WorldWideScience

Sample records for cancer genomics identifies

  1. Identifying driver mutations in sequenced cancer genomes

    DEFF Research Database (Denmark)

    Raphael, Benjamin J; Dobson, Jason R; Oesper, Layla

    2014-01-01

    High-throughput DNA sequencing is revolutionizing the study of cancer and enabling the measurement of the somatic mutations that drive cancer development. However, the resulting sequencing datasets are large and complex, obscuring the clinically important mutations in a background of errors, noise......, and random mutations. Here, we review computational approaches to identify somatic mutations in cancer genome sequences and to distinguish the driver mutations that are responsible for cancer from random, passenger mutations. First, we describe approaches to detect somatic mutations from high-throughput DNA...... sequencing data, particularly for tumor samples that comprise heterogeneous populations of cells. Next, we review computational approaches that aim to predict driver mutations according to their frequency of occurrence in a cohort of samples, or according to their predicted functional impact on protein...

  2. Computational approaches to identify functional genetic variants in cancer genomes

    DEFF Research Database (Denmark)

    Gonzalez-Perez, Abel; Mustonen, Ville; Reva, Boris;

    2013-01-01

    The International Cancer Genome Consortium (ICGC) aims to catalog genomic abnormalities in tumors from 50 different cancer types. Genome sequencing reveals hundreds to thousands of somatic mutations in each tumor but only a minority of these drive tumor progression. We present the result of discu...... of discussions within the ICGC on how to address the challenge of identifying mutations that contribute to oncogenesis, tumor maintenance or response to therapy, and recommend computational techniques to annotate somatic variants and predict their impact on cancer phenotype....

  3. Genomic analyses identify molecular subtypes of pancreatic cancer.

    Science.gov (United States)

    Bailey, Peter; Chang, David K; Nones, Katia; Johns, Amber L; Patch, Ann-Marie; Gingras, Marie-Claude; Miller, David K; Christ, Angelika N; Bruxner, Tim J C; Quinn, Michael C; Nourse, Craig; Murtaugh, L Charles; Harliwong, Ivon; Idrisoglu, Senel; Manning, Suzanne; Nourbakhsh, Ehsan; Wani, Shivangi; Fink, Lynn; Holmes, Oliver; Chin, Venessa; Anderson, Matthew J; Kazakoff, Stephen; Leonard, Conrad; Newell, Felicity; Waddell, Nick; Wood, Scott; Xu, Qinying; Wilson, Peter J; Cloonan, Nicole; Kassahn, Karin S; Taylor, Darrin; Quek, Kelly; Robertson, Alan; Pantano, Lorena; Mincarelli, Laura; Sanchez, Luis N; Evers, Lisa; Wu, Jianmin; Pinese, Mark; Cowley, Mark J; Jones, Marc D; Colvin, Emily K; Nagrial, Adnan M; Humphrey, Emily S; Chantrill, Lorraine A; Mawson, Amanda; Humphris, Jeremy; Chou, Angela; Pajic, Marina; Scarlett, Christopher J; Pinho, Andreia V; Giry-Laterriere, Marc; Rooman, Ilse; Samra, Jaswinder S; Kench, James G; Lovell, Jessica A; Merrett, Neil D; Toon, Christopher W; Epari, Krishna; Nguyen, Nam Q; Barbour, Andrew; Zeps, Nikolajs; Moran-Jones, Kim; Jamieson, Nigel B; Graham, Janet S; Duthie, Fraser; Oien, Karin; Hair, Jane; Grützmann, Robert; Maitra, Anirban; Iacobuzio-Donahue, Christine A; Wolfgang, Christopher L; Morgan, Richard A; Lawlor, Rita T; Corbo, Vincenzo; Bassi, Claudio; Rusev, Borislav; Capelli, Paola; Salvia, Roberto; Tortora, Giampaolo; Mukhopadhyay, Debabrata; Petersen, Gloria M; Munzy, Donna M; Fisher, William E; Karim, Saadia A; Eshleman, James R; Hruban, Ralph H; Pilarsky, Christian; Morton, Jennifer P; Sansom, Owen J; Scarpa, Aldo; Musgrove, Elizabeth A; Bailey, Ulla-Maja Hagbo; Hofmann, Oliver; Sutherland, Robert L; Wheeler, David A; Gill, Anthony J; Gibbs, Richard A; Pearson, John V; Waddell, Nicola; Biankin, Andrew V; Grimmond, Sean M

    2016-03-01

    Integrated genomic analysis of 456 pancreatic ductal adenocarcinomas identified 32 recurrently mutated genes that aggregate into 10 pathways: KRAS, TGF-β, WNT, NOTCH, ROBO/SLIT signalling, G1/S transition, SWI-SNF, chromatin modification, DNA repair and RNA processing. Expression analysis defined 4 subtypes: (1) squamous; (2) pancreatic progenitor; (3) immunogenic; and (4) aberrantly differentiated endocrine exocrine (ADEX) that correlate with histopathological characteristics. Squamous tumours are enriched for TP53 and KDM6A mutations, upregulation of the TP63∆N transcriptional network, hypermethylation of pancreatic endodermal cell-fate determining genes and have a poor prognosis. Pancreatic progenitor tumours preferentially express genes involved in early pancreatic development (FOXA2/3, PDX1 and MNX1). ADEX tumours displayed upregulation of genes that regulate networks involved in KRAS activation, exocrine (NR5A2 and RBPJL), and endocrine differentiation (NEUROD1 and NKX2-2). Immunogenic tumours contained upregulated immune networks including pathways involved in acquired immune suppression. These data infer differences in the molecular evolution of pancreatic cancer subtypes and identify opportunities for therapeutic development.

  4. MuSiC: identifying mutational significance in cancer genomes.

    Science.gov (United States)

    Dees, Nathan D; Zhang, Qunyuan; Kandoth, Cyriac; Wendl, Michael C; Schierding, William; Koboldt, Daniel C; Mooney, Thomas B; Callaway, Matthew B; Dooling, David; Mardis, Elaine R; Wilson, Richard K; Ding, Li

    2012-08-01

    Massively parallel sequencing technology and the associated rapidly decreasing sequencing costs have enabled systemic analyses of somatic mutations in large cohorts of cancer cases. Here we introduce a comprehensive mutational analysis pipeline that uses standardized sequence-based inputs along with multiple types of clinical data to establish correlations among mutation sites, affected genes and pathways, and to ultimately separate the commonly abundant passenger mutations from the truly significant events. In other words, we aim to determine the Mutational Significance in Cancer (MuSiC) for these large data sets. The integration of analytical operations in the MuSiC framework is widely applicable to a broad set of tumor types and offers the benefits of automation as well as standardization. Herein, we describe the computational structure and statistical underpinnings of the MuSiC pipeline and demonstrate its performance using 316 ovarian cancer samples from the TCGA ovarian cancer project. MuSiC correctly confirms many expected results, and identifies several potentially novel avenues for discovery.

  5. Genome-wide association analysis identifies three new breast cancer susceptibility loci

    DEFF Research Database (Denmark)

    Ghoussaini, Maya; Fletcher, Olivia; Michailidou, Kyriaki

    2012-01-01

    Breast cancer is the most common cancer among women. To date, 22 common breast cancer susceptibility loci have been identified accounting for ∼8% of the heritability of the disease. We attempted to replicate 72 promising associations from two independent genome-wide association studies (GWAS) in ...

  6. Genome-wide association analysis identifies three new breast cancer susceptibility loci

    NARCIS (Netherlands)

    Ghoussaini, M.; Fletcher, O.; Michailidou, K.; Turnbull, C.; Schmidt, M.K.; Dicks, E.; Dennis, J.; Wang, Q.; Humphreys, M.K.; Luccarini, C.; Baynes, C.; Conroy, D.; Maranian, M.; Ahmed, S.; Driver, K.; Johnson, N.; Orr, N.; dos Santos Silva, I.; Waisfisz, Q.; Meijers-Heijboer, H.; Uitterlinden, A.G.; Rivadeneira, F.; Hall, P.; Czene, K.; Irwanto, A.; Liu, J.; Nevanlinna, H.; Aittomaki, K.; Blomqvist, C.; Meindl, A.; Schmutzler, R.K.; Muller-Myhsok, B.; Lichtner, P.; Chang-Claude, J.; Hein, R.; Nickels, S.; Flesch-Janys, D.; Tsimiklis, H.; Makalic, E.; Schmidt, D.; Bui, M.; Hopper, J.L.; Apicella, C.; Park, D.J.; Southey, M.; Hunter, D.J.; Chanock, S.J.; Broeks, A.; Verhoef, S.; Hogervorst, F.B.; Fasching, P.A.; Lux, M.P.; Beckmann, M.W.; Ekici, A.B.; Sawyer, E.; Tomlinson, I.; Kerin, M.; Marme, F.; Schneeweiss, A.; Sohn, C.; Burwinkel, B.; Guenel, P.; Truong, T.; Cordina-Duverger, E.; Menegaux, F.; Bojesen, S.E.; Nordestgaard, B.G.; Nielsen, S.F.; Flyger, H.; Milne, R.L.; Alonso, M.R.; Gonzalez-Neira, A.; Benitez, J.; Anton-Culver, H.; Ziogas, A.; Bernstein, L.; Dur, C.C.; Brenner, H.; Muller, H.; Arndt, V.; Stegmaier, C.; Justenhoven, C.; Brauch, H.; Bruning, T.; Wang-Gohrke, S.; Eilber, U.; Dork, T.; Schurmann, P.; Bremer, M.; Hillemanns, P.; Bogdanova, N.V.; Antonenkova, N.N.; Rogov, Y.I.; Karstens, J.H.; Bermisheva, M.; Prokofieva, D.; Ligtenberg, M.J.

    2012-01-01

    Breast cancer is the most common cancer among women. To date, 22 common breast cancer susceptibility loci have been identified accounting for approximately 8% of the heritability of the disease. We attempted to replicate 72 promising associations from two independent genome-wide association studies

  7. Systematic Functional Interrogation of Rare Cancer Variants Identifies Oncogenic Alleles | Office of Cancer Genomics

    Science.gov (United States)

    Cancer genome characterization efforts now provide an initial view of the somatic alterations in primary tumors. However, most point mutations occur at low frequency, and the function of these alleles remains undefined. We have developed a scalable systematic approach to interrogate the function of cancer-associated gene variants. We subjected 474 mutant alleles curated from 5,338 tumors to pooled in vivo tumor formation assays and gene expression profiling. We identified 12 transforming alleles, including two in genes (PIK3CB, POT1) that have not been shown to be tumorigenic.

  8. Seven prostate cancer susceptibility loci identified by a multi-stage genome-wide association study

    DEFF Research Database (Denmark)

    Kote-Jarai, Zsofia; Olama, Ali Amin Al; Giles, Graham G

    2011-01-01

    Prostate cancer (PrCa) is the most frequently diagnosed male cancer in developed countries. We conducted a multi-stage genome-wide association study for PrCa and previously reported the results of the first two stages, which identified 16 PrCa susceptibility loci. We report here the results of st...

  9. Whole-genome sequencing identifies genomic heterogeneity at a nucleotide and chromosomal level in bladder cancer

    Science.gov (United States)

    Morrison, Carl D.; Liu, Pengyuan; Woloszynska-Read, Anna; Zhang, Jianmin; Luo, Wei; Qin, Maochun; Bshara, Wiam; Conroy, Jeffrey M.; Sabatini, Linda; Vedell, Peter; Xiong, Donghai; Liu, Song; Wang, Jianmin; Shen, He; Li, Yinwei; Omilian, Angela R.; Hill, Annette; Head, Karen; Guru, Khurshid; Kunnev, Dimiter; Leach, Robert; Eng, Kevin H.; Darlak, Christopher; Hoeflich, Christopher; Veeranki, Srividya; Glenn, Sean; You, Ming; Pruitt, Steven C.; Johnson, Candace S.; Trump, Donald L.

    2014-01-01

    Using complete genome analysis, we sequenced five bladder tumors accrued from patients with muscle-invasive transitional cell carcinoma of the urinary bladder (TCC-UB) and identified a spectrum of genomic aberrations. In three tumors, complex genotype changes were noted. All three had tumor protein p53 mutations and a relatively large number of single-nucleotide variants (SNVs; average of 11.2 per megabase), structural variants (SVs; average of 46), or both. This group was best characterized by chromothripsis and the presence of subclonal populations of neoplastic cells or intratumoral mutational heterogeneity. Here, we provide evidence that the process of chromothripsis in TCC-UB is mediated by nonhomologous end-joining using kilobase, rather than megabase, fragments of DNA, which we refer to as “stitchers,” to repair this process. We postulate that a potential unifying theme among tumors with the more complex genotype group is a defective replication–licensing complex. A second group (two bladder tumors) had no chromothripsis, and a simpler genotype, WT tumor protein p53, had relatively few SNVs (average of 5.9 per megabase) and only a single SV. There was no evidence of a subclonal population of neoplastic cells. In this group, we used a preclinical model of bladder carcinoma cell lines to study a unique SV (translocation and amplification) of the gene glutamate receptor ionotropic N-methyl D-aspertate as a potential new therapeutic target in bladder cancer. PMID:24469795

  10. Identifying master regulators of cancer and their downstream targets by integrating genomic and epigenomic features.

    Science.gov (United States)

    Gevaert, Olivier; Plevritis, Sylvia

    2013-01-01

    Vast amounts of molecular data characterizing the genome, epigenome and transcriptome are becoming available for a variety of cancers. The current challenge is to integrate these diverse layers of molecular biology information to create a more comprehensive view of key biological processes underlying cancer. We developed a biocomputational algorithm that integrates copy number, DNA methylation, and gene expression data to study master regulators of cancer and identify their targets. Our algorithm starts by generating a list of candidate driver genes based on the rationale that genes that are driven by multiple genomic events in a subset of samples are unlikely to be randomly deregulated. We then select the master regulators from the candidate driver and identify their targets by inferring the underlying regulatory network of gene expression. We applied our biocomputational algorithm to identify master regulators and their targets in glioblastoma multiforme (GBM) and serous ovarian cancer. Our results suggest that the expression of candidate drivers is more likely to be influenced by copy number variations than DNA methylation. Next, we selected the master regulators and identified their downstream targets using module networks analysis. As a proof-of-concept, we show that the GBM and ovarian cancer module networks recapitulate known processes in these cancers. In addition, we identify master regulators that have not been previously reported and suggest their likely role. In summary, focusing on genes whose expression can be explained by their genomic and epigenomic aberrations is a promising strategy to identify master regulators of cancer.

  11. Genomic profiling identifies GATA6 as a candidate oncogene amplified in pancreatobiliary cancer.

    Directory of Open Access Journals (Sweden)

    Kevin A Kwei

    2008-05-01

    Full Text Available Pancreatobiliary cancers have among the highest mortality rates of any cancer type. Discovering the full spectrum of molecular genetic alterations may suggest new avenues for therapy. To catalogue genomic alterations, we carried out array-based genomic profiling of 31 exocrine pancreatic cancers and 6 distal bile duct cancers, expanded as xenografts to enrich the tumor cell fraction. We identified numerous focal DNA amplifications and deletions, including in 19% of pancreatobiliary cases gain at cytoband 18q11.2, a locus uncommonly amplified in other tumor types. The smallest shared amplification at 18q11.2 included GATA6, a transcriptional regulator previously linked to normal pancreas development. When amplified, GATA6 was overexpressed at both the mRNA and protein levels, and strong immunostaining was observed in 25 of 54 (46% primary pancreatic cancers compared to 0 of 33 normal pancreas specimens surveyed. GATA6 expression in xenografts was associated with specific microarray gene-expression patterns, enriched for GATA binding sites and mitochondrial oxidative phosphorylation activity. siRNA mediated knockdown of GATA6 in pancreatic cancer cell lines with amplification led to reduced cell proliferation, cell cycle progression, and colony formation. Our findings indicate that GATA6 amplification and overexpression contribute to the oncogenic phenotypes of pancreatic cancer cells, and identify GATA6 as a candidate lineage-specific oncogene in pancreatobiliary cancer, with implications for novel treatment strategies.

  12. Genome-wide association study identifies multiple loci associated with bladder cancer risk

    Science.gov (United States)

    Figueroa, Jonine D.; Ye, Yuanqing; Siddiq, Afshan; Garcia-Closas, Montserrat; Chatterjee, Nilanjan; Prokunina-Olsson, Ludmila; Cortessis, Victoria K.; Kooperberg, Charles; Cussenot, Olivier; Benhamou, Simone; Prescott, Jennifer; Porru, Stefano; Dinney, Colin P.; Malats, Núria; Baris, Dalsu; Purdue, Mark; Jacobs, Eric J.; Albanes, Demetrius; Wang, Zhaoming; Deng, Xiang; Chung, Charles C.; Tang, Wei; Bas Bueno-de-Mesquita, H.; Trichopoulos, Dimitrios; Ljungberg, Börje; Clavel-Chapelon, Françoise; Weiderpass, Elisabete; Krogh, Vittorio; Dorronsoro, Miren; Travis, Ruth; Tjønneland, Anne; Brenan, Paul; Chang-Claude, Jenny; Riboli, Elio; Conti, David; Gago-Dominguez, Manuela; Stern, Mariana C.; Pike, Malcolm C.; Van Den Berg, David; Yuan, Jian-Min; Hohensee, Chancellor; Rodabough, Rebecca; Cancel-Tassin, Geraldine; Roupret, Morgan; Comperat, Eva; Chen, Constance; De Vivo, Immaculata; Giovannucci, Edward; Hunter, David J.; Kraft, Peter; Lindstrom, Sara; Carta, Angela; Pavanello, Sofia; Arici, Cecilia; Mastrangelo, Giuseppe; Kamat, Ashish M.; Lerner, Seth P.; Barton Grossman, H.; Lin, Jie; Gu, Jian; Pu, Xia; Hutchinson, Amy; Burdette, Laurie; Wheeler, William; Kogevinas, Manolis; Tardón, Adonina; Serra, Consol; Carrato, Alfredo; García-Closas, Reina; Lloreta, Josep; Schwenn, Molly; Karagas, Margaret R.; Johnson, Alison; Schned, Alan; Armenti, Karla R.; Hosain, G.M.; Andriole, Gerald; Grubb, Robert; Black, Amanda; Ryan Diver, W.; Gapstur, Susan M.; Weinstein, Stephanie J.; Virtamo, Jarmo; Haiman, Chris A.; Landi, Maria T.; Caporaso, Neil; Fraumeni, Joseph F.; Vineis, Paolo; Wu, Xifeng; Silverman, Debra T.; Chanock, Stephen; Rothman, Nathaniel

    2014-01-01

    Candidate gene and genome-wide association studies (GWAS) have identified 11 independent susceptibility loci associated with bladder cancer risk. To discover additional risk variants, we conducted a new GWAS of 2422 bladder cancer cases and 5751 controls, followed by a meta-analysis with two independently published bladder cancer GWAS, resulting in a combined analysis of 6911 cases and 11 814 controls of European descent. TaqMan genotyping of 13 promising single nucleotide polymorphisms with P < 1 × 10−5 was pursued in a follow-up set of 801 cases and 1307 controls. Two new loci achieved genome-wide statistical significance: rs10936599 on 3q26.2 (P = 4.53 × 10−9) and rs907611 on 11p15.5 (P = 4.11 × 10−8). Two notable loci were also identified that approached genome-wide statistical significance: rs6104690 on 20p12.2 (P = 7.13 × 10−7) and rs4510656 on 6p22.3 (P = 6.98 × 10−7); these require further studies for confirmation. In conclusion, our study has identified new susceptibility alleles for bladder cancer risk that require fine-mapping and laboratory investigation, which could further understanding into the biological underpinnings of bladder carcinogenesis. PMID:24163127

  13. A genome-wide association study identifies susceptibility loci for ovarian cancer at 2q31 and 8q24

    DEFF Research Database (Denmark)

    Goode, Ellen L; Chenevix-Trench, Georgia; Song, Honglin;

    2010-01-01

    Ovarian cancer accounts for more deaths than all other gynecological cancers combined. To identify common low-penetrance ovarian cancer susceptibility genes, we conducted a genome-wide association study of 507,094 SNPs in 1,768 individuals with ovarian cancer (cases) and 2,354 controls, with foll...

  14. Five endometrial cancer risk loci identified through genome-wide association analysis.

    Science.gov (United States)

    Cheng, Timothy H T; Thompson, Deborah J; O'Mara, Tracy A; Painter, Jodie N; Glubb, Dylan M; Flach, Susanne; Lewis, Annabelle; French, Juliet D; Freeman-Mills, Luke; Church, David; Gorman, Maggie; Martin, Lynn; Hodgson, Shirley; Webb, Penelope M; Attia, John; Holliday, Elizabeth G; McEvoy, Mark; Scott, Rodney J; Henders, Anjali K; Martin, Nicholas G; Montgomery, Grant W; Nyholt, Dale R; Ahmed, Shahana; Healey, Catherine S; Shah, Mitul; Dennis, Joe; Fasching, Peter A; Beckmann, Matthias W; Hein, Alexander; Ekici, Arif B; Hall, Per; Czene, Kamila; Darabi, Hatef; Li, Jingmei; Dörk, Thilo; Dürst, Matthias; Hillemanns, Peter; Runnebaum, Ingo; Amant, Frederic; Schrauwen, Stefanie; Zhao, Hui; Lambrechts, Diether; Depreeuw, Jeroen; Dowdy, Sean C; Goode, Ellen L; Fridley, Brooke L; Winham, Stacey J; Njølstad, Tormund S; Salvesen, Helga B; Trovik, Jone; Werner, Henrica M J; Ashton, Katie; Otton, Geoffrey; Proietto, Tony; Liu, Tao; Mints, Miriam; Tham, Emma; Li, Mulin Jun; Yip, Shun H; Wang, Junwen; Bolla, Manjeet K; Michailidou, Kyriaki; Wang, Qin; Tyrer, Jonathan P; Dunlop, Malcolm; Houlston, Richard; Palles, Claire; Hopper, John L; Peto, Julian; Swerdlow, Anthony J; Burwinkel, Barbara; Brenner, Hermann; Meindl, Alfons; Brauch, Hiltrud; Lindblom, Annika; Chang-Claude, Jenny; Couch, Fergus J; Giles, Graham G; Kristensen, Vessela N; Cox, Angela; Cunningham, Julie M; Pharoah, Paul D P; Dunning, Alison M; Edwards, Stacey L; Easton, Douglas F; Tomlinson, Ian; Spurdle, Amanda B

    2016-06-01

    We conducted a meta-analysis of three endometrial cancer genome-wide association studies (GWAS) and two follow-up phases totaling 7,737 endometrial cancer cases and 37,144 controls of European ancestry. Genome-wide imputation and meta-analysis identified five new risk loci of genome-wide significance at likely regulatory regions on chromosomes 13q22.1 (rs11841589, near KLF5), 6q22.31 (rs13328298, in LOC643623 and near HEY2 and NCOA7), 8q24.21 (rs4733613, telomeric to MYC), 15q15.1 (rs937213, in EIF2AK4, near BMF) and 14q32.33 (rs2498796, in AKT1, near SIVA1). We also found a second independent 8q24.21 signal (rs17232730). Functional studies of the 13q22.1 locus showed that rs9600103 (pairwise r(2) = 0.98 with rs11841589) is located in a region of active chromatin that interacts with the KLF5 promoter region. The rs9600103[T] allele that is protective in endometrial cancer suppressed gene expression in vitro, suggesting that regulation of the expression of KLF5, a gene linked to uterine development, is implicated in tumorigenesis. These findings provide enhanced insight into the genetic and biological basis of endometrial cancer.

  15. Identifying anti-growth factors for human cancer cell lines through genome-scale metabolic modeling

    DEFF Research Database (Denmark)

    Ghaffari, Pouyan; Mardinoglu, Adil; Asplund, Anna

    2015-01-01

    Human cancer cell lines are used as important model systems to study molecular mechanisms associated with tumor growth, hereunder how genomic and biological heterogeneity found in primary tumors affect cellular phenotypes. We reconstructed Genome scale metabolic models (GEMs) for eleven cell lines...... based on RNA-Seq data and validated the functionality of these models with data from metabolite profiling. We used cell line-specific GEMs to analyze the differences in the metabolism of cancer cell lines, and to explore the heterogeneous expression of the metabolic subsystems. Furthermore, we predicted...... antimetabolites using two cell lines with different phenotypic origins, and found that it is effective in inhibiting the growth of these cell lines. Using immunohistochemistry, we also showed high or moderate expression levels of proteins targeted by the validated antimetabolite. Identified anti-growth factors...

  16. Genome-wide association analysis identifies new lung cancer susceptibility loci in never-smoking women in Asia.

    NARCIS (Netherlands)

    Lan, Q.; Hsiung, C.A.; Matsuo, K.; Hong, Y.C.; Seow, A.; Wang, Z.; Hosgood, H.D.; Chen, K.; Wang, J.C.; Chatterjee, N.; Hu, W.; Wong, M.P.; Zheng, W.; Caporaso, N.; Park, J.Y.; Chen, C.J.; Kim, Y.H.; Kim, Y.T.; Landi, M.T.; Shen, H.; Lawrence, C.; Burdett, L.; Yeager, M.; Yuenger, J.; Jacobs, K.B.; Chang, I.S.; Mitsudomi, T.; Kim, H.N.; Chang, G.C.; Bassig, B.A.; Tucker, M.; Wei, F.; Yin, Y.; Wu, C.; An, S.J.; Qian, B.; Lee, V.H.; Lu, D.; Liu, J.; Jeon, H.S.; Hsiao, C.F.; Sung, J.S.; Kim, J.H.; Gao, Y.T.; Tsai, Y.H.; Jung, Y.J.; Guo, H.; Hu, Z.; Hutchinson, A.; Wang, W.C.; Klein, R.; Chung, C.C.; Oh, I.J.; Chen, K.Y.; Berndt, S.I.; He, X.; Wu, W.; Chang, J.; Zhang, X.C.; Huang, M.S.; Zheng, H.; Wang, J.; Zhao, X.; Li, Y.; Choi, J.E.; Su, W.C.; Park, K.H.; Sung, S.W.; Shu, X.O.; Chen, Y.M.; Liu, L.; Kang, C.H.; Hu, L.; Chen, C.H.; Pao, W.; Kim, Y.C.; Yang, T.Y.; Xu, J.; Guan, P.; Tan, W.; Su, J.; Wang, C.L.; Li, H.; Sihoe, A.D.; Zhao, Z.; Chen, Y.; Choi, Y.Y.; Hung, J.Y.; Kim, J.S.; Yoon, H.I.; Cai, Q.; Lin, C.C.; Park, I.K.; Xu, P.; Dong, J.; Kim, C.; He, Q; Perng, R.P.; Kohno, T.; Kweon, S.S.; Chen, C.Y.; Vermeulen, R.; Wu, J.; Lim, W.Y.; Chen, K.C.; Chow, W.H.; Ji, B.T.; Chan, J.K.; Chu, M.; Li, Y.J.; Yokota, J.; Li, J.; Chen, H.; Xiang, Y.B.; Yu, C.J.; Kunitoh, H.; Wu, G.; Jin, L.; Lo, Y.L.; Shiraishi, K.; Chen, Y.H.; Lin, H.C.; Wu, T.; WU, Y.; Yang, P.C.; Zhou, B.; Shin, M.H.; Fraumeni, J.F.; Lin, D.; Chanock, S.J.; Rothman, N.

    2012-01-01

    To identify common genetic variants that contribute to lung cancer susceptibility, we conducted a multistage genome-wide association study of lung cancer in Asian women who never smoked. We scanned 5,510 never-smoking female lung cancer cases and 4,544 controls drawn from 14 studies from mainland Ch

  17. Five endometrial cancer risk loci identified through genome-wide association analysis

    Science.gov (United States)

    O’Mara, Tracy A; Painter, Jodie N; Glubb, Dylan M; Flach, Susanne; Lewis, Annabelle; French, Juliet D; Freeman-Mills, Luke; Church, David; Gorman, Maggie; Martin, Lynn; Hodgson, Shirley; Webb, Penelope M; Attia, John; Holliday, Elizabeth G; McEvoy, Mark; Scott, Rodney J; Henders, Anjali K; Martin, Nicholas G; Montgomery, Grant W; Nyholt, Dale R; Ahmed, Shahana; Healey, Catherine S; Shah, Mitul; Dennis, Joe; Fasching, Peter A; Beckmann, Matthias W; Hein, Alexander; Ekici, Arif B; Hall, Per; Czene, Kamila; Darabi, Hatef; Li, Jingmei; Dörk, Thilo; Dürst, Matthias; Hillemanns, Peter; Runnebaum, Ingo; Amant, Frederic; Schrauwen, Stefanie; Zhao, Hui; Lambrechts, Diether; Depreeuw, Jeroen; Dowdy, Sean C; Goode, Ellen L; Fridley, Brooke L; Winham, Stacey J; Njølstad, Tormund S; Salvesen, Helga B; Trovik, Jone; Werner, Henrica MJ; Ashton, Katie; Otton, Geoffrey; Proietto, Tony; Liu, Tao; Mints, Miriam; Tham, Emma; Consortium, CHIBCHA; Jun Li, Mulin; Yip, Shun H; Wang, Junwen; Bolla, Manjeet K; Michailidou, Kyriaki; Wang, Qin; Tyrer, Jonathan P; Dunlop, Malcolm; Houlston, Richard; Palles, Claire; Hopper, John L; Peto, Julian; Swerdlow, Anthony J; Burwinkel, Barbara; Brenner, Hermann; Meindl, Alfons; Brauch, Hiltrud; Lindblom, Annika; Chang-Claude, Jenny; Couch, Fergus J; Giles, Graham G; Kristensen, Vessela N; Cox, Angela; Cunningham, Julie M; Pharoah, Paul D P; Dunning, Alison M; Edwards, Stacey L; Easton, Douglas F; Tomlinson, Ian; Spurdle, Amanda B

    2016-01-01

    We conducted a meta-analysis of three endometrial cancer GWAS and two replication phases totaling 7,737 endometrial cancer cases and 37,144 controls of European ancestry. Genome-wide imputation and meta-analysis identified five novel risk loci of genome-wide significance at likely regulatory regions on chromosomes 13q22.1 (rs11841589, near KLF5), 6q22.31 (rs13328298, in LOC643623 and near HEY2 and NCOA7), 8q24.21 (rs4733613, telomeric to MYC), 15q15.1 (rs937213, in EIF2AK4, near BMF) and 14q32.33 (rs2498796, in AKT1 near SIVA1). A second independent 8q24.21 signal (rs17232730) was found. Functional studies of the 13q22.1 locus showed that rs9600103 (pairwise r2=0.98 with rs11841589) is located in a region of active chromatin that interacts with the KLF5 promoter region. The rs9600103-T endometrial cancer protective allele suppressed gene expression in vitro suggesting that regulation of KLF5 expression, a gene linked to uterine development, is implicated in tumorigenesis. These findings provide enhanced insight into the genetic and biological basis of endometrial cancer. PMID:27135401

  18. Copy number analysis identifies novel interactions between genomic loci in ovarian cancer.

    Directory of Open Access Journals (Sweden)

    Kylie L Gorringe

    Full Text Available Ovarian cancer is a heterogeneous disease displaying complex genomic alterations, and consequently, it has been difficult to determine the most relevant copy number alterations with the scale of studies to date. We obtained genome-wide copy number alteration (CNA data from four different SNP array platforms, with a final data set of 398 ovarian tumours, mostly of the serous histological subtype. Frequent CNA aberrations targeted many thousands of genes. However, high-level amplicons and homozygous deletions enabled filtering of this list to the most relevant. The large data set enabled refinement of minimal regions and identification of rare amplicons such as at 1p34 and 20q11. We performed a novel co-occurrence analysis to assess cooperation and exclusivity of CNAs and analysed their relationship to patient outcome. Positive associations were identified between gains on 19 and 20q, gain of 20q and loss of X, and between several regions of loss, particularly 17q. We found weak correlations of CNA at genomic loci such as 19q12 with clinical outcome. We also assessed genomic instability measures and found a correlation of the number of higher amplitude gains with poorer overall survival. By assembling the largest collection of ovarian copy number data to date, we have been able to identify the most frequent aberrations and their interactions.

  19. Copy number analysis identifies novel interactions between genomic loci in ovarian cancer.

    Science.gov (United States)

    Gorringe, Kylie L; George, Joshy; Anglesio, Michael S; Ramakrishna, Manasa; Etemadmoghadam, Dariush; Cowin, Prue; Sridhar, Anita; Williams, Louise H; Boyle, Samantha E; Yanaihara, Nozomu; Okamoto, Aikou; Urashima, Mitsuyoshi; Smyth, Gordon K; Campbell, Ian G; Bowtell, David D L

    2010-09-10

    Ovarian cancer is a heterogeneous disease displaying complex genomic alterations, and consequently, it has been difficult to determine the most relevant copy number alterations with the scale of studies to date. We obtained genome-wide copy number alteration (CNA) data from four different SNP array platforms, with a final data set of 398 ovarian tumours, mostly of the serous histological subtype. Frequent CNA aberrations targeted many thousands of genes. However, high-level amplicons and homozygous deletions enabled filtering of this list to the most relevant. The large data set enabled refinement of minimal regions and identification of rare amplicons such as at 1p34 and 20q11. We performed a novel co-occurrence analysis to assess cooperation and exclusivity of CNAs and analysed their relationship to patient outcome. Positive associations were identified between gains on 19 and 20q, gain of 20q and loss of X, and between several regions of loss, particularly 17q. We found weak correlations of CNA at genomic loci such as 19q12 with clinical outcome. We also assessed genomic instability measures and found a correlation of the number of higher amplitude gains with poorer overall survival. By assembling the largest collection of ovarian copy number data to date, we have been able to identify the most frequent aberrations and their interactions.

  20. Genome-wide association study identifies novel breast cancer susceptibility loci

    Science.gov (United States)

    Easton, Douglas F.; Pooley, Karen A.; Dunning, Alison M.; Pharoah, Paul D. P.; Thompson, Deborah; Ballinger, Dennis G.; Struewing, Jeffery P.; Morrison, Jonathan; Field, Helen; Luben, Robert; Wareham, Nicholas; Ahmed, Shahana; Healey, Catherine S.; Bowman, Richard; Meyer, Kerstin B.; Haiman, Christopher A.; Kolonel, Laurence K.; Henderson, Brian E.; Marchand, Loic Le; Brennan, Paul; Sangrajrang, Suleeporn; Gaborieau, Valerie; Odefrey, Fabrice; Shen, Chen-Yang; Wu, Pei-Ei; Wang, Hui-Chun; Eccles, Diana; Evans, D. Gareth; Peto, Julian; Fletcher, Olivia; Johnson, Nichola; Seal, Sheila; Stratton, Michael R.; Rahman, Nazneen; Chenevix-Trench, Georgia; Bojesen, Stig E.; Nordestgaard, Børge G.; Axelsson, Christen K.; Garcia-Closas, Montserrat; Brinton, Louise; Chanock, Stephen; Lissowska, Jolanta; Peplonska, Beata; Nevanlinna, Heli; Fagerholm, Rainer; Eerola, Hannaleena; Kang, Daehee; Yoo, Keun-Young; Noh, Dong-Young; Ahn, Sei-Hyun; Hunter, David J.; Hankinson, Susan E.; Cox, David G.; Hall, Per; Wedren, Sara; Liu, Jianjun; Low, Yen-Ling; Bogdanova, Natalia; Schürmann, Peter; Dörk, Thilo; Tollenaar, Rob A. E. M.; Jacobi, Catharina E.; Devilee, Peter; Klijn, Jan G. M.; Sigurdson, Alice J.; Doody, Michele M.; Alexander, Bruce H.; Zhang, Jinghui; Cox, Angela; Brock, Ian W.; MacPherson, Gordon; Reed, Malcolm W. R.; Couch, Fergus J.; Goode, Ellen L.; Olson, Janet E.; Meijers-Heijboer, Hanne; van den Ouweland, Ans; Uitterlinden, André; Rivadeneira, Fernando; Milne, Roger L.; Ribas, Gloria; Gonzalez-Neira, Anna; Benitez, Javier; Hopper, John L.; McCredie, Margaret; Southey, Melissa; Giles, Graham G.; Schroen, Chris; Justenhoven, Christina; Brauch, Hiltrud; Hamann, Ute; Ko, Yon-Dschun; Spurdle, Amanda B.; Beesley, Jonathan; Chen, Xiaoqing; Mannermaa, Arto; Kosma, Veli-Matti; Kataja, Vesa; Hartikainen, Jaana; Day, Nicholas E.; Cox, David R.; Ponder, Bruce A. J.; Luccarini, Craig; Conroy, Don; Shah, Mitul; Munday, Hannah; Jordan, Clare; Perkins, Barbara; West, Judy; Redman, Karen; Driver, Kristy; Aghmesheh, Morteza; Amor, David; Andrews, Lesley; Antill, Yoland; Armes, Jane; Armitage, Shane; Arnold, Leanne; Balleine, Rosemary; Begley, Glenn; Beilby, John; Bennett, Ian; Bennett, Barbara; Berry, Geoffrey; Blackburn, Anneke; Brennan, Meagan; Brown, Melissa; Buckley, Michael; Burke, Jo; Butow, Phyllis; Byron, Keith; Callen, David; Campbell, Ian; Chenevix-Trench, Georgia; Clarke, Christine; Colley, Alison; Cotton, Dick; Cui, Jisheng; Culling, Bronwyn; Cummings, Margaret; Dawson, Sarah-Jane; Dixon, Joanne; Dobrovic, Alexander; Dudding, Tracy; Edkins, Ted; Eisenbruch, Maurice; Farshid, Gelareh; Fawcett, Susan; Field, Michael; Firgaira, Frank; Fleming, Jean; Forbes, John; Friedlander, Michael; Gaff, Clara; Gardner, Mac; Gattas, Mike; George, Peter; Giles, Graham; Gill, Grantley; Goldblatt, Jack; Greening, Sian; Grist, Scott; Haan, Eric; Harris, Marion; Hart, Stewart; Hayward, Nick; Hopper, John; Humphrey, Evelyn; Jenkins, Mark; Jones, Alison; Kefford, Rick; Kirk, Judy; Kollias, James; Kovalenko, Sergey; Lakhani, Sunil; Leary, Jennifer; Lim, Jacqueline; Lindeman, Geoff; Lipton, Lara; Lobb, Liz; Maclurcan, Mariette; Mann, Graham; Marsh, Deborah; McCredie, Margaret; McKay, Michael; McLachlan, Sue Anne; Meiser, Bettina; Milne, Roger; Mitchell, Gillian; Newman, Beth; O'Loughlin, Imelda; Osborne, Richard; Peters, Lester; Phillips, Kelly; Price, Melanie; Reeve, Jeanne; Reeve, Tony; Richards, Robert; Rinehart, Gina; Robinson, Bridget; Rudzki, Barney; Salisbury, Elizabeth; Sambrook, Joe; Saunders, Christobel; Scott, Clare; Scott, Elizabeth; Scott, Rodney; Seshadri, Ram; Shelling, Andrew; Southey, Melissa; Spurdle, Amanda; Suthers, Graeme; Taylor, Donna; Tennant, Christopher; Thorne, Heather; Townshend, Sharron; Tucker, Kathy; Tyler, Janet; Venter, Deon; Visvader, Jane; Walpole, Ian; Ward, Robin; Waring, Paul; Warner, Bev; Warren, Graham; Watson, Elizabeth; Williams, Rachael; Wilson, Judy; Winship, Ingrid; Young, Mary Ann; Bowtell, David; Green, Adele; deFazio, Anna; Chenevix-Trench, Georgia; Gertig, Dorota; Webb, Penny

    2009-01-01

    Breast cancer exhibits familial aggregation, consistent with variation in genetic susceptibility to the disease. Known susceptibility genes account for less than 25% of the familial risk of breast cancer, and the residual genetic variance is likely to be due to variants conferring more moderate risks. To identify further susceptibility alleles, we conducted a two-stage genome-wide association study in 4,398 breast cancer cases and 4,316 controls, followed by a third stage in which 30 single nucleotide polymorphisms (SNPs) were tested for confirmation in 21,860 cases and 22,578 controls from 22 studies. We used 227,876 SNPs that were estimated to correlate with 77% of known common SNPs in Europeans at r2>0.5. SNPs in five novel independent loci exhibited strong and consistent evidence of association with breast cancer (P<10−7). Four of these contain plausible causative genes (FGFR2, TNRC9, MAP3K1 and LSP1). At the second stage, 1,792 SNPs were significant at the P<0.05 level compared with an estimated 1,343 that would be expected by chance, indicating that many additional common susceptibility alleles may be identifiable by this approach. PMID:17529967

  1. Genome-wide association study identifies new prostate cancer susceptibility loci

    DEFF Research Database (Denmark)

    Schumacher, Fredrick R.; Berndt, Sonja I.; Siddiq, Afshan

    2011-01-01

    Prostate cancer (PrCa) is the most common non-skin cancer diagnosed among males in developed countries and the second leading cause of cancer mortality, yet little is known regarding its etiology and factors that influence clinical outcome. Genome-wide association studies (GWAS) of PrCa have iden...

  2. Genome-wide association studies identify four ER negative–specific breast cancer risk loci

    Science.gov (United States)

    Garcia-Closas, Montserrat; Couch, Fergus J; Lindstrom, Sara; Michailidou, Kyriaki; Schmidt, Marjanka K; Brook, Mark N; orr, Nick; Rhie, Suhn Kyong; Riboli, Elio; Feigelson, Heather s; Le Marchand, Loic; Buring, Julie E; Eccles, Diana; Miron, Penelope; Fasching, Peter A; Brauch, Hiltrud; Chang-Claude, Jenny; Carpenter, Jane; Godwin, Andrew K; Nevanlinna, Heli; Giles, Graham G; Cox, Angela; Hopper, John L; Bolla, Manjeet K; Wang, Qin; Dennis, Joe; Dicks, Ed; Howat, Will J; Schoof, Nils; Bojesen, Stig E; Lambrechts, Diether; Broeks, Annegien; Andrulis, Irene L; Guénel, Pascal; Burwinkel, Barbara; Sawyer, Elinor J; Hollestelle, Antoinette; Fletcher, Olivia; Winqvist, Robert; Brenner, Hermann; Mannermaa, Arto; Hamann, Ute; Meindl, Alfons; Lindblom, Annika; Zheng, Wei; Devillee, Peter; Goldberg, Mark S; Lubinski, Jan; Kristensen, Vessela; Swerdlow, Anthony; Anton-Culver, Hoda; Dörk, Thilo; Muir, Kenneth; Matsuo, Keitaro; Wu, Anna H; Radice, Paolo; Teo, Soo Hwang; Shu, Xiao-Ou; Blot, William; Kang, Daehee; Hartman, Mikael; Sangrajrang, Suleeporn; Shen, Chen-Yang; Southey, Melissa C; Park, Daniel J; Hammet, Fleur; Stone, Jennifer; Veer, Laura J Van’t; Rutgers, Emiel J; Lophatananon, Artitaya; Stewart-Brown, Sarah; Siriwanarangsan, Pornthep; Peto, Julian; Schrauder, Michael G; Ekici, Arif B; Beckmann, Matthias W; Silva, Isabel dos Santos; Johnson, Nichola; Warren, Helen; Tomlinson, Ian; Kerin, Michael J; Miller, Nicola; Marme, Federick; Schneeweiss, Andreas; Sohn, Christof; Truong, Therese; Laurent-Puig, Pierre; Kerbrat, Pierre; Nordestgaard, Børge G; Nielsen, Sune F; Flyger, Henrik; Milne, Roger L; Perez, Jose Ignacio Arias; Menéndez, Primitiva; Müller, Heiko; Arndt, Volker; Stegmaier, Christa; Lichtner, Peter; Lochmann, Magdalena; Justenhoven, Christina; Ko, Yon-Dschun; Muranen, Taru A; Aittomäki, Kristiina; Blomqvist, Carl; Greco, Dario; Heikkinen, Tuomas; Ito, Hidemi; Iwata, Hiroji; Yatabe, Yasushi; Antonenkova, Natalia N; Margolin, Sara; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M; Balleine, Rosemary; Tseng, Chiu-Chen; Van Den Berg, David; Stram, Daniel O; Neven, Patrick; Dieudonné, Anne-Sophie; Leunen, Karin; Rudolph, Anja; Nickels, Stefan; Flesch-Janys, Dieter; Peterlongo, Paolo; Peissel, Bernard; Bernard, Loris; Olson, Janet E; Wang, Xianshu; Stevens, Kristen; Severi, Gianluca; Baglietto, Laura; Mclean, Catriona; Coetzee, Gerhard A; Feng, Ye; Henderson, Brian E; Schumacher, Fredrick; Bogdanova, Natalia V; Labrèche, France; Dumont, Martine; Yip, Cheng Har; Taib, Nur Aishah Mohd; Cheng, Ching-Yu; Shrubsole, Martha; Long, Jirong; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Kauppila, Saila; knight, Julia A; Glendon, Gord; Mulligan, Anna Marie; Tollenaar, Robertus A E M; Seynaeve, Caroline M; Kriege, Mieke; Hooning, Maartje J; Van den Ouweland, Ans M W; Van Deurzen, Carolien H M; Lu, Wei; Gao, Yu-Tang; Cai, Hui; Balasubramanian, Sabapathy P; Cross, Simon S; Reed, Malcolm W R; Signorello, Lisa; Cai, Qiuyin; Shah, Mitul; Miao, Hui; Chan, Ching Wan; Chia, Kee Seng; Jakubowska, Anna; Jaworska, Katarzyna; Durda, Katarzyna; Hsiung, Chia-Ni; Wu, Pei-Ei; Yu, Jyh-Cherng; Ashworth, Alan; Jones, Michael; Tessier, Daniel C; González-Neira, Anna; Pita, Guillermo; Alonso, M Rosario; Vincent, Daniel; Bacot, Francois; Ambrosone, Christine B; Bandera, Elisa V; John, Esther M; Chen, Gary K; Hu, Jennifer J; Rodriguez-gil, Jorge L; Bernstein, Leslie; Press, Michael F; Ziegler, Regina G; Millikan, Robert M; Deming-Halverson, Sandra L; Nyante, Sarah; Ingles, Sue A; Waisfisz, Quinten; Tsimiklis, Helen; Makalic, Enes; Schmidt, Daniel; Bui, Minh; Gibson, Lorna; Müller-Myhsok, Bertram; Schmutzler, Rita K; Hein, Rebecca; Dahmen, Norbert; Beckmann, Lars; Aaltonen, Kirsimari; Czene, Kamila; Irwanto, Astrid; Liu, Jianjun; Turnbull, Clare; Rahman, Nazneen; Meijers-Heijboer, Hanne; Uitterlinden, Andre G; Rivadeneira, Fernando; Olswold, Curtis; Slager, Susan; Pilarski, Robert; Ademuyiwa, Foluso; Konstantopoulou, Irene; Martin, Nicholas G; Montgomery, Grant W; Slamon, Dennis J; Rauh, Claudia; Lux, Michael P; Jud, Sebastian M; Bruning, Thomas; Weaver, Joellen; Sharma, Priyanka; Pathak, Harsh; Tapper, Will; Gerty, Sue; Durcan, Lorraine; Trichopoulos, Dimitrios; Tumino, Rosario; Peeters, Petra H; Kaaks, Rudolf; Campa, Daniele; Canzian, Federico; Weiderpass, Elisabete; Johansson, Mattias; Khaw, Kay-Tee; Travis, Ruth; Clavel-Chapelon, Françoise; Kolonel, Laurence N; Chen, Constance; Beck, Andy; Hankinson, Susan E; Berg, Christine D; Hoover, Robert N; Lissowska, Jolanta; Figueroa, Jonine D

    2013-01-01

    Estrogen receptor (ER)-negative tumors represent 20–30% of all breast cancers, with a higher proportion occurring in younger women and women of African ancestry1. The etiology2 and clinical behavior3 of ER-negative tumors are different from those of tumors expressing ER (ER positive), including differences in genetic predisposition4. To identify susceptibility loci specific to ER-negative disease, we combined in a meta-analysis 3 genome-wide association studies of 4,193 ER-negative breast cancer cases and 35,194 controls with a series of 40 follow-up studies (6,514 cases and 41,455 controls), genotyped using a custom Illumina array, iCOGS, developed by the Collaborative Oncological Gene-environment Study (COGS). SNPs at four loci, 1q32.1 (MDM4, P = 2.1 × 10−12 and LGR6, P = 1.4 × 10−8), 2p24.1 (P = 4.6 × 10−8) and 16q12.2 (FTO, P = 4.0 × 10−8), were associated with ER-negative but not ER-positive breast cancer (P > 0.05). These findings provide further evidence for distinct etiological pathways associated with invasive ER-positive and ER-negative breast cancers. PMID:23535733

  3. Genome-wide association study identifies new prostate cancer susceptibility loci

    Science.gov (United States)

    Schumacher, Fredrick R.; Berndt, Sonja I.; Siddiq, Afshan; Jacobs, Kevin B.; Wang, Zhaoming; Lindstrom, Sara; Stevens, Victoria L.; Chen, Constance; Mondul, Alison M.; Travis, Ruth C.; Stram, Daniel O.; Eeles, Rosalind A.; Easton, Douglas F.; Giles, Graham; Hopper, John L.; Neal, David E.; Hamdy, Freddie C.; Donovan, Jenny L.; Muir, Kenneth; Al Olama, Ali Amin; Kote-Jarai, Zsofia; Guy, Michelle; Severi, Gianluca; Grönberg, Henrik; Isaacs, William B.; Karlsson, Robert; Wiklund, Fredrik; Xu, Jianfeng; Allen, Naomi E.; Andriole, Gerald L.; Barricarte, Aurelio; Boeing, Heiner; Bas Bueno-de-Mesquita, H.; Crawford, E. David; Diver, W. Ryan; Gonzalez, Carlos A.; Gaziano, J. Michael; Giovannucci, Edward L.; Johansson, Mattias; Le Marchand, Loic; Ma, Jing; Sieri, Sabina; Stattin, Pär; Stampfer, Meir J.; Tjonneland, Anne; Vineis, Paolo; Virtamo, Jarmo; Vogel, Ulla; Weinstein, Stephanie J.; Yeager, Meredith; Thun, Michael J.; Kolonel, Laurence N.; Henderson, Brian E.; Albanes, Demetrius; Hayes, Richard B.; Spencer Feigelson, Heather; Riboli, Elio; Hunter, David J.; Chanock, Stephen J.; Haiman, Christopher A.; Kraft, Peter

    2011-01-01

    Prostate cancer (PrCa) is the most common non-skin cancer diagnosed among males in developed countries and the second leading cause of cancer mortality, yet little is known regarding its etiology and factors that influence clinical outcome. Genome-wide association studies (GWAS) of PrCa have identified at least 30 distinct loci associated with small differences in risk. We conducted a GWAS in 2782 advanced PrCa cases (Gleason grade ≥ 8 or tumor stage C/D) and 4458 controls with 571 243 single nucleotide polymorphisms (SNPs). Based on in silico replication of 4679 SNPs (Stage 1, P < 0.02) in two published GWAS with 7358 PrCa cases and 6732 controls, we identified a new susceptibility locus associated with overall PrCa risk at 2q37.3 (rs2292884, P= 4.3 × 10−8). We also confirmed a locus suggested by an earlier GWAS at 12q13 (rs902774, P= 8.6 × 10−9). The estimated per-allele odds ratios for these loci (1.14 for rs2292884 and 1.17 for rs902774) did not differ between advanced and non-advanced PrCa (case-only test for heterogeneity P= 0.72 and P= 0.61, respectively). Further studies will be needed to assess whether these or other loci are differentially associated with PrCa subtypes. PMID:21743057

  4. A genome-wide association study identifies a new ovarian cancer susceptibility locus on 9p22.2

    DEFF Research Database (Denmark)

    Song, Honglin; Ramus, Susan J; Tyrer, Jonathan

    2009-01-01

    Epithelial ovarian cancer has a major heritable component, but the known susceptibility genes explain less than half the excess familial risk. We performed a genome-wide association study (GWAS) to identify common ovarian cancer susceptibility alleles. We evaluated 507,094 SNPs genotyped in 1,817...

  5. Whole-genome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer

    NARCIS (Netherlands)

    Wang, Kai; Yuen, Siu Tsan; Xu, Jiangchun; Lee, Siu Po; Yan, Helen H N; Shi, Stephanie T; Siu, Hoi Cheong; Deng, Shibing; Chu, Kent Man; Law, Simon; Chan, Kok Hoe; Chan, Annie S Y; Tsui, Wai Yin; Ho, Siu Lun; Chan, Anthony K W; Man, Jonathan L K; Foglizzo, Valentina; Ng, Man Kin; Chan, April S; Ching, Yick Pang; Cheng, Grace H W; Xie, Tao; Fernandez, Julio; Li, Vivian S W; Clevers, Hans; Rejto, Paul A; Mao, Mao; Leung, Suet Yi

    2014-01-01

    Gastric cancer is a heterogeneous disease with diverse molecular and histological subtypes. We performed whole-genome sequencing in 100 tumor-normal pairs, along with DNA copy number, gene expression and methylation profiling, for integrative genomic analysis. We found subtype-specific genetic and e

  6. Pathway analysis of bladder cancer genome-wide association study identifies novel pathways involved in bladder cancer development

    Science.gov (United States)

    Chen, Meng; Rothman, Nathaniel; Ye, Yuanqing; Gu, Jian; Scheet, Paul A.; Huang, Maosheng; Chang, David W.; Dinney, Colin P.; Silverman, Debra T.; Figueroa, Jonine D.; Chanock, Stephen J.; Wu, Xifeng

    2016-01-01

    Genome-wide association studies (GWAS) are designed to identify individual regions associated with cancer risk, but only explain a small fraction of the inherited variability. Alternative approach analyzing genetic variants within biological pathways has been proposed to discover networks of susceptibility genes with additional effects. The gene set enrichment analysis (GSEA) may complement and expand traditional GWAS analysis to identify novel genes and pathways associated with bladder cancer risk. We selected three GSEA methods: Gen-Gen, Aligator, and the SNP Ratio Test to evaluate cellular signaling pathways involved in bladder cancer susceptibility in a Texas GWAS population. The candidate genetic polymorphisms from the significant pathway selected by GSEA were validated in an independent NCI GWAS. We identified 18 novel pathways (P < 0.05) significantly associated with bladder cancer risk. Five of the most promising pathways (P ≤ 0.001 in any of the three GSEA methods) among the 18 pathways included two cell cycle pathways and neural cell adhesion molecule (NCAM), platelet-derived growth factor (PDGF), and unfolded protein response pathways. We validated the candidate polymorphisms in the NCI GWAS and found variants of RAPGEF1, SKP1, HERPUD1, CACNB2, CACNA1C, CACNA1S, COL4A2, SRC, and CACNA1C were associated with bladder cancer risk. Two CCNE1 variants, rs8102137 and rs997669, from cell cycle pathways showed the strongest associations; the CCNE1 signal at 19q12 has already been reported in previous GWAS. These findings offer additional etiologic insights highlighting the specific genes and pathways associated with bladder cancer development. GSEA may be a complementary tool to GWAS to identify additional loci of cancer susceptibility.

  7. A multi-stage genome-wide association study of bladder cancer identifies multiple susceptibility loci

    Science.gov (United States)

    Rothman, Nathaniel; Garcia-Closas, Montserrat; Chatterjee, Nilanjan; Malats, Nuria; Wu, Xifeng; Figueroa, Jonine; Real, Francisco X; Van Den Berg, David; Matullo, Giuseppe; Baris, Dalsu; Thun, Michael; Kiemeney, Lambertus A; Vineis, Paolo; De Vivo, Immaculata; Albanes, Demetrius; Purdue, Mark P; Rafnar, Thorunn; Hildebrandt, Michelle A T; Kiltie, Anne E; Cussenot, Olivier; Golka, Klaus; Kumar, Rajiv; Taylor, Jack A; Mayordomo, Jose I; Jacobs, Kevin B; Kogevinas, Manolis; Hutchinson, Amy; Wang, Zhaoming; Fu, Yi-Ping; Prokunina-Olsson, Ludmila; Burdette, Laurie; Yeager, Meredith; Wheeler, William; Tardón, Adonina; Serra, Consol; Carrato, Alfredo; García-Closas, Reina; Lloreta, Josep; Johnson, Alison; Schwenn, Molly; Karagas, Margaret R; Schned, Alan; Andriole, Gerald; Grubb, Robert; Black, Amanda; Jacobs, Eric J; Diver, W Ryan; Gapstur, Susan M; Weinstein, Stephanie J; Virtamo, Jarmo; Cortessis, Victoria K; Gago-Dominguez, Manuela; Pike, Malcolm C; Stern, Mariana C; Yuan, Jian-Min; Hunter, David; McGrath, Monica; Dinney, Colin P; Czerniak, Bogdan; Chen, Meng; Yang, Hushan; Vermeulen, Sita H; Aben, Katja K; Witjes, J Alfred; Makkinje, Remco R; Sulem, Patrick; Besenbacher, Soren; Stefansson, Kari; Riboli, Elio; Brennan, Paul; Panico, Salvatore; Navarro, Carmen; Allen, Naomi E; Bueno-de-Mesquita, H Bas; Trichopoulos, Dimitrios; Caporaso, Neil; Landi, Maria Teresa; Canzian, Federico; Ljungberg, Borje; Tjonneland, Anne; Clavel-Chapelon, Francoise; Bishop, David T; Teo, Mark T W; Knowles, Margaret A; Guarrera, Simonetta; Polidoro, Silvia; Ricceri, Fulvio; Sacerdote, Carlotta; Allione, Alessandra; Cancel-Tassin, Geraldine; Selinski, Silvia; Hengstler, Jan G; Dietrich, Holger; Fletcher, Tony; Rudnai, Peter; Gurzau, Eugen; Koppova, Kvetoslava; Bolick, Sophia C E; Godfrey, Ashley; Xu, Zongli; Sanz-Velez, José I; García-Prats, María D; Sanchez, Manuel; Valdivia, Gabriel; Porru, Stefano; Benhamou, Simone; Hoover, Robert N; Fraumeni, Joseph F; Silverman, Debra T; Chanock, Stephen J

    2010-01-01

    We conducted a multi-stage, genome-wide association study (GWAS) of bladder cancer with a primary scan of 589,299 single nucleotide polymorphisms (SNPs) in 3,532 cases and 5,120 controls of European descent (5 studies) followed by a replication strategy, which included 8,381 cases and 48,275 controls (16 studies). In a combined analysis, we identified three new regions associated with bladder cancer on chromosomes 22q13.1, 19q12 and 2q37.1; rs1014971, (P=8×10−12) maps to a non-genic region of chromosome 22q13.1; rs8102137 (P=2×10−11) on 19q12 maps to CCNE1; and rs11892031 (P=1×10−7) maps to the UGT1A cluster on 2q37.1. We confirmed four previous GWAS associations on chromosomes 3q28, 4p16.3, 8q24.21 and 8q24.3, validated previous candidate associations for the GSTM1 deletion (P=4×10−11) and a tag SNP for NAT2 acetylation status (P=4×10−11), as well as demonstrated smoking interactions with both regions. Our findings on common variants associated with bladder cancer risk should provide new insights into mechanisms of carcinogenesis. PMID:20972438

  8. Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer

    NARCIS (Netherlands)

    Michailidou, Kyriaki; Beesley, Jonathan; Lindstrom, Sara; Canisius, Sander; Dennis, Joe; Lush, Michael J.; Maranian, Mel J.; Bolla, Manjeet K.; Wang, Qin; Shah, Mitul; Perkins, Barbara J.; Czene, Kamila; Eriksson, Mikael; Darabi, Hatef; Brand, Judith S.; Bojesen, Stig E.; Nordestgaard, Borge G.; Flyger, Henrik; Nielsen, Sune F.; Rahman, Nazneen; Turnbull, Clare; Fletcher, Olivia; Peto, Julian; Gibson, Lorna; dos-Santos-Silva, Isabel; Chang-Claude, Jenny; Flesch-Janys, Dieter; Rudolph, Anja; Eilber, Ursula; Behrens, Sabine; Nevanlinna, Heli; Muranen, Taru A.; Aittomaki, Kristiina; Blomqvist, Carl; Khan, Sofia; Aaltonen, Kirsimari; Ahsan, Habibul; Kibriya, Muhammad G.; Whittemore, Alice S.; John, Esther M.; Malone, Kathleen E.; Gammon, Marilie D.; Santella, Regina M.; Ursin, Giske; Makalic, Enes; Schmidt, Daniel F.; Casey, Graham; Hunter, David J.; Gapstur, Susan M.; Gaudet, Mia M.; Diver, W. Ryan; Haiman, Christopher A.; Schumacher, Fredrick; Henderson, Brian E.; Le Marchand, Loic; Berg, Christine D.; Chanock, Stephen J.; Figueroa, Jonine; Hoover, Robert N.; Lambrechts, Diether; Neven, Patrick; Wildiers, Hans; van Limbergen, Erik; Schmidt, Marjanka K.; Broeks, Annegien; Verhoef, Senno; Cornelissen, Sten; Couch, Fergus J.; Olson, Janet E.; Hallberg, Emily; Vachon, Celine; Waisfisz, Quinten; Meijers-Heijboer, Hanne; Adank, Muriel A.; van der Luijt, Rob B.; Li, Jingmei; Liu, Jianjun; Humphreys, Keith; Kang, Daehee; Choi, Ji-Yeob; Park, Sue K.; Yoo, Keun-Young; Matsuo, Keitaro; Ito, Hidemi; Iwata, Hiroji; Tajima, Kazuo; Guenel, Pascal; Truong, Therese; Mulot, Claire; Sanchez, Marie; Burwinkel, Barbara; Marme, Frederik; Surowy, Harald; Sohn, Christof; Wu, Anna H.; Tseng, Chiu-chen; Van den Berg, David; Stram, Daniel O.; Gonzalez-Neira, Anna; Benitez, Javier; Zamora, M. Pilar; Arias Perez, Jose Ignacio; Shu, Xiao-Ou; Lu, Wei; Gao, Yu-Tang; Cai, Hui; Cox, Angela; Cross, Simon S.; Reed, Malcolm W. R.; Andrulis, Irene L.; Knight, Julia A.; Glendon, Gord; Mulligan, Anna Marie; Sawyer, Elinor J.; Tomlinson, Ian; Kerin, Michael J.; Miller, Nicola; Lindblom, Annika; Margolin, Sara; Teo, Soo Hwang; Yip, Cheng Har; Taib, Nur Aishah Mohd; Tan, Gie-Hooi; Hooning, Maartje J.; Hollestelle, Antoinette; Martens, John W. M.; Collee, J. Margriet; Blot, William; Signorello, Lisa B.; Cai, Qiuyin; Hopper, John L.; Southey, Melissa C.; Tsimiklis, Helen; Apicella, Carmel; Shen, Chen-Yang; Hsiung, Chia-Ni; Wu, Pei-Ei; Hou, Ming-Feng; Kristensen, Vessela N.; Nord, Silje; Alnaes, Grethe I. Grenaker; Giles, Graham G.; Milne, Roger L.; McLean, Catriona; Canzian, Federico; Trichopoulos, Dimitrios; Peeters, Petra; Lund, Eiliv; Sund, Malin; Khaw, Kay-Tee; Gunter, Marc J.; Palli, Domenico; Mortensen, Lotte Maxild; Dossus, Laure; Huerta, Jose-Maria; Meindl, Alfons; Schmutzler, Rita K.; Sutter, Christian; Yang, Rongxi; Muir, Kenneth; Lophatananon, Artitaya; Stewart-Brown, Sarah; Siriwanarangsan, Pornthep; Hartman, Mikael; Miao, Hui; Chia, Kee Seng; Chan, Ching Wan; Fasching, Peter A.; Hein, Alexander; Beckmann, Matthias W.; Haeberle, Lothar; Brenner, Hermann; Dieffenbach, Aida Karina; Arndt, Volker; Stegmaier, Christa; Ashworth, Alan; Orr, Nick; Schoemaker, Minouk J.; Swerdlow, Anthony J.; Brinton, Louise; Garcia-Closas, Montserrat; Zheng, Wei; Halverson, Sandra L.; Shrubsole, Martha; Long, Jirong; Goldberg, Mark S.; Labreche, France; Dumont, Martine; Winqvist, Robert; Pylkas, Katri; Jukkola-Vuorinen, Arja; Grip, Mervi; Brauch, Hiltrud; Hamann, Ute; Bruening, Thomas; Radice, Paolo; Peterlongo, Paolo; Manoukian, Siranoush; Bernard, Loris; Bogdanova, Natalia V.; Doerk, Thilo; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M.; Devilee, Peter; Tollenaar, Robert A. E. M.; Seynaeve, Caroline; Van Asperen, Christi J.; Jakubowska, Anna; Lubinski, Jan; Jaworska, Katarzyna; Huzarski, Tomasz; Sangrajrang, Suleeporn; Gaborieau, Valerie; Brennan, Paul; Mckay, James; Slager, Susan; Toland, Amanda E.; Ambrosone, Christine B.; Yannoukakos, Drakoulis; Kabisch, Maria; Torres, Diana; Neuhausen, Susan L.; Anton-Culver, Hoda; Luccarini, Craig; Baynes, Caroline; Ahmed, Shahana; Healey, Catherine S.; Tessier, Daniel C.; Vincent, Daniel; Bacot, Francois; Pita, Guillermo; Rosario Alonso, M.; Alvarez, Nuria; Herrero, Daniel; Simard, Jacques; Pharoah, Paul P. D. P.; Kraft, Peter; Dunning, Alison M.; Chenevix-Trench, Georgia; Hall, Per; Easton, Douglas F.

    2015-01-01

    Genome-wide association studies (GWAS) and large-scale replication studies have identified common variants in 79 loci associated with breast cancer, explaining similar to 14% of the familial risk of the disease. To identify new susceptibility loci, we performed a meta-analysis of 11 GWAS, comprising

  9. Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer

    NARCIS (Netherlands)

    K. Michailidou (Kyriaki); J. Beesley (Jonathan); S. Lindstrom (Stephen); S. Canisius (Sander); J. Dennis (Joe); M. Lush (Michael); M. Maranian (Melanie); M.K. Bolla (Manjeet); Q. Wang (Qing); M. Shah (Mitul); B. Perkins (Barbara); K. Czene (Kamila); M. Eriksson (Mikael); H. Darabi (Hatef); J.S. Brand (Judith S.); S.E. Bojesen (Stig); B.G. Nordestgaard (Børge); H. Flyger (Henrik); S.F. Nielsen (Sune); N. Rahman (Nazneen); C. Turnbull (Clare); O. Fletcher (Olivia); J. Peto (Julian); L.J. Gibson (Lorna); I. dos Santos Silva (Isabel); J. Chang-Claude (Jenny); D. Flesch-Janys (Dieter); A. Rudolph (Anja); U. Eilber (Ursula); T.W. Behrens (Timothy); H. Nevanlinna (Heli); T.A. Muranen (Taru); K. Aittomäki (Kristiina); C. Blomqvist (Carl); S. Khan (Sofia); K. Aaltonen (Kirsimari); H. Ahsan (Habibul); M.G. Kibriya (Muhammad); A.S. Whittemore (Alice S.); E.M. John (Esther M.); K.E. Malone (Kathleen E.); M.D. Gammon (Marilie); R.M. Santella (Regina M.); G. Ursin (Giske); E. Makalic (Enes); D.F. Schmidt (Daniel); G. Casey (Graham); D.J. Hunter (David J.); S.M. Gapstur (Susan M.); M.M. Gaudet (Mia); W.R. Diver (Ryan); C.A. Haiman (Christopher A.); F.R. Schumacher (Fredrick); B.E. Henderson (Brian); L. Le Marchand (Loic); C.D. Berg (Christine); S.J. Chanock (Stephen); J.D. Figueroa (Jonine); R.N. Hoover (Robert N.); D. Lambrechts (Diether); P. Neven (Patrick); H. Wildiers (Hans); E. van Limbergen (Erik); M.K. Schmidt (Marjanka); A. Broeks (Annegien); S. Verhoef; S. Cornelissen (Sten); F.J. Couch (Fergus); J.E. Olson (Janet); B. Hallberg (Boubou); C. Vachon (Celine); Q. Waisfisz (Quinten); E.J. Meijers-Heijboer (Hanne); M.A. Adank (Muriel); R.B. van der Luijt (Rob); J. Li (Jingmei); J. Liu (Jianjun); M.K. Humphreys (Manjeet); D. Kang (Daehee); J.-Y. Choi (Ji-Yeob); S.K. Park (Sue K.); K.Y. Yoo; K. Matsuo (Keitaro); H. Ito (Hidemi); H. Iwata (Hiroji); K. Tajima (Kazuo); P. Guénel (Pascal); T. Truong (Thérèse); C. Mulot (Claire); M. Sanchez (Marie); B. Burwinkel (Barbara); F. Marme (Federick); H. Surowy (Harald); C. Sohn (Christof); A.H. Wu (Anna H); C.-C. Tseng (Chiu-chen); D. Van Den Berg (David); D.O. Stram (Daniel O.); A. González-Neira (Anna); J. Benítez (Javier); M.P. Zamora (Pilar); J.I.A. Perez (Jose Ignacio Arias); X.-O. Shu (Xiao-Ou); W. Lu (Wei); Y. Gao; H. Cai (Hui); A. Cox (Angela); S.S. Cross (Simon); M.W.R. Reed (Malcolm); I.L. Andrulis (Irene); J.A. Knight (Julia); G. Glendon (Gord); A.-M. Mulligan (Anna-Marie); E.J. Sawyer (Elinor); I.P. Tomlinson (Ian); M. Kerin (Michael); N. Miller (Nicola); A. Lindblom (Annika); S. Margolin (Sara); S.H. Teo (Soo Hwang); C.H. Yip (Cheng Har); N.A.M. Taib (Nur Aishah Mohd); G.-H. Tan (Gie-Hooi); M.J. Hooning (Maartje); A. Hollestelle (Antoinette); J.W.M. Martens (John); J. Margriet Collée; W.J. Blot (William); L.B. Signorello (Lisa B.); Q. Cai (Qiuyin); J. Hopper (John); M.C. Southey (Melissa); H. Tsimiklis (Helen); C. Apicella (Carmel); C-Y. Shen (Chen-Yang); C.-N. Hsiung (Chia-Ni); P.-E. Wu (Pei-Ei); M.-F. Hou (Ming-Feng); V. Kristensen (Vessela); S. Nord (Silje); G.G. Alnæs (Grethe Grenaker); G.G. Giles (Graham G.); R.L. Milne (Roger); C.A. McLean (Catriona Ann); F. Canzian (Federico); D. Trichopoulos (Dimitrios); P.H.M. Peeters; E. Lund (Eiliv); R. Sund (Reijo); K.T. Khaw; M.J. Gunter (Marc J.); D. Palli (Domenico); L.M. Mortensen (Lotte Maxild); L. Dossus (Laure); J.-M. Huerta (Jose-Maria); A. Meindl (Alfons); R.K. Schmutzler (Rita); C. Sutter (Christian); R. Yang (Rongxi); K. Muir (Kenneth); A. Lophatananon (Artitaya); S. Stewart-Brown (Sarah); P. Siriwanarangsan (Pornthep); J.M. Hartman (Joost); X. Miao; K.S. Chia (Kee Seng); C.W. Chan (Ching Wan); P.A. Fasching (Peter); R. Hein (Rebecca); M.W. Beckmann (Matthias W.); L. Haeberle (Lothar); H. Brenner (Hermann); A.K. Dieffenbach (Aida Karina); V. Arndt (Volker); C. Stegmaier (Christa); A. Ashworth (Alan); N. Orr (Nick); M. Schoemaker (Minouk); A.J. Swerdlow (Anthony ); L.A. Brinton (Louise); M. García-Closas (Montserrat); W. Zheng (Wei); S.L. Halverson (Sandra L.); M. Shrubsole (Martha); J. Long (Jirong); M.S. Goldberg (Mark); F. Labrèche (France); M. Dumont (Martine); R. Winqvist (Robert); K. Pykäs (Katri); A. Jukkola-Vuorinen (Arja); M. Grip (Mervi); H. Brauch (Hiltrud); U. Hamann (Ute); T. Brüning (Thomas); P. Radice (Paolo); P. Peterlongo (Paolo); S. Manoukian (Siranoush); L. Bernard (Loris); N.V. Bogdanova (Natalia); T. Dörk (Thilo); A. Mannermaa (Arto); V. Kataja (Vesa); V-M. Kosma (Veli-Matti); J.M. Hartikainen (J.); P. Devilee (Peter); R.A.E.M. Tollenaar (Rob); C.M. Seynaeve (Caroline); C.J. van Asperen (Christi); A. Jakubowska (Anna); J. Lubinski (Jan); K. Jaworska (Katarzyna); T. Huzarski (Tomasz); S. Sangrajrang (Suleeporn); V. Gaborieau (Valerie); P. Brennan (Paul); J.D. McKay (James); S. Slager (Susan); A.E. Toland (Amanda); C.B. Ambrosone (Christine B.); D. Yannoukakos (Drakoulis); M. Kabisch (Maria); D. Torres (Diana); S.L. Neuhausen (Susan); H. Anton-Culver (Hoda); C. Luccarini (Craig); C. Baynes (Caroline); S. Ahmed (Shahana); S. Healey (Sue); D.C. Tessier (Daniel C.); D. Vincent (Daniel); F. Bacot (Francois); G. Pita (G.); M.R. Alonso (M Rosario); N. Álvarez (Nuria); D. Herrero (Daniel); J. Simard (Jacques); P.P.D.P. Pharoah (Paul P.D.P.); P. Kraft (Peter); A.M. Dunning (Alison); G. Chenevix-Trench (Georgia); P. Hall (Per); D.F. Easton (Douglas)

    2015-01-01

    textabstractGenome-wide association studies (GWAS) and large-scale replication studies have identified common variants in 79 loci associated with breast cancer, explaining ∼14% of the familial risk of the disease. To identify new susceptibility loci, we performed a meta-analysis of 11 GWAS, comprisi

  10. Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer

    DEFF Research Database (Denmark)

    Michailidou, Kyriaki; Beesley, Jonathan; Lindstrom, Sara

    2015-01-01

    Genome-wide association studies (GWAS) and large-scale replication studies have identified common variants in 79 loci associated with breast cancer, explaining ∼14% of the familial risk of the disease. To identify new susceptibility loci, we performed a meta-analysis of 11 GWAS, comprising 15,748...

  11. Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer

    NARCIS (Netherlands)

    Peifer, Martin; Fernandez-Cuesta, Lynnette; Sos, Martin L.; George, Julie; Seidel, Danila; Kasper, Lawryn H.; Plenker, Dennis; Leenders, Frauke; Sun, Ruping; Zander, Thomas; Menon, Roopika; Koker, Mirjam; Dahmen, Ilona; Mueller, Christian; Di Cerbo, Vincenzo; Schildhaus, Hans-Ulrich; Altmueller, Janine; Baessmann, Ingelore; Becker, Christian; de Wilde, Bram; Vandesompele, Jo; Boehm, Diana; Ansen, Sascha; Gabler, Franziska; Wilkening, Ines; Heynck, Stefanie; Heuckmann, Johannes M.; Lu, Xin; Carter, Scott L.; Cibulskis, Kristian; Banerji, Shantanu; Getz, Gad; Park, Kwon-Sik; Rauh, Daniel; Gruetter, Christian; Fischer, Matthias; Pasqualucci, Laura; Wright, Gavin; Wainer, Zoe; Russell, Prudence; Petersen, Iver; Chen, Yuan; Stoelben, Erich; Ludwig, Corinna; Schnabel, Philipp; Hoffmann, Hans; Muley, Thomas; Brockmann, Michael; Engel-Riedel, Walburga; Muscarella, Lucia A.; Fazio, Vito M.; Groen, Harry; Timens, Wim; Sietsma, Hannie; Thunnissen, Erik; Smit, Egbert; Heideman, Danielle A. M.; Snijders, Peter J. F.; Cappuzzo, Federico; Ligorio, Claudia; Damiani, Stefania; Field, John; Solberg, Steinar; Brustugun, Odd Terje; Lund-Iversen, Marius; Saenger, Joerg; Clement, Joachim H.; Soltermann, Alex; Moch, Holger; Weder, Walter; Solomon, Benjamin; Soria, Jean-Charles; Validire, Pierre; Besse, Benjamin; Brambilla, Elisabeth; Brambilla, Christian; Lantuejoul, Sylvie; Lorimier, Philippe; Schneider, Peter M.; Hallek, Michael; Pao, William; Meyerson, Matthew; Sage, Julien; Shendure, Jay; Schneider, Robert; Buettner, Reinhard; Wolf, Juergen; Nuernberg, Peter; Perner, Sven; Heukamp, Lukas C.; Brindle, Paul K.; Haas, Stefan; Thomas, Roman K.

    2012-01-01

    Small-cell lung cancer (SCLC) is an aggressive lung tumor subtype with poor prognosis(1-3). We sequenced 29 SCLC exomes, 2 genomes and 15 transcriptomes and found an extremely high mutation rate of 7.4 +/- 1 protein-changing mutations per million base pairs. Therefore, we conducted integrated analys

  12. Genome-wide association study in east Asians identifies novel susceptibility loci for breast cancer.

    Directory of Open Access Journals (Sweden)

    Jirong Long

    Full Text Available Genetic factors play an important role in the etiology of both sporadic and familial breast cancer. We aimed to discover novel genetic susceptibility loci for breast cancer. We conducted a four-stage genome-wide association study (GWAS in 19,091 cases and 20,606 controls of East-Asian descent including Chinese, Korean, and Japanese women. After analyzing 690,947 SNPs in 2,918 cases and 2,324 controls, we evaluated 5,365 SNPs for replication in 3,972 cases and 3,852 controls. Ninety-four SNPs were further evaluated in 5,203 cases and 5,138 controls, and finally the top 22 SNPs were investigated in up to 17,423 additional subjects (7,489 cases and 9,934 controls. SNP rs9485372, near the TGF-β activated kinase (TAB2 gene in chromosome 6q25.1, showed a consistent association with breast cancer risk across all four stages, with a P-value of 3.8×10(-12 in the combined analysis of all samples. Adjusted odds ratios (95% confidence intervals were 0.89 (0.85-0.94 and 0.80 (0.75-0.86 for the A/G and A/A genotypes, respectively, compared with the genotype G/G. SNP rs9383951 (P = 1.9×10(-6 from the combined analysis of all samples, located in intron 5 of the ESR1 gene, and SNP rs7107217 (P = 4.6×10(-7, located at 11q24.3, also showed a consistent association in each of the four stages. This study provides strong evidence for a novel breast cancer susceptibility locus represented by rs9485372, near the TAB2 gene (6q25.1, and identifies two possible susceptibility loci located in the ESR1 gene and 11q24.3, respectively.

  13. Genome-wide Analysis Identifies Novel Loci Associated with Ovarian Cancer Outcomes

    DEFF Research Database (Denmark)

    Johnatty, Sharon E; Tyrer, Jonathan P; Kar, Siddhartha;

    2015-01-01

    PURPOSE: Chemotherapy resistance remains a major challenge in the treatment of ovarian cancer. We hypothesize that germline polymorphisms might be associated with clinical outcome. EXPERIMENTAL DESIGN: We analyzed approximately 2.8 million genotyped and imputed SNPs from the iCOGS experiment...... for progression-free survival (PFS) and overall survival (OS) in 2,901 European epithelial ovarian cancer (EOC) patients who underwent first-line treatment of cytoreductive surgery and chemotherapy regardless of regimen, and in a subset of 1,098 patients treated with ≥ 4 cycles of paclitaxel and carboplatin...... at standard doses. We evaluated the top SNPs in 4,434 EOC patients, including patients from The Cancer Genome Atlas. In addition, we conducted pathway analysis of all intragenic SNPs and tested their association with PFS and OS using gene set enrichment analysis. RESULTS: Five SNPs were significantly...

  14. Genome-wide association study of colorectal cancer identifies six new susceptibility loci

    Science.gov (United States)

    Schumacher, Fredrick R.; Schmit, Stephanie L.; Jiao, Shuo; Edlund, Christopher K.; Wang, Hansong; Zhang, Ben; Hsu, Li; Huang, Shu-Chen; Fischer, Christopher P.; Harju, John F.; Idos, Gregory E.; Lejbkowicz, Flavio; Manion, Frank J.; McDonnell, Kevin; McNeil, Caroline E.; Melas, Marilena; Rennert, Hedy S.; Shi, Wei; Thomas, Duncan C.; Van Den Berg, David J.; Hutter, Carolyn M.; Aragaki, Aaron K.; Butterbach, Katja; Caan, Bette J.; Carlson, Christopher S.; Chanock, Stephen J.; Curtis, Keith R.; Fuchs, Charles S.; Gala, Manish; Giovannucci, Edward L.; Gogarten, Stephanie M.; Hayes, Richard B.; Henderson, Brian; Hunter, David J.; Jackson, Rebecca D.; Kolonel, Laurence N.; Kooperberg, Charles; Küry, Sébastien; LaCroix, Andrea; Laurie, Cathy C.; Laurie, Cecelia A.; Lemire, Mathieu; Levine, David; Ma, Jing; Makar, Karen W.; Qu, Conghui; Taverna, Darin; Ulrich, Cornelia M.; Wu, Kana; Kono, Suminori; West, Dee W.; Berndt, Sonja I.; Bezieau, Stéphane; Brenner, Hermann; Campbell, Peter T.; Chan, Andrew T.; Chang-Claude, Jenny; Coetzee, Gerhard A.; Conti, David V.; Duggan, David; Figueiredo, Jane C.; Fortini, Barbara K.; Gallinger, Steven J.; Gauderman, W. James; Giles, Graham; Green, Roger; Haile, Robert; Harrison, Tabitha A.; Hoffmeister, Michael; Hopper, John L.; Hudson, Thomas J.; Jacobs, Eric; Iwasaki, Motoki; Jee, Sun Ha; Jenkins, Mark; Jia, Wei-Hua; Joshi, Amit; Li, Li; Lindor, Noralene M.; Matsuo, Keitaro; Moreno, Victor; Mukherjee, Bhramar; Newcomb, Polly A.; Potter, John D.; Raskin, Leon; Rennert, Gad; Rosse, Stephanie; Severi, Gianluca; Schoen, Robert E.; Seminara, Daniela; Shu, Xiao-Ou; Slattery, Martha L.; Tsugane, Shoichiro; White, Emily; Xiang, Yong-Bing; Zanke, Brent W.; Zheng, Wei; Le Marchand, Loic; Casey, Graham; Gruber, Stephen B.; Peters, Ulrike

    2016-01-01

    Genetic susceptibility to colorectal cancer is caused by rare pathogenic mutations and common genetic variants that contribute to familial risk. Here we report the results of a two-stage association study with 18,299 cases of colorectal cancer and 19,656 controls, with follow-up of the most statistically significant genetic loci in 4,725 cases and 9,969 controls from two Asian consortia. We describe six new susceptibility loci reaching a genome-wide threshold of P<5.0E-08. These findings provide additional insight into the underlying biological mechanisms of colorectal cancer and demonstrate the scientific value of large consortia-based genetic epidemiology studies. PMID:26151821

  15. Genome-wide association analyses identify new susceptibility loci for oral cavity and pharyngeal cancer.

    Science.gov (United States)

    Lesseur, Corina; Diergaarde, Brenda; Olshan, Andrew F; Wünsch-Filho, Victor; Ness, Andrew R; Liu, Geoffrey; Lacko, Martin; Eluf-Neto, José; Franceschi, Silvia; Lagiou, Pagona; Macfarlane, Gary J; Richiardi, Lorenzo; Boccia, Stefania; Polesel, Jerry; Kjaerheim, Kristina; Zaridze, David; Johansson, Mattias; Menezes, Ana M; Curado, Maria Paula; Robinson, Max; Ahrens, Wolfgang; Canova, Cristina; Znaor, Ariana; Castellsagué, Xavier; Conway, David I; Holcátová, Ivana; Mates, Dana; Vilensky, Marta; Healy, Claire M; Szeszenia-Dąbrowska, Neonila; Fabiánová, Eleonóra; Lissowska, Jolanta; Grandis, Jennifer R; Weissler, Mark C; Tajara, Eloiza H; Nunes, Fabio D; de Carvalho, Marcos B; Thomas, Steve; Hung, Rayjean J; Peters, Wilbert H M; Herrero, Rolando; Cadoni, Gabriella; Bueno-de-Mesquita, H Bas; Steffen, Annika; Agudo, Antonio; Shangina, Oxana; Xiao, Xiangjun; Gaborieau, Valérie; Chabrier, Amélie; Anantharaman, Devasena; Boffetta, Paolo; Amos, Christopher I; McKay, James D; Brennan, Paul

    2016-12-01

    We conducted a genome-wide association study of oral cavity and pharyngeal cancer in 6,034 cases and 6,585 controls from Europe, North America and South America. We detected eight significantly associated loci (P < 5 × 10(-8)), seven of which are new for these cancer sites. Oral and pharyngeal cancers combined were associated with loci at 6p21.32 (rs3828805, HLA-DQB1), 10q26.13 (rs201982221, LHPP) and 11p15.4 (rs1453414, OR52N2-TRIM5). Oral cancer was associated with two new regions, 2p23.3 (rs6547741, GPN1) and 9q34.12 (rs928674, LAMC3), and with known cancer-related loci-9p21.3 (rs8181047, CDKN2B-AS1) and 5p15.33 (rs10462706, CLPTM1L). Oropharyngeal cancer associations were limited to the human leukocyte antigen (HLA) region, and classical HLA allele imputation showed a protective association with the class II haplotype HLA-DRB1*1301-HLA-DQA1*0103-HLA-DQB1*0603 (odds ratio (OR) = 0.59, P = 2.7 × 10(-9)). Stratified analyses on a subgroup of oropharyngeal cases with information available on human papillomavirus (HPV) status indicated that this association was considerably stronger in HPV-positive (OR = 0.23, P = 1.6 × 10(-6)) than in HPV-negative (OR = 0.75, P = 0.16) cancers.

  16. Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer.

    Science.gov (United States)

    Michailidou, Kyriaki; Beesley, Jonathan; Lindstrom, Sara; Canisius, Sander; Dennis, Joe; Lush, Michael J; Maranian, Mel J; Bolla, Manjeet K; Wang, Qin; Shah, Mitul; Perkins, Barbara J; Czene, Kamila; Eriksson, Mikael; Darabi, Hatef; Brand, Judith S; Bojesen, Stig E; Nordestgaard, Børge G; Flyger, Henrik; Nielsen, Sune F; Rahman, Nazneen; Turnbull, Clare; Fletcher, Olivia; Peto, Julian; Gibson, Lorna; dos-Santos-Silva, Isabel; Chang-Claude, Jenny; Flesch-Janys, Dieter; Rudolph, Anja; Eilber, Ursula; Behrens, Sabine; Nevanlinna, Heli; Muranen, Taru A; Aittomäki, Kristiina; Blomqvist, Carl; Khan, Sofia; Aaltonen, Kirsimari; Ahsan, Habibul; Kibriya, Muhammad G; Whittemore, Alice S; John, Esther M; Malone, Kathleen E; Gammon, Marilie D; Santella, Regina M; Ursin, Giske; Makalic, Enes; Schmidt, Daniel F; Casey, Graham; Hunter, David J; Gapstur, Susan M; Gaudet, Mia M; Diver, W Ryan; Haiman, Christopher A; Schumacher, Fredrick; Henderson, Brian E; Le Marchand, Loic; Berg, Christine D; Chanock, Stephen J; Figueroa, Jonine; Hoover, Robert N; Lambrechts, Diether; Neven, Patrick; Wildiers, Hans; van Limbergen, Erik; Schmidt, Marjanka K; Broeks, Annegien; Verhoef, Senno; Cornelissen, Sten; Couch, Fergus J; Olson, Janet E; Hallberg, Emily; Vachon, Celine; Waisfisz, Quinten; Meijers-Heijboer, Hanne; Adank, Muriel A; van der Luijt, Rob B; Li, Jingmei; Liu, Jianjun; Humphreys, Keith; Kang, Daehee; Choi, Ji-Yeob; Park, Sue K; Yoo, Keun-Young; Matsuo, Keitaro; Ito, Hidemi; Iwata, Hiroji; Tajima, Kazuo; Guénel, Pascal; Truong, Thérèse; Mulot, Claire; Sanchez, Marie; Burwinkel, Barbara; Marme, Frederik; Surowy, Harald; Sohn, Christof; Wu, Anna H; Tseng, Chiu-chen; Van Den Berg, David; Stram, Daniel O; González-Neira, Anna; Benitez, Javier; Zamora, M Pilar; Perez, Jose Ignacio Arias; Shu, Xiao-Ou; Lu, Wei; Gao, Yu-Tang; Cai, Hui; Cox, Angela; Cross, Simon S; Reed, Malcolm W R; Andrulis, Irene L; Knight, Julia A; Glendon, Gord; Mulligan, Anna Marie; Sawyer, Elinor J; Tomlinson, Ian; Kerin, Michael J; Miller, Nicola; Lindblom, Annika; Margolin, Sara; Teo, Soo Hwang; Yip, Cheng Har; Taib, Nur Aishah Mohd; Tan, Gie-Hooi; Hooning, Maartje J; Hollestelle, Antoinette; Martens, John W M; Collée, J Margriet; Blot, William; Signorello, Lisa B; Cai, Qiuyin; Hopper, John L; Southey, Melissa C; Tsimiklis, Helen; Apicella, Carmel; Shen, Chen-Yang; Hsiung, Chia-Ni; Wu, Pei-Ei; Hou, Ming-Feng; Kristensen, Vessela N; Nord, Silje; Alnaes, Grethe I Grenaker; Giles, Graham G; Milne, Roger L; McLean, Catriona; Canzian, Federico; Trichopoulos, Dimitrios; Peeters, Petra; Lund, Eiliv; Sund, Malin; Khaw, Kay-Tee; Gunter, Marc J; Palli, Domenico; Mortensen, Lotte Maxild; Dossus, Laure; Huerta, Jose-Maria; Meindl, Alfons; Schmutzler, Rita K; Sutter, Christian; Yang, Rongxi; Muir, Kenneth; Lophatananon, Artitaya; Stewart-Brown, Sarah; Siriwanarangsan, Pornthep; Hartman, Mikael; Miao, Hui; Chia, Kee Seng; Chan, Ching Wan; Fasching, Peter A; Hein, Alexander; Beckmann, Matthias W; Haeberle, Lothar; Brenner, Hermann; Dieffenbach, Aida Karina; Arndt, Volker; Stegmaier, Christa; Ashworth, Alan; Orr, Nick; Schoemaker, Minouk J; Swerdlow, Anthony J; Brinton, Louise; Garcia-Closas, Montserrat; Zheng, Wei; Halverson, Sandra L; Shrubsole, Martha; Long, Jirong; Goldberg, Mark S; Labrèche, France; Dumont, Martine; Winqvist, Robert; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Grip, Mervi; Brauch, Hiltrud; Hamann, Ute; Brüning, Thomas; Radice, Paolo; Peterlongo, Paolo; Manoukian, Siranoush; Bernard, Loris; Bogdanova, Natalia V; Dörk, Thilo; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M; Devilee, Peter; Tollenaar, Robert A E M; Seynaeve, Caroline; Van Asperen, Christi J; Jakubowska, Anna; Lubinski, Jan; Jaworska, Katarzyna; Huzarski, Tomasz; Sangrajrang, Suleeporn; Gaborieau, Valerie; Brennan, Paul; McKay, James; Slager, Susan; Toland, Amanda E; Ambrosone, Christine B; Yannoukakos, Drakoulis; Kabisch, Maria; Torres, Diana; Neuhausen, Susan L; Anton-Culver, Hoda; Luccarini, Craig; Baynes, Caroline; Ahmed, Shahana; Healey, Catherine S; Tessier, Daniel C; Vincent, Daniel; Bacot, Francois; Pita, Guillermo; Alonso, M Rosario; Álvarez, Nuria; Herrero, Daniel; Simard, Jacques; Pharoah, Paul P D P; Kraft, Peter; Dunning, Alison M; Chenevix-Trench, Georgia; Hall, Per; Easton, Douglas F

    2015-04-01

    Genome-wide association studies (GWAS) and large-scale replication studies have identified common variants in 79 loci associated with breast cancer, explaining ∼14% of the familial risk of the disease. To identify new susceptibility loci, we performed a meta-analysis of 11 GWAS, comprising 15,748 breast cancer cases and 18,084 controls together with 46,785 cases and 42,892 controls from 41 studies genotyped on a 211,155-marker custom array (iCOGS). Analyses were restricted to women of European ancestry. We generated genotypes for more than 11 million SNPs by imputation using the 1000 Genomes Project reference panel, and we identified 15 new loci associated with breast cancer at P < 5 × 10(-8). Combining association analysis with ChIP-seq chromatin binding data in mammary cell lines and ChIA-PET chromatin interaction data from ENCODE, we identified likely target genes in two regions: SETBP1 at 18q12.3 and RNF115 and PDZK1 at 1q21.1. One association appears to be driven by an amino acid substitution encoded in EXO1.

  17. Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer

    Science.gov (United States)

    Michailidou, Kyriaki; Beesley, Jonathan; Lindstrom, Sara; Canisius, Sander; Dennis, Joe; Lush, Michael; Maranian, Mel J; Bolla, Manjeet K; Wang, Qin; Shah, Mitul; Perkins, Barbara J; Czene, Kamila; Eriksson, Mikael; Darabi, Hatef; Brand, Judith S; Bojesen, Stig E; Nordestgaard, Børge G; Flyger, Henrik; Nielsen, Sune F; Rahman, Nazneen; Turnbull, Clare; Fletcher, Olivia; Peto, Julian; Gibson, Lorna; dos-Santos-Silva, Isabel; Chang-Claude, Jenny; Flesch-Janys, Dieter; Rudolph, Anja; Eilber, Ursula; Behrens, Sabine; Nevanlinna, Heli; Muranen, Taru A; Aittomäki, Kristiina; Blomqvist, Carl; Khan, Sofia; Aaltonen, Kirsimari; Ahsan, Habibul; Kibriya, Muhammad G; Whittemore, Alice S; John, Esther M; Malone, Kathleen E; Gammon, Marilie D; Santella, Regina M; Ursin, Giske; Makalic, Enes; Schmidt, Daniel F; Casey, Graham; Hunter, David J; Gapstur, Susan M; Gaudet, Mia M; Diver, W Ryan; Haiman, Christopher A; Schumacher, Fredrick; Henderson, Brian E; Le Marchand, Loic; Berg, Christine D; Chanock, Stephen; Figueroa, Jonine; Hoover, Robert N; Lambrechts, Diether; Neven, Patrick; Wildiers, Hans; van Limbergen, Erik; Schmidt, Marjanka K; Broeks, Annegien; Verhoef, Senno; Cornelissen, Sten; Couch, Fergus J; Olson, Janet E; Hallberg, Emily; Vachon, Celine; Waisfisz, Quinten; Meijers-Heijboer, Hanne; Adank, Muriel A; van der Luijt, Rob B; Li, Jingmei; Liu, Jianjun; Humphreys, Keith; Kang, Daehee; Choi, Ji-Yeob; Park, Sue K; Yoo, Keun-Young; Matsuo, Keitaro; Ito, Hidemi; Iwata, Hiroji; Tajima, Kazuo; Guénel, Pascal; Truong, Thérèse; Mulot, Claire; Sanchez, Marie; Burwinkel, Barbara; Marme, Frederik; Surowy, Harald; Sohn, Christof; Wu, Anna H; Tseng, Chiu-chen; Van Den Berg, David; Stram, Daniel O; González-Neira, Anna; Benitez, Javier; Zamora, M Pilar; Perez, Jose Ignacio Arias; Shu, Xiao-Ou; Lu, Wei; Gao, Yu-Tang; Cai, Hui; Cox, Angela; Cross, Simon S; Reed, Malcolm WR; Andrulis, Irene L; Knight, Julia A; Glendon, Gord; Mulligan, Anna Marie; Sawyer, Elinor J; Tomlinson, Ian; Kerin, Michael J; Miller, Nicola; Lindblom, Annika; Margolin, Sara; Teo, Soo Hwang; Yip, Cheng Har; Taib, Nur Aishah Mohd; TAN, Gie-Hooi; Hooning, Maartje J; Hollestelle, Antoinette; Martens, John WM; Collée, J Margriet; Blot, William; Signorello, Lisa B; Cai, Qiuyin; Hopper, John L; Southey, Melissa C; Tsimiklis, Helen; Apicella, Carmel; Shen, Chen-Yang; Hsiung, Chia-Ni; Wu, Pei-Ei; Hou, Ming-Feng; Kristensen, Vessela N; Nord, Silje; Alnaes, Grethe I Grenaker; Giles, Graham G; Milne, Roger L; McLean, Catriona; Canzian, Federico; Trichopoulos, Dmitrios; Peeters, Petra; Lund, Eiliv; Sund, Malin; Khaw, Kay-Tee; Gunter, Marc J; Palli, Domenico; Mortensen, Lotte Maxild; Dossus, Laure; Huerta, Jose-Maria; Meindl, Alfons; Schmutzler, Rita K; Sutter, Christian; Yang, Rongxi; Muir, Kenneth; Lophatananon, Artitaya; Stewart-Brown, Sarah; Siriwanarangsan, Pornthep; Hartman, Mikael; Miao, Hui; Chia, Kee Seng; Chan, Ching Wan; Fasching, Peter A; Hein, Alexander; Beckmann, Matthias W; Haeberle, Lothar; Brenner, Hermann; Dieffenbach, Aida Karina; Arndt, Volker; Stegmaier, Christa; Ashworth, Alan; Orr, Nick; Schoemaker, Minouk J; Swerdlow, Anthony J; Brinton, Louise; Garcia-Closas, Montserrat; Zheng, Wei; Halverson, Sandra L; Shrubsole, Martha; Long, Jirong; Goldberg, Mark S; Labrèche, France; Dumont, Martine; Winqvist, Robert; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Grip, Mervi; Brauch, Hiltrud; Hamann, Ute; Brüning, Thomas; Radice, Paolo; Peterlongo, Paolo; Manoukian, Siranoush; Bernard, Loris; Bogdanova, Natalia V; Dörk, Thilo; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M; Devilee, Peter; Tollenaar, Robert AEM; Seynaeve, Caroline; Van Asperen, Christi J; Jakubowska, Anna; Lubinski, Jan; Jaworska, Katarzyna; Huzarski, Tomasz; Sangrajrang, Suleeporn; Gaborieau, Valerie; Brennan, Paul; McKay, James; Slager, Susan; Toland, Amanda E; Ambrosone, Christine B; Yannoukakos, Drakoulis; Kabisch, Maria; Torres, Diana; Neuhausen, Susan L; Anton-Culver, Hoda; Luccarini, Craig; Baynes, Caroline; Ahmed, Shahana; Healey, Catherine S; Tessier, Daniel C; Vincent, Daniel; Bacot, Francois; Pita, Guillermo; Alonso, M Rosario; Álvarez, Nuria; Herrero, Daniel; Simard, Jacques; Pharoah, Paul PDP; Kraft, Peter; Dunning, Alison M; Chenevix-Trench, Georgia; Hall, Per; Easton, Douglas F

    2015-01-01

    Genome wide association studies (GWAS) and large scale replication studies have identified common variants in 79 loci associated with breast cancer, explaining ~14% of the familial risk of the disease. To identify new susceptibility loci, we performed a meta-analysis of 11 GWAS comprising of 15,748 breast cancer cases and 18,084 controls, and 46,785 cases and 42,892 controls from 41 studies genotyped on a 200K custom array (iCOGS). Analyses were restricted to women of European ancestry. Genotypes for more than 11M SNPs were generated by imputation using the 1000 Genomes Project reference panel. We identified 15 novel loci associated with breast cancer at P<5×10−8. Combining association analysis with ChIP-Seq data in mammary cell lines and ChIA-PET chromatin interaction data in ENCODE, we identified likely target genes in two regions: SETBP1 on 18q12.3 and RNF115 and PDZK1 on 1q21.1. One association appears to be driven by an amino-acid substitution in EXO1. PMID:25751625

  18. Genome-wide association study identifies multiple loci associated with both mammographic density and breast cancer risk.

    Science.gov (United States)

    Lindström, Sara; Thompson, Deborah J; Paterson, Andrew D; Li, Jingmei; Gierach, Gretchen L; Scott, Christopher; Stone, Jennifer; Douglas, Julie A; dos-Santos-Silva, Isabel; Fernandez-Navarro, Pablo; Verghase, Jajini; Smith, Paula; Brown, Judith; Luben, Robert; Wareham, Nicholas J; Loos, Ruth J F; Heit, John A; Pankratz, V Shane; Norman, Aaron; Goode, Ellen L; Cunningham, Julie M; deAndrade, Mariza; Vierkant, Robert A; Czene, Kamila; Fasching, Peter A; Baglietto, Laura; Southey, Melissa C; Giles, Graham G; Shah, Kaanan P; Chan, Heang-Ping; Helvie, Mark A; Beck, Andrew H; Knoblauch, Nicholas W; Hazra, Aditi; Hunter, David J; Kraft, Peter; Pollan, Marina; Figueroa, Jonine D; Couch, Fergus J; Hopper, John L; Hall, Per; Easton, Douglas F; Boyd, Norman F; Vachon, Celine M; Tamimi, Rulla M

    2014-10-24

    Mammographic density reflects the amount of stromal and epithelial tissues in relation to adipose tissue in the breast and is a strong risk factor for breast cancer. Here we report the results from meta-analysis of genome-wide association studies (GWAS) of three mammographic density phenotypes: dense area, non-dense area and percent density in up to 7,916 women in stage 1 and an additional 10,379 women in stage 2. We identify genome-wide significant (P<5 × 10(-8)) loci for dense area (AREG, ESR1, ZNF365, LSP1/TNNT3, IGF1, TMEM184B and SGSM3/MKL1), non-dense area (8p11.23) and percent density (PRDM6, 8p11.23 and TMEM184B). Four of these regions are known breast cancer susceptibility loci, and four additional regions were found to be associated with breast cancer (P<0.05) in a large meta-analysis. These results provide further evidence of a shared genetic basis between mammographic density and breast cancer and illustrate the power of studying intermediate quantitative phenotypes to identify putative disease-susceptibility loci.

  19. Integrated genome and transcriptome sequencing identifies a novel form of hybrid and aggressive prostate cancer.

    Science.gov (United States)

    Wu, Chunxiao; Wyatt, Alexander W; Lapuk, Anna V; McPherson, Andrew; McConeghy, Brian J; Bell, Robert H; Anderson, Shawn; Haegert, Anne; Brahmbhatt, Sonal; Shukin, Robert; Mo, Fan; Li, Estelle; Fazli, Ladan; Hurtado-Coll, Antonio; Jones, Edward C; Butterfield, Yaron S; Hach, Faraz; Hormozdiari, Fereydoun; Hajirasouliha, Iman; Boutros, Paul C; Bristow, Robert G; Jones, Steven Jm; Hirst, Martin; Marra, Marco A; Maher, Christopher A; Chinnaiyan, Arul M; Sahinalp, S Cenk; Gleave, Martin E; Volik, Stanislav V; Collins, Colin C

    2012-05-01

    Next-generation sequencing is making sequence-based molecular pathology and personalized oncology viable. We selected an individual initially diagnosed with conventional but aggressive prostate adenocarcinoma and sequenced the genome and transcriptome from primary and metastatic tissues collected prior to hormone therapy. The histology-pathology and copy number profiles were remarkably homogeneous, yet it was possible to propose the quadrant of the prostate tumour that likely seeded the metastatic diaspora. Despite a homogeneous cell type, our transcriptome analysis revealed signatures of both luminal and neuroendocrine cell types. Remarkably, the repertoire of expressed but apparently private gene fusions, including C15orf21:MYC, recapitulated this biology. We hypothesize that the amplification and over-expression of the stem cell gene MSI2 may have contributed to the stable hybrid cellular identity. This hybrid luminal-neuroendocrine tumour appears to represent a novel and highly aggressive case of prostate cancer with unique biological features and, conceivably, a propensity for rapid progression to castrate-resistance. Overall, this work highlights the importance of integrated analyses of genome, exome and transcriptome sequences for basic tumour biology, sequence-based molecular pathology and personalized oncology.

  20. A target based approach identifies genomic predictors of breast cancer patient response to chemotherapy

    Directory of Open Access Journals (Sweden)

    Hallett Robin M

    2012-05-01

    Full Text Available Abstract Background The efficacy of chemotherapy regimens in breast cancer patients is variable and unpredictable. Whether individual patients either achieve long-term remission or suffer recurrence after therapy may be dictated by intrinsic properties of their breast tumors including genetic lesions and consequent aberrant transcriptional programs. Global gene expression profiling provides a powerful tool to identify such tumor-intrinsic transcriptional programs, whose analyses provide insight into the underlying biology of individual patient tumors. For example, multi-gene expression signatures have been identified that can predict the likelihood of disease reccurrence, and thus guide patient prognosis. Whereas such prognostic signatures are being introduced in the clinical setting, similar signatures that predict sensitivity or resistance to chemotherapy are not currently clinically available. Methods We used gene expression profiling to identify genes that were co-expressed with genes whose transcripts encode the protein targets of commonly used chemotherapeutic agents. Results Here, we present target based expression indices that predict breast tumor response to anthracycline and taxane based chemotherapy. Indeed, these signatures were independently predictive of chemotherapy response after adjusting for standard clinic-pathological variables such as age, grade, and estrogen receptor status in a cohort of 488 breast cancer patients treated with adriamycin and taxotere/taxol. Conclusions Importantly, our findings suggest the practicality of developing target based indices that predict response to therapeutics, as well as highlight the possibility of using gene signatures to guide the use of chemotherapy during treatment of breast cancer patients.

  1. Integrated Bioinformatics, Environmental Epidemiologic and Genomic Approaches to Identify Environmental and Molecular Links between Endometriosis and Breast Cancer

    Directory of Open Access Journals (Sweden)

    Deodutta Roy

    2015-10-01

    Full Text Available We present a combined environmental epidemiologic, genomic, and bioinformatics approach to identify: exposure of environmental chemicals with estrogenic activity; epidemiologic association between endocrine disrupting chemical (EDC and health effects, such as, breast cancer or endometriosis; and gene-EDC interactions and disease associations. Human exposure measurement and modeling confirmed estrogenic activity of three selected class of environmental chemicals, polychlorinated biphenyls (PCBs, bisphenols (BPs, and phthalates. Meta-analysis showed that PCBs exposure, not Bisphenol A (BPA and phthalates, increased the summary odds ratio for breast cancer and endometriosis. Bioinformatics analysis of gene-EDC interactions and disease associations identified several hundred genes that were altered by exposure to PCBs, phthalate or BPA. EDCs-modified genes in breast neoplasms and endometriosis are part of steroid hormone signaling and inflammation pathways. All three EDCs–PCB 153, phthalates, and BPA influenced five common genes—CYP19A1, EGFR, ESR2, FOS, and IGF1—in breast cancer as well as in endometriosis. These genes are environmentally and estrogen responsive, altered in human breast and uterine tumors and endometriosis lesions, and part of Mitogen Activated Protein Kinase (MAPK signaling pathways in cancer. Our findings suggest that breast cancer and endometriosis share some common environmental and molecular risk factors.

  2. Genomic profiling of murine mammary tumors identifies potential personalized drug targets for p53-deficient mammary cancers

    Directory of Open Access Journals (Sweden)

    Adam D. Pfefferle

    2016-07-01

    Full Text Available Targeted therapies against basal-like breast tumors, which are typically ‘triple-negative breast cancers (TNBCs’, remain an important unmet clinical need. Somatic TP53 mutations are the most common genetic event in basal-like breast tumors and TNBC. To identify additional drivers and possible drug targets of this subtype, a comparative study between human and murine tumors was performed by utilizing a murine Trp53-null mammary transplant tumor model. We show that two subsets of murine Trp53-null mammary transplant tumors resemble aspects of the human basal-like subtype. DNA-microarray, whole-genome and exome-based sequencing approaches were used to interrogate the secondary genetic aberrations of these tumors, which were then compared to human basal-like tumors to identify conserved somatic genetic features. DNA copy-number variation produced the largest number of conserved candidate personalized drug targets. These candidates were filtered using a DNA-RNA Pearson correlation cut-off and a requirement that the gene was deemed essential in at least 5% of human breast cancer cell lines from an RNA-mediated interference screen database. Five potential personalized drug target genes, which were spontaneously amplified loci in both murine and human basal-like tumors, were identified: Cul4a, Lamp1, Met, Pnpla6 and Tubgcp3. As a proof of concept, inhibition of Met using crizotinib caused Met-amplified murine tumors to initially undergo complete regression. This study identifies Met as a promising drug target in a subset of murine Trp53-null tumors, thus identifying a potential shared driver with a subset of human basal-like breast cancers. Our results also highlight the importance of comparative genomic studies for discovering personalized drug targets and for providing a preclinical model for further investigations of key tumor signaling pathways.

  3. Integrative Functional Genomics Analysis of Sustained Polyploidy Phenotypes in Breast Cancer Cells Identifies an Oncogenic Profile for GINS2

    Directory of Open Access Journals (Sweden)

    Juha K. Rantala

    2010-11-01

    Full Text Available Aneuploidy is among the most obvious differences between normal and cancer cells. However, mechanisms contributing to development and maintenance of aneuploid cell growth are diverse and incompletely understood. Functional genomics analyses have shown that aneuploidy in cancer cells is correlated with diffuse gene expression signatures and aneuploidy can arise by a variety of mechanisms, including cytokinesis failures, DNA endoreplication, and possibly through polyploid intermediate states. To identify molecular processes contributing to development of aneuploidy, we used a cell spot microarray technique to identify genes inducing polyploidy and/or allowing maintenance of polyploid cell growth in breast cancer cells. Of 5760 human genes screened, 177 were found to induce severe DNA content alterations on prolonged transient silencing. Association with response to DNA damage stimulus and DNA repair was found to be the most enriched cellular processes among the candidate genes. Functional validation analysis of these genes highlighted GINS2 as the highest ranking candidate inducing polyploidy, accumulation of endogenous DNA damage, and impairing cell proliferation on inhibition. The cell growth inhibition and induction of polyploidy by suppression of GINS2 was verified in a panel of breast cancer cell lines. Bioinformatic analysis of published gene expression and DNA copy number studies of clinical breast tumors suggested GINS2 to be associated with the aggressive characteristics of a subgroup of breast cancers in vivo. In addition, nuclear GINS2 protein levels distinguished actively proliferating cancer cells suggesting potential use of GINS2 staining as a biomarker of cell proliferation as well as a potential therapeutic target.

  4. Genome-wide Meta-analyses of Breast, Ovarian and Prostate Cancer Association Studies Identify Multiple New Susceptibility Loci Shared by At Least Two Cancer Types

    Science.gov (United States)

    Kar, Siddhartha P.; Beesley, Jonathan; Al Olama, Ali Amin; Michailidou, Kyriaki; Tyrer, Jonathan; Kote-Jarai, ZSofia; Lawrenson, Kate; Lindstrom, Sara; Ramus, Susan J.; Thompson, Deborah J.; Kibel, Adam S.; Dansonka-Mieszkowska, Agnieszka; Michael, Agnieszka; Dieffenbach, Aida K.; Gentry-Maharaj, Aleksandra; Whittemore, Alice S.; Wolk, Alicja; Monteiro, Alvaro; Peixoto, Ana; Kierzek, Andrzej; Cox, Angela; Rudolph, Anja; Gonzalez-Neira, Anna; Wu, Anna H.; Lindblom, Annika; Swerdlow, Anthony; Ziogas, Argyrios; Ekici, Arif B.; Burwinkel, Barbara; Karlan, Beth Y.; Nordestgaard, Børge G.; Blomqvist, Carl; Phelan, Catherine; McLean, Catriona; Pearce, Celeste Leigh; Vachon, Celine; Cybulski, Cezary; Slavov, Chavdar; Stegmaier, Christa; Maier, Christiane; Ambrosone, Christine B.; Høgdall, Claus K.; Teerlink, Craig C.; Kang, Daehee; Tessier, Daniel C.; Schaid, Daniel J.; Stram, Daniel O.; Cramer, Daniel W.; Neal, David E.; Eccles, Diana; Flesch-Janys, Dieter; Velez Edwards, Digna R.; Wokozorczyk, Dominika; Levine, Douglas A.; Yannoukakos, Drakoulis; Sawyer, Elinor J.; Bandera, Elisa V.; Poole, Elizabeth M.; Goode, Ellen L.; Khusnutdinova, Elza; Høgdall, Estrid; Song, Fengju; Bruinsma, Fiona; Heitz, Florian; Modugno, Francesmary; Hamdy, Freddie C.; Wiklund, Fredrik; Giles, Graham G.; Olsson, Håkan; Wildiers, Hans; Ulmer, Hans-Ulrich; Pandha, Hardev; Risch, Harvey A.; Darabi, Hatef; Salvesen, Helga B.; Nevanlinna, Heli; Gronberg, Henrik; Brenner, Hermann; Brauch, Hiltrud; Anton-Culver, Hoda; Song, Honglin; Lim, Hui-Yi; McNeish, Iain; Campbell, Ian; Vergote, Ignace; Gronwald, Jacek; Lubiński, Jan; Stanford, Janet L.; Benítez, Javier; Doherty, Jennifer A.; Permuth, Jennifer B.; Chang-Claude, Jenny; Donovan, Jenny L.; Dennis, Joe; Schildkraut, Joellen M.; Schleutker, Johanna; Hopper, John L.; Kupryjanczyk, Jolanta; Park, Jong Y.; Figueroa, Jonine; Clements, Judith A.; Knight, Julia A.; Peto, Julian; Cunningham, Julie M.; Pow-Sang, Julio; Batra, Jyotsna; Czene, Kamila; Lu, Karen H.; Herkommer, Kathleen; Khaw, Kay-Tee; Matsuo, Keitaro; Muir, Kenneth; Offitt, Kenneth; Chen, Kexin; Moysich, Kirsten B.; Aittomäki, Kristiina; Odunsi, Kunle; Kiemeney, Lambertus A.; Massuger, Leon F.A.G.; Fitzgerald, Liesel M.; Cook, Linda S.; Cannon-Albright, Lisa; Hooning, Maartje J.; Pike, Malcolm C.; Bolla, Manjeet K.; Luedeke, Manuel; Teixeira, Manuel R.; Goodman, Marc T.; Schmidt, Marjanka K.; Riggan, Marjorie; Aly, Markus; Rossing, Mary Anne; Beckmann, Matthias W.; Moisse, Matthieu; Sanderson, Maureen; Southey, Melissa C.; Jones, Michael; Lush, Michael; Hildebrandt, Michelle A. T.; Hou, Ming-Feng; Schoemaker, Minouk J.; Garcia-Closas, Montserrat; Bogdanova, Natalia; Rahman, Nazneen; Le, Nhu D.; Orr, Nick; Wentzensen, Nicolas; Pashayan, Nora; Peterlongo, Paolo; Guénel, Pascal; Brennan, Paul; Paulo, Paula; Webb, Penelope M.; Broberg, Per; Fasching, Peter A.; Devilee, Peter; Wang, Qin; Cai, Qiuyin; Li, Qiyuan; Kaneva, Radka; Butzow, Ralf; Kopperud, Reidun Kristin; Schmutzler, Rita K.; Stephenson, Robert A.; MacInnis, Robert J.; Hoover, Robert N.; Winqvist, Robert; Ness, Roberta; Milne, Roger L.; Travis, Ruth C.; Benlloch, Sara; Olson, Sara H.; McDonnell, Shannon K.; Tworoger, Shelley S.; Maia, Sofia; Berndt, Sonja; Lee, Soo Chin; Teo, Soo-Hwang; Thibodeau, Stephen N.; Bojesen, Stig E.; Gapstur, Susan M.; Kjær, Susanne Krüger; Pejovic, Tanja; Tammela, Teuvo L.J.; Dörk, Thilo; Brüning, Thomas; Wahlfors, Tiina; Key, Tim J.; Edwards, Todd L.; Menon, Usha; Hamann, Ute; Mitev, Vanio; Kosma, Veli-Matti; Setiawan, Veronica Wendy; Kristensen, Vessela; Arndt, Volker; Vogel, Walther; Zheng, Wei; Sieh, Weiva; Blot, William J.; Kluzniak, Wojciech; Shu, Xiao-Ou; Gao, Yu-Tang; Schumacher, Fredrick; Freedman, Matthew L.; Berchuck, Andrew; Dunning, Alison M.; Simard, Jacques; Haiman, Christopher A.; Spurdle, Amanda; Sellers, Thomas A.; Hunter, David J.; Henderson, Brian E.; Kraft, Peter; Chanock, Stephen J.; Couch, Fergus J.; Hall, Per; Gayther, Simon A.; Easton, Douglas F.; Chenevix-Trench, Georgia; Eeles, Rosalind; Pharoah, Paul D.P.; Lambrechts, Diether

    2016-01-01

    Breast, ovarian, and prostate cancers are hormone-related and may have a shared genetic basis but this has not been investigated systematically by genome-wide association (GWA) studies. Meta-analyses combining the largest GWA meta-analysis data sets for these cancers totaling 112,349 cases and 116,421 controls of European ancestry, all together and in pairs, identified at P < 10−8 seven new cross-cancer loci: three associated with susceptibility to all three cancers (rs17041869/2q13/BCL2L11; rs7937840/11q12/INCENP; rs1469713/19p13/GATAD2A), two breast and ovarian cancer risk loci (rs200182588/9q31/SMC2; rs8037137/15q26/RCCD1), and two breast and prostate cancer risk loci (rs5013329/1p34/NSUN4; rs9375701/6q23/L3MBTL3). Index variants in five additional regions previously associated with only one cancer also showed clear association with a second cancer type. Cell-type specific expression quantitative trait locus and enhancer-gene interaction annotations suggested target genes with potential cross-cancer roles at the new loci. Pathway analysis revealed significant enrichment of death receptor signaling genes near loci with P < 10−5 in the three-cancer meta-analysis. PMID:27432226

  5. Seven prostate cancer susceptibility loci identified by a multi-stage genome-wide association study

    DEFF Research Database (Denmark)

    Kote-Jarai, Zsofia; Olama, Ali Amin Al; Giles, Graham G;

    2011-01-01

    of stage 3, in which we evaluated 1,536 SNPs in 4,574 individuals with prostate cancer (cases) and 4,164 controls. We followed up ten new association signals through genotyping in 51,311 samples in 30 studies from the Prostate Cancer Association Group to Investigate Cancer Associated Alterations...

  6. Meta-analysis of Genome Wide Association Studies Identifies Genetic Markers of Late Toxicity Following Radiotherapy for Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Sarah L. Kerns

    2016-08-01

    Full Text Available Nearly 50% of cancer patients undergo radiotherapy. Late radiotherapy toxicity affects quality-of-life in long-term cancer survivors and risk of side-effects in a minority limits doses prescribed to the majority of patients. Development of a test predicting risk of toxicity could benefit many cancer patients. We aimed to meta-analyze individual level data from four genome-wide association studies from prostate cancer radiotherapy cohorts including 1564 men to identify genetic markers of toxicity. Prospectively assessed two-year toxicity endpoints (urinary frequency, decreased urine stream, rectal bleeding, overall toxicity and single nucleotide polymorphism (SNP associations were tested using multivariable regression, adjusting for clinical and patient-related risk factors. A fixed-effects meta-analysis identified two SNPs: rs17599026 on 5q31.2 with urinary frequency (odds ratio [OR] 3.12, 95% confidence interval [CI] 2.08–4.69, p-value 4.16 × 10−8 and rs7720298 on 5p15.2 with decreased urine stream (OR 2.71, 95% CI 1.90–3.86, p-value = 3.21 × 10−8. These SNPs lie within genes that are expressed in tissues adversely affected by pelvic radiotherapy including bladder, kidney, rectum and small intestine. The results show that heterogeneous radiotherapy cohorts can be combined to identify new moderate-penetrance genetic variants associated with radiotherapy toxicity. The work provides a basis for larger collaborative efforts to identify enough variants for a future test involving polygenic risk profiling.

  7. Meta-analysis of Genome Wide Association Studies Identifies Genetic Markers of Late Toxicity Following Radiotherapy for Prostate Cancer.

    Science.gov (United States)

    Kerns, Sarah L; Dorling, Leila; Fachal, Laura; Bentzen, Søren; Pharoah, Paul D P; Barnes, Daniel R; Gómez-Caamaño, Antonio; Carballo, Ana M; Dearnaley, David P; Peleteiro, Paula; Gulliford, Sarah L; Hall, Emma; Michailidou, Kyriaki; Carracedo, Ángel; Sia, Michael; Stock, Richard; Stone, Nelson N; Sydes, Matthew R; Tyrer, Jonathan P; Ahmed, Shahana; Parliament, Matthew; Ostrer, Harry; Rosenstein, Barry S; Vega, Ana; Burnet, Neil G; Dunning, Alison M; Barnett, Gillian C; West, Catharine M L

    2016-08-01

    Nearly 50% of cancer patients undergo radiotherapy. Late radiotherapy toxicity affects quality-of-life in long-term cancer survivors and risk of side-effects in a minority limits doses prescribed to the majority of patients. Development of a test predicting risk of toxicity could benefit many cancer patients. We aimed to meta-analyze individual level data from four genome-wide association studies from prostate cancer radiotherapy cohorts including 1564 men to identify genetic markers of toxicity. Prospectively assessed two-year toxicity endpoints (urinary frequency, decreased urine stream, rectal bleeding, overall toxicity) and single nucleotide polymorphism (SNP) associations were tested using multivariable regression, adjusting for clinical and patient-related risk factors. A fixed-effects meta-analysis identified two SNPs: rs17599026 on 5q31.2 with urinary frequency (odds ratio [OR] 3.12, 95% confidence interval [CI] 2.08-4.69, p-value 4.16×10(-8)) and rs7720298 on 5p15.2 with decreased urine stream (OR 2.71, 95% CI 1.90-3.86, p-value=3.21×10(-8)). These SNPs lie within genes that are expressed in tissues adversely affected by pelvic radiotherapy including bladder, kidney, rectum and small intestine. The results show that heterogeneous radiotherapy cohorts can be combined to identify new moderate-penetrance genetic variants associated with radiotherapy toxicity. The work provides a basis for larger collaborative efforts to identify enough variants for a future test involving polygenic risk profiling.

  8. Genome-wide association study identifies variants in the ABO locus associated with susceptibility to pancreatic cancer

    Science.gov (United States)

    Amundadottir, Laufey; Kraft, Peter; Stolzenberg-Solomon, Rachael Z.; Fuchs, Charles S.; Petersen, Gloria M.; Arslan, Alan A.; Bueno-de-Mesquita, H. Bas; Gross, Myron; Helzlsouer, Kathy; Jacobs, Eric J.; LaCroix, Andrea; Zheng, Wei; Albanes, Demetrius; Bamlet, William; Berg, Christine D.; Berrino, Franco; Bingham, Sheila; Buring, Julie E.; Bracci, Paige M.; Canzian, Federico; Clavel-Chapelon, Françoise; Clipp, Sandra; Cotterchio, Michelle; de Andrade, Mariza; Duell, Eric J.; Fox, John W.; Gallinger, Steven; Gaziano, J. Michael; Giovannucci, Edward L.; Goggins, Michael; González, Carlos A.; Hallmans, Göran; Hankinson, Susan E.; Hassan, Manal; Holly, Elizabeth A.; Hunter, David J.; Hutchinson, Amy; Jackson, Rebecca; Jacobs, Kevin B.; Jenab, Mazda; Kaaks, Rudolf; Klein, Alison P.; Kooperberg, Charles; Kurtz, Robert C.; Li, Donghui; Lynch, Shannon M.; Mandelson, Margaret; McWilliams, Robert R.; Mendelsohn, Julie B.; Michaud, Dominique S.; Olson, Sara H.; Overvad, Kim; Patel, Alpa V.; Peeters, Petra H.M.; Rajkovic, Aleksandar; Riboli, Elio; Risch, Harvey A.; Shu, Xiao-Ou; Thomas, Gilles; Tobias, Geoffrey S.; Trichopoulos, Dimitrios; Van Den Eeden, Stephen K.; Virtamo, Jarmo; Wactawski-Wende, Jean; Wolpin, Brian M.; Yu, Herbert; Yu, Kai; Zeleniuch-Jacquotte, Anne; Chanock, Stephen J.; Hartge, Patricia; Hoover, Robert N.

    2010-01-01

    We conducted a two-stage genome-wide association study (GWAS) of pancreatic cancer, a cancer with one of the poorest survival rates worldwide. Initially, we genotyped 558,542 single nucleotide polymorphisms in 1,896 incident cases and 1,939 controls drawn from twelve prospective cohorts plus one hospital-based case-control study. In a combined analysis adjusted for study, sex, ancestry and five principal components that included an additional 2,457 cases and 2,654 controls from eight case-control studies, we identified an association between a locus on 9q34 and pancreatic cancer marked by the single nucleotide polymorphism, rs505922 (combined P=5.37 × 10-8; multiplicative per-allele odds ratio (OR) 1.20; 95% CI 1.12-1.28). This SNP maps to the first intron of the ABO blood group gene. Our results are consistent with earlier epidemiologic evidence suggesting that people with blood group O may have a lower risk of pancreatic cancer than those with groups A or B. PMID:19648918

  9. Genome-wide interrogation identifies YAP1 variants associated with survival of small-cell lung cancer patients.

    Science.gov (United States)

    Wu, Chen; Xu, Binghe; Yuan, Peng; Miao, Xiaoping; Liu, Yu; Guan, Yin; Yu, Dianke; Xu, Jian; Zhang, Tongwen; Shen, Hongbing; Wu, Tangchun; Lin, Dongxin

    2010-12-01

    Although most patients with small-cell lung cancer respond to chemotherapy, the survival time is highly diverse. We conducted a genome-wide analysis to examine whether germline genetic variations are prognostic factors in small-cell lung cancer patients treated with the same chemotherapy regimen. Genome-wide scan of single nucleotide polymorphisms (SNP) was performed using blood DNA to identify genotypes associated with overall survival in 245 patients treated with platinum-based chemotherapy, and the results were replicated in another independent set of 305 patients. Associations were estimated by Cox models and function of the variants was examined by biochemical assays. We found that rs1820453 T>G SNP within the promoter region of YAP1 on chromosome 11q22 and rs716274 A>G SNP in the region of downstream of DYNC2H1 on chromosome 11q22.3 are associated with small-cell lung cancer survival. In pooled analysis of 2 independent cohorts, the adjusted hazard ratio for patients with the rs1820453 TG or GG genotype was 1.49 (95% CI, 1.19-1.85; P = 0.0004) and 1.65 (95% CI, 1.36-2.01; P = 4.76 × 10(-7)), respectively, compared with the TT genotype; and for patients with the rs716274 AG or GG genotype was 1.83 (95% CI, 1.47-2.29; P = 8.74 × 10(-8)) and 2.96 (95% CI, 1.90-4.62; P = 1.59 × 10(-6)), respectively, compared with the AA genotype. Functional analysis showed that the rs1820453 T>G change creates a transcriptional factor binding site and results in downregulation of YAP1 expression. These results suggest that YAP1 may play an important role in prognosis of small-cell lung cancer patients treated with platinum-based chemotherapy.

  10. Cancer genomics

    DEFF Research Database (Denmark)

    Norrild, Bodil; Guldberg, Per; Ralfkiær, Elisabeth Methner

    2007-01-01

    Almost all cells in the human body contain a complete copy of the genome with an estimated number of 25,000 genes. The sequences of these genes make up about three percent of the genome and comprise the inherited set of genetic information. The genome also contains information that determines whe...

  11. A meta-analysis of genome-wide association studies of breast cancer identifies two novel susceptibility loci at 6q14 and 20q11

    NARCIS (Netherlands)

    Siddiq, Afshan; Couch, Fergus J.; Chen, Gary K.; Lindstrom, Sara; Eccles, Diana; Millikan, Robert C.; Michailidou, Kyriaki; Stram, Daniel O.; Beckmann, Lars; Rhie, Suhn Kyong; Ambrosone, Christine B.; Aittomaki, Kristiina; Amiano, Pilar; Apicella, Carmel; Baglietto, Laura; Bandera, Elisa V.; Beckmann, Matthias W.; Berg, Christine D.; Bernstein, Leslie; Blomqvist, Carl; Brauch, Hiltrud; Brinton, Louise; Bui, Quang M.; Buring, Julie E.; Buys, Saundra S.; Campa, Daniele; Carpenter, Jane E.; Chasman, Daniel I.; Chang-Claude, Jenny; Chen, Constance; Clavel-Chapelon, Francoise; Cox, Angela; Cross, Simon S.; Czene, Kamila; Deming, Sandra L.; Diasio, Robert B.; Diver, W. Ryan; Dunning, Alison M.; Durcan, Lorraine; Ekici, Arif B.; Fasching, Peter A.; Feigelson, Heather Spencer; Fejerman, Laura; Figueroa, Jonine D.; Fletcher, Olivia; Flesch-Janys, Dieter; Gaudet, Mia M.; Gerty, Susan M.; Rodriguez-Gil, Jorge L.; Giles, Graham G.; van Gils, Carla H.; Godwin, Andrew K.; Graham, Nikki; Greco, Dario; Hall, Per; Hankinson, Susan E.; Hartmann, Arndt; Hein, Rebecca; Heinz, Judith; Hoover, Robert N.; Hopper, John L.; Hu, Jennifer J.; Huntsman, Scott; Ingles, Sue A.; Irwanto, Astrid; Isaacs, Claudine; Jacobs, Kevin B.; John, Esther M.; Justenhoven, Christina; Kaaks, Rudolf; Kolonel, Laurence N.; Coetzee, Gerhard A.; Lathrop, Mark; Le Marchand, Loic; Lee, Adam M.; Lee, I-Min; Lesnick, Timothy; Lichtner, Peter; Liu, Jianjun; Lund, Eiliv; Makalic, Enes; Martin, Nicholas G.; McLean, Catriona A.; Meijers-Heijboer, Hanne; Meindl, Alfons; Miron, Penelope; Monroe, Kristine R.; Montgomery, Grant W.; Mueller-Myhsok, Bertram; Nickels, Stefan; Nyante, Sarah J.; Olswold, Curtis; Overvad, Kim; Palli, Domenico; Park, Daniel J.; Palmer, Julie R.; Pathak, Harsh; Peto, Julian; Pharoah, Paul; Rahman, Nazneen; Rivadeneira, Fernando; Schmidt, Daniel F.; Schmutzler, Rita K.; Slager, Susan; Southey, Melissa C.; Stevens, Kristen N.; Sinn, Hans-Peter; Press, Michael F.; Ross, Eric; Riboli, Elio; Ridker, Paul M.; Schumacher, Fredrick R.; Severi, Gianluca; Silva, Isabel dos Santos; Stone, Jennifer; Sund, Malin; Tapper, William J.; Thun, Michael J.; Travis, Ruth C.; Turnbull, Clare; Uitterlinden, Andre G.; Waisfisz, Quinten; Wang, Xianshu; Wang, Zhaoming; Weaver, JoEllen; Schulz-Wendtland, Ruediger; Wilkens, Lynne R.; Van Den Berg, David; Zheng, Wei; Ziegler, Regina G.; Ziv, Elad; Nevanlinna, Heli; Easton, Douglas F.; Hunter, David J.; Henderson, Brian E.; Chanock, Stephen J.; Garcia-Closas, Montserrat; Kraft, Peter; Haiman, Christopher A.; Vachon, Celine M.

    2012-01-01

    Genome-wide association studies (GWAS) of breast cancer defined by hormone receptor status have revealed loci contributing to susceptibility of estrogen receptor (ER)-negative subtypes. To identify additional genetic variants for ER-negative breast cancer, we conducted the largest meta-analysis of E

  12. European genome-wide association study identifies SLC14A1 as a new urinary bladder cancer susceptibility gene

    NARCIS (Netherlands)

    Rafnar, T.; Vermeulen, H.H.M.; Sulem, P.; Thorleifsson, G.; Aben, K.K.H.; Witjes, J.A.; Grotenhuis, A.J.; Verhaegh, G.W.C.T.; Hulsbergen- van de Kaa, C.A.; Besenbacher, S.; Gudbjartsson, D.; Stacey, S.N.; Gudmundsson, J.; Johannsdottir, H.; Bjarnason, H.; Zanon, C.; Helgadottir, H.; Jonasson, J.G.; Tryggvadottir, L.; Jonsson, E.; Geirsson, G.; Nikulasson, S.; Petursdottir, V.; Bishop, D.T.; Chung-Sak, S.; Choudhury, A.; Elliott, F.; Barrett, J.H.; Knowles, M.A.; Verdier, P. de; Ryk, C.; Lindblom, A.; Rudnai, P.; Gurzau, E.; Koppova, K.; Vineis, P.; Polidoro, S.; Guarrera, S.; Sacerdote, C.; Panadero, A.; Sanz-Velez, J.I.; Sanchez, M.; Valdivia, G.; Garcia-Prats, M.D.; Hengstler, J.G.; Selinski, S.; Gerullis, H.; Ovsiannikov, D.; Khezri, A.; Aminsharifi, A.; Malekzadeh, M.; Berg, L.H. van den; Ophoff, R.A.; Veldink, J.H.; Zeegers, M.P.; Kellen, E.; Fostinelli, J.; Andreoli, D.; Arici, C.; Porru, S.; Buntinx, F.; Ghaderi, A.; Golka, K.; Mayordomo, J.I.; Matullo, G.; Kumar, R.; Steineck, G.; Kiltie, A.E.; Kong, A.; Thorsteinsdottir, U.; Stefansson, K.; Kiemeney, L.A.L.M.

    2011-01-01

    Three genome-wide association studies in Europe and the USA have reported eight urinary bladder cancer (UBC) susceptibility loci. Using extended case and control series and 1000 Genomes imputations of 5 340 737 single-nucleotide polymorphisms (SNPs), we searched for additional loci in the European G

  13. Genome-wide association study of prostate-specific antigen levels identifies novel loci independent of prostate cancer

    Science.gov (United States)

    Hoffmann, Thomas J.; Passarelli, Michael N.; Graff, Rebecca E.; Emami, Nima C.; Sakoda, Lori C.; Jorgenson, Eric; Habel, Laurel A.; Shan, Jun; Ranatunga, Dilrini K.; Quesenberry, Charles P.; Chao, Chun R.; Ghai, Nirupa R.; Aaronson, David; Presti, Joseph; Nordström, Tobias; Wang, Zhaoming; Berndt, Sonja I.; Chanock, Stephen J.; Mosley, Jonathan D.; Klein, Robert J.; Middha, Mridu; Lilja, Hans; Melander, Olle; Kvale, Mark N.; Kwok, Pui-Yan; Schaefer, Catherine; Risch, Neil; Van Den Eeden, Stephen K.; Witte, John S.

    2017-01-01

    Prostate-specific antigen (PSA) levels have been used for detection and surveillance of prostate cancer (PCa). However, factors other than PCa—such as genetics—can impact PSA. Here we present findings from a genome-wide association study (GWAS) of PSA in 28,503 Kaiser Permanente whites and 17,428 men from replication cohorts. We detect 40 genome-wide significant (P<5 × 10−8) single-nucleotide polymorphisms (SNPs): 19 novel, 15 previously identified for PSA (14 of which were also PCa-associated), and 6 previously identified for PCa only. Further analysis incorporating PCa cases suggests that at least half of the 40 SNPs are PSA-associated independent of PCa. The 40 SNPs explain 9.5% of PSA variation in non-Hispanic whites, and the remaining GWAS SNPs explain an additional 31.7%; this percentage is higher in younger men, supporting the genetic basis of PSA levels. These findings provide important information about genetic markers for PSA that may improve PCa screening, thereby reducing over-diagnosis and over-treatment. PMID:28139693

  14. A new GWAS and meta-analysis with 1000Genomes imputation identifies novel risk variants for colorectal cancer

    Science.gov (United States)

    Al-Tassan, Nada A.; Whiffin, Nicola; Hosking, Fay J.; Palles, Claire; Farrington, Susan M.; Dobbins, Sara E.; Harris, Rebecca; Gorman, Maggie; Tenesa, Albert; Meyer, Brian F.; Wakil, Salma M.; Kinnersley, Ben; Campbell, Harry; Martin, Lynn; Smith, Christopher G.; Idziaszczyk, Shelley; Barclay, Ella; Maughan, Timothy S.; Kaplan, Richard; Kerr, Rachel; Kerr, David; Buchannan, Daniel D.; Ko Win, Aung; Hopper, John; Jenkins, Mark; Lindor, Noralane M.; Newcomb, Polly A.; Gallinger, Steve; Conti, David; Schumacher, Fred; Casey, Graham; Dunlop, Malcolm G.; Tomlinson, Ian P.; Cheadle, Jeremy P.; Houlston, Richard S.

    2015-01-01

    Genome-wide association studies (GWAS) of colorectal cancer (CRC) have identified 23 susceptibility loci thus far. Analyses of previously conducted GWAS indicate additional risk loci are yet to be discovered. To identify novel CRC susceptibility loci, we conducted a new GWAS and performed a meta-analysis with five published GWAS (totalling 7,577 cases and 9,979 controls of European ancestry), imputing genotypes utilising the 1000 Genomes Project. The combined analysis identified new, significant associations with CRC at 1p36.2 marked by rs72647484 (minor allele frequency [MAF] = 0.09) near CDC42 and WNT4 (P = 1.21 × 10−8, odds ratio [OR] = 1.21 ) and at 16q24.1 marked by rs16941835 (MAF = 0.21, P = 5.06 × 10−8; OR = 1.15) within the long non-coding RNA (lncRNA) RP11-58A18.1 and ~500 kb from the nearest coding gene FOXL1. Additionally we identified a promising association at 10p13 with rs10904849 intronic to CUBN (MAF = 0.32, P = 7.01 × 10-8; OR = 1.14). These findings provide further insights into the genetic and biological basis of inherited genetic susceptibility to CRC. Additionally, our analysis further demonstrates that imputation can be used to exploit GWAS data to identify novel disease-causing variants. PMID:25990418

  15. Genome-wide association studies identify four ER negative-specific breast cancer risk loci

    NARCIS (Netherlands)

    Garcia-Closas, Montserrat; Couch, Fergus J.; Lindstrom, Sara; Michailidouo, Kyriaki; Schmidt, Marjanka K.; Brook, Mark N.; Orr, Nick; Rhie, Suhn Kyong; Riboli, Elio; Feigelson, Heather S.; Le Marchand, Loic; Buring, Julie E.; Eccles, Diana; Miron, Penelope; Fasching, Peter A.; Brauch, Hiltrud; Chang-Claude, Jenny; Carpenter, Jane; Godwin, Andrew K.; Nevanlinna, Heli; Giles, Graham G.; Cox, Angela; Hopper, John L.; Bolla, Manjeet K.; Wang, Qin; Dennis, Joe; Dicks, Ed; Howat, Will J.; Schoof, Nils; Bojesen, Stig E.; Lambrechts, Diether; Broeks, Annegien; Andrulis, Irene L.; Guenel, Pascal; Burwinkel, Barbara; Sawyer, Elinor J.; Hollestelle, Antoinette; Fletcher, Olivia; Winqvist, Robert; Brenner, Hermann; Mannermaa, Arto; Hamann, Ute; Meindl, Alfons; Lindblom, Annika; Zheng, Wei; Devillee, Peter; Goldberg, Mark S.; Lubinski, Jan; Kristensen, Vessela; Swerdlow, Anthony; Anton-Culver, Hoda; Doerk, Thilo; Muir, Kenneth; Matsuo, Keitaro; Wu, Anna H.; Radice, Paolo; Teo, Soo Hwang; Shu, Xiao-Ou; Blot, William; Kang, Daehee; Hartman, Mikael; Sangrajrang, Suleeporn; Shen, Chen-Yang; Southey, Melissa C.; Park, Daniel J.; Hammet, Fleur; Stone, Jennifer; Van't Veer, Laura J.; Rutgers, Emiel J.; Lophatananon, Artitaya; Stewart-Brown, Sarah; Siriwanarangsan, Pornthep; Peto, Julian; Schrauder, Michael G.; Ekici, Arif B.; Beckmann, Matthias W.; Silva, Isabel dos Santos; Johnson, Nichola; Warren, Helen; Tomlins, Ian; Kerin, Michael J.; Miller, Nicola; Marme, Federick; Schneeweiss, Andreas; Sohn, Christof; Truong, Therese; Laurent-Puig, Pierre; Kerbrat, Pierre; Nordestgaard, Borge G.; Nielsen, Sune F.; Flyger, Henrik; Milne, Roger L.; Arias Perez, Jose Ignacio; Menendez, Primitiva; Mueller, Heiko; Arndt, Volker; Stegmaier, Christa; Lichtner, Peter; Lochmann, Magdalena; Justenhoven, Christina; Ko, Yon-Dschun; Muranen, Taru A.; Aittomaki, Kristiina; Blomqvist, Carl; Greco, Dario; Heikkinen, Tuomas; Ito, Hidemi; Iwata, Hiroji; Yatabe, Yasushi; Antonenkova, Natalia N.; Margolin, Sara; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M.; Balleine, Rosemary; Tseng, Chiu-Chen; Van den Berg, David; Stram, Daniel O.; Neven, Patrick; Dieudonne, Anne-Sophie; Leunen, Karin; Rudolph, Anja; Nickels, Stefan; Flesch-Janys, Dieter; Peterlongo, Paolo; Peissel, Bernard; Bernard, Loris; Olson, Janet E.; Wang, Xianshu; Stevens, Kristen; Severi, Gianluca; Baglietto, Laura; McLean, Catriona; Coetzee, Gerhard A.; Feng, Ye; Henderson, Brian E.; Schumacher, Fredrick; Bogdanova, Natalia V.; Labreche, France; Dumont, Martine; Yip, Cheng Har; Taib, Nur Aishah Mohd; Cheng, Ching-Yu; Shrubsole, Martha; Long, Jirong; Pylkas, Katri; Jukkola-Vuorinen, Arja; Kauppila, Saila; Knight, Julia A.; Glendon, Gord; Mulligan, Anna Marie; Tollenaar, Robertus A. E. M.; Seynaeve, Caroline M.; Kriege, Mieke; Hooning, Maartje J.; van den Ouweland, Ans M. W.; van Deurzen, Carolien H. M.; Lu, Wei; Gao, Yu-Tang; Cai, Hui; Balasubramanian, Sabapathy P.; Cross, Simon S.; Reed, Malcolm W. R.; Signorello, Lisa; Cai, Qiuyin; Shah, Mitul; Miao, Hui; Chan, Ching Wan; Chia, Kee Seng; Jakubowska, Anna; Jaworska, Katarzyna; Durda, Katarzyna; Hsiung, Chia-Ni; Wu, Peiei; Yu, Jyh-Cherng; Ashworth, Alan; Jones, Michael; Tessier, Daniel C.; Gonzalez-Neira, Anna; Pita, Guillermo; Alonso, M. Rosario; Vincent, Daniel; Bacot, Francois; Ambrosone, Christine B.; Bandera, Elisa V.; John, Esther M.; Chen, Gary K.; Hu, Jennifer J.; Rodriguez-Gil, Jorge L.; Bernstein, Leslie; Press, Michael F.; Ziegler, Regina G.; Millikan, Robert M.; Deming-Halverson, Sandra L.; Nyante, Sarah; Ingles, Sue A.; Waisfisz, Quinten; Tsimiklis, Helen; Makalic, Enes; Schmidt, Daniel; Bui, Minh; Gibson, Lorna; Mueller-Myhsok, Bertram; Schmutzler, Rita K.; Hein, Rebecca; Dahmen, Norbert; Beckmann, Lars; Aaltonen, Kirsimari; Czene, Kamila; Irwanto, Astrid; Liu, Jianjun; Turnbull, Clare; Rahman, Nazneen; Meijers-Heijboer, Hanne; Uitterlinden, Andre G.; Rivadeneira, Fernando; Olswold, Curtis; Slager, Susan; Pilarski, Robert; Ademuyiwa, Foluso; Konstantopoulou, Irene; Martin, Nicholas G.; Montgomery, Grant W.; Slamon, Dennis J.; Rauh, Claudia; Lux, Michael P.; Jud, Sebastian M.; Bruning, Thomas; Weaver, JoEllen; Harma, Priyanka; Pathak, Harsh; Tapper, Will; Gerty, Sue; Durcan, Lorraine; Trichopoulos, Dimitrios; Tumino, Rosario; Peeters, Petra H.; Kaaks, Rudolf; Campa, Daniele; Canzian, Federico; Weiderpass, Elisabete; Johansson, Mattias; Khaw, Kay-Tee; Travis, Ruth; Clavel-Chapelon, Francoise; Kolonel, Laurence N.; Chen, Constance; Beck, Andy; Hankinson, Susan E.; Berg, Christine D.; Hoover, Robert N.; Lissowska, Jolanta; Figueroa, Jonine D.; Chasman, Daniel I.; Gaudet, Mia M.; Diver, W. Ryan; Willett, Walter C.; Hunter, David J.; Simard, Jacques; Benitez, Javier; Dunning, Alison M.; Sherman, Mark E.; Chenevix-Trench, Georgia; Chanock, Stephen J.; Hall, Per; Pharoah, Paul D. P.; Vachon, Celine; Easton, Douglas F.; Haiman, Christopher A.; Kraft, Peter

    2013-01-01

    Estrogen receptor (ER)-negative tumors represent 20-30% of all breast cancers, with a higher proportion occurring in younger women and women of African ancestry. The etiology and clinical behavior of ER-negative tumors are different from those of tumors expressing ER (ER positive), including differe

  16. Genome-wide association studies identify four ER negative-specific breast cancer risk loci

    DEFF Research Database (Denmark)

    Garcia-Closas, Montserrat; Couch, Fergus J; Lindstrom, Sara

    2013-01-01

    Estrogen receptor (ER)-negative tumors represent 20-30% of all breast cancers, with a higher proportion occurring in younger women and women of African ancestry. The etiology and clinical behavior of ER-negative tumors are different from those of tumors expressing ER (ER positive), including diff...

  17. A meta-analysis of genome-wide association studies to identify prostate cancer susceptibility loci associated with aggressive and non-aggressive disease

    DEFF Research Database (Denmark)

    Amin Al Olama, Ali; Kote-Jarai, Zsofia; Schumacher, Fredrick R

    2013-01-01

    Genome-wide association studies (GWAS) have identified multiple common genetic variants associated with an increased risk of prostate cancer (PrCa), but these explain less than one-third of the heritability. To identify further susceptibility alleles, we conducted a meta-analysis of four GWAS inc...

  18. Identifying associations between genomic alterations in tumors.

    Science.gov (United States)

    George, Joshy; Gorringe, Kylie L; Smyth, Gordon K; Bowtell, David D L

    2013-01-01

    Single-nucleotide polymorphism (SNP) mapping arrays are a reliable method for identifying somatic copy number alterations in cancer samples. Though this is immensely useful to identify potential driver genes, it is not sufficient to identify genes acting in a concerted manner. In cancer cells, co-amplified genes have been shown to provide synergistic effects, and genomic alterations targeting a pathway have been shown to occur in a mutually exclusive manner. We therefore developed a bioinformatic method for detecting such gene pairs using an integrated analysis of genomic copy number and gene expression data. This approach allowed us to identify a gene pair that is co-amplified and co-expressed in high-grade serous ovarian cancer. This finding provided information about the interaction of specific genetic events that contribute to the development and progression of this disease.

  19. A comprehensive analysis of genome-wide association studies to identify prostate cancer susceptibility loci for the Romanian population.

    Science.gov (United States)

    Rădăvoi, George Daniel; Pricop, Cătălin; Jinga, Viorel; Mateş, Dana; Rădoi, Viorica Elena; Jinga, Mariana; Ursu, Radu Ioan; Bratu, Ovidiu Gabriel; Mischianu, Dan Liviu Dorel; Iordache, Paul

    2016-01-01

    The aim of this study is to examine a large dataset of single nucleotide polymorphism known to be associated with prostate cancer from previous genome-wide association studies and create a dataset of single nucleotide polymorphisms that can be used in replication studies for the Romanian population. This study will define a list of markers showing a significant association with this phenotype. We propose the results of this study as a starting point for any Romanian genome-wide association studies researching the genetic susceptibility for prostate cancer.

  20. Genome-Wide Association Study in BRCA1 Mutation Carriers Identifies Novel Loci Associated with Breast and Ovarian Cancer Risk

    NARCIS (Netherlands)

    F.J. Couch (Fergus); X. Wang (Xing); L. McGuffog (Lesley); A. Lee; C. Olswold (Curtis); K.B. Kuchenbaecker (Karoline); P. Soucy (Penny); Z. Fredericksen (Zachary); D. Barrowdale (Daniel); J. Dennis (Joe); M.M. Gaudet (Mia); E. Dicks (Ed); M. Kosel (Matthew); S. Healey (Sue); O. Sinilnikova (Olga); F. Bacot (Francois); D. Vincent (Daniel); F.B.L. Hogervorst (Frans); S. Peock (Susan); D. Stoppa-Lyonnet (Dominique); A. Jakubowska (Anna); P. Radice (Paolo); R.K. Schmutzler (Rita); S.M. Domchek (Susan); M. Piedmonte (Marion); C.F. Singer (Christian); E. Friedman (Eitan); M. Thomassen (Mads); T.V.O. Hansen (Thomas); S.L. Neuhausen (Susan); C. Szabo (Csilla); I. Blanco (Ignacio); M.H. Greene (Mark); B. Karlan; J. Garber; C. Phelan (Catherine); J.N. Weitzel (Jeffrey); M. Montagna (Marco); E. Olah; I.L. Andrulis (Irene); A.K. Godwin (Andrew); D. Yannoukakos (Drakoulis); D. Goldgar (David); T. Caldes (Trinidad); H. Nevanlinna (Heli); A. Osorio (Ana); M.-B. Terry (Mary-Beth); M.B. Daly (Mary); E.J. van Rensburg (Elizabeth); U. Hamann (Ute); S.J. Ramus (Susan); A. Ewart-Toland (Amanda); M.A. Caligo (Maria); O.I. Olopade (Olofunmilayo); N. Tung (Nadine); K. Claes (Kathleen); M.S. Beattie (Mary); M.C. Southey (Melissa); E.N. Imyanitov (Evgeny); M. Tischkowitz (Marc); R. Janavicius (Ramunas); E.M. John (Esther); A. Kwong (Ava); O. Diez (Orland); J. Balmana (Judith); R.B. Barkardottir (Rosa); B.K. Arun (Banu); G. Rennert (Gad); S.-H. Teo; P.A. Ganz (Patricia); I. Campbell (Ian); A.H. van der Hout (Annemarie); C.H.M. van Deurzen (Carolien); C.M. Seynaeve (Caroline); E.B. Gómez García (Encarna); F.E. van Leeuwen (F.); H. Meijers-Heijboer (Hanne); J.J. Gille (Johan); M.G.E.M. Ausems (Margreet); M.J. Blok (Marinus); M.J. Ligtenberg (Marjolijn); M.A. Rookus (Matti); P. Devilee (Peter); S. Verhoef; T.A.M. van Os (Theo); J.T. Wijnen (Juul); D. Frost (Debra); S. Ellis (Steve); E. Fineberg (Elena); R. Platte (Radka); D.G. Evans (Gareth); L. Izatt (Louise); R. Eeles (Rosalind); J.W. Adlard (Julian); D. Eccles (Diana); J. Cook (Jackie); C. Brewer (C.); F. Douglas (Fiona); S.V. Hodgson (Shirley); P.J. Morrison (Patrick); L. Side (Lucy); A. Donaldson (Alan); C. Houghton (Catherine); M.T. Rogers (Mark); H. Dorkins (Huw); J. Eason (Jacqueline); H. Gregory (Helen); E. McCann (Emma); A. Murray (Alexandra); A. Calender (Alain); A. Hardouin (Agnès); P. Berthet (Pascaline); C.D. Delnatte (Capucine); C. Nogues (Catherine); C. Lasset (Christine); C. Houdayer (Claude); D. Leroux (Dominique); E. Rouleau (Etienne); F. Prieur (Fabienne); F. Damiola (Francesca); H. Sobol (Hagay); I. Coupier (Isabelle); L. Vénat-Bouvet (Laurence); L. Castera (Laurent); M. Gauthier-Villars (Marion); M. Léone (Mélanie); P. Pujol (Pascal); S. Mazoyer (Sylvie); Y.-J. Bignon (Yves-Jean); E. Złowocka-Perłowska (Elzbieta); J. Gronwald (Jacek); J. Lubinski (Jan); K. Durda (Katarzyna); K. Jaworska (Katarzyna); T. Huzarski (Tomasz); A.B. Spurdle (Amanda); A. Viel (Alessandra); B. Peissel (Bernard); B. Bonnani (Bernardo); G. Melloni (Giulia); L. Ottini (Laura); L. Papi (Laura); L. Varesco (Liliana); M.G. Tibiletti (Maria Grazia); P. Peterlongo (Paolo); S. Volorio (Sara); S. Manoukian (Siranoush); V. Pensotti (Valeria); N. Arnold (Norbert); C. Engel (Christoph); H. Deissler (Helmut); D. Gadzicki (Dorothea); P.A. Gehrig (Paola A.); K. Kast (Karin); K. Rhiem (Kerstin); A. Meindl (Alfons); D. Niederacher (Dieter); N. Ditsch (Nina); H. Plendl (Hansjoerg); S. Preisler-Adams (Sabine); S. Engert (Stefanie); C. Sutter (Christian); R. Varon-Mateeva (Raymonda); B. Wapenschmidt (Barbara); B.H.F. Weber (Bernhard); B. Arver (Brita Wasteson); M. Stenmark-Askmalm (M.); N. Loman (Niklas); R. Rosenquist (R.); Z. Einbeigi (Zakaria); K.L. Nathanson (Katherine); R. Rebbeck (Timothy); S.V. Blank (Stephanie); D.E. Cohn (David); G.C. Rodriguez (Gustavo); L. Small (Laurie); M. Friedlander (Michael); V.L. Bae-Jump (Victoria L.); A. Fink-Retter (Anneliese); C. Rappaport (Christine); D. Gschwantler-Kaulich (Daphne); G. Pfeiler (Georg); M.-K. Tea; N.M. Lindor (Noralane); B. Kaufman (Bella); S. Shimon Paluch (Shani); Y. Laitman (Yael); A.-B. Skytte (Anne-Bine); A-M. Gerdes (Anne-Marie); I.S. Pedersen (Inge Sokilde); S.T. Moeller (Sanne Traasdahl); T.A. Kruse (Torben); U.B. Jensen; J. Vijai (Joseph); K. Sarrel (Kara); M. Robson (Mark); N. Kauff (Noah); A.M. Mulligan (Anna Marie); G. Glendon (Gord); H. Ozcelik (Hilmi); B. Ejlertsen (Bent); F.C. Nielsen (Finn); L. Jønson (Lars); M.K. Andersen (Mette); Y.C. Ding (Yuan); L. Steele (Linda); L. Foretova (Lenka); A. Teulé (A.); C. Lazaro (Conxi); J. Brunet (Joan); M.A. Pujana (Miguel); P.L. Mai (Phuong); J.T. Loud (Jennifer); C.S. Walsh (Christine); K.J. Lester (Kathryn); S. Orsulic (Sandra); S. Narod (Steven); J. Herzog (Josef); S.R. Sand (Sharon); S. Tognazzo (Silvia); S. Agata (Simona); T. Vaszko (Tibor); J. Weaver (JoEllen); A. Stavropoulou (Alexandra); S.S. Buys (Saundra); A. Romero (Alfonso); M. de La Hoya (Miguel); K. Aittomäki (Kristiina); T.A. Muranen (Taru); M. Duran; W.K. Chung (Wendy); A. Lasa (Adriana); C.M. Dorfling (Cecelia); A. Miron (Alexander); J. Benítez (Javier); L. Senter (Leigha); D. Huo (Dezheng); S. Chan (Salina); A. Sokolenko (Anna); J. Chiquette (Jocelyne); L. Tihomirova (Laima); M.O.W. Friebel (Mark ); B.A. Agnarsson (Bjarni); K.H. Lu (Karen); F. Lejbkowicz (Flavio); P.A. James (Paul ); A.S. Hall (Alistair); A.M. Dunning (Alison); Y. Tessier (Yann); J. Cunningham (Jane); S. Slager (Susan); C. Wang (Chen); S. Hart (Stewart); K. Stevens (Kristen); J. Simard (Jacques); T. Pastinen (Tomi); V.S. Pankratz (Shane); K. Offit (Kenneth); D.F. Easton (Douglas); G. Chenevix-Trench (Georgia); A.C. Antoniou (Antonis); H. Thorne (Heather); E. Niedermayr (Eveline); Å. Borg (Åke); H. Olsson; H. Jernström (H.); K. Henriksson (Karin); K. Harbst (Katja); M. Soller (Maria); U. Kristoffersson (Ulf); A. Öfverholm (Anna); M. Nordling (Margareta); P. Karlsson (Per); A. von Wachenfeldt (Anna); A. Liljegren (Annelie); A. Lindblom (Annika); G.B. Bustinza; J. Rantala (Johanna); B. Melin (Beatrice); C.E. Ardnor (Christina Edwinsdotter); M. Emanuelsson (Monica); H. Ehrencrona (Hans); M.H. Pigg (Maritta ); S. Liedgren (Sigrun); M.A. Rookus (M.); S. Verhoef (S.); F.E. van Leeuwen (F.); M.K. Schmidt (Marjanka); J.L. de Lange (J.); J.M. Collee (Margriet); A.M.W. van den Ouweland (Ans); M.J. Hooning (Maartje); C.J. van Asperen (Christi); J.T. Wijnen (Juul); R.A.E.M. Tollenaar (Rob); P. Devilee (Peter); T.C.T.E.F. van Cronenburg; C.M. Kets; A.R. Mensenkamp (Arjen); R.B. van der Luijt (Rob); C.M. Aalfs (Cora); T.A.M. van Os (Theo); Q. Waisfisz (Quinten); E.J. Meijers-Heijboer (Hanne); E.B. Gomez Garcia (Encarna); J.C. Oosterwijk (Jan); M.J. Mourits; G.H. de Bock (Geertruida); S.D. Ellis (Steve); E. Fineberg (Elena); Z. Miedzybrodzka (Zosia); L. Jeffers (Lisa); T.J. Cole (Trevor); K.-R. Ong (Kai-Ren); J. Hoffman (Jonathan); M. James (Margaret); J. Paterson (Joan); A. Taylor (Amy); A. Murray (Anna); M.J. Kennedy (John); D.E. Barton (David); M.E. Porteous (Mary); S. Drummond (Sarah); C. Brewer (Carole); E. Kivuva (Emma); A. Searle (Anne); S. Goodman (Selina); R. Davidson (Rosemarie); V. Murday (Victoria); N. Bradshaw (Nicola); L. Snadden (Lesley); M. Longmuir (Mark); C. Watt (Catherine); S. Gibson (Sarah); E. Haque (Eshika); E. Tobias (Ed); A. Duncan (Alexis); L. Izatt (Louise); C. Jacobs (Chris); C. Langman (Caroline); A.F. Brady (Angela); S.A. Melville (Scott); K. Randhawa (Kashmir); J. Barwell (Julian); G. Serra-Feliu (Gemma); I.O. Ellis (Ian); F. Lalloo (Fiona); J. Taylor (James); A. Male (Alison); C. Berlin (Cheryl); R. Collier (Rebecca); F. Douglas (Fiona); O. Claber (Oonagh); I. Jobson (Irene); L.J. Walker (Lisa); D. McLeod (Diane); D. Halliday (Dorothy); S. Durell (Sarah); B. Stayner (Barbara); S. Shanley (Susan); N. Rahman (Nazneen); R. Houlston (Richard); A. Stormorken (Astrid); E. Bancroft (Elizabeth); E. Page (Elizabeth); A. Ardern-Jones (Audrey); K. Kohut (Kelly); J. Wiggins (Jennifer); E. Castro (Elena); S.R. Killick; S. Martin (Sue); D. Rea (Dan); A. Kulkarni (Anjana); O. Quarrell (Oliver); C. Bardsley (Cathryn); S. Goff (Sheila); G. Brice (Glen); L. Winchester (Lizzie); C. Eddy (Charlotte); V. Tripathi (Vishakha); V. Attard (Virginia); A. Lehmann (Anna); A. Lucassen (Anneke); G. Crawford (Gabe); D. McBride (Donna); S. Smalley (Sarah); S. Mazoyer (Sylvie); F. Damiola (Francesca); L. Barjhoux (Laure); C. Verny-Pierre (Carole); S. Giraud (Sophie); D. Stoppa-Lyonnet (Dominique); B. Buecher (Bruno); V. Moncoutier (Virginie); M. Belotti (Muriel); C. Tirapo (Carole); A. de Pauw (Antoine); B. Bressac-de Paillerets (Brigitte); O. Caron (Olivier); Y.-J. Bignon (Yves-Jean); N. Uhrhammer (Nancy); V. Bonadona (Valérie); S. Handallou (Sandrine); A. hardouin (Agnès); H. Sobol (Hagay); V. Bourdon (Violaine); T. Noguchi (Tetsuro); A. Remenieras (Audrey); F. Eisinger (François); J.-P. Peyrat; J. Fournier (Joëlle); F. Révillion (Françoise); P. Vennin (Philippe); C. Adenis (Claude); R. Lidereau (Rosette); L. Demange (Liliane); D.W. Muller (Danièle); J.P. Fricker (Jean Pierre); E. Barouk-Simonet (Emmanuelle); F. Bonnet (Françoise); V. Bubien (Virginie); N. Sevenet (Nicolas); M. Longy (Michel); C. Toulas (Christine); R. Guimbaud (Rosine); L. Gladieff (Laurence); V. Feillel (Viviane); H. Dreyfus (Hélène); C. Rebischung (Christine); M. Peysselon (Magalie); F. Coron (Fanny); L. Faivre (Laurence); M. Lebrun (Marine); C. Kientz (Caroline); S.F. Ferrer; M. Frenay (Marc); I. Mortemousque (Isabelle); F. Coulet (Florence); C. Colas (Chrystelle); F. Soubrier; J. Sokolowska (Johanna); M. Bronner (Myriam); H. Lynch (Henry); C.L. Snyder (Carrie); M. Angelakos (Maggie); J. Maskiell (Judi); G.S. Dite (Gillian)

    2013-01-01

    textabstractBRCA1-associated breast and ovarian cancer risks can be modified by common genetic variants. To identify further cancer risk-modifying loci, we performed a multi-stage GWAS of 11,705 BRCA1 carriers (of whom 5,920 were diagnosed with breast and 1,839 were diagnosed with ovarian cancer), w

  1. Genome-Wide Association Study in BRCA1 Mutation Carriers Identifies Novel Loci Associated with Breast and Ovarian Cancer Risk

    NARCIS (Netherlands)

    Couch, Fergus J.; Wang, Xianshu; McGuffog, Lesley; Lee, Andrew; Olswold, Curtis; Kuchenbaecker, Karoline B.; Soucy, Penny; Fredericksen, Zachary; Barrowdale, Daniel; Dennis, Joe; Gaudet, Mia M.; Dicks, Ed; Kosel, Matthew; Healey, Sue; Sinilnikova, Olga M.; Lee, Adam; Bacot, Francois; Vincent, Daniel; Hogervorst, Frans B. L.; Peock, Susan; Stoppa-Lyonnet, Dominique; Jakubowska, Anna; Radice, Paolo; Schmutzler, Rita Katharina; Domchek, Susan M.; Piedmonte, Marion; Singer, Christian F.; Friedman, Eitan; Thomassen, Mads; Hansen, Thomas V. O.; Neuhausen, Susan L.; Szabo, Csilla I.; Blanco, Ignacio; Greene, Mark H.; Karlan, Beth Y.; Garber, Judy; Phelan, Catherine M.; Weitzel, Jeffrey N.; Montagna, Marco; Olah, Edith; Andrulis, Irene L.; Godwin, Andrew K.; Yannoukakos, Drakoulis; Goldgar, David E.; Caldes, Trinidad; Nevanlinna, Heli; Osorio, Ana; Terry, Mary Beth; Daly, Mary B.; van Rensburg, Elizabeth J.; Hamann, Ute; Ramus, Susan J.; Toland, Amanda Ewart; Caligo, Maria A.; Olopade, Olufunmilayo I.; Tung, Nadine; Claes, Kathleen; Beattie, Mary S.; Southey, Melissa C.; Imyanitov, Evgeny N.; Tischkowitz, Marc; Janavicius, Ramunas; John, Esther M.; Kwong, Ava; Diez, Orland; Balmana, Judith; Barkardottir, Rosa B.; Arun, Banu K.; Rennert, Gad; Teo, Soo-Hwang; Ganz, Patricia A.; Campbell, Ian; van der Hout, Annemarie H.; van Deurzen, Carolien H. M.; Seynaeve, Caroline; Garcia, Encarna B. Gomez; van Leeuwen, Flora E.; Meijers-Heijboer, Hanne E. J.; Gille, Johannes J. P.; Ausems, Margreet G. E. M.; Blok, Marinus J.; Ligtenberg, Marjolijn J. L.; Rookus, Matti A.; Devilee, Peter; Verhoef, Senno; van Os, Theo A. M.; Wijnen, Juul T.; Frost, Debra; Ellis, Steve; Fineberg, Elena; Platte, Radka; Evans, D. Gareth; Izatt, Louise; Eeles, Rosalind A.; Adlard, Julian; Eccles, Diana M.; Cook, Jackie; Brewer, Carole; Douglas, Fiona; Hodgson, Shirley; Morrison, Patrick J.; Side, Lucy E.; Donaldson, Alan; Houghton, Catherine; Rogers, Mark T.; Dorkins, Huw; Eason, Jacqueline; Gregory, Helen; McCann, Emma; Murray, Alex; Calender, Alain; Hardouin, Agnes; Berthet, Pascaline; Delnatte, Capucine; Nogues, Catherine; Lasset, Christine; Houdayer, Claude; Leroux, Dominique; Rouleau, Etienne; Prieur, Fabienne; Damiola, Francesca; Sobol, Hagay; Coupier, Isabelle; Venat-Bouvet, Laurence; Castera, Laurent; Gauthier-Villars, Marion; Leone, Melanie; Pujol, Pascal; Mazoyer, Sylvie; Bignon, Yves-Jean; Zlowocka-Perlowska, Elzbieta; Gronwald, Jacek; Lubinski, Jan; Durda, Katarzyna; Jaworska, Katarzyna; Huzarski, Tomasz; Spurdle, Amanda B.; Viel, Alessandra; Peissel, Bernard; Bonanni, Bernardo; Melloni, Giulia; Ottini, Laura; Papi, Laura; Varesco, Liliana; Tibiletti, Maria Grazia; Peterlongo, Paolo; Volorio, Sara; Manoukian, Siranoush; Pensotti, Valeria; Arnold, Norbert; Engel, Christoph; Deissler, Helmut; Gadzicki, Dorothea; Gehrig, Andrea; Kast, Karin; Rhiem, Kerstin; Meindl, Alfons; Niederacher, Dieter; Ditsch, Nina; Plendl, Hansjoerg; Preisler-Adams, Sabine; Engert, Stefanie; Sutter, Christian; Varon-Mateeva, Raymonda; Wappenschmidt, Barbara; Weber, Bernhard H. F.; Arver, Brita; Stenmark-Askmalm, Marie; Loman, Niklas; Rosenquist, Richard; Einbeigi, Zakaria; Nathanson, Katherine L.; Rebbeck, Timothy R.; Blank, Stephanie V.; Cohn, David E.; Rodriguez, Gustavo C.; Small, Laurie; Friedlander, Michael; Bae-Jump, Victoria L.; Fink-Retter, Anneliese; Rappaport, Christine; Gschwantler-Kaulich, Daphne; Pfeiler, Georg; Tea, Muy-Kheng; Lindor, Noralane M.; Kaufman, Bella; Paluch, Shani Shimon; Laitman, Yael; Skytte, Anne-Bine; Gerdes, Anne-Marie; Pedersen, Inge Sokilde; Moeller, Sanne Traasdahl; Kruse, Torben A.; Jensen, Uffe Birk; Vijai, Joseph; Sarrel, Kara; Robson, Mark; Kauff, Noah; Mulligan, Anna Marie; Glendon, Gord; Ozcelik, Hilmi; Ejlertsen, Bent; Nielsen, Finn C.; Jonson, Lars; Andersen, Mette K.; Ding, Yuan Chun; Steele, Linda; Foretova, Lenka; Teule, Alex; Lazaro, Conxi; Brunet, Joan; Angel Pujana, Miquel; Mai, Phuong L.; Loud, Jennifer T.; Walsh, Christine; Lester, Jenny; Orsulic, Sandra; Narod, Steven A.; Herzog, Josef; Sand, Sharon R.; Tognazzo, Silvia; Agata, Simona; Vaszko, Tibor; Weaver, Joellen; Stavropoulou, Alexandra V.; Buys, Saundra S.; Romero, Atocha; de la Hoya, Miguel; Aittomaki, Kristiina; Muranen, Taru A.; Duran, Mercedes; Chung, Wendy K.; Lasa, Adriana; Dorfling, Cecilia M.; Miron, Alexander; Benitez, Javier; Senter, Leigha; Huo, Dezheng; Chan, Salina B.; Sokolenko, Anna P.; Chiquette, Jocelyne; Tihomirova, Laima; Friebel, Tara M.; Agnarsson, Bjarni A.; Lu, Karen H.; Lejbkowicz, Flavio; James, Paul A.; Hall, Per; Dunning, Alison M.

    2013-01-01

    BRCA1-associated breast and ovarian cancer risks can be modified by common genetic variants. To identify further cancer risk-modifying loci, we performed a multi-stage GWAS of 11,705 BRCA1 carriers (of whom 5,920 were diagnosed with breast and 1,839 were diagnosed with ovarian cancer), with a furthe

  2. Genomic Landscape Survey Identifies SRSF1 as a Key Oncodriver in Small Cell Lung Cancer.

    Directory of Open Access Journals (Sweden)

    Liyan Jiang

    2016-04-01

    Full Text Available Small cell lung cancer (SCLC is an aggressive disease with poor survival. A few sequencing studies performed on limited number of samples have revealed potential disease-driving genes in SCLC, however, much still remains unknown, particularly in the Asian patient population. Here we conducted whole exome sequencing (WES and transcriptomic sequencing of primary tumors from 99 Chinese SCLC patients. Dysregulation of tumor suppressor genes TP53 and RB1 was observed in 82% and 62% of SCLC patients, respectively, and more than half of the SCLC patients (62% harbored TP53 and RB1 mutation and/or copy number loss. Additionally, Serine/Arginine Splicing Factor 1 (SRSF1 DNA copy number gain and mRNA over-expression was strongly associated with poor survival using both discovery and validation patient cohorts. Functional studies in vitro and in vivo demonstrate that SRSF1 is important for tumorigenicity of SCLC and may play a key role in DNA repair and chemo-sensitivity. These results strongly support SRSF1 as a prognostic biomarker in SCLC and provide a rationale for personalized therapy in SCLC.

  3. Knowledge-Assisted Approach to Identify Pathways with Differential Dependencies | Office of Cancer Genomics

    Science.gov (United States)

    We have previously developed a statistical method to identify gene sets enriched with condition-specific genetic dependencies. The method constructs gene dependency networks from bootstrapped samples in one condition and computes the divergence between distributions of network likelihood scores from different conditions. It was shown to be capable of sensitive and specific identification of pathways with phenotype-specific dysregulation, i.e., rewiring of dependencies between genes in different conditions.

  4. Candidate luminal B breast cancer genes identified by genome, gene expression and DNA methylation profiling.

    Directory of Open Access Journals (Sweden)

    Stéphanie Cornen

    Full Text Available Breast cancers (BCs of the luminal B subtype are estrogen receptor-positive (ER+, highly proliferative, resistant to standard therapies and have a poor prognosis. To better understand this subtype we compared DNA copy number aberrations (CNAs, DNA promoter methylation, gene expression profiles, and somatic mutations in nine selected genes, in 32 luminal B tumors with those observed in 156 BCs of the other molecular subtypes. Frequent CNAs included 8p11-p12 and 11q13.1-q13.2 amplifications, 7q11.22-q34, 8q21.12-q24.23, 12p12.3-p13.1, 12q13.11-q24.11, 14q21.1-q23.1, 17q11.1-q25.1, 20q11.23-q13.33 gains and 6q14.1-q24.2, 9p21.3-p24,3, 9q21.2, 18p11.31-p11.32 losses. A total of 237 and 101 luminal B-specific candidate oncogenes and tumor suppressor genes (TSGs presented a deregulated expression in relation with their CNAs, including 11 genes previously reported associated with endocrine resistance. Interestingly, 88% of the potential TSGs are located within chromosome arm 6q, and seven candidate oncogenes are potential therapeutic targets. A total of 100 candidate oncogenes were validated in a public series of 5,765 BCs and the overexpression of 67 of these was associated with poor survival in luminal tumors. Twenty-four genes presented a deregulated expression in relation with a high DNA methylation level. FOXO3, PIK3CA and TP53 were the most frequent mutated genes among the nine tested. In a meta-analysis of next-generation sequencing data in 875 BCs, KCNB2 mutations were associated with luminal B cases while candidate TSGs MDN1 (6q15 and UTRN (6q24, were mutated in this subtype. In conclusion, we have reported luminal B candidate genes that may play a role in the development and/or hormone resistance of this aggressive subtype.

  5. Candidate luminal B breast cancer genes identified by genome, gene expression and DNA methylation profiling.

    Science.gov (United States)

    Cornen, Stéphanie; Guille, Arnaud; Adélaïde, José; Addou-Klouche, Lynda; Finetti, Pascal; Saade, Marie-Rose; Manai, Marwa; Carbuccia, Nadine; Bekhouche, Ismahane; Letessier, Anne; Raynaud, Stéphane; Charafe-Jauffret, Emmanuelle; Jacquemier, Jocelyne; Spicuglia, Salvatore; de The, Hugues; Viens, Patrice; Bertucci, François; Birnbaum, Daniel; Chaffanet, Max

    2014-01-01

    Breast cancers (BCs) of the luminal B subtype are estrogen receptor-positive (ER+), highly proliferative, resistant to standard therapies and have a poor prognosis. To better understand this subtype we compared DNA copy number aberrations (CNAs), DNA promoter methylation, gene expression profiles, and somatic mutations in nine selected genes, in 32 luminal B tumors with those observed in 156 BCs of the other molecular subtypes. Frequent CNAs included 8p11-p12 and 11q13.1-q13.2 amplifications, 7q11.22-q34, 8q21.12-q24.23, 12p12.3-p13.1, 12q13.11-q24.11, 14q21.1-q23.1, 17q11.1-q25.1, 20q11.23-q13.33 gains and 6q14.1-q24.2, 9p21.3-p24,3, 9q21.2, 18p11.31-p11.32 losses. A total of 237 and 101 luminal B-specific candidate oncogenes and tumor suppressor genes (TSGs) presented a deregulated expression in relation with their CNAs, including 11 genes previously reported associated with endocrine resistance. Interestingly, 88% of the potential TSGs are located within chromosome arm 6q, and seven candidate oncogenes are potential therapeutic targets. A total of 100 candidate oncogenes were validated in a public series of 5,765 BCs and the overexpression of 67 of these was associated with poor survival in luminal tumors. Twenty-four genes presented a deregulated expression in relation with a high DNA methylation level. FOXO3, PIK3CA and TP53 were the most frequent mutated genes among the nine tested. In a meta-analysis of next-generation sequencing data in 875 BCs, KCNB2 mutations were associated with luminal B cases while candidate TSGs MDN1 (6q15) and UTRN (6q24), were mutated in this subtype. In conclusion, we have reported luminal B candidate genes that may play a role in the development and/or hormone resistance of this aggressive subtype.

  6. MEDICI: Mining Essentiality Data to Identify Critical Interactions for Cancer Drug Target Discovery and Development | Office of Cancer Genomics

    Science.gov (United States)

    Protein-protein interactions (PPIs) mediate the transmission and regulation of oncogenic signals that are essential to cellular proliferation and survival, and thus represent potential targets for anti-cancer therapeutic discovery. Despite their significance, there is no method to experimentally disrupt and interrogate the essentiality of individual endogenous PPIs. The ability to computationally predict or infer PPI essentiality would help prioritize PPIs for drug discovery and help advance understanding of cancer biology.

  7. Genome-wide association study identifies a common variant in RAD51B associated with male breast cancer risk

    DEFF Research Database (Denmark)

    Orr, Nick; Lemnrau, Alina; Cooke, Rosie

    2012-01-01

    We conducted a genome-wide association study of male breast cancer comprising 823 cases and 2,795 controls of European ancestry, with validation in independent sample sets totaling 438 cases and 474 controls. A SNP in RAD51B at 14q24.1 was significantly associated with male breast cancer risk (P...... = 3.02 × 10(-13); odds ratio (OR) = 1.57). We also refine association at 16q12.1 to a SNP within TOX3 (P = 3.87 × 10(-15); OR = 1.50)....

  8. Genome-Wide lncRNA Microarray Profiling Identifies Novel Circulating lncRNAs for Detection of Gastric Cancer

    Science.gov (United States)

    Zhang, Kecheng; Shi, Hongzhi; Xi, Hongqing; Wu, Xiaosong; Cui, Jianxin; Gao, Yunhe; Liang, Wenquan; Hu, Chong; Liu, Yi; Li, Jiyang; Wang, Ning; Wei, Bo; Chen, Lin

    2017-01-01

    Long non-coding RNAs (lncRNAs) can serve as blood-based biomarkers for cancer detection. To identify novel lncRNA biomarkers for gastric cancer (GC), we conducted, for the first time, genome-wide lncRNA screening analysis in two sets of samples: five paired preoperative and postoperative day 14 plasma samples from GC patients, and tissue samples from tumor and adjacent normal tissues. Candidate tumor-related lncRNAs were then quantitated and evaluated in three independent phases comprising 321 participants. The expression levels of lncRNAs were also measured in GC cell lines and the corresponding culture medium. Biomarker panels, lncRNA-based Index I and carcinoembryonic antigen (CEA)-based Index II, were constructed using logistic regression, and their diagnostic performance compared. Fagan's nomogram was plotted to facilitate clinical application. As a result, we identified five novel plasma lncRNAs (TINCR, CCAT2, AOC4P, BANCR and LINC00857), which, when combined in the lncRNA-based Index I, outperformed the CEA-based Index II (P < 0.001) and could distinguish GC patients from healthy controls with an area under the receiver-operating curve (AUC) of 0.91 (95% confidence interval (CI): 0.88-0.95). The lncRNA-based index decreased significantly by postoperative day 14 (P = 0.016), indicating its ability to monitor tumor dynamics. High values of the lncRNA-based index were correlated with tumor size (P = 0.036), depth of invasion (P = 0.025), lymphatic metastasis (P = 0.012) and more advanced tumor stages (P = 0.003). The lncRNA-based index was also able to discriminate GC patients from precancerous individuals and patients with gastrointestinal stromal tumor with AUC values of 0.82 (95% CI: 0.71-0.92) and 0.80 (95% CI: 0.68-0.91), respectively. Taken together, our findings demonstrate that this panel of five plasma lncRNAs could serve as a set of novel diagnostic biomarkers for GC detection. PMID:28042329

  9. Genome-wide Analysis Identifies Novel Loci Associated with Ovarian Cancer Outcomes: Findings from the Ovarian Cancer Association Consortium

    NARCIS (Netherlands)

    Johnatty, S.E.; Tyrer, J.P.; Kar, S.; Beesley, J.; Lu, Y.; Gao, B.; Fasching, P.A.; Hein, A.; Ekici, A.B.; Beckmann, M.W.; Lambrechts, D.; Nieuwenhuysen, E. Van; Vergote, I.; Lambrechts, S.; Rossing, M.A.; Doherty, J.A.; Chang-Claude, J.; Modugno, F.; Ness, R.B.; Moysich, K.B.; Levine, D.A.; Kiemeney, L.A.L.M.; Massuger, L.F.A.G.; Gronwald, J.; Lubinski, J.; Jakubowska, A.; Cybulski, C.; Brinton, L.; Lissowska, J.; Wentzensen, N.; Song, H.; Rhenius, V.; Campbell, I.; Eccles, D.; Sieh, W.; Whittemore, A.S.; McGuire, V.; Rothstein, J.H.; Sutphen, R.; Anton-Culver, H.; Ziogas, A.; Gayther, S.A.; Gentry-Maharaj, A.; Menon, U.; Ramus, S.J.; Pearce, C.L.; Pike, M.C.; Stram, D.O.; Wu, A.H.; Kupryjanczyk, J.; Dansonka-Mieszkowska, A.; Rzepecka, I.K.; Spiewankiewicz, B.; Goodman, M.T.; Wilkens, L.R.; Carney, M.E.; Thompson, P.J.; Heitz, F.; Bois, A. du; Schwaab, I.; Harter, P.; Pisterer, J.; Hillemanns, P.; Karlan, B.Y.; Walsh, C.; Lester, J.; Orsulic, S.; Winham, S.J.; Earp, M.; Larson, M.C.; Fogarty, Z.C.; Hogdall, E.; Jensen, A.; Kjaer, S.K.; Fridley, B.L.; Cunningham, J.M.; Vierkant, R.A.; Schildkraut, J.M.; Iversen, E.S.; Terry, K.L.; Cramer, D.W; Bandera, E.V.; Orlow, I.; Pejovic, T.; Bean, Y.; Hogdall, C.; Lundvall, L.; McNeish, I.; Paul, J.; Carty, K.; Siddiqui, N.; Glasspool, R.; Sellers, T.; Kennedy, C.; Chiew, Y.E.; Berchuck, A.; MacGregor, S.; Pharoah, P.D.; Goode, E.L.; Defazio, A.

    2015-01-01

    PURPOSE: Chemotherapy resistance remains a major challenge in the treatment of ovarian cancer. We hypothesize that germline polymorphisms might be associated with clinical outcome. EXPERIMENTAL DESIGN: We analyzed approximately 2.8 million genotyped and imputed SNPs from the iCOGS experiment for pro

  10. Genome-Wide Meta-Analyses of Breast, Ovarian, and Prostate Cancer Association Studies Identify Multiple New Susceptibility Loci Shared by at Least Two Cancer Types

    DEFF Research Database (Denmark)

    Kar, Siddhartha P; Beesley, Jonathan; Amin Al Olama, Ali

    2016-01-01

    UNLABELLED: Breast, ovarian, and prostate cancers are hormone-related and may have a shared genetic basis, but this has not been investigated systematically by genome-wide association (GWA) studies. Meta-analyses combining the largest GWA meta-analysis data sets for these cancers totaling 112,349...

  11. A genome-wide screen for promoter methylation in lung cancer identifies novel methylation markers for multiple malignancies.

    Directory of Open Access Journals (Sweden)

    David S Shames

    2006-12-01

    Full Text Available BACKGROUND: Promoter hypermethylation coupled with loss of heterozygosity at the same locus results in loss of gene function in many tumor cells. The "rules" governing which genes are methylated during the pathogenesis of individual cancers, how specific methylation profiles are initially established, or what determines tumor type-specific methylation are unknown. However, DNA methylation markers that are highly specific and sensitive for common tumors would be useful for the early detection of cancer, and those required for the malignant phenotype would identify pathways important as therapeutic targets. METHODS AND FINDINGS: In an effort to identify new cancer-specific methylation markers, we employed a high-throughput global expression profiling approach in lung cancer cells. We identified 132 genes that have 5' CpG islands, are induced from undetectable levels by 5-aza-2'-deoxycytidine in multiple non-small cell lung cancer cell lines, and are expressed in immortalized human bronchial epithelial cells. As expected, these genes were also expressed in normal lung, but often not in companion primary lung cancers. Methylation analysis of a subset (45/132 of these promoter regions in primary lung cancer (n = 20 and adjacent nonmalignant tissue (n = 20 showed that 31 genes had acquired methylation in the tumors, but did not show methylation in normal lung or peripheral blood cells. We studied the eight most frequently and specifically methylated genes from our lung cancer dataset in breast cancer (n = 37, colon cancer (n = 24, and prostate cancer (n = 24 along with counterpart nonmalignant tissues. We found that seven loci were frequently methylated in both breast and lung cancers, with four showing extensive methylation in all four epithelial tumors. CONCLUSIONS: By using a systematic biological screen we identified multiple genes that are methylated with high penetrance in primary lung, breast, colon, and prostate cancers. The cross

  12. Whole Genome Sequencing of High-Risk Families to Identify New Mutational Mechanisms of Breast Cancer Predisposition

    Science.gov (United States)

    2015-12-01

    Families to Identify New Mutational Mechanisms of Breast Cancer Predisposition 5b. GRANT NUMBER W81XWH-13-1-0336 5c. PROGRAM ELEMENT NUMBER 6...An integrative approach to predicting the functional effects of non-coding and coding sequence variation. Bioinformatics. 31:1536-1543. 14 Fu Y...Breast Cancer Predisposition PRINCIPAL INVESTIGATOR: Mary-Claire King, PhD CONTRACTING ORGANIZATION: University of Washington Seattle, WA, 98195

  13. Genome-Wide Association Study in BRCA1 Mutation Carriers Identifies Novel Loci Associated with Breast and Ovarian Cancer Risk

    DEFF Research Database (Denmark)

    Couch, Fergus J; Wang, Xianshu; McGuffog, Lesley;

    2013-01-01

    BRCA1-associated breast and ovarian cancer risks can be modified by common genetic variants. To identify further cancer risk-modifying loci, we performed a multi-stage GWAS of 11,705 BRCA1 carriers (of whom 5,920 were diagnosed with breast and 1,839 were diagnosed with ovarian cancer......), with a further replication in an additional sample of 2,646 BRCA1 carriers. We identified a novel breast cancer risk modifier locus at 1q32 for BRCA1 carriers (rs2290854, P = 2.7 × 10(-8), HR = 1.14, 95% CI: 1.09-1.20). In addition, we identified two novel ovarian cancer risk modifier loci: 17q21.31 (rs17631303......, P = 1.4 × 10(-8), HR = 1.27, 95% CI: 1.17-1.38) and 4q32.3 (rs4691139, P = 3.4 × 10(-8), HR = 1.20, 95% CI: 1.17-1.38). The 4q32.3 locus was not associated with ovarian cancer risk in the general population or BRCA2 carriers, suggesting a BRCA1-specific association. The 17q21.31 locus was also...

  14. Meta-analysis of genome-wide association studies identifies multiple lung cancer susceptibility loci in never-smoking Asian women.

    Science.gov (United States)

    Wang, Zhaoming; Seow, Wei Jie; Shiraishi, Kouya; Hsiung, Chao A; Matsuo, Keitaro; Liu, Jie; Chen, Kexin; Yamji, Taiki; Yang, Yang; Chang, I-Shou; Wu, Chen; Hong, Yun-Chul; Burdett, Laurie; Wyatt, Kathleen; Chung, Charles C; Li, Shengchao A; Yeager, Meredith; Hutchinson, Amy; Hu, Wei; Caporaso, Neil; Landi, Maria T; Chatterjee, Nilanjan; Song, Minsun; Fraumeni, Joseph F; Kohno, Takashi; Yokota, Jun; Kunitoh, Hideo; Ashikawa, Kyota; Momozawa, Yukihide; Daigo, Yataro; Mitsudomi, Tetsuya; Yatabe, Yasushi; Hida, Toyoaki; Hu, Zhibin; Dai, Juncheng; Ma, Hongxia; Jin, Guangfu; Song, Bao; Wang, Zhehai; Cheng, Sensen; Yin, Zhihua; Li, Xuelian; Ren, Yangwu; Guan, Peng; Chang, Jiang; Tan, Wen; Chen, Chien-Jen; Chang, Gee-Chen; Tsai, Ying-Huang; Su, Wu-Chou; Chen, Kuan-Yu; Huang, Ming-Shyan; Chen, Yuh-Min; Zheng, Hong; Li, Haixin; Cui, Ping; Guo, Huan; Xu, Ping; Liu, Li; Iwasaki, Motoki; Shimazu, Taichi; Tsugane, Shoichiro; Zhu, Junjie; Jiang, Gening; Fei, Ke; Park, Jae Yong; Kim, Yeul Hong; Sung, Jae Sook; Park, Kyong Hwa; Kim, Young Tae; Jung, Yoo Jin; Kang, Chang Hyun; Park, In Kyu; Kim, Hee Nam; Jeon, Hyo-Sung; Choi, Jin Eun; Choi, Yi Young; Kim, Jin Hee; Oh, In-Jae; Kim, Young-Chul; Sung, Sook Whan; Kim, Jun Suk; Yoon, Ho-Il; Kweon, Sun-Seog; Shin, Min-Ho; Seow, Adeline; Chen, Ying; Lim, Wei-Yen; Liu, Jianjun; Wong, Maria Pik; Lee, Victor Ho Fun; Bassig, Bryan A; Tucker, Margaret; Berndt, Sonja I; Chow, Wong-Ho; Ji, Bu-Tian; Wang, Junwen; Xu, Jun; Sihoe, Alan Dart Loon; Ho, James C M; Chan, John K C; Wang, Jiu-Cun; Lu, Daru; Zhao, Xueying; Zhao, Zhenhong; Wu, Junjie; Chen, Hongyan; Jin, Li; Wei, Fusheng; Wu, Guoping; An, She-Juan; Zhang, Xu-Chao; Su, Jian; Wu, Yi-Long; Gao, Yu-Tang; Xiang, Yong-Bing; He, Xingzhou; Li, Jihua; Zheng, Wei; Shu, Xiao-Ou; Cai, Qiuyin; Klein, Robert; Pao, William; Lawrence, Charles; Hosgood, H Dean; Hsiao, Chin-Fu; Chien, Li-Hsin; Chen, Ying-Hsiang; Chen, Chung-Hsing; Wang, Wen-Chang; Chen, Chih-Yi; Wang, Chih-Liang; Yu, Chong-Jen; Chen, Hui-Ling; Su, Yu-Chun; Tsai, Fang-Yu; Chen, Yi-Song; Li, Yao-Jen; Yang, Tsung-Ying; Lin, Chien-Chung; Yang, Pan-Chyr; Wu, Tangchun; Lin, Dongxin; Zhou, Baosen; Yu, Jinming; Shen, Hongbing; Kubo, Michiaki; Chanock, Stephen J; Rothman, Nathaniel; Lan, Qing

    2016-02-01

    Genome-wide association studies (GWAS) of lung cancer in Asian never-smoking women have previously identified six susceptibility loci associated with lung cancer risk. To further discover new susceptibility loci, we imputed data from four GWAS of Asian non-smoking female lung cancer (6877 cases and 6277 controls) using the 1000 Genomes Project (Phase 1 Release 3) data as the reference and genotyped additional samples (5878 cases and 7046 controls) for possible replication. In our meta-analysis, three new loci achieved genome-wide significance, marked by single nucleotide polymorphism (SNP) rs7741164 at 6p21.1 (per-allele odds ratio (OR) = 1.17; P = 5.8 × 10(-13)), rs72658409 at 9p21.3 (per-allele OR = 0.77; P = 1.41 × 10(-10)) and rs11610143 at 12q13.13 (per-allele OR = 0.89; P = 4.96 × 10(-9)). These findings identified new genetic susceptibility alleles for lung cancer in never-smoking women in Asia and merit follow-up to understand their biological underpinnings.

  15. Genome-Wide Association Study in BRCA1 Mutation Carriers Identifies Novel Loci Associated with Breast and Ovarian Cancer Risk

    Science.gov (United States)

    Wang, Xianshu; McGuffog, Lesley; Lee, Andrew; Olswold, Curtis; Kuchenbaecker, Karoline B.; Soucy, Penny; Fredericksen, Zachary; Barrowdale, Daniel; Dennis, Joe; Gaudet, Mia M.; Dicks, Ed; Kosel, Matthew; Healey, Sue; Sinilnikova, Olga M.; Lee, Adam; Bacot, François; Vincent, Daniel; Hogervorst, Frans B. L.; Peock, Susan; Stoppa-Lyonnet, Dominique; Jakubowska, Anna; Investigators, kConFab; Radice, Paolo; Schmutzler, Rita Katharina; Domchek, Susan M.; Piedmonte, Marion; Singer, Christian F.; Friedman, Eitan; Thomassen, Mads; Hansen, Thomas V. O.; Neuhausen, Susan L.; Szabo, Csilla I.; Blanco, Ignacio; Greene, Mark H.; Karlan, Beth Y.; Garber, Judy; Phelan, Catherine M.; Weitzel, Jeffrey N.; Montagna, Marco; Olah, Edith; Andrulis, Irene L.; Godwin, Andrew K.; Yannoukakos, Drakoulis; Goldgar, David E.; Caldes, Trinidad; Nevanlinna, Heli; Osorio, Ana; Terry, Mary Beth; Daly, Mary B.; van Rensburg, Elizabeth J.; Hamann, Ute; Ramus, Susan J.; Ewart Toland, Amanda; Caligo, Maria A.; Olopade, Olufunmilayo I.; Tung, Nadine; Claes, Kathleen; Beattie, Mary S.; Southey, Melissa C.; Imyanitov, Evgeny N.; Tischkowitz, Marc; Janavicius, Ramunas; John, Esther M.; Kwong, Ava; Diez, Orland; Balmaña, Judith; Barkardottir, Rosa B.; Arun, Banu K.; Rennert, Gad; Teo, Soo-Hwang; Ganz, Patricia A.; Campbell, Ian; van der Hout, Annemarie H.; van Deurzen, Carolien H. M.; Seynaeve, Caroline; Gómez Garcia, Encarna B.; van Leeuwen, Flora E.; Meijers-Heijboer, Hanne E. J.; Gille, Johannes J. P.; Ausems, Margreet G. E. M.; Blok, Marinus J.; Ligtenberg, Marjolijn J. L.; Rookus, Matti A.; Devilee, Peter; Verhoef, Senno; van Os, Theo A. M.; Wijnen, Juul T.; Frost, Debra; Ellis, Steve; Fineberg, Elena; Platte, Radka; Evans, D. Gareth; Izatt, Louise; Eeles, Rosalind A.; Adlard, Julian; Eccles, Diana M.; Cook, Jackie; Brewer, Carole; Douglas, Fiona; Hodgson, Shirley; Morrison, Patrick J.; Side, Lucy E.; Donaldson, Alan; Houghton, Catherine; Rogers, Mark T.; Dorkins, Huw; Eason, Jacqueline; Gregory, Helen; McCann, Emma; Murray, Alex; Calender, Alain; Hardouin, Agnès; Berthet, Pascaline; Delnatte, Capucine; Nogues, Catherine; Lasset, Christine; Houdayer, Claude; Leroux, Dominique; Rouleau, Etienne; Prieur, Fabienne; Damiola, Francesca; Sobol, Hagay; Coupier, Isabelle; Venat-Bouvet, Laurence; Castera, Laurent; Gauthier-Villars, Marion; Léoné, Mélanie; Pujol, Pascal; Mazoyer, Sylvie; Bignon, Yves-Jean; Złowocka-Perłowska, Elżbieta; Gronwald, Jacek; Lubinski, Jan; Durda, Katarzyna; Jaworska, Katarzyna; Huzarski, Tomasz; Spurdle, Amanda B.; Viel, Alessandra; Peissel, Bernard; Bonanni, Bernardo; Melloni, Giulia; Ottini, Laura; Papi, Laura; Varesco, Liliana; Tibiletti, Maria Grazia; Peterlongo, Paolo; Volorio, Sara; Manoukian, Siranoush; Pensotti, Valeria; Arnold, Norbert; Engel, Christoph; Deissler, Helmut; Gadzicki, Dorothea; Gehrig, Andrea; Kast, Karin; Rhiem, Kerstin; Meindl, Alfons; Niederacher, Dieter; Ditsch, Nina; Plendl, Hansjoerg; Preisler-Adams, Sabine; Engert, Stefanie; Sutter, Christian; Varon-Mateeva, Raymonda; Wappenschmidt, Barbara; Weber, Bernhard H. F.; Arver, Brita; Stenmark-Askmalm, Marie; Loman, Niklas; Rosenquist, Richard; Einbeigi, Zakaria; Nathanson, Katherine L.; Rebbeck, Timothy R.; Blank, Stephanie V.; Cohn, David E.; Rodriguez, Gustavo C.; Small, Laurie; Friedlander, Michael; Bae-Jump, Victoria L.; Fink-Retter, Anneliese; Rappaport, Christine; Gschwantler-Kaulich, Daphne; Pfeiler, Georg; Tea, Muy-Kheng; Lindor, Noralane M.; Kaufman, Bella; Shimon Paluch, Shani; Laitman, Yael; Skytte, Anne-Bine; Gerdes, Anne-Marie; Pedersen, Inge Sokilde; Moeller, Sanne Traasdahl; Kruse, Torben A.; Jensen, Uffe Birk; Vijai, Joseph; Sarrel, Kara; Robson, Mark; Kauff, Noah; Mulligan, Anna Marie; Glendon, Gord; Ozcelik, Hilmi; Ejlertsen, Bent; Nielsen, Finn C.; Jønson, Lars; Andersen, Mette K.; Ding, Yuan Chun; Steele, Linda; Foretova, Lenka; Teulé, Alex; Lazaro, Conxi; Brunet, Joan; Pujana, Miquel Angel; Mai, Phuong L.; Loud, Jennifer T.; Walsh, Christine; Lester, Jenny; Orsulic, Sandra; Narod, Steven A.; Herzog, Josef; Sand, Sharon R.; Tognazzo, Silvia; Agata, Simona; Vaszko, Tibor; Weaver, Joellen; Stavropoulou, Alexandra V.; Buys, Saundra S.; Romero, Atocha; de la Hoya, Miguel; Aittomäki, Kristiina; Muranen, Taru A.; Duran, Mercedes; Chung, Wendy K.; Lasa, Adriana; Dorfling, Cecilia M.; Miron, Alexander; Benitez, Javier; Senter, Leigha; Huo, Dezheng; Chan, Salina B.; Sokolenko, Anna P.; Chiquette, Jocelyne; Tihomirova, Laima; Friebel, Tara M.; Agnarsson, Bjarni A.; Lu, Karen H.; Lejbkowicz, Flavio; James, Paul A.; Hall, Per

    2013-01-01

    BRCA1-associated breast and ovarian cancer risks can be modified by common genetic variants. To identify further cancer risk-modifying loci, we performed a multi-stage GWAS of 11,705 BRCA1 carriers (of whom 5,920 were diagnosed with breast and 1,839 were diagnosed with ovarian cancer), with a further replication in an additional sample of 2,646 BRCA1 carriers. We identified a novel breast cancer risk modifier locus at 1q32 for BRCA1 carriers (rs2290854, P = 2.7×10−8, HR = 1.14, 95% CI: 1.09–1.20). In addition, we identified two novel ovarian cancer risk modifier loci: 17q21.31 (rs17631303, P = 1.4×10−8, HR = 1.27, 95% CI: 1.17–1.38) and 4q32.3 (rs4691139, P = 3.4×10−8, HR = 1.20, 95% CI: 1.17–1.38). The 4q32.3 locus was not associated with ovarian cancer risk in the general population or BRCA2 carriers, suggesting a BRCA1-specific association. The 17q21.31 locus was also associated with ovarian cancer risk in 8,211 BRCA2 carriers (P = 2×10−4). These loci may lead to an improved understanding of the etiology of breast and ovarian tumors in BRCA1 carriers. Based on the joint distribution of the known BRCA1 breast cancer risk-modifying loci, we estimated that the breast cancer lifetime risks for the 5% of BRCA1 carriers at lowest risk are 28%–50% compared to 81%–100% for the 5% at highest risk. Similarly, based on the known ovarian cancer risk-modifying loci, the 5% of BRCA1 carriers at lowest risk have an estimated lifetime risk of developing ovarian cancer of 28% or lower, whereas the 5% at highest risk will have a risk of 63% or higher. Such differences in risk may have important implications for risk prediction and clinical management for BRCA1 carriers. PMID:23544013

  16. Genome-wide association study in BRCA1 mutation carriers identifies novel loci associated with breast and ovarian cancer risk.

    Directory of Open Access Journals (Sweden)

    Fergus J Couch

    Full Text Available BRCA1-associated breast and ovarian cancer risks can be modified by common genetic variants. To identify further cancer risk-modifying loci, we performed a multi-stage GWAS of 11,705 BRCA1 carriers (of whom 5,920 were diagnosed with breast and 1,839 were diagnosed with ovarian cancer, with a further replication in an additional sample of 2,646 BRCA1 carriers. We identified a novel breast cancer risk modifier locus at 1q32 for BRCA1 carriers (rs2290854, P = 2.7 × 10(-8, HR = 1.14, 95% CI: 1.09-1.20. In addition, we identified two novel ovarian cancer risk modifier loci: 17q21.31 (rs17631303, P = 1.4 × 10(-8, HR = 1.27, 95% CI: 1.17-1.38 and 4q32.3 (rs4691139, P = 3.4 × 10(-8, HR = 1.20, 95% CI: 1.17-1.38. The 4q32.3 locus was not associated with ovarian cancer risk in the general population or BRCA2 carriers, suggesting a BRCA1-specific association. The 17q21.31 locus was also associated with ovarian cancer risk in 8,211 BRCA2 carriers (P = 2×10(-4. These loci may lead to an improved understanding of the etiology of breast and ovarian tumors in BRCA1 carriers. Based on the joint distribution of the known BRCA1 breast cancer risk-modifying loci, we estimated that the breast cancer lifetime risks for the 5% of BRCA1 carriers at lowest risk are 28%-50% compared to 81%-100% for the 5% at highest risk. Similarly, based on the known ovarian cancer risk-modifying loci, the 5% of BRCA1 carriers at lowest risk have an estimated lifetime risk of developing ovarian cancer of 28% or lower, whereas the 5% at highest risk will have a risk of 63% or higher. Such differences in risk may have important implications for risk prediction and clinical management for BRCA1 carriers.

  17. PATE, a gene expressed in prostate cancer, normal prostate, and testis, identified by a functional genomic approach

    Science.gov (United States)

    Bera, Tapan K.; Maitra, Rangan; Iavarone, Carlo; Salvatore, Giuliana; Kumar, Vasantha; Vincent, James J.; Sathyanarayana, B. K.; Duray, Paul; Lee, B. K.; Pastan, Ira

    2002-03-01

    To identify target antigens for prostate cancer therapy, we have combined computer-based screening of the human expressed sequence tag database and experimental expression analysis to identify genes that are expressed in normal prostate and prostate cancer but not in essential human tissues. Using this approach, we identified a gene that is expressed specifically in prostate cancer, normal prostate, and testis. The gene has a 1.5-kb transcript that encodes a protein of 14 kDa. We named this gene PATE (expressed in prostate and testis). In situ hybridization shows that PATE mRNA is expressed in the epithelial cells of prostate cancers and in normal prostate. Transfection of the PATE cDNA with a Myc epitope tag into NIH 3T3 cells and subsequent cell fractionation analysis shows that the PATE protein is localized in the membrane fraction of the cell. Analysis of the amino acid sequence of PATE shows that it has structural similarities to a group of proteins known as three-finger toxins, which includes the extracellular domain of the type transforming growth factor receptor. Restricted expression of PATE makes it a potential candidate for the immunotherapy of prostate cancer.

  18. Genome-Wide Gene Expression Profile Analyses Identify CTTN as a Potential Prognostic Marker in Esophageal Cancer

    OpenAIRE

    2014-01-01

    Aim Esophageal squamous cell carcinoma (ESCC) is one of the most common fatal malignances of the digestive tract. Its prognosis is poor mainly due to the lack of reliable markers for early detection and prognostic prediction. Here we aim to identify the molecules involved in ESCC carcinogenesis and those as potential markers for prognosis and as new molecular therapeutic targets. Methods We performed genome-wide gene expression profile analyses of 10 primary ESCCs and their adjacent normal ti...

  19. European genome-wide association study identifies SLC14A1 as a new urinary bladder cancer susceptibility gene.

    Science.gov (United States)

    Rafnar, Thorunn; Vermeulen, Sita H; Sulem, Patrick; Thorleifsson, Gudmar; Aben, Katja K; Witjes, J Alfred; Grotenhuis, Anne J; Verhaegh, Gerald W; Hulsbergen-van de Kaa, Christina A; Besenbacher, Soren; Gudbjartsson, Daniel; Stacey, Simon N; Gudmundsson, Julius; Johannsdottir, Hrefna; Bjarnason, Hjordis; Zanon, Carlo; Helgadottir, Hafdis; Jonasson, Jon Gunnlaugur; Tryggvadottir, Laufey; Jonsson, Eirikur; Geirsson, Gudmundur; Nikulasson, Sigfus; Petursdottir, Vigdis; Bishop, D Timothy; Chung-Sak, Sei; Choudhury, Ananya; Elliott, Faye; Barrett, Jennifer H; Knowles, Margaret A; de Verdier, Petra J; Ryk, Charlotta; Lindblom, Annika; Rudnai, Peter; Gurzau, Eugene; Koppova, Kvetoslava; Vineis, Paolo; Polidoro, Silvia; Guarrera, Simonetta; Sacerdote, Carlotta; Panadero, Angeles; Sanz-Velez, José I; Sanchez, Manuel; Valdivia, Gabriel; Garcia-Prats, Maria D; Hengstler, Jan G; Selinski, Silvia; Gerullis, Holger; Ovsiannikov, Daniel; Khezri, Abdolaziz; Aminsharifi, Alireza; Malekzadeh, Mahyar; van den Berg, Leonard H; Ophoff, Roel A; Veldink, Jan H; Zeegers, Maurice P; Kellen, Eliane; Fostinelli, Jacopo; Andreoli, Daniele; Arici, Cecilia; Porru, Stefano; Buntinx, Frank; Ghaderi, Abbas; Golka, Klaus; Mayordomo, José I; Matullo, Giuseppe; Kumar, Rajiv; Steineck, Gunnar; Kiltie, Anne E; Kong, Augustine; Thorsteinsdottir, Unnur; Stefansson, Kari; Kiemeney, Lambertus A

    2011-11-01

    Three genome-wide association studies in Europe and the USA have reported eight urinary bladder cancer (UBC) susceptibility loci. Using extended case and control series and 1000 Genomes imputations of 5 340 737 single-nucleotide polymorphisms (SNPs), we searched for additional loci in the European GWAS. The discovery sample set consisted of 1631 cases and 3822 controls from the Netherlands and 603 cases and 37 781 controls from Iceland. For follow-up, we used 3790 cases and 7507 controls from 13 sample sets of European and Iranian ancestry. Based on the discovery analysis, we followed up signals in the urea transporter (UT) gene SLC14A. The strongest signal at this locus was represented by a SNP in intron 3, rs17674580, that reached genome-wide significance in the overall analysis of the discovery and follow-up groups: odds ratio = 1.17, P = 7.6 × 10(-11). SLC14A1 codes for UTs that define the Kidd blood group and are crucial for the maintenance of a constant urea concentration gradient in the renal medulla and, through this, the kidney's ability to concentrate urine. It is speculated that rs17674580, or other sequence variants in LD with it, indirectly modifies UBC risk by affecting urine production. If confirmed, this would support the 'urogenous contact hypothesis' that urine production and voiding frequency modify the risk of UBC.

  20. Center for Cancer Genomics | Office of Cancer Genomics

    Science.gov (United States)

    The Center for Cancer Genomics (CCG) was established to unify the National Cancer Institute's activities in cancer genomics, with the goal of advancing genomics research and translating findings into the clinic to improve the precise diagnosis and treatment of cancers. In addition to promoting genomic sequencing approach

  1. Cancer immunotherapy using novel tumor-associated antigenic peptides identified by genome-wide cDNA microarray analyses.

    Science.gov (United States)

    Nishimura, Yasuharu; Tomita, Yusuke; Yuno, Akira; Yoshitake, Yoshihiro; Shinohara, Masanori

    2015-05-01

    Recent genome-wide cDNA microarray analysis of gene expression profiles in comprehensive tumor types coupled with isolation of cancer tissues by laser-microbeam microdissection have revealed ideal tumor-associated antigens (TAAs) that are frequently overexpressed in various cancers including head and neck squamous cell cancer (HNSCC) and lung cancer, but not in most normal tissues except for testis, placenta, and fetal organs. Preclinical studies using HLA-transgenic mice and human T cells in vitro showed that TAA-derived CTL-epitope short peptides (SPs) are highly immunogenic and induce HLA-A2 or -A24-restricted CTLs. Based on the accumulated evidence, we carried out a phase II clinical trial of the TAA-SP vaccine in advanced 37 HNSCC patients. This study showed a significant induction of TAA-specific CTLs in the majority of patients without serious adverse effects. Importantly, clinical responses including a complete response were observed in this study. Another phase II clinical trial of therapeutic TAA-SP vaccine, designed to evaluate the ability of prevention of recurrence, is ongoing in HNSCC patients who have received curative operations. Further studies in human preclinical studies and in vivo studies using HLA class I transgenic mice showed TAA-derived long peptides (TAA-LPs) have the capacity to induce not only promiscuous HLA class II-restricted CD4(+) T helper type 1 cells but also tumor-specific CTLs through a cross-presentation mechanism. Moreover, we observed an augmentation of TAA-LP-specific T helper type 1 cell responses and tumor antigen-spreading in HNSCC patients vaccinated with TAA-SPs. This accumulated evidence suggests that therapeutic TAA-SPs and LPs vaccines may provide a promising cancer immunotherapy.

  2. Array-based genome-wide RNAi screening to identify shRNAs that enhance p53-related apoptosis in human cancer cells.

    Science.gov (United States)

    Idogawa, Masashi; Ohashi, Tomoko; Sugisaka, Jun; Sasaki, Yasushi; Suzuki, Hiromu; Tokino, Takashi

    2014-09-15

    p53 transduction is a potentially effective cancer therapy but does not result in a good therapeutic response in all human cancers due to resistance to apoptosis. To discover factors that overcome resistance to p53-induced apoptosis, we attempted to identify RNAi sequences that enhance p53-induced apoptosis. We screened a genome-wide lentiviral shRNA library in liver cancer Huh-7 and pancreatic cancer Panc-1 cells, both of which resist p53-induced apoptosis. After the infection of adenovirus expressing p53 or LacZ as a control, shRNA-treated populations were analyzed by microarray. We identified shRNAs that were significantly decreased in p53-infected cells compared with control cells. Among these shRNAs, shRNA-58335 was markedly decreased in both cancer cell lines tested. shRNA-58335 enhanced p53-related apoptosis in vitro and augmented the inhibitory effect of adenoviral p53 transduction on tumor growth in vivo. Furthermore, the enhanced apoptotic response by shRNA-58335 was also confirmed by treatment with PRIMA-1, which reactivates mutant p53, instead of adenoviral p53 transduction. We found that shRNA-58335 evokes the apoptotic response following p53 transduction or functional restoration of p53 with a small molecule drug in cancer cells resistant to p53-induced apoptosis. The combination of p53 restoration and RNAi-based drugs is expected to be a promising novel cancer therapy.

  3. Genomic and Immunological Tumor Profiling Identifies Targetable Pathways and Extensive CD8+/PDL1+ Immune Infiltration in Inflammatory Breast Cancer Tumors.

    Science.gov (United States)

    Hamm, Christopher A; Moran, Diarmuid; Rao, Kakuturu; Trusk, Patricia B; Pry, Karen; Sausen, Mark; Jones, Siân; Velculescu, Victor E; Cristofanilli, Massimo; Bacus, Sarah

    2016-07-01

    Inflammatory breast cancer (IBC) is a rare and aggressive form of breast cancer that remains poorly understood at the molecular level. Comprehensive tumor profiling was performed to understand clinically actionable alterations in IBC. Targeted next-generation sequencing (NGS) and IHC were performed to identify activated pathways in IBC tumor tissues. siRNA studies examined the impact of IBC genomic variants in cellular models. IBC tumor tissues were further characterized for immune infiltration and immune checkpoint expression by IHC. Genomic analysis identified recurrent alterations in core biologic pathways, including activating and targetable variants in HER/PI3K/mTOR signaling. High rates of activating HER3 point mutations were discovered in IBC tumors. Cell line studies confirmed a role for mutant HER3 in IBC cell proliferation. Immunologic analysis revealed a subset of IBC tumors associated with high CD8(+)/PD-L1(+) lymphocyte infiltration. Immune infiltration positively correlated with an NGS-based estimate of neoantigen exposure derived from the somatic mutation rate and mutant allele frequency, iScore. Additionally, DNA mismatch repair alterations, which may contribute to higher iScores, occurred at greater frequency in tumors with higher immune infiltration. Our study identifies genomic alterations that mechanistically contribute to oncogenic signaling in IBC and provides a genetic basis for the selection of clinically relevant targeted and combination therapeutic strategies. Furthermore, an NGS-based estimate of neoantigen exposure developed in this study (iScore) may be a useful biomarker to predict immune infiltration in IBC and other cancers. The iScore may be associated with greater levels of response to immunotherapies, such as PD-L1/PD-1-targeted therapies. Mol Cancer Ther; 15(7); 1746-56. ©2016 AACR.

  4. Identifying cancer genes from cancer mutation profiles by cancer functions

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    It is of great importance to identify new cancer genes from the data of large scale genome screenings of gene mutations in cancers. Considering the alternations of some essential functions are indispensable for oncogenesis, we define them as cancer functions and select, as their approximations, a group of detailed functions in GO (Gene Ontology) highly enriched with known cancer genes. To evaluate the efficiency of using cancer functions as features to identify cancer genes, we define, in the screened genes, the known protein kinase cancer genes as gold standard positives and the other kinase genes as gold standard negatives. The results show that cancer associated functions are more efficient in identifying cancer genes than the selection pressure feature. Furthermore, combining cancer functions with the number of non-silent mutations can generate more reliable positive predictions. Finally, with precision 0.42, we suggest a list of 46 kinase genes as candidate cancer genes which are annotated to cancer functions and carry at least 3 non-silent mutations.

  5. Genome-wide profiling of HPV integration in cervical cancer identifies clustered genomic hot spots and a potential microhomology-mediated integration mechanism

    DEFF Research Database (Denmark)

    Hu, Zheng; Zhu, Da; Wang, Wei;

    2015-01-01

    Human papillomavirus (HPV) integration is a key genetic event in cervical carcinogenesis1. By conducting whole-genome sequencing and high-throughput viral integration detection, we identified 3,667 HPV integration breakpoints in 26 cervical intraepithelial neoplasias, 104 cervical carcinomas...... that fusion between viral and human DNA may have occurred by microhomology-mediated DNA repair pathways2. Our data provide insights into HPV integration-driven cervical carcinogenesis....

  6. Genomic Data Commons | Office of Cancer Genomics

    Science.gov (United States)

    The NCI’s Center for Cancer Genomics launches the Genomic Data Commons (GDC), a unified data sharing platform for the cancer research community. The mission of the GDC is to enable data sharing across the entire cancer research community, to ultimately support precision medicine in oncology.

  7. MDP, a database linking drug response data to genomic information, identifies dasatinib and statins as a combinatorial strategy to inhibit YAP/TAZ in cancer cells.

    Science.gov (United States)

    Taccioli, Cristian; Sorrentino, Giovanni; Zannini, Alessandro; Caroli, Jimmy; Beneventano, Domenico; Anderlucci, Laura; Lolli, Marco; Bicciato, Silvio; Del Sal, Giannino

    2015-11-17

    Targeted anticancer therapies represent the most effective pharmacological strategies in terms of clinical responses. In this context, genetic alteration of several oncogenes represents an optimal predictor of response to targeted therapy. Integration of large-scale molecular and pharmacological data from cancer cell lines promises to be effective in the discovery of new genetic markers of drug sensitivity and of clinically relevant anticancer compounds. To define novel pharmacogenomic dependencies in cancer, we created the Mutations and Drugs Portal (MDP, http://mdp.unimore.it), a web accessible database that combines the cell-based NCI60 screening of more than 50,000 compounds with genomic data extracted from the Cancer Cell Line Encyclopedia and the NCI60 DTP projects. MDP can be queried for drugs active in cancer cell lines carrying mutations in specific cancer genes or for genetic markers associated to sensitivity or resistance to a given compound. As proof of performance, we interrogated MDP to identify both known and novel pharmacogenomics associations and unveiled an unpredicted combination of two FDA-approved compounds, namely statins and Dasatinib, as an effective strategy to potently inhibit YAP/TAZ in cancer cells.

  8. Genomic profiling of breast cancer.

    Science.gov (United States)

    Pandey, Anjita; Singh, Alok Kumar; Maurya, Sanjeev Kumar; Rai, Rajani; Tewari, Mallika; Kumar, Mohan; Shukla, Hari S

    2009-05-01

    Genome study provides significant changes in the advancement of molecular diagnosis and treatment in Breast cancer. Several recent critical advances and high-throughput techniques identified the genomic trouble and dramatically accelerated the pace of research in preventing and curing this malignancy. Tumor-suppressor genes, proto-oncogenes, DNA-repair genes, carcinogen-metabolism genes are critically involved in progression of breast cancer. We reviewed imperative finding in breast genetics, ongoing work to segregate further susceptible genes, and preliminary studies on molecular profiling.

  9. Emory University: MEDICI (Mining Essentiality Data to Identify Critical Interactions) for Cancer Drug Target Discovery and Development | Office of Cancer Genomics

    Science.gov (United States)

    The CTD2 Center at Emory University has developed a computational methodology to combine high-throughput knockdown data with known protein network topologies to infer the importance of protein-protein interactions (PPIs) for the survival of cancer cells.  Applying these data to the Achilles shRNA results, the CCLE cell line characterizations, and known and newly identified PPIs provides novel insights for potential new drug targets for cancer therapies and identifies important PPI hubs.

  10. Meta-analysis of genome-wide association studies identifies common susceptibility polymorphisms for colorectal and endometrial cancer near SH2B3 and TSHZ1

    Science.gov (United States)

    Cheng, Timothy HT; Thompson, Deborah; Painter, Jodie; O’Mara, Tracy; Gorman, Maggie; Martin, Lynn; Palles, Claire; Jones, Angela; Buchanan, Daniel D.; Ko Win, Aung; Hopper, John; Jenkins, Mark; Lindor, Noralane M.; Newcomb, Polly A.; Gallinger, Steve; Conti, David; Schumacher, Fred; Casey, Graham; Giles, Graham G; Pharoah, Paul; Peto, Julian; Cox, Angela; Swerdlow, Anthony; Couch, Fergus; Cunningham, Julie M; Goode, Ellen L; Winham, Stacey J; Lambrechts, Diether; Fasching, Peter; Burwinkel, Barbara; Brenner, Hermann; Brauch, Hiltrud; Chang-Claude, Jenny; Salvesen, Helga B.; Kristensen, Vessela; Darabi, Hatef; Li, Jingmei; Liu, Tao; Lindblom, Annika; Hall, Per; de Polanco, Magdalena Echeverry; Sans, Monica; Carracedo, Angel; Castellvi-Bel, Sergi; Rojas-Martinez, Augusto; Aguiar Jnr, Samuel; Teixeira, Manuel R.; Dunning, Alison M; Dennis, Joe; Otton, Geoffrey; Proietto, Tony; Holliday, Elizabeth; Attia, John; Ashton, Katie; Scott, Rodney J; McEvoy, Mark; Dowdy, Sean C; Fridley, Brooke L; Werner, Henrica MJ; Trovik, Jone; Njolstad, Tormund S; Tham, Emma; Mints, Miriam; Runnebaum, Ingo; Hillemanns, Peter; Dörk, Thilo; Amant, Frederic; Schrauwen, Stefanie; Hein, Alexander; Beckmann, Matthias W; Ekici, Arif; Czene, Kamila; Meindl, Alfons; Bolla, Manjeet K; Michailidou, Kyriaki; Tyrer, Jonathan P; Wang, Qin; Ahmed, Shahana; Healey, Catherine S; Shah, Mitul; Annibali, Daniela; Depreeuw, Jeroen; Al-Tassan, Nada A.; Harris, Rebecca; Meyer, Brian F.; Whiffin, Nicola; Hosking, Fay J; Kinnersley, Ben; Farrington, Susan M.; Timofeeva, Maria; Tenesa, Albert; Campbell, Harry; Haile, Robert W.; Hodgson, Shirley; Carvajal-Carmona, Luis; Cheadle, Jeremy P.; Easton, Douglas; Dunlop, Malcolm; Houlston, Richard; Spurdle, Amanda; Tomlinson, Ian

    2015-01-01

    High-risk mutations in several genes predispose to both colorectal cancer (CRC) and endometrial cancer (EC). We therefore hypothesised that some lower-risk genetic variants might also predispose to both CRC and EC. Using CRC and EC genome-wide association series, totalling 13,265 cancer cases and 40,245 controls, we found that the protective allele [G] at one previously-identified CRC polymorphism, rs2736100 near TERT, was associated with EC risk (odds ratio (OR) = 1.08, P = 0.000167); this polymorphism influences the risk of several other cancers. A further CRC polymorphism near TERC also showed evidence of association with EC (OR = 0.92; P = 0.03). Overall, however, there was no good evidence that the set of CRC polymorphisms was associated with EC risk, and neither of two previously-reported EC polymorphisms was associated with CRC risk. A combined analysis revealed one genome-wide significant polymorphism, rs3184504, on chromosome 12q24 (OR = 1.10, P = 7.23 × 10−9) with shared effects on CRC and EC risk. This polymorphism, a missense variant in the gene SH2B3, is also associated with haematological and autoimmune disorders, suggesting that it influences cancer risk through the immune response. Another polymorphism, rs12970291 near gene TSHZ1, was associated with both CRC and EC (OR = 1.26, P = 4.82 × 10−8), with the alleles showing opposite effects on the risks of the two cancers. PMID:26621817

  11. Meta-analysis of genome-wide association studies identifies common susceptibility polymorphisms for colorectal and endometrial cancer near SH2B3 and TSHZ1.

    Science.gov (United States)

    Cheng, Timothy H T; Thompson, Deborah; Painter, Jodie; O'Mara, Tracy; Gorman, Maggie; Martin, Lynn; Palles, Claire; Jones, Angela; Buchanan, Daniel D; Ko Win, Aung; Hopper, John; Jenkins, Mark; Lindor, Noralane M; Newcomb, Polly A; Gallinger, Steve; Conti, David; Schumacher, Fred; Casey, Graham; Giles, Graham G; Pharoah, Paul; Peto, Julian; Cox, Angela; Swerdlow, Anthony; Couch, Fergus; Cunningham, Julie M; Goode, Ellen L; Winham, Stacey J; Lambrechts, Diether; Fasching, Peter; Burwinkel, Barbara; Brenner, Hermann; Brauch, Hiltrud; Chang-Claude, Jenny; Salvesen, Helga B; Kristensen, Vessela; Darabi, Hatef; Li, Jingmei; Liu, Tao; Lindblom, Annika; Hall, Per; de Polanco, Magdalena Echeverry; Sans, Monica; Carracedo, Angel; Castellvi-Bel, Sergi; Rojas-Martinez, Augusto; Aguiar Jnr, Samuel; Teixeira, Manuel R; Dunning, Alison M; Dennis, Joe; Otton, Geoffrey; Proietto, Tony; Holliday, Elizabeth; Attia, John; Ashton, Katie; Scott, Rodney J; McEvoy, Mark; Dowdy, Sean C; Fridley, Brooke L; Werner, Henrica M J; Trovik, Jone; Njolstad, Tormund S; Tham, Emma; Mints, Miriam; Runnebaum, Ingo; Hillemanns, Peter; Dörk, Thilo; Amant, Frederic; Schrauwen, Stefanie; Hein, Alexander; Beckmann, Matthias W; Ekici, Arif; Czene, Kamila; Meindl, Alfons; Bolla, Manjeet K; Michailidou, Kyriaki; Tyrer, Jonathan P; Wang, Qin; Ahmed, Shahana; Healey, Catherine S; Shah, Mitul; Annibali, Daniela; Depreeuw, Jeroen; Al-Tassan, Nada A; Harris, Rebecca; Meyer, Brian F; Whiffin, Nicola; Hosking, Fay J; Kinnersley, Ben; Farrington, Susan M; Timofeeva, Maria; Tenesa, Albert; Campbell, Harry; Haile, Robert W; Hodgson, Shirley; Carvajal-Carmona, Luis; Cheadle, Jeremy P; Easton, Douglas; Dunlop, Malcolm; Houlston, Richard; Spurdle, Amanda; Tomlinson, Ian

    2015-12-01

    High-risk mutations in several genes predispose to both colorectal cancer (CRC) and endometrial cancer (EC). We therefore hypothesised that some lower-risk genetic variants might also predispose to both CRC and EC. Using CRC and EC genome-wide association series, totalling 13,265 cancer cases and 40,245 controls, we found that the protective allele [G] at one previously-identified CRC polymorphism, rs2736100 near TERT, was associated with EC risk (odds ratio (OR) = 1.08, P = 0.000167); this polymorphism influences the risk of several other cancers. A further CRC polymorphism near TERC also showed evidence of association with EC (OR = 0.92; P = 0.03). Overall, however, there was no good evidence that the set of CRC polymorphisms was associated with EC risk, and neither of two previously-reported EC polymorphisms was associated with CRC risk. A combined analysis revealed one genome-wide significant polymorphism, rs3184504, on chromosome 12q24 (OR = 1.10, P = 7.23 × 10(-9)) with shared effects on CRC and EC risk. This polymorphism, a missense variant in the gene SH2B3, is also associated with haematological and autoimmune disorders, suggesting that it influences cancer risk through the immune response. Another polymorphism, rs12970291 near gene TSHZ1, was associated with both CRC and EC (OR = 1.26, P = 4.82 × 10(-8)), with the alleles showing opposite effects on the risks of the two cancers.

  12. Association of Genome-Wide Association Study (GWAS) Identified SNPs and Risk of Breast Cancer in an Indian Population

    Science.gov (United States)

    Nagrani, Rajini; Mhatre, Sharayu; Rajaraman, Preetha; Chatterjee, Nilanjan; Akbari, Mohammad R.; Boffetta, Paolo; Brennan, Paul; Badwe, Rajendra; Gupta, Sudeep; Dikshit, Rajesh

    2017-01-01

    To date, no studies have investigated the association of the GWAS-identified SNPs with BC risk in Indian population. We investigated the association of 30 previously reported and replicated BC susceptibility SNPs in 1,204 cases and 1,212 controls from a hospital based case-control study conducted at the Tata Memorial Hospital, Mumbai. As a measure of total susceptibility burden, the polygenic risk score (PRS) for each individual was defined by the weighted sum of genotypes from 21 independent SNPs with weights derived from previously published estimates of association odds-ratios. Logistic regression models were used to assess risk associated with individual SNPs and overall PRS, and stratified by menopausal and receptor status. A total of 11 SNPs from eight genomic regions (FGFR2, 9q31.2, MAP3K, CCND1, ZM1Z1, RAD51L11, ESR1 and UST) showed statistically significant (p-value ≤ 0.05) evidence of association, either overall or when stratified by menopausal status or hormone receptor status. BC SNPs previously identified in Caucasian population showed evidence of replication in the Indian population mainly with respect to risk of postmenopausal and hormone receptor positive BC. PMID:28098224

  13. Basal-like Breast cancer DNA copy number losses identify genes involved in genomic instability, response to therapy, and patient survival.

    Science.gov (United States)

    Weigman, Victor J; Chao, Hann-Hsiang; Shabalin, Andrey A; He, Xiaping; Parker, Joel S; Nordgard, Silje H; Grushko, Tatyana; Huo, Dezheng; Nwachukwu, Chika; Nobel, Andrew; Kristensen, Vessela N; Børresen-Dale, Anne-Lise; Olopade, Olufunmilayo I; Perou, Charles M

    2012-06-01

    Breast cancer is a heterogeneous disease with known expression-defined tumor subtypes. DNA copy number studies have suggested that tumors within gene expression subtypes share similar DNA Copy number aberrations (CNA) and that CNA can be used to further sub-divide expression classes. To gain further insights into the etiologies of the intrinsic subtypes, we classified tumors according to gene expression subtype and next identified subtype-associated CNA using a novel method called SWITCHdna, using a training set of 180 tumors and a validation set of 359 tumors. Fisher's exact tests, Chi-square approximations, and Wilcoxon rank-sum tests were performed to evaluate differences in CNA by subtype. To assess the functional significance of loss of a specific chromosomal region, individual genes were knocked down by shRNA and drug sensitivity, and DNA repair foci assays performed. Most tumor subtypes exhibited specific CNA. The Basal-like subtype was the most distinct with common losses of the regions containing RB1, BRCA1, INPP4B, and the greatest overall genomic instability. One Basal-like subtype-associated CNA was loss of 5q11-35, which contains at least three genes important for BRCA1-dependent DNA repair (RAD17, RAD50, and RAP80); these genes were predominantly lost as a pair, or all three simultaneously. Loss of two or three of these genes was associated with significantly increased genomic instability and poor patient survival. RNAi knockdown of RAD17, or RAD17/RAD50, in immortalized human mammary epithelial cell lines caused increased sensitivity to a PARP inhibitor and carboplatin, and inhibited BRCA1 foci formation in response to DNA damage. These data suggest a possible genetic cause for genomic instability in Basal-like breast cancers and a biological rationale for the use of DNA repair inhibitor related therapeutics in this breast cancer subtype.

  14. FUNCTIONAL GENOMICS IDENTIFIES TIS21-DEPENDENT MECHANISMS AND PUTATIVE CANCER DRUG TARGETS UNDERLYING MEDULLOBLASTOMA SHH-TYPE DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Giulia Gentile

    2016-11-01

    Full Text Available We have recently generated a novel medulloblastoma (MB mouse model with activation of the Shh pathway and lacking the MB suppressor Tis21 (Patched1+-Tis21KO.ts main phenotype is a defect of migration of the cerebellar granule precursor cells (GCPs. By genomic analysis of GCPs in vivo, we identified as drug target and major responsible of this defect the down-regulation of the promigratory chemokine Cxcl3. Consequently, the GCPs remain longer in the cerebellum proliferative area, and the MB frequency is enhanced. Here, we further analyzed the genes deregulated in a Tis21-dependent manner (Patched1+-is21 wild-type versus Ptch1+-Tis21 knockout, among which are a number of down-regulated tumor inhibitors and up-regulated tumor facilitators, focusing on pathways potentially involved in the tumorigenesis and on putative new drug targets.The data analysis using bioinformatic tools revealed: i a link between the Shh signaling and the Tis21-dependent impairment of the GCPs migration, through a Shh-dependent deregulation of the clathrin-mediated chemotaxis operating in the primary cilium through the Cxcl3-Cxcr2 axis; ii a possible lineage shift of Shh-type GCPs toward retinal precursor phenotype the neural cell type involved in group 3 MB; iii the identification of a subset of putative drug targets for MB, involved, among the others, in the regulation of Hippo signaling and centrosome assembly. Finally, our findings define also the role of Tis21 in the regulation of gene expression, through epigenetic and RNA processing mechanisms, influencing the fate of the GCPs.

  15. Genome-wide gene expression profile analyses identify CTTN as a potential prognostic marker in esophageal cancer.

    Directory of Open Access Journals (Sweden)

    Pei Lu

    Full Text Available AIM: Esophageal squamous cell carcinoma (ESCC is one of the most common fatal malignances of the digestive tract. Its prognosis is poor mainly due to the lack of reliable markers for early detection and prognostic prediction. Here we aim to identify the molecules involved in ESCC carcinogenesis and those as potential markers for prognosis and as new molecular therapeutic targets. METHODS: We performed genome-wide gene expression profile analyses of 10 primary ESCCs and their adjacent normal tissues by cDNA microarrays representing 47,000 transcripts and variants. Candidate genes were then validated by semi quantitative reverse transcription-PCR (RT-PCR, tissue microarrays (TMAs and immunohistochemistry (IHC staining. RESULTS: Using an arbitrary cutoff line of signal log ratio of ≥1.5 or ≤-1.5, we observed 549 up-regulated genes and 766 down-regulated genes in ESCCs compared with normal esophageal tissues. The functions of 302 differentially expressed genes were associated with cell metabolism, cell adhesion and immune response. Several candidate deregulated genes including four overexpressed (CTTN, DMRT2, MCM10 and SCYA26 and two underexpressed (HMGCS2 and SORBS2 were subsequently verified, which can be served as biomarkers for ESCC. Moreover, overexpression of cortactin (CTTN was observed in 126/198 (63.6% of ESCC cases and was significantly associated with lymph node metastasis (P = 0.000, pathologic stage (P = 0.000 and poor survival (P<0.001 of ESCC patients. Furthermore, a significant correlation between CTTN overexpression and shorter disease-specific survival rate was found in different subgroups of ESCC patient stratified by the pathologic stage (P<0.05. CONCLUSION: Our data provide valuable information for establishing molecules as candidates for prognostic and/or as therapeutic targets.

  16. Validation and calibration of next-generation sequencing to identify Epstein-Barr virus-positive gastric cancer in The Cancer Genome Atlas.

    Science.gov (United States)

    Camargo, M Constanza; Bowlby, Reanne; Chu, Andy; Pedamallu, Chandra Sekhar; Thorsson, Vesteinn; Elmore, Sandra; Mungall, Andrew J; Bass, Adam J; Gulley, Margaret L; Rabkin, Charles S

    2016-04-01

    The Epstein-Barr virus (EBV)-positive subtype of gastric adenocarcinoma is conventionally identified by in situ hybridization (ISH) for viral nucleic acids, but next-generation sequencing represents a potential alternative. We therefore determined normalized EBV read counts by whole-genome, whole-exome, mRNA and miRNA sequencing for 295 fresh-frozen gastric tumor samples. Formalin-fixed, paraffin-embedded tissue sections were retrieved for ISH confirmation of 13 high-EBV and 11 low-EBV cases. In pairwise comparisons, individual samples were either concordantly high or concordantly low by all genomic methods for which data were available. Empiric cutoffs of sequencing counts identified 26 (9 %) tumors as EBV positive. EBV positivity or negativity by molecular testing was confirmed by EBER-ISH in all but one tumor evaluated by both approaches (kappa = 0.91). EBV-positive gastric tumors can be accurately identified by quantifying viral sequences in genomic data. Simultaneous analyses of human and viral DNA, mRNA and miRNA could streamline tumor profiling for clinical care and research.

  17. Genome-wide screening for genetic alterations in esophageal cancer by aCGH identifies 11q13 amplification oncogenes associated with nodal metastasis.

    Directory of Open Access Journals (Sweden)

    Jianming Ying

    Full Text Available BACKGROUND: Esophageal squamous cell carcinoma (ESCC is highly prevalent in China and other Asian countries, as a major cause of cancer-related mortality. ESCC displays complex chromosomal abnormalities, including multiple structural and numerical aberrations. Chromosomal abnormalities, such as recurrent amplifications and homozygous deletions, directly contribute to tumorigenesis through altering the expression of key oncogenes and tumor suppressor genes. METHODOLOGY/PRINCIPLE FINDINGS: To understand the role of genetic alterations in ESCC pathogenesis and identify critical amplification/deletion targets, we performed genome-wide 1-Mb array comparative genomic hybridization (aCGH analysis for 10 commonly used ESCC cell lines. Recurrent chromosomal gains were frequently detected on 3q26-27, 5p15-14, 8p12, 8p22-24, 11q13, 13q21-31, 18p11 and 20q11-13, with frequent losses also found on 8p23-22, 11q22, 14q32 and 18q11-23. Gain of 11q13.3-13.4 was the most frequent alteration in ESCC. Within this region, CCND1 oncogene was identified with high level of amplification and overexpression in ESCC, while FGF19 and SHANK2 was also remarkably over-expressed. Moreover, a high concordance (91.5% of gene amplification and protein overexpression of CCND1 was observed in primary ESCC tumors. CCND1 amplification/overexpression was also significantly correlated with the lymph node metastasis of ESCC. CONCLUSION: These findings suggest that genomic gain of 11q13 is the major mechanism contributing to the amplification. Novel oncogenes identified within the 11q13 amplicon including FGF19 and SHANK2 may play important roles in ESCC tumorigenesis.

  18. A 2-Stage Genome-Wide Association Study to Identify Single Nucleotide Polymorphisms Associated With Development of Erectile Dysfunction Following Radiation Therapy for Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kerns, Sarah L. [Department of Radiation Oncology, Mount Sinai School of Medicine, New York, New York (United States); Departments of Pathology and Genetics, Albert Einstein College of Medicine, Bronx, New York (United States); Stock, Richard [Department of Radiation Oncology, Mount Sinai School of Medicine, New York, New York (United States); Stone, Nelson [Department of Radiation Oncology, Mount Sinai School of Medicine, New York, New York (United States); Department of Urology, Mount Sinai School of Medicine, New York, New York (United States); Buckstein, Michael [Department of Radiation Oncology, Mount Sinai School of Medicine, New York, New York (United States); Shao, Yongzhao [Division of Biostatistics, New York University School of Medicine, New York, New York (United States); Campbell, Christopher [Departments of Pathology and Genetics, Albert Einstein College of Medicine, Bronx, New York (United States); Rath, Lynda [Department of Radiation Oncology, Mount Sinai School of Medicine, New York, New York (United States); De Ruysscher, Dirk; Lammering, Guido [Department of Radiation Oncology, Maastricht University Medical Center, Maastricht (Netherlands); Hixson, Rosetta; Cesaretti, Jamie; Terk, Mitchell [Florida Radiation Oncology Group, Jacksonville, Florida (United States); Ostrer, Harry [Departments of Pathology and Genetics, Albert Einstein College of Medicine, Bronx, New York (United States); Rosenstein, Barry S., E-mail: barry.rosenstein@mssm.edu [Department of Radiation Oncology, Mount Sinai School of Medicine, New York, New York (United States); Department of Radiation Oncology, New York University School of Medicine, New York, New York (United States); Departments of Dermatology and Preventive Medicine, Mount Sinai School of Medicine, New York, New York (United States)

    2013-01-01

    Purpose: To identify single nucleotide polymorphisms (SNPs) associated with development of erectile dysfunction (ED) among prostate cancer patients treated with radiation therapy. Methods and Materials: A 2-stage genome-wide association study was performed. Patients were split randomly into a stage I discovery cohort (132 cases, 103 controls) and a stage II replication cohort (128 cases, 102 controls). The discovery cohort was genotyped using Affymetrix 6.0 genome-wide arrays. The 940 top ranking SNPs selected from the discovery cohort were genotyped in the replication cohort using Illumina iSelect custom SNP arrays. Results: Twelve SNPs identified in the discovery cohort and validated in the replication cohort were associated with development of ED following radiation therapy (Fisher combined P values 2.1 Multiplication-Sign 10{sup -5} to 6.2 Multiplication-Sign 10{sup -4}). Notably, these 12 SNPs lie in or near genes involved in erectile function or other normal cellular functions (adhesion and signaling) rather than DNA damage repair. In a multivariable model including nongenetic risk factors, the odds ratios for these SNPs ranged from 1.6 to 5.6 in the pooled cohort. There was a striking relationship between the cumulative number of SNP risk alleles an individual possessed and ED status (Sommers' D P value = 1.7 Multiplication-Sign 10{sup -29}). A 1-allele increase in cumulative SNP score increased the odds for developing ED by a factor of 2.2 (P value = 2.1 Multiplication-Sign 10{sup -19}). The cumulative SNP score model had a sensitivity of 84% and specificity of 75% for prediction of developing ED at the radiation therapy planning stage. Conclusions: This genome-wide association study identified a set of SNPs that are associated with development of ED following radiation therapy. These candidate genetic predictors warrant more definitive validation in an independent cohort.

  19. Collaborators | Office of Cancer Genomics

    Science.gov (United States)

    The TARGET initiative is jointly managed within the National Cancer Institute (NCI) by the Office of Cancer Genomics (OCG)Opens in a New Tab and the Cancer Therapy Evaluation Program (CTEP)Opens in a New Tab.

  20. Translating genomics in cancer care.

    Science.gov (United States)

    Bombard, Yvonne; Bach, Peter B; Offit, Kenneth

    2013-11-01

    There is increasing enthusiasm for genomics and its promise in advancing personalized medicine. Genomic information has been used to personalize health care for decades, spanning the fields of cardiovascular disease, infectious disease, endocrinology, metabolic medicine, and hematology. However, oncology has often been the first test bed for the clinical translation of genomics for diagnostic, prognostic, and therapeutic applications. Notable hereditary cancer examples include testing for mutations in BRCA1 or BRCA2 in unaffected women to identify those at significantly elevated risk for developing breast and ovarian cancers, and screening patients with newly diagnosed colorectal cancer for mutations in 4 mismatch repair genes to reduce morbidity and mortality in their relatives. Somatic genomic testing is also increasingly used in oncology, with gene expression profiling of breast tumors and EGFR testing to predict treatment response representing commonly used examples. Health technology assessment provides a rigorous means to inform clinical and policy decision-making through systematic assessment of the evidentiary base, along with precepts of clinical effectiveness, cost-effectiveness, and consideration of risks and benefits for health care delivery and society. Although this evaluation is a fundamental step in the translation of any new therapeutic, procedure, or diagnostic test into clinical care, emerging developments may threaten this standard. These include "direct to consumer" genomic risk assessment services and the challenges posed by incidental results generated from next-generation sequencing (NGS) technologies. This article presents a review of the evidentiary standards and knowledge base supporting the translation of key cancer genomic technologies along the continuum of validity, utility, cost-effectiveness, health service impacts, and ethical and societal issues, and offers future research considerations to guide the responsible introduction of

  1. Recurrent targeted genes of hepatitis B virus in the liver cancer genomes identified by a next-generation sequencing-based approach.

    Directory of Open Access Journals (Sweden)

    Dong Ding

    Full Text Available Integration of the viral DNA into host chromosomes was found in most of the hepatitis B virus (HBV-related hepatocellular carcinomas (HCCs. Here we devised a massive anchored parallel sequencing (MAPS method using next-generation sequencing to isolate and sequence HBV integrants. Applying MAPS to 40 pairs of HBV-related HCC tissues (cancer and adjacent tissues, we identified 296 HBV integration events corresponding to 286 unique integration sites (UISs with precise HBV-Human DNA junctions. HBV integration favored chromosome 17 and preferentially integrated into human transcript units. HBV targeted genes were enriched in GO terms: cAMP metabolic processes, T cell differentiation and activation, TGF beta receptor pathway, ncRNA catabolic process, and dsRNA fragmentation and cellular response to dsRNA. The HBV targeted genes include 7 genes (PTPRJ, CNTN6, IL12B, MYOM1, FNDC3B, LRFN2, FN1 containing IPR003961 (Fibronectin, type III domain, 7 genes (NRG3, MASP2, NELL1, LRP1B, ADAM21, NRXN1, FN1 containing IPR013032 (EGF-like region, conserved site, and three genes (PDE7A, PDE4B, PDE11A containing IPR002073 (3', 5'-cyclic-nucleotide phosphodiesterase. Enriched pathways include hsa04512 (ECM-receptor interaction, hsa04510 (Focal adhesion, and hsa04012 (ErbB signaling pathway. Fewer integration events were found in cancers compared to cancer-adjacent tissues, suggesting a clonal expansion model in HCC development. Finally, we identified 8 genes that were recurrent target genes by HBV integration including fibronectin 1 (FN1 and telomerase reverse transcriptase (TERT1, two known recurrent target genes, and additional novel target genes such as SMAD family member 5 (SMAD5, phosphatase and actin regulator 4 (PHACTR4, and RNA binding protein fox-1 homolog (C. elegans 1 (RBFOX1. Integrating analysis with recently published whole-genome sequencing analysis, we identified 14 additional recurrent HBV target genes, greatly expanding the HBV recurrent target list

  2. Genome-wide functional genetic screen with the anticancer agent AMPI-109 identifies PRL-3 as an oncogenic driver in triple-negative breast cancers.

    Science.gov (United States)

    Gari, Hamid H; Gearheart, Christy M; Fosmire, Susan; DeGala, Gregory D; Fan, Zeying; Torkko, Kathleen C; Edgerton, Susan M; Lucia, M Scott; Ray, Rahul; Thor, Ann D; Porter, Christopher C; Lambert, James R

    2016-03-29

    Triple-negative breast cancers (TNBC) are among the most aggressive and heterogeneous cancers with a high propensity to invade, metastasize and relapse. Here, we demonstrate that the anticancer compound, AMPI-109, is selectively efficacious in inhibiting proliferation and inducing apoptosis of multiple TNBC subtype cell lines as assessed by activation of pro-apoptotic caspases-3 and 7, PARP cleavage and nucleosomal DNA fragmentation. AMPI-109 had little to no effect on growth in the majority of non-TNBC cell lines examined. We therefore utilized AMPI-109 in a genome-wide shRNA screen in the TNBC cell line, BT-20, to investigate the utility of AMPI-109 as a tool in helping to identify molecular alterations unique to TNBC. Our screen identified the oncogenic phosphatase, PRL-3, as a potentially important driver of TNBC growth, migration and invasion. Through stable lentiviral knock downs and transfection with catalytically impaired PRL-3 in TNBC cells, loss of PRL-3 expression, or functionality, led to substantial growth inhibition. Moreover, AMPI-109 treatment, downregulation of PRL-3 expression or impairment of PRL-3 activity reduced TNBC cell migration and invasion. Histological evaluation of human breast cancers revealed PRL-3 was significantly, though not exclusively, associated with the TNBC subtype and correlated positively with regional and distant metastases, as well as 1 and 3 year relapse free survival. Collectively, our study is proof-of-concept that AMPI-109, a selectively active agent against TNBC cell lines, can be used as a molecular tool to uncover unique drivers of disease progression, such as PRL-3, which we show promotes oncogenic phenotypes in TNBC cells.

  3. Characterizing genomic alterations in cancer by complementary functional associations | Office of Cancer Genomics

    Science.gov (United States)

    Systematic efforts to sequence the cancer genome have identified large numbers of mutations and copy number alterations in human cancers. However, elucidating the functional consequences of these variants, and their interactions to drive or maintain oncogenic states, remains a challenge in cancer research. We developed REVEALER, a computational method that identifies combinations of mutually exclusive genomic alterations correlated with functional phenotypes, such as the activation or gene dependency of oncogenic pathways or sensitivity to a drug treatment.

  4. The database of chromosome imbalance regions and genes resided in lung cancer from Asian and Caucasian identified by array-comparative genomic hybridization

    Directory of Open Access Journals (Sweden)

    Lo Fang-Yi

    2012-06-01

    Full Text Available Abstract Background Cancer-related genes show racial differences. Therefore, identification and characterization of DNA copy number alteration regions in different racial groups helps to dissect the mechanism of tumorigenesis. Methods Array-comparative genomic hybridization (array-CGH was analyzed for DNA copy number profile in 40 Asian and 20 Caucasian lung cancer patients. Three methods including MetaCore analysis for disease and pathway correlations, concordance analysis between array-CGH database and the expression array database, and literature search for copy number variation genes were performed to select novel lung cancer candidate genes. Four candidate oncogenes were validated for DNA copy number and mRNA and protein expression by quantitative polymerase chain reaction (qPCR, chromogenic in situ hybridization (CISH, reverse transcriptase-qPCR (RT-qPCR, and immunohistochemistry (IHC in more patients. Results We identified 20 chromosomal imbalance regions harboring 459 genes for Caucasian and 17 regions containing 476 genes for Asian lung cancer patients. Seven common chromosomal imbalance regions harboring 117 genes, included gain on 3p13-14, 6p22.1, 9q21.13, 13q14.1, and 17p13.3; and loss on 3p22.2-22.3 and 13q13.3 were found both in Asian and Caucasian patients. Gene validation for four genes including ARHGAP19 (10q24.1 functioning in Rho activity control, FRAT2 (10q24.1 involved in Wnt signaling, PAFAH1B1 (17p13.3 functioning in motility control, and ZNF322A (6p22.1 involved in MAPK signaling was performed using qPCR and RT-qPCR. Mean gene dosage and mRNA expression level of the four candidate genes in tumor tissues were significantly higher than the corresponding normal tissues (PP=0.06. In addition, CISH analysis of patients indicated that copy number amplification indeed occurred for ARHGAP19 and ZNF322A genes in lung cancer patients. IHC analysis of paraffin blocks from Asian Caucasian patients demonstrated that the frequency of

  5. Programs | Office of Cancer Genomics

    Science.gov (United States)

    OCG facilitates cancer genomics research through a series of highly-focused programs. These programs generate and disseminate genomic data for use by the cancer research community. OCG programs also promote advances in technology-based infrastructure and create valuable experimental reagents and tools. OCG programs encourage collaboration by interconnecting with other genomics and cancer projects in order to accelerate translation of findings into the clinic. Below are OCG’s current, completed, and initiated programs:

  6. Genomic Datasets for Cancer Research

    Science.gov (United States)

    A variety of datasets from genome-wide association studies of cancer and other genotype-phenotype studies, including sequencing and molecular diagnostic assays, are available to approved investigators through the Extramural National Cancer Institute Data Access Committee.

  7. A large multi-ethnic genome-wide association study of prostate cancer identifies novel risk variants and substantial ethnic differences

    Science.gov (United States)

    Hoffmann, Thomas J.; Van Den Eeden, Stephen K.; Sakoda, Lori C.; Jorgenson, Eric; Habel, Laurel A.; Graff, Rebecca E.; Passarelli, Michael N.; Cario, Clinton L.; Emami, Nima C.; Chao, Chun R.; Ghai, Nirupa R.; Shan, Jun; Ranatunga, Dilrini K.; Quesenberry, Charles P.; Aaronson, David; Presti, Joseph; Zhaoming, Wang; Berndt, Sonja I.; Chanock, Stephen J.; McDonnell, Shannon K.; French, Amy J; Schaid, Daniel J; Thibodeau, Stephen N.; Li, Qiyuan; Freedman, Matthew L.; Penney, Kathryn L.; Mucci, Lorelei A.; Haiman, Christopher A.; Henderson, Brian E.; Seminara, Daniela; Kvale, Mark N.; Kwok, Pui-Yan; Schaefer, Catherine; Risch, Neil; Witte, John S.

    2015-01-01

    A genome-wide association study of prostate cancer in Kaiser Permanente health plan members (7,783 cases, 38,595 controls; 80.3% non-Hispanic white, 4.9% African-American, 7.0% East Asian, 7.8% Latino) revealed a new independent risk indel rs4646284 at the previously-identified locus 6q25.3 that replicated in PEGASUS (N=7,539) and MEC (N=4,679) (p=1.0×10−19, OR=1.18). Across the 6q25.3 locus, rs4646284 exhibited the strongest association with expression of SLC22A1 (p=1.3×10−23) and SLC22A3 (p=3.2×10−52). At the known 19q13.33 locus rs2659124 (p=1.3×10−13, OR=1.18) nominally replicated in PEGASUS. A risk score of 105 known risk SNPs was strongly associated with prostate cancer (p<1.0×10−8). Comparing the highest to lowest risk score deciles, the OR was 6.22 for non-Hispanic Whites, 5.82 for Latinos, 3.77 for African-Americans, and 3.38 for East Asians. In non-Hispanic whites, the 105 risk SNPs explained ~7.6% of disease heritability. The entire GWAS array explained ~33.4% of heritability, with a 4.3-fold enrichment within DNaseI hypersensitivity sites (p=0.004). PMID:26034056

  8. The Global Cancer Genomics Consortium: interfacing genomics and cancer medicine.

    Science.gov (United States)

    2012-08-01

    The Global Cancer Genomics Consortium (GCGC) is an international collaborative platform that amalgamates cancer biologists, cutting-edge genomics, and high-throughput expertise with medical oncologists and surgical oncologists; they address the most important translational questions that are central to cancer research and treatment. The annual GCGC symposium was held at the Advanced Centre for Treatment Research and Education in Cancer, Mumbai, India, from November 9 to 11, 2011. The symposium showcased international next-generation sequencing efforts that explore cancer-specific transcriptomic changes, single-nucleotide polymorphism, and copy number variations in various types of cancers, as well as the structural genomics approach to develop new therapeutic targets and chemical probes. From the spectrum of studies presented at the symposium, it is evident that the translation of emerging cancer genomics knowledge into clinical applications can only be achieved through the integration of multidisciplinary expertise. In summary, the GCGC symposium provided practical knowledge on structural and cancer genomics approaches, as well as an exclusive platform for focused cancer genomics endeavors.

  9. Contact | Office of Cancer Genomics

    Science.gov (United States)

    For more information about the Office of Cancer Genomics, please contact: Office of Cancer Genomics National Cancer Institute 31 Center Drive, 10A07 Bethesda, Maryland 20892-2580 Phone: (301) 451-8027 Fax: (301) 480-4368 Email: ocg@mail.nih.gov *Please note that this site will not function properly in Internet Explorer unless you completely turn off the Compatibility View*

  10. Novel patterns of cancer genome evolution

    Institute of Scientific and Technical Information of China (English)

    Xia Zhang; Xiaodi Deng; Yu Zhang; Zhiguang Li

    2015-01-01

    Cells usually undergo a long journey of evolution during the progression from normal to precancerous cells and finally to full-fledged cancer cells. Multiple genomic aberrations are acquired during this journey that could either act as drivers to confer significant growth advantages or act as passengers with little effect on the tumor growth. Recent advances in sequencing technology have made it feasible to decipher the evolutionary course of a cancer cell on a genome-wide level by evaluating the relative number of mutated alleles. Novel terms such as chromothripsis and chromoplexy have been introduced to describe the newly identified patterns of cancer genome evolution. These new insights have greatly expanded our understanding of the initiation and progression of cancers, which should aid in improving the efficiency of cancer management and treatment.

  11. The genomic landscape of prostate cancer

    Directory of Open Access Journals (Sweden)

    Sylvan eBaca

    2012-05-01

    Full Text Available Prostate cancer is a common malignancy in men, with a markedly variable clinical course. Somatic alterations in DNA drive the growth of prostate cancers and may underlie the behavior of aggressive versus indolent tumors. The accelerating application of genomic technologies over the last two decades has identified mutations that drive prostate cancer formation, progression, and therapeutic resistance. Here, we discuss exemplary somatic mutations in prostate cancer, and highlight mutated cellular pathways with biological and possible therapeutic importance. Examples include mutated genes involved in androgen signaling, cell cycle regulation, signal transduction and development. Some genetic alterations may also predict the clinical course of disease or response to therapy, although the molecular heterogeneity of prostate tumors poses challenges to genomic biomarker identification. The widespread application of massively parallel sequencing technology to the analysis of prostate cancer genomes should continue to advance both discovery-oriented and diagnostic avenues.

  12. Genome-wide association study for colorectal cancer identifies risk polymorphisms in German familial cases and implicates MAPK signalling pathways in disease susceptibility.

    Science.gov (United States)

    Lascorz, Jesús; Försti, Asta; Chen, Bowang; Buch, Stephan; Steinke, Verena; Rahner, Nils; Holinski-Feder, Elke; Morak, Monika; Schackert, Hans K; Görgens, Heike; Schulmann, Karsten; Goecke, Timm; Kloor, Matthias; Engel, Cristoph; Büttner, Reinhard; Kunkel, Nelli; Weires, Marianne; Hoffmeister, Michael; Pardini, Barbara; Naccarati, Alessio; Vodickova, Ludmila; Novotny, Jan; Schreiber, Stefan; Krawczak, Michael; Bröring, Clemens D; Völzke, Henry; Schafmayer, Clemens; Vodicka, Pavel; Chang-Claude, Jenny; Brenner, Hermann; Burwinkel, Barbara; Propping, Peter; Hampe, Jochen; Hemminki, Kari

    2010-09-01

    Genetic susceptibility accounts for approximately 35% of all colorectal cancer (CRC). Ten common low-risk variants contributing to CRC risk have been identified through genome-wide association studies (GWASs). In our GWAS, 610 664 genotyped single-nucleotide polymorphisms (SNPs) passed the quality control filtering in 371 German familial CRC patients and 1263 controls, and replication studies were conducted in four additional case-control sets (4915 cases and 5607 controls). Known risk loci at 8q24.21 and 11q23 were confirmed, and a previously unreported association, rs12701937, located between the genes GLI3 (GLI family zinc finger 3) and INHBA (inhibin, beta A) [P = 1.1 x 10(-3), odds ratio (OR) 1.14, 95% confidence interval (CI) 1.05-1.23, dominant model in the combined cohort], was identified. The association was stronger in familial cases compared with unselected cases (P = 2.0 x 10(-4), OR 1.36, 95% CI 1.16-1.60, dominant model). Two other unreported SNPs, rs6038071, 40 kb upstream of CSNK2A1 (casein kinase 2, alpha 1 polypeptide) and an intronic marker in MYO3A (myosin IIIA), rs11014993, associated with CRC only in the familial CRC cases (P = 2.5 x 10(-3), recessive model, and P = 2.7 x 10(-4), dominant model). Three software tools successfully pointed to the overrepresentation of genes related to the mitogen-activated protein kinase (MAPK) signalling pathways among the 1340 most strongly associated markers from the GWAS (allelic P value genes involved in MAPK signalling events (P(trend) = 2.2 x 10(-16), OR(per allele) = 1.34, 95% CI 1.11-1.61).

  13. Reconstructing cancer genomes from paired-end sequencing data

    Directory of Open Access Journals (Sweden)

    Oesper Layla

    2012-04-01

    Full Text Available Abstract Background A cancer genome is derived from the germline genome through a series of somatic mutations. Somatic structural variants - including duplications, deletions, inversions, translocations, and other rearrangements - result in a cancer genome that is a scrambling of intervals, or "blocks" of the germline genome sequence. We present an efficient algorithm for reconstructing the block organization of a cancer genome from paired-end DNA sequencing data. Results By aligning paired reads from a cancer genome - and a matched germline genome, if available - to the human reference genome, we derive: (i a partition of the reference genome into intervals; (ii adjacencies between these intervals in the cancer genome; (iii an estimated copy number for each interval. We formulate the Copy Number and Adjacency Genome Reconstruction Problem of determining the cancer genome as a sequence of the derived intervals that is consistent with the measured adjacencies and copy numbers. We design an efficient algorithm, called Paired-end Reconstruction of Genome Organization (PREGO, to solve this problem by reducing it to an optimization problem on an interval-adjacency graph constructed from the data. The solution to the optimization problem results in an Eulerian graph, containing an alternating Eulerian tour that corresponds to a cancer genome that is consistent with the sequencing data. We apply our algorithm to five ovarian cancer genomes that were sequenced as part of The Cancer Genome Atlas. We identify numerous rearrangements, or structural variants, in these genomes, analyze reciprocal vs. non-reciprocal rearrangements, and identify rearrangements consistent with known mechanisms of duplication such as tandem duplications and breakage/fusion/bridge (B/F/B cycles. Conclusions We demonstrate that PREGO efficiently identifies complex and biologically relevant rearrangements in cancer genome sequencing data. An implementation of the PREGO algorithm is

  14. Identifying Synonymous Regulatory Elements in Vertebrate Genomes

    Energy Technology Data Exchange (ETDEWEB)

    Ovcharenko, I; Nobrega, M A

    2005-02-07

    Synonymous gene regulation, defined as driving shared temporal and/or spatial expression of groups of genes, is likely predicated on genomic elements that contain similar modules of certain transcription factor binding sites (TFBS). We have developed a method to scan vertebrate genomes for evolutionary conserved modules of TFBS in a predefined configuration, and created a tool, named SynoR that identify synonymous regulatory elements (SREs) in vertebrate genomes. SynoR performs de novo identification of SREs utilizing known patterns of TFBS in active regulatory elements (REs) as seeds for genome scans. Layers of multiple-species conservation allow the use of differential phylogenetic sequence conservation filters in the search of SREs and the results are displayed as to provide an extensive annotation of genes containing detected REs. Gene Ontology categories are utilized to further functionally classify the identified genes, and integrated GNF Expression Atlas 2 data allow the cataloging of tissue-specificities of the predicted SREs. We illustrate how this new tool can be used to establish a linkage between human diseases and noncoding genomic content. SynoR is publicly available at http://synor.dcode.org.

  15. International network of cancer genome projects

    NARCIS (Netherlands)

    Hudson, Thomas J.; Anderson, Warwick; Aretz, Axel; Barker, Anna D.; Bell, Cindy; Bernabe, Rosa R.; Bhan, M. K.; Calvo, Fabien; Eerola, Iiro; Gerhard, Daniela S.; Guttmacher, Alan; Guyer, Mark; Hemsley, Fiona M.; Jennings, Jennifer L.; Kerr, David; Klatt, Peter; Kolar, Patrik; Kusuda, Jun; Lane, David P.; Laplace, Frank; Lu, Youyong; Nettekoven, Gerd; Ozenberger, Brad; Peterson, Jane; Rao, T. S.; Remacle, Jacques; Schafer, Alan J.; Shibata, Tatsuhiro; Stratton, Michael R.; Vockley, Joseph G.; Watanabe, Koichi; Yang, Huanming; Yuen, Matthew M. F.; Knoppers, M.; Bobrow, Martin; Cambon-Thomsen, Anne; Dressler, Lynn G.; Dyke, Stephanie O. M.; Joly, Yann; Kato, Kazuto; Kennedy, Karen L.; Nicolas, Pilar; Parker, Michael J.; Rial-Sebbag, Emmanuelle; Romeo-Casabona, Carlos M.; Shaw, Kenna M.; Wallace, Susan; Wiesner, Georgia L.; Zeps, Nikolajs; Lichter, Peter; Biankin, Andrew V.; Chabannon, Christian; Chin, Lynda; Clement, Bruno; de Alava, Enrique; Degos, Francoise; Ferguson, Martin L.; Geary, Peter; Hayes, D. Neil; Johns, Amber L.; Nakagawa, Hidewaki; Penny, Robert; Piris, Miguel A.; Sarin, Rajiv; Scarpa, Aldo; Shibata, Tatsuhiro; van de Vijver, Marc; Futreal, P. Andrew; Aburatani, Hiroyuki; Bayes, Monica; Bowtell, David D. L.; Campbell, Peter J.; Estivill, Xavier; Grimmond, Sean M.; Gut, Ivo; Hirst, Martin; Lopez-Otin, Carlos; Majumder, Partha; Marra, Marco; Nakagawa, Hidewaki; Ning, Zemin; Puente, Xose S.; Ruan, Yijun; Shibata, Tatsuhiro; Stratton, Michael R.; Stunnenberg, Hendrik G.; Swerdlow, Harold; Velculescu, Victor E.; Wilson, Richard K.; Xue, Hong H.; Yang, Liu; Spellman, Paul T.; Bader, Gary D.; Boutros, Paul C.; Campbell, Peter J.; Flicek, Paul; Getz, Gad; Guigo, Roderic; Guo, Guangwu; Haussler, David; Heath, Simon; Hubbard, Tim J.; Jiang, Tao; Jones, Steven M.; Li, Qibin; Lopez-Bigas, Nuria; Luo, Ruibang; Pearson, John V.; Puente, Xose S.; Quesada, Victor; Raphael, Benjamin J.; Sander, Chris; Shibata, Tatsuhiro; Speed, Terence P.; Stuart, Joshua M.; Teague, Jon W.; Totoki, Yasushi; Tsunoda, Tatsuhiko; Valencia, Alfonso; Wheeler, David A.; Wu, Honglong; Zhao, Shancen; Zhou, Guangyu; Stein, Lincoln D.; Guigo, Roderic; Hubbard, Tim J.; Joly, Yann; Jones, Steven M.; Lathrop, Mark; Lopez-Bigas, Nuria; Ouellette, B. F. Francis; Spellman, Paul T.; Teague, Jon W.; Thomas, Gilles; Valencia, Alfonso; Yoshida, Teruhiko; Kennedy, Karen L.; Axton, Myles; Dyke, Stephanie O. M.; Futreal, P. Andrew; Gunter, Chris; Guyer, Mark; McPherson, John D.; Miller, Linda J.; Ozenberger, Brad; Kasprzyk, Arek; Zhang, Junjun; Haider, Syed A.; Wang, Jianxin; Yung, Christina K.; Cross, Anthony; Liang, Yong; Gnaneshan, Saravanamuttu; Guberman, Jonathan; Hsu, Jack; Bobrow, Martin; Chalmers, Don R. C.; Hasel, Karl W.; Joly, Yann; Kaan, Terry S. H.; Kennedy, Karen L.; Knoppers, Bartha M.; Lowrance, William W.; Masui, Tohru; Nicolas, Pilar; Rial-Sebbag, Emmanuelle; Rodriguez, Laura Lyman; Vergely, Catherine; Yoshida, Teruhiko; Grimmond, Sean M.; Biankin, Andrew V.; Bowtell, David D. L.; Cloonan, Nicole; Defazio, Anna; Eshleman, James R.; Etemadmoghadam, Dariush; Gardiner, Brooke A.; Kench, James G.; Scarpa, Aldo; Sutherland, Robert L.; Tempero, Margaret A.; Waddell, Nicola J.; Wilson, Peter J.; Gallinger, Steve; Tsao, Ming-Sound; Shaw, Patricia A.; Petersen, Gloria M.; Mukhopadhyay, Debabrata; Chin, Lynda; DePinho, Ronald A.; Thayer, Sarah; Muthuswamy, Lakshmi; Shazand, Kamran; Beck, Timothy; Sam, Michelle; Timms, Lee; Ballin, Vanessa; Lu, Youyong; Ji, Jiafu; Zhang, Xiuqing; Chen, Feng; Hu, Xueda; Zhou, Guangyu; Yang, Qi; Tian, Geng; Zhang, Lianhai; Xing, Xiaofang; Li, Xianghong; Zhu, Zhenggang; Yu, Yingyan; Yu, Jun; Yang, Huanming; Lathrop, Mark; Tost, Joerg; Brennan, Paul; Holcatova, Ivana; Zaridze, David; Brazma, Alvis; Egevad, Lars; Prokhortchouk, Egor; Banks, Rosamonde Elizabeth; Uhlen, Mathias; Cambon-Thomsen, Anne; Viksna, Juris; Ponten, Fredrik; Skryabin, Konstantin; Stratton, Michael R.; Futreal, P. Andrew; Birney, Ewan; Borg, Ake; Borresen-Dale, Anne-Lise; Caldas, Carlos; Foekens, John A.; Martin, Sancha; Reis-Filho, Jorge S.; Richardson, Andrea L.; Sotiriou, Christos; Stunnenberg, Hendrik G.; Thomas, Gilles; van de Vijver, Marc; van't Veer, Laura; Birnbaum, Daniel; Blanche, Helene; Boucher, Pascal; Boyault, Sandrine; Chabannon, Christian; Gut, Ivo; Masson-Jacquemier, Jocelyne D.; Lathrop, Mark; Pauporte, Iris; Pivot, Xavier; Vincent-Salomon, Anne; Tabone, Eric; Theillet, Charles; Thomas, Gilles; Tost, Joerg; Treilleux, Isabelle; Bioulac-Sage, Paulette; Clement, Bruno; Decaens, Thomas; Degos, Francoise; Franco, Dominique; Gut, Ivo; Gut, Marta; Heath, Simon; Lathrop, Mark; Samuel, Didier; Thomas, Gilles; Zucman-Rossi, Jessica; Lichter, Peter; Eils, Roland; Brors, Benedikt; Korbel, Jan O.; Korshunov, Andrey; Landgraf, Pablo; Lehrach, Hans; Pfister, Stefan; Radlwimmer, Bernhard; Reifenberger, Guido; Taylor, Michael D.; von Kalle, Christof; Majumder, Partha P.; Sarin, Rajiv; Scarpa, Aldo; Pederzoli, Paolo; Lawlor, Rita T.; Delledonne, Massimo; Bardelli, Alberto; Biankin, Andrew V.; Grimmond, Sean M.; Gress, Thomas; Klimstra, David; Zamboni, Giuseppe; Shibata, Tatsuhiro; Nakamura, Yusuke; Nakagawa, Hidewaki; Kusuda, Jun; Tsunoda, Tatsuhiko; Miyano, Satoru; Aburatani, Hiroyuki; Kato, Kazuto; Fujimoto, Akihiro; Yoshida, Teruhiko; Campo, Elias; Lopez-Otin, Carlos; Estivill, Xavier; Guigo, Roderic; de Sanjose, Silvia; Piris, Miguel A.; Montserrat, Emili; Gonzalez-Diaz, Marcos; Puente, Xose S.; Jares, Pedro; Valencia, Alfonso; Himmelbaue, Heinz; Quesada, Victor; Bea, Silvia; Stratton, Michael R.; Futreal, P. Andrew; Campbell, Peter J.; Vincent-Salomon, Anne; Richardson, Andrea L.; Reis-Filho, Jorge S.; van de Vijver, Marc; Thomas, Gilles; Masson-Jacquemier, Jocelyne D.; Aparicio, Samuel; Borg, Ake; Borresen-Dale, Anne-Lise; Caldas, Carlos; Foekens, John A.; Stunnenberg, Hendrik G.; van't Veer, Laura; Easton, Douglas F.; Spellman, Paul T.; Martin, Sancha; Chin, Lynda; Collins, Francis S.; Compton, Carolyn C.; Ferguson, Martin L.; Getz, Gad; Gunter, Chris; Guyer, Mark; Hayes, D. Neil; Lander, Eric S.; Ozenberger, Brad; Penny, Robert; Peterson, Jane; Sander, Chris; Speed, Terence P.; Spellman, Paul T.; Wheeler, David A.; Wilson, Richard K.; Chin, Lynda; Knoppers, Bartha M.; Lander, Eric S.; Lichter, Peter; Stratton, Michael R.; Bobrow, Martin; Burke, Wylie; Collins, Francis S.; DePinho, Ronald A.; Easton, Douglas F.; Futreal, P. Andrew; Green, Anthony R.; Guyer, Mark; Hamilton, Stanley R.; Hubbard, Tim J.; Kallioniemi, Olli P.; Kennedy, Karen L.; Ley, Timothy J.; Liu, Edison T.; Lu, Youyong; Majumder, Partha; Marra, Marco; Ozenberger, Brad; Peterson, Jane; Schafer, Alan J.; Spellman, Paul T.; Stunnenberg, Hendrik G.; Wainwright, Brandon J.; Wilson, Richard K.; Yang, Huanming

    2010-01-01

    The International Cancer Genome Consortium (ICGC) was launched to coordinate large-scale cancer genome studies in tumours from 50 different cancer types and/or subtypes that are of clinical and societal importance across the globe. Systematic studies of more than 25,000 cancer genomes at the genomic

  16. A colorectal cancer susceptibility new variant at 4q26 in the Spanish population identified by genome-wide association analysis.

    Directory of Open Access Journals (Sweden)

    Luis M Real

    Full Text Available BACKGROUND: Non-hereditary colorectal cancer (CRC is a complex disorder resulting from the combination of genetic and non-genetic factors. Genome-wide association studies (GWAS are useful for identifying such genetic susceptibility factors. However, the single loci so far associated with CRC only represent a fraction of the genetic risk for CRC development in the general population. Therefore, many other genetic risk variants alone and in combination must still remain to be discovered. The aim of this work was to search for genetic risk factors for CRC, by performing single-locus and two-locus GWAS in the Spanish population. RESULTS: A total of 801 controls and 500 CRC cases were included in the discovery GWAS dataset. 77 single nucleotide polymorphisms (SNPs from single-locus and 243 SNPs from two-locus association analyses were selected for replication in 423 additional CRC cases and 1382 controls. In the meta-analysis, one SNP, rs3987 at 4q26, reached GWAS significant p-value (p = 4.02×10(-8, and one SNP pair, rs1100508 CG and rs8111948 AA, showed a trend for two-locus association (p = 4.35×10(-11. Additionally, our GWAS confirmed the previously reported association with CRC of five SNPs located at 3q36.2 (rs10936599, 8q24 (rs10505477, 8q24.21(rs6983267, 11q13.4 (rs3824999 and 14q22.2 (rs4444235. CONCLUSIONS: Our GWAS for CRC patients from Spain confirmed some previously reported associations for CRC and yielded a novel candidate risk SNP, located at 4q26. Epistasis analyses also yielded several novel candidate susceptibility pairs that need to be validated in independent analyses.

  17. Genomic Resources for Cancer Epidemiology

    Science.gov (United States)

    This page provides links to research resources, complied by the Epidemiology and Genomics Research Program, that may be of interest to genetic epidemiologists conducting cancer research, but is not exhaustive.

  18. Cancer Genome Anatomy Project | Office of Cancer Genomics

    Science.gov (United States)

    The National Cancer Institute (NCI) Cancer Genome Anatomy Project (CGAP) is an online resource designed to provide the research community access to biological tissue characterization data. Request a free copy of the CGAP Website Virtual Tour CD from ocg@mail.nih.gov.

  19. Genome-wide Association Studies from the Cancer Genetic Markers of Susceptibility (CGEMS) Initiative | Office of Cancer Genomics

    Science.gov (United States)

    CGEMS identifies common inherited genetic variations associated with a number of cancers, including breast and prostate. Data from these genome-wide association studies (GWAS) are available through the Division of Cancer Epidemiology & Genetics website.

  20. A genome-wide RNAi screen identifies FOXO4 as a metastasis-suppressor through counteracting PI3K/AKT signal pathway in prostate cancer.

    Directory of Open Access Journals (Sweden)

    Bing Su

    Full Text Available Activation of the PI3K/AKT signal pathway is a known driving force for the progression to castration-recurrent prostate cancer (CR-CaP, which constitutes the major lethal phenotype of CaP. Here, we identify using a genomic shRNA screen the PI3K/AKT-inactivating downstream target, FOXO4, as a potential CaP metastasis suppressor. FOXO4 protein levels inversely correlate with the invasive potential of a panel of human CaP cell lines, with decreased mRNA levels correlating with increased incidence of clinical metastasis. Knockdown (KD of FOXO4 in human LNCaP cells causes increased invasion in vitro and lymph node (LN metastasis in vivo without affecting indices of proliferation or apoptosis. Increased Matrigel invasiveness was found by KD of FOXO1 but not FOXO3. Comparison of differentially expressed genes affected by FOXO4-KD in LNCaP cells in culture, in primary tumors and in LN metastases identified a panel of upregulated genes, including PIP, CAMK2N1, PLA2G16 and PGC, which, if knocked down by siRNA, could decrease the increased invasiveness associated with FOXO4 deficiency. Although only some of these genes encode FOXO promoter binding sites, they are all RUNX2-inducible, and RUNX2 binding to the PIP promoter is increased in FOXO4-KD cells. Indeed, the forced expression of FOXO4 reversed the increased invasiveness of LNCaP/shFOXO4 cells; the forced expression of FOXO4 did not alter RUNX2 protein levels, yet it decreased RUNX2 binding to the PIP promoter, resulting in PIP downregulation. Finally, there was a correlation between FOXO4, but not FOXO1 or FOXO3, downregulation and decreased metastasis-free survival in human CaP patients. Our data strongly suggest that increased PI3K/AKT-mediated metastatic invasiveness in CaP is associated with FOXO4 loss, and that mechanisms to induce FOXO4 re-expression might suppress CaP metastatic aggressiveness.

  1. TARGET Researchers Identify Mutations in SIX1/2 and microRNA Processing Genes in Favorable Histology Wilms Tumor | Office of Cancer Genomics

    Science.gov (United States)

    TARGET researchers molecularly characterized favorable histology Wilms tumor (FHWT), a pediatric renal cancer. Comprehensive genome and transcript analyses revealed single-nucleotide substitution/deletion mutations in microRNA processing genes (15% of FHWT patients) and Sine Oculis Homeobox Homolog 1/2 (SIX1/2) genes (7% of FHWT patients). SIX1/2 genes play a critical role in renal development and were not previously associated with FHWT, thus presenting a novel role for SIX1/2 pathway aberrations in this disease.

  2. Single-cell analysis in cancer genomics

    Science.gov (United States)

    Saadatpour, Assieh; Lai, Shujing; Guo, Guoji; Yuan, Guo-Cheng

    2017-01-01

    Genetic changes and environmental differences result in cellular heterogeneity among cancer cells within the same tumor, thereby complicating treatment outcomes. Recent advances in single-cell technologies have opened new avenues to characterize the intra-tumor cellular heterogeneity, identify rare cell types, measure mutation rates, and, ultimately, guide diagnosis and treatment. In this paper, we review the recent single-cell technological and computational advances at the genomic, transcriptomic, and proteomic levels, and discuss their applications in cancer research. PMID:26450340

  3. Genomic determinants of cancer immunotherapy.

    Science.gov (United States)

    Miao, Diana; Van Allen, Eliezer M

    2016-08-01

    Cancer immunotherapies - including therapeutic vaccines, adoptive cell transfer, oncolytic viruses, and immune checkpoint blockade - yield durable responses in many cancer types, but understanding of predictors of response is incomplete. Genomic characterization of human cancers has already contributed to the success of targeted therapies; in cancer immunotherapy, identification of tumor-specific antigens through whole-exome sequencing may be key to designing individualized, highly immunogenic therapeutic vaccines. Additionally, pre-treatment tumor mutational and gene expression signatures can predict which patients are most likely to benefit from cancer immunotherapy. Continued work in harnessing genomic, transcriptomic, and immunological data from clinical cohorts of immunotherapy-treated patients will bring the promises of precision medicine to immuno-oncology.

  4. Genomic analysis of epithelial ovarian cancer

    Institute of Scientific and Technical Information of China (English)

    John Farley; Laurent L Ozbun; Michael J Birrer

    2008-01-01

    Ovarian cancer is a major health problem for women in the United States.Despite evidence of considerable heterogeneity,most cases of ovarian cancer are treated in a similar fashion.The molecular basis for the clinicopathologic characteristics of these tumors remains poorly defined.Whole genome expression profiling is a genomic tool,which can identify dysregulated genes and uncover unique sub-classes of tumors.The application of this technology to ovarian cancer has provided a solid molecular basis for differences in histology and grade of ovarian tumors.Differentially expressed genes identified pathways implicated in cell proliferation,invasion,motility,chromosomal instability,and gene silencing and provided new insights into the origin and potential treatment of these cancers.The added knowledge provided by global gene expression profiling should allow for a more rational treatment of ovarian cancers.These techniques are leading to a paradigm shift from empirical treatment to an individually tailored approach.This review summarizes the new genomic data on epithelial ovarian cancers of different histology and grade and the impact it will have on our understanding and treatment of this disease.

  5. A whole genome RNAi screen identifies replication stress response genes.

    Science.gov (United States)

    Kavanaugh, Gina; Ye, Fei; Mohni, Kareem N; Luzwick, Jessica W; Glick, Gloria; Cortez, David

    2015-11-01

    Proper DNA replication is critical to maintain genome stability. When the DNA replication machinery encounters obstacles to replication, replication forks stall and the replication stress response is activated. This response includes activation of cell cycle checkpoints, stabilization of the replication fork, and DNA damage repair and tolerance mechanisms. Defects in the replication stress response can result in alterations to the DNA sequence causing changes in protein function and expression, ultimately leading to disease states such as cancer. To identify additional genes that control the replication stress response, we performed a three-parameter, high content, whole genome siRNA screen measuring DNA replication before and after a challenge with replication stress as well as a marker of checkpoint kinase signalling. We identified over 200 replication stress response genes and subsequently analyzed how they influence cellular viability in response to replication stress. These data will serve as a useful resource for understanding the replication stress response.

  6. A combined array-based comparative genomic hybridization and functional library screening approach identifies mir-30d as an oncomir in cancer.

    Science.gov (United States)

    Li, Ning; Kaur, Sippy; Greshock, Joel; Lassus, Heini; Zhong, Xiaomin; Wang, Yanling; Leminen, Arto; Shao, Zhongjun; Hu, Xiaowen; Liang, Shun; Katsaros, Dionyssios; Huang, Qihong; Bützow, Ralf; Weber, Barbara L; Coukos, George; Zhang, Lin

    2012-01-01

    Oncomirs are microRNAs (miRNA) that acts as oncogenes or tumor suppressor genes. Efficient identification of oncomirs remains a challenge. Here we report a novel, clinically guided genetic screening approach for the identification of oncomirs, identifying mir-30d through this strategy. mir-30d regulates tumor cell proliferation, apoptosis, senescence, and migration. The chromosomal locus harboring mir-30d was amplified in more than 30% of multiple types of human solid tumors (n = 1,283). Importantly, higher levels of mir-30d expression were associated significantly with poor clinical outcomes in ovarian cancer patients (n = 330, P = 0.0016). Mechanistic investigations suggested that mir-30d regulates a large number of cancer-associated genes, including the apoptotic caspase CASP3. The guided genetic screening approach validated by this study offers a powerful tool to identify oncomirs that may have utility as biomarkers or targets for drug development.

  7. Functional Genomics for Personalized Cancer Therapy

    Science.gov (United States)

    Tyner, Jeffrey W.

    2017-01-01

    Integration of functional and genomic screening strategies reveals clinically actionable genetic events that impact the effectiveness of cancer treatment regimens and the outcomes of cancer patients. PMID:24990879

  8. Cancer Genome Anatomy Project (CGAP) | Office of Cancer Genomics

    Science.gov (United States)

    CGAP generated a wide range of genomics data on cancerous cells that are accessible through easy-to-use online tools. Researchers, educators, and students can find "in silico" answers to biological questions through the CGAP website. Request a free copy of the CGAP Website Virtual Tour CD from ocg@mail.nih.gov to learn how to navigate the website.

  9. Dana-Farber Cancer Institute | Office of Cancer Genomics

    Science.gov (United States)

    Functional Annotation of Cancer Genomes Principal Investigator: William C. Hahn, M.D., Ph.D. The comprehensive characterization of cancer genomes has and will continue to provide an increasingly complete catalog of genetic alterations in specific cancers. However, most epithelial cancers harbor hundreds of genetic alterations as a consequence of genomic instability. Therefore, the functional consequences of the majority of mutations remain unclear.

  10. Genome-wide identification of significant aberrations in cancer genome

    Directory of Open Access Journals (Sweden)

    Yuan Xiguo

    2012-07-01

    Full Text Available Abstract Background Somatic Copy Number Alterations (CNAs in human genomes are present in almost all human cancers. Systematic efforts to characterize such structural variants must effectively distinguish significant consensus events from random background aberrations. Here we introduce Significant Aberration in Cancer (SAIC, a new method for characterizing and assessing the statistical significance of recurrent CNA units. Three main features of SAIC include: (1 exploiting the intrinsic correlation among consecutive probes to assign a score to each CNA unit instead of single probes; (2 performing permutations on CNA units that preserve correlations inherent in the copy number data; and (3 iteratively detecting Significant Copy Number Aberrations (SCAs and estimating an unbiased null distribution by applying an SCA-exclusive permutation scheme. Results We test and compare the performance of SAIC against four peer methods (GISTIC, STAC, KC-SMART, CMDS on a large number of simulation datasets. Experimental results show that SAIC outperforms peer methods in terms of larger area under the Receiver Operating Characteristics curve and increased detection power. We then apply SAIC to analyze structural genomic aberrations acquired in four real cancer genome-wide copy number data sets (ovarian cancer, metastatic prostate cancer, lung adenocarcinoma, glioblastoma. When compared with previously reported results, SAIC successfully identifies most SCAs known to be of biological significance and associated with oncogenes (e.g., KRAS, CCNE1, and MYC or tumor suppressor genes (e.g., CDKN2A/B. Furthermore, SAIC identifies a number of novel SCAs in these copy number data that encompass tumor related genes and may warrant further studies. Conclusions Supported by a well-grounded theoretical framework, SAIC has been developed and used to identify SCAs in various cancer copy number data sets, providing useful information to study the landscape of cancer genomes

  11. Cancer genetic association studies in the genome-wide age

    OpenAIRE

    Savage, Sharon A

    2008-01-01

    Genome-wide association studies of hundreds of thousands of SNPs have led to a deluge of studies of genetic variation in cancer and other common diseases. Large case–control and cohort studies have identified novel SNPs as markers of cancer risk. Genome-wide association study SNP data have also advanced understanding of population-specific genetic variation. While studies of risk profiles, combinations of SNPs that may increase cancer risk, are not yet clinically applicable, future, large-sca...

  12. Translational genomics in cancer research:converting proifles into personalized cancer medicine

    Institute of Scientific and Technical Information of China (English)

    Lalit Patel; Brittany Parker; Da Yang; Wei Zhang

    2013-01-01

    Cancer genomics is a rapidly growing discipline in which the genetic molecular basis of malignancy is studied at the scale of whole genomes. While the discipline has been successful with respect to identifying specific oncogenes and tumor suppressors involved in oncogenesis, it is also challenging our approach to managing patients suffering from this deadly disease. Speciifcally cancer genomics is driving clinical oncology to take a more molecular approach to diagnosis, prognostication, and treatment selection. We review here recent work undertaken in cancer genomics with an emphasis on translation of genomic ifndings. Finally, we discuss scientiifc challenges and research opportunities emerging from ifndings derived through analysis of tumors with high-depth sequencing.

  13. Overview | Office of Cancer Genomics

    Science.gov (United States)

    The Therapeutically Applicable Research to Generate Effective Treatments (TARGET) initiative uses comprehensive molecular characterization to determine the genetic changes that drive the initiation and progression of hard-to-treat childhood cancers. TARGET aims to identify therapeutic targets and prognostic markers so that new, more effective treatment strategies can be developed and applied. Novel pediatric cancer treatments are needed because:

  14. Identifying characteristic scales in the human genome

    Science.gov (United States)

    Carpena, P.; Bernaola-Galván, P.; Coronado, A. V.; Hackenberg, M.; Oliver, J. L.

    2007-03-01

    The scale-free, long-range correlations detected in DNA sequences contrast with characteristic lengths of genomic elements, being particularly incompatible with the isochores (long, homogeneous DNA segments). By computing the local behavior of the scaling exponent α of detrended fluctuation analysis (DFA), we discriminate between sequences with and without true scaling, and we find that no single scaling exists in the human genome. Instead, human chromosomes show a common compositional structure with two characteristic scales, the large one corresponding to the isochores and the other to small and medium scale genomic elements.

  15. An integrated genomic approach identifies that the PI3K/AKT/FOXO pathway is involved in breast cancer tumor initiation

    NARCIS (Netherlands)

    Smit, Linda; Berns, Katrien; Spence, Katherine; Ryder, W David; Zeps, Nik; Madiredjo, Mandy; Beijersbergen, Roderick; Bernards, René; Clarke, Robert B

    2015-01-01

    Therapy resistance is one of the major impediments to successful cancer treatment. In breast cancer, a small subpopulation of cells with stem cell features, named breast cancer stem cells (BCSC), is responsible for metastasis and recurrence of the tumor. BCSC have the unique ability to grow under no

  16. Comparative genomic analysis of esophageal cancers.

    Science.gov (United States)

    Caygill, Christine P J; Gatenby, Piers A C; Herceg, Zdenko; Lima, Sheila C S; Pinto, Luis F R; Watson, Anthony; Wu, Ming-Shiang

    2014-09-01

    The following, from the 12th OESO World Conference: Cancers of the Esophagus, includes commentaries on comparative genomic analysis of esophageal cancers: genomic polymorphisms, the genetic and epigenetic drivers in esophageal cancers, and the collection of data in the UK Barrett's Oesophagus Registry.

  17. Identifying genetics and genomics nursing competencies common among published recommendations.

    Science.gov (United States)

    Greco, Karen E; Salveson, Catherine

    2009-10-01

    The purpose of this article is to identify published recommendations for genetics and genomics competencies or curriculum for nurses in the United States and to summarize genetic and genomic nursing competencies based on common themes among these documents. A review of the literature between January 1998 and June 2008 was conducted. Efforts were also made to access the gray literature. Five consensus documents describing recommendations for genetics and genomics competencies for nurses meeting inclusion criteria were analyzed. Twelve genetics and genomics competencies were created based on common themes among the recommendations. These competencies include: demonstrate an understanding of basic genetic and genomic concepts, provide and explain genetic and genomic information, refer to appropriate genetics professionals and services, and identify the limits of one's own genetics and genomics expertise. The competencies represent fundamental genetics and genomics competencies for nurses on the basis of common themes among several consensus recommendations identified in the literature.

  18. A genome-wide association study identifies pancreatic cancer susceptibility loci on chromosomes 13q22.1, 1q32.1 and 5p15.33

    Science.gov (United States)

    Petersen, Gloria M.; Amundadottir, Laufey; Fuchs, Charles S.; Kraft, Peter; Stolzenberg-Solomon, Rachael Z.; Jacobs, Kevin B.; Arslan, Alan A.; Bueno-de-Mesquita, H. Bas; Gallinger, Steven; Gross, Myron; Helzlsouer, Kathy; Holly, Elizabeth A.; Jacobs, Eric J.; Klein, Alison P.; LaCroix, Andrea; Li, Donghui; Mandelson, Margaret T.; Olson, Sara H.; Risch, Harvey A.; Zheng, Wei; Albanes, Demetrius; Bamlet, William R.; Berg, Christine D.; Boutron-Ruault, Marie-Christine; Buring, Julie E.; Bracci, Paige M.; Canzian, Federico; Clipp, Sandra; Cotterchio, Michelle; de Andrade, Mariza; Duell, Eric J.; Gaziano, J. Michael; Giovannucci, Edward L.; Goggins, Michael; Hallmans, Göran; Hankinson, Susan E.; Hassan, Manal; Howard, Barbara; Hunter, David J.; Hutchinson, Amy; Jenab, Mazda; Kaaks, Rudolf; Kooperberg, Charles; Krogh, Vittorio; Kurtz, Robert C.; Lynch, Shannon M.; McWilliams, Robert R.; Mendelsohn, Julie B.; Michaud, Dominique S.; Parikh, Hemang; Patel, Alpa V.; Peeters, Petra H.M.; Rajkovic, Aleksandar; Riboli, Elio; Rodriguez, Laudina; Seminara, Daniela; Shu, Xiao-Ou; Thomas, Gilles; Tjønneland, Anne; Tobias, Geoffrey S.; Trichopoulos, Dimitrios; Van Den Eeden, Stephen K.; Virtamo, Jarmo; Wactawski-Wende, Jean; Wang, Zhaoming; Wolpin, Brian M.; Yu, Herbert; Yu, Kai; Zeleniuch-Jacquotte, Anne; Fraumeni, Joseph F.; Hoover, Robert N.; Hartge, Patricia; Chanock, Stephen J.

    2010-01-01

    We conducted a genome-wide association study (GWAS) of pancreatic cancer in 3,851 cases and 3,934 controls drawn from twelve prospective cohort studies and eight case-control studies. Based on a logistic regression model for genotype trend effect that was adjusted for study, age, sex, self-described ancestry and five principal components, we identified eight SNPs that map to three loci on chromosomes 13q22.1, 1q32.1 and 5p15.33. Two correlated SNPs, rs9543325 (P=3.27×10−11; per allele odds ratio, OR 1.26, 95% CI=1.18-1.35) and rs9564966 (P=5.86×10−8; per allele OR 1.21, 95% CI=1.13-1.30) map to a non-genic region on chromosome 13q22.1. Five SNPs on 1q32.1 map to NR5A2; the strongest signal was rs3790844 (P=2.45×10−10; per allele OR 0.77, 95% CI=0.71-0.84). A single SNP, rs401681 (P=3.66×10−7; per allele OR 1.19, 95% CI=1.11-1.27) maps to the CLPTM1L-TERT locus on 5p15.33, associated with multiple cancers. Our study has identified common susceptibility loci for pancreatic cancer that warrant follow-up studies. PMID:20101243

  19. Genome-Wide analysis of allelic imbalance in laser microdissected prostate cancer tissue using the Affymetrix 50K Mapping array identifies genomic patterns associated with metastasis and differentiation

    DEFF Research Database (Denmark)

    Tørring, Niels; Borre, Michael; Sørensen, Karina;

    2007-01-01

    to be developed for patient stratification based on risk of progression. We analysed laser-microdissected prostate tumour tissue from 43 patients with histologically verified PCa, using the new high-resolution Affymetrix Mapping 50K single-nucleotide polymorphism array. The results showed six major loss......, tumour progression towards a metastatic stage, as well as poor differentiation, was identified by specific patterns of copy number gains of genomic regions located at chromosomes 8q, 1q, 3q and 7q. Androgen ablation therapy was further characterised by copy gain at chromosomes 2p and 10q. In conclusion...

  20. Clinical implications of genomics for cancer risk genetics.

    Science.gov (United States)

    Thomas, David M; James, Paul A; Ballinger, Mandy L

    2015-06-01

    The study of human genetics has provided substantial insight into cancer biology. With an increase in sequencing capacity and a reduction in sequencing costs, genomics will probably transform clinical cancer genetics. A heritable basis for many cancers is accepted, but so far less than half the genetic drivers have been identified. Genomics will increasingly be applied to populations irrespective of family history, which will change the framework of phenotype-directed genetic testing. Panel testing and whole genome sequencing will identify novel, polygenic, and de-novo determinants of cancer risk, often with lower penetrance, which will challenge present binary clinical classification systems and management algorithms. In the future, genotype-stratified public screening and prevention programmes could form part of tailored population risk management. The integration of research with clinical practice will result in so-called discovery cohorts that will help identify clinically significant genetic variation.

  1. Identifying Human Genome-Wide CNV, LOH and UPD by Targeted Sequencing of Selected Regions.

    Science.gov (United States)

    Wang, Yu; Li, Wei; Xia, Yingying; Wang, Chongzhi; Tang, Y Tom; Guo, Wenying; Li, Jinliang; Zhao, Xia; Sun, Yepeng; Hu, Juan; Zhen, Hefu; Zhang, Xiandong; Chen, Chao; Shi, Yujian; Li, Lin; Cao, Hongzhi; Du, Hongli; Li, Jian

    2014-01-01

    Copy-number variations (CNV), loss of heterozygosity (LOH), and uniparental disomy (UPD) are large genomic aberrations leading to many common inherited diseases, cancers, and other complex diseases. An integrated tool to identify these aberrations is essential in understanding diseases and in designing clinical interventions. Previous discovery methods based on whole-genome sequencing (WGS) require very high depth of coverage on the whole genome scale, and are cost-wise inefficient. Another approach, whole exome genome sequencing (WEGS), is limited to discovering variations within exons. Thus, we are lacking efficient methods to detect genomic aberrations on the whole genome scale using next-generation sequencing technology. Here we present a method to identify genome-wide CNV, LOH and UPD for the human genome via selectively sequencing a small portion of genome termed Selected Target Regions (SeTRs). In our experiments, the SeTRs are covered by 99.73%~99.95% with sufficient depth. Our developed bioinformatics pipeline calls genome-wide CNVs with high confidence, revealing 8 credible events of LOH and 3 UPD events larger than 5M from 15 individual samples. We demonstrate that genome-wide CNV, LOH and UPD can be detected using a cost-effective SeTRs sequencing approach, and that LOH and UPD can be identified using just a sample grouping technique, without using a matched sample or familial information.

  2. Identifying Human Genome-Wide CNV, LOH and UPD by Targeted Sequencing of Selected Regions.

    Directory of Open Access Journals (Sweden)

    Wei Li

    Full Text Available Copy-number variations (CNV, loss of heterozygosity (LOH, and uniparental disomy (UPD are large genomic aberrations leading to many common inherited diseases, cancers, and other complex diseases. An integrated tool to identify these aberrations is essential in understanding diseases and in designing clinical interventions. Previous discovery methods based on whole-genome sequencing (WGS require very high depth of coverage on the whole genome scale, and are cost-wise inefficient. Another approach, whole exome genome sequencing (WEGS, is limited to discovering variations within exons. Thus, we are lacking efficient methods to detect genomic aberrations on the whole genome scale using next-generation sequencing technology. Here we present a method to identify genome-wide CNV, LOH and UPD for the human genome via selectively sequencing a small portion of genome termed Selected Target Regions (SeTRs. In our experiments, the SeTRs are covered by 99.73%~99.95% with sufficient depth. Our developed bioinformatics pipeline calls genome-wide CNVs with high confidence, revealing 8 credible events of LOH and 3 UPD events larger than 5M from 15 individual samples. We demonstrate that genome-wide CNV, LOH and UPD can be detected using a cost-effective SeTRs sequencing approach, and that LOH and UPD can be identified using just a sample grouping technique, without using a matched sample or familial information.

  3. Genomic instability and cancer: an introduction

    Institute of Scientific and Technical Information of China (English)

    Zhiyuan Shen

    2011-01-01

    @@ Genomic instability as a major driving force of tumorigenesis.The ultimate goal of cell division for most non-cancerous somatic cells is to accurately duplicate the genome and then evenly divide the duplicated genome into the two daughter cells.This ensures that the daughter cells will have exactly the same genetic material as their parent cell.

  4. Cancer Genomics: Diversity and Disparity Across Ethnicity and Geography.

    Science.gov (United States)

    Tan, Daniel S W; Mok, Tony S K; Rebbeck, Timothy R

    2016-01-01

    Ethnic and geographic differences in cancer incidence, prognosis, and treatment outcomes can be attributed to diversity in the inherited (germline) and somatic genome. Although international large-scale sequencing efforts are beginning to unravel the genomic underpinnings of cancer traits, much remains to be known about the underlying mechanisms and determinants of genomic diversity. Carcinogenesis is a dynamic, complex phenomenon representing the interplay between genetic and environmental factors that results in divergent phenotypes across ethnicities and geography. For example, compared with whites, there is a higher incidence of prostate cancer among Africans and African Americans, and the disease is generally more aggressive and fatal. Genome-wide association studies have identified germline susceptibility loci that may account for differences between the African and non-African patients, but the lack of availability of appropriate cohorts for replication studies and the incomplete understanding of genomic architecture across populations pose major limitations. We further discuss the transformative potential of routine diagnostic evaluation for actionable somatic alterations, using lung cancer as an example, highlighting implications of population disparities, current hurdles in implementation, and the far-reaching potential of clinical genomics in enhancing cancer prevention, diagnosis, and treatment. As we enter the era of precision cancer medicine, a concerted multinational effort is key to addressing population and genomic diversity as well as overcoming barriers and geographical disparities in research and health care delivery.

  5. Cancer genetics and genomics: essentials for oncology nurses.

    Science.gov (United States)

    Boucher, Jean; Habin, Karleen; Underhill, Meghan

    2014-06-01

    Cancer genetics and genomics are rapidly evolving, with new discoveries emerging in genetic mutations, variants, genomic sequencing, risk-reduction methods, and targeted therapies. To educate patients and families, state-of-the-art care requires nurses to understand terminology, scientific and technological advances, and pharmacogenomics. Clinical application of cancer genetics and genomics involves working in interdisciplinary teams to properly identify patient risk through assessing family history, facilitating genetic testing and counseling services, applying risk-reduction methods, and administering and monitoring targeted therapies.

  6. Genome-wide association analysis in East Asians identifies breast cancer susceptibility loci at 1q32.1, 5q14.3 and 15q26.1

    Science.gov (United States)

    Cai, Qiuyin; Zhang, Ben; Sung, Hyuna; Low, Siew-Kee; Kweon, Sun-Seog; Lu, Wei; Shi, Jiajun; Long, Jirong; Wen, Wanqing; Choi, Ji-Yeob; Noh, Dong-Young; Shen, Chen-Yang; Matsuo, Keitaro; Teo, Soo-Hwang; Kim, Mi Kyung; Khoo, Ui Soon; Iwasaki, Motoki; Hartman, Mikael; Takahashi, Atsushi; Ashikawa, Kyota; Matsuda, Koichi; Shin, Min-Ho; Park, Min Ho; Zheng, Ying; Xiang, Yong-Bing; Ji, Bu-Tian; Park, Sue K.; Wu, Pei-Ei; Hsiung, Chia-Ni; Ito, Hidemi; Kasuga, Yoshio; Kang, Peter; Mariapun, Shivaani; Ahn, Sei Hyun; Kang, Han Sung; Chan, Kelvin Y. K.; Man, Ellen P. S.; Iwata, Hiroji; Tsugane, Shoichiro; Miao, Hui; Liao, Jiemin; Nakamura, Yusuke; Kubo, Michiaki; Delahanty, Ryan J.; Zhang, Yanfeng; Li, Bingshan; Li, Chun; Gao, Yu-Tang; Shu, Xiao-Ou; Kang, Daehee; Zheng, Wei

    2014-01-01

    In a three-stage genome-wide association study among East Asian women including 22,780 cases and 24,181 controls, we identified three novel genetic loci associated with breast cancer risk, including rs4951011 at 1q32.1 (in intron 2 of the ZC3H11A gene, P = 8.82 × 10−9), rs10474352 at 5q14.3 (near the ARRDC3 gene, P = 1.67 × 10−9), and rs2290203 at 15q26.1 (in intron 14 of the PRC1 gene, P = 4.25 × 10−8). These associations were replicated in European-ancestry populations including 16,003 cases and 41,335 controls (P = 0.030, 0.004, and 0.010, respectively). Data from the ENCODE project suggest that variants rs4951011 and rs10474352 may be located in an enhancer region and transcription factor binding sites, respectively. This study provides additional insights into the genetics and biology of breast cancer. PMID:25038754

  7. TCGA researchers identify 4 subtypes of stomach cancer

    Science.gov (United States)

    Stomach cancers fall into four distinct molecular subtypes, researchers with The Cancer Genome Atlas (TCGA) Network have found. Scientists report that this discovery could change how researchers think about developing treatments for stomach cancer, also c

  8. Integration of genomics in cancer care

    DEFF Research Database (Denmark)

    Santos, Erika Maria Monteiro; Edwards, Quannetta T; Floria-Santos, Milena

    2013-01-01

    cancer syndromes, epigenetics factors, and management of care considerations. METHODS: Peer-reviewed literature and expert professional guidelines were reviewed to address concepts of genetics-genomics in cancer care. FINDINGS: Cancer is now known to be heterogeneous at the molecular level, with genetic...

  9. Genetics and genomics of prostate cancer

    Institute of Scientific and Technical Information of China (English)

    Michael Dean; Hong Lou

    2013-01-01

    Prostate cancer (PCa) is one of the most common malignancies in the world with over 890 000 cases and over 258 000 deaths worldwide each year.Nearly all mortalities from PCa are due to metastatic disease,typically through tumors that evolve to be hormone-refractory or castrate-resistant.Despite intensive epidemiological study,there are few known environmental risk factors,and age and family history are the major determinants.However,there is extreme heterogeneity in PCa incidence worldwide,suggesting that major determining factors have not been described.Genome-wide association studies have been performed and a considerable number of significant,but low-risk loci have been identified.In addition,several groups have analyzed PCa by determination of genomic copy number,fusion gene generation and targeted resequencing of candidate genes,as well as exome and whole genome sequencing.These initial studies have examined both primary and metastatic tumors as well as murine xenografts and identified somatic alterations in TP53 and other potential driver genes,and the disturbance of androgen response and cell cycle pathways.It is hoped that continued characterization of risk factors as well as gene mutation and misregulation in tumors will aid in understanding,diagnosing and better treating PCa.

  10. Integrated analysis of whole genome and transcriptome sequencing reveals diverse transcriptomic aberrations driven by somatic genomic changes in liver cancers.

    Directory of Open Access Journals (Sweden)

    Yuichi Shiraishi

    Full Text Available Recent studies applying high-throughput sequencing technologies have identified several recurrently mutated genes and pathways in multiple cancer genomes. However, transcriptional consequences from these genomic alterations in cancer genome remain unclear. In this study, we performed integrated and comparative analyses of whole genomes and transcriptomes of 22 hepatitis B virus (HBV-related hepatocellular carcinomas (HCCs and their matched controls. Comparison of whole genome sequence (WGS and RNA-Seq revealed much evidence that various types of genomic mutations triggered diverse transcriptional changes. Not only splice-site mutations, but also silent mutations in coding regions, deep intronic mutations and structural changes caused splicing aberrations. HBV integrations generated diverse patterns of virus-human fusion transcripts depending on affected gene, such as TERT, CDK15, FN1 and MLL4. Structural variations could drive over-expression of genes such as WNT ligands, with/without creating gene fusions. Furthermore, by taking account of genomic mutations causing transcriptional aberrations, we could improve the sensitivity of deleterious mutation detection in known cancer driver genes (TP53, AXIN1, ARID2, RPS6KA3, and identified recurrent disruptions in putative cancer driver genes such as HNF4A, CPS1, TSC1 and THRAP3 in HCCs. These findings indicate genomic alterations in cancer genome have diverse transcriptomic effects, and integrated analysis of WGS and RNA-Seq can facilitate the interpretation of a large number of genomic alterations detected in cancer genome.

  11. Analyzing Somatic Genome Rearrangements in Human Cancers by Using Whole-Exome Sequencing | Office of Cancer Genomics

    Science.gov (United States)

    Although exome sequencing data are generated primarily to detect single-nucleotide variants and indels, they can also be used to identify a subset of genomic rearrangements whose breakpoints are located in or near exons. Using >4,600 tumor and normal pairs across 15 cancer types, we identified over 9,000 high confidence somatic rearrangements, including a large number of gene fusions.

  12. The Genomic Landscape and Clinical Relevance of A-to-I RNA Editing in Human Cancers | Office of Cancer Genomics

    Science.gov (United States)

    Adenosine-to-inosine (A-to-I) RNA editing is a widespread post-transcriptional mechanism, but its genomic landscape and clinical relevance in cancer have not been investigated systematically. We characterized the global A-to-I RNA editing profiles of 6,236 patient samples of 17 cancer types from The Cancer Genome Atlas and revealed a striking diversity of altered RNA-editing patterns in tumors relative to normal tissues. We identified an appreciable number of clinically relevant editing events, many of which are in noncoding regions.

  13. Large-scale genotyping identifies 41 new loci associated with breast cancer risk

    DEFF Research Database (Denmark)

    Michailidou, Kyriaki; Hall, Per; Gonzalez-Neira, Anna

    2013-01-01

    Breast cancer is the most common cancer among women. Common variants at 27 loci have been identified as associated with susceptibility to breast cancer, and these account for ∼9% of the familial risk of the disease. We report here a meta-analysis of 9 genome-wide association studies, including 10...

  14. Prostate Cancer Genomics: Toward a New Understanding

    OpenAIRE

    John S Witte

    2008-01-01

    Recent genetics and genomics studies of prostate cancer help clarify the genetic basis of this common but complex disease. Genome-wide studies have detected numerous variants associated with disease as well as common gene fusions and expression ‘signatures’ in prostate tumors. Based on these results, some advocate gene-based individualized screening for prostate cancer, although such testing may only be worthwhile to distinguish disease aggressiveness. Lessons learned here provide strategies ...

  15. Pathway and network analysis of cancer genomes

    DEFF Research Database (Denmark)

    Creixell, Pau; Reimand, Jueri; Haider, Syed

    2015-01-01

    Genomic information on tumors from 50 cancer types cataloged by the International Cancer Genome Consortium (ICGC) shows that only a few well-studied driver genes are frequently mutated, in contrast to many infrequently mutated genes that may also contribute to tumor biology. Hence there has been...... large interest in developing pathway and network analysis methods that group genes and illuminate the processes involved. We provide an overview of these analysis techniques and show where they guide mechanistic and translational investigations....

  16. Endometrial and acute myeloid leukemia cancer genomes characterized

    Science.gov (United States)

    Two studies from The Cancer Genome Atlas (TCGA) program reveal details about the genomic landscapes of acute myeloid leukemia (AML) and endometrial cancer. Both provide new insights into the molecular underpinnings of these cancers.

  17. Functional annotation of rare gene aberration drivers of pancreatic cancer | Office of Cancer Genomics

    Science.gov (United States)

    As we enter the era of precision medicine, characterization of cancer genomes will directly influence therapeutic decisions in the clinic. Here we describe a platform enabling functionalization of rare gene mutations through their high-throughput construction, molecular barcoding and delivery to cancer models for in vivo tumour driver screens. We apply these technologies to identify oncogenic drivers of pancreatic ductal adenocarcinoma (PDAC).

  18. Genomic Regions Affecting Cheese Making Properties Identified in Danish Holsteins

    DEFF Research Database (Denmark)

    Gregersen, Vivi Raundahl; Bertelsen, Henriette Pasgaard; Poulsen, Nina Aagaard

    The cheese renneting process is affected by a number of factors associated to milk composition and a number of Danish Holsteins has previously been identified to have poor milk coagulation ability. Therefore, the aim of this study was to identify genomic regions affecting the technological...

  19. Cancer Genome Sequencing and Its Implications for Personalized Cancer Vaccines

    Directory of Open Access Journals (Sweden)

    William E. Gillanders

    2011-11-01

    Full Text Available New DNA sequencing platforms have revolutionized human genome sequencing. The dramatic advances in genome sequencing technologies predict that the $1,000 genome will become a reality within the next few years. Applied to cancer, the availability of cancer genome sequences permits real-time decision-making with the potential to affect diagnosis, prognosis, and treatment, and has opened the door towards personalized medicine. A promising strategy is the identification of mutated tumor antigens, and the design of personalized cancer vaccines. Supporting this notion are preliminary analyses of the epitope landscape in breast cancer suggesting that individual tumors express significant numbers of novel antigens to the immune system that can be specifically targeted through cancer vaccines.

  20. Cancer Genome Sequencing and Its Implications for Personalized Cancer Vaccines

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lijin [Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110 (United States); Goedegebuure, Peter [Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110 (United States); The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO 63110 (United States); Mardis, Elaine R. [The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO 63110 (United States); The Genome Institute at Washington University School of Medicine, St. Louis, MO 63108 (United States); Ellis, Matthew J.C. [The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO 63110 (United States); Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110 (United States); Zhang, Xiuli; Herndon, John M. [Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110 (United States); Fleming, Timothy P. [Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110 (United States); The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO 63110 (United States); Carreno, Beatriz M. [The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO 63110 (United States); Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110 (United States); Hansen, Ted H. [The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO 63110 (United States); Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110 (United States); Gillanders, William E., E-mail: gillandersw@wudosis.wustl.edu [Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110 (United States); The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO 63110 (United States)

    2011-11-25

    New DNA sequencing platforms have revolutionized human genome sequencing. The dramatic advances in genome sequencing technologies predict that the $1,000 genome will become a reality within the next few years. Applied to cancer, the availability of cancer genome sequences permits real-time decision-making with the potential to affect diagnosis, prognosis, and treatment, and has opened the door towards personalized medicine. A promising strategy is the identification of mutated tumor antigens, and the design of personalized cancer vaccines. Supporting this notion are preliminary analyses of the epitope landscape in breast cancer suggesting that individual tumors express significant numbers of novel antigens to the immune system that can be specifically targeted through cancer vaccines.

  1. A genome-wide siRNA screen for regulators of tumor suppressor p53 activity in human non-small lung cancer cells identifies components of the RNA splicing machinery as targets for anticancer treatment.

    Science.gov (United States)

    Siebring-van Olst, Ellen; Blijlevens, Maxime; de Menezes, Renee X; van der Meulen-Muileman, Ida H; Smit, Egbert F; van Beusechem, Victor W

    2017-03-13

    Reinstating wild-type tumor suppressor p53 activity could be a valuable option for the treatment of cancer. To contribute to development of new treatment options for non-small cell lung cancer (NSCLC), we performed genome-wide siRNA screens for determinants of p53 activity in NSCLC cells. We identified many genes not previously known to be involved in regulating p53 activity. Silencing p53 pathway inhibitor genes was associated with loss of cell viability. The largest functional gene cluster influencing p53 activity was mRNA splicing. Prominent p53 activation was observed upon silencing of specific spliceosome components, rather than by general inhibition of the spliceosome. Ten genes were validated as inhibitors of p53 activity in multiple NSCLC cell lines: genes encoding the Ras-pathway activator SOS1, the zinc finger protein TSHZ3, the mitochondrial membrane protein COX16 and the spliceosome components SNRPD3, SF3A3, SF3B1, SF3B6, XAB2, CWC22 and HNRNPL. Silencing these genes generally increased p53 levels, with distinct effects on CDKN1A expression, induction of cell cycle arrest and cell death. Silencing spliceosome components was associated with alternative splicing of MDM4 mRNA, which could contribute to activation of p53. In addition, silencing splice factors was particularly effective in killing NSCLC cells, albeit in a p53-independent manner. Interestingly, silencing SNRPD3 and SF3A3 exerted much stronger cytotoxicity to NSCLC cells than to lung fibroblasts, suggesting that these genes could represent useful therapeutic targets. This article is protected by copyright. All rights reserved.

  2. Genomic rearrangements of PTEN in prostate cancer

    Directory of Open Access Journals (Sweden)

    Sopheap ePhin

    2013-09-01

    Full Text Available The phosphatase and tensin homolog gene on chromosome 10q23.3 (PTEN is a negative regulator of the PIK3/Akt survival pathway and is the most frequently deleted tumor suppressor gene in prostate cancer. Monoallelic loss of PTEN is present in up to 60% of localized prostate cancers and complete loss of PTEN in prostate cancer is linked to metastasis and androgen independent progression. Studies on the genomic status of PTEN in prostate cancer initially used a two-color fluorescence in-situ hybridization (FISH assay for PTEN copy number detection in formalin fixed paraffin embedded tissue preparations. More recently, a four-color FISH assay containing two additional control probes flanking the PTEN locus with a lower false-positive rate was reported. Combined with the detection of other critical genomic biomarkers for prostate cancer such as ERG, AR, and MYC, the evaluation of PTEN genomic status has proven to be invaluable for patient stratification and management. Although less frequent than allelic deletions, point mutations in the gene and epigenetic silencing are also known to contribute to loss of PTEN function, and ultimately to prostate cancer initiation. Overall, it is clear that PTEN is a powerful biomarker for prostate cancer. Used as a companion diagnostic for emerging therapeutic drugs, FISH analysis of PTEN is promisingly moving human prostate cancer closer to more effective cancer management and therapies.

  3. GWAS meta-analysis and replication identifies three new susceptibility loci for ovarian cancer

    DEFF Research Database (Denmark)

    Pharoah, Paul D P; Tsai, Ya-Yu; Ramus, Susan J

    2013-01-01

    Genome-wide association studies (GWAS) have identified four susceptibility loci for epithelial ovarian cancer (EOC), with another two suggestive loci reaching near genome-wide significance. We pooled data from a GWAS conducted in North America with another GWAS from the UK. We selected the top 24...

  4. Identifying and retargeting transcriptional hot spots in the human genome.

    Science.gov (United States)

    Cheng, Joseph K; Lewis, Amanda M; Kim, Do Soon; Dyess, Timothy; Alper, Hal S

    2016-08-01

    Mammalian cell line development requires streamlined methodologies that will reduce both the cost and time to identify candidate cell lines. Improvements in site-specific genomic editing techniques can result in flexible, predictable, and robust cell line engineering. However, an outstanding question in the field is the specific site of integration. Here, we seek to identify productive loci within the human genome that will result in stable, high expression of heterologous DNA. Using an unbiased, random integration approach and a green fluorescent reporter construct, we identify ten single-integrant, recombinant human cell lines that exhibit stable, high-level expression. From these cell lines, eight unique corresponding integration loci were identified. These loci are concentrated in non-protein coding regions or intronic regions of protein coding genes. Expression mapping of the surrounding genes reveals minimal disruption of endogenous gene expression. Finally, we demonstrate that targeted de novo integration at one of the identified loci, the 12(th) exon-intron region of the GRIK1 gene on chromosome 21, results in superior expression and stability compared to the standard, illegitimate integration approach at levels approaching 4-fold. The information identified here along with recent advances in site-specific genomic editing techniques can lead to expedited cell line development.

  5. A Genome-wide Pleiotropy Scan for Prostate Cancer Risk

    Science.gov (United States)

    Panagiotou, Orestis A; Travis, Ruth C; Campa, Daniele; Berndt, Sonja I.; Lindstrom, Sara; Kraft, Peter; Schumacher, Fredrick R.; Siddiq, Afshan; Papatheodorou, Stefania I.; Stanford, Janet L.; Albanes, Demetrius; Virtamo, Jarmo; Weinstein, Stephanie J.; Diver, W. Ryan; Gapstur, Susan M.; Stevens, Victoria L.; Boeing, Heiner; Bueno-de-Mesquita, H. Bas; Gurrea, Aurelio Barricarte; Kaaks, Rudolf; Khaw, Kay-Tee; Krogh, Vittorio; Overvad, Kim; Riboli, Elio; Trichopoulos, Dimitrios; Giovannucci, Edward; Stampfer, Meir; Haiman, Christopher; Henderson, Brian; Le Marchand, Loic; Gaziano, J. Michael; Hunter, DavidJ.; Koutros, Stella; Yeager, Meredith; Hoover, Robert N.; Chanock, Stephen J.; Wacholder, Sholom; Key, Timothy J.; Tsilidis, Konstantinos K

    2014-01-01

    Background No single-nucleotide polymorphisms (SNPs) specific for aggressive prostate cancer have been identified in genome-wide association studies (GWAS). Objective To test if SNPs associated with other traits may also affect the risk of aggressive prostate cancer. Design, setting, and participants SNPs implicated in any phenotype other than prostate cancer (p ≤ 10−7) were identified through the catalog of published GWAS and tested in 2891 aggressive prostate cancer cases and 4592 controls from the Breast and Prostate Cancer Cohort Consortium (BPC3). The 40 most significant SNPs were followed up in 4872 aggressive prostate cancer cases and 24 534 controls from the Prostate Cancer Association Group to Investigate Cancer Associated Alterations in the Genome (PRACTICAL) consortium. Outcome measurements and statistical analysis Odds ratios (ORs) and 95% confidence intervals (CIs) for aggressive prostate cancer were estimated. Results and limitations A total of 4666 SNPs were evaluated by the BPC3. Two signals were seen in regions already reported for prostate cancer risk. rs7014346 at 8q24.21 was marginally associated with aggressive prostate cancer in the BPC3 trial (p = 1.6 × 10-6), whereas after meta-analysis by PRACTICAL the summary OR was 1.21 (95%CI 1.16–1.27; p = 3.22 × 10−18). rs9900242 at 17q24.3 was also marginally associated with aggressive disease in the meta-analysis (OR 0.90, 95% CI 0.86–0.94; p = 2.5 × 10−6). Neither of these SNPs remained statistically significant when conditioning on correlated known prostate cancer SNPs. The meta-analysis by BPC3 and PRACTICAL identified a third promising signal, marked by rs16844874 at 2q34, independent of known prostate cancer loci (OR 1.12,95% CI 1.06–1.19; p = 4.67 × 10−5); it has been shown that SNPs correlated with this signal affect glycine concentrations. The main limitation is the heterogeneity in the definition of aggressive prostate cancer between BPC3 and PRACTICAL. Conclusions We did

  6. Cancer genomics object model: an object model for multiple functional genomics data for cancer research.

    Science.gov (United States)

    Park, Yu Rang; Lee, Hye Won; Cho, Sung Bum; Kim, Ju Han

    2007-01-01

    The development of functional genomics including transcriptomics, proteomics and metabolomics allow us to monitor a large number of key cellular pathways simultaneously. Several technology-specific data models have been introduced for the representation of functional genomics experimental data, including the MicroArray Gene Expression-Object Model (MAGE-OM), the Proteomics Experiment Data Repository (PEDRo), and the Tissue MicroArray-Object Model (TMA-OM). Despite the increasing number of cancer studies using multiple functional genomics technologies, there is still no integrated data model for multiple functional genomics experimental and clinical data. We propose an object-oriented data model for cancer genomics research, Cancer Genomics Object Model (CaGe-OM). We reference four data models: Functional Genomic-Object Model, MAGE-OM, TMAOM and PEDRo. The clinical and histopathological information models are created by analyzing cancer management workflow and referencing the College of American Pathology Cancer Protocols and National Cancer Institute Common Data Elements. The CaGe-OM provides a comprehensive data model for integrated storage and analysis of clinical and multiple functional genomics data.

  7. Human Cancer Models Initiative | Office of Cancer Genomics

    Science.gov (United States)

    The Human Cancer Models Initiative (HCMI) is an international consortium that is generating novel human tumor-derived culture models, which are annotated with genomic and clinical data. In an effort to advance cancer research and more fully understand how in vitro findings are related to clinical biology, HCMI-developed models and related data will be available as a community resource for cancer research.

  8. Childhood Cancer Genomics Gaps and Opportunities - Workshop Summary

    Science.gov (United States)

    NCI convened a workshop of representative research teams that have been leaders in defining the genomic landscape of childhood cancers to discuss the influence of genomic discoveries on the future of childhood cancer research.

  9. Genome scale metabolic modeling of cancer

    DEFF Research Database (Denmark)

    Nilsson, Avlant; Nielsen, Jens

    2016-01-01

    been used as scaffolds for analysis of high throughput data to allow mechanistic interpretation of changes in expression. Finally, GEMs allow quantitative flux predictions using flux balance analysis (FBA). Here we critically review the requirements for successful FBA simulations of cancer cells......Cancer cells reprogram metabolism to support rapid proliferation and survival. Energy metabolism is particularly important for growth and genes encoding enzymes involved in energy metabolism are frequently altered in cancer cells. A genome scale metabolic model (GEM) is a mathematical formalization...... of metabolism which allows simulation and hypotheses testing of metabolic strategies. It has successfully been applied to many microorganisms and is now used to study cancer metabolism. Generic models of human metabolism have been reconstructed based on the existence of metabolic genes in the human genome...

  10. Open-Access Cancer Genomics - Office of Cancer Clinical Proteomics Research

    Science.gov (United States)

    The completion of the Human Genome Project sparked a revolution in high-throughput genomics applied towards deciphering genetically complex diseases, like cancer. Now, almost 10 years later, we have a mountain of genomics data on many different cancer type

  11. Genome organization, instabilities, stem cells, and cancer

    Directory of Open Access Journals (Sweden)

    Senthil Kumar Pazhanisamy

    2009-01-01

    Full Text Available It is now widely recognized that advances in exploring genome organization provide remarkable insights on the induction and progression of chromosome abnormalities. Much of what we know about how mutations evolve and consequently transform into genome instabilities has been characterized in the spatial organization context of chromatin. Nevertheless, many underlying concepts of impact of the chromatin organization on perpetuation of multiple mutations and on propagation of chromosomal aberrations remain to be investigated in detail. Genesis of genome instabilities from accumulation of multiple mutations that drive tumorigenesis is increasingly becoming a focal theme in cancer studies. This review focuses on structural alterations evolve to raise a variety of genome instabilities that are manifested at the nucleotide, gene or sub-chromosomal, and whole chromosome level of genome. Here we explore an underlying connection between genome instability and cancer in the light of genome architecture. This review is limited to studies directed towards spatial organizational aspects of origin and propagation of aberrations into genetically unstable tumors.

  12. Whole Genome Sequencing of Newly Established Pancreatic Cancer Lines Identifies Novel Somatic Mutation (c.2587G>A in Axon Guidance Receptor Plexin A1 as Enhancer of Proliferation and Invasion.

    Directory of Open Access Journals (Sweden)

    Rebecca Sorber

    Full Text Available The genetic profile of human pancreatic cancers harbors considerable heterogeneity, which suggests a possible explanation for the pronounced inefficacy of single therapies in this disease. This observation has led to a belief that custom therapies based on individual tumor profiles are necessary to more effectively treat pancreatic cancer. It has recently been discovered that axon guidance genes are affected by somatic structural variants in up to 25% of human pancreatic cancers. Thus far, however, some of these mutations have only been correlated to survival probability and no function has been assigned to these observed axon guidance gene mutations in pancreatic cancer. In this study we established three novel pancreatic cancer cell lines and performed whole genome sequencing to discover novel mutations in axon guidance genes that may contribute to the cancer phenotype of these cells. We discovered, among other novel somatic variants in axon guidance pathway genes, a novel mutation in the PLXNA1 receptor (c.2587G>A in newly established cell line SB.06 that mediates oncogenic cues of increased invasion and proliferation in SB.06 cells and increased invasion in 293T cells upon stimulation with the receptor's natural ligand semaphorin 3A compared to wild type PLXNA1 cells. Mutant PLXNA1 signaling was associated with increased Rho-GTPase and p42/p44 MAPK signaling activity and cytoskeletal expansion, but not changes in E-cadherin, vimentin, or metalloproteinase 9 expression levels. Pharmacologic inhibition of the Rho-GTPase family member CDC42 selectively abrogated PLXNA1 c.2587G>A-mediated increased invasion. These findings provide in-vitro confirmation that somatic mutations in axon guidance genes can provide oncogenic gain-of-function signals and may contribute to pancreatic cancer progression.

  13. A meta-analysis of 87,040 individuals identifies 23 new susceptibility loci for prostate cancer

    DEFF Research Database (Denmark)

    Al Olama, Ali Amin; Kote-Jarai, Zsofia; Berndt, Sonja I

    2014-01-01

    Genome-wide association studies (GWAS) have identified 76 variants associated with prostate cancer risk predominantly in populations of European ancestry. To identify additional susceptibility loci for this common cancer, we conducted a meta-analysis of > 10 million SNPs in 43,303 prostate cancer...

  14. Feature selection and survival modeling in The Cancer Genome Atlas

    Directory of Open Access Journals (Sweden)

    Kim H

    2013-09-01

    Full Text Available Hyunsoo Kim,1 Markus Bredel2 1Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL, USA; 2Department of Radiation Oncology, and Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL, USA Purpose: Personalized medicine is predicated on the concept of identifying subgroups of a common disease for better treatment. Identifying biomarkers that predict disease subtypes has been a major focus of biomedical science. In the era of genome-wide profiling, there is controversy as to the optimal number of genes as an input of a feature selection algorithm for survival modeling. Patients and methods: The expression profiles and outcomes of 544 patients were retrieved from The Cancer Genome Atlas. We compared four different survival prediction methods: (1 1-nearest neighbor (1-NN survival prediction method; (2 random patient selection method and a Cox-based regression method with nested cross-validation; (3 least absolute shrinkage and selection operator (LASSO optimization using whole-genome gene expression profiles; or (4 gene expression profiles of cancer pathway genes. Results: The 1-NN method performed better than the random patient selection method in terms of survival predictions, although it does not include a feature selection step. The Cox-based regression method with LASSO optimization using whole-genome gene expression data demonstrated higher survival prediction power than the 1-NN method, but was outperformed by the same method when using gene expression profiles of cancer pathway genes alone. Conclusion: The 1-NN survival prediction method may require more patients for better performance, even when omitting censored data. Using preexisting biological knowledge for survival prediction is reasonable as a means to understand the biological system of a cancer, unless the analysis goal is to identify completely unknown genes relevant to cancer biology. Keywords: brain, feature selection

  15. A splicing variant of TERT identified by GWAS interacts with menopausal estrogen therapy in risk of ovarian cancer

    DEFF Research Database (Denmark)

    Lee, Alice W; Bomkamp, Ashley; Bandera, Elisa V;

    2016-01-01

    Menopausal estrogen-alone therapy (ET) is a well-established risk factor for serous and endometrioid ovarian cancer. Genetics also plays a role in ovarian cancer, which is partly attributable to 18 confirmed ovarian cancer susceptibility loci identified by genome-wide association studies. The int......Menopausal estrogen-alone therapy (ET) is a well-established risk factor for serous and endometrioid ovarian cancer. Genetics also plays a role in ovarian cancer, which is partly attributable to 18 confirmed ovarian cancer susceptibility loci identified by genome-wide association studies...

  16. Genome evolution during progression to breast cancer

    KAUST Repository

    Newburger, D. E.

    2013-04-08

    Cancer evolution involves cycles of genomic damage, epigenetic deregulation, and increased cellular proliferation that eventually culminate in the carcinoma phenotype. Early neoplasias, which are often found concurrently with carcinomas and are histologically distinguishable from normal breast tissue, are less advanced in phenotype than carcinomas and are thought to represent precursor stages. To elucidate their role in cancer evolution we performed comparative whole-genome sequencing of early neoplasias, matched normal tissue, and carcinomas from six patients, for a total of 31 samples. By using somatic mutations as lineage markers we built trees that relate the tissue samples within each patient. On the basis of these lineage trees we inferred the order, timing, and rates of genomic events. In four out of six cases, an early neoplasia and the carcinoma share a mutated common ancestor with recurring aneuploidies, and in all six cases evolution accelerated in the carcinoma lineage. Transition spectra of somatic mutations are stable and consistent across cases, suggesting that accumulation of somatic mutations is a result of increased ancestral cell division rather than specific mutational mechanisms. In contrast to highly advanced tumors that are the focus of much of the current cancer genome sequencing, neither the early neoplasia genomes nor the carcinomas are enriched with potentially functional somatic point mutations. Aneuploidies that occur in common ancestors of neoplastic and tumor cells are the earliest events that affect a large number of genes and may predispose breast tissue to eventual development of invasive carcinoma.

  17. Fenton reaction induced cancer in wild type rats recapitulates genomic alterations observed in human cancer.

    Directory of Open Access Journals (Sweden)

    Shinya Akatsuka

    Full Text Available Iron overload has been associated with carcinogenesis in humans. Intraperitoneal administration of ferric nitrilotriacetate initiates a Fenton reaction in renal proximal tubules of rodents that ultimately leads to a high incidence of renal cell carcinoma (RCC after repeated treatments. We performed high-resolution microarray comparative genomic hybridization to identify characteristics in the genomic profiles of this oxidative stress-induced rat RCCs. The results revealed extensive large-scale genomic alterations with a preference for deletions. Deletions and amplifications were numerous and sometimes fragmented, demonstrating that a Fenton reaction is a cause of such genomic alterations in vivo. Frequency plotting indicated that two of the most commonly altered loci corresponded to a Cdkn2a/2b deletion and a Met amplification. Tumor sizes were proportionally associated with Met expression and/or amplification, and clustering analysis confirmed our results. Furthermore, we developed a procedure to compare whole genomic patterns of the copy number alterations among different species based on chromosomal syntenic relationship. Patterns of the rat RCCs showed the strongest similarity to the human RCCs among five types of human cancers, followed by human malignant mesothelioma, an iron overload-associated cancer. Therefore, an iron-dependent Fenton chemical reaction causes large-scale genomic alterations during carcinogenesis, which may result in distinct genomic profiles. Based on the characteristics of extensive genome alterations in human cancer, our results suggest that this chemical reaction may play a major role during human carcinogenesis.

  18. Predicting human genetic interactions from cancer genome evolution.

    Directory of Open Access Journals (Sweden)

    Xiaowen Lu

    Full Text Available Synthetic Lethal (SL genetic interactions play a key role in various types of biological research, ranging from understanding genotype-phenotype relationships to identifying drug-targets against cancer. Despite recent advances in empirical measuring SL interactions in human cells, the human genetic interaction map is far from complete. Here, we present a novel approach to predict this map by exploiting patterns in cancer genome evolution. First, we show that empirically determined SL interactions are reflected in various gene presence, absence, and duplication patterns in hundreds of cancer genomes. The most evident pattern that we discovered is that when one member of an SL interaction gene pair is lost, the other gene tends not to be lost, i.e. the absence of co-loss. This observation is in line with expectation, because the loss of an SL interacting pair will be lethal to the cancer cell. SL interactions are also reflected in gene expression profiles, such as an under representation of cases where the genes in an SL pair are both under expressed, and an over representation of cases where one gene of an SL pair is under expressed, while the other one is over expressed. We integrated the various previously unknown cancer genome patterns and the gene expression patterns into a computational model to identify SL pairs. This simple, genome-wide model achieves a high prediction power (AUC = 0.75 for known genetic interactions. It allows us to present for the first time a comprehensive genome-wide list of SL interactions with a high estimated prediction precision, covering up to 591,000 gene pairs. This unique list can potentially be used in various application areas ranging from biotechnology to medical genetics.

  19. Glossary | Office of Cancer Genomics

    Science.gov (United States)

    A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z     B Bioinformatics The use of computing tools to manage and analyze genomic and molecular biological data.

  20. Identifying elemental genomic track types and representing them uniformly

    Directory of Open Access Journals (Sweden)

    Gundersen Sveinung

    2011-12-01

    Full Text Available Abstract Background With the recent advances and availability of various high-throughput sequencing technologies, data on many molecular aspects, such as gene regulation, chromatin dynamics, and the three-dimensional organization of DNA, are rapidly being generated in an increasing number of laboratories. The variation in biological context, and the increasingly dispersed mode of data generation, imply a need for precise, interoperable and flexible representations of genomic features through formats that are easy to parse. A host of alternative formats are currently available and in use, complicating analysis and tool development. The issue of whether and how the multitude of formats reflects varying underlying characteristics of data has to our knowledge not previously been systematically treated. Results We here identify intrinsic distinctions between genomic features, and argue that the distinctions imply that a certain variation in the representation of features as genomic tracks is warranted. Four core informational properties of tracks are discussed: gaps, lengths, values and interconnections. From this we delineate fifteen generic track types. Based on the track type distinctions, we characterize major existing representational formats and find that the track types are not adequately supported by any single format. We also find, in contrast to the XML formats, that none of the existing tabular formats are conveniently extendable to support all track types. We thus propose two unified formats for track data, an improved XML format, BioXSD 1.1, and a new tabular format, GTrack 1.0. Conclusions The defined track types are shown to capture relevant distinctions between genomic annotation tracks, resulting in varying representational needs and analysis possibilities. The proposed formats, GTrack 1.0 and BioXSD 1.1, cater to the identified track distinctions and emphasize preciseness, flexibility and parsing convenience.

  1. Childhood Cancer Genomics (PDQ®)—Health Professional Version

    Science.gov (United States)

    Expert-reviewed information summary about the genomics of childhood cancer. The summary describes the molecular subtypes for specific pediatric cancers and their associated clinical characteristics, the recurring genomic alterations that characterize each subtype at diagnosis or relapse, and the therapeutic and prognostic significance of the genomic alterations. The genomic alterations associated with brain tumors, kidney tumors, leukemias, lymphomas, sarcomas, and other cancers are discussed.

  2. Genomic Instability and Breast Cancer

    Science.gov (United States)

    2011-01-01

    medium containing 10% bovine serum and penicillin /streptomycin. Transient transfection was performed with the polyethyleni- mine (25 kDa) method. Stable...mutations in 13 Fanc genes and renders cells hypersensitive to DNA interstrand cross-linking (ICL) agents. A central event in the FA pathway is mono...interstrand cross-links. Fanconi anemia (FA) is characterized bycongenital malformations, bone marrowfailure, cancer, and hypersensitivity toDNA interstrand

  3. Comprehensive genomic profiles of small cell lung cancer

    Science.gov (United States)

    George, Julie; Lim, Jing Shan; Jang, Se Jin; Cun, Yupeng; Ozretić, Luka; Kong, Gu; Leenders, Frauke; Lu, Xin; Fernández-Cuesta, Lynnette; Bosco, Graziella; Müller, Christian; Dahmen, Ilona; Jahchan, Nadine S.; Park, Kwon-Sik; Yang, Dian; Karnezis, Anthony N.; Vaka, Dedeepya; Torres, Angela; Wang, Maia Segura; Korbel, Jan O.; Menon, Roopika; Chun, Sung-Min; Kim, Deokhoon; Wilkerson, Matt; Hayes, Neil; Engelmann, David; Pützer, Brigitte; Bos, Marc; Michels, Sebastian; Vlasic, Ignacija; Seidel, Danila; Pinther, Berit; Schaub, Philipp; Becker, Christian; Altmüller, Janine; Yokota, Jun; Kohno, Takashi; Iwakawa, Reika; Tsuta, Koji; Noguchi, Masayuki; Muley, Thomas; Hoffmann, Hans; Schnabel, Philipp A.; Petersen, Iver; Chen, Yuan; Soltermann, Alex; Tischler, Verena; Choi, Chang-min; Kim, Yong-Hee; Massion, Pierre P.; Zou, Yong; Jovanovic, Dragana; Kontic, Milica; Wright, Gavin M.; Russell, Prudence A.; Solomon, Benjamin; Koch, Ina; Lindner, Michael; Muscarella, Lucia A.; la Torre, Annamaria; Field, John K.; Jakopovic, Marko; Knezevic, Jelena; Castaños-Vélez, Esmeralda; Roz, Luca; Pastorino, Ugo; Brustugun, Odd-Terje; Lund-Iversen, Marius; Thunnissen, Erik; Köhler, Jens; Schuler, Martin; Botling, Johan; Sandelin, Martin; Sanchez-Cespedes, Montserrat; Salvesen, Helga B.; Achter, Viktor; Lang, Ulrich; Bogus, Magdalena; Schneider, Peter M.; Zander, Thomas; Ansén, Sascha; Hallek, Michael; Wolf, Jürgen; Vingron, Martin; Yatabe, Yasushi; Travis, William D.; Nürnberg, Peter; Reinhardt, Christian; Perner, Sven; Heukamp, Lukas; Büttner, Reinhard; Haas, Stefan A.; Brambilla, Elisabeth; Peifer, Martin; Sage, Julien; Thomas, Roman K.

    2016-01-01

    We have sequenced the genomes of 110 small cell lung cancers (SCLC), one of the deadliest human cancers. In nearly all the tumours analysed we found bi-allelic inactivation of TP53 and RB1, sometimes by complex genomic rearrangements. Two tumours with wild-type RB1 had evidence of chromothripsis leading to overexpression of cyclin D1 (encoded by the CCND1 gene), revealing an alternative mechanism of Rb1 deregulation. Thus, loss of the tumour suppressors TP53 and RB1 is obligatory in SCLC. We discovered somatic genomic rearrangements of TP73 that create an oncogenic version of this gene, TP73Δex2/3. In rare cases, SCLC tumours exhibited kinase gene mutations, providing a possible therapeutic opportunity for individual patients. Finally, we observed inactivating mutations in NOTCH family genes in 25% of human SCLC. Accordingly, activation of Notch signalling in a pre-clinical SCLC mouse model strikingly reduced the number of tumours and extended the survival of the mutant mice. Furthermore, neuroendocrine gene expression was abrogated by Notch activity in SCLC cells. This first comprehensive study of somatic genome alterations in SCLC uncovers several key biological processes and identifies candidate therapeutic targets in this highly lethal form of cancer. PMID:26168399

  4. The Broad Institute: Screening for Dependencies in Cancer Cell Lines Using Small Molecules | Office of Cancer Genomics

    Science.gov (United States)

    Using cancer cell-line profiling, we established an ongoing resource to identify, as comprehensively as possible, the drug-targetable dependencies that specific genomic alterations impart on human cancers. We measured the sensitivity of hundreds of genetically characterized cancer cell lines to hundreds of small-molecule probes and drugs that have highly selective interactions with their targets, and that collectively modulate many distinct nodes in cancer cell circuitry.

  5. The Genomic Evolution of Prostate Cancer

    Science.gov (United States)

    2015-10-01

    clone can give rise to both low grade and high grade disease. Conversely, lymph node metastases are closely related to high grade cancer. Alterations...going. Because of the overall low quality of the DNA (including whole genome amplification) the analysis is taking longer than expected but still...a postbaccalaureate student and am actively recruiting for a postdoctoral position. Opportunities for Training As per the SOW, I have attended

  6. Molecular genetics and genomics progress in urothelial bladder cancer.

    Science.gov (United States)

    Netto, George J

    2013-11-01

    The clinical management of solid tumor patients has recently undergone a paradigm shift as the result of the accelerated advances in cancer genetics and genomics. Molecular diagnostics is now an integral part of routine clinical management in lung, colon, and breast cancer patients. In a disappointing contrast, molecular biomarkers remain largely excluded from current management algorithms of urologic malignancies. The need for new treatment alternatives and validated prognostic molecular biomarkers that can help clinicians identify patients in need of early aggressive management is pressing. Identifying robust predictive biomarkers that can stratify response to newly introduced targeted therapeutics is another crucially needed development. The following is a brief discussion of some promising candidate biomarkers that may soon become a part of clinical management of bladder cancers.

  7. DNA secondary structures and epigenetic determinants of cancer genome evolution

    OpenAIRE

    2010-01-01

    An unstable genome is a hallmark of many cancers. It is unclear, however, whether some mutagenic features driving somatic alterations in cancer are encoded in the genome sequence and whether they can operate in a tissue-specific manner. We performed a genome-wide analysis of 663,446 DNA breakpoints associated with somatic copy-number alterations (SCNAs) from 2,792 cancer samples classified into 26 cancer types. Many SCNA breakpoints are spatially clustered in cancer genomes. We observed a sig...

  8. Transcriptome sequencing in prostate cancer identifies inter-tumor heterogeneity

    Directory of Open Access Journals (Sweden)

    Janet Mendonca

    2015-06-01

    Full Text Available Given the dearth of gene mutations in prostate cancer, [1] ,[2] it is likely that genomic rearrangements play a significant role in the evolution of prostate cancer. However, in the search for recurrent genomic alterations, "private alterations" have received less attention. Such alterations may provide insights into the evolution, behavior, and clinical outcome of an individual tumor. In a recent report in "Genome Biology" Wyatt et al. [3] defines unique alterations in a cohort of high-risk prostate cancer patient with a lethal phenotype. Utilizing a transcriptome sequencing approach they observe high inter-tumor heterogeneity; however, the genes altered distill into three distinct cancer-relevant pathways. Their analysis reveals the presence of several non-ETS fusions, which may contribute to the phenotype of individual tumors, and have significance for disease progression.

  9. A meta-analysis of 87,040 individuals identifies 23 new susceptibility loci for prostate cancer.

    Science.gov (United States)

    Al Olama, Ali Amin; Kote-Jarai, Zsofia; Berndt, Sonja I; Conti, David V; Schumacher, Fredrick; Han, Ying; Benlloch, Sara; Hazelett, Dennis J; Wang, Zhaoming; Saunders, Ed; Leongamornlert, Daniel; Lindstrom, Sara; Jugurnauth-Little, Sara; Dadaev, Tokhir; Tymrakiewicz, Malgorzata; Stram, Daniel O; Rand, Kristin; Wan, Peggy; Stram, Alex; Sheng, Xin; Pooler, Loreall C; Park, Karen; Xia, Lucy; Tyrer, Jonathan; Kolonel, Laurence N; Le Marchand, Loic; Hoover, Robert N; Machiela, Mitchell J; Yeager, Merideth; Burdette, Laurie; Chung, Charles C; Hutchinson, Amy; Yu, Kai; Goh, Chee; Ahmed, Mahbubl; Govindasami, Koveela; Guy, Michelle; Tammela, Teuvo L J; Auvinen, Anssi; Wahlfors, Tiina; Schleutker, Johanna; Visakorpi, Tapio; Leinonen, Katri A; Xu, Jianfeng; Aly, Markus; Donovan, Jenny; Travis, Ruth C; Key, Tim J; Siddiq, Afshan; Canzian, Federico; Khaw, Kay-Tee; Takahashi, Atsushi; Kubo, Michiaki; Pharoah, Paul; Pashayan, Nora; Weischer, Maren; Nordestgaard, Borge G; Nielsen, Sune F; Klarskov, Peter; Røder, Martin Andreas; Iversen, Peter; Thibodeau, Stephen N; McDonnell, Shannon K; Schaid, Daniel J; Stanford, Janet L; Kolb, Suzanne; Holt, Sarah; Knudsen, Beatrice; Coll, Antonio Hurtado; Gapstur, Susan M; Diver, W Ryan; Stevens, Victoria L; Maier, Christiane; Luedeke, Manuel; Herkommer, Kathleen; Rinckleb, Antje E; Strom, Sara S; Pettaway, Curtis; Yeboah, Edward D; Tettey, Yao; Biritwum, Richard B; Adjei, Andrew A; Tay, Evelyn; Truelove, Ann; Niwa, Shelley; Chokkalingam, Anand P; Cannon-Albright, Lisa; Cybulski, Cezary; Wokołorczyk, Dominika; Kluźniak, Wojciech; Park, Jong; Sellers, Thomas; Lin, Hui-Yi; Isaacs, William B; Partin, Alan W; Brenner, Hermann; Dieffenbach, Aida Karina; Stegmaier, Christa; Chen, Constance; Giovannucci, Edward L; Ma, Jing; Stampfer, Meir; Penney, Kathryn L; Mucci, Lorelei; John, Esther M; Ingles, Sue A; Kittles, Rick A; Murphy, Adam B; Pandha, Hardev; Michael, Agnieszka; Kierzek, Andrzej M; Blot, William; Signorello, Lisa B; Zheng, Wei; Albanes, Demetrius; Virtamo, Jarmo; Weinstein, Stephanie; Nemesure, Barbara; Carpten, John; Leske, Cristina; Wu, Suh-Yuh; Hennis, Anselm; Kibel, Adam S; Rybicki, Benjamin A; Neslund-Dudas, Christine; Hsing, Ann W; Chu, Lisa; Goodman, Phyllis J; Klein, Eric A; Zheng, S Lilly; Batra, Jyotsna; Clements, Judith; Spurdle, Amanda; Teixeira, Manuel R; Paulo, Paula; Maia, Sofia; Slavov, Chavdar; Kaneva, Radka; Mitev, Vanio; Witte, John S; Casey, Graham; Gillanders, Elizabeth M; Seminara, Daniella; Riboli, Elio; Hamdy, Freddie C; Coetzee, Gerhard A; Li, Qiyuan; Freedman, Matthew L; Hunter, David J; Muir, Kenneth; Gronberg, Henrik; Neal, David E; Southey, Melissa; Giles, Graham G; Severi, Gianluca; Cook, Michael B; Nakagawa, Hidewaki; Wiklund, Fredrik; Kraft, Peter; Chanock, Stephen J; Henderson, Brian E; Easton, Douglas F; Eeles, Rosalind A; Haiman, Christopher A

    2014-10-01

    Genome-wide association studies (GWAS) have identified 76 variants associated with prostate cancer risk predominantly in populations of European ancestry. To identify additional susceptibility loci for this common cancer, we conducted a meta-analysis of > 10 million SNPs in 43,303 prostate cancer cases and 43,737 controls from studies in populations of European, African, Japanese and Latino ancestry. Twenty-three new susceptibility loci were identified at association P discover risk loci for disease.

  10. Review of State Comprehensive Cancer Control Plans for Genomics Content

    Directory of Open Access Journals (Sweden)

    Robert C. Millikan, DVM, PhD

    2005-03-01

    Full Text Available Introduction The goals of this study were to determine U.S. states with Comprehensive Cancer Control plans that include genomics in some capacity and to review successes with and barriers to implementation of genomics-related cancer control initiatives. Methods This study was conducted in two phases. Phase one included a content analysis of written state Comprehensive Cancer Control plans (n = 30 for terms related to genomics, or “genomic components” (n = 18. The second phase involved telephone interviews with the Comprehensive Cancer Control plan coordinators in states with plans that contained genomic components (n = 16. The interview was designed to gather more detailed information about the genomics-related initiatives within the state’s Comprehensive Cancer Control plan and the successes with and barriers to plan implementation, as defined by each state. Results Eighteen of the 30 Comprehensive Cancer Control plans analyzed contained genomics components. We noted a large variability among these 18 plans in the types of genomics components included. Nine (56% of the 16 states interviewed had begun to implement the genomics components in their plan. Most states emphasized educating health care providers and the public about the role of genomics in cancer control. Many states consider awareness of family history to be an important aspect of their Comprehensive Cancer Control plan. Approximately 67% of states with family history components in their plans had begun to implement these goals. Virtually all states reported they would benefit from additional training in cancer genetics and general public health genomics. Conclusion The number of states incorporating genomics into their Comprehensive Cancer Control plans is increasing. Family history is a public health application of genomics that could be implemented more fully into Comprehensive Cancer Control plans.

  11. Cross-cancer genome-wide analysis of lung, ovary, breast, prostate and colorectal cancer reveals novel pleiotropic associations

    NARCIS (Netherlands)

    Fehringer, Gordon; Kraft, Peter; Pharoah, Paul D P; Eeles, Rosalind A; Chatterjee, Nilanjan; Schumacher, Fredrick R; Schildkraut, Joellen M; Lindstrom, Sara; Brennan, Paul; Bickeböller, Heike; Houlston, Richard S; Landi, Maria Teresa; Caporaso, Neil E; Risch, Angela; Amin Al Olama, Ali; Berndt, Sonja I; Giovannucci, Edward; Gronberg, Henrik; Kote-Jarai, Zsofia; Ma, Jing; Muir, Kenneth; Stampfer, Meir J; Stevens, Victoria L; Wiklund, Fredrik; Willett, Walter C; Goode, Ellen L; Permuth, Jennifer B; Risch, Harvey A; Reid, Brett M; Bezieau, Stéphane; Brenner, Hermann; Chan, Andrew T; Chang-Claude, Jenny; Hudson, Thomas J; Kocarnik, Jonathan; Newcomb, Polly A; Schoen, Robert E; Slattery, Martha L; White, Emily; Adank, Muriel A; Ahsan, Habibul; Aittomaki, Kristiina; Baglietto, Laura; Blomquist, Carl; Canzian, Federico; Czene, Kamila; Dos Santos Silva, Isabel; Eliassen, A Heather; Figueroa, Jonine D; Flesch-Janys, Dieter; Fletcher, Olivia; Garcia-Closas, Montserrat; Gaudet, Mia M; Johnson, Nichola; Hall, Per; Hazra, Aditi; Hein, Rebecca; Hofman, Albert; Hopper, John L; Irwanto, Astrid; Johansson, Mattias; Kaaks, Rudolf; Kibriya, Muhammad G; Lichtner, Peter; Liu, Jian Jun; Lund, Eiliv; Makalic, Enes; Meindl, Alfons; Müller-Myhsok, Bertram; Muranen, Taru A; Nevanlinna, Heli; Peeters, Petra H; Peto, Julian; Prentice, Ross L; Rahman, Nazneen; Sanchez, Maria-Jose; Schmidt, Daniel F; Schmutzler, Rita K; Southey, Melissa C; Tamimi, Rulla M; Travis, Ruth C; Turnbull, Clare; Uitterlinden, Andre G; Wang, Zhaoming; Whittemore, Alice S; Yang, Xiaohong R; Zheng, Wei; Rafnar, Thorunn; Gudmundsson, Julius; Stacey, Simon N; Stefansson, Kari; Sulem, Patrick; Chen, Y Ann; Tyrer, Jonathan P; Christiani, David C; Wei, Yongyue; Shen, Hongbing; Hu, Zhibin; Shu, Xiao-Ou; Shiraishi, Kouya; Takahashi, Atsushi; Bossé, Yohan; Obeidat, Ma'en; Nickle, David; Timens, Wim; Freedman, Matthew L; Li, Qiyuan; Seminara, Daniela; Chanock, Stephen J; Gong, Jian; Peters, Ulrike; Gruber, Stephen B; Amos, Christopher I; Sellers, Thomas A; Easton, Douglas F; Hunter, David J; Haiman, Christopher A; Henderson, Brian E; Hung, Rayjean J

    2016-01-01

    Identifying genetic variants with pleiotropic associations can uncover common pathways influencing multiple cancers. We took a two-staged approach to conduct genome-wide association studies for lung, ovary, breast, prostate and colorectal cancer from the GAME-ON/GECCO Network (61,851 cases, 61,820 c

  12. Cross-Cancer Genome-Wide Analysis of Lung, Ovary, Breast, Prostate, and Colorectal Cancer Reveals Novel Pleiotropic Associations

    NARCIS (Netherlands)

    Fehringer, Gordon; Kraft, Peter; Pharoah, Paul D.; Eeles, Rosalind A.; Chatterjee, Nilanjan; Schumacher, Fredrick R.; Schildkraut, Joellen M.; Lindstrom, Sara; Brennan, Paul; Bickeboller, Heike; Houlston, Richard S.; Landi, Maria Teresa; Caporaso, Neil; Risch, Angela; Al Olama, Ali Amin; Berndt, Sonja I.; Giovannucci, Edward L.; Gronberg, Henrik; Kote-Jarai, Zsofia; Ma, Jing; Muir, Kenneth; Stampfer, Meir J.; Stevens, Victoria L.; Wiklund, Fredrik; Willett, Walter C.; Goode, Ellen L.; Permuth, Jennifer B.; Risch, Harvey A.; Reid, Brett M.; Bezieau, Stephane; Brenner, Hermann; Chan, Andrew T.; Chang-Claude, Jenny; Hudson, Thomas J.; Kocarnik, Jonathan K.; Newcomb, Polly A.; Schoen, Robert E.; Slattery, Martha L.; White, Emily; Adank, Muriel A.; Ahsan, Habibul; Aittomaki, Kristiina; Baglietto, Laura; Blomquist, Carl; Canzian, Federico; Czene, Kamila; dos-Santos-Silva, Isabel; Eliassen, A. Heather; Figueroa, Jonine D.; Flesch-Janys, Dieter; Fletcher, Olivia; Garcia-Closas, Montserrat; Gaudet, Mia M.; Johnson, Nichola; Hall, Per; Hazra, Aditi; Hein, Rebecca; Hofman, Albert; Hopper, John L.; Irwanto, Astrid; Johansson, Mattias; Kaaks, Rudolf; Kibriya, Muhammad G.; Lichtner, Peter; Liu, Jianjun; Lund, Eiliv; Makalic, Enes; Meindl, Alfons; Muller-Myhsok, Bertram; Muranen, Taru A.; Nevanlinna, Heli; Peeters, Petra H.; Peto, Julian; Prentice, Ross L.; Rahman, Nazneen; Sanchez, Maria Jose; Schmidt, Daniel F.; Schmutzler, Rita K.; Southey, Melissa C.; Tamimi, Rulla; Travis, Ruth C.; Turnbull, Clare; Uitterlinden, Andre G.; Wang, Zhaoming; Whittemore, Alice S.; Yang, Xiaohong R.; Zheng, Wei; Buchanan, Daniel D.; Casey, Graham; Conti, David V.; Edlund, Christopher K.; Gallinger, Steven; Haile, Robert W.; Jenkins, Mark; Le Marchand, Loic; Li, Li; Lindor, Noralene M.; Schmit, Stephanie L.; Thibodeau, Stephen N.; Woods, Michael O.; Rafnar, Thorunn; Gudmundsson, Julius; Stacey, Simon N.; Stefansson, Kari; Sulem, Patrick; Chen, Y. Ann; Tyrer, Jonathan P.; Christiani, David C.; Wei, Yongyue; Shen, Hongbing; Hu, Zhibin; Shu, Xiao-Ou; Shiraishi, Kouya; Takahashi, Atsushi; Bosse, Yohan; Obeidat, Ma'en; Nickle, David; Timens, Wim; Freedman, Matthew L.; Li, Qiyuan; Seminara, Daniela; Chanock, Stephen J.; Gong, Jian; Peters, Ulrike; Gruber, Stephen B.; Amos, Christopher I.; Sellers, Thomas A.; Easton, Douglas F.; Hunter, David J.; Haiman, Christopher A.; Henderson, Brian E.; Hung, Rayjean J.

    2016-01-01

    Identifying genetic variants with pleiotropic associations can uncover common pathways influencing multiple cancers. We took a two-stage approach to conduct genome-wide association studies for lung, ovary, breast, prostate, and colorectal cancer from the GAME-ON/GECCO Network (61,851 cases, 61,820 c

  13. Cross-cancer genome-wide analysis of lung, ovary, breast, prostate, and colorectal cancer reveals novel pleiotropic associations

    NARCIS (Netherlands)

    Fehringer, G. (Gordon); P. Kraft (Peter); P.D.P. Pharoah (Paul); R. Eeles (Rosalind); Chatterjee, N. (Nilanjan); F.R. Schumacher (Fredrick R); J.M. Schildkraut (Joellen); S. Lindstrom (Stephen); P. Brennan (Paul); H. Bickeböller (Heike); R. Houlston (Richard); M.T. Landi (Maria Teresa); N.E. Caporaso (Neil); Risch, A. (Angela); A.A. Al Olama (Ali Amin); S.I. Berndt (Sonja); Giovannucci, E.L. (Edward L.); H. Grönberg (Henrik); Z. Kote-Jarai; Ma, J. (Jing); K.R. Muir (K.); M.J. Stampfer (Meir J.); Stevens, V.L. (Victoria L.); F. Wiklund (Fredrik); W.C. Willett (Walter C.); E.L. Goode (Ellen); Permuth, J.B. (Jennifer B.); H. Risch (Harvey); Reid, B.M. (Brett M.); Bezieau, S. (Stephane); H. Brenner (Hermann); Chan, A.T. (Andrew T.); J. Chang-Claude (Jenny); T.J. Hudson (Thomas); Kocarnik, J.K. (Jonathan K.); P. Newcomb (Polly); Schoen, R.E. (Robert E.); Slattery, M.L. (Martha L.); White, E. (Emily); M.A. Adank (Muriel); H. Ahsan (Habibul); K. Aittomäki (Kristiina); Baglietto, L. (Laura); Blomquist, C. (Carl); F. Canzian (Federico); K. Czene (Kamila); I. dos Santos Silva (Isabel); Eliassen, A.H. (A. Heather); J.D. Figueroa (Jonine); D. Flesch-Janys (Dieter); O. Fletcher (Olivia); M. García-Closas (Montserrat); M.M. Gaudet (Mia); Johnson, N. (Nichola); P. Hall (Per); A. Hazra (Aditi); R. Hein (Rebecca); Hofman, A. (Albert); J.L. Hopper (John); A. Irwanto (Astrid); M. Johansson (Mattias); R. Kaaks (Rudolf); M.G. Kibriya (Muhammad); P. Lichtner (Peter); J. Liu (Jianjun); E. Lund (Eiliv); Makalic, E. (Enes); A. Meindl (Alfons); B. Müller-Myhsok (B.); Muranen, T.A. (Taru A.); H. Nevanlinna (Heli); P.H.M. Peeters; J. Peto (Julian); R. Prentice (Ross); N. Rahman (Nazneen); M.-J. Sanchez (Maria-Jose); D.F. Schmidt (Daniel); R.K. Schmutzler (Rita); M.C. Southey (Melissa); Tamimi, R. (Rulla); S.P.L. Travis (Simon); C. Turnbull (Clare); Uitterlinden, A.G. (Andre G.); Z. Wang (Zhaoming); A.S. Whittemore (Alice); X.R. Yang (Xiaohong); W. Zheng (Wei); D. Buchanan (Daniel); G. Casey (Graham); G. Conti (Giario); C.K. Edlund (Christopher); S. Gallinger (Steve); R. Haile (Robert); M. Jenkins (Mark); Marchand, L. (Loïcle); Li, L. (Li); N.M. Lindor (Noralane); Schmit, S.L. (Stephanie L.); S.N. Thibodeau (Stephen); M.O. Woods (Michael); T. Rafnar (Thorunn); J. Gudmundsson (Julius); S.N. Stacey (Simon); Stefansson, K. (Kari); P. Sulem (Patrick); Chen, Y.A. (Y. Ann); J.P. Tyrer (Jonathan); Christiani, D.C. (David C.); Wei, Y. (Yongyue); H. Shen (Hongbing); Z. Hu (Zhibin); X.-O. Shu (Xiao-Ou); Shiraishi, K. (Kouya); A. Takahashi (Atsushi); Y. Bossé (Yohan); M. Obeidat; D.C. Nickle (David C.); W. Timens (Wim); M. Freedman (Matthew); Li, Q. (Qiyuan); D. Seminara (Daniela); S.J. Chanock (Stephen); Gong, J. (Jian); U. Peters (Ulrike); S.B. Gruber (Stephen); Amos, C.I. (Christopher I.); T.A. Sellers (Thomas A.); D.F. Easton (Douglas F.); D. Hunter (David); C.A. Haiman (Christopher A.); B.E. Henderson (Brian); R.J. Hung (Rayjean)

    2016-01-01

    textabstractIdentifying genetic variants with pleiotropic associations can uncover common pathways influencing multiple cancers. We took a two-stage approach to conduct genome-wide association studies for lung, ovary, breast, prostate, and colorectal cancer from the GAME-ON/GECCO Network (61,851 cas

  14. Cross-cancer genome-wide analysis of lung, ovary, breast, prostate, and colorectal cancer reveals novel pleiotropic associations

    NARCIS (Netherlands)

    Fehringer, Gordon; Kraft, Peter; Pharoah, Paul D.; Eeles, Rosalind A.; Chatterjee, Nilanjan; Schumacher, Fredrick R.; Schildkraut, Joellen M.; Lindström, Sara; Brennan, Paul; Bickeböller, Heike; Houlston, Richard S.; Landi, Maria Teresa; Caporaso, Neil; Risch, Angela; Al Olama, Ali Amin; Berndt, Sonja I.; Giovannucci, Edward L.; Grönberg, Henrik; Kote-Jarai, Zsofia; Ma, Jing; Muir, Kenneth; Stampfer, Meir J.; Stevens, Victoria L.; Wiklund, Fredrik; Willett, Walter C.; Goode, Ellen L.; Permuth, Jennifer B.; Risch, Harvey A.; Reid, Brett M.; Bezieau, Stephane; Brenner, Hermann; Chan, Andrew T.; Chang-Claude, Jenny; Hudson, Thomas J.; Kocarnik, Jonathan K.; Newcomb, Polly A.; Schoen, Robert E.; Slattery, Martha L.; White, Emily; Adank, Muriel A.; Ahsan, Habibul; Aittomäki, Kristiina; Baglietto, Laura; Blomquist, Carl; Canzian, Federico; Czene, Kamila; Dos-Santos-silva, Isabel; Eliassen, A. Heather; Figueroa, Jonine D.; Flesch-Janys, Dieter; Fletcher, Olivia; Garcia-Closas, Montserrat; Gaudet, Mia M.; Johnson, Nichola; Hall, Per; Hazra, Aditi; Hein, Rebecca; Hofman, Albert; Hopper, John L.; Irwanto, Astrid; Johansson, Mattias; Kaaks, Rudolf; Kibriya, Muhammad G.; Lichtner, Peter; Liu, Jianjun; Lund, Eiliv; Makalic, Enes; Meindl, Alfons; Müller-Myhsok, Bertram; Muranen, Taru A.; Nevanlinna, Heli; Peeters, Petra H.; Peto, Julian; Prentice, Ross L.; Rahman, Nazneen; Sanchez, Maria Jose; Schmidt, Daniel F.; Schmutzler, Rita K.; Southey, Melissa C.; Tamimi, Rulla; Travis, Ruth C.; Turnbull, Clare; Uitterlinden, Andre G.; Wang, Zhaoming; Whittemore, Alice S.; Yang, Xiaohong R.; Zheng, Wei; Buchanan, Daniel D.; Casey, Graham; Conti, David V.; Edlund, Christopher K.; Gallinger, Steven; Haile, Robert W.; Jenkins, Mark; Marchand, Loïcle; Li, Li; Lindor, Noralene M.; Schmit, Stephanie L.; Thibodeau, Stephen N.; Woods, Michael O.; Rafnar, Thorunn; Gudmundsson, Julius; Stacey, Simon N.; Stefansson, Kari; Sulem, Patrick; Chen, Y. Ann; Tyrer, Jonathan P.; Christiani, David C.; Wei, Yongyue; Shen, Hongbing; Hu, Zhibin; Shu, Xiao Ou; Shiraishi, Kouya; Takahashi, Atsushi; Bossé, Yohan; Obeidat, Ma'en; Nickle, David; Timens, Wim; Freedman, Matthew L.; Li, Qiyuan; Seminara, Daniela; Chanock, Stephen J.; Gong, Jian; Peters, Ulrike; Gruber, Stephen B.; Amos, Christopher I.; Sellers, Thomas A.; Easton, Douglas F.; Hunter, David J.; Haiman, Christopher A.; Henderson, Brian E.; Hung, Rayjean J.

    2016-01-01

    Identifying genetic variants with pleiotropic associations can uncover common pathways influencing multiple cancers. We took a two-stage approach to conduct genome-wide association studies for lung, ovary, breast, prostate, and colorectal cancer from the GAME-ON/GECCO Network (61,851 cases, 61,820 c

  15. Genomic and epigenomic alterations in prostate cancer

    Directory of Open Access Journals (Sweden)

    Anna Maria eAschelter

    2012-11-01

    Full Text Available Prostate cancer (PC is the second most frequently diagnosed cancer and the second leading cause of cancer deaths in man. The treatment of localized PC includes surgery or radiation therapy. In case of relapse after a definitive treatment or in patients with locally advanced or metastatic disease, the standard treatment includes the androgen-deprivation therapy (ADT. By reducing the levels of Testosterone and dihydrotestosterone (DHT under the castration threshold, the ADT acts on the androgen receptor (AR, even if indirectly. The effects of the ADT are usually temporary and nearly all patients, initially sensitive to the androgen ablation therapy, have a disease progression after a 18-24 months medium term. This is probably due to the selection of the cancer cell clones and to their acquisition of critical somatic genome and epigenomic changes. This review aims to provide an overview about the genetic and epigenetic alterations having a crucial role in the carcinogenesis and in the disease progression toward the castration resistant prostate cancer (CRPC. We focused on the role of the androgen receptor, on its signaling cascade and on the clinical implications that the knowledge of these aspects would have on hormonal therapy, on its failure and its toxicity.

  16. Combined and interactive effects of environmental and GWAS-identified risk factors in ovarian cancer

    DEFF Research Database (Denmark)

    Pearce, Celeste Leigh; Rossing, Mary Anne; Lee, Alice W;

    2013-01-01

    There are several well-established environmental risk factors for ovarian cancer, and recent genome-wide association studies have also identified six variants that influence disease risk. However, the interplay between such risk factors and susceptibility loci has not been studied....

  17. Genome-wide association study identifies shared risk loci common to two malignancies in golden retrievers.

    Directory of Open Access Journals (Sweden)

    Noriko Tonomura

    2015-02-01

    Full Text Available Dogs, with their breed-determined limited genetic background, are great models of human disease including cancer. Canine B-cell lymphoma and hemangiosarcoma are both malignancies of the hematologic system that are clinically and histologically similar to human B-cell non-Hodgkin lymphoma and angiosarcoma, respectively. Golden retrievers in the US show significantly elevated lifetime risk for both B-cell lymphoma (6% and hemangiosarcoma (20%. We conducted genome-wide association studies for hemangiosarcoma and B-cell lymphoma, identifying two shared predisposing loci. The two associated loci are located on chromosome 5, and together contribute ~20% of the risk of developing these cancers. Genome-wide p-values for the top SNP of each locus are 4.6×10-7 and 2.7×10-6, respectively. Whole genome resequencing of nine cases and controls followed by genotyping and detailed analysis identified three shared and one B-cell lymphoma specific risk haplotypes within the two loci, but no coding changes were associated with the risk haplotypes. Gene expression analysis of B-cell lymphoma tumors revealed that carrying the risk haplotypes at the first locus is associated with down-regulation of several nearby genes including the proximal gene TRPC6, a transient receptor Ca2+-channel involved in T-cell activation, among other functions. The shared risk haplotype in the second locus overlaps the vesicle transport and release gene STX8. Carrying the shared risk haplotype is associated with gene expression changes of 100 genes enriched for pathways involved in immune cell activation. Thus, the predisposing germ-line mutations in B-cell lymphoma and hemangiosarcoma appear to be regulatory, and affect pathways involved in T-cell mediated immune response in the tumor. This suggests that the interaction between the immune system and malignant cells plays a common role in the tumorigenesis of these relatively different cancers.

  18. KRAS Genomic Status Predicts the Sensitivity of Ovarian Cancer Cells to Decitabine | Office of Cancer Genomics

    Science.gov (United States)

    Decitabine, a cancer therapeutic that inhibits DNA methylation, produces variable antitumor response rates in patients with solid tumors that might be leveraged clinically with identification of a predictive biomarker. In this study, we profiled the response of human ovarian, melanoma, and breast cancer cells treated with decitabine, finding that RAS/MEK/ERK pathway activation and DNMT1 expression correlated with cytotoxic activity. Further, we showed that KRAS genomic status predicted decitabine sensitivity in low-grade and high-grade serous ovarian cancer cells.

  19. Integrated genomic and epigenomic analysis of breast cancer brain metastasis.

    Directory of Open Access Journals (Sweden)

    Bodour Salhia

    Full Text Available The brain is a common site of metastatic disease in patients with breast cancer, which has few therapeutic options and dismal outcomes. The purpose of our study was to identify common and rare events that underlie breast cancer brain metastasis. We performed deep genomic profiling, which integrated gene copy number, gene expression and DNA methylation datasets on a collection of breast brain metastases. We identified frequent large chromosomal gains in 1q, 5p, 8q, 11q, and 20q and frequent broad-level deletions involving 8p, 17p, 21p and Xq. Frequently amplified and overexpressed genes included ATAD2, BRAF, DERL1, DNMTRB and NEK2A. The ATM, CRYAB and HSPB2 genes were commonly deleted and underexpressed. Knowledge mining revealed enrichment in cell cycle and G2/M transition pathways, which contained AURKA, AURKB and FOXM1. Using the PAM50 breast cancer intrinsic classifier, Luminal B, Her2+/ER negative, and basal-like tumors were identified as the most commonly represented breast cancer subtypes in our brain metastasis cohort. While overall methylation levels were increased in breast cancer brain metastasis, basal-like brain metastases were associated with significantly lower levels of methylation. Integrating DNA methylation data with gene expression revealed defects in cell migration and adhesion due to hypermethylation and downregulation of PENK, EDN3, and ITGAM. Hypomethylation and upregulation of KRT8 likely affects adhesion and permeability. Genomic and epigenomic profiling of breast brain metastasis has provided insight into the somatic events underlying this disease, which have potential in forming the basis of future therapeutic strategies.

  20. Integrated genomic and epigenomic analysis of breast cancer brain metastasis.

    Science.gov (United States)

    Salhia, Bodour; Kiefer, Jeff; Ross, Julianna T D; Metapally, Raghu; Martinez, Rae Anne; Johnson, Kyle N; DiPerna, Danielle M; Paquette, Kimberly M; Jung, Sungwon; Nasser, Sara; Wallstrom, Garrick; Tembe, Waibhav; Baker, Angela; Carpten, John; Resau, Jim; Ryken, Timothy; Sibenaller, Zita; Petricoin, Emanuel F; Liotta, Lance A; Ramanathan, Ramesh K; Berens, Michael E; Tran, Nhan L

    2014-01-01

    The brain is a common site of metastatic disease in patients with breast cancer, which has few therapeutic options and dismal outcomes. The purpose of our study was to identify common and rare events that underlie breast cancer brain metastasis. We performed deep genomic profiling, which integrated gene copy number, gene expression and DNA methylation datasets on a collection of breast brain metastases. We identified frequent large chromosomal gains in 1q, 5p, 8q, 11q, and 20q and frequent broad-level deletions involving 8p, 17p, 21p and Xq. Frequently amplified and overexpressed genes included ATAD2, BRAF, DERL1, DNMTRB and NEK2A. The ATM, CRYAB and HSPB2 genes were commonly deleted and underexpressed. Knowledge mining revealed enrichment in cell cycle and G2/M transition pathways, which contained AURKA, AURKB and FOXM1. Using the PAM50 breast cancer intrinsic classifier, Luminal B, Her2+/ER negative, and basal-like tumors were identified as the most commonly represented breast cancer subtypes in our brain metastasis cohort. While overall methylation levels were increased in breast cancer brain metastasis, basal-like brain metastases were associated with significantly lower levels of methylation. Integrating DNA methylation data with gene expression revealed defects in cell migration and adhesion due to hypermethylation and downregulation of PENK, EDN3, and ITGAM. Hypomethylation and upregulation of KRT8 likely affects adhesion and permeability. Genomic and epigenomic profiling of breast brain metastasis has provided insight into the somatic events underlying this disease, which have potential in forming the basis of future therapeutic strategies.

  1. Mutations in the DDR2 Kinase Gene identify a Novel therapeutic target in squamous cell lung cancer

    NARCIS (Netherlands)

    Hammerman, Peter S.; Sos, Martin L.; Ramos, Alex H.; Xu, Chunxiao; Dutt, Amit; Zhou, Wenjun; Brace, Lear E.; Woods, Brittany A.; Lin, Wenchu; Zhang, Jianming; Deng, Xianming; Lim, Sang Min; Heynck, Stefanie; Peifer, Martin; Simard, Jeffrey R.; Lawrence, Michael S.; Onofrio, Robert C.; Salvesen, Helga B.; Seidel, Danila; Zander, Thomas; Heuckmann, Johannes M.; Soltermann, Alex; Moch, Holger; Koker, Mirjam; Leenders, Frauke; Gabler, Franziska; Querings, Silvia; Ansen, Sascha; Brambilla, Elisabeth; Brambilla, Christian; Lorimier, Philippe; Brustugun, Odd Terje; Helland, Aslaug; Petersen, Iver; Clement, Joachim H.; Groen, Harry; Timens, Wim; Sietsma, Hannie; Stoelben, Erich; Wolf, Juergen; Beer, David G.; Tsao, Ming Sound; Hanna, Megan; Hatton, Charles; Eck, Michael J.; Janne, Pasi A.; Johnson, Bruce E.; Winckler, Wendy; Greulich, Heidi; Bass, Adam J.; Cho, Jeonghee; Rauh, Daniel; Gray, Nathanael S.; Wong, Kwok-Kin; Haura, Eric B.; Thomas, Roman K.; Meyerson, Matthew

    2011-01-01

    Although genomically targeted therapies have improved outcomes for patients with lung adenocarcinoma, little is known about the genomic alterations that drive squamous cell cancer (SCC) of the lung. Sanger sequencing of the tyrosine kinome identified mutations in the DDR2 kinase gene in 3.8% of lung

  2. Serological evaluation of Mycobacterium ulcerans antigens identified by comparative genomics.

    Directory of Open Access Journals (Sweden)

    Sacha J Pidot

    Full Text Available A specific and sensitive serodiagnostic test for Mycobacterium ulcerans infection would greatly assist the diagnosis of Buruli ulcer and would also facilitate seroepidemiological surveys. By comparative genomics, we identified 45 potential M. ulcerans specific proteins, of which we were able to express and purify 33 in E. coli. Sera from 30 confirmed Buruli ulcer patients, 24 healthy controls from the same endemic region and 30 healthy controls from a non-endemic region in Benin were screened for antibody responses to these specific proteins by ELISA. Serum IgG responses of Buruli ulcer patients were highly variable, however, seven proteins (MUP045, MUP057, MUL_0513, Hsp65, and the polyketide synthase domains ER, AT propionate, and KR A showed a significant difference between patient and non-endemic control antibody responses. However, when sera from the healthy control subjects living in the same Buruli ulcer endemic area as the patients were examined, none of the proteins were able to discriminate between these two groups. Nevertheless, six of the seven proteins showed an ability to distinguish people living in an endemic area from those in a non-endemic area with an average sensitivity of 69% and specificity of 88%, suggesting exposure to M. ulcerans. Further validation of these six proteins is now underway to assess their suitability for use in Buruli ulcer seroepidemiological studies. Such studies are urgently needed to assist efforts to uncover environmental reservoirs and understand transmission pathways of the M. ulcerans.

  3. Mechanical Genomics Identifies Diverse Modulators of Bacterial Cell Stiffness.

    Science.gov (United States)

    Auer, George K; Lee, Timothy K; Rajendram, Manohary; Cesar, Spencer; Miguel, Amanda; Huang, Kerwyn Casey; Weibel, Douglas B

    2016-06-22

    Bacteria must maintain mechanical integrity to withstand the large osmotic pressure differential across the cell membrane and wall. Although maintaining mechanical integrity is critical for proper cellular function, a fact exploited by prominent cell-wall-targeting antibiotics, the proteins that contribute to cellular mechanics remain unidentified. Here, we describe a high-throughput optical method for quantifying cell stiffness and apply this technique to a genome-wide collection of ∼4,000 Escherichia coli mutants. We identify genes with roles in diverse functional processes spanning cell-wall synthesis, energy production, and DNA replication and repair that significantly change cell stiffness when deleted. We observe that proteins with biochemically redundant roles in cell-wall synthesis exhibit different stiffness defects when deleted. Correlating our data with chemical screens reveals that reducing membrane potential generally increases cell stiffness. In total, our work demonstrates that bacterial cell stiffness is a property of both the cell wall and broader cell physiology and lays the groundwork for future systematic studies of mechanoregulation.

  4. Genome profiling of ERBB2-amplified breast cancers

    Directory of Open Access Journals (Sweden)

    Ayed Farhat

    2010-10-01

    Full Text Available Abstract Background Around 20% of breast cancers (BC show ERBB2 gene amplification and overexpression of the ERBB2 tyrosine kinase receptor. They are associated with a poor prognosis but can benefit from targeted therapy. A better knowledge of these BCs, genomically and biologically heterogeneous, may help understand their behavior and design new therapeutic strategies. Methods We defined the high resolution genome and gene expression profiles of 54 ERBB2-amplified BCs using 244K oligonucleotide array-comparative genomic hybridization and whole-genome DNA microarrays. Expression of ERBB2, phosphorylated ERBB2, EGFR, IGF1R and FOXA1 proteins was assessed by immunohistochemistry to evaluate the functional ERBB2 status and identify co-expressions. Results First, we identified the ERBB2-C17orf37-GRB7 genomic segment as the minimal common 17q12-q21 amplicon, and CRKRS and IKZF3 as the most frequent centromeric and telomeric amplicon borders, respectively. Second, GISTIC analysis identified 17 other genome regions affected by copy number aberration (CNA (amplifications, gains, losses. The expression of 37 genes of these regions was deregulated. Third, two types of heterogeneity were observed in ERBB2-amplified BCs. The genomic profiles of estrogen receptor-postive (ER+ and negative (ER- ERBB2-amplified BCs were different. The WNT/β-catenin signaling pathway was involved in ER- ERBB2-amplified BCs, and PVT1 and TRPS1 were candidate oncogenes associated with ER+ ERBB2-amplified BCs. The size of the ERBB2 amplicon was different in inflammatory (IBC and non-inflammatory BCs. ERBB2-amplified IBCs were characterized by the downregulated and upregulated mRNA expression of ten and two genes in proportion to CNA, respectively. IHC results showed (i a linear relationship between ERBB2 gene amplification and its gene and protein expressions with a good correlation between ERBB2 expression and phosphorylation status; (ii a potential signaling cross-talk between

  5. Genomic alterations in pancreatic cancer and their relevance to therapy

    Institute of Scientific and Technical Information of China (English)

    Erina; Takai; Shinichi; Yachida

    2015-01-01

    Pancreatic cancer is a highly lethal cancer type, for which there are few viable therapeutic options. But, with the advance of sequencing technologies for global genomic analysis, the landscape of genomic alterations in pancreatic cancer is becoming increasingly well understood. In this review, we summarize current knowledge of genomic alterations in 12 core signaling pathways or cellular processes in pancreatic ductal adenocarcinoma, which is the most common type of malignancy in the pancreas, including four commonly mutated genes and many other genes that are mutated at low frequencies. We also describe the potential implications of these genomic alterations for development of novel therapeutic approaches in the context of personalized medicine.

  6. Genetic basis of kidney cancer: role of genomics for the development of disease-based therapeutics.

    Science.gov (United States)

    Linehan, W Marston

    2012-11-01

    Kidney cancer is not a single disease; it is made up of a number of different types of cancer, including clear cell, type 1 papillary, type 2 papillary, chromophobe, TFE3, TFEB, and oncocytoma. Sporadic, nonfamilial kidney cancer includes clear cell kidney cancer (75%), type 1 papillary kidney cancer (10%), papillary type 2 kidney cancer (including collecting duct and medullary RCC) (5%), the microphalmia-associated transcription (MiT) family translocation kidney cancers (TFE3, TFEB, and MITF), chromophobe kidney cancer (5%), and oncocytoma (5%). Each has a distinct histology, a different clinical course, responds differently to therapy, and is caused by mutation in a different gene. Genomic studies identifying the genes for kidney cancer, including the VHL, MET, FLCN, fumarate hydratase, succinate dehydrogenase, TSC1, TSC2, and TFE3 genes, have significantly altered the ways in which patients with kidney cancer are managed. While seven FDA-approved agents that target the VHL pathway have been approved for the treatment of patients with advanced kidney cancer, further genomic studies, such as whole genome sequencing, gene expression patterns, and gene copy number, will be required to gain a complete understanding of the genetic basis of kidney cancer and of the kidney cancer gene pathways and, most importantly, to provide the foundation for the development of effective forms of therapy for patients with this disease.

  7. Genomic Copy Number Dictates a Gene-Independent Cell Response to CRISPR/Cas9 Targeting | Office of Cancer Genomics

    Science.gov (United States)

    The CRISPR/Cas9 system enables genome editing and somatic cell genetic screens in mammalian cells. We performed genome-scale loss-of-function screens in 33 cancer cell lines to identify genes essential for proliferation/survival and found a strong correlation between increased gene copy number and decreased cell viability after genome editing. Within regions of copy-number gain, CRISPR/Cas9 targeting of both expressed and unexpressed genes, as well as intergenic loci, led to significantly decreased cell proliferation through induction of a G2 cell-cycle arrest.

  8. Genomic leftovers: identifying novel microsatellites, over-represented motifs and functional elements in the human genome

    Science.gov (United States)

    Fonville, Natalie C.; Velmurugan, Karthik Raja; Tae, Hongseok; Vaksman, Zalman; McIver, Lauren J.; Garner, Harold R.

    2016-01-01

    The human genome is 99% complete. This study contributes to filling the 1% gap by enriching previously unknown repeat regions called microsatellites (MST). We devised a Global MST Enrichment (GME) kit to enrich and nextgen sequence 2 colorectal cell lines and 16 normal human samples to illustrate its utility in identifying contigs from reads that do not map to the genome reference. The analysis of these samples yielded 790 novel extra-referential concordant contigs that are observed in more than one sample. We searched for evidence of functional elements in the concordant contigs in two ways: (1) BLAST-ing each contig against normal RNA-Seq samples, (2) Checking for predicted functional elements using GlimmerHMM. Of the 790 concordant contigs, 37 had an exact match to at least one RNA-Seq read; 15 aligned to more than 100 RNA-Seq reads. Of the 249 concordant contigs predicted by GlimmerHMM to have functional elements, 6 had at least one exact RNA-Seq match. BLAST-ing these novel contigs against all publically available sequences confirmed that they were found in human and chimpanzee BAC and FOSMID clones sequenced as part of the original human genome project. These extra-referential contigs predominantly contained pentameric repeats, especially two motifs: AATGG and GTGGA. PMID:27278669

  9. The compact Selaginella genome identifies changes in gene content associated with the evolution of vascular plants

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor V.; Banks, Jo Ann; Nishiyama, Tomoaki; Hasebe, Mitsuyasu; Bowman, John L.; Gribskov, Michael; dePamphilis, Claude; Albert, Victor A.; Aono, Naoki; Aoyama, Tsuyoshi; Ambrose, Barbara A.; Ashton, Neil W.; Axtell, Michael J.; Barker, Elizabeth; Barker, Michael S.; Bennetzen, Jeffrey L.; Bonawitz, Nicholas D.; Chapple, Clint; Cheng, Chaoyang; Correa, Luiz Gustavo Guedes; Dacre, Michael; DeBarry, Jeremy; Dreyer, Ingo; Elias, Marek; Engstrom, Eric M.; Estelle, Mark; Feng, Liang; Finet, Cedric; Floyd, Sandra K.; Frommer, Wolf B.; Fujita, Tomomichi; Gramzow, Lydia; Gutensohn, Michael; Harholt, Jesper; Hattori, Mitsuru; Heyl, Alexander; Hirai, Tadayoshi; Hiwatashi, Yuji; Ishikawa, Masaki; Iwata, Mineko; Karol, Kenneth G.; Koehler, Barbara; Kolukisaoglu, Uener; Kubo, Minoru; Kurata, Tetsuya; Lalonde, Sylvie; Li, Kejie; Li, Ying; Litt, Amy; Lyons, Eric; Manning, Gerard; Maruyama, Takeshi; Michael, Todd P.; Mikami, Koji; Miyazaki, Saori; Morinaga, Shin-ichi; Murata, Takashi; Mueller-Roeber, Bernd; Nelson, David R.; Obara, Mari; Oguri, Yasuko; Olmstead, Richard G.; Onodera, Naoko; Petersen, Bent Larsen; Pils, Birgit; Prigge, Michael; Rensing, Stefan A.; Riano-Pachon, Diego Mauricio; Roberts, Alison W.; Sato, Yoshikatsu; Scheller, Henrik Vibe; Schulz, Burkhard; Schulz, Christian; Shakirov, Eugene V.; Shibagaki, Nakako; Shinohara, Naoki; Shippen, Dorothy E.; Sorensen, Iben; Sotooka, Ryo; Sugimoto, Nagisa; Sugita, Mamoru; Sumikawa, Naomi; Tanurdzic, Milos; Theilsen, Gunter; Ulvskov, Peter; Wakazuki, Sachiko; Weng, Jing-Ke; Willats, William W.G.T.; Wipf, Daniel; Wolf, Paul G.; Yang, Lixing; Zimmer, Andreas D.; Zhu, Qihui; Mitros, Therese; Hellsten, Uffe; Loque, Dominique; Otillar, Robert; Salamov, Asaf; Schmutz, Jeremy; Shapiro, Harris; Lindquist, Erika; Lucas, Susan; Rokhsar, Daniel

    2011-04-28

    We report the genome sequence of the nonseed vascular plant, Selaginella moellendorffii, and by comparative genomics identify genes that likely played important roles in the early evolution of vascular plants and their subsequent evolution

  10. Pan-cancer analysis of ROS1 genomic aberrations

    OpenAIRE

    Wang, Yidan; 王奕丹

    2015-01-01

    The ROS proto-oncogene 1 (ROS1) encodes the ROS1 receptor kinase. ROS1 rearrangements are known to be oncogenic in glioblastoma, non–small-cell lung carcinoma (NSCLC) and cholangiocarcinoma. The clinical relevance of ROS1 genomic aberrations in other human cancers is largely unexamined. Here, we performed a pan-cancer analysis of ROS1 genomic aberrations across 20 cancer sites by interrogating the whole-exome sequencing data of the Cancer Genome Atlas (TCGA) via the cBioportal (www.cbioportal...

  11. Translating the cancer genome: Going beyond p values

    Energy Technology Data Exchange (ETDEWEB)

    Chin, Lynda; Chin, Lynda; Gray, Joe W.

    2008-04-03

    Cancer cells are endowed with diverse biological capabilities driven by myriad inherited and somatic genetic and epigenetic aberrations that commandeer key cancer-relevant pathways. Efforts to elucidate these aberrations began with Boveri's hypothesis of aberrant mitoses causing cancer and continue today with a suite of powerful high-resolution technologies that enable detailed catalogues of genomic aberrations and epigenomic modifications. Tomorrow will likely bring the complete atlas of reversible and irreversible alteration in individual cancers. The challenge now is to discern causal molecular abnormalities from genomic and epigenomic 'noise', to understand how the ensemble of these aberrations collaborate to drive cancer pathophysiology. Here, we highlight lessons learned from now classical examples of successful translation of genomic discoveries into clinical practice, lessons that may be used to guide and accelerate translation of emerging genomic insights into practical clinical endpoints that can impact on practice of cancer medicine.

  12. Novel Somatic Copy Number Alteration Identified for Cervical Cancer in the Mexican American Population

    Directory of Open Access Journals (Sweden)

    Alireza Torabi

    2016-08-01

    Full Text Available Cervical cancer affects millions of Americans, but the rate for cervical cancer in the Mexican American is approximately twice that for non-Mexican Americans. The etiologies of cervical cancer are still not fully understood. A number of somatic mutations, including several copy number alterations (CNAs, have been identified in the pathogenesis of cervical carcinomas in non-Mexican Americans. Thus, the purpose of this study was to investigate CNAs in association with cervical cancer in the Mexican American population. We conducted a pilot study of genome-wide CNA analysis using 2.5 million markers in four diagnostic groups: reference (n = 125, low grade dysplasia (cervical intraepithelial neoplasia (CIN-I, n = 4, high grade dysplasia (CIN-II and -III, n = 5 and invasive carcinoma (squamous cell carcinoma (SCC, n = 5 followed by data analyses using Partek. We observed a statistically-significant difference of CNA burden between case and reference groups of different sizes (>100 kb, 10–100 kb and 1–10 kb of CNAs that included deletions and amplifications, e.g., a statistically-significant difference of >100 kb deletions was observed between the reference (6.6% and pre-cancer and cancer (91.3% groups. Recurrent aberrations of 98 CNA regions were also identified in cases only. However, none of the CNAs have an impact on cancer progression. A total of 32 CNA regions identified contained tumor suppressor genes and oncogenes. Moreover, the pathway analysis revealed endometrial cancer and estrogen signaling pathways associated with this cancer (p < 0.05 using Kyoto Encyclopedia of Genes and Genomes (KEGG. This is the first report of CNAs identified for cervical cancer in the U.S. Latino population using high density markers. We are aware of the small sample size in the study. Thus, additional studies with a larger sample are needed to confirm the current findings.

  13. Large-scale genotyping identifies 41 new loci associated with breast cancer risk

    Science.gov (United States)

    Michailidou, Kyriaki; Hall, Per; Gonzalez-Neira, Anna; Ghoussaini, Maya; Dennis, Joe; Milne, Roger L; Schmidt, Marjanka K; Chang-Claude, Jenny; Bojesen, Stig E; Bolla, Manjeet K; Wang, Qin; Dicks, Ed; Lee, Andrew; Turnbull, Clare; Rahman, Nazneen; Fletcher, Olivia; Peto, Julian; Gibson, Lorna; Silva, Isabel dos Santos; Nevanlinna, Heli; Muranen, Taru A; Aittomäki, Kristiina; Blomqvist, Carl; Czene, Kamila; Irwanto, Astrid; Liu, Jianjun; Waisfisz, Quinten; Meijers-Heijboer, Hanne; Adank, Muriel; van der Luijt, Rob B; Hein, Rebecca; Dahmen, Norbert; Beckman, Lars; Meindl, Alfons; Schmutzler, Rita K; Müller-Myhsok, Bertram; Lichtner, Peter; Hopper, John L; Southey, Melissa C; Makalic, Enes; Schmidt, Daniel F; Uitterlinden, Andre G; Hofman, Albert; Hunter, David J; Chanock, Stephen J; Vincent, Daniel; Bacot, François; Tessier, Daniel C; Canisius, Sander; Wessels, Lodewyk F A; Haiman, Christopher A; Shah, Mitul; Luben, Robert; Brown, Judith; Luccarini, Craig; Schoof, Nils; Humphreys, Keith; Li, Jingmei; Nordestgaard, Børge G; Nielsen, Sune F; Flyger, Henrik; Couch, Fergus J; Wang, Xianshu; Vachon, Celine; Stevens, Kristen N; Lambrechts, Diether; Moisse, Matthieu; Paridaens, Robert; Christiaens, Marie-Rose; Rudolph, Anja; Nickels, Stefan; Flesch-Janys, Dieter; Johnson, Nichola; Aitken, Zoe; Aaltonen, Kirsimari; Heikkinen, Tuomas; Broeks, Annegien; Van’t Veer, Laura J; van der Schoot, C Ellen; Guénel, Pascal; Truong, Thérèse; Laurent-Puig, Pierre; Menegaux, Florence; Marme, Frederik; Schneeweiss, Andreas; Sohn, Christof; Burwinkel, Barbara; Zamora, M Pilar; Perez, Jose Ignacio Arias; Pita, Guillermo; Alonso, M Rosario; Cox, Angela; Brock, Ian W; Cross, Simon S; Reed, Malcolm W R; Sawyer, Elinor J; Tomlinson, Ian; Kerin, Michael J; Miller, Nicola; Henderson, Brian E; Schumacher, Fredrick; Le Marchand, Loic; Andrulis, Irene L; Knight, Julia A; Glendon, Gord; Mulligan, Anna Marie; Lindblom, Annika; Margolin, Sara; Hooning, Maartje J; Hollestelle, Antoinette; van den Ouweland, Ans M W; Jager, Agnes; Bui, Quang M; Stone, Jennifer; Dite, Gillian S; Apicella, Carmel; Tsimiklis, Helen; Giles, Graham G; Severi, Gianluca; Baglietto, Laura; Fasching, Peter A; Haeberle, Lothar; Ekici, Arif B; Beckmann, Matthias W; Brenner, Hermann; Müller, Heiko; Arndt, Volker; Stegmaier, Christa; Swerdlow, Anthony; Ashworth, Alan; Orr, Nick; Jones, Michael; Figueroa, Jonine; Lissowska, Jolanta; Brinton, Louise; Goldberg, Mark S; Labrèche, France; Dumont, Martine; Winqvist, Robert; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Grip, Mervi; Brauch, Hiltrud; Hamann, Ute; Brüning, Thomas; Radice, Paolo; Peterlongo, Paolo; Manoukian, Siranoush; Bonanni, Bernardo; Devilee, Peter; Tollenaar, Rob A E M; Seynaeve, Caroline; van Asperen, Christi J; Jakubowska, Anna; Lubinski, Jan; Jaworska, Katarzyna; Durda, Katarzyna; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M; Bogdanova, Natalia V; Antonenkova, Natalia N; Dörk, Thilo; Kristensen, Vessela N; Anton-Culver, Hoda; Slager, Susan; Toland, Amanda E; Edge, Stephen; Fostira, Florentia; Kang, Daehee; Yoo, Keun-Young; Noh, Dong-Young; Matsuo, Keitaro; Ito, Hidemi; Iwata, Hiroji; Sueta, Aiko; Wu, Anna H; Tseng, Chiu-Chen; Van Den Berg, David; Stram, Daniel O; Shu, Xiao-Ou; Lu, Wei; Gao, Yu-Tang; Cai, Hui; Teo, Soo Hwang; Yip, Cheng Har; Phuah, Sze Yee; Cornes, Belinda K; Hartman, Mikael; Miao, Hui; Lim, Wei Yen; Sng, Jen-Hwei; Muir, Kenneth; Lophatananon, Artitaya; Stewart-Brown, Sarah; Siriwanarangsan, Pornthep; Shen, Chen-Yang; Hsiung, Chia-Ni; Wu, Pei-Ei; Ding, Shian-Ling; Sangrajrang, Suleeporn; Gaborieau, Valerie; Brennan, Paul; McKay, James; Blot, William J; Signorello, Lisa B; Cai, Qiuyin; Zheng, Wei; Deming-Halverson, Sandra; Shrubsole, Martha; Long, Jirong; Simard, Jacques; Garcia-Closas, Montse; Pharoah, Paul D P; Chenevix-Trench, Georgia; Dunning, Alison M; Benitez, Javier; Easton, Douglas F

    2013-01-01

    Breast cancer is the most common cancer among women. Common variants at 27 loci have been identified as associated with susceptibility to breast cancer, and these account for ~9% of the familial risk of the disease. We report here a meta-analysis of 9 genome-wide association studies, including 10,052 breast cancer cases and 12,575 controls of European ancestry, from which we selected 29,807 SNPs for further genotyping. These SNPs were genotyped in 45,290 cases and 41,880 controls of European ancestry from 41 studies in the Breast Cancer Association Consortium (BCAC). The SNPs were genotyped as part of a collaborative genotyping experiment involving four consortia (Collaborative Oncological Gene-environment Study, COGS) and used a custom Illumina iSelect genotyping array, iCOGS, comprising more than 200,000 SNPs. We identified SNPs at 41 new breast cancer susceptibility loci at genome-wide significance (P < 5 × 10−8). Further analyses suggest that more than 1,000 additional loci are involved in breast cancer susceptibility. PMID:23535729

  14. An Evolutionary Approach for Identifying Driver Mutations in Colorectal Cancer.

    Directory of Open Access Journals (Sweden)

    Jasmine Foo

    2015-09-01

    Full Text Available The traditional view of cancer as a genetic disease that can successfully be treated with drugs targeting mutant onco-proteins has motivated whole-genome sequencing efforts in many human cancer types. However, only a subset of mutations found within the genomic landscape of cancer is likely to provide a fitness advantage to the cell. Distinguishing such "driver" mutations from innocuous "passenger" events is critical for prioritizing the validation of candidate mutations in disease-relevant models. We design a novel statistical index, called the Hitchhiking Index, which reflects the probability that any observed candidate gene is a passenger alteration, given the frequency of alterations in a cross-sectional cancer sample set, and apply it to a mutational data set in colorectal cancer. Our methodology is based upon a population dynamics model of mutation accumulation and selection in colorectal tissue prior to cancer initiation as well as during tumorigenesis. This methodology can be used to aid in the prioritization of candidate mutations for functional validation and contributes to the process of drug discovery.

  15. Pan-Genome Analysis of Human Gastric Pathogen H. pylori: Comparative Genomics and Pathogenomics Approaches to Identify Regions Associated with Pathogenicity and Prediction of Potential Core Therapeutic Targets

    Directory of Open Access Journals (Sweden)

    Amjad Ali

    2015-01-01

    Full Text Available Helicobacter pylori is a human gastric pathogen implicated as the major cause of peptic ulcer and second leading cause of gastric cancer (~70% around the world. Conversely, an increased resistance to antibiotics and hindrances in the development of vaccines against H. pylori are observed. Pan-genome analyses of the global representative H. pylori isolates consisting of 39 complete genomes are presented in this paper. Phylogenetic analyses have revealed close relationships among geographically diverse strains of H. pylori. The conservation among these genomes was further analyzed by pan-genome approach; the predicted conserved gene families (1,193 constitute ~77% of the average H. pylori genome and 45% of the global gene repertoire of the species. Reverse vaccinology strategies have been adopted to identify and narrow down the potential core-immunogenic candidates. Total of 28 nonhost homolog proteins were characterized as universal therapeutic targets against H. pylori based on their functional annotation and protein-protein interaction. Finally, pathogenomics and genome plasticity analysis revealed 3 highly conserved and 2 highly variable putative pathogenicity islands in all of the H. pylori genomes been analyzed.

  16. Identification of cancer risk lncRNAs and cancer risk pathways regulated by cancer risk lncRNAs based on genome sequencing data in human cancers.

    Science.gov (United States)

    Li, Yiran; Li, Wan; Liang, Binhua; Li, Liansheng; Wang, Li; Huang, Hao; Guo, Shanshan; Wang, Yahui; He, Yuehan; Chen, Lina; He, Weiming

    2016-12-19

    Cancer is a group of diseases involving abnormal cell growth with the potential to invade or spread to other parts of the body. The complexity of cancer can be reduced to a small number of underlying principles like cancer hallmarks which could govern the transformation of normal cells to cancer. Besides, the growth and metastasis of cancer often relate to combined effects of long non-coding RNAs (lncRNAs). Here, we performed comprehensive analysis for lncRNA expression profiles and clinical data of six types of human cancer patients from The Cancer Genome Atlas (TCGA), and identified six risk pathways and twenty three lncRNAs. In addition, twenty three cancer risk lncRNAs which were closely related to the occurrence or development of cancer had a good classification performance for samples of testing datasets of six cancer datasets. More important, these lncRNAs were able to separate samples in the entire cancer dataset into high-risk group and low-risk group with significantly different overall survival (OS), which was further validated in ten validation datasets. In our study, the robust and effective cancer biomarkers were obtained from cancer datasets which had information of normal-tumor samples. Overall, our research can provide a new perspective for the further study of clinical diagnosis and treatment of cancer.

  17. A significant association between rs8067378 at 17q12 and invasive cervical cancer originally identified by a genome-wide association study in Han Chinese is replicated in a Japanese population.

    Science.gov (United States)

    Miura, Kiyonori; Mishima, Hiroyuki; Yasunami, Michio; Kaneuchi, Masanori; Kitajima, Michio; Abe, Shuhei; Higashijima, Ai; Fuchi, Naoki; Miura, Shoko; Yoshiura, Koh-Ichiro; Masuzaki, Hideaki

    2016-09-01

    In this study, associations between invasive cervical cancer and four cervical cancer susceptibility loci (rs13117307 at 4q12, rs8067378 at 17q12, and rs4282438 and rs9277952 at 6p21.32) in the Han Chinese population were investigated in a Japanese population. Human leukocyte antigen (HLA)-DPB1 alleles were also investigated for their association with cervical cancer risk in the Japanese population. After receiving written informed consent, 214 unrelated Japanese women with invasive cervical cancer and 288 cancer-free Japanese women were recruited, and DNA samples were obtained (study protocol approved by Institutional Review Board of Nagasaki University). Of the four single-nucleotide polymorphisms, rs8067378 showed a significant association with invasive cervical cancer (P=0.0071). Under a recessive model, the minor allele G of rs8067378 contributed to the risk of invasive cervical cancer (odds ratio=2.92, 95% confidence interval=1.40-6.36; P=0.0021). No association was detected between HLA-DPB1 alleles and cervical cancer risk in the Japanese population. In conclusion, we show for the first time, to the best of our knowledge, that an association between increased risk of invasive cervical cancer and rs8067378 in the Han Chinese population is replicated in a Japanese population. In addition, Japanese women with the GG genotype of rs8067378 are a candidate high-risk group for invasive cervical carcinoma.

  18. Identifying Cancer Driver Genes Using Replication-Incompetent Retroviral Vectors

    Directory of Open Access Journals (Sweden)

    Victor M. Bii

    2016-10-01

    Full Text Available Identifying novel genes that drive tumor metastasis and drug resistance has significant potential to improve patient outcomes. High-throughput sequencing approaches have identified cancer genes, but distinguishing driver genes from passengers remains challenging. Insertional mutagenesis screens using replication-incompetent retroviral vectors have emerged as a powerful tool to identify cancer genes. Unlike replicating retroviruses and transposons, replication-incompetent retroviral vectors lack additional mutagenesis events that can complicate the identification of driver mutations from passenger mutations. They can also be used for almost any human cancer due to the broad tropism of the vectors. Replication-incompetent retroviral vectors have the ability to dysregulate nearby cancer genes via several mechanisms including enhancer-mediated activation of gene promoters. The integrated provirus acts as a unique molecular tag for nearby candidate driver genes which can be rapidly identified using well established methods that utilize next generation sequencing and bioinformatics programs. Recently, retroviral vector screens have been used to efficiently identify candidate driver genes in prostate, breast, liver and pancreatic cancers. Validated driver genes can be potential therapeutic targets and biomarkers. In this review, we describe the emergence of retroviral insertional mutagenesis screens using replication-incompetent retroviral vectors as a novel tool to identify cancer driver genes in different cancer types.

  19. Genome-wide association study identifies five new schizophrenia loci

    DEFF Research Database (Denmark)

    Ripke, Stephan; Sanders, Alan R; Kendler, Kenneth S;

    2011-01-01

    We examined the role of common genetic variation in schizophrenia in a genome-wide association study of substantial size: a stage 1 discovery sample of 21,856 individuals of European ancestry and a stage 2 replication sample of 29,839 independent subjects. The combined stage 1 and 2 analysis yiel...

  20. Genome-wide association study identifies five new schizophrenia loci

    NARCIS (Netherlands)

    Ripke, Stephan; Sanders, Alan R.; Kendler, Kenneth S.; Levinson, Douglas F.; Sklar, Pamela; Holmans, Peter A.; Lin, Dan-Yu; Duan, Jubao; Ophoff, Roel A.; Andreassen, Ole A.; Scolnick, Edward; Cichon, Sven; Clair, David St.; Corvin, Aiden; Gurling, Hugh; Werge, Thomas; Rujescu, Dan; Blackwood, Douglas H. R.; Pato, Carlos N.; Malhotra, Anil K.; Purcell, Shaun; Dudbridge, Frank; Neale, Benjamin M.; Rossin, Lizzy; Visscher, Peter M.; Posthuma, Danielle; Ruderfer, Douglas M.; Fanous, Ayman; Stefansson, Hreinn; Steinberg, Stacy; Mowry, Bryan J.; Golimbet, Vera; De Hert, Marc; Jonsson, Erik G.; Bitter, Istvan; Pietilainen, Olli P. H.; Collier, David A.; Tosato, Sarah; Agartz, Ingrid; Albus, Margot; Alexander, Madeline; Amdur, Richard L.; Amin, Farooq; Bass, Nicholas; Bergen, Sarah E.; Black, Donald W.; Borglum, Anders D.; Brown, Matthew A.; Bruggeman, Richard; Buccola, Nancy G.; Byerley, William F.; Cahn, Wiepke; Cantor, Rita M.; Carr, Vaughan J.; Catts, Stanley V.; Choudhury, Khalid; Cloninger, C. Robert; Cormican, Paul; Craddock, Nicholas; Danoy, Patrick A.; Datta, Susmita; De Haan, Lieuwe; Demontis, Ditte; Dikeos, Dimitris; Djurovic, Srdjan; Donnelly, Peter; Donohoe, Gary; Duong, Linh; Dwyer, Sarah; Fink-Jensen, Anders; Freedman, Robert; Freimer, Nelson B.; Friedl, Marion; Georgieva, Lyudmila; Giegling, Ina; Gill, Michael; Glenthoj, Birte; Godard, Stephanie; Hamshere, Marian; Hansen, Mark; Hansen, Thomas; Hartmann, Annette M.; Henskens, Frans A.; Hougaard, David M.; Hultman, Christina M.; Ingason, Andres; Jablensky, Assen V.; Jakobsen, Klaus D.; Jay, Maurice; Juergens, Gesche; Kahn, Renes; Keller, Matthew C.; Kenis, Gunter; Kenny, Elaine; Kim, Yunjung; Kirov, George K.; Konnerth, Heike; Konte, Bettina; Krabbendam, Lydia; Krasucki, Robert; Lasseter, Virginia K.; Laurent, Claudine; Lawrence, Jacob; Lencz, Todd; Lerer, F. Bernard; Liang, Kung-Yee; Lichtenstein, Paul; Lieberman, Jeffrey A.; Linszen, Don H.; Lonnqvist, Jouko; Loughland, Carmel M.; Maclean, Alan W.; Maher, Brion S.; Maier, Wolfgang; Mallet, Jacques; Malloy, Pat; Mattheisen, Manuel; Mattingsdal, Morten; McGhee, Kevin A.; McGrath, John J.; McIntosh, Andrew; McLean, Duncan E.; McQuillin, Andrew; Melle, Ingrid; Michie, Patricia T.; Milanova, Vihra; Morris, Derek W.; Mors, Ole; Mortensen, Preben B.; Moskvina, Valentina; Muglia, Pierandrea; Myin-Germeys, Inez; Nertney, Deborah A.; Nestadt, Gerald; Nielsen, Jimmi; Nikolov, Ivan; Nordentoft, Merete; Norton, Nadine; Noethen, Markus M.; O'Dushlaine, Colm T.; Olincy, Ann; Olsen, Line; O'Neill, F. Anthony; Orntoft, Torben F.; Owen, Michael J.; Pantelis, Christos; Papadimitriou, George; Pato, Michele T.; Peltonen, Leena; Petursson, Hannes; Pickard, Ben; Pimm, Jonathan; Pulver, Ann E.; Puri, Vinay; Quested, Digby; Quinn, Emma M.; Rasmussen, Henrik B.; Rethelyi, Janos M.; Ribble, Robert; Rietschel, Marcella; Riley, Brien P.; Ruggeri, Mirella; Schall, Ulrich; Schulze, Thomas G.; Schwab, Sibylle G.; Scott, Rodney J.; Shi, Jianxin; Sigurdsson, Engilbert; Silverman, Jeremy M.; Spencer, Chris C. A.; Stefansson, Kari; Strange, Amy; Strengman, Eric; Stroup, T. Scott; Suvisaari, Jaana; Terenius, Lars; Thirumalai, Srinivasa; Thygesen, Johan H.; Timm, Sally; Toncheva, Draga; van den Oord, Edwin; van Os, Jim; van Winkel, Ruud; Veldink, Jan; Walsh, Dermot; Wang, August G.; Wiersma, Durk; Wildenauer, Dieter B.; Williams, Hywel J.; Williams, Nigel M.; Wormley, Brandon; Zammit, Stan; Sullivan, Patrick F.; O'Donovan, Michael C.; Daly, Mark J.; Gejman, Pablo V.

    2011-01-01

    We examined the role of common genetic variation in schizophrenia in a genome-wide association study of substantial size: a stage 1 discovery sample of 21,856 individuals of European ancestry and a stage 2 replication sample of 29,839 independent subjects. The combined stage 1 and 2 analysis yielded

  1. Genome-wide association study identifies five new schizophrenia loci.

    LENUS (Irish Health Repository)

    Ripke, Stephan

    2011-10-01

    We examined the role of common genetic variation in schizophrenia in a genome-wide association study of substantial size: a stage 1 discovery sample of 21,856 individuals of European ancestry and a stage 2 replication sample of 29,839 independent subjects. The combined stage 1 and 2 analysis yielded genome-wide significant associations with schizophrenia for seven loci, five of which are new (1p21.3, 2q32.3, 8p23.2, 8q21.3 and 10q24.32-q24.33) and two of which have been previously implicated (6p21.32-p22.1 and 18q21.2). The strongest new finding (P = 1.6 × 10(-11)) was with rs1625579 within an intron of a putative primary transcript for MIR137 (microRNA 137), a known regulator of neuronal development. Four other schizophrenia loci achieving genome-wide significance contain predicted targets of MIR137, suggesting MIR137-mediated dysregulation as a previously unknown etiologic mechanism in schizophrenia. In a joint analysis with a bipolar disorder sample (16,374 affected individuals and 14,044 controls), three loci reached genome-wide significance: CACNA1C (rs4765905, P = 7.0 × 10(-9)), ANK3 (rs10994359, P = 2.5 × 10(-8)) and the ITIH3-ITIH4 region (rs2239547, P = 7.8 × 10(-9)).

  2. Lung cancer screening: identifying the high risk cohort

    OpenAIRE

    Marcus, Michael W.; Raji, Olaide Y; John K. Field

    2015-01-01

    Low dose computed tomography (LDCT) is a viable screening tool for early lung cancer detection and mortality reduction. In practice, the success of any lung cancer screening programme will depend on successful identification of individuals at high risk in order to maximise the benefit-harm ratio. Risk prediction models incorporating multiple risk factors have been recognised as a method of identifying individuals at high risk of developing lung cancer. Identification of individuals at high ri...

  3. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia

    Science.gov (United States)

    Puente, Xose S.; Pinyol, Magda; Quesada, Víctor; Conde, Laura; Ordóñez, Gonzalo R.; Villamor, Neus; Escaramis, Georgia; Jares, Pedro; Beà, Sílvia; González-Díaz, Marcos; Bassaganyas, Laia; Baumann, Tycho; Juan, Manel; López-Guerra, Mónica; Colomer, Dolors; Tubío, José M. C.; López, Cristina; Navarro, Alba; Tornador, Cristian; Aymerich, Marta; Rozman, María; Hernández, Jesús M.; Puente, Diana A.; Freije, José M. P.; Velasco, Gloria; Gutiérrez-Fernández, Ana; Costa, Dolors; Carrió, Anna; Guijarro, Sara; Enjuanes, Anna; Hernández, Lluís; Yagüe, Jordi; Nicolás, Pilar; Romeo-Casabona, Carlos M.; Himmelbauer, Heinz; Castillo, Ester; Dohm, Juliane C.; de Sanjosé, Silvia; Piris, Miguel A.; de Alava, Enrique; Miguel, Jesús San; Royo, Romina; Gelpí, Josep L.; Torrents, David; Orozco, Modesto; Pisano, David G.; Valencia, Alfonso; Guigó, Roderic; Bayés, Mónica; Heath, Simon; Gut, Marta; Klatt, Peter; Marshall, John; Raine, Keiran; Stebbings, Lucy A.; Futreal, P. Andrew; Stratton, Michael R.; Campbell, Peter J.; Gut, Ivo; López-Guillermo, Armando; Estivill, Xavier; Montserrat, Emili; López-Otín, Carlos; Campo, Elías

    2012-01-01

    Chronic lymphocytic leukaemia (CLL), the most frequent leukaemia in adults in Western countries, is a heterogeneous disease with variable clinical presentation and evolution1,2. Two major molecular subtypes can be distinguished, characterized respectively by a high or low number of somatic hypermutations in the variable region of immunoglobulin genes3,4. The molecular changes leading to the pathogenesis of the disease are still poorly understood. Here we performed whole-genome sequencing of four cases of CLL and identified 46 somatic mutations that potentially affect gene function. Further analysis of these mutations in 363 patients with CLL identified four genes that are recurrently mutated: notch 1 (NOTCH1), exportin 1 (XPO1), myeloid differentiation primary response gene 88 (MYD88) and kelch-like 6 (KLHL6). Mutations in MYD88 and KLHL6 are predominant in cases of CLL with mutated immunoglobulin genes, whereas NOTCH1 and XPO1 mutations are mainly detected in patients with unmutated immunoglobulins. The patterns of somatic mutation, supported by functional and clinical analyses, strongly indicate that the recurrent NOTCH1, MYD88 and XPO1 mutations are oncogenic changes that contribute to the clinical evolution of the disease. To our knowledge, this is the first comprehensive analysis of CLL combining whole-genome sequencing with clinical characteristics and clinical outcomes. It highlights the usefulness of this approach for the identification of clinically relevant mutations in cancer. PMID:21642962

  4. Significance of duon mutations in cancer genomes

    Science.gov (United States)

    Yadav, Vinod Kumar; Smith, Kyle S.; Flinders, Colin; Mumenthaler, Shannon M.; de, Subhajyoti

    2016-06-01

    Functional mutations in coding regions not only affect the structure and function of the protein products, but may also modulate their expression in some cases. This class of mutations, recently dubbed “duon mutations” due to their dual roles, can potentially have major impacts on downstream pathways. However their significance in diseases such as cancer remain unclear. In a survey covering 4606 samples from 19 cancer types, and integrating allelic expression, overall mRNA expression, regulatory motif perturbation, and chromatin signatures in one composite index called REDACT score, we identified potential duon mutations. Several such mutations are detected in known cancer genes in multiple cancer types. For instance a potential duon mutation in TP53 is associated with increased expression of the mutant allelic gene copy, thereby possibly amplifying the functional effects on the downstream pathways. Another potential duon mutation in SF3B1 is associated with abnormal splicing and changes in angiogenesis and matrix degradation related pathways. Our findings emphasize the need to interrogate the mutations in coding regions beyond their obvious effects on protein structures.

  5. Evolution of cancer suppression as revealed by mammalian comparative genomics.

    Science.gov (United States)

    Tollis, Marc; Schiffman, Joshua D; Boddy, Amy M

    2017-02-02

    Cancer suppression is an important feature in the evolution of large and long-lived animals. While some tumor suppression pathways are conserved among all multicellular organisms, others mechanisms of cancer resistance are uniquely lineage specific. Comparative genomics has become a powerful tool to discover these unique and shared molecular adaptations in respect to cancer suppression. These findings may one day be translated to human patients through evolutionary medicine. Here, we will review theory and methods of comparative cancer genomics and highlight major findings of cancer suppression across mammals. Our current knowledge of cancer genomics suggests that more efficient DNA repair and higher sensitivity to DNA damage may be the key to tumor suppression in large or long-lived mammals.

  6. Identifying Genes Responsible for Tamoxifen Resistance in Breast Cancer

    NARCIS (Netherlands)

    D. Meijer (Daniëlle)

    2008-01-01

    textabstractBreast cancer is one of the leading causes of death of women in western countries. It affects one out of eight females in the USA (1) and one out of nine females in The Netherlands (www.kankerregistratie.nl) during their lifetime. Many risk factors for breast cancer have been identified

  7. Integrative Genomic Analysis of Cholangiocarcinoma Identifies Distinct IDH-Mutant Molecular Profiles

    Directory of Open Access Journals (Sweden)

    Farshad Farshidfar

    2017-03-01

    Full Text Available Cholangiocarcinoma (CCA is an aggressive malignancy of the bile ducts, with poor prognosis and limited treatment options. Here, we describe the integrated analysis of somatic mutations, RNA expression, copy number, and DNA methylation by The Cancer Genome Atlas of a set of predominantly intrahepatic CCA cases and propose a molecular classification scheme. We identified an IDH mutant-enriched subtype with distinct molecular features including low expression of chromatin modifiers, elevated expression of mitochondrial genes, and increased mitochondrial DNA copy number. Leveraging the multi-platform data, we observed that ARID1A exhibited DNA hypermethylation and decreased expression in the IDH mutant subtype. More broadly, we found that IDH mutations are associated with an expanded histological spectrum of liver tumors with molecular features that stratify with CCA. Our studies reveal insights into the molecular pathogenesis and heterogeneity of cholangiocarcinoma and provide classification information of potential therapeutic significance.

  8. TAGCNA: a method to identify significant consensus events of copy number alterations in cancer.

    Directory of Open Access Journals (Sweden)

    Xiguo Yuan

    Full Text Available Somatic copy number alteration (CNA is a common phenomenon in cancer genome. Distinguishing significant consensus events (SCEs from random background CNAs in a set of subjects has been proven to be a valuable tool to study cancer. In order to identify SCEs with an acceptable type I error rate, better computational approaches should be developed based on reasonable statistics and null distributions. In this article, we propose a new approach named TAGCNA for identifying SCEs in somatic CNAs that may encompass cancer driver genes. TAGCNA employs a peel-off permutation scheme to generate a reasonable null distribution based on a prior step of selecting tag CNA markers from the genome being considered. We demonstrate the statistical power of TAGCNA on simulated ground truth data, and validate its applicability using two publicly available cancer datasets: lung and prostate adenocarcinoma. TAGCNA identifies SCEs that are known to be involved with proto-oncogenes (e.g. EGFR, CDK4 and tumor suppressor genes (e.g. CDKN2A, CDKN2B, and provides many additional SCEs with potential biological relevance in these data. TAGCNA can be used to analyze the significance of CNAs in various cancers. It is implemented in R and is freely available at http://tagcna.sourceforge.net/.

  9. Genomic and expression array profiling of chromosome 20q amplicon in human colon cancer cells

    Directory of Open Access Journals (Sweden)

    Carter Jennifer

    2005-01-01

    Full Text Available Background: Gain of the q arm of chromosome 20 in human colorectal cancer has been associated with poorer survival time and has been reported to increase in frequency from adenomas to metastasis. The increasing frequency of chromosome 20q amplification during colorectal cancer progression and the presence of this amplification in carcinomas of other tissue origin has lead us to hypothesize that 20q11-13 harbors one or more genes which, when over expressed promote tumor invasion and metastasis. Aims: Generate genomic and expression profiles of the 20q amplicon in human cancer cell lines in order to identify genes with increased copy number and expression. Materials and Methods: Utilizing genomic sequencing clones and amplification mapping data from our lab and other previous studies, BAC/ PAC tiling paths spanning the 20q amplicon and genomic microarrays were generated. Array-CGH on the custom array with human cancer cell line DNAs was performed to generate genomic profiles of the amplicon. Expression array analysis with RNA from these cell lines using commercial oligo microarrays generated expression profiles of the amplicon. The data were then combined in order to identify genes with increased copy number and expression. Results: Over expressed genes in regions of increased copy number were identified and a list of potential novel genetic tumor markers was assembled based on biological functions of these genes Conclusions: Performing high-resolution genomic microarray profiling in conjunction with expression analysis is an effective approach to identify potential tumor markers.

  10. Cross-Cancer Genome-Wide Analysis of Lung, Ovary, Breast, Prostate, and Colorectal Cancer Reveals Novel Pleiotropic Associations.

    Science.gov (United States)

    Fehringer, Gordon; Kraft, Peter; Pharoah, Paul D; Eeles, Rosalind A; Chatterjee, Nilanjan; Schumacher, Fredrick R; Schildkraut, Joellen M; Lindström, Sara; Brennan, Paul; Bickeböller, Heike; Houlston, Richard S; Landi, Maria Teresa; Caporaso, Neil; Risch, Angela; Amin Al Olama, Ali; Berndt, Sonja I; Giovannucci, Edward L; Grönberg, Henrik; Kote-Jarai, Zsofia; Ma, Jing; Muir, Kenneth; Stampfer, Meir J; Stevens, Victoria L; Wiklund, Fredrik; Willett, Walter C; Goode, Ellen L; Permuth, Jennifer B; Risch, Harvey A; Reid, Brett M; Bezieau, Stephane; Brenner, Hermann; Chan, Andrew T; Chang-Claude, Jenny; Hudson, Thomas J; Kocarnik, Jonathan K; Newcomb, Polly A; Schoen, Robert E; Slattery, Martha L; White, Emily; Adank, Muriel A; Ahsan, Habibul; Aittomäki, Kristiina; Baglietto, Laura; Blomquist, Carl; Canzian, Federico; Czene, Kamila; Dos-Santos-Silva, Isabel; Eliassen, A Heather; Figueroa, Jonine D; Flesch-Janys, Dieter; Fletcher, Olivia; Garcia-Closas, Montserrat; Gaudet, Mia M; Johnson, Nichola; Hall, Per; Hazra, Aditi; Hein, Rebecca; Hofman, Albert; Hopper, John L; Irwanto, Astrid; Johansson, Mattias; Kaaks, Rudolf; Kibriya, Muhammad G; Lichtner, Peter; Liu, Jianjun; Lund, Eiliv; Makalic, Enes; Meindl, Alfons; Müller-Myhsok, Bertram; Muranen, Taru A; Nevanlinna, Heli; Peeters, Petra H; Peto, Julian; Prentice, Ross L; Rahman, Nazneen; Sanchez, Maria Jose; Schmidt, Daniel F; Schmutzler, Rita K; Southey, Melissa C; Tamimi, Rulla; Travis, Ruth C; Turnbull, Clare; Uitterlinden, Andre G; Wang, Zhaoming; Whittemore, Alice S; Yang, Xiaohong R; Zheng, Wei; Buchanan, Daniel D; Casey, Graham; Conti, David V; Edlund, Christopher K; Gallinger, Steven; Haile, Robert W; Jenkins, Mark; Le Marchand, Loïc; Li, Li; Lindor, Noralene M; Schmit, Stephanie L; Thibodeau, Stephen N; Woods, Michael O; Rafnar, Thorunn; Gudmundsson, Julius; Stacey, Simon N; Stefansson, Kari; Sulem, Patrick; Chen, Y Ann; Tyrer, Jonathan P; Christiani, David C; Wei, Yongyue; Shen, Hongbing; Hu, Zhibin; Shu, Xiao-Ou; Shiraishi, Kouya; Takahashi, Atsushi; Bossé, Yohan; Obeidat, Ma'en; Nickle, David; Timens, Wim; Freedman, Matthew L; Li, Qiyuan; Seminara, Daniela; Chanock, Stephen J; Gong, Jian; Peters, Ulrike; Gruber, Stephen B; Amos, Christopher I; Sellers, Thomas A; Easton, Douglas F; Hunter, David J; Haiman, Christopher A; Henderson, Brian E; Hung, Rayjean J

    2016-09-01

    Identifying genetic variants with pleiotropic associations can uncover common pathways influencing multiple cancers. We took a two-stage approach to conduct genome-wide association studies for lung, ovary, breast, prostate, and colorectal cancer from the GAME-ON/GECCO Network (61,851 cases, 61,820 controls) to identify pleiotropic loci. Findings were replicated in independent association studies (55,789 cases, 330,490 controls). We identified a novel pleiotropic association at 1q22 involving breast and lung squamous cell carcinoma, with eQTL analysis showing an association with ADAM15/THBS3 gene expression in lung. We also identified a known breast cancer locus CASP8/ALS2CR12 associated with prostate cancer, a known cancer locus at CDKN2B-AS1 with different variants associated with lung adenocarcinoma and prostate cancer, and confirmed the associations of a breast BRCA2 locus with lung and serous ovarian cancer. This is the largest study to date examining pleiotropy across multiple cancer-associated loci, identifying common mechanisms of cancer development and progression. Cancer Res; 76(17); 5103-14. ©2016 AACR.

  11. Common variants associated with breast cancer in genome-wide association studies are modifiers of breast cancer risk in BRCA1 and BRCA2 mutation carriers

    NARCIS (Netherlands)

    Wang, Xianshu; Pankratz, V. Shane; Fredericksen, Zachary; Tarrell, Robert; Karaus, Mary; McGuffog, Lesley; Pharaoh, Paul D. P.; Ponder, Bruce A. J.; Dunning, Alison M.; Peock, Susan; Cook, Margaret; Oliver, Clare; Frost, Debra; Sinilnikova, Olga M.; Stoppa-Lyonnet, Dominique; Mazoyer, Sylvie; Houdayer, Claude; Hogervorst, Frans B. L.; Hooning, Maartje J.; Ligtenberg, Marjolijn J.; Spurdle, Amanda; Chenevix-Trench, Georgia; Schmutzler, Rita K.; Wappenschmidt, Barbara; Engel, Christoph; Meindl, Alfons; Domchek, Susan M.; Nathanson, Katherine L.; Rebbeck, Timothy R.; Singer, Christian F.; Gschwantler-Kaulich, Daphne; Dressler, Catherina; Fink, Anneliese; Szabo, Csilla I.; Zikan, Michal; Foretova, Lenka; Claes, Kathleen; Thomas, Gilles; Hoover, Robert N.; Hunter, David J.; Chanock, Stephen J.; Easton, Douglas F.; Antoniou, Antonis C.; Couch, Fergus J.

    2010-01-01

    Recent studies have identified single nucleotide polymorphisms (SNPs) that significantly modify breast cancer risk in BRCA1 and BRCA2 mutation carriers. Since these risk modifiers were originally identified as genetic risk factors for breast cancer in genome-wide association studies (GWASs), additio

  12. Common variants associated with breast cancer in genome-wide association studies are modifiers of breast cancer risk in BRCA1 and BRCA2 mutation carriers.

    NARCIS (Netherlands)

    Wang, X.; Pankratz, V.S.; Fredericksen, Z.; Tarrell, R.; Karaus, M.; McGuffog, L.; Pharaoh, P.D.; Ponder, B.A.J.; Dunning, A.M.; Peock, S.; Cook, M.; Oliver, C.; Frost, D.; Sinilnikova, O.M.; Stoppa-Lyonnet, D.; Mazoyer, S.; Houdayer, C.; Hogervorst, F.B.L.; Hooning, M.J.; Ligtenberg, M.J.L.; Spurdle, A.; Chenevix-Trench, G.; Schmutzler, R.K.; Wappenschmidt, B.; Engel, C.; Meindl, A.; Domchek, S.M.; Nathanson, K.L.; Rebbeck, T.R.; Singer, C.F.; Gschwantler-Kaulich, D.; Dressler, C.; Fink, A.; Szabo, C.I.; Zikan, M.; Foretova, L.; Claes, K.; Thomas, G.; Hoover, R.N.; Hunter, D.J.; Chanock, S.J.; Easton, D.F.; Antoniou, A.C.; Couch, F.J.

    2010-01-01

    Recent studies have identified single nucleotide polymorphisms (SNPs) that significantly modify breast cancer risk in BRCA1 and BRCA2 mutation carriers. Since these risk modifiers were originally identified as genetic risk factors for breast cancer in genome-wide association studies (GWASs), additio

  13. Community Engagement for Identifying Cancer Education Needs in Puerto Rico.

    Science.gov (United States)

    Jiménez, Julio; Ramos, Axel; Ramos-Rivera, Francisco E; Gwede, Clement; Quinn, Gwendolyn P; Vadaparampil, Susan; Brandon, Thomas; Simmons, Vani; Castro, Eida

    2016-10-10

    Cancer is the leading cause of death in Puerto Rico, suggesting a need for improved strategies, programs, and resources devoted to cancer prevention. Enhanced prevention needs in Puerto Rico were initially identified in pilot studies conducted by the Ponce School of Medicine (PSM) in collaboration with the H. Lee Moffitt Cancer Center (MCC). In the current study, we used community engagement to identify specific needs in cancer prevention and education and strategies to create culturally attuned, effective cancer prevention education programs. A total of 37 participants attended a community forum and were assigned to one of three discussion groups: patients/survivors (n = 14); family/caregivers (n = 11); or healthcare providers (n = 12). Most participants were women (73 %), over 35 years of age, and a majority were married (58 %) and had a university education (81 %). The sessions were recorded and transcribed and analyzed for key themes. Participants wanted improved awareness of cancer prevention in Puerto Rico and believed cancer prevention education should start early, ideally in elementary school. Participants also stressed the importance of creating partnerships with private and government agencies to coordinate educational efforts. Suggested strategies included outreach to communities with limited resources, incorporating the testimony of cancer survivors, and utilizing social media to disseminate cancer prevention information.

  14. Origins of DNA Replication and Amplification in the Breast Cancer Genome

    Science.gov (United States)

    2011-09-01

    identified 53,914 origins in the MCF-7 genome, with a median width of 1.5 kb using the methodology as follows: We used BEDTools ( Quinlan et al...are collaborating with David Gilbert (University of Florida – Tallahassee) to determine the replication foci higher order structure in the nucleus...Cancer Cell 10: 515-527. Quinlan AR, Hall IM. (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 26: 841-2

  15. Identifying module biomarkers from gastric cancer by differential correlation network

    Directory of Open Access Journals (Sweden)

    Liu X

    2016-09-01

    Full Text Available Xiaoping Liu,1–3,* Xiao Chang1,3,* 1College of Statistics and Applied Mathematics, Anhui University of Finance and Economics, Bengbu, Anhui Province, People’s Republic of China; 2Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China; 3Collaborative Research Center for Innovative Mathematical Modeling, Institute of Industrial Science, University of Tokyo, Tokyo, Japan *These authors contributed equally to this work Abstract: Gastric cancer (stomach cancer is a severe disease caused by dysregulation of many functionally correlated genes or pathways instead of the mutation of individual genes. Systematic identification of gastric cancer biomarkers can provide insights into the mechanisms underlying this deadly disease and help in the development of new drugs. In this paper, we present a novel network-based approach to predict module biomarkers of gastric cancer that can effectively distinguish the disease from normal samples. Specifically, by assuming that gastric cancer has mainly resulted from dysfunction of biomolecular networks rather than individual genes in an organism, the genes in the module biomarkers are potentially related to gastric cancer. Finally, we identified a module biomarker with 27 genes, and by comparing the module biomarker with known gastric cancer biomarkers, we found that our module biomarker exhibited a greater ability to diagnose the samples with gastric cancer. Keywords: biomarkers, gastric cancer, stomach cancer, differential network

  16. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes.

    Science.gov (United States)

    Biankin, Andrew V; Waddell, Nicola; Kassahn, Karin S; Gingras, Marie-Claude; Muthuswamy, Lakshmi B; Johns, Amber L; Miller, David K; Wilson, Peter J; Patch, Ann-Marie; Wu, Jianmin; Chang, David K; Cowley, Mark J; Gardiner, Brooke B; Song, Sarah; Harliwong, Ivon; Idrisoglu, Senel; Nourse, Craig; Nourbakhsh, Ehsan; Manning, Suzanne; Wani, Shivangi; Gongora, Milena; Pajic, Marina; Scarlett, Christopher J; Gill, Anthony J; Pinho, Andreia V; Rooman, Ilse; Anderson, Matthew; Holmes, Oliver; Leonard, Conrad; Taylor, Darrin; Wood, Scott; Xu, Qinying; Nones, Katia; Fink, J Lynn; Christ, Angelika; Bruxner, Tim; Cloonan, Nicole; Kolle, Gabriel; Newell, Felicity; Pinese, Mark; Mead, R Scott; Humphris, Jeremy L; Kaplan, Warren; Jones, Marc D; Colvin, Emily K; Nagrial, Adnan M; Humphrey, Emily S; Chou, Angela; Chin, Venessa T; Chantrill, Lorraine A; Mawson, Amanda; Samra, Jaswinder S; Kench, James G; Lovell, Jessica A; Daly, Roger J; Merrett, Neil D; Toon, Christopher; Epari, Krishna; Nguyen, Nam Q; Barbour, Andrew; Zeps, Nikolajs; Kakkar, Nipun; Zhao, Fengmei; Wu, Yuan Qing; Wang, Min; Muzny, Donna M; Fisher, William E; Brunicardi, F Charles; Hodges, Sally E; Reid, Jeffrey G; Drummond, Jennifer; Chang, Kyle; Han, Yi; Lewis, Lora R; Dinh, Huyen; Buhay, Christian J; Beck, Timothy; Timms, Lee; Sam, Michelle; Begley, Kimberly; Brown, Andrew; Pai, Deepa; Panchal, Ami; Buchner, Nicholas; De Borja, Richard; Denroche, Robert E; Yung, Christina K; Serra, Stefano; Onetto, Nicole; Mukhopadhyay, Debabrata; Tsao, Ming-Sound; Shaw, Patricia A; Petersen, Gloria M; Gallinger, Steven; Hruban, Ralph H; Maitra, Anirban; Iacobuzio-Donahue, Christine A; Schulick, Richard D; Wolfgang, Christopher L; Morgan, Richard A; Lawlor, Rita T; Capelli, Paola; Corbo, Vincenzo; Scardoni, Maria; Tortora, Giampaolo; Tempero, Margaret A; Mann, Karen M; Jenkins, Nancy A; Perez-Mancera, Pedro A; Adams, David J; Largaespada, David A; Wessels, Lodewyk F A; Rust, Alistair G; Stein, Lincoln D; Tuveson, David A; Copeland, Neal G; Musgrove, Elizabeth A; Scarpa, Aldo; Eshleman, James R; Hudson, Thomas J; Sutherland, Robert L; Wheeler, David A; Pearson, John V; McPherson, John D; Gibbs, Richard A; Grimmond, Sean M

    2012-11-15

    Pancreatic cancer is a highly lethal malignancy with few effective therapies. We performed exome sequencing and copy number analysis to define genomic aberrations in a prospectively accrued clinical cohort (n = 142) of early (stage I and II) sporadic pancreatic ductal adenocarcinoma. Detailed analysis of 99 informative tumours identified substantial heterogeneity with 2,016 non-silent mutations and 1,628 copy-number variations. We define 16 significantly mutated genes, reaffirming known mutations (KRAS, TP53, CDKN2A, SMAD4, MLL3, TGFBR2, ARID1A and SF3B1), and uncover novel mutated genes including additional genes involved in chromatin modification (EPC1 and ARID2), DNA damage repair (ATM) and other mechanisms (ZIM2, MAP2K4, NALCN, SLC16A4 and MAGEA6). Integrative analysis with in vitro functional data and animal models provided supportive evidence for potential roles for these genetic aberrations in carcinogenesis. Pathway-based analysis of recurrently mutated genes recapitulated clustering in core signalling pathways in pancreatic ductal adenocarcinoma, and identified new mutated genes in each pathway. We also identified frequent and diverse somatic aberrations in genes described traditionally as embryonic regulators of axon guidance, particularly SLIT/ROBO signalling, which was also evident in murine Sleeping Beauty transposon-mediated somatic mutagenesis models of pancreatic cancer, providing further supportive evidence for the potential involvement of axon guidance genes in pancreatic carcinogenesis.

  17. Integrated genomic analysis of breast cancers.

    Science.gov (United States)

    Addou-Klouche, L; Adélaïde, J; Cornen, S; Bekhouche, I; Finetti, P; Guille, A; Sircoulomb, F; Raynaud, S; Bertucci, F; Birnbaum, D; Chaffanet, M

    2012-12-01

    Breast cancer is the most frequent and the most deadly cancer in women in Western countries. Different classifications of disease (anatomoclinical, pathological, prognostic, genetic) are used for guiding the management of patients. Unfortunately, they fail to reflect the whole clinical heterogeneity of the disease. Consequently, molecularly distinct diseases are grouped in similar clinical classes, likely explaining the different clinical outcome between patients in a given class, and the fact that selection of the most appropriate diagnostic or therapeutic strategy for each patient is not done accurately. Today, treatment is efficient in only 70.0-75.0% of cases overall. Our repertoire of efficient drugs is limited but is being expanded with the discovery of new molecular targets for new drugs, based on the identification of candidate oncogenes and tumor suppressor genes (TSG) functionally relevant in disease. Development of new drugs makes therapeutical decisions even more demanding of reliable classifiers and prognostic/predictive tests. Breast cancer is a complex, heterogeneous disease at the molecular level. The combinatorial molecular origin and the heterogeneity of malignant cells, and the variability of the host background, create distinct subgroups of tumors endowed with different phenotypic features such as response to therapy and clinical outcome. Cellular and molecular analyses can identify new classes biologically and clinically relevant, as well as provide new clinically relevant markers and targets. The various stages of mammary tumorigenesis are not clearly defined and the genetic and epigenetic events critical to the development and aggressiveness of breast cancer are not precisely known. Because the phenotype of tumors is dependent on many genes, a large-scale and integrated molecular characterization of the genetic and epigenetic alterations and gene expression deregulation should allow the identification of new molecular classes clinically

  18. Cross-cancer genome-wide analysis of lung, ovary, breast, prostate and colorectal cancer reveals novel pleiotropic associations

    Science.gov (United States)

    Fehringer, Gordon; Kraft, Peter; Pharoah, Paul D.; Eeles, Rosalind A.; Chatterjee, Nilanjan; Schumacher, Fred; Schildkraut, Joellen; Lindström, Sara; Brennan, Paul; Bickeböller, Heike; Houlston, Richard S.; Landi, Maria Teresa; Caporaso, Neil; Risch, Angela; Olama, Ali Amin Al; Berndt, Sonja I; Giovannucci, Edward; Grönberg, Henrik; Kote-Jarai, Zsofia; Ma, Jing; Muir, Kenneth; Stampfer, Meir; Stevens, Victoria L.; Wiklund, Fredrik; Willett, Walter; Goode, Ellen L.; Permuth, Jennifer; Risch, Harvey A.; Reid, Brett M.; Bezieau, Stephane; Brenner, Hermann; Chan, Andrew T.; Chang-Claude, Jenny; Hudson, Thomas J.; Kocarnik, Jonathan K.; Newcomb, Polly A.; Schoen, Robert E.; Slattery, Martha L.; White, Emily; Adank, Muriel A.; Ahsan, Habibul; Aittomäki, Kristiina; Baglietto, Laura; Blomquist, Carl; Canzian, Federico; Czene, Kamila; dos-Santos-Silva, Isabel; Eliassen, A. Heather; Figueroa, Jonine; Flesch-Janys, Dieter; Fletcher, Olivia; Garcia-Closas, Montserrat; Gaudet, Mia M.; Johnson, Nichola; Hall, Per; Hazra, Aditi; Hein, Rebecca; Hofman, Albert; Hopper, John L.; Irwanto, Astrid; Johansson, Mattias; Kaaks, Rudolf; Kibriya, Muhammad G.; Lichtner, Peter; Liu, Jianjun; Lund, Eiliv; Makalic, Enes; Meindl, Alfons; Müller-Myhsok, Bertram; Muranen, Taru A.; Nevanlinna, Heli; Peeters, Petra H.; Peto, Julian; Prentice, Ross L.; Rahman, Nazneen; Sanchez, Maria Jose; Schmidt, Daniel F.; Schmutzler, Rita K.; Southey, Melissa C.; Tamimi, Rulla; Travis, Ruth C.; Turnbull, Clare; Uitterlinden, Andre G.; Wang, Zhaoming; Whittemore, Alice S.; Yang, Xiaohong R.; Zheng, Wei; Rafnar, Thorunn; Gudmundsson, Julius; Stacey, Simon N.; Stefansson, Kari; Sulem, Patrick; Chen, Y. Ann; Tyrer, Jonathan P.; Christiani, David C.; Wei, Yongyue; Shen, Hongbing; Hu, Zhibin; Shu, Xiao-Ou; Shiraishi, Kouya; Takahashi, Atsushi; Bossé, Yohan; Obeidat, Ma’en; Nickle, David; Timens, Wim; Freedman, Matthew L.; Li, Qiyuan; Seminara, Daniela; Chanock, Stephen J.; Gong, Jian; Peters, Ulrike; Gruber, Stephen B.; Amos, Christopher I.; Sellers, Thomas A.; Easton, Douglas F.; Hunter, David J.; Haiman, Christopher A.; Henderson, Brian E.; Hung, Rayjean J.

    2016-01-01

    Identifying genetic variants with pleiotropic associations can uncover common pathways influencing multiple cancers. We took a two-staged approach to conduct genome-wide association studies for lung, ovary, breast, prostate and colorectal cancer from the GAME-ON/GECCO Network (61,851 cases, 61,820 controls) to identify pleiotropic loci. Findings were replicated in independent association studies (55,789 cases, 330,490 controls). We identified a novel pleiotropic association at 1q22 involving breast and lung squamous cell carcinoma, with eQTL analysis showing an association with ADAM15/THBS3 gene expression in lung. We also identified a known breast cancer locus CASP8/ALS2CR12 associated with prostate cancer, a known cancer locus at CDKN2B-AS1 with different variants associated with lung adenocarcinoma and prostate cancer and confirmed the associations of a breast BRCA2 locus with lung and serous ovarian cancer. This is the largest study to date examining pleiotropy across multiple cancer-associated loci, identifying common mechanisms of cancer development and progression. PMID:27197191

  19. Genome-wide transcript profiling reveals novel breast cancer-associated intronic sense RNAs.

    Science.gov (United States)

    Kim, Sang Woo; Fishilevich, Elane; Arango-Argoty, Gustavo; Lin, Yuefeng; Liu, Guodong; Li, Zhihua; Monaghan, A Paula; Nichols, Mark; John, Bino

    2015-01-01

    Non-coding RNAs (ncRNAs) play major roles in development and cancer progression. To identify novel ncRNAs that may identify key pathways in breast cancer development, we performed high-throughput transcript profiling of tumor and normal matched-pair tissue samples. Initial transcriptome profiling using high-density genome-wide tiling arrays revealed changes in over 200 novel candidate genomic regions that map to intronic regions. Sixteen genomic loci were identified that map to the long introns of five key protein-coding genes, CRIM1, EPAS1, ZEB2, RBMS1, and RFX2. Consistent with the known role of the tumor suppressor ZEB2 in the cancer-associated epithelial to mesenchymal transition (EMT), in situ hybridization reveals that the intronic regions deriving from ZEB2 as well as those from RFX2 and EPAS1 are down-regulated in cells of epithelial morphology, suggesting that these regions may be important for maintaining normal epithelial cell morphology. Paired-end deep sequencing analysis reveals a large number of distinct genomic clusters with no coding potential within the introns of these genes. These novel transcripts are only transcribed from the coding strand. A comprehensive search for breast cancer associated genes reveals enrichment for transcribed intronic regions from these loci, pointing to an underappreciated role of introns or mechanisms relating to their biology in EMT and breast cancer.

  20. Genome-wide transcript profiling reveals novel breast cancer-associated intronic sense RNAs.

    Directory of Open Access Journals (Sweden)

    Sang Woo Kim

    Full Text Available Non-coding RNAs (ncRNAs play major roles in development and cancer progression. To identify novel ncRNAs that may identify key pathways in breast cancer development, we performed high-throughput transcript profiling of tumor and normal matched-pair tissue samples. Initial transcriptome profiling using high-density genome-wide tiling arrays revealed changes in over 200 novel candidate genomic regions that map to intronic regions. Sixteen genomic loci were identified that map to the long introns of five key protein-coding genes, CRIM1, EPAS1, ZEB2, RBMS1, and RFX2. Consistent with the known role of the tumor suppressor ZEB2 in the cancer-associated epithelial to mesenchymal transition (EMT, in situ hybridization reveals that the intronic regions deriving from ZEB2 as well as those from RFX2 and EPAS1 are down-regulated in cells of epithelial morphology, suggesting that these regions may be important for maintaining normal epithelial cell morphology. Paired-end deep sequencing analysis reveals a large number of distinct genomic clusters with no coding potential within the introns of these genes. These novel transcripts are only transcribed from the coding strand. A comprehensive search for breast cancer associated genes reveals enrichment for transcribed intronic regions from these loci, pointing to an underappreciated role of introns or mechanisms relating to their biology in EMT and breast cancer.

  1. Identifying dysregulated pathways in cancers from pathway interaction networks

    Directory of Open Access Journals (Sweden)

    Liu Ke-Qin

    2012-06-01

    Full Text Available Abstract Background Cancers, a group of multifactorial complex diseases, are generally caused by mutation of multiple genes or dysregulation of pathways. Identifying biomarkers that can characterize cancers would help to understand and diagnose cancers. Traditional computational methods that detect genes differentially expressed between cancer and normal samples fail to work due to small sample size and independent assumption among genes. On the other hand, genes work in concert to perform their functions. Therefore, it is expected that dysregulated pathways will serve as better biomarkers compared with single genes. Results In this paper, we propose a novel approach to identify dysregulated pathways in cancer based on a pathway interaction network. Our contribution is three-fold. Firstly, we present a new method to construct pathway interaction network based on gene expression, protein-protein interactions and cellular pathways. Secondly, the identification of dysregulated pathways in cancer is treated as a feature selection problem, which is biologically reasonable and easy to interpret. Thirdly, the dysregulated pathways are identified as subnetworks from the pathway interaction networks, where the subnetworks characterize very well the functional dependency or crosstalk between pathways. The benchmarking results on several distinct cancer datasets demonstrate that our method can obtain more reliable and accurate results compared with existing state of the art methods. Further functional analysis and independent literature evidence also confirm that our identified potential pathogenic pathways are biologically reasonable, indicating the effectiveness of our method. Conclusions Dysregulated pathways can serve as better biomarkers compared with single genes. In this work, by utilizing pathway interaction networks and gene expression data, we propose a novel approach that effectively identifies dysregulated pathways, which can not only be used

  2. Augmenting Chinese hamster genome assembly by identifying regions of high confidence.

    Science.gov (United States)

    Vishwanathan, Nandita; Bandyopadhyay, Arpan A; Fu, Hsu-Yuan; Sharma, Mohit; Johnson, Kathryn C; Mudge, Joann; Ramaraj, Thiruvarangan; Onsongo, Getiria; Silverstein, Kevin A T; Jacob, Nitya M; Le, Huong; Karypis, George; Hu, Wei-Shou

    2016-09-01

    Chinese hamster Ovary (CHO) cell lines are the dominant industrial workhorses for therapeutic recombinant protein production. The availability of genome sequence of Chinese hamster and CHO cells will spur further genome and RNA sequencing of producing cell lines. However, the mammalian genomes assembled using shot-gun sequencing data still contain regions of uncertain quality due to assembly errors. Identifying high confidence regions in the assembled genome will facilitate its use for cell engineering and genome engineering. We assembled two independent drafts of Chinese hamster genome by de novo assembly from shotgun sequencing reads and by re-scaffolding and gap-filling the draft genome from NCBI for improved scaffold lengths and gap fractions. We then used the two independent assemblies to identify high confidence regions using two different approaches. First, the two independent assemblies were compared at the sequence level to identify their consensus regions as "high confidence regions" which accounts for at least 78 % of the assembled genome. Further, a genome wide comparison of the Chinese hamster scaffolds with mouse chromosomes revealed scaffolds with large blocks of collinearity, which were also compiled as high-quality scaffolds. Genome scale collinearity was complemented with EST based synteny which also revealed conserved gene order compared to mouse. As cell line sequencing becomes more commonly practiced, the approaches reported here are useful for assessing the quality of assembly and potentially facilitate the engineering of cell lines.

  3. Three new pancreatic cancer susceptibility signals identified on chromosomes 1q32.1, 5p15.33 and 8q24.21

    NARCIS (Netherlands)

    Zhang, Mingfeng; Wang, Zhaoming; Obazee, Ofure; Jia, Jinping; Childs, Erica J; Hoskins, Jason; Figlioli, Gisella; Mocci, Evelina; Collins, Irene; Chung, Charles C; Hautman, Christopher; Arslan, Alan A; Beane-Freeman, Laura; Bracci, Paige M; Buring, Julie; Duell, Eric J; Gallinger, Steven; Giles, Graham G; Goodman, Gary E; Goodman, Phyllis J; Kamineni, Aruna; Kolonel, Laurence N; Kulke, Matthew H; Malats, Núria; Olson, Sara H; Sesso, Howard D; Visvanathan, Kala; White, Emily; Zheng, Wei; Abnet, Christian C; Albanes, Demetrius; Andreotti, Gabriella; Brais, Lauren; Bueno-de-Mesquita, H Bas; Basso, Daniela; Berndt, Sonja I; Boutron-Ruault, Marie-Christine; Bijlsma, Maarten F; Brenner, Hermann; Burdette, Laurie; Campa, Daniele; Caporaso, Neil E; Capurso, Gabriele; Cavestro, Giulia Martina; Cotterchio, Michelle; Costello, Eithne; Elena, Joanne; Boggi, Ugo; Gaziano, J Michael; Gazouli, Maria; Giovannucci, Edward L; Goggins, Michael; Gross, Myron; Haiman, Christopher A; Hassan, Manal; Helzlsouer, Kathy J; Hu, Nan; Hunter, David J; Iskierka-Jazdzewska, Elzbieta; Jenab, Mazda; Kaaks, Rudolf; Key, Timothy J; Khaw, Kay-Tee; Klein, Eric A; Kogevinas, Manolis; Krogh, Vittorio; Kupcinskas, Juozas; Kurtz, Robert C; Landi, Maria T; Landi, Stefano; Le Marchand, Loic; Mambrini, Andrea; Mannisto, Satu; Milne, Roger L; Neale, Rachel E; Oberg, Ann L; Panico, Salvatore; Patel, Alpa V; Peeters, Petra H M; Peters, Ulrike; Pezzilli, Raffaele; Porta, Miquel; Purdue, Mark; Quiros, J Ramón; Riboli, Elio; Rothman, Nathaniel; Scarpa, Aldo; Scelo, Ghislaine; Shu, Xiao-Ou; Silverman, Debra T; Soucek, Pavel; Strobel, Oliver; Sund, Malin; Małecka-Panas, Ewa; Taylor, Philip R; Tavano, Francesca; Travis, Ruth C; Thornquist, Mark; Tjønneland, Anne; Tobias, Geoffrey S; Trichopoulos, Dimitrios; Vashist, Yogesh; Vodicka, Pavel; Wactawski-Wende, Jean; Wentzensen, Nicolas; Yu, Herbert; Yu, Kai; Zeleniuch-Jacquotte, Anne; Kooperberg, Charles; Risch, Harvey A; Jacobs, Eric J; Li, Donghui; Fuchs, Charles; Hoover, Robert; Hartge, Patricia; Chanock, Stephen J; Petersen, Gloria M; Stolzenberg-Solomon, Rachael S; Wolpin, Brian M; Kraft, Peter; Klein, Alison P; Canzian, Federico; Amundadottir, Laufey T

    2016-01-01

    Genome-wide association studies (GWAS) have identified common pancreatic cancer susceptibility variants at 13 chromosomal loci in individuals of European descent. To identify new susceptibility variants, we performed imputation based on 1000 Genomes (1000G) Project data and association analysis usin

  4. Comprehensive genomic characterization of squamous cell lung cancers

    NARCIS (Netherlands)

    Hammerman, Peter S.; Lawrence, Michael S.; Voet, Douglas; Jing, Rui; Cibulskis, Kristian; Sivachenko, Andrey; Stojanov, Petar; McKenna, Aaron; Lander, Eric S.; Gabriel, Stacey; Getz, Gad; Sougnez, Carrie; Imielinski, Marcin; Helman, Elena; Hernandez, Bryan; Pho, Nam H.; Meyerson, Matthew; Chu, Andy; Chun, Hye-Jung E.; Mungall, Andrew J.; Pleasance, Erin; Robertson, A. Gordon; Sipahimalani, Payal; Stoll, Dominik; Balasundaram, Miruna; Birol, Inanc; Butterfield, Yaron S. N.; Chuah, Eric; Coope, Robin J. N.; Corbett, Richard; Dhalla, Noreen; Guin, Ranabir; Hirst, Anhe Carrie; Hirst, Martin; Holt, Robert A.; Lee, Darlene; Li, Haiyan I.; Mayo, Michael; Moore, Richard A.; Mungall, Karen; Nip, Ka Ming; Olshen, Adam; Schein, Jacqueline E.; Slobodan, Jared R.; Tam, Angela; Thiessen, Nina; Varhol, Richard; Zeng, Thomas; Zhao, Yongjun; Jones, Steven J. M.; Marra, Marco A.; Saksena, Gordon; Cherniack, Andrew D.; Schumacher, Stephen E.; Tabak, Barbara; Carter, Scott L.; Pho, Nam H.; Nguyen, Huy; Onofrio, Robert C.; Crenshaw, Andrew; Ardlie, Kristin; Beroukhim, Rameen; Winckler, Wendy; Hammerman, Peter S.; Getz, Gad; Meyerson, Matthew; Protopopov, Alexei; Zhang, Jianhua; Hadjipanayis, Angela; Lee, Semin; Xi, Ruibin; Yang, Lixing; Ren, Xiaojia; Zhang, Hailei; Shukla, Sachet; Chen, Peng-Chieh; Haseley, Psalm; Lee, Eunjung; Chin, Lynda; Park, Peter J.; Kucherlapati, Raju; Socci, Nicholas D.; Liang, Yupu; Schultz, Nikolaus; Borsu, Laetitia; Lash, Alex E.; Viale, Agnes; Sander, Chris; Ladanyi, Marc; Auman, J. Todd; Hoadley, Katherine A.; Wilkerson, Matthew D.; Shi, Yan; Liquori, Christina; Meng, Shaowu; Li, Ling; Turman, Yidi J.; Topal, Michael D.; Tan, Donghui; Waring, Scot; Buda, Elizabeth; Walsh, Jesse; Jones, Corbin D.; Mieczkowski, Piotr A.; Singh, Darshan; Wu, Junyuan; Gulabani, Anisha; Dolina, Peter; Bodenheimer, Tom; Hoyle, Alan P.; Simons, Janae V.; Soloway, Matthew G.; Mose, Lisle E.; Jefferys, Stuart R.; Balu, Saianand; O'Connor, Brian D.; Prins, Jan F.; Liu, Jinze; Chiang, Derek Y.; Hayes, D. Neil; Perou, Charles M.; Cope, Leslie; Danilova, Ludmila; Weisenberger, Daniel J.; Maglinte, Dennis T.; Pan, Fei; Van den Berg, David J.; Triche, Timothy; Herman, James G.; Baylin, Stephen B.; Laird, Peter W.; Getz, Gad; Noble, Michael; Voet, Doug; Saksena, Gordon; Gehlenborg, Nils; DiCara, Daniel; Zhang, Jinhua; Zhang, Hailei; Wu, Chang-Jiun; Liu, Spring Yingchun; Lawrence, Michael S.; Zou, Lihua; Sivachenko, Andrey; Lin, Pei; Stojanov, Petar; Jing, Rui; Cho, Juok; Nazaire, Marc-Danie; Robinson, Jim; Thorvaldsdottir, Helga; Mesirov, Jill; Park, Peter J.; Chin, Lynda; Schultz, Nikolaus; Sinha, Rileen; Ciriello, Giovanni; Cerami, Ethan; Gross, Benjamin; Jacobsen, Anders; Gao, Jianjiong; Aksoy, B. Arman; Weinhold, Nils; Ramirez, Ricardo; Taylor, Barry S.; Antipin, Yevgeniy; Reva, Boris; Shen, Ronglai; Mo, Qianxing; Seshan, Venkatraman; Paik, Paul K.; Ladanyi, Marc; Sander, Chris; Akbani, Rehan; Zhang, Nianxiang; Broom, Bradley M.; Casasent, Tod; Unruh, Anna; Wakefield, Chris; Cason, R. Craig; Baggerly, Keith A.; Weinstein, John N.; Haussler, David; Benz, Christopher C.; Stuart, Joshua M.; Zhu, Jingchun; Szeto, Christopher; Scott, Gary K.; Yau, Christina; Ng, Sam; Goldstein, Ted; Waltman, Peter; Sokolov, Artem; Ellrott, Kyle; Collisson, Eric A.; Zerbino, Daniel; Wilks, Christopher; Ma, Singer; Craft, Brian; Wilkerson, Matthew D.; Auman, J. Todd; Hoadley, Katherine A.; Du, Ying; Cabanski, Christopher; Walter, Vonn; Singh, Darshan; Wu, Junyuan; Gulabani, Anisha; Bodenheimer, Tom; Hoyle, Alan P.; Simons, Janae V.; Soloway, Matthew G.; Mose, Lisle E.; Jefferys, Stuart R.; Balu, Saianand; Marron, J. S.; Liu, Yufeng; Wang, Kai; Liu, Jinze; Prins, Jan F.; Hayes, D. Neil; Perou, Charles M.; Creighton, Chad J.; Zhang, Yiqun; Travis, William D.; Rekhtman, Natasha; Yi, Joanne; Aubry, Marie C.; Cheney, Richard; Dacic, Sanja; Flieder, Douglas; Funkhouser, William; Illei, Peter; Myers, Jerome; Tsao, Ming-Sound; Penny, Robert; Mallery, David; Shelton, Troy; Hatfield, Martha; Morris, Scott; Yena, Peggy; Shelton, Candace; Sherman, Mark; Paulauskis, Joseph; Meyerson, Matthew; Baylin, Stephen B.; Govindan, Ramaswamy; Akbani, Rehan; Azodo, Ijeoma; Beer, David; Bose, Ron; Byers, Lauren A.; Carbone, David; Chang, Li-Wei; Chiang, Derek; Chu, Andy; Chun, Elizabeth; Collisson, Eric; Cope, Leslie; Creighton, Chad J.; Danilova, Ludmila; Ding, Li; Getz, Gad; Hammerman, Peter S.; Hayes, D. Neil; Hernandez, Bryan; Herman, James G.; Heymach, John; Ida, Cristiane; Imielinski, Marcin; Johnson, Bruce; Jurisica, Igor; Kaufman, Jacob; Kosari, Farhad; Kucherlapati, Raju; Kwiatkowski, David; Ladanyi, Marc; Lawrence, Michael S.; Maher, Christopher A.; Mungall, Andy; Ng, Sam; Pao, William; Peifer, Martin; Penny, Robert; Robertson, Gordon; Rusch, Valerie; Sander, Chris; Schultz, Nikolaus; Shen, Ronglai; Siegfried, Jill; Sinha, Rileen; Sivachenko, Andrey; Sougnez, Carrie; Stoll, Dominik; Stuart, Joshua; Thomas, Roman K.; Tomaszek, Sandra; Tsao, Ming-Sound; Travis, William D.; Vaske, Charles; Weinstein, John N.; Weisenberger, Daniel; Wheeler, David; Wigle, Dennis A.; Wilkerson, Matthew D.; Wilks, Christopher; Yang, Ping; Zhang, Jianjua John; Jensen, Mark A.; Sfeir, Robert; Kahn, Ari B.; Chu, Anna L.; Kothiyal, Prachi; Wang, Zhining; Snyder, Eric E.; Pontius, Joan; Pihl, Todd D.; Ayala, Brenda; Backus, Mark; Walton, Jessica; Baboud, Julien; Berton, Dominique L.; Nicholls, Matthew C.; Srinivasan, Deepak; Raman, Rohini; Girshik, Stanley; Kigonya, Peter A.; Alonso, Shelley; Sanbhadti, Rashmi N.; Barletta, Sean P.; Greene, John M.; Pot, David A.; Tsao, Ming-Sound; Bandarchi-Chamkhaleh, Bizhan; Boyd, Jeff; Weaver, JoEllen; Wigle, Dennis A.; Azodo, Ijeoma A.; Tomaszek, Sandra C.; Aubry, Marie Christine; Ida, Christiane M.; Yang, Ping; Kosari, Farhad; Brock, Malcolm V.; Rogers, Kristen; Rutledge, Marian; Brown, Travis; Lee, Beverly; Shin, James; Trusty, Dante; Dhir, Rajiv; Siegfried, Jill M.; Potapova, Olga; Fedosenko, Konstantin V.; Nemirovich-Danchenko, Elena; Rusch, Valerie; Zakowski, Maureen; Iacocca, Mary V.; Brown, Jennifer; Rabeno, Brenda; Czerwinski, Christine; Petrelli, Nicholas; Fan, Zhen; Todaro, Nicole; Eckman, John; Myers, Jerome; Rathmell, W. Kimryn; Thorne, Leigh B.; Huang, Mei; Boice, Lori; Hill, Ashley; Penny, Robert; Mallery, David; Curley, Erin; Shelton, Candace; Yena, Peggy; Morrison, Carl; Gaudioso, Carmelo; Bartlett, Johnm. S.; Kodeeswaran, Sugy; Zanke, Brent; Sekhon, Harman; David, Kerstin; Juhl, Hartmut; Van Le, Xuan; Kohl, Bernard; Thorp, Richard; Tien, Nguyen Viet; Van Bang, Nguyen; Sussman, Howard; Phu, Bui Duc; Hajek, Richard; PhiHung, Nguyen; Khan, Khurram Z.; Muley, Thomas; Shaw, Kenna R. Mills; Sheth, Margi; Yang, Liming; Buetow, Ken; Davidsen, Tanja; Demchok, John A.; Eley, Greg; Ferguson, Martin; Dillon, Laura A. L.; Schaefer, Carl; Guyer, Mark S.; Ozenberger, Bradley A.; Palchik, Jacqueline D.; Peterson, Jane; Sofia, Heidi J.; Thomson, Elizabeth; Meyerson, Matthew

    2012-01-01

    Lung squamous cell carcinoma is a common type of lung cancer, causing approximately 400,000 deaths per year worldwide. Genomic alterations in squamous cell lung cancers have not been comprehensively characterized, and no molecularly targeted agents have been specifically developed for its treatment.

  5. Whole genome sequencing for childhood cancer in Denmark

    DEFF Research Database (Denmark)

    Gupta, Ramneek

    of host, tumour and gut microbiome’s genomes. In Europe, cancer accounts for approximately 25% of all deaths in children >1 year. Most cured patients are burdened by late effects, including risk of second cancer and debilitating toxicities. Recent advancements in genetic sequencing technology...

  6. Functional analysis of non-hotspot AKT1 mutants found in human breast cancers identifies novel driver mutations: implications for personalized medicine

    OpenAIRE

    Yi, Kyung H.; Axtmayer, Jossette; Gustin, John P.; Rajpurohit, Anandita; Lauring, Josh

    2012-01-01

    The phosphatidylinositol 3-kinase (PI3-kinase)-Akt-mTOR pathway is mutated at high frequency in human breast cancer, and this pathway is the focus of active drug discovery and clinical investigation. Trials of personalized cancer therapy seek to leverage knowledge of cancer gene mutations by using mutations to guide the choice of targeted therapies. At the same time, cancer genome sequencing studies are identifying low frequency variants of unknown significance in known cancer genes, as well ...

  7. Evaluating localized prostate cancer and identifying candidates for focal therapy.

    Science.gov (United States)

    Sartor, A Oliver; Hricak, Hedvig; Wheeler, Thomas M; Coleman, Jonathan; Penson, David F; Carroll, Peter R; Rubin, Mark A; Scardino, Peter T

    2008-12-01

    Can focal therapy successfully control prostate cancer? Also, if so, which patients should be considered eligible? With limited data available from relatively few patients, these questions are difficult to answer. At this writing, the most likely candidates for focal therapy are patients with low-risk, small-volume tumors, located in 1 region or sector of the prostate, who would benefit from early intervention. The difficulty lies in reliably identifying these men. The larger number of cores obtained in each needle biopsy session has increased both the detection of prostate cancer and the potential risk of overtreating many patients whose cancers pose very little risk to life or health. Urologists typically perform at least a 12-core template biopsy. Although the debate continues about the optimal template, laterally and peripherally directed biopsies have been shown to improve the diagnostic yield. However, as many as 25% of tumors arise anteriorly and can be missed with peripherally directed techniques. Prostate cancer tends to be multifocal, even in its earliest stages. However, the secondary cancers are usually smaller and less aggressive than the index cancer. They appear similar to the incidental cancers found in cystoprostatectomy specimens and appear to have little effect on prognosis in surgical series. When a single focus of cancer is found in 1 core, physicians rightly suspect that more foci of cancer are present in the prostate. Assessing the risk in these patients is challenging when determined by the biopsy data alone. To predict the presence of a very low-risk or "indolent" cancer, nomograms have been developed to incorporate clinical stage, Gleason grade, prostate-specific antigen levels, and prostate volume, along with the quantitative analysis of the biopsy results. Transperineal "mapping" or "saturation" biopsies have been advocated to detect cancers missed or underestimated by previous transrectal biopsies. This approach could provide the

  8. Databases and web tools for cancer genomics study.

    Science.gov (United States)

    Yang, Yadong; Dong, Xunong; Xie, Bingbing; Ding, Nan; Chen, Juan; Li, Yongjun; Zhang, Qian; Qu, Hongzhu; Fang, Xiangdong

    2015-02-01

    Publicly-accessible resources have promoted the advance of scientific discovery. The era of genomics and big data has brought the need for collaboration and data sharing in order to make effective use of this new knowledge. Here, we describe the web resources for cancer genomics research and rate them on the basis of the diversity of cancer types, sample size, omics data comprehensiveness, and user experience. The resources reviewed include data repository and analysis tools; and we hope such introduction will promote the awareness and facilitate the usage of these resources in the cancer research community.

  9. Databases and Web Tools for Cancer Genomics Study

    Institute of Scientific and Technical Information of China (English)

    Yadong Yang; Xunong Dong; Bingbing Xie; Nan Ding; Juan Chen; Yongjun Li; Qian Zhang; Hongzhu Qu; Xiangdong Fang

    2015-01-01

    Publicly-accessible resources have promoted the advance of scientific discovery. The era of genomics and big data has brought the need for collaboration and data sharing in order to make effective use of this new knowledge. Here, we describe the web resources for cancer genomics research and rate them on the basis of the diversity of cancer types, sample size, omics data com-prehensiveness, and user experience. The resources reviewed include data repository and analysis tools;and we hope such introduction will promote the awareness and facilitate the usage of these resources in the cancer research community.

  10. Genome-wide association study identifies loci influencing concentrations of liver enzymes in plasma

    OpenAIRE

    Chambers, John C.; Zhang, Weihua; Sehmi, Joban; Li, Xinzhong; Wass, Mark N; Harst, Pim; Holm, Hilma; Sanna, Serena; Kavousi, Maryam; Baumeister, Sebastian E.; Coin, Lachlan J.; Deng, Guohong; Gieger, Christian; Heard-Costa, Nancy L.; Hottenga, Jouke-Jan

    2011-01-01

    Concentrations of liver enzymes in plasma are widely used as indicators of liver disease. We carried out a genome-wide association study in 61,089 individuals, identifying 42 loci associated with concentrations of liver enzymes in plasma, of which 32 are new associations (P = 10(-8) to P = 10(-190)). We used functional genomic approaches including metabonomic profiling and gene expression analyses to identify probable candidate genes at these regions. We identified 69 candidate genes, includi...

  11. Genome-wide association study identifies loci influencing concentrations of liver enzymes in plasma

    OpenAIRE

    Chambers, John C.; Zhang, Weihua; Sehmi, Joban; Li, Xinzhong; Wass, Mark N; Harst, Pim; Holm, Hilma; Sanna, Serena; Kavousi, Maryam; Baumeister, Sebastian E.; Coin, Lachlan J.; Deng, Guohong; Gieger, Christian; Heard-Costa, Nancy L.; Hottenga, Jouke-Jan

    2011-01-01

    Concentrations of liver enzymes in plasma are widely used as indicators of liver disease. We carried out a genome-wide association study in 61,089 individuals, identifying 42 loci associated with concentrations of liver enzymes in plasma, of which 32 are new associations (P = 10−8 to P = 10−190). We used functional genomic approaches including metabonomic profiling and gene expression analyses to identify probable candidate genes at these regions. We identified 69 candidate genes, including g...

  12. Genome-wide association study identifies loci influencing concentrations of liver enzymes in plasma.

    OpenAIRE

    Chambers, John C.; Zhang, Weihua; Sehmi, Joban; Li, Xinzhong; Wass, Mark N; Harst, Pim; Holm, Hilma; Sanna, Serena; Kavousi, Maryam; Baumeister, Sebastian E.; Coin, Lachlan J.; Abecasis, Goncalo R.; Ahmadi, Kourosh R; Boomsma, Dorret I; Caulfield, Mark

    2011-01-01

    Concentrations of liver enzymes in plasma are widely used as indicators of liver disease. We carried out a genome-wide association study in 61,089 individuals, identifying 42 loci associated with concentrations of liver enzymes in plasma, of which 32 are new associations (P = 10(-8) to P = 10(-190)). We used functional genomic approaches including metabonomic profiling and gene expression analyses to identify probable candidate genes at these regions. We identified 69 candidate genes, includi...

  13. A meta-analysis of 87,040 individuals identifies 23 new susceptibility loci for prostate cancer

    Science.gov (United States)

    Al Olama, Ali Amin; Kote-Jarai, Zsofia; Berndt, Sonja I.; Conti, David V.; Schumacher, Fredrick; Han, Ying; Benlloch, Sara; Hazelett, Dennis J.; Wang, Zhaoming; Saunders, Ed; Leongamornlert, Daniel; Lindstrom, Sara; Jugurnauth-Little, Sara; Dadaev, Tokhir; Tymrakiewicz, Malgorzata; Stram, Daniel O.; Rand, Kristin; Wan, Peggy; Stram, Alex; Sheng, Xin; Pooler, Loreall C.; Park, Karen; Xia, Lucy; Tyrer, Jonathan; Kolonel, Laurence N.; Le Marchand, Loic; Hoover, Robert N.; Machiela, Mitchell J.; Yeager, Merideth; Burdette, Laurie; Chung, Charles C.; Hutchinson, Amy; Yu, Kai; Goh, Chee; Ahmed, Mahbubl; Govindasami, Koveela; Guy, Michelle; Tammela, Teuvo L.J.; Auvinen, Anssi; Wahlfors, Tiina; Schleutker, Johanna; Visakorpi, Tapio; Leinonen, Katri A.; Xu, Jianfeng; Aly, Markus; Donovan, Jenny; Travis, Ruth C.; Key, Tim J.; Siddiq, Afshan; Canzian, Federico; Khaw, Kay-Tee; Takahashi, Atsushi; Kubo, Michiaki; Pharoah, Paul; Pashayan, Nora; Weischer, Maren; Nordestgaard, Borge G.; Nielsen, Sune F.; Klarskov, Peter; Røder, Martin Andreas; Iversen, Peter; Thibodeau, Stephen N.; McDonnell, Shannon K; Schaid, Daniel J; Stanford, Janet L.; Kolb, Suzanne; Holt, Sarah; Knudsen, Beatrice; Coll, Antonio Hurtado; Gapstur, Susan M.; Diver, W. Ryan; Stevens, Victoria L.; Maier, Christiane; Luedeke, Manuel; Herkommer, Kathleen; Rinckleb, Antje E.; Strom, Sara S.; Pettaway, Curtis; Yeboah, Edward D.; Tettey, Yao; Biritwum, Richard B.; Adjei, Andrew A.; Tay, Evelyn; Truelove, Ann; Niwa, Shelley; Chokkalingam, Anand P.; Cannon-Albright, Lisa; Cybulski, Cezary; Wokołorczyk, Dominika; Kluźniak, Wojciech; Park, Jong; Sellers, Thomas; Lin, Hui-Yi; Isaacs, William B.; Partin, Alan W.; Brenner, Hermann; Dieffenbach, Aida Karina; Stegmaier, Christa; Chen, Constance; Giovannucci, Edward L.; Ma, Jing; Stampfer, Meir; Penney, Kathryn L.; Mucci, Lorelei; John, Esther M.; Ingles, Sue A.; Kittles, Rick A.; Murphy, Adam B.; Pandha, Hardev; Michael, Agnieszka; Kierzek, Andrzej M.; Blot, William; Signorello, Lisa B.; Zheng, Wei; Albanes, Demetrius; Virtamo, Jarmo; Weinstein, Stephanie; Nemesure, Barbara; Carpten, John; Leske, Cristina; Wu, Suh-Yuh; Hennis, Anselm; Kibel, Adam S.; Rybicki, Benjamin A.; Neslund-Dudas, Christine; Hsing, Ann W.; Chu, Lisa; Goodman, Phyllis J.; Klein, Eric A; Zheng, S. Lilly; Batra, Jyotsna; Clements, Judith; Spurdle, Amanda; Teixeira, Manuel R.; Paulo, Paula; Maia, Sofia; Slavov, Chavdar; Kaneva, Radka; Mitev, Vanio; Witte, John S.; Casey, Graham; Gillanders, Elizabeth M.; Seminara, Daniella; Riboli, Elio; Hamdy, Freddie C.; Coetzee, Gerhard A.; Li, Qiyuan; Freedman, Matthew L.; Hunter, David J.; Muir, Kenneth; Gronberg, Henrik; Neal, David E.; Southey, Melissa; Giles, Graham G.; Severi, Gianluca; Cook, Michael B.; Nakagawa, Hidewaki; Wiklund, Fredrik; Kraft, Peter; Chanock, Stephen J.; Henderson, Brian E.; Easton, Douglas F.; Eeles, Rosalind A.; Haiman, Christopher A.

    2014-01-01

    Genome-wide association studies (GWAS) have identified 76 variants associated with prostate cancer risk predominantly in populations of European ancestry. To identify additional susceptibility loci for this common cancer, we conducted a meta-analysis of >10 million SNPs in 43,303prostate cancer cases and 43,737 controls from studies in populations of European, African, Japanese and Latino ancestry. Twenty-three novel susceptibility loci were revealed at P<5×10-8; 15 variants were identified among men of European ancestry, 7 from multiethnic analyses and one was associated with early-onset prostate cancer. These 23 variants, in combination with the known prostate cancer risk variants, explain 33% of the familial risk of the disease in European ancestry populations. These findings provide new regions for investigation into the pathogenesis of prostate cancer and demonstrate the utility of combining ancestrally diverse populations to discover risk loci for disease. PMID:25217961

  14. Genome Science and Personalized Cancer Treatment (LBNL Summer Lecture Series)

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Joe

    2009-08-04

    Summer Lecture Series 2009: Results from the Human Genome Project are enabling scientists to understand how individual cancers form and progress. This information, when combined with newly developed drugs, can optimize the treatment of individual cancers. Joe Gray, director of Berkeley Labs Life Sciences Division and Associate Laboratory Director for Life and Environmental Sciences, will focus on this approach, its promise, and its current roadblocks — particularly with regard to breast cancer.

  15. Clinic-Genomic Association Mining for Colorectal Cancer Using Publicly Available Datasets

    Directory of Open Access Journals (Sweden)

    Fang Liu

    2014-01-01

    Full Text Available In recent years, a growing number of researchers began to focus on how to establish associations between clinical and genomic data. However, up to now, there is lack of research mining clinic-genomic associations by comprehensively analysing available gene expression data for a single disease. Colorectal cancer is one of the malignant tumours. A number of genetic syndromes have been proven to be associated with colorectal cancer. This paper presents our research on mining clinic-genomic associations for colorectal cancer under biomedical big data environment. The proposed method is engineered with multiple technologies, including extracting clinical concepts using the unified medical language system (UMLS, extracting genes through the literature mining, and mining clinic-genomic associations through statistical analysis. We applied this method to datasets extracted from both gene expression omnibus (GEO and genetic association database (GAD. A total of 23517 clinic-genomic associations between 139 clinical concepts and 7914 genes were obtained, of which 3474 associations between 31 clinical concepts and 1689 genes were identified as highly reliable ones. Evaluation and interpretation were performed using UMLS, KEGG, and Gephi, and potential new discoveries were explored. The proposed method is effective in mining valuable knowledge from available biomedical big data and achieves a good performance in bridging clinical data with genomic data for colorectal cancer.

  16. SIGMA: A System for Integrative Genomic Microarray Analysis of Cancer Genomes

    Directory of Open Access Journals (Sweden)

    Davies Jonathan J

    2006-12-01

    Full Text Available Abstract Background The prevalence of high resolution profiling of genomes has created a need for the integrative analysis of information generated from multiple methodologies and platforms. Although the majority of data in the public domain are gene expression profiles, and expression analysis software are available, the increase of array CGH studies has enabled integration of high throughput genomic and gene expression datasets. However, tools for direct mining and analysis of array CGH data are limited. Hence, there is a great need for analytical and display software tailored to cross platform integrative analysis of cancer genomes. Results We have created a user-friendly java application to facilitate sophisticated visualization and analysis such as cross-tumor and cross-platform comparisons. To demonstrate the utility of this software, we assembled array CGH data representing Affymetrix SNP chip, Stanford cDNA arrays and whole genome tiling path array platforms for cross comparison. This cancer genome database contains 267 profiles from commonly used cancer cell lines representing 14 different tissue types. Conclusion In this study we have developed an application for the visualization and analysis of data from high resolution array CGH platforms that can be adapted for analysis of multiple types of high throughput genomic datasets. Furthermore, we invite researchers using array CGH technology to deposit both their raw and processed data, as this will be a continually expanding database of cancer genomes. This publicly available resource, the System for Integrative Genomic Microarray Analysis (SIGMA of cancer genomes, can be accessed at http://sigma.bccrc.ca.

  17. Genomic profiling toward precision medicine in non-small cell lung cancer: getting beyond EGFR

    Directory of Open Access Journals (Sweden)

    Richer AL

    2015-02-01

    Full Text Available Amanda L Richer,1 Jacqueline M Friel,1 Vashti M Carson,2 Landon J Inge,1 Timothy G Whitsett2 1Norton Thoracic Institute, St Joseph’s Hospital and Medical Center, 2Cancer and Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA Abstract: Lung cancer remains the leading cause of cancer-related mortality worldwide. The application of next-generation genomic technologies has offered a more comprehensive look at the mutational landscape across the different subtypes of non-small cell lung cancer (NSCLC. A number of recurrent mutations such as TP53, KRAS, and epidermal growth factor receptor (EGFR have been identified in NSCLC. While targeted therapeutic successes have been demonstrated in the therapeutic targeting of EGFR and ALK, the majority of NSCLC tumors do not harbor these genomic events. This review looks at the current treatment paradigms for lung adenocarcinomas and squamous cell carcinomas, examining genomic aberrations that dictate therapy selection, as well as novel therapeutic strategies for tumors harboring mutations in KRAS, TP53, and LKB1 which, to date, have been considered “undruggable”. A more thorough understanding of the molecular alterations that govern NSCLC tumorigenesis, aided by next-generation sequencing, will lead to targeted therapeutic options expected to dramatically reduce the high mortality rate observed in lung cancer. Keywords: non-small cell lung cancer, precision medicine, epidermal growth factor receptor, Kirsten rat sarcoma viral oncogene homolog, serine/threonine kinase 11, tumor protein p53

  18. Fine-Scale Mapping at 9p22.2 Identifies Candidate Causal Variants That Modify Ovarian Cancer Risk in BRCA1 and BRCA2 Mutation Carriers

    DEFF Research Database (Denmark)

    Vigorito, Elena; Kuchenbaecker, Karoline B; Beesley, Jonathan

    2016-01-01

    Population-based genome wide association studies have identified a locus at 9p22.2 associated with ovarian cancer risk, which also modifies ovarian cancer risk in BRCA1 and BRCA2 mutation carriers. We conducted fine-scale mapping at 9p22.2 to identify potential causal variants in BRCA1 and BRCA2 ...

  19. Alternative splicing in colon, bladder, and prostate cancer identified by exon-array analysis

    DEFF Research Database (Denmark)

    Thorsen, Kasper; Sørensen, Karina D.; Brems-Eskildsen, Anne Sofie;

    2008-01-01

    Alternative splicing enhances proteome diversity and modulates cancer-associated proteins. To identify tissue- and tumor-specific alternative splicing, we used the GeneChip Human Exon 1.0 ST Array to measure whole-genome exon expression in 102 normal and cancer tissue samples of different stages......, and 18 candidate tumor-specific splicing alterations in colon, bladder, and prostate, respectively, were selected for RT-PCR validation on an independent set of 81 normal and tumor tissue samples. In total, seven genes with tumor-specific splice variants were identified (ACTN1, CALD1, COL6A3, LRRFIP2...... from colon, urinary bladder, and prostate. We identified 2069 candidate alternative splicing events between normal tissue samples from colon, bladder, and prostate and selected 15 splicing events for RT-PCR validation, 10 of which were successfully validated by RT-PCR and sequencing. Furthermore 23, 19...

  20. Convergence of mutation and epigenetic alterations identifies common genes in cancer that predict for poor prognosis.

    Directory of Open Access Journals (Sweden)

    Timothy A Chan

    2008-05-01

    Full Text Available BACKGROUND: The identification and characterization of tumor suppressor genes has enhanced our understanding of the biology of cancer and enabled the development of new diagnostic and therapeutic modalities. Whereas in past decades, a handful of tumor suppressors have been slowly identified using techniques such as linkage analysis, large-scale sequencing of the cancer genome has enabled the rapid identification of a large number of genes that are mutated in cancer. However, determining which of these many genes play key roles in cancer development has proven challenging. Specifically, recent sequencing of human breast and colon cancers has revealed a large number of somatic gene mutations, but virtually all are heterozygous, occur at low frequency, and are tumor-type specific. We hypothesize that key tumor suppressor genes in cancer may be subject to mutation or hypermethylation. METHODS AND FINDINGS: Here, we show that combined genetic and epigenetic analysis of these genes reveals many with a higher putative tumor suppressor status than would otherwise be appreciated. At least 36 of the 189 genes newly recognized to be mutated are targets of promoter CpG island hypermethylation, often in both colon and breast cancer cell lines. Analyses of primary tumors show that 18 of these genes are hypermethylated strictly in primary cancers and often with an incidence that is much higher than for the mutations and which is not restricted to a single tumor-type. In the identical breast cancer cell lines in which the mutations were identified, hypermethylation is usually, but not always, mutually exclusive from genetic changes for a given tumor, and there is a high incidence of concomitant loss of expression. Sixteen out of 18 (89% of these genes map to loci deleted in human cancers. Lastly, and most importantly, the reduced expression of a subset of these genes strongly correlates with poor clinical outcome. CONCLUSIONS: Using an unbiased genome

  1. [Current topics in mutations in the cancer genome].

    Science.gov (United States)

    Iwaya, Takeshi; Mimori, Koshi; Wakabayashi, Go

    2012-03-01

    Several oncogenes and tumor suppressor genes are involved in the multistep process of carcinogenesis in many cancer types. Recently, global mutational analyses have revealed that the cancer genome has far greater numbers of mutations than previously thought. Furthermore, the next-generation sequencing method, which has a different principle from conventional Sanger sequencing, has provided more information on the cancer genome such as new cancer-related genes and the existence of many rearrangements in solid cancers. Somatic mutations occurring in cancer cells are divided into "driver" and "passenger" mutations. Driver mutations confer a growth advantage upon the neoplastic clone and are crucial for carcinogenesis. The remaining large majority of mutations are passengers, which, by definition, do not confer a growth advantage. Driver genes with low-frequency mutation rates (less than 10%) are also involved in carcinogenesis along with well-known drivers with high-frequency mutations. There are now several celebrated examples of anticancer drugs of which the efficacy in cancer patients can be predicted based on the genotype of several driver genes, such as EGFR, KRAS, and BRAF on the EGFR signaling pathway. The complete catalogs of somatic mutations provided by the sequencing of the cancer genome are expected to prompt new approaches to diagnosis, therapy, and potentially prevention.

  2. Characterization of genomic alterations in radiation-associated breast cancer among childhood cancer survivors, using comparative genomic hybridization (CGH arrays.

    Directory of Open Access Journals (Sweden)

    Xiaohong R Yang

    Full Text Available Ionizing radiation is an established risk factor for breast cancer. Epidemiologic studies of radiation-exposed cohorts have been primarily descriptive; molecular events responsible for the development of radiation-associated breast cancer have not been elucidated. In this study, we used array comparative genomic hybridization (array-CGH to characterize genome-wide copy number changes in breast tumors collected in the Childhood Cancer Survivor Study (CCSS. Array-CGH data were obtained from 32 cases who developed a second primary breast cancer following chest irradiation at early ages for the treatment of their first cancers, mostly Hodgkin lymphoma. The majority of these cases developed breast cancer before age 45 (91%, n = 29, had invasive ductal tumors (81%, n = 26, estrogen receptor (ER-positive staining (68%, n = 19 out of 28, and high proliferation as indicated by high Ki-67 staining (77%, n = 17 out of 22. Genomic regions with low-copy number gains and losses and high-level amplifications were similar to what has been reported in sporadic breast tumors, however, the frequency of amplifications of the 17q12 region containing human epidermal growth factor receptor 2 (HER2 was much higher among CCSS cases (38%, n = 12. Our findings suggest that second primary breast cancers in CCSS were enriched for an "amplifier" genomic subgroup with highly proliferative breast tumors. Future investigation in a larger irradiated cohort will be needed to confirm our findings.

  3. Functional genomics identifies type I interferon pathway as central for host defense against Candida albicans

    NARCIS (Netherlands)

    Smeekens, Sanne P.; Ng, Aylwin; Kumar, Vinod; Johnson, Melissa D.; Plantinga, Theo S.; van Diemen, Cleo; Arts, Peer; Verwiel, Eugene T. P.; Gresnigt, Mark S.; Fransen, Karin; van Sommeren, Suzanne; Oosting, Marije; Cheng, Shih-Chin; Joosten, Leo A. B.; Hoischen, Alexander; Kullberg, Bart-Jan; Scott, William K.; Perfect, John R.; van der Meer, Jos W. M.; Wijmenga, Cisca; Netea, Mihai G.; Xavier, Ramnik J.

    2013-01-01

    Candida albicans is the most common human fungal pathogen causing mucosal and systemic infections. However, human antifungal immunity remains poorly defined. Here by integrating transcriptional analysis and functional genomics, we identified Candida-specific host defence mechanisms in humans. Candid

  4. Tolerance of Whole-Genome Doubling Propagates Chromosomal Instability and Accelerates Cancer Genome Evolution

    DEFF Research Database (Denmark)

    Dewhurst, Sally M.; McGranahan, Nicholas; Burrell, Rebecca A.;

    2014-01-01

    The contribution of whole-genome doubling to chromosomal instability (CIN) and tumor evolution is unclear. We use long-term culture of isogenic tetraploid cells from a stable diploid colon cancer progenitor to investigate how a genome-doubling event affects genome stability over time. Rare cells...... that survive genome doubling demonstrate increased tolerance to chromosome aberrations. Tetraploid cells do not exhibit increased frequencies of structural or numerical CIN per chromosome. However, the tolerant phenotype in tetraploid cells, coupled with a doubling of chromosome aberrations per cell, allows...... chromosome abnormalities to evolve specifically in tetraploids, recapitulating chromosomal changes in genomically complex colorectal tumors. Finally, a genome-doubling event is independently predictive of poor relapse-free survival in early-stage disease in two independent cohorts in multivariate analyses...

  5. HCMI Organization | Office of Cancer Genomics

    Science.gov (United States)

    Consortium HCMI was created and funded by the National Cancer Institute, Cancer Research UK, foundation Hubrecht Organoid Technology, and Wellcome Trust Sanger Institute. Together, these organizations develop policy and make programmatic decisions to contribute to the function of the HCMI. National Cancer Institute

  6. Identification of chromosome aberrations in sporadic microsatellite stable and unstable colorectal cancers using array comparative genomic hybridization

    DEFF Research Database (Denmark)

    Jensen, Thomas Dyrsø; Li, Jian; Wang, Kai;

    2011-01-01

    Colorectal cancer (CRC) is one of the most common cancers in Denmark and in the western world in general, and the prognosis is generally poor. According to the traditional molecular classification of sporadic colorectal cancer, microsatellite stable (MSS)/chromosome unstable (CIN) colorectal...... cancers constitute approximately 85% of sporadic cases, whereas microsatellite unstable (MSI) cases constitute the remaining 15%. In this study, we used array comparative genomic hybridization (aCGH) to identify genomic hotspot regions that harbor recurrent copy number changes. The study material...

  7. Identifying statistical dependence in genomic sequences via mutual information estimates

    CERN Document Server

    Aktulga, H M; Lyznik, L A; Szpankowski, L; Grama, A Y; Szpankowski, W

    2007-01-01

    Questions of understanding and quantifying the representation and amount of information in organisms have become a central part of biological research, as they potentially hold the key to fundamental advances. In this paper, we demonstrate the use of information-theoretic tools for the task of identifying segments of biomolecules (DNA or RNA) that are statistically correlated. We develop a precise and reliable methodology, based on the notion of mutual information, for finding and extracting statistical as well as structural dependencies. A simple threshold function is defined, and its use in quantifying the level of significance of dependencies between biological segments is explored. These tools are used in two specific applications. First, for the identification of correlations between different parts of the maize zmSRp32 gene. There, we find significant dependencies between the 5' untranslated region in zmSRp32 and its alternatively spliced exons. This observation may indicate the presence of as-yet unkno...

  8. Economic evidence on identifying clinically actionable findings with whole-genome sequencing: a scoping review.

    OpenAIRE

    2016-01-01

    The American College of Medical Genetics and Genomics (ACMG) recommends that mutations in 56 genes for 24 conditions are clinically actionable and should be reported as secondary findings after whole-genome sequencing (WGS). Our aim was to identify published economic evaluations of detecting mutations in these genes among the general population or among targeted/high-risk populations and conditions and identify gaps in knowledge. A targeted PubMed search from 1994 through November 2014 was pe...

  9. Genome-wide association study meta-analysis identifies seven new rheumatoid arthritis risk loci

    OpenAIRE

    Stahl, Eli A; Raychaudhuri, Soumya; Remmers, Elaine F.; Xie, Gang; Eyre, Stephen; Thomson, Brian P.; Li, Yonghong; Kurreeman, Fina A. S.; Zhernakova, Alexandra; Hinks, Anne; Guiducci, Candace; Chen, Robert; Alfredsson, Lars; Amos, Christopher I.; Ardlie, Kristin G.

    2010-01-01

    To identify novel genetic risk factors for rheumatoid arthritis (RA), we conducted a genome-wide association study (GWAS) meta-analysis of 5,539 autoantibody positive RA cases and 20,169 controls of European descent, followed by replication in an independent set of 6,768 RA cases and 8,806 controls. Of 34 SNPs selected for replication, 7 novel RA risk alleles were identified at genome-wide significance (P

  10. An open access pilot freely sharing cancer genomic data from participants in Texas.

    Science.gov (United States)

    Becnel, Lauren B; Pereira, Stacey; Drummond, Jennifer A; Gingras, Marie-Claude; Covington, Kyle R; Kovar, Christie L; Doddapaneni, Harsha Vardhan; Hu, Jianhong; Muzny, Donna; McGuire, Amy L; Wheeler, David A; Gibbs, Richard A

    2016-02-16

    Genomic data sharing in cancer has been restricted to aggregate or controlled-access initiatives to protect the privacy of research participants. By limiting access to these data, it has been argued that the autonomy of individuals who decide to participate in data sharing efforts has been superseded and the utility of the data as research and educational tools reduced. In a pilot Open Access (OA) project from the CPRIT-funded Texas Cancer Research Biobank, many Texas cancer patients were willing to openly share genomic data from tumor and normal matched pair specimens. For the first time, genetic data from 7 human cancer cases with matched normal are freely available without requirement for data use agreements nor any major restriction except that end users cannot attempt to re-identify the participants (http://txcrb.org/open.html).

  11. Clonal expansion and linear genome evolution through breast cancer progression from pre-invasive stages to asynchronous metastasis

    DEFF Research Database (Denmark)

    Krøigård, Anne Bruun; Larsen, Martin Jakob; Lænkholm, Anne Vibeke;

    2015-01-01

    Evolution of the breast cancer genome from pre-invasive stages to asynchronous metastasis is complex and mostly unexplored, but highly demanded as it may provide novel markers for and mechanistic insights in cancer progression. The increasing use of personalized therapy of breast cancer necessita......Evolution of the breast cancer genome from pre-invasive stages to asynchronous metastasis is complex and mostly unexplored, but highly demanded as it may provide novel markers for and mechanistic insights in cancer progression. The increasing use of personalized therapy of breast cancer...... progression from one breast cancer patient, including two different regions of Ductal Carcinoma In Situ (DCIS), primary tumor and an asynchronous metastasis. We identify a remarkable landscape of somatic mutations, retained throughout breast cancer progression and with new mutational events emerging at each...

  12. Comparative analysis of Salmonella genomes identifies a metabolic network for escalating growth in the inflamed gut.

    Science.gov (United States)

    Nuccio, Sean-Paul; Bäumler, Andreas J

    2014-03-18

    The Salmonella genus comprises a group of pathogens associated with illnesses ranging from gastroenteritis to typhoid fever. We performed an in silico analysis of comparatively reannotated Salmonella genomes to identify genomic signatures indicative of disease potential. By removing numerous annotation inconsistencies and inaccuracies, the process of reannotation identified a network of 469 genes involved in central anaerobic metabolism, which was intact in genomes of gastrointestinal pathogens but degrading in genomes of extraintestinal pathogens. This large network contained pathways that enable gastrointestinal pathogens to utilize inflammation-derived nutrients as well as many of the biochemical reactions used for the enrichment and biochemical discrimination of Salmonella serovars. Thus, comparative genome analysis identifies a metabolic network that provides clues about the strategies for nutrient acquisition and utilization that are characteristic of gastrointestinal pathogens. IMPORTANCE While some Salmonella serovars cause infections that remain localized to the gut, others disseminate throughout the body. Here, we compared Salmonella genomes to identify characteristics that distinguish gastrointestinal from extraintestinal pathogens. We identified a large metabolic network that is functional in gastrointestinal pathogens but decaying in extraintestinal pathogens. While taxonomists have used traits from this network empirically for many decades for the enrichment and biochemical discrimination of Salmonella serovars, our findings suggest that it is part of a "business plan" for growth in the inflamed gastrointestinal tract. By identifying a large metabolic network characteristic of Salmonella serovars associated with gastroenteritis, our in silico analysis provides a blueprint for potential strategies to utilize inflammation-derived nutrients and edge out competing gut microbes.

  13. Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans

    DEFF Research Database (Denmark)

    Amin Al Olama, Ali; Dadaev, Tokhir; Hazelett, Dennis J

    2015-01-01

    Genome-wide association studies (GWAS) have identified numerous common prostate cancer (PrCa) susceptibility loci. We have fine-mapped 64 GWAS regions known at the conclusion of the iCOGS study using large-scale genotyping and imputation in 25 723 PrCa cases and 26 274 controls of European ancest...

  14. Identifying Statistical Dependence in Genomic Sequences via Mutual Information Estimates

    Directory of Open Access Journals (Sweden)

    Wojciech Szpankowski

    2007-12-01

    Full Text Available Questions of understanding and quantifying the representation and amount of information in organisms have become a central part of biological research, as they potentially hold the key to fundamental advances. In this paper, we demonstrate the use of information-theoretic tools for the task of identifying segments of biomolecules (DNA or RNA that are statistically correlated. We develop a precise and reliable methodology, based on the notion of mutual information, for finding and extracting statistical as well as structural dependencies. A simple threshold function is defined, and its use in quantifying the level of significance of dependencies between biological segments is explored. These tools are used in two specific applications. First, they are used for the identification of correlations between different parts of the maize zmSRp32 gene. There, we find significant dependencies between the 5′ untranslated region in zmSRp32 and its alternatively spliced exons. This observation may indicate the presence of as-yet unknown alternative splicing mechanisms or structural scaffolds. Second, using data from the FBI's combined DNA index system (CODIS, we demonstrate that our approach is particularly well suited for the problem of discovering short tandem repeats—an application of importance in genetic profiling.

  15. Identifying Statistical Dependence in Genomic Sequences via Mutual Information Estimates

    Directory of Open Access Journals (Sweden)

    Kontoyiannis Ioannis

    2007-01-01

    Full Text Available Questions of understanding and quantifying the representation and amount of information in organisms have become a central part of biological research, as they potentially hold the key to fundamental advances. In this paper, we demonstrate the use of information-theoretic tools for the task of identifying segments of biomolecules (DNA or RNA that are statistically correlated. We develop a precise and reliable methodology, based on the notion of mutual information, for finding and extracting statistical as well as structural dependencies. A simple threshold function is defined, and its use in quantifying the level of significance of dependencies between biological segments is explored. These tools are used in two specific applications. First, they are used for the identification of correlations between different parts of the maize zmSRp32 gene. There, we find significant dependencies between the untranslated region in zmSRp32 and its alternatively spliced exons. This observation may indicate the presence of as-yet unknown alternative splicing mechanisms or structural scaffolds. Second, using data from the FBI's combined DNA index system (CODIS, we demonstrate that our approach is particularly well suited for the problem of discovering short tandem repeats—an application of importance in genetic profiling.

  16. Changes in colorectal carcinoma genomes under anti-EGFR therapy identified by whole-genome plasma DNA sequencing.

    Directory of Open Access Journals (Sweden)

    Sumitra Mohan

    2014-03-01

    Full Text Available Monoclonal antibodies targeting the Epidermal Growth Factor Receptor (EGFR, such as cetuximab and panitumumab, have evolved to important therapeutic options in metastatic colorectal cancer (CRC. However, almost all patients with clinical response to anti-EGFR therapies show disease progression within a few months and little is known about mechanism and timing of resistance evolution. Here we analyzed plasma DNA from ten patients treated with anti-EGFR therapy by whole genome sequencing (plasma-Seq and ultra-sensitive deep sequencing of genes associated with resistance to anti-EGFR treatment such as KRAS, BRAF, PIK3CA, and EGFR. Surprisingly, we observed that the development of resistance to anti-EGFR therapies was associated with acquired gains of KRAS in four patients (40%, which occurred either as novel focal amplifications (n = 3 or as high level polysomy of 12p (n = 1. In addition, we observed focal amplifications of other genes recently shown to be involved in acquired resistance to anti-EGFR therapies, such as MET (n = 2 and ERBB2 (n = 1. Overrepresentation of the EGFR gene was associated with a good initial anti-EGFR efficacy. Overall, we identified predictive biomarkers associated with anti-EGFR efficacy in seven patients (70%, which correlated well with treatment response. In contrast, ultra-sensitive deep sequencing of KRAS, BRAF, PIK3CA, and EGFR did not reveal the occurrence of novel, acquired mutations. Thus, plasma-Seq enables the identification of novel mutant clones and may therefore facilitate early adjustments of therapies that may delay or prevent disease progression.

  17. Transcriptional shift identifies a set of genes driving breast cancer chemoresistance.

    Directory of Open Access Journals (Sweden)

    Laura Vera-Ramirez

    Full Text Available BACKGROUND: Distant recurrences after antineoplastic treatment remain a serious problem for breast cancer clinical management, which threats patients' life. Systemic therapy is administered to eradicate cancer cells from the organism, both at the site of the primary tumor and at any other potential location. Despite this intervention, a significant proportion of breast cancer patients relapse even many years after their primary tumor has been successfully treated according to current clinical standards, evidencing the existence of a chemoresistant cell subpopulation originating from the primary tumor. METHODS/FINDINGS: To identify key molecules and signaling pathways which drive breast cancer chemoresistance we performed gene expression analysis before and after anthracycline and taxane-based chemotherapy and compared the results between different histopathological response groups (good-, mid- and bad-response, established according to the Miller & Payne grading system. Two cohorts of 33 and 73 breast cancer patients receiving neoadjuvant chemotherapy were recruited for whole-genome expression analysis and validation assay, respectively. Identified genes were subjected to a bioinformatic analysis in order to ascertain the molecular function of the proteins they encode and the signaling in which they participate. High throughput technologies identified 65 gene sequences which were over-expressed in all groups (P ≤ 0·05 Bonferroni test. Notably we found that, after chemotherapy, a significant proportion of these genes were over-expressed in the good responders group, making their tumors indistinguishable from those of the bad responders in their expression profile (P ≤ 0.05 Benjamini-Hochgerg`s method. CONCLUSIONS: These data identify a set of key molecular pathways selectively up-regulated in post-chemotherapy cancer cells, which may become appropriate targets for the development of future directed therapies against breast cancer.

  18. Transcriptional Shift Identifies a Set of Genes Driving Breast Cancer Chemoresistance

    Science.gov (United States)

    Vera-Ramirez, Laura; Sanchez-Rovira, Pedro; Ramirez-Tortosa, Cesar L.; Quiles, Jose L.; Ramirez-Tortosa, MCarmen; Lorente, Jose A.

    2013-01-01

    Background Distant recurrences after antineoplastic treatment remain a serious problem for breast cancer clinical management, which threats patients’ life. Systemic therapy is administered to eradicate cancer cells from the organism, both at the site of the primary tumor and at any other potential location. Despite this intervention, a significant proportion of breast cancer patients relapse even many years after their primary tumor has been successfully treated according to current clinical standards, evidencing the existence of a chemoresistant cell subpopulation originating from the primary tumor. Methods/Findings To identify key molecules and signaling pathways which drive breast cancer chemoresistance we performed gene expression analysis before and after anthracycline and taxane-based chemotherapy and compared the results between different histopathological response groups (good-, mid- and bad-response), established according to the Miller & Payne grading system. Two cohorts of 33 and 73 breast cancer patients receiving neoadjuvant chemotherapy were recruited for whole-genome expression analysis and validation assay, respectively. Identified genes were subjected to a bioinformatic analysis in order to ascertain the molecular function of the proteins they encode and the signaling in which they participate. High throughput technologies identified 65 gene sequences which were over-expressed in all groups (P ≤ 0·05 Bonferroni test). Notably we found that, after chemotherapy, a significant proportion of these genes were over-expressed in the good responders group, making their tumors indistinguishable from those of the bad responders in their expression profile (P ≤ 0.05 Benjamini-Hochgerg`s method). Conclusions These data identify a set of key molecular pathways selectively up-regulated in post-chemotherapy cancer cells, which may become appropriate targets for the development of future directed therapies against breast cancer. PMID:23326553

  19. A modulated empirical Bayes model for identifying topological and temporal estrogen receptor α regulatory networks in breast cancer

    Directory of Open Access Journals (Sweden)

    Zhao Yuming

    2011-05-01

    Full Text Available Abstract Background Estrogens regulate diverse physiological processes in various tissues through genomic and non-genomic mechanisms that result in activation or repression of gene expression. Transcription regulation upon estrogen stimulation is a critical biological process underlying the onset and progress of the majority of breast cancer. Dynamic gene expression changes have been shown to characterize the breast cancer cell response to estrogens, the every molecular mechanism of which is still not well understood. Results We developed a modulated empirical Bayes model, and constructed a novel topological and temporal transcription factor (TF regulatory network in MCF7 breast cancer cell line upon stimulation by 17β-estradiol stimulation. In the network, significant TF genomic hubs were identified including ER-alpha and AP-1; significant non-genomic hubs include ZFP161, TFDP1, NRF1, TFAP2A, EGR1, E2F1, and PITX2. Although the early and late networks were distinct ( Conclusions We identified a number of estrogen regulated target genes and established estrogen-regulated network that distinguishes the genomic and non-genomic actions of estrogen receptor. Many gene targets of this network were not active anymore in anti-estrogen resistant cell lines, possibly because their DNA methylation and histone acetylation patterns have changed.

  20. Identifying molecular targets of lifestyle modifications in colon cancer prevention

    Directory of Open Access Journals (Sweden)

    Molly Marie Derry

    2013-05-01

    Full Text Available One in four deaths in the United States is cancer-related, and colorectal cancer (CRC is the second leading cause of cancer-associated deaths. Screening strategies are utilized but have not reduced disease incidence or mortality. In this regard, there is an interest in cancer preventive strategies focusing on lifestyle intervention, where specific etiologic factors involved in cancer initiation, promotion, and progression could be targeted. For example, exposure to dietary carcinogens, such as nitrosamines and polycyclic aromatic hydrocarbons influences colon carcinogenesis. Furthermore, dietary deficiencies could alter sensitivity to genetic damage and influence carcinogen metabolism contributing to CRC. High alcohol consumption increases the risk of mutations including the fact that acetaldehyde, an ethanol metabolite, is classified as a group 1 carcinogen. Tobacco smoke exposure is also a risk factor for cancer development; ~20% of CRCs are associated with smoking. Additionally, obese patients have a higher risk of cancer development, which is further supported by the fact that physical activity decreases CRC risk by 55%. Similarly, chronic inflammatory conditions also increase the risk of CRC development. Moreover, the circadian clock alters digestion and regulates other biochemical, physiological and behavioral processes that could positively influence CRC. Taken together, colon carcinogenesis involves a number of etiological factors, and therefore, to create effective preventive strategies, molecular targets need to be identified and beleaguered prior to disease progression. With this in mind, the following is a comprehensive review identifying downstream target proteins of the above lifestyle risk factors, which are modulated during colon carcinogenesis and could be targeted for CRC prevention by novel agents including phytochemicals.

  1. A conditional piggyBac transposition system for genetic screening in mice identifies oncogenic networks in pancreatic cancer.

    Science.gov (United States)

    Rad, Roland; Rad, Lena; Wang, Wei; Strong, Alexander; Ponstingl, Hannes; Bronner, Iraad F; Mayho, Matthew; Steiger, Katja; Weber, Julia; Hieber, Maren; Veltkamp, Christian; Eser, Stefan; Geumann, Ulf; Öllinger, Rupert; Zukowska, Magdalena; Barenboim, Maxim; Maresch, Roman; Cadiñanos, Juan; Friedrich, Mathias; Varela, Ignacio; Constantino-Casas, Fernando; Sarver, Aaron; Ten Hoeve, Jelle; Prosser, Haydn; Seidler, Barbara; Bauer, Judith; Heikenwälder, Mathias; Metzakopian, Emmanouil; Krug, Anne; Ehmer, Ursula; Schneider, Günter; Knösel, Thomas; Rümmele, Petra; Aust, Daniela; Grützmann, Robert; Pilarsky, Christian; Ning, Zemin; Wessels, Lodewyk; Schmid, Roland M; Quail, Michael A; Vassiliou, George; Esposito, Irene; Liu, Pentao; Saur, Dieter; Bradley, Allan

    2015-01-01

    Here we describe a conditional piggyBac transposition system in mice and report the discovery of large sets of new cancer genes through a pancreatic insertional mutagenesis screen. We identify Foxp1 as an oncogenic transcription factor that drives pancreatic cancer invasion and spread in a mouse model and correlates with lymph node metastasis in human patients with pancreatic cancer. The propensity of piggyBac for open chromatin also enabled genome-wide screening for cancer-relevant noncoding DNA, which pinpointed a Cdkn2a cis-regulatory region. Histologically, we observed different tumor subentities and discovered associated genetic events, including Fign insertions in hepatoid pancreatic cancer. Our studies demonstrate the power of genetic screening to discover cancer drivers that are difficult to identify by other approaches to cancer genome analysis, such as downstream targets of commonly mutated human cancer genes. These piggyBac resources are universally applicable in any tissue context and provide unique experimental access to the genetic complexity of cancer.

  2. Mitochondrial Genome Deletion for Detection of Prostate Cancer — EDRN Public Portal

    Science.gov (United States)

    The Prostate Core Mitomic Test™ is based upon a 3.4 kb mitochondrial genome deletion (3.4 mtdelta) that was identified through PCR analysis of frozen prostate cancer samples. In cancer research it has been found that deletions in mitochondrial DNA can correlate with cellular changes that indicate development of cancer. This deletion includes the terminal 22 bases of MT-ND4L, all of MT-ND4, 3 tRNAs (histidine, serine 2, and leucine 2), and all except the terminal 24 bases of MT-ND5.

  3. Genome Stability Pathways in Head and Neck Cancers

    Directory of Open Access Journals (Sweden)

    Glenn Jenkins

    2013-01-01

    Full Text Available Genomic instability underlies the transformation of host cells toward malignancy, promotes development of invasion and metastasis and shapes the response of established cancer to treatment. In this review, we discuss recent advances in our understanding of genomic stability in squamous cell carcinoma of the head and neck (HNSCC, with an emphasis on DNA repair pathways. HNSCC is characterized by distinct profiles in genome stability between similarly staged cancers that are reflected in risk, treatment response and outcomes. Defective DNA repair generates chromosomal derangement that can cause subsequent alterations in gene expression, and is a hallmark of progression toward carcinoma. Variable functionality of an increasing spectrum of repair gene polymorphisms is associated with increased cancer risk, while aetiological factors such as human papillomavirus, tobacco and alcohol induce significantly different behaviour in induced malignancy, underpinned by differences in genomic stability. Targeted inhibition of signalling receptors has proven to be a clinically-validated therapy, and protein expression of other DNA repair and signalling molecules associated with cancer behaviour could potentially provide a more refined clinical model for prognosis and treatment prediction. Development and expansion of current genomic stability models is furthering our understanding of HNSCC pathophysiology and uncovering new, promising treatment strategies.

  4. A genome-wide association study identifies a novel susceptibility locus for renal cell carcinoma on 12p11.23

    NARCIS (Netherlands)

    Wu, Xifeng; Scelo, Ghislaine; Purdue, Mark P.; Rothman, Nathaniel; Johansson, Mattias; Ye, Yuanqing; Wang, Zhaoming; Zelenika, Diana; Moore, Lee E.; Wood, Christopher G.; Prokhortchouk, Egor; Gaborieau, Valerie; Jacobs, Kevin B.; Chow, Wong-Ho; Toro, Jorge R.; Zaridze, David; Lin, Jie; Lubinski, Jan; Trubicka, Joanna; Szeszenia-Dabrowska, Neonilia; Lissowska, Jolanta; Rudnai, Peter; Fabianova, Eleonora; Mates, Dana; Jinga, Viorel; Bencko, Vladimir; Slamova, Alena; Holcatova, Ivana; Navratilova, Marie; Janout, Vladimir; Boffetta, Paolo; Colt, Joanne S.; Davis, Faith G.; Schwartz, Kendra L.; Banks, Rosamonde E.; Selby, Peter J.; Harnden, Patricia; Berg, Christine D.; Hsing, Ann W.; Grubb, Robert L.; Boeing, Heiner; Vineis, Paolo; Clavel-Chapelon, Francoise; Palli, Domenico; Tumino, Rosario; Krogh, Vittorio; Panico, Salvatore; Duell, Eric J.; Ramon Quiros, Jose; Sanchez, Maria-Jose; Navarro, Carmen; Ardanaz, Eva; Dorronsoro, Miren; Khaw, Kay-Tee; Allen, Naomi E.; Bueno-de-Mesquita, H. Bas; Peeters, Petra H. M.; Trichopoulos, Dimitrios; Linseisen, Jakob; Ljungberg, Borje; Overvad, Kim; Tjonneland, Anne; Romieu, Isabelle; Riboli, Elio; Stevens, Victoria L.; Thun, Michael J.; Diver, W. Ryan; Gapstur, Susan M.; Pharoah, Paul D.; Easton, Douglas F.; Albanes, Demetrius; Virtamo, Jarmo; Vatten, Lars; Hveem, Kristian; Fletcher, Tony; Koppova, Kvetoslava; Cussenot, Olivier; Cancel-Tassin, Geraldine; Benhamou, Simone; Hildebrandt, Michelle A.; Pu, Xia; Foglio, Mario; Lechner, Doris; Hutchinson, Amy; Yeager, Meredith; Fraumeni, Joseph F.; Lathrop, Mark; Skryabin, Konstantin G.; McKay, James D.; Gu, Jian; Brennan, Paul; Chanock, Stephen J.

    2012-01-01

    Renal cell carcinoma (RCC) is the most lethal urologic cancer. Only two common susceptibility loci for RCC have been confirmed to date. To identify additional RCC common susceptibility loci, we conducted an independent genome- wide association study (GWAS). We analyzed 533 191 single nucleotide poly

  5. Detecting the somatic mutations spectrum of Chinese lung cancer by analyzing the whole mitochondrial DNA genomes.

    Science.gov (United States)

    Fang, Yu; Huang, Jie; Zhang, Jing; Wang, Jun; Qiao, Fei; Chen, Hua-Mei; Hong, Zhi-Peng

    2015-02-01

    To detect the somatic mutations and character its spectrum in Chinese lung cancer patients. In this study, we sequenced the whole mitochondrial DNA (mtDNA) genomes for 10 lung cancer patients including the primary cancerous, matched paracancerous normal and distant normal tissues. By analyzing the 30 whole mtDNA genomes, eight somatic mutations were identified from five patients investigated, which were confirmed with the cloning and sequencing of the somatic mutations. Five of the somatic mutations were detected among control region and the rests were found at the coding region. Heterogeneity was the main character of the somatic mutations in Chinese lung cancer patients. Further potential disease-related screening showed that, except the C deletion at position 309 showed AD-weakly associated, most of them were not disease-related. Although the role of aforementioned somatic mutations was unknown, however, considering the relative higher frequency of somatic mutations among the whole mtDNA genomes, it hints that detecting the somatic mutation(s) from the whole mtDNA genomes can serve as a useful tool for the Chinese lung cancer diagnostic to some extent.

  6. Molecular cytogenetic applications in analysis of the cancer genome.

    Science.gov (United States)

    Rao, Pulivarthi H; Nandula, Subhadra V; Murty, Vundavalli V

    2007-01-01

    Cancer cells exhibit nonrandom and complex chromosome abnormalities. The role of genomic changes in cancer is well established. However, the identification of complex and cryptic chromosomal changes is beyond the resolution of conventional banding methods. The fluorescence microscopy afforded by imaging technologies, developed recently, facilitates a precise identification of these chromosome alterations in cancer. The three most commonly utilized molecular cytogenetics methods comparative genomic hybridization, spectral karyotype, and fluorescence in situ hybridization, that have already become benchmark tools in cancer cytogenetics, are described in this chapter. Comparative genomic hybridization is a powerful tool for screening copy-number changes in tumor genomes without the need for preparation of metaphases from tumor cells. Multicolor spectral karyotype permits visualization of all chromosomes in one experiment permitting identification of precise chromosomal changes on metaphases derived from tumor cells. The uses of fluorescence in situ hybridization are diverse, including mapping of alteration in single copy genes, chromosomal regions, or entire chromosomes. The opportunities to detect genetic alterations in cancer cells continue to evolve with the use of these methodologies both in diagnosis and research.

  7. Comparative genomics of 12 strains of Erwinia amylovora identifies a pan-genome with a large conserved core.

    Science.gov (United States)

    Mann, Rachel A; Smits, Theo H M; Bühlmann, Andreas; Blom, Jochen; Goesmann, Alexander; Frey, Jürg E; Plummer, Kim M; Beer, Steven V; Luck, Joanne; Duffy, Brion; Rodoni, Brendan

    2013-01-01

    The plant pathogen Erwinia amylovora can be divided into two host-specific groupings; strains infecting a broad range of hosts within the Rosaceae subfamily Spiraeoideae (e.g., Malus, Pyrus, Crataegus, Sorbus) and strains infecting Rubus (raspberries and blackberries). Comparative genomic analysis of 12 strains representing distinct populations (e.g., geographic, temporal, host origin) of E. amylovora was used to describe the pan-genome of this major pathogen. The pan-genome contains 5751 coding sequences and is highly conserved relative to other phytopathogenic bacteria comprising on average 89% conserved, core genes. The chromosomes of Spiraeoideae-infecting strains were highly homogeneous, while greater genetic diversity was observed between Spiraeoideae- and Rubus-infecting strains (and among individual Rubus-infecting strains), the majority of which was attributed to variable genomic islands. Based on genomic distance scores and phylogenetic analysis, the Rubus-infecting strain ATCC BAA-2158 was genetically more closely related to the Spiraeoideae-infecting strains of E. amylovora than it was to the other Rubus-infecting strains. Analysis of the accessory genomes of Spiraeoideae- and Rubus-infecting strains has identified putative host-specific determinants including variation in the effector protein HopX1(Ea) and a putative secondary metabolite pathway only present in Rubus-infecting strains.

  8. Comparative genomics of 12 strains of Erwinia amylovora identifies a pan-genome with a large conserved core.

    Directory of Open Access Journals (Sweden)

    Rachel A Mann

    Full Text Available The plant pathogen Erwinia amylovora can be divided into two host-specific groupings; strains infecting a broad range of hosts within the Rosaceae subfamily Spiraeoideae (e.g., Malus, Pyrus, Crataegus, Sorbus and strains infecting Rubus (raspberries and blackberries. Comparative genomic analysis of 12 strains representing distinct populations (e.g., geographic, temporal, host origin of E. amylovora was used to describe the pan-genome of this major pathogen. The pan-genome contains 5751 coding sequences and is highly conserved relative to other phytopathogenic bacteria comprising on average 89% conserved, core genes. The chromosomes of Spiraeoideae-infecting strains were highly homogeneous, while greater genetic diversity was observed between Spiraeoideae- and Rubus-infecting strains (and among individual Rubus-infecting strains, the majority of which was attributed to variable genomic islands. Based on genomic distance scores and phylogenetic analysis, the Rubus-infecting strain ATCC BAA-2158 was genetically more closely related to the Spiraeoideae-infecting strains of E. amylovora than it was to the other Rubus-infecting strains. Analysis of the accessory genomes of Spiraeoideae- and Rubus-infecting strains has identified putative host-specific determinants including variation in the effector protein HopX1(Ea and a putative secondary metabolite pathway only present in Rubus-infecting strains.

  9. Leveraging Comparative Genomics to Identify and Functionally Characterize Genes Associated with Sperm Phenotypes in Python bivittatus (Burmese Python)

    OpenAIRE

    Kristopher J. L. Irizarry; Josep Rutllant

    2016-01-01

    Comparative genomics approaches provide a means of leveraging functional genomics information from a highly annotated model organism’s genome (such as the mouse genome) in order to make physiological inferences about the role of genes and proteins in a less characterized organism’s genome (such as the Burmese python). We employed a comparative genomics approach to produce the functional annotation of Python bivittatus genes encoding proteins associated with sperm phenotypes. We identify 129 g...

  10. Comprehensive annotation of bidirectional promoters identifies co-regulation among breast and ovarian cancer genes.

    Directory of Open Access Journals (Sweden)

    Mary Q Yang

    2007-04-01

    Full Text Available A "bidirectional gene pair" comprises two adjacent genes whose transcription start sites are neighboring and directed away from each other. The intervening regulatory region is called a "bidirectional promoter." These promoters are often associated with genes that function in DNA repair, with the potential to participate in the development of cancer. No connection between these gene pairs and cancer has been previously investigated. Using the database of spliced-expressed sequence tags (ESTs, we identified the most complete collection of human transcripts under the control of bidirectional promoters. A rigorous screen of the spliced EST data identified new bidirectional promoters, many of which functioned as alternative promoters or regulated novel transcripts. Additionally, we show a highly significant enrichment of bidirectional promoters in genes implicated in somatic cancer, including a substantial number of genes implicated in breast and ovarian cancers. The repeated use of this promoter structure in the human genome suggests it could regulate co-expression patterns among groups of genes. Using microarray expression data from 79 human tissues, we verify regulatory networks among genes controlled by bidirectional promoters. Subsets of these promoters contain similar combinations of transcription factor binding sites, including evolutionarily conserved ETS factor binding sites in ERBB2, FANCD2, and BRCA2. Interpreting the regulation of genes involved in co-expression networks, especially those involved in cancer, will be an important step toward defining molecular events that may contribute to disease.

  11. Functional epigenomics identifies genes frequently silenced in prostate cancer.

    Science.gov (United States)

    Lodygin, Dimitri; Epanchintsev, Alexey; Menssen, Antje; Diebold, Joachim; Hermeking, Heiko

    2005-05-15

    In many cases, silencing of gene expression by CpG methylation is causally involved in carcinogenesis. Furthermore, cancer-specific CpG methylation may serve as a tumor marker. In order to identify candidate genes for inactivation by CpG methylation in prostate cancer, the prostate cancer cell lines LNCaP, PC3, and Du-145 were treated with 5-aza-2' deoxycytidine and trichostatin A, which leads to reversion of epigenetic silencing. By microarray analysis of 18,400 individual transcripts, several hundred genes were found to be induced when compared with cells treated with trichostatin A. Fifty re-expressed genes were selected for further analysis based on their known function, which implied a possible involvement in tumor suppression. Twelve of these genes showed a significant degree of CpG methylation in their promoters. Six genes were silenced by CpG methylation in the majority of five analyzed prostate cancer cell lines, although they displayed robust mRNA expression in normal prostate epithelial cells obtained from four different donors. In primary prostate cancer samples derived from 41 patients, the frequencies of CpG methylation detected in the promoter regions of these genes were: GPX3, 93%; SFRP1, 83%; COX2, 78%; DKK3, 68%; GSTM1, 58%; and KIP2/p57, 56%. Ectopic expression of SFRP1 or DKK3 resulted in decreased proliferation. The expression of DKK3 was accompanied by attenuation of the mitogen-activated protein kinase pathway. The high frequency of CpG methylation detected in the promoters of the identified genes suggests a potential causal involvement in prostate cancer and may prove useful for diagnostic purposes.

  12. HUMAN CANCER IS A PARASITE SPREAD VIA INTRUSION IN GENOME

    Directory of Open Access Journals (Sweden)

    Sergey N. Rumyantsev

    2013-03-01

    Full Text Available The present article is devoted to further development of new paradigm about the biology of human cancer: the hypothesis of parasitic nature, origin and evolution of the phenomenon. The study included integrative reconsidering, and reinterpretation of the make-ups, traits and processes existing both in human and animal cancers. It was demonstrated that human cancer possesses nearly analogous set of traits characteristic of transmissible animal cancer. Undoubted analogies are seen in the prevalence, clinical exposure, progression of disease, origin of causative agents, immune response against invasion and especially in the intrinsic deviations of the leading traits of cancerous cells. Both human and animal cancers are highly exceptional pathogens. But in contrast to contagious animal cancers the cells of of human cancer can not pass between individuals as usual infectious agents. Exhaustive evidence of the parasitic nature and evolutionary origin of human cancer was revealed and interpreted. In contrast to animal cancer formed of solitary cell lineage, human cancer consists of a couple of lineages constructed under different genetic regulations and performed different structural and physiological functions. The complex make-up of cancer composition remains stable over sequential propagation. The subsistence of human cancer regularly includes obligatory interchange of its successive forms. Human cancer possesses its own biological watch and the ability to gobble its victim, transmit via the intrusion of the genome, perform intercommunications within the tumor components and between the dispersed subunits of cancer. Such intrinsic traits characterize human cancer as a primitively structured parasite that can be classified in Class Mammalians, Species Genomeintruder malevolent (G.malevolent.

  13. Integrated functional, gene expression and genomic analysis for the identification of cancer targets.

    Directory of Open Access Journals (Sweden)

    Elizabeth Iorns

    Full Text Available The majority of new drug approvals for cancer are based on existing therapeutic targets. One approach to the identification of novel targets is to perform high-throughput RNA interference (RNAi cellular viability screens. We describe a novel approach combining RNAi screening in multiple cell lines with gene expression and genomic profiling to identify novel cancer targets. We performed parallel RNAi screens in multiple cancer cell lines to identify genes that are essential for viability in some cell lines but not others, suggesting that these genes constitute key drivers of cellular survival in specific cancer cells. This approach was verified by the identification of PIK3CA, silencing of which was selectively lethal to the MCF7 cell line, which harbours an activating oncogenic PIK3CA mutation. We combined our functional RNAi approach with gene expression and genomic analysis, allowing the identification of several novel kinases, including WEE1, that are essential for viability only in cell lines that have an elevated level of expression of this kinase. Furthermore, we identified a subset of breast tumours that highly express WEE1 suggesting that WEE1 could be a novel therapeutic target in breast cancer. In conclusion, this strategy represents a novel and effective strategy for the identification of functionally important therapeutic targets in cancer.

  14. Occupation as a risk identifier for breast cancer.

    Science.gov (United States)

    Rubin, C H; Burnett, C A; Halperin, W E; Seligman, P J

    1993-01-01

    OBJECTIVES. Breast cancer mortality may be reduced if the disease is detected early through targeted screening programs. Current screening guidelines are based solely on a woman's age. Because working populations are accessible for intervention, occupational identification may be a way of helping to define and locate risk groups and target prevention. METHODS. We used a database consisting of 2.9 million occupationally coded death certificates collected from 23 states between 1979 and 1987 to calculate age-adjusted, race-specific proportionate mortality ratios for breast cancer according to occupation. We performed case-control analyses on occupational groups and on stratifications within the teaching profession. RESULTS. We found a number of significant associations between occupation and frequency of breast cancer. For example, white female professional, managerial, and clerical workers all had high proportions of breast cancer death. High rates of breast cancer in teachers were found in both proportionate mortality ratio and case-control analyses. CONCLUSIONS. These findings may serve as in an aid in the effective targeting of work-site health promotion programs. They suggest that occupationally coded mortality data can be a useful adjunct in the difficult task of identifying groups at risk of preventable disease. PMID:8363008

  15. New families of human regulatory RNA structures identified by comparative analysis of vertebrate genomes

    DEFF Research Database (Denmark)

    Parker, Brian John; Moltke, Ida; Roth, Adam Anders Edvin;

    2011-01-01

    involving six long hairpins in the 3'-UTR of MAT2A, a key metabolic gene that produces the primary human methyl donor S-adenosylmethionine; the other involving a tRNA-like structure in the intron of the tRNA maturation gene POP1. We experimentally validate the predicted MAT2A structures. Finally, we...... a comparative method, EvoFam, for genome-wide identification of families of regulatory RNA structures, based on primary sequence and secondary structure similarity. We apply EvoFam to a 41-way genomic vertebrate alignment. Genome-wide, we identify 220 human, high-confidence families outside protein...

  16. Integrated proteo-genomic approach for early diagnosis and prognosis of cancer.

    Science.gov (United States)

    Shukla, Hem D; Mahmood, Javed; Vujaskovic, Zeljko

    2015-12-01

    Cancer is the leading cause of mortality among men and women worldwide. Despite the availability of numerous diagnostic techniques for various cancers, the overall survival rate remains low and the majority of patients die due to late diagnosis and advanced stage of the disease. Diagnosing and treating cancer at its early stages ideally during the precancerous phase could significantly increase survival rate with the possibility of cure and prolong survival. Cancer is a genetic disease and it is illicitly activated by the acquisition of somatic DNA lesions and aberrations in genome structure and defects in maintenance and repair. These somatic DNA mutations known as driver mutations seem to be the prime cause in initiating tumorigenesis. The advances in genomic technologies have immensely facilitated the understanding of cancer progression and metastasis, and the discovery of novel biomarkers. However, changes in somatic mutational landscape of the oncogenome are translated into aberrantly regulated oncoproteome which drives the cancer initiation. Thus, combination of proteomic and genomic technologies is urgently required to discover biomarkers for early diagnosis. The recent advances in human genome based detection of cancer using advanced genomic technologies like NextGen Sequencing, digital PCR, cfDNA technology have shown promise; for example oncogenic somatic mutation variants, transcriptomic analysis, copy number variant, and methylation data from the Cancer Genome Atlas. Similarly, oncoproteomics has the potential to revolutionize clinical management of the disease, including cancer diagnosis and screening based on new proteomic database which embodies somatic variants and post translational modifications, thus devising proteomic technologies as a complement to histopathology. Further, the use of multiple proteomic and genomic biomarkers rather than a single gene or protein could greatly improve diagnostic accuracy and enhance the predictive power for

  17. Expression profiling identifies microRNA signature in pancreatic cancer

    OpenAIRE

    Lee, Eun Joo; Gusev, Yuriy; Jiang, Jinmai; Gerard J Nuovo; Lerner, Megan R; Frankel, Wendy L.; Morgan, Daniel L.; Postier, Russell G.; Brackett, Daniel J; Schmittgen, Thomas D.

    2007-01-01

    microRNAs are functional, 22 nt, noncoding RNAs that negatively regulate gene expression. Disturbance of microRNA expression may play a role in the initiation and progression of certain diseases. A microRNA expression signature has been identified that is associated with pancreatic cancer. This has been accomplished with the application of real-time PCR profiling of over 200 microRNA precursors on specimens of human pancreatic adenocarcinoma, paired benign tissue, normal pancreas, chronic pan...

  18. Cancer in Children and Adolescents | Office of Cancer Genomics

    Science.gov (United States)

    View a fact sheet that has statistics as well as information about types, causes, and treatments of cancers in children and adolescents in the United States. http://www.cancer.gov/cancertopics/factsheet/Sites-Types/childhood

  19. Integrated proteomic and genomic analysis of colorectal cancer

    Science.gov (United States)

    Investigators who analyzed 95 human colorectal tumor samples have determined how gene alterations identified in previous analyses of the same samples are expressed at the protein level. The integration of proteomic and genomic data, or proteogenomics, pro

  20. Highlights from the prostate cancer genome report

    Institute of Scientific and Technical Information of China (English)

    Shyh-Han Tan; Gyorgy Petrovics; Shiv Srivastava

    2011-01-01

    @@ Prostate cancer (Cap) is the second most frequently diagnosed cancer of men worldwide (899 000 new cases,13.6% of the total),with nearly 75% of the registered cases occurring in developed countries (644000 cases).1 Blood prostate-specific antigen test has revolutionized the early detection of Cap and organ-confined Cap is effectively managed by state-of-the-art treatments including radical prostatectomy or radiation therapy.2 In the past decade,tremendous progress has also been made in our understanding of the biology and common genomicalterations in Cap 3.4 New molecular marker assays have promise in improving CaP diagnosis.Despite these advances,major challenges remain with our ability to distinguish indolent cancers from the more aggressive cancers detected early due to widely used prostate-specific antigen test.Furthermore,development of molecular stratification of CaP for targeted and more effective therapies is critically needed.

  1. Comparative Genomic Analysis of Meningitis- and Bacteremia-Causing Pneumococci Identifies a Common Core Genome.

    Science.gov (United States)

    Kulohoma, Benard W; Cornick, Jennifer E; Chaguza, Chrispin; Yalcin, Feyruz; Harris, Simon R; Gray, Katherine J; Kiran, Anmol M; Molyneux, Elizabeth; French, Neil; Parkhill, Julian; Faragher, Brian E; Everett, Dean B; Bentley, Stephen D; Heyderman, Robert S

    2015-10-01

    Streptococcus pneumoniae is a nasopharyngeal commensal that occasionally invades normally sterile sites to cause bloodstream infection and meningitis. Although the pneumococcal population structure and evolutionary genetics are well defined, it is not clear whether pneumococci that cause meningitis are genetically distinct from those that do not. Here, we used whole-genome sequencing of 140 isolates of S. pneumoniae recovered from bloodstream infection (n = 70) and meningitis (n = 70) to compare their genetic contents. By fitting a double-exponential decaying-function model, we show that these isolates share a core of 1,427 genes (95% confidence interval [CI], 1,425 to 1,435 genes) and that there is no difference in the core genome or accessory gene content from these disease manifestations. Gene presence/absence alone therefore does not explain the virulence behavior of pneumococci that reach the meninges. Our analysis, however, supports the requirement of a range of previously described virulence factors and vaccine candidates for both meningitis- and bacteremia-causing pneumococci. This high-resolution view suggests that, despite considerable competency for genetic exchange, all pneumococci are under considerable pressure to retain key components advantageous for colonization and transmission and that these components are essential for access to and survival in sterile sites.

  2. Integrated analysis of copy number variation and genome-wide expression profiling in colorectal cancer tissues.

    Science.gov (United States)

    Ali Hassan, Nur Zarina; Mokhtar, Norfilza Mohd; Kok Sin, Teow; Mohamed Rose, Isa; Sagap, Ismail; Harun, Roslan; Jamal, Rahman

    2014-01-01

    Integrative analyses of multiple genomic datasets for selected samples can provide better insight into the overall data and can enhance our knowledge of cancer. The objective of this study was to elucidate the association between copy number variation (CNV) and gene expression in colorectal cancer (CRC) samples and their corresponding non-cancerous tissues. Sixty-four paired CRC samples from the same patients were subjected to CNV profiling using the Illumina HumanOmni1-Quad assay, and validation was performed using multiplex ligation probe amplification method. Genome-wide expression profiling was performed on 15 paired samples from the same group of patients using the Affymetrix Human Gene 1.0 ST array. Significant genes obtained from both array results were then overlapped. To identify molecular pathways, the data were mapped to the KEGG database. Whole genome CNV analysis that compared primary tumor and non-cancerous epithelium revealed gains in 1638 genes and losses in 36 genes. Significant gains were mostly found in chromosome 20 at position 20q12 with a frequency of 45.31% in tumor samples. Examples of genes that were associated at this cytoband were PTPRT, EMILIN3 and CHD6. The highest number of losses was detected at chromosome 8, position 8p23.2 with 17.19% occurrence in all tumor samples. Among the genes found at this cytoband were CSMD1 and DLC1. Genome-wide expression profiling showed 709 genes to be up-regulated and 699 genes to be down-regulated in CRC compared to non-cancerous samples. Integration of these two datasets identified 56 overlapping genes, which were located in chromosomes 8, 20 and 22. MLPA confirmed that the CRC samples had the highest gains in chromosome 20 compared to the reference samples. Interpretation of the CNV data in the context of the transcriptome via integrative analyses may provide more in-depth knowledge of the genomic landscape of CRC.

  3. Integrated analysis of copy number variation and genome-wide expression profiling in colorectal cancer tissues.

    Directory of Open Access Journals (Sweden)

    Nur Zarina Ali Hassan

    Full Text Available Integrative analyses of multiple genomic datasets for selected samples can provide better insight into the overall data and can enhance our knowledge of cancer. The objective of this study was to elucidate the association between copy number variation (CNV and gene expression in colorectal cancer (CRC samples and their corresponding non-cancerous tissues. Sixty-four paired CRC samples from the same patients were subjected to CNV profiling using the Illumina HumanOmni1-Quad assay, and validation was performed using multiplex ligation probe amplification method. Genome-wide expression profiling was performed on 15 paired samples from the same group of patients using the Affymetrix Human Gene 1.0 ST array. Significant genes obtained from both array results were then overlapped. To identify molecular pathways, the data were mapped to the KEGG database. Whole genome CNV analysis that compared primary tumor and non-cancerous epithelium revealed gains in 1638 genes and losses in 36 genes. Significant gains were mostly found in chromosome 20 at position 20q12 with a frequency of 45.31% in tumor samples. Examples of genes that were associated at this cytoband were PTPRT, EMILIN3 and CHD6. The highest number of losses was detected at chromosome 8, position 8p23.2 with 17.19% occurrence in all tumor samples. Among the genes found at this cytoband were CSMD1 and DLC1. Genome-wide expression profiling showed 709 genes to be up-regulated and 699 genes to be down-regulated in CRC compared to non-cancerous samples. Integration of these two datasets identified 56 overlapping genes, which were located in chromosomes 8, 20 and 22. MLPA confirmed that the CRC samples had the highest gains in chromosome 20 compared to the reference samples. Interpretation of the CNV data in the context of the transcriptome via integrative analyses may provide more in-depth knowledge of the genomic landscape of CRC.

  4. Genetic variations may help identify best candidates for preventive breast cancer drugs | Division of Cancer Prevention

    Science.gov (United States)

    Newly discovered genetic variations may help predict breast cancer risk in women who receive preventive breast cancer therapy with the selective estrogen receptor modulator drugs tamoxifen andraloxifene, a Mayo Clinic-led study has found. The study is published in the journal Cancer Discovery. "Our findings are important because we identified genetic factors that could eventually be used to select women who should be offered the drugs for prevention," said James Ingle, M.D., an oncologist at Mayo Clinic. |

  5. Fine-mapping identifies two additional breast cancer susceptibility loci at 9q31.2.

    Science.gov (United States)

    Orr, Nick; Dudbridge, Frank; Dryden, Nicola; Maguire, Sarah; Novo, Daniela; Perrakis, Eleni; Johnson, Nichola; Ghoussaini, Maya; Hopper, John L; Southey, Melissa C; Apicella, Carmel; Stone, Jennifer; Schmidt, Marjanka K; Broeks, Annegien; Van't Veer, Laura J; Hogervorst, Frans B; Fasching, Peter A; Haeberle, Lothar; Ekici, Arif B; Beckmann, Matthias W; Gibson, Lorna; Aitken, Zoe; Warren, Helen; Sawyer, Elinor; Tomlinson, Ian; Kerin, Michael J; Miller, Nicola; Burwinkel, Barbara; Marme, Frederik; Schneeweiss, Andreas; Sohn, Chistof; Guénel, Pascal; Truong, Thérèse; Cordina-Duverger, Emilie; Sanchez, Marie; Bojesen, Stig E; Nordestgaard, Børge G; Nielsen, Sune F; Flyger, Henrik; Benitez, Javier; Zamora, Maria Pilar; Arias Perez, Jose Ignacio; Menéndez, Primitiva; Anton-Culver, Hoda; Neuhausen, Susan L; Brenner, Hermann; Dieffenbach, Aida Karina; Arndt, Volker; Stegmaier, Christa; Hamann, Ute; Brauch, Hiltrud; Justenhoven, Christina; Brüning, Thomas; Ko, Yon-Dschun; Nevanlinna, Heli; Aittomäki, Kristiina; Blomqvist, Carl; Khan, Sofia; Bogdanova, Natalia; Dörk, Thilo; Lindblom, Annika; Margolin, Sara; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M; Chenevix-Trench, Georgia; Beesley, Jonathan; Lambrechts, Diether; Moisse, Matthieu; Floris, Guiseppe; Beuselinck, Benoit; Chang-Claude, Jenny; Rudolph, Anja; Seibold, Petra; Flesch-Janys, Dieter; Radice, Paolo; Peterlongo, Paolo; Peissel, Bernard; Pensotti, Valeria; Couch, Fergus J; Olson, Janet E; Slettedahl, Seth; Vachon, Celine; Giles, Graham G; Milne, Roger L; McLean, Catriona; Haiman, Christopher A; Henderson, Brian E; Schumacher, Fredrick; Le Marchand, Loic; Simard, Jacques; Goldberg, Mark S; Labrèche, France; Dumont, Martine; Kristensen, Vessela; Alnæs, Grethe Grenaker; Nord, Silje; Borresen-Dale, Anne-Lise; Zheng, Wei; Deming-Halverson, Sandra; Shrubsole, Martha; Long, Jirong; Winqvist, Robert; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Grip, Mervi; Andrulis, Irene L; Knight, Julia A; Glendon, Gord; Tchatchou, Sandrine; Devilee, Peter; Tollenaar, Robertus A E M; Seynaeve, Caroline M; Van Asperen, Christi J; Garcia-Closas, Montserrat; Figueroa, Jonine; Chanock, Stephen J; Lissowska, Jolanta; Czene, Kamila; Darabi, Hatef; Eriksson, Mikael; Klevebring, Daniel; Hooning, Maartje J; Hollestelle, Antoinette; van Deurzen, Carolien H M; Kriege, Mieke; Hall, Per; Li, Jingmei; Liu, Jianjun; Humphreys, Keith; Cox, Angela; Cross, Simon S; Reed, Malcolm W R; Pharoah, Paul D P; Dunning, Alison M; Shah, Mitul; Perkins, Barbara J; Jakubowska, Anna; Lubinski, Jan; Jaworska-Bieniek, Katarzyna; Durda, Katarzyna; Ashworth, Alan; Swerdlow, Anthony; Jones, Michael; Schoemaker, Minouk J; Meindl, Alfons; Schmutzler, Rita K; Olswold, Curtis; Slager, Susan; Toland, Amanda E; Yannoukakos, Drakoulis; Muir, Kenneth; Lophatananon, Artitaya; Stewart-Brown, Sarah; Siriwanarangsan, Pornthep; Matsuo, Keitaro; Ito, Hidema; Iwata, Hiroji; Ishiguro, Junko; Wu, Anna H; Tseng, Chiu-Chen; Van Den Berg, David; Stram, Daniel O; Teo, Soo Hwang; Yip, Cheng Har; Kang, Peter; Ikram, Mohammad Kamran; Shu, Xiao-Ou; Lu, Wei; Gao, Yu-Tang; Cai, Hui; Kang, Daehee; Choi, Ji-Yeob; Park, Sue K; Noh, Dong-Young; Hartman, Mikael; Miao, Hui; Lim, Wei Yen; Lee, Soo Chin; Sangrajrang, Suleeporn; Gaborieau, Valerie; Brennan, Paul; Mckay, James; Wu, Pei-Ei; Hou, Ming-Feng; Yu, Jyh-Cherng; Shen, Chen-Yang; Blot, William; Cai, Qiuyin; Signorello, Lisa B; Luccarini, Craig; Bayes, Caroline; Ahmed, Shahana; Maranian, Mel; Healey, Catherine S; González-Neira, Anna; Pita, Guillermo; Alonso, M Rosario; Álvarez, Nuria; Herrero, Daniel; Tessier, Daniel C; Vincent, Daniel; Bacot, Francois; Hunter, David J; Lindstrom, Sara; Dennis, Joe; Michailidou, Kyriaki; Bolla, Manjeet K; Easton, Douglas F; dos Santos Silva, Isabel; Fletcher, Olivia; Peto, Julian

    2015-05-15

    We recently identified a novel susceptibility variant, rs865686, for estrogen-receptor positive breast cancer at 9q31.2. Here, we report a fine-mapping analysis of the 9q31.2 susceptibility locus using 43 160 cases and 42 600 controls of European ancestry ascertained from 52 studies and a further 5795 cases and 6624 controls of Asian ancestry from nine studies. Single nucleotide polymorphism (SNP) rs676256 was most strongly associated with risk in Europeans (odds ratios [OR] = 0.90 [0.88-0.92]; P-value = 1.58 × 10(-25)). This SNP is one of a cluster of highly correlated variants, including rs865686, that spans ∼14.5 kb. We identified two additional independent association signals demarcated by SNPs rs10816625 (OR = 1.12 [1.08-1.17]; P-value = 7.89 × 10(-09)) and rs13294895 (OR = 1.09 [1.06-1.12]; P-value = 2.97 × 10(-11)). SNP rs10816625, but not rs13294895, was also associated with risk of breast cancer in Asian individuals (OR = 1.12 [1.06-1.18]; P-value = 2.77 × 10(-05)). Functional genomic annotation using data derived from breast cancer cell-line models indicates that these SNPs localise to putative enhancer elements that bind known drivers of hormone-dependent breast cancer, including ER-α, FOXA1 and GATA-3. In vitro analyses indicate that rs10816625 and rs13294895 have allele-specific effects on enhancer activity and suggest chromatin interactions with the KLF4 gene locus. These results demonstrate the power of dense genotyping in large studies to identify independent susceptibility variants. Analysis of associations using subjects with different ancestry, combined with bioinformatic and genomic characterisation, can provide strong evidence for the likely causative alleles and their functional basis.

  6. National Cancer Moonshot Initiative platform | Office of Cancer Genomics

    Science.gov (United States)

    As part of the Vice President’s National Cancer Moonshot Initiative, the National Cancer Institute has launched an online engagement platform to enable the research community and the public to submit cancer research ideas to a Blue Ribbon Panel of scientific experts. Any member of the public is encouraged to submit his or her ideas for reducing the incidence of cancer and developing better ways to prevent, treat, and cure all types of cancer. Research ideas may be submitted in the following areas:

  7. CRISPR-Cas9: from Genome Editing to Cancer Research.

    Science.gov (United States)

    Chen, Si; Sun, Heng; Miao, Kai; Deng, Chu-Xia

    2016-01-01

    Cancer development is a multistep process triggered by innate and acquired mutations, which cause the functional abnormality and determine the initiation and progression of tumorigenesis. Gene editing is a widely used engineering tool for generating mutations that enhance tumorigenesis. The recent developed clustered regularly interspaced short palindromic repeats-CRISPR-associated 9 (CRISPR-Cas9) system renews the genome editing approach into a more convenient and efficient way. By rapidly introducing genetic modifications in cell lines, organs and animals, CRISPR-Cas9 system extends the gene editing into whole genome screening, both in loss-of-function and gain-of-function manners. Meanwhile, the system accelerates the establishment of animal cancer models, promoting in vivo studies for cancer research. Furthermore, CRISPR-Cas9 system is modified into diverse innovative tools for observing the dynamic bioprocesses in cancer studies, such as image tracing for targeted DNA, regulation of transcription activation or repression. Here, we view recent technical advances in the application of CRISPR-Cas9 system in cancer genetics, large-scale cancer driver gene hunting, animal cancer modeling and functional studies.

  8. CRISPRi and CRISPRa: New Functional Genomics Tools Provide Complementary Insights into Cancer Biology and Therapeutic Strategies | Office of Cancer Genomics

    Science.gov (United States)

    A central goal of research for targeted cancer therapy, or precision oncology, is to reveal the intrinsic vulnerabilities of cancer cells and exploit them as therapeutic targets. Examples of cancer cell vulnerabilities include driver oncogenes that are essential for the initiation and progression of cancer, or non-oncogene addictions resulting from the cancerous state of the cell. To identify vulnerabilities, scientists perform genetic “loss-of-function” and “gain-of-function” studies to better understand the roles of specific genes in cancer cells.

  9. A novel approach for determining cancer genomic breakpoints in the presence of normal DNA.

    Directory of Open Access Journals (Sweden)

    Yu-Tsueng Liu

    Full Text Available CDKN2A (encodes p16(INK4A and p14(ARF deletion, which results in both Rb and p53 inactivation, is the most common chromosomal anomaly in human cancers. To precisely map the deletion breakpoints is important to understanding the molecular mechanism of genomic rearrangement and may also be useful for clinical applications. However, current methods for determining the breakpoint are either of low resolution or require the isolation of relatively pure cancer cells, which can be difficult for clinical samples that are typically contaminated with various amounts of normal host cells. To overcome this hurdle, we have developed a novel approach, designated Primer Approximation Multiplex PCR (PAMP, for enriching breakpoint sequences followed by genomic tiling array hybridization to locate the breakpoints. In a series of proof-of-concept experiments, we were able to identify cancer-derived CDKN2A genomic breakpoints when more than 99.9% of wild type genome was present in a model system. This design can be scaled up with bioinformatics support and can be applied to validate other candidate cancer-associated loci that are revealed by other more systemic but lower throughput assays.

  10. Genomic sequencing of colorectal adenocarcinomas identifies a recurrent VTI1A-TCF7L2 fusion.

    Science.gov (United States)

    Bass, Adam J; Lawrence, Michael S; Brace, Lear E; Ramos, Alex H; Drier, Yotam; Cibulskis, Kristian; Sougnez, Carrie; Voet, Douglas; Saksena, Gordon; Sivachenko, Andrey; Jing, Rui; Parkin, Melissa; Pugh, Trevor; Verhaak, Roel G; Stransky, Nicolas; Boutin, Adam T; Barretina, Jordi; Solit, David B; Vakiani, Evi; Shao, Wenlin; Mishina, Yuji; Warmuth, Markus; Jimenez, Jose; Chiang, Derek Y; Signoretti, Sabina; Kaelin, William G; Spardy, Nicole; Hahn, William C; Hoshida, Yujin; Ogino, Shuji; Depinho, Ronald A; Chin, Lynda; Garraway, Levi A; Fuchs, Charles S; Baselga, Jose; Tabernero, Josep; Gabriel, Stacey; Lander, Eric S; Getz, Gad; Meyerson, Matthew

    2011-09-04

    Prior studies have identified recurrent oncogenic mutations in colorectal adenocarcinoma and have surveyed exons of protein-coding genes for mutations in 11 affected individuals. Here we report whole-genome sequencing from nine individuals with colorectal cancer, including primary colorectal tumors and matched adjacent non-tumor tissues, at an average of 30.7× and 31.9× coverage, respectively. We identify an average of 75 somatic rearrangements per tumor, including complex networks of translocations between pairs of chromosomes. Eleven rearrangements encode predicted in-frame fusion proteins, including a fusion of VTI1A and TCF7L2 found in 3 out of 97 colorectal cancers. Although TCF7L2 encodes TCF4, which cooperates with β-catenin in colorectal carcinogenesis, the fusion lacks the TCF4 β-catenin-binding domain. We found a colorectal carcinoma cell line harboring the fusion gene to be dependent on VTI1A-TCF7L2 for anchorage-independent growth using RNA interference-mediated knockdown. This study shows previously unidentified levels of genomic rearrangements in colorectal carcinoma that can lead to essential gene fusions and other oncogenic events.

  11. Chapter 27 -- Breast Cancer Genomics, Section VI, Pathology and Biological Markers of Invasive Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Spellman, Paul T.; Heiser, Laura; Gray, Joe W.

    2009-06-18

    Breast cancer is predominantly a disease of the genome with cancers arising and progressing through accumulation of aberrations that alter the genome - by changing DNA sequence, copy number, and structure in ways that that contribute to diverse aspects of cancer pathophysiology. Classic examples of genomic events that contribute to breast cancer pathophysiology include inherited mutations in BRCA1, BRCA2, TP53, and CHK2 that contribute to the initiation of breast cancer, amplification of ERBB2 (formerly HER2) and mutations of elements of the PI3-kinase pathway that activate aspects of epidermal growth factor receptor (EGFR) signaling and deletion of CDKN2A/B that contributes to cell cycle deregulation and genome instability. It is now apparent that accumulation of these aberrations is a time-dependent process that accelerates with age. Although American women living to an age of 85 have a 1 in 8 chance of developing breast cancer, the incidence of cancer in women younger than 30 years is uncommon. This is consistent with a multistep cancer progression model whereby mutation and selection drive the tumor's development, analogous to traditional Darwinian evolution. In the case of cancer, the driving events are changes in sequence, copy number, and structure of DNA and alterations in chromatin structure or other epigenetic marks. Our understanding of the genetic, genomic, and epigenomic events that influence the development and progression of breast cancer is increasing at a remarkable rate through application of powerful analysis tools that enable genome-wide analysis of DNA sequence and structure, copy number, allelic loss, and epigenomic modification. Application of these techniques to elucidation of the nature and timing of these events is enriching our understanding of mechanisms that increase breast cancer susceptibility, enable tumor initiation and progression to metastatic disease, and determine therapeutic response or resistance. These studies also

  12. In situ quantification of genomic instability in breast cancer progression

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz de Solorzano, Carlos; Chin, Koei; Gray, Joe W.; Lockett, Stephen J.

    2003-05-15

    Genomic instability is a hallmark of breast and other solid cancers. Presumably caused by critical telomere reduction, GI is responsible for providing the genetic diversity required in the multi-step progression of the disease. We have used multicolor fluorescence in situ hybridization and 3D image analysis to quantify genomic instability cell-by-cell in thick, intact tissue sections of normal breast epithelium, preneoplastic lesions (usual ductal hyperplasia), ductal carcinona is situ or invasive carcinoma of the breast. Our in situ-cell by cell-analysis of genomic instability shows an important increase of genomic instability in the transition from hyperplasia to in situ carcinoma, followed by a reduction of instability in invasive carcinoma. This pattern suggests that the transition from hyperplasia to in situ carcinoma corresponds to telomere crisis and invasive carcinoma is a consequence of telomerase reactivation afertelomere crisis.

  13. Genome wide association study identifies KCNMA1 contributing to human obesity

    DEFF Research Database (Denmark)

    Jiao, Hong; Arner, Peter; Hoffstedt, Johan;

    2011-01-01

    Recent genome-wide association (GWA) analyses have identified common single nucleotide polymorphisms (SNPs) that are associated with obesity. However, the reported genetic variation in obesity explains only a minor fraction of the total genetic variation expected to be present in the population....... Thus many genetic variants controlling obesity remain to be identified. The aim of this study was to use GWA followed by multiple stepwise validations to identify additional genes associated with obesity....

  14. Comprehensive genomic sequencing and the molecular profiles of clinically advanced breast cancer.

    Science.gov (United States)

    Ross, Jeffrey S; Gay, Laurie M

    2017-02-01

    Targeting specific mutations that have arisen within a tumour is a promising means of increasing the efficacy of treatments, and breast cancer is no exception to this new paradigm of personalised medicine. Traditional DNA sequencing methods used to characterise clinical cancer specimens and impact treatment decisions are highly sensitive, but are often limited in their scope to known mutational hot spots. Next-generation sequencing (NGS) technologies can also test for these well-known hot spots, as well as identifying insertions and deletions, copy number changes such as ERBB2 (HER2) gene amplification, and a wide array of fusion or rearrangement events. By rapidly analysing many genes in parallel, NGS technologies can make efficient use of precious biopsy material. Comprehensive genomic profiling (CGP) by NGS can reveal targetable, clinically relevant genomic alterations that can stratify tumours by predicted sensitivity to a variety of therapies, including HER2- or MTOR-targeted therapies, immunotherapies, and other kinase inhibitors. Many clinically relevant genomic alterations would not be identified by IHC or hotspot testing, but can be detected by NGS. In addition to the most common breast carcinoma subtypes, rare subtypes analysed with CGP also harbour clinically relevant genomic alterations that can potentially direct therapy selection, illustrating that CGP is a powerful tool for guiding treatment across all breast cancer subtypes.

  15. A genome-wide association study of upper aerodigestive tract cancers conducted within the INHANCE consortium.

    Directory of Open Access Journals (Sweden)

    James D McKay

    2011-03-01

    Full Text Available Genome-wide association studies (GWAS have been successful in identifying common genetic variation involved in susceptibility to etiologically complex disease. We conducted a GWAS to identify common genetic variation involved in susceptibility to upper aero-digestive tract (UADT cancers. Genome-wide genotyping was carried out using the Illumina HumanHap300 beadchips in 2,091 UADT cancer cases and 3,513 controls from two large European multi-centre UADT cancer studies, as well as 4,821 generic controls. The 19 top-ranked variants were investigated further in an additional 6,514 UADT cancer cases and 7,892 controls of European descent from an additional 13 UADT cancer studies participating in the INHANCE consortium. Five common variants presented evidence for significant association in the combined analysis (p ≤ 5 × 10⁻⁷. Two novel variants were identified, a 4q21 variant (rs1494961, p = 1×10⁻⁸ located near DNA repair related genes HEL308 and FAM175A (or Abraxas and a 12q24 variant (rs4767364, p =2 × 10⁻⁸ located in an extended linkage disequilibrium region that contains multiple genes including the aldehyde dehydrogenase 2 (ALDH2 gene. Three remaining variants are located in the ADH gene cluster and were identified previously in a candidate gene study involving some of these samples. The association between these three variants and UADT cancers was independently replicated in 5,092 UADT cancer cases and 6,794 controls non-overlapping samples presented here (rs1573496-ADH7, p = 5 × 10⁻⁸; rs1229984-ADH1B, p = 7 × 10⁻⁹; and rs698-ADH1C, p = 0.02. These results implicate two variants at 4q21 and 12q24 and further highlight three ADH variants in UADT cancer susceptibility.

  16. A genome-wide association study of upper aerodigestive tract cancers conducted within the INHANCE consortium.

    LENUS (Irish Health Repository)

    McKay, James D

    2011-03-01

    Genome-wide association studies (GWAS) have been successful in identifying common genetic variation involved in susceptibility to etiologically complex disease. We conducted a GWAS to identify common genetic variation involved in susceptibility to upper aero-digestive tract (UADT) cancers. Genome-wide genotyping was carried out using the Illumina HumanHap300 beadchips in 2,091 UADT cancer cases and 3,513 controls from two large European multi-centre UADT cancer studies, as well as 4,821 generic controls. The 19 top-ranked variants were investigated further in an additional 6,514 UADT cancer cases and 7,892 controls of European descent from an additional 13 UADT cancer studies participating in the INHANCE consortium. Five common variants presented evidence for significant association in the combined analysis (p ≤ 5 × 10⁻⁷). Two novel variants were identified, a 4q21 variant (rs1494961, p = 1×10⁻⁸) located near DNA repair related genes HEL308 and FAM175A (or Abraxas) and a 12q24 variant (rs4767364, p =2 × 10⁻⁸) located in an extended linkage disequilibrium region that contains multiple genes including the aldehyde dehydrogenase 2 (ALDH2) gene. Three remaining variants are located in the ADH gene cluster and were identified previously in a candidate gene study involving some of these samples. The association between these three variants and UADT cancers was independently replicated in 5,092 UADT cancer cases and 6,794 controls non-overlapping samples presented here (rs1573496-ADH7, p = 5 × 10⁻⁸); rs1229984-ADH1B, p = 7 × 10⁻⁹; and rs698-ADH1C, p = 0.02). These results implicate two variants at 4q21 and 12q24 and further highlight three ADH variants in UADT cancer susceptibility.

  17. Insights into pancreatic cancer etiology from pathway analysis of genome-wide association study data.

    Directory of Open Access Journals (Sweden)

    Peng Wei

    Full Text Available Pancreatic cancer is the fourth leading cause of cancer death in the U.S. and the etiology of this highly lethal disease has not been well defined. To identify genetic susceptibility factors for pancreatic cancer, we conducted pathway analysis of genome-wide association study (GWAS data in 3,141 pancreatic cancer patients and 3,367 controls with European ancestry.Using the gene set ridge regression in association studies (GRASS method, we analyzed 197 pathways identified from the Kyoto Encyclopedia of Genes and Genomes database. We used the logistic kernel machine (LKM test to identify major contributing genes to each pathway. We conducted functional enrichment analysis of the most significant genes (P<0.01 using the Database for Annotation, Visualization, and Integrated Discovery (DAVID.Two pathways were significantly associated with risk of pancreatic cancer after adjusting for multiple comparisons (P<0.00025 and in replication testing: neuroactive ligand-receptor interaction, (Ps<0.00002, and the olfactory transduction pathway (P = 0.0001. LKM test identified four genes that were significantly associated with risk of pancreatic cancer after Bonferroni correction (P<1×10(-5: ABO, HNF1A, OR13C4, and SHH. Functional enrichment analysis using DAVID consistently found the G protein-coupled receptor signaling pathway (including both neuroactive ligand-receptor interaction and olfactory transduction pathways to be the most significant pathway for pancreatic cancer risk in this study population.These novel findings provide new perspectives on genetic susceptibility to and molecular mechanisms of pancreatic cancer.

  18. Gender-Associated Genomic Differences in Colorectal Cancer: Clinical Insight from Feminization of Male Cancer Cells

    Directory of Open Access Journals (Sweden)

    Rola H. Ali

    2014-09-01

    Full Text Available Gender-related differences in colorectal cancer (CRC are not fully understood. Recent studies have shown that CRC arising in females are significantly associated with CpG island methylator phenotype (CIMP-high. Using array comparative genomic hybridization, we analyzed a cohort of 116 CRCs (57 males, 59 females for chromosomal copy number aberrations (CNA and found that CRC in females had significantly higher numbers of gains involving chromosome arms 1q21.2–q21.3, 4q13.2, 6p21.1 and 16p11.2 and copy number losses of chromosome arm 11q25 compared to males. Interestingly, a subset of male CRCs (46% exhibited a "feminization" phenomenon in the form of gains of X chromosomes (or an arm of X and/or losses of the Y chromosome. Feminization of cancer cells was significantly associated with microsatellite-stable CRCs (p-value 0.003 and wild-type BRAF gene status (p-value 0.009. No significant association with other clinicopathological parameters was identified including disease-free survival. In summary, our data show that some CNAs in CRC may be gender specific and that male cancers characterized by feminization may constitute a specific subset of CRCs that warrants further investigation.

  19. Gender-associated genomic differences in colorectal cancer: clinical insight from feminization of male cancer cells.

    Science.gov (United States)

    Ali, Rola H; Marafie, Makia J; Bitar, Milad S; Al-Dousari, Fahad; Ismael, Samar; Bin Haider, Hussain; Al-Ali, Waleed; Jacob, Sindhu P; Al-Mulla, Fahd

    2014-09-29

    Gender-related differences in colorectal cancer (CRC) are not fully understood. Recent studies have shown that CRC arising in females are significantly associated with CpG island methylator phenotype (CIMP-high). Using array comparative genomic hybridization, we analyzed a cohort of 116 CRCs (57 males, 59 females) for chromosomal copy number aberrations (CNA) and found that CRC in females had significantly higher numbers of gains involving chromosome arms 1q21.2-q21.3, 4q13.2, 6p21.1 and 16p11.2 and copy number losses of chromosome arm 11q25 compared to males. Interestingly, a subset of male CRCs (46%) exhibited a "feminization" phenomenon in the form of gains of X chromosomes (or an arm of X) and/or losses of the Y chromosome. Feminization of cancer cells was significantly associated with microsatellite-stable CRCs (p-value 0.003) and wild-type BRAF gene status (p-value 0.009). No significant association with other clinicopathological parameters was identified including disease-free survival. In summary, our data show that some CNAs in CRC may be gender specific and that male cancers characterized by feminization may constitute a specific subset of CRCs that warrants further investigation.

  20. Computational methods using genome-wide association studies to predict radiotherapy complications and to identify correlative molecular processes

    Science.gov (United States)

    Oh, Jung Hun; Kerns, Sarah; Ostrer, Harry; Powell, Simon N.; Rosenstein, Barry; Deasy, Joseph O.

    2017-02-01

    The biological cause of clinically observed variability of normal tissue damage following radiotherapy is poorly understood. We hypothesized that machine/statistical learning methods using single nucleotide polymorphism (SNP)-based genome-wide association studies (GWAS) would identify groups of patients of differing complication risk, and furthermore could be used to identify key biological sources of variability. We developed a novel learning algorithm, called pre-conditioned random forest regression (PRFR), to construct polygenic risk models using hundreds of SNPs, thereby capturing genomic features that confer small differential risk. Predictive models were trained and validated on a cohort of 368 prostate cancer patients for two post-radiotherapy clinical endpoints: late rectal bleeding and erectile dysfunction. The proposed method results in better predictive performance compared with existing computational methods. Gene ontology enrichment analysis and protein-protein interaction network analysis are used to identify key biological processes and proteins that were plausible based on other published studies. In conclusion, we confirm that novel machine learning methods can produce large predictive models (hundreds of SNPs), yielding clinically useful risk stratification models, as well as identifying important underlying biological processes in the radiation damage and tissue repair process. The methods are generally applicable to GWAS data and are not specific to radiotherapy endpoints.

  1. A Genomic Microchip for Oral Cancer.

    Science.gov (United States)

    Sarode, Gargi S; Sarode, Sachin C; Maniyar, Nikunj; Patil, Shankargouda

    2017-03-01

    A series of genetic mutations in somatic cell results in cancer. The cells of malignant tumor have the ability to acclimate to the microenvironmental changes. This can be attributed to the nature of tumor cell biology, i.e., based on effectual molecular signaling events.

  2. Whole Genome Sequencing Demonstrates Limited Transmission within Identified Mycobacterium tuberculosis Clusters in New South Wales, Australia

    Science.gov (United States)

    Gurjav, Ulziijargal; Outhred, Alexander C.; Jelfs, Peter; McCallum, Nadine; Wang, Qinning; Hill-Cawthorne, Grant A.; Marais, Ben J.; Sintchenko, Vitali

    2016-01-01

    Australia has a low tuberculosis incidence rate with most cases occurring among recent immigrants. Given suboptimal cluster resolution achieved with 24-locus mycobacterium interspersed repetitive unit (MIRU-24) genotyping, the added value of whole genome sequencing was explored. MIRU-24 profiles of all Mycobacterium tuberculosis culture-confirmed tuberculosis cases diagnosed between 2009 and 2013 in New South Wales (NSW), Australia, were examined and clusters identified. The relatedness of cases within the largest MIRU-24 clusters was assessed using whole genome sequencing and phylogenetic analyses. Of 1841 culture-confirmed TB cases, 91.9% (1692/1841) had complete demographic and genotyping data. East-African Indian (474; 28.0%) and Beijing (470; 27.8%) lineage strains predominated. The overall rate of MIRU-24 clustering was 20.1% (340/1692) and was highest among Beijing lineage strains (35.7%; 168/470). One Beijing and three East-African Indian (EAI) clonal complexes were responsible for the majority of observed clusters. Whole genome sequencing of the 4 largest clusters (30 isolates) demonstrated diverse single nucleotide polymorphisms (SNPs) within identified clusters. All sequenced EAI strains and 70% of Beijing lineage strains clustered by MIRU-24 typing demonstrated distinct SNP profiles. The superior resolution provided by whole genome sequencing demonstrated limited M. tuberculosis transmission within NSW, even within identified MIRU-24 clusters. Routine whole genome sequencing could provide valuable public health guidance in low burden settings. PMID:27737005

  3. Exome sequencing identifies rare deleterious mutations in DNA repair genes FANCC and BLM as potential breast cancer susceptibility alleles.

    Directory of Open Access Journals (Sweden)

    Ella R Thompson

    2012-09-01

    Full Text Available Despite intensive efforts using linkage and candidate gene approaches, the genetic etiology for the majority of families with a multi-generational breast cancer predisposition is unknown. In this study, we used whole-exome sequencing of thirty-three individuals from 15 breast cancer families to identify potential predisposing genes. Our analysis identified families with heterozygous, deleterious mutations in the DNA repair genes FANCC and BLM, which are responsible for the autosomal recessive disorders Fanconi Anemia and Bloom syndrome. In total, screening of all exons in these genes in 438 breast cancer families identified three with truncating mutations in FANCC and two with truncating mutations in BLM. Additional screening of FANCC mutation hotspot exons identified one pathogenic mutation among an additional 957 breast cancer families. Importantly, none of the deleterious mutations were identified among 464 healthy controls and are not reported in the 1,000 Genomes data. Given the rarity of Fanconi Anemia and Bloom syndrome disorders among Caucasian populations, the finding of multiple deleterious mutations in these critical DNA repair genes among high-risk breast cancer families is intriguing and suggestive of a predisposing role. Our data demonstrate the utility of intra-family exome-sequencing approaches to uncover cancer predisposition genes, but highlight the major challenge of definitively validating candidates where the incidence of sporadic disease is high, germline mutations are not fully penetrant, and individual predisposition genes may only account for a tiny proportion of breast cancer families.

  4. An improved method for detecting and delineating genomic regions with altered gene expression in cancer

    OpenAIRE

    2008-01-01

    Genomic regions with altered gene expression are a characteristic feature of cancer cells. We present a novel method for identifying such regions in gene expression maps. This method is based on total variation minimization, a classical signal restoration technique. In systematic evaluations, we show that our method combines top-notch detection performance with an ability to delineate relevant regions without excessive over-segmentation, making it a significant advance over existing methods. ...

  5. Genomic predictors for treatment of late stage prostate cancer

    Directory of Open Access Journals (Sweden)

    Daniel H Shevrin

    2016-01-01

    Full Text Available In spite of the development of new treatments for late stage prostate cancer, significant challenges persist to match individuals with effective targeted therapies. Genomic classification using high-throughput sequencing technologies has the potential to achieve this goal and make precision medicine a reality in the management of men with castrate-resistant prostate cancer. This chapter reviews some of the most recent studies that have resulted in significant progress in determining the landscape of somatic genomic alterations in this cohort and, more importantly, have provided clinically actionable information that could guide treatment decisions. This chapter reviews the current understanding of common alterations such as alterations of the androgen receptor and PTEN pathway, as well as ETS gene fusions and the growing importance of PARP inhibition. It also reviews recent studies that characterize the evolution to neuroendocrine tumors, which is becoming an increasingly important clinical problem. Finally, this chapter reviews recent innovative studies that characterize the compelling evolutionary history of lethal prostate cancer evidenced by polyclonal seeding and interclonal cooperation between metastasis and the importance of tumor clone dynamics measured serially in response to treatment. The genomic landscape of late stage prostate cancer is becoming better defined, and the prospect for assigning clinically actionable data to inform rationale treatment for individuals with this disease is becoming a reality.

  6. Genome-wide interaction study of smoking and bladder cancer risk

    Science.gov (United States)

    Figueroa, Jonine D.; Han, Summer S.; Garcia-Closas, Montserrat; Baris, Dalsu; Jacobs, Eric J.; Kogevinas, Manolis; Schwenn, Molly; Malats, Nuria; Johnson, Alison; Purdue, Mark P.; Caporaso, Neil; Landi, Maria Teresa; Prokunina-Olsson, Ludmila; Wang, Zhaoming; Hutchinson, Amy; Burdette, Laurie; Wheeler, William; Vineis, Paolo; Siddiq, Afshan; Cortessis, Victoria K.; Kooperberg, Charles; Cussenot, Olivier; Benhamou, Simone; Prescott, Jennifer; Porru, Stefano; Bueno-de-Mesquita, H.Bas; Trichopoulos, Dimitrios; Ljungberg, Börje; Clavel-Chapelon, Françoise; Weiderpass, Elisabete; Krogh, Vittorio; Dorronsoro, Miren; Travis, Ruth; Tjønneland, Anne; Brenan, Paul; Chang-Claude, Jenny; Riboli, Elio; Conti, David; Gago-Dominguez, Manuela; Stern, Mariana C.; Pike, Malcolm C.; Van Den Berg, David; Yuan, Jian-Min; Hohensee, Chancellor; Rodabough, Rebecca; Cancel-Tassin, Geraldine; Roupret, Morgan; Comperat, Eva; Chen, Constance; De Vivo, Immaculata; Giovannucci, Edward; Hunter, David J.; Kraft, Peter; Lindstrom, Sara; Carta, Angela; Pavanello, Sofia; Arici, Cecilia; Mastrangelo, Giuseppe; Karagas, Margaret R.; Schned, Alan; Armenti, Karla R.; Hosain, G.M.Monawar; Haiman, Chris A.; Fraumeni, Joseph F.; Chanock, Stephen J.; Chatterjee, Nilanjan; Rothman, Nathaniel; Silverman, Debra T.

    2014-01-01

    Bladder cancer is a complex disease with known environmental and genetic risk factors. We performed a genome-wide interaction study (GWAS) of smoking and bladder cancer risk based on primary scan data from 3002 cases and 4411 controls from the National Cancer Institute Bladder Cancer GWAS. Alternative methods were used to evaluate both additive and multiplicative interactions between individual single nucleotide polymorphisms (SNPs) and smoking exposure. SNPs with interaction P values < 5 × 10− 5 were evaluated further in an independent dataset of 2422 bladder cancer cases and 5751 controls. We identified 10 SNPs that showed association in a consistent manner with the initial dataset and in the combined dataset, providing evidence of interaction with tobacco use. Further, two of these novel SNPs showed strong evidence of association with bladder cancer in tobacco use subgroups that approached genome-wide significance. Specifically, rs1711973 (FOXF2) on 6p25.3 was a susceptibility SNP for never smokers [combined odds ratio (OR) = 1.34, 95% confidence interval (CI) = 1.20–1.50, P value = 5.18 × 10− 7]; and rs12216499 (RSPH3-TAGAP-EZR) on 6q25.3 was a susceptibility SNP for ever smokers (combined OR = 0.75, 95% CI = 0.67–0.84, P value = 6.35 × 10− 7). In our analysis of smoking and bladder cancer, the tests for multiplicative interaction seemed to more commonly identify susceptibility loci with associations in never smokers, whereas the additive interaction analysis identified more loci with associations among smokers—including the known smoking and NAT2 acetylation interaction. Our findings provide additional evidence of gene–environment interactions for tobacco and bladder cancer. PMID:24662972

  7. Identifying and Creating the Next Generation of Community-Based Cancer Prevention Studies: Summary of a National Cancer Institute Think Tank.

    Science.gov (United States)

    McCaskill-Stevens, Worta; Pearson, Deborah C; Kramer, Barnett S; Ford, Leslie G; Lippman, Scott M

    2017-02-01

    In late 2015, the NCI Division of Cancer Prevention convened cancer prevention research experts and stakeholders to discuss the current state of cancer prevention research, identify key prevention research priorities for the NCI, and identify studies that could be conducted within the NCI Community Oncology Research Program. Goals included identifying cancer prevention research opportunities offering the highest return on investment, exploring the concept of precision prevention and what is needed to advance this area of research, and identifying possible targets for prevention. Four study populations were considered for cancer prevention research: healthy people, those at increased risk for a specific cancer, people with preneoplastic lesions, and children, adolescents, and young adults. Priorities that emerged include screening (e.g., surveillance intervals, tomosynthesis vs. digital mammography), a pre-cancer genome atlas (PreTCGA), HPV vaccines, immunoprevention of noninfectious origins, and overdiagnosis. Challenges exist, as the priority list is ambitious and potentially expensive. Clinical trials need to be carefully designed to include and maximize prospective tissue collection. Exploring existing cofunding mechanisms will likely be necessary. Finally, relationships with a new generation of physician specialists will need to be cultivated to reach the target populations. Cancer Prev Res; 10(2); 99-107. ©2016 AACR.

  8. Genome-wide association study with 1000 genomes imputation identifies signals for nine sex hormone-related phenotypes.

    Science.gov (United States)

    Ruth, Katherine S; Campbell, Purdey J; Chew, Shelby; Lim, Ee Mun; Hadlow, Narelle; Stuckey, Bronwyn G A; Brown, Suzanne J; Feenstra, Bjarke; Joseph, John; Surdulescu, Gabriela L; Zheng, Hou Feng; Richards, J Brent; Murray, Anna; Spector, Tim D; Wilson, Scott G; Perry, John R B

    2016-02-01

    Genetic factors contribute strongly to sex hormone levels, yet knowledge of the regulatory mechanisms remains incomplete. Genome-wide association studies (GWAS) have identified only a small number of loci associated with sex hormone levels, with several reproductive hormones yet to be assessed. The aim of the study was to identify novel genetic variants contributing to the regulation of sex hormones. We performed GWAS using genotypes imputed from the 1000 Genomes reference panel. The study used genotype and phenotype data from a UK twin register. We included 2913 individuals (up to 294 males) from the Twins UK study, excluding individuals receiving hormone treatment. Phenotypes were standardised for age, sex, BMI, stage of menstrual cycle and menopausal status. We tested 7,879,351 autosomal SNPs for association with levels of dehydroepiandrosterone sulphate (DHEAS), oestradiol, free androgen index (FAI), follicle-stimulating hormone (FSH), luteinizing hormone (LH), prolactin, progesterone, sex hormone-binding globulin and testosterone. Eight independent genetic variants reached genome-wide significance (Phormone regulation.

  9. A genome-wide association study identifies an osteoarthritis susceptibility locus on chromosome 7q22

    NARCIS (Netherlands)

    J.M. Kerkhof (Hanneke); R.J. Lories (Rik); I. Meulenbelt (Ingrid); I. Jonsdottir (Ingileif); A.M. Valdes (Ana Maria); P.P. Arp (Pascal); T. Ingvarsson (Torvaldur); M. Jhamai (Mila); H. Jonsson (Helgi); L. Stolk (Lisette); G. Thorleifsson (Gudmar); G. Zhai (Guangju); F. Zhang (Feng); Y. Zhu (Yicheng); R. van der Breggen (Ruud); M. Doherty (Michael); D. Felson; A. Gonzalez (Antonio); B.V. Halldorsson (Bjarni); D.J. Hart (Deborah); V.B. Hauksson (Valdimar); A. Hofman (Albert); J.P.A. Ioannidis (John); M. Kloppenburg (Margreet); N.E. Lane (Nancy); J. Loughlin (John); F.P. Luyten (Frank); M.C. Nevitt (Michael); N. Parimi (Neeta); H.A.P. Pols (Huib); F. Rivadeneira Ramirez (Fernando); E. Slagboom (Eline); U. Styrkarsdottir (Unnur); A. Tsezou (Aspasia); T. van de Putte (Tom); J. Zmuda (Joseph); T.D. Spector (Timothy); J-A. Zwart (John-Anker); A.G. Uitterlinden (André); J.B.J. van Meurs (Joyce); A.J. Carr (Andrew Jonathan)

    2010-01-01

    markdownabstract__Objective__ To identify novel genes involved in osteoarthritis (OA), by means of a genome-wide association study. Methods. We tested 500,510 single-nucleotide polymorphisms (SNPs) in 1,341 Dutch Caucasian OA cases and 3,496 Dutch Caucasian controls. SNPs associated with at least 2

  10. The Human Genome Project and Eugenics: Identifying the Impact on Individuals with Mental Retardation.

    Science.gov (United States)

    Kuna, Jason

    2001-01-01

    This article explores the impact of the mapping work of the Human Genome Project on individuals with mental retardation and the negative effects of genetic testing. The potential to identify disabilities and the concept of eugenics are discussed, along with ethical issues surrounding potential genetic therapies. (Contains references.) (CR)

  11. Genome-wide association scan meta-analysis identifies three loci influencing adiposity and fat distribution

    NARCIS (Netherlands)

    C.M. Lindgren (Cecilia); I.M. Heid (Iris); J.C. Randall (Joshua); C. Lamina (Claudia); V. Steinthorsdottir (Valgerdur); L. Qi (Lu); E.K. Speliotes (Elizabeth); G. Thorleifsson (Gudmar); C.J. Willer (Cristen); B.M. Herrera (Blanca); A.U. Jackson (Anne); N. Lim (Noha); P. Scheet (Paul); N. Soranzo (Nicole); N. Amin (Najaf); Y.S. Aulchenko (Yurii); J.C. Chambers (John); A. Drong (Alexander); J. Luan; H.N. Lyon (Helen); F. Rivadeneira Ramirez (Fernando); S. Sanna (Serena); N. Timpson (Nicholas); M.C. Zillikens (Carola); H.Z. Jing; P. Almgren (Peter); S. Bandinelli (Stefania); A.J. Bennett (Amanda); R.N. Bergman (Richard); L.L. Bonnycastle (Lori); S. Bumpstead (Suzannah); S.J. Chanock (Stephen); L. Cherkas (Lynn); P.S. Chines (Peter); L. Coin (Lachlan); C. Cooper (Charles); G. Crawford (Gabe); A. Doering (Angela); A. Dominiczak (Anna); A.S.F. Doney (Alex); S. Ebrahim (Shanil); P. Elliott (Paul); M.R. Erdos (Michael); K. Estrada Gil (Karol); L. Ferrucci (Luigi); G. Fischer (Guido); N.G. Forouhi (Nita); C. Gieger (Christian); H. Grallert (Harald); C.J. Groves (Christopher); S.M. Grundy (Scott); C. Guiducci (Candace); D. Hadley (David); A. Hamsten (Anders); A.S. Havulinna (Aki); A. Hofman (Albert); R. Holle (Rolf); J.W. Holloway (John); T. Illig (Thomas); B. Isomaa (Bo); L.C. Jacobs (Leonie); K. Jameson (Karen); P. Jousilahti (Pekka); F. Karpe (Fredrik); J. Kuusisto (Johanna); J. Laitinen (Jaana); G.M. Lathrop (Mark); D.A. Lawlor (Debbie); M. Mangino (Massimo); W.L. McArdle (Wendy); T. Meitinger (Thomas); M.A. Morken (Mario); A.P. Morris (Andrew); P. Munroe (Patricia); N. Narisu (Narisu); A. Nordström (Anna); B.A. Oostra (Ben); C.N.A. Palmer (Colin); F. Payne (Felicity); J. Peden (John); I. Prokopenko (Inga); F. Renström (Frida); A. Ruokonen (Aimo); V. Salomaa (Veikko); M.S. Sandhu (Manjinder); L.J. Scott (Laura); A. Scuteri (Angelo); K. Silander (Kaisa); K. Song (Kijoung); X. Yuan (Xin); H.M. Stringham (Heather); A.J. Swift (Amy); T. Tuomi (Tiinamaija); M. Uda (Manuela); P. Vollenweider (Peter); G. Waeber (Gérard); C. Wallace (Chris); G.B. Walters (Bragi); M.N. Weedon (Michael); J.C.M. Witteman (Jacqueline); C. Zhang (Cuilin); M. Caulfield (Mark); F.S. Collins (Francis); G.D. Smith; I.N.M. Day (Ian); P.W. Franks (Paul); A.T. Hattersley (Andrew); F.B. Hu (Frank); M.-R. Jarvelin (Marjo-Riitta); A. Kong (Augustine); J.S. Kooner (Jaspal); M. Laakso (Markku); E. Lakatta (Edward); V. Mooser (Vincent); L. Peltonen (Leena Johanna); N.J. Samani (Nilesh); T.D. Spector (Timothy); D.P. Strachan (David); T. Tanaka (Toshiko); J. Tuomilehto (Jaakko); A.G. Uitterlinden (André); P. Tikka-Kleemola (Päivi); N.J. Wareham (Nick); H. Watkins (Hugh); D. Waterworth (Dawn); M. Boehnke (Michael); P. Deloukas (Panagiotis); L. Groop (Leif); D.J. Hunter (David); U. Thorsteinsdottir (Unnur); D. Schlessinger (David); H.E. Wichmann (Erich); T.M. Frayling (Timothy); G.R. Abecasis (Gonçalo); J.N. Hirschhorn (Joel); R.J.F. Loos (Ruth); J-A. Zwart (John-Anker); K.L. Mohlke (Karen); I. Barroso (Inês); M.I. McCarthy (Mark)

    2009-01-01

    textabstractTo identify genetic loci influencing central obesity and fat distribution, we performed a meta-analysis of 16 genome-wide association studies (GWAS, N = 38,580) informative for adult waist circumference (WC) and waist-hip ratio (WHR). We selected 26 SNPs for follow-up, for which the evid

  12. Genome-wide association and functional studies identify a role for IGFBP3 in hip osteoarthritis

    NARCIS (Netherlands)

    D.S. Evans (Daniel); F. Cailotto (Frederic); N. Parimi (Neeta); A.M. Valdes (Ana Maria); M.C. Castaño Betancourt (Martha); Y. Liu (Youfang); R.C. Kaplan (Robert); M. Bidlingmaier (Martin); R.S. Vasan (Ramachandran Srini); A. Teumer (Alexander); G.J. Tranah (Gregory); M.C. Nevitt (Michael); S. Cummings; E.S. Orwoll (Eric); E. Barrett-Connor (Elizabeth); J.B. Renner (Jordan); J.M. Jordan (Joanne); M. Doherty (Michael); S. Doherty (Sally); A.G. Uitterlinden (André); J.B.J. van Meurs (Joyce); T.D. Spector (Timothy); R.J. Lories (Rik); N.E. Lane

    2014-01-01

    textabstractObjectives To identify genetic associations with hip osteoarthritis (HOA), we performed a meta-analysis of genome-wide association studies (GWAS) of HOA. Methods The GWAS meta-analysis included approximately 2.5 million imputed HapMap single nucleotide polymorphisms (SNPs). HOA cases and

  13. Genome-wide association study meta-analysis identifies seven new rheumatoid arthritis risk loci

    NARCIS (Netherlands)

    Stahl, Eli A.; Raychaudhuri, Soumya; Remmers, Elaine F.; Xie, Gang; Eyre, Stephen; Thomson, Brian P.; Li, Yonghong; Kurreeman, Fina A. S.; Zhernakova, Alexandra; Hinks, Anne; Guiducci, Candace; Chen, Robert; Alfredsson, Lars; Amos, Christopher I.; Ardlie, Kristin G.; Barton, Anne; Bowes, John; Brouwer, Elisabeth; Burtt, Noel P.; Catanese, Joseph J.; Coblyn, Jonathan; Coenen, Marieke J. H.; Costenbader, Karen H.; Criswell, Lindsey A.; Crusius, J. Bart A.; Cui, Jing; de Bakker, Paul I. W.; De Jager, Philip L.; Ding, Bo; Emery, Paul; Flynn, Edward; Harrison, Pille; Hocking, Lynne J.; Huizinga, Tom W. J.; Kastner, Daniel L.; Ke, Xiayi; Lee, Annette T.; Liu, Xiangdong; Martin, Paul; Morgan, Ann W.; Padyukov, Leonid; Posthumus, Marcel D.; Radstake, Timothy R. D. J.; Reid, David M.; Seielstad, Mark; Seldin, Michael F.; Shadick, Nancy A.; Steer, Sophia; Tak, Paul P.; Thomson, Wendy; van der Helm-van Mil, Annette H. M.; van der Horst-Bruinsma, Irene E.; van der Schoot, C. Ellen; van Riel, Piet L. C. M.; Weinblatt, Michael E.; Wilson, Anthony G.; Wolbink, Gert Jan; Wordsworth, B. Paul; Wijmenga, Cisca; Karlson, Elizabeth W.; Toes, Rene E. M.; de Vries, Niek; Begovich, Ann B.; Worthington, Jane; Siminovitch, Katherine A.; Gregersen, Peter K.; Klareskog, Lars; Plenge, Robert M.

    2010-01-01

    To identify new genetic risk factors for rheumatoid arthritis, we conducted a genome-wide association study meta-analysis of 5,539 autoantibody-positive individuals with rheumatoid arthritis (cases) and 20,169 controls of European descent, followed by replication in an independent set of 6,768 rheum

  14. Triangulation of the human, chimpanzee, and Neanderthal genome sequences identifies potentially compensated mutations

    DEFF Research Database (Denmark)

    Zhang, Guojie; Pei, Zhang; Krawczak, Michael;

    2010-01-01

    Triangulation of the human, chimpanzee, and Neanderthal genome sequences with respect to 44,348 disease-causing or disease-associated missense mutations and 1,712 putative regulatory mutations listed in the Human Gene Mutation Database was employed to identify genetic variants that are apparently...

  15. Genome-wide association study identifies multiple susceptibility loci for diffuse large B cell lymphoma

    NARCIS (Netherlands)

    Cerhan, James R.; Berndt, Sonja I.; Vijai, Joseph; Ghesquières, Hervé; McKay, James; Wang, Sophia S.; Wang, Zhaoming; Yeager, Meredith; Conde, Lucia; De Bakker, Paul I W; Nieters, Alexandra; Cox, David; Burdett, Laurie; Monnereau, Alain; Flowers, Christopher R.; De Roos, Anneclaire J.; Brooks-Wilson, Angela R.; Lan, Qing; Severi, Gianluca; Melbye, Mads; Gu, Jian; Jackson, Rebecca D.; Kane, Eleanor; Teras, Lauren R.; Purdue, Mark P.; Vajdic, Claire M.; Spinelli, John J.; Giles, Graham G.; Albanes, Demetrius; Kelly, Rachel S.; Zucca, Mariagrazia; Bertrand, Kimberly A.; Zeleniuch-Jacquotte, Anne; Lawrence, Charles; Hutchinson, Amy; Zhi, Degui; Habermann, Thomas M.; Link, Brian K.; Novak, Anne J.; Dogan, Ahmet; Asmann, Yan W.; Liebow, Mark; Thompson, Carrie A.; Ansell, Stephen M.; Witzig, Thomas E.; Weiner, George J.; Veron, Amelie S.; Zelenika, Diana; Tilly, Hervé; Haioun, Corinne; Molina, Thierry Jo; Hjalgrim, Henrik; Glimelius, Bengt; Adami, Hans Olov; Bracci, Paige M.; Riby, Jacques; Smith, Martyn T.; Holly, Elizabeth A.; Cozen, Wendy; Hartge, Patricia; Morton, Lindsay M.; Severson, Richard K.; Tinker, Lesley F.; North, Kari E.; Becker, Nikolaus; Benavente, Yolanda; Boffetta, Paolo; Brennan, Paul; Foretova, Lenka; Maynadie, Marc; Staines, Anthony; Lightfoot, Tracy; Crouch, Simon; Smith, Alex; Roman, Eve; Diver, W. Ryan; Offit, Kenneth; Zelenetz, Andrew; Klein, Robert J.; Villano, Danylo J.; Zheng, Tongzhang; Zhang, Yawei; Holford, Theodore R.; Kricker, Anne; Turner, Jenny; Southey, Melissa C.; Clavel, Jacqueline; Virtamo, Jarmo; Weinstein, Stephanie; Riboli, Elio; Vineis, Paolo; Kaaks, Rudolph; Trichopoulos, Dimitrios; Vermeulen, Roel C H; Boeing, Heiner; Tjonneland, Anne; Angelucci, Emanuele; Di Lollo, Simonetta; Rais, Marco; Birmann, Brenda M.; Laden, Francine; Giovannucci, Edward; Kraft, Peter; Huang, Jinyan; Ma, Baoshan; Ye, Yuanqing; Chiu, Brian C H; Sampson, Joshua; Liang, Liming; Park, Ju Hyun; Chung, Charles C.; Weisenburger, Dennis D.; Chatterjee, Nilanjan; Fraumeni, Joseph F.; Slager, Susan L.; Wu, Xifeng; De Sanjose, Silvia; Smedby, Karin E.; Salles, Gilles; Skibola, Christine F.; Rothman, Nathaniel; Chanock, Stephen J.

    2014-01-01

    Diffuse large B cell lymphoma (DLBCL) is the most common lymphoma subtype and is clinically aggressive. To identify genetic susceptibility loci for DLBCL, we conducted a meta-analysis of 3 new genome-wide association studies (GWAS) and 1 previous scan, totaling 3,857 cases and 7,666 controls of Euro

  16. Genome-wide association study identifies loci influencing concentrations of liver enzymes in plasma

    NARCIS (Netherlands)

    Chambers, John C; Zhang, Weihua; Sehmi, Joban; Li, Xinzhong; Wass, Mark N; Van der Harst, Pim; Holm, Hilma; Sanna, Serena; Kavousi, Maryam; Baumeister, Sebastian E; Coin, Lachlan J; Deng, Guohong; Gieger, Christian; Heard-Costa, Nancy L; Hottenga, Jouke-Jan; Kühnel, Brigitte; Kumar, Vinod; Lagou, Vasiliki; Liang, Liming; Luan, Jian'an; Vidal, Pedro Marques; Mateo Leach, Irene; O'Reilly, Paul F; Peden, John F; Rahmioglu, Nilufer; Soininen, Pasi; Speliotes, Elizabeth K; Yuan, Xin; Thorleifsson, Gudmar; Alizadeh, Behrooz Z; Atwood, Larry D; Borecki, Ingrid B; Brown, Morris J; Charoen, Pimphen; Cucca, Francesco; Das, Debashish; de Geus, Eco J C; Dixon, Anna L; Döring, Angela; Ehret, Georg; Eyjolfsson, Gudmundur I; Farrall, Martin; Forouhi, Nita G; Friedrich, Nele; Goessling, Wolfram; Gudbjartsson, Daniel F; Harris, Tamara B; Hartikainen, Anna-Liisa; Heath, Simon; Hirschfield, Gideon M; Hofman, Albert; Homuth, Georg; Hyppönen, Elina; Janssen, Harry L A; Johnson, Toby; Kangas, Antti J; Kema, Ido P; Kühn, Jens P; Lai, Sandra; Lathrop, Mark; Lerch, Markus M; Li, Yun; Liang, T Jake; Lin, Jing-Ping; Loos, Ruth J F; Martin, Nicholas G; Moffatt, Miriam F; Montgomery, Grant W; Munroe, Patricia B; Musunuru, Kiran; Nakamura, Yusuke; O'Donnell, Christopher J; Olafsson, Isleifur; Penninx, Brenda W; Pouta, Anneli; Prins, Bram P; Prokopenko, Inga; Puls, Ralf; Ruokonen, Aimo; Savolainen, Markku J; Schlessinger, David; Schouten, Jeoffrey N L; Seedorf, Udo; Sen-Chowdhry, Srijita; Siminovitch, Katherine A; Smit, Johannes H; Spector, Timothy D; Tan, Wenting; Teslovich, Tanya M; Tukiainen, Taru; Uitterlinden, Andre G; Van der Klauw, Melanie M; Vasan, Ramachandran S; Wallace, Chris; Wallaschofski, Henri; Wichmann, H-Erich; Willemsen, Gonneke; Würtz, Peter; Xu, Chun; Yerges-Armstrong, Laura M; Abecasis, Goncalo R; Ahmadi, Kourosh R; Boomsma, Dorret I; Caulfield, Mark; Cookson, William O; van Duijn, Cornelia M; Froguel, Philippe; Matsuda, Koichi; McCarthy, Mark I; Meisinger, Christa; Mooser, Vincent; Pietiläinen, Kirsi H; Schumann, Gunter; Snieder, Harold; Sternberg, Michael J E; Stolk, Ronald P; Thomas, Howard C; Thorsteinsdottir, Unnur; Uda, Manuela; Waeber, Gérard; Wareham, Nicholas J; Waterworth, Dawn M; Watkins, Hugh; Whitfield, John B; Witteman, Jacqueline C M; Wolffenbuttel, Bruce H R; Fox, Caroline S; Ala-Korpela, Mika; Stefansson, Kari; Vollenweider, Peter; Völzke, Henry; Schadt, Eric E; Scott, James; Järvelin, Marjo-Riitta; Elliott, Paul; Kooner, Jaspal S

    2011-01-01

    Concentrations of liver enzymes in plasma are widely used as indicators of liver disease. We carried out a genome-wide association study in 61,089 individuals, identifying 42 loci associated with concentrations of liver enzymes in plasma, of which 32 are new associations (P = 10(-8) to P = 10(-190))

  17. Candidate fire blight resistance genes in Malus identified with the use of genomic tools and approaches

    Science.gov (United States)

    The goal of this research is to utilize current advances in Rosaceae genomics to identify DNA markers for use in marker-assisted selection of durable resistance to fire blight. Candidate fire blight resistance genes were selected and ranked based upon differential expression after inoculation with ...

  18. Genome-wide association analyses identify 18 new loci associated with serum urate concentrations

    NARCIS (Netherlands)

    Köttgen, Anna; Albrecht, Eva; Teumer, Alexander; Vitart, Veronique; Krumsiek, Jan; Hundertmark, Claudia; Pistis, Giorgio; Ruggiero, Daniela; O'Seaghdha, Conall M; Haller, Toomas; Yang, Qiong; Tanaka, Toshiko; Johnson, Andrew D; Kutalik, Zoltán; Smith, Albert V; Shi, Julia; Struchalin, Maksim; Middelberg, Rita P S; Brown, Morris J; Gaffo, Angelo L; Pirastu, Nicola; Li, Guo; Hayward, Caroline; Zemunik, Tatijana; Huffman, Jennifer; Yengo, Loic; Zhao, Jing Hua; Demirkan, Ayse; Feitosa, Mary F; Liu, Xuan; Malerba, Giovanni; Lopez, Lorna M; van der Harst, Pim; Li, Xinzhong; Kleber, Marcus E; Hicks, Andrew A; Nolte, Ilja M; Johansson, Asa; Murgia, Federico; Wild, Sarah H; Bakker, Stephan J L; Peden, John F; Dehghan, Abbas; Steri, Maristella; Tenesa, Albert; Lagou, Vasiliki; Salo, Perttu; Mangino, Massimo; Rose, Lynda M; Lehtimäki, Terho; Woodward, Owen M; Okada, Yukinori; Tin, Adrienne; Müller, Christian; Oldmeadow, Christopher; Putku, Margus; Czamara, Darina; Kraft, Peter; Frogheri, Laura; Thun, Gian Andri; Grotevendt, Anne; Gislason, Gauti Kjartan; Harris, Tamara B; Launer, Lenore J; McArdle, Patrick; Shuldiner, Alan R; Boerwinkle, Eric; Coresh, Josef; Schmidt, Helena; Schallert, Michael; Martin, Nicholas G; Montgomery, Grant W; Kubo, Michiaki; Nakamura, Yusuke; Tanaka, Toshihiro; Munroe, Patricia B; Samani, Nilesh J; Jacobs, David R; Liu, Kiang; D'Adamo, Pio; Ulivi, Sheila; Rotter, Jerome I; Psaty, Bruce M; Vollenweider, Peter; Waeber, Gerard; Campbell, Susan; Devuyst, Olivier; Navarro, Pau; Kolcic, Ivana; Hastie, Nicholas; Balkau, Beverley; Froguel, Philippe; Esko, Tõnu; Salumets, Andres; Khaw, Kay Tee; Langenberg, Claudia; Wareham, Nicholas J; Isaacs, Aaron; Kraja, Aldi; Zhang, Qunyuan; Wild, Philipp S; Scott, Rodney J; Holliday, Elizabeth G; Org, Elin; Viigimaa, Margus; Bandinelli, Stefania; Metter, Jeffrey E; Lupo, Antonio; Trabetti, Elisabetta; Sorice, Rossella; Döring, Angela; Lattka, Eva; Strauch, Konstantin; Theis, Fabian; Waldenberger, Melanie; Wichmann, H-Erich; Davies, Gail; Gow, Alan J; Bruinenberg, Marcel; Stolk, Ronald P; Kooner, Jaspal S; Zhang, Weihua; Winkelmann, Bernhard R; Boehm, Bernhard O; Lucae, Susanne; Penninx, Brenda W; Smit, Johannes H; Curhan, Gary; Mudgal, Poorva; Plenge, Robert M; Portas, Laura; Persico, Ivana; Kirin, Mirna; Wilson, James F; Mateo Leach, Irene; van Gilst, Wiek H; Goel, Anuj; Ongen, Halit; Hofman, Albert; Rivadeneira, Fernando; Uitterlinden, Andre G; Imboden, Medea; von Eckardstein, Arnold; Cucca, Francesco; Nagaraja, Ramaiah; Piras, Maria Grazia; Nauck, Matthias; Schurmann, Claudia; Budde, Kathrin; Ernst, Florian; Farrington, Susan M; Theodoratou, Evropi; Prokopenko, Inga; Stumvoll, Michael; Jula, Antti; Perola, Markus; Salomaa, Veikko; Shin, So-Youn; Spector, Tim D; Sala, Cinzia; Ridker, Paul M; Kähönen, Mika; Viikari, Jorma; Hengstenberg, Christian; Nelson, Christopher P; Meschia, James F; Nalls, Michael A; Sharma, Pankaj; Singleton, Andrew B; Kamatani, Naoyuki; Zeller, Tanja; Burnier, Michel; Attia, John; Laan, Maris; Klopp, Norman; Hillege, Hans L; Kloiber, Stefan; Choi, Hyon; Pirastu, Mario; Tore, Silvia; Probst-Hensch, Nicole M; Völzke, Henry; Gudnason, Vilmundur; Parsa, Afshin; Schmidt, Reinhold; Whitfield, John B; Fornage, Myriam; Gasparini, Paolo; Siscovick, David S; Polašek, Ozren; Campbell, Harry; Rudan, Igor; Bouatia-Naji, Nabila; Metspalu, Andres; Loos, Ruth J F; van Duijn, Cornelia M; Borecki, Ingrid B; Ferrucci, Luigi; Gambaro, Giovanni; Deary, Ian J; Wolffenbuttel, Bruce H R; Chambers, John C; März, Winfried; Pramstaller, Peter P; Snieder, Harold; Gyllensten, Ulf; Wright, Alan F; Navis, Gerjan; Watkins, Hugh; Witteman, Jacqueline C M; Sanna, Serena; Schipf, Sabine; Dunlop, Malcolm G; Tönjes, Anke; Ripatti, Samuli; Soranzo, Nicole; Toniolo, Daniela; Chasman, Daniel I; Raitakari, Olli; Kao, W H Linda; Ciullo, Marina; Fox, Caroline S; Caulfield, Mark; Bochud, Murielle; Gieger, Christian

    2013-01-01

    Elevated serum urate concentrations can cause gout, a prevalent and painful inflammatory arthritis. By combining data from >140,000 individuals of European ancestry within the Global Urate Genetics Consortium (GUGC), we identified and replicated 28 genome-wide significant loci in association with se

  19. Identification of novel targets for breast cancer by exploring gene switches on a genome scale

    Directory of Open Access Journals (Sweden)

    Wu Ming

    2011-11-01

    Full Text Available Abstract Background An important feature that emerges from analyzing gene regulatory networks is the "switch-like behavior" or "bistability", a dynamic feature of a particular gene to preferentially toggle between two steady-states. The state of gene switches plays pivotal roles in cell fate decision, but identifying switches has been difficult. Therefore a challenge confronting the field is to be able to systematically identify gene switches. Results We propose a top-down mining approach to exploring gene switches on a genome-scale level. Theoretical analysis, proof-of-concept examples, and experimental studies demonstrate the ability of our mining approach to identify bistable genes by sampling across a variety of different conditions. Applying the approach to human breast cancer data identified genes that show bimodality within the cancer samples, such as estrogen receptor (ER and ERBB2, as well as genes that show bimodality between cancer and non-cancer samples, where tumor-associated calcium signal transducer 2 (TACSTD2 is uncovered. We further suggest a likely transcription factor that regulates TACSTD2. Conclusions Our mining approach demonstrates that one can capitalize on genome-wide expression profiling to capture dynamic properties of a complex network. To the best of our knowledge, this is the first attempt in applying mining approaches to explore gene switches on a genome-scale, and the identification of TACSTD2 demonstrates that single cell-level bistability can be predicted from microarray data. Experimental confirmation of the computational results suggest TACSTD2 could be a potential biomarker and attractive candidate for drug therapy against both ER+ and ER- subtypes of breast cancer, including the triple negative subtype.

  20. Identifying contamination with advanced visualization and analysis practices: metagenomic approaches for eukaryotic genome assemblies

    Science.gov (United States)

    Delmont, Tom O.

    2016-01-01

    High-throughput sequencing provides a fast and cost-effective mean to recover genomes of organisms from all domains of life. However, adequate curation of the assembly results against potential contamination of non-target organisms requires advanced bioinformatics approaches and practices. Here, we re-analyzed the sequencing data generated for the tardigrade Hypsibius dujardini, and created a holistic display of the eukaryotic genome assembly using DNA data originating from two groups and eleven sequencing libraries. By using bacterial single-copy genes, k-mer frequencies, and coverage values of scaffolds we could identify and characterize multiple near-complete bacterial genomes from the raw assembly, and curate a 182 Mbp draft genome for H. dujardini supported by RNA-Seq data. Our results indicate that most contaminant scaffolds were assembled from Moleculo long-read libraries, and most of these contaminants have differed between library preparations. Our re-analysis shows that visualization and curation of eukaryotic genome assemblies can benefit from tools designed to address the needs of today’s microbiologists, who are constantly challenged by the difficulties associated with the identification of distinct microbial genomes in complex environmental metagenomes. PMID:27069789

  1. Identifying contamination with advanced visualization and analysis practices: metagenomic approaches for eukaryotic genome assemblies

    Directory of Open Access Journals (Sweden)

    Tom O. Delmont

    2016-03-01

    Full Text Available High-throughput sequencing provides a fast and cost-effective mean to recover genomes of organisms from all domains of life. However, adequate curation of the assembly results against potential contamination of non-target organisms requires advanced bioinformatics approaches and practices. Here, we re-analyzed the sequencing data generated for the tardigrade Hypsibius dujardini, and created a holistic display of the eukaryotic genome assembly using DNA data originating from two groups and eleven sequencing libraries. By using bacterial single-copy genes, k-mer frequencies, and coverage values of scaffolds we could identify and characterize multiple near-complete bacterial genomes from the raw assembly, and curate a 182 Mbp draft genome for H. dujardini supported by RNA-Seq data. Our results indicate that most contaminant scaffolds were assembled from Moleculo long-read libraries, and most of these contaminants have differed between library preparations. Our re-analysis shows that visualization and curation of eukaryotic genome assemblies can benefit from tools designed to address the needs of today’s microbiologists, who are constantly challenged by the difficulties associated with the identification of distinct microbial genomes in complex environmental metagenomes.

  2. Identifying contamination with advanced visualization and analysis practices: metagenomic approaches for eukaryotic genome assemblies.

    Science.gov (United States)

    Delmont, Tom O; Eren, A Murat

    2016-01-01

    High-throughput sequencing provides a fast and cost-effective mean to recover genomes of organisms from all domains of life. However, adequate curation of the assembly results against potential contamination of non-target organisms requires advanced bioinformatics approaches and practices. Here, we re-analyzed the sequencing data generated for the tardigrade Hypsibius dujardini, and created a holistic display of the eukaryotic genome assembly using DNA data originating from two groups and eleven sequencing libraries. By using bacterial single-copy genes, k-mer frequencies, and coverage values of scaffolds we could identify and characterize multiple near-complete bacterial genomes from the raw assembly, and curate a 182 Mbp draft genome for H. dujardini supported by RNA-Seq data. Our results indicate that most contaminant scaffolds were assembled from Moleculo long-read libraries, and most of these contaminants have differed between library preparations. Our re-analysis shows that visualization and curation of eukaryotic genome assemblies can benefit from tools designed to address the needs of today's microbiologists, who are constantly challenged by the difficulties associated with the identification of distinct microbial genomes in complex environmental metagenomes.

  3. NMD Microarray Analysis for Rapid Genome-Wide Screen of Mutated Genes in Cancer

    Directory of Open Access Journals (Sweden)

    Maija Wolf

    2005-01-01

    Full Text Available Gene mutations play a critical role in cancer development and progression, and their identification offers possibilities for accurate diagnostics and therapeutic targeting. Finding genes undergoing mutations is challenging and slow, even in the post-genomic era. A new approach was recently developed by Noensie and Dietz to prioritize and focus the search, making use of nonsense-mediated mRNA decay (NMD inhibition and microarray analysis (NMD microarrays in the identification of transcripts containing nonsense mutations. We combined NMD microarrays with array-based CGH (comparative genomic hybridization in order to identify inactivation of tumor suppressor genes in cancer. Such a “mutatomics” screening of prostate cancer cell lines led to the identification of inactivating mutations in the EPHB2 gene. Up to 8% of metastatic uncultured prostate cancers also showed mutations of this gene whose loss of function may confer loss of tissue architecture. NMD microarray analysis could turn out to be a powerful research method to identify novel mutated genes in cancer cell lines, providing targets that could then be further investigated for their clinical relevance and therapeutic potential.

  4. Large genomic rearrangement of BRCA1 and BRCA2 genes in familial breast cancer patients in Korea.

    Science.gov (United States)

    Cho, Ja Young; Cho, Dae-Yeon; Ahn, Sei Hyun; Choi, Su-Youn; Shin, Inkyung; Park, Hyun Gyu; Lee, Jong Won; Kim, Hee Jeong; Yu, Jong Han; Ko, Beom Seok; Ku, Bo Kyung; Son, Byung Ho

    2014-06-01

    We screened large genomic rearrangements of the BRCA1 and BRCA2 genes in Korean, familial breast cancer patients. Multiplex ligation-dependent probe amplification assay was used to identify BRCA1 and BRCA2 genomic rearrangements in 226 Korean familial breast cancer patients with risk factors for BRCA1 and BRCA2 mutations, who previously tested negative for point mutations in the two genes. We identified only one large deletion (c.4186-1593_4676-1465del) in BRCA1. No large rearrangements were found in BRCA2. Our result indicates that large genomic rearrangement in the BRCA1 and BRCA2 genes does not seem like a major determinant of breast cancer susceptibility in the Korean population. A large-scale study needs to validate our result in Korea.

  5. Identifying Cancer Biomarkers Via Node Classification within a Mapreduce Framework

    Directory of Open Access Journals (Sweden)

    Taysir Hassan A. Soliman

    2015-12-01

    Full Text Available Big data are giving new research challenges in the life sciences domain because of their variety, volume, veracity, velocity, and value. Predicting gene biomarkers is one of the vital research issues in bioinformatics field, where microarray gene expression and network based methods can be used. These datasets suffer from the huge data voluminous, causing main memory problems. In this paper, a Random Committee Node Classifier algorithm (RCNC is proposed for identifying cancer biomarkers, which is based on microarray gene expression data and Protein-Protein Interaction (PPI data. Data are enriched from other public databases, such as IntACT1 and UniProt2 and Gene Ontology3 (GO. Cancer Biomarkers are identified when applied to different datasets with an accuracy rate an accuracy rate 99.16%, 99.96% precision, 99.24% recall, 99.16% F1-measure and 99.6 ROC. To speed up the performance, it is run within a MapReduce framework, where RCNC MapReduce algorithm is much faster than RCNC sequential algorithm when having large datasets.

  6. Think Tank: Identifying and Creating the Next Generation of Community-Based Cancer Prevention Studies | Division of Cancer Prevention

    Science.gov (United States)

    In late 2015, the NCI Division of Cancer Prevention convened cancer prevention research experts and stakeholders to discuss the current state of cancer prevention research, identify key prevention research priorities for the NCI, and identify studies that could be conducted within the NCI Community Oncology Research Program. Read the Cancer Prevention Research journal article (PDF, 532KB). |

  7. Lessons learned from the application of whole-genome analysis to the treatment of patients with advanced cancers.

    Science.gov (United States)

    Laskin, Janessa; Jones, Steven; Aparicio, Samuel; Chia, Stephen; Ch'ng, Carolyn; Deyell, Rebecca; Eirew, Peter; Fok, Alexandra; Gelmon, Karen; Ho, Cheryl; Huntsman, David; Jones, Martin; Kasaian, Katayoon; Karsan, Aly; Leelakumari, Sreeja; Li, Yvonne; Lim, Howard; Ma, Yussanne; Mar, Colin; Martin, Monty; Moore, Richard; Mungall, Andrew; Mungall, Karen; Pleasance, Erin; Rassekh, S Rod; Renouf, Daniel; Shen, Yaoqing; Schein, Jacqueline; Schrader, Kasmintan; Sun, Sophie; Tinker, Anna; Zhao, Eric; Yip, Stephen; Marra, Marco A

    2015-10-01

    Given the success of targeted agents in specific populations it is expected that some degree of molecular biomarker testing will become standard of care for many, if not all, cancers. To facilitate this, cancer centers worldwide are experimenting with targeted "panel" sequencing of selected mutations. Recent advances in genomic technology enable the generation of genome-scale data sets for individual patients. Recognizing the risk, inherent in panel sequencing, of failing to detect meaningful somatic alterations, we sought to establish processes to integrate data from whole-genome analysis (WGA) into routine cancer care. Between June 2012 and August 2014, 100 adult patients with incurable cancers consented to participate in the Personalized OncoGenomics (POG) study. Fresh tumor and blood samples were obtained and used for whole-genome and RNA sequencing. Computational approaches were used to identify candidate driver mutations, genes, and pathways. Diagnostic and drug information were then sought based on these candidate "drivers." Reports were generated and discussed weekly in a multidisciplinary team setting. Other multidisciplinary working groups were assembled to establish guidelines on the interpretation, communication, and integration of individual genomic findings into patient care. Of 78 patients for whom WGA was possible, results were considered actionable in 55 cases. In 23 of these 55 cases, the patients received treatments motivated by WGA. Our experience indicates that a multidisciplinary team of clinicians and scientists can implement a paradigm in which WGA is integrated into the care of late stage cancer patients to inform systemic therapy decisions.

  8. Comparative analysis of methods for identifying recurrent copy number alterations in cancer.

    Directory of Open Access Journals (Sweden)

    Xiguo Yuan

    Full Text Available Recurrent copy number alterations (CNAs play an important role in cancer genesis. While a number of computational methods have been proposed for identifying such CNAs, their relative merits remain largely unknown in practice since very few efforts have been focused on comparative analysis of the methods. To facilitate studies of recurrent CNA identification in cancer genome, it is imperative to conduct a comprehensive comparison of performance and limitations among existing methods. In this paper, six representative methods proposed in the latest six years are compared. These include one-stage and two-stage approaches, working with raw intensity ratio data and discretized data respectively. They are based on various techniques such as kernel regression, correlation matrix diagonal segmentation, semi-parametric permutation and cyclic permutation schemes. We explore multiple criteria including type I error rate, detection power, Receiver Operating Characteristics (ROC curve and the area under curve (AUC, and computational complexity, to evaluate performance of the methods under multiple simulation scenarios. We also characterize their abilities on applications to two real datasets obtained from cancers with lung adenocarcinoma and glioblastoma. This comparison study reveals general characteristics of the existing methods for identifying recurrent CNAs, and further provides new insights into their strengths and weaknesses. It is believed helpful to accelerate the development of novel and improved methods.

  9. Fine-scale mapping of 8q24 locus identifies multiple independent risk variants for breast cancer.

    Science.gov (United States)

    Shi, Jiajun; Zhang, Yanfeng; Zheng, Wei; Michailidou, Kyriaki; Ghoussaini, Maya; Bolla, Manjeet K; Wang, Qin; Dennis, Joe; Lush, Michael; Milne, Roger L; Shu, Xiao-Ou; Beesley, Jonathan; Kar, Siddhartha; Andrulis, Irene L; Anton-Culver, Hoda; Arndt, Volker; Beckmann, Matthias W; Zhao, Zhiguo; Guo, Xingyi; Benitez, Javier; Beeghly-Fadiel, Alicia; Blot, William; Bogdanova, Natalia V; Bojesen, Stig E; Brauch, Hiltrud; Brenner, Hermann; Brinton, Louise; Broeks, Annegien; Brüning, Thomas; Burwinkel, Barbara; Cai, Hui; Canisius, Sander; Chang-Claude, Jenny; Choi, Ji-Yeob; Couch, Fergus J; Cox, Angela; Cross, Simon S; Czene, Kamila; Darabi, Hatef; Devilee, Peter; Droit, Arnaud; Dork, Thilo; Fasching, Peter A; Fletcher, Olivia; Flyger, Henrik; Fostira, Florentia; Gaborieau, Valerie; García-Closas, Montserrat; Giles, Graham G; Grip, Mervi; Guenel, Pascal; Haiman, Christopher A; Hamann, Ute; Hartman, Mikael; Miao, Hui; Hollestelle, Antoinette; Hopper, John L; Hsiung, Chia-Ni; Ito, Hidemi; Jakubowska, Anna; Johnson, Nichola; Torres, Diana; Kabisch, Maria; Kang, Daehee; Khan, Sofia; Knight, Julia A; Kosma, Veli-Matti; Lambrechts, Diether; Li, Jingmei; Lindblom, Annika; Lophatananon, Artitaya; Lubinski, Jan; Mannermaa, Arto; Manoukian, Siranoush; Le Marchand, Loic; Margolin, Sara; Marme, Frederik; Matsuo, Keitaro; McLean, Catriona; Meindl, Alfons; Muir, Kenneth; Neuhausen, Susan L; Nevanlinna, Heli; Nord, Silje; Børresen-Dale, Anne-Lise; Olson, Janet E; Orr, Nick; van den Ouweland, Ans M W; Peterlongo, Paolo; Choudary Putti, Thomas; Rudolph, Anja; Sangrajrang, Suleeporn; Sawyer, Elinor J; Schmidt, Marjanka K; Schmutzler, Rita K; Shen, Chen-Yang; Hou, Ming-Feng; Shrubsole, Matha J; Southey, Melissa C; Swerdlow, Anthony; Hwang Teo, Soo; Thienpont, Bernard; Toland, Amanda E; Tollenaar, Robert A E M; Tomlinson, Ian; Truong, Therese; Tseng, Chiu-Chen; Wen, Wanqing; Winqvist, Robert; Wu, Anna H; Har Yip, Cheng; Zamora, Pilar M; Zheng, Ying; Floris, Giuseppe; Cheng, Ching-Yu; Hooning, Maartje J; Martens, John W M; Seynaeve, Caroline; Kristensen, Vessela N; Hall, Per; Pharoah, Paul D P; Simard, Jacques; Chenevix-Trench, Georgia; Dunning, Alison M; Antoniou, Antonis C; Easton, Douglas F; Cai, Qiuyin; Long, Jirong

    2016-09-15

    Previous genome-wide association studies among women of European ancestry identified two independent breast cancer susceptibility loci represented by single nucleotide polymorphisms (SNPs) rs13281615 and rs11780156 at 8q24. A fine-mapping study across 2.06 Mb (chr8:127,561,724-129,624,067, hg19) in 55,540 breast cancer cases and 51,168 controls within the Breast Cancer Association Consortium was conducted. Three additional independent association signals in women of European ancestry, represented by rs35961416 (OR = 0.95, 95% CI = 0.93-0.97, conditional p = 5.8 × 10(-6) ), rs7815245 (OR = 0.94, 95% CI = 0.91-0.96, conditional p = 1.1 × 10(-6) ) and rs2033101 (OR = 1.05, 95% CI = 1.02-1.07, conditional p = 1.1 × 10(-4) ) were found. Integrative analysis using functional genomic data from the Roadmap Epigenomics, the Encyclopedia of DNA Elements project, the Cancer Genome Atlas and other public resources implied that SNPs rs7815245 in Signal 3, and rs1121948 in Signal 5 (in linkage disequilibrium with rs11780156, r(2)  = 0.77), were putatively functional variants for two of the five independent association signals. The results highlighted multiple 8q24 variants associated with breast cancer susceptibility in women of European ancestry.

  10. Network-Based Integration of Disparate Omic Data To Identify "Silent Players" in Cancer.

    Directory of Open Access Journals (Sweden)

    Matthew Ruffalo

    2015-12-01

    Full Text Available Development of high-throughput monitoring technologies enables interrogation of cancer samples at various levels of cellular activity. Capitalizing on these developments, various public efforts such as The Cancer Genome Atlas (TCGA generate disparate omic data for large patient cohorts. As demonstrated by recent studies, these heterogeneous data sources provide the opportunity to gain insights into the molecular changes that drive cancer pathogenesis and progression. However, these insights are limited by the vast search space and as a result low statistical power to make new discoveries. In this paper, we propose methods for integrating disparate omic data using molecular interaction networks, with a view to gaining mechanistic insights into the relationship between molecular changes at different levels of cellular activity. Namely, we hypothesize that genes that play a role in cancer development and progression may be implicated by neither frequent mutation nor differential expression, and that network-based integration of mutation and differential expression data can reveal these "silent players". For this purpose, we utilize network-propagation algorithms to simulate the information flow in the cell at a sample-specific resolution. We then use the propagated mutation and expression signals to identify genes that are not necessarily mutated or differentially expressed genes, but have an essential role in tumor development and patient outcome. We test the proposed method on breast cancer and glioblastoma multiforme data obtained from TCGA. Our results show that the proposed method can identify important proteins that are not readily revealed by molecular data, providing insights beyond what can be gleaned by analyzing different types of molecular data in isolation.

  11. Genome Sequence of a Helicobacter pylori Strain Isolated from a Mexican Patient with Intestinal Gastric Cancer

    Science.gov (United States)

    Larios-Serrato, Violeta; Olguín-Ruiz, Gabriela Edith; Sánchez-Vallejo, Carlos Javier; Torres-López, Roberto Carlos; Avilés-Jiménez, Francisco; Camorlinga-Ponce, Margarita

    2014-01-01

    Helicobacter pylori strains are the major risk factor for gastric cancer. Strains vary in their content of disease-associated genes, so genome-wide analysis of cancer-isolated strains will help elucidate their pathogenesis and genetic diversity. We present the draft genome sequence of H. pylori isolated from a Mexican patient with intestinal gastric cancer. PMID:24459275

  12. Novel immune-modulator identified by a rapid, functional screen of the parapoxvirus ovis (Orf virus genome

    Directory of Open Access Journals (Sweden)

    McGuire Michael J

    2012-01-01

    Full Text Available Abstract Background The success of new sequencing technologies and informatic methods for identifying genes has made establishing gene product function a critical rate limiting step in progressing the molecular sciences. We present a method to functionally mine genomes for useful activities in vivo, using an unusual property of a member of the poxvirus family to demonstrate this screening approach. Results The genome of Parapoxvirus ovis (Orf virus was sequenced, annotated, and then used to PCR-amplify its open-reading-frames. Employing a cloning-independent protocol, a viral expression-library was rapidly built and arrayed into sub-library pools. These were directly delivered into mice as expressible cassettes and assayed for an immune-modulating activity associated with parapoxvirus infection. The product of the B2L gene, a homolog of vaccinia F13L, was identified as the factor eliciting immune cell accumulation at sites of skin inoculation. Administration of purified B2 protein also elicited immune cell accumulation activity, and additionally was found to serve as an adjuvant for antigen-specific responses. Co-delivery of the B2L gene with an influenza gene-vaccine significantly improved protection in mice. Furthermore, delivery of the B2L expression construct, without antigen, non-specifically reduced tumor growth in murine models of cancer. Conclusion A streamlined, functional approach to genome-wide screening of a biological activity in vivo is presented. Its application to screening in mice for an immune activity elicited by the pathogen genome of Parapoxvirus ovis yielded a novel immunomodulator. In this inverted discovery method, it was possible to identify the adjuvant responsible for a function of interest prior to a mechanistic study of the adjuvant. The non-specific immune activity of this modulator, B2, is similar to that associated with administration of inactivated particles to a host or to a live viral infection. Administration

  13. Genome rearrangement affects RNA virus adaptability on prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Kendra ePesko

    2015-04-01

    Full Text Available Gene order is often highly conserved within taxonomic groups, such that organisms with rearranged genomes tend to be less fit than wildtype gene orders, and suggesting natural selection favors genome architectures that maximize fitness. But it is unclear whether rearranged genomes hinder adaptability: capacity to evolutionarily improve in a new environment. Negative-sense nonsegmented RNA viruses (order Mononegavirales have specific genome architecture: 3′ UTR – core protein genes – envelope protein genes – RNA-dependent RNA-polymerase gene – 5′ UTR. To test how genome architecture affects RNA virus evolution, we examined vesicular stomatitis virus (VSV variants with the nucleocapsid (N gene moved sequentially downstream in the genome. Because RNA polymerase stuttering in VSV replication causes greater mRNA production in upstream genes, N-gene translocation towards the 5’ end leads to stepwise decreases in N transcription, viral replication and progeny production, and also impacts the activation of type 1 interferon mediated antiviral responses. We evolved VSV gene-order variants in two prostate cancer cell lines: LNCap cells deficient in innate immune response to viral infection, and PC3 cells that mount an IFN stimulated anti-viral response to infection. We observed that gene order affects phenotypic adaptability (reproductive growth; viral suppression of immune function, especially on PC3 cells that strongly select against virus infection. Overall, populations derived from the least-fit ancestor (most-altered N position architecture adapted fastest, consistent with theory predicting populations with low initial fitness should improve faster in evolutionary time. Also, we observed correlated responses to selection, where viruses improved across both hosts, rather than suffer fitness trade-offs on unselected hosts. Whole genomics revealed multiple mutations in evolved variants, some of which were conserved across selective

  14. New selenoproteins identified in silico from the genome of Anopheles gambiae

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Selenoprotein is biosynthesized by the incorporation of selenocysteine into proteins,where the TGA codon in the open reading frame does not act as a stop signal but is translated into selenocysteine.The dual functions of TGA result in mis-annotation or lack of selenoproteins in the sequenced genomes of many species.Available computational tools fail to correctly predict selenoproteins.Thus,we devel-oped a new method to identify selenoproteins from the genome of Anopheles gambiae computationally.Based on released genomic information,several programs were edited with PERL language to identify selenocysteine insertion sequence(SECIS)element,the coding potential of TGA codons,and cys-teine-containing homologs of selenoprotein genes.Our results showed that 11365 genes were termi-nated with TGA codons,918 of which contained SECIS elements.Similarity search revealed that 58 genes contained Sec/Cys pairs and similar flanking regions around in-frame TGA codons.Finally,7 genes were found to fully meet requirements for selenoproteins,although they have not been anno-tated as selenoproteins in NCBI databases.Deduced from their basic properties,the newly found se-lenoproteins in the genome of Anopheles gambiae are possibly related to in vivo oxidation tolerance and protein regulation in order to interfere with anopheles’ vectorial capacity of Plasmodium.This study may also provide theoretical bases for the prevention of malaria from anopheles transmission.

  15. New selenoproteins identified in silico from the genome of Anopheles gambiae

    Institute of Scientific and Technical Information of China (English)

    JIANG Liang; LIU Qiong; CHEN Ping; GAO ZhongHong; XU HuiBi

    2007-01-01

    Selenoprotein is biosynthesized by the incorporation of selenocysteine into proteins, where the TGA codon in the open reading frame does not act as a stop signal but is translated into selenocysteine. The dual functions of TGA result in mis-annotation or lack of selenoproteins in the sequenced genomes of many species. Available computational tools fail to correctly predict selenoproteins. Thus, we developed a new method to identify selenoproteins from the genome of Anopheles gambiae computationally.Based on released genomic information, several programs were edited with PERL language to identify selenocysteine insertion sequence (SECIS) element, the coding potential of TGA codons, and cysteine-containing homologs of selenoprotein genes. Our results showed that 11365 genes were terminated with TGA codons, 918 of which contained SECIS elements. Similarity search revealed that 58genes contained Sec/Cys pairs and similar flanking regions around in-frame TGA codons. Finally, 7genes were found to fully meet requirements for selenoproteins, although they have not been annotated as selenoproteins in NCBI databases. Deduced from their basic properties, the newly found selenoproteins in the genome of Anopheles gambiae are possibly related to in vivo oxidation tolerance and protein regulation in order to interfere with anopheles' vectorial capacity of Plasmodium. This study may also provide theoretical bases for the prevention of malaria from anopheles transmission.

  16. Comparison of 6q25 Breast Cancer Hits from Asian and European Genome Wide Association Studies in the Breast Cancer Association Consortium (BCAC)

    NARCIS (Netherlands)

    Hein, Rebecca; Maranian, Melanie; Hopper, John L.; Kapuscinski, Miroslaw K.; Southey, Melissa C.; Park, Daniel J.; Schmidt, Marjanka K.; Broeks, Annegien; Hogervorst, Frans B. L.; Bueno-de-Mesquit, H. Bas; Muir, Kenneth R.; Lophatananon, Artitaya; Rattanamongkongul, Suthee; Puttawibul, Puttisak; Fasching, Peter A.; Hein, Alexander; Ekici, Arif B.; Beckmann, Matthias W.; Fletcher, Olivia; Johnson, Nichola; Silva, Isabel dos Santos; Peto, Julian; Sawyer, Elinor; Tomlinson, Ian; Kerin, Michael; Miller, Nicola; Marmee, Frederick; Schneeweiss, Andreas; Sohn, Christof; Burwinkel, Barbara; Guenel, Pascal; Cordina-Duverger, Emilie; Menegaux, Florence; Truong, Therese; Bojesen, Stig E.; Nordestgaard, Borge G.; Flyger, Henrik; Milne, Roger L.; Arias Perez, Jose Ignacio; Pilar Zamora, M.; Benitez, Javier; Anton-Culver, Hoda; Ziogas, Argyrios; Bernstein, Leslie; Clarke, Christina A.; Brenner, Hermann; Mueller, Heiko; Arndt, Volker; Stegmaier, Christa; Rahman, Nazneen; Seal, Sheila; Turnbull, Clare; Renwick, Anthony; Meindl, Alfons; Schott, Sarah; Bartram, Claus R.; Schmutzler, Rita K.; Brauch, Hiltrud; Hamann, Ute; Ko, Yon-Dschun; Wang-Gohrke, Shan; Doerk, Thilo; Schuermann, Peter; Karstens, Johann H.; Hillemanns, Peter; Nevanlinna, Heli; Heikkinen, Tuomas; Aittomaki, Kristiina; Blomqvist, Carl; Bogdanova, Natalia V.; Zalutsky, Iosif V.; Antonenkova, Natalia N.; Bermisheva, Marina; Prokovieva, Darya; Farahtdinova, Albina; Khusnutdinova, Elza; Lindblom, Annika; Margolin, Sara; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana; Chen, Xiaoqing; Beesley, Jonathan; Lambrechts, Diether; Zhao, Hui; Neven, Patrick; Wildiers, Hans; Nickels, Stefan; Flesch-Janys, Dieter; Radice, Paolo; Peterlongo, Paolo; Manoukian, Siranoush; Barile, Monica; Couch, Fergus J.; Olson, Janet E.; Wang, Xianshu; Fredericksen, Zachary; Giles, Graham G.; Baglietto, Laura; McLean, Catriona A.; Severi, Gianluca; Offit, Kenneth; Robson, Mark; Gaudet, Mia M.; Vijai, Joseph; Alnaes, Grethe Grenaker; Kristensen, Vessela; Borresen-Dale, Anne-Lise; John, Esther M.; Miron, Alexander; Winqvist, Robert; Pylkas, Katri; Jukkola-Vuorinen, Arja; Grip, Mervi; Andrulis, Irene L.; Knight, Julia A.; Glendon, Gord; Mulligan, Anna Marie; Figueroa, Jonine D.; Garcia-Closas, Montserrat; Lissowska, Jolanta; Sherman, Mark E.; Hooning, Maartje; Martens, John W. M.; Seynaeve, Caroline; Collee, Margriet; Hall, Per; Humpreys, Keith; Czene, Kamila; Liu, Jianjun; Cox, Angela; Brock, Ian W.; Cross, Simon S.; Reed, Malcolm W. R.; Ahmed, Shahana; Ghoussaini, Maya; Pharoah, Paul D. P.; Kang, Daehee; Yoo, Keun-Young; Noh, Dong-Young; Jakubowska, Anna; Jaworska, Katarzyna; Durda, Katarzyna; Zlowocka, Elzbieta; Sangrajrang, Suleeporn; Gaborieau, Valerie; Brennan, Paul; McKay, James; Shen, Chen-Yang; Yu, Jyh-Cherng; Hsu, Huan-Ming; Hou, Ming-Feng; Orr, Nick; Schoemaker, Minouk; Ashworth, Alan; Swerdlow, Anthony; Trentham-Dietz, Amy; Newcomb, Polly A.; Titus, Linda; Egan, Kathleen M.; Chenevix-Trench, Georgia; Antoniou, Antonis C.; Humphreys, Manjeet K.; Morrison, Jonathan; Chang-Claude, Jenny; Easton, Douglas F.; Dunning, Alison M.

    2012-01-01

    The 6q25.1 locus was first identified via a genome-wide association study (GWAS) in Chinese women and marked by single nucleotide polymorphism (SNP) rs2046210, approximately 180 Kb upstream of ESR1. There have been conflicting reports about the association of this locus with breast cancer in Europea

  17. Genomic and oncoproteomic advances in detection and treatment of colorectal cancer.

    LENUS (Irish Health Repository)

    McHugh, Seamus M

    2012-02-01

    AIMS: We will examine the latest advances in genomic and proteomic laboratory technology. Through an extensive literature review we aim to critically appraise those studies which have utilized these latest technologies and ascertain their potential to identify clinically useful biomarkers. METHODS: An extensive review of the literature was carried out in both online medical journals and through the Royal College of Surgeons in Ireland library. RESULTS: Laboratory technology has advanced in the fields of genomics and oncoproteomics. Gene expression profiling with DNA microarray technology has allowed us to begin genetic profiling of colorectal cancer tissue. The response to chemotherapy can differ amongst individual tumors. For the first time researchers have begun to isolate and identify the genes responsible. New laboratory techniques allow us to isolate proteins preferentially expressed in colorectal cancer tissue. This could potentially lead to identification of a clinically useful protein biomarker in colorectal cancer screening and treatment. CONCLUSION: If a set of discriminating genes could be used for characterization and prediction of chemotherapeutic response, an individualized tailored therapeutic regime could become the standard of care for those undergoing systemic treatment for colorectal cancer. New laboratory techniques of protein identification may eventually allow identification of a clinically useful biomarker that could be used for screening and treatment. At present however, both expression of different gene signatures and isolation of various protein peaks has been limited by study size. Independent multi-centre correlation of results with larger sample sizes is needed to allow translation into clinical practice.

  18. Genomic and oncoproteomic advances in detection and treatment of colorectal cancer.

    LENUS (Irish Health Repository)

    McHugh, Seamus M

    2009-01-01

    AIMS: We will examine the latest advances in genomic and proteomic laboratory technology. Through an extensive literature review we aim to critically appraise those studies which have utilized these latest technologies and ascertain their potential to identify clinically useful biomarkers. METHODS: An extensive review of the literature was carried out in both online medical journals and through the Royal College of Surgeons in Ireland library. RESULTS: Laboratory technology has advanced in the fields of genomics and oncoproteomics. Gene expression profiling with DNA microarray technology has allowed us to begin genetic profiling of colorectal cancer tissue. The response to chemotherapy can differ amongst individual tumors. For the first time researchers have begun to isolate and identify the genes responsible. New laboratory techniques allow us to isolate proteins preferentially expressed in colorectal cancer tissue. This could potentially lead to identification of a clinically useful protein biomarker in colorectal cancer screening and treatment. CONCLUSION: If a set of discriminating genes could be used for characterization and prediction of chemotherapeutic response, an individualized tailored therapeutic regime could become the standard of care for those undergoing systemic treatment for colorectal cancer. New laboratory techniques of protein identification may eventually allow identification of a clinically useful biomarker that could be used for screening and treatment. At present however, both expression of different gene signatures and isolation of various protein peaks has been limited by study size. Independent multi-centre correlation of results with larger sample sizes is needed to allow translation into clinical practice.

  19. Extending pathways and processes using molecular interaction networks to analyse cancer genome data

    Directory of Open Access Journals (Sweden)

    Krasnogor Natalio

    2010-12-01

    Full Text Available Abstract Background Cellular processes and pathways, whose deregulation may contribute to the development of cancers, are often represented as cascades of proteins transmitting a signal from the cell surface to the nucleus. However, recent functional genomic experiments have identified thousands of interactions for the signalling canonical proteins, challenging the traditional view of pathways as independent functional entities. Combining information from pathway databases and interaction networks obtained from functional genomic experiments is therefore a promising strategy to obtain more robust pathway and process representations, facilitating the study of cancer-related pathways. Results We present a methodology for extending pre-defined protein sets representing cellular pathways and processes by mapping them onto a protein-protein interaction network, and extending them to include densely interconnected interaction partners. The added proteins display distinctive network topological features and molecular function annotations, and can be proposed as putative new components, and/or as regulators of the communication between the different cellular processes. Finally, these extended pathways and processes are used to analyse their enrichment in pancreatic mutated genes. Significant associations between mutated genes and certain processes are identified, enabling an analysis of the influence of previously non-annotated cancer mutated genes. Conclusions The proposed method for extending cellular pathways helps to explain the functions of cancer mutated genes by exploiting the synergies of canonical knowledge and large-scale interaction data.

  20. Novel LanT associated lantibiotic clusters identified by genome database mining.

    Directory of Open Access Journals (Sweden)

    Mangal Singh

    Full Text Available BACKGROUND: Frequent use of antibiotics has led to the emergence of antibiotic resistance in bacteria. Lantibiotic compounds are ribosomally synthesized antimicrobial peptides against which bacteria are not able to produce resistance, hence making them a good alternative to antibiotics. Nisin is the oldest and the most widely used lantibiotic, in food preservation, without having developed any significant resistance against it. Having their antimicrobial potential and a limited number, there is a need to identify novel lantibiotics. METHODOLOGY/FINDINGS: Identification of novel lantibiotic biosynthetic clusters from an ever increasing database of bacterial genomes, can provide a major lead in this direction. In order to achieve this, a strategy was adopted to identify novel lantibiotic biosynthetic clusters by screening the sequenced genomes for LanT homolog, which is a conserved lantibiotic transporter specific to type IB clusters. This strategy resulted in identification of 54 bacterial strains containing the LanT homologs, which are not the known lantibiotic producers. Of these, 24 strains were subjected to a detailed bioinformatic analysis to identify genes encoding for precursor peptides, modification enzyme, immunity and quorum sensing proteins. Eight clusters having two LanM determinants, similar to haloduracin and lichenicidin were identified, along with 13 clusters having a single LanM determinant as in mersacidin biosynthetic cluster. Besides these, orphan LanT homologs were also identified which might be associated with novel bacteriocins, encoded somewhere else in the genome. Three identified gene clusters had a C39 domain containing LanT transporter, associated with the LanBC proteins and double glycine type precursor peptides, the only known example of such a cluster is that of salivaricin. CONCLUSION: This study led to the identification of 8 novel putative two-component lantibiotic clusters along with 13 having a single LanM and

  1. Genome-wide association study of colorectal cancer in Hispanics

    Science.gov (United States)

    Schmit, Stephanie L.; Schumacher, Fredrick R.; Edlund, Christopher K.; Conti, David V.; Ihenacho, Ugonna; Wan, Peggy; Van Den Berg, David; Casey, Graham; Fortini, Barbara K.; Lenz, Heinz-Josef; Tusié-Luna, Teresa; Aguilar-Salinas, Carlos A.; Moreno-Macías, Hortensia; Huerta-Chagoya, Alicia; Ordóñez-Sánchez, María Luisa; Rodríguez-Guillén, Rosario; Cruz-Bautista, Ivette; Rodríguez-Torres, Maribel; Muñóz-Hernández, Linda Liliana; Arellano-Campos, Olimpia; Gómez, Donají; Alvirde, Ulices; González-Villalpando, Clicerio; González-Villalpando, María Elena; Le Marchand, Loic; Haiman, Christopher A.; Figueiredo, Jane C.

    2016-01-01

    Genome-wide association studies (GWAS) have identified 58 susceptibility alleles across 37 regions associated with the risk of colorectal cancer (CRC) with P < 5×10−8. Most studies have been conducted in non-Hispanic whites and East Asians; however, the generalizability of these findings and the potential for ethnic-specific risk variation in Hispanic and Latino (HL) individuals have been largely understudied. We describe the first GWAS of common genetic variation contributing to CRC risk in HL (1611 CRC cases and 4330 controls). We also examine known susceptibility alleles and implement imputation-based fine-mapping to identify potential ethnicity-specific association signals in known risk regions. We discovered 17 variants across 4 independent regions that merit further investigation due to suggestive CRC associations (P < 1×10−6) at 1p34.3 (rs7528276; Odds Ratio (OR) = 1.86 [95% confidence interval (CI): 1.47–2.36); P = 2.5×10−7], 2q23.3 (rs1367374; OR = 1.37 (95% CI: 1.21–1.55); P = 4.0×10−7), 14q24.2 (rs143046984; OR = 1.65 (95% CI: 1.36–2.01); P = 4.1×10−7) and 16q12.2 [rs142319636; OR = 1.69 (95% CI: 1.37–2.08); P=7.8×10−7]. Among the 57 previously published CRC susceptibility alleles with minor allele frequency ≥1%, 76.5% of SNPs had a consistent direction of effect and 19 (33.3%) were nominally statistically significant (P < 0.05). Further, rs185423955 and rs60892987 were identified as novel secondary susceptibility variants at 3q26.2 (P = 5.3×10–5) and 11q12.2 (P = 6.8×10−5), respectively. Our findings demonstrate the importance of fine mapping in HL. These results are informative for variant prioritization in functional studies and future risk prediction modeling in minority populations. PMID:27207650

  2. Impact of genomics on personalized cancer medicine.

    Science.gov (United States)

    Arteaga, Carlos L; Baselga, José

    2012-02-01

    Recent advances in tumor genetics and drug development have led to the generation of a wealth of anticancer targeted therapies. A few recent examples indicate that these drugs are mainly, if not exclusively, active against tumors of a particular genotype that can be identified by a diagnostic test, usually by detecting a somatic alteration in the tumor DNA. However, for the majority of targeted therapies in development, there are still no clinical tools to determine which patients are most likely to benefit or, alternatively, be resistant de novo to these novel agents or drug combinations.

  3. Triangulation of the human, chimpanzee and Neanderthal genome sequences identifies potentially compensated mutations

    OpenAIRE

    Zhang, Guojie; Zhang,Pei; Krawczak, Michael; Ball, Edward V.; Mort, Matthew; Kehrer-Sawatzki, Hildegard; Cooper, David N.

    2010-01-01

    Abstract Triangulation of the human, chimpanzee and Neanderthal genome sequences with respect to 44,348 disease-causing or disease-associated missense mutations and 1,712 putative regulatory mutations listed in the Human Gene Mutation Database was employed to identify genetic variants that are apparently pathogenic in humans but which may represent a `compensated? wild-type state in at least one of the other two species. Of 122 such `potentially compensated mutations? (PCMs) identi...

  4. Genome-wide meta-analysis identifies new susceptibility loci for migraine

    DEFF Research Database (Denmark)

    Anttila, Verneri; Winsvold, Bendik S; Gormley, Padhraig

    2013-01-01

    Migraine is the most common brain disorder, affecting approximately 14% of the adult population, but its molecular mechanisms are poorly understood. We report the results of a meta-analysis across 29 genome-wide association studies, including a total of 23,285 individuals with migraine (cases......) and 95,425 population-matched controls. We identified 12 loci associated with migraine susceptibility (P

  5. Goldilocks: a tool for identifying genomic regions that are ‘just right’

    OpenAIRE

    Nicholls, Samuel M.; Clare, Amanda; Randall, Joshua C.

    2016-01-01

    Summary: We present Goldilocks: a Python package providing functionality for collecting summary statistics, identifying shifts in variation, discovering outlier regions and locating and extracting interesting regions from one or more arbitrary genomes for further analysis, for a user-provided definition of interesting. Availability and implementation: Goldilocks is freely available open-source software distributed under the MIT licence. Source code is hosted publicly at https://github.com/Sam...

  6. Transposon insertional mutagenesis in mice identifies human breast cancer susceptibility genes and signatures for stratification

    Science.gov (United States)

    Chen, Liming; Jenjaroenpun, Piroon; Pillai, Andrea Mun Ching; Ivshina, Anna V.; Ow, Ghim Siong; Efthimios, Motakis; Zhiqun, Tang; Lee, Song-Choon; Rogers, Keith; Ward, Jerrold M.; Mori, Seiichi; Adams, David J.; Jenkins, Nancy A.; Copeland, Neal G.; Ban, Kenneth Hon-Kim; Kuznetsov, Vladimir A.; Thiery, Jean Paul

    2017-01-01

    Robust prognostic gene signatures and therapeutic targets are difficult to derive from expression profiling because of the significant heterogeneity within breast cancer (BC) subtypes. Here, we performed forward genetic screening in mice using Sleeping Beauty transposon mutagenesis to identify candidate BC driver genes in an unbiased manner, using a stabilized N-terminal truncated β-catenin gene as a sensitizer. We identified 134 mouse susceptibility genes from 129 common insertion sites within 34 mammary tumors. Of these, 126 genes were orthologous to protein-coding genes in the human genome (hereafter, human BC susceptibility genes, hBCSGs), 70% of which are previously reported cancer-associated genes, and ∼16% are known BC suppressor genes. Network analysis revealed a gene hub consisting of E1A binding protein P300 (EP300), CD44 molecule (CD44), neurofibromin (NF1) and phosphatase and tensin homolog (PTEN), which are linked to a significant number of mutated hBCSGs. From our survival prediction analysis of the expression of human BC genes in 2,333 BC cases, we isolated a six-gene-pair classifier that stratifies BC patients with high confidence into prognostically distinct low-, moderate-, and high-risk subgroups. Furthermore, we proposed prognostic classifiers identifying three basal and three claudin-low tumor subgroups. Intriguingly, our hBCSGs are mostly unrelated to cell cycle/mitosis genes and are distinct from the prognostic signatures currently used for stratifying BC patients. Our findings illustrate the strength and validity of integrating functional mutagenesis screens in mice with human cancer transcriptomic data to identify highly prognostic BC subtyping biomarkers. PMID:28251929

  7. Genome-wide association study identifies four loci associated with eruption of permanent teeth.

    Directory of Open Access Journals (Sweden)

    Frank Geller

    2011-09-01

    Full Text Available The sequence and timing of permanent tooth eruption is thought to be highly heritable and can have important implications for the risk of malocclusion, crowding, and periodontal disease. We conducted a genome-wide association study of number of permanent teeth erupted between age 6 and 14 years, analyzed as age-adjusted standard deviation score averaged over multiple time points, based on childhood records for 5,104 women from the Danish National Birth Cohort. Four loci showed association at P<5×10(-8 and were replicated in four independent study groups from the United States and Denmark with a total of 3,762 individuals; all combined P-values were below 10(-11. Two loci agreed with previous findings in primary tooth eruption and were also known to influence height and breast cancer, respectively. The two other loci pointed to genomic regions without any previous significant genome-wide association study results. The intronic SNP rs7924176 in ADK could be linked to gene expression in monocytes. The combined effect of the four genetic variants was most pronounced between age 10 and 12 years, where children with 6 to 8 delayed tooth eruption alleles had on average 3.5 (95% confidence interval: 2.9-4.1 fewer permanent teeth than children with 0 or 1 of these alleles.

  8. A pan-cancer analysis of inferred homologous recombination deficiency identifies potential platinum benefit in novel subtypes

    DEFF Research Database (Denmark)

    Marquard, Andrea Marion; Eklund, Aron Charles; Wang, Zhigang C.

    2014-01-01

    with platinum-based DNA-damaging agents. Reliable biomarkers to identify HR-deficient cancers prior to the initial treatment may be used to stratify patients for platinum chemotherapy. Extensive genome damage caused by deficient HR is readily observed as high frequencies of allelic imbalance and loss...... Atlas. We found that the three scores are highly correlated with each other, suggesting they measure the effect of similar types of DNA damage. We found a strong association with overall survival only in ovarian cancer, which is consistent with frequent BRCA-related HR deficiency reported for this type...... of cancer. Next, we compared the distribution of the scores across cancer types, and found that those types ordinarily receiving platinum as standard of care have the highest median scores. Importantly, in most types not generally given platinum chemotherapy we also found small sub-populations of high...

  9. Genome-wide Association Study Identifies New Loci for Resistance to Leptosphaeria maculans in Canola

    Directory of Open Access Journals (Sweden)

    Harsh Raman

    2016-10-01

    Full Text Available Blackleg, caused by Leptosphaeria maculans, is a significant disease which affects the sustainable production of canola. This study reports a genome-wide association study based on 18,804 polymorphic SNPs to identify loci associated with qualitative and quantitative resistance to L. maculans. Genomic regions delimited with 503 significant SNP markers, that are associated with resistance evaluated using 12 single spore isolates and pathotypes from four canola stubble were identified. Several significant associations were detected at known disease resistance loci including in the vicinity of recently cloned Rlm2/LepR3 genes, and at new loci on chromosomes A01/C01, A02/C02, A03/C03, A05/C05, A06, A08, and A09. In addition, we validated statistically significant associations on A01, A07 and A10 in four genetic mapping populations, demonstrating that GWAS marker loci are indeed associated with resistance to L. maculans. One of the novel loci identified for the first time, Rlm12, conveys adult plant resistance and mapped within 13.2 kb from Arabidopsis R gene of TIR-NBS class. We showed that resistance loci are located in the vicinity of R genes of A. thaliana and B. napus on the sequenced genome of B. napus cv. Darmor-bzh. Significantly associated SNP markers provide a valuable tool to enrich germplasm for favorable alleles in order to improve the level of resistance to L. maculans in canola.

  10. Whole genome sequence analysis suggests intratumoral heterogeneity in dissemination of breast cancer to lymph nodes.

    Directory of Open Access Journals (Sweden)

    Kevin Blighe

    Full Text Available BACKGROUND: Intratumoral heterogeneity may help drive resistance to targeted therapies in cancer. In breast cancer, the presence of nodal metastases is a key indicator of poorer overall survival. The aim of this study was to identify somatic genetic alterations in early dissemination of breast cancer by whole genome next generation sequencing (NGS of a primary breast tumor, a matched locally-involved axillary lymph node and healthy normal DNA from blood. METHODS: Whole genome NGS was performed on 12 µg (range 11.1-13.3 µg of DNA isolated from fresh-frozen primary breast tumor, axillary lymph node and peripheral blood following the DNA nanoball sequencing protocol. Single nucleotide variants, insertions, deletions, and substitutions were identified through a bioinformatic pipeline and compared to CIN25, a key set of genes associated with tumor metastasis. RESULTS: Whole genome sequencing revealed overlapping variants between the tumor and node, but also variants that were unique to each. Novel mutations unique to the node included those found in two CIN25 targets, TGIF2 and CCNB2, which are related to transcription cyclin activity and chromosomal stability, respectively, and a unique frameshift in PDS5B, which is required for accurate sister chromatid segregation during cell division. We also identified dominant clonal variants that progressed from tumor to node, including SNVs in TP53 and ARAP3, which mediates rearrangements to the cytoskeleton and cell shape, and an insertion in TOP2A, the expression of which is significantly associated with tumor proliferation and can segregate breast cancers by outcome. CONCLUSION: This case study provides preliminary evidence that primary tumor and early nodal metastasis have largely overlapping somatic genetic alterations. There were very few mutations unique to the involved node. However, significant conclusions regarding early dissemination needs analysis of a larger number of patient samples.

  11. Fine-mapping identifies two additional breast cancer susceptibility loci at 9q31.2

    Science.gov (United States)

    Orr, Nick; Dudbridge, Frank; Dryden, Nicola; Maguire, Sarah; Novo, Daniela; Perrakis, Eleni; Johnson, Nichola; Ghoussaini, Maya; Hopper, John L.; Southey, Melissa C.; Apicella, Carmel; Stone, Jennifer; Schmidt, Marjanka K.; Broeks, Annegien; Van't Veer, Laura J.; Hogervorst, Frans B.; Fasching, Peter A.; Haeberle, Lothar; Ekici, Arif B.; Beckmann, Matthias W.; Gibson, Lorna; Aitken, Zoe; Warren, Helen; Sawyer, Elinor; Tomlinson, Ian; Kerin, Michael J.; Miller, Nicola; Burwinkel, Barbara; Marme, Frederik; Schneeweiss, Andreas; Sohn, Chistof; Guénel, Pascal; Truong, Thérèse; Cordina-Duverger, Emilie; Sanchez, Marie; Bojesen, Stig E.; Nordestgaard, Børge G.; Nielsen, Sune F.; Flyger, Henrik; Benitez, Javier; Zamora, Maria Pilar; Arias Perez, Jose Ignacio; Menéndez, Primitiva; Anton-Culver, Hoda; Neuhausen, Susan L.; Brenner, Hermann; Dieffenbach, Aida Karina; Arndt, Volker; Stegmaier, Christa; Hamann, Ute; Brauch, Hiltrud; Justenhoven, Christina; Brüning, Thomas; Ko, Yon-Dschun; Nevanlinna, Heli; Aittomäki, Kristiina; Blomqvist, Carl; Khan, Sofia; Bogdanova, Natalia; Dörk, Thilo; Lindblom, Annika; Margolin, Sara; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M.; Chenevix-Trench, Georgia; Beesley, Jonathan; Lambrechts, Diether; Moisse, Matthieu; Floris, Guiseppe; Beuselinck, Benoit; Chang-Claude, Jenny; Rudolph, Anja; Seibold, Petra; Flesch-Janys, Dieter; Radice, Paolo; Peterlongo, Paolo; Peissel, Bernard; Pensotti, Valeria; Couch, Fergus J.; Olson, Janet E.; Slettedahl, Seth; Vachon, Celine; Giles, Graham G.; Milne, Roger L.; McLean, Catriona; Haiman, Christopher A.; Henderson, Brian E.; Schumacher, Fredrick; Le Marchand, Loic; Simard, Jacques; Goldberg, Mark S.; Labrèche, France; Dumont, Martine; Kristensen, Vessela; Alnæs, Grethe Grenaker; Nord, Silje; Borresen-Dale, Anne-Lise; Zheng, Wei; Deming-Halverson, Sandra; Shrubsole, Martha; Long, Jirong; Winqvist, Robert; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Grip, Mervi; Andrulis, Irene L.; Knight, Julia A.; Glendon, Gord; Tchatchou, Sandrine; Devilee, Peter; Tollenaar, Robertus A. E. M.; Seynaeve, Caroline M.; Van Asperen, Christi J.; Garcia-Closas, Montserrat; Figueroa, Jonine; Chanock, Stephen J.; Lissowska, Jolanta; Czene, Kamila; Darabi, Hatef; Eriksson, Mikael; Klevebring, Daniel; Hooning, Maartje J.; Hollestelle, Antoinette; van Deurzen, Carolien H. M.; Kriege, Mieke; Hall, Per; Li, Jingmei; Liu, Jianjun; Humphreys, Keith; Cox, Angela; Cross, Simon S.; Reed, Malcolm W. R.; Pharoah, Paul D. P.; Dunning, Alison M.; Shah, Mitul; Perkins, Barbara J.; Jakubowska, Anna; Lubinski, Jan; Jaworska-Bieniek, Katarzyna; Durda, Katarzyna; Ashworth, Alan; Swerdlow, Anthony; Jones, Michael; Schoemaker, Minouk J.; Meindl, Alfons; Schmutzler, Rita K.; Olswold, Curtis; Slager, Susan; Toland, Amanda E.; Yannoukakos, Drakoulis; Muir, Kenneth; Lophatananon, Artitaya; Stewart-Brown, Sarah; Siriwanarangsan, Pornthep; Matsuo, Keitaro; Ito, Hidema; Iwata, Hiroji; Ishiguro, Junko; Wu, Anna H.; Tseng, Chiu-chen; Van Den Berg, David; Stram, Daniel O.; Teo, Soo Hwang; Yip, Cheng Har; Kang, Peter; Ikram, Mohammad Kamran; Shu, Xiao-Ou; Lu, Wei; Gao, Yu-Tang; Cai, Hui; Kang, Daehee; Choi, Ji-Yeob; Park, Sue K.; Noh, Dong-Young; Hartman, Mikael; Miao, Hui; Lim, Wei Yen; Lee, Soo Chin; Sangrajrang, Suleeporn; Gaborieau, Valerie; Brennan, Paul; Mckay, James; Wu, Pei-Ei; Hou, Ming-Feng; Yu, Jyh-Cherng; Shen, Chen-Yang; Blot, William; Cai, Qiuyin; Signorello, Lisa B.; Luccarini, Craig; Bayes, Caroline; Ahmed, Shahana; Maranian, Mel; Healey, Catherine S.; González-Neira, Anna; Pita, Guillermo; Alonso, M. Rosario; Álvarez, Nuria; Herrero, Daniel; Tessier, Daniel C.; Vincent, Daniel; Bacot, Francois; Hunter, David J.; Lindstrom, Sara; Dennis, Joe; Michailidou, Kyriaki; Bolla, Manjeet K.; Easton, Douglas F.; dos Santos Silva, Isabel; Fletcher, Olivia; Peto, Julian

    2015-01-01

    We recently identified a novel susceptibility variant, rs865686, for estrogen-receptor positive breast cancer at 9q31.2. Here, we report a fine-mapping analysis of the 9q31.2 susceptibility locus using 43 160 cases and 42 600 controls of European ancestry ascertained from 52 studies and a further 5795 cases and 6624 controls of Asian ancestry from nine studies. Single nucleotide polymorphism (SNP) rs676256 was most strongly associated with risk in Europeans (odds ratios [OR] = 0.90 [0.88–0.92]; P-value = 1.58 × 10−25). This SNP is one of a cluster of highly correlated variants, including rs865686, that spans ∼14.5 kb. We identified two additional independent association signals demarcated by SNPs rs10816625 (OR = 1.12 [1.08–1.17]; P-value = 7.89 × 10−09) and rs13294895 (OR = 1.09 [1.06–1.12]; P-value = 2.97 × 10−11). SNP rs10816625, but not rs13294895, was also associated with risk of breast cancer in Asian individuals (OR = 1.12 [1.06–1.18]; P-value = 2.77 × 10−05). Functional genomic annotation using data derived from breast cancer cell-line models indicates that these SNPs localise to putative enhancer elements that bind known drivers of hormone-dependent breast cancer, including ER-α, FOXA1 and GATA-3. In vitro analyses indicate that rs10816625 and rs13294895 have allele-specific effects on enhancer activity and suggest chromatin interactions with the KLF4 gene locus. These results demonstrate the power of dense genotyping in large studies to identify independent susceptibility variants. Analysis of associations using subjects with different ancestry, combined with bioinformatic and genomic characterisation, can provide strong evidence for the likely causative alleles and their functional basis. PMID:25652398

  12. Identifying Liver Cancer-Related Enhancer SNPs by Integrating GWAS and Histone Modification ChIP-seq Data

    Directory of Open Access Journals (Sweden)

    Tianjiao Zhang

    2016-01-01

    Full Text Available Many disease-related single nucleotide polymorphisms (SNPs have been inferred from genome-wide association studies (GWAS in recent years. Numerous studies have shown that some SNPs located in protein-coding regions are associated with numerous diseases by affecting gene expression. However, in noncoding regions, the mechanism of how SNPs contribute to disease susceptibility remains unclear. Enhancer elements are functional segments of DNA located in noncoding regions that play an important role in regulating gene expression. The SNPs located in enhancer elements may affect gene expression and lead to disease. We presented a method for identifying liver cancer-related enhancer SNPs through integrating GWAS and histone modification ChIP-seq data. We identified 22 liver cancer-related enhancer SNPs, 9 of which were regulatory SNPs involved in distal transcriptional regulation. The results highlight that these enhancer SNPs may play important roles in liver cancer.

  13. Identifying Liver Cancer-Related Enhancer SNPs by Integrating GWAS and Histone Modification ChIP-seq Data

    Science.gov (United States)

    Hu, Yang; Wu, Xiaoliang; Ma, Rui

    2016-01-01

    Many disease-related single nucleotide polymorphisms (SNPs) have been inferred from genome-wide association studies (GWAS) in recent years. Numerous studies have shown that some SNPs located in protein-coding regions are associated with numerous diseases by affecting gene expression. However, in noncoding regions, the mechanism of how SNPs contribute to disease susceptibility remains unclear. Enhancer elements are functional segments of DNA located in noncoding regions that play an important role in regulating gene expression. The SNPs located in enhancer elements may affect gene expression and lead to disease. We presented a method for identifying liver cancer-related enhancer SNPs through integrating GWAS and histone modification ChIP-seq data. We identified 22 liver cancer-related enhancer SNPs, 9 of which were regulatory SNPs involved in distal transcriptional regulation. The results highlight that these enhancer SNPs may play important roles in liver cancer. PMID:27429976

  14. Clinicopathologic factors identify sporadic mismatch repair-defective colon cancers

    DEFF Research Database (Denmark)

    Halvarsson, Britta; Anderson, Harald; Domanska, Katarina;

    2008-01-01

    Identification of sporadic mismatch repair (MMR)-defective colon cancers is increasingly demanded for decisions on adjuvant therapies. We evaluated clinicopathologic factors for the identification of these prognostically favorable tumors. Histopathologic features in 238 consecutive colon cancers...... and excluded 61.5% of the tumors from MMR testing. This clinicopathologic index thus successfully selects MMR-defective colon cancers. Udgivelsesdato: 2008-Feb...

  15. Epidemiological studies of esophageal cancer in the era of genome-wide association studies

    Institute of Scientific and Technical Information of China (English)

    An-Hui; Wang; Yuan; Liu; Bo; Wang; Yi-Xuan; He; Ye-Xian; Fang; Yong-Ping; Yan

    2014-01-01

    Esophageal cancer(EC) caused about 395000 deaths in 2010. China has the most cases of EC and EC is the fourth leading cause of cancer death in China. Esophageal squamous cell carcinoma(ESCC) is the predominant histologic type(90%-95%), while the incidence of esophageal adenocarcinoma(EAC) remains extremely low in China. Traditional epidemiological studies have revealed that environmental carcinogens are risk factors for EC. Molecular epidemiological studies revealed that susceptibility to EC is influenced by both environmental and genetic risk factors. Of all the risk factors for EC, some are associated with the risk of ESCC and others with the risk of EAC. However, the details and mechanisms of risk factors involved in the process for EC are unclear. The advanced methods and techniques used in human genome studies bring a great opportunity for researchers to explore and identify the details of those risk factors or susceptibility genes involved inthe process of EC. Human genome epidemiology is a new branch of epidemiology, which leads the epidemiology study from the molecular epidemiology era to the era of genome wide association studies(GWAS). Here we review the epidemiological studies of EC(especially ESCC) in the era of GWAS, and provide an overview of the general risk factors and those genomic variants(genes, SNPs, miRNAs, proteins) involved in the process of ESCC.

  16. Cancer and aging: The importance of telomeres in genome maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Rodier, Francis; Kim, Sahn-ho; Nijjar, Tarlochan; Yaswen, Paul; Campisi, Judith

    2004-10-01

    Telomeres are the specialized DNA-protein structures that cap the ends of linear chromosomes, thereby protecting them from degradation and fusion by cellular DNA repair processes. In vertebrate cells, telomeres consist of several kilobase pairs of DNA having the sequence TTAGGG, a few hundred base pairs of single-stranded DNA at the 3' end of the telomeric DNA tract, and a host of proteins that organize the telomeric double and single stranded DNA into a protective structure. Functional telomeres are essential for maintaining the integrity and stability of genomes. When combined with loss of cell cycle checkpoint controls, telomere dysfunction can lead to genomic instability, a common cause and hallmark of cancer. Consequently, normal mammalian cells respond to dysfunctional telomeres by undergoing apoptosis (programmed cell death) or cellular senescence (permanent cell cycle arrest), two cellular tumor suppressor mechanisms. These tumor suppressor mechanisms are potent suppressors of cancer, but recent evidence suggests that they can antagonistically also contribute to aging phenotypes. Here, we review what is known about the structure and function of telomeres in mammalian cells, particularly human cells, and how telomere dysfunction may arise and contribute to cancer and aging phenotypes.

  17. Recursive Random Lasso (RRLasso) for Identifying Anti-Cancer Drug Targets.

    Science.gov (United States)

    Park, Heewon; Imoto, Seiya; Miyano, Satoru

    2015-01-01

    Uncovering driver genes is crucial for understanding heterogeneity in cancer. L1-type regularization approaches have been widely used for uncovering cancer driver genes based on genome-scale data. Although the existing methods have been widely applied in the field of bioinformatics, they possess several drawbacks: subset size limitations, erroneous estimation results, multicollinearity, and heavy time consumption. We introduce a novel statistical strategy, called a Recursive Random Lasso (RRLasso), for high dimensional genomic data analysis and investigation of driver genes. For time-effective analysis, we consider a recursive bootstrap procedure in line with the random lasso. Furthermore, we introduce a parametric statistical test for driver gene selection based on bootstrap regression modeling results. The proposed RRLasso is not only rapid but performs well for high dimensional genomic data analysis. Monte Carlo simulations and analysis of the "Sanger Genomics of Drug Sensitivity in Cancer dataset from the Cancer Genome Project" show that the proposed RRLasso is an effective tool for high dimensional genomic data analysis. The proposed methods provide reliable and biologically relevant results for cancer driver gene selection.

  18. Recursive Random Lasso (RRLasso for Identifying Anti-Cancer Drug Targets.

    Directory of Open Access Journals (Sweden)

    Heewon Park

    Full Text Available Uncovering driver genes is crucial for understanding heterogeneity in cancer. L1-type regularization approaches have been widely used for uncovering cancer driver genes based on genome-scale data. Although the existing methods have been widely applied in the field of bioinformatics, they possess several drawbacks: subset size limitations, erroneous estimation results, multicollinearity, and heavy time consumption. We introduce a novel statistical strategy, called a Recursive Random Lasso (RRLasso, for high dimensional genomic data analysis and investigation of driver genes. For time-effective analysis, we consider a recursive bootstrap procedure in line with the random lasso. Furthermore, we introduce a parametric statistical test for driver gene selection based on bootstrap regression modeling results. The proposed RRLasso is not only rapid but performs well for high dimensional genomic data analysis. Monte Carlo simulations and analysis of the "Sanger Genomics of Drug Sensitivity in Cancer dataset from the Cancer Genome Project" show that the proposed RRLasso is an effective tool for high dimensional genomic data analysis. The proposed methods provide reliable and biologically relevant results for cancer driver gene selection.

  19. Genomes2Drugs: identifies target proteins and lead drugs from proteome data.

    LENUS (Irish Health Repository)

    Toomey, David

    2009-01-01

    BACKGROUND: Genome sequencing and bioinformatics have provided the full hypothetical proteome of many pathogenic organisms. Advances in microarray and mass spectrometry have also yielded large output datasets of possible target proteins\\/genes. However, the challenge remains to identify new targets for drug discovery from this wealth of information. Further analysis includes bioinformatics and\\/or molecular biology tools to validate the findings. This is time consuming and expensive, and could fail to yield novel drugs if protein purification and crystallography is impossible. To pre-empt this, a researcher may want to rapidly filter the output datasets for proteins that show good homology to proteins that have already been structurally characterised or proteins that are already targets for known drugs. Critically, those researchers developing novel antibiotics need to select out the proteins that show close homology to any human proteins, as future inhibitors are likely to cross-react with the host protein, causing off-target toxicity effects later in clinical trials. METHODOLOGY\\/PRINCIPAL FINDINGS: To solve many of these issues, we have developed a free online resource called Genomes2Drugs which ranks sequences to identify proteins that are (i) homologous to previously crystallized proteins or (ii) targets of known drugs, but are (iii) not homologous to human proteins. When tested using the Plasmodium falciparum malarial genome the program correctly enriched the ranked list of proteins with known drug target proteins. CONCLUSIONS\\/SIGNIFICANCE: Genomes2Drugs rapidly identifies proteins that are likely to succeed in drug discovery pipelines. This free online resource helps in the identification of potential drug targets. Importantly, the program further highlights proteins that are likely to be inhibited by FDA-approved drugs. These drugs can then be rapidly moved into Phase IV clinical studies under \\'change-of-application\\' patents.

  20. Genomic gain of the PRL-3 gene may represent poor prognosis of primary colorectal cancer, and associate with liver metastasis.

    Science.gov (United States)

    Nakayama, N; Yamashita, K; Tanaka, T; Kawamata, H; Ooki, A; Sato, T; Nakamura, T; Watanabe, M

    2016-01-01

    PRL-3 genomic copy number is increased in colorectal cancer (CRC), and PRL-3 expression is closely associated with lymph node and liver metastasis of CRC. However, the clinical significance of PRL-3 genomic gain for CRC remains obscure. Here, PRL-3 genomic status in 109 primary CRC tumors and in 44 CRC tumors that had metastasized to the liver, was quantified using real time PCR. Association of PRL-3 genomic status with clinicopathological factors and prognosis was assessed in detail. PRL-3 genomic gain was identified in 31 primary CRC (27.4 %) and was more frequently seen in stage III than in stage II (p = 0.025). Among the clinicopathological factors assessed, PRL-3 genomic gain was significantly associated with poorly differentiated histology (p = 0.0039). Moreover, CRC patients with PRL-3 genomic gain exhibited poorer prognosis than those with no gain in stage II-IV CRC (p = 0.017). PRL-3 genomic gain was identified in 18 (41 %) of the liver metastasis tumors, and this frequency of gain was significantly increased as compared to that of the corresponding primary CRCs (11 %) (p = 0.001). Our findings suggested that PRL-3 genomic gain may represent an aggressive phenotype of primary CRC, and may associate with liver metastasis.

  1. Genome-wide association study for ovarian cancer susceptibility using pooled DNA

    DEFF Research Database (Denmark)

    Lu, Yi; Chen, Xiaoqing; Beesley, Jonathan;

    2012-01-01

    Recent Genome-Wide Association Studies (GWAS) have identified four low-penetrance ovarian cancer susceptibility loci. We hypothesized that further moderate- or low-penetrance variants exist among the subset of single-nucleotide polymorphisms (SNPs) not well tagged by the genotyping arrays used...... in a much larger stage 2 set of 4,651 cases and 6,966 controls from the Ovarian Cancer Association Consortium. Given that most of the top 20 SNPs from pooling were validated in the same samples by individual genotyping, the lack of replication is likely to be due to the relatively small sample size in our...... stage 1 GWAS rather than due to problems with the pooling approach. We conclude that there are unlikely to be any moderate or large effects on ovarian cancer risk untagged by less dense arrays. However, our study lacked power to make clear statements on the existence of hitherto untagged small...

  2. Proteomics Data on UCSC Genome Browser - Office of Cancer Clinical Proteomics Research

    Science.gov (United States)

    The National Cancer Institute's Clinical Proteomic Tumor Analysis Consortium scientists are working together with the University of California, Santa Cruz (UCSC) Genomics Institute to provide public access to cancer proteomics data.

  3. Targeted Sequencing of the Mitochondrial Genome of Women at High Risk of Breast Cancer without Detectable Mutations in BRCA1/2.

    Directory of Open Access Journals (Sweden)

    Sophie Blein

    Full Text Available Breast Cancer is a complex multifactorial disease for which high-penetrance mutations have been identified. Approaches used to date have identified genomic features explaining about 50% of breast cancer heritability. A number of low- to medium penetrance alleles (per-allele odds ratio < 1.5 and 4.0, respectively have been identified, suggesting that the remaining heritability is likely to be explained by the cumulative effect of such alleles and/or by rare high-penetrance alleles. Relatively few studies have specifically explored the mitochondrial genome for variants potentially implicated in breast cancer risk. For these reasons, we propose an exploration of the variability of the mitochondrial genome in individuals diagnosed with breast cancer, having a positive breast cancer family history but testing negative for BRCA1/2 pathogenic mutations. We sequenced the mitochondrial genome of 436 index breast cancer cases from the GENESIS study. As expected, no pathogenic genomic pattern common to the 436 women included in our study was observed. The mitochondrial genes MT-ATP6 and MT-CYB were observed to carry the highest number of variants in the study. The proteins encoded by these genes are involved in the structure of the mitochondrial respiration chain, and variants in these genes may impact reactive oxygen species production contributing to carcinogenesis. More functional and epidemiological studies are needed to further investigate to what extent variants identified may influence familial breast cancer risk.

  4. CGCI Investigators Reveal Comprehensive Landscape of Diffuse Large B-Cell Lymphoma (DLBCL) Genomes | Office of Cancer Genomics

    Science.gov (United States)

    Researchers from British Columbia Cancer Agency used whole genome sequencing to analyze 40 DLBCL cases and 13 cell lines in order to fill in the gaps of the complex landscape of DLBCL genomes. Their analysis, “Mutational and structural analysis of diffuse large B-cell lymphoma using whole genome sequencing,” was published online in Blood on May 22. The authors are Ryan Morin, Marco Marra, and colleagues.  

  5. The genomic landscape of response to EGFR blockade in colorectal cancer.

    Science.gov (United States)

    Bertotti, Andrea; Papp, Eniko; Jones, Siân; Adleff, Vilmos; Anagnostou, Valsamo; Lupo, Barbara; Sausen, Mark; Phallen, Jillian; Hruban, Carolyn A; Tokheim, Collin; Niknafs, Noushin; Nesselbush, Monica; Lytle, Karli; Sassi, Francesco; Cottino, Francesca; Migliardi, Giorgia; Zanella, Eugenia R; Ribero, Dario; Russolillo, Nadia; Mellano, Alfredo; Muratore, Andrea; Paraluppi, Gianluca; Salizzoni, Mauro; Marsoni, Silvia; Kragh, Michael; Lantto, Johan; Cassingena, Andrea; Li, Qing Kay; Karchin, Rachel; Scharpf, Robert; Sartore-Bianchi, Andrea; Siena, Salvatore; Diaz, Luis A; Trusolino, Livio; Velculescu, Victor E

    2015-10-08

    Colorectal cancer is the third most common cancer worldwide, with 1.2 million patients diagnosed annually. In late-stage colorectal cancer, the most commonly used targeted therapies are the monoclonal antibodies cetuximab and panitumumab, which prevent epidermal growth factor receptor (EGFR) activation. Recent studies have identified alterations in KRAS and other genes as likely mechanisms of primary and secondary resistance to anti-EGFR antibody therapy. Despite these efforts, additional mechanisms of resistance to EGFR blockade are thought to be present in colorectal cancer and little is known about determinants of sensitivity to this therapy. To examine the effect of somatic genetic changes in colorectal cancer on response to anti-EGFR antibody therapy, here we perform complete exome sequence and copy number analyses of 129 patient-derived tumour grafts and targeted genomic analyses of 55 patient tumours, all of which were KRAS wild-type. We analysed the response of tumours to anti-EGFR antibody blockade in tumour graft models and in clinical settings and functionally linked therapeutic responses to mutational data. In addition to previously identified genes, we detected mutations in ERBB2, EGFR, FGFR1, PDGFRA, and MAP2K1 as potential mechanisms of primary resistance to this therapy. Novel alterations in the ectodomain of EGFR were identified in patients with acquired resistance to EGFR blockade. Amplifications and sequence changes in the tyrosine kinase receptor adaptor gene IRS2 were identified in tumours with increased sensitivity to anti-EGFR therapy. Therapeutic resistance to EGFR blockade could be overcome in tumour graft models through combinatorial therapies targeting actionable genes. These analyses provide a systematic approach to evaluating response to targeted therapies in human cancer, highlight new mechanisms of responsiveness to anti-EGFR therapies, and delineate new avenues for intervention in managing colorectal cancer.

  6. Genome-wide association study identifies 74 loci associated with educational attainment

    Science.gov (United States)

    Okbay, Aysu; Beauchamp, Jonathan P.; Fontana, Mark A.; Lee, James J.; Pers, Tune H.; Rietveld, Cornelius A.; Turley, Patrick; Chen, Guo-Bo; Emilsson, Valur; Meddens, S. Fleur W.; Oskarsson, Sven; Pickrell, Joseph K.; Thom, Kevin; Timshel, Pascal; de Vlaming, Ronald; Abdellaoui, Abdel; Ahluwalia, Tarunveer S.; Bacelis, Jonas; Baumbach, Clemens; Bjornsdottir, Gyda; Brandsma, Johannes H.; Concas, Maria Pina; Derringer, Jaime; Furlotte, Nicholas A.; Galesloot, Tessel E.; Girotto, Giorgia; Gupta, Richa; Hall, Leanne M.; Harris, Sarah E.; Hofer, Edith; Horikoshi, Momoko; Huffman, Jennifer E.; Kaasik, Kadri; Kalafati, Ioanna P.; Karlsson, Robert; Kong, Augustine; Lahti, Jari; van der Lee, Sven J.; de Leeuw, Christiaan; Lind, Penelope A.; Lindgren, Karl-Oskar; Liu, Tian; Mangino, Massimo; Marten, Jonathan; Mihailov, Evelin; Miller, Michael B.; van der Most, Peter J.; Oldmeadow, Christopher; Payton, Antony; Pervjakova, Natalia; Peyrot, Wouter J.; Qian, Yong; Raitakari, Olli; Rueedi, Rico; Salvi, Erika; Schmidt, Börge; Schraut, Katharina E.; Shi, Jianxin; Smith, Albert V.; Poot, Raymond A.; Pourcain, Beate; Teumer, Alexander; Thorleifsson, Gudmar; Verweij, Niek; Vuckovic, Dragana; Wellmann, Juergen; Westra, Harm-Jan; Yang, Jingyun; Zhao, Wei; Zhu, Zhihong; Alizadeh, Behrooz Z.; Amin, Najaf; Bakshi, Andrew; Baumeister, Sebastian E.; Biino, Ginevra; Bønnelykke, Klaus; Boyle, Patricia A.; Campbell, Harry; Cappuccio, Francesco P.; Davies, Gail; De Neve, Jan-Emmanuel; Deloukas, Panos; Demuth, Ilja; Ding, Jun; Eibich, Peter; Eisele, Lewin; Eklund, Niina; Evans68, David M.; Faul, Jessica D.; Feitosa, Mary F.; Forstner, Andreas J.; Gandin, Ilaria; Gunnarsson, Bjarni; Halldórsson, Bjarni V.; Harris, Tamara B.; Heath, Andrew C.; Hocking, Lynne J.; Holliday, Elizabeth G.; Homuth, Georg; Horan, Michael A.; Hottenga, Jouke-Jan; de Jager, Philip L.; Joshi, Peter K.; Jugessur, Astanand; Kaakinen, Marika A.; Kähönen, Mika; Kanoni, Stavroula; Keltigangas-Järvinen, Liisa; Kiemeney, Lambertus A.L.M.; Kolcic, Ivana; Koskinen, Seppo; Kraja, Aldi T.; Kroh, Martin; Kutalik, Zoltan; Latvala, Antti; Launer, Lenore J.; Lebreton, Maël P.; Levinson, Douglas F.; Lichtenstein, Paul; Lichtner, Peter; Liewald, David C.M.; Loukola, Anu; Madden, Pamela A.; Mägi, Reedik; Mäki-Opas, Tomi; Marioni, Riccardo E.; Marques-Vidal, Pedro; Meddens, Gerardus A.; McMahon, George; Meisinger, Christa; Meitinger, Thomas; Milaneschi, Yusplitri; Milani, Lili; Montgomery, Grant W.; Myhre, Ronny; Nelson, Christopher P.; Nyholt, Dale R.; Ollier, William E.R.; Palotie, Aarno; Paternoster, Lavinia; Pedersen, Nancy L.; Petrovic, Katja E.; Porteous, David J.; Räikkönen, Katri; Ring, Susan M.; Robino, Antonietta; Rostapshova, Olga; Rudan, Igor; Rustichini, Aldo; Salomaa, Veikko; Sanders, Alan R.; Sarin, Antti-Pekka; Schmidt, Helena; Scott, Rodney J.; Smith, Blair H.; Smith, Jennifer A.; Staessen, Jan A.; Steinhagen-Thiessen, Elisabeth; Strauch, Konstantin; Terracciano, Antonio; Tobin, Martin D.; Ulivi, Sheila; Vaccargiu, Simona; Quaye, Lydia; van Rooij, Frank J.A.; Venturini, Cristina; Vinkhuyzen, Anna A.E.; Völker, Uwe; Völzke, Henry; Vonk, Judith M.; Vozzi, Diego; Waage, Johannes; Ware, Erin B.; Willemsen, Gonneke; Attia, John R.; Bennett, David A.; Berger, Klaus; Bertram, Lars; Bisgaard, Hans; Boomsma, Dorret I.; Borecki, Ingrid B.; Bultmann, Ute; Chabris, Christopher F.; Cucca, Francesco; Cusi, Daniele; Deary, Ian J.; Dedoussis, George V.; van Duijn, Cornelia M.; Eriksson, Johan G.; Franke, Barbara; Franke, Lude; Gasparini, Paolo; Gejman, Pablo V.; Gieger, Christian; Grabe, Hans-Jörgen; Gratten, Jacob; Groenen, Patrick J.F.; Gudnason, Vilmundur; van der Harst, Pim; Hayward, Caroline; Hinds, David A.; Hoffmann, Wolfgang; Hyppönen, Elina; Iacono, William G.; Jacobsson, Bo; Järvelin, Marjo-Riitta; Jöckel, Karl-Heinz; Kaprio, Jaakko; Kardia, Sharon L.R.; Lehtimäki, Terho; Lehrer, Steven F.; Magnusson, Patrik K.E.; Martin, Nicholas G.; McGue, Matt; Metspalu, Andres; Pendleton, Neil; Penninx, Brenda W.J.H.; Perola, Markus; Pirastu, Nicola; Pirastu, Mario; Polasek, Ozren; Posthuma, Danielle; Power, Christine; Province, Michael A.; Samani, Nilesh J.; Schlessinger, David; Schmidt, Reinhold; Sørensen, Thorkild I.A.; Spector, Tim D.; Stefansson, Kari; Thorsteinsdottir, Unnur; Thurik, A. Roy; Timpson, Nicholas J.; Tiemeier, Henning; Tung, Joyce Y.; Uitterlinden, André G.; Vitart, Veronique; Vollenweider, Peter; Weir, David R.; Wilson, James F.; Wright, Alan F.; Conley, Dalton C.; Krueger, Robert F.; Smith, George Davey; Hofman, Albert; Laibson, David I.; Medland, Sarah E.; Meyer, Michelle N.; Yang, Jian; Johannesson, Magnus; Visscher, Peter M.; Esko, Tõnu; Koellinger, Philipp D.; Cesarini, David; Benjamin, Daniel J.

    2016-01-01

    Summary Educational attainment (EA) is strongly influenced by social and other environmental factors, but genetic factors are also estimated to account for at least 20% of the variation across individuals1. We report the results of a genome-wide association study (GWAS) for EA that extends our earlier discovery sample1,2 of 101,069 individuals to 293,723 individuals, and a replication in an independent sample of 111,349 individuals from the UK Biobank. We now identify 74 genome-wide significant loci associated with number of years of schooling completed. Single-nucleotide polymorphisms (SNPs) associated with educational attainment are disproportionately found in genomic regions regulating gene expression in the fetal brain. Candidate genes are preferentially expressed in neural tissue, especially during the prenatal period, and enriched for biological pathways involved in neural development. Our findings demonstrate that, even for a behavioral phenotype that is mostly environmentally determined, a well-powered GWAS identifies replicable associated genetic variants that suggest biologically relevant pathways. Because EA is measured in large numbers of individuals, it will continue to be useful as a proxy phenotype in efforts to characterize the genetic influences of related phenotypes, including cognition and neuropsychiatric disease. PMID:27225129

  7. Pattern Analysis and Decision Support for Cancer through Clinico-Genomic Profiles

    Science.gov (United States)

    Exarchos, Themis P.; Giannakeas, Nikolaos; Goletsis, Yorgos; Papaloukas, Costas; Fotiadis, Dimitrios I.

    Advances in genome technology are playing a growing role in medicine and healthcare. With the development of new technologies and opportunities for large-scale analysis of the genome, genomic data have a clear impact on medicine. Cancer prognostics and therapeutics are among the first major test cases for genomic medicine, given that all types of cancer are related with genomic instability. In this paper we present a novel system for pattern analysis and decision support in cancer. The system integrates clinical data from electronic health records and genomic data. Pattern analysis and data mining methods are applied to these integrated data and the discovered knowledge is used for cancer decision support. Through this integration, conclusions can be drawn for early diagnosis, staging and cancer treatment.

  8. Leveraging human genomic information to identify nonhuman primate sequences for expression array development

    Directory of Open Access Journals (Sweden)

    Boyle Nicholas F

    2005-11-01

    Full Text Available Abstract Background Nonhuman primates (NHPs are essential for biomedical research due to their similarities to humans. The utility of NHPs will be greatly increased by the application of genomics-based approaches such as gene expression profiling. Sequence information from the 3' end of genes is the key resource needed to create oligonucleotide expression arrays. Results We have developed the algorithms and procedures necessary to quickly acquire sequence information from the 3' end of nonhuman primate orthologs of human genes. To accomplish this, we identified terminal exons of over 15,000 human genes by aligning mRNA sequences with genomic sequence. We found the mean length of complete last exons to be approximately 1,400 bp, significantly longer than previous estimates. We designed primers to amplify genomic DNA, which included at least 300 bp of the terminal exon. We cloned and sequenced the PCR products representing over 5,500 Macaca mulatta (rhesus monkey orthologs of human genes. This sequence information has been used to select probes for rhesus gene expression profiling. We have also tested 10 sets of primers with genomic DNA from Macaca fascicularis (Cynomolgus monkey, Papio hamadryas (Baboon, and Chlorocebus aethiops (African green monkey, vervet. The results indicate that the primers developed for this study will be useful for acquiring sequence from the 3' end of genes for other nonhuman primate species. Conclusion This study demonstrates that human genomic DNA sequence can be leveraged to obtain sequence from the 3' end of NHP orthologs and that this sequence can then be used to generate NHP oligonucleotide microarrays. Affymetrix and Agilent used sequences obtained with this approach in the design of their rhesus macaque oligonucleotide microarrays.

  9. Genomics-based early-phase clinical trials in oncology: recommendations from the task force on Methodology for the Development of Innovative Cancer Therapies.

    Science.gov (United States)

    Liu, Stephen V; Miller, Vincent A; Lobbezoo, Marinus W; Giaccone, Giuseppe

    2014-11-01

    The Methodology for the Development of Innovative Cancer Therapies (MDICT) task force discussed incorporation of genomic profiling into early (Phase I and II) clinical trials in oncology. The task force reviewed the challenges of standardising genomics data in a manner conducive to conducting clinical trials. Current barriers to successful and efficient implementation were identified and discussed, as well as the methods of genomic analysis, the proper setting for study and strategies to facilitate timely completion of genomics-based studies. The importance of properly capturing and cataloguing outcomes was also discussed. Several recommendations regarding the use of genomics in these trials are provided.

  10. Alternate estrogen receptors promote invasion of inflammatory breast cancer cells via non-genomic signaling.

    Directory of Open Access Journals (Sweden)

    Kazufumi Ohshiro

    Full Text Available Although Inflammatory Breast Cancer (IBC is a rare and an aggressive type of locally advanced breast cancer with a generally worst prognosis, little work has been done in identifying the status of non-genomic signaling in the invasiveness of IBC. The present study was performed to explore the status of non-genomic signaling as affected by various estrogenic and anti-estrogenic agents in IBC cell lines SUM149 and SUM190. We have identified the presence of estrogen receptor α (ERα variant, ERα36 in SUM149 and SUM190 cells. This variant as well as ERβ was present in a substantial concentration in IBC cells. The treatment with estradiol (E2, anti-estrogenic agents 4-hydroxytamoxifen and ICI 182780, ERβ specific ligand DPN and GPR30 agonist G1 led to a rapid activation of p-ERK1/2, suggesting the involvement of ERα36, ERβ and GPR30 in the non-genomic signaling pathway in these cells. We also found a substantial increase in the cell migration and invasiveness of SUM149 cells upon the treatment with these ligands. Both basal and ligand-induced migration and invasiveness of SUM149 cells were drastically reduced in the presence of MEK inhibitor U0126, implicating that the phosphorylation of ERK1/2 by MEK is involved in the observed motility and invasiveness of IBC cells. We also provide evidence for the upregulation of p-ERK1/2 through immunostaining in IBC patient samples. These findings suggest a role of non-genomic signaling through the activation of p-ERK1/2 in the hormonal dependence of IBC by a combination of estrogen receptors. These findings only explain the failure of traditional anti-estrogen therapies in ER-positive IBC which induces the non-genomic signaling, but also opens newer avenues for design of modified therapies targeting these estrogen receptors.

  11. Whole Genome Analysis of Injectional Anthrax Identifies Two Disease Clusters Spanning More Than 13 Years

    Directory of Open Access Journals (Sweden)

    Paul Keim

    2015-11-01

    Lay Person Interpretation: Injectional anthrax has been plaguing heroin drug users across Europe for more than 10 years. In order to better understand this outbreak, we assessed genomic relationships of all available injectional anthrax strains from four countries spanning a >12 year period. Very few differences were identified using genome-based analysis, but these differentiated the isolates into two distinct clusters. This strongly supports a hypothesis of at least two separate anthrax spore contamination events perhaps during the drug production processes. Identification of two events would not have been possible from standard epidemiological analysis. These comprehensive data will be invaluable for classifying future injectional anthrax isolates and for future geographic attribution.

  12. Genome-wide association study identifies three novel loci for type 2 diabetes

    DEFF Research Database (Denmark)

    Hara, Kazuo; Fujita, Hayato; Johnson, Todd A

    2014-01-01

    and 34 814 controls) identified three new loci with genome-wide significance, which were MIR129-LEP [rs791595; risk allele = A; risk allele frequency (RAF) = 0.080; P = 2.55 × 10(-13); odds ratio (OR) = 1.17], GPSM1 [rs11787792; risk allele = A; RAF = 0.874; P = 1.74 × 10(-10); OR = 1.15] and SLC16A13...... (rs312457; risk allele = G; RAF = 0.078; P = 7.69 × 10(-13); OR = 1.20). This study demonstrates that GWASs based on the imputation of genotypes using modern reference haplotypes such as that from the 1000 Genomes Project data can assist in identification of new loci for common diseases....

  13. Adaptation and possible ancient interspecies introgression in pigs identified by whole-genome sequencing.

    Science.gov (United States)

    Ai, Huashui; Fang, Xiaodong; Yang, Bin; Huang, Zhiyong; Chen, Hao; Mao, Likai; Zhang, Feng; Zhang, Lu; Cui, Leilei; He, Weiming; Yang, Jie; Yao, Xiaoming; Zhou, Lisheng; Han, Lijuan; Li, Jing; Sun, Silong; Xie, Xianhua; Lai, Boxian; Su, Ying; Lu, Yao; Yang, Hui; Huang, Tao; Deng, Wenjiang; Nielsen, Rasmus; Ren, Jun; Huang, Lusheng

    2015-03-01

    Domestic pigs have evolved genetic adaptations to their local environmental conditions, such as cold and hot climates. We sequenced the genomes of 69 pigs from 15 geographically divergent locations in China and detected 41 million variants, of which 21 million were absent from the dbSNP database. In a genome-wide scan, we identified a set of loci that likely have a role in regional adaptations to high- and low-latitude environments within China. Intriguingly, we found an exceptionally large (14-Mb) region with a low recombination rate on the X chromosome that appears to have two distinct haplotypes in the high- and low-latitude populations, possibly underlying their adaptation to cold and hot environments, respectively. Surprisingly, the adaptive sweep in the high-latitude regions has acted on DNA that might have been introgressed from an extinct Sus species. Our findings provide new insights into the evolutionary history of pigs and the role of introgression in adaptation.

  14. DNA methylation changes in ovarian cancer are cumulative with disease progression and identify tumor stage

    Directory of Open Access Journals (Sweden)

    DeGeest Koen

    2008-09-01

    Full Text Available Abstract Background Hypermethylation of promoter CpG islands with associated loss of gene expression, and hypomethylation of CpG-rich repetitive elements that may destabilize the genome are common events in most, if not all, epithelial cancers. Methods The methylation of 6,502 CpG-rich sequences spanning the genome was analyzed in 137 ovarian samples (ten normal, 23 low malignant potential, 18 stage I, 16 stage II, 54 stage III, and 16 stage IV ranging from normal tissue through to stage IV cancer using a sequence-validated human CpG island microarray. The microarray contained 5' promoter-associated CpG islands as well as CpG-rich satellite and Alu repetitive elements. Results Results showed a progressive de-evolution of normal CpG methylation patterns with disease progression; 659 CpG islands showed significant loss or gain of methylation. Satellite and Alu sequences were primarily associated with loss of methylation, while promoter CpG islands composed the majority of sequences with gains in methylation. Since the majority of ovarian tumors are late stage when diagnosed, we tested whether DNA methylation profiles could differentiate between normal and low malignant potential (LMP compared to stage III ovarian samples. We developed a class predictor consisting of three CpG-rich sequences that was 100% sensitive and 89% specific when used to predict an independent set of normal and LMP samples versus stage III samples. Bisulfite sequencing confirmed the NKX-2-3 promoter CpG island was hypermethylated with disease progression. In addition, 5-aza-2'-deoxycytidine treatment of the ES2 and OVCAR ovarian cancer cell lines re-expressed NKX-2-3. Finally, we merged our CpG methylation results with previously published ovarian expression microarray data and identified correlated expression changes. Conclusion Our results show that changes in CpG methylation are cumulative with ovarian cancer progression in a sequence-type dependent manner, and that Cp

  15. Genome-wide analysis of alternative transcripts in human breast cancer

    Science.gov (United States)

    Wen, Ji; Toomer, Kevin H.

    2016-01-01

    Transcript variants play a critical role in diversifying gene expression. Alternative splicing is a major mechanism for generating transcript variants. A number of genes have been implicated in breast cancer pathogenesis with their aberrant expression of alternative transcripts. In this study, we performed genome-wide analyses of transcript variant expression in breast cancer. With RNA-Seq data from 105 patients, we characterized the transcriptome of breast tumors, by pairwise comparison of gene expression in the breast tumor versus matched healthy tissue from each patient. We identified 2839 genes, ~10 % of protein-coding genes in the human genome, that had differential expression of transcript variants between tumors and healthy tissues. The validity of the computational analysis was confirmed by quantitative RT-PCR assessment of transcript variant expression from four top candidate genes. The alternative transcript profiling led to classification of breast cancer into two subgroups and yielded a novel molecular signature that could be prognostic of patients’ tumor burden and survival. We uncovered nine splicing factors (FOX2, MBNL1, QKI, PTBP1, ELAVL1, HNRNPC, KHDRBS1, SFRS2, and TIAR) that were involved in aberrant splicing in breast cancer. Network analyses for the coordinative patterns of transcript variant expression identified twelve “hub” genes that differentiated the cancerous and normal transcriptomes. Dysregulated expression of alternative transcripts may reveal novel biomarkers for tumor development. It may also suggest new therapeutic targets, such as the “hub” genes identified through the network analyses of transcript variant expression, or splicing factors implicated in the formation of the tumor transcriptome. PMID:25913416

  16. Cancer models, genomic instability and somatic cellular Darwinian evolution

    Directory of Open Access Journals (Sweden)

    Little Mark P

    2010-04-01

    Full Text Available Abstract The biology of cancer is critically reviewed and evidence adduced that its development can be modelled as a somatic cellular Darwinian evolutionary process. The evidence for involvement of genomic instability (GI is also reviewed. A variety of quasi-mechanistic models of carcinogenesis are reviewed, all based on this somatic Darwinian evolutionary hypothesis; in particular, the multi-stage model of Armitage and Doll (Br. J. Cancer 1954:8;1-12, the two-mutation model of Moolgavkar, Venzon, and Knudson (MVK (Math. Biosci. 1979:47;55-77, the generalized MVK model of Little (Biometrics 1995:51;1278-1291 and various generalizations of these incorporating effects of GI (Little and Wright Math. Biosci. 2003:183;111-134; Little et al. J. Theoret. Biol. 2008:254;229-238. Reviewers This article was reviewed by RA Gatenby and M Kimmel.

  17. Complete genome sequence of a novel extrachromosomal virus-like element identified in planarian Girardia tigrina

    Directory of Open Access Journals (Sweden)

    Vagner Loura L

    2002-06-01

    Full Text Available Abstract Background Freshwater planarians are widely used as models for investigation of pattern formation and studies on genetic variation in populations. Despite extensive information on the biology and genetics of planaria, the occurrence and distribution of viruses in these animals remains an unexplored area of research. Results Using a combination of Suppression Subtractive Hybridization (SSH and Mirror Orientation Selection (MOS, we compared the genomes of two strains of freshwater planarian, Girardia tigrina. The novel extrachromosomal DNA-containing virus-like element denoted PEVE (Planarian Extrachromosomal Virus-like Element was identified in one planarian strain. The PEVE genome (about 7.5 kb consists of two unique regions (Ul and Us flanked by inverted repeats. Sequence analyses reveal that PEVE comprises two helicase-like sequences in the genome, of which the first is a homolog of a circoviral replication initiator protein (Rep, and the second is similar to the papillomavirus E1 helicase domain. PEVE genome exists in at least two variant forms with different arrangements of single-stranded and double-stranded DNA stretches that correspond to the Us and Ul regions. Using PCR analysis and whole-mount in situ hybridization, we characterized PEVE distribution and expression in the planarian body. Conclusions PEVE is the first viral element identified in free-living flatworms. This element differs from all known viruses and viral elements, and comprises two potential helicases that are homologous to proteins from distant viral phyla. PEVE is unevenly distributed in the worm body, and is detected in specific parenchyma cells.

  18. Genomic study in Mexicans identifies a new locus for triglycerides and refines European lipid loci

    Science.gov (United States)

    Weissglas-Volkov, Daphna; Aguilar-Salinas, Carlos A.; Nikkola, Elina; Deere, Kerry A.; Cruz-Bautista, Ivette; Arellano-Campos, Olimpia; Muñoz-Hernandez, Linda Liliana; Gomez-Munguia, Lizeth; Ordoñez-Sánchez, Maria Luisa; Reddy, Prasad MV Linga; Lusis, Aldons J.; Matikainen, Niina; Taskinen, Marja-Riitta; Riba, Laura; Cantor, Rita M.; Sinsheimer, Janet S.; Tusie-Luna, Teresa; Pajukanta, Päivi

    2013-01-01

    Background The Mexican population and others with Amerindian heritage exhibit a substantial predisposition to dyslipidemias and coronary heart disease. Yet, these populations remain underinvestigated by genomic studies, and to date, no genome-wide association (GWA) studies have been reported for lipids in these rapidly expanding populations. Methods and Findings We performed a two-stage GWA study for hypertriglyceridemia and low high-density lipoprotein cholesterol (HDL-C) in Mexicans (n=4,361) and identified a novel Mexican-specific genome-wide significant locus for serum triglycerides (TGs) near the Niemann-Pick type C1 protein (NPC1) gene (P=2.43×10−08). Furthermore, three European loci for TGs (APOA5, GCKR, and LPL) and four loci for HDL-C (ABCA1, CETP, LIPC and LOC55908) reached genome-wide significance in Mexicans. We utilized cross-ethnic mapping to narrow three European TG GWA loci, APOA5, MLXIPL, and CILP2 that were wide and contained multiple candidate variants in the European scan. At the APOA5 locus, this reduced the most likely susceptibility variants to one, rs964184. Importantly, our functional analysis demonstrated a direct link between rs964184 and postprandial serum apoAV protein levels, supporting rs964184 as the causative variant underlying the European and Mexican GWA signal. Overall, 52 of the 100 reported associations from European lipid GWA meta-analysis generalized to Mexicans. However, in 82 of the 100 European GWA loci, a different variant other than the European lead/best-proxy variant had the strongest regional evidence of association in Mexicans. Conclusions This first Mexican GWA study of lipids identified a novel GWA locus for high TG levels; utilized the inter-population heterogeneity to significantly restrict three previously known European GWA signals; and surveyed whether the European lipid GWA SNPs extend to the Mexican population. PMID:23505323

  19. Comparative genomic analysis of primary tumors and metastases in breast cancer.

    Science.gov (United States)

    Bertucci, François; Finetti, Pascal; Guille, Arnaud; Adélaïde, José; Garnier, Séverine; Carbuccia, Nadine; Monneur, Audrey; Charafe-Jauffret, Emmanuelle; Goncalves, Anthony; Viens, Patrice; Birnbaum, Daniel; Chaffanet, Max

    2016-05-10

    Personalized medicine uses genomic information for selecting therapy in patients with metastatic cancer. An issue is the optimal tissue source (primary tumor or metastasis) for testing. We compared the DNA copy number and mutational profiles of primary breast cancers and paired metastases from 23 patients using whole-genome array-comparative genomic hybridization and next-generation sequencing of 365 "cancer-associated" genes. Primary tumors and metastases harbored copy number alterations (CNAs) and mutations common in breast cancer and showed concordant profiles. The global concordance regarding CNAs was shown by clustering and correlation matrix, which showed that each metastasis correlated more strongly with its paired tumor than with other samples. Genes with recurrent amplifications in breast cancer showed 100% (ERBB2, FGFR1), 96% (CCND1), and 88% (MYC) concordance for the amplified/non-amplified status. Among all samples, 499 mutations were identified, including 39 recurrent (AKT1, ERBB2, PIK3CA, TP53) and 460 non-recurrent variants. The tumors/metastases concordance of variants was 75%, higher for recurrent (92%) than for non-recurrent (73%) variants. Further mutational discordance came from very different variant allele frequencies for some variants. We showed that the chosen targeted therapy in two clinical trials of personalized medicine would be concordant in all but one patient (96%) when based on the molecular profiling of tumor and paired metastasis. Our results suggest that the genotyping of primary tumor may be acceptable to guide systemic treatment if the metastatic sample is not obtainable. However, given the rare but potentially relevant divergences for some actionable driver genes, the profiling of metastatic sample is recommended.

  20. The Naked Mole Rat Genome Resource: facilitating analyses of cancer and longevity-related adaptations

    Science.gov (United States)

    Keane, Michael; Craig, Thomas; Alföldi, Jessica; Berlin, Aaron M.; Johnson, Jeremy; Seluanov, Andrei; Gorbunova, Vera; Di Palma, Federica; Lindblad-Toh, Kerstin; Church, George M.; de Magalhães, João Pedro

    2014-01-01

    Motivation: The naked mole rat (Heterocephalus glaber) is an exceptionally long-lived and cancer-resistant rodent native to East Africa. Although its genome was previously sequenced, here we report a new assembly sequenced by us with substantially higher N50 values for scaffolds and contigs. Results: We analyzed the annotation of this new improved assembly and identified candidate genomic adaptations which may have contributed to the evolution of the naked mole rat’s extraordinary traits, including in regions of p53, and the hyaluronan receptors CD44 and HMMR (RHAMM). Furthermore, we developed a freely available web portal, the Naked Mole Rat Genome Resource (http://www.naked-mole-rat.org), featuring the data and results of our analysis, to assist researchers interested in the genome and genes of the naked mole rat, and also to facilitate further studies on this fascinating species. Availability and implementation: The Naked Mole Rat Genome Resource is freely available online at http://www.naked-mole-rat.org. This resource is open source and the source code is available at https://github.com/maglab/naked-mole-rat-portal. Contact: jp@senescence.info PMID:25172923

  1. The genomic analysis of lactic acidosis and acidosis response in human cancers.

    Directory of Open Access Journals (Sweden)

    Julia Ling-Yu Chen

    2008-12-01

    Full Text Available The tumor microenvironment has a significant impact on tumor development. Two important determinants in this environment are hypoxia and lactic acidosis. Although lactic acidosis has long been recognized as an important factor in cancer, relatively little is known about how cells respond to lactic acidosis and how that response relates to cancer phenotypes. We develop genome-scale gene expression studies to dissect transcriptional responses of primary human mammary epithelial cells to lactic acidosis and hypoxia in vitro and to explore how they are linked to clinical tumor phenotypes in vivo. The resulting experimental signatures of responses to lactic acidosis and hypoxia are evaluated in a heterogeneous set of breast cancer datasets. A strong lactic acidosis response signature identifies a subgroup of low-risk breast cancer patients having distinct metabolic profiles suggestive of a preference for aerobic respiration. The association of lactic acidosis response with good survival outcomes may relate to the role of lactic acidosis in directing energy generation toward aerobic respiration and utilization of other energy sources via inhibition of glycolysis. This "inhibition of glycolysis" phenotype in tumors is likely caused by the repression of glycolysis gene expression and Akt inhibition. Our study presents a genomic evaluation of the prognostic information of a lactic acidosis response independent of the hypoxic response. Our results identify causal roles of lactic acidosis in metabolic reprogramming, and the direct functional consequence of lactic acidosis pathway activity on cellular responses and tumor development. The study also demonstrates the utility of genomic analysis that maps expression-based findings from in vitro experiments to human samples to assess links to in vivo clinical phenotypes.

  2. Candidate serological biomarkers for cancer identified from the secretomes of 23 cancer cell lines and the human protein atlas.

    Science.gov (United States)

    Wu, Chih-Ching; Hsu, Chia-Wei; Chen, Chi-De; Yu, Chia-Jung; Chang, Kai-Ping; Tai, Dar-In; Liu, Hao-Ping; Su, Wen-Hui; Chang, Yu-Sun; Yu, Jau-Song

    2010-06-01

    Although cancer cell secretome profiling is a promising strategy used to identify potential body fluid-accessible cancer biomarkers, questions remain regarding the depth to which the cancer cell secretome can be mined and the efficiency with which researchers can select useful candidates from the growing list of identified proteins. Therefore, we analyzed the secretomes of 23 human cancer cell lines derived from 11 cancer types using one-dimensional SDS-PAGE and nano-LC-MS/MS performed on an LTQ-Orbitrap mass spectrometer to generate a more comprehensive cancer cell secretome. A total of 31,180 proteins was detected, accounting for 4,584 non-redundant proteins, with an average of 1,300 proteins identified per cell line. Using protein secretion-predictive algorithms, 55.8% of the proteins appeared to be released or shed from cells. The identified proteins were selected as potential marker candidates according to three strategies: (i) proteins apparently secreted by one cancer type but not by others (cancer type-specific marker candidates), (ii) proteins released by most cancer cell lines (pan-cancer marker candidates), and (iii) proteins putatively linked to cancer-relevant pathways. We then examined protein expression profiles in the Human Protein Atlas to identify biomarker candidates that were simultaneously detected in the secretomes and highly expressed in cancer tissues. This analysis yielded 6-137 marker candidates selective for each tumor type and 94 potential pan-cancer markers. Among these, we selectively validated monocyte differentiation antigen CD14 (for liver cancer), stromal cell-derived factor 1 (for lung cancer), and cathepsin L1 and interferon-induced 17-kDa protein (for nasopharyngeal carcinoma) as potential serological cancer markers. In summary, the proteins identified from the secretomes of 23 cancer cell lines and the Human Protein Atlas represent a focused reservoir of potential cancer biomarkers.

  3. Genome-Wide Association Study Identifies Novel Loci Associated With Diisocyanate-Induced Occupational Asthma

    Science.gov (United States)

    Yucesoy, Berran; Kaufman, Kenneth M.; Lummus, Zana L.; Weirauch, Matthew T.; Zhang, Ge; Cartier, André; Boulet, Louis-Philippe; Sastre, Joaquin; Quirce, Santiago; Tarlo, Susan M.; Cruz, Maria-Jesus; Munoz, Xavier; Harley, John B.; Bernstein, David I.

    2015-01-01

    Diisocyanates, reactive chemicals used to produce polyurethane products, are the most common causes of occupational asthma. The aim of this study is to identify susceptibility gene variants that could contribute to the pathogenesis of diisocyanate asthma (DA) using a Genome-Wide Association Study (GWAS) approach. Genome-wide single nucleotide polymorphism (SNP) genotyping was performed in 74 diisocyanate-exposed workers with DA and 824 healthy controls using Omni-2.5 and Omni-5 SNP microarrays. We identified 11 SNPs that exceeded genome-wide significance; the strongest association was for the rs12913832 SNP located on chromosome 15, which has been mapped to the HERC2 gene (p = 6.94 × 10−14). Strong associations were also found for SNPs near the ODZ3 and CDH17 genes on chromosomes 4 and 8 (rs908084, p = 8.59 × 10−9 and rs2514805, p = 1.22 × 10−8, respectively). We also prioritized 38 SNPs with suggestive genome-wide significance (p < 1 × 10−6). Among them, 17 SNPs map to the PITPNC1, ACMSD, ZBTB16, ODZ3, and CDH17 gene loci. Functional genomics data indicate that 2 of the suggestive SNPs (rs2446823 and rs2446824) are located within putative binding sites for the CCAAT/Enhancer Binding Protein (CEBP) and Hepatocyte Nuclear Factor 4, Alpha transcription factors (TFs), respectively. This study identified SNPs mapping to the HERC2, CDH17, and ODZ3 genes as potential susceptibility loci for DA. Pathway analysis indicated that these genes are associated with antigen processing and presentation, and other immune pathways. Overlap of 2 suggestive SNPs with likely TF binding sites suggests possible roles in disruption of gene regulation. These results provide new insights into the genetic architecture of DA and serve as a basis for future functional and mechanistic studies. PMID:25918132

  4. Molecular profiling of indolent human prostate cancer:tackling technical challenges to achieve high-fidelity genome-wide data

    Institute of Scientific and Technical Information of China (English)

    Thomas A. Dunn; Helen L. Fedor; Angelo M. De Marzo; Jun Luo

    2012-01-01

    The contemporary problem of prostate cancer overtreatment can be partially attributed to the diagnosis of potentially indolent prostate cancers that pose low risk to aged men,and lack of sufficiently accurate risk stratification methods to reliably seek out men with indolent diseases.Since progressive acquisition and accumulation of genomic alterations,both genetic and epigenetic,is a defining feature of all human cancers at different stages of disease progression,it is hypothesized that RNA and DNA alterations characteristic of indolent prostate tumors may be different from those previously characterized in the setting of clinically significant prostate cancer.Approaches capable of detecting such alterations on a genome-wide level are the most promising.Such analysis may uncover molecular events defining early initiating stages along the natural history of prostate cancer progression,and ultimately lead to rational development of risk stratification methods for identification of men who can safely forego treatment.However,defining and characterizing indolent prostate cancer in a clinically relevant context remains a challenge,particularly when genome-wide approaches are employed to profile formalin-fixed paraffin-embedded (FFPE) tissue specimens.Here,we provide the conceptual basis underlying the importance of understanding indolent prostate cancer from molecular profiling studies,identify the key hurdles in sample acquisition and variables that affect molecular data derived from FFPE tissues,and highlight recent progresses in efforts to address these technical challenges.

  5. Clinical genomics information management software linking cancer genome sequence and clinical decisions.

    Science.gov (United States)

    Watt, Stuart; Jiao, Wei; Brown, Andrew M K; Petrocelli, Teresa; Tran, Ben; Zhang, Tong; McPherson, John D; Kamel-Reid, Suzanne; Bedard, Philippe L; Onetto, Nicole; Hudson, Thomas J; Dancey, Janet; Siu, Lillian L; Stein, Lincoln; Ferretti, Vincent

    2013-09-01

    Using sequencing information to guide clinical decision-making requires coordination of a diverse set of people and activities. In clinical genomics, the process typically includes sample acquisition, template preparation, genome data generation, analysis to identify and confirm variant alleles, interpretation of clinical significance, and reporting to clinicians. We describe a software application developed within a clinical genomics study, to support this entire process. The software application tracks patients, samples, genomic results, decisions and reports across the cohort, monitors progress and sends reminders, and works alongside an electronic data capture system for the trial's clinical and genomic data. It incorporates systems to read, store, analyze and consolidate sequencing results from multiple technologies, and provides a curated knowledge base of tumor mutation frequency (from the COSMIC database) annotated with clinical significance and drug sensitivity to generate reports for clinicians. By supporting the entire process, the application provides deep support for clinical decision making, enabling the generation of relevant guidance in reports for verification by an expert panel prior to forwarding to the treating physician.

  6. Biology of breast cancer during pregnancy using genomic profiling.

    Science.gov (United States)

    Azim, Hatem A; Brohée, Sylvain; Peccatori, Fedro A; Desmedt, Christine; Loi, Sherene; Lambrechts, Diether; Dell'Orto, Patrizia; Majjaj, Samira; Jose, Vinu; Rotmensz, Nicole; Ignatiadis, Michail; Pruneri, Giancarlo; Piccart, Martine; Viale, Giuseppe; Sotiriou, Christos

    2014-08-01

    Breast cancer during pregnancy is rare and is associated with relatively poor prognosis. No information is available on its biological features at the genomic level. Using a dataset of 54 pregnant and 113 non-pregnant breast cancer patients, we evaluated the pattern of hot spot somatic mutations and did transcriptomic profiling using Sequenom and Affymetrix respectively. We performed gene set enrichment analysis to evaluate the pathways associated with diagnosis during pregnancy. We also evaluated the expression of selected cancer-related genes in pregnant and non-pregnant patients and correlated the results with changes occurring in the normal breast using a pregnant murine model. We finally investigated aberrations associated with disease-free survival (DFS). No significant differences in mutations were observed. Of the total number of patients, 18.6% of pregnant and 23% of non-pregnant patients had a PIK3CA mutation. Around 30% of tumors were basal, with no differences in the distribution of breast cancer molecular subtypes between pregnant and non-pregnant patients. Two pathways were enriched in tumors diagnosed during pregnancy: the G protein-coupled receptor pathway and the serotonin receptor pathway (FDR pregnancy had higher expression of PD1 (PDCD1; P=0.015), PDL1 (CD274; P=0.014), and gene sets related to SRC (P=0.004), IGF1 (P=0.032), and β-catenin (P=0.019). Their expression increased almost linearly throughout gestation when evaluated on the normal breast using a pregnant mouse model underscoring the potential effect of the breast microenvironment on tumor phenotype. No genes were associated with DFS in a multivariate model, which could be due to low statistical power. Diagnosis during pregnancy impacts the breast cancer transcriptome including potential cancer targets.

  7. A human genome-wide loss-of-function screen identifies effective chikungunya antiviral drugs

    Science.gov (United States)

    Karlas, Alexander; Berre, Stefano; Couderc, Thérèse; Varjak, Margus; Braun, Peter; Meyer, Michael; Gangneux, Nicolas; Karo-Astover, Liis; Weege, Friderike; Raftery, Martin; Schönrich, Günther; Klemm, Uwe; Wurzlbauer, Anne; Bracher, Franz; Merits, Andres; Meyer, Thomas F.; Lecuit, Marc

    2016-01-01

    Chikungunya virus (CHIKV) is a globally spreading alphavirus against which there is no commercially available vaccine or therapy. Here we use a genome-wide siRNA screen to identify 156 proviral and 41 antiviral host factors affecting CHIKV replication. We analyse the cellular pathways in which human proviral genes are involved and identify druggable targets. Twenty-one small-molecule inhibitors, some of which are FDA approved, targeting six proviral factors or pathways, have high antiviral activity in vitro, with low toxicity. Three identified inhibitors have prophylactic antiviral effects in mouse models of chikungunya infection. Two of them, the calmodulin inhibitor pimozide and the fatty acid synthesis inhibitor TOFA, have a therapeutic effect in vivo when combined. These results demonstrate the value of loss-of-function screening and pathway analysis for the rational identification of small molecules with therapeutic potential and pave the way for the development of new, host-directed, antiviral agents. PMID:27177310

  8. Use of genome-wide association studies for cancer research and drug repositioning.

    Directory of Open Access Journals (Sweden)

    Jizhun Zhang

    Full Text Available Although genome-wide association studies have identified many risk loci associated with colorectal cancer, the molecular basis of these associations are still unclear. We aimed to infer biological insights and highlight candidate genes of interest within GWAS risk loci. We used an in silico pipeline based on functional annotation, quantitative trait loci mapping of cis-acting gene, PubMed text-mining, protein-protein interaction studies, genetic overlaps with cancer somatic mutations and knockout mouse phenotypes, and functional enrichment analysis to prioritize the candidate genes at the colorectal cancer risk loci. Based on these analyses, we observed that these genes were the targets of approved therapies for colorectal cancer, and suggested that drugs approved for other indications may be repurposed for the treatment of colorectal cancer. This study highlights the use of publicly available data as a cost effective solution to derive biological insights, and provides an empirical evidence that the molecular basis of colorectal cancer can provide important leads for the discovery of new drugs.

  9. Use of Whole Genome Sequencing for Diagnosis and Discovery in the Cancer Genetics Clinic

    Directory of Open Access Journals (Sweden)

    Samantha B. Foley

    2015-01-01

    Full Text Available Despite the potential of whole-genome sequencing (WGS to improve patient diagnosis and care, the empirical value of WGS in the cancer genetics clinic is unknown. We performed WGS on members of two cohorts of cancer genetics patients: those with BRCA1/2 mutations (n = 176 and those without (n = 82. Initial analysis of potentially pathogenic variants (PPVs, defined as nonsynonymous variants with allele frequency < 1% in ESP6500 in 163 clinically-relevant genes suggested that WGS will provide useful clinical results. This is despite the fact that a majority of PPVs were novel missense variants likely to be classified as variants of unknown significance (VUS. Furthermore, previously reported pathogenic missense variants did not always associate with their predicted diseases in our patients. This suggests that the clinical use of WGS will require large-scale efforts to consolidate WGS and patient data to improve accuracy of interpretation of rare variants. While loss-of-function (LoF variants represented only a small fraction of PPVs, WGS identified additional cancer risk LoF PPVs in patients with known BRCA1/2 mutations and led to cancer risk diagnoses in 21% of non-BRCA cancer genetics patients after expanding our analysis to 3209 ClinVar genes. These data illustrate how WGS can be used to improve our ability to discover patients' cancer genetic risks.

  10. Cancer 2015”: A Prospective, Population-Based Cancer Cohort—Phase 1: Feasibility of Genomics-Guided Precision Medicine in the Clinic

    Directory of Open Access Journals (Sweden)

    John P. Parisot

    2015-10-01

    Full Text Available “Cancer 2015” is a longitudinal and prospective cohort. It is a phased study whose aim was to pilot recruiting 1000 patients during phase 1 to establish the feasibility of providing a population-based genomics cohort. Newly diagnosed adult patients with solid cancers, with residual tumour material for molecular genomics testing, were recruited into the cohort for the collection of a dataset containing clinical, molecular pathology, health resource use and outcomes data. 1685 patients have been recruited over almost 3 years from five hospitals. Thirty-two percent are aged between 61–70 years old, with a median age of 63 years. Diagnostic tumour samples were obtained for 90% of these patients for multiple parallel sequencing. Patients identified with somatic mutations of potentially “actionable” variants represented almost 10% of those tumours sequenced, while 42% of the cohort had no mutations identified. These genomic data were annotated with information such as cancer site, stage, morphology, treatment and patient outcomes and health resource use and cost. This cohort has delivered its main objective of establishing an upscalable genomics cohort within a clinical setting and in phase 2 aims to develop a protocol for how genomics testing can be used in real-time clinical decision-making, providing evidence on the value of precision medicine to clinical practice.

  11. The state of genomic health care and cancer. Are we going two steps forward and one step backward?

    Science.gov (United States)

    Greco, Karen E; Mahon, Suzanne M

    2011-01-01

    As the application of genomic information and technology crosses the horizon of health care into our everyday lives, expanding genomic knowledge continues to affect how health care services are defined and delivered. Genomic discoveries have led to enhanced clinical capabilities to predict susceptibility to common diseases and conditions such as cancer, diabetes, cardiovascular disease, and Alzheimer's disease. Hundreds of genetic tests are now available that can identify individuals who carry one or more gene mutations that increase their risk of developing cancer or other common diseases. Increased availability and direct-to-consumer marketing of genetic testing is moving genetic testing away from trained genetics health professionals and into the hands of primary care providers and consumers. Genetic tests available on the Internet are being directly marketed to individuals, who can order these tests and receive a report of their risk for numerous health conditions and diseases. Health care providers are expected to interpret these test results, evaluate their accuracy, address the psychosocial consequences of those distressed by receiving their results, and translate genomic information into effective care. However, as we move two steps forward, we are also moving one step backward because many health care providers are unprepared for this genomic revolution. A number of international education, practice, and policy efforts are underway to address the challenges health care providers face in providing competent genomic health care in the context of unprecedented access to information, technology, and global communication. Efforts to integrate standard of care guidelines into electronic medical records increases health care providers' access to information for individuals at risk fo or diagnosed with a genomic condition. Development of genomic competencie for health care providers has led to increased genomic content in academic pro grams. These and other

  12. Characterizing associations and SNP-environment interactions for GWAS-identified prostate cancer risk markers--results from BPC3.

    Directory of Open Access Journals (Sweden)

    Sara Lindstrom

    Full Text Available Genome-wide association studies (GWAS have identified multiple single nucleotide polymorphisms (SNPs associated with prostate cancer risk. However, whether these associations can be consistently replicated, vary with disease aggressiveness (tumor stage and grade and/or interact with non-genetic potential risk factors or other SNPs is unknown. We therefore genotyped 39 SNPs from regions identified by several prostate cancer GWAS in 10,501 prostate cancer cases and 10,831 controls from the NCI Breast and Prostate Cancer Cohort Consortium (BPC3. We replicated 36 out of 39 SNPs (P-values ranging from 0.01 to 10⁻²⁸. Two SNPs located near KLK3 associated with PSA levels showed differential association with Gleason grade (rs2735839, P = 0.0001 and rs266849, P = 0.0004; case-only test, where the alleles associated with decreasing PSA levels were inversely associated with low-grade (as defined by Gleason grade < 8 tumors but positively associated with high-grade tumors. No other SNP showed differential associations according to disease stage or grade. We observed no effect modification by SNP for association with age at diagnosis, family history of prostate cancer, diabetes, BMI, height, smoking or alcohol intake. Moreover, we found no evidence of pair-wise SNP-SNP interactions. While these SNPs represent new independent risk factors for prostate cancer, we saw little evidence for effect modification by other SNPs or by the environmental factors examined.

  13. Characterizing Associations and SNP-Environment Interactions for GWAS-Identified Prostate Cancer Risk Markers—Results from BPC3

    Science.gov (United States)

    Lindstrom, Sara; Schumacher, Fredrick; Siddiq, Afshan; Travis, Ruth C.; Campa, Daniele; Berndt, Sonja I.; Diver, W. Ryan; Severi, Gianluca; Allen, Naomi; Andriole, Gerald; Bueno-de-Mesquita, Bas; Chanock, Stephen J.; Crawford, David; Gaziano, J. Michael; Giles, Graham G.; Giovannucci, Edward; Guo, Carolyn; Haiman, Christopher A.; Hayes, Richard B.; Halkjaer, Jytte; Hunter, David J.; Johansson, Mattias; Kaaks, Rudolf; Kolonel, Laurence N.; Navarro, Carmen; Riboli, Elio; Sacerdote, Carlotta; Stampfer, Meir; Stram, Daniel O.; Thun, Michael J.; Trichopoulos, Dimitrios; Virtamo, Jarmo; Weinstein, Stephanie J.; Yeager, Meredith; Henderson, Brian; Ma, Jing; Le Marchand, Loic; Albanes, Demetrius; Kraft, Peter

    2011-01-01

    Genome-wide association studies (GWAS) have identified multiple single nucleotide polymorphisms (SNPs) associated with prostate cancer risk. However, whether these associations can be consistently replicated, vary with disease aggressiveness (tumor stage and grade) and/or interact with non-genetic potential risk factors or other SNPs is unknown. We therefore genotyped 39 SNPs from regions identified by several prostate cancer GWAS in 10,501 prostate cancer cases and 10,831 controls from the NCI Breast and Prostate Cancer Cohort Consortium (BPC3). We replicated 36 out of 39 SNPs (P-values ranging from 0.01 to 10−28). Two SNPs located near KLK3 associated with PSA levels showed differential association with Gleason grade (rs2735839, P = 0.0001 and rs266849, P = 0.0004; case-only test), where the alleles associated with decreasing PSA levels were inversely associated with low-grade (as defined by Gleason grade <8) tumors but positively associated with high-grade tumors. No other SNP showed differential associations according to disease stage or grade. We observed no effect modification by SNP for association with age at diagnosis, family history of prostate cancer, diabetes, BMI, height, smoking or alcohol intake. Moreover, we found no evidence of pair-wise SNP-SNP interactions. While these SNPs represent new independent risk factors for prostate cancer, we saw little evidence for effect modification by other SNPs or by the environmental factors examined. PMID:21390317

  14. NIH scientists identify molecular link between metabolism and breast cancer

    Science.gov (United States)

    A protein associated with conditions of metabolic imbalance, such as diabetes and obesity, may play a role in the development of aggressive forms of breast cancer, according to new findings by researchers at the National Cancer Institute (NCI), part of th

  15. Whole genomes redefine the mutational landscape of pancreatic cancer

    Science.gov (United States)

    Waddell, Nicola; Pajic, Marina; Patch, Ann-Marie; Chang, David K.; Kassahn, Karin S.; Bailey, Peter; Johns, Amber L.; Miller, David; Nones, Katia; Quek, Kelly; Quinn, Michael C. J.; Robertson, Alan J.; Fadlullah, Muhammad Z. H.; Bruxner, Tim J. C.; Christ, Angelika N.; Harliwong, Ivon; Idrisoglu, Senel; Manning, Suzanne; Nourse, Craig; Nourbakhsh, Ehsan; Wani, Shivangi; Wilson, Peter J; Markham, Emma; Cloonan, Nicole; Anderson, Matthew J.; Fink, J. Lynn; Holmes, Oliver; Kazakoff, Stephen H.; Leonard, Conrad; Newell, Felicity; Poudel, Barsha; Song, Sarah; Taylor, Darrin; Waddell, Nick; Wood, Scott; Xu, Qinying; Wu, Jianmin; Pinese, Mark; Cowley, Mark J.; Lee, Hong C.; Jones, Marc D.; Nagrial, Adnan M.; Humphris, Jeremy; Chantrill, Lorraine A.; Chin, Venessa; Steinmann, Angela M.; Mawson, Amanda; Humphrey, Emily S.; Colvin, Emily K.; Chou, Angela; Scarlett, Christopher J.; Pinho, Andreia V.; Giry-Laterriere, Marc; Rooman, Ilse; Samra, Jaswinder S.; Kench, James G.; Pettitt, Jessica A.; Merrett, Neil D.; Toon, Christopher; Epari, Krishna; Nguyen, Nam Q.; Barbour, Andrew; Zeps, Nikolajs; Jamieson, Nigel B.; Graham, Janet S.; Niclou, Simone P.; Bjerkvig, Rolf; Grützmann, Robert; Aust, Daniela; Hruban, Ralph H.; Maitra, Anirban; Iacobuzio-Donahue, Christine A.; Wolfgang, Christopher L.; Morgan, Richard A.; Lawlor, Rita T.; Corbo, Vincenzo; Bassi, Claudio; Falconi, Massimo; Zamboni, Giuseppe; Tortora, Giampaolo; Tempero, Margaret A.; Gill, Anthony J.; Eshleman, James R.; Pilarsky, Christian; Scarpa, Aldo; Musgrove, Elizabeth A.; Pearson, John V.; Biankin, Andrew V.; Grimmond, Sean M.

    2015-01-01

    Pancreatic cancer remains one of the most lethal of malignancies and a major health burden. We performed whole-genome sequencing and copy number variation (CNV) analysis of 100 pancreatic ductal adenocarcinomas (PDACs). Chromosomal rearrangements leading to gene disruption were prevalent, affecting genes known to be important in pancreatic cancer (TP53, SMAD4, CDKN2A, ARID1A and ROBO2) and new candidate drivers of pancreatic carcinogenesis (KDM6A and PREX2). Patterns of structural variation (variation in chromosomal structure) c