Shree Ram; Liu, Hanhan; Neumüller, Ralph A.; Yan, Dong; Hu, Yanhui; Liu, Ying; Liu, Wei; Lin, Xinhua; Steven X Hou

    2015-01-01

    The intestinal epithelium is the most rapidly self-renewing tissue in adult animals and maintained by intestinal stem cells (ISCs) in both Drosophila and mammals. To comprehensively identify genes and pathways that regulate ISC fates, we performed a genome-wide transgenic RNAi screen in adult Drosophila intestine and identified 405 genes that regulate ISC maintenance and lineage-specific differentiation. Through integrating these genes into publicly available interaction databases, we further...

  7. Identifying Cancer Biomarkers Via Node Classification within a Mapreduce Framework

    Directory of Open Access Journals (Sweden)

    Taysir Hassan A. Soliman

    2015-12-01

    Full Text Available Big data are giving new research challenges in the life sciences domain because of their variety, volume, veracity, velocity, and value. Predicting gene biomarkers is one of the vital research issues in bioinformatics field, where microarray gene expression and network based methods can be used. These datasets suffer from the huge data voluminous, causing main memory problems. In this paper, a Random Committee Node Classifier algorithm (RCNC is proposed for identifying cancer biomarkers, which is based on microarray gene expression data and Protein-Protein Interaction (PPI data. Data are enriched from other public databases, such as IntACT1 and UniProt2 and Gene Ontology3 (GO. Cancer Biomarkers are identified when applied to different datasets with an accuracy rate an accuracy rate 99.16%, 99.96% precision, 99.24% recall, 99.16% F1-measure and 99.6 ROC. To speed up the performance, it is run within a MapReduce framework, where RCNC MapReduce algorithm is much faster than RCNC sequential algorithm when having large datasets.

  8. Identifying and Characterizing Regulatory Sequences in the Human Genome with Chromatin Accessibility Assays

    Directory of Open Access Journals (Sweden)

    Terrence S. Furey

    2012-10-01

    Full Text Available After finishing a human genome reference sequence in 2002, the genomics community has turned to the task of interpreting it. A primary focus is to identify and characterize not only protein-coding genes, but all functional elements in the genome. The effort includes both individual investigators and large-scale projects like the Encyclopedia of DNA Elements (ENCODE project. As part of the ENCODE project, several groups have identified millions of regulatory elements in hundreds of human cell-types using DNase-seq and FAIRE-seq experiments that detect regions of nucleosome-free open chromatin. ChIP-seq experiments have also been used to discover transcription factor binding sites and map histone modifications. Nearly all identified elements are found in non-coding DNA, hypothesizing a function for previously unannotated sequence. In this review, we provide an overview of the ENCODE effort to define regulatory elements, summarize the main results, and discuss implications of the millions of regulatory elements distributed throughout the genome.

  9. Network-Based Integration of Disparate Omic Data To Identify "Silent Players" in Cancer.

    Directory of Open Access Journals (Sweden)

    Matthew Ruffalo

    2015-12-01

    Full Text Available Development of high-throughput monitoring technologies enables interrogation of cancer samples at various levels of cellular activity. Capitalizing on these developments, various public efforts such as The Cancer Genome Atlas (TCGA generate disparate omic data for large patient cohorts. As demonstrated by recent studies, these heterogeneous data sources provide the opportunity to gain insights into the molecular changes that drive cancer pathogenesis and progression. However, these insights are limited by the vast search space and as a result low statistical power to make new discoveries. In this paper, we propose methods for integrating disparate omic data using molecular interaction networks, with a view to gaining mechanistic insights into the relationship between molecular changes at different levels of cellular activity. Namely, we hypothesize that genes that play a role in cancer development and progression may be implicated by neither frequent mutation nor differential expression, and that network-based integration of mutation and differential expression data can reveal these "silent players". For this purpose, we utilize network-propagation algorithms to simulate the information flow in the cell at a sample-specific resolution. We then use the propagated mutation and expression signals to identify genes that are not necessarily mutated or differentially expressed genes, but have an essential role in tumor development and patient outcome. We test the proposed method on breast cancer and glioblastoma multiforme data obtained from TCGA. Our results show that the proposed method can identify important proteins that are not readily revealed by molecular data, providing insights beyond what can be gleaned by analyzing different types of molecular data in isolation.

  10. Genome-wide association study identifies three novel loci for type 2 diabetes

    DEFF Research Database (Denmark)

    Hara, Kazuo; Fujita, Hayato; Johnson, Todd A;

    2014-01-01

    genotyped or imputed using East Asian references from the 1000 Genomes Project (June 2011 release) in 5976 Japanese patients with T2D and 20 829 nondiabetic individuals. Nineteen unreported loci were selected and taken forward to follow-up analyses. Combined discovery and follow-up analyses (30 392 cases...... (rs312457; risk allele = G; RAF = 0.078; P = 7.69 × 10(-13); OR = 1.20). This study demonstrates that GWASs based on the imputation of genotypes using modern reference haplotypes such as that from the 1000 Genomes Project data can assist in identification of new loci for common diseases.......Although over 60 loci for type 2 diabetes (T2D) have been identified, there still remains a large genetic component to be clarified. To explore unidentified loci for T2D, we performed a genome-wide association study (GWAS) of 6 209 637 single-nucleotide polymorphisms (SNPs), which were directly...

  11. Assembly of the draft genome of buckwheat and its applications in identifying agronomically useful genes

    Science.gov (United States)

    Yasui, Yasuo; Hirakawa, Hideki; Ueno, Mariko; Matsui, Katsuhiro; Katsube-Tanaka, Tomoyuki; Yang, Soo Jung; Aii, Jotaro; Sato, Shingo; Mori, Masashi

    2016-01-01

    Buckwheat (Fagopyrum esculentum Moench; 2n = 2x = 16) is a nutritionally dense annual crop widely grown in temperate zones. To accelerate molecular breeding programmes of this important crop, we generated a draft assembly of the buckwheat genome using short reads obtained by next-generation sequencing (NGS), and constructed the Buckwheat Genome DataBase. After assembling short reads, we determined 387,594 scaffolds as the draft genome sequence (FES_r1.0). The total length of FES_r1.0 was 1,177,687,305 bp, and the N50 of the scaffolds was 25,109 bp. Gene prediction analysis revealed 286,768 coding sequences (CDSs; FES_r1.0_cds) including those related to transposable elements. The total length of FES_r1.0_cds was 212,917,911 bp, and the N50 was 1,101 bp. Of these, the functions of 35,816 CDSs excluding those for transposable elements were annotated by BLAST analysis. To demonstrate the utility of the database, we conducted several test analyses using BLAST and keyword searches. Furthermore, we used the draft genome as a reference sequence for NGS-based markers, and successfully identified novel candidate genes controlling heteromorphic self-incompatibility of buckwheat. The database and draft genome sequence provide a valuable resource that can be used in efforts to develop buckwheat cultivars with superior agronomic traits. PMID:27037832

  12. Assembly of the draft genome of buckwheat and its applications in identifying agronomically useful genes.

    Science.gov (United States)

    Yasui, Yasuo; Hirakawa, Hideki; Ueno, Mariko; Matsui, Katsuhiro; Katsube-Tanaka, Tomoyuki; Yang, Soo Jung; Aii, Jotaro; Sato, Shingo; Mori, Masashi

    2016-06-01

    Buckwheat (Fagopyrum esculentum Moench; 2n = 2x = 16) is a nutritionally dense annual crop widely grown in temperate zones. To accelerate molecular breeding programmes of this important crop, we generated a draft assembly of the buckwheat genome using short reads obtained by next-generation sequencing (NGS), and constructed the Buckwheat Genome DataBase. After assembling short reads, we determined 387,594 scaffolds as the draft genome sequence (FES_r1.0). The total length of FES_r1.0 was 1,177,687,305 bp, and the N50 of the scaffolds was 25,109 bp. Gene prediction analysis revealed 286,768 coding sequences (CDSs; FES_r1.0_cds) including those related to transposable elements. The total length of FES_r1.0_cds was 212,917,911 bp, and the N50 was 1,101 bp. Of these, the functions of 35,816 CDSs excluding those for transposable elements were annotated by BLAST analysis. To demonstrate the utility of the database, we conducted several test analyses using BLAST and keyword searches. Furthermore, we used the draft genome as a reference sequence for NGS-based markers, and successfully identified novel candidate genes controlling heteromorphic self-incompatibility of buckwheat. The database and draft genome sequence provide a valuable resource that can be used in efforts to develop buckwheat cultivars with superior agronomic traits. PMID:27037832

  13. Whole genome RNA expression profiling for the identification of novel biomarkers in the diagnosis and prognosis of biliary tract cancer

    OpenAIRE

    Chapman, M H

    2011-01-01

    Biliary tract cancer (BTC) is difficult to diagnose, in part related to the lack of reliable tumour markers. The aim of this project was to use whole genome RNA expression profiling in order to identify novel biomarkers for diagnosis and prognosis in biliary tract cancer. Chapter 1 summarises clinical aspects of BTC as well as current diagnostic and prognostic tests. Chapter 2 addresses the identification of circulating tumour cells for the diagnosis of BTC. It includes d...

  14. Novel immune-modulator identified by a rapid, functional screen of the parapoxvirus ovis (Orf virus genome

    Directory of Open Access Journals (Sweden)

    McGuire Michael J

    2012-01-01

    Full Text Available Abstract Background The success of new sequencing technologies and informatic methods for identifying genes has made establishing gene product function a critical rate limiting step in progressing the molecular sciences. We present a method to functionally mine genomes for useful activities in vivo, using an unusual property of a member of the poxvirus family to demonstrate this screening approach. Results The genome of Parapoxvirus ovis (Orf virus was sequenced, annotated, and then used to PCR-amplify its open-reading-frames. Employing a cloning-independent protocol, a viral expression-library was rapidly built and arrayed into sub-library pools. These were directly delivered into mice as expressible cassettes and assayed for an immune-modulating activity associated with parapoxvirus infection. The product of the B2L gene, a homolog of vaccinia F13L, was identified as the factor eliciting immune cell accumulation at sites of skin inoculation. Administration of purified B2 protein also elicited immune cell accumulation activity, and additionally was found to serve as an adjuvant for antigen-specific responses. Co-delivery of the B2L gene with an influenza gene-vaccine significantly improved protection in mice. Furthermore, delivery of the B2L expression construct, without antigen, non-specifically reduced tumor growth in murine models of cancer. Conclusion A streamlined, functional approach to genome-wide screening of a biological activity in vivo is presented. Its application to screening in mice for an immune activity elicited by the pathogen genome of Parapoxvirus ovis yielded a novel immunomodulator. In this inverted discovery method, it was possible to identify the adjuvant responsible for a function of interest prior to a mechanistic study of the adjuvant. The non-specific immune activity of this modulator, B2, is similar to that associated with administration of inactivated particles to a host or to a live viral infection. Administration

  15. Extending pathways and processes using molecular interaction networks to analyse cancer genome data

    Directory of Open Access Journals (Sweden)

    Krasnogor Natalio

    2010-12-01

    Full Text Available Abstract Background Cellular processes and pathways, whose deregulation may contribute to the development of cancers, are often represented as cascades of proteins transmitting a signal from the cell surface to the nucleus. However, recent functional genomic experiments have identified thousands of interactions for the signalling canonical proteins, challenging the traditional view of pathways as independent functional entities. Combining information from pathway databases and interaction networks obtained from functional genomic experiments is therefore a promising strategy to obtain more robust pathway and process representations, facilitating the study of cancer-related pathways. Results We present a methodology for extending pre-defined protein sets representing cellular pathways and processes by mapping them onto a protein-protein interaction network, and extending them to include densely interconnected interaction partners. The added proteins display distinctive network topological features and molecular function annotations, and can be proposed as putative new components, and/or as regulators of the communication between the different cellular processes. Finally, these extended pathways and processes are used to analyse their enrichment in pancreatic mutated genes. Significant associations between mutated genes and certain processes are identified, enabling an analysis of the influence of previously non-annotated cancer mutated genes. Conclusions The proposed method for extending cellular pathways helps to explain the functions of cancer mutated genes by exploiting the synergies of canonical knowledge and large-scale interaction data.

  16. Genomic and oncoproteomic advances in detection and treatment of colorectal cancer.

    LENUS (Irish Health Repository)

    McHugh, Seamus M

    2009-01-01

    AIMS: We will examine the latest advances in genomic and proteomic laboratory technology. Through an extensive literature review we aim to critically appraise those studies which have utilized these latest technologies and ascertain their potential to identify clinically useful biomarkers. METHODS: An extensive review of the literature was carried out in both online medical journals and through the Royal College of Surgeons in Ireland library. RESULTS: Laboratory technology has advanced in the fields of genomics and oncoproteomics. Gene expression profiling with DNA microarray technology has allowed us to begin genetic profiling of colorectal cancer tissue. The response to chemotherapy can differ amongst individual tumors. For the first time researchers have begun to isolate and identify the genes responsible. New laboratory techniques allow us to isolate proteins preferentially expressed in colorectal cancer tissue. This could potentially lead to identification of a clinically useful protein biomarker in colorectal cancer screening and treatment. CONCLUSION: If a set of discriminating genes could be used for characterization and prediction of chemotherapeutic response, an individualized tailored therapeutic regime could become the standard of care for those undergoing systemic treatment for colorectal cancer. New laboratory techniques of protein identification may eventually allow identification of a clinically useful biomarker that could be used for screening and treatment. At present however, both expression of different gene signatures and isolation of various protein peaks has been limited by study size. Independent multi-centre correlation of results with larger sample sizes is needed to allow translation into clinical practice.

  17. Genomic and oncoproteomic advances in detection and treatment of colorectal cancer.

    LENUS (Irish Health Repository)

    McHugh, Seamus M

    2012-02-01

    AIMS: We will examine the latest advances in genomic and proteomic laboratory technology. Through an extensive literature review we aim to critically appraise those studies which have utilized these latest technologies and ascertain their potential to identify clinically useful biomarkers. METHODS: An extensive review of the literature was carried out in both online medical journals and through the Royal College of Surgeons in Ireland library. RESULTS: Laboratory technology has advanced in the fields of genomics and oncoproteomics. Gene expression profiling with DNA microarray technology has allowed us to begin genetic profiling of colorectal cancer tissue. The response to chemotherapy can differ amongst individual tumors. For the first time researchers have begun to isolate and identify the genes responsible. New laboratory techniques allow us to isolate proteins preferentially expressed in colorectal cancer tissue. This could potentially lead to identification of a clinically useful protein biomarker in colorectal cancer screening and treatment. CONCLUSION: If a set of discriminating genes could be used for characterization and prediction of chemotherapeutic response, an individualized tailored therapeutic regime could become the standard of care for those undergoing systemic treatment for colorectal cancer. New laboratory techniques of protein identification may eventually allow identification of a clinically useful biomarker that could be used for screening and treatment. At present however, both expression of different gene signatures and isolation of various protein peaks has been limited by study size. Independent multi-centre correlation of results with larger sample sizes is needed to allow translation into clinical practice.

  18. New selenoproteins identified in silico from the genome of Anopheles gambiae

    Institute of Scientific and Technical Information of China (English)

    JIANG Liang; LIU Qiong; CHEN Ping; GAO ZhongHong; XU HuiBi

    2007-01-01

    Selenoprotein is biosynthesized by the incorporation of selenocysteine into proteins, where the TGA codon in the open reading frame does not act as a stop signal but is translated into selenocysteine. The dual functions of TGA result in mis-annotation or lack of selenoproteins in the sequenced genomes of many species. Available computational tools fail to correctly predict selenoproteins. Thus, we developed a new method to identify selenoproteins from the genome of Anopheles gambiae computationally.Based on released genomic information, several programs were edited with PERL language to identify selenocysteine insertion sequence (SECIS) element, the coding potential of TGA codons, and cysteine-containing homologs of selenoprotein genes. Our results showed that 11365 genes were terminated with TGA codons, 918 of which contained SECIS elements. Similarity search revealed that 58genes contained Sec/Cys pairs and similar flanking regions around in-frame TGA codons. Finally, 7genes were found to fully meet requirements for selenoproteins, although they have not been annotated as selenoproteins in NCBI databases. Deduced from their basic properties, the newly found selenoproteins in the genome of Anopheles gambiae are possibly related to in vivo oxidation tolerance and protein regulation in order to interfere with anopheles' vectorial capacity of Plasmodium. This study may also provide theoretical bases for the prevention of malaria from anopheles transmission.

  19. High-Resolution Genomic and Expression Profiling Reveals 105 Putative Amplification Target Genes in Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Eija H. Mahlamaki

    2004-09-01

    Full Text Available Comparative genomic hybridization (CGH studies have provided a wealth of information on common copy number aberrations in pancreatic cancer, but the genes affected by these aberrations are largely unknown. To identify putative amplification target genes in pancreatic cancer, we performed a parallel copy number and expression survey in 13 pancreatic cancer cell lines using a 12,232-clone cDNA microarray, providing an average resolution of 300 kb throughout the human genome. CGH on cDNA microarray allowed highly accurate mapping of copy number increases and resulted in identification of 24 independent amplicons, ranging in size from 130 kb to 11 Mb. Statistical evaluation of gene copy number and expression data across all 13 cell lines revealed a set of 105 genes whose elevated expression levels were directly attributable to increased copy number. These included genes previously reported to be amplified in cancer as well as several novel targets for copy number alterations, such as p21-activated kinase 4 (PAK4, which was previously shown to be involved in cell migration, cell adhesion, and anchorage-independent growth. In conclusion, our results implicate a set of 105 genes that is likely to be actively involved in the development and progression of pancreatic cancer.

  20. An Integrative Approach for the Large-scale Identification of Human Genome Kinases Regulating Cancer Metastasis

    Science.gov (United States)

    Zhang, Hanshuo; Wu, Pu-Yen; Ma, Ming; Ye, Yanzheng; Hao, Yang; Yang, Junyu; Yin, Shenyi; Sun, Changhong; Phan, John H.; Wang, May D.; Xi, Jianzhong Jeff

    2016-01-01

    Kinases regulate the majority of biological processes and become one of important groups of drug targets. To identify more kinases being potential for cancer therapy, we developed an integrative approach for the large-scale screen of functional genes capable of regulating the main traits of cancer metastasis, including cell migration as well as invasion. We first employed self-assembled cell microarray (SAMcell) to screen functional genes that regulate cancer cell migration using a siRNA library targeting 710 human genome kinase genes. We identified 81 genes capable of significantly regulating cancer cell migration. Following with invasion assays and bio-informatics analysis, we discovered that 16 genes with differentially expression in cancer samples can regulate both cell migration and invasion, among which 10 genes have been well known to play critical roles in the cancer development. The remaining 6 genes were experimentally validated to have the capacities of regulating the metastasis-related traits, including cell proliferation, apoptosis and anoikis activities besides cell motility. Together, these findings provide a new insight into the therapeutic use of human kinases. PMID:23751374

  1. Epidemiological studies of esophageal cancer in the era of genome-wide association studies

    Institute of Scientific and Technical Information of China (English)

    An-Hui; Wang; Yuan; Liu; Bo; Wang; Yi-Xuan; He; Ye-Xian; Fang; Yong-Ping; Yan

    2014-01-01

    Esophageal cancer(EC) caused about 395000 deaths in 2010. China has the most cases of EC and EC is the fourth leading cause of cancer death in China. Esophageal squamous cell carcinoma(ESCC) is the predominant histologic type(90%-95%), while the incidence of esophageal adenocarcinoma(EAC) remains extremely low in China. Traditional epidemiological studies have revealed that environmental carcinogens are risk factors for EC. Molecular epidemiological studies revealed that susceptibility to EC is influenced by both environmental and genetic risk factors. Of all the risk factors for EC, some are associated with the risk of ESCC and others with the risk of EAC. However, the details and mechanisms of risk factors involved in the process for EC are unclear. The advanced methods and techniques used in human genome studies bring a great opportunity for researchers to explore and identify the details of those risk factors or susceptibility genes involved inthe process of EC. Human genome epidemiology is a new branch of epidemiology, which leads the epidemiology study from the molecular epidemiology era to the era of genome wide association studies(GWAS). Here we review the epidemiological studies of EC(especially ESCC) in the era of GWAS, and provide an overview of the general risk factors and those genomic variants(genes, SNPs, miRNAs, proteins) involved in the process of ESCC.

  2. Genome-scale Co-evolutionary Inference Identifies Functions and Clients of Bacterial Hsp90

    OpenAIRE

    Press, Maximilian O.; Li, Hui; Creanza, Nicole; Kramer, Günter; Queitsch, Christine; Sourjik, Victor; Borenstein, Elhanan

    2013-01-01

    The molecular chaperone Hsp90 is essential in eukaryotes, in which it facilitates the folding of developmental regulators and signal transduction proteins known as Hsp90 clients. In contrast, Hsp90 is not essential in bacteria, and a broad characterization of its molecular and organismal function is lacking. To enable such characterization, we used a genome-scale phylogenetic analysis to identify genes that co-evolve with bacterial Hsp90. We find that genes whose gain and loss were coordinate...

  3. Genome-wide association study of ankylosing spondylitis identifies non-MHC susceptibility loci

    OpenAIRE

    Reveille, John D.; Sims, Anne-Marie; Danoy, Patrick; Evans, David M; Leo, Paul; Pointon, Jennifer J.; Jin, Rui; Zhou, Xiaodong; Bradbury, Linda A.; Appleton, Louise H; Davis, John C.; Diekman, Laura; Doan, Tracey; Dowling, Alison; Duan, Ran

    2010-01-01

    To identify susceptibility loci for ankylosing spondylitis, we undertook a genome-wide association study in 2,053 unrelated ankylosing spondylitis cases among people of European descent and 5,140 ethnically matched controls, with replication in an independent cohort of 898 ankylosing spondylitis cases and 1,518 controls. Cases were genotyped with Illumina HumHap370 genotyping chips. In addition to strong association with the major histocompatibility complex (MHC; P < 10−800), we found associa...

  4. Genome-Wide RNAi Screens in C. elegans to Identify Genes Influencing Lifespan and Innate Immunity.

    Science.gov (United States)

    Sinha, Amit; Rae, Robbie

    2016-01-01

    RNA interference is a rapid, inexpensive, and highly effective tool used to inhibit gene function. In C. elegans, whole genome screens have been used to identify genes involved with numerous traits including aging and innate immunity. RNAi in C. elegans can be carried out via feeding, soaking, or injection. Here we outline protocols used to maintain, grow, and carry out RNAi via feeding in C. elegans and determine whether the inhibited genes are essential for lifespan or innate immunity. PMID:27581293

  5. Exome and whole-genome sequencing of esophageal adenocarcinoma identifies recurrent driver events and mutational complexity

    OpenAIRE

    Dulak, Austin M.; Stojanov, Petar; Peng, Shouyong; Lawrence, Michael S; Fox, Cameron; Stewart, Chip; Bandla, Santhoshi; Imamura, Yu; Schumacher, Steven E; Shefler, Erica; McKenna, Aaron; Cibulskis, Kristian; Sivachenko, Andrey; Carter, Scott L.; Saksena, Gordon

    2012-01-01

    The incidence of esophageal adenocarcinoma (EAC) has risen 600% over the last 30 years. With a five-year survival rate of 15%, identification of new therapeutic targets for EAC is greatly important. We analyze the mutation spectra from whole exome sequencing of 149 EAC tumors/normal pairs, 15 of which have also been subjected to whole genome sequencing. We identify a mutational signature defined by a high prevalence of A to C transversions at AA dinucleotides. Statistical analysis of exome da...

  6. New Approaches to Identify Gene-by-Gene Interactions in Genome Wide Association Studies

    OpenAIRE

    LU, CHEN

    2016-01-01

    Genetic variants identified to date by genome-wide association studies only explain a small fraction of total heritability. Gene-by-gene interaction is one important potential source of unexplained heritability. In the first part of this dissertation, a novel approach to detect such interactions is proposed. This approach utilizes penalized regression and sparse estimation principles, and incorporates outside biological knowledge through a network-based penalty. The method is tested on simula...

  7. Application of Genomic and Quantitative Genetic Tools to Identify Candidate Resistance Genes for Brown Rot Resistance in Peach

    OpenAIRE

    Martínez-García, Pedro J.; Parfitt, Dan E; Bostock, Richard M.; Fresnedo-Ramírez, Jonathan; Vazquez-Lobo, Alejandra; Ogundiwin, Ebenezer A; Gradziel, Thomas M.; Crisosto, Carlos H

    2013-01-01

    The availability of a complete peach genome assembly and three different peach genome sequences created by our group provide new opportunities for application of genomic data and can improve the power of the classical Quantitative Trait Loci (QTL) approaches to identify candidate genes for peach disease resistance. Brown rot caused by Monilinia spp., is the most important fungal disease of stone fruits worldwide. Improved levels of peach fruit rot resistance have been identified in some culti...

  8. Identifying Liver Cancer-Related Enhancer SNPs by Integrating GWAS and Histone Modification ChIP-seq Data

    Directory of Open Access Journals (Sweden)

    Tianjiao Zhang

    2016-01-01

    Full Text Available Many disease-related single nucleotide polymorphisms (SNPs have been inferred from genome-wide association studies (GWAS in recent years. Numerous studies have shown that some SNPs located in protein-coding regions are associated with numerous diseases by affecting gene expression. However, in noncoding regions, the mechanism of how SNPs contribute to disease susceptibility remains unclear. Enhancer elements are functional segments of DNA located in noncoding regions that play an important role in regulating gene expression. The SNPs located in enhancer elements may affect gene expression and lead to disease. We presented a method for identifying liver cancer-related enhancer SNPs through integrating GWAS and histone modification ChIP-seq data. We identified 22 liver cancer-related enhancer SNPs, 9 of which were regulatory SNPs involved in distal transcriptional regulation. The results highlight that these enhancer SNPs may play important roles in liver cancer.

  9. Identifying Liver Cancer-Related Enhancer SNPs by Integrating GWAS and Histone Modification ChIP-seq Data

    Science.gov (United States)

    Hu, Yang; Wu, Xiaoliang; Ma, Rui

    2016-01-01

    Many disease-related single nucleotide polymorphisms (SNPs) have been inferred from genome-wide association studies (GWAS) in recent years. Numerous studies have shown that some SNPs located in protein-coding regions are associated with numerous diseases by affecting gene expression. However, in noncoding regions, the mechanism of how SNPs contribute to disease susceptibility remains unclear. Enhancer elements are functional segments of DNA located in noncoding regions that play an important role in regulating gene expression. The SNPs located in enhancer elements may affect gene expression and lead to disease. We presented a method for identifying liver cancer-related enhancer SNPs through integrating GWAS and histone modification ChIP-seq data. We identified 22 liver cancer-related enhancer SNPs, 9 of which were regulatory SNPs involved in distal transcriptional regulation. The results highlight that these enhancer SNPs may play important roles in liver cancer. PMID:27429976

  10. Transposon activation mutagenesis as a screening tool for identifying resistance to cancer therapeutics

    International Nuclear Information System (INIS)

    The development of resistance to chemotherapies represents a significant barrier to successful cancer treatment. Resistance mechanisms are complex, can involve diverse and often unexpected cellular processes, and can vary with both the underlying genetic lesion and the origin or type of tumor. For these reasons developing experimental strategies that could be used to understand, identify and predict mechanisms of resistance in different malignant cells would be a major advance. Here we describe a gain-of-function forward genetic approach for identifying mechanisms of resistance. This approach uses a modified piggyBac transposon to generate libraries of mutagenized cells, each containing transposon insertions that randomly activate nearby gene expression. Genes of interest are identified using next-gen high-throughput sequencing and barcode multiplexing is used to reduce experimental cost. Using this approach we successfully identify genes involved in paclitaxel resistance in a variety of cancer cell lines, including the multidrug transporter ABCB1, a previously identified major paclitaxel resistance gene. Analysis of co-occurring transposons integration sites in single cell clone allows for the identification of genes that might act cooperatively to produce drug resistance a level of information not accessible using RNAi or ORF expression screening approaches. We have developed a powerful pipeline to systematically discover drug resistance in mammalian cells in vitro. This cost-effective approach can be readily applied to different cell lines, to identify canonical or context specific resistance mechanisms. Its ability to probe complex genetic context and non-coding genomic elements as well as cooperative resistance events makes it a good complement to RNAi or ORF expression based screens

  11. Systematically identify key genes in inflammatory and non-inflammatory breast cancer.

    Science.gov (United States)

    Chai, Fan; Liang, Yan; Zhang, Fan; Wang, Minghao; Zhong, Ling; Jiang, Jun

    2016-01-10

    Although the gene expression in breast tumor stroma, playing a critical role in determining inflammatory breast cancer (IBC) phenotype, has been proved to be significantly different between IBC and non-inflammatory breast cancer (non-IBC), more effort needs to systematically investigate the gene expression profiles between tumor epithelium and stroma and to efficiently uncover the potential molecular networks and critical genes for IBC and non-IBC. Here, we comprehensively analyzed and compared the transcriptional profiles from IBC and non-IBC patients using hierarchical clustering, protein-protein interaction (PPI) network, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) database analyses, and identified PDGFRβ, SUMO1, COL1A1, FYN, CAV1, COL5A1 and MMP2 to be the key genes for breast cancer. Interestingly, PDGFRβ was found to be the hub gene in both IBC and non-IBC; SUMO1 and COL1A1 were respectively the key genes for IBC and non-IBC. These analysis results indicated that those key genes might play important role in IBC and non-IBC and provided some clues for future studies. PMID:26403314

  12. Genome-Wide Association Study Identifies Novel Pharmacogenomic Loci For Therapeutic Response to Montelukast in Asthma.

    Directory of Open Access Journals (Sweden)

    Amber Dahlin

    Full Text Available Genome-wide association study (GWAS is a powerful tool to identify novel pharmacogenetic single nucleotide polymorphisms (SNPs. Leukotriene receptor antagonists (LTRAs are a major class of asthma medications, and genetic factors contribute to variable responses to these drugs. We used GWAS to identify novel SNPs associated with the response to the LTRA, montelukast, in asthmatics.Using genome-wide genotype and phenotypic data available from American Lung Association - Asthma Clinical Research Center (ALA-ACRC cohorts, we evaluated 8-week change in FEV1 related to montelukast administration in a discovery population of 133 asthmatics. The top 200 SNPs from the discovery GWAS were then tested in 184 additional samples from two independent cohorts.Twenty-eight SNP associations from the discovery GWAS were replicated. Of these, rs6475448 achieved genome-wide significance (combined P = 1.97 x 10-09, and subjects from all four studies who were homozygous for rs6475448 showed increased ΔFEV1 from baseline in response to montelukast.Through GWAS, we identified a novel pharmacogenomic locus related to improved montelukast response in asthmatics.

  13. Cancer and aging: The importance of telomeres in genome maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Rodier, Francis; Kim, Sahn-ho; Nijjar, Tarlochan; Yaswen, Paul; Campisi, Judith

    2004-10-01

    Telomeres are the specialized DNA-protein structures that cap the ends of linear chromosomes, thereby protecting them from degradation and fusion by cellular DNA repair processes. In vertebrate cells, telomeres consist of several kilobase pairs of DNA having the sequence TTAGGG, a few hundred base pairs of single-stranded DNA at the 3' end of the telomeric DNA tract, and a host of proteins that organize the telomeric double and single stranded DNA into a protective structure. Functional telomeres are essential for maintaining the integrity and stability of genomes. When combined with loss of cell cycle checkpoint controls, telomere dysfunction can lead to genomic instability, a common cause and hallmark of cancer. Consequently, normal mammalian cells respond to dysfunctional telomeres by undergoing apoptosis (programmed cell death) or cellular senescence (permanent cell cycle arrest), two cellular tumor suppressor mechanisms. These tumor suppressor mechanisms are potent suppressors of cancer, but recent evidence suggests that they can antagonistically also contribute to aging phenotypes. Here, we review what is known about the structure and function of telomeres in mammalian cells, particularly human cells, and how telomere dysfunction may arise and contribute to cancer and aging phenotypes.

  14. Targeted Sequencing of the Mitochondrial Genome of Women at High Risk of Breast Cancer without Detectable Mutations in BRCA1/2.

    Directory of Open Access Journals (Sweden)

    Sophie Blein

    Full Text Available Breast Cancer is a complex multifactorial disease for which high-penetrance mutations have been identified. Approaches used to date have identified genomic features explaining about 50% of breast cancer heritability. A number of low- to medium penetrance alleles (per-allele odds ratio < 1.5 and 4.0, respectively have been identified, suggesting that the remaining heritability is likely to be explained by the cumulative effect of such alleles and/or by rare high-penetrance alleles. Relatively few studies have specifically explored the mitochondrial genome for variants potentially implicated in breast cancer risk. For these reasons, we propose an exploration of the variability of the mitochondrial genome in individuals diagnosed with breast cancer, having a positive breast cancer family history but testing negative for BRCA1/2 pathogenic mutations. We sequenced the mitochondrial genome of 436 index breast cancer cases from the GENESIS study. As expected, no pathogenic genomic pattern common to the 436 women included in our study was observed. The mitochondrial genes MT-ATP6 and MT-CYB were observed to carry the highest number of variants in the study. The proteins encoded by these genes are involved in the structure of the mitochondrial respiration chain, and variants in these genes may impact reactive oxygen species production contributing to carcinogenesis. More functional and epidemiological studies are needed to further investigate to what extent variants identified may influence familial breast cancer risk.

  15. Targeted Sequencing of the Mitochondrial Genome of Women at High Risk of Breast Cancer without Detectable Mutations in BRCA1/2

    Science.gov (United States)

    Blein, Sophie; Barjhoux, Laure; Damiola, Francesca; Dondon, Marie-Gabrielle; Eon-Marchais, Séverine; Marcou, Morgane; Caron, Olivier; Lortholary, Alain; Buecher, Bruno; Berthet, Pascaline; Noguès, Catherine; Lasset, Christine; Gauthier-Villars, Marion; Mazoyer, Sylvie; Stoppa-Lyonnet, Dominique; Andrieu, Nadine; Cox, David G.

    2015-01-01

    Breast Cancer is a complex multifactorial disease for which high-penetrance mutations have been identified. Approaches used to date have identified genomic features explaining about 50% of breast cancer heritability. A number of low- to medium penetrance alleles (per-allele odds ratio < 1.5 and 4.0, respectively) have been identified, suggesting that the remaining heritability is likely to be explained by the cumulative effect of such alleles and/or by rare high-penetrance alleles. Relatively few studies have specifically explored the mitochondrial genome for variants potentially implicated in breast cancer risk. For these reasons, we propose an exploration of the variability of the mitochondrial genome in individuals diagnosed with breast cancer, having a positive breast cancer family history but testing negative for BRCA1/2 pathogenic mutations. We sequenced the mitochondrial genome of 436 index breast cancer cases from the GENESIS study. As expected, no pathogenic genomic pattern common to the 436 women included in our study was observed. The mitochondrial genes MT-ATP6 and MT-CYB were observed to carry the highest number of variants in the study. The proteins encoded by these genes are involved in the structure of the mitochondrial respiration chain, and variants in these genes may impact reactive oxygen species production contributing to carcinogenesis. More functional and epidemiological studies are needed to further investigate to what extent variants identified may influence familial breast cancer risk. PMID:26406445

  16. Identifying the common interaction networks of amoeboid motility and cancer cell metastasis

    Directory of Open Access Journals (Sweden)

    Ahmed H. Zeitoun

    2012-06-01

    Full Text Available The recently analyzed genome of Naegleria gruberi, a free-living amoeboflagellate of the Heterolobosea clade, revealed a remarkably complex ancestral eukaryote with a rich repertoire of cytoskeletal-, motility- and signaling-genes. This protist, which diverged from other eukaryotic lineages over a billion years ago, possesses the ability for both amoeboid and flagellar motility. In a phylogenomic comparison of two free living eukaryotes with large proteomic datasets of three metastatic tumour entities (malignant melanoma, breast- and prostate-carcinoma, we find common proteins with potential importance for cell motility and cancer cell metastasis. To identify the underlying signaling modules, we constructed for each tumour type a protein-protein interaction network including these common proteins. The connectivity within this interactome revealed specific interactions and pathways which constitute prospective points of intervention for novel anti-metastatic tumour therapies.

  17. Proteomics Data on UCSC Genome Browser - Office of Cancer Clinical Proteomics Research

    Science.gov (United States)

    The National Cancer Institute's Clinical Proteomic Tumor Analysis Consortium scientists are working together with the University of California, Santa Cruz (UCSC) Genomics Institute to provide public access to cancer proteomics data.

  18. CGCI Investigators Reveal Comprehensive Landscape of Diffuse Large B-Cell Lymphoma (DLBCL) Genomes | Office of Cancer Genomics

    Science.gov (United States)

    Researchers from British Columbia Cancer Agency used whole genome sequencing to analyze 40 DLBCL cases and 13 cell lines in order to fill in the gaps of the complex landscape of DLBCL genomes. Their analysis, “Mutational and structural analysis of diffuse large B-cell lymphoma using whole genome sequencing,” was published online in Blood on May 22. The authors are Ryan Morin, Marco Marra, and colleagues.  

  19. Clinicopathologic factors identify sporadic mismatch repair-defective colon cancers

    DEFF Research Database (Denmark)

    Halvarsson, Britta; Anderson, Harald; Domanska, Katarina; Lindmark, Gudrun; Nilbert, Mef

    2008-01-01

    Identification of sporadic mismatch repair (MMR)-defective colon cancers is increasingly demanded for decisions on adjuvant therapies. We evaluated clinicopathologic factors for the identification of these prognostically favorable tumors. Histopathologic features in 238 consecutive colon cancers...... and excluded 61.5% of the tumors from MMR testing. This clinicopathologic index thus successfully selects MMR-defective colon cancers. Udgivelsesdato: 2008-Feb...

  20. Genome sequence analysis of Helicobacter pylori strains associated with gastric ulceration and gastric cancer

    Directory of Open Access Journals (Sweden)

    Peek Richard M

    2009-01-01

    Full Text Available Abstract Background Persistent colonization of the human stomach by Helicobacter pylori is associated with asymptomatic gastric inflammation (gastritis and an increased risk of duodenal ulceration, gastric ulceration, and non-cardia gastric cancer. In previous studies, the genome sequences of H. pylori strains from patients with gastritis or duodenal ulcer disease have been analyzed. In this study, we analyzed the genome sequences of an H. pylori strain (98-10 isolated from a patient with gastric cancer and an H. pylori strain (B128 isolated from a patient with gastric ulcer disease. Results Based on multilocus sequence typing, strain 98-10 was most closely related to H. pylori strains of East Asian origin and strain B128 was most closely related to strains of European origin. Strain 98-10 contained multiple features characteristic of East Asian strains, including a type s1c vacA allele and a cagA allele encoding an EPIYA-D tyrosine phosphorylation motif. A core genome of 1237 genes was present in all five strains for which genome sequences were available. Among the 1237 core genes, a subset of alleles was highly divergent in the East Asian strain 98-10, encoding proteins that exhibited H. pylori strains associated with gastric cancer or premalignant gastric lesions. Conclusion These data provide insight into the diversity that exists among H. pylori strains from diverse clinical and geographic origins. Highly divergent alleles and strain-specific genes identified in this study may represent useful biomarkers for analyzing geographic partitioning of H. pylori and for identifying strains capable of inducing malignant or premalignant gastric lesions.

  1. Genomes2Drugs: identifies target proteins and lead drugs from proteome data.

    LENUS (Irish Health Repository)

    Toomey, David

    2009-01-01

    BACKGROUND: Genome sequencing and bioinformatics have provided the full hypothetical proteome of many pathogenic organisms. Advances in microarray and mass spectrometry have also yielded large output datasets of possible target proteins\\/genes. However, the challenge remains to identify new targets for drug discovery from this wealth of information. Further analysis includes bioinformatics and\\/or molecular biology tools to validate the findings. This is time consuming and expensive, and could fail to yield novel drugs if protein purification and crystallography is impossible. To pre-empt this, a researcher may want to rapidly filter the output datasets for proteins that show good homology to proteins that have already been structurally characterised or proteins that are already targets for known drugs. Critically, those researchers developing novel antibiotics need to select out the proteins that show close homology to any human proteins, as future inhibitors are likely to cross-react with the host protein, causing off-target toxicity effects later in clinical trials. METHODOLOGY\\/PRINCIPAL FINDINGS: To solve many of these issues, we have developed a free online resource called Genomes2Drugs which ranks sequences to identify proteins that are (i) homologous to previously crystallized proteins or (ii) targets of known drugs, but are (iii) not homologous to human proteins. When tested using the Plasmodium falciparum malarial genome the program correctly enriched the ranked list of proteins with known drug target proteins. CONCLUSIONS\\/SIGNIFICANCE: Genomes2Drugs rapidly identifies proteins that are likely to succeed in drug discovery pipelines. This free online resource helps in the identification of potential drug targets. Importantly, the program further highlights proteins that are likely to be inhibited by FDA-approved drugs. These drugs can then be rapidly moved into Phase IV clinical studies under \\'change-of-application\\' patents.

  2. The Cancer Genomics Hub (CGHub): overcoming cancer through the power of torrential data.

    Science.gov (United States)

    Wilks, Christopher; Cline, Melissa S; Weiler, Erich; Diehkans, Mark; Craft, Brian; Martin, Christy; Murphy, Daniel; Pierce, Howdy; Black, John; Nelson, Donavan; Litzinger, Brian; Hatton, Thomas; Maltbie, Lori; Ainsworth, Michael; Allen, Patrick; Rosewood, Linda; Mitchell, Elizabeth; Smith, Bradley; Warner, Jim; Groboske, John; Telc, Haifang; Wilson, Daniel; Sanford, Brian; Schmidt, Hannes; Haussler, David; Maltbie, Daniel

    2014-01-01

    The Cancer Genomics Hub (CGHub) is the online repository of the sequencing programs of the National Cancer Institute (NCI), including The Cancer Genomics Atlas (TCGA), the Cancer Cell Line Encyclopedia (CCLE) and the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) projects, with data from 25 different types of cancer. The CGHub currently contains >1.4 PB of data, has grown at an average rate of 50 TB a month and serves >100 TB per week. The architecture of CGHub is designed to support bulk searching and downloading through a Web-accessible application programming interface, enforce patient genome confidentiality in data storage and transmission and optimize for efficiency in access and transfer. In this article, we describe the design of these three components, present performance results for our transfer protocol, GeneTorrent, and finally report on the growth of the system in terms of data stored and transferred, including estimated limits on the current architecture. Our experienced-based estimates suggest that centralizing storage and computational resources is more efficient than wide distribution across many satellite labs. Database URL: https://cghub.ucsc.edu. PMID:25267794

  3. Alternate estrogen receptors promote invasion of inflammatory breast cancer cells via non-genomic signaling.

    Directory of Open Access Journals (Sweden)

    Kazufumi Ohshiro

    Full Text Available Although Inflammatory Breast Cancer (IBC is a rare and an aggressive type of locally advanced breast cancer with a generally worst prognosis, little work has been done in identifying the status of non-genomic signaling in the invasiveness of IBC. The present study was performed to explore the status of non-genomic signaling as affected by various estrogenic and anti-estrogenic agents in IBC cell lines SUM149 and SUM190. We have identified the presence of estrogen receptor α (ERα variant, ERα36 in SUM149 and SUM190 cells. This variant as well as ERβ was present in a substantial concentration in IBC cells. The treatment with estradiol (E2, anti-estrogenic agents 4-hydroxytamoxifen and ICI 182780, ERβ specific ligand DPN and GPR30 agonist G1 led to a rapid activation of p-ERK1/2, suggesting the involvement of ERα36, ERβ and GPR30 in the non-genomic signaling pathway in these cells. We also found a substantial increase in the cell migration and invasiveness of SUM149 cells upon the treatment with these ligands. Both basal and ligand-induced migration and invasiveness of SUM149 cells were drastically reduced in the presence of MEK inhibitor U0126, implicating that the phosphorylation of ERK1/2 by MEK is involved in the observed motility and invasiveness of IBC cells. We also provide evidence for the upregulation of p-ERK1/2 through immunostaining in IBC patient samples. These findings suggest a role of non-genomic signaling through the activation of p-ERK1/2 in the hormonal dependence of IBC by a combination of estrogen receptors. These findings only explain the failure of traditional anti-estrogen therapies in ER-positive IBC which induces the non-genomic signaling, but also opens newer avenues for design of modified therapies targeting these estrogen receptors.

  4. Genome-wide linkage scan for colorectal cancer susceptibility genes supports linkage to chromosome 3q

    Directory of Open Access Journals (Sweden)

    Velculescu Victor E

    2008-04-01

    Full Text Available Abstract Background Colorectal cancer is one of the most common causes of cancer-related mortality. The disease is clinically and genetically heterogeneous though a strong hereditary component has been identified. However, only a small proportion of the inherited susceptibility can be ascribed to dominant syndromes, such as Hereditary Non-Polyposis Colorectal Cancer (HNPCC or Familial Adenomatous Polyposis (FAP. In an attempt to identify novel colorectal cancer predisposing genes, we have performed a genome-wide linkage analysis in 30 Swedish non-FAP/non-HNPCC families with a strong family history of colorectal cancer. Methods Statistical analysis was performed using multipoint parametric and nonparametric linkage. Results Parametric analysis under the assumption of locus homogeneity excluded any common susceptibility regions harbouring a predisposing gene for colorectal cancer. However, several loci on chromosomes 2q, 3q, 6q, and 7q with suggestive linkage were detected in the parametric analysis under the assumption of locus heterogeneity as well as in the nonparametric analysis. Among these loci, the locus on chromosome 3q21.1-q26.2 was the most consistent finding providing positive results in both parametric and nonparametric analyses Heterogeneity LOD score (HLOD = 1.90, alpha = 0.45, Non-Parametric LOD score (NPL = 2.1. Conclusion The strongest evidence of linkage was seen for the region on chromosome 3. Interestingly, the same region has recently been reported as the most significant finding in a genome-wide analysis performed with SNP arrays; thus our results independently support the finding on chromosome 3q.

  5. Human DNA repair diseases: From genome instability to cancer

    Directory of Open Access Journals (Sweden)

    Carlos R. Machado

    1997-12-01

    Full Text Available Several human genetic syndromes have long been recognized to be defective in DNA repair mechanisms. This was first discovered by Cleaver (1968, who showed that cells from patients with xeroderma pigmentosum (XP were defective for the ability to remove ultraviolet (UV-induced lesions from their genome. Since then, new discoveries have promoted DNA repair studies to one of the most exciting areas of molecular biology. The present work intends to give a brief summary of the main known human genetic diseases related to DNA repair and how they may be linked to acquired diseases such as cancer

  6. A Drosophila Genome-Wide Screen Identifies Regulators of Steroid Hormone Production and Developmental Timing.

    Science.gov (United States)

    Danielsen, E Thomas; Moeller, Morten E; Yamanaka, Naoki; Ou, Qiuxiang; Laursen, Janne M; Soenderholm, Caecilie; Zhuo, Ran; Phelps, Brian; Tang, Kevin; Zeng, Jie; Kondo, Shu; Nielsen, Christian H; Harvald, Eva B; Faergeman, Nils J; Haley, Macy J; O'Connor, Kyle A; King-Jones, Kirst; O'Connor, Michael B; Rewitz, Kim F

    2016-06-20

    Steroid hormones control important developmental processes and are linked to many diseases. To systematically identify genes and pathways required for steroid production, we performed a Drosophila genome-wide in vivo RNAi screen and identified 1,906 genes with potential roles in steroidogenesis and developmental timing. Here, we use our screen as a resource to identify mechanisms regulating intracellular levels of cholesterol, a substrate for steroidogenesis. We identify a conserved fatty acid elongase that underlies a mechanism that adjusts cholesterol trafficking and steroidogenesis with nutrition and developmental programs. In addition, we demonstrate the existence of an autophagosomal cholesterol mobilization mechanism and show that activation of this system rescues Niemann-Pick type C1 deficiency that causes a disorder characterized by cholesterol accumulation. These cholesterol-trafficking mechanisms are regulated by TOR and feedback signaling that couples steroidogenesis with growth and ensures proper maturation timing. These results reveal genes regulating steroidogenesis during development that likely modulate disease mechanisms. PMID:27326933

  7. Global copy number profiling of cancer genomes | Office of Cancer Genomics

    Science.gov (United States)

    In this article, we introduce a robust and efficient strategy for deriving global and allele-specific copy number alternations (CNA) from cancer whole exome sequencing data based on Log R ratios and B-allele frequencies.

  8. The genomic analysis of lactic acidosis and acidosis response in human cancers.

    Directory of Open Access Journals (Sweden)

    Julia Ling-Yu Chen

    2008-12-01

    Full Text Available The tumor microenvironment has a significant impact on tumor development. Two important determinants in this environment are hypoxia and lactic acidosis. Although lactic acidosis has long been recognized as an important factor in cancer, relatively little is known about how cells respond to lactic acidosis and how that response relates to cancer phenotypes. We develop genome-scale gene expression studies to dissect transcriptional responses of primary human mammary epithelial cells to lactic acidosis and hypoxia in vitro and to explore how they are linked to clinical tumor phenotypes in vivo. The resulting experimental signatures of responses to lactic acidosis and hypoxia are evaluated in a heterogeneous set of breast cancer datasets. A strong lactic acidosis response signature identifies a subgroup of low-risk breast cancer patients having distinct metabolic profiles suggestive of a preference for aerobic respiration. The association of lactic acidosis response with good survival outcomes may relate to the role of lactic acidosis in directing energy generation toward aerobic respiration and utilization of other energy sources via inhibition of glycolysis. This "inhibition of glycolysis" phenotype in tumors is likely caused by the repression of glycolysis gene expression and Akt inhibition. Our study presents a genomic evaluation of the prognostic information of a lactic acidosis response independent of the hypoxic response. Our results identify causal roles of lactic acidosis in metabolic reprogramming, and the direct functional consequence of lactic acidosis pathway activity on cellular responses and tumor development. The study also demonstrates the utility of genomic analysis that maps expression-based findings from in vitro experiments to human samples to assess links to in vivo clinical phenotypes.

  9. Genome-wide association study identifies 74 loci associated with educational attainment.

    Science.gov (United States)

    Okbay, Aysu; Beauchamp, Jonathan P; Fontana, Mark Alan; Lee, James J; Pers, Tune H; Rietveld, Cornelius A; Turley, Patrick; Chen, Guo-Bo; Emilsson, Valur; Meddens, S Fleur W; Oskarsson, Sven; Pickrell, Joseph K; Thom, Kevin; Timshel, Pascal; de Vlaming, Ronald; Abdellaoui, Abdel; Ahluwalia, Tarunveer S; Bacelis, Jonas; Baumbach, Clemens; Bjornsdottir, Gyda; Brandsma, Johannes H; Pina Concas, Maria; Derringer, Jaime; Furlotte, Nicholas A; Galesloot, Tessel E; Girotto, Giorgia; Gupta, Richa; Hall, Leanne M; Harris, Sarah E; Hofer, Edith; Horikoshi, Momoko; Huffman, Jennifer E; Kaasik, Kadri; Kalafati, Ioanna P; Karlsson, Robert; Kong, Augustine; Lahti, Jari; van der Lee, Sven J; deLeeuw, Christiaan; Lind, Penelope A; Lindgren, Karl-Oskar; Liu, Tian; Mangino, Massimo; Marten, Jonathan; Mihailov, Evelin; Miller, Michael B; van der Most, Peter J; Oldmeadow, Christopher; Payton, Antony; Pervjakova, Natalia; Peyrot, Wouter J; Qian, Yong; Raitakari, Olli; Rueedi, Rico; Salvi, Erika; Schmidt, Börge; Schraut, Katharina E; Shi, Jianxin; Smith, Albert V; Poot, Raymond A; St Pourcain, Beate; Teumer, Alexander; Thorleifsson, Gudmar; Verweij, Niek; Vuckovic, Dragana; Wellmann, Juergen; Westra, Harm-Jan; Yang, Jingyun; Zhao, Wei; Zhu, Zhihong; Alizadeh, Behrooz Z; Amin, Najaf; Bakshi, Andrew; Baumeister, Sebastian E; Biino, Ginevra; Bønnelykke, Klaus; Boyle, Patricia A; Campbell, Harry; Cappuccio, Francesco P; Davies, Gail; De Neve, Jan-Emmanuel; Deloukas, Panos; Demuth, Ilja; Ding, Jun; Eibich, Peter; Eisele, Lewin; Eklund, Niina; Evans, David M; Faul, Jessica D; Feitosa, Mary F; Forstner, Andreas J; Gandin, Ilaria; Gunnarsson, Bjarni; Halldórsson, Bjarni V; Harris, Tamara B; Heath, Andrew C; Hocking, Lynne J; Holliday, Elizabeth G; Homuth, Georg; Horan, Michael A; Hottenga, Jouke-Jan; de Jager, Philip L; Joshi, Peter K; Jugessur, Astanand; Kaakinen, Marika A; Kähönen, Mika; Kanoni, Stavroula; Keltigangas-Järvinen, Liisa; Kiemeney, Lambertus A L M; Kolcic, Ivana; Koskinen, Seppo; Kraja, Aldi T; Kroh, Martin; Kutalik, Zoltan; Latvala, Antti; Launer, Lenore J; Lebreton, Maël P; Levinson, Douglas F; Lichtenstein, Paul; Lichtner, Peter; Liewald, David C M; Loukola, Anu; Madden, Pamela A; Mägi, Reedik; Mäki-Opas, Tomi; Marioni, Riccardo E; Marques-Vidal, Pedro; Meddens, Gerardus A; McMahon, George; Meisinger, Christa; Meitinger, Thomas; Milaneschi, Yusplitri; Milani, Lili; Montgomery, Grant W; Myhre, Ronny; Nelson, Christopher P; Nyholt, Dale R; Ollier, William E R; Palotie, Aarno; Paternoster, Lavinia; Pedersen, Nancy L; Petrovic, Katja E; Porteous, David J; Räikkönen, Katri; Ring, Susan M; Robino, Antonietta; Rostapshova, Olga; Rudan, Igor; Rustichini, Aldo; Salomaa, Veikko; Sanders, Alan R; Sarin, Antti-Pekka; Schmidt, Helena; Scott, Rodney J; Smith, Blair H; Smith, Jennifer A; Staessen, Jan A; Steinhagen-Thiessen, Elisabeth; Strauch, Konstantin; Terracciano, Antonio; Tobin, Martin D; Ulivi, Sheila; Vaccargiu, Simona; Quaye, Lydia; van Rooij, Frank J A; Venturini, Cristina; Vinkhuyzen, Anna A E; Völker, Uwe; Völzke, Henry; Vonk, Judith M; Vozzi, Diego; Waage, Johannes; Ware, Erin B; Willemsen, Gonneke; Attia, John R; Bennett, David A; Berger, Klaus; Bertram, Lars; Bisgaard, Hans; Boomsma, Dorret I; Borecki, Ingrid B; Bültmann, Ute; Chabris, Christopher F; Cucca, Francesco; Cusi, Daniele; Deary, Ian J; Dedoussis, George V; van Duijn, Cornelia M; Eriksson, Johan G; Franke, Barbara; Franke, Lude; Gasparini, Paolo; Gejman, Pablo V; Gieger, Christian; Grabe, Hans-Jörgen; Gratten, Jacob; Groenen, Patrick J F; Gudnason, Vilmundur; van der Harst, Pim; Hayward, Caroline; Hinds, David A; Hoffmann, Wolfgang; Hyppönen, Elina; Iacono, William G; Jacobsson, Bo; Järvelin, Marjo-Riitta; Jöckel, Karl-Heinz; Kaprio, Jaakko; Kardia, Sharon L R; Lehtimäki, Terho; Lehrer, Steven F; Magnusson, Patrik K E; Martin, Nicholas G; McGue, Matt; Metspalu, Andres; Pendleton, Neil; Penninx, Brenda W J H; Perola, Markus; Pirastu, Nicola; Pirastu, Mario; Polasek, Ozren; Posthuma, Danielle; Power, Christine; Province, Michael A; Samani, Nilesh J; Schlessinger, David; Schmidt, Reinhold; Sørensen, Thorkild I A; Spector, Tim D; Stefansson, Kari; Thorsteinsdottir, Unnur; Thurik, A Roy; Timpson, Nicholas J; Tiemeier, Henning; Tung, Joyce Y; Uitterlinden, André G; Vitart, Veronique; Vollenweider, Peter; Weir, David R; Wilson, James F; Wright, Alan F; Conley, Dalton C; Krueger, Robert F; Davey Smith, George; Hofman, Albert; Laibson, David I; Medland, Sarah E; Meyer, Michelle N; Yang, Jian; Johannesson, Magnus; Visscher, Peter M; Esko, Tõnu; Koellinger, Philipp D; Cesarini, David; Benjamin, Daniel J

    2016-05-26

    Educational attainment is strongly influenced by social and other environmental factors, but genetic factors are estimated to account for at least 20% of the variation across individuals. Here we report the results of a genome-wide association study (GWAS) for educational attainment that extends our earlier discovery sample of 101,069 individuals to 293,723 individuals, and a replication study in an independent sample of 111,349 individuals from the UK Biobank. We identify 74 genome-wide significant loci associated with the number of years of schooling completed. Single-nucleotide polymorphisms associated with educational attainment are disproportionately found in genomic regions regulating gene expression in the fetal brain. Candidate genes are preferentially expressed in neural tissue, especially during the prenatal period, and enriched for biological pathways involved in neural development. Our findings demonstrate that, even for a behavioural phenotype that is mostly environmentally determined, a well-powered GWAS identifies replicable associated genetic variants that suggest biologically relevant pathways. Because educational attainment is measured in large numbers of individuals, it will continue to be useful as a proxy phenotype in efforts to characterize the genetic influences of related phenotypes, including cognition and neuropsychiatric diseases. PMID:27225129

  10. GENOMIC LANDSCAPE OF NON-SMALL CELL LUNG CANCER IN SMOKERS AND NEVER SMOKERS

    Science.gov (United States)

    Govindan, Ramaswamy; Ding, Li; Griffith, Malachi; Subramanian, Janakiraman; Dees, Nathan D.; Kanchi, Krishna L.; Maher, Christopher A.; Fulton, Robert; Fulton, Lucinda; Wallis, John; Chen, Ken; Walker, Jason; McDonald, Sandra; Bose, Ron; Ornitz, David; Xiong, Donghai; You, Ming; Dooling, David J.; Watson, Mark; Mardis, Elaine R.

    2013-01-01

    Summary We report the results of whole genome and transcriptome sequencing of tumor and adjacent normal tissue samples from 17 patients with non-small cell lung carcinoma (NSCLC). We identified 3,726 point mutations and over 90 indels in the coding sequence, with an average mutation frequency more than 10-fold higher in smokers than in never-smokers. Novel alterations in genes involved in chromatic modification and DNA repair pathways were identified along with DACH1, CFTR, RELN, ABCB5, and HGF. Deep digital sequencing revealed diverse clonality patterns in both never smokers and smokers. All validated EFGR and KRAS mutations were present in the founder clones, suggesting possible roles in cancer initiation. Analysis revealed 14 fusions including ROS1 and ALK as well as novel metabolic enzymes. Cell cycle and JAK-STAT pathways are significantly altered in lung cancer along with perturbations in 54 genes that are potentially targetable with currently available drugs. PMID:22980976

  11. Molecular profiling of indolent human prostate cancer:tackling technical challenges to achieve high-fidelity genome-wide data

    Institute of Scientific and Technical Information of China (English)

    Thomas A. Dunn; Helen L. Fedor; Angelo M. De Marzo; Jun Luo

    2012-01-01

    The contemporary problem of prostate cancer overtreatment can be partially attributed to the diagnosis of potentially indolent prostate cancers that pose low risk to aged men,and lack of sufficiently accurate risk stratification methods to reliably seek out men with indolent diseases.Since progressive acquisition and accumulation of genomic alterations,both genetic and epigenetic,is a defining feature of all human cancers at different stages of disease progression,it is hypothesized that RNA and DNA alterations characteristic of indolent prostate tumors may be different from those previously characterized in the setting of clinically significant prostate cancer.Approaches capable of detecting such alterations on a genome-wide level are the most promising.Such analysis may uncover molecular events defining early initiating stages along the natural history of prostate cancer progression,and ultimately lead to rational development of risk stratification methods for identification of men who can safely forego treatment.However,defining and characterizing indolent prostate cancer in a clinically relevant context remains a challenge,particularly when genome-wide approaches are employed to profile formalin-fixed paraffin-embedded (FFPE) tissue specimens.Here,we provide the conceptual basis underlying the importance of understanding indolent prostate cancer from molecular profiling studies,identify the key hurdles in sample acquisition and variables that affect molecular data derived from FFPE tissues,and highlight recent progresses in efforts to address these technical challenges.

  12. Whole Genome Analysis of Injectional Anthrax Identifies Two Disease Clusters Spanning More Than 13 Years

    Directory of Open Access Journals (Sweden)

    Paul Keim

    2015-11-01

    Lay Person Interpretation: Injectional anthrax has been plaguing heroin drug users across Europe for more than 10 years. In order to better understand this outbreak, we assessed genomic relationships of all available injectional anthrax strains from four countries spanning a >12 year period. Very few differences were identified using genome-based analysis, but these differentiated the isolates into two distinct clusters. This strongly supports a hypothesis of at least two separate anthrax spore contamination events perhaps during the drug production processes. Identification of two events would not have been possible from standard epidemiological analysis. These comprehensive data will be invaluable for classifying future injectional anthrax isolates and for future geographic attribution.

  13. Sixteen new lung function signals identified through 1000 Genomes Project reference panel imputation.

    Science.gov (United States)

    Soler Artigas, María; Wain, Louise V; Miller, Suzanne; Kheirallah, Abdul Kader; Huffman, Jennifer E; Ntalla, Ioanna; Shrine, Nick; Obeidat, Ma'en; Trochet, Holly; McArdle, Wendy L; Alves, Alexessander Couto; Hui, Jennie; Zhao, Jing Hua; Joshi, Peter K; Teumer, Alexander; Albrecht, Eva; Imboden, Medea; Rawal, Rajesh; Lopez, Lorna M; Marten, Jonathan; Enroth, Stefan; Surakka, Ida; Polasek, Ozren; Lyytikäinen, Leo-Pekka; Granell, Raquel; Hysi, Pirro G; Flexeder, Claudia; Mahajan, Anubha; Beilby, John; Bossé, Yohan; Brandsma, Corry-Anke; Campbell, Harry; Gieger, Christian; Gläser, Sven; González, Juan R; Grallert, Harald; Hammond, Chris J; Harris, Sarah E; Hartikainen, Anna-Liisa; Heliövaara, Markku; Henderson, John; Hocking, Lynne; Horikoshi, Momoko; Hutri-Kähönen, Nina; Ingelsson, Erik; Johansson, Åsa; Kemp, John P; Kolcic, Ivana; Kumar, Ashish; Lind, Lars; Melén, Erik; Musk, Arthur W; Navarro, Pau; Nickle, David C; Padmanabhan, Sandosh; Raitakari, Olli T; Ried, Janina S; Ripatti, Samuli; Schulz, Holger; Scott, Robert A; Sin, Don D; Starr, John M; Viñuela, Ana; Völzke, Henry; Wild, Sarah H; Wright, Alan F; Zemunik, Tatijana; Jarvis, Deborah L; Spector, Tim D; Evans, David M; Lehtimäki, Terho; Vitart, Veronique; Kähönen, Mika; Gyllensten, Ulf; Rudan, Igor; Deary, Ian J; Karrasch, Stefan; Probst-Hensch, Nicole M; Heinrich, Joachim; Stubbe, Beate; Wilson, James F; Wareham, Nicholas J; James, Alan L; Morris, Andrew P; Jarvelin, Marjo-Riitta; Hayward, Caroline; Sayers, Ian; Strachan, David P; Hall, Ian P; Tobin, Martin D

    2015-01-01

    Lung function measures are used in the diagnosis of chronic obstructive pulmonary disease. In 38,199 European ancestry individuals, we studied genome-wide association of forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC) and FEV1/FVC with 1000 Genomes Project (phase 1)-imputed genotypes and followed up top associations in 54,550 Europeans. We identify 14 novel loci (PCCDC91, TBX3, TRIP11, RIN3, TEKT5, LTBP4, MN1 and AP1S2, and two novel signals at known loci NPNT and GPR126, providing a basis for new understanding of the genetic determinants of these traits and pulmonary diseases in which they are altered. PMID:26635082

  14. The state of genomic health care and cancer. Are we going two steps forward and one step backward?

    Science.gov (United States)

    Greco, Karen E; Mahon, Suzanne M

    2011-01-01

    As the application of genomic information and technology crosses the horizon of health care into our everyday lives, expanding genomic knowledge continues to affect how health care services are defined and delivered. Genomic discoveries have led to enhanced clinical capabilities to predict susceptibility to common diseases and conditions such as cancer, diabetes, cardiovascular disease, and Alzheimer's disease. Hundreds of genetic tests are now available that can identify individuals who carry one or more gene mutations that increase their risk of developing cancer or other common diseases. Increased availability and direct-to-consumer marketing of genetic testing is moving genetic testing away from trained genetics health professionals and into the hands of primary care providers and consumers. Genetic tests available on the Internet are being directly marketed to individuals, who can order these tests and receive a report of their risk for numerous health conditions and diseases. Health care providers are expected to interpret these test results, evaluate their accuracy, address the psychosocial consequences of those distressed by receiving their results, and translate genomic information into effective care. However, as we move two steps forward, we are also moving one step backward because many health care providers are unprepared for this genomic revolution. A number of international education, practice, and policy efforts are underway to address the challenges health care providers face in providing competent genomic health care in the context of unprecedented access to information, technology, and global communication. Efforts to integrate standard of care guidelines into electronic medical records increases health care providers' access to information for individuals at risk fo or diagnosed with a genomic condition. Development of genomic competencie for health care providers has led to increased genomic content in academic pro grams. These and other

  15. Cancer 2015”: A Prospective, Population-Based Cancer Cohort—Phase 1: Feasibility of Genomics-Guided Precision Medicine in the Clinic

    Directory of Open Access Journals (Sweden)

    John P. Parisot

    2015-10-01

    Full Text Available “Cancer 2015” is a longitudinal and prospective cohort. It is a phased study whose aim was to pilot recruiting 1000 patients during phase 1 to establish the feasibility of providing a population-based genomics cohort. Newly diagnosed adult patients with solid cancers, with residual tumour material for molecular genomics testing, were recruited into the cohort for the collection of a dataset containing clinical, molecular pathology, health resource use and outcomes data. 1685 patients have been recruited over almost 3 years from five hospitals. Thirty-two percent are aged between 61–70 years old, with a median age of 63 years. Diagnostic tumour samples were obtained for 90% of these patients for multiple parallel sequencing. Patients identified with somatic mutations of potentially “actionable” variants represented almost 10% of those tumours sequenced, while 42% of the cohort had no mutations identified. These genomic data were annotated with information such as cancer site, stage, morphology, treatment and patient outcomes and health resource use and cost. This cohort has delivered its main objective of establishing an upscalable genomics cohort within a clinical setting and in phase 2 aims to develop a protocol for how genomics testing can be used in real-time clinical decision-making, providing evidence on the value of precision medicine to clinical practice.

  16. "Cancer 2015": A Prospective, Population-Based Cancer Cohort-Phase 1: Feasibility of Genomics-Guided Precision Medicine in the Clinic.

    Science.gov (United States)

    Parisot, John P; Thorne, Heather; Fellowes, Andrew; Doig, Ken; Lucas, Mark; McNeil, John J; Doble, Brett; Dobrovic, Alexander; John, Thomas; James, Paul A; Lipton, Lara; Ashley, David; Hayes, Theresa; McMurrick, Paul; Richardson, Gary; Lorgelly, Paula; Fox, Stephen B; Thomas, David M

    2015-01-01

    "Cancer 2015" is a longitudinal and prospective cohort. It is a phased study whose aim was to pilot recruiting 1000 patients during phase 1 to establish the feasibility of providing a population-based genomics cohort. Newly diagnosed adult patients with solid cancers, with residual tumour material for molecular genomics testing, were recruited into the cohort for the collection of a dataset containing clinical, molecular pathology, health resource use and outcomes data. 1685 patients have been recruited over almost 3 years from five hospitals. Thirty-two percent are aged between 61-70 years old, with a median age of 63 years. Diagnostic tumour samples were obtained for 90% of these patients for multiple parallel sequencing. Patients identified with somatic mutations of potentially "actionable" variants represented almost 10% of those tumours sequenced, while 42% of the cohort had no mutations identified. These genomic data were annotated with information such as cancer site, stage, morphology, treatment and patient outcomes and health resource use and cost. This cohort has delivered its main objective of establishing an upscalable genomics cohort within a clinical setting and in phase 2 aims to develop a protocol for how genomics testing can be used in real-time clinical decision-making, providing evidence on the value of precision medicine to clinical practice. PMID:26529019

  17. Cancer 2015”: A Prospective, Population-Based Cancer Cohort—Phase 1: Feasibility of Genomics-Guided Precision Medicine in the Clinic

    Science.gov (United States)

    Parisot, John P.; Thorne, Heather; Fellowes, Andrew; Doig, Ken; Lucas, Mark; McNeil, John J.; Doble, Brett; Dobrovic, Alexander; John, Thomas; James, Paul A.; Lipton, Lara; Ashley, David; Hayes, Theresa; McMurrick, Paul; Richardson, Gary; Lorgelly, Paula; Fox, Stephen B.; Thomas, David M.

    2015-01-01

    Cancer 2015” is a longitudinal and prospective cohort. It is a phased study whose aim was to pilot recruiting 1000 patients during phase 1 to establish the feasibility of providing a population-based genomics cohort. Newly diagnosed adult patients with solid cancers, with residual tumour material for molecular genomics testing, were recruited into the cohort for the collection of a dataset containing clinical, molecular pathology, health resource use and outcomes data. 1685 patients have been recruited over almost 3 years from five hospitals. Thirty-two percent are aged between 61–70 years old, with a median age of 63 years. Diagnostic tumour samples were obtained for 90% of these patients for multiple parallel sequencing. Patients identified with somatic mutations of potentially “actionable” variants represented almost 10% of those tumours sequenced, while 42% of the cohort had no mutations identified. These genomic data were annotated with information such as cancer site, stage, morphology, treatment and patient outcomes and health resource use and cost. This cohort has delivered its main objective of establishing an upscalable genomics cohort within a clinical setting and in phase 2 aims to develop a protocol for how genomics testing can be used in real-time clinical decision-making, providing evidence on the value of precision medicine to clinical practice. PMID:26529019

  18. A comprehensive genome-wide analysis of melanoma Breslow thickness identifies interaction between CDC42 and SCIN genetic variants.

    Science.gov (United States)

    Vaysse, Amaury; Fang, Shenying; Brossard, Myriam; Wei, Qingyi; Chen, Wei V; Mohamdi, Hamida; Vincent-Fetita, Lynda; Margaritte-Jeannin, Patricia; Lavielle, Nolwenn; Maubec, Eve; Lathrop, Mark; Avril, Marie-Françoise; Amos, Christopher I; Lee, Jeffrey E; Demenais, Florence

    2016-11-01

    Breslow thickness (BT) is a major prognostic factor of cutaneous melanoma (CM), the most fatal skin cancer. The genetic component of BT has only been explored by candidate gene studies with inconsistent results. Our objective was to uncover the genetic factors underlying BT using an hypothesis-free genome-wide approach. Our analysis strategy integrated a genome-wide association study (GWAS) of single nucleotide polymorphisms (SNPs) for BT followed by pathway analysis of GWAS outcomes using the gene-set enrichment analysis (GSEA) method and epistasis analysis within BT-associated pathways. This strategy was applied to two large CM datasets with Hapmap3-imputed SNP data: the French MELARISK study for discovery (966 cases) and the MD Anderson Cancer Center study (1,546 cases) for replication. While no marginal effect of individual SNPs was revealed through GWAS, three pathways, defined by gene ontology (GO) categories were significantly enriched in genes associated with BT (false discovery rate ≤5% in both studies): hormone activity, cytokine activity and myeloid cell differentiation. Epistasis analysis, within each significant GO, identified a statistically significant interaction between CDC42 and SCIN SNPs (pmeta-int =2.2 × 10(-6) , which met the overall multiple-testing corrected threshold of 2.5 × 10(-6) ). These two SNPs (and proxies) are strongly associated with CDC42 and SCIN gene expression levels and map to regulatory elements in skin cells. This interaction has important biological relevance since CDC42 and SCIN proteins have opposite effects in actin cytoskeleton organization and dynamics, a key mechanism underlying melanoma cell migration and invasion. PMID:27347659

  19. Identifying potential need for cancer palliation in Nova Scotia

    OpenAIRE

    Johnston, G M; Gibbons, L.; Burge, F I; Dewar, R A; Cummings, I; Levy, I G

    1998-01-01

    OBJECTIVE: To assess the degree to which Nova Scotia cancer patients who may need palliative care are being referred to the comprehensive Halifax-based Palliative Care Program (PCP). METHODS: The authors conducted a retrospective, population-based study using administrative health data for all adults in Nova Scotia who died of cancer from 1988 to 1994. Proportions and odds ratios (ORs) were used to determine where there were differences in age, sex, place of residence, cancer cause of death, ...

  20. Germline DNA copy number aberrations identified as potential prognostic factors for breast cancer recurrence.

    Directory of Open Access Journals (Sweden)

    Yadav Sapkota

    Full Text Available Breast cancer recurrence (BCR is a common treatment outcome despite curative-intent primary treatment of non-metastatic breast cancer. Currently used prognostic and predictive factors utilize tumor-based markers, and are not optimal determinants of risk of BCR. Germline-based copy number aberrations (CNAs have not been evaluated as determinants of predisposition to experience BCR. In this study, we accessed germline DNA from 369 female breast cancer subjects who received curative-intent primary treatment following diagnosis. Of these, 155 experienced BCR and 214 did not, after a median duration of follow up after breast cancer diagnosis of 6.35 years (range = 0.60-21.78 and 8.60 years (range = 3.08-13.57, respectively. Whole genome CNA genotyping was performed on the Affymetrix SNP array 6.0 platform. CNAs were identified using the SNP-Fast Adaptive States Segmentation Technique 2 algorithm implemented in Nexus Copy Number 6.0. Six samples were removed due to poor quality scores, leaving 363 samples for further analysis. We identified 18,561 CNAs with ≥1 kb as a predefined cut-off for observed aberrations. Univariate survival analyses (log-rank tests identified seven CNAs (two copy number gains and five copy neutral-loss of heterozygosities, CN-LOHs showing significant differences (P<2.01×10(-5 in recurrence-free survival (RFS probabilities with and without CNAs.We also observed three additional but distinct CN-LOHs showing significant differences in RFS probabilities (P<2.86×10(-5 when analyses were restricted to stratified cases (luminal A, n = 208 only. After adjusting for tumor stage and grade in multivariate analyses (Cox proportional hazards models, all the CNAs remained strongly associated with the phenotype of BCR. Of these, we confirmed three CNAs at 17q11.2, 11q13.1 and 6q24.1 in representative samples using independent genotyping platforms. Our results suggest further investigations on the potential use of germline DNA

  1. Gamma-Retrovirus Integration Marks Cell Type-Specific Cancer Genes: A Novel Profiling Tool in Cancer Genomics

    Science.gov (United States)

    Gilroy, Kathryn L.; Terry, Anne; Naseer, Asif; de Ridder, Jeroen; Wang, Weiwei; Carpenter, Eric; Mason, Andrew; Wong, Gane K-S.; Kilbey, Anna; Neil, James C.

    2016-01-01

    Retroviruses have been foundational in cancer research since early studies identified proto-oncogenes as targets for insertional mutagenesis. Integration of murine gamma-retroviruses into the host genome favours promoters and enhancers and entails interaction of viral integrase with host BET/bromodomain factors. We report that this integration pattern is conserved in feline leukaemia virus (FeLV), a gamma-retrovirus that infects many human cell types. Analysis of FeLV insertion sites in the MCF-7 mammary carcinoma cell line revealed strong bias towards active chromatin marks with no evidence of significant post-integration growth selection. The most prominent FeLV integration targets had little overlap with the most abundantly expressed transcripts, but were strongly enriched for annotated cancer genes. A meta-analysis based on several gamma-retrovirus integration profiling (GRIP) studies in human cells (CD34+, K562, HepG2) revealed a similar cancer gene bias but also remarkable cell-type specificity, with prominent exceptions including a universal integration hotspot at the long non-coding RNA MALAT1. Comparison of GRIP targets with databases of super-enhancers from the same cell lines showed that these have only limited overlap and that GRIP provides unique insights into the upstream drivers of cell growth. These observations elucidate the oncogenic potency of the gamma-retroviruses and support the wider application of GRIP to identify the genes and growth regulatory circuits that drive distinct cancer types. PMID:27097319

  2. Gamma-Retrovirus Integration Marks Cell Type-Specific Cancer Genes: A Novel Profiling Tool in Cancer Genomics.

    Science.gov (United States)

    Gilroy, Kathryn L; Terry, Anne; Naseer, Asif; de Ridder, Jeroen; Allahyar, Amin; Wang, Weiwei; Carpenter, Eric; Mason, Andrew; Wong, Gane K-S; Cameron, Ewan R; Kilbey, Anna; Neil, James C

    2016-01-01

    Retroviruses have been foundational in cancer research since early studies identified proto-oncogenes as targets for insertional mutagenesis. Integration of murine gamma-retroviruses into the host genome favours promoters and enhancers and entails interaction of viral integrase with host BET/bromodomain factors. We report that this integration pattern is conserved in feline leukaemia virus (FeLV), a gamma-retrovirus that infects many human cell types. Analysis of FeLV insertion sites in the MCF-7 mammary carcinoma cell line revealed strong bias towards active chromatin marks with no evidence of significant post-integration growth selection. The most prominent FeLV integration targets had little overlap with the most abundantly expressed transcripts, but were strongly enriched for annotated cancer genes. A meta-analysis based on several gamma-retrovirus integration profiling (GRIP) studies in human cells (CD34+, K562, HepG2) revealed a similar cancer gene bias but also remarkable cell-type specificity, with prominent exceptions including a universal integration hotspot at the long non-coding RNA MALAT1. Comparison of GRIP targets with databases of super-enhancers from the same cell lines showed that these have only limited overlap and that GRIP provides unique insights into the upstream drivers of cell growth. These observations elucidate the oncogenic potency of the gamma-retroviruses and support the wider application of GRIP to identify the genes and growth regulatory circuits that drive distinct cancer types. PMID:27097319

  3. Use of genome-wide association studies for cancer research and drug repositioning.

    Directory of Open Access Journals (Sweden)

    Jizhun Zhang

    Full Text Available Although genome-wide association studies have identified many risk loci associated with colorectal cancer, the molecular basis of these associations are still unclear. We aimed to infer biological insights and highlight candidate genes of interest within GWAS risk loci. We used an in silico pipeline based on functional annotation, quantitative trait loci mapping of cis-acting gene, PubMed text-mining, protein-protein interaction studies, genetic overlaps with cancer somatic mutations and knockout mouse phenotypes, and functional enrichment analysis to prioritize the candidate genes at the colorectal cancer risk loci. Based on these analyses, we observed that these genes were the targets of approved therapies for colorectal cancer, and suggested that drugs approved for other indications may be repurposed for the treatment of colorectal cancer. This study highlights the use of publicly available data as a cost effective solution to derive biological insights, and provides an empirical evidence that the molecular basis of colorectal cancer can provide important leads for the discovery of new drugs.

  4. Use of Whole Genome Sequencing for Diagnosis and Discovery in the Cancer Genetics Clinic

    Directory of Open Access Journals (Sweden)

    Samantha B. Foley

    2015-01-01

    Full Text Available Despite the potential of whole-genome sequencing (WGS to improve patient diagnosis and care, the empirical value of WGS in the cancer genetics clinic is unknown. We performed WGS on members of two cohorts of cancer genetics patients: those with BRCA1/2 mutations (n = 176 and those without (n = 82. Initial analysis of potentially pathogenic variants (PPVs, defined as nonsynonymous variants with allele frequency < 1% in ESP6500 in 163 clinically-relevant genes suggested that WGS will provide useful clinical results. This is despite the fact that a majority of PPVs were novel missense variants likely to be classified as variants of unknown significance (VUS. Furthermore, previously reported pathogenic missense variants did not always associate with their predicted diseases in our patients. This suggests that the clinical use of WGS will require large-scale efforts to consolidate WGS and patient data to improve accuracy of interpretation of rare variants. While loss-of-function (LoF variants represented only a small fraction of PPVs, WGS identified additional cancer risk LoF PPVs in patients with known BRCA1/2 mutations and led to cancer risk diagnoses in 21% of non-BRCA cancer genetics patients after expanding our analysis to 3209 ClinVar genes. These data illustrate how WGS can be used to improve our ability to discover patients' cancer genetic risks.

  5. Role of oxidative DNA damage in genome instability and cancer

    International Nuclear Information System (INIS)

    Inactivation of mismatch repair (MMR) is associated with a dramatic genomic instability that is observed experimentally as a mutator phenotype and micro satellite instability (MSI). It has been implicit that the massive genetic instability in MMR defective cells simply reflects the accumulation of spontaneous DNA polymerase errors during DNA replication. We recently identified oxidation damage, a common threat to DNA integrity to which purines are very susceptible, as an important cofactor in this genetic instability

  6. Integrative genomic analyses identify BRF2 as a novel lineage-specific oncogene in lung squamous cell carcinoma.

    Directory of Open Access Journals (Sweden)

    William W Lockwood

    2010-07-01

    Full Text Available BACKGROUND: Traditionally, non-small cell lung cancer is treated as a single disease entity in terms of systemic therapy. Emerging evidence suggests the major subtypes--adenocarcinoma (AC and squamous cell carcinoma (SqCC--respond differently to therapy. Identification of the molecular differences between these tumor types will have a significant impact in designing novel therapies that can improve the treatment outcome. METHODS AND FINDINGS: We used an integrative genomics approach, combing high-resolution comparative genomic hybridization and gene expression microarray profiles, to compare AC and SqCC tumors in order to uncover alterations at the DNA level, with corresponding gene transcription changes, which are selected for during development of lung cancer subtypes. Through the analysis of multiple independent cohorts of clinical tumor samples (>330, normal lung tissues and bronchial epithelial cells obtained by bronchial brushing in smokers without lung cancer, we identified the overexpression of BRF2, a gene on Chromosome 8p12, which is specific for development of SqCC of lung. Genetic activation of BRF2, which encodes a RNA polymerase III (Pol III transcription initiation factor, was found to be associated with increased expression of small nuclear RNAs (snRNAs that are involved in processes essential for cell growth, such as RNA splicing. Ectopic expression of BRF2 in human bronchial epithelial cells induced a transformed phenotype and demonstrates downstream oncogenic effects, whereas RNA interference (RNAi-mediated knockdown suppressed growth and colony formation of SqCC cells overexpressing BRF2, but not AC cells. Frequent activation of BRF2 in >35% preinvasive bronchial carcinoma in situ, as well as in dysplastic lesions, provides evidence that BRF2 expression is an early event in cancer development of this cell lineage. CONCLUSIONS: This is the first study, to our knowledge, to show that the focal amplification of a gene in

  7. Oncogenomic portals for the visualization and analysis of genome-wide cancer data.

    Science.gov (United States)

    Klonowska, Katarzyna; Czubak, Karol; Wojciechowska, Marzena; Handschuh, Luiza; Zmienko, Agnieszka; Figlerowicz, Marek; Dams-Kozlowska, Hanna; Kozlowski, Piotr

    2016-01-01

    Somatically acquired genomic alterations that drive oncogenic cellular processes are of great scientific and clinical interest. Since the initiation of large-scale cancer genomic projects (e.g., the Cancer Genome Project, The Cancer Genome Atlas, and the International Cancer Genome Consortium cancer genome projects), a number of web-based portals have been created to facilitate access to multidimensional oncogenomic data and assist with the interpretation of the data. The portals provide the visualization of small-size mutations, copy number variations, methylation, and gene/protein expression data that can be correlated with the available clinical, epidemiological, and molecular features. Additionally, the portals enable to analyze the gathered data with the use of various user-friendly statistical tools. Herein, we present a highly illustrated review of seven portals, i.e., Tumorscape, UCSC Cancer Genomics Browser, ICGC Data Portal, COSMIC, cBioPortal, IntOGen, and BioProfiling.de. All of the selected portals are user-friendly and can be exploited by scientists from different cancer-associated fields, including those without bioinformatics background. It is expected that the use of the portals will contribute to a better understanding of cancer molecular etiology and will ultimately accelerate the translation of genomic knowledge into clinical practice. PMID:26484415

  8. Characterizing associations and SNP-environment interactions for GWAS-identified prostate cancer risk markers--results from BPC3.

    Directory of Open Access Journals (Sweden)

    Sara Lindstrom

    Full Text Available Genome-wide association studies (GWAS have identified multiple single nucleotide polymorphisms (SNPs associated with prostate cancer risk. However, whether these associations can be consistently replicated, vary with disease aggressiveness (tumor stage and grade and/or interact with non-genetic potential risk factors or other SNPs is unknown. We therefore genotyped 39 SNPs from regions identified by several prostate cancer GWAS in 10,501 prostate cancer cases and 10,831 controls from the NCI Breast and Prostate Cancer Cohort Consortium (BPC3. We replicated 36 out of 39 SNPs (P-values ranging from 0.01 to 10⁻²⁸. Two SNPs located near KLK3 associated with PSA levels showed differential association with Gleason grade (rs2735839, P = 0.0001 and rs266849, P = 0.0004; case-only test, where the alleles associated with decreasing PSA levels were inversely associated with low-grade (as defined by Gleason grade < 8 tumors but positively associated with high-grade tumors. No other SNP showed differential associations according to disease stage or grade. We observed no effect modification by SNP for association with age at diagnosis, family history of prostate cancer, diabetes, BMI, height, smoking or alcohol intake. Moreover, we found no evidence of pair-wise SNP-SNP interactions. While these SNPs represent new independent risk factors for prostate cancer, we saw little evidence for effect modification by other SNPs or by the environmental factors examined.

  9. Connecting Genomic Alterations to Cancer Biology with Proteomics: The NCI Clinical Proteomic Tumor Analysis Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, Matthew; Gillette, Michael; Carr, Steven A.; Paulovich, Amanda G.; Smith, Richard D.; Rodland, Karin D.; Townsend, Reid; Kinsinger, Christopher; Mesri, Mehdi; Rodriguez, Henry; Liebler, Daniel

    2013-10-03

    The National Cancer Institute (NCI) Clinical Proteomic Tumor Analysis Consortium is applying the latest generation of proteomic technologies to genomically annotated tumors from The Cancer Genome Atlas (TCGA) program, a joint initiative of the NCI and the National Human Genome Research Institute. By providing a fully integrated accounting of DNA, RNA, and protein abnormalities in individual tumors, these datasets will illuminate the complex relationship between genomic abnormalities and cancer phenotypes, thus producing biologic insights as well as a wave of novel candidate biomarkers and therapeutic targets amenable to verifi cation using targeted mass spectrometry methods.

  10. Association between GWAS-Identified Genetic Variations and Disease Prognosis for Patients with Colorectal Cancer

    Science.gov (United States)

    Chae, Yee Soo; Lee, Soo Jung; Park, Jae Yong; Choi, Jin Eun; Park, Jun Seok; Choi, Gyu Seog; Kim, Jong Gwang

    2015-01-01

    Genome-wide association studies (GWASs) have already identified at least 22 common susceptibility loci associated with an increased risk of colorectal cancer (CRC). This study examined the relationship between these single nucleotide polymorphisms (SNPs) and the clinical outcomes of patients with colorectal cancer. Seven hundred seventy-six patients with surgically resected colorectal adenocarcinoma were enrolled in the present study. Twenty-two of the GWAS-identified SNPs were genotyped using a Sequenom MassARRAY. Among the 22 SNPs, two (rs1321311G>T in CDKN1A and rs10411210C>T in RHPN2) were significantly associated with the survival outcomes of CRC in a multivariate survival analysis. In a recessive model, the rs1321311 TT genotype (vs. GG + GT) and rs10411210 TT genotype (vs. CC + CT) were associated with a worse prognosis for disease-free survival (adjusted HR = 1.90; 95% confidence interval = 1.00-3.60; P = 0.050, adjusted HR = 1.94; 95% confidence interval = 1.05-3.57; P = 0.034, respectively) and overall survival (adjusted HR = 2.05; 95% confidence interval = 1.00-4.20; P = 0.049, adjusted HR = 2.06; 95% confidence interval = 1.05-4.05; P = 0.036, respectively). None of the other SNPs was significantly associated with any clinicopathologic features or survival. The present results suggest that the genetic variants of the CDKN1A (rs1321311) and RHPN2 (rs10411210) genes can be used as prognostic biomarkers for patients with surgically resected colorectal cancer. PMID:25799222

  11. A human genome-wide loss-of-function screen identifies effective chikungunya antiviral drugs.

    Science.gov (United States)

    Karlas, Alexander; Berre, Stefano; Couderc, Thérèse; Varjak, Margus; Braun, Peter; Meyer, Michael; Gangneux, Nicolas; Karo-Astover, Liis; Weege, Friderike; Raftery, Martin; Schönrich, Günther; Klemm, Uwe; Wurzlbauer, Anne; Bracher, Franz; Merits, Andres; Meyer, Thomas F; Lecuit, Marc

    2016-01-01

    Chikungunya virus (CHIKV) is a globally spreading alphavirus against which there is no commercially available vaccine or therapy. Here we use a genome-wide siRNA screen to identify 156 proviral and 41 antiviral host factors affecting CHIKV replication. We analyse the cellular pathways in which human proviral genes are involved and identify druggable targets. Twenty-one small-molecule inhibitors, some of which are FDA approved, targeting six proviral factors or pathways, have high antiviral activity in vitro, with low toxicity. Three identified inhibitors have prophylactic antiviral effects in mouse models of chikungunya infection. Two of them, the calmodulin inhibitor pimozide and the fatty acid synthesis inhibitor TOFA, have a therapeutic effect in vivo when combined. These results demonstrate the value of loss-of-function screening and pathway analysis for the rational identification of small molecules with therapeutic potential and pave the way for the development of new, host-directed, antiviral agents. PMID:27177310

  12. Network-Based Integration of GWAS and Gene Expression Identifies a HOX-Centric Network Associated with Serous Ovarian Cancer Risk

    DEFF Research Database (Denmark)

    Kar, Siddhartha P; Tyrer, Jonathan P; Li, Qiyuan;

    2015-01-01

    BACKGROUND: Genome-wide association studies (GWAS) have so far reported 12 loci associated with serous epithelial ovarian cancer (EOC) risk. We hypothesized that some of these loci function through nearby transcription factor (TF) genes and that putative target genes of these TFs as identified by...

  13. Genome-Wide Search Identifies 1.9 Mb from the Polar Bear Y Chromosome for Evolutionary Analyses

    OpenAIRE

    Bidon, Tobias; Schreck, Nancy; Hailer, Frank; Nilsson, Maria A.; Janke, Axel

    2015-01-01

    The male-inherited Y chromosome is the major haploid fraction of the mammalian genome, rendering Y-linked sequences an indispensable resource for evolutionary research. However, despite recent large-scale genome sequencing approaches, only a handful of Y chromosome sequences have been characterized to date, mainly in model organisms. Using polar bear (Ursus maritimus) genomes, we compare two different in silico approaches to identify Y-linked sequences: 1) Similarity to known Y-linked genes a...

  14. pVAC-Seq: A genome-guided in silico approach to identifying tumor neoantigens.

    Science.gov (United States)

    Hundal, Jasreet; Carreno, Beatriz M; Petti, Allegra A; Linette, Gerald P; Griffith, Obi L; Mardis, Elaine R; Griffith, Malachi

    2016-01-01

    Cancer immunotherapy has gained significant momentum from recent clinical successes of checkpoint blockade inhibition. Massively parallel sequence analysis suggests a connection between mutational load and response to this class of therapy. Methods to identify which tumor-specific mutant peptides (neoantigens) can elicit anti-tumor T cell immunity are needed to improve predictions of checkpoint therapy response and to identify targets for vaccines and adoptive T cell therapies. Here, we present a flexible, streamlined computational workflow for identification of personalized Variant Antigens by Cancer Sequencing (pVAC-Seq) that integrates tumor mutation and expression data (DNA- and RNA-Seq). pVAC-Seq is available at https://github.com/griffithlab/pVAC-Seq . PMID:26825632

  15. A novel prokaryotic promoter identified in the genome of some monopartite begomoviruses.

    Directory of Open Access Journals (Sweden)

    Wei-Chen Wang

    Full Text Available Geminiviruses are known to exhibit both prokaryotic and eukaryotic features in their genomes, with the ability to express their genes and even replicate in bacterial cells. We have demonstrated previously the existence of unit-length single-stranded circular DNAs of Ageratum yellow vein virus (AYVV, a species in the genus Begomovirus, family Geminiviridae in Escherichia coli cells, which prompted our search for unknown prokaryotic functions in the begomovirus genomes. By using a promoter trapping strategy, we identified a novel prokaryotic promoter, designated AV3 promoter, in nts 762-831 of the AYVV genome. Activity assays revealed that the AV3 promoter is strong, unidirectional, and constitutive, with an endogenous downstream ribosome binding site and a translatable short open reading frame of eight amino acids. Sequence analyses suggested that the AV3 promoter might be a remnant of prokaryotic ancestors that could be related to certain promoters of bacteria from marine or freshwater environments. The discovery of the prokaryotic AV3 promoter provided further evidence for the prokaryotic origin in the evolutionary history of geminiviruses.

  16. Genome-wide chromatin remodeling identified at GC-rich long nucleosome-free regions.

    Directory of Open Access Journals (Sweden)

    Karin Schwarzbauer

    Full Text Available To gain deeper insights into principles of cell biology, it is essential to understand how cells reorganize their genomes by chromatin remodeling. We analyzed chromatin remodeling on next generation sequencing data from resting and activated T cells to determine a whole-genome chromatin remodeling landscape. We consider chromatin remodeling in terms of nucleosome repositioning which can be observed most robustly in long nucleosome-free regions (LNFRs that are occupied by nucleosomes in another cell state. We found that LNFR sequences are either AT-rich or GC-rich, where nucleosome repositioning was observed much more prominently in GC-rich LNFRs - a considerable proportion of them outside promoter regions. Using support vector machines with string kernels, we identified a GC-rich DNA sequence pattern indicating loci of nucleosome repositioning in resting T cells. This pattern appears to be also typical for CpG islands. We found out that nucleosome repositioning in GC-rich LNFRs is indeed associated with CpG islands and with binding sites of the CpG-island-binding ZF-CXXC proteins KDM2A and CFP1. That this association occurs prominently inside and also prominently outside of promoter regions hints at a mechanism governing nucleosome repositioning that acts on a whole-genome scale.

  17. Genome-wide meta-analyses identify three loci associated with primary biliary cirrhosis

    OpenAIRE

    Liu, Xiangdong; Invernizzi, Pietro; Lu, Yue,; Kosoy, Roman; Lu, Yan; Bianchi, Ilaria; Podda, Mauro; Chun XU; Xie, Gang; Macciardi, Fabio; Selmi, Carlo; Lupoli, Sara; Shigeta, Russell; Ransom, Michael; Lleo, Ana

    2010-01-01

    A genome-wide association screen for primary biliary cirrhosis risk alleles was performed in an Italian cohort. The results from the Italian cohort replicated IL12A and IL12RB associations, and a combined meta-analysis using a Canadian dataset identified newly associated loci at SPIB (P = 7.9 × 10–11, odds ratio (OR) = 1.46), IRF5-TNPO3 (P = 2.8 × 10–10, OR = 1.63) and 17q12-21 (P = 1.7 × 10–10, OR = 1.38).

  18. Genome-wide meta-analyses identify three loci associated with primary biliary cirrhosis

    Science.gov (United States)

    Liu, Xiangdong; Invernizzi, Pietro; Lu, Yue; Kosoy, Roman; Lu, Yan; Bianchi, Ilaria; Podda, Mauro; Xu, Chun; Xie, Gang; Macciardi, Fabio; Selmi, Carlo; Lupoli, Sara; Shigeta, Russell; Ransom, Michael; Lleo, Ana; Lee, Annette T; Mason, Andrew L; Myers, Robert P; Peltekian, Kevork M; Ghent, Cameron N; Bernuzzi, Francesca; Zuin, Massimo; Rosina, Floriano; Borghesio, Elisabetta; Floreani, Annarosa; Lazzari, Roberta; Niro, Grazia; Andriulli, Angelo; Muratori, Luigi; Muratori, Paolo; Almasio, Piero L; Andreone, Pietro; Margotti, Marzia; Brunetto, Maurizia; Coco, Barbara; Alvaro, Domenico; Bragazzi, Maria C; Marra, Fabio; Pisano, Alessandro; Rigamonti, Cristina; Colombo, Massimo; Marzioni, Marco; Benedetti, Antonio; Fabris, Luca; Strazzabosco, Mario; Portincasa, Piero; Palmieri, Vincenzo O; Tiribelli, Claudio; Croce, Lory; Bruno, Savino; Rossi, Sonia; Vinci, Maria; Prisco, Cleofe; Mattalia, Alberto; Toniutto, Pierluigi; Picciotto, Antonio; Galli, Andrea; Ferrari, Carlo; Colombo, Silvia; Casella, Giovanni; Morini, Lorenzo; Caporaso, Nicola; Colli, Agostino; Spinzi, Giancarlo; Montanari, Renzo; Gregersen, Peter K; Heathcote, E Jenny; Hirschfield, Gideon M; Siminovitch, Katherine A; Amos, Christopher I; Gershwin, M Eric; Seldin, Michael F

    2011-01-01

    A genome-wide association screen for primary biliary cirrhosis risk alleles was performed in an Italian cohort. The results from the Italian cohort replicated IL12A and IL12RB associations, and a combined meta-analysis using a Canadian dataset identified newly associated loci at SPIB (P = 7.9 × 10–11, odds ratio (OR) = 1.46), IRF5-TNPO3 (P = 2.8 × 10–10, OR = 1.63) and 17q12-21 (P = 1.7 × 10–10, OR = 1.38). PMID:20639880

  19. A Multiple Survival Screening algorithm (MSS) for identifying high-quality cancer prognostic markers

    OpenAIRE

    sprotocols

    2015-01-01

    We have developed a Multiple Survival Screening algorithm (MSS) for identifying high-quality cancer prognostic markers from the gene expression profiles of cancer samples. By applying the MSS algorithm to breast cancer samples, we have identified several marker sets which showed ~90% predicting accuracy across 8 independent breast cancer cohorts. We realized that the algorithm could be used for finding other biomarkers including drug response markers. We are describing the protocol with some ...

  20. DO CANCER CLINICAL TRIAL POPULATIONS TRULY REPRESENT CANCER PATIENTS? A COMPARISON OF OPEN CLINICAL TRIALS TO THE CANCER GENOME ATLAS

    Science.gov (United States)

    Geifman, Nophar; Butte, Atul J.

    2016-01-01

    Open clinical trial data offer many opportunities for the scientific community to independently verify published results, evaluate new hypotheses and conduct meta-analyses. These data provide a springboard for scientific advances in precision medicine but the question arises as to how representative clinical trials data are of cancer patients overall. Here we present the integrative analysis of data from several cancer clinical trials and compare these to patient-level data from The Cancer Genome Atlas (TCGA). Comparison of cancer type-specific survival rates reveals that these are overall lower in trial subjects. This effect, at least to some extent, can be explained by the more advanced stages of cancer of trial subjects. This analysis also reveals that for stage IV cancer, colorectal cancer patients have a better chance of survival than breast cancer patients. On the other hand, for all other stages, breast cancer patients have better survival than colorectal cancer patients. Comparison of survival in different stages of disease between the two datasets reveals that subjects with stage IV cancer from the trials dataset have a lower chance of survival than matching stage IV subjects from TCGA. One likely explanation for this observation is that stage IV trial subjects have lower survival rates since their cancer is less likely to respond to treatment. To conclude, we present here a newly available clinical trials dataset which allowed for the integration of patient-level data from many cancer clinical trials. Our comprehensive analysis reveals that cancer-related clinical trials are not representative of general cancer patient populations, mostly due to their focus on the more advanced stages of the disease. These and other limitations of clinical trials data should, perhaps, be taken into consideration in medical research and in the field of precision medicine. PMID:26776196

  1. Clinic-Genomic Association Mining for Colorectal Cancer Using Publicly Available Datasets

    OpenAIRE

    Fang Liu; Yaning Feng; Zhenye Li; Chao Pan; Yuncong Su; Rui Yang; Liying Song; Huilong Duan; Ning Deng

    2014-01-01

    In recent years, a growing number of researchers began to focus on how to establish associations between clinical and genomic data. However, up to now, there is lack of research mining clinic-genomic associations by comprehensively analysing available gene expression data for a single disease. Colorectal cancer is one of the malignant tumours. A number of genetic syndromes have been proven to be associated with colorectal cancer. This paper presents our research on mining clinic-genomic assoc...

  2. Functional genomics complements quantitative genetics in identifying disease-gene associations.

    Directory of Open Access Journals (Sweden)

    Yuanfang Guan

    Full Text Available An ultimate goal of genetic research is to understand the connection between genotype and phenotype in order to improve the diagnosis and treatment of diseases. The quantitative genetics field has developed a suite of statistical methods to associate genetic loci with diseases and phenotypes, including quantitative trait loci (QTL linkage mapping and genome-wide association studies (GWAS. However, each of these approaches have technical and biological shortcomings. For example, the amount of heritable variation explained by GWAS is often surprisingly small and the resolution of many QTL linkage mapping studies is poor. The predictive power and interpretation of QTL and GWAS results are consequently limited. In this study, we propose a complementary approach to quantitative genetics by interrogating the vast amount of high-throughput genomic data in model organisms to functionally associate genes with phenotypes and diseases. Our algorithm combines the genome-wide functional relationship network for the laboratory mouse and a state-of-the-art machine learning method. We demonstrate the superior accuracy of this algorithm through predicting genes associated with each of 1157 diverse phenotype ontology terms. Comparison between our prediction results and a meta-analysis of quantitative genetic studies reveals both overlapping candidates and distinct, accurate predictions uniquely identified by our approach. Focusing on bone mineral density (BMD, a phenotype related to osteoporotic fracture, we experimentally validated two of our novel predictions (not observed in any previous GWAS/QTL studies and found significant bone density defects for both Timp2 and Abcg8 deficient mice. Our results suggest that the integration of functional genomics data into networks, which itself is informative of protein function and interactions, can successfully be utilized as a complementary approach to quantitative genetics to predict disease risks. All supplementary

  3. Whole genome resequencing of Botrytis cinerea isolates identifies high levels of standing diversity.

    Directory of Open Access Journals (Sweden)

    Susanna eAtwell

    2015-09-01

    Full Text Available How standing genetic variation within a pathogen contributes to diversity in host/pathogen interactions is poorly understood, partly because most studied pathogens are host-specific, clonally reproducing organisms which complicates genetic analysis. In contrast, Botrytis cinerea is a sexually reproducing, true haploid ascomycete that can infect a wide range of diverse plant hosts. While previous work had shown significant genomic variation between two isolates, we proceeded to assess the level and frequency of standing variation in a population of B. cinerea. To begin measuring standing genetic variation in B. cinerea, we re-sequenced the genomes of 13 different isolates and aligned them to the previously sequenced T4 reference genome. In addition one of these isolates was resequenced from 4 independently repeated cultures. A high level of genetic diversity was found within the 13 isolates. Within this variation, we could identify clusters of genes with major effect polymorphisms, i.e. polymorphisms that lead to a predicted functional knockout, that surrounded genes involved in controlling vegetative incompatibility. The genotype at these loci was able to partially predict the interaction of these isolates in vegetative mating assays showing that these loci control vegetative incompatibility. This suggests that the vegetative mating loci within B. cinerea are associated with regions of increased genetic diversity. The genome re-sequencing of four clones from the one isolate (Grape that had been independently propagated over ten years showed no detectable spontaneous mutation. This suggests that B. cinerea does not display an elevated spontaneous mutation rate. Future work will allow us to test if, and how, this diversity may be contributing to the pathogen’s broad host range.

  4. Whole genome resequencing of Botrytis cinerea isolates identifies high levels of standing diversity.

    Science.gov (United States)

    Atwell, Susanna; Corwin, Jason A; Soltis, Nicole E; Subedy, Anushryia; Denby, Katherine J; Kliebenstein, Daniel J

    2015-01-01

    How standing genetic variation within a pathogen contributes to diversity in host/pathogen interactions is poorly understood, partly because most studied pathogens are host-specific, clonally reproducing organisms which complicates genetic analysis. In contrast, Botrytis cinerea is a sexually reproducing, true haploid ascomycete that can infect a wide range of diverse plant hosts. While previous work had shown significant genomic variation between two isolates, we proceeded to assess the level and frequency of standing variation in a population of B. cinerea. To begin measuring standing genetic variation in B. cinerea, we re-sequenced the genomes of 13 different isolates and aligned them to the previously sequenced T4 reference genome. In addition one of these isolates was resequenced from four independently repeated cultures. A high level of genetic diversity was found within the 13 isolates. Within this variation, we could identify clusters of genes with major effect polymorphisms, i.e., polymorphisms that lead to a predicted functional knockout, that surrounded genes involved in controlling vegetative incompatibility. The genotype at these loci was able to partially predict the interaction of these isolates in vegetative fusion assays showing that these loci control vegetative incompatibility. This suggests that the vegetative incompatibility loci within B. cinerea are associated with regions of increased genetic diversity. The genome re-sequencing of four clones from the one isolate (Grape) that had been independently propagated over 10 years showed no detectable spontaneous mutation. This suggests that B. cinerea does not display an elevated spontaneous mutation rate. Future work will allow us to test if, and how, this diversity may be contributing to the pathogen's broad host range. PMID:26441923

  5. Combining Chromosomal Arm Status and Significantly Aberrant Genomic Locations Reveals New Cancer Subtypes

    Directory of Open Access Journals (Sweden)

    Tal Shay

    2009-01-01

    Full Text Available Many types of tumors exhibit characteristic chromosomal losses or gains, as well as local amplifications and deletions. Within any given tumor type, sample specific amplifications and deletions are also observed. Typically, a region that is aberrant in more tumors, or whose copy number change is stronger, would be considered as a more promising candidate to be biologically relevant to cancer. We sought for an intuitive method to define such aberrations and prioritize them. We define V, the “volume” associated with an aberration, as the product of three factors: (a fraction of patients with the aberration, (b the aberration’s length and (c its amplitude. Our algorithm compares the values of V derived from the real data to a null distribution obtained by permutations, and yields the statistical significance (p-value of the measured value of V. We detected genetic locations that were significantly aberrant, and combine them with chromosomal arm status (gain/loss to create a succinct fingerprint of the tumor genome. This genomic fingerprint is used to visualize the tumors, highlighting events that are co-occurring or mutually exclusive. We apply the method on three different public array CGH datasets of Medulloblastoma and Neuroblastoma, and demonstrate its ability to detect chromosomal regions that were known to be altered in the tested cancer types, as well as to suggest new genomic locations to be tested. We identified a potential new subtype of Medulloblastoma, which is analogous to Neuroblastoma type 1.

  6. Somatic mutation profiles of MSI and MSS colorectal cancer identified by whole exome next generation sequencing and bioinformatics analysis.

    Directory of Open Access Journals (Sweden)

    Bernd Timmermann

    Full Text Available BACKGROUND: Colorectal cancer (CRC is with approximately 1 million cases the third most common cancer worldwide. Extensive research is ongoing to decipher the underlying genetic patterns with the hope to improve early cancer diagnosis and treatment. In this direction, the recent progress in next generation sequencing technologies has revolutionized the field of cancer genomics. However, one caveat of these studies remains the large amount of genetic variations identified and their interpretation. METHODOLOGY/PRINCIPAL FINDINGS: Here we present the first work on whole exome NGS of primary colon cancers. We performed 454 whole exome pyrosequencing of tumor as well as adjacent not affected normal colonic tissue from microsatellite stable (MSS and microsatellite instable (MSI colon cancer patients and identified more than 50,000 small nucleotide variations for each tissue. According to predictions based on MSS and MSI pathomechanisms we identified eight times more somatic non-synonymous variations in MSI cancers than in MSS and we were able to reproduce the result in four additional CRCs. Our bioinformatics filtering approach narrowed down the rate of most significant mutations to 359 for MSI and 45 for MSS CRCs with predicted altered protein functions. In both CRCs, MSI and MSS, we found somatic mutations in the intracellular kinase domain of bone morphogenetic protein receptor 1A, BMPR1A, a gene where so far germline mutations are associated with juvenile polyposis syndrome, and show that the mutations functionally impair the protein function. CONCLUSIONS/SIGNIFICANCE: We conclude that with deep sequencing of tumor exomes one may be able to predict the microsatellite status of CRC and in addition identify potentially clinically relevant mutations.

  7. Genome-wide retroviral insertional tagging of genes involved in cancer in Cdkn2a-deficient mice

    DEFF Research Database (Denmark)

    Lund, Anders H; Turner, Geoffrey; Trubetskoy, Alla; Verhoeven, Els; Wientjens, Ellen; Hulsman, Danielle; Russell, Robert; DePinho, Ronald A; Lenz, Jack; van Lohuizen, Maarten

    2002-01-01

    retroviral integration sites and mapped them against the mouse genome sequence databases from Celera and Ensembl. In addition to 17 insertions targeting gene loci known to be cancer-related, we identified a total of 37 new common insertion sites (CISs), of which 8 encode components of signaling pathways that...... that large-scale retroviral insertional mutagenesis in genetically predisposed mice is useful both as a system for identifying genes underlying cancer and as a genetic framework for the assignment of such genes to specific oncogenic pathways....

  8. Analysis of regulatory protease sequences identified through bioinformatic data mining of the Schistosoma mansoni genome

    Directory of Open Access Journals (Sweden)

    Minchella Dennis J

    2009-10-01

    Full Text Available Abstract Background New chemotherapeutic agents against Schistosoma mansoni, an etiological agent of human schistosomiasis, are a priority due to the emerging drug resistance and the inability of current drug treatments to prevent reinfection. Proteases have been under scrutiny as targets of immunological or chemotherapeutic anti-Schistosoma agents because of their vital role in many stages of the parasitic life cycle. Function has been established for only a handful of identified S. mansoni proteases, and the vast majority of these are the digestive proteases; very few of the conserved classes of regulatory proteases have been identified from Schistosoma species, despite their vital role in numerous cellular processes. To that end, we identified protease protein coding genes from the S. mansoni genome project and EST library. Results We identified 255 protease sequences from five catalytic classes using predicted proteins of the S. mansoni genome. The vast majority of these show significant similarity to proteins in KEGG and the Conserved Domain Database. Proteases include calpains, caspases, cytosolic and mitochondrial signal peptidases, proteases that interact with ubiquitin and ubiquitin-like molecules, and proteases that perform regulated intramembrane proteolysis. Comparative analysis of classes of important regulatory proteases find conserved active site domains, and where appropriate, signal peptides and transmembrane helices. Phylogenetic analysis provides support for inferring functional divergence among regulatory aspartic, cysteine, and serine proteases. Conclusion Numerous proteases are identified for the first time in S. mansoni. We characterized important regulatory proteases and focus analysis on these proteases to complement the growing knowledge base of digestive proteases. This work provides a foundation for expanding knowledge of proteases in Schistosoma species and examining their diverse function and potential as targets

  9. Pan-cancer analysis of the extent and consequences of intratumor heterogeneity | Office of Cancer Genomics

    Science.gov (United States)

    Intratumor heterogeneity (ITH) drives neoplastic progression and therapeutic resistance. We used the bioinformatics tools 'expanding ploidy and allele frequency on nested subpopulations' (EXPANDS) and PyClone to detect clones that are present at a ≥10% frequency in 1,165 exome sequences from tumors in The Cancer Genome Atlas. 86% of tumors across 12 cancer types had at least two clones. ITH in the morphology of nuclei was associated with genetic ITH (Spearman's correlation coefficient, ρ = 0.24-0.41; P < 0.001).

  10. Colorectal Cancer and the Human Gut Microbiome: Reproducibility with Whole-Genome Shotgun Sequencing

    Science.gov (United States)

    Hua, Xing; Zeller, Georg; Sunagawa, Shinichi; Voigt, Anita Y.; Hercog, Rajna; Goedert, James J.; Shi, Jianxin; Bork, Peer; Sinha, Rashmi

    2016-01-01

    Accumulating evidence indicates that the gut microbiota affects colorectal cancer development, but previous studies have varied in population, technical methods, and associations with cancer. Understanding these variations is needed for comparisons and for potential pooling across studies. Therefore, we performed whole-genome shotgun sequencing on fecal samples from 52 pre-treatment colorectal cancer cases and 52 matched controls from Washington, DC. We compared findings from a previously published 16S rRNA study to the metagenomics-derived taxonomy within the same population. In addition, metagenome-predicted genes, modules, and pathways in the Washington, DC cases and controls were compared to cases and controls recruited in France whose specimens were processed using the same platform. Associations between the presence of fecal Fusobacteria, Fusobacterium, and Porphyromonas with colorectal cancer detected by 16S rRNA were reproduced by metagenomics, whereas higher relative abundance of Clostridia in cancer cases based on 16S rRNA was merely borderline based on metagenomics. This demonstrated that within the same sample set, most, but not all taxonomic associations were seen with both methods. Considering significant cancer associations with the relative abundance of genes, modules, and pathways in a recently published French metagenomics dataset, statistically significant associations in the Washington, DC population were detected for four out of 10 genes, three out of nine modules, and seven out of 17 pathways. In total, colorectal cancer status in the Washington, DC study was associated with 39% of the metagenome-predicted genes, modules, and pathways identified in the French study. More within and between population comparisons are needed to identify sources of variation and disease associations that can be reproduced despite these variations. Future studies should have larger sample sizes or pool data across studies to have sufficient power to detect

  11. Colorectal Cancer and the Human Gut Microbiome: Reproducibility with Whole-Genome Shotgun Sequencing.

    Science.gov (United States)

    Vogtmann, Emily; Hua, Xing; Zeller, Georg; Sunagawa, Shinichi; Voigt, Anita Y; Hercog, Rajna; Goedert, James J; Shi, Jianxin; Bork, Peer; Sinha, Rashmi

    2016-01-01

    Accumulating evidence indicates that the gut microbiota affects colorectal cancer development, but previous studies have varied in population, technical methods, and associations with cancer. Understanding these variations is needed for comparisons and for potential pooling across studies. Therefore, we performed whole-genome shotgun sequencing on fecal samples from 52 pre-treatment colorectal cancer cases and 52 matched controls from Washington, DC. We compared findings from a previously published 16S rRNA study to the metagenomics-derived taxonomy within the same population. In addition, metagenome-predicted genes, modules, and pathways in the Washington, DC cases and controls were compared to cases and controls recruited in France whose specimens were processed using the same platform. Associations between the presence of fecal Fusobacteria, Fusobacterium, and Porphyromonas with colorectal cancer detected by 16S rRNA were reproduced by metagenomics, whereas higher relative abundance of Clostridia in cancer cases based on 16S rRNA was merely borderline based on metagenomics. This demonstrated that within the same sample set, most, but not all taxonomic associations were seen with both methods. Considering significant cancer associations with the relative abundance of genes, modules, and pathways in a recently published French metagenomics dataset, statistically significant associations in the Washington, DC population were detected for four out of 10 genes, three out of nine modules, and seven out of 17 pathways. In total, colorectal cancer status in the Washington, DC study was associated with 39% of the metagenome-predicted genes, modules, and pathways identified in the French study. More within and between population comparisons are needed to identify sources of variation and disease associations that can be reproduced despite these variations. Future studies should have larger sample sizes or pool data across studies to have sufficient power to detect

  12. Colorectal Cancer and the Human Gut Microbiome: Reproducibility with Whole-Genome Shotgun Sequencing.

    Directory of Open Access Journals (Sweden)

    Emily Vogtmann

    Full Text Available Accumulating evidence indicates that the gut microbiota affects colorectal cancer development, but previous studies have varied in population, technical methods, and associations with cancer. Understanding these variations is needed for comparisons and for potential pooling across studies. Therefore, we performed whole-genome shotgun sequencing on fecal samples from 52 pre-treatment colorectal cancer cases and 52 matched controls from Washington, DC. We compared findings from a previously published 16S rRNA study to the metagenomics-derived taxonomy within the same population. In addition, metagenome-predicted genes, modules, and pathways in the Washington, DC cases and controls were compared to cases and controls recruited in France whose specimens were processed using the same platform. Associations between the presence of fecal Fusobacteria, Fusobacterium, and Porphyromonas with colorectal cancer detected by 16S rRNA were reproduced by metagenomics, whereas higher relative abundance of Clostridia in cancer cases based on 16S rRNA was merely borderline based on metagenomics. This demonstrated that within the same sample set, most, but not all taxonomic associations were seen with both methods. Considering significant cancer associations with the relative abundance of genes, modules, and pathways in a recently published French metagenomics dataset, statistically significant associations in the Washington, DC population were detected for four out of 10 genes, three out of nine modules, and seven out of 17 pathways. In total, colorectal cancer status in the Washington, DC study was associated with 39% of the metagenome-predicted genes, modules, and pathways identified in the French study. More within and between population comparisons are needed to identify sources of variation and disease associations that can be reproduced despite these variations. Future studies should have larger sample sizes or pool data across studies to have sufficient

  13. Fine-scale mapping of 8q24 locus identifies multiple independent risk variants for breast cancer.

    Science.gov (United States)

    Shi, Jiajun; Zhang, Yanfeng; Zheng, Wei; Michailidou, Kyriaki; Ghoussaini, Maya; Bolla, Manjeet K; Wang, Qin; Dennis, Joe; Lush, Michael; Milne, Roger L; Shu, Xiao-Ou; Beesley, Jonathan; Kar, Siddhartha; Andrulis, Irene L; Anton-Culver, Hoda; Arndt, Volker; Beckmann, Matthias W; Zhao, Zhiguo; Guo, Xingyi; Benitez, Javier; Beeghly-Fadiel, Alicia; Blot, William; Bogdanova, Natalia V; Bojesen, Stig E; Brauch, Hiltrud; Brenner, Hermann; Brinton, Louise; Broeks, Annegien; Brüning, Thomas; Burwinkel, Barbara; Cai, Hui; Canisius, Sander; Chang-Claude, Jenny; Choi, Ji-Yeob; Couch, Fergus J; Cox, Angela; Cross, Simon S; Czene, Kamila; Darabi, Hatef; Devilee, Peter; Droit, Arnaud; Dork, Thilo; Fasching, Peter A; Fletcher, Olivia; Flyger, Henrik; Fostira, Florentia; Gaborieau, Valerie; García-Closas, Montserrat; Giles, Graham G; Grip, Mervi; Guenel, Pascal; Haiman, Christopher A; Hamann, Ute; Hartman, Mikael; Miao, Hui; Hollestelle, Antoinette; Hopper, John L; Hsiung, Chia-Ni; Ito, Hidemi; Jakubowska, Anna; Johnson, Nichola; Torres, Diana; Kabisch, Maria; Kang, Daehee; Khan, Sofia; Knight, Julia A; Kosma, Veli-Matti; Lambrechts, Diether; Li, Jingmei; Lindblom, Annika; Lophatananon, Artitaya; Lubinski, Jan; Mannermaa, Arto; Manoukian, Siranoush; Le Marchand, Loic; Margolin, Sara; Marme, Frederik; Matsuo, Keitaro; McLean, Catriona; Meindl, Alfons; Muir, Kenneth; Neuhausen, Susan L; Nevanlinna, Heli; Nord, Silje; Børresen-Dale, Anne-Lise; Olson, Janet E; Orr, Nick; van den Ouweland, Ans M W; Peterlongo, Paolo; Choudary Putti, Thomas; Rudolph, Anja; Sangrajrang, Suleeporn; Sawyer, Elinor J; Schmidt, Marjanka K; Schmutzler, Rita K; Shen, Chen-Yang; Hou, Ming-Feng; Shrubsole, Matha J; Southey, Melissa C; Swerdlow, Anthony; Hwang Teo, Soo; Thienpont, Bernard; Toland, Amanda E; Tollenaar, Robert A E M; Tomlinson, Ian; Truong, Therese; Tseng, Chiu-Chen; Wen, Wanqing; Winqvist, Robert; Wu, Anna H; Har Yip, Cheng; Zamora, Pilar M; Zheng, Ying; Floris, Giuseppe; Cheng, Ching-Yu; Hooning, Maartje J; Martens, John W M; Seynaeve, Caroline; Kristensen, Vessela N; Hall, Per; Pharoah, Paul D P; Simard, Jacques; Chenevix-Trench, Georgia; Dunning, Alison M; Antoniou, Antonis C; Easton, Douglas F; Cai, Qiuyin; Long, Jirong

    2016-09-15

    Previous genome-wide association studies among women of European ancestry identified two independent breast cancer susceptibility loci represented by single nucleotide polymorphisms (SNPs) rs13281615 and rs11780156 at 8q24. A fine-mapping study across 2.06 Mb (chr8:127,561,724-129,624,067, hg19) in 55,540 breast cancer cases and 51,168 controls within the Breast Cancer Association Consortium was conducted. Three additional independent association signals in women of European ancestry, represented by rs35961416 (OR = 0.95, 95% CI = 0.93-0.97, conditional p = 5.8 × 10(-6) ), rs7815245 (OR = 0.94, 95% CI = 0.91-0.96, conditional p = 1.1 × 10(-6) ) and rs2033101 (OR = 1.05, 95% CI = 1.02-1.07, conditional p = 1.1 × 10(-4) ) were found. Integrative analysis using functional genomic data from the Roadmap Epigenomics, the Encyclopedia of DNA Elements project, the Cancer Genome Atlas and other public resources implied that SNPs rs7815245 in Signal 3, and rs1121948 in Signal 5 (in linkage disequilibrium with rs11780156, r(2)  = 0.77), were putatively functional variants for two of the five independent association signals. The results highlighted multiple 8q24 variants associated with breast cancer susceptibility in women of European ancestry. PMID:27087578

  14. BAC CGH-array identified specific small-scale genomic imbalances in diploid DMBA-induced rat mammary tumors

    Directory of Open Access Journals (Sweden)

    Samuelson Emma

    2012-08-01

    Full Text Available Abstract Background Development of breast cancer is a multistage process influenced by hormonal and environmental factors as well as by genetic background. The search for genes underlying this malignancy has recently been highly productive, but the etiology behind this complex disease is still not understood. In studies using animal cancer models, heterogeneity of the genetic background and environmental factors is reduced and thus analysis and identification of genetic aberrations in tumors may become easier. To identify chromosomal regions potentially involved in the initiation and progression of mammary cancer, in the present work we subjected a subset of experimental mammary tumors to cytogenetic and molecular genetic analysis. Methods Mammary tumors were induced with DMBA (7,12-dimethylbenz[a]anthrazene in female rats from the susceptible SPRD-Cu3 strain and from crosses and backcrosses between this strain and the resistant WKY strain. We first produced a general overview of chromosomal aberrations in the tumors using conventional kartyotyping (G-banding and Comparative Genome Hybridization (CGH analyses. Particular chromosomal changes were then analyzed in more details using an in-house developed BAC (bacterial artificial chromosome CGH-array platform. Results Tumors appeared to be diploid by conventional karyotyping, however several sub-microscopic chromosome gains or losses in the tumor material were identified by BAC CGH-array analysis. An oncogenetic tree analysis based on the BAC CGH-array data suggested gain of rat chromosome (RNO band 12q11, loss of RNO5q32 or RNO6q21 as the earliest events in the development of these mammary tumors. Conclusions Some of the identified changes appear to be more specific for DMBA-induced mammary tumors and some are similar to those previously reported in ACI rat model for estradiol-induced mammary tumors. The later group of changes is more interesting, since they may represent anomalies that involve

  15. BAC CGH-array identified specific small-scale genomic imbalances in diploid DMBA-induced rat mammary tumors

    International Nuclear Information System (INIS)

    Development of breast cancer is a multistage process influenced by hormonal and environmental factors as well as by genetic background. The search for genes underlying this malignancy has recently been highly productive, but the etiology behind this complex disease is still not understood. In studies using animal cancer models, heterogeneity of the genetic background and environmental factors is reduced and thus analysis and identification of genetic aberrations in tumors may become easier. To identify chromosomal regions potentially involved in the initiation and progression of mammary cancer, in the present work we subjected a subset of experimental mammary tumors to cytogenetic and molecular genetic analysis. Mammary tumors were induced with DMBA (7,12-dimethylbenz[a]anthrazene) in female rats from the susceptible SPRD-Cu3 strain and from crosses and backcrosses between this strain and the resistant WKY strain. We first produced a general overview of chromosomal aberrations in the tumors using conventional kartyotyping (G-banding) and Comparative Genome Hybridization (CGH) analyses. Particular chromosomal changes were then analyzed in more details using an in-house developed BAC (bacterial artificial chromosome) CGH-array platform. Tumors appeared to be diploid by conventional karyotyping, however several sub-microscopic chromosome gains or losses in the tumor material were identified by BAC CGH-array analysis. An oncogenetic tree analysis based on the BAC CGH-array data suggested gain of rat chromosome (RNO) band 12q11, loss of RNO5q32 or RNO6q21 as the earliest events in the development of these mammary tumors. Some of the identified changes appear to be more specific for DMBA-induced mammary tumors and some are similar to those previously reported in ACI rat model for estradiol-induced mammary tumors. The later group of changes is more interesting, since they may represent anomalies that involve genes with a critical role in mammary tumor development. Genetic

  16. Ectopic Expression of Testis Germ Cell Proteins in Cancer and Its Potential Role in Genomic Instability

    OpenAIRE

    Aaraby Yoheswaran Nielsen; Morten Frier Gjerstorff

    2016-01-01

    Genomic instability is a hallmark of human cancer and an enabling factor for the genetic alterations that drive cancer development. The processes involved in genomic instability resemble those of meiosis, where genetic material is interchanged between homologous chromosomes. In most types of human cancer, epigenetic changes, including hypomethylation of gene promoters, lead to the ectopic expression of a large number of proteins normally restricted to the germ cells of the testis. Due to the ...

  17. A de novo complete BRCA1 gene deletion identified in a Spanish woman with early bilateral breast cancer

    Directory of Open Access Journals (Sweden)

    Llombart Pilar

    2011-10-01

    Full Text Available Abstract Background Germline mutations in either of the two tumor-suppressor genes, BRCA1 and BRCA2, account for a significant proportion of hereditary breast and ovarian cancer cases. Most of these mutations consist of deletions, insertions, nonsense mutations, and splice variants, however an increasing number of large genomic rearrangements have been identified in these genes. Methods We analysed BRCA1 and BRCA2 genes by direct sequencing and MLPA. We confirmed the results by an alternative MLPA kit and characterized the BRCA1 deletion by Array CGH. Results We describe the first case of a patient with no strong family history of the disease who developed early-onset bilateral breast cancer with a de novo complete BRCA1 gene deletion in the germinal line. The detected deletion started from the region surrounding the VAT1 locus to the beginning of NBR1 gene, including the RND2, ΨBRCA1, BRCA1 and NBR2 complete genes. Conclusion This finding supports the large genomic rearrangement screening of BRCA genes in young breast cancer patients without family history, as well as in hereditary breast and ovarian cancer families previously tested negative for other variations.

  18. Cancer-predisposition gene KLLN maintains pericentric H3K9 trimethylation protecting genomic stability.

    Science.gov (United States)

    Nizialek, Emily A; Sankunny, Madhav; Niazi, Farshad; Eng, Charis

    2016-05-01

    Maintenance of proper chromatin states and genomic stability is vital for normal development and health across a range of organisms. Here, we report on the role of KLLN in maintenance of pericentric H3K9 trimethylation (H3K9me3) and genomic stability. Germline hypermethylation of KLLN, a gene uncovered well after the human genome project, has been linked to Cowden cancer-predisposition syndrome (CS) in PTEN wild-type cases. KLLN first identified as a p53-dependent tumor suppressor gene, was believed to bind randomly to DNA and cause S-phase arrest. Using chromatin immunoprecipitation-based sequencing (ChIP-seq), we demonstrated that KLLN binds to DNA regions enriched with H3K9me3. KLLN overexpression correlated with increased H3K9 methyltransferase activity and increased global H3K9me3, while knockdown of KLLN had an opposite effect. We also found KLLN to localize to pericentric regions, with loss of KLLN resulting in dysregulation of pericentric heterochromatin, with consequent chromosomal instability manifested by increased micronuclei formation and numerical chromosomal aberrations. Interestingly, we show that KLLN interacts with DBC1, with consequent abrogation of DBC1 inhibition of SUV39H1, a H3K9 methyltransferase, suggesting the mode of KLLN regulating H3K9me3. These results suggest a critical role for KLLN as a potential regulator of pericentric heterochromatin formation, genomic stability and gene expression. PMID:26673699

  19. Cancer-predisposition gene KLLN maintains pericentric H3K9 trimethylation protecting genomic stability

    Science.gov (United States)

    Nizialek, Emily A.; Sankunny, Madhav; Niazi, Farshad; Eng, Charis

    2016-01-01

    Maintenance of proper chromatin states and genomic stability is vital for normal development and health across a range of organisms. Here, we report on the role of KLLN in maintenance of pericentric H3K9 trimethylation (H3K9me3) and genomic stability. Germline hypermethylation of KLLN, a gene uncovered well after the human genome project, has been linked to Cowden cancer-predisposition syndrome (CS) in PTEN wild-type cases. KLLN first identified as a p53-dependent tumor suppressor gene, was believed to bind randomly to DNA and cause S-phase arrest. Using chromatin immunoprecipitation-based sequencing (ChIP-seq), we demonstrated that KLLN binds to DNA regions enriched with H3K9me3. KLLN overexpression correlated with increased H3K9 methyltransferase activity and increased global H3K9me3, while knockdown of KLLN had an opposite effect. We also found KLLN to localize to pericentric regions, with loss of KLLN resulting in dysregulation of pericentric heterochromatin, with consequent chromosomal instability manifested by increased micronuclei formation and numerical chromosomal aberrations. Interestingly, we show that KLLN interacts with DBC1, with consequent abrogation of DBC1 inhibition of SUV39H1, a H3K9 methyltransferase, suggesting the mode of KLLN regulating H3K9me3. These results suggest a critical role for KLLN as a potential regulator of pericentric heterochromatin formation, genomic stability and gene expression. PMID:26673699

  20. A genome-wide association scan in pig identifies novel regions associated with feed efficiency trait

    DEFF Research Database (Denmark)

    Sahana, Goutam; Kadlecová, Veronika; Hornshøj, Henrik;

    2013-01-01

    Feed conversion ratio (FCR) is an economically important trait in pigs and feed accounts for a significant proportion of the costs involved in pig production. In this study we used a high density SNP chip panel, Porcine SNP60 BeadChip, to identify association between FCR and SNP markers and to......,071 Duroc pigs had both FCR data and genotype data. The linkage disequilibrium (r2) between adjacent markers was 0.56. Two association mapping approaches were used: linear mixed model (LMM) based on single locus regression analysis and a Bayesian variable selection approach (BVS). A total of 79 significant...... (p < 0.0001) SNP associations on six chromosomes were identified by LMM analyses. Out of these, ten SNPs crossed the genome-wide significance threshold. These ten SNPs were all located on the chromosomes 4 and 14. In the BVS analysis, a total of 44 SNPs located on 12 chromosomes had posterior...

  1. Targeted parallel sequencing of large genetically-defined genomic regions for identifying mutations in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Liu Kun-hsiang

    2012-03-01

    Full Text Available Abstract Large-scale genetic screens in Arabidopsis are a powerful approach for molecular dissection of complex signaling networks. However, map-based cloning can be time-consuming or even hampered due to low chromosomal recombination. Current strategies using next generation sequencing for molecular identification of mutations require whole genome sequencing and advanced computational devises and skills, which are not readily accessible or affordable to every laboratory. We have developed a streamlined method using parallel massive sequencing for mutant identification in which only targeted regions are sequenced. This targeted parallel sequencing (TPSeq method is more cost-effective, straightforward enough to be easily done without specialized bioinformatics expertise, and reliable for identifying multiple mutations simultaneously. Here, we demonstrate its use by identifying three novel nitrate-signaling mutants in Arabidopsis.

  2. Lessons learned from the application of whole-genome analysis to the treatment of patients with advanced cancers

    Science.gov (United States)

    Laskin, Janessa; Jones, Steven; Aparicio, Samuel; Chia, Stephen; Ch'ng, Carolyn; Deyell, Rebecca; Eirew, Peter; Fok, Alexandra; Gelmon, Karen; Ho, Cheryl; Huntsman, David; Jones, Martin; Kasaian, Katayoon; Karsan, Aly; Leelakumari, Sreeja; Li, Yvonne; Lim, Howard; Ma, Yussanne; Mar, Colin; Martin, Monty; Moore, Richard; Mungall, Andrew; Mungall, Karen; Pleasance, Erin; Rassekh, S. Rod; Renouf, Daniel; Shen, Yaoqing; Schein, Jacqueline; Schrader, Kasmintan; Sun, Sophie; Tinker, Anna; Zhao, Eric; Yip, Stephen; Marra, Marco A.

    2015-01-01

    Given the success of targeted agents in specific populations it is expected that some degree of molecular biomarker testing will become standard of care for many, if not all, cancers. To facilitate this, cancer centers worldwide are experimenting with targeted “panel” sequencing of selected mutations. Recent advances in genomic technology enable the generation of genome-scale data sets for individual patients. Recognizing the risk, inherent in panel sequencing, of failing to detect meaningful somatic alterations, we sought to establish processes to integrate data from whole-genome analysis (WGA) into routine cancer care. Between June 2012 and August 2014, 100 adult patients with incurable cancers consented to participate in the Personalized OncoGenomics (POG) study. Fresh tumor and blood samples were obtained and used for whole-genome and RNA sequencing. Computational approaches were used to identify candidate driver mutations, genes, and pathways. Diagnostic and drug information were then sought based on these candidate “drivers.” Reports were generated and discussed weekly in a multidisciplinary team setting. Other multidisciplinary working groups were assembled to establish guidelines on the interpretation, communication, and integration of individual genomic findings into patient care. Of 78 patients for whom WGA was possible, results were considered actionable in 55 cases. In 23 of these 55 cases, the patients received treatments motivated by WGA. Our experience indicates that a multidisciplinary team of clinicians and scientists can implement a paradigm in which WGA is integrated into the care of late stage cancer patients to inform systemic therapy decisions. PMID:27148575

  3. Structural variation discovery in the cancer genome using next generation sequencing: Computational solutions and perspectives

    Science.gov (United States)

    Liu, Biao; Conroy, Jeffrey M.; Morrison, Carl D.; Odunsi, Adekunle O.; Qin, Maochun; Wei, Lei; Trump, Donald L.; Johnson, Candace S.; Liu, Song; Wang, Jianmin

    2015-01-01

    Somatic Structural Variations (SVs) are a complex collection of chromosomal mutations that could directly contribute to carcinogenesis. Next Generation Sequencing (NGS) technology has emerged as the primary means of interrogating the SVs of the cancer genome in recent investigations. Sophisticated computational methods are required to accurately identify the SV events and delineate their breakpoints from the massive amounts of reads generated by a NGS experiment. In this review, we provide an overview of current analytic tools used for SV detection in NGS-based cancer studies. We summarize the features of common SV groups and the primary types of NGS signatures that can be used in SV detection methods. We discuss the principles and key similarities and differences of existing computational programs and comment on unresolved issues related to this research field. The aim of this article is to provide a practical guide of relevant concepts, computational methods, software tools and important factors for analyzing and interpreting NGS data for the detection of SVs in the cancer genome. PMID:25849937

  4. Genome-wide search for gene-gene interactions in colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Shuo Jiao

    Full Text Available Genome-wide association studies (GWAS have successfully identified a number of single-nucleotide polymorphisms (SNPs associated with colorectal cancer (CRC risk. However, these susceptibility loci known today explain only a small fraction of the genetic risk. Gene-gene interaction (GxG is considered to be one source of the missing heritability. To address this, we performed a genome-wide search for pair-wise GxG associated with CRC risk using 8,380 cases and 10,558 controls in the discovery phase and 2,527 cases and 2,658 controls in the replication phase. We developed a simple, but powerful method for testing interaction, which we term the Average Risk Due to Interaction (ARDI. With this method, we conducted a genome-wide search to identify SNPs showing evidence for GxG with previously identified CRC susceptibility loci from 14 independent regions. We also conducted a genome-wide search for GxG using the marginal association screening and examining interaction among SNPs that pass the screening threshold (p<10(-4. For the known locus rs10795668 (10p14, we found an interacting SNP rs367615 (5q21 with replication p = 0.01 and combined p = 4.19×10(-8. Among the top marginal SNPs after LD pruning (n = 163, we identified an interaction between rs1571218 (20p12.3 and rs10879357 (12q21.1 (nominal combined p = 2.51×10(-6; Bonferroni adjusted p = 0.03. Our study represents the first comprehensive search for GxG in CRC, and our results may provide new insight into the genetic etiology of CRC.

  5. The Impact of Genomic Profiling for Novel Cancer Therapy--Recent Progress in Non-Small Cell Lung Cancer.

    Science.gov (United States)

    Xie, Jingwu; Zhang, Xiaoli

    2016-01-20

    There is high expectation for significant improvements in cancer patient care after completion of the human genome project in 2003. Through pains-taking analyses of genomic profiles in cancer patients, a number of targetable gene alterations have been discovered, with some leading to novel therapies, such as activating mutations of EGFR, BRAF and ALK gene fusions. As a result, clinical management of cancer through targeted therapy has finally become a reality for a subset of cancers, such as lung adenocarcinomas and melanomas. In this review, we summarize how gene mutation discovery leads to new treatment strategies using non-small cell lung cancer (NSCLC) as an example. We also discuss possible future implications of cancer genome analyses. PMID:26842989

  6. Economic evidence on identifying clinically actionable findings with whole-genome sequencing: a scoping review.

    Science.gov (United States)

    Douglas, Michael P; Ladabaum, Uri; Pletcher, Mark J; Marshall, Deborah A; Phillips, Kathryn A

    2016-02-01

    The American College of Medical Genetics and Genomics (ACMG) recommends that mutations in 56 genes for 24 conditions are clinically actionable and should be reported as secondary findings after whole-genome sequencing (WGS). Our aim was to identify published economic evaluations of detecting mutations in these genes among the general population or among targeted/high-risk populations and conditions and identify gaps in knowledge. A targeted PubMed search from 1994 through November 2014 was performed, and we included original, English-language articles reporting cost-effectiveness or a cost-to-utility ratio or net benefits/benefit-cost focused on screening (not treatment) for conditions and genes listed by the ACMG. Articles were screened, classified as targeting a high-risk or general population, and abstracted by two reviewers. General population studies were evaluated for actual cost-effectiveness measures (e.g., incremental cost-effectiveness ratios (ICER)), whereas studies of targeted populations were evaluated for whether at least one scenario proposed was cost-effective (e.g., ICER of ≤$100,000 per life-year or quality-adjusted life-year gained). A total of 607 studies were identified, and 32 relevant studies were included. Identified studies addressed fewer than one-third (7 of 24; 29%) of the ACMG conditions. The cost-effectiveness of screening in the general population was examined for only 2 of 24 conditions (8%). The cost-effectiveness of most genetic findings that the ACMG recommends for return has not been evaluated in economic studies or in the context of screening in the general population. The individual studies do not directly address the cost-effectiveness of WGS. PMID:25996638

  7. Statistical techniques to construct assays for identifying likely responders to a treatment under evaluation from cell line genomic data

    Directory of Open Access Journals (Sweden)

    Shi Xiaoyan

    2010-10-01

    Full Text Available Abstract Background Developing the right drugs for the right patients has become a mantra of drug development. In practice, it is very difficult to identify subsets of patients who will respond to a drug under evaluation. Most of the time, no single diagnostic will be available, and more complex decision rules will be required to define a sensitive population, using, for instance, mRNA expression, protein expression or DNA copy number. Moreover, diagnostic development will often begin with in-vitro cell-line data and a high-dimensional exploratory platform, only later to be transferred to a diagnostic assay for use with patient samples. In this manuscript, we present a novel approach to developing robust genomic predictors that are not only capable of generalizing from in-vitro to patient, but are also amenable to clinically validated assays such as qRT-PCR. Methods Using our approach, we constructed a predictor of sensitivity to dacetuzumab, an investigational drug for CD40-expressing malignancies such as lymphoma using genomic measurements of cell lines treated with dacetuzumab. Additionally, we evaluated several state-of-the-art prediction methods by independently pairing the feature selection and classification components of the predictor. In this way, we constructed several predictors that we validated on an independent DLBCL patient dataset. Similar analyses were performed on genomic measurements of breast cancer cell lines and patients to construct a predictor of estrogen receptor (ER status. Results The best dacetuzumab sensitivity predictors involved ten or fewer genes and accurately classified lymphoma patients by their survival and known prognostic subtypes. The best ER status classifiers involved one or two genes and led to accurate ER status predictions more than 85% of the time. The novel method we proposed performed as well or better than other methods evaluated. Conclusions We demonstrated the feasibility of combining feature

  8. Statistical techniques to construct assays for identifying likely responders to a treatment under evaluation from cell line genomic data

    International Nuclear Information System (INIS)

    Developing the right drugs for the right patients has become a mantra of drug development. In practice, it is very difficult to identify subsets of patients who will respond to a drug under evaluation. Most of the time, no single diagnostic will be available, and more complex decision rules will be required to define a sensitive population, using, for instance, mRNA expression, protein expression or DNA copy number. Moreover, diagnostic development will often begin with in-vitro cell-line data and a high-dimensional exploratory platform, only later to be transferred to a diagnostic assay for use with patient samples. In this manuscript, we present a novel approach to developing robust genomic predictors that are not only capable of generalizing from in-vitro to patient, but are also amenable to clinically validated assays such as qRT-PCR. Using our approach, we constructed a predictor of sensitivity to dacetuzumab, an investigational drug for CD40-expressing malignancies such as lymphoma using genomic measurements of cell lines treated with dacetuzumab. Additionally, we evaluated several state-of-the-art prediction methods by independently pairing the feature selection and classification components of the predictor. In this way, we constructed several predictors that we validated on an independent DLBCL patient dataset. Similar analyses were performed on genomic measurements of breast cancer cell lines and patients to construct a predictor of estrogen receptor (ER) status. The best dacetuzumab sensitivity predictors involved ten or fewer genes and accurately classified lymphoma patients by their survival and known prognostic subtypes. The best ER status classifiers involved one or two genes and led to accurate ER status predictions more than 85% of the time. The novel method we proposed performed as well or better than other methods evaluated. We demonstrated the feasibility of combining feature selection techniques with classification methods to develop assays

  9. Comparative genomic analyses identify common molecular pathways modulated upon exposure to low doses of arsenic and cadmium

    Directory of Open Access Journals (Sweden)

    Fry Rebecca C

    2011-04-01

    Full Text Available Abstract Background Exposure to the toxic metals arsenic and cadmium is associated with detrimental health effects including cancers of various organs. While arsenic and cadmium are well known to cause adverse health effects at high doses, the molecular impact resulting from exposure to environmentally relevant doses of these metals remains largely unexplored. Results In this study, we examined the effects of in vitro exposure to either arsenic or cadmium in human TK6 lymphoblastoid cells using genomics and systems level pathway mapping approaches. A total of 167 genes with differential expression were identified following exposure to either metal with surprisingly no overlap between the two. Real-time PCR was used to confirm target gene expression changes. The gene sets were overlaid onto protein-protein interaction maps to identify metal-induced transcriptional networks. Interestingly, both metal-induced networks were significantly enriched for proteins involved in common biological processes such as tumorigenesis, inflammation, and cell signaling. These findings were further supported by gene set enrichment analysis. Conclusions This study is the first to compare the transcriptional responses induced by low dose exposure to cadmium and arsenic in human lymphoblastoid cells. These results highlight that even at low levels of exposure both metals can dramatically influence the expression of important cellular pathways.

  10. Open pipelines for integrated tumor genome profiles reveal differences between pancreatic cancer tumors and cell lines

    International Nuclear Information System (INIS)

    We describe open, reproducible pipelines that create an integrated genomic profile of a cancer and use the profile to find mutations associated with disease and potentially useful drugs. These pipelines analyze high-throughput cancer exome and transcriptome sequence data together with public databases to find relevant mutations and drugs. The three pipelines that we have developed are: (1) an exome analysis pipeline, which uses whole or targeted tumor exome sequence data to produce a list of putative variants (no matched normal data are needed); (2) a transcriptome analysis pipeline that processes whole tumor transcriptome sequence (RNA-seq) data to compute gene expression and find potential gene fusions; and (3) an integrated variant analysis pipeline that uses the tumor variants from the exome pipeline and tumor gene expression from the transcriptome pipeline to identify deleterious and druggable mutations in all genes and in highly expressed genes. These pipelines are integrated into the popular Web platform Galaxy at #http://usegalaxy.org/cancer# to make them accessible and reproducible, thereby providing an approach for doing standardized, distributed analyses in clinical studies. We have used our pipeline to identify similarities and differences between pancreatic adenocarcinoma cancer cell lines and primary tumors

  11. Genome-wide association study of pancreatic cancer in Japanese population.

    Directory of Open Access Journals (Sweden)

    Siew-Kee Low

    Full Text Available Pancreatic cancer shows very poor prognosis and is the fifth leading cause of cancer death in Japan. Previous studies indicated some genetic factors contributing to the development and progression of pancreatic cancer; however, there are limited reports for common genetic variants to be associated with this disease, especially in the Asian population. We have conducted a genome-wide association study (GWAS using 991 invasive pancreatic ductal adenocarcinoma cases and 5,209 controls, and identified three loci showing significant association (P-value<5x10(-7 with susceptibility to pancreatic cancer. The SNPs that showed significant association carried estimated odds ratios of 1.29, 1.32, and 3.73 with 95% confidence intervals of 1.17-1.43, 1.19-1.47, and 2.24-6.21; P-value of 3.30x10(-7, 3.30x10(-7, and 4.41x10(-7; located on chromosomes 6p25.3, 12p11.21 and 7q36.2, respectively. These associated SNPs are located within linkage disequilibrium blocks containing genes that have been implicated some roles in the oncogenesis of pancreatic cancer.

  12. A meta-analysis of genome-wide association studies identifies novel variants associated with osteoarthritis of the hip

    DEFF Research Database (Denmark)

    Evangelou, Evangelos; Kerkhof, Hanneke J; Styrkarsdottir, Unnur;

    2014-01-01

    Osteoarthritis (OA) is the most common form of arthritis with a clear genetic component. To identify novel loci associated with hip OA we performed a meta-analysis of genome-wide association studies (GWAS) on European subjects....

  13. Targeted Next-Generation Sequencing Identifies a Recurrent Mutation in MCPH1 Associating with Hereditary Breast Cancer Susceptibility.

    Directory of Open Access Journals (Sweden)

    Tuomo Mantere

    2016-01-01

    Full Text Available Breast cancer is strongly influenced by hereditary risk factors, a majority of which still remain unknown. Here, we performed a targeted next-generation sequencing of 796 genes implicated in DNA repair in 189 Finnish breast cancer cases with indication of hereditary disease susceptibility and focused the analysis on protein truncating mutations. A recurrent heterozygous mutation (c.904_916del, p.Arg304ValfsTer3 was identified in early DNA damage response gene, MCPH1, significantly associating with breast cancer susceptibility both in familial (5/145, 3.4%, P = 0.003, OR 8.3 and unselected cases (16/1150, 1.4%, P = 0.016, OR 3.3. A total of 21 mutation positive families were identified, of which one-third exhibited also brain tumors and/or sarcomas (P = 0.0007. Mutation carriers exhibited significant increase in genomic instability assessed by cytogenetic analysis for spontaneous chromosomal rearrangements in peripheral blood lymphocytes (P = 0.0007, suggesting an effect for MCPH1 haploinsufficiency on cancer susceptibility. Furthermore, 40% of the mutation carrier tumors exhibited loss of the wild-type allele. These findings collectively provide strong evidence for MCHP1 being a novel breast cancer susceptibility gene, which warrants further investigations in other populations.

  14. Targeted Next-Generation Sequencing Identifies a Recurrent Mutation in MCPH1 Associating with Hereditary Breast Cancer Susceptibility

    Science.gov (United States)

    Mantere, Tuomo; Winqvist, Robert; Kauppila, Saila; Grip, Mervi; Jukkola-Vuorinen, Arja; Tervasmäki, Anna; Rapakko, Katrin; Pylkäs, Katri

    2016-01-01

    Breast cancer is strongly influenced by hereditary risk factors, a majority of which still remain unknown. Here, we performed a targeted next-generation sequencing of 796 genes implicated in DNA repair in 189 Finnish breast cancer cases with indication of hereditary disease susceptibility and focused the analysis on protein truncating mutations. A recurrent heterozygous mutation (c.904_916del, p.Arg304ValfsTer3) was identified in early DNA damage response gene, MCPH1, significantly associating with breast cancer susceptibility both in familial (5/145, 3.4%, P = 0.003, OR 8.3) and unselected cases (16/1150, 1.4%, P = 0.016, OR 3.3). A total of 21 mutation positive families were identified, of which one-third exhibited also brain tumors and/or sarcomas (P = 0.0007). Mutation carriers exhibited significant increase in genomic instability assessed by cytogenetic analysis for spontaneous chromosomal rearrangements in peripheral blood lymphocytes (P = 0.0007), suggesting an effect for MCPH1 haploinsufficiency on cancer susceptibility. Furthermore, 40% of the mutation carrier tumors exhibited loss of the wild-type allele. These findings collectively provide strong evidence for MCHP1 being a novel breast cancer susceptibility gene, which warrants further investigations in other populations. PMID:26820313

  15. Quantitative Proteomic Analysis of Ovarian Cancer Cells Identified Mitochondrial Proteins Associated with Paclitaxel Resistance

    OpenAIRE

    Tian, Yuan; Tan, Aik-Choon; Sun, Xiaer; Olson, Matthew T.; Xie, Zhi; Jinawath, Natini; Chan, Daniel W; Shih, Ie-Ming; Zhang, Zhen; Zhang, Hui

    2009-01-01

    Paclitaxel has been widely used as an anti-mitotic agent in chemotherapy for a variety of cancers and adds substantial efficacy as the first-line chemotherapeutic regimen for ovarian cancers. However, the frequent occurrence of paclitaxel resistance limits its function in long-term management. Despite abundant clinical and cellular demonstration of paclitaxel resistant tumors, the molecular mechanisms leading to paclitaxel resistance are poorly understood. Using genomic approaches, we have pr...

  16. Whole-genome characterization of chemoresistant ovarian cancer.

    Science.gov (United States)

    Patch, Ann-Marie; Christie, Elizabeth L; Etemadmoghadam, Dariush; Garsed, Dale W; George, Joshy; Fereday, Sian; Nones, Katia; Cowin, Prue; Alsop, Kathryn; Bailey, Peter J; Kassahn, Karin S; Newell, Felicity; Quinn, Michael C J; Kazakoff, Stephen; Quek, Kelly; Wilhelm-Benartzi, Charlotte; Curry, Ed; Leong, Huei San; Hamilton, Anne; Mileshkin, Linda; Au-Yeung, George; Kennedy, Catherine; Hung, Jillian; Chiew, Yoke-Eng; Harnett, Paul; Friedlander, Michael; Quinn, Michael; Pyman, Jan; Cordner, Stephen; O'Brien, Patricia; Leditschke, Jodie; Young, Greg; Strachan, Kate; Waring, Paul; Azar, Walid; Mitchell, Chris; Traficante, Nadia; Hendley, Joy; Thorne, Heather; Shackleton, Mark; Miller, David K; Arnau, Gisela Mir; Tothill, Richard W; Holloway, Timothy P; Semple, Timothy; Harliwong, Ivon; Nourse, Craig; Nourbakhsh, Ehsan; Manning, Suzanne; Idrisoglu, Senel; Bruxner, Timothy J C; Christ, Angelika N; Poudel, Barsha; Holmes, Oliver; Anderson, Matthew; Leonard, Conrad; Lonie, Andrew; Hall, Nathan; Wood, Scott; Taylor, Darrin F; Xu, Qinying; Fink, J Lynn; Waddell, Nick; Drapkin, Ronny; Stronach, Euan; Gabra, Hani; Brown, Robert; Jewell, Andrea; Nagaraj, Shivashankar H; Markham, Emma; Wilson, Peter J; Ellul, Jason; McNally, Orla; Doyle, Maria A; Vedururu, Ravikiran; Stewart, Collin; Lengyel, Ernst; Pearson, John V; Waddell, Nicola; deFazio, Anna; Grimmond, Sean M; Bowtell, David D L

    2015-05-28

    Patients with high-grade serous ovarian cancer (HGSC) have experienced little improvement in overall survival, and standard treatment has not advanced beyond platinum-based combination chemotherapy, during the past 30 years. To understand the drivers of clinical phenotypes better, here we use whole-genome sequencing of tumour and germline DNA samples from 92 patients with primary refractory, resistant, sensitive and matched acquired resistant disease. We show that gene breakage commonly inactivates the tumour suppressors RB1, NF1, RAD51B and PTEN in HGSC, and contributes to acquired chemotherapy resistance. CCNE1 amplification was common in primary resistant and refractory disease. We observed several molecular events associated with acquired resistance, including multiple independent reversions of germline BRCA1 or BRCA2 mutations in individual patients, loss of BRCA1 promoter methylation, an alteration in molecular subtype, and recurrent promoter fusion associated with overexpression of the drug efflux pump MDR1. PMID:26017449

  17. Genetic profiles of gastroesophageal cancer: combined analysis using expression array and tiling array--comparative genomic hybridization

    DEFF Research Database (Denmark)

    Isinger-Ekstrand, Anna; Johansson, Jan; Ohlsson, Mattias;

    2010-01-01

    /losses and gene expression profiles show strong similarity between cancers in the distal esophagus and the gastroesophageal junction with frequent upregulation of CDK6 and EGFR, whereas gastric cancer displays distinct genetic changes. These data suggest that molecular diagnostics and targeted therapies can......We aimed to characterize the genomic profiles of adenocarcinomas in the gastroesophageal junction in relation to cancers in the esophagus and the stomach. Profiles of gains/losses as well as gene expression profiles were obtained from 27 gastroesophageal adenocarcinomas by means of 32k high......15, 13q34, and 12q13, whereas different profiles with gains at 5p15, 7p22, 2q35, and 13q34 characterized gastric cancers. CDK6 and EGFR were identified as putative target genes in cancers of the esophagus and the gastroesophageal junction, with upregulation in one quarter of the tumors. Gains...

  18. Mutation of mitochondria genome: trigger of somatic cell transforming to cancer cell.

    Science.gov (United States)

    Jianping, Du

    2010-01-01

    Nearly 80 years ago, scientist Otto Warburg originated a hypothesis that the cause of cancer is primarily a defect in energy metabolism. Following studies showed that mitochondria impact carcinogenesis to remodel somatic cells to cancer cells through modifying the genome, through maintenance the tumorigenic phenotype, and through apoptosis. And the Endosymbiotic Theory explains the origin of mitochondria and eukaryotes, on the other hands, the mitochondria also can fall back. Compared to chromosome genomes, the mitochondria genomes were not restricted by introns so they were mutated(fall back) easy. The result is that mitochondria lose function and internal environment of somatic cell become acid and evoked chromosome genomes to mutate, in the end somatic cells become cancer cells. It is the trigger of somatic cell transforming to cancer cell that mitochondria genome happen mutation and lose function. PMID:20181100

  19. The national cancer institute (NCI) and cancer biology in a 'post genome world'

    International Nuclear Information System (INIS)

    The National Cancer Institute (NCI) exists to reduce the burden of all cancers through research and discovery. Extensive restructuring of the NCI over the past year has been aimed at assuring that the institution functions in all ways to promote opportunities for discovery in the laboratory, in the clinic, and in the community. To do this well requires the difficult and almost paradoxical problem of planning for scientific discovery which, in turn is based on the freedom to pursue the unanticipated. The intellectual and structural landscape of science is changing and it places new challenges, new demands and new opportunities for facilitating discovery. The nature of cancer as a disease of genomic instability and of accumulated genetic change, coupled with a possibility of the development of new technologies for reading, utilizing, interpreting and manipulating the genome of single cells, provides unprecedented opportunities for a new type of high through-put biology that will change the nature of discovery, cancer detection, diagnosis, prognosis, therapeutic decision-making and therapeutic discovery. To capture these new opportunities will require attention to be paid to integrate the development of technology and new scientific discoveries with the ability to apply advances rapidly and efficiently through clinical trials

  20. Genome-wide meta-analyses identify multiple loci associated with smoking behavior.

    LENUS (Irish Health Repository)

    2010-05-01

    Consistent but indirect evidence has implicated genetic factors in smoking behavior. We report meta-analyses of several smoking phenotypes within cohorts of the Tobacco and Genetics Consortium (n = 74,053). We also partnered with the European Network of Genetic and Genomic Epidemiology (ENGAGE) and Oxford-GlaxoSmithKline (Ox-GSK) consortia to follow up the 15 most significant regions (n > 140,000). We identified three loci associated with number of cigarettes smoked per day. The strongest association was a synonymous 15q25 SNP in the nicotinic receptor gene CHRNA3 (rs1051730[A], beta = 1.03, standard error (s.e.) = 0.053, P = 2.8 x 10(-73)). Two 10q25 SNPs (rs1329650[G], beta = 0.367, s.e. = 0.059, P = 5.7 x 10(-10); and rs1028936[A], beta = 0.446, s.e. = 0.074, P = 1.3 x 10(-9)) and one 9q13 SNP in EGLN2 (rs3733829[G], beta = 0.333, s.e. = 0.058, P = 1.0 x 10(-8)) also exceeded genome-wide significance for cigarettes per day. For smoking initiation, eight SNPs exceeded genome-wide significance, with the strongest association at a nonsynonymous SNP in BDNF on chromosome 11 (rs6265[C], odds ratio (OR) = 1.06, 95% confidence interval (Cl) 1.04-1.08, P = 1.8 x 10(-8)). One SNP located near DBH on chromosome 9 (rs3025343[G], OR = 1.12, 95% Cl 1.08-1.18, P = 3.6 x 10(-8)) was significantly associated with smoking cessation.

  1. Frequent genomic loss at chr16p13.2 is associated with poor prognosis in colorectal cancer

    DEFF Research Database (Denmark)

    Andersen, Claus Lindbjerg; Lamy, Philippe; Thorsen, Kasper; Kjeldsen, Eigil; Wikman, Friedrik; Villesen, Palle; Øster, Bodil; Laurberg, Søren; Ørntoft, Torben Falck

    2010-01-01

    Genomic alterations play important roles in colorectal cancer (CRC) carcinogenesis. Here we aimed to identify and characterize recurrent copy number alterations associated with clinical outcome of CRC by the use of single nucleotide polymorphism arrays, genomic qPCR, and fluorescence in situ...... stability and could be validated by q-PCR in an independent sample cohort (n=71). In stage II/III MSS CRC it was associated with poor recurrence free survival (HR 2.4; p = 0.02; Multivariate Cox regression analysis). No transcriptional consequences of the losses were observed, and the only gene, A2BP1...

  2. Genome sequencing and analysis of the Tasmanian devil and its transmissible cancer.

    Science.gov (United States)

    Murchison, Elizabeth P; Schulz-Trieglaff, Ole B; Ning, Zemin; Alexandrov, Ludmil B; Bauer, Markus J; Fu, Beiyuan; Hims, Matthew; Ding, Zhihao; Ivakhno, Sergii; Stewart, Caitlin; Ng, Bee Ling; Wong, Wendy; Aken, Bronwen; White, Simon; Alsop, Amber; Becq, Jennifer; Bignell, Graham R; Cheetham, R Keira; Cheng, William; Connor, Thomas R; Cox, Anthony J; Feng, Zhi-Ping; Gu, Yong; Grocock, Russell J; Harris, Simon R; Khrebtukova, Irina; Kingsbury, Zoya; Kowarsky, Mark; Kreiss, Alexandre; Luo, Shujun; Marshall, John; McBride, David J; Murray, Lisa; Pearse, Anne-Maree; Raine, Keiran; Rasolonjatovo, Isabelle; Shaw, Richard; Tedder, Philip; Tregidgo, Carolyn; Vilella, Albert J; Wedge, David C; Woods, Gregory M; Gormley, Niall; Humphray, Sean; Schroth, Gary; Smith, Geoffrey; Hall, Kevin; Searle, Stephen M J; Carter, Nigel P; Papenfuss, Anthony T; Futreal, P Andrew; Campbell, Peter J; Yang, Fengtang; Bentley, David R; Evers, Dirk J; Stratton, Michael R

    2012-02-17

    The Tasmanian devil (Sarcophilus harrisii), the largest marsupial carnivore, is endangered due to a transmissible facial cancer spread by direct transfer of living cancer cells through biting. Here we describe the sequencing, assembly, and annotation of the Tasmanian devil genome and whole-genome sequences for two geographically distant subclones of the cancer. Genomic analysis suggests that the cancer first arose from a female Tasmanian devil and that the clone has subsequently genetically diverged during its spread across Tasmania. The devil cancer genome contains more than 17,000 somatic base substitution mutations and bears the imprint of a distinct mutational process. Genotyping of somatic mutations in 104 geographically and temporally distributed Tasmanian devil tumors reveals the pattern of evolution and spread of this parasitic clonal lineage, with evidence of a selective sweep in one geographical area and persistence of parallel lineages in other populations. PMID:22341448

  3. Global assessment of promoter methylation in a mouse model of cancer identifies ID4 as a putative tumor-suppressor gene in human leukemia

    Institute of Scientific and Technical Information of China (English)

    LiYu; ChunhuiLiu; JeffVandeusen; BrianBecknell; ZunyanDai; Yue-ZhongWu; AparnaRaval; Te-HuiLiu; WeiDing; CharleneMao; ShujunLiu; LauraTSmith; StephenLee; LauraRassenti; GuidoMarcucci; JohnByrd; MichaelACaligiuri; ChristophPlass

    2005-01-01

    DNA methylation is associated with malignant transformation, but limitations imposed by genetic variability, tumor heterogeneity, availability of paired normal tissues and methodologies for global assessment of DNA methylation have limited progress in understanding the extent of epigenetic events in the initiation and progression of human cancer and in identifying genes that undergo methylation during cancer. We developed a mouse model of T/natural killer acute lymphoblastic leukemia that is always preceded by polyclonal lymphocyte expansion to determine how aberrant promoter DNA methylation and consequent gene silencing might be contributing to leukemic transformation. We used restriction landmark genomic scanning with this mouse model of preleukemia reproducibly progressing to leukemia to show that specific genomic methylation is associated with only the leukemic phase and is not random. We also identified Idb4 as a putative tumor-suppressor gene that is methylated in most mouse and human leukemias but in only a minority of other human cancers.

  4. Whole-genome sequencing identifies EN1 as a determinant of bone density and fracture

    Science.gov (United States)

    Zheng, Hou-Feng; Forgetta, Vincenzo; Hsu, Yi-Hsiang; Estrada, Karol; Rosello-Diez, Alberto; Leo, Paul J; Dahia, Chitra L; Park-Min, Kyung Hyun; Tobias, Jonathan H; Kooperberg, Charles; Kleinman, Aaron; Styrkarsdottir, Unnur; Liu, Ching-Ti; Uggla, Charlotta; Evans, Daniel S; Nielson, Carrie M; Walter, Klaudia; Pettersson-Kymmer, Ulrika; McCarthy, Shane; Eriksson, Joel; Kwan, Tony; Jhamai, Mila; Trajanoska, Katerina; Memari, Yasin; Min, Josine; Huang, Jie; Danecek, Petr; Wilmot, Beth; Li, Rui; Chou, Wen-Chi; Mokry, Lauren E; Moayyeri, Alireza; Claussnitzer, Melina; Cheng, Chia-Ho; Cheung, Warren; Medina-Gómez, Carolina; Ge, Bing; Chen, Shu-Huang; Choi, Kwangbom; Oei, Ling; Fraser, James; Kraaij, Robert; Hibbs, Matthew A; Gregson, Celia L; Paquette, Denis; Hofman, Albert; Wibom, Carl; Tranah, Gregory J; Marshall, Mhairi; Gardiner, Brooke B; Cremin, Katie; Auer, Paul; Hsu, Li; Ring, Sue; Tung, Joyce Y; Thorleifsson, Gudmar; Enneman, Anke W; van Schoor, Natasja M; de Groot, Lisette C.P.G.M.; van der Velde, Nathalie; Melin, Beatrice; Kemp, John P; Christiansen, Claus; Sayers, Adrian; Zhou, Yanhua; Calderari, Sophie; van Rooij, Jeroen; Carlson, Chris; Peters, Ulrike; Berlivet, Soizik; Dostie, Josée; Uitterlinden, Andre G; Williams, Stephen R.; Farber, Charles; Grinberg, Daniel; LaCroix, Andrea Z; Haessler, Jeff; Chasman, Daniel I; Giulianini, Franco; Rose, Lynda M; Ridker, Paul M; Eisman, John A; Nguyen, Tuan V; Center, Jacqueline R; Nogues, Xavier; Garcia-Giralt, Natalia; Launer, Lenore L; Gudnason, Vilmunder; Mellström, Dan; Vandenput, Liesbeth; Karlsson, Magnus K; Ljunggren, Östen; Svensson, Olle; Hallmans, Göran; Rousseau, François; Giroux, Sylvie; Bussière, Johanne; Arp, Pascal P; Koromani, Fjorda; Prince, Richard L; Lewis, Joshua R; Langdahl, Bente L; Hermann, A Pernille; Jensen, Jens-Erik B; Kaptoge, Stephen; Khaw, Kay-Tee; Reeve, Jonathan; Formosa, Melissa M; Xuereb-Anastasi, Angela; Åkesson, Kristina; McGuigan, Fiona E; Garg, Gaurav; Olmos, Jose M; Zarrabeitia, Maria T; Riancho, Jose A; Ralston, Stuart H; Alonso, Nerea; Jiang, Xi; Goltzman, David; Pastinen, Tomi; Grundberg, Elin; Gauguier, Dominique; Orwoll, Eric S; Karasik, David; Davey-Smith, George; Smith, Albert V; Siggeirsdottir, Kristin; Harris, Tamara B; Zillikens, M Carola; van Meurs, Joyce BJ; Thorsteinsdottir, Unnur; Maurano, Matthew T; Timpson, Nicholas J; Soranzo, Nicole; Durbin, Richard; Wilson, Scott G; Ntzani, Evangelia E; Brown, Matthew A; Stefansson, Kari; Hinds, David A; Spector, Tim; Cupples, L Adrienne; Ohlsson, Claes; Greenwood, Celia MT; Jackson, Rebecca D; Rowe, David W; Loomis, Cynthia A; Evans, David M; Ackert-Bicknell, Cheryl L; Joyner, Alexandra L; Duncan, Emma L; Kiel, Douglas P; Rivadeneira, Fernando; Richards, J Brent

    2016-01-01

    SUMMARY The extent to which low-frequency (minor allele frequency [MAF] between 1–5%) and rare (MAF ≤ 1%) variants contribute to complex traits and disease in the general population is largely unknown. Bone mineral density (BMD) is highly heritable, is a major predictor of osteoporotic fractures and has been previously associated with common genetic variants1–8, and rare, population-specific, coding variants9. Here we identify novel non-coding genetic variants with large effects on BMD (ntotal = 53,236) and fracture (ntotal = 508,253) in individuals of European ancestry from the general population. Associations for BMD were derived from whole-genome sequencing (n=2,882 from UK10K), whole-exome sequencing (n= 3,549), deep imputation of genotyped samples using a combined UK10K/1000Genomes reference panel (n=26,534), and de-novo replication genotyping (n= 20,271). We identified a low-frequency non-coding variant near a novel locus, EN1, with an effect size 4-fold larger than the mean of previously reported common variants for lumbar spine BMD8 (rs11692564[T], MAF = 1.7%, replication effect size = +0.20 standard deviations [SD], Pmeta = 2×10−14), which was also associated with a decreased risk of fracture (OR = 0.85; P = 2×10−11; ncases = 98,742 and ncontrols = 409,511). Using an En1Cre/flox mouse model, we observed that conditional loss of En1 results in low bone mass, likely as a consequence of high bone turn-over. We also identified a novel low-frequency non-coding variant with large effects on BMD near WNT16 (rs148771817[T], MAF = 1.1%, replication effect size = +0.39 SD, Pmeta = 1×10−11). In general, there was an excess of association signals arising from deleterious coding and conserved non-coding variants. These findings provide evidence that low-frequency non-coding variants have large effects on BMD and fracture, thereby providing rationale for whole-genome sequencing and improved imputation reference panels to study the genetic architecture of

  5. Pan-Genome Analysis of Human Gastric Pathogen H. pylori: Comparative Genomics and Pathogenomics Approaches to Identify Regions Associated with Pathogenicity and Prediction of Potential Core Therapeutic Targets

    DEFF Research Database (Denmark)

    Ali, Amjad; Naz, Anam; Soares, Siomar C.;

    2015-01-01

    -genome approach; the predicted conserved gene families (1,193) constitute similar to 77% of the average H. pylori genome and 45% of the global gene repertoire of the species. Reverse vaccinology strategies have been adopted to identify and narrow down the potential core-immunogenic candidates. Total of 28 nonhost...... homolog proteins were characterized as universal therapeutic targets against H. pylori based on their functional annotation and protein-protein interaction. Finally, pathogenomics and genome plasticity analysis revealed 3 highly conserved and 2 highly variable putative pathogenicity islands in all...

  6. Prognostic Impact of Array-based Genomic Profiles in Esophageal Squamous Cell Cancer

    International Nuclear Information System (INIS)

    Esophageal squamous cell carcinoma (ESCC) is a genetically complex tumor type and a major cause of cancer related mortality. Although distinct genetic alterations have been linked to ESCC development and prognosis, the genetic alterations have not gained clinical applicability. We applied array-based comparative genomic hybridization (aCGH) to obtain a whole genome copy number profile relevant for identifying deranged pathways and clinically applicable markers. A 32 k aCGH platform was used for high resolution mapping of copy number changes in 30 stage I-IV ESCC. Potential interdependent alterations and deranged pathways were identified and copy number changes were correlated to stage, differentiation and survival. Copy number alterations affected median 19% of the genome and included recurrent gains of chromosome regions 5p, 7p, 7q, 8q, 10q, 11q, 12p, 14q, 16p, 17p, 19p, 19q, and 20q and losses of 3p, 5q, 8p, 9p and 11q. High-level amplifications were observed in 30 regions and recurrently involved 7p11 (EGFR), 11q13 (MYEOV, CCND1, FGF4, FGF3, PPFIA, FAD, TMEM16A, CTTS and SHANK2) and 11q22 (PDFG). Gain of 7p22.3 predicted nodal metastases and gains of 1p36.32 and 19p13.3 independently predicted poor survival in multivariate analysis. aCGH profiling verified genetic complexity in ESCC and herein identified imbalances of multiple central tumorigenic pathways. Distinct gains correlate with clinicopathological variables and independently predict survival, suggesting clinical applicability of genomic profiling in ESCC

  7. Integrated Genomic Analysis Identifies Clinically Relevant Subtypes of Glioblastoma Characterized by Abnormalities in PDGFRA, IDH1, EGFR, and NF1

    Energy Technology Data Exchange (ETDEWEB)

    Verhaak, Roel GW; Hoadley, Katherine A; Purdom, Elizabeth; Wang, Victoria; Qi, Yuan; Wilkerson, Matthew D; Miller, C Ryan; Ding, Li; Golub, Todd; Mesirov, Jill P; Alexe, Gabriele; Lawrence, Michael; O' Kelly, Michael; Tamayo, Pablo; Weir, Barbara A; Gabriel, Stacey; Winckler, Wendy; Gupta, Supriya; Jakkula, Lakshmi; Feiler, Heidi S; Hodgson, J Graeme; James, C David; Sarkaria, Jann N; Brennan, Cameron; Kahn, Ari; Spellman, Paul T; Wilson, Richard K; Speed, Terence P; Gray, Joe W; Meyerson, Matthew; Getz, Gad; Perou, Charles M; Hayes, D Neil; Network, The Cancer Genome Atlas Research

    2009-09-03

    The Cancer Genome Atlas Network recently cataloged recurrent genomic abnormalities in glioblastoma multiforme (GBM). We describe a robust gene expression-based molecular classification of GBM into Proneural, Neural, Classical, and Mesenchymal subtypes and integrate multidimensional genomic data to establish patterns of somatic mutations and DNA copy number. Aberrations and gene expression of EGFR, NF1, and PDGFRA/IDH1 each define the Classical, Mesenchymal, and Proneural subtypes, respectively. Gene signatures of normal brain cell types show a strong relationship between subtypes and different neural lineages. Additionally, response to aggressive therapy differs by subtype, with the greatest benefit in the Classical subtype and no benefit in the Proneural subtype. We provide a framework that unifies transcriptomic and genomic dimensions for GBM molecular stratification with important implications for future studies.

  8. A Genome-wide CRISPR Screen in Toxoplasma Identifies Essential Apicomplexan Genes.

    Science.gov (United States)

    Sidik, Saima M; Huet, Diego; Ganesan, Suresh M; Huynh, My-Hang; Wang, Tim; Nasamu, Armiyaw S; Thiru, Prathapan; Saeij, Jeroen P J; Carruthers, Vern B; Niles, Jacquin C; Lourido, Sebastian

    2016-09-01

    Apicomplexan parasites are leading causes of human and livestock diseases such as malaria and toxoplasmosis, yet most of their genes remain uncharacterized. Here, we present the first genome-wide genetic screen of an apicomplexan. We adapted CRISPR/Cas9 to assess the contribution of each gene from the parasite Toxoplasma gondii during infection of human fibroblasts. Our analysis defines ∼200 previously uncharacterized, fitness-conferring genes unique to the phylum, from which 16 were investigated, revealing essential functions during infection of human cells. Secondary screens identify as an invasion factor the claudin-like apicomplexan microneme protein (CLAMP), which resembles mammalian tight-junction proteins and localizes to secretory organelles, making it critical to the initiation of infection. CLAMP is present throughout sequenced apicomplexan genomes and is essential during the asexual stages of the malaria parasite Plasmodium falciparum. These results provide broad-based functional information on T. gondii genes and will facilitate future approaches to expand the horizon of antiparasitic interventions. PMID:27594426

  9. Integrating microarray gene expression object model and clinical document architecture for cancer genomics research.

    Science.gov (United States)

    Park, Yu Rang; Lee, Hye Won; Kim, Ju Han

    2005-01-01

    Systematic integration of genomic-scale expression profiles with clinical information may facilitate cancer genomics research. MAGE-OM (Microarray Gene Expression Object Model) defines standard objects for genomic but not for clinical data. HL7 CDA (Clinical Document Architecture) is a document model for clinical information, describing syntax (generic structure) but not semantics. We designed a document template in XML Schema with additional constraints for CDA to define content semantics, enabling data model-level integration of MAGE-OM and CDA for cancer genomics research. PMID:16779360

  10. Leveraging Comparative Genomics to Identify and Functionally Characterize Genes Associated with Sperm Phenotypes in Python bivittatus (Burmese Python)

    Science.gov (United States)

    Rutllant, Josep

    2016-01-01

    Comparative genomics approaches provide a means of leveraging functional genomics information from a highly annotated model organism's genome (such as the mouse genome) in order to make physiological inferences about the role of genes and proteins in a less characterized organism's genome (such as the Burmese python). We employed a comparative genomics approach to produce the functional annotation of Python bivittatus genes encoding proteins associated with sperm phenotypes. We identify 129 gene-phenotype relationships in the python which are implicated in 10 specific sperm phenotypes. Results obtained through our systematic analysis identified subsets of python genes exhibiting associations with gene ontology annotation terms. Functional annotation data was represented in a semantic scatter plot. Together, these newly annotated Python bivittatus genome resources provide a high resolution framework from which the biology relating to reptile spermatogenesis, fertility, and reproduction can be further investigated. Applications of our research include (1) production of genetic diagnostics for assessing fertility in domestic and wild reptiles; (2) enhanced assisted reproduction technology for endangered and captive reptiles; and (3) novel molecular targets for biotechnology-based approaches aimed at reducing fertility and reproduction of invasive reptiles. Additional enhancements to reptile genomic resources will further enhance their value. PMID:27200191

  11. In silico mining identifies IGFBP3 as a novel target of methylation in prostate cancer

    OpenAIRE

    Perry, A S; Loftus, B; Moroose, R; Lynch, T H; Hollywood, D; Watson, R W G; Woodson, K; Lawler, M

    2007-01-01

    Promoter hypermethylation is central in deregulating gene expression in cancer. Identification of novel methylation targets in specific cancers provides a basis for their use as biomarkers of disease occurrence and progression. We developed an in silico strategy to globally identify potential targets of promoter hypermethylation in prostate cancer by screening for 5′ CpG islands in 631 genes that were reported as downregulated in prostate cancer. A virtual archive of 338 potential targets of ...

  12. Integrative analysis identifies targetable CREB1/FoxA1 transcriptional co-regulation as a predictor of prostate cancer recurrence.

    Science.gov (United States)

    Sunkel, Benjamin; Wu, Dayong; Chen, Zhong; Wang, Chiou-Miin; Liu, Xiangtao; Ye, Zhenqing; Horning, Aaron M; Liu, Joseph; Mahalingam, Devalingam; Lopez-Nicora, Horacio; Lin, Chun-Lin; Goodfellow, Paul J; Clinton, Steven K; Jin, Victor X; Chen, Chun-Liang; Huang, Tim H-M; Wang, Qianben

    2016-05-19

    Identifying prostate cancer-driving transcription factors (TFs) in addition to the androgen receptor promises to improve our ability to effectively diagnose and treat this disease. We employed an integrative genomics analysis of master TFs CREB1 and FoxA1 in androgen-dependent prostate cancer (ADPC) and castration-resistant prostate cancer (CRPC) cell lines, primary prostate cancer tissues and circulating tumor cells (CTCs) to investigate their role in defining prostate cancer gene expression profiles. Combining genome-wide binding site and gene expression profiles we define CREB1 as a critical driver of pro-survival, cell cycle and metabolic transcription programs. We show that CREB1 and FoxA1 co-localize and mutually influence each other's binding to define disease-driving transcription profiles associated with advanced prostate cancer. Gene expression analysis in human prostate cancer samples found that CREB1/FoxA1 target gene panels predict prostate cancer recurrence. Finally, we showed that this signaling pathway is sensitive to compounds that inhibit the transcription co-regulatory factor MED1. These findings not only reveal a novel, global transcriptional co-regulatory function of CREB1 and FoxA1, but also suggest CREB1/FoxA1 signaling is a targetable driver of prostate cancer progression and serves as a biomarker of poor clinical outcomes. PMID:26743006

  13. An integrative -omics approach to identify functional sub-networks in human colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Rod K Nibbe

    2010-01-01

    Full Text Available Emerging evidence indicates that gene products implicated in human cancers often cluster together in "hot spots" in protein-protein interaction (PPI networks. Additionally, small sub-networks within PPI networks that demonstrate synergistic differential expression with respect to tumorigenic phenotypes were recently shown to be more accurate classifiers of disease progression when compared to single targets identified by traditional approaches. However, many of these studies rely exclusively on mRNA expression data, a useful but limited measure of cellular activity. Proteomic profiling experiments provide information at the post-translational level, yet they generally screen only a limited fraction of the proteome. Here, we demonstrate that integration of these complementary data sources with a "proteomics-first" approach can enhance the discovery of candidate sub-networks in cancer that are well-suited for mechanistic validation in disease. We propose that small changes in the mRNA expression of multiple genes in the neighborhood of a protein-hub can be synergistically associated with significant changes in the activity of that protein and its network neighbors. Further, we hypothesize that proteomic targets with significant fold change between phenotype and control may be used to "seed" a search for small PPI sub-networks that are functionally associated with these targets. To test this hypothesis, we select proteomic targets having significant expression changes in human colorectal cancer (CRC from two independent 2-D gel-based screens. Then, we use random walk based models of network crosstalk and develop novel reference models to identify sub-networks that are statistically significant in terms of their functional association with these proteomic targets. Subsequently, using an information-theoretic measure, we evaluate synergistic changes in the activity of identified sub-networks based on genome-wide screens of mRNA expression in CRC

  14. Association between invasive ovarian cancer susceptibility and 11 best candidate SNPs from breast cancer genome-wide association study

    DEFF Research Database (Denmark)

    Song, Honglin; Ramus, Susan J; Kjaer, Susanne Krüger;

    2009-01-01

    Because both ovarian and breast cancer are hormone-related and are known to have some predisposition genes in common, we evaluated 11 of the most significant hits (six with confirmed associations with breast cancer) from the breast cancer genome-wide association study for association with invasive.......01-1.13, P-trend = 0.02 for all types of ovarian cancer and OR 1.14 95% CI 1.07-1.22, P-trend = 0.00017 for serous ovarian cancer]. In conclusion, we found that rs4954956 was associated with increased ovarian cancer risk, particularly for serous ovarian cancer. However, none of the six confirmed breast...... ovarian cancer. Eleven SNPs were initially genotyped in 2927 invasive ovarian cancer cases and 4143 controls from six ovarian cancer case-control studies. Genotype frequencies in cases and controls were compared using a likelihood ratio test in a logistic regression model stratified by study. Initially...

  15. A barcode of organellar genome polymorphisms identifies the geographic origin of Plasmodium falciparum strains

    KAUST Repository

    Preston, Mark D.

    2014-06-13

    Malaria is a major public health problem that is actively being addressed in a global eradication campaign. Increased population mobility through international air travel has elevated the risk of re-introducing parasites to elimination areas and dispersing drug-resistant parasites to new regions. A simple genetic marker that quickly and accurately identifies the geographic origin of infections would be a valuable public health tool for locating the source of imported outbreaks. Here we analyse the mitochondrion and apicoplast genomes of 711 Plasmodium falciparum isolates from 14 countries, and find evidence that they are non-recombining and co-inherited. The high degree of linkage produces a panel of relatively few single-nucleotide polymorphisms (SNPs) that is geographically informative. We design a 23-SNP barcode that is highly predictive (?92%) and easily adapted to aid case management in the field and survey parasite migration worldwide. 2014 Macmillan Publishers Limited. All rights reserved.

  16. A barcode of organellar genome polymorphisms identifies the geographic origin of Plasmodium falciparum strains

    Science.gov (United States)

    Preston, Mark D.; Campino, Susana; Assefa, Samuel A.; Echeverry, Diego F.; Ocholla, Harold; Amambua-Ngwa, Alfred; Stewart, Lindsay B.; Conway, David J.; Borrmann, Steffen; Michon, Pascal; Zongo, Issaka; Ouédraogo, Jean-Bosco; Djimde, Abdoulaye A.; Doumbo, Ogobara K.; Nosten, Francois; Pain, Arnab; Bousema, Teun; Drakeley, Chris J.; Fairhurst, Rick M.; Sutherland, Colin J.; Roper, Cally; Clark, Taane G.

    2014-01-01

    Malaria is a major public health problem that is actively being addressed in a global eradication campaign. Increased population mobility through international air travel has elevated the risk of re-introducing parasites to elimination areas and dispersing drug-resistant parasites to new regions. A simple genetic marker that quickly and accurately identifies the geographic origin of infections would be a valuable public health tool for locating the source of imported outbreaks. Here we analyse the mitochondrion and apicoplast genomes of 711 Plasmodium falciparum isolates from 14 countries, and find evidence that they are non-recombining and co-inherited. The high degree of linkage produces a panel of relatively few single-nucleotide polymorphisms (SNPs) that is geographically informative. We design a 23-SNP barcode that is highly predictive (~92%) and easily adapted to aid case management in the field and survey parasite migration worldwide. PMID:24923250

  17. Comparative assessment of genomic DNA extraction processes for Plasmodium: Identifying the appropriate method.

    Science.gov (United States)

    Mann, Riti; Sharma, Supriya; Mishra, Neelima; Valecha, Neena; Anvikar, Anupkumar R

    2015-12-01

    Plasmodium DNA, in addition to being used for molecular diagnosis of malaria, find utility in monitoring patient responses to antimalarial drugs, drug resistance studies, genotyping and sequencing purposes. Over the years, numerous protocols have been proposed for extracting Plasmodium DNA from a variety of sources. Given that DNA isolation is fundamental to successful molecular studies, here we review the most commonly used methods for Plasmodium genomic DNA isolation, emphasizing their pros and cons. A comparison of these existing methods has been made, to evaluate their appropriateness for use in different applications and identify the method suitable for a particular laboratory based study. Selection of a suitable and accessible DNA extraction method for Plasmodium requires consideration of many factors, the most important being sensitivity, cost-effectiveness and, purity and stability of isolated DNA. Need of the hour is to accentuate on the development of a method that upholds well on all these parameters. PMID:26714505

  18. Comparative assessment of genomic DNA extraction processes for Plasmodium: Identifying the appropriate method

    Directory of Open Access Journals (Sweden)

    Riti Mann

    2015-01-01

    Full Text Available Plasmodium DNA, in addition to being used for molecular diagnosis of malaria, find utility in monitoring patient responses to antimalarial drugs, drug resistance studies, genotyping and sequencing purposes. Over the years, numerous protocols have been proposed for extracting Plasmodium DNA from a variety of sources. Given that DNA isolation is fundamental to successful molecular studies, here we review the most commonly used methods for Plasmodium genomic DNA isolation, emphasizing their pros and cons. A comparison of these existing methods has been made, to evaluate their appropriateness for use in different applications and identify the method suitable for a particular laboratory based study. Selection of a suitable and accessible DNA extraction method for Plasmodium requires consideration of many factors, the most important being sensitivity, cost-effectiveness and, purity and stability of isolated DNA. Need of the hour is to accentuate on the development of a method that upholds well on all these parameters.

  19. Differential display identifies overexpression of the USP36 gene, encoding a deubiquitinating enzyme, in ovarian cancer

    Directory of Open Access Journals (Sweden)

    Jianduan Li, Lisa M. Olson, Zhengyan Zhang, Lina Li, Miri Bidder, Loan Nguyen, John Pfeifer, Janet S. Rader

    2008-01-01

    Full Text Available Objectives. To find potential diagnostic markers or therapeutic targets, we used differential display technique to identify genes that are over or under expressed in human ovarian cancer. Methods. Genes were initially identified by differential display between two human ovarian surface epithelium cultures and two ovarian cancer cell lines, A2780 and Caov-3. Genes were validated by relative quantitative RT-PCR and RNA in situ hybridization. Results. Twenty-eight non-redundant sequences were expressed differentially in the normal ovarian epithelium and ovarian cancer cell lines. Seven of the 28 sequences showed differential expression between normal ovary and ovarian cancer tissue by RT-PCR. USP36 was over-expressed in ovarian cancer cell lines and tissues by RT-PCR and RNA in situ hybridization. Northern blot analysis and RT-PCR revealed two transcripts for USP36 in ovarian tissue. The major transcript was more specific for ovarian cancer and was detected by RT-PCR in 9/9 ovarian cancer tissues, 3/3 cancerous ascites, 5/14 (36% sera from patients with ovarian cancer, and 0/7 sera from women without ovarian cancer. Conclusion. USP36 is overexpressed in ovarian cancer compared to normal ovary and its transcripts were identified in ascites and serum of ovarian cancer patients.

  20. Pathway analysis of genome-wide association study data highlights pancreatic development genes as susceptibility factors for pancreatic cancer

    OpenAIRE

    Li, Donghui; Duell, Eric J.; Yu, Kai; Risch, Harvey A.; Olson, Sara H.; Kooperberg, Charles; Wolpin, Brian M.; Jiao, Li; Dong, Xiaoqun; Wheeler, Bill; Arslan, Alan A.; Bueno-De-Mesquita, H Bas; Fuchs, Charles S; Gallinger, Steven; Gross, Myron

    2012-01-01

    Four loci have been associated with pancreatic cancer through genome-wide association studies (GWAS). Pathway-based analysis of GWAS data is a complementary approach to identify groups of genes or biological pathways enriched with disease-associated single-nucleotide polymorphisms (SNPs) whose individual effect sizes may be too small to be detected by standard single-locus methods. We used the adaptive rank truncated product method in a pathway-based analysis of GWAS data from 3851 pancreatic...

  1. Genome-wide association analyses identify SPOCK as a key novel gene underlying age at menarche.

    Directory of Open Access Journals (Sweden)

    Yao-Zhong Liu

    2009-03-01

    Full Text Available For females, menarche is a most significant physiological event. Age at menarche (AAM is a trait with high genetic determination and is associated with major complex diseases in women. However, specific genes for AAM variation are largely unknown. To identify genetic factors underlying AAM variation, a genome-wide association study (GWAS examining about 380,000 SNPs was conducted in 477 Caucasian women. A follow-up replication study was performed to validate our major GWAS findings using two independent Caucasian cohorts with 854 siblings and 762 unrelated subjects, respectively, and one Chinese cohort of 1,387 unrelated subjects--all females. Our GWAS identified a novel gene, SPOCK (Sparc/Osteonectin, CWCV, and Kazal-like domains proteoglycan, which had seven SNPs associated with AAM with genome-wide false discovery rate (FDR q<0.05. Six most significant SNPs of the gene were selected for validation in three independent replication cohorts. All of the six SNPs were replicated in at least one cohort. In particular, SNPs rs13357391 and rs1859345 were replicated both within and across different ethnic groups in all three cohorts, with p values of 5.09 x 10(-3 and 4.37 x 10(-3, respectively, in the Chinese cohort and combined p values (obtained by Fisher's method of 5.19 x 10(-5 and 1.02 x 10(-4, respectively, in all three replication cohorts. Interestingly, SPOCK can inhibit activation of MMP-2 (matrix metalloproteinase-2, a key factor promoting endometrial menstrual breakdown and onset of menstrual bleeding. Our findings, together with the functional relevance, strongly supported that the SPOCK gene underlies variation of AAM.

  2. Whole Genome Sequencing Identifies a Novel Factor Required for Secretory Granule Maturation in Tetrahymena thermophila

    Science.gov (United States)

    Kontur, Cassandra; Kumar, Santosh; Lan, Xun; Pritchard, Jonathan K.; Turkewitz, Aaron P.

    2016-01-01

    Unbiased genetic approaches have a unique ability to identify novel genes associated with specific biological pathways. Thanks to next generation sequencing, forward genetic strategies can be expanded to a wider range of model organisms. The formation of secretory granules, called mucocysts, in the ciliate Tetrahymena thermophila relies, in part, on ancestral lysosomal sorting machinery, but is also likely to involve novel factors. In prior work, multiple strains with defects in mucocyst biogenesis were generated by nitrosoguanidine mutagenesis, and characterized using genetic and cell biological approaches, but the genetic lesions themselves were unknown. Here, we show that analyzing one such mutant by whole genome sequencing reveals a novel factor in mucocyst formation. Strain UC620 has both morphological and biochemical defects in mucocyst maturation—a process analogous to dense core granule maturation in animals. Illumina sequencing of a pool of UC620 F2 clones identified a missense mutation in a novel gene called MMA1 (Mucocyst maturation). The defects in UC620 were rescued by expression of a wild-type copy of MMA1, and disrupting MMA1 in an otherwise wild-type strain phenocopies UC620. The product of MMA1, characterized as a CFP-tagged copy, encodes a large soluble cytosolic protein. A small fraction of Mma1p-CFP is pelletable, which may reflect association with endosomes. The gene has no identifiable homologs except in other Tetrahymena species, and therefore represents an evolutionarily recent innovation that is required for granule maturation. PMID:27317773

  3. Exome and whole-genome sequencing of esophageal adenocarcinoma identifies recurrent driver events and mutational complexity.

    Science.gov (United States)

    Dulak, Austin M; Stojanov, Petar; Peng, Shouyong; Lawrence, Michael S; Fox, Cameron; Stewart, Chip; Bandla, Santhoshi; Imamura, Yu; Schumacher, Steven E; Shefler, Erica; McKenna, Aaron; Carter, Scott L; Cibulskis, Kristian; Sivachenko, Andrey; Saksena, Gordon; Voet, Douglas; Ramos, Alex H; Auclair, Daniel; Thompson, Kristin; Sougnez, Carrie; Onofrio, Robert C; Guiducci, Candace; Beroukhim, Rameen; Zhou, Zhongren; Lin, Lin; Lin, Jules; Reddy, Rishindra; Chang, Andrew; Landrenau, Rodney; Pennathur, Arjun; Ogino, Shuji; Luketich, James D; Golub, Todd R; Gabriel, Stacey B; Lander, Eric S; Beer, David G; Godfrey, Tony E; Getz, Gad; Bass, Adam J

    2013-05-01

    The incidence of esophageal adenocarcinoma (EAC) has risen 600% over the last 30 years. With a 5-year survival rate of ~15%, the identification of new therapeutic targets for EAC is greatly important. We analyze the mutation spectra from whole-exome sequencing of 149 EAC tumor-normal pairs, 15 of which have also been subjected to whole-genome sequencing. We identify a mutational signature defined by a high prevalence of A>C transversions at AA dinucleotides. Statistical analysis of exome data identified 26 significantly mutated genes. Of these genes, five (TP53, CDKN2A, SMAD4, ARID1A and PIK3CA) have previously been implicated in EAC. The new significantly mutated genes include chromatin-modifying factors and candidate contributors SPG20, TLR4, ELMO1 and DOCK2. Functional analyses of EAC-derived mutations in ELMO1 identifies increased cellular invasion. Therefore, we suggest the potential activation of the RAC1 pathway as a contributor to EAC tumorigenesis. PMID:23525077

  4. Genome-wide association study of corticobasal degeneration identifies risk variants shared with progressive supranuclear palsy.

    Science.gov (United States)

    Kouri, Naomi; Ross, Owen A; Dombroski, Beth; Younkin, Curtis S; Serie, Daniel J; Soto-Ortolaza, Alexandra; Baker, Matthew; Finch, Ni Cole A; Yoon, Hyejin; Kim, Jungsu; Fujioka, Shinsuke; McLean, Catriona A; Ghetti, Bernardino; Spina, Salvatore; Cantwell, Laura B; Farlow, Martin R; Grafman, Jordan; Huey, Edward D; Ryung Han, Mi; Beecher, Sherry; Geller, Evan T; Kretzschmar, Hans A; Roeber, Sigrun; Gearing, Marla; Juncos, Jorge L; Vonsattel, Jean Paul G; Van Deerlin, Vivianna M; Grossman, Murray; Hurtig, Howard I; Gross, Rachel G; Arnold, Steven E; Trojanowski, John Q; Lee, Virginia M; Wenning, Gregor K; White, Charles L; Höglinger, Günter U; Müller, Ulrich; Devlin, Bernie; Golbe, Lawrence I; Crook, Julia; Parisi, Joseph E; Boeve, Bradley F; Josephs, Keith A; Wszolek, Zbigniew K; Uitti, Ryan J; Graff-Radford, Neill R; Litvan, Irene; Younkin, Steven G; Wang, Li-San; Ertekin-Taner, Nilüfer; Rademakers, Rosa; Hakonarsen, Hakon; Schellenberg, Gerard D; Dickson, Dennis W

    2015-01-01

    Corticobasal degeneration (CBD) is a neurodegenerative disorder affecting movement and cognition, definitively diagnosed only at autopsy. Here, we conduct a genome-wide association study (GWAS) in CBD cases (n=152) and 3,311 controls, and 67 CBD cases and 439 controls in a replication stage. Associations with meta-analysis were 17q21 at MAPT (P=1.42 × 10(-12)), 8p12 at lnc-KIF13B-1, a long non-coding RNA (rs643472; P=3.41 × 10(-8)), and 2p22 at SOS1 (rs963731; P=1.76 × 10(-7)). Testing for association of CBD with top progressive supranuclear palsy (PSP) GWAS single-nucleotide polymorphisms (SNPs) identified associations at MOBP (3p22; rs1768208; P=2.07 × 10(-7)) and MAPT H1c (17q21; rs242557; P=7.91 × 10(-6)). We previously reported SNP/transcript level associations with rs8070723/MAPT, rs242557/MAPT, and rs1768208/MOBP and herein identified association with rs963731/SOS1. We identify new CBD susceptibility loci and show that CBD and PSP share a genetic risk factor other than MAPT at 3p22 MOBP (myelin-associated oligodendrocyte basic protein). PMID:26077951

  5. Genome-wide association study of corticobasal degeneration identifies risk variants shared with progressive supranuclear palsy

    Science.gov (United States)

    Kouri, Naomi; Ross, Owen A.; Dombroski, Beth; Younkin, Curtis S.; Serie, Daniel J.; Soto-Ortolaza, Alexandra; Baker, Matthew; Finch, Ni Cole A.; Yoon, Hyejin; Kim, Jungsu; Fujioka, Shinsuke; McLean, Catriona A.; Ghetti, Bernardino; Spina, Salvatore; Cantwell, Laura B.; Farlow, Martin R.; Grafman, Jordan; Huey, Edward D.; Ryung Han, Mi; Beecher, Sherry; Geller, Evan T.; Kretzschmar, Hans A.; Roeber, Sigrun; Gearing, Marla; Juncos, Jorge L.; Vonsattel, Jean Paul G.; Van Deerlin, Vivianna M.; Grossman, Murray; Hurtig, Howard I.; Gross, Rachel G.; Arnold, Steven E.; Trojanowski, John Q.; Lee, Virginia M.; Wenning, Gregor K.; White, Charles L.; Höglinger, Günter U.; Müller, Ulrich; Devlin, Bernie; Golbe, Lawrence I.; Crook, Julia; Parisi, Joseph E.; Boeve, Bradley F.; Josephs, Keith A.; Wszolek, Zbigniew K.; Uitti, Ryan J.; Graff-Radford, Neill R.; Litvan, Irene; Younkin, Steven G.; Wang, Li-San; Ertekin-Taner, Nilüfer; Rademakers, Rosa; Hakonarsen, Hakon; Schellenberg, Gerard D.; Dickson, Dennis W.

    2015-01-01

    Corticobasal degeneration (CBD) is a neurodegenerative disorder affecting movement and cognition, definitively diagnosed only at autopsy. Here, we conduct a genome-wide association study (GWAS) in CBD cases (n=152) and 3,311 controls, and 67 CBD cases and 439 controls in a replication stage. Associations with meta-analysis were 17q21 at MAPT (P=1.42 × 10−12), 8p12 at lnc-KIF13B-1, a long non-coding RNA (rs643472; P=3.41 × 10−8), and 2p22 at SOS1 (rs963731; P=1.76 × 10−7). Testing for association of CBD with top progressive supranuclear palsy (PSP) GWAS single-nucleotide polymorphisms (SNPs) identified associations at MOBP (3p22; rs1768208; P=2.07 × 10−7) and MAPT H1c (17q21; rs242557; P=7.91 × 10−6). We previously reported SNP/transcript level associations with rs8070723/MAPT, rs242557/MAPT, and rs1768208/MOBP and herein identified association with rs963731/SOS1. We identify new CBD susceptibility loci and show that CBD and PSP share a genetic risk factor other than MAPT at 3p22 MOBP (myelin-associated oligodendrocyte basic protein). PMID:26077951

  6. Predicting survival within the lung cancer histopathological hierarchy using a multi-scale genomic model of development.

    Directory of Open Access Journals (Sweden)

    Hongye Liu

    2006-07-01

    Full Text Available BACKGROUND: The histopathologic heterogeneity of lung cancer remains a significant confounding factor in its diagnosis and prognosis-spurring numerous recent efforts to find a molecular classification of the disease that has clinical relevance. METHODS AND FINDINGS: Molecular profiles of tumors from 186 patients representing four different lung cancer subtypes (and 17 normal lung tissue samples were compared with a mouse lung development model using principal component analysis in both temporal and genomic domains. An algorithm for the classification of lung cancers using a multi-scale developmental framework was developed. Kaplan-Meier survival analysis was conducted for lung adenocarcinoma patient subgroups identified via their developmental association. We found multi-scale genomic similarities between four human lung cancer subtypes and the developing mouse lung that are prognostically meaningful. Significant association was observed between the localization of human lung cancer cases along the principal mouse lung development trajectory and the corresponding patient survival rate at three distinct levels of classical histopathologic resolution: among different lung cancer subtypes, among patients within the adenocarcinoma subtype, and within the stage I adenocarcinoma subclass. The earlier the genomic association between a human tumor profile and the mouse lung development sequence, the poorer the patient's prognosis. Furthermore, decomposing this principal lung development trajectory identified a gene set that was significantly enriched for pyrimidine metabolism and cell-adhesion functions specific to lung development and oncogenesis. CONCLUSIONS: From a multi-scale disease modeling perspective, the molecular dynamics of murine lung development provide an effective framework that is not only data driven but also informed by the biology of development for elucidating the mechanisms of human lung cancer biology and its clinical outcome.

  7. Ectopic Expression of Testis Germ Cell Proteins in Cancer and Its Potential Role in Genomic Instability.

    Science.gov (United States)

    Nielsen, Aaraby Yoheswaran; Gjerstorff, Morten Frier

    2016-01-01

    Genomic instability is a hallmark of human cancer and an enabling factor for the genetic alterations that drive cancer development. The processes involved in genomic instability resemble those of meiosis, where genetic material is interchanged between homologous chromosomes. In most types of human cancer, epigenetic changes, including hypomethylation of gene promoters, lead to the ectopic expression of a large number of proteins normally restricted to the germ cells of the testis. Due to the similarities between meiosis and genomic instability, it has been proposed that activation of meiotic programs may drive genomic instability in cancer cells. Some germ cell proteins with ectopic expression in cancer cells indeed seem to promote genomic instability, while others reduce polyploidy and maintain mitotic fidelity. Furthermore, oncogenic germ cell proteins may indirectly contribute to genomic instability through induction of replication stress, similar to classic oncogenes. Thus, current evidence suggests that testis germ cell proteins are implicated in cancer development by regulating genomic instability during tumorigenesis, and these proteins therefore represent promising targets for novel therapeutic strategies. PMID:27275820

  8. Extensive Transcriptomic and Genomic Analysis Provides New Insights about Luminal Breast Cancers

    Science.gov (United States)

    Tishchenko, Inna; Milioli, Heloisa Helena; Riveros, Carlos; Moscato, Pablo

    2016-01-01

    Despite constituting approximately two thirds of all breast cancers, the luminal A and B tumours are poorly classified at both clinical and molecular levels. There are contradictory reports on the nature of these subtypes: some define them as intrinsic entities, others as a continuum. With the aim of addressing these uncertainties and identifying molecular signatures of patients at risk, we conducted a comprehensive transcriptomic and genomic analysis of 2,425 luminal breast cancer samples. Our results indicate that the separation between the molecular luminal A and B subtypes—per definition—is not associated with intrinsic characteristics evident in the differentiation between other subtypes. Moreover, t-SNE and MST-kNN clustering approaches based on 10,000 probes, associated with luminal tumour initiation and/or development, revealed the close connections between luminal A and B tumours, with no evidence of a clear boundary between them. Thus, we considered all luminal tumours as a single heterogeneous group for analysis purposes. We first stratified luminal tumours into two distinct groups by their HER2 gene cluster co-expression: HER2-amplified luminal and ordinary-luminal. The former group is associated with distinct transcriptomic and genomic profiles, and poor prognosis; it comprises approximately 8% of all luminal cases. For the remaining ordinary-luminal tumours we further identified the molecular signature correlated with disease outcomes, exhibiting an approximately continuous gene expression range from low to high risk. Thus, we employed four virtual quantiles to segregate the groups of patients. The clinico-pathological characteristics and ratios of genomic aberrations are concordant with the variations in gene expression profiles, hinting at a progressive staging. The comparison with the current separation into luminal A and B subtypes revealed a substantially improved survival stratification. Concluding, we suggest a review of the definition of

  9. Genome-Wide Association Study Identifies Candidate Genes for Starch Content Regulation in Maize Kernels

    Science.gov (United States)

    Liu, Na; Xue, Yadong; Guo, Zhanyong; Li, Weihua; Tang, Jihua

    2016-01-01

    Kernel starch content is an important trait in maize (Zea mays L.) as it accounts for 65–75% of the dry kernel weight and positively correlates with seed yield. A number of starch synthesis-related genes have been identified in maize in recent years. However, many loci underlying variation in starch content among maize inbred lines still remain to be identified. The current study is a genome-wide association study that used a set of 263 maize inbred lines. In this panel, the average kernel starch content was 66.99%, ranging from 60.60 to 71.58% over the three study years. These inbred lines were genotyped with the SNP50 BeadChip maize array, which is comprised of 56,110 evenly spaced, random SNPs. Population structure was controlled by a mixed linear model (MLM) as implemented in the software package TASSEL. After the statistical analyses, four SNPs were identified as significantly associated with starch content (P ≤ 0.0001), among which one each are located on chromosomes 1 and 5 and two are on chromosome 2. Furthermore, 77 candidate genes associated with starch synthesis were found within the 100-kb intervals containing these four QTLs, and four highly associated genes were within 20-kb intervals of the associated SNPs. Among the four genes, Glucose-1-phosphate adenylyltransferase (APS1; Gene ID GRMZM2G163437) is known as an important regulator of kernel starch content. The identified SNPs, QTLs, and candidate genes may not only be readily used for germplasm improvement by marker-assisted selection in breeding, but can also elucidate the genetic basis of starch content. Further studies on these identified candidate genes may help determine the molecular mechanisms regulating kernel starch content in maize and other important cereal crops.

  10. Identifying relationships among genomic disease regions: predicting genes at pathogenic SNP associations and rare deletions.

    Directory of Open Access Journals (Sweden)

    Soumya Raychaudhuri

    2009-06-01

    Full Text Available Translating a set of disease regions into insight about pathogenic mechanisms requires not only the ability to identify the key disease genes within them, but also the biological relationships among those key genes. Here we describe a statistical method, Gene Relationships Among Implicated Loci (GRAIL, that takes a list of disease regions and automatically assesses the degree of relatedness of implicated genes using 250,000 PubMed abstracts. We first evaluated GRAIL by assessing its ability to identify subsets of highly related genes in common pathways from validated lipid and height SNP associations from recent genome-wide studies. We then tested GRAIL, by assessing its ability to separate true disease regions from many false positive disease regions in two separate practical applications in human genetics. First, we took 74 nominally associated Crohn's disease SNPs and applied GRAIL to identify a subset of 13 SNPs with highly related genes. Of these, ten convincingly validated in follow-up genotyping; genotyping results for the remaining three were inconclusive. Next, we applied GRAIL to 165 rare deletion events seen in schizophrenia cases (less than one-third of which are contributing to disease risk. We demonstrate that GRAIL is able to identify a subset of 16 deletions containing highly related genes; many of these genes are expressed in the central nervous system and play a role in neuronal synapses. GRAIL offers a statistically robust approach to identifying functionally related genes from across multiple disease regions--that likely represent key disease pathways. An online version of this method is available for public use (http://www.broad.mit.edu/mpg/grail/.

  11. Genome-Wide Association Study Identifies Candidate Genes for Starch Content Regulation in Maize Kernels.

    Science.gov (United States)

    Liu, Na; Xue, Yadong; Guo, Zhanyong; Li, Weihua; Tang, Jihua

    2016-01-01

    Kernel starch content is an important trait in maize (Zea mays L.) as it accounts for 65-75% of the dry kernel weight and positively correlates with seed yield. A number of starch synthesis-related genes have been identified in maize in recent years. However, many loci underlying variation in starch content among maize inbred lines still remain to be identified. The current study is a genome-wide association study that used a set of 263 maize inbred lines. In this panel, the average kernel starch content was 66.99%, ranging from 60.60 to 71.58% over the three study years. These inbred lines were genotyped with the SNP50 BeadChip maize array, which is comprised of 56,110 evenly spaced, random SNPs. Population structure was controlled by a mixed linear model (MLM) as implemented in the software package TASSEL. After the statistical analyses, four SNPs were identified as significantly associated with starch content (P ≤ 0.0001), among which one each are located on chromosomes 1 and 5 and two are on chromosome 2. Furthermore, 77 candidate genes associated with starch synthesis were found within the 100-kb intervals containing these four QTLs, and four highly associated genes were within 20-kb intervals of the associated SNPs. Among the four genes, Glucose-1-phosphate adenylyltransferase (APS1; Gene ID GRMZM2G163437) is known as an important regulator of kernel starch content. The identified SNPs, QTLs, and candidate genes may not only be readily used for germplasm improvement by marker-assisted selection in breeding, but can also elucidate the genetic basis of starch content. Further studies on these identified candidate genes may help determine the molecular mechanisms regulating kernel starch content in maize and other important cereal crops. PMID:27512395

  12. Synthetic Genetic Targeting of Genome Instability in Cancer

    International Nuclear Information System (INIS)

    Cancer is a leading cause of death throughout the World. A limitation of many current chemotherapeutic approaches is that their cytotoxic effects are not restricted to cancer cells, and adverse side effects can occur within normal tissues. Consequently, novel strategies are urgently needed to better target cancer cells. As we approach the era of personalized medicine, targeting the specific molecular defect(s) within a given patient’s tumor will become a more effective treatment strategy than traditional approaches that often target a given cancer type or sub-type. Synthetic genetic interactions are now being examined for their therapeutic potential and are designed to target the specific genetic and epigenetic phenomena associated with tumor formation, and thus are predicted to be highly selective. In general, two complementary approaches have been employed, including synthetic lethality and synthetic dosage lethality, to target aberrant expression and/or function associated with tumor suppressor genes and oncogenes, respectively. Here we discuss the concepts of synthetic lethality and synthetic dosage lethality, and explain three general experimental approaches designed to identify novel genetic interactors. We present examples and discuss the merits and caveats of each approach. Finally, we provide insight into the subsequent pre-clinical work required to validate novel candidate drug targets

  13. An Integrated Genome-Wide Systems Genetics Screen for Breast Cancer Metastasis Susceptibility Genes.

    Science.gov (United States)

    Bai, Ling; Yang, Howard H; Hu, Ying; Shukla, Anjali; Ha, Ngoc-Han; Doran, Anthony; Faraji, Farhoud; Goldberger, Natalie; Lee, Maxwell P; Keane, Thomas; Hunter, Kent W

    2016-04-01

    Metastasis remains the primary cause of patient morbidity and mortality in solid tumors and is due to the action of a large number of tumor-autonomous and non-autonomous factors. Here we report the results of a genome-wide integrated strategy to identify novel metastasis susceptibility candidate genes and molecular pathways in breast cancer metastasis. This analysis implicates a number of transcriptional regulators and suggests cell-mediated immunity is an important determinant. Moreover, the analysis identified novel or FDA-approved drugs as potentially useful for anti-metastatic therapy. Further explorations implementing this strategy may therefore provide a variety of information for clinical applications in the control and treatment of advanced neoplastic disease. PMID:27074153

  14. Genome-wide analysis of over 106 000 individuals identifies 9 neuroticism-associated loci.

    Science.gov (United States)

    Smith, D J; Escott-Price, V; Davies, G; Bailey, M E S; Colodro-Conde, L; Ward, J; Vedernikov, A; Marioni, R; Cullen, B; Lyall, D; Hagenaars, S P; Liewald, D C M; Luciano, M; Gale, C R; Ritchie, S J; Hayward, C; Nicholl, B; Bulik-Sullivan, B; Adams, M; Couvy-Duchesne, B; Graham, N; Mackay, D; Evans, J; Smith, B H; Porteous, D J; Medland, S E; Martin, N G; Holmans, P; McIntosh, A M; Pell, J P; Deary, I J; O'Donovan, M C

    2016-06-01

    Neuroticism is a personality trait of fundamental importance for psychological well-being and public health. It is strongly associated with major depressive disorder (MDD) and several other psychiatric conditions. Although neuroticism is heritable, attempts to identify the alleles involved in previous studies have been limited by relatively small sample sizes. Here we report a combined meta-analysis of genome-wide association study (GWAS) of neuroticism that includes 91 370 participants from the UK Biobank cohort, 6659 participants from the Generation Scotland: Scottish Family Health Study (GS:SFHS) and 8687 participants from a QIMR (Queensland Institute of Medical Research) Berghofer Medical Research Institute (QIMR) cohort. All participants were assessed using the same neuroticism instrument, the Eysenck Personality Questionnaire-Revised (EPQ-R-S) Short Form's Neuroticism scale. We found a single-nucleotide polymorphism-based heritability estimate for neuroticism of ∼15% (s.e.=0.7%). Meta-analysis identified nine novel loci associated with neuroticism. The strongest evidence for association was at a locus on chromosome 8 (P=1.5 × 10(-15)) spanning 4 Mb and containing at least 36 genes. Other associated loci included interesting candidate genes on chromosome 1 (GRIK3 (glutamate receptor ionotropic kainate 3)), chromosome 4 (KLHL2 (Kelch-like protein 2)), chromosome 17 (CRHR1 (corticotropin-releasing hormone receptor 1) and MAPT (microtubule-associated protein Tau)) and on chromosome 18 (CELF4 (CUGBP elav-like family member 4)). We found no evidence for genetic differences in the common allelic architecture of neuroticism by sex. By comparing our findings with those of the Psychiatric Genetics Consortia, we identified a strong genetic correlation between neuroticism and MDD and a less strong but significant genetic correlation with schizophrenia, although not with bipolar disorder. Polygenic risk scores derived from the primary UK Biobank sample captured

  15. Personalized medicine approaches for colon cancer driven by genomics and systems biology: OncoTrack.

    Science.gov (United States)

    Henderson, David; Ogilvie, Lesley A; Hoyle, Nicholas; Keilholz, Ulrich; Lange, Bodo; Lehrach, Hans

    2014-09-01

    The post-genomic era promises to pave the way to a personalized understanding of disease processes, with technological and analytical advances helping to solve some of the world's health challenges. Despite extraordinary progress in our understanding of cancer pathogenesis, the disease remains one of the world's major medical problems. New therapies and diagnostic procedures to guide their clinical application are urgently required. OncoTrack, a consortium between industry and academia, supported by the Innovative Medicines Initiative, signifies a new era in personalized medicine, which synthesizes current technological advances in omics techniques, systems biology approaches, and mathematical modeling. A truly personalized molecular imprint of the tumor micro-environment and subsequent diagnostic and therapeutic insight is gained, with the ultimate goal of matching the "right" patient to the "right" drug and identifying predictive biomarkers for clinical application. This comprehensive mapping of the colon cancer molecular landscape in tandem with crucial, clinical functional annotation for systems biology analysis provides unprecedented insight and predictive power for colon cancer management. Overall, we show that major biotechnological developments in tandem with changes in clinical thinking have laid the foundations for the OncoTrack approach and the future clinical application of a truly personalized approach to colon cancer theranostics. PMID:25074435

  16. Radiotherapy for glioblastoma: reorganization of genome maintenance mechanisms involved in the process of inhibiting cancer

    International Nuclear Information System (INIS)

    Glioblastoma is a very aggressive brain tumor, which occurs in Glial cells. The treatment consists in chemotherapy, surgery and radiotherapy. The radiotherapy is a treatment method that uses ionizing radiation to kill cancer cells. The cells have genome maintenance mechanisms (MMG) distributed in apoptosis, DNA damage response, and cell cycle pathways. These pathways are formed by sets of proteins and perform specific functions within the cell (example: induce cell death). The mutation of these proteins associated with the failure of the MMG can cause the activation of mutations and consequently induce the development of cancer. This work, objective has to identify pathways and proteins expressed in cancer treatment using free software of the statistical analysis, developed in Fortran and R platforms to show the effects caused by radiation in the proteins of cancerous tissues. The results, were fond to pathways of glioblastoma treated with radiotherapy, activation of apoptosis and response to DNA damage pathways, indicating that there is death of carcinogenic tissue caused by radiation and that some cells are triggering a process of DNA repair. (author)

  17. Genomic instability and radiation risk in molecular pathways to colon cancer.

    Science.gov (United States)

    Kaiser, Jan Christian; Meckbach, Reinhard; Jacob, Peter

    2014-01-01

    Colon cancer is caused by multiple genomic alterations which lead to genomic instability (GI). GI appears in molecular pathways of microsatellite instability (MSI) and chromosomal instability (CIN) with clinically observed case shares of about 15-20% and 80-85%. Radiation enhances the colon cancer risk by inducing GI, but little is known about different outcomes for MSI and CIN. Computer-based modelling can facilitate the understanding of the phenomena named above. Comprehensive biological models, which combine the two main molecular pathways to colon cancer, are fitted to incidence data of Japanese a-bomb survivors. The preferred model is selected according to statistical criteria and biological plausibility. Imprints of cell-based processes in the succession from adenoma to carcinoma are identified by the model from age dependences and secular trends of the incidence data. Model parameters show remarkable compliance with mutation rates and growth rates for adenoma, which has been reported over the last fifteen years. Model results suggest that CIN begins during fission of intestinal crypts. Chromosomal aberrations are generated at a markedly elevated rate which favors the accelerated growth of premalignant adenoma. Possibly driven by a trend of Westernization in the Japanese diet, incidence rates for the CIN pathway increased notably in subsequent birth cohorts, whereas rates pertaining to MSI remained constant. An imbalance between number of CIN and MSI cases began to emerge in the 1980s, whereas in previous decades the number of cases was almost equal. The CIN pathway exhibits a strong radio-sensitivity, probably more intensive in men. Among young birth cohorts of both sexes the excess absolute radiation risk related to CIN is larger by an order of magnitude compared to the MSI-related risk. Observance of pathway-specific risks improves the determination of the probability of causation for radiation-induced colon cancer in individual patients, if their exposure

  18. Genomic instability and radiation risk in molecular pathways to colon cancer.

    Directory of Open Access Journals (Sweden)

    Jan Christian Kaiser

    Full Text Available Colon cancer is caused by multiple genomic alterations which lead to genomic instability (GI. GI appears in molecular pathways of microsatellite instability (MSI and chromosomal instability (CIN with clinically observed case shares of about 15-20% and 80-85%. Radiation enhances the colon cancer risk by inducing GI, but little is known about different outcomes for MSI and CIN. Computer-based modelling can facilitate the understanding of the phenomena named above. Comprehensive biological models, which combine the two main molecular pathways to colon cancer, are fitted to incidence data of Japanese a-bomb survivors. The preferred model is selected according to statistical criteria and biological plausibility. Imprints of cell-based processes in the succession from adenoma to carcinoma are identified by the model from age dependences and secular trends of the incidence data. Model parameters show remarkable compliance with mutation rates and growth rates for adenoma, which has been reported over the last fifteen years. Model results suggest that CIN begins during fission of intestinal crypts. Chromosomal aberrations are generated at a markedly elevated rate which favors the accelerated growth of premalignant adenoma. Possibly driven by a trend of Westernization in the Japanese diet, incidence rates for the CIN pathway increased notably in subsequent birth cohorts, whereas rates pertaining to MSI remained constant. An imbalance between number of CIN and MSI cases began to emerge in the 1980s, whereas in previous decades the number of cases was almost equal. The CIN pathway exhibits a strong radio-sensitivity, probably more intensive in men. Among young birth cohorts of both sexes the excess absolute radiation risk related to CIN is larger by an order of magnitude compared to the MSI-related risk. Observance of pathway-specific risks improves the determination of the probability of causation for radiation-induced colon cancer in individual patients

  19. Targeting the Human Cancer Pathway Protein Interaction Network by Structural Genomics*

    OpenAIRE

    Huang, Yuanpeng Janet; Hang, Dehua; Lu, Long Jason; Tong, Liang; Gerstein, Mark B; Montelione, Gaetano T.

    2008-01-01

    Structural genomics provides an important approach for characterizing and understanding systems biology. As a step toward better integrating protein three-dimensional (3D) structural information in cancer systems biology, we have constructed a Human Cancer Pathway Protein Interaction Network (HCPIN) by analysis of several classical cancer-associated signaling pathways and their physical protein-protein interactions. Many well known cancer-associated proteins play central roles as “hubs” or “b...

  20. Needles in a haystack: finding recurrent genomic changes in breast cancer

    OpenAIRE

    Cidado, Justin; Beaver, Julia A.; Park, Ben Ho

    2013-01-01

    Significant advances over the past decade have enabled scientists to obtain increasingly detailed molecular profiles of breast cancer. The recent analysis by The Cancer Genome Atlas published in the September 2012 issue of Nature is the most comprehensive description of breast cancer 'omics' to date. This study is impressive in its scope and scale, with the findings reconfirming the heterogeneity of breast cancer and highlighting the future challenges in translating these findings for clinica...

  1. Genome-Wide Pattern of TCF7L2/TCF4 Chromatin Occupancy in Colorectal Cancer Cells▿ †

    OpenAIRE

    Hatzis, Pantelis; van der Flier, Laurens G.; van Driel, Marc A.; Guryev, Victor; Nielsen, Fiona; Denissov, Sergei; Nijman, Isaäc J; Koster, Jan; Santo, Evan E.; Welboren, Willem; Versteeg, Rogier; Cuppen, Edwin; van de Wetering, Marc; Clevers, Hans; Stunnenberg, Hendrik G.

    2008-01-01

    Wnt signaling activates gene expression through the induced formation of complexes between DNA-binding T-cell factors (TCFs) and the transcriptional coactivator β-catenin. In colorectal cancer, activating Wnt pathway mutations transform epithelial cells through the inappropriate activation of a TCF7L2/TCF4 target gene program. Through a DNA array-based genome-wide analysis of TCF4 chromatin occupancy, we have identified 6,868 high-confidence TCF4-binding sites in the LS174T colorectal cancer ...

  2. Identification of genes containing expanded purine repeats in the human genome and their apparent protective role against cancer.

    Science.gov (United States)

    Singh, Himanshu Narayan; Rajeswari, Moganty R

    2016-01-01

    Purine repeat sequences present in a gene are unique as they have high propensity to form unusual DNA-triple helix structures. Friedreich's ataxia is the only human disease that is well known to be associated with DNA-triplexes formed by purine repeats. The purpose of this study was to recognize the expanded purine repeats (EPRs) in human genome and find their correlation with cancer pathogenesis. We developed "PuRepeatFinder.pl" algorithm to identify non-overlapping EPRs without pyrimidine interruptions in the human genome and customized for searching repeat lengths, n ≥ 200. A total of 1158 EPRs were identified in the genome which followed Wakeby distribution. Two hundred and ninety-six EPRs were found in geneic regions of 282 genes (EPR-genes). Gene clustering of EPR-genes was done based on their cellular function and a large number of EPR-genes were found to be enzymes/enzyme modulators. Meta-analysis of 282 EPR-genes identified only 63 EPR-genes in association with cancer, mostly in breast, lung, and blood cancers. Protein-protein interaction network analysis of all 282 EPR-genes identified proteins including those in cadherins and VEGF. The two observations, that EPRs can induce mutations under malignant conditions and that identification of some EPR-gene products in vital cell signaling-mediated pathways, together suggest the crucial role of EPRs in carcinogenesis. The new link between EPR-genes and their functionally interacting proteins throws a new dimension in the present understanding of cancer pathogenesis and can help in planning therapeutic strategies. Validation of present results using techniques like NGS is required to establish the role of the EPR genes in cancer pathology. PMID:25990537

  3. Integrative Pathway Analysis of Metabolic Signature in Bladder Cancer: A Linkage to The Cancer Genome Atlas Project and Prediction of Survival

    Science.gov (United States)

    von Rundstedt, Friedrich-Carl; Rajapakshe, Kimal; Ma, Jing; Arnold, James M.; Gohlke, Jie; Putluri, Vasanta; Krishnapuram, Rashmi; Piyarathna, D. Badrajee; Lotan, Yair; Gödde, Daniel; Roth, Stephan; Störkel, Stephan; Levitt, Jonathan M.; Michailidis, George; Sreekumar, Arun; Lerner, Seth P.; Coarfa, Cristian; Putluri, Nagireddy

    2016-01-01

    Purpose We used targeted mass spectrometry to study the metabolic fingerprint of urothelial cancer and determine whether the biochemical pathway analysis gene signature would have a predictive value in independent cohorts of patients with bladder cancer. Materials and Methods Pathologically evaluated, bladder derived tissues, including benign adjacent tissue from 14 patients and bladder cancer from 46, were analyzed by liquid chromatography based targeted mass spectrometry. Differential metabolites associated with tumor samples in comparison to benign tissue were identified by adjusting the p values for multiple testing at a false discovery rate threshold of 15%. Enrichment of pathways and processes associated with the metabolic signature were determined using the GO (Gene Ontology) Database and MSigDB (Molecular Signature Database). Integration of metabolite alterations with transcriptome data from TCGA (The Cancer Genome Atlas) was done to identify the molecular signature of 30 metabolic genes. Available outcome data from TCGA portal were used to determine the association with survival. Results We identified 145 metabolites, of which analysis revealed 31 differential metabolites when comparing benign and tumor tissue samples. Using the KEGG (Kyoto Encyclopedia of Genes and Genomes) Database we identified a total of 174 genes that correlated with the altered metabolic pathways involved. By integrating these genes with the transcriptomic data from the corresponding TCGA data set we identified a metabolic signature consisting of 30 genes. The signature was significant in its prediction of survival in 95 patients with a low signature score vs 282 with a high signature score (p = 0.0458). Conclusions Targeted mass spectrometry of bladder cancer is highly sensitive for detecting metabolic alterations. Applying transcriptome data allows for integration into larger data sets and identification of relevant metabolic pathways in bladder cancer progression. PMID:26802582

  4. Marker-trait associations in Virginia Tech winter barley identified using genome-wide mapping.

    Science.gov (United States)

    Berger, Gregory L; Liu, Shuyu; Hall, Marla D; Brooks, Wynse S; Chao, Shiaoman; Muehlbauer, Gary J; Baik, B-K; Steffenson, Brian; Griffey, Carl A

    2013-03-01

    Genome-wide association studies (GWAS) provide an opportunity to examine the genetic architecture of quantitatively inherited traits in breeding populations. The objectives of this study were to use GWAS to identify chromosome regions governing traits of importance in six-rowed winter barley (Hordeum vulgare L.) germplasm and to identify single-nucleotide polymorphisms (SNPs) markers that can be implemented in a marker-assisted breeding program. Advanced hulled and hulless lines (329 total) were screened using 3,072 SNPs as a part of the US. Barley Coordinated Agricultural Project (CAP). Phenotypic data collected over 4 years for agronomic and food quality traits and resistance to leaf rust (caused by Puccinia hordei G. Otth), powdery mildew [caused by Blumeria graminis (DC.) E.O. Speer f. sp. hordei Em. Marchal], net blotch (caused by Pyrenophora teres), and spot blotch [caused by Cochliobolus sativus (Ito and Kuribayashi) Drechsler ex Dastur] were analyzed with SNP genotypic data in a GWAS to determine marker-trait associations. Significant SNPs associated with previously described quantitative trait loci (QTL) or genes were identified for heading date on chromosome 3H, test weight on 2H, yield on 7H, grain protein on 5H, polyphenol oxidase activity on 2H and resistance to leaf rust on 2H and 3H, powdery mildew on 1H, 2H and 4H, net blotch on 5H, and spot blotch on 7H. Novel QTL also were identified for agronomic, quality, and disease resistance traits. These SNP-trait associations provide the opportunity to directly select for QTL contributing to multiple traits in breeding programs. PMID:23139143

  5. Systematic enrichment analysis of gene expression profiling studies identifies consensus pathways implicated in colorectal cancer development

    Directory of Open Access Journals (Sweden)

    Jesús Lascorz

    2011-01-01

    Full Text Available Background: A large number of gene expression profiling (GEP studies on colorectal carcinogenesis have been performed but no reliable gene signature has been identified so far due to the lack of reproducibility in the reported genes. There is growing evidence that functionally related genes, rather than individual genes, contribute to the etiology of complex traits. We used, as a novel approach, pathway enrichment tools to define functionally related genes that are consistently up- or down-regulated in colorectal carcinogenesis. Materials and Methods: We started the analysis with 242 unique annotated genes that had been reported by any of three recent meta-analyses covering GEP studies on genes differentially expressed in carcinoma vs normal mucosa. Most of these genes (218, 91.9% had been reported in at least three GEP studies. These 242 genes were submitted to bioinformatic analysis using a total of nine tools to detect enrichment of Gene Ontology (GO categories or Kyoto Encyclopedia of Genes and Genomes (KEGG pathways. As a final consistency criterion the pathway categories had to be enriched by several tools to be taken into consideration. Results: Our pathway-based enrichment analysis identified the categories of ribosomal protein constituents, extracellular matrix receptor interaction, carbonic