WorldWideScience

Sample records for cancer genomic profiles

  1. Biology of breast cancer during pregnancy using genomic profiling.

    Science.gov (United States)

    Azim, Hatem A; Brohée, Sylvain; Peccatori, Fedro A; Desmedt, Christine; Loi, Sherene; Lambrechts, Diether; Dell'Orto, Patrizia; Majjaj, Samira; Jose, Vinu; Rotmensz, Nicole; Ignatiadis, Michail; Pruneri, Giancarlo; Piccart, Martine; Viale, Giuseppe; Sotiriou, Christos

    2014-08-01

    Breast cancer during pregnancy is rare and is associated with relatively poor prognosis. No information is available on its biological features at the genomic level. Using a dataset of 54 pregnant and 113 non-pregnant breast cancer patients, we evaluated the pattern of hot spot somatic mutations and did transcriptomic profiling using Sequenom and Affymetrix respectively. We performed gene set enrichment analysis to evaluate the pathways associated with diagnosis during pregnancy. We also evaluated the expression of selected cancer-related genes in pregnant and non-pregnant patients and correlated the results with changes occurring in the normal breast using a pregnant murine model. We finally investigated aberrations associated with disease-free survival (DFS). No significant differences in mutations were observed. Of the total number of patients, 18.6% of pregnant and 23% of non-pregnant patients had a PIK3CA mutation. Around 30% of tumors were basal, with no differences in the distribution of breast cancer molecular subtypes between pregnant and non-pregnant patients. Two pathways were enriched in tumors diagnosed during pregnancy: the G protein-coupled receptor pathway and the serotonin receptor pathway (FDR pregnancy had higher expression of PD1 (PDCD1; P=0.015), PDL1 (CD274; P=0.014), and gene sets related to SRC (P=0.004), IGF1 (P=0.032), and β-catenin (P=0.019). Their expression increased almost linearly throughout gestation when evaluated on the normal breast using a pregnant mouse model underscoring the potential effect of the breast microenvironment on tumor phenotype. No genes were associated with DFS in a multivariate model, which could be due to low statistical power. Diagnosis during pregnancy impacts the breast cancer transcriptome including potential cancer targets. © 2014 Society for Endocrinology.

  2. Genomic profiling of histological special types of breast cancer

    NARCIS (Netherlands)

    Horlings, Hugo M.; Weigelt, Britta; Anderson, Eric M.; Lambros, Maryou B.; Mackay, Alan; Natrajan, Rachael; Ng, Charlotte K. Y.; Geyer, Felipe C.; van de Vijver, Marc J.; Reis-Filho, Jorge S.

    2013-01-01

    Histological special types of breast cancer have distinctive morphological features and account for up to 25 % of all invasive breast cancers. We sought to determine whether at the genomic level, histological special types of breast cancer are distinct from grade- and estrogen receptor (ER)-matched

  3. Genomic Profiling of Hormone-Naïve Lymph Node Metastases in Patients with Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Pamela L. Paris

    2006-12-01

    Full Text Available The progression of organ-confined prostate cancer to metastatic cancer is inevitably fatal. Consequently, identification of structural changes in the genome and associated transcriptional responses that drive this progression is critical to understanding the disease process and the development of biomarkers and therapeutic targets. In this study, whole genome copy number changes in genomes of hormone-naïve lymph node metastases were profiled using array comparative genomic hybridization, and matched primaries were included for a subset. Matched primaries and lymph node metastases showed very similar copy number profiles that are distinct from primary tumors that fail to metastasize.

  4. Comprehensive genomic profiles of small cell lung cancer

    Science.gov (United States)

    George, Julie; Lim, Jing Shan; Jang, Se Jin; Cun, Yupeng; Ozretić, Luka; Kong, Gu; Leenders, Frauke; Lu, Xin; Fernández-Cuesta, Lynnette; Bosco, Graziella; Müller, Christian; Dahmen, Ilona; Jahchan, Nadine S.; Park, Kwon-Sik; Yang, Dian; Karnezis, Anthony N.; Vaka, Dedeepya; Torres, Angela; Wang, Maia Segura; Korbel, Jan O.; Menon, Roopika; Chun, Sung-Min; Kim, Deokhoon; Wilkerson, Matt; Hayes, Neil; Engelmann, David; Pützer, Brigitte; Bos, Marc; Michels, Sebastian; Vlasic, Ignacija; Seidel, Danila; Pinther, Berit; Schaub, Philipp; Becker, Christian; Altmüller, Janine; Yokota, Jun; Kohno, Takashi; Iwakawa, Reika; Tsuta, Koji; Noguchi, Masayuki; Muley, Thomas; Hoffmann, Hans; Schnabel, Philipp A.; Petersen, Iver; Chen, Yuan; Soltermann, Alex; Tischler, Verena; Choi, Chang-min; Kim, Yong-Hee; Massion, Pierre P.; Zou, Yong; Jovanovic, Dragana; Kontic, Milica; Wright, Gavin M.; Russell, Prudence A.; Solomon, Benjamin; Koch, Ina; Lindner, Michael; Muscarella, Lucia A.; la Torre, Annamaria; Field, John K.; Jakopovic, Marko; Knezevic, Jelena; Castaños-Vélez, Esmeralda; Roz, Luca; Pastorino, Ugo; Brustugun, Odd-Terje; Lund-Iversen, Marius; Thunnissen, Erik; Köhler, Jens; Schuler, Martin; Botling, Johan; Sandelin, Martin; Sanchez-Cespedes, Montserrat; Salvesen, Helga B.; Achter, Viktor; Lang, Ulrich; Bogus, Magdalena; Schneider, Peter M.; Zander, Thomas; Ansén, Sascha; Hallek, Michael; Wolf, Jürgen; Vingron, Martin; Yatabe, Yasushi; Travis, William D.; Nürnberg, Peter; Reinhardt, Christian; Perner, Sven; Heukamp, Lukas; Büttner, Reinhard; Haas, Stefan A.; Brambilla, Elisabeth; Peifer, Martin; Sage, Julien; Thomas, Roman K.

    2016-01-01

    We have sequenced the genomes of 110 small cell lung cancers (SCLC), one of the deadliest human cancers. In nearly all the tumours analysed we found bi-allelic inactivation of TP53 and RB1, sometimes by complex genomic rearrangements. Two tumours with wild-type RB1 had evidence of chromothripsis leading to overexpression of cyclin D1 (encoded by the CCND1 gene), revealing an alternative mechanism of Rb1 deregulation. Thus, loss of the tumour suppressors TP53 and RB1 is obligatory in SCLC. We discovered somatic genomic rearrangements of TP73 that create an oncogenic version of this gene, TP73Δex2/3. In rare cases, SCLC tumours exhibited kinase gene mutations, providing a possible therapeutic opportunity for individual patients. Finally, we observed inactivating mutations in NOTCH family genes in 25% of human SCLC. Accordingly, activation of Notch signalling in a pre-clinical SCLC mouse model strikingly reduced the number of tumours and extended the survival of the mutant mice. Furthermore, neuroendocrine gene expression was abrogated by Notch activity in SCLC cells. This first comprehensive study of somatic genome alterations in SCLC uncovers several key biological processes and identifies candidate therapeutic targets in this highly lethal form of cancer. PMID:26168399

  5. Expression and Genomic Profiling of Minute Breast Cancer Samples

    Science.gov (United States)

    2006-07-01

    Alteration of gene expression profiles of peripheral mononuclear blood cells by tobacco smoke : implications for periodontal diseases . Oral...potentially revolutionize (2) the existing cancer staging system and the management of early disease . Microarray- based gene expression profiling and...2002) Understanding disease cell by cell. Science, 296, 1329-1330. 15. Emmert-Buck, M.R., Bonner, R.F., Smith, P.D., Chuaqui, R.F., Zhuang, Z

  6. Whole-genome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer

    NARCIS (Netherlands)

    Wang, Kai; Yuen, Siu Tsan; Xu, Jiangchun; Lee, Siu Po; Yan, Helen H N; Shi, Stephanie T; Siu, Hoi Cheong; Deng, Shibing; Chu, Kent Man; Law, Simon; Chan, Kok Hoe; Chan, Annie S Y; Tsui, Wai Yin; Ho, Siu Lun; Chan, Anthony K W; Man, Jonathan L K; Foglizzo, Valentina; Ng, Man Kin; Chan, April S; Ching, Yick Pang; Cheng, Grace H W; Xie, Tao; Fernandez, Julio; Li, Vivian S W; Clevers, Hans; Rejto, Paul A; Mao, Mao; Leung, Suet Yi

    Gastric cancer is a heterogeneous disease with diverse molecular and histological subtypes. We performed whole-genome sequencing in 100 tumor-normal pairs, along with DNA copy number, gene expression and methylation profiling, for integrative genomic analysis. We found subtype-specific genetic and

  7. Genomic Profiling of Prostate Cancers from African American Men

    Directory of Open Access Journals (Sweden)

    Patricia Castro

    2009-03-01

    Full Text Available African American (AA men have a higher incidence and significantly higher mortality rates from prostate cancer than white men, but the biological basis for these differences are poorly understood. Few studies have been carried out to determine whether there are areas of allelic loss or gain in prostate cancers from AA men that are over-represented in or specific to this group. To better understand the molecular mechanisms of prostate cancer in AA men, we have analyzed 20 prostate cancers from AA men with high-density single-nucleotide polymorphism arrays to detect genomic copy number alterations. We identified 17 regions showing significant loss and 4 regions with significant gains. Most of these regions had been linked to prostate cancer by previous studies of copy number alterations of predominantly white patients. We identified a novel region of loss at 4p16.3, which has been shown to be lost in breast, colon, and bladder cancers. Comparison of our primary tumors with tumors from white patients from a previously published cohort with similar pathological characteristics showed higher frequency of loss of at numerous loci including 6q13-22, 8p21, 13q13-14, and 16q11-24 and gains of 7p21 and 8q24, all of which had higher frequencies in metastatic lesions in this previously published cohort. Thus, the clinically localized cancers from AA men more closely resembled metastatic cancers from white men. This difference may in part explain the more aggressive clinical behavior of prostate cancer in AA men.

  8. Expression and Genomic Profiling of Minute Breast Cancer Samples. Addendum

    Science.gov (United States)

    2007-07-01

    Alteration of gene expression profiles of peripheral mononuclear blood cells by tobacco smoke : implications for periodontal diseases . Oral Microbiol...promises to refine (1) and potentially revolutionize (2) the existing cancer staging system and the management of early disease . Microarray- based...14. Rubin, M.A. (2002) Understanding disease cell by cell. Science, 296, 1329-1330. 12 13 15. Emmert-Buck, M.R., Bonner, R.F., Smith, P.D

  9. Global copy number profiling of cancer genomes | Office of Cancer Genomics

    Science.gov (United States)

    In this article, we introduce a robust and efficient strategy for deriving global and allele-specific copy number alternations (CNA) from cancer whole exome sequencing data based on Log R ratios and B-allele frequencies. Applying the approach to the analysis of over 200 skin cancer samples, we demonstrate its utility for discovering distinct CNA events and for deriving ancillary information such as tumor purity. Availability and implementation: https://github.com/xfwang/CLOSE CONTACT: xuefeng.wang@stonybrook.edu or michael.krauthammer@yale.edu. (Publication Abstract)

  10. Genetic profiles of gastroesophageal cancer: combined analysis using expression array and tiling array--comparative genomic hybridization

    DEFF Research Database (Denmark)

    Isinger-Ekstrand, Anna; Johansson, Jan; Ohlsson, Mattias

    2010-01-01

    We aimed to characterize the genomic profiles of adenocarcinomas in the gastroesophageal junction in relation to cancers in the esophagus and the stomach. Profiles of gains/losses as well as gene expression profiles were obtained from 27 gastroesophageal adenocarcinomas by means of 32k high-resol...

  11. Prognostic impact of array-based genomic profiles in esophageal squamous cell cancer

    DEFF Research Database (Denmark)

    Carneiro, Ana; Isinger, Anna; Karlsson, Anna

    2008-01-01

    p13.3 independently predicted poor survival in multivariate analysis. CONCLUSION: aCGH profiling verified genetic complexity in ESCC and herein identified imbalances of multiple central tumorigenic pathways. Distinct gains correlate with clinicopathological variables and independently predict......BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is a genetically complex tumor type and a major cause of cancer related mortality. Although distinct genetic alterations have been linked to ESCC development and prognosis, the genetic alterations have not gained clinical applicability. We...... applied array-based comparative genomic hybridization (aCGH) to obtain a whole genome copy number profile relevant for identifying deranged pathways and clinically applicable markers. METHODS: A 32 k aCGH platform was used for high resolution mapping of copy number changes in 30 stage I-IV ESCC. Potential...

  12. Prognostic Impact of Array-based Genomic Profiles in Esophageal Squamous Cell Cancer

    International Nuclear Information System (INIS)

    Carneiro, Ana; Isinger, Anna; Karlsson, Anna; Johansson, Jan; Jönsson, Göran; Bendahl, Pär-Ola; Falkenback, Dan; Halvarsson, Britta; Nilbert, Mef

    2008-01-01

    Esophageal squamous cell carcinoma (ESCC) is a genetically complex tumor type and a major cause of cancer related mortality. Although distinct genetic alterations have been linked to ESCC development and prognosis, the genetic alterations have not gained clinical applicability. We applied array-based comparative genomic hybridization (aCGH) to obtain a whole genome copy number profile relevant for identifying deranged pathways and clinically applicable markers. A 32 k aCGH platform was used for high resolution mapping of copy number changes in 30 stage I-IV ESCC. Potential interdependent alterations and deranged pathways were identified and copy number changes were correlated to stage, differentiation and survival. Copy number alterations affected median 19% of the genome and included recurrent gains of chromosome regions 5p, 7p, 7q, 8q, 10q, 11q, 12p, 14q, 16p, 17p, 19p, 19q, and 20q and losses of 3p, 5q, 8p, 9p and 11q. High-level amplifications were observed in 30 regions and recurrently involved 7p11 (EGFR), 11q13 (MYEOV, CCND1, FGF4, FGF3, PPFIA, FAD, TMEM16A, CTTS and SHANK2) and 11q22 (PDFG). Gain of 7p22.3 predicted nodal metastases and gains of 1p36.32 and 19p13.3 independently predicted poor survival in multivariate analysis. aCGH profiling verified genetic complexity in ESCC and herein identified imbalances of multiple central tumorigenic pathways. Distinct gains correlate with clinicopathological variables and independently predict survival, suggesting clinical applicability of genomic profiling in ESCC

  13. Genetic profiles of gastroesophageal cancer: combined analysis using expression array and tiling array--comparative genomic hybridization

    DEFF Research Database (Denmark)

    Isinger-Ekstrand, Anna; Johansson, Jan; Ohlsson, Mattias

    2010-01-01

    We aimed to characterize the genomic profiles of adenocarcinomas in the gastroesophageal junction in relation to cancers in the esophagus and the stomach. Profiles of gains/losses as well as gene expression profiles were obtained from 27 gastroesophageal adenocarcinomas by means of 32k high......15, 13q34, and 12q13, whereas different profiles with gains at 5p15, 7p22, 2q35, and 13q34 characterized gastric cancers. CDK6 and EGFR were identified as putative target genes in cancers of the esophagus and the gastroesophageal junction, with upregulation in one quarter of the tumors. Gains....../losses and gene expression profiles show strong similarity between cancers in the distal esophagus and the gastroesophageal junction with frequent upregulation of CDK6 and EGFR, whereas gastric cancer displays distinct genetic changes. These data suggest that molecular diagnostics and targeted therapies can...

  14. Genetic profiles of gastroesophageal cancer: combined analysis using expression array and tiling array--comparative genomic hybridization

    DEFF Research Database (Denmark)

    Isinger-Ekstrand, Anna; Johansson, Jan; Ohlsson, Mattias

    2010-01-01

    /losses and gene expression profiles show strong similarity between cancers in the distal esophagus and the gastroesophageal junction with frequent upregulation of CDK6 and EGFR, whereas gastric cancer displays distinct genetic changes. These data suggest that molecular diagnostics and targeted therapies can......We aimed to characterize the genomic profiles of adenocarcinomas in the gastroesophageal junction in relation to cancers in the esophagus and the stomach. Profiles of gains/losses as well as gene expression profiles were obtained from 27 gastroesophageal adenocarcinomas by means of 32k high......15, 13q34, and 12q13, whereas different profiles with gains at 5p15, 7p22, 2q35, and 13q34 characterized gastric cancers. CDK6 and EGFR were identified as putative target genes in cancers of the esophagus and the gastroesophageal junction, with upregulation in one quarter of the tumors. Gains...

  15. Profiling cancer

    DEFF Research Database (Denmark)

    Ciro, Marco; Bracken, Adrian P; Helin, Kristian

    2003-01-01

    In the past couple of years, several very exciting studies have demonstrated the enormous power of gene-expression profiling for cancer classification and prediction of patient survival. In addition to promising a more accurate classification of cancer and therefore better treatment of patients......, gene-expression profiling can result in the identification of novel potential targets for cancer therapy and a better understanding of the molecular mechanisms leading to cancer....

  16. Tumor Genomic Profiling in Breast Cancer Patients Using Targeted Massively Parallel Sequencing

    Science.gov (United States)

    2014-01-01

    Schadendorf D, Root DE , Garraway LA. A genome-scale RNA interference screen implicates NF1 loss in resistance to RAF inhibition. Cancer Discovery... cancer : Genomic differences between adenocarcinomas and squamous cell carcinomas of the cervix . Cancer . 2013 Nov 1;119(21):3776-83. Epub 2013 Aug 23. 6...Precision Cancer Medicine” Invited Talk Instituto Nacional de Ciencias Médicas y Nutrición Mexico City, Mexico 7. INVENTIONS, PATENTS AND LICENSES

  17. Tumor Genomic Profiling in Breast Cancer Patients Using Targeted Massively Parallel Sequencing

    Science.gov (United States)

    2016-03-01

    Genomics” Invited Talk The 3rd Global Cancer Genomics Consortium Symposium: From Oncogenomics to Cancer Care Lisbon, Portugal 2013 “Clinical Cancer...A, Piwnica- Worms H, McDonald S, Watson M, Dooling DJ, Ota D, Chang LW, Bose R, Ley TJ, Piwnica- Worms D, Stuart JM, Wilson RK, Mardis ER. Whole

  18. Cancer associated epigenetic transitions identified by genome-wide histone methylation binding profiles in human colorectal cancer samples and paired normal mucosa

    DEFF Research Database (Denmark)

    Enroth, Stefan; Rada-Iglesisas, Alvaro; Andersson, Robin

    2011-01-01

    Despite their well-established functional roles, histone modifications have received less attention than DNA methylation in the cancer field. In order to evaluate their importance in colorectal cancer (CRC), we generated the first genome-wide histone modification profiles in paired normal colon...

  19. Hybrid capture-based genomic profiling of circulating tumor DNA from patients with estrogen receptor-positive metastatic breast cancer.

    Science.gov (United States)

    Chung, J H; Pavlick, D; Hartmaier, R; Schrock, A B; Young, L; Forcier, B; Ye, P; Levin, M K; Goldberg, M; Burris, H; Gay, L M; Hoffman, A D; Stephens, P J; Frampton, G M; Lipson, D M; Nguyen, D M; Ganesan, S; Park, B H; Vahdat, L T; Leyland-Jones, B; Mughal, T I; Pusztai, L; O'Shaughnessy, J; Miller, V A; Ross, J S; Ali, S M

    2017-11-01

    Genomic changes that occur in breast cancer during the course of disease have been informed by sequencing of primary and metastatic tumor tissue. For patients with relapsed and metastatic disease, evolution of the breast cancer genome highlights the importance of using a recent sample for genomic profiling to guide clinical decision-making. Obtaining a metastatic tissue biopsy can be challenging, and analysis of circulating tumor DNA (ctDNA) from blood may provide a minimally invasive alternative. Hybrid capture-based genomic profiling was carried out on ctDNA from 254 female patients with estrogen receptor-positive breast cancer. Peripheral blood samples were submitted by clinicians in the course of routine clinical care between May 2016 and March 2017. Sequencing of 62 genes was carried out to a median unique coverage depth of 7503×. Genomic alterations (GAs) in ctDNA were evaluated and compared with matched tissue samples and genomic datasets of tissue from breast cancer. At least 1 GA was reported in 78% of samples. Frequently altered genes were TP53 (38%), ESR1 (31%) and PIK3CA (31%). Temporally matched ctDNA and tissue samples were available for 14 patients; 89% of mutations detected in tissue were also detected in ctDNA. Diverse ESR1 GAs including mutation, rearrangement and amplification, were observed. Multiple concurrent ESR1 GAs were observed in 40% of ESR1-altered cases, suggesting polyclonal origin; ESR1 compound mutations were also observed in two cases. ESR1-altered cases harbored co-occurring GAs in PIK3CA (35%), FGFR1 (16%), ERBB2 (8%), BRCA1/2 (5%), and AKT1 (4%). GAs relevant to relapsed/metastatic breast cancer management were identified, including diverse ESR1 GAs. Genomic profiling of ctDNA demonstrated sensitive detection of mutations found in tissue. Detection of amplifications was associated with ctDNA fraction. Genomic profiling of ctDNA may provide a complementary and possibly alternative approach to tissue-based genomic testing for

  20. Minimally invasive genomic and transcriptomic profiling of visceral cancers by next-generation sequencing of circulating exosomes.

    Science.gov (United States)

    San Lucas, F A; Allenson, K; Bernard, V; Castillo, J; Kim, D U; Ellis, K; Ehli, E A; Davies, G E; Petersen, J L; Li, D; Wolff, R; Katz, M; Varadhachary, G; Wistuba, I; Maitra, A; Alvarez, H

    2016-04-01

    The ability to perform comprehensive profiling of cancers at high resolution is essential for precision medicine. Liquid biopsies using shed exosomes provide high-quality nucleic acids to obtain molecular characterization, which may be especially useful for visceral cancers that are not amenable to routine biopsies. We isolated shed exosomes in biofluids from three patients with pancreaticobiliary cancers (two pancreatic, one ampullary). We performed comprehensive profiling of exoDNA and exoRNA by whole genome, exome and transcriptome sequencing using the Illumina HiSeq 2500 sequencer. We assessed the feasibility of calling copy number events, detecting mutational signatures and identifying potentially actionable mutations in exoDNA sequencing data, as well as expressed point mutations and gene fusions in exoRNA sequencing data. Whole-exome sequencing resulted in 95%-99% of the target regions covered at a mean depth of 133-490×. Genome-wide copy number profiles, and high estimates of tumor fractions (ranging from 56% to 82%), suggest robust representation of the tumor DNA within the shed exosomal compartment. Multiple actionable mutations, including alterations in NOTCH1 and BRCA2, were found in patient exoDNA samples. Further, RNA sequencing of shed exosomes identified the presence of expressed fusion genes, representing an avenue for elucidation of tumor neoantigens. We have demonstrated high-resolution profiling of the genomic and transcriptomic landscapes of visceral cancers. A wide range of cancer-derived biomarkers could be detected within the nucleic acid cargo of shed exosomes, including copy number profiles, point mutations, insertions, deletions, gene fusions and mutational signatures. Liquid biopsies using shed exosomes has the potential to be used as a clinical tool for cancer diagnosis, therapeutic stratification and treatment monitoring, precluding the need for direct tumor sampling. © The Author 2015. Published by Oxford University Press on behalf

  1. Prognostic impact of array-based genomic profiles in esophageal squamous cell cancer

    DEFF Research Database (Denmark)

    Carneiro, Ana; Isinger, Anna; Karlsson, Anna

    2008-01-01

    applied array-based comparative genomic hybridization (aCGH) to obtain a whole genome copy number profile relevant for identifying deranged pathways and clinically applicable markers. METHODS: A 32 k aCGH platform was used for high resolution mapping of copy number changes in 30 stage I-IV ESCC. Potential......p13.3 independently predicted poor survival in multivariate analysis. CONCLUSION: aCGH profiling verified genetic complexity in ESCC and herein identified imbalances of multiple central tumorigenic pathways. Distinct gains correlate with clinicopathological variables and independently predict...

  2. Prospective Genomic Profiling of Prostate Cancer Across Disease States Reveals Germline and Somatic Alterations That May Affect Clinical Decision Making.

    Science.gov (United States)

    Abida, Wassim; Armenia, Joshua; Gopalan, Anuradha; Brennan, Ryan; Walsh, Michael; Barron, David; Danila, Daniel; Rathkopf, Dana; Morris, Michael; Slovin, Susan; McLaughlin, Brigit; Curtis, Kristen; Hyman, David M; Durack, Jeremy C; Solomon, Stephen B; Arcila, Maria E; Zehir, Ahmet; Syed, Aijazuddin; Gao, Jianjiong; Chakravarty, Debyani; Vargas, Hebert Alberto; Robson, Mark E; Joseph, Vijai; Offit, Kenneth; Donoghue, Mark T A; Abeshouse, Adam A; Kundra, Ritika; Heins, Zachary J; Penson, Alexander V; Harris, Christopher; Taylor, Barry S; Ladanyi, Marc; Mandelker, Diana; Zhang, Liying; Reuter, Victor E; Kantoff, Philip W; Solit, David B; Berger, Michael F; Sawyers, Charles L; Schultz, Nikolaus; Scher, Howard I

    2017-07-01

    A long natural history and a predominant osseous pattern of metastatic spread are impediments to the adoption of precision medicine in patients with prostate cancer. To establish the feasibility of clinical genomic profiling in the disease, we performed targeted deep sequencing of tumor and normal DNA from patients with locoregional, metastatic non-castrate, and metastatic castration-resistant prostate cancer (CRPC). Patients consented to genomic analysis of their tumor and germline DNA. A hybridization capture-based clinical assay was employed to identify single nucleotide variations, small insertions and deletions, copy number alterations and structural rearrangements in over 300 cancer-related genes in tumors and matched normal blood. We successfully sequenced 504 tumors from 451 patients with prostate cancer. Potentially actionable alterations were identified in DNA damage repair (DDR), PI3K, and MAP kinase pathways. 27% of patients harbored a germline or a somatic alteration in a DDR gene that may predict for response to PARP inhibition. Profiling of matched tumors from individual patients revealed that somatic TP53 and BRCA2 alterations arose early in tumors from patients who eventually developed metastatic disease. In contrast, comparative analysis across disease states revealed that APC alterations were enriched in metastatic tumors, while ATM alterations were specifically enriched in CRPC. Through genomic profiling of prostate tumors representing the disease clinical spectrum, we identified a high frequency of potentially actionable alterations and possible drivers of disease initiation, metastasis and castration-resistance. Our findings support the routine use of tumor and germline DNA profiling for patients with advanced prostate cancer, for the purpose of guiding enrollment in targeted clinical trials and counseling families at increased risk of malignancy.

  3. Clinical application of genomic profiling to find druggable targets for adolescent and young adult (AYA) cancer patients with metastasis

    International Nuclear Information System (INIS)

    Cha, Soojin; Lee, Jeongeun; Shin, Jong-Yeon; Kim, Ji-Yeon; Sim, Sung Hoon; Keam, Bhumsuk; Kim, Tae Min; Kim, Dong-Wan; Heo, Dae Seog; Lee, Se-Hoon; Kim, Jong-Il

    2016-01-01

    Although adolescent and young adult (AYA) cancers are characterized by biological features and clinical outcomes distinct from those of other age groups, the molecular profile of AYA cancers has not been well defined. In this study, we analyzed cancer genomes from rare types of metastatic AYA cancers to identify driving and/or druggable genetic alterations. Prospectively collected AYA tumor samples from seven different patients were analyzed using three different genomics platforms (whole-exome sequencing, whole-transcriptome sequencing or OncoScan™). Using well-known bioinformatics tools (bwa, Picard, GATK, MuTect, and Somatic Indel Detector) and our annotation approach with open access databases (DAVID and DGIdb), we processed sequencing data and identified driving genetic alterations and their druggability. The mutation frequencies of AYA cancers were lower than those of other adult cancers (median = 0.56), except for a germ cell tumor with hypermutation. We identified patient-specific genetic alterations in candidate driving genes: RASA2 and NF1 (prostate cancer), TP53 and CDKN2C (olfactory neuroblastoma), FAT1, NOTCH1, and SMAD4 (head and neck cancer), KRAS (urachal carcinoma), EML4-ALK (lung cancer), and MDM2 and PTEN (liposarcoma). We then suggested potential drugs for each patient according to his or her altered genes and related pathways. By comparing candidate driving genes between AYA cancers and those from all age groups for the same type of cancer, we identified different driving genes in prostate cancer and a germ cell tumor in AYAs compared with all age groups, whereas three common alterations (TP53, FAT1, and NOTCH1) in head and neck cancer were identified in both groups. We identified the patient-specific genetic alterations and druggability of seven rare types of AYA cancers using three genomics platforms. Additionally, genetic alterations in cancers from AYA and those from all age groups varied by cancer type. The online version of this article

  4. Cancer genomics

    DEFF Research Database (Denmark)

    Norrild, Bodil; Guldberg, Per; Ralfkiær, Elisabeth Methner

    2007-01-01

    Almost all cells in the human body contain a complete copy of the genome with an estimated number of 25,000 genes. The sequences of these genes make up about three percent of the genome and comprise the inherited set of genetic information. The genome also contains information that determines when...

  5. Cancer genomics

    DEFF Research Database (Denmark)

    Norrild, Bodil; Guldberg, Per; Ralfkiær, Elisabeth Methner

    2007-01-01

    Almost all cells in the human body contain a complete copy of the genome with an estimated number of 25,000 genes. The sequences of these genes make up about three percent of the genome and comprise the inherited set of genetic information. The genome also contains information that determines whe...

  6. Profiles of Genomic Instability in High-Grade Serous Ovarian Cancer Predict Treatment Outcome

    DEFF Research Database (Denmark)

    Wang, Zhigang C.; Birkbak, Nicolai Juul; Culhane, Aedín C.

    2012-01-01

    Purpose: High-grade serous cancer (HGSC) is the most common cancer of the ovary and is characterized by chromosomal instability. Defects in homologous recombination repair (HRR) are associated with genomic instability in HGSC, and are exploited by therapy targeting DNA repair. Defective HRR cause...... clusters differed with respect to chemotherapy resistance, and the extent of LOH correlated with PFS. LOH burden may indicate vulnerability to treatment targeting DNA repair, such as PARP1 inhibitors. Clin Cancer Res; 18(20); 5806–15. ©2012 AACR....... into two subgroups. The second group contained remarkably less LOH. BRCA1 promoter methylation was associated with the major group. LOH clusters were reproducible when validated in two independent HGSC datasets. LOH burden in the major cluster of HGSC was similar to triple-negative, and distinct from other...

  7. Profiling Invasiveness in Head and Neck Cancer: Recent Contributions of Genomic and Transcriptomic Approaches

    Energy Technology Data Exchange (ETDEWEB)

    Nisa, Lluís, E-mail: lluis.nisa@dkf.unibe.ch [Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern 3010 (Switzerland); Department of Clinical Research, Inselspital, Bern University Hospital, and University of Bern, MEM-E807, Murtenstrasse 35, Bern 3010 (Switzerland); Department of Otorhinolaryngology-Head and Neck Surgery, Inselspital, Bern University Hospital, and University of Bern, Bern 3010 (Switzerland); Aebersold, Daniel Matthias [Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern 3010 (Switzerland); Department of Clinical Research, Inselspital, Bern University Hospital, and University of Bern, MEM-E807, Murtenstrasse 35, Bern 3010 (Switzerland); Giger, Roland; Caversaccio, Marco Domenico; Borner, Urs [Department of Otorhinolaryngology-Head and Neck Surgery, Inselspital, Bern University Hospital, and University of Bern, Bern 3010 (Switzerland); Medová, Michaela; Zimmer, Yitzhak, E-mail: lluis.nisa@dkf.unibe.ch [Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern 3010 (Switzerland); Department of Clinical Research, Inselspital, Bern University Hospital, and University of Bern, MEM-E807, Murtenstrasse 35, Bern 3010 (Switzerland)

    2015-03-31

    High-throughput molecular profiling approaches have emerged as precious research tools in the field of head and neck translational oncology. Such approaches have identified and/or confirmed the role of several genes or pathways in the acquisition/maintenance of an invasive phenotype and the execution of cellular programs related to cell invasion. Recently published new-generation sequencing studies in head and neck squamous cell carcinoma (HNSCC) have unveiled prominent roles in carcinogenesis and cell invasion of mutations involving NOTCH1 and PI3K-patwhay components. Gene-expression profiling studies combined with systems biology approaches have allowed identifying and gaining further mechanistic understanding into pathways commonly enriched in invasive HNSCC. These pathways include antigen-presenting and leucocyte adhesion molecules, as well as genes involved in cell-extracellular matrix interactions. Here we review the major insights into invasiveness in head and neck cancer provided by high-throughput molecular profiling approaches.

  8. Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing.

    Science.gov (United States)

    Frampton, Garrett M; Fichtenholtz, Alex; Otto, Geoff A; Wang, Kai; Downing, Sean R; He, Jie; Schnall-Levin, Michael; White, Jared; Sanford, Eric M; An, Peter; Sun, James; Juhn, Frank; Brennan, Kristina; Iwanik, Kiel; Maillet, Ashley; Buell, Jamie; White, Emily; Zhao, Mandy; Balasubramanian, Sohail; Terzic, Selmira; Richards, Tina; Banning, Vera; Garcia, Lazaro; Mahoney, Kristen; Zwirko, Zac; Donahue, Amy; Beltran, Himisha; Mosquera, Juan Miguel; Rubin, Mark A; Dogan, Snjezana; Hedvat, Cyrus V; Berger, Michael F; Pusztai, Lajos; Lechner, Matthias; Boshoff, Chris; Jarosz, Mirna; Vietz, Christine; Parker, Alex; Miller, Vincent A; Ross, Jeffrey S; Curran, John; Cronin, Maureen T; Stephens, Philip J; Lipson, Doron; Yelensky, Roman

    2013-11-01

    As more clinically relevant cancer genes are identified, comprehensive diagnostic approaches are needed to match patients to therapies, raising the challenge of optimization and analytical validation of assays that interrogate millions of bases of cancer genomes altered by multiple mechanisms. Here we describe a test based on massively parallel DNA sequencing to characterize base substitutions, short insertions and deletions (indels), copy number alterations and selected fusions across 287 cancer-related genes from routine formalin-fixed and paraffin-embedded (FFPE) clinical specimens. We implemented a practical validation strategy with reference samples of pooled cell lines that model key determinants of accuracy, including mutant allele frequency, indel length and amplitude of copy change. Test sensitivity achieved was 95-99% across alteration types, with high specificity (positive predictive value >99%). We confirmed accuracy using 249 FFPE cancer specimens characterized by established assays. Application of the test to 2,221 clinical cases revealed clinically actionable alterations in 76% of tumors, three times the number of actionable alterations detected by current diagnostic tests.

  9. Genomic profiling of ER+ breast cancers after short-term estrogen suppression reveals alterations associated with endocrine resistance

    Science.gov (United States)

    Giltnane, J.M.; Hutchinson, K.E.; Stricker, T.P.; Formisano, L.; Young, C.D.; Estrada, M.V.; Nixon, M.J.; Du, L.; Sanchez, V.; Ericsson, P. Gonzalez; Kuba, M.G.; Sanders, M.E.; Mu, X.J.; Van Allen, E.M.; Wagle, N.; Mayer, I.; Abramson, V.; Gómez, H.; Rizzo, M.; Toy, W.; Chandarlapaty, S.; Mayer, E.L.; Christiansen, J.; Murphy, D.; Fitzgerald, K.; Wang, K.; Ross, J.S.; Miller, V.A.; Stephens, P.J.; Yelensky, R.; Garraway, L.; Shyr, Y.; Meszoely, I.; Balko, J.M.; Arteaga, C.L.

    2017-01-01

    Proliferative inhibition of estrogen-receptor positive (ER+) breast cancers after short-term antiestrogen therapy correlates with long-term patient outcome. We profiled 155 ER+/HER2– early breast cancers from 143 patients treated with the aromatase inhibitor letrozole for 10-21 days before surgery. Twenty-one percent of tumors remained highly proliferative suggesting these tumors harbor alterations associated with intrinsic endocrine therapy resistance. Whole-exome sequencing revealed a correlation between 8p11-12 and 11q13 gene amplifications, including FGFR1 and CCND1, respectively, and high Ki67. We corroborated these findings in a separate cohort of serial pre-treatment, post-neoadjuvant chemotherapy, and recurrent ER+ tumors. Combined inhibition of FGFR1 and CDK4/6 reversed antiestrogen resistance in ER+ FGFR1/CCND1 co-amplified CAMA1 breast cancer cells. RNA sequencing of letrozole-treated tumors revealed intrachromosomal ESR1 fusion transcripts and gene expression signatures in cancers with high Ki67, indicative of enhanced E2F-mediated transcription and cell cycle processes. These data suggest short-term pre-operative estrogen deprivation followed by genomic profiling can be used to identify druggable alterations potentially causal to intrinsic endocrine therapy resistance. PMID:28794284

  10. Genome-wide epigenetic profiling of breast cancer tumors treated with aromatase inhibitors

    Directory of Open Access Journals (Sweden)

    Ekaterina Nevedomskaya

    2014-12-01

    Full Text Available Aromatase inhibitors (AI are extensively used in the treatment of estrogen receptor-positive breast cancers, however resistance to AI treatment is commonly observed. Apart from Estrogen receptor (ERα expression, no predictive biomarkers for response to AI treatment are clinically applied. Yet, since other therapeutic options exist in the clinic, such as tamoxifen, there is an urgent medical need for the development of treatment-selective biomarkers, enabling personalized endocrine treatment selection in breast cancer. In the described dataset, ERα chromatin binding and histone marks H3K4me3 and H3K27me3 were assessed in a genome-wide manner by Chromatin Immunoprecipitation (ChIP combined with massive parallel sequencing (ChIP-seq. These datasets were used to develop a classifier to stratify breast cancer patients on outcome after AI treatment in the metastatic setting. Here we describe in detail the data and quality control metrics, as well as the clinical information associated with the study, published by Jansen et al. [1]. The data is publicly available through the GEO database with accession number GSE40867.

  11. Impact of tissue-based genomic profiling on clinical decision making in the management of patients with metastatic breast cancer at academic centers.

    Science.gov (United States)

    Santa-Maria, Cesar A; Kruse, Megan; Raska, Paola; Weiss, Mia; Swoboda, April; Mutonga, Martin B; Abraham, Jame; Jain, Sarika; Nanda, Rita; Montero, Alberto J

    2017-11-01

    Genomic profiling can identify targetable mutations; however, the impact of tissue-based genomic profiling on clinical decision making for patients with metastatic breast cancer has not been well characterized. Patients with stage IV breast cancer who had undergone genomic profiling between 7/2013 and 3/2015 were identified at three academic cancer centers. Genomic analysis was determined to have impacted clinical decision if (A) a patient was enrolled onto a genotype-matched clinical trial or (B) prescribed off-label an FDA-approved therapy targeting an identified mutation. The frequency of mutated genes was determined. A total of 117 patients with stage IV breast cancer were identified. Median age was 46 (25-75). Fifty-three patients (45%) had ER-positive/HER2-negative disease, 50 (43%) had ER-negative/HER2-negative disease, and 14 (12%) had ER-any/HER2-positive disease. Median number of previous therapies received prior to genomic profiling was 2 (range 0-15), and median follow-up after testing was obtained after 5.8 months (range 0-24.4 months). Commercial reports indicated that 85 (73%) patients had at least one mutation targetable by an FDA-approved medication, and 112 (96%) patients had at least one clinical trial available; however, clinical management was only affected in 11 patients (9%). The most frequent mutations observed were those in TP53, FGF, PI3KCA, MYC, ZNF, FGFR, CCND, ARID1A, GATA3, and MAP; frequencies of these mutations varied by clinical subtype. Tumor genomic profiling affected clinical management in a minority of patients with metastatic breast cancer, thus these data do not support the routine use of genomic profiling outside of a clinical trial.

  12. Do online prognostication tools represent a valid alternative to genomic profiling in the context of adjuvant treatment of early breast cancer? A systematic review of the literature.

    Science.gov (United States)

    El Hage Chehade, Hiba; Wazir, Umar; Mokbel, Kinan; Kasem, Abdul; Mokbel, Kefah

    2018-01-01

    Decision-making regarding adjuvant chemotherapy has been based on clinical and pathological features. However, such decisions are seldom consistent. Web-based predictive models have been developed using data from cancer registries to help determine the need for adjuvant therapy. More recently, with the recognition of the heterogenous nature of breast cancer, genomic assays have been developed to aid in the therapeutic decision-making. We have carried out a comprehensive literature review regarding online prognostication tools and genomic assays to assess whether online tools could be used as valid alternatives to genomic profiling in decision-making regarding adjuvant therapy in early breast cancer. Breast cancer has been recently recognized as a heterogenous disease based on variations in molecular characteristics. Online tools are valuable in guiding adjuvant treatment, especially in resource constrained countries. However, in the era of personalized therapy, molecular profiling appears to be superior in predicting clinical outcome and guiding therapy. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Next-generation Sequencing-based genomic profiling: Fostering innovation in cancer care?

    Science.gov (United States)

    Fernandes, Gustavo S; Marques, Daniel F; Girardi, Daniel M; Braghiroli, Maria Ignez F; Coudry, Renata A; Meireles, Sibele I; Katz, Artur; Hoff, Paulo M

    2017-10-01

    With the development of next-generation sequencing (NGS) technologies, DNA sequencing has been increasingly utilized in clinical practice. Our goal was to investigate the impact of genomic evaluation on treatment decisions for heavily pretreated patients with metastatic cancer. We analyzed metastatic cancer patients from a single institution whose cancers had progressed after all available standard-of-care therapies and whose tumors underwent next-generation sequencing analysis. We determined the percentage of patients who received any therapy directed by the test, and its efficacy. From July 2013 to December 2015, 185 consecutive patients were tested using a commercially available next-generation sequencing-based test, and 157 patients were eligible. Sixty-six patients (42.0%) were female, and 91 (58.0%) were male. The mean age at diagnosis was 52.2 years, and the mean number of pre-test lines of systemic treatment was 2.7. One hundred and seventy-seven patients (95.6%) had at least one identified gene alteration. Twenty-four patients (15.2%) underwent systemic treatment directed by the test result. Of these, one patient had a complete response, four (16.7%) had partial responses, two (8.3%) had stable disease, and 17 (70.8%) had disease progression as the best result. The median progression-free survival time with matched therapy was 1.6 months, and the median overall survival was 10 months. We identified a high prevalence of gene alterations using an next-generation sequencing test. Although some benefit was associated with the matched therapy, most of the patients had disease progression as the best response, indicating the limited biological potential and unclear clinical relevance of this practice.

  14. Next-generation Sequencing-based genomic profiling: Fostering innovation in cancer care?

    Directory of Open Access Journals (Sweden)

    Gustavo S. Fernandes

    Full Text Available OBJECTIVES: With the development of next-generation sequencing (NGS technologies, DNA sequencing has been increasingly utilized in clinical practice. Our goal was to investigate the impact of genomic evaluation on treatment decisions for heavily pretreated patients with metastatic cancer. METHODS: We analyzed metastatic cancer patients from a single institution whose cancers had progressed after all available standard-of-care therapies and whose tumors underwent next-generation sequencing analysis. We determined the percentage of patients who received any therapy directed by the test, and its efficacy. RESULTS: From July 2013 to December 2015, 185 consecutive patients were tested using a commercially available next-generation sequencing-based test, and 157 patients were eligible. Sixty-six patients (42.0% were female, and 91 (58.0% were male. The mean age at diagnosis was 52.2 years, and the mean number of pre-test lines of systemic treatment was 2.7. One hundred and seventy-seven patients (95.6% had at least one identified gene alteration. Twenty-four patients (15.2% underwent systemic treatment directed by the test result. Of these, one patient had a complete response, four (16.7% had partial responses, two (8.3% had stable disease, and 17 (70.8% had disease progression as the best result. The median progression-free survival time with matched therapy was 1.6 months, and the median overall survival was 10 months. CONCLUSION: We identified a high prevalence of gene alterations using an next-generation sequencing test. Although some benefit was associated with the matched therapy, most of the patients had disease progression as the best response, indicating the limited biological potential and unclear clinical relevance of this practice.

  15. Molecular markers associated with nonepithelial ovarian cancer in formalin-fixed, paraffin-embedded specimens by genome wide expression profiling

    Directory of Open Access Journals (Sweden)

    Koon Vui-Kee

    2012-05-01

    Full Text Available Nonepithelial ovarian cancer (NEOC is a rare cancer that is often misdiagnosed as other malignant tumors. Research on this cancer using fresh tissues is nearly impossible because of its limited number of samples within a limited time provided. The study is to identify potential genes and their molecular pathways related to NEOC using formalin-fixed paraffin embedded samples. Total RNA was extracted from eight archived NEOCs and seven normal ovaries. The RNA samples with RNA integrity number >2.0, purity >1.7 and cycle count value <28 cycles were hybridized to the Illumina Whole-Genome DASL assay (cDNA-mediated annealing, selection, extension, and ligation. We analyzed the results using the GeneSpring GX11.0 and FlexArray software to determine the differentially expressed genes. Microarray results were validated using an immunohistochemistry method. Statistical analysis identified 804 differentially expressed genes with 443 and 361 genes as overexpressed and underexpressed in cancer, respectively. Consistent findings were documented for the overexpression of eukaryotic translation elongation factor 1 alpha 1, E2F transcription factor 2, and fibroblast growth factor receptor 3, except for the down-regulated gene, early growth response 1 (EGR1. The immunopositivity staining for EGR1 was found in the majority of cancer tissues. This finding suggested that the mRNA level of a transcript did not always match with the protein expression in tissues. The current gene profile can be the platform for further exploration of the molecular mechanism of NEOC.

  16. The PiGeOn project: protocol for a longitudinal study examining psychosocial, behavioural and ethical issues and outcomes in cancer tumour genomic profiling.

    Science.gov (United States)

    Best, Megan; Newson, Ainsley J; Meiser, Bettina; Juraskova, Ilona; Goldstein, David; Tucker, Kathy; Ballinger, Mandy L; Hess, Dominique; Schlub, Timothy E; Biesecker, Barbara; Vines, Richard; Vines, Kate; Thomas, David; Young, Mary-Anne; Savard, Jacqueline; Jacobs, Chris; Butow, Phyllis

    2018-04-05

    Genomic sequencing in cancer (both tumour and germline), and development of therapies targeted to tumour genetic status, hold great promise for improvement of patient outcomes. However, the imminent introduction of genomics into clinical practice calls for better understanding of how patients value, experience, and cope with this novel technology and its often complex results. Here we describe a protocol for a novel mixed-methods, prospective study (PiGeOn) that aims to examine patients' psychosocial, cognitive, affective and behavioural responses to tumour genomic profiling and to integrate a parallel critical ethical analysis of returning results. This is a cohort sub-study of a parent tumour genomic profiling programme enrolling patients with advanced cancer. One thousand patients will be recruited for the parent study in Sydney, Australia from 2016 to 2019. They will be asked to complete surveys at baseline, three, and five months. Primary outcomes are: knowledge, preferences, attitudes and values. A purposively sampled subset of patients will be asked to participate in three semi-structured interviews (at each time point) to provide deeper data interpretation. Relevant ethical themes will be critically analysed to iteratively develop or refine normative ethical concepts or frameworks currently used in the return of genetic information. This will be the first Australian study to collect longitudinal data on cancer patients' experience of tumour genomic profiling. Findings will be used to inform ongoing ethical debates on issues such as how to effectively obtain informed consent for genomic profiling return results, distinguish between research and clinical practice and manage patient expectations. The combination of quantitative and qualitative methods will provide comprehensive and critical data on how patients cope with 'actionable' and 'non-actionable' results. This information is needed to ensure that when tumour genomic profiling becomes part of routine

  17. Genome Trees from Conservation Profiles.

    Directory of Open Access Journals (Sweden)

    2005-12-01

    Full Text Available The concept of the genome tree depends on the potential evolutionary significance in the clustering of species according to similarities in the gene content of their genomes. In this respect, genome trees have often been identified with species trees. With the rapid expansion of genome sequence data it becomes of increasing importance to develop accurate methods for grasping global trends for the phylogenetic signals that mutually link the various genomes. We therefore derive here the methodological concept of genome trees based on protein conservation profiles in multiple species. The basic idea in this derivation is that the multi-component "presence-absence" protein conservation profiles permit tracking of common evolutionary histories of genes across multiple genomes. We show that a significant reduction in informational redundancy is achieved by considering only the subset of distinct conservation profiles. Beyond these basic ideas, we point out various pitfalls and limitations associated with the data handling, paving the way for further improvements. As an illustration for the methods, we analyze a genome tree based on the above principles, along with a series of other trees derived from the same data and based on pair-wise comparisons (ancestral duplication-conservation and shared orthologs. In all trees we observe a sharp discrimination between the three primary domains of life: Bacteria, Archaea, and Eukarya. The new genome tree, based on conservation profiles, displays a significant correspondence with classically recognized taxonomical groupings, along with a series of departures from such conventional clusterings.

  18. Chemical profiling of the genome with anti-cancer drugs defines target specificities.

    Science.gov (United States)

    Pang, Baoxu; de Jong, Johann; Qiao, Xiaohang; Wessels, Lodewyk F A; Neefjes, Jacques

    2015-07-01

    Many anticancer drugs induce DNA breaks to eliminate tumor cells. The anthracycline topoisomerase II inhibitors additionally cause histone eviction. Here, we performed genome-wide high-resolution mapping of chemotherapeutic effects of various topoisomerase I and II (TopoI and II) inhibitors and integrated this mapping with established maps of genomic or epigenomic features to show their activities in different genomic regions. The TopoI inhibitor topotecan and the TopoII inhibitor etoposide are similar in inducing DNA damage at transcriptionally active genomic regions. The anthracycline daunorubicin induces DNA breaks and evicts histones from active chromatin, thus quenching local DNA damage responses. Another anthracycline, aclarubicin, has a different genomic specificity and evicts histones from H3K27me3-marked heterochromatin, with consequences for diffuse large B-cell lymphoma cells with elevated levels of H3K27me3. Modifying anthracycline structures may yield compounds with selectivity for different genomic regions and activity for different tumor types.

  19. Genomic Profiles in Stage I Primary Non Small Cell Lung Cancer Using Comparative Genomic Hybridization Analysis of cDNA Microarrays

    Directory of Open Access Journals (Sweden)

    Feng Jiang

    2004-09-01

    Full Text Available To investigate the genomic aberrations that are involved in lung tumorigenesis and therefore may be developed as biomarkers for lung cancer diagnosis, we characterized the genomic copy number changes associated with individual genes in 14 tumors from patients with primary non small cell lung cancer (NSCLC. Six squamous cell carcinomas (SQCAs and eight adenocarcinomas (ADCAs were examined by high-resolution comparative genomic hybridization (CGH analysis of cDNA microarray. The SQCAs and ADCAs shared common frequency distributions of recurrent genomic gains of 63 genes and losses of 72 genes. Cluster analysis using 57 genes defined the genomic differences between these two major histologic types of NSCLC. Genomic aberrations from a set of 18 genes showed distinct difference of primary ADCAs from their paired normal lung tissues. The genomic copy number of four genes was validated by fluorescence in situ hybridization of 32 primary NSCLC tumors, including those used for cDNA microarray CGH analysis; a strong correlation with cDNA microarray CGH data emerged. The identified genomic aberrations may be involved in the initiation and progression of lung tumorigenesis and, most importantly, may be developed as new biomarkers for the early detection and classification of lung cancer.

  20. Cancer associated epigenetic transitions identified by genome-wide histone methylation binding profiles in human colorectal cancer samples and paired normal mucosa

    International Nuclear Information System (INIS)

    Enroth, Stefan; Rada-Iglesisas, Alvaro; Andersson, Robin; Wallerman, Ola; Wanders, Alkwin; Påhlman, Lars; Komorowski, Jan; Wadelius, Claes

    2011-01-01

    Despite their well-established functional roles, histone modifications have received less attention than DNA methylation in the cancer field. In order to evaluate their importance in colorectal cancer (CRC), we generated the first genome-wide histone modification profiles in paired normal colon mucosa and tumor samples. Chromatin immunoprecipitation and microarray hybridization (ChIP-chip) was used to identify promoters enriched for histone H3 trimethylated on lysine 4 (H3K4me3) and lysine 27 (H3K27me3) in paired normal colon mucosa and tumor samples from two CRC patients and for the CRC cell line HT29. By comparing histone modification patterns in normal mucosa and tumors, we found that alterations predicted to have major functional consequences were quite rare. Furthermore, when normal or tumor tissue samples were compared to HT29, high similarities were observed for H3K4me3. However, the differences found for H3K27me3, which is important in determining cellular identity, indicates that cell lines do not represent optimal tissue models. Finally, using public expression data, we uncovered previously unknown changes in CRC expression patterns. Genes positive for H3K4me3 in normal and/or tumor samples, which are typically already active in normal mucosa, became hyperactivated in tumors, while genes with H3K27me3 in normal and/or tumor samples and which are expressed at low levels in normal mucosa, became hypersilenced in tumors. Genome wide histone modification profiles can be used to find epigenetic aberrations in genes associated with cancer. This strategy gives further insights into the epigenetic contribution to the oncogenic process and may identify new biomarkers

  1. Are online prediction tools a valid alternative to genomic profiling in the context of systemic treatment of ER-positive breast cancer?

    Science.gov (United States)

    Wazir, Umar; Mokbel, Kinan; Carmichael, Amtul; Mokbel, Kefah

    2017-01-01

    Clinicians use clinical and pathological parameters, such as tumour size, grade and nodal status, to make decisions on adjuvant treatments for breast cancer. However, therapeutic decisions based on these features tend to vary due to their subjectivity. Computational and mathematical algorithms were developed using clinical outcome data from breast cancer registries, such as Adjuvant! Online and NHS PREDICT. More recently, assessments of molecular profiles have been applied in the development of better prognostic tools. Based on the available literature on online registry-based tools and genomic assays, we evaluated whether these online tools could be valid and accurate alternatives to genomic and molecular profiling of the individual breast tumour in aiding therapeutic decisions, particularly in patients with early ER-positive breast cancer. Early breast cancer is currently considered a systemic disease and a complex ecosystem with behaviour determined by the complex genetic and molecular signatures of the tumour cells, mammary stem cells, microenvironment and host immune system. We anticipate that molecular profiling will continue to evolve, expanding beyond the primary tumour to include the tumour microenvironment, cancer stem cells and host immune system. This should further refine therapeutic decisions and optimise clinical outcome. This article was specially invited by the editors and represents work by leading researchers.

  2. Genome-wide epigenetic profiling of breast cancer tumors treated with aromatase inhibitors

    NARCIS (Netherlands)

    Nevedomskaya, E.; Wessels, L.; Zwart, W.

    2014-01-01

    Aromatase inhibitors (AI) are extensively used in the treatment of estrogen receptor-positive breast cancers, however resistance to AI treatment is commonly observed. Apart from Estrogen receptor (ER?) expression, no predictive biomarkers for response to AI treatment are clinically applied. Yet,

  3. Minimally invasive genomic and transcriptomic profiling of visceral cancers by next-generation sequencing of circulating exosomes

    OpenAIRE

    San Lucas, F. A.; Allenson, K.; Bernard, V.; Castillo, J.; Kim, D. U.; Ellis, K.; Ehli, E. A.; Davies, G. E.; Petersen, J. L.; Li, D.; Wolff, R.; Katz, M.; Varadhachary, G.; Wistuba, I.; Maitra, A.

    2015-01-01

    Background The ability to perform comprehensive profiling of cancers at high resolution is essential for precision medicine. Liquid biopsies using shed exosomes provide high-quality nucleic acids to obtain molecular characterization, which may be especially useful for visceral cancers that are not amenable to routine biopsies. Patients and methods We isolated shed exosomes in biofluids from three patients with pancreaticobiliary cancers (two pancreatic, one ampullary). We performed comprehens...

  4. Functional genomics and cancer drug target discovery.

    Science.gov (United States)

    Moody, Susan E; Boehm, Jesse S; Barbie, David A; Hahn, William C

    2010-06-01

    The recent development of technologies for whole-genome sequencing, copy number analysis and expression profiling enables the generation of comprehensive descriptions of cancer genomes. However, although the structural analysis and expression profiling of tumors and cancer cell lines can allow the identification of candidate molecules that are altered in the malignant state, functional analyses are necessary to confirm such genes as oncogenes or tumor suppressors. Moreover, recent research suggests that tumor cells also depend on synthetic lethal targets, which are not mutated or amplified in cancer genomes; functional genomics screening can facilitate the discovery of such targets. This review provides an overview of the tools available for the study of functional genomics, and discusses recent research involving the use of these tools to identify potential novel drug targets in cancer.

  5. Functional genomic mRNA profiling of a large cancer data base demonstrates mesothelin overexpression in a broad range of tumor types.

    Science.gov (United States)

    Lamberts, Laetitia E; de Groot, Derk Jan A; Bense, Rico D; de Vries, Elisabeth G E; Fehrmann, Rudolf S N

    2015-09-29

    The membrane bound glycoprotein mesothelin (MSLN) is a highly specific tumor marker, which is currently exploited as target for drugs. There are only limited data available on MSLN expression by human tumors. Therefore we determined overexpression of MSLN across different tumor types with Functional Genomic mRNA (FGM) profiling of a large cancer database. Results were compared with data in articles reporting immunohistochemical (IHC) MSLN tumor expression. FGM profiling is a technique that allows prediction of biologically relevant overexpression of proteins from a robust data set of mRNA microarrays. This technique was used in a database comprising 19,746 tumors to identify for 41 tumor types the percentage of samples with an overexpression of MSLN compared to a normal background. A literature search was performed to compare the FGM profiling data with studies reporting IHC MSLN tumor expression. FGM profiling showed MSLN overexpression in gastrointestinal (12-36%) and gynecological tumors (20-66%), non-small cell lung cancer (21%) and synovial sarcomas (30%). The overexpression found in thyroid cancers (5%) and renal cell cancers (10%) was not yet reported with IHC analyses. We observed that MSLN amplification rate within esophageal cancer depends on the histotype (31% for adenocarcinomas versus 3% for squamous-cell carcinomas). Subset analysis in breast cancer showed MSLN amplification rates of 28% in triple-negative breast cancer (TNBC) and 33% in basal-like breast cancer. Further subtype analysis of TNBCs showed the highest amplification rate (42%) in the basal-like 1 subtype and the lowest amplification rate (9%) in the luminal androgen receptor subtype.

  6. High-Resolution Mapping of Genomic Imbalance and Identification of Gene Expression Profiles Associated with Differential Chemotherapy Response in Serous Epithelial Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Marcus Bernardini

    2005-06-01

    Full Text Available Array comparative genomic hybridization (aCGH and microarray expression profiling were used to subclassify DNA and RNA alterations associated with differential response to chemotherapy in ovarian cancer. Two to 4 Mb interval arrays were used to map genomic imbalances in 26 sporadic serous ovarian tumors. Cytobands 1p36, iq42-44, 6p22.1-p21.2, 7q32.1-q34 9q33.3-q34.3, 11p15.2, 13q12.2-q13.1, 13q21.31, 17q11.2, 17q24.2-q25.3, 18q12.2, and 21q21.2-q21.3 were found to be statistically associated with chemotherapy response, and novel regions of loss at 15g11.2q15.1 and 17q21.32-q21.33 were identified. Gene expression profiles were obtained from a subset of these tumors and identified a group of genes whose differential expression was significantly associated with drug resistance. Within this group, five genes (GAPD, HMGB2, HSC70, GRP58, and HMGB1, previously shown to form a nuclear complex associated with resistance to DNA conformation-altering chemotherapeutic drugs in in vitro systems, may represent a novel class of genes associated with in vivo drug response in ovarian cancer patients. Although RNA expression change indicated only weak DNA copy number dependence, these data illustrate the value of molecular profiling at both the RNA and DNA levels to identify small genomic regions and gene subsets that could be associated with differential chemotherapy response in ovarian cancer.

  7. Genome Wide Expression Profiling of Cancer Cell Lines Cultured in Microgravity Reveals Significant Dysregulation of Cell Cycle and MicroRNA Gene Networks.

    Directory of Open Access Journals (Sweden)

    Prasanna Vidyasekar

    Full Text Available Zero gravity causes several changes in metabolic and functional aspects of the human body and experiments in space flight have demonstrated alterations in cancer growth and progression. This study reports the genome wide expression profiling of a colorectal cancer cell line-DLD-1, and a lymphoblast leukemic cell line-MOLT-4, under simulated microgravity in an effort to understand central processes and cellular functions that are dysregulated among both cell lines. Altered cell morphology, reduced cell viability and an aberrant cell cycle profile in comparison to their static controls were observed in both cell lines under microgravity. The process of cell cycle in DLD-1 cells was markedly affected with reduced viability, reduced colony forming ability, an apoptotic population and dysregulation of cell cycle genes, oncogenes, and cancer progression and prognostic markers. DNA microarray analysis revealed 1801 (upregulated and 2542 (downregulated genes (>2 fold in DLD-1 cultures under microgravity while MOLT-4 cultures differentially expressed 349 (upregulated and 444 (downregulated genes (>2 fold under microgravity. The loss in cell proliferative capacity was corroborated with the downregulation of the cell cycle process as demonstrated by functional clustering of DNA microarray data using gene ontology terms. The genome wide expression profile also showed significant dysregulation of post transcriptional gene silencing machinery and multiple microRNA host genes that are potential tumor suppressors and proto-oncogenes including MIR22HG, MIR17HG and MIR21HG. The MIR22HG, a tumor-suppressor gene was one of the highest upregulated genes in the microarray data showing a 4.4 log fold upregulation under microgravity. Real time PCR validated the dysregulation in the host gene by demonstrating a 4.18 log fold upregulation of the miR-22 microRNA. Microarray data also showed dysregulation of direct targets of miR-22, SP1, CDK6 and CCNA2.

  8. Expression profiles of pivotal microRNAs and targets in thyroid papillary carcinoma: an analysis of The Cancer Genome Atlas

    Directory of Open Access Journals (Sweden)

    Cong D

    2015-08-01

    Full Text Available Dan Cong,1 Mengzi He,2 Silin Chen,2 Xiaoli Liu,1 Xiaodong Liu,2 Hui Sun11Jilin Provincial Key Laboratory of Surgical Translational Medicine, Department of Thyroid and Parathyroid Surgery, People’s Republic of China–Japan Union Hospital, 2Key Laboratory of Radiobiology (Ministry of Health, School of Public Health, Jilin University, Changchun, Jilin, People’s Republic of ChinaAbstract: In the present study, we analyzed microRNA (miRNA and gene expression profiles using 499 papillary thyroid carcinoma (PTC samples and 58 normal thyroid tissues obtained from The Cancer Genome Atlas database. A pivotal regulatory network of 18 miRNA and 16 targets was identified. Upregulated miRNAs (miR-222, miR-221, miR-146b, miR-181a/b/d, miR-34a, and miR-424 and downregulated miRNAs (miR-9-1, miR-138, miR-363, miR-20b, miR-195, and miR-152 were identified. Among them, the upregulation of miR-424 and downregulation of miR-363, miR-195, and miR-152 were not previously identified. The genes CCNE2 (also known as cyclin E2, E2F1, RARA, CCND1 (cyclin D1, RUNX1, ITGA2, MET, CDKN1A (p21, and COL4A1 were overexpressed, and AXIN2, TRAF6, BCL2, RARB, HSP90B1, FGF7, and PDGFRA were downregulated. Among them, CCNE2, COL4A1, TRAF6, and HSP90B1 were newly identified. Based on receiver operating characteristic curves, several miRNAs (miR-222, miR-221, and miR-34a and genes (CCND1 and MET were ideal diagnostic indicators, with sensitivities and specificities greater than 90%. The combination of inversely expressed miRNAs and targets improved diagnostic accuracy. In a clinical feature analysis, several miRNAs (miR-34a, miR-424, miR-20b, and miR-152 and genes (CCNE2, COL4A1, TRAF6, and HSP90B1 were associated with aggressive clinical features, which have not previously been reported. Our study not only identified a pivotal miRNA regulatory network associated with PTC but also provided evidence that miRNAs and target genes can be used as biomarkers in PTC diagnosis and clinical

  9. The Global Cancer Genomics Consortium: interfacing genomics and cancer medicine.

    Science.gov (United States)

    2012-08-01

    The Global Cancer Genomics Consortium (GCGC) is an international collaborative platform that amalgamates cancer biologists, cutting-edge genomics, and high-throughput expertise with medical oncologists and surgical oncologists; they address the most important translational questions that are central to cancer research and treatment. The annual GCGC symposium was held at the Advanced Centre for Treatment Research and Education in Cancer, Mumbai, India, from November 9 to 11, 2011. The symposium showcased international next-generation sequencing efforts that explore cancer-specific transcriptomic changes, single-nucleotide polymorphism, and copy number variations in various types of cancers, as well as the structural genomics approach to develop new therapeutic targets and chemical probes. From the spectrum of studies presented at the symposium, it is evident that the translation of emerging cancer genomics knowledge into clinical applications can only be achieved through the integration of multidisciplinary expertise. In summary, the GCGC symposium provided practical knowledge on structural and cancer genomics approaches, as well as an exclusive platform for focused cancer genomics endeavors. ©2012 AACR.

  10. Distinct high resolution genome profiles of early onset and late onset colorectal cancer integrated with gene expression data identify candidate susceptibility loci

    Directory of Open Access Journals (Sweden)

    Merok Marianne A

    2010-05-01

    Full Text Available Abstract Background Estimates suggest that up to 30% of colorectal cancers (CRC may develop due to an increased genetic risk. The mean age at diagnosis for CRC is about 70 years. Time of disease onset 20 years younger than the mean age is assumed to be indicative of genetic susceptibility. We have compared high resolution tumor genome copy number variation (CNV (Roche NimbleGen, 385 000 oligo CGH array in microsatellite stable (MSS tumors from two age groups, including 23 young at onset patients without known hereditary syndromes and with a median age of 44 years (range: 28-53 and 17 elderly patients with median age 79 years (range: 69-87. Our aim was to identify differences in the tumor genomes between these groups and pinpoint potential susceptibility loci. Integration analysis of CNV and genome wide mRNA expression data, available for the same tumors, was performed to identify a restricted candidate gene list. Results The total fraction of the genome with aberrant copy number, the overall genomic profile and the TP53 mutation spectrum were similar between the two age groups. However, both the number of chromosomal aberrations and the number of breakpoints differed significantly between the groups. Gains of 2q35, 10q21.3-22.1, 10q22.3 and 19q13.2-13.31 and losses from 1p31.3, 1q21.1, 2q21.2, 4p16.1-q28.3, 10p11.1 and 19p12, positions that in total contain more than 500 genes, were found significantly more often in the early onset group as compared to the late onset group. Integration analysis revealed a covariation of DNA copy number at these sites and mRNA expression for 107 of the genes. Seven of these genes, CLC, EIF4E, LTBP4, PLA2G12A, PPAT, RG9MTD2, and ZNF574, had significantly different mRNA expression comparing median expression levels across the transcriptome between the two groups. Conclusions Ten genomic loci, containing more than 500 protein coding genes, are identified as more often altered in tumors from early onset versus late

  11. Genome-wide mRNA and miRNA expression profiling reveal multiple regulatory networks in colorectal cancer

    DEFF Research Database (Denmark)

    Vishnubalaji, R; Hamam, R; Abdulla, MH

    2015-01-01

    Despite recent advances in cancer management, colorectal cancer (CRC) remains the third most common cancer and a major health-care problem worldwide. MicroRNAs have recently emerged as key regulators of cancer development and progression by targeting multiple cancer-related genes; however, such r...

  12. Genetic profiles distinguish different types of hereditary ovarian cancer

    DEFF Research Database (Denmark)

    Domanska, Katarina; Malander, Susanne; Staaf, Johan

    2010-01-01

    Heredity represents the strongest risk factor for ovarian cancer with disease predisposing mutations identified in 15% of the tumors. With the aim to identify genetic classifiers for hereditary ovarian cancer, we profiled hereditary ovarian cancers linked to the hereditary breast and ovarian cancer...... as a control group. Unsupervised cluster analysis identified two distinct subgroups related to genetic complexity. Sporadic and HBOC associated tumors had complex genetic profiles with an average 41% of the genome altered, whereas the mismatch repair defective tumors had stable genetic profiles...... that HBOC and HNPCC associated ovarian cancer develop along distinct genetic pathways and genetic profiles can thus be applied to distinguish between different types of hereditary ovarian cancer....

  13. Genetic profiles distinguish different types of hereditary ovarian cancer

    DEFF Research Database (Denmark)

    Domanska, Katarina; Malander, Susanne; Staaf, Johan

    2010-01-01

    Heredity represents the strongest risk factor for ovarian cancer with disease predisposing mutations identified in 15% of the tumors. With the aim to identify genetic classifiers for hereditary ovarian cancer, we profiled hereditary ovarian cancers linked to the hereditary breast and ovarian canc...... that HBOC and HNPCC associated ovarian cancer develop along distinct genetic pathways and genetic profiles can thus be applied to distinguish between different types of hereditary ovarian cancer.......Heredity represents the strongest risk factor for ovarian cancer with disease predisposing mutations identified in 15% of the tumors. With the aim to identify genetic classifiers for hereditary ovarian cancer, we profiled hereditary ovarian cancers linked to the hereditary breast and ovarian cancer...... (HBOC) syndrome and the hereditary non-polyposis colorectal cancer (HNPCC) syndrome. Genome-wide array comparative genomic hybridization was applied to 12 HBOC associated tumors with BRCA1 mutations and 8 HNPCC associated tumors with mismatch repair gene mutations with 24 sporadic ovarian cancers...

  14. Genomic Resources for Cancer Epidemiology

    Science.gov (United States)

    This page provides links to research resources, complied by the Epidemiology and Genomics Research Program, that may be of interest to genetic epidemiologists conducting cancer research, but is not exhaustive.

  15. Genome-wide profiling of HPV integration in cervical cancer identifies clustered genomic hot spots and a potential microhomology-mediated integration mechanism

    DEFF Research Database (Denmark)

    Hu, Zheng; Zhu, Da; Wang, Wei

    2015-01-01

    Human papillomavirus (HPV) integration is a key genetic event in cervical carcinogenesis1. By conducting whole-genome sequencing and high-throughput viral integration detection, we identified 3,667 HPV integration breakpoints in 26 cervical intraepithelial neoplasias, 104 cervical carcinomas......1B was downregulated when HPV integrated in their introns. Protein expression from MYC and HMGA2 was elevated when HPV integrated into flanking regions. Moreover, microhomologous sequence between the human and HPV genomes was significantly enriched near integration breakpoints, indicating...

  16. ROCK: a breast cancer functional genomics resource.

    Science.gov (United States)

    Sims, David; Bursteinas, Borisas; Gao, Qiong; Jain, Ekta; MacKay, Alan; Mitsopoulos, Costas; Zvelebil, Marketa

    2010-11-01

    The clinical and pathological heterogeneity of breast cancer has instigated efforts to stratify breast cancer sub-types according to molecular profiles. These profiling efforts are now being augmented by large-scale functional screening of breast tumour cell lines, using approaches such as RNA interference. We have developed ROCK ( rock.icr.ac.uk ) to provide a unique, publicly accessible resource for the integration of breast cancer functional and molecular profiling datasets. ROCK provides a simple online interface for the navigation and cross-correlation of gene expression, aCGH and RNAi screen data. It enables the interrogation of gene lists in the context of statistically analysed functional genomic datasets, interaction networks, pathways, GO terms, mutations and drug targets. The interface also provides interactive visualisations of datasets and interaction networks. ROCK collates data from a wealth of breast cancer molecular profiling and functional screening studies into a single portal, where analysed and annotated results can be accessed at the level of a gene, sample or study. We believe that portals such as ROCK will not only afford researchers rapid access to profiling data, but also aid the integration of different data types, thus enhancing the discovery of novel targets and biomarkers for breast cancer.

  17. State Cancer Profiles Web site

    Data.gov (United States)

    U.S. Department of Health & Human Services — The State Cancer Profiles (SCP) web site provides statistics to help guide and prioritize cancer control activities at the state and local levels. SCP is a...

  18. Genomic profiling of pediatric acute myeloid leukemia reveals a changing mutational landscape from disease diagnosis to relapse | Office of Cancer Genomics

    Science.gov (United States)

    The genomic and clinical information used to develop and implement therapeutic approaches for AML originated primarily from adult patients and has been generalized to patients with pediatric AML. However, age-specific molecular alterations are becoming more evident and may signify the need to age-stratify treatment regimens. The NCI/COG TARGET-AML initiative employed whole exome capture sequencing (WXS) to interrogate the genomic landscape of matched trios representing specimens collected upon diagnosis, remission, and relapse from 20 cases of de novo childhood AML.

  19. International network of cancer genome projects

    NARCIS (Netherlands)

    Hudson, Thomas J.; Anderson, Warwick; Aretz, Axel; Barker, Anna D.; Bell, Cindy; Bernabé, Rosa R.; Bhan, M. K.; Calvo, Fabien; Eerola, Iiro; Gerhard, Daniela S.; Guttmacher, Alan; Guyer, Mark; Hemsley, Fiona M.; Jennings, Jennifer L.; Kerr, David; Klatt, Peter; Kolar, Patrik; Kusuda, Jun; Lane, David P.; Laplace, Frank; Lu, Youyong; Nettekoven, Gerd; Ozenberger, Brad; Peterson, Jane; Rao, T. S.; Remacle, Jacques; Schafer, Alan J.; Shibata, Tatsuhiro; Stratton, Michael R.; Vockley, Joseph G.; Watanabe, Koichi; Yang, Huanming; Yuen, Matthew M. F.; Knoppers, Bartha M.; Bobrow, Martin; Cambon-Thomsen, Anne; Dressler, Lynn G.; Dyke, Stephanie O. M.; Joly, Yann; Kato, Kazuto; Kennedy, Karen L.; Nicolás, Pilar; Parker, Michael J.; Rial-Sebbag, Emmanuelle; Romeo-Casabona, Carlos M.; Shaw, Kenna M.; Wallace, Susan; Wiesner, Georgia L.; Zeps, Nikolajs; Lichter, Peter; Biankin, Andrew V.; Chabannon, Christian; Chin, Lynda; Clément, Bruno; de Alava, Enrique; Degos, Françoise; Ferguson, Martin L.; Geary, Peter; Hayes, D. Neil; Johns, Amber L.; Kasprzyk, Arek; Nakagawa, Hidewaki; Penny, Robert; Piris, Miguel A.; Sarin, Rajiv; Scarpa, Aldo; van de Vijver, Marc; Futreal, P. Andrew; Aburatani, Hiroyuki; Bayés, Mónica; Bowtell, David D. L.; Campbell, Peter J.; Estivill, Xavier; Grimmond, Sean M.; Gut, Ivo; Hirst, Martin; López-Otín, Carlos; Majumder, Partha; Marra, Marco; McPherson, John D.; Ning, Zemin; Puente, Xose S.; Ruan, Yijun; Stunnenberg, Hendrik G.; Swerdlow, Harold; Velculescu, Victor E.; Wilson, Richard K.; Xue, Hong H.; Yang, Liu; Spellman, Paul T.; Bader, Gary D.; Boutros, Paul C.; Flicek, Paul; Getz, Gad; Guigó, Roderic; Guo, Guangwu; Haussler, David; Heath, Simon; Hubbard, Tim J.; Jiang, Tao; Jones, Steven M.; Li, Qibin; López-Bigas, Nuria; Luo, Ruibang; Muthuswamy, Lakshmi; Ouellette, B. F. Francis; Pearson, John V.; Quesada, Victor; Raphael, Benjamin J.; Sander, Chris; Speed, Terence P.; Stein, Lincoln D.; Stuart, Joshua M.; Teague, Jon W.; Totoki, Yasushi; Tsunoda, Tatsuhiko; Valencia, Alfonso; Wheeler, David A.; Wu, Honglong; Zhao, Shancen; Zhou, Guangyu; Lathrop, Mark; Thomas, Gilles; Yoshida, Teruhiko; Axton, Myles; Gunter, Chris; Miller, Linda J.; Zhang, Junjun; Haider, Syed A.; Wang, Jianxin; Yung, Christina K.; Cross, Anthony; Liang, Yong; Gnaneshan, Saravanamuttu; Guberman, Jonathan; Hsu, Jack; Chalmers, Don R. C.; Hasel, Karl W.; Kaan, Terry S. H.; Lowrance, William W.; Masui, Tohru; Rodriguez, Laura Lyman; Vergely, Catherine; Cloonan, Nicole; Defazio, Anna; Eshleman, James R.; Etemadmoghadam, Dariush; Gardiner, Brooke A.; Kench, James G.; Sutherland, Robert L.; Tempero, Margaret A.; Waddell, Nicola J.; Wilson, Peter J.; Gallinger, Steve; Tsao, Ming-Sound; Shaw, Patricia A.; Petersen, Gloria M.; Mukhopadhyay, Debabrata; DePinho, Ronald A.; Thayer, Sarah; Shazand, Kamran; Beck, Timothy; Sam, Michelle; Timms, Lee; Ballin, Vanessa; Ji, Jiafu; Zhang, Xiuqing; Chen, Feng; Hu, Xueda; Yang, Qi; Tian, Geng; Zhang, Lianhai; Xing, Xiaofang; Li, Xianghong; Zhu, Zhenggang; Yu, Yingyan; Yu, Jun; Tost, Jörg; Brennan, Paul; Holcatova, Ivana; Zaridze, David; Brazma, Alvis; Egevad, Lars; Prokhortchouk, Egor; Banks, Rosamonde Elizabeth; Uhlén, Mathias; Viksna, Juris; Ponten, Fredrik; Skryabin, Konstantin; Birney, Ewan; Borg, Ake; Børresen-Dale, Anne-Lise; Caldas, Carlos; Foekens, John A.; Martin, Sancha; Reis-Filho, Jorge S.; Richardson, Andrea L.; Sotiriou, Christos; van't Veer, Laura; Birnbaum, Daniel; Blanche, Hélène; Boucher, Pascal; Boyault, Sandrine; Masson-Jacquemier, Jocelyne D.; Pauporté, Iris; Pivot, Xavier; Vincent-Salomon, Anne; Tabone, Eric; Theillet, Charles; Treilleux, Isabelle; Bioulac-Sage, Paulette; Decaens, Thomas; Franco, Dominique; Gut, Marta; Samuel, Didier; Zucman-Rossi, Jessica; Eils, Roland; Brors, Benedikt; Korbel, Jan O.; Korshunov, Andrey; Landgraf, Pablo; Lehrach, Hans; Pfister, Stefan; Radlwimmer, Bernhard; Reifenberger, Guido; Taylor, Michael D.; von Kalle, Christof; Majumder, Partha P.; Pederzoli, Paolo; Lawlor, Rita T.; Delledonne, Massimo; Bardelli, Alberto; Gress, Thomas; Klimstra, David; Zamboni, Giuseppe; Nakamura, Yusuke; Miyano, Satoru; Fujimoto, Akihiro; Campo, Elias; de Sanjosé, Silvia; Montserrat, Emili; González-Díaz, Marcos; Jares, Pedro; Himmelbaue, Heinz; Bea, Silvia; Aparicio, Samuel; Easton, Douglas F.; Collins, Francis S.; Compton, Carolyn C.; Lander, Eric S.; Burke, Wylie; Green, Anthony R.; Hamilton, Stanley R.; Kallioniemi, Olli P.; Ley, Timothy J.; Liu, Edison T.; Wainwright, Brandon J.

    2010-01-01

    The International Cancer Genome Consortium (ICGC) was launched to coordinate large-scale cancer genome studies in tumours from 50 different cancer types and/or subtypes that are of clinical and societal importance across the globe. Systematic studies of more than 25,000 cancer genomes at the

  20. General Approach to Identifying Potential Targets for Cancer Imaging by Integrated Bioinformatics Analysis of Publicly Available Genomic Profiles

    Directory of Open Access Journals (Sweden)

    Yongliang Yang

    2011-03-01

    Full Text Available Molecular imaging has moved to the forefront of drug development and biomedical research. The identification of appropriate imaging targets has become the touchstone for the accurate diagnosis and prognosis of human cancer. Particularly, cell surface- or membrane-bound proteins are attractive imaging targets for their aberrant expression, easily accessible location, and unique biochemical functions in tumor cells. Previously, we published a literature mining of potential targets for our in-house enzyme-mediated cancer imaging and therapy technology. Here we present a simple and integrated bioinformatics analysis approach that assembles a public cancer microarray database with a pathway knowledge base for ascertaining and prioritizing upregulated genes encoding cell surface- or membrane-bound proteins, which could serve imaging targets. As examples, we obtained lists of potential hits for six common and lethal human tumors in the prostate, breast, lung, colon, ovary, and pancreas. As control tests, a number of well-known cancer imaging targets were detected and confirmed by our study. Further, by consulting gene-disease and protein-disease databases, we suggest a number of significantly upregulated genes as promising imaging targets, including cell surface-associated mucin-1, prostate-specific membrane antigen, hepsin, urokinase plasminogen activator receptor, and folate receptors. By integrating pathway analysis, we are able to organize and map “focused” interaction networks derived from significantly dysregulated entity pairs to reflect important cellular functions in disease processes. We provide herein an example of identifying a tumor cell growth and proliferation subnetwork for prostate cancer. This systematic mining approach can be broadly applied to identify imaging or therapeutic targets for other human diseases.

  1. Whole genome DNA methylation profiling of oral cancer in ethnic population of Meghalaya, North East India reveals novel genes.

    Science.gov (United States)

    Khongsti, Shngainlang; Lamare, Frederick A; Shunyu, Neizekhotuo Brian; Ghosh, Sahana; Maitra, Arindam; Ghosh, Srimoyee

    2018-03-01

    Oral Squamous Cell Carcinoma (OSCC) is a serious and one of the most common and highly aggressive malignancies. Epigenetic factors such as DNA methylation have been known to be implicated in a number of cancer etiologies. The main objective of this study was to investigate physiognomies of Promoter DNA methylation patterns associated with oral cancer epigenome with special reference to the ethnic population of Meghalaya, North East India. The present study identifies 27,205 CpG sites and 3811 regions that are differentially methylated in oral cancer when compared to matched normal. 45 genes were found to be differentially methylated within the promoter region, of which 38 were hypermethylated and 7 hypomethylated. 14 of the hypermethylated genes were found to be similar to that of the TCGA-HNSCC study some of which are TSGs and few novel genes which may serve as candidate methylation biomarkers for OSCC in this poorly characterized ethnic group. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Profiling genome-wide DNA methylation.

    Science.gov (United States)

    Yong, Wai-Shin; Hsu, Fei-Man; Chen, Pao-Yang

    2016-01-01

    DNA methylation is an epigenetic modification that plays an important role in regulating gene expression and therefore a broad range of biological processes and diseases. DNA methylation is tissue-specific, dynamic, sequence-context-dependent and trans-generationally heritable, and these complex patterns of methylation highlight the significance of profiling DNA methylation to answer biological questions. In this review, we surveyed major methylation assays, along with comparisons and biological examples, to provide an overview of DNA methylation profiling techniques. The advances in microarray and sequencing technologies make genome-wide profiling possible at a single-nucleotide or even a single-cell resolution. These profiling approaches vary in many aspects, such as DNA input, resolution, genomic region coverage, and bioinformatics analysis, and selecting a feasible method requires knowledge of these methods. We first introduce the biological background of DNA methylation and its pattern in plants, animals and fungi. We present an overview of major experimental approaches to profiling genome-wide DNA methylation and hydroxymethylation and then extend to the single-cell methylome. To evaluate these methods, we outline their strengths and weaknesses and perform comparisons across the different platforms. Due to the increasing need to compute high-throughput epigenomic data, we interrogate the computational pipeline for bisulfite sequencing data and also discuss the concept of identifying differentially methylated regions (DMRs). This review summarizes the experimental and computational concepts for profiling genome-wide DNA methylation, followed by biological examples. Overall, this review provides researchers useful guidance for the selection of a profiling method suited to specific research questions.

  3. Characterizing genomic alterations in cancer by complementary functional associations.

    Science.gov (United States)

    Kim, Jong Wook; Botvinnik, Olga B; Abudayyeh, Omar; Birger, Chet; Rosenbluh, Joseph; Shrestha, Yashaswi; Abazeed, Mohamed E; Hammerman, Peter S; DiCara, Daniel; Konieczkowski, David J; Johannessen, Cory M; Liberzon, Arthur; Alizad-Rahvar, Amir Reza; Alexe, Gabriela; Aguirre, Andrew; Ghandi, Mahmoud; Greulich, Heidi; Vazquez, Francisca; Weir, Barbara A; Van Allen, Eliezer M; Tsherniak, Aviad; Shao, Diane D; Zack, Travis I; Noble, Michael; Getz, Gad; Beroukhim, Rameen; Garraway, Levi A; Ardakani, Masoud; Romualdi, Chiara; Sales, Gabriele; Barbie, David A; Boehm, Jesse S; Hahn, William C; Mesirov, Jill P; Tamayo, Pablo

    2016-05-01

    Systematic efforts to sequence the cancer genome have identified large numbers of mutations and copy number alterations in human cancers. However, elucidating the functional consequences of these variants, and their interactions to drive or maintain oncogenic states, remains a challenge in cancer research. We developed REVEALER, a computational method that identifies combinations of mutually exclusive genomic alterations correlated with functional phenotypes, such as the activation or gene dependency of oncogenic pathways or sensitivity to a drug treatment. We used REVEALER to uncover complementary genomic alterations associated with the transcriptional activation of β-catenin and NRF2, MEK-inhibitor sensitivity, and KRAS dependency. REVEALER successfully identified both known and new associations, demonstrating the power of combining functional profiles with extensive characterization of genomic alterations in cancer genomes.

  4. Brain cancer genomics and epigenomics.

    Science.gov (United States)

    Archer, Tenley C; Sengupta, Soma; Pomeroy, Scott L

    2018-01-01

    Classically, brain cancers have been graded and diagnosed based on histology and risk stratified by clinical criteria. Recent advances in genomics and epigenomics have ushered in an era of defining cancers based on molecular criteria. These advances have increased our precision of identifying oncogenic driving events and, most importantly, increased our precision at predicting clinical outcome. For the first time in its history, the 2016 revision of the WHO Classification of Tumors of the Central Nervous System included molecular features as tumor classification criteria. Brain tumors can develop in the context of genetic cancer predisposition syndromes, such as Li-Fraumeni or Gorlin syndrome, but by far most commonly arise through the acquisition of somatic mutations and chromosome changes in the malignant cells. By taking a survey across this cancer landscape, certain themes emerge as being common events to drive cancer: DNA damage repair, genomic instability, mechanistic target of rapamycin pathway, sonic hedgehog pathway, hypoxia, and epigenetic dysfunction. Understanding these mechanisms is of paramount importance for improving targeted therapies, and for identifying the right patients for those therapies. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. A Gene Gravity Model for the Evolution of Cancer Genomes: A Study of 3,000 Cancer Genomes across 9 Cancer Types

    Science.gov (United States)

    Lin, Chen-Ching; Zhao, Junfei; Jia, Peilin; Li, Wen-Hsiung; Zhao, Zhongming

    2015-01-01

    Cancer development and progression result from somatic evolution by an accumulation of genomic alterations. The effects of those alterations on the fitness of somatic cells lead to evolutionary adaptations such as increased cell proliferation, angiogenesis, and altered anticancer drug responses. However, there are few general mathematical models to quantitatively examine how perturbations of a single gene shape subsequent evolution of the cancer genome. In this study, we proposed the gene gravity model to study the evolution of cancer genomes by incorporating the genome-wide transcription and somatic mutation profiles of ~3,000 tumors across 9 cancer types from The Cancer Genome Atlas into a broad gene network. We found that somatic mutations of a cancer driver gene may drive cancer genome evolution by inducing mutations in other genes. This functional consequence is often generated by the combined effect of genetic and epigenetic (e.g., chromatin regulation) alterations. By quantifying cancer genome evolution using the gene gravity model, we identified six putative cancer genes (AHNAK, COL11A1, DDX3X, FAT4, STAG2, and SYNE1). The tumor genomes harboring the nonsynonymous somatic mutations in these genes had a higher mutation density at the genome level compared to the wild-type groups. Furthermore, we provided statistical evidence that hypermutation of cancer driver genes on inactive X chromosomes is a general feature in female cancer genomes. In summary, this study sheds light on the functional consequences and evolutionary characteristics of somatic mutations during tumorigenesis by propelling adaptive cancer genome evolution, which would provide new perspectives for cancer research and therapeutics. PMID:26352260

  6. Genomic data on breast cancer transcript profile modulation by 17beta-hydroxysteroid dehydrogenase type 1 and 17-beta-estradiol

    Directory of Open Access Journals (Sweden)

    Juliette A. Aka

    2016-12-01

    Full Text Available The data presented here are related to the research article entitled “Estradiol-independent modulation of breast cancer transcript profile by 17beta-hydroxysteroid dehydrogenase type 1” (J.A. Aka, E.L. Calvo, S.X. Lin, 2016 [1]. We evaluated the effect of the steroidal enzyme 17β-HSD1 and its product, the estrogenic hormone 17-beta-estradiol (E2, on gene transcription profile of breast cancer cells. RNA interference technique was used to knock down the 17β-HSD1 gene (HSD17B1 in the hormone-dependent breast cancer cell line T47D in steroid-deprived medium. Transfected cells were subsequently treated with E2, and microarray analyses (with three contrasts were used to investigate (i the effect of 17β-HSD1 expression on breast cancer cell transcript profile in steroid-deprived condition, (ii the effect of E2 on breast cancer gene expression and (iii if E2 affects gene regulation by 17β-HSD1. Functional enrichments of the differentially expressed genes were assessed using Ingenuity Pathway Analysis (IPA. Here, we showed data on 140 genes that are induced or repressed 1.5 time or higher (p < 0.05 in the HSD17B1-silenced and E2-treated T47D cells revealed by microarray analysis, and presented the 14 functional terms found in the cancer and in the cell death and survival categories revealed by the IPA biological function analysis. Data on IPA Canonical Pathway and network analyses is also presented. Further discussion on gene regulation by 17β-HSD1 and E2 is provided in the accompanying publication [1].

  7. Decoding the fine-scale structure of a breast cancer genome and transcriptome

    OpenAIRE

    Volik, Stanislav; Raphael, Benjamin J.; Huang, Guiqing; Stratton, Michael R.; Bignel, Graham; Murnane, John; Brebner, John H.; Bajsarowicz, Krystyna; Paris, Pamela L.; Tao, Quanzhou; Kowbel, David; Lapuk, Anna; Shagin, Dmitri A.; Shagina, Irina A.; Gray, Joe W.

    2006-01-01

    A comprehensive understanding of cancer is predicated upon knowledge of the structure of malignant genomes underlying its many variant forms and the molecular mechanisms giving rise to them. It is well established that solid tumor genomes accumulate a large number of genome rearrangements during tumorigenesis. End Sequence Profiling (ESP) maps and clones genome breakpoints associated with all types of genome rearrangements elucidating the structural organization of tumor genomes. Here we exte...

  8. SIGMA: A System for Integrative Genomic Microarray Analysis of Cancer Genomes

    Directory of Open Access Journals (Sweden)

    Davies Jonathan J

    2006-12-01

    Full Text Available Abstract Background The prevalence of high resolution profiling of genomes has created a need for the integrative analysis of information generated from multiple methodologies and platforms. Although the majority of data in the public domain are gene expression profiles, and expression analysis software are available, the increase of array CGH studies has enabled integration of high throughput genomic and gene expression datasets. However, tools for direct mining and analysis of array CGH data are limited. Hence, there is a great need for analytical and display software tailored to cross platform integrative analysis of cancer genomes. Results We have created a user-friendly java application to facilitate sophisticated visualization and analysis such as cross-tumor and cross-platform comparisons. To demonstrate the utility of this software, we assembled array CGH data representing Affymetrix SNP chip, Stanford cDNA arrays and whole genome tiling path array platforms for cross comparison. This cancer genome database contains 267 profiles from commonly used cancer cell lines representing 14 different tissue types. Conclusion In this study we have developed an application for the visualization and analysis of data from high resolution array CGH platforms that can be adapted for analysis of multiple types of high throughput genomic datasets. Furthermore, we invite researchers using array CGH technology to deposit both their raw and processed data, as this will be a continually expanding database of cancer genomes. This publicly available resource, the System for Integrative Genomic Microarray Analysis (SIGMA of cancer genomes, can be accessed at http://sigma.bccrc.ca.

  9. Plasma 25 hydroxyvitamin D level and blood gene expression profiles: a cross-sectional study of the Norwegian Women and Cancer Post-genome Cohort.

    Science.gov (United States)

    Standahl Olsen, K; Rylander, C; Brustad, M; Aksnes, L; Lund, E

    2013-07-01

    Vitamin D deficiency has been associated with increased risk of developing several diseases, but much is unknown about the molecular effects involved. Gene expression technology is increasingly being used to elucidate molecular mechanisms related to nutritional factors, and in this study of free-living, middle-aged Norwegian women, we aimed at identifying gene expression pathways in the blood associated with vitamin D status. Blood samples and questionnaires were collected as a part of the Norwegian Women and Cancer Post-genome Cohort (500 invited subjects, 218 included). Plasma 25 hydroxyvitamin D (25(OH)D) concentrations were measured using high-performance liquid chromatography, and we compared groups with sufficient versus deficient vitamin D status (25(OH)D >50 nmol/l (n=66) versus genome microarrays. In a targeted pathway-level analysis, several immunological processes, immune cell functions and major signaling pathways were differentially regulated according to vitamin D status (Pnutritional factors.

  10. The Genomic Landscape and Clinical Relevance of A-to-I RNA Editing in Human Cancers | Office of Cancer Genomics

    Science.gov (United States)

    Adenosine-to-inosine (A-to-I) RNA editing is a widespread post-transcriptional mechanism, but its genomic landscape and clinical relevance in cancer have not been investigated systematically. We characterized the global A-to-I RNA editing profiles of 6,236 patient samples of 17 cancer types from The Cancer Genome Atlas and revealed a striking diversity of altered RNA-editing patterns in tumors relative to normal tissues. We identified an appreciable number of clinically relevant editing events, many of which are in noncoding regions.

  11. Integration of genomics in cancer care

    DEFF Research Database (Denmark)

    Santos, Erika Maria Monteiro; Edwards, Quannetta T; Floria-Santos, Milena

    2013-01-01

    PURPOSE: The article aims to introduce nurses to how genetics-genomics is currently integrated into cancer care from prevention to treatment and influencing oncology nursing practice. ORGANIZING CONSTRUCT: An overview of genetics-genomics is described as it relates to cancer etiology, hereditary...... cancer syndromes, epigenetics factors, and management of care considerations. METHODS: Peer-reviewed literature and expert professional guidelines were reviewed to address concepts of genetics-genomics in cancer care. FINDINGS: Cancer is now known to be heterogeneous at the molecular level, with genetic...... and genomic factors underlying the etiology of all cancers. Understanding how these factors contribute to the development and treatment of both sporadic and hereditary cancers is important in cancer risk assessment, prevention, diagnosis, treatment, and long-term management and surveillance. CONCLUSIONS...

  12. [Epidemiological profile of ovarian cancer].

    Science.gov (United States)

    Rivas-Corchado, Luz María; González-Geroniz, Manuel; Hernández-Herrera, Ricardo Jorge

    2011-09-01

    In Mexico, ovarian cancer represents 5.3% of cancer diagnoses in all age groups and 21% of gynecologic cancers. The states with the highest incidence of this disease Nuevo León, Mexico State and Federal District. To determine the epidemiological profile of ovarian cancer. A retrospective cross-sectional study that included all patients with complete records, diagnosed with ovarian cancer treated at the Oncology department UMAE Monterrey No. 23, January 2009 to 31 December 2009. We identified 40 patients with ovarian cancer. The average age of menarche was 12.7 years, 40% were of reproductive age, 25% were nulliparous, 15% had a pregnancy and 37.5% had two pregnancies. Of the total patients, 17% had a history of breast cancer, 40% used a contraceptive method, 37% used oral contraceptives. The tumor marker CA 125 was found in 40% of patients, 63.1% had ultrasound markers for cancer. The most frequent clinical stage 1A in which they found 32% of cases. Papillary serous adenocarcinoma was diagnosed in 25% of patients, endometroid adenocarcinoma and mucinous tumor of low malignant potential was diagnosed borderline at 20%, poorly differentiated adenocarcinoma in 18% tumor granulosa cells in 7% and papillary adenocarcinoma ring cell adenocarcinoma in 5%. In total, 43% of patients received chemotherapy. The majority of cases tenia50 years or more. The background was the most frequent hereditary breast cancer. There were no deaths during the study.

  13. Pathway and network analysis of cancer genomes

    DEFF Research Database (Denmark)

    Creixell, Pau; Reimand, Jueri; Haider, Syed

    2015-01-01

    Genomic information on tumors from 50 cancer types cataloged by the International Cancer Genome Consortium (ICGC) shows that only a few well-studied driver genes are frequently mutated, in contrast to many infrequently mutated genes that may also contribute to tumor biology. Hence there has been ...

  14. The UCSC Cancer Genomics Browser: update 2013.

    Science.gov (United States)

    Goldman, Mary; Craft, Brian; Swatloski, Teresa; Ellrott, Kyle; Cline, Melissa; Diekhans, Mark; Ma, Singer; Wilks, Chris; Stuart, Josh; Haussler, David; Zhu, Jingchun

    2013-01-01

    The UCSC Cancer Genomics Browser (https://genome-cancer.ucsc.edu/) is a set of web-based tools to display, investigate and analyse cancer genomics data and its associated clinical information. The browser provides whole-genome to base-pair level views of several different types of genomics data, including some next-generation sequencing platforms. The ability to view multiple datasets together allows users to make comparisons across different data and cancer types. Biological pathways, collections of genes, genomic or clinical information can be used to sort, aggregate and zoom into a group of samples. We currently display an expanding set of data from various sources, including 201 datasets from 22 TCGA (The Cancer Genome Atlas) cancers as well as data from Cancer Cell Line Encyclopedia and Stand Up To Cancer. New features include a completely redesigned user interface with an interactive tutorial and updated documentation. We have also added data downloads, additional clinical heatmap features, and an updated Tumor Image Browser based on Google Maps. New security features allow authenticated users access to private datasets hosted by several different consortia through the public website.

  15. The UCSC Cancer Genomics Browser: update 2015.

    Science.gov (United States)

    Goldman, Mary; Craft, Brian; Swatloski, Teresa; Cline, Melissa; Morozova, Olena; Diekhans, Mark; Haussler, David; Zhu, Jingchun

    2015-01-01

    The UCSC Cancer Genomics Browser (https://genome-cancer.ucsc.edu/) is a web-based application that integrates relevant data, analysis and visualization, allowing users to easily discover and share their research observations. Users can explore the relationship between genomic alterations and phenotypes by visualizing various -omic data alongside clinical and phenotypic features, such as age, subtype classifications and genomic biomarkers. The Cancer Genomics Browser currently hosts 575 public datasets from genome-wide analyses of over 227,000 samples, including datasets from TCGA, CCLE, Connectivity Map and TARGET. Users can download and upload clinical data, generate Kaplan-Meier plots dynamically, export data directly to Galaxy for analysis, plus generate URL bookmarks of specific views of the data to share with others. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Genome-wide methylation profiling of ovarian cancer patient-derived xenografts treated with the demethylating agent decitabine identifies novel epigenetically regulated genes and pathways

    Directory of Open Access Journals (Sweden)

    Tushar Tomar

    2016-10-01

    Full Text Available Abstract Background In high-grade serous ovarian cancer (HGSOC, intrinsic and/or acquired resistance against platinum-containing chemotherapy is a major obstacle for successful treatment. A low frequency of somatic mutations but frequent epigenetic alterations, including DNA methylation in HGSOC tumors, presents the cancer epigenome as a relevant target for innovative therapy. Patient-derived xenografts (PDXs supposedly are good preclinical models for identifying novel drug targets. However, the representativeness of global methylation status of HGSOC PDXs compared to their original tumors has not been evaluated so far. Aims of this study were to explore how representative HGSOC PDXs are of their corresponding patient tumor methylome and to evaluate the effect of epigenetic therapy and cisplatin on putative epigenetically regulated genes and their related pathways in PDXs. Methods Genome-wide analysis of the DNA methylome of HGSOC patients with their corresponding PDXs, from different generations, was performed using Infinium 450 K methylation arrays. Furthermore, we analyzed global methylome changes after treatment of HGSOC PDXs with the FDA approved demethylating agent decitabine and cisplatin. Findings were validated by bisulfite pyrosequencing with subsequent pathway analysis. Publicly available datasets comprising HGSOC patients were used to analyze the prognostic value of the identified genes. Results Only 0.6–1.0 % of all analyzed CpGs (388,696 CpGs changed significantly (p < 0.01 during propagation, showing that HGSOC PDXs were epigenetically stable. Treatment of F3 PDXs with decitabine caused a significant reduction in methylation in 10.6 % of CpG sites in comparison to untreated PDXs (p < 0.01, false discovery rate <10 %. Cisplatin treatment had a marginal effect on the PDX methylome. Pathway analysis of decitabine-treated PDX tumors revealed several putative epigenetically regulated pathways (e.g., the Src family kinase

  17. Fenton reaction induced cancer in wild type rats recapitulates genomic alterations observed in human cancer.

    Directory of Open Access Journals (Sweden)

    Shinya Akatsuka

    Full Text Available Iron overload has been associated with carcinogenesis in humans. Intraperitoneal administration of ferric nitrilotriacetate initiates a Fenton reaction in renal proximal tubules of rodents that ultimately leads to a high incidence of renal cell carcinoma (RCC after repeated treatments. We performed high-resolution microarray comparative genomic hybridization to identify characteristics in the genomic profiles of this oxidative stress-induced rat RCCs. The results revealed extensive large-scale genomic alterations with a preference for deletions. Deletions and amplifications were numerous and sometimes fragmented, demonstrating that a Fenton reaction is a cause of such genomic alterations in vivo. Frequency plotting indicated that two of the most commonly altered loci corresponded to a Cdkn2a/2b deletion and a Met amplification. Tumor sizes were proportionally associated with Met expression and/or amplification, and clustering analysis confirmed our results. Furthermore, we developed a procedure to compare whole genomic patterns of the copy number alterations among different species based on chromosomal syntenic relationship. Patterns of the rat RCCs showed the strongest similarity to the human RCCs among five types of human cancers, followed by human malignant mesothelioma, an iron overload-associated cancer. Therefore, an iron-dependent Fenton chemical reaction causes large-scale genomic alterations during carcinogenesis, which may result in distinct genomic profiles. Based on the characteristics of extensive genome alterations in human cancer, our results suggest that this chemical reaction may play a major role during human carcinogenesis.

  18. Genomics DNA Profiling in Elite Professional Soccer Players: A Pilot Study

    OpenAIRE

    Kambouris, M; Del Buono, A; Maffulli, N

    2014-01-01

    Functional variants in exonic regions have been associated with development of cardiovascular disease, diabetes and cancer. Athletic performance can be considered a multi-factorial complex phenotype. Genomic DNA was extracted from buccal swabs of seven soccer players from the Fulham football team. Single nucleotide polymorphism (SNPs) genotyping was undertaken. To achieve optimal athletic performance, predictive genomics DNA profiling for sports performance can be used to aid in sport selecti...

  19. Plasma fatty acid ratios affect blood gene expression profiles--a cross-sectional study of the Norwegian Women and Cancer Post-Genome Cohort.

    Directory of Open Access Journals (Sweden)

    Karina Standahl Olsen

    Full Text Available High blood concentrations of n-6 fatty acids (FAs relative to n-3 FAs may lead to a "physiological switch" towards permanent low-grade inflammation, potentially influencing the onset of cardiovascular and inflammatory diseases, as well as cancer. To explore the potential effects of FA ratios prior to disease onset, we measured blood gene expression profiles and plasma FA ratios (linoleic acid/alpha-linolenic acid, LA/ALA; arachidonic acid/eicosapentaenoic acid, AA/EPA; and total n-6/n-3 in a cross-section of middle-aged Norwegian women (n = 227. After arranging samples from the highest values to the lowest for all three FA ratios (LA/ALA, AA/EPA and total n-6/n-3, the highest and lowest deciles of samples were compared. Differences in gene expression profiles were assessed by single-gene and pathway-level analyses. The LA/ALA ratio had the largest impact on gene expression profiles, with 135 differentially expressed genes, followed by the total n-6/n-3 ratio (125 genes and the AA/EPA ratio (72 genes. All FA ratios were associated with genes related to immune processes, with a tendency for increased pro-inflammatory signaling in the highest FA ratio deciles. Lipid metabolism related to peroxisome proliferator-activated receptor γ (PPARγ signaling was modified, with possible implications for foam cell formation and development of cardiovascular diseases. We identified higher expression levels of several autophagy marker genes, mainly in the lowest LA/ALA decile. This finding may point to the regulation of autophagy as a novel aspect of FA biology which warrants further study. Lastly, all FA ratios were associated with gene sets that included targets of specific microRNAs, and gene sets containing common promoter motifs that did not match any known transcription factors. We conclude that plasma FA ratios are associated with differences in blood gene expression profiles in this free-living population, and that affected genes and pathways may

  20. Genomic Biomarkers for Breast Cancer Risk

    Science.gov (United States)

    Walsh, Michael F.; Nathanson, Katherine L.; Couch, Fergus J.

    2016-01-01

    Clinical risk assessment for cancer predisposition includes a three-generation pedigree and physical examination to identify inherited syndromes. Additionally genetic and genomic biomarkers may identify individuals with a constitutional basis for their disease that may not be evident clinically. Genomic biomarker testing may detect molecular variations in single genes, panels of genes, or entire genomes. The strength of evidence for the association of a genomic biomarker with disease risk may be weak or strong. The factors contributing to clinical validity and utility of genomic biomarkers include functional laboratory analyses and genetic epidemiologic evidence. Genomic biomarkers may be further classified as low, moderate or highly penetrant based on the likelihood of disease. Genomic biomarkers for breast cancer are comprised of rare highly penetrant mutations of genes such as BRCA1 or BRCA2, moderately penetrant mutations of genes such as CHEK2, as well as more common genomic variants, including single nucleotide polymorphisms, associated with modest effect sizes. When applied in the context of appropriate counseling and interpretation, identification of genomic biomarkers of inherited risk for breast cancer may decrease morbidity and mortality, allow for definitive prevention through assisted reproduction, and serve as a guide to targeted therapy. PMID:26987529

  1. Genome Stability Pathways in Head and Neck Cancers

    Directory of Open Access Journals (Sweden)

    Glenn Jenkins

    2013-01-01

    Full Text Available Genomic instability underlies the transformation of host cells toward malignancy, promotes development of invasion and metastasis and shapes the response of established cancer to treatment. In this review, we discuss recent advances in our understanding of genomic stability in squamous cell carcinoma of the head and neck (HNSCC, with an emphasis on DNA repair pathways. HNSCC is characterized by distinct profiles in genome stability between similarly staged cancers that are reflected in risk, treatment response and outcomes. Defective DNA repair generates chromosomal derangement that can cause subsequent alterations in gene expression, and is a hallmark of progression toward carcinoma. Variable functionality of an increasing spectrum of repair gene polymorphisms is associated with increased cancer risk, while aetiological factors such as human papillomavirus, tobacco and alcohol induce significantly different behaviour in induced malignancy, underpinned by differences in genomic stability. Targeted inhibition of signalling receptors has proven to be a clinically-validated therapy, and protein expression of other DNA repair and signalling molecules associated with cancer behaviour could potentially provide a more refined clinical model for prognosis and treatment prediction. Development and expansion of current genomic stability models is furthering our understanding of HNSCC pathophysiology and uncovering new, promising treatment strategies.

  2. The genomic landscape of prostate cancer

    Directory of Open Access Journals (Sweden)

    Sylvan eBaca

    2012-05-01

    Full Text Available Prostate cancer is a common malignancy in men, with a markedly variable clinical course. Somatic alterations in DNA drive the growth of prostate cancers and may underlie the behavior of aggressive versus indolent tumors. The accelerating application of genomic technologies over the last two decades has identified mutations that drive prostate cancer formation, progression, and therapeutic resistance. Here, we discuss exemplary somatic mutations in prostate cancer, and highlight mutated cellular pathways with biological and possible therapeutic importance. Examples include mutated genes involved in androgen signaling, cell cycle regulation, signal transduction and development. Some genetic alterations may also predict the clinical course of disease or response to therapy, although the molecular heterogeneity of prostate tumors poses challenges to genomic biomarker identification. The widespread application of massively parallel sequencing technology to the analysis of prostate cancer genomes should continue to advance both discovery-oriented and diagnostic avenues.

  3. Comprehensive data-driven analysis of the impact of chemoinformatic structure on the genome-wide biological response profiles of cancer cells to 1159 drugs.

    Science.gov (United States)

    Khan, Suleiman A; Faisal, Ali; Mpindi, John Patrick; Parkkinen, Juuso A; Kalliokoski, Tuomo; Poso, Antti; Kallioniemi, Olli P; Wennerberg, Krister; Kaski, Samuel

    2012-05-30

    Detailed and systematic understanding of the biological effects of millions of available compounds on living cells is a significant challenge. As most compounds impact multiple targets and pathways, traditional methods for analyzing structure-function relationships are not comprehensive enough. Therefore more advanced integrative models are needed for predicting biological effects elicited by specific chemical features. As a step towards creating such computational links we developed a data-driven chemical systems biology approach to comprehensively study the relationship of 76 structural 3D-descriptors (VolSurf, chemical space) of 1159 drugs with the microarray gene expression responses (biological space) they elicited in three cancer cell lines. The analysis covering 11350 genes was based on data from the Connectivity Map. We decomposed the biological response profiles into components, each linked to a characteristic chemical descriptor profile. Integrated analysis of both the chemical and biological space was more informative than either dataset alone in predicting drug similarity as measured by shared protein targets. We identified ten major components that link distinct VolSurf chemical features across multiple compounds to specific cellular responses. For example, component 2 (hydrophobic properties) strongly linked to DNA damage response, while component 3 (hydrogen bonding) was associated with metabolic stress. Individual structural and biological features were often linked to one cell line only, such as leukemia cells (HL-60) specifically responding to cardiac glycosides. In summary, our approach identified several novel links between specific chemical structure properties and distinct biological responses in cells incubated with these drugs. Importantly, the analysis focused on chemical-biological properties that emerge across multiple drugs. The decoding of such systematic relationships is necessary to build better models of drug effects, including

  4. Cancer Genome Sequencing and Its Implications for Personalized Cancer Vaccines

    International Nuclear Information System (INIS)

    Li, Lijin; Goedegebuure, Peter; Mardis, Elaine R.; Ellis, Matthew J.C.; Zhang, Xiuli; Herndon, John M.; Fleming, Timothy P.; Carreno, Beatriz M.; Hansen, Ted H.; Gillanders, William E.

    2011-01-01

    New DNA sequencing platforms have revolutionized human genome sequencing. The dramatic advances in genome sequencing technologies predict that the $1,000 genome will become a reality within the next few years. Applied to cancer, the availability of cancer genome sequences permits real-time decision-making with the potential to affect diagnosis, prognosis, and treatment, and has opened the door towards personalized medicine. A promising strategy is the identification of mutated tumor antigens, and the design of personalized cancer vaccines. Supporting this notion are preliminary analyses of the epitope landscape in breast cancer suggesting that individual tumors express significant numbers of novel antigens to the immune system that can be specifically targeted through cancer vaccines

  5. Cancer Genome Sequencing and Its Implications for Personalized Cancer Vaccines

    Directory of Open Access Journals (Sweden)

    William E. Gillanders

    2011-11-01

    Full Text Available New DNA sequencing platforms have revolutionized human genome sequencing. The dramatic advances in genome sequencing technologies predict that the $1,000 genome will become a reality within the next few years. Applied to cancer, the availability of cancer genome sequences permits real-time decision-making with the potential to affect diagnosis, prognosis, and treatment, and has opened the door towards personalized medicine. A promising strategy is the identification of mutated tumor antigens, and the design of personalized cancer vaccines. Supporting this notion are preliminary analyses of the epitope landscape in breast cancer suggesting that individual tumors express significant numbers of novel antigens to the immune system that can be specifically targeted through cancer vaccines.

  6. Cancer Genome Sequencing and Its Implications for Personalized Cancer Vaccines

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lijin [Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110 (United States); Goedegebuure, Peter [Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110 (United States); The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO 63110 (United States); Mardis, Elaine R. [The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO 63110 (United States); The Genome Institute at Washington University School of Medicine, St. Louis, MO 63108 (United States); Ellis, Matthew J.C. [The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO 63110 (United States); Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110 (United States); Zhang, Xiuli; Herndon, John M. [Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110 (United States); Fleming, Timothy P. [Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110 (United States); The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO 63110 (United States); Carreno, Beatriz M. [The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO 63110 (United States); Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110 (United States); Hansen, Ted H. [The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO 63110 (United States); Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110 (United States); Gillanders, William E., E-mail: gillandersw@wudosis.wustl.edu [Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110 (United States); The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO 63110 (United States)

    2011-11-25

    New DNA sequencing platforms have revolutionized human genome sequencing. The dramatic advances in genome sequencing technologies predict that the $1,000 genome will become a reality within the next few years. Applied to cancer, the availability of cancer genome sequences permits real-time decision-making with the potential to affect diagnosis, prognosis, and treatment, and has opened the door towards personalized medicine. A promising strategy is the identification of mutated tumor antigens, and the design of personalized cancer vaccines. Supporting this notion are preliminary analyses of the epitope landscape in breast cancer suggesting that individual tumors express significant numbers of novel antigens to the immune system that can be specifically targeted through cancer vaccines.

  7. Computational Profiling of Microbial Genomes using Short Sequences

    Science.gov (United States)

    Doering, Dale; Tsukuda, Toyoko

    2001-03-01

    The genomes of a number of microbial species have now been completely sequenced. We have developed a program for the statistical analysis of the appearance frequency and location of short DNA segments within an entire microbial genome. Using this program, the genomes of Methanococcus jannischii (1.66 Mbase; 68radiodurans (3.28 Mbase; 66and compared to a randomly generated genomic pattern. The random sequence shows the expected statistical frequency distribution about the average that equals the genome size divided by the total number of N size short segments (4N). In contrast, the microbial genomes are radically skewed with a large number of segments that rarely occur and a few that are highly represented in the genome. The specific distribution profile of the segments is strongly dependent on the overall bias in the organism. The biased appearance frequency allows us to develop a genome signature of each microbial species.

  8. Genome scale metabolic modeling of cancer

    DEFF Research Database (Denmark)

    Nilsson, Avlant; Nielsen, Jens

    2017-01-01

    of metabolism which allows simulation and hypotheses testing of metabolic strategies. It has successfully been applied to many microorganisms and is now used to study cancer metabolism. Generic models of human metabolism have been reconstructed based on the existence of metabolic genes in the human genome......Cancer cells reprogram metabolism to support rapid proliferation and survival. Energy metabolism is particularly important for growth and genes encoding enzymes involved in energy metabolism are frequently altered in cancer cells. A genome scale metabolic model (GEM) is a mathematical formalization...

  9. REPARATION : ribosome profiling assisted (re-)annotation of bacterial genomes

    OpenAIRE

    Ndah, Elvis; Jonckheere, Veronique; Giess, Adam; Valen, Eivind; Menschaert, Gerben; Van Damme, Petra

    2017-01-01

    Prokaryotic genome annotation is highly dependent on automated methods, as manual curation cannot keep up with the exponential growth of sequenced genomes. Current automated methods depend heavily on sequence composition and often underestimate the complexity of the proteome. We developed RibosomeE Profiling Assisted (re-)AnnotaTION (REPARATION), a de novo machine learning algorithm that takes advantage of experimental protein synthesis evidence from ribosome profiling (Ribo-seq) to delineate...

  10. REPARATION: ribosome profiling assisted (re-)annotation of bacterial genomes

    OpenAIRE

    Ndah, Elvis; Jonckheere, Veronique; Giess, Adam; Valen, Eivind; Menschaert, Gerben; Van Damme, Petra

    2017-01-01

    Abstract Prokaryotic genome annotation is highly dependent on automated methods, as manual curation cannot keep up with the exponential growth of sequenced genomes. Current automated methods depend heavily on sequence composition and often underestimate the complexity of the proteome. We developed RibosomeE Profiling Assisted (re-)AnnotaTION (REPARATION), a de novo machine learning algorithm that takes advantage of experimental protein synthesis evidence from ribosome profiling (Ribo-seq) to ...

  11. Genomic rearrangements of PTEN in prostate cancer

    Directory of Open Access Journals (Sweden)

    Sopheap ePhin

    2013-09-01

    Full Text Available The phosphatase and tensin homolog gene on chromosome 10q23.3 (PTEN is a negative regulator of the PIK3/Akt survival pathway and is the most frequently deleted tumor suppressor gene in prostate cancer. Monoallelic loss of PTEN is present in up to 60% of localized prostate cancers and complete loss of PTEN in prostate cancer is linked to metastasis and androgen independent progression. Studies on the genomic status of PTEN in prostate cancer initially used a two-color fluorescence in-situ hybridization (FISH assay for PTEN copy number detection in formalin fixed paraffin embedded tissue preparations. More recently, a four-color FISH assay containing two additional control probes flanking the PTEN locus with a lower false-positive rate was reported. Combined with the detection of other critical genomic biomarkers for prostate cancer such as ERG, AR, and MYC, the evaluation of PTEN genomic status has proven to be invaluable for patient stratification and management. Although less frequent than allelic deletions, point mutations in the gene and epigenetic silencing are also known to contribute to loss of PTEN function, and ultimately to prostate cancer initiation. Overall, it is clear that PTEN is a powerful biomarker for prostate cancer. Used as a companion diagnostic for emerging therapeutic drugs, FISH analysis of PTEN is promisingly moving human prostate cancer closer to more effective cancer management and therapies.

  12. Study of genomic fingerprints profile of Magnaporthe grisea from ...

    African Journals Online (AJOL)

    Study of genomic fingerprints profile of Magnaporthe grisea from finger millet ( Eleusine Coracona ) by random amplified polymorphic DNA-polymerase chain ... This study was done to generate genomic finger prints using random amplified polymorphic DNA (RAPD) markers as well as to find out genetic diversity in M.

  13. Clinical analysis and interpretation of cancer genome data.

    Science.gov (United States)

    Van Allen, Eliezer M; Wagle, Nikhil; Levy, Mia A

    2013-05-20

    The scale of tumor genomic profiling is rapidly outpacing human cognitive capacity to make clinical decisions without the aid of tools. New frameworks are needed to help researchers and clinicians process the information emerging from the explosive growth in both the number of tumor genetic variants routinely tested and the respective knowledge to interpret their clinical significance. We review the current state, limitations, and future trends in methods to support the clinical analysis and interpretation of cancer genomes. This includes the processes of genome-scale variant identification, including tools for sequence alignment, tumor-germline comparison, and molecular annotation of variants. The process of clinical interpretation of tumor variants includes classification of the effect of the variant, reporting the results to clinicians, and enabling the clinician to make a clinical decision based on the genomic information integrated with other clinical features. We describe existing knowledge bases, databases, algorithms, and tools for identification and visualization of tumor variants and their actionable subsets. With the decreasing cost of tumor gene mutation testing and the increasing number of actionable therapeutics, we expect the methods for analysis and interpretation of cancer genomes to continue to evolve to meet the needs of patient-centered clinical decision making. The science of computational cancer medicine is still in its infancy; however, there is a clear need to continue the development of knowledge bases, best practices, tools, and validation experiments for successful clinical implementation in oncology.

  14. Genome-based versus gene-based theory of cancer: Possible ...

    Indian Academy of Sciences (India)

    However, a new arising field of system biology including 'new forms' of genome diversity such as copy number variations (CNV) and high-throughput oncogene mutation profiling now reveal all the complexity of cancer and provide the final explanation of the oncogenic pathways, based on stochastic (onco)genomic ...

  15. The Broad Institute: Screening for Dependencies in Cancer Cell Lines Using Small Molecules | Office of Cancer Genomics

    Science.gov (United States)

    Using cancer cell-line profiling, we established an ongoing resource to identify, as comprehensively as possible, the drug-targetable dependencies that specific genomic alterations impart on human cancers. We measured the sensitivity of hundreds of genetically characterized cancer cell lines to hundreds of small-molecule probes and drugs that have highly selective interactions with their targets, and that collectively modulate many distinct nodes in cancer cell circuitry.

  16. Expression profiling of formalin-fixed paraffin-embedded primary breast tumors using cancer-specific and whole genome gene panels on the DASL® platform

    Directory of Open Access Journals (Sweden)

    Cunningham Julie M

    2010-12-01

    Full Text Available Abstract Background The cDNA-mediated Annealing, extension, Selection and Ligation (DASL assay has become a suitable gene expression profiling system for degraded RNA from paraffin-embedded tissue. We examined assay characteristics and the performance of the DASL 502-gene Cancer Panelv1 (1.5K and 24,526-gene panel (24K platforms at differentiating nine human epidermal growth factor receptor 2- positive (HER2+ and 11 HER2-negative (HER2- paraffin-embedded breast tumors. Methods Bland-Altman plots and Spearman correlations evaluated intra/inter-panel agreement of normalized expression values. Unequal-variance t-statistics tested for differences in expression levels between HER2 + and HER2 - tumors. Regulatory network analysis was performed using Metacore (GeneGo Inc., St. Joseph, MI. Results Technical replicate correlations ranged between 0.815-0.956 and 0.986-0.997 for the 1.5K and 24K panels, respectively. Inter-panel correlations of expression values for the common 498 genes across the two panels ranged between 0.485-0.573. Inter-panel correlations of expression values of 17 probes with base-pair sequence matches between the 1.5K and 24K panels ranged between 0.652-0.899. In both panels, erythroblastic leukemia viral oncogene homolog 2 (ERBB2 was the most differentially expressed gene between the HER2 + and HER2 - tumors and seven additional genes had p-values |0.5| in expression between HER2 + and HER2 - tumors: topoisomerase II alpha (TOP2A, cyclin a2 (CCNA2, v-fos fbj murine osteosarcoma viral oncogene homolog (FOS, wingless-type mmtv integration site family, member 5a (WNT5A, growth factor receptor-bound protein 7 (GRB7, cell division cycle 2 (CDC2, and baculoviral iap repeat-containing protein 5 (BIRC5. The top 52 discriminating probes from the 24K panel are enriched with genes belonging to the regulatory networks centered around v-myc avian myelocytomatosis viral oncogene homolog (MYC, tumor protein p53 (TP53, and estrogen receptor

  17. The future of clinical cancer genomics.

    Science.gov (United States)

    Offit, Kenneth

    2016-10-01

    The current and future applications of genomics to the practice of preventive oncology are being impacted by a number of challenges. These include rapid advances in genomic science and technology that allow massively parallel sequencing of both tumors and the germline, a diminishing of intellectual property restrictions on diagnostic genetic applications, rapid expansion of access to the internet which includes mobile access to both genomic data and tools to communicate and interpret genetic data in a medical context, the expansion of for-profit diagnostic companies seeking to monetize genetic information, and a simultaneous effort to depict medical professionals as barriers to rather than facilitators of understanding one's genome. Addressing each of these issues will be required to bring "personalized" germline genomics to cancer prevention and care. A profound future challenge will be whether clinical cancer genomics will be "de-medicalized" by commercial interests and their advocates, or whether the future course of this field can be modulated in a responsible way that protects the public health while implementing powerful new medical tools for cancer prevention and early detection. Copyright © 2016. Published by Elsevier Inc.

  18. Genome organization, instabilities, stem cells, and cancer

    Directory of Open Access Journals (Sweden)

    Senthil Kumar Pazhanisamy

    2009-01-01

    Full Text Available It is now widely recognized that advances in exploring genome organization provide remarkable insights on the induction and progression of chromosome abnormalities. Much of what we know about how mutations evolve and consequently transform into genome instabilities has been characterized in the spatial organization context of chromatin. Nevertheless, many underlying concepts of impact of the chromatin organization on perpetuation of multiple mutations and on propagation of chromosomal aberrations remain to be investigated in detail. Genesis of genome instabilities from accumulation of multiple mutations that drive tumorigenesis is increasingly becoming a focal theme in cancer studies. This review focuses on structural alterations evolve to raise a variety of genome instabilities that are manifested at the nucleotide, gene or sub-chromosomal, and whole chromosome level of genome. Here we explore an underlying connection between genome instability and cancer in the light of genome architecture. This review is limited to studies directed towards spatial organizational aspects of origin and propagation of aberrations into genetically unstable tumors.

  19. TCGA study identifies genomic features of cervical cancer

    Science.gov (United States)

    Investigators with The Cancer Genome Atlas (TCGA) Research Network have identified novel genomic and molecular characteristics of cervical cancer that will aid in subclassification of the disease and may help target therapies that are most appropriate for each patient.

  20. Childhood Cancer Genomics Gaps and Opportunities - Workshop Summary

    Science.gov (United States)

    NCI convened a workshop of representative research teams that have been leaders in defining the genomic landscape of childhood cancers to discuss the influence of genomic discoveries on the future of childhood cancer research.

  1. The ISB Cancer Genomics Cloud: A Flexible Cloud-Based Platform for Cancer Genomics Research.

    Science.gov (United States)

    Reynolds, Sheila M; Miller, Michael; Lee, Phyliss; Leinonen, Kalle; Paquette, Suzanne M; Rodebaugh, Zack; Hahn, Abigail; Gibbs, David L; Slagel, Joseph; Longabaugh, William J; Dhankani, Varsha; Reyes, Madelyn; Pihl, Todd; Backus, Mark; Bookman, Matthew; Deflaux, Nicole; Bingham, Jonathan; Pot, David; Shmulevich, Ilya

    2017-11-01

    The ISB Cancer Genomics Cloud (ISB-CGC) is one of three pilot projects funded by the National Cancer Institute to explore new approaches to computing on large cancer datasets in a cloud environment. With a focus on Data as a Service, the ISB-CGC offers multiple avenues for accessing and analyzing The Cancer Genome Atlas, TARGET, and other important references such as GENCODE and COSMIC using the Google Cloud Platform. The open approach allows researchers to choose approaches best suited to the task at hand: from analyzing terabytes of data using complex workflows to developing new analysis methods in common languages such as Python, R, and SQL; to using an interactive web application to create synthetic patient cohorts and to explore the wealth of available genomic data. Links to resources and documentation can be found at www.isb-cgc.org Cancer Res; 77(21); e7-10. ©2017 AACR . ©2017 American Association for Cancer Research.

  2. Breast Cancer in the Personal Genomics Era

    OpenAIRE

    Ellsworth, Rachel E.; Decewicz, David J.; Shriver, Craig D.; Ellsworth, Darrell L.

    2010-01-01

    Breast cancer is a heterogeneous disease with a complex etiology that develops from different cellular lineages, progresses along multiple molecular pathways, and demonstrates wide variability in response to treatment. The ?standard of care? approach to breast cancer treatment in which all patients receive similar interventions is rapidly being replaced by personalized medicine, based on molecular characteristics of individual patients. Both inherited and somatic genomic variation is providin...

  3. Genome-wide identification of significant aberrations in cancer genome

    Directory of Open Access Journals (Sweden)

    Yuan Xiguo

    2012-07-01

    Full Text Available Abstract Background Somatic Copy Number Alterations (CNAs in human genomes are present in almost all human cancers. Systematic efforts to characterize such structural variants must effectively distinguish significant consensus events from random background aberrations. Here we introduce Significant Aberration in Cancer (SAIC, a new method for characterizing and assessing the statistical significance of recurrent CNA units. Three main features of SAIC include: (1 exploiting the intrinsic correlation among consecutive probes to assign a score to each CNA unit instead of single probes; (2 performing permutations on CNA units that preserve correlations inherent in the copy number data; and (3 iteratively detecting Significant Copy Number Aberrations (SCAs and estimating an unbiased null distribution by applying an SCA-exclusive permutation scheme. Results We test and compare the performance of SAIC against four peer methods (GISTIC, STAC, KC-SMART, CMDS on a large number of simulation datasets. Experimental results show that SAIC outperforms peer methods in terms of larger area under the Receiver Operating Characteristics curve and increased detection power. We then apply SAIC to analyze structural genomic aberrations acquired in four real cancer genome-wide copy number data sets (ovarian cancer, metastatic prostate cancer, lung adenocarcinoma, glioblastoma. When compared with previously reported results, SAIC successfully identifies most SCAs known to be of biological significance and associated with oncogenes (e.g., KRAS, CCNE1, and MYC or tumor suppressor genes (e.g., CDKN2A/B. Furthermore, SAIC identifies a number of novel SCAs in these copy number data that encompass tumor related genes and may warrant further studies. Conclusions Supported by a well-grounded theoretical framework, SAIC has been developed and used to identify SCAs in various cancer copy number data sets, providing useful information to study the landscape of cancer genomes

  4. Human Cancer Models Initiative | Office of Cancer Genomics

    Science.gov (United States)

    The Human Cancer Models Initiative (HCMI) is an international consortium that is generating novel human tumor-derived culture models, which are annotated with genomic and clinical data. In an effort to advance cancer research and more fully understand how in vitro findings are related to clinical biology, HCMI-developed models and related data will be available as a community resource for cancer and other research.

  5. Human disease-drug network based on genomic expression profiles.

    Science.gov (United States)

    Hu, Guanghui; Agarwal, Pankaj

    2009-08-06

    Drug repositioning offers the possibility of faster development times and reduced risks in drug discovery. With the rapid development of high-throughput technologies and ever-increasing accumulation of whole genome-level datasets, an increasing number of diseases and drugs can be comprehensively characterized by the changes they induce in gene expression, protein, metabolites and phenotypes. We performed a systematic, large-scale analysis of genomic expression profiles of human diseases and drugs to create a disease-drug network. A network of 170,027 significant interactions was extracted from the approximately 24.5 million comparisons between approximately 7,000 publicly available transcriptomic profiles. The network includes 645 disease-disease, 5,008 disease-drug, and 164,374 drug-drug relationships. At least 60% of the disease-disease pairs were in the same disease area as determined by the Medical Subject Headings (MeSH) disease classification tree. The remaining can drive a molecular level nosology by discovering relationships between seemingly unrelated diseases, such as a connection between bipolar disorder and hereditary spastic paraplegia, and a connection between actinic keratosis and cancer. Among the 5,008 disease-drug links, connections with negative scores suggest new indications for existing drugs, such as the use of some antimalaria drugs for Crohn's disease, and a variety of existing drugs for Huntington's disease; while the positive scoring connections can aid in drug side effect identification, such as tamoxifen's undesired carcinogenic property. From the approximately 37K drug-drug relationships, we discover relationships that aid in target and pathway deconvolution, such as 1) KCNMA1 as a potential molecular target of lobeline, and 2) both apoptotic DNA fragmentation and G2/M DNA damage checkpoint regulation as potential pathway targets of daunorubicin. We have automatically generated thousands of disease and drug expression profiles using GEO

  6. Neuroblastoma | Office of Cancer Genomics

    Science.gov (United States)

    The TARGET Neuroblastoma projects elucidate comprehensive molecular characterization to determine the genetic changes that drive the initiation and progression of high-risk or hard-to-treat childhood cancers. Neuroblastoma (NBL) is a cancer that arises in immature nerve cells of the sympathetic nervous system, primarily affecting infants and children.

  7. Genome evolution during progression to breast cancer

    KAUST Repository

    Newburger, D. E.

    2013-04-08

    Cancer evolution involves cycles of genomic damage, epigenetic deregulation, and increased cellular proliferation that eventually culminate in the carcinoma phenotype. Early neoplasias, which are often found concurrently with carcinomas and are histologically distinguishable from normal breast tissue, are less advanced in phenotype than carcinomas and are thought to represent precursor stages. To elucidate their role in cancer evolution we performed comparative whole-genome sequencing of early neoplasias, matched normal tissue, and carcinomas from six patients, for a total of 31 samples. By using somatic mutations as lineage markers we built trees that relate the tissue samples within each patient. On the basis of these lineage trees we inferred the order, timing, and rates of genomic events. In four out of six cases, an early neoplasia and the carcinoma share a mutated common ancestor with recurring aneuploidies, and in all six cases evolution accelerated in the carcinoma lineage. Transition spectra of somatic mutations are stable and consistent across cases, suggesting that accumulation of somatic mutations is a result of increased ancestral cell division rather than specific mutational mechanisms. In contrast to highly advanced tumors that are the focus of much of the current cancer genome sequencing, neither the early neoplasia genomes nor the carcinomas are enriched with potentially functional somatic point mutations. Aneuploidies that occur in common ancestors of neoplastic and tumor cells are the earliest events that affect a large number of genes and may predispose breast tissue to eventual development of invasive carcinoma.

  8. Genome evolution during progression to breast cancer

    Science.gov (United States)

    Newburger, Daniel E.; Kashef-Haghighi, Dorna; Weng, Ziming; Salari, Raheleh; Sweeney, Robert T.; Brunner, Alayne L.; Zhu, Shirley X.; Guo, Xiangqian; Varma, Sushama; Troxell, Megan L.; West, Robert B.; Batzoglou, Serafim; Sidow, Arend

    2013-01-01

    Cancer evolution involves cycles of genomic damage, epigenetic deregulation, and increased cellular proliferation that eventually culminate in the carcinoma phenotype. Early neoplasias, which are often found concurrently with carcinomas and are histologically distinguishable from normal breast tissue, are less advanced in phenotype than carcinomas and are thought to represent precursor stages. To elucidate their role in cancer evolution we performed comparative whole-genome sequencing of early neoplasias, matched normal tissue, and carcinomas from six patients, for a total of 31 samples. By using somatic mutations as lineage markers we built trees that relate the tissue samples within each patient. On the basis of these lineage trees we inferred the order, timing, and rates of genomic events. In four out of six cases, an early neoplasia and the carcinoma share a mutated common ancestor with recurring aneuploidies, and in all six cases evolution accelerated in the carcinoma lineage. Transition spectra of somatic mutations are stable and consistent across cases, suggesting that accumulation of somatic mutations is a result of increased ancestral cell division rather than specific mutational mechanisms. In contrast to highly advanced tumors that are the focus of much of the current cancer genome sequencing, neither the early neoplasia genomes nor the carcinomas are enriched with potentially functional somatic point mutations. Aneuploidies that occur in common ancestors of neoplastic and tumor cells are the earliest events that affect a large number of genes and may predispose breast tissue to eventual development of invasive carcinoma. PMID:23568837

  9. Genome-based versus gene-based theory of cancer: Possible ...

    Indian Academy of Sciences (India)

    copy number variations (CNV) and high-throughput oncogene mutation profiling now reveal all the complexity of cancer and provide the final explanation of the oncogenic pathways, based on stochastic (onco)genomic variation rather than on (onco)genic concepts. 1. Introduction. Cancer has remained an unsolved ...

  10. Genomes of early onset prostate cancer

    DEFF Research Database (Denmark)

    Weischenfeldt, Joachim; Korbel, Jan O.

    2017-01-01

    Purpose of review Prostate cancer is a disease of the elderly but a clinically relevant subset occurs early in life. In the current review, we discuss recent findings and the current understanding of the molecular underpinnings associated with early-onset prostate cancer (PCa) and the evidence...... supporting age-specific differences in the cancer genomes. Recent findings Recent surveys of PCa patient cohorts have provided novel age-dependent links between germline and somatic aberrations which points to differences in the molecular cause and treatment options. Summary Identifying the earliest...

  11. Genomics DNA profiling in elite professional soccer players: a pilot study.

    Science.gov (United States)

    Kambouris, M; Del Buono, A; Maffulli, N

    2014-04-01

    Functional variants in exonic regions have been associated with development of cardiovascular disease, diabetes and cancer. Athletic performance can be considered a multi-factorial complex phenotype. Genomic DNA was extracted from buccal swabs of seven soccer players from the Fulham football team. Single nucleotide polymorphism (SNPs) genotyping was undertaken. To achieve optimal athletic performance, predictive genomics DNA profiling for sports performance can be used to aid in sport selection and elaboration of personalized training and nutrition programs. Predictive DNA profiling may be able to detect athletes with potential or frank injuries, or screening and selection of future athletes, and can help them to maximize utilization of their potential and improve performance in sports. The aim of this study is to provide a wide scenario of specific genomic variants that an athlete carries, to implement which measures should be taken to maximize the athlete's potential.

  12. Gastric Cancer Genomics: Advances and Future DirectionsSummary

    Directory of Open Access Journals (Sweden)

    Bryson W. Katona

    2017-03-01

    Full Text Available Advancement in the field of cancer genomics is revolutionizing the molecular characterization of a wide variety of different cancers. Recent application of large-scale, next-generation sequencing technology to gastric cancer, which remains a major source of morbidity and mortality throughout the world, has helped better define the complex genomic landscape of this cancer. These studies also have led to the development of novel genomically based molecular classification systems for gastric cancer, reinforced the importance of classic driver mutations in gastric cancer pathogenesis, and led to the discovery of new driver gene mutations that previously were not known to be associated with gastric cancer. This wealth of genomic data has significant potential to impact the future management of this disease, and the challenge remains to effectively translate this genomic data into better treatment paradigms for gastric cancer. Keywords: Gastric Cancer, Genomics, Next-Generation Sequencing, Driver Gene Mutations

  13. Genomic profiling of CHEK2*1100delC-mutated breast carcinomas

    International Nuclear Information System (INIS)

    Massink, Maarten P. G.; Kooi, Irsan E.; Martens, John W. M.; Waisfisz, Quinten; Meijers-Heijboer, Hanne

    2015-01-01

    CHEK2*1100delC is a moderate-risk breast cancer susceptibility allele with a high prevalence in the Netherlands. We performed copy number and gene expression profiling to investigate whether CHEK2*1100delC breast cancers harbor characteristic genomic aberrations, as seen for BRCA1 mutated breast cancers. We performed high-resolution SNP array and gene expression profiling of 120 familial breast carcinomas selected from a larger cohort of 155 familial breast tumors, including BRCA1, BRCA2, and CHEK2 mutant tumors. Gene expression analyses based on a mRNA immune signature was used to identify samples with relative low amounts of tumor infiltrating lymphocytes (TILs), which were previously found to disturb tumor copy number and LOH (loss of heterozygosity) profiling. We specifically compared the genomic and gene expression profiles of CHEK2*1100delC breast cancers (n = 14) with BRCAX (familial non-BRCA1/BRCA2/CHEK2*1100delC mutated) breast cancers (n = 34) of the luminal intrinsic subtypes for which both SNP-array and gene expression data is available. High amounts of TILs were found in a relatively small number of luminal breast cancers as compared to breast cancers of the basal-like subtype. As expected, these samples mostly have very few copy number aberrations and no detectable regions of LOH. By unsupervised hierarchical clustering of copy number data we observed a great degree of heterogeneity amongst the CHEK2*1100delC breast cancers, comparable to the BRCAX breast cancers. Furthermore, copy number aberrations were mostly seen at low frequencies in both the CHEK2*1100delC and BRCAX group of breast cancers. However, supervised class comparison identified copy number loss of chromosomal arm 1p to be associated with CHEK2*1100delC status. In conclusion, in contrast to basal-like BRCA1 mutated breast cancers, no apparent specific somatic copy number aberration (CNA) profile for CHEK2*1100delC breast cancers was found. With the possible exception of copy number loss

  14. Hybrid Capture-Based Comprehensive Genomic Profiling Identifies Lung Cancer Patients with Well-Characterized Sensitizing Epidermal Growth Factor Receptor Point Mutations That Were Not Detected by Standard of Care Testing.

    Science.gov (United States)

    Suh, James H; Schrock, Alexa B; Johnson, Adrienne; Lipson, Doron; Gay, Laurie M; Ramkissoon, Shakti; Vergilio, Jo-Anne; Elvin, Julia A; Shakir, Abdur; Ruehlman, Peter; Reckamp, Karen L; Ou, Sai-Hong Ignatius; Ross, Jeffrey S; Stephens, Philip J; Miller, Vincent A; Ali, Siraj M

    2018-03-14

    In our recent study, of cases positive for epidermal growth factor receptor ( EGFR ) exon 19 deletions using comprehensive genomic profiling (CGP), 17/77 (22%) patients with prior standard of care (SOC) EGFR testing results available were previously negative for exon 19 deletion. Our aim was to compare the detection rates of CGP versus SOC testing for well-characterized sensitizing EGFR point mutations (pm) in our 6,832-patient cohort. DNA was extracted from 40 microns of formalin-fixed paraffin-embedded sections from 6,832 consecutive cases of non-small cell lung cancer (NSCLC) of various histologies (2012-2015). CGP was performed using a hybrid capture, adaptor ligation-based next-generation sequencing assay to a mean coverage depth of 576×. Genomic alterations (pm, small indels, copy number changes and rearrangements) involving EGFR were recorded for each case and compared with prior testing results if available. Overall, there were 482 instances of EGFR exon 21 L858R (359) and L861Q (20), exon 18 G719X (73) and exon 20 S768I (30) pm, of which 103 unique cases had prior EGFR testing results that were available for review. Of these 103 cases, CGP identified 22 patients (21%) with sensitizing EGFR pm that were not detected by SOC testing, including 9/75 (12%) patients with L858R, 4/7 (57%) patients with L861Q, 8/20 (40%) patients with G719X, and 4/7 (57%) patients with S768I pm (some patients had multiple EGFR pm). In cases with available clinical data, benefit from small molecule inhibitor therapy was observed. CGP, even when applied to low tumor purity clinical-grade specimens, can detect well-known EGFR pm in NSCLC patients that would otherwise not be detected by SOC testing. Taken together with EGFR exon 19 deletions, over 20% of patients who are positive for EGFR -activating mutations using CGP are previously negative by SOC EGFR mutation testing, suggesting that thousands of such patients per year in the U.S. alone could experience improved clinical

  15. Genomic profiling of a combined large cell neuroendocrine carcinoma of the submandibular gland

    DEFF Research Database (Denmark)

    Andreasen, Simon; Persson, Marta; Kiss, Katalin

    2016-01-01

    from the LCNEC. The patient died of her lung cancer after 19 months without evidence of recurrence of the LCNEC. Genomic profiling of the salivary gland LCNEC revealed a hypodiploid genome predominated by losses of whole chromosomes or chromosome arms involving chromosomes 3p, 4, 7q, 10, 11, 13, 16q...... and gains of 3q and 16p. In addition, there was a segmental gain of 9p23-p22.3 including the NFIB oncogene. Continued studies of salivary gland LCNEC may provide new knowledge concerning potential diagnostic biomarkers and may ultimately also lead to the identification of new treatment targets for patients...

  16. Reconstructing cancer genomes from paired-end sequencing data

    Directory of Open Access Journals (Sweden)

    Oesper Layla

    2012-04-01

    Full Text Available Abstract Background A cancer genome is derived from the germline genome through a series of somatic mutations. Somatic structural variants - including duplications, deletions, inversions, translocations, and other rearrangements - result in a cancer genome that is a scrambling of intervals, or "blocks" of the germline genome sequence. We present an efficient algorithm for reconstructing the block organization of a cancer genome from paired-end DNA sequencing data. Results By aligning paired reads from a cancer genome - and a matched germline genome, if available - to the human reference genome, we derive: (i a partition of the reference genome into intervals; (ii adjacencies between these intervals in the cancer genome; (iii an estimated copy number for each interval. We formulate the Copy Number and Adjacency Genome Reconstruction Problem of determining the cancer genome as a sequence of the derived intervals that is consistent with the measured adjacencies and copy numbers. We design an efficient algorithm, called Paired-end Reconstruction of Genome Organization (PREGO, to solve this problem by reducing it to an optimization problem on an interval-adjacency graph constructed from the data. The solution to the optimization problem results in an Eulerian graph, containing an alternating Eulerian tour that corresponds to a cancer genome that is consistent with the sequencing data. We apply our algorithm to five ovarian cancer genomes that were sequenced as part of The Cancer Genome Atlas. We identify numerous rearrangements, or structural variants, in these genomes, analyze reciprocal vs. non-reciprocal rearrangements, and identify rearrangements consistent with known mechanisms of duplication such as tandem duplications and breakage/fusion/bridge (B/F/B cycles. Conclusions We demonstrate that PREGO efficiently identifies complex and biologically relevant rearrangements in cancer genome sequencing data. An implementation of the PREGO algorithm is

  17. MTAP deletion confers enhanced dependency on the PRMT5 arginine methyltransferase in cancer cells | Office of Cancer Genomics

    Science.gov (United States)

    The discovery of cancer dependencies has the potential to inform therapeutic strategies and to identify putative drug targets. Integrating data from comprehensive genomic profiling of cancer cell lines and from functional characterization of cancer cell dependencies, we discovered that loss of the enzyme methylthioadenosine phosphorylase (MTAP) confers a selective dependence on protein arginine methyltransferase 5 (PRMT5) and its binding partner WDR77. MTAP is frequently lost due to its proximity to the commonly deleted tumor suppressor gene, CDKN2A.

  18. Genomic structure, chromosomal localization and expression profile of a novel melanoma differentiation associated (mda-7) gene with cancer specific growth suppressing and apoptosis inducing properties.

    Energy Technology Data Exchange (ETDEWEB)

    Huang, E. Y.; Madireddi, M. T.; Gopalkrishnan, R. V.; Leszczyniecka, M.; Su, Z. Z.; Lebedeva, I. V.; Kang, D. C.; Jian, H.; Lin, J. J.; Alexandre, D.; Chen, Y.; Vozhilla, N.; Mei, M. X.; Christiansen, K. A.; Sivo, F.; Goldstein, N. I.; Chada, S.; Huberman, E.; Pestka, S.; Fisher, P. B.; Biochip Technology Center; Columbia Univ.; Introgen Therapeutics Inc.; UMDNJ-Robert Wood Johnson Medical School

    2001-10-25

    Abnormalities in cellular differentiation are frequent occurrences in human cancers. Treatment of human melanoma cells with recombinant fibroblast interferon (IFN-beta) and the protein kinase C activator mezerein (MEZ) results in an irreversible loss in growth potential, suppression of tumorigenic properties and induction of terminal cell differentiation. Subtraction hybridization identified melanoma differentiation associated gene-7 (mda-7), as a gene induced during these physiological changes in human melanoma cells. Ectopic expression of mda-7 by means of a replication defective adenovirus results in growth suppression and induction of apoptosis in a broad spectrum of additional cancers, including melanoma, glioblastoma multiforme, osteosarcoma and carcinomas of the breast, cervix, colon, lung, nasopharynx and prostate. In contrast, no apparent harmful effects occur when mda-7 is expressed in normal epithelial or fibroblast cells. Human clones of mda-7 were isolated and its organization resolved in terms of intron/exon structure and chromosomal localization. Hu-mda-7 encompasses seven exons and six introns and encodes a protein with a predicted size of 23.8 kDa, consisting of 206 amino acids. Hu-mda-7 mRNA is stably expressed in the thymus, spleen and peripheral blood leukocytes. De novo mda-7 mRNA expression is also detected in human melanocytes and expression is inducible in cells of melanocyte/melanoma lineage and in certain normal and cancer cell types following treatment with a combination of IFN-beta plus MEZ. Mda-7 expression is also induced during megakaryocyte differentiation induced in human hematopoietic cells by treatment with TPA (12-O-tetradecanoyl phorbol-13-acetate). In contrast, de novo expression of mda-7 is not detected nor is it inducible by IFN-beta+MEZ in a spectrum of additional normal and cancer cells. No correlation was observed between induction of mda-7 mRNA expression and growth suppression following treatment with IFN-beta+MEZ and

  19. Childhood Cancer Genomics (PDQ®)—Health Professional Version

    Science.gov (United States)

    Expert-reviewed information summary about the genomics of childhood cancer. The summary describes the molecular subtypes for specific pediatric cancers and their associated clinical characteristics, the recurring genomic alterations that characterize each subtype at diagnosis or relapse, and the therapeutic and prognostic significance of the genomic alterations. The genomic alterations associated with brain tumors, kidney tumors, leukemias, lymphomas, sarcomas, and other cancers are discussed.

  20. Global profiling strategies for mapping dysregulated metabolic pathways in cancer.

    Science.gov (United States)

    Benjamin, Daniel I; Cravatt, Benjamin F; Nomura, Daniel K

    2012-11-07

    Cancer cells possess fundamentally altered metabolism that provides a foundation to support tumorigenicity and malignancy. Our understanding of the biochemical underpinnings of cancer has benefited from the integrated utilization of large-scale profiling platforms (e.g., genomics, proteomics, and metabolomics), which, together, can provide a global assessment of how enzymes and their parent metabolic networks become altered in cancer to fuel tumor growth. This review presents several examples of how these integrated platforms have yielded fundamental insights into dysregulated metabolism in cancer. We will also discuss questions and challenges that must be addressed to more completely describe, and eventually control, the diverse metabolic pathways that support tumorigenesis. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Genomic Instability and Breast Cancer

    Science.gov (United States)

    2011-06-01

    indicated. (B) Schematic diagrams of wild-type and mutant FIGN1 used in this study. (C) GST pull down experiments confirmed a direct interaction...States, Korea, Hong Kong, India and China. Many of them are continuing breast cancer research, with topics ranging from DNA damage response, mitotic...N-terminal-tagged fusion protein. SFB (triple-epitope of S-protein, FLAG, and streptavi- din binding peptide), Myc, MBP, and GST -tagged proteins were

  2. Identifying driver mutations in sequenced cancer genomes

    DEFF Research Database (Denmark)

    Raphael, Benjamin J; Dobson, Jason R; Oesper, Layla

    2014-01-01

    High-throughput DNA sequencing is revolutionizing the study of cancer and enabling the measurement of the somatic mutations that drive cancer development. However, the resulting sequencing datasets are large and complex, obscuring the clinically important mutations in a background of errors, noise......, and random mutations. Here, we review computational approaches to identify somatic mutations in cancer genome sequences and to distinguish the driver mutations that are responsible for cancer from random, passenger mutations. First, we describe approaches to detect somatic mutations from high-throughput DNA...... sequencing data, particularly for tumor samples that comprise heterogeneous populations of cells. Next, we review computational approaches that aim to predict driver mutations according to their frequency of occurrence in a cohort of samples, or according to their predicted functional impact on protein...

  3. Integrated Molecular Profiling in Advanced Cancers Trial

    Science.gov (United States)

    2018-02-26

    Breast Cancer; Non-small Cell Lung Cancer; Colorectal Cancer; Genitourinary Cancer; Pancreatobiliary Gastrointestinal Cancer; Upper Aerodigestive Tract Cancer; Gynecological Cancers; Melanoma Cancers; Rare Cancers; Unknown Primary Cancers

  4. Nutritional genomic approaches to cancer prevention research.

    Science.gov (United States)

    Ross, S A

    2007-12-01

    A wealth of evidence points to the diet as one of the most important modifiable determinants of the risk of developing cancer, but a greater understanding of the interaction between diet and genes may help distinguish who will and will not respond to dietary interventions. The term nutrigenomics or nutritional genomics refers to the bidirectional interactions between genes and diet. Nutritional genomics encompasses an understanding about how the response to bioactive food components depends on an individual's genetic background (nutrigenetics), nutrient induced changes in DNA methylation, histone posttranslational modifications, and other chromatin alterations (nutritional epigenetics), and nutrient induced changes in gene expression (nutritional transcriptomics). These approaches to the study of nutrition will assist in understanding how genetic variation, epigenetic events, and regulation of gene expression alter requirements for, and responses to, nutrients. Recognition of the interplay between genes and diet could ultimately help identify modifiable molecular targets for preventing, delaying, or reducing the symptoms of cancer and other chronic diseases.

  5. Genomic profiling of multiple sequentially acquired tumor metastatic sites from an “exceptional responder” lung adenocarcinoma patient reveals extensive genomic heterogeneity and novel somatic variants driving treatment response. | Center for Cancer Research

    Science.gov (United States)

    Biswas et al. describe an “exceptional responder” lung adenocarcinoma patient who survived with metastatic lung adenocarcinoma for 7 years while undergoing single or combination ERBB2-directed therapies. Whole-genome, whole-exome, and high-coverage ion-torrent targeted sequencing were used to demonstrate extreme genomic heterogeneity between the lung and lymph node metastatic sites with only ∼1% similarity of somatic alterations between the lung and lymph node sites. However, one novel translocation, PLAG1-ACTA2, was present in both sites, and in all biopsies and autopsy samples.

  6. Functional viability profiles of breast cancer.

    Science.gov (United States)

    Brough, Rachel; Frankum, Jessica R; Sims, David; Mackay, Alan; Mendes-Pereira, Ana M; Bajrami, Ilirjana; Costa-Cabral, Sara; Rafiq, Rumana; Ahmad, Amar S; Cerone, Maria Antonietta; Natrajan, Rachael; Sharpe, Rachel; Shiu, Kai-Keen; Wetterskog, Daniel; Dedes, Konstantine J; Lambros, Maryou B; Rawjee, Teeara; Linardopoulos, Spiros; Reis-Filho, Jorge S; Turner, Nicholas C; Lord, Christopher J; Ashworth, Alan

    2011-08-01

    The design of targeted therapeutic strategies for cancer has largely been driven by the identification of tumor-specific genetic changes. However, the large number of genetic alterations present in tumor cells means that it is difficult to discriminate between genes that are critical for maintaining the disease state and those that are merely coincidental. Even when critical genes can be identified, directly targeting these is often challenging, meaning that alternative strategies such as exploiting synthetic lethality may be beneficial. To address these issues, we have carried out a functional genetic screen in >30 commonly used models of breast cancer to identify genes critical to the growth of specific breast cancer subtypes. In particular, we describe potential new therapeutic targets for PTEN-mutated cancers and for estrogen receptor-positive breast cancers. We also show that large-scale functional profiling allows the classification of breast cancers into subgroups distinct from established subtypes. Despite the wealth of molecular profiling data that describe breast tumors and breast tumor cell models, our understanding of the fundamental genetic dependencies in this disease is relatively poor. Using high-throughput RNA interference screening of a series of pharmacologically tractable genes, we have generated comprehensive functional viability profiles for a wide panel of commonly used breast tumor cell models. Analysis of these profiles identifies a series of novel genetic dependencies, including that of PTEN-null breast tumor cells upon mitotic checkpoint kinases, and provides a framework upon which additional dependencies and candidate therapeutic targets may be identified.

  7. Direct-to-consumer personal genome testing and cancer risk prediction.

    Science.gov (United States)

    Bellcross, Cecelia A; Page, Patricia Z; Meaney-Delman, Dana

    2012-01-01

    The last several years has witnessed an explosion in genomics, with the advent of genome-wide association studies revealing hundreds of DNA variants significantly associated with most common diseases, including cancer. On the heels of these scientific advances came the direct-to-consumer (DTC) genetic testing industry. Genome-wide scans for disease have been marketed and sold directly to the public, without the involvement of a health care provider. Unlike genetic testing for mutations in known hereditary cancer susceptibility genes such as BRCA1/2, these genomic profiles examine DNA variants, which typically have a minimal risk impact, and account for only a fraction of the heritable component of cancer. Furthermore, risk information provided to consumers does not account for family history or other known risk factors. The clinical validity and utility of personal genome scans for disease risk prediction remain for the most part unestablished, although some argue lack of evidence of harm and the possibility that positive impacts on health behaviors or genetic awareness may result from consumer use. The DTC genetic testing industry has sparked significant controversy not only among the scientific community, but also among professional societies and government agencies.In this review, we present some of the history and methodological considerations of DTC genomic profiling, with a focus on cancer risk prediction. The literature regarding consumer awareness and utilization is explored, including understanding, expectations, and behavioral and psychological responses to DTC genomic risk prediction. Primary care provider and genetic professional knowledge and perceptions of DTC genomic profiling are also addressed. Ethical and scientific controversy surrounding the DTC genetic testing industry is presented, along with policy recommendations, regulatory actions, and the changing landscape of the DTC genetic testing market in response. Although our understanding of the

  8. Profiling Prostate Cancer Therapeutic Resistance

    OpenAIRE

    Cameron A. Wade; Natasha Kyprianou

    2018-01-01

    The major challenge in the treatment of patients with advanced lethal prostate cancer is therapeutic resistance to androgen-deprivation therapy (ADT) and chemotherapy. Overriding this resistance requires understanding of the driving mechanisms of the tumor microenvironment, not just the androgen receptor (AR)-signaling cascade, that facilitate therapeutic resistance in order to identify new drug targets. The tumor microenvironment enables key signaling pathways promoting cancer cell survival ...

  9. Identifying anti-growth factors for human cancer cell lines through genome-scale metabolic modeling

    DEFF Research Database (Denmark)

    Ghaffari, Pouyan; Mardinoglu, Adil; Asplund, Anna

    2015-01-01

    Human cancer cell lines are used as important model systems to study molecular mechanisms associated with tumor growth, hereunder how genomic and biological heterogeneity found in primary tumors affect cellular phenotypes. We reconstructed Genome scale metabolic models (GEMs) for eleven cell lines...... based on RNA-Seq data and validated the functionality of these models with data from metabolite profiling. We used cell line-specific GEMs to analyze the differences in the metabolism of cancer cell lines, and to explore the heterogeneous expression of the metabolic subsystems. Furthermore, we predicted...... for inhibition of cell growth may provide leads for the development of efficient cancer treatment strategies....

  10. Modeling cancer metabolism on a genome scale

    Science.gov (United States)

    Yizhak, Keren; Chaneton, Barbara; Gottlieb, Eyal; Ruppin, Eytan

    2015-01-01

    Cancer cells have fundamentally altered cellular metabolism that is associated with their tumorigenicity and malignancy. In addition to the widely studied Warburg effect, several new key metabolic alterations in cancer have been established over the last decade, leading to the recognition that altered tumor metabolism is one of the hallmarks of cancer. Deciphering the full scope and functional implications of the dysregulated metabolism in cancer requires both the advancement of a variety of omics measurements and the advancement of computational approaches for the analysis and contextualization of the accumulated data. Encouragingly, while the metabolic network is highly interconnected and complex, it is at the same time probably the best characterized cellular network. Following, this review discusses the challenges that genome-scale modeling of cancer metabolism has been facing. We survey several recent studies demonstrating the first strides that have been done, testifying to the value of this approach in portraying a network-level view of the cancer metabolism and in identifying novel drug targets and biomarkers. Finally, we outline a few new steps that may further advance this field. PMID:26130389

  11. Modeling cancer metabolism on a genome scale.

    Science.gov (United States)

    Yizhak, Keren; Chaneton, Barbara; Gottlieb, Eyal; Ruppin, Eytan

    2015-06-30

    Cancer cells have fundamentally altered cellular metabolism that is associated with their tumorigenicity and malignancy. In addition to the widely studied Warburg effect, several new key metabolic alterations in cancer have been established over the last decade, leading to the recognition that altered tumor metabolism is one of the hallmarks of cancer. Deciphering the full scope and functional implications of the dysregulated metabolism in cancer requires both the advancement of a variety of omics measurements and the advancement of computational approaches for the analysis and contextualization of the accumulated data. Encouragingly, while the metabolic network is highly interconnected and complex, it is at the same time probably the best characterized cellular network. Following, this review discusses the challenges that genome-scale modeling of cancer metabolism has been facing. We survey several recent studies demonstrating the first strides that have been done, testifying to the value of this approach in portraying a network-level view of the cancer metabolism and in identifying novel drug targets and biomarkers. Finally, we outline a few new steps that may further advance this field. © 2015 The Authors. Published under the terms of the CC BY 4.0 license.

  12. MicroRNA expression profiles of cancer stem cells in head and neck squamous cell carcinoma

    OpenAIRE

    YATA, KAZUYA; BEDER, LEVENT BEKIR; TAMAGAWA, SHUNJI; HOTOMI, MUNEKI; HIROHASHI, YOSHIHIKO; GRENMAN, REIDAR; YAMANAKA, NOBORU

    2015-01-01

    Increasing evidence indicates that cancer stem cells have essential roles in tumor initiation, progression, metastasis and resistance to chemo-radiation. Recent research has pointed out biological importance of microRNAs in cancer stem cell dysregulation. Total number of mature microRNAs in human genome increased to more than 2,500 with the recent up-date of the database. However, currently no information is available regarding microRNA expression profiles of cancer stem cells in head and nec...

  13. Comprehensive Genomic Profiling of Esthesioneuroblastoma Reveals Additional Treatment Options.

    Science.gov (United States)

    Gay, Laurie M; Kim, Sungeun; Fedorchak, Kyle; Kundranda, Madappa; Odia, Yazmin; Nangia, Chaitali; Battiste, James; Colon-Otero, Gerardo; Powell, Steven; Russell, Jeffery; Elvin, Julia A; Vergilio, Jo-Anne; Suh, James; Ali, Siraj M; Stephens, Philip J; Miller, Vincent A; Ross, Jeffrey S

    2017-07-01

    Esthesioneuroblastoma (ENB), also known as olfactory neuroblastoma, is a rare malignant neoplasm of the olfactory mucosa. Despite surgical resection combined with radiotherapy and adjuvant chemotherapy, ENB often relapses with rapid progression. Current multimodality, nontargeted therapy for relapsed ENB is of limited clinical benefit. We queried whether comprehensive genomic profiling (CGP) of relapsed or refractory ENB can uncover genomic alterations (GA) that could identify potential targeted therapies for these patients. CGP was performed on formalin-fixed, paraffin-embedded sections from 41 consecutive clinical cases of ENBs using a hybrid-capture, adaptor ligation based next-generation sequencing assay to a mean coverage depth of 593X. The results were analyzed for base substitutions, insertions and deletions, select rearrangements, and copy number changes (amplifications and homozygous deletions). Clinically relevant GA (CRGA) were defined as GA linked to drugs on the market or under evaluation in clinical trials. A total of 28 ENBs harbored GA, with a mean of 1.5 GA per sample. Approximately half of the ENBs (21, 51%) featured at least one CRGA, with an average of 1 CRGA per sample. The most commonly altered gene was TP53 (17%), with GA in PIK3CA , NF1 , CDKN2A , and CDKN2C occurring in 7% of samples. We report comprehensive genomic profiles for 41 ENB tumors. CGP revealed potential new therapeutic targets, including targetable GA in the mTOR, CDK and growth factor signaling pathways, highlighting the clinical value of genomic profiling in ENB. Comprehensive genomic profiling of 41 relapsed or refractory ENBs reveals recurrent alterations or classes of mutation, including amplification of tyrosine kinases encoded on chromosome 5q and mutations affecting genes in the mTOR/PI3K pathway. Approximately half of the ENBs (21, 51%) featured at least one clinically relevant genomic alteration (CRGA), with an average of 1 CRGA per sample. The most commonly altered

  14. Genetic Alterations in the Molecular Subtypes of Bladder Cancer: Illustration in the Cancer Genome Atlas Dataset.

    Science.gov (United States)

    Choi, Woonyoung; Ochoa, Andrea; McConkey, David J; Aine, Mattias; Höglund, Mattias; Kim, William Y; Real, Francisco X; Kiltie, Anne E; Milsom, Ian; Dyrskjøt, Lars; Lerner, Seth P

    2017-09-01

    Recent whole genome mRNA expression profiling studies revealed that bladder cancers can be grouped into molecular subtypes, some of which share clinical properties and gene expression patterns with the intrinsic subtypes of breast cancer and the molecular subtypes found in other solid tumors. The molecular subtypes in other solid tumors are enriched with specific mutations and copy number aberrations that are thought to underlie their distinct progression patterns, and biological and clinical properties. The availability of comprehensive genomic data from The Cancer Genome Atlas (TCGA) and other large projects made it possible to correlate the presence of DNA alterations with tumor molecular subtype membership. Our overall goal was to determine whether specific DNA mutations and/or copy number variations are enriched in specific molecular subtypes. We used the complete TCGA RNA-seq dataset and three different published classifiers developed by our groups to assign TCGA's bladder cancers to molecular subtypes, and examined the prevalence of the most common DNA alterations within them. We interpreted the results against the background of what was known from the published literature about the prevalence of these alterations in nonmuscle-invasive and muscle-invasive bladder cancers. The results confirmed that alterations involving RB1 and NFE2L2 were enriched in basal cancers, whereas alterations involving FGFR3 and KDM6A were enriched in luminal tumors. The results further reinforce the conclusion that the molecular subtypes of bladder cancer are distinct disease entities with specific genetic alterations. Our observation showed that some of subtype-enriched mutations and copy number aberrations are clinically actionable, which has direct implications for the clinical management of patients with bladder cancer. Copyright © 2017 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  15. Cross-talk between non-genomic and genomic signalling pathways - Distinct effect profiles of environmental estrogens

    International Nuclear Information System (INIS)

    Silva, Elisabete; Kabil, Alena; Kortenkamp, Andreas

    2010-01-01

    Estrogen receptor (ER) transcriptional cross-talk after activation by 17β-estradiol (E2) has been studied in considerable detail, but comparatively little is known about the ways in which synthetic estrogen-like chemicals, so-called xenoestrogens, interfere with these signalling pathways. E2 can stimulate rapid, non-genomic signalling events, such as activation of the Src/Ras/Erk signalling pathway. We investigated how activation of this pathway by E2, the estrogenic environmental contaminants o,p'-DDT, β-HCH and p,p'-DDE, and epidermal growth factor (EGF) influences the expression of ER target genes, such as TFF1, ER, PR, BRCA1 and CCND1, and the proliferation of breast cancer cells. Despite commonalities in their estrogenicity as judged by cell proliferation assays, the environmental contaminants exhibited striking differences in their non-genomic and genomic signalling. The gene expression profiles of o,p'-DDT and β-HCH resembled the effects observed with E2. In the case of β-HCH this is surprising, considering its reported lack of affinity to the 'classical' ER. The expression profiles seen with p,p'-DDE showed some similarities with E2, but overall, p,p'-DDE was a fairly weak transcriptional inducer of TFF1, ER, PR, BRCA1 and CCND1. We observed distinct differences in the non-genomic signalling of the tested compounds. p,p'-DDE was unable to stimulate Src and Erk1/Erk2 activations. The effects of E2 on Src and Erk1/Erk2 phosphorylation were transient and weak when compared to EGF, but β-HCH induced strong and sustained activation of all tested kinases. Transcription of TFF1, ER, PR and BRCA1 by E2, o,p'-DDT and β-HCH could be suppressed partially by inhibiting the Src/Ras/Erk pathway with PD 98059. However, this was not seen with p,p'-DDE. Our investigations show that the cellular activities of estrogens and xenoestrogens are the result of a combination of extranuclear (non-genomic) and nuclear (genomic) events and highlight the need to take non-genomic

  16. A PanorOmic view of personal cancer genomes.

    Science.gov (United States)

    Mateo, Lidia; Guitart-Pla, Oriol; Pons, Carles; Duran-Frigola, Miquel; Mosca, Roberto; Aloy, Patrick

    2017-07-03

    The massive molecular profiling of thousands of cancer patients has led to the identification of many tumor type specific driver genes. However, only a few (or none) of them are present in each individual tumor and, to enable precision oncology, we need to interpret the alterations found in a single patient. Cancer PanorOmics (http://panoromics.irbbarcelona.org) is a web-based resource to contextualize genomic variations detected in a personal cancer genome within the body of clinical and scientific evidence available for 26 tumor types, offering complementary cohort- and patient-centric views. Additionally, it explores the cellular environment of mutations by mapping them on the human interactome and providing quasi-atomic structural details, whenever available. This 'PanorOmic' molecular view of individual tumors, together with the appropriate genetic counselling and medical advice, should contribute to the identification of actionable alterations ultimately guiding the clinical decision-making process. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Molecular and Genomic Determinants of Response to Immune Checkpoint Inhibition in Cancer.

    Science.gov (United States)

    Jenkins, Russell W; Thummalapalli, Rohit; Carter, Jacob; Cañadas, Israel; Barbie, David A

    2018-01-29

    Molecularly targeted therapy and immunotherapy have dramatically changed the landscape of available treatment options for patients with advanced cancer. Improved understanding of the molecular and genomic features of cancers over the last decade has led to the development of successful targeted therapies and the field of precision cancer medicine. As a result of these advances, patients whose tumors harbor select molecular alterations are eligible for treatment with targeted therapies active against the unique molecular aberration. Concurrently, advances in tumor immunology have led to the development of immunomodulatory antibodies targeting T cell coinhibitory receptors CTLA-4 and PD-1 (programmed death-1) that have shown activity in several cancer histologies, reinvigorating antitumor immune responses in a subset of patients. These immunomodulatory antibodies offer the promise of durable disease control. However, discrete genomic determinants of response to cancer immunotherapy, unlike molecularly targeted therapies, have remained elusive, and robust biomarkers are lacking. Recent advances in tumor profiling have begun to identify novel genomic features that may influence response and resistance to cancer immunotherapy, including tumor mutational burden (e.g., microsatellite instability), copy-number alterations, and specific somatic alterations that influence immune recognition and response. Further investigation into the molecular and genomic features of response and resistance to cancer immunotherapy will be needed. We review the recent advances in understanding the molecular and genomic determinants of response to cancer immunotherapy, with an emphasis on immune checkpoint inhibitors.

  18. Mining genome sequencing data to identify the genomic features linked to breast cancer histopathology

    Science.gov (United States)

    Ping, Zheng; Siegal, Gene P.; Almeida, Jonas S.; Schnitt, Stuart J.; Shen, Dejun

    2014-01-01

    Background: Genetics and genomics have radically altered our understanding of breast cancer progression. However, the genomic basis of various histopathologic features of breast cancer is not yet well-defined. Materials and Methods: The Cancer Genome Atlas (TCGA) is an international database containing a large collection of human cancer genome sequencing data. cBioPortal is a web tool developed for mining these sequencing data. We performed mining of TCGA sequencing data in an attempt to characterize the genomic features correlated with breast cancer histopathology. We first assessed the quality of the TCGA data using a group of genes with known alterations in various cancers. Both genome-wide gene mutation and copy number changes as well as a group of genes with a high frequency of genetic changes were then correlated with various histopathologic features of invasive breast cancer. Results: Validation of TCGA data using a group of genes with known alterations in breast cancer suggests that the TCGA has accurately documented the genomic abnormalities of multiple malignancies. Further analysis of TCGA breast cancer sequencing data shows that accumulation of specific genomic defects is associated with higher tumor grade, larger tumor size and receptor negativity. Distinct groups of genomic changes were found to be associated with the different grades of invasive ductal carcinoma. The mutator role of the TP53 gene was validated by genomic sequencing data of invasive breast cancer and TP53 mutation was found to play a critical role in defining high tumor grade. Conclusions: Data mining of the TCGA genome sequencing data is an innovative and reliable method to help characterize the genomic abnormalities associated with histopathologic features of invasive breast cancer. PMID:24672738

  19. Mining genome sequencing data to identify the genomic features linked to breast cancer histopathology

    Directory of Open Access Journals (Sweden)

    Zheng Ping

    2014-01-01

    Full Text Available Background: Genetics and genomics have radically altered our understanding of breast cancer progression. However, the genomic basis of various histopathologic features of breast cancer is not yet well-defined. Materials and Methods: The Cancer Genome Atlas (TCGA is an international database containing a large collection of human cancer genome sequencing data. cBioPortal is a web tool developed for mining these sequencing data. We performed mining of TCGA sequencing data in an attempt to characterize the genomic features correlated with breast cancer histopathology. We first assessed the quality of the TCGA data using a group of genes with known alterations in various cancers. Both genome-wide gene mutation and copy number changes as well as a group of genes with a high frequency of genetic changes were then correlated with various histopathologic features of invasive breast cancer. Results: Validation of TCGA data using a group of genes with known alterations in breast cancer suggests that the TCGA has accurately documented the genomic abnormalities of multiple malignancies. Further analysis of TCGA breast cancer sequencing data shows that accumulation of specific genomic defects is associated with higher tumor grade, larger tumor size and receptor negativity. Distinct groups of genomic changes were found to be associated with the different grades of invasive ductal carcinoma. The mutator role of the TP53 gene was validated by genomic sequencing data of invasive breast cancer and TP53 mutation was found to play a critical role in defining high tumor grade. Conclusions: Data mining of the TCGA genome sequencing data is an innovative and reliable method to help characterize the genomic abnormalities associated with histopathologic features of invasive breast cancer.

  20. Genomic profiling of oral squamous cell carcinoma by array-based comparative genomic hybridization.

    Directory of Open Access Journals (Sweden)

    Shunichi Yoshioka

    Full Text Available We designed a study to investigate genetic relationships between primary tumors of oral squamous cell carcinoma (OSCC and their lymph node metastases, and to identify genomic copy number aberrations (CNAs related to lymph node metastasis. For this purpose, we collected a total of 42 tumor samples from 25 patients and analyzed their genomic profiles by array-based comparative genomic hybridization. We then compared the genetic profiles of metastatic primary tumors (MPTs with their paired lymph node metastases (LNMs, and also those of LNMs with non-metastatic primary tumors (NMPTs. Firstly, we found that although there were some distinctive differences in the patterns of genomic profiles between MPTs and their paired LNMs, the paired samples shared similar genomic aberration patterns in each case. Unsupervised hierarchical clustering analysis grouped together 12 of the 15 MPT-LNM pairs. Furthermore, similarity scores between paired samples were significantly higher than those between non-paired samples. These results suggested that MPTs and their paired LNMs are composed predominantly of genetically clonal tumor cells, while minor populations with different CNAs may also exist in metastatic OSCCs. Secondly, to identify CNAs related to lymph node metastasis, we compared CNAs between grouped samples of MPTs and LNMs, but were unable to find any CNAs that were more common in LNMs. Finally, we hypothesized that subpopulations carrying metastasis-related CNAs might be present in both the MPT and LNM. Accordingly, we compared CNAs between NMPTs and LNMs, and found that gains of 7p, 8q and 17q were more common in the latter than in the former, suggesting that these CNAs may be involved in lymph node metastasis of OSCC. In conclusion, our data suggest that in OSCCs showing metastasis, the primary and metastatic tumors share similar genomic profiles, and that cells in the primary tumor may tend to metastasize after acquiring metastasis-associated CNAs.

  1. Genomic profiling of oral squamous cell carcinoma by array-based comparative genomic hybridization.

    Science.gov (United States)

    Yoshioka, Shunichi; Tsukamoto, Yoshiyuki; Hijiya, Naoki; Nakada, Chisato; Uchida, Tomohisa; Matsuura, Keiko; Takeuchi, Ichiro; Seto, Masao; Kawano, Kenji; Moriyama, Masatsugu

    2013-01-01

    We designed a study to investigate genetic relationships between primary tumors of oral squamous cell carcinoma (OSCC) and their lymph node metastases, and to identify genomic copy number aberrations (CNAs) related to lymph node metastasis. For this purpose, we collected a total of 42 tumor samples from 25 patients and analyzed their genomic profiles by array-based comparative genomic hybridization. We then compared the genetic profiles of metastatic primary tumors (MPTs) with their paired lymph node metastases (LNMs), and also those of LNMs with non-metastatic primary tumors (NMPTs). Firstly, we found that although there were some distinctive differences in the patterns of genomic profiles between MPTs and their paired LNMs, the paired samples shared similar genomic aberration patterns in each case. Unsupervised hierarchical clustering analysis grouped together 12 of the 15 MPT-LNM pairs. Furthermore, similarity scores between paired samples were significantly higher than those between non-paired samples. These results suggested that MPTs and their paired LNMs are composed predominantly of genetically clonal tumor cells, while minor populations with different CNAs may also exist in metastatic OSCCs. Secondly, to identify CNAs related to lymph node metastasis, we compared CNAs between grouped samples of MPTs and LNMs, but were unable to find any CNAs that were more common in LNMs. Finally, we hypothesized that subpopulations carrying metastasis-related CNAs might be present in both the MPT and LNM. Accordingly, we compared CNAs between NMPTs and LNMs, and found that gains of 7p, 8q and 17q were more common in the latter than in the former, suggesting that these CNAs may be involved in lymph node metastasis of OSCC. In conclusion, our data suggest that in OSCCs showing metastasis, the primary and metastatic tumors share similar genomic profiles, and that cells in the primary tumor may tend to metastasize after acquiring metastasis-associated CNAs.

  2. Profiling metabolic networks to study cancer metabolism.

    Science.gov (United States)

    Hiller, Karsten; Metallo, Christian M

    2013-02-01

    Cancer is a disease of unregulated cell growth and survival, and tumors reprogram biochemical pathways to aid these processes. New capabilities in the computational and bioanalytical characterization of metabolism have now emerged, facilitating the identification of unique metabolic dependencies that arise in specific cancers. By understanding the metabolic phenotype of cancers as a function of their oncogenic profiles, metabolic engineering may be applied to design synthetically lethal therapies for some tumors. This process begins with accurate measurement of metabolic fluxes. Here we review advanced methods of quantifying pathway activity and highlight specific examples where these approaches have uncovered potential opportunities for therapeutic intervention. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Random Subspace Aggregation for Cancer Prediction with Gene Expression Profiles

    Directory of Open Access Journals (Sweden)

    Liying Yang

    2016-01-01

    Full Text Available Background. Precisely predicting cancer is crucial for cancer treatment. Gene expression profiles make it possible to analyze patterns between genes and cancers on the genome-wide scale. Gene expression data analysis, however, is confronted with enormous challenges for its characteristics, such as high dimensionality, small sample size, and low Signal-to-Noise Ratio. Results. This paper proposes a method, termed RS_SVM, to predict gene expression profiles via aggregating SVM trained on random subspaces. After choosing gene features through statistical analysis, RS_SVM randomly selects feature subsets to yield random subspaces and training SVM classifiers accordingly and then aggregates SVM classifiers to capture the advantage of ensemble learning. Experiments on eight real gene expression datasets are performed to validate the RS_SVM method. Experimental results show that RS_SVM achieved better classification accuracy and generalization performance in contrast with single SVM, K-nearest neighbor, decision tree, Bagging, AdaBoost, and the state-of-the-art methods. Experiments also explored the effect of subspace size on prediction performance. Conclusions. The proposed RS_SVM method yielded superior performance in analyzing gene expression profiles, which demonstrates that RS_SVM provides a good channel for such biological data.

  4. Understanding Cancer Genome and Its Evolution by Next Generation Sequencing

    DEFF Research Database (Denmark)

    Hou, Yong

    knowledge we previously know. There is very limited knowledge of East Asia lung cancer genome except enrichment of EGFR mutations and lack of KRAS mutations. We carried out integrated genomic, transcriptomic and methylomic analysis of 335 primary Chinese lung adenocarcinomas (LUAD) and 35 corresponding......Cancer will cause 13 million deaths by the year of 2030, ranking the second leading cause of death worldwide. Previous studies indicate that most of the cancers originate from cells that acquired somatic mutations and evolved as Darwin Theory. Ten biological insights of cancer have been summarized...... recently. Cutting-age technologies like next generation sequencing (NGS) enable exploring cancer genome and evolution much more efficiently. However, integrated cancer genome sequencing studies showed great inter-/intra-tumoral heterogeneity (ITH) and complex evolution patterns beyond the cancer biological...

  5. Decoding the fine-scale structure of a breast cancer genome and transcriptome.

    Science.gov (United States)

    Volik, Stanislav; Raphael, Benjamin J; Huang, Guiqing; Stratton, Michael R; Bignel, Graham; Murnane, John; Brebner, John H; Bajsarowicz, Krystyna; Paris, Pamela L; Tao, Quanzhou; Kowbel, David; Lapuk, Anna; Shagin, Dmitri A; Shagina, Irina A; Gray, Joe W; Cheng, Jan-Fang; de Jong, Pieter J; Pevzner, Pavel; Collins, Colin

    2006-03-01

    A comprehensive understanding of cancer is predicated upon knowledge of the structure of malignant genomes underlying its many variant forms and the molecular mechanisms giving rise to them. It is well established that solid tumor genomes accumulate a large number of genome rearrangements during tumorigenesis. End Sequence Profiling (ESP) maps and clones genome breakpoints associated with all types of genome rearrangements elucidating the structural organization of tumor genomes. Here we extend the ESP methodology in several directions using the breast cancer cell line MCF-7. First, targeted ESP is applied to multiple amplified loci, revealing a complex process of rearrangement and co-amplification in these regions reminiscent of breakage/fusion/bridge cycles. Second, genome breakpoints identified by ESP are confirmed using a combination of DNA sequencing and PCR. Third, in vitro functional studies assign biological function to a rearranged tumor BAC clone, demonstrating that it encodes anti-apoptotic activity. Finally, ESP is extended to the transcriptome identifying four novel fusion transcripts and providing evidence that expression of fusion genes may be common in tumors. These results demonstrate the distinct advantages of ESP including: (1) the ability to detect all types of rearrangements and copy number changes; (2) straightforward integration of ESP data with the annotated genome sequence; (3) immortalization of the genome; (4) ability to generate tumor-specific reagents for in vitro and in vivo functional studies. Given these properties, ESP could play an important role in a tumor genome project.

  6. Tolerance of Whole-Genome Doubling Propagates Chromosomal Instability and Accelerates Cancer Genome Evolution

    DEFF Research Database (Denmark)

    Dewhurst, Sally M.; McGranahan, Nicholas; Burrell, Rebecca A.

    2014-01-01

    The contribution of whole-genome doubling to chromosomal instability (CIN) and tumor evolution is unclear. We use long-term culture of isogenic tetraploid cells from a stable diploid colon cancer progenitor to investigate how a genome-doubling event affects genome stability over time. Rare cells ...

  7. Recent Progress of Genome Study for Anaplastic Thyroid Cancer

    Directory of Open Access Journals (Sweden)

    Jieun Lee

    2013-06-01

    Full Text Available Anaplastic thyroid cancer (ATC belongs to the most malignant and rapidly progressive human thyroid cancers and its prognosis is very poor. Also, it shows high resistance to cancer treatments, so that effective treatment for ATC has not been found to date, and virtually all patients terminate their life rapidly after diagnosis. Although targeted treatment of genetic alterations has emerged as an extremely promising approach to human cancers, such as BRAF in metastatic melanoma, it remains unclear that how commonly genomic alterations are influenced in ATC tumorigenesis. In recent years, genome wide approaches have been exploited to find genetic alterations associated with complex diseases, including cancer. Here, we reviewed the comprehensive genetic alterations in ATC and recent approaches in the context of identifying genomic alterations associated with ATC. Since surprisingly few reports have been published on the genome wide study of ATC, this review puts emphasis on the urgent needs of genomic research for the prevention and treatment of ATC.

  8. Genetics, genomics, and cancer risk assessment: State of the Art and Future Directions in the Era of Personalized Medicine.

    Science.gov (United States)

    Weitzel, Jeffrey N; Blazer, Kathleen R; MacDonald, Deborah J; Culver, Julie O; Offit, Kenneth

    2011-01-01

    Scientific and technologic advances are revolutionizing our approach to genetic cancer risk assessment, cancer screening and prevention, and targeted therapy, fulfilling the promise of personalized medicine. In this monograph, we review the evolution of scientific discovery in cancer genetics and genomics, and describe current approaches, benefits, and barriers to the translation of this information to the practice of preventive medicine. Summaries of known hereditary cancer syndromes and highly penetrant genes are provided and contrasted with recently discovered genomic variants associated with modest increases in cancer risk. We describe the scope of knowledge, tools, and expertise required for the translation of complex genetic and genomic test information into clinical practice. The challenges of genomic counseling include the need for genetics and genomics professional education and multidisciplinary team training, the need for evidence-based information regarding the clinical utility of testing for genomic variants, the potential dangers posed by premature marketing of first-generation genomic profiles, and the need for new clinical models to improve access to and responsible communication of complex disease risk information. We conclude that given the experiences and lessons learned in the genetics era, the multidisciplinary model of genetic cancer risk assessment and management will serve as a solid foundation to support the integration of personalized genomic information into the practice of cancer medicine. Copyright © 2011 American Cancer Society, Inc.

  9. Genomic and Functional Approaches to Understanding Cancer Aneuploidy.

    Science.gov (United States)

    Taylor, Alison M; Shih, Juliann; Ha, Gavin; Gao, Galen F; Zhang, Xiaoyang; Berger, Ashton C; Schumacher, Steven E; Wang, Chen; Hu, Hai; Liu, Jianfang; Lazar, Alexander J; Cherniack, Andrew D; Beroukhim, Rameen; Meyerson, Matthew

    2018-04-09

    Aneuploidy, whole chromosome or chromosome arm imbalance, is a near-universal characteristic of human cancers. In 10,522 cancer genomes from The Cancer Genome Atlas, aneuploidy was correlated with TP53 mutation, somatic mutation rate, and expression of proliferation genes. Aneuploidy was anti-correlated with expression of immune signaling genes, due to decreased leukocyte infiltrates in high-aneuploidy samples. Chromosome arm-level alterations show cancer-specific patterns, including loss of chromosome arm 3p in squamous cancers. We applied genome engineering to delete 3p in lung cells, causing decreased proliferation rescued in part by chromosome 3 duplication. This study defines genomic and phenotypic correlates of cancer aneuploidy and provides an experimental approach to study chromosome arm aneuploidy. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Translating the cancer genome: Going beyond p values

    Energy Technology Data Exchange (ETDEWEB)

    Chin, Lynda; Chin, Lynda; Gray, Joe W.

    2008-04-03

    Cancer cells are endowed with diverse biological capabilities driven by myriad inherited and somatic genetic and epigenetic aberrations that commandeer key cancer-relevant pathways. Efforts to elucidate these aberrations began with Boveri's hypothesis of aberrant mitoses causing cancer and continue today with a suite of powerful high-resolution technologies that enable detailed catalogues of genomic aberrations and epigenomic modifications. Tomorrow will likely bring the complete atlas of reversible and irreversible alteration in individual cancers. The challenge now is to discern causal molecular abnormalities from genomic and epigenomic 'noise', to understand how the ensemble of these aberrations collaborate to drive cancer pathophysiology. Here, we highlight lessons learned from now classical examples of successful translation of genomic discoveries into clinical practice, lessons that may be used to guide and accelerate translation of emerging genomic insights into practical clinical endpoints that can impact on practice of cancer medicine.

  11. Characterization of HPV and host genome interactions in primary head and neck cancers

    Science.gov (United States)

    Parfenov, Michael; Pedamallu, Chandra Sekhar; Gehlenborg, Nils; Freeman, Samuel S.; Danilova, Ludmila; Bristow, Christopher A.; Lee, Semin; Hadjipanayis, Angela G.; Ivanova, Elena V.; Wilkerson, Matthew D.; Protopopov, Alexei; Yang, Lixing; Seth, Sahil; Song, Xingzhi; Tang, Jiabin; Ren, Xiaojia; Zhang, Jianhua; Pantazi, Angeliki; Santoso, Netty; Xu, Andrew W.; Mahadeshwar, Harshad; Wheeler, David A.; Haddad, Robert I.; Jung, Joonil; Ojesina, Akinyemi I.; Issaeva, Natalia; Yarbrough, Wendell G.; Hayes, D. Neil; Grandis, Jennifer R.; El-Naggar, Adel K.; Meyerson, Matthew; Park, Peter J.; Chin, Lynda; Seidman, J. G.; Hammerman, Peter S.; Kucherlapati, Raju; Ally, Adrian; Balasundaram, Miruna; Birol, Inanc; Bowlby, Reanne; Butterfield, Yaron S.N.; Carlsen, Rebecca; Cheng, Dean; Chu, Andy; Dhalla, Noreen; Guin, Ranabir; Holt, Robert A.; Jones, Steven J.M.; Lee, Darlene; Li, Haiyan I.; Marra, Marco A.; Mayo, Michael; Moore, Richard A.; Mungall, Andrew J.; Robertson, A. Gordon; Schein, Jacqueline E.; Sipahimalani, Payal; Tam, Angela; Thiessen, Nina; Wong, Tina; Protopopov, Alexei; Santoso, Netty; Lee, Semin; Parfenov, Michael; Zhang, Jianhua; Mahadeshwar, Harshad S.; Tang, Jiabin; Ren, Xiaojia; Seth, Sahil; Haseley, Psalm; Zeng, Dong; Yang, Lixing; Xu, Andrew W.; Song, Xingzhi; Pantazi, Angeliki; Bristow, Christopher; Hadjipanayis, Angela; Seidman, Jonathan; Chin, Lynda; Park, Peter J.; Kucherlapati, Raju; Akbani, Rehan; Casasent, Tod; Liu, Wenbin; Lu, Yiling; Mills, Gordon; Motter, Thomas; Weinstein, John; Diao, Lixia; Wang, Jing; Fan, You Hong; Liu, Jinze; Wang, Kai; Auman, J. Todd; Balu, Saianand; Bodenheimer, Tom; Buda, Elizabeth; Hayes, D. Neil; Hoadley, Katherine A.; Hoyle, Alan P.; Jefferys, Stuart R.; Jones, Corbin D.; Kimes, Patrick K.; Marron, J.S.; Meng, Shaowu; Mieczkowski, Piotr A.; Mose, Lisle E.; Parker, Joel S.; Perou, Charles M.; Prins, Jan F.; Roach, Jeffrey; Shi, Yan; Simons, Janae V.; Singh, Darshan; Soloway, Mathew G.; Tan, Donghui; Veluvolu, Umadevi; Walter, Vonn; Waring, Scot; Wilkerson, Matthew D.; Wu, Junyuan; Zhao, Ni; Cherniack, Andrew D.; Hammerman, Peter S.; Tward, Aaron D.; Pedamallu, Chandra Sekhar; Saksena, Gordon; Jung, Joonil; Ojesina, Akinyemi I.; Carter, Scott L.; Zack, Travis I.; Schumacher, Steven E.; Beroukhim, Rameen; Freeman, Samuel S.; Meyerson, Matthew; Cho, Juok; Chin, Lynda; Getz, Gad; Noble, Michael S.; DiCara, Daniel; Zhang, Hailei; Heiman, David I.; Gehlenborg, Nils; Voet, Doug; Lin, Pei; Frazer, Scott; Stojanov, Petar; Liu, Yingchun; Zou, Lihua; Kim, Jaegil; Lawrence, Michael S.; Sougnez, Carrie; Lichtenstein, Lee; Cibulskis, Kristian; Lander, Eric; Gabriel, Stacey B.; Muzny, Donna; Doddapaneni, HarshaVardhan; Kovar, Christie; Reid, Jeff; Morton, Donna; Han, Yi; Hale, Walker; Chao, Hsu; Chang, Kyle; Drummond, Jennifer A.; Gibbs, Richard A.; Kakkar, Nipun; Wheeler, David; Xi, Liu; Ciriello, Giovanni; Ladanyi, Marc; Lee, William; Ramirez, Ricardo; Sander, Chris; Shen, Ronglai; Sinha, Rileen; Weinhold, Nils; Taylor, Barry S.; Aksoy, B. Arman; Dresdner, Gideon; Gao, Jianjiong; Gross, Benjamin; Jacobsen, Anders; Reva, Boris; Schultz, Nikolaus; Sumer, S. Onur; Sun, Yichao; Chan, Timothy; Morris, Luc; Stuart, Joshua; Benz, Stephen; Ng, Sam; Benz, Christopher; Yau, Christina; Baylin, Stephen B.; Cope, Leslie; Danilova, Ludmila; Herman, James G.; Bootwalla, Moiz; Maglinte, Dennis T.; Laird, Peter W.; Triche, Timothy; Weisenberger, Daniel J.; Van Den Berg, David J.; Agrawal, Nishant; Bishop, Justin; Boutros, Paul C.; Bruce, Jeff P; Byers, Lauren Averett; Califano, Joseph; Carey, Thomas E.; Chen, Zhong; Cheng, Hui; Chiosea, Simion I.; Cohen, Ezra; Diergaarde, Brenda; Egloff, Ann Marie; El-Naggar, Adel K.; Ferris, Robert L.; Frederick, Mitchell J.; Grandis, Jennifer R.; Guo, Yan; Haddad, Robert I.; Hammerman, Peter S.; Harris, Thomas; Hayes, D. Neil; Hui, Angela BY; Lee, J. Jack; Lippman, Scott M.; Liu, Fei-Fei; McHugh, Jonathan B.; Myers, Jeff; Ng, Patrick Kwok Shing; Perez-Ordonez, Bayardo; Pickering, Curtis R.; Prystowsky, Michael; Romkes, Marjorie; Saleh, Anthony D.; Sartor, Maureen A.; Seethala, Raja; Seiwert, Tanguy Y.; Si, Han; Tward, Aaron D.; Van Waes, Carter; Waggott, Daryl M.; Wiznerowicz, Maciej; Yarbrough, Wendell; Zhang, Jiexin; Zuo, Zhixiang; Burnett, Ken; Crain, Daniel; Gardner, Johanna; Lau, Kevin; Mallery, David; Morris, Scott; Paulauskis, Joseph; Penny, Robert; Shelton, Candance; Shelton, Troy; Sherman, Mark; Yena, Peggy; Black, Aaron D.; Bowen, Jay; Frick, Jessica; Gastier-Foster, Julie M.; Harper, Hollie A.; Lichtenberg, Tara M.; Ramirez, Nilsa C.; Wise, Lisa; Zmuda, Erik; Baboud, Julien; Jensen, Mark A.; Kahn, Ari B.; Pihl, Todd D.; Pot, David A.; Srinivasan, Deepak; Walton, Jessica S.; Wan, Yunhu; Burton, Robert; Davidsen, Tanja; Demchok, John A.; Eley, Greg; Ferguson, Martin L.; Shaw, Kenna R. Mills; Ozenberger, Bradley A.; Sheth, Margi; Sofia, Heidi J.; Tarnuzzer, Roy; Wang, Zhining; Yang, Liming; Zenklusen, Jean Claude; Saller, Charles; Tarvin, Katherine; Chen, Chu; Bollag, Roni; Weinberger, Paul; Golusiński, Wojciech; Golusiński, Paweł; Ibbs, Matthiew; Korski, Konstanty; Mackiewicz, Andrzej; Suchorska, Wiktoria; Szybiak, Bartosz; Wiznerowicz, Maciej; Burnett, Ken; Curley, Erin; Gardner, Johanna; Mallery, David; Penny, Robert; Shelton, Troy; Yena, Peggy; Beard, Christina; Mitchell, Colleen; Sandusky, George; Agrawal, Nishant; Ahn, Julie; Bishop, Justin; Califano, Joseph; Khan, Zubair; Bruce, Jeff P; Hui, Angela BY; Irish, Jonathan; Liu, Fei-Fei; Perez-Ordonez, Bayardo; Waldron, John; Boutros, Paul C.; Waggott, Daryl M.; Myers, Jeff; Lippman, Scott M.; Egea, Sophie; Gomez-Fernandez, Carmen; Herbert, Lynn; Bradford, Carol R.; Carey, Thomas E.; Chepeha, Douglas B.; Haddad, Andrea S.; Jones, Tamara R.; Komarck, Christine M.; Malakh, Mayya; McHugh, Jonathan B.; Moyer, Jeffrey S.; Nguyen, Ariane; Peterson, Lisa A.; Prince, Mark E.; Rozek, Laura S.; Sartor, Maureen A.; Taylor, Evan G.; Walline, Heather M.; Wolf, Gregory T.; Boice, Lori; Chera, Bhishamjit S.; Funkhouser, William K.; Gulley, Margaret L.; Hackman, Trevor G.; Hayes, D. Neil; Hayward, Michele C.; Huang, Mei; Rathmell, W. Kimryn; Salazar, Ashley H.; Shockley, William W.; Shores, Carol G.; Thorne, Leigh; Weissler, Mark C.; Wrenn, Sylvia; Zanation, Adam M.; Chiosea, Simion I.; Diergaarde, Brenda; Egloff, Ann Marie; Ferris, Robert L.; Romkes, Marjorie; Seethala, Raja; Brown, Brandee T.; Guo, Yan; Pham, Michelle; Yarbrough, Wendell G.

    2014-01-01

    Previous studies have established that a subset of head and neck tumors contains human papillomavirus (HPV) sequences and that HPV-driven head and neck cancers display distinct biological and clinical features. HPV is known to drive cancer by the actions of the E6 and E7 oncoproteins, but the molecular architecture of HPV infection and its interaction with the host genome in head and neck cancers have not been comprehensively described. We profiled a cohort of 279 head and neck cancers with next generation RNA and DNA sequencing and show that 35 (12.5%) tumors displayed evidence of high-risk HPV types 16, 33, or 35. Twenty-five cases had integration of the viral genome into one or more locations in the human genome with statistical enrichment for genic regions. Integrations had a marked impact on the human genome and were associated with alterations in DNA copy number, mRNA transcript abundance and splicing, and both inter- and intrachromosomal rearrangements. Many of these events involved genes with documented roles in cancer. Cancers with integrated vs. nonintegrated HPV displayed different patterns of DNA methylation and both human and viral gene expressions. Together, these data provide insight into the mechanisms by which HPV interacts with the human genome beyond expression of viral oncoproteins and suggest that specific integration events are an integral component of viral oncogenesis. PMID:25313082

  12. Multi-region and single-cell sequencing reveal variable genomic heterogeneity in rectal cancer.

    Science.gov (United States)

    Liu, Mingshan; Liu, Yang; Di, Jiabo; Su, Zhe; Yang, Hong; Jiang, Beihai; Wang, Zaozao; Zhuang, Meng; Bai, Fan; Su, Xiangqian

    2017-11-23

    Colorectal cancer is a heterogeneous group of malignancies with complex molecular subtypes. While colon cancer has been widely investigated, studies on rectal cancer are very limited. Here, we performed multi-region whole-exome sequencing and single-cell whole-genome sequencing to examine the genomic intratumor heterogeneity (ITH) of rectal tumors. We sequenced nine tumor regions and 88 single cells from two rectal cancer patients with tumors of the same molecular classification and characterized their mutation profiles and somatic copy number alterations (SCNAs) at the multi-region and the single-cell levels. A variable extent of genomic heterogeneity was observed between the two patients, and the degree of ITH increased when analyzed on the single-cell level. We found that major SCNAs were early events in cancer development and inherited steadily. Single-cell sequencing revealed mutations and SCNAs which were hidden in bulk sequencing. In summary, we studied the ITH of rectal cancer at regional and single-cell resolution and demonstrated that variable heterogeneity existed in two patients. The mutational scenarios and SCNA profiles of two patients with treatment naïve from the same molecular subtype are quite different. Our results suggest each tumor possesses its own architecture, which may result in different diagnosis, prognosis, and drug responses. Remarkable ITH exists in the two patients we have studied, providing a preliminary impression of ITH in rectal cancer.

  13. dbEM: A database of epigenetic modifiers curated from cancerous and normal genomes.

    Science.gov (United States)

    Singh Nanda, Jagpreet; Kumar, Rahul; Raghava, Gajendra P S

    2016-01-18

    We have developed a database called dbEM (database of Epigenetic Modifiers) to maintain the genomic information of about 167 epigenetic modifiers/proteins, which are considered as potential cancer targets. In dbEM, modifiers are classified on functional basis and comprise of 48 histone methyl transferases, 33 chromatin remodelers and 31 histone demethylases. dbEM maintains the genomic information like mutations, copy number variation and gene expression in thousands of tumor samples, cancer cell lines and healthy samples. This information is obtained from public resources viz. COSMIC, CCLE and 1000-genome project. Gene essentiality data retrieved from COLT database further highlights the importance of various epigenetic proteins for cancer survival. We have also reported the sequence profiles, tertiary structures and post-translational modifications of these epigenetic proteins in cancer. It also contains information of 54 drug molecules against different epigenetic proteins. A wide range of tools have been integrated in dbEM e.g. Search, BLAST, Alignment and Profile based prediction. In our analysis, we found that epigenetic proteins DNMT3A, HDAC2, KDM6A, and TET2 are highly mutated in variety of cancers. We are confident that dbEM will be very useful in cancer research particularly in the field of epigenetic proteins based cancer therapeutics. This database is available for public at URL: http://crdd.osdd.net/raghava/dbem.

  14. Adopting clinical genomics: a systematic review of genomic literacy among physicians in cancer care.

    Science.gov (United States)

    Ha, Vu T Dung; Frizzo-Barker, Julie; Chow-White, Peter

    2018-02-13

    This article investigates the genomic knowledge of oncology care physicians in the adoption of clinical genomics. We apply Rogers' knowledge framework from his diffusion of innovation theory to identify three types of knowledge in the process of translation and adoption: awareness, how-to, and principles knowledge. The objectives of this systematic review are to: (1) examine the level of knowledge among physicians in clinical cancer genomics, and (2) identify potential interventions or strategies for development of genomic education for oncology practice. We follow the PRIMSA statement protocol and conduct a search of five relevant electronic databases. Our review focuses on: (1) genomic knowledge of oncogenomics or genomic services in oncology practices among physicians, and (2) interventions or strategies to provide genomic education of oncogenomics for physicians. We include twenty-one studies in our analysis. Nine focus on interventions to provide genomic education for cancer care. Overall, physicians' knowledge of oncogenomics among the three types is limited. The genomic literacy of physicians vary by their provider specialty, location, years of practice, and the type of genomic services. The three distinctions of knowledge offer a sophisticated and helpful tool to design effective strategies and interventions to provide genomic education for cancer treatment. In the nine educational intervention studies, the main intervention outcomes are changes in awareness, referral rates, genomic confidence, and genomic knowledge. Rogers' diffusion of innovation model allows us to differentiate three types of knowledge in the development and adoption of clinical genomics. This analytical lens can inform potential avenues to design more effective strategies and interventions to provide genomic education for oncology practice. We identified and synthesized a dearth of high quality studies that can inform the most effective educational outcomes of these interventions

  15. Genomic outlier profile analysis: mixture models, null hypotheses, and nonparametric estimation.

    Science.gov (United States)

    Ghosh, Debashis; Chinnaiyan, Arul M

    2009-01-01

    In most analyses of large-scale genomic data sets, differential expression analysis is typically assessed by testing for differences in the mean of the distributions between 2 groups. A recent finding by Tomlins and others (2005) is of a different type of pattern of differential expression in which a fraction of samples in one group have overexpression relative to samples in the other group. In this work, we describe a general mixture model framework for the assessment of this type of expression, called outlier profile analysis. We start by considering the single-gene situation and establishing results on identifiability. We propose 2 nonparametric estimation procedures that have natural links to familiar multiple testing procedures. We then develop multivariate extensions of this methodology to handle genome-wide measurements. The proposed methodologies are compared using simulation studies as well as data from a prostate cancer gene expression study.

  16. Three-dimensional reconstruction for genomic analysis of prostate cancer

    Science.gov (United States)

    Wetzel, Arthur W.; Gilbertson, John; Zheng, Lei; Gilespie, John; Swalwell, Jennifer; Yagi, Yukako; Kim, Sujin; Emmert-Buck, Michael; Becich, Michael J.

    2000-05-01

    Prostate cancer is the second most common cause of cancer deaths and is the most frequently detected form of cancer of males in the US. Death rate scan be greatly reduced by early treatment. Consequently, it is important to understand the cause and progression of this disease in order to improve detection and treatment methods. As part of the Cancer Genome Anatomy Project work is underway to produce a 'molecular finger print' of prostate cancer.

  17. Association between genomic recurrence risk and well-being among breast cancer patients

    International Nuclear Information System (INIS)

    Retèl, Valesca P; Groothuis-Oudshoorn, Catharina GM; Aaronson, Neil K; Brewer, Noel T; Rutgers, Emiel JT; Harten, Wim H van

    2013-01-01

    Gene expression profiling (GEP) is increasingly used in the rapidly evolving field of personalized medicine. We sought to evaluate the association between GEP-assessed of breast cancer recurrence risk and patients’ well-being. Participants were Dutch women from 10 hospitals being treated for early stage breast cancer who were enrolled in the MINDACT trial (Microarray In Node-negative and 1 to 3 positive lymph node Disease may Avoid ChemoTherapy). As part of the trial, they received a disease recurrence risk estimate based on a 70-gene signature and on standard clinical criteria as scored via a modified version of Adjuvant! Online. /Women completed a questionnaire 6–8 weeks after surgery and after their decision regarding adjuvant chemotherapy. The questionnaire assessed perceived understanding, knowledge, risk perception, satisfaction, distress, cancer worry and health-related quality of life (HRQoL), 6–8 weeks after surgery and decision regarding adjuvant chemotherapy. Women (n = 347, response rate 62%) reported high satisfaction with and a good understanding of the GEP information they received. Women with low risk estimates from both the standard and genomic tests reported the lowest distress levels. Distress was higher predominately among patients who had received high genomic risk estimates, who did not receive genomic risk estimates, or who received conflicting estimates based on genomic and clinical criteria. Cancer worry was highest for patients with higher risk perceptions and lower satisfaction. Patients with concordant high-risk profiles and those for whom such profiles were not available reported lower quality of life. Patients were generally satisfied with the information they received about recurrence risk based on genomic testing. Some types of genomic test results were associated with greater distress levels, but not with cancer worry or HRQoL. ISRCTN: http://www.controlled-trials.com/ISRCTN18543567/MINDACT

  18. Profile of colorectal cancer in Eastern India.

    Science.gov (United States)

    Sarkar, Snigdha; Mukherjee, Ramanuj; Paira, Susil Kumar; Roy, Bipradas; Banerjee, Shubhabrata; Mukherjee, Saibal Kumar

    2012-12-01

    Although colorectal cancer is a major cause of concern in the western population, recent studies are showing the incidence and mortality of colorectal cancer to be rapidly rising in Asia. The present study is an insight into the epidemiological profile of colorectal cancer of a representative Eastern Indian population. Over a period of three years, all histologically proved patients with colorectal cancer were assessed for age, sex, body mass index, dietary habits, socioeconomic status and stage of disease. Of a total of 168 patients male to female ratio was 1.7:1.The mean age of presentation was 47.01 years. Although colorectal cancer has been known as a disease of sedentary obese men, 41.66% of the patients were from a low socioeconomic rural set-up and 40.47% were involved in heavy physical labour with only 15% of being obese; 62% patients were harbouring a locally advanced disease at the time of presentation. The epidemiological pattern of colorectal cancer in India is different from that of the west as regards to earlier age of presentation, prevalence in low socio economic class with low fat diet and scanty meat intake.

  19. Genomic profiling reveals extensive heterogeneity in somatic DNA copy number aberrations of canine hemangiosarcoma.

    Science.gov (United States)

    Thomas, Rachael; Borst, Luke; Rotroff, Daniel; Motsinger-Reif, Alison; Lindblad-Toh, Kerstin; Modiano, Jaime F; Breen, Matthew

    2014-09-01

    Canine hemangiosarcoma is a highly aggressive vascular neoplasm associated with extensive clinical and anatomical heterogeneity and a grave prognosis. Comprehensive molecular characterization of hemangiosarcoma may identify novel therapeutic targets and advanced clinical management strategies, but there are no published reports of tumor-associated genome instability and disrupted gene dosage in this cancer. We performed genome-wide microarray-based somatic DNA copy number profiling of 75 primary intra-abdominal hemangiosarcomas from five popular dog breeds that are highly predisposed to this disease. The cohort exhibited limited global genomic instability, compared to other canine sarcomas studied to date, and DNA copy number aberrations (CNAs) were predominantly of low amplitude. Recurrent imbalances of several key cancer-associated genes were evident; however, the global penetrance of any single CNA was low and no distinct hallmark aberrations were evident. Copy number gains of dog chromosomes 13, 24, and 31, and loss of chromosome 16, were the most recurrent CNAs involving large chromosome regions, but their relative distribution within and between cases suggests they most likely represent passenger aberrations. CNAs involving CDKN2A, VEGFA, and the SKI oncogene were identified as potential driver aberrations of hemangiosarcoma development, highlighting potential targets for therapeutic modulation. CNA profiles were broadly conserved between the five breeds, although subregional variation was evident, including a near twofold lower incidence of VEGFA gain in Golden Retrievers versus other breeds (22 versus 40 %). These observations support prior transcriptional studies suggesting that the clinical heterogeneity of this cancer may reflect the existence of multiple, molecularly distinct subtypes of canine hemangiosarcoma.

  20. Prognostic Gene Expression Profiles in Breast Cancer

    DEFF Research Database (Denmark)

    Sørensen, Kristina Pilekær

    Each year approximately 4,800 Danish women are diagnosed with breast cancer. Several clinical and pathological factors are used as prognostic and predictive markers to categorize the patients into groups of high or low risk. Around 90% of all patients are allocated to the high risk group and offe......Each year approximately 4,800 Danish women are diagnosed with breast cancer. Several clinical and pathological factors are used as prognostic and predictive markers to categorize the patients into groups of high or low risk. Around 90% of all patients are allocated to the high risk group...... clinical courses, and they may be useful as novel prognostic biomarkers in breast cancer. The aim of the present project was to predict the development of metastasis in lymph node negative breast cancer patients by RNA profiling. We collected and analyzed 82 primary breast tumors from patients who...... developed metastasis and 82 primary breast tumors from patients who remained metastasis-free, by microarray gene expression profiling. We employed a nested case-control design, where samples were matched, in this study one-to-one, to exclude differences in gene expression based on tumor type, tumor size...

  1. Integrated genomic and gene expression profiling identifies two major genomic circuits in urothelial carcinoma.

    Directory of Open Access Journals (Sweden)

    David Lindgren

    Full Text Available Similar to other malignancies, urothelial carcinoma (UC is characterized by specific recurrent chromosomal aberrations and gene mutations. However, the interconnection between specific genomic alterations, and how patterns of chromosomal alterations adhere to different molecular subgroups of UC, is less clear. We applied tiling resolution array CGH to 146 cases of UC and identified a number of regions harboring recurrent focal genomic amplifications and deletions. Several potential oncogenes were included in the amplified regions, including known oncogenes like E2F3, CCND1, and CCNE1, as well as new candidate genes, such as SETDB1 (1q21, and BCL2L1 (20q11. We next combined genome profiling with global gene expression, gene mutation, and protein expression data and identified two major genomic circuits operating in urothelial carcinoma. The first circuit was characterized by FGFR3 alterations, overexpression of CCND1, and 9q and CDKN2A deletions. The second circuit was defined by E3F3 amplifications and RB1 deletions, as well as gains of 5p, deletions at PTEN and 2q36, 16q, 20q, and elevated CDKN2A levels. TP53/MDM2 alterations were common for advanced tumors within the two circuits. Our data also suggest a possible RAS/RAF circuit. The tumors with worst prognosis showed a gene expression profile that indicated a keratinized phenotype. Taken together, our integrative approach revealed at least two separate networks of genomic alterations linked to the molecular diversity seen in UC, and that these circuits may reflect distinct pathways of tumor development.

  2. Computational approaches to identify functional genetic variants in cancer genomes

    DEFF Research Database (Denmark)

    Gonzalez-Perez, Abel; Mustonen, Ville; Reva, Boris

    2013-01-01

    The International Cancer Genome Consortium (ICGC) aims to catalog genomic abnormalities in tumors from 50 different cancer types. Genome sequencing reveals hundreds to thousands of somatic mutations in each tumor but only a minority of these drive tumor progression. We present the result of discu...... of discussions within the ICGC on how to address the challenge of identifying mutations that contribute to oncogenesis, tumor maintenance or response to therapy, and recommend computational techniques to annotate somatic variants and predict their impact on cancer phenotype....

  3. What can digital transcript profiling reveal about human cancers?

    Directory of Open Access Journals (Sweden)

    J.M. Cerutti

    2003-08-01

    Full Text Available Important biological and clinical features of malignancy are reflected in its transcript pattern. Recent advances in gene expression technology and informatics have provided a powerful new means to obtain and interpret these expression patterns. A comprehensive approach to expression profiling is serial analysis of gene expression (SAGE, which provides digital information on transcript levels. SAGE works by counting transcripts and storing these digital values electronically, providing absolute gene expression levels that make historical comparisons possible. SAGE produces a comprehensive profile of gene expression and can be used to search for candidate tumor markers or antigens in a limited number of samples. The Cancer Genome Anatomy Project has created a SAGE database of human gene expression levels for many different tumors and normal reference tissues and provides online tools for viewing, comparing, and downloading expression profiles. Digital expression profiling using SAGE and informatics have been useful for identifying genes that have a role in tumor invasion and other aspects of tumor progression.

  4. PBX1 Genomic Pioneer Function Drives ERα Signaling Underlying Progression in Breast Cancer

    Science.gov (United States)

    Magnani, Luca; Ballantyne, Elizabeth B.; Zhang, Xiaoyang; Lupien, Mathieu

    2011-01-01

    Altered transcriptional programs are a hallmark of diseases, yet how these are established is still ill-defined. PBX1 is a TALE homeodomain protein involved in the development of different types of cancers. The estrogen receptor alpha (ERα) is central to the development of two-thirds of all breast cancers. Here we demonstrate that PBX1 acts as a pioneer factor and is essential for the ERα-mediated transcriptional response driving aggressive tumors in breast cancer. Indeed, PBX1 expression correlates with ERα in primary breast tumors, and breast cancer cells depleted of PBX1 no longer proliferate following estrogen stimulation. Profiling PBX1 recruitment and chromatin accessibility across the genome of breast cancer cells through ChIP-seq and FAIRE-seq reveals that PBX1 is loaded and promotes chromatin openness at specific genomic locations through its capacity to read specific epigenetic signatures. Accordingly, PBX1 guides ERα recruitment to a specific subset of sites. Expression profiling studies demonstrate that PBX1 controls over 70% of the estrogen response. More importantly, the PBX1-dependent transcriptional program is associated with poor-outcome in breast cancer patients. Correspondingly, PBX1 expression alone can discriminate a priori the outcome in ERα-positive breast cancer patients. These features are markedly different from the previously characterized ERα-associated pioneer factor FoxA1. Indeed, PBX1 is the only pioneer factor identified to date that discriminates outcome such as metastasis in ERα-positive breast cancer patients. Together our results reveal that PBX1 is a novel pioneer factor defining aggressive ERα-positive breast tumors, as it guides ERα genomic activity to unique genomic regions promoting a transcriptional program favorable to breast cancer progression. PMID:22125492

  5. Genome-wide expression profiling of complex regional pain syndrome.

    Directory of Open Access Journals (Sweden)

    Eun-Heui Jin

    Full Text Available Complex regional pain syndrome (CRPS is a chronic, progressive, and devastating pain syndrome characterized by spontaneous pain, hyperalgesia, allodynia, altered skin temperature, and motor dysfunction. Although previous gene expression profiling studies have been conducted in animal pain models, there genome-wide expression profiling in the whole blood of CRPS patients has not been reported yet. Here, we successfully identified certain pain-related genes through genome-wide expression profiling in the blood from CRPS patients. We found that 80 genes were differentially expressed between 4 CRPS patients (2 CRPS I and 2 CRPS II and 5 controls (cut-off value: 1.5-fold change and p<0.05. Most of those genes were associated with signal transduction, developmental processes, cell structure and motility, and immunity and defense. The expression levels of major histocompatibility complex class I A subtype (HLA-A29.1, matrix metalloproteinase 9 (MMP9, alanine aminopeptidase N (ANPEP, l-histidine decarboxylase (HDC, granulocyte colony-stimulating factor 3 receptor (G-CSF3R, and signal transducer and activator of transcription 3 (STAT3 genes selected from the microarray were confirmed in 24 CRPS patients and 18 controls by quantitative reverse transcription-polymerase chain reaction (qRT-PCR. We focused on the MMP9 gene that, by qRT-PCR, showed a statistically significant difference in expression in CRPS patients compared to controls with the highest relative fold change (4.0±1.23 times and p = 1.4×10(-4. The up-regulation of MMP9 gene in the blood may be related to the pain progression in CRPS patients. Our findings, which offer a valuable contribution to the understanding of the differential gene expression in CRPS may help in the understanding of the pathophysiology of CRPS pain progression.

  6. Cancer Genomics: Diversity and Disparity Across Ethnicity and Geography.

    Science.gov (United States)

    Tan, Daniel S W; Mok, Tony S K; Rebbeck, Timothy R

    2016-01-01

    Ethnic and geographic differences in cancer incidence, prognosis, and treatment outcomes can be attributed to diversity in the inherited (germline) and somatic genome. Although international large-scale sequencing efforts are beginning to unravel the genomic underpinnings of cancer traits, much remains to be known about the underlying mechanisms and determinants of genomic diversity. Carcinogenesis is a dynamic, complex phenomenon representing the interplay between genetic and environmental factors that results in divergent phenotypes across ethnicities and geography. For example, compared with whites, there is a higher incidence of prostate cancer among Africans and African Americans, and the disease is generally more aggressive and fatal. Genome-wide association studies have identified germline susceptibility loci that may account for differences between the African and non-African patients, but the lack of availability of appropriate cohorts for replication studies and the incomplete understanding of genomic architecture across populations pose major limitations. We further discuss the transformative potential of routine diagnostic evaluation for actionable somatic alterations, using lung cancer as an example, highlighting implications of population disparities, current hurdles in implementation, and the far-reaching potential of clinical genomics in enhancing cancer prevention, diagnosis, and treatment. As we enter the era of precision cancer medicine, a concerted multinational effort is key to addressing population and genomic diversity as well as overcoming barriers and geographical disparities in research and health care delivery. © 2015 by American Society of Clinical Oncology.

  7. Conditional Selection of Genomic Alterations Dictates Cancer Evolution and Oncogenic Dependencies.

    Science.gov (United States)

    Mina, Marco; Raynaud, Franck; Tavernari, Daniele; Battistello, Elena; Sungalee, Stephanie; Saghafinia, Sadegh; Laessle, Titouan; Sanchez-Vega, Francisco; Schultz, Nikolaus; Oricchio, Elisa; Ciriello, Giovanni

    2017-08-14

    Cancer evolves through the emergence and selection of molecular alterations. Cancer genome profiling has revealed that specific events are more or less likely to be co-selected, suggesting that the selection of one event depends on the others. However, the nature of these evolutionary dependencies and their impact remain unclear. Here, we designed SELECT, an algorithmic approach to systematically identify evolutionary dependencies from alteration patterns. By analyzing 6,456 genomes from multiple tumor types, we constructed a map of oncogenic dependencies associated with cellular pathways, transcriptional readouts, and therapeutic response. Finally, modeling of cancer evolution shows that alteration dependencies emerge only under conditional selection. These results provide a framework for the design of strategies to predict cancer progression and therapeutic response. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Metabolomic Profiling of Prostate Cancer Progression During Active Surveillance

    Science.gov (United States)

    2012-10-01

    cancer or a history of transurethral resection of the prostate (TURP) for benign prostatic hypertrophy are excluded. Somewhat surprisingly...AD_________________ Award Number: W81XWH-11-1-0451 TITLE: Metabolomic Profiling of Prostate Cancer...29 September 2012 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Metabolomic Profiling of Prostate Cancer Progression During Active Surveillance 5b

  9. Early Onset Malignancies - Genomic Study of Cancer Disparities

    Science.gov (United States)

    The Early Onset Malignancies Initiative studies the genomic basis of six cancers that develop at an earlier age, occur in higher rates, and are typically more aggressive in certain minority populations.

  10. Genomic and Molecular Landscape of DNA Damage Repair Deficiency across The Cancer Genome Atlas

    Directory of Open Access Journals (Sweden)

    Theo A. Knijnenburg

    2018-04-01

    Full Text Available Summary: DNA damage repair (DDR pathways modulate cancer risk, progression, and therapeutic response. We systematically analyzed somatic alterations to provide a comprehensive view of DDR deficiency across 33 cancer types. Mutations with accompanying loss of heterozygosity were observed in over 1/3 of DDR genes, including TP53 and BRCA1/2. Other prevalent alterations included epigenetic silencing of the direct repair genes EXO5, MGMT, and ALKBH3 in ∼20% of samples. Homologous recombination deficiency (HRD was present at varying frequency in many cancer types, most notably ovarian cancer. However, in contrast to ovarian cancer, HRD was associated with worse outcomes in several other cancers. Protein structure-based analyses allowed us to predict functional consequences of rare, recurrent DDR mutations. A new machine-learning-based classifier developed from gene expression data allowed us to identify alterations that phenocopy deleterious TP53 mutations. These frequent DDR gene alterations in many human cancers have functional consequences that may determine cancer progression and guide therapy. : Knijnenburg et al. present The Cancer Genome Atlas (TCGA Pan-Cancer analysis of DNA damage repair (DDR deficiency in cancer. They use integrative genomic and molecular analyses to identify frequent DDR alterations across 33 cancer types, correlate gene- and pathway-level alterations with genome-wide measures of genome instability and impaired function, and demonstrate the prognostic utility of DDR deficiency scores. Keywords: The Cancer Genome Atlas PanCanAtlas project, DNA damage repair, somatic mutations, somatic copy-number alterations, epigenetic silencing, DNA damage footprints, mutational signatures, integrative statistical analysis, protein structure analysis

  11. BarleyBase—an expression profiling database for plant genomics

    Science.gov (United States)

    Shen, Lishuang; Gong, Jian; Caldo, Rico A.; Nettleton, Dan; Cook, Dianne; Wise, Roger P.; Dickerson, Julie A.

    2005-01-01

    BarleyBase (BB) (www.barleybase.org) is an online database for plant microarrays with integrated tools for data visualization and statistical analysis. BB houses raw and normalized expression data from the two publicly available Affymetrix genome arrays, Barley1 and Arabidopsis ATH1 with plans to include the new Affymetrix 61K wheat, maize, soybean and rice arrays, as they become available. BB contains a broad set of query and display options at all data levels, ranging from experiments to individual hybridizations to probe sets down to individual probes. Users can perform cross-experiment queries on probe sets based on observed expression profiles and/or based on known biological information. Probe set queries are integrated with visualization and analysis tools such as the R statistical toolbox, data filters and a large variety of plot types. Controlled vocabularies for gene and plant ontologies, as well as interconnecting links to physical or genetic map and other genomic data in PlantGDB, Gramene and GrainGenes, allow users to perform EST alignments and gene function prediction using Barley1 exemplar sequences, thus, enhancing cross-species comparison. PMID:15608273

  12. Excessive genomic DNA copy number variation in the Li-Fraumeni cancer predisposition syndrome.

    Science.gov (United States)

    Shlien, Adam; Tabori, Uri; Marshall, Christian R; Pienkowska, Malgorzata; Feuk, Lars; Novokmet, Ana; Nanda, Sonia; Druker, Harriet; Scherer, Stephen W; Malkin, David

    2008-08-12

    DNA copy number variations (CNVs) are a significant and ubiquitous source of inherited human genetic variation. However, the importance of CNVs to cancer susceptibility and tumor progression has not yet been explored. Li-Fraumeni syndrome (LFS) is an autosomal dominantly inherited disorder characterized by a strikingly increased risk of early-onset breast cancer, sarcomas, brain tumors and other neoplasms in individuals harboring germline TP53 mutations. Known genetic determinants of LFS do not fully explain the variable clinical phenotype in affected family members. As part of a wider study of CNVs and cancer, we conducted a genome-wide profile of germline CNVs in LFS families. Here, by examining DNA from a large healthy population and an LFS cohort using high-density oligonucleotide arrays, we show that the number of CNVs per genome is well conserved in the healthy population, but strikingly enriched in these cancer-prone individuals. We found a highly significant increase in CNVs among carriers of germline TP53 mutations with a familial cancer history. Furthermore, we identified a remarkable number of genomic regions in which known cancer-related genes coincide with CNVs, in both LFS families and healthy individuals. Germline CNVs may provide a foundation that enables the more dramatic chromosomal changes characteristic of TP53-related tumors to be established. Our results suggest that screening families predisposed to cancer for CNVs may identify individuals with an abnormally high number of these events.

  13. Nuclear topology modulates the mutational landscapes of cancer genomes.

    Science.gov (United States)

    Smith, Kyle S; Liu, Lin L; Ganesan, Shridar; Michor, Franziska; De, Subhajyoti

    2017-11-01

    Nuclear organization of genomic DNA affects processes of DNA damage and repair, yet its effects on mutational landscapes in cancer genomes remain unclear. Here we analyzed genome-wide somatic mutations from 366 samples of six cancer types. We found that lamina-associated regions, which are typically localized at the nuclear periphery, displayed higher somatic mutation frequencies than did the interlamina regions at the nuclear core. This effect was observed even after adjustment for features such as GC percentage, chromatin, and replication timing. Furthermore, mutational signatures differed between the nuclear core and periphery, thus indicating differences in the patterns of DNA-damage or DNA-repair processes. For instance, smoking and UV-related signatures, as well as substitutions at certain motifs, were more enriched in the nuclear periphery. Thus, the nuclear architecture may influence mutational landscapes in cancer genomes beyond the previously described effects of chromatin structure and replication timing.

  14. Databases and web tools for cancer genomics study.

    Science.gov (United States)

    Yang, Yadong; Dong, Xunong; Xie, Bingbing; Ding, Nan; Chen, Juan; Li, Yongjun; Zhang, Qian; Qu, Hongzhu; Fang, Xiangdong

    2015-02-01

    Publicly-accessible resources have promoted the advance of scientific discovery. The era of genomics and big data has brought the need for collaboration and data sharing in order to make effective use of this new knowledge. Here, we describe the web resources for cancer genomics research and rate them on the basis of the diversity of cancer types, sample size, omics data comprehensiveness, and user experience. The resources reviewed include data repository and analysis tools; and we hope such introduction will promote the awareness and facilitate the usage of these resources in the cancer research community. Copyright © 2015 The Authors. Production and hosting by Elsevier Ltd.. All rights reserved.

  15. Genomic Determinants of Protein Abundance Variation in Colorectal Cancer Cells

    Directory of Open Access Journals (Sweden)

    Theodoros I. Roumeliotis

    2017-08-01

    Full Text Available Assessing the impact of genomic alterations on protein networks is fundamental in identifying the mechanisms that shape cancer heterogeneity. We have used isobaric labeling to characterize the proteomic landscapes of 50 colorectal cancer cell lines and to decipher the functional consequences of somatic genomic variants. The robust quantification of over 9,000 proteins and 11,000 phosphopeptides on average enabled the de novo construction of a functional protein correlation network, which ultimately exposed the collateral effects of mutations on protein complexes. CRISPR-cas9 deletion of key chromatin modifiers confirmed that the consequences of genomic alterations can propagate through protein interactions in a transcript-independent manner. Lastly, we leveraged the quantified proteome to perform unsupervised classification of the cell lines and to build predictive models of drug response in colorectal cancer. Overall, we provide a deep integrative view of the functional network and the molecular structure underlying the heterogeneity of colorectal cancer cells.

  16. Cancer Genomics: Integrative and Scalable Solutions in R / Bioconductor | Informatics Technology for Cancer Research (ITCR)

    Science.gov (United States)

    This proposal develops scalable R / Bioconductor software infrastructure and data resources to integrate complex, heterogeneous, and large cancer genomic experiments. The falling cost of genomic assays facilitates collection of multiple data types (e.g., gene and transcript expression, structural variation, copy number, methylation, and microRNA data) from a set of clinical specimens. Furthermore, substantial resources are now available from large consortium activities like The Cancer Genome Atlas (TCGA).

  17. Genome Science and Personalized Cancer Treatment (LBNL Summer Lecture Series)

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Joe

    2009-08-04

    Summer Lecture Series 2009: Results from the Human Genome Project are enabling scientists to understand how individual cancers form and progress. This information, when combined with newly developed drugs, can optimize the treatment of individual cancers. Joe Gray, director of Berkeley Labs Life Sciences Division and Associate Laboratory Director for Life and Environmental Sciences, will focus on this approach, its promise, and its current roadblocks — particularly with regard to breast cancer.

  18. Microenvironmental Heterogeneity Parallels Breast Cancer Progression: A Histology-Genomic Integration Analysis.

    Directory of Open Access Journals (Sweden)

    Rachael Natrajan

    2016-02-01

    Full Text Available The intra-tumor diversity of cancer cells is under intense investigation; however, little is known about the heterogeneity of the tumor microenvironment that is key to cancer progression and evolution. We aimed to assess the degree of microenvironmental heterogeneity in breast cancer and correlate this with genomic and clinical parameters.We developed a quantitative measure of microenvironmental heterogeneity along three spatial dimensions (3-D in solid tumors, termed the tumor ecosystem diversity index (EDI, using fully automated histology image analysis coupled with statistical measures commonly used in ecology. This measure was compared with disease-specific survival, key mutations, genome-wide copy number, and expression profiling data in a retrospective study of 510 breast cancer patients as a test set and 516 breast cancer patients as an independent validation set. In high-grade (grade 3 breast cancers, we uncovered a striking link between high microenvironmental heterogeneity measured by EDI and a poor prognosis that cannot be explained by tumor size, genomics, or any other data types. However, this association was not observed in low-grade (grade 1 and 2 breast cancers. The prognostic value of EDI was superior to known prognostic factors and was enhanced with the addition of TP53 mutation status (multivariate analysis test set, p = 9 × 10-4, hazard ratio = 1.47, 95% CI 1.17-1.84; validation set, p = 0.0011, hazard ratio = 1.78, 95% CI 1.26-2.52. Integration with genome-wide profiling data identified losses of specific genes on 4p14 and 5q13 that were enriched in grade 3 tumors with high microenvironmental diversity that also substratified patients into poor prognostic groups. Limitations of this study include the number of cell types included in the model, that EDI has prognostic value only in grade 3 tumors, and that our spatial heterogeneity measure was dependent on spatial scale and tumor size.To our knowledge, this is the first

  19. Whole-genome reconstruction and mutational signatures in gastric cancer.

    Science.gov (United States)

    Nagarajan, Niranjan; Bertrand, Denis; Hillmer, Axel M; Zang, Zhi Jiang; Yao, Fei; Jacques, Pierre-Étienne; Teo, Audrey S M; Cutcutache, Ioana; Zhang, Zhenshui; Lee, Wah Heng; Sia, Yee Yen; Gao, Song; Ariyaratne, Pramila N; Ho, Andrea; Woo, Xing Yi; Veeravali, Lavanya; Ong, Choon Kiat; Deng, Niantao; Desai, Kartiki V; Khor, Chiea Chuen; Hibberd, Martin L; Shahab, Atif; Rao, Jaideepraj; Wu, Mengchu; Teh, Ming; Zhu, Feng; Chin, Sze Yung; Pang, Brendan; So, Jimmy B Y; Bourque, Guillaume; Soong, Richie; Sung, Wing-Kin; Tean Teh, Bin; Rozen, Steven; Ruan, Xiaoan; Yeoh, Khay Guan; Tan, Patrick B O; Ruan, Yijun

    2012-12-13

    Gastric cancer is the second highest cause of global cancer mortality. To explore the complete repertoire of somatic alterations in gastric cancer, we combined massively parallel short read and DNA paired-end tag sequencing to present the first whole-genome analysis of two gastric adenocarcinomas, one with chromosomal instability and the other with microsatellite instability. Integrative analysis and de novo assemblies revealed the architecture of a wild-type KRAS amplification, a common driver event in gastric cancer. We discovered three distinct mutational signatures in gastric cancer--against a genome-wide backdrop of oxidative and microsatellite instability-related mutational signatures, we identified the first exome-specific mutational signature. Further characterization of the impact of these signatures by combining sequencing data from 40 complete gastric cancer exomes and targeted screening of an additional 94 independent gastric tumors uncovered ACVR2A, RPL22 and LMAN1 as recurrently mutated genes in microsatellite instability-positive gastric cancer and PAPPA as a recurrently mutated gene in TP53 wild-type gastric cancer. These results highlight how whole-genome cancer sequencing can uncover information relevant to tissue-specific carcinogenesis that would otherwise be missed from exome-sequencing data.

  20. Cancer in Children and Adolescents | Office of Cancer Genomics

    Science.gov (United States)

    View a fact sheet that has statistics as well as information about types, causes, and treatments of cancers in children and adolescents in the United States. https://www.cancer.gov/types/childhood-cancers/child-adolescent-cancers-fact-sheet

  1. Genetic variability in MCF-7 sublines: evidence of rapid genomic and RNA expression profile modifications

    International Nuclear Information System (INIS)

    Nugoli, Mélanie; Theillet, Charles; Chuchana, Paul; Vendrell, Julie; Orsetti, Béatrice; Ursule, Lisa; Nguyen, Catherine; Birnbaum, Daniel; Douzery, Emmanuel JP; Cohen, Pascale

    2003-01-01

    Both phenotypic and cytogenetic variability have been reported for clones of breast carcinoma cell lines but have not been comprehensively studied. Despite this, cell lines such as MCF-7 cells are extensively used as model systems. In this work we documented, using CGH and RNA expression profiles, the genetic variability at the genomic and RNA expression levels of MCF-7 cells of different origins. Eight MCF-7 sublines collected from different sources were studied as well as 3 subclones isolated from one of the sublines by limit dilution. MCF-7 sublines showed important differences in copy number alteration (CNA) profiles. Overall numbers of events ranged from 28 to 41. Involved chromosomal regions varied greatly from a subline to another. A total of 62 chromosomal regions were affected by either gains or losses in the 11 sublines studied. We performed a phylogenetic analysis of CGH profiles using maximum parsimony in order to reconstruct the putative filiation of the 11 MCF-7 sublines. The phylogenetic tree obtained showed that the MCF-7 clade was characterized by a restricted set of 8 CNAs and that the most divergent subline occupied the position closest to the common ancestor. Expression profiles of 8 MCF-7 sublines were analyzed along with those of 19 unrelated breast cancer cell lines using home made cDNA arrays comprising 720 genes. Hierarchical clustering analysis of the expression data showed that 7/8 MCF-7 sublines were grouped forming a cluster while the remaining subline clustered with unrelated breast cancer cell lines. These data thus showed that MCF-7 sublines differed at both the genomic and phenotypic levels. The analysis of CGH profiles of the parent subline and its three subclones supported the heteroclonal nature of MCF-7 cells. This strongly suggested that the genetic plasticity of MCF-7 cells was related to their intrinsic capacity to generate clonal heterogeneity. We propose that MCF-7, and possibly the breast tumor it was derived from, evolved

  2. Prediction of metastasis from low-malignant breast cancer by gene expression profiling

    DEFF Research Database (Denmark)

    Thomassen, Mads; Tan, Qihua; Eiriksdottir, Freyja

    2007-01-01

    demonstrated high cross-platform consistency of the classifiers. Higher performance of HUMAC32 was demonstrated among the low-malignant cancers compared with the 70-gene classifier. This suggests that although the metastatic potential to some extend is determined by the same genes in groups of tumors......Promising results for prediction of outcome in breast cancer have been obtained by genome wide gene expression profiling. Some studies have suggested that an extensive overtreatment of breast cancer patients might be reduced by risk assessment with gene expression profiling. A patient group hardly...... examined in these studies is the low-risk patients for whom outcome is very difficult to predict with currently used methods. These patients do not receive adjuvant treatment according to the guidelines of the Danish Breast Cancer Cooperative Group (DBCG). In this study, 26 tumors from low-risk patients...

  3. Alterations In Lipid Profile Of Patients With Advanced Cervical Cancer

    African Journals Online (AJOL)

    Background The changes in lipid profile have long been associated with cancer because lipids play key role in maintenance of cell integrity. Aims. The study evaluated alterations in plasma lipid profile in patients with advanced squamous cervical cancer. Materials And Method This hospital-based study included 30 cervical ...

  4. Integrated Genomic Analysis of the Ubiquitin Pathway across Cancer Types

    Directory of Open Access Journals (Sweden)

    Zhongqi Ge

    2018-04-01

    Full Text Available Summary: Protein ubiquitination is a dynamic and reversible process of adding single ubiquitin molecules or various ubiquitin chains to target proteins. Here, using multidimensional omic data of 9,125 tumor samples across 33 cancer types from The Cancer Genome Atlas, we perform comprehensive molecular characterization of 929 ubiquitin-related genes and 95 deubiquitinase genes. Among them, we systematically identify top somatic driver candidates, including mutated FBXW7 with cancer-type-specific patterns and amplified MDM2 showing a mutually exclusive pattern with BRAF mutations. Ubiquitin pathway genes tend to be upregulated in cancer mediated by diverse mechanisms. By integrating pan-cancer multiomic data, we identify a group of tumor samples that exhibit worse prognosis. These samples are consistently associated with the upregulation of cell-cycle and DNA repair pathways, characterized by mutated TP53, MYC/TERT amplification, and APC/PTEN deletion. Our analysis highlights the importance of the ubiquitin pathway in cancer development and lays a foundation for developing relevant therapeutic strategies. : Ge et al. analyze a cohort of 9,125 TCGA samples across 33 cancer types to provide a comprehensive characterization of the ubiquitin pathway. They detect somatic driver candidates in the ubiquitin pathway and identify a cluster of patients with poor survival, highlighting the importance of this pathway in cancer development. Keywords: ubiquitin pathway, pan-cancer analysis, The Cancer Genome Atlas, tumor subtype, cancer prognosis, therapeutic targets, biomarker, FBXW7

  5. Babelomics: advanced functional profiling of transcriptomics, proteomics and genomics experiments

    Science.gov (United States)

    Al-Shahrour, Fátima; Carbonell, José; Minguez, Pablo; Goetz, Stefan; Conesa, Ana; Tárraga, Joaquín; Medina, Ignacio; Alloza, Eva; Montaner, David; Dopazo, Joaquín

    2008-01-01

    We present a new version of Babelomics, a complete suite of web tools for the functional profiling of genome scale experiments, with new and improved methods as well as more types of functional definitions. Babelomics includes different flavours of conventional functional enrichment methods as well as more advanced gene set analysis methods that makes it a unique tool among the similar resources available. In addition to the well-known functional definitions (GO, KEGG), Babelomics includes new ones such as Biocarta pathways or text mining-derived functional terms. Regulatory modules implemented include transcriptional control (Transfac, CisRed) and other levels of regulation such as miRNA-mediated interference. Moreover, Babelomics allows for sub-selection of terms in order to test more focused hypothesis. Also gene annotation correspondence tables can be imported, which allows testing with user-defined functional modules. Finally, a tool for the ‘de novo’ functional annotation of sequences has been included in the system. This allows using yet unannotated organisms in the program. Babelomics has been extensively re-engineered and now it includes the use of web services and Web 2.0 technology features, a new user interface with persistent sessions and a new extended database of gene identifiers. Babelomics is available at http://www.babelomics.org PMID:18515841

  6. Cloud Based Resource for Data Hosting, Visualization and Analysis Using UCSC Cancer Genomics Browser | Informatics Technology for Cancer Research (ITCR)

    Science.gov (United States)

    The Cancer Analysis Virtual Machine (CAVM) project will leverage cloud technology, the UCSC Cancer Genomics Browser, and the Galaxy analysis workflow system to provide investigators with a flexible, scalable platform for hosting, visualizing and analyzing their own genomic data.

  7. Characterization of genomic alterations in radiation-associated breast cancer among childhood cancer survivors, using comparative genomic hybridization (CGH arrays.

    Directory of Open Access Journals (Sweden)

    Xiaohong R Yang

    Full Text Available Ionizing radiation is an established risk factor for breast cancer. Epidemiologic studies of radiation-exposed cohorts have been primarily descriptive; molecular events responsible for the development of radiation-associated breast cancer have not been elucidated. In this study, we used array comparative genomic hybridization (array-CGH to characterize genome-wide copy number changes in breast tumors collected in the Childhood Cancer Survivor Study (CCSS. Array-CGH data were obtained from 32 cases who developed a second primary breast cancer following chest irradiation at early ages for the treatment of their first cancers, mostly Hodgkin lymphoma. The majority of these cases developed breast cancer before age 45 (91%, n = 29, had invasive ductal tumors (81%, n = 26, estrogen receptor (ER-positive staining (68%, n = 19 out of 28, and high proliferation as indicated by high Ki-67 staining (77%, n = 17 out of 22. Genomic regions with low-copy number gains and losses and high-level amplifications were similar to what has been reported in sporadic breast tumors, however, the frequency of amplifications of the 17q12 region containing human epidermal growth factor receptor 2 (HER2 was much higher among CCSS cases (38%, n = 12. Our findings suggest that second primary breast cancers in CCSS were enriched for an "amplifier" genomic subgroup with highly proliferative breast tumors. Future investigation in a larger irradiated cohort will be needed to confirm our findings.

  8. Genome-wide assessment of differential translations with ribosome profiling data

    Science.gov (United States)

    Xiao, Zhengtao; Zou, Qin; Liu, Yu; Yang, Xuerui

    2016-01-01

    The closely regulated process of mRNA translation is crucial for precise control of protein abundance and quality. Ribosome profiling, a combination of ribosome foot-printing and RNA deep sequencing, has been used in a large variety of studies to quantify genome-wide mRNA translation. Here, we developed Xtail, an analysis pipeline tailored for ribosome profiling data that comprehensively and accurately identifies differentially translated genes in pairwise comparisons. Applied on simulated and real datasets, Xtail exhibits high sensitivity with minimal false-positive rates, outperforming existing methods in the accuracy of quantifying differential translations. With published ribosome profiling datasets, Xtail does not only reveal differentially translated genes that make biological sense, but also uncovers new events of differential translation in human cancer cells on mTOR signalling perturbation and in human primary macrophages on interferon gamma (IFN-γ) treatment. This demonstrates the value of Xtail in providing novel insights into the molecular mechanisms that involve translational dysregulations. PMID:27041671

  9. Clonal expansion and linear genome evolution through breast cancer progression from pre-invasive stages to asynchronous metastasis

    DEFF Research Database (Denmark)

    Krøigård, Anne Bruun; Larsen, Martin Jakob; Lænkholm, Anne-Vibeke

    2015-01-01

    necessitates knowledge of the degree of genomic concordance between different steps of malignant progression as primary tumors often are used as surrogates of systemic disease. Based on exome sequencing we performed copy number profiling and point mutation detection on successive steps of breast cancer...... progression from one breast cancer patient, including two different regions of Ductal Carcinoma In Situ (DCIS), primary tumor and an asynchronous metastasis. We identify a remarkable landscape of somatic mutations, retained throughout breast cancer progression and with new mutational events emerging at each......Evolution of the breast cancer genome from pre-invasive stages to asynchronous metastasis is complex and mostly unexplored, but highly demanded as it may provide novel markers for and mechanistic insights in cancer progression. The increasing use of personalized therapy of breast cancer...

  10. Specific genomic regions are differentially affected by copy number alterations across distinct cancer types, in aggregated cytogenetic data.

    Science.gov (United States)

    Kumar, Nitin; Cai, Haoyang; von Mering, Christian; Baudis, Michael

    2012-01-01

    Regional genomic copy number alterations (CNA) are observed in the vast majority of cancers. Besides specifically targeting well-known, canonical oncogenes, CNAs may also play more subtle roles in terms of modulating genetic potential and broad gene expression patterns of developing tumors. Any significant differences in the overall CNA patterns between different cancer types may thus point towards specific biological mechanisms acting in those cancers. In addition, differences among CNA profiles may prove valuable for cancer classifications beyond existing annotation systems. We have analyzed molecular-cytogenetic data from 25579 tumors samples, which were classified into 160 cancer types according to the International Classification of Disease (ICD) coding system. When correcting for differences in the overall CNA frequencies between cancer types, related cancers were often found to cluster together according to similarities in their CNA profiles. Based on a randomization approach, distance measures from the cluster dendrograms were used to identify those specific genomic regions that contributed significantly to this signal. This approach identified 43 non-neutral genomic regions whose propensity for the occurrence of copy number alterations varied with the type of cancer at hand. Only a subset of these identified loci overlapped with previously implied, highly recurrent (hot-spot) cytogenetic imbalance regions. Thus, for many genomic regions, a simple null-hypothesis of independence between cancer type and relative copy number alteration frequency can be rejected. Since a subset of these regions display relatively low overall CNA frequencies, they may point towards second-tier genomic targets that are adaptively relevant but not necessarily essential for cancer development.

  11. Genomic analysis and selected molecular pathways in rare cancers

    International Nuclear Information System (INIS)

    Liu, Stephen V; Lenkiewicz, Elizabeth; Evers, Lisa; Holley, Tara; Kiefer, Jeffrey; Demeure, Michael J; Ramanathan, Ramesh K; Von Hoff, Daniel D; Barrett, Michael T; Ruiz, Christian; Glatz, Katharina; Bubendorf, Lukas; Eng, Cathy

    2012-01-01

    It is widely accepted that many cancers arise as a result of an acquired genomic instability and the subsequent evolution of tumor cells with variable patterns of selected and background aberrations. The presence and behaviors of distinct neoplastic cell populations within a patient's tumor may underlie multiple clinical phenotypes in cancers. A goal of many current cancer genome studies is the identification of recurring selected driver events that can be advanced for the development of personalized therapies. Unfortunately, in the majority of rare tumors, this type of analysis can be particularly challenging. Large series of specimens for analysis are simply not available, allowing recurring patterns to remain hidden. In this paper, we highlight the use of DNA content-based flow sorting to identify and isolate DNA-diploid and DNA-aneuploid populations from tumor biopsies as a strategy to comprehensively study the genomic composition and behaviors of individual cancers in a series of rare solid tumors: intrahepatic cholangiocarcinoma, anal carcinoma, adrenal leiomyosarcoma, and pancreatic neuroendocrine tumors. We propose that the identification of highly selected genomic events in distinct tumor populations within each tumor can identify candidate driver events that can facilitate the development of novel, personalized treatment strategies for patients with cancer. (paper)

  12. Genomic profiling of a combined large cell neuroendocrine carcinoma of the submandibular gland.

    Science.gov (United States)

    Andreasen, Simon; Persson, Marta; Kiss, Katalin; Homøe, Preben; Heegaard, Steffen; Stenman, Göran

    2016-04-01

    A 69-year-old female with no previous medical history presented with a rapidly growing submandibular mass. Fine needle aspiration cytology suggested a small-cell carcinoma and PET-CT showed increased 18-FDG uptake in the submandibular mass as well as in a lung mass. Submandibular resection and selective neck dissection was performed and histopathologic examination revealed a combined large-cell neuroendocrine carcinoma (LCNEC) with a squamous component and without lymph node metastases. Resection of the lung tumor revealed a papillary adenocarcinoma that was morphologically distinctly different from the LCNEC. The patient died of her lung cancer after 19 months without evidence of recurrence of the LCNEC. Genomic profiling of the salivary gland LCNEC revealed a hypodiploid genome predominated by losses of whole chromosomes or chromosome arms involving chromosomes 3p, 4, 7q, 10, 11, 13, 16q and gains of 3q and 16p. In addition, there was a segmental gain of 9p23-p22.3 including the NFIB oncogene. Continued studies of salivary gland LCNEC may provide new knowledge concerning potential diagnostic biomarkers and may ultimately also lead to the identification of new treatment targets for patients with these aggressive carcinomas.

  13. CMS: a web-based system for visualization and analysis of genome-wide methylation data of human cancers.

    Directory of Open Access Journals (Sweden)

    Fei Gu

    Full Text Available DNA methylation of promoter CpG islands is associated with gene suppression, and its unique genome-wide profiles have been linked to tumor progression. Coupled with high-throughput sequencing technologies, it can now efficiently determine genome-wide methylation profiles in cancer cells. Also, experimental and computational technologies make it possible to find the functional relationship between cancer-specific methylation patterns and their clinicopathological parameters.Cancer methylome system (CMS is a web-based database application designed for the visualization, comparison and statistical analysis of human cancer-specific DNA methylation. Methylation intensities were obtained from MBDCap-sequencing, pre-processed and stored in the database. 191 patient samples (169 tumor and 22 normal specimen and 41 breast cancer cell-lines are deposited in the database, comprising about 6.6 billion uniquely mapped sequence reads. This provides comprehensive and genome-wide epigenetic portraits of human breast cancer and endometrial cancer to date. Two views are proposed for users to better understand methylation structure at the genomic level or systemic methylation alteration at the gene level. In addition, a variety of annotation tracks are provided to cover genomic information. CMS includes important analytic functions for interpretation of methylation data, such as the detection of differentially methylated regions, statistical calculation of global methylation intensities, multiple gene sets of biologically significant categories, interactivity with UCSC via custom-track data. We also present examples of discoveries utilizing the framework.CMS provides visualization and analytic functions for cancer methylome datasets. A comprehensive collection of datasets, a variety of embedded analytic functions and extensive applications with biological and translational significance make this system powerful and unique in cancer methylation research. CMS is

  14. Integrated analysis of whole genome and transcriptome sequencing reveals diverse transcriptomic aberrations driven by somatic genomic changes in liver cancers.

    Directory of Open Access Journals (Sweden)

    Yuichi Shiraishi

    Full Text Available Recent studies applying high-throughput sequencing technologies have identified several recurrently mutated genes and pathways in multiple cancer genomes. However, transcriptional consequences from these genomic alterations in cancer genome remain unclear. In this study, we performed integrated and comparative analyses of whole genomes and transcriptomes of 22 hepatitis B virus (HBV-related hepatocellular carcinomas (HCCs and their matched controls. Comparison of whole genome sequence (WGS and RNA-Seq revealed much evidence that various types of genomic mutations triggered diverse transcriptional changes. Not only splice-site mutations, but also silent mutations in coding regions, deep intronic mutations and structural changes caused splicing aberrations. HBV integrations generated diverse patterns of virus-human fusion transcripts depending on affected gene, such as TERT, CDK15, FN1 and MLL4. Structural variations could drive over-expression of genes such as WNT ligands, with/without creating gene fusions. Furthermore, by taking account of genomic mutations causing transcriptional aberrations, we could improve the sensitivity of deleterious mutation detection in known cancer driver genes (TP53, AXIN1, ARID2, RPS6KA3, and identified recurrent disruptions in putative cancer driver genes such as HNF4A, CPS1, TSC1 and THRAP3 in HCCs. These findings indicate genomic alterations in cancer genome have diverse transcriptomic effects, and integrated analysis of WGS and RNA-Seq can facilitate the interpretation of a large number of genomic alterations detected in cancer genome.

  15. Profiling of circulating microRNAs for prostate cancer biomarker discovery

    DEFF Research Database (Denmark)

    Haldrup, Christa; Kosaka, Nobuyoshi; Ochiya, Takahiro

    2014-01-01

    Prostate cancer (PC) is the most frequent cancer in men in the Western world. Currently, serum prostate-specific antigen levels and digital rectal examinations are used to indicate the need for diagnostic prostate biopsy, but lack in specificity and sensitivity. Thus, many men undergo unnecessary...... performed genome-wide miRNA profiling of serum samples from 13 benign prostatic hyperplasia (BPH) control patients and 31 PC patients. Furthermore, we carefully reviewed the literature on circulating miRNA biomarkers for PC. Our results confirmed the de-regulation of miR-141 and miR-375, two of the most...

  16. Distinct gene expression profiles in ovarian cancer linked to Lynch syndrome

    DEFF Research Database (Denmark)

    Jönsson, Jenny-Maria; Bartuma, Katarina; Dominguez-Valentin, Mev

    2014-01-01

    Ovarian cancer linked to Lynch syndrome represents a rare subset that typically presents at young age as early-stage tumors with an overrepresentation of endometrioid and clear cell histologies. We investigated the molecular profiles of Lynch syndrome-associated and sporadic ovarian cancer...... with the aim to identify key discriminators and central tumorigenic mechanisms in hereditary ovarian cancer. Global gene expression profiling using whole-genome c-DNA-mediated Annealing, Selection, extension, and Ligation was applied to 48 histopathologically matched Lynch syndrome-associated and sporadic...... for histologic subtype, hierarchical clustering confirmed distinct differences related to heredity in the endometrioid and serous subtypes. Furthermore, separate clustering was achieved in an independent, publically available data set. The distinct genetic signatures in Lynch syndrome-associated and sporadic...

  17. Genomic and oncoproteomic advances in detection and treatment of colorectal cancer.

    LENUS (Irish Health Repository)

    McHugh, Seamus M

    2012-02-01

    AIMS: We will examine the latest advances in genomic and proteomic laboratory technology. Through an extensive literature review we aim to critically appraise those studies which have utilized these latest technologies and ascertain their potential to identify clinically useful biomarkers. METHODS: An extensive review of the literature was carried out in both online medical journals and through the Royal College of Surgeons in Ireland library. RESULTS: Laboratory technology has advanced in the fields of genomics and oncoproteomics. Gene expression profiling with DNA microarray technology has allowed us to begin genetic profiling of colorectal cancer tissue. The response to chemotherapy can differ amongst individual tumors. For the first time researchers have begun to isolate and identify the genes responsible. New laboratory techniques allow us to isolate proteins preferentially expressed in colorectal cancer tissue. This could potentially lead to identification of a clinically useful protein biomarker in colorectal cancer screening and treatment. CONCLUSION: If a set of discriminating genes could be used for characterization and prediction of chemotherapeutic response, an individualized tailored therapeutic regime could become the standard of care for those undergoing systemic treatment for colorectal cancer. New laboratory techniques of protein identification may eventually allow identification of a clinically useful biomarker that could be used for screening and treatment. At present however, both expression of different gene signatures and isolation of various protein peaks has been limited by study size. Independent multi-centre correlation of results with larger sample sizes is needed to allow translation into clinical practice.

  18. Genomic and oncoproteomic advances in detection and treatment of colorectal cancer.

    LENUS (Irish Health Repository)

    McHugh, Seamus M

    2009-01-01

    AIMS: We will examine the latest advances in genomic and proteomic laboratory technology. Through an extensive literature review we aim to critically appraise those studies which have utilized these latest technologies and ascertain their potential to identify clinically useful biomarkers. METHODS: An extensive review of the literature was carried out in both online medical journals and through the Royal College of Surgeons in Ireland library. RESULTS: Laboratory technology has advanced in the fields of genomics and oncoproteomics. Gene expression profiling with DNA microarray technology has allowed us to begin genetic profiling of colorectal cancer tissue. The response to chemotherapy can differ amongst individual tumors. For the first time researchers have begun to isolate and identify the genes responsible. New laboratory techniques allow us to isolate proteins preferentially expressed in colorectal cancer tissue. This could potentially lead to identification of a clinically useful protein biomarker in colorectal cancer screening and treatment. CONCLUSION: If a set of discriminating genes could be used for characterization and prediction of chemotherapeutic response, an individualized tailored therapeutic regime could become the standard of care for those undergoing systemic treatment for colorectal cancer. New laboratory techniques of protein identification may eventually allow identification of a clinically useful biomarker that could be used for screening and treatment. At present however, both expression of different gene signatures and isolation of various protein peaks has been limited by study size. Independent multi-centre correlation of results with larger sample sizes is needed to allow translation into clinical practice.

  19. Quantitative high-resolution genomic analysis of single cancer cells.

    Directory of Open Access Journals (Sweden)

    Juliane Hannemann

    Full Text Available During cancer progression, specific genomic aberrations arise that can determine the scope of the disease and can be used as predictive or prognostic markers. The detection of specific gene amplifications or deletions in single blood-borne or disseminated tumour cells that may give rise to the development of metastases is of great clinical interest but technically challenging. In this study, we present a method for quantitative high-resolution genomic analysis of single cells. Cells were isolated under permanent microscopic control followed by high-fidelity whole genome amplification and subsequent analyses by fine tiling array-CGH and qPCR. The assay was applied to single breast cancer cells to analyze the chromosomal region centred by the therapeutical relevant EGFR gene. This method allows precise quantitative analysis of copy number variations in single cell diagnostics.

  20. Genome expression profiling predicts the molecular mechanism of peripheral myelination.

    Science.gov (United States)

    Wu, Xiaoming

    2018-03-01

    The present study aimed to explore the molecular mechanism of myelination in the peripheral nervous system (PNS) based on genome expression profiles. Microarray data (GSE60345) was acquired from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were integrated and subsequently subjected to pathway and term enrichment analysis. A protein‑protein interaction network was constructed and the top 200 DEGs according to their degree value were further subjected to pathway enrichment analysis. A microRNA (miR)‑target gene regulatory network was constructed to explore the role of miRs associated with PNS myelination. A total of 783 upregulated genes and 307 downregulated genes were identified. The upregulated DEGs were significantly enriched in the biological function of complement and coagulation cascades, cytokine‑cytokine receptor interactions and cell adhesion molecules. Pathways significantly enriched by the downregulated DEGs included the cell cycle, oocyte meiosis and the p53 signaling pathway. In addition, the upregulated DEGs among the top 200 DEGs were significantly enriched in natural killer (NK) cell mediated cytotoxicity and the B cell receptor (BCR) signaling pathway, in which Fc γ receptor (FCGR), ras‑related C3 botulinum toxin substrate 2 (RAC2) and 1‑phosphatidylinositol‑4,5‑bisphosphate phosphodiesterase γ‑2 (PLCG2) were involved. miR‑339‑5p, miR‑10a‑5p and miR‑10b‑5p were identified as having a high degree value and may regulate the target genes TOX high mobility group box family member 4 (Tox4), DNA repair protein XRCC2 (Xrcc2) and C5a anaphylatoxin chemotactic receptor C5a2 (C5ar2). NK cell mediated cytotoxicity and the BCR pathway may be involved in peripheral myelination by targeting FCGR, RAC2 and PLCG2. The downregulation of oocyte meiosis, the cell cycle and the cellular tumor antigen p53 signaling pathway suggests decreasing schwann cell proliferation following the initiation of

  1. PanCoreGen - Profiling, detecting, annotating protein-coding genes in microbial genomes.

    Science.gov (United States)

    Paul, Sandip; Bhardwaj, Archana; Bag, Sumit K; Sokurenko, Evgeni V; Chattopadhyay, Sujay

    2015-12-01

    A large amount of genomic data, especially from multiple isolates of a single species, has opened new vistas for microbial genomics analysis. Analyzing the pan-genome (i.e. the sum of genetic repertoire) of microbial species is crucial in understanding the dynamics of molecular evolution, where virulence evolution is of major interest. Here we present PanCoreGen - a standalone application for pan- and core-genomic profiling of microbial protein-coding genes. PanCoreGen overcomes key limitations of the existing pan-genomic analysis tools, and develops an integrated annotation-structure for a species-specific pan-genomic profile. It provides important new features for annotating draft genomes/contigs and detecting unidentified genes in annotated genomes. It also generates user-defined group-specific datasets within the pan-genome. Interestingly, analyzing an example-set of Salmonella genomes, we detect potential footprints of adaptive convergence of horizontally transferred genes in two human-restricted pathogenic serovars - Typhi and Paratyphi A. Overall, PanCoreGen represents a state-of-the-art tool for microbial phylogenomics and pathogenomics study. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. PanCoreGen – profiling, detecting, annotating protein-coding genes in microbial genomes

    Science.gov (United States)

    Bhardwaj, Archana; Bag, Sumit K; Sokurenko, Evgeni V.

    2015-01-01

    A large amount of genomic data, especially from multiple isolates of a single species, has opened new vistas for microbial genomics analysis. Analyzing pan-genome (i.e. the sum of genetic repertoire) of microbial species is crucial in understanding the dynamics of molecular evolution, where virulence evolution is of major interest. Here we present PanCoreGen – a standalone application for pan- and core-genomic profiling of microbial protein-coding genes. PanCoreGen overcomes key limitations of the existing pan-genomic analysis tools, and develops an integrated annotation-structure for species-specific pan-genomic profile. It provides important new features for annotating draft genomes/contigs and detecting unidentified genes in annotated genomes. It also generates user-defined group-specific datasets within the pan-genome. Interestingly, analyzing an example-set of Salmonella genomes, we detect potential footprints of adaptive convergence of horizontally transferred genes in two human-restricted pathogenic serovars – Typhi and Paratyphi A. Overall, PanCoreGen represents a state-of-the-art tool for microbial phylogenomics and pathogenomics study. PMID:26456591

  3. In situ quantification of genomic instability in breast cancer progression

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz de Solorzano, Carlos; Chin, Koei; Gray, Joe W.; Lockett, Stephen J.

    2003-05-15

    Genomic instability is a hallmark of breast and other solid cancers. Presumably caused by critical telomere reduction, GI is responsible for providing the genetic diversity required in the multi-step progression of the disease. We have used multicolor fluorescence in situ hybridization and 3D image analysis to quantify genomic instability cell-by-cell in thick, intact tissue sections of normal breast epithelium, preneoplastic lesions (usual ductal hyperplasia), ductal carcinona is situ or invasive carcinoma of the breast. Our in situ-cell by cell-analysis of genomic instability shows an important increase of genomic instability in the transition from hyperplasia to in situ carcinoma, followed by a reduction of instability in invasive carcinoma. This pattern suggests that the transition from hyperplasia to in situ carcinoma corresponds to telomere crisis and invasive carcinoma is a consequence of telomerase reactivation afertelomere crisis.

  4. The Genomic Evolution of Prostate Cancer

    Science.gov (United States)

    2014-10-01

    demonstrates that coincident low and high grade disease are distantly related, indicating that an early parental clone can give rise to both low grade...focus and the metastatic focus and not also shared with the high grade focus. Gray = uninvolved prostate; blue = low grade focus; green = high grade...prostate cancer foci that were laser microdissected. Two cancer foci and uninvolved prostate glands were isolated from PrCa 18 (a), PrCa 14 (b), PrCa

  5. Mechanisms of Base Substitution Mutagenesis in Cancer Genomes

    Directory of Open Access Journals (Sweden)

    Albino Bacolla

    2014-03-01

    Full Text Available Cancer genome sequence data provide an invaluable resource for inferring the key mechanisms by which mutations arise in cancer cells, favoring their survival, proliferation and invasiveness. Here we examine recent advances in understanding the molecular mechanisms responsible for the predominant type of genetic alteration found in cancer cells, somatic single base substitutions (SBSs. Cytosine methylation, demethylation and deamination, charge transfer reactions in DNA, DNA replication timing, chromatin status and altered DNA proofreading activities are all now known to contribute to the mechanisms leading to base substitution mutagenesis. We review current hypotheses as to the major processes that give rise to SBSs and evaluate their relative relevance in the light of knowledge acquired from cancer genome sequencing projects and the study of base modifications, DNA repair and lesion bypass. Although gene expression data on APOBEC3B enzymes provide support for a role in cancer mutagenesis through U:G mismatch intermediates, the enzyme preference for single-stranded DNA may limit its activity genome-wide. For SBSs at both CG:CG and YC:GR sites, we outline evidence for a prominent role of damage by charge transfer reactions that follow interactions of the DNA with reactive oxygen species (ROS and other endogenous or exogenous electron-abstracting molecules.

  6. Mechanisms of base substitution mutagenesis in cancer genomes.

    Science.gov (United States)

    Bacolla, Albino; Cooper, David N; Vasquez, Karen M

    2014-03-05

    Cancer genome sequence data provide an invaluable resource for inferring the key mechanisms by which mutations arise in cancer cells, favoring their survival, proliferation and invasiveness. Here we examine recent advances in understanding the molecular mechanisms responsible for the predominant type of genetic alteration found in cancer cells, somatic single base substitutions (SBSs). Cytosine methylation, demethylation and deamination, charge transfer reactions in DNA, DNA replication timing, chromatin status and altered DNA proofreading activities are all now known to contribute to the mechanisms leading to base substitution mutagenesis. We review current hypotheses as to the major processes that give rise to SBSs and evaluate their relative relevance in the light of knowledge acquired from cancer genome sequencing projects and the study of base modifications, DNA repair and lesion bypass. Although gene expression data on APOBEC3B enzymes provide support for a role in cancer mutagenesis through U:G mismatch intermediates, the enzyme preference for single-stranded DNA may limit its activity genome-wide. For SBSs at both CG:CG and YC:GR sites, we outline evidence for a prominent role of damage by charge transfer reactions that follow interactions of the DNA with reactive oxygen species (ROS) and other endogenous or exogenous electron-abstracting molecules.

  7. Soybean (Glycine max) SWEET gene family: insights through comparative genomics, transcriptome profiling and whole genome re-sequence analysis.

    Science.gov (United States)

    Patil, Gunvant; Valliyodan, Babu; Deshmukh, Rupesh; Prince, Silvas; Nicander, Bjorn; Zhao, Mingzhe; Sonah, Humira; Song, Li; Lin, Li; Chaudhary, Juhi; Liu, Yang; Joshi, Trupti; Xu, Dong; Nguyen, Henry T

    2015-07-11

    SWEET (MtN3_saliva) domain proteins, a recently identified group of efflux transporters, play an indispensable role in sugar efflux, phloem loading, plant-pathogen interaction and reproductive tissue development. The SWEET gene family is predominantly studied in Arabidopsis and members of the family are being investigated in rice. To date, no transcriptome or genomics analysis of soybean SWEET genes has been reported. In the present investigation, we explored the evolutionary aspect of the SWEET gene family in diverse plant species including primitive single cell algae to angiosperms with a major emphasis on Glycine max. Evolutionary features showed expansion and duplication of the SWEET gene family in land plants. Homology searches with BLAST tools and Hidden Markov Model-directed sequence alignments identified 52 SWEET genes that were mapped to 15 chromosomes in the soybean genome as tandem duplication events. Soybean SWEET (GmSWEET) genes showed a wide range of expression profiles in different tissues and developmental stages. Analysis of public transcriptome data and expression profiling using quantitative real time PCR (qRT-PCR) showed that a majority of the GmSWEET genes were confined to reproductive tissue development. Several natural genetic variants (non-synonymous SNPs, premature stop codons and haplotype) were identified in the GmSWEET genes using whole genome re-sequencing data analysis of 106 soybean genotypes. A significant association was observed between SNP-haplogroup and seed sucrose content in three gene clusters on chromosome 6. Present investigation utilized comparative genomics, transcriptome profiling and whole genome re-sequencing approaches and provided a systematic description of soybean SWEET genes and identified putative candidates with probable roles in the reproductive tissue development. Gene expression profiling at different developmental stages and genomic variation data will aid as an important resource for the soybean research

  8. UFO: a web server for ultra-fast functional profiling of whole genome protein sequences.

    Science.gov (United States)

    Meinicke, Peter

    2009-09-02

    Functional profiling is a key technique to characterize and compare the functional potential of entire genomes. The estimation of profiles according to an assignment of sequences to functional categories is a computationally expensive task because it requires the comparison of all protein sequences from a genome with a usually large database of annotated sequences or sequence families. Based on machine learning techniques for Pfam domain detection, the UFO web server for ultra-fast functional profiling allows researchers to process large protein sequence collections instantaneously. Besides the frequencies of Pfam and GO categories, the user also obtains the sequence specific assignments to Pfam domain families. In addition, a comparison with existing genomes provides dissimilarity scores with respect to 821 reference proteomes. Considering the underlying UFO domain detection, the results on 206 test genomes indicate a high sensitivity of the approach. In comparison with current state-of-the-art HMMs, the runtime measurements show a considerable speed up in the range of four orders of magnitude. For an average size prokaryotic genome, the computation of a functional profile together with its comparison typically requires about 10 seconds of processing time. For the first time the UFO web server makes it possible to get a quick overview on the functional inventory of newly sequenced organisms. The genome scale comparison with a large number of precomputed profiles allows a first guess about functionally related organisms. The service is freely available and does not require user registration or specification of a valid email address.

  9. Causation of cancer by ionizing radiation and genomic instability

    International Nuclear Information System (INIS)

    Streffer, Christian

    2013-01-01

    The causation of cancer by ionizing radiation has been shown in many epidemiological (with exposed humans) as well as experimental studies with mammals especially mice but also rats, dogs and monkeys. Risk values have been determined in medium radiation dose ranges (∼100 to 2,000 mSv). However, in the low dose range (<100 mSv) the situation is unclear and unsolved up to now. A better knowledge of the mechanisms for the development of cancer in humans over decades after low to medium radiation exposures is necessary for the understanding of the open questions. An increase of chromosomal aberrations and other genetic changes have been frequently observed directly after radiation exposures in many cell systems including human cells. However, in 1989 it was found that an increase of genomic instability occurred after irradiation of mouse zygotes in the fibroblasts of the neonates developing from the irradiated zygotes. That means genomic instability developed many cell generations later in cells which never had been exposed to various qualities of ionizing radiations in vivo and any treatment and secondary cancers developed in photon irradiated M.Hodgkin patients preferentially in those patients who showed a comparatively high genomic instability in their lymphocytes. Since several decades it has been experienced that certain cancer patients show an extremely high radio-sensitivity. This clinical observation has been confirmed by experimental investigations with cells of such patients. It has been proven that this increased radio-sensitivity is due to genetic mutations. A number of syndromes could be defined on such a genetic basis like ataxia telangiectasia, bloom's syndrome, fanconi anemia, retinoblasoma and others. In all these syndromes mutations occur in genes which are to regulation of the cell cycle or DNA repair (preferentially repair of DSBs). These patients with an increased radio-sensitivity frequently develop cancer - very often lymphoma - and they also

  10. Risk Profiling May Improve Lung Cancer Screening

    Science.gov (United States)

    A new modeling study suggests that individualized, risk-based selection of ever-smokers for lung cancer screening may prevent more lung cancer deaths and improve the effectiveness and efficiency of screening compared with current screening recommendations

  11. Chapter 27 -- Breast Cancer Genomics, Section VI, Pathology and Biological Markers of Invasive Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Spellman, Paul T.; Heiser, Laura; Gray, Joe W.

    2009-06-18

    Breast cancer is predominantly a disease of the genome with cancers arising and progressing through accumulation of aberrations that alter the genome - by changing DNA sequence, copy number, and structure in ways that that contribute to diverse aspects of cancer pathophysiology. Classic examples of genomic events that contribute to breast cancer pathophysiology include inherited mutations in BRCA1, BRCA2, TP53, and CHK2 that contribute to the initiation of breast cancer, amplification of ERBB2 (formerly HER2) and mutations of elements of the PI3-kinase pathway that activate aspects of epidermal growth factor receptor (EGFR) signaling and deletion of CDKN2A/B that contributes to cell cycle deregulation and genome instability. It is now apparent that accumulation of these aberrations is a time-dependent process that accelerates with age. Although American women living to an age of 85 have a 1 in 8 chance of developing breast cancer, the incidence of cancer in women younger than 30 years is uncommon. This is consistent with a multistep cancer progression model whereby mutation and selection drive the tumor's development, analogous to traditional Darwinian evolution. In the case of cancer, the driving events are changes in sequence, copy number, and structure of DNA and alterations in chromatin structure or other epigenetic marks. Our understanding of the genetic, genomic, and epigenomic events that influence the development and progression of breast cancer is increasing at a remarkable rate through application of powerful analysis tools that enable genome-wide analysis of DNA sequence and structure, copy number, allelic loss, and epigenomic modification. Application of these techniques to elucidation of the nature and timing of these events is enriching our understanding of mechanisms that increase breast cancer susceptibility, enable tumor initiation and progression to metastatic disease, and determine therapeutic response or resistance. These studies also

  12. Functional annotation of rare gene aberration drivers of pancreatic cancer | Office of Cancer Genomics

    Science.gov (United States)

    As we enter the era of precision medicine, characterization of cancer genomes will directly influence therapeutic decisions in the clinic. Here we describe a platform enabling functionalization of rare gene mutations through their high-throughput construction, molecular barcoding and delivery to cancer models for in vivo tumour driver screens. We apply these technologies to identify oncogenic drivers of pancreatic ductal adenocarcinoma (PDAC).

  13. A Breast Tissue Protein Expression Profile Contributing to Early Parity-Induced Protection Against Breast Cancer

    Directory of Open Access Journals (Sweden)

    Christina Marie Gutierrez

    2015-11-01

    Full Text Available Background/Aims: Early parity reduces breast cancer risk, whereas, late parity and nulliparity increase breast cancer risk. Despite substantial efforts to understand the protective effects of early parity, the precise molecular circuitry responsible for these changes is not yet fully defined. Methods: Here, we have conducted the first study assessing protein expression profiles in normal breast tissue of healthy early parous, late parous, and nulliparous women. Breast tissue biopsies were obtained from 132 healthy parous and nulliparous volunteers. These samples were subjected to global protein expression profiling and immunohistochemistry. GeneSpring and MetaCore bioinformatics analysis software were used to identify protein expression profiles associated with early parity (low risk versus late/nulliparity (high risk. Results: Early parity reduces expression of key proteins involved in mitogenic signaling pathways in breast tissue through down regulation of EGFR1/3, ESR1, AKT1, ATF, Fos, and SRC. Early parity is also characterized by greater genomic stability and reduced tissue inflammation based on differential expression of aurora kinases, p53, RAD52, BRCA1, MAPKAPK-2, ATF-1, ICAM1, and NF-kappaB compared to late and nulli parity. Conclusions: Early parity reduces basal cell proliferation in breast tissue, which translates to enhanced genomic stability, reduced cellular stress/inflammation, and thus reduced breast cancer risk.

  14. Human Papillomavirus Genome Integration and Head and Neck Cancer.

    Science.gov (United States)

    Pinatti, L M; Walline, H M; Carey, T E

    2017-12-01

    We conducted a critical review of human papillomavirus (HPV) integration into the host genome in oral/oropharyngeal cancer, reviewed the literature for HPV-induced cancers, and obtained current data for HPV-related oral and oropharyngeal cancers. In addition, we performed studies to identify HPV integration sites and the relationship of integration to viral-host fusion transcripts and whether integration is required for HPV-associated oncogenesis. Viral integration of HPV into the host genome is not required for the viral life cycle and might not be necessary for cellular transformation, yet HPV integration is frequently reported in cervical and head and neck cancer specimens. Studies of large numbers of early cervical lesions revealed frequent viral integration into gene-poor regions of the host genome with comparatively rare integration into cellular genes, suggesting that integration is a stochastic event and that site of integration may be largely a function of chance. However, more recent studies of head and neck squamous cell carcinomas (HNSCCs) suggest that integration may represent an additional oncogenic mechanism through direct effects on cancer-related gene expression and generation of hybrid viral-host fusion transcripts. In HNSCC cell lines as well as primary tumors, integration into cancer-related genes leading to gene disruption has been reported. The studies have shown that integration-induced altered gene expression may be associated with tumor recurrence. Evidence from several studies indicates that viral integration into genic regions is accompanied by local amplification, increased expression in some cases, interruption of gene expression, and likely additional oncogenic effects. Similarly, reported examples of viral integration near microRNAs suggest that altered expression of these regulatory molecules may also contribute to oncogenesis. Future work is indicated to identify the mechanisms of these events on cancer cell behavior.

  15. Genome-wide methylation profiling identifies hypermethylated biomarkers in high-grade cervical intraepithelial neoplasia.

    Science.gov (United States)

    Lendvai, Ágnes; Johannes, Frank; Grimm, Christina; Eijsink, Jasper J H; Wardenaar, René; Volders, Haukeline H; Klip, Harry G; Hollema, Harry; Jansen, Ritsert C; Schuuring, Ed; Wisman, G Bea A; van der Zee, Ate G J

    2012-11-01

    Epigenetic modifications, such as aberrant DNA promoter methylation, are frequently observed in cervical cancer. Identification of hypermethylated regions allowing discrimination between normal cervical epithelium and high-grade cervical intraepithelial neoplasia (CIN2/3), or worse, may improve current cervical cancer population-based screening programs. In this study, the DNA methylome of high-grade CIN lesions was studied using genome-wide DNA methylation screening to identify potential biomarkers for early diagnosis of cervical neoplasia. Methylated DNA Immunoprecipitation (MeDIP) combined with DNA microarray was used to compare DNA methylation profiles of epithelial cells derived from high-grade CIN lesions with normal cervical epithelium. Hypermethylated differentially methylated regions (DMRs) were identified. Validation of nine selected DMRs using BSP and MSP in cervical tissue revealed methylation in 63.2-94.7% high-grade CIN and in 59.3-100% cervical carcinomas. QMSP for the two most significant high-grade CIN-specific methylation markers was conducted exploring test performance in a large series of cervical scrapings. Frequency and relative level of methylation were significantly different between normal and cancer samples. Clinical validation of both markers in cervical scrapings from patients with an abnormal cervical smear confirmed that frequency and relative level of methylation were related with increasing severity of the underlying CIN lesion and that ROC analysis was discriminative. These markers represent the COL25A1 and KATNAL2 and their observed increased methylation upon progression could intimate the regulatory role in carcinogenesis. In conclusion, our newly identified hypermethylated DMRs represent specific DNA methylation patterns in high-grade CIN lesions and are candidate biomarkers for early detection.

  16. Whole genome amplification and its impact on CGH array profiles

    Directory of Open Access Journals (Sweden)

    Meldrum Cliff

    2008-07-01

    Full Text Available Abstract Background Some array comparative genomic hybridisation (array CGH platforms require a minimum of micrograms of DNA for the generation of reliable and reproducible data. For studies where there are limited amounts of genetic material, whole genome amplification (WGA is an attractive method for generating sufficient quantities of genomic material from miniscule amounts of starting material. A range of WGA methods are available and the multiple displacement amplification (MDA approach has been shown to be highly accurate, although amplification bias has been reported. In the current study, WGA was used to amplify DNA extracted from whole blood. In total, six array CGH experiments were performed to investigate whether the use of whole genome amplified DNA (wgaDNA produces reliable and reproducible results. Four experiments were conducted on amplified DNA compared to unamplified DNA and two experiments on unamplified DNA compared to unamplified DNA. Findings All the experiments involving wgaDNA resulted in a high proportion of losses and gains of genomic material. Previously, amplification bias has been overcome by using amplified DNA in both the test and reference DNA. Our data suggests that this approach may not be effective, as the gains and losses introduced by WGA appears to be random and are not reproducible between different experiments using the same DNA. Conclusion In light of these findings, the use of both amplified test and reference DNA on CGH arrays may not provide an accurate representation of copy number variation in the DNA.

  17. Seromic profiling of colorectal cancer patients with novel glycopeptide microarray

    DEFF Research Database (Denmark)

    Pedersen, Johannes W; Blixt, Ola; Bennett, Eric P

    2011-01-01

    array displaying a comprehensive library of glycopeptides and glycoproteins derived from a panel of human mucins (MUC1, MUC2, MUC4, MUC5AC, MUC6 and MUC7) known to have altered glycosylation and expression in cancer. Seromic profiling of patients with colorectal cancer identified cancer......Cancer-associated autoantibodies hold promise as sensitive biomarkers for early detection of cancer. Aberrant post-translational variants of proteins are likely to induce autoantibodies, and changes in O-linked glycosylation represent one of the most important cancer-associated post......-associated autoantibodies to a set of aberrant glycopeptides derived from MUC1 and MUC4. The cumulative sensitivity of the array analysis was 79% with a specificity of 92%. The most prevalent of the identified autoantibody targets were validated as authentic cancer immunogens by showing expression of the epitopes in cancer...

  18. Cancer 2015: a longitudinal whole-of-system study of genomic cancer medicine.

    Science.gov (United States)

    Thomas, David M; Fox, Stephen; Lorgelly, Paula K; Ashley, David; Richardson, Gary; Lipton, Lara; Parisot, John P; Lucas, Mark; McNeil, John; Wright, Michael

    2015-12-01

    Genomic cancer medicine promises revolutionary change in oncology. The impacts of 'personalized medicine', based upon a molecular classification of cancer and linked to targeted therapies, will extend from individual patient outcomes to the health economy at large. To address the 'whole-of-system' impact of genomic cancer medicine, we have established a prospective cohort of patients with newly diagnosed cancer in the state of Victoria, Australia, about whom we have collected a broad range of clinical, demographic, molecular, and patient-reported data, as well as data on health resource utilization. Our goal is to create a model for investigating public investment in genomic medicine that maximizes the cost:benefit ratio for the Australian community at large. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Breast Cancer in Africa: Limitations and Opportunities for Application of Genomic Medicine

    OpenAIRE

    Allison Silverstein; Rachita Sood; Ainhoa Costas-Chavarri

    2016-01-01

    As genomic medicine gains clinical applicability across a spectrum of diseases, insufficient application in low-income settings stands to increase health disparity. Breast cancer screening, diagnosis, and treatment have benefited greatly from genomic medicine in high-income settings. As breast cancer is a leading cause of both cancer incidence and mortality in Africa, attention and resources must be applied to research and clinical initiatives to integrate genomic medicine into breast cancer ...

  20. Differential DNA methylation profiles in gynecological cancers and correlation with clinico-pathological data

    Directory of Open Access Journals (Sweden)

    Tsang Percy CK

    2006-08-01

    Full Text Available Abstract Background Epigenetic gene silencing is one of the major causes of carcinogenesis. Its widespread occurrence in cancer genome could inactivate many cellular pathways including DNA repair, cell cycle control, apoptosis, cell adherence, and detoxification. The abnormal promoter methylation might be a potential molecular marker for cancer management. Methods For rapid identification of potential targets for aberrant methylation in gynecological cancers, methylation status of the CpG islands of 34 genes was determined using pooled DNA approach and methylation-specific PCR. Pooled DNA mixture from each cancer type (50 cervical cancers, 50 endometrial cancers and 50 ovarian cancers was made to form three test samples. The corresponding normal DNA from the patients of each cancer type was also pooled to form the other three control samples. Methylated alleles detected in tumors, but not in normal controls, were indicative of aberrant methylation in tumors. Having identified potential markers, frequencies of methylation were further analyzed in individual samples. Markers identified are used to correlate with clinico-pathological data of tumors using χ2 or Fisher's exact test. Results APC and p16 were hypermethylated across the three cancers. MINT31 and PTEN were hypermethylated in cervical and ovarian cancers. Specific methylation was found in cervical cancer (including CDH1, DAPK, MGMT and MINT2, endometrial cancer (CASP8, CDH13, hMLH1 and p73, and ovarian cancer (BRCA1, p14, p15, RIZ1 and TMS1. The frequencies of occurrence of hypermethylation in 4 candidate genes in individual samples of each cancer type (DAPK, MGMT, p16 and PTEN in 127 cervical cancers; APC, CDH13, hMLH1 and p16 in 60 endometrial cancers; and BRCA1, p14, p16 and PTEN in 49 ovarian cancers were examined for further confirmation. Incidence varied among different genes and in different cancer types ranging from the lowest 8.2% (PTEN in ovarian cancer to the highest 56

  1. Differential DNA methylation profiles in gynecological cancers and correlation with clinico-pathological data

    International Nuclear Information System (INIS)

    Yang, Hui-Juan; Liu, Vincent WS; Wang, Yue; Tsang, Percy CK; Ngan, Hextan YS

    2006-01-01

    Epigenetic gene silencing is one of the major causes of carcinogenesis. Its widespread occurrence in cancer genome could inactivate many cellular pathways including DNA repair, cell cycle control, apoptosis, cell adherence, and detoxification. The abnormal promoter methylation might be a potential molecular marker for cancer management. For rapid identification of potential targets for aberrant methylation in gynecological cancers, methylation status of the CpG islands of 34 genes was determined using pooled DNA approach and methylation-specific PCR. Pooled DNA mixture from each cancer type (50 cervical cancers, 50 endometrial cancers and 50 ovarian cancers) was made to form three test samples. The corresponding normal DNA from the patients of each cancer type was also pooled to form the other three control samples. Methylated alleles detected in tumors, but not in normal controls, were indicative of aberrant methylation in tumors. Having identified potential markers, frequencies of methylation were further analyzed in individual samples. Markers identified are used to correlate with clinico-pathological data of tumors using χ 2 or Fisher's exact test. APC and p16 were hypermethylated across the three cancers. MINT31 and PTEN were hypermethylated in cervical and ovarian cancers. Specific methylation was found in cervical cancer (including CDH1, DAPK, MGMT and MINT2), endometrial cancer (CASP8, CDH13, hMLH1 and p73), and ovarian cancer (BRCA1, p14, p15, RIZ1 and TMS1). The frequencies of occurrence of hypermethylation in 4 candidate genes in individual samples of each cancer type (DAPK, MGMT, p16 and PTEN in 127 cervical cancers; APC, CDH13, hMLH1 and p16 in 60 endometrial cancers; and BRCA1, p14, p16 and PTEN in 49 ovarian cancers) were examined for further confirmation. Incidence varied among different genes and in different cancer types ranging from the lowest 8.2% (PTEN in ovarian cancer) to the highest 56.7% (DAPK in cervical cancer). Aberrant methylation

  2. The Genome-Wide Analysis of Carcinoembryonic Antigen Signaling by Colorectal Cancer Cells Using RNA Sequencing.

    Directory of Open Access Journals (Sweden)

    Olga Bajenova

    Full Text Available Сarcinoembryonic antigen (CEA, CEACAM5, CD66 is a promoter of metastasis in epithelial cancers that is widely used as a prognostic clinical marker of metastasis. The aim of this study is to identify the network of genes that are associated with CEA-induced colorectal cancer liver metastasis. We compared the genome-wide transcriptomic profiles of CEA positive (MIP101 clone 8 and CEA negative (MIP 101 colorectal cancer cell lines with different metastatic potential in vivo. The CEA-producing cells displayed quantitative changes in the level of expression for 100 genes (over-expressed or down-regulated. They were confirmed by quantitative RT-PCR. The KEGG pathway analysis identified 4 significantly enriched pathways: cytokine-cytokine receptor interaction, MAPK signaling pathway, TGF-beta signaling pathway and pyrimidine metabolism. Our results suggest that CEA production by colorectal cancer cells triggers colorectal cancer progression by inducing the epithelial- mesenchymal transition, increasing tumor cell invasiveness into the surrounding tissues and suppressing stress and apoptotic signaling. The novel gene expression distinctions establish the relationships between the existing cancer markers and implicate new potential biomarkers for colorectal cancer hepatic metastasis.

  3. Survey of the Applications of NGS to Whole-Genome Sequencing and Expression Profiling

    Directory of Open Access Journals (Sweden)

    Jong-Sung Lim

    2012-03-01

    Full Text Available Recently, the technologies of DNA sequence variation and gene expression profiling have been used widely as approaches in the expertise of genome biology and genetics. The application to genome study has been particularly developed with the introduction of the next-generation DNA sequencer (NGS Roche/454 and Illumina/Solexa systems, along with bioinformation analysis technologies of whole-genome de novo assembly, expression profiling, DNA variation discovery, and genotyping. Both massive whole-genome shotgun paired-end sequencing and mate paired-end sequencing data are important steps for constructing de novo assembly of novel genome sequencing data. It is necessary to have DNA sequence information from a multiplatform NGS with at least 2× and 30× depth sequence of genome coverage using Roche/454 and Illumina/Solexa, respectively, for effective an way of de novo assembly. Massive short-length reading data from the Illumina/Solexa system is enough to discover DNA variation, resulting in reducing the cost of DNA sequencing. Whole-genome expression profile data are useful to approach genome system biology with quantification of expressed RNAs from a whole-genome transcriptome, depending on the tissue samples. The hybrid mRNA sequences from Rohce/454 and Illumina/Solexa are more powerful to find novel genes through de novo assembly in any whole-genome sequenced species. The 20× and 50× coverage of the estimated transcriptome sequences using Roche/454 and Illumina/Solexa, respectively, is effective to create novel expressed reference sequences. However, only an average 30× coverage of a transcriptome with short read sequences of Illumina/Solexa is enough to check expression quantification, compared to the reference expressed sequence tag sequence.

  4. Functional profiling of cyanobacterial genomes and its role in ecological adaptations

    Directory of Open Access Journals (Sweden)

    Ratna Prabha

    2016-09-01

    Full Text Available With the availability of complete genome sequences of many cyanobacterial species, it is becoming feasible to study the broad prospective of the environmental adaptation and the overall changes at transcriptional and translational level in these organisms. In the evolutionary phase, niche-specific competitive forces have resulted in specific features of the cyanobacterial genomes. In this study, functional composition of the 84 different cyanobacterial genomes and their adaptations to different environments was examined by identifying the genomic composition for specific cellular processes, which reflect their genomic functional profile and ecological adaptation. It was identified that among cyanobacterial genomes, metabolic genes have major share over other categories and differentiation of genomic functional profile was observed for the species inhabiting different habitats. The cyanobacteria of freshwater and other habitats accumulate large number of poorly characterized genes. Strain specific functions were also reported in many cyanobacterial members, of which an important feature was the occurrence of phage-related sequences. From this study, it can be speculated that habitat is one of the major factors in giving the shape of functional composition of cyanobacterial genomes towards their ecological adaptations.

  5. Tiling array-CGH for the assessment of genomic similarities among synchronous unilateral and bilateral invasive breast cancer tumor pairs

    Directory of Open Access Journals (Sweden)

    Ringnér Markus

    2008-07-01

    Full Text Available Abstract Background Today, no objective criteria exist to differentiate between individual primary tumors and intra- or intermammary dissemination respectively, in patients diagnosed with two or more synchronous breast cancers. To elucidate whether these tumors most likely arise through clonal expansion, or whether they represent individual primary tumors is of tumor biological interest and may have clinical implications. In this respect, high resolution genomic profiling may provide a more reliable approach than conventional histopathological and tumor biological factors. Methods 32 K tiling microarray-based comparative genomic hybridization (aCGH was used to explore the genomic similarities among synchronous unilateral and bilateral invasive breast cancer tumor pairs, and was compared with histopathological and tumor biological parameters. Results Based on global copy number profiles and unsupervised hierarchical clustering, five of ten (p = 1.9 × 10-5 unilateral tumor pairs displayed similar genomic profiles within the pair, while only one of eight bilateral tumor pairs (p = 0.29 displayed pair-wise genomic similarities. DNA index, histological type and presence of vessel invasion correlated with the genomic analyses. Conclusion Synchronous unilateral tumor pairs are often genomically similar, while synchronous bilateral tumors most often represent individual primary tumors. However, two independent unilateral primary tumors can develop synchronously and contralateral tumor spread can occur. The presence of an intraductal component is not informative when establishing the independence of two tumors, while vessel invasion, the presence of which was found in clustering tumor pairs but not in tumor pairs that did not cluster together, supports the clustering outcome. Our data suggest that genomically similar unilateral tumor pairs may represent a more aggressive disease that requires the addition of more severe treatment modalities, and

  6. Pan-Cancer Analysis of Genomic Sequencing Among the Elderly.

    Science.gov (United States)

    Wahl, Daniel R; Nguyen, Paul L; Santiago, Maria; Yousefi, Kasra; Davicioni, Elai; Shumway, Dean A; Speers, Corey; Mehra, Rohit; Feng, Felix Y; Osborne, Joseph R; Spratt, Daniel E

    2017-07-15

    We hypothesized that elderly patients might have age-specific genetic abnormalities yet be underrepresented in currently available sequencing repositories, which could limit the effect of sequencing efforts for this population. Leveraging The Cancer Genome Atlas (TCGA) data portal, 9 tumor types were analyzed. The frequency distribution of cancer by age was determined and compared with Surveillance, Epidemiology, and End Results data. Using the estimated median somatic mutational frequency of each tumor type, the samples needed beyond TCGA to detect a 10% mutational frequency were calculated. Microarray data from a separate prospective cohort were obtained from primary prostatectomy samples to determine whether elderly-specific transcriptomic alterations could be identified. Of the 5236 TCGA samples, 73% were from patients aged elderly patients with cancer were likely to harbor age-specific molecular abnormalities, we accessed transcriptomic data from a separate, larger database of >2000 prostate cancer samples. That analysis revealed significant differences in the expression of 10 genes in patients aged ≥70 years compared with those Elderly patients have been underrepresented in genomic sequencing studies. Our data suggest the presence of elderly-specific molecular alterations. Further dedicated efforts to understand the biology of cancer among the elderly will be important moving forward. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. DNA methylation, genomic silencing, and links to nutrition and cancer.

    Science.gov (United States)

    McCabe, Dale C; Caudill, Marie A

    2005-06-01

    DNA methylation is a heritable epigenetic feature that is associated with transcriptional silencing, X-chromosome inactivation, genetic imprinting, and genomic stability. The addition of the methyl group is catalyzed by a family of DNA methyltransferases whose co-substrates are DNA and S-adenosylmethionine, the latter being derived from the methionine cycle. Aberrant DNA methylation is linked to numerous pathologies, including cancer. The purpose of this review is to describe DNA methylation and its functions, to examine the relationship between dietary methyl insufficiency and DNA methylation, and to evaluate the associations between DNA methylation and cancer.

  8. The somatic autosomal mutation matrix in cancer genomes.

    Science.gov (United States)

    Temiz, Nuri A; Donohue, Duncan E; Bacolla, Albino; Vasquez, Karen M; Cooper, David N; Mudunuri, Uma; Ivanic, Joseph; Cer, Regina Z; Yi, Ming; Stephens, Robert M; Collins, Jack R; Luke, Brian T

    2015-08-01

    DNA damage in somatic cells originates from both environmental and endogenous sources, giving rise to mutations through multiple mechanisms. When these mutations affect the function of critical genes, cancer may ensue. Although identifying genomic subsets of mutated genes may inform therapeutic options, a systematic survey of tumor mutational spectra is required to improve our understanding of the underlying mechanisms of mutagenesis involved in cancer etiology. Recent studies have presented genome-wide sets of somatic mutations as a 96-element vector, a procedure that only captures the immediate neighbors of the mutated nucleotide. Herein, we present a 32 × 12 mutation matrix that captures the nucleotide pattern two nucleotides upstream and downstream of the mutation. A somatic autosomal mutation matrix (SAMM) was constructed from tumor-specific mutations derived from each of 909 individual cancer genomes harboring a total of 10,681,843 single-base substitutions. In addition, mechanistic template mutation matrices (MTMMs) representing oxidative DNA damage, ultraviolet-induced DNA damage, (5m)CpG deamination, and APOBEC-mediated cytosine mutation, are presented. MTMMs were mapped to the individual tumor SAMMs to determine the maximum contribution of each mutational mechanism to the overall mutation pattern. A Manhattan distance across all SAMM elements between any two tumor genomes was used to determine their relative distance. Employing this metric, 89.5% of all tumor genomes were found to have a nearest neighbor from the same tissue of origin. When a distance-dependent 6-nearest neighbor classifier was used, 10.4% of the SAMMs had an Undetermined tissue of origin, and 92.2% of the remaining SAMMs were assigned to the correct tissue of origin. [corrected]. Thus, although tumors from different tissues may have similar mutation patterns, their SAMMs often display signatures that are characteristic of specific tissues.

  9. Cloud-Scale Genomic Signals Processing for Robust Large-Scale Cancer Genomic Microarray Data Analysis.

    Science.gov (United States)

    Harvey, Benjamin Simeon; Ji, Soo-Yeon

    2017-01-01

    As microarray data available to scientists continues to increase in size and complexity, it has become overwhelmingly important to find multiple ways to bring forth oncological inference to the bioinformatics community through the analysis of large-scale cancer genomic (LSCG) DNA and mRNA microarray data that is useful to scientists. Though there have been many attempts to elucidate the issue of bringing forth biological interpretation by means of wavelet preprocessing and classification, there has not been a research effort that focuses on a cloud-scale distributed parallel (CSDP) separable 1-D wavelet decomposition technique for denoising through differential expression thresholding and classification of LSCG microarray data. This research presents a novel methodology that utilizes a CSDP separable 1-D method for wavelet-based transformation in order to initialize a threshold which will retain significantly expressed genes through the denoising process for robust classification of cancer patients. Additionally, the overall study was implemented and encompassed within CSDP environment. The utilization of cloud computing and wavelet-based thresholding for denoising was used for the classification of samples within the Global Cancer Map, Cancer Cell Line Encyclopedia, and The Cancer Genome Atlas. The results proved that separable 1-D parallel distributed wavelet denoising in the cloud and differential expression thresholding increased the computational performance and enabled the generation of higher quality LSCG microarray datasets, which led to more accurate classification results.

  10. Returning individual research results for genome sequences of pancreatic cancer

    Science.gov (United States)

    2014-01-01

    Background Disclosure of individual results to participants in genomic research is a complex and contentious issue. There are many existing commentaries and opinion pieces on the topic, but little empirical data concerning actual cases describing how individual results have been returned. Thus, the real life risks and benefits of disclosing individual research results to participants are rarely if ever presented as part of this debate. Methods The Australian Pancreatic Cancer Genome Initiative (APGI) is an Australian contribution to the International Cancer Genome Consortium (ICGC), that involves prospective sequencing of tumor and normal genomes of study participants with pancreatic cancer in Australia. We present three examples that illustrate different facets of how research results may arise, and how they may be returned to individuals within an ethically defensible and clinically practical framework. This framework includes the necessary elements identified by others including consent, determination of the significance of results and which to return, delineation of the responsibility for communication and the clinical pathway for managing the consequences of returning results. Results Of 285 recruited patients, we returned results to a total of 25 with no adverse events to date. These included four that were classified as medically actionable, nine as clinically significant and eight that were returned at the request of the treating clinician. Case studies presented depict instances where research results impacted on cancer susceptibility, current treatment and diagnosis, and illustrate key practical challenges of developing an effective framework. Conclusions We suggest that return of individual results is both feasible and ethically defensible but only within the context of a robust framework that involves a close relationship between researchers and clinicians. PMID:24963353

  11. Molecular profiling of ADAM12 in human bladder cancer

    DEFF Research Database (Denmark)

    Frolich, Camilla; Albrechtsen, Reidar; Andersen, Lars Dyrskjøt

    2006-01-01

    PURPOSE: We have previously found ADAM12, a disintegrin and metalloprotease, to be an interesting biomarker for breast cancer. The purpose of this study was to determine the gene and protein expression profiles of ADAM12 in different grades and stages of bladder cancer. EXPERIMENTAL DESIGN: ADAM12...... gene expression was evaluated in tumors from 96 patients with bladder cancer using a customized Affymetrix GeneChip. Gene expression in bladder cancer was validated using reverse transcription-PCR, quantitative PCR, and in situ hybridization. Protein expression was evaluated by immunohistochemical...... staining on tissue arrays of bladder cancers. The presence and relative amount of ADAM12 in the urine of cancer patients were determined by Western blotting and densitometric measurements, respectively. RESULTS: ADAM12 mRNA expression was significantly up-regulated in bladder cancer, as determined...

  12. Translating the Genomic Architecture of Breast Cancer into Clinical Applications

    NARCIS (Netherlands)

    Horlings, Hugo M.; Savci-Heijink, C. Dilara; van de Vijver, Marc J.

    2010-01-01

    The genetic alterations in breast cancer have in recent years been studied through a variety of techniques: analysis of alterations in individual oncogenes and tumor suppressor genes; gene expression profiling of both messenger RNA and microRNA; global analysis of DNA copy number changes; and most

  13. Enhancing knowledge discovery from cancer genomics data with Galaxy.

    Science.gov (United States)

    Albuquerque, Marco A; Grande, Bruno M; Ritch, Elie J; Pararajalingam, Prasath; Jessa, Selin; Krzywinski, Martin; Grewal, Jasleen K; Shah, Sohrab P; Boutros, Paul C; Morin, Ryan D

    2017-05-01

    The field of cancer genomics has demonstrated the power of massively parallel sequencing techniques to inform on the genes and specific alterations that drive tumor onset and progression. Although large comprehensive sequence data sets continue to be made increasingly available, data analysis remains an ongoing challenge, particularly for laboratories lacking dedicated resources and bioinformatics expertise. To address this, we have produced a collection of Galaxy tools that represent many popular algorithms for detecting somatic genetic alterations from cancer genome and exome data. We developed new methods for parallelization of these tools within Galaxy to accelerate runtime and have demonstrated their usability and summarized their runtimes on multiple cloud service providers. Some tools represent extensions or refinement of existing toolkits to yield visualizations suited to cohort-wide cancer genomic analysis. For example, we present Oncocircos and Oncoprintplus, which generate data-rich summaries of exome-derived somatic mutation. Workflows that integrate these to achieve data integration and visualizations are demonstrated on a cohort of 96 diffuse large B-cell lymphomas and enabled the discovery of multiple candidate lymphoma-related genes. Our toolkit is available from our GitHub repository as Galaxy tool and dependency definitions and has been deployed using virtualization on multiple platforms including Docker. © The Author 2017. Published by Oxford University Press.

  14. Cascade: an RNA-seq visualization tool for cancer genomics.

    Science.gov (United States)

    Shifman, Aaron R; Johnson, Radia M; Wilhelm, Brian T

    2016-01-25

    Cancer genomics projects are producing ever-increasing amounts of rich and diverse data from patient samples. The ability to easily visualize this data in an integrated an intuitive way is currently limited by the current software available. As a result, users typically must use several different tools to view the different data types for their cohort, making it difficult to have a simple unified view of their data. Here we present Cascade, a novel web based tool for the intuitive 3D visualization of RNA-seq data from cancer genomics experiments. The Cascade viewer allows multiple data types (e.g. mutation, gene expression, alternative splicing frequency) to be simultaneously displayed, allowing a simplified view of the data in a way that is tuneable based on user specified parameters. The main webpage of Cascade provides a primary view of user data which is overlaid onto known biological pathways that are either predefined or added by users. A space-saving menu for data selection and parameter adjustment allows users to access an underlying MySQL database and customize the features presented in the main view. There is currently a pressing need for new software tools to allow researchers to easily explore large cancer genomics datasets and generate hypotheses. Cascade represents a simple yet intuitive interface for data visualization that is both scalable and customizable.

  15. The impact of vitamin D in breast cancer: genomics, pathways, metabolism

    Directory of Open Access Journals (Sweden)

    Carmen Judith Narvaez

    2014-06-01

    Full Text Available Nuclear receptors exert profound effects on mammary gland physiology and have complex roles in the etiology of breast cancer. In addition to receptors for classic steroid hormones such as estrogen and progesterone, the nuclear vitamin D receptor (VDR interacts with its ligand 1α,25(OH2D3 to modulate the normal mammary epithelial cell genome and subsequent phenotype. Observational studies suggest that vitamin D deficiency is common in breast cancer patients and that low vitamin D status enhances the risk for disease development or progression. Genomic profiling has characterized many 1α,25(OH2D3 responsive targets in normal mammary cells and in breast cancers, providing insight into the molecular actions of 1α,25(OH2D3 and the VDR in regulation of cell cycle, apoptosis and differentiation. New areas of emphasis include regulation of tumor metabolism and innate immune responses. However, the role of VDR in individual cell types (ie epithelial, adipose, fibroblast, endotelial, immune of normal and tumor tissues remains to be clarified. Furthermore, the mechanisms by which VDR integrates signaling between diverse cell types and controls soluble signals and paracrine pathways in the tissue/tumor microenvironment remain to be defined. Model systems of carcinogenesis have provided evidence that both VDR expression and 1α,25(OH2D3 actions change with transformation but clinical data regarding vitamin D responsiveness of established tumors is limited and inconclusive. Because breast cancer is heterogeneous, analysis of VDR actions in specific molecular subtypes of the disease may help to clarify the conflicting data. The expanded use of genomic, proteomic and metabolomic approaches on a diverse array of in vitro and in vivo model systems is clearly warranted to comprehensively understand the nework of vitamin D regulated pathways in the context of breast cancer.

  16. A Genome Wide Linkage Search for Breast Cancer Susceptibility Genes

    Science.gov (United States)

    Smith, Paula; McGuffog, Lesley; Easton, Douglas F.; Mann, Graham J.; Pupo, Gulietta M.; Newman, Beth; Chenevix-Trench, Georgia; Szabo, Csilla; Southey, Melissa; Renard, Hélène; Odefrey, Fabrice; Lynch, Henry; Stoppa-Lyonnet, Dominique; Couch, Fergus; Hopper, John L.; Giles, Graham G.; McCredie, Margaret R. E.; Buys, Saundra; Andrulis, Irene; Senie, Ruby; Goldgar, David E.; Oldenburg, Rogier; Kroeze-Jansema, Karin; Kraan, Jaennelle; Meijers-Heijboer, Hanne; Klijn, Jan G. M.; van Asperen, Christi; van Leeuwen, Inge; Vasen, Hans F. A.; Cornelisse, Cees J.; Devilee, Peter; Baskcomb, Linda; Seal, Sheila; Barfoot, Rita; Mangion, Jon; Hall, Anita; Edkins, Sarah; Rapley, Elizabeth; Wooster, Richard; Chang-Claude, Jenny; Eccles, Diana; Evans, D. Gareth; Futreal, P. Andrew; Nathanson, Katherine L.; Weber, Barbara L.; Rahman, Nazneen; Stratton, Michael R.

    2009-01-01

    Mutations in known breast cancer susceptibility genes account for a minority of the familial aggregation of the disease. To search for further breast cancer susceptibility genes, we performed a combined analysis of four genome-wide linkage screens, which included a total of 149 multiple case breast cancer families. All families included at least three cases of breast cancer diagnosed below age 60 years, at least one of whom had been tested and found not to carry a BRCA1 or BRCA2 mutation. Evidence for linkage was assessed using parametric linkage analysis, assuming both a dominant and a recessive mode of inheritance, and using nonparametric methods. The highest LOD score obtained in any analysis of the combined data was 1.80 under the dominant model, in a region on chromosome 4 close to marker D4S392. Three further LOD scores over 1 were identified in the parametric analyses and two in the nonparametric analyses. A maximum LOD score of 2.40 was found on chromosome arm 2p in families with four or more cases of breast cancer diagnosed below age 50 years. The number of linkage peaks did not differ from the number expected by chance. These results suggest regions that may harbor novel breast cancer susceptibility genes. They also indicate that no single gene is likely to account for a large fraction of the familial aggregation of breast cancer that is not due to mutations in BRCA1 or BRCA2. PMID:16575876

  17. Radiogenomics of High-Grade Serous Ovarian Cancer: Multireader Multi-Institutional Study from the Cancer Genome Atlas Ovarian Cancer Imaging Research Group.

    Science.gov (United States)

    Vargas, Hebert Alberto; Huang, Erich P; Lakhman, Yulia; Ippolito, Joseph E; Bhosale, Priya; Mellnick, Vincent; Shinagare, Atul B; Anello, Maria; Kirby, Justin; Fevrier-Sullivan, Brenda; Freymann, John; Jaffe, C Carl; Sala, Evis

    2017-11-01

    Purpose To evaluate interradiologist agreement on assessments of computed tomography (CT) imaging features of high-grade serous ovarian cancer (HGSOC), to assess their associations with time-to-disease progression (TTP) and HGSOC transcriptomic profiles (Classification of Ovarian Cancer [CLOVAR]), and to develop an imaging-based risk score system to predict TTP and CLOVAR profiles. Materials and Methods This study was a multireader, multi-institutional, institutional review board-approved, HIPAA-compliant retrospective analysis of 92 patients with HGSOC (median age, 61 years) with abdominopelvic CT before primary cytoreductive surgery available through the Cancer Imaging Archive. Eight radiologists from the Cancer Genome Atlas Ovarian Cancer Imaging Research Group developed and independently recorded the following CT features: characteristics of primary ovarian mass(es), presence of definable mesenteric implants and infiltration, presence of other implants, presence and distribution of peritoneal spread, presence and size of pleural effusions and ascites, lymphadenopathy, and distant metastases. Interobserver agreement for CT features was assessed, as were univariate and multivariate associations with TTP and CLOVAR mesenchymal profile (worst prognosis). Results Interobserver agreement for some features was strong (eg, α = .78 for pleural effusion and ascites) but was lower for others (eg, α = .08 for intraparenchymal splenic metastases). Presence of peritoneal disease in the right upper quadrant (P = .0003), supradiaphragmatic lymphadenopathy (P = .0004), more peritoneal disease sites (P = .0006), and nonvisualization of a discrete ovarian mass (P = .0037) were associated with shorter TTP. More peritoneal disease sites (P = .0025) and presence of pouch of Douglas implants (P = .0045) were associated with CLOVAR mesenchymal profile. Combinations of imaging features contained predictive signal for TTP (concordance index = 0.658; P = .0006) and CLOVAR profile (mean

  18. Genome rearrangement affects RNA virus adaptability on prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Kendra ePesko

    2015-04-01

    Full Text Available Gene order is often highly conserved within taxonomic groups, such that organisms with rearranged genomes tend to be less fit than wildtype gene orders, and suggesting natural selection favors genome architectures that maximize fitness. But it is unclear whether rearranged genomes hinder adaptability: capacity to evolutionarily improve in a new environment. Negative-sense nonsegmented RNA viruses (order Mononegavirales have specific genome architecture: 3′ UTR – core protein genes – envelope protein genes – RNA-dependent RNA-polymerase gene – 5′ UTR. To test how genome architecture affects RNA virus evolution, we examined vesicular stomatitis virus (VSV variants with the nucleocapsid (N gene moved sequentially downstream in the genome. Because RNA polymerase stuttering in VSV replication causes greater mRNA production in upstream genes, N-gene translocation towards the 5’ end leads to stepwise decreases in N transcription, viral replication and progeny production, and also impacts the activation of type 1 interferon mediated antiviral responses. We evolved VSV gene-order variants in two prostate cancer cell lines: LNCap cells deficient in innate immune response to viral infection, and PC3 cells that mount an IFN stimulated anti-viral response to infection. We observed that gene order affects phenotypic adaptability (reproductive growth; viral suppression of immune function, especially on PC3 cells that strongly select against virus infection. Overall, populations derived from the least-fit ancestor (most-altered N position architecture adapted fastest, consistent with theory predicting populations with low initial fitness should improve faster in evolutionary time. Also, we observed correlated responses to selection, where viruses improved across both hosts, rather than suffer fitness trade-offs on unselected hosts. Whole genomics revealed multiple mutations in evolved variants, some of which were conserved across selective

  19. Effect of genome and environment on metabolic and inflammatory profiles.

    Directory of Open Access Journals (Sweden)

    Marina Sirota

    Full Text Available Twin and family studies have established the contribution of genetic factors to variation in metabolic, hematologic and immunological parameters. The majority of these studies analyzed single or combined traits into pre-defined syndromes. In the present study, we explore an alternative multivariate approach in which a broad range of metabolic, hematologic, and immunological traits are analyzed simultaneously to determine the resemblance of monozygotic (MZ twin pairs, twin-spouse pairs and unrelated, non-cohabiting individuals. A total of 517 participants from the Netherlands Twin Register, including 210 MZ twin pairs and 64 twin-spouse pairs, took part in the study. Data were collected on body composition, blood pressure, heart rate, and multiple biomarkers assessed in fasting blood samples, including lipid levels, glucose, insulin, liver enzymes, hematological measurements and cytokine levels. For all 51 measured traits, pair-wise Pearson correlations, correcting for family relatedness, were calculated across all the individuals in the cohort. Hierarchical clustering techniques were applied to group the measured traits into sub-clusters based on similarity. Sub-clusters were observed among metabolic traits and among inflammatory markers. We defined a phenotypic profile as the collection of all the traits measured for a given individual. Average within-pair similarity of phenotypic profiles was determined for the groups of MZ twin pairs, spouse pairs and pairs of unrelated individuals. The average similarity across the full phenotypic profile was higher for MZ twin pairs than for spouse pairs, and lowest for pairs of unrelated individuals. Cohabiting MZ twins were more similar in their phenotypic profile compared to MZ twins who no longer lived together. The correspondence in the phenotypic profile is therefore determined to a large degree by familial, mostly genetic, factors, while household factors contribute to a lesser degree to profile

  20. Comparison of gene sets for expression profiling: prediction of metastasis from low-malignant breast cancer

    DEFF Research Database (Denmark)

    Thomassen, Mads; Tan, Qihua; Eiriksdottir, Freyja

    2007-01-01

    PURPOSE: In the low-risk group of breast cancer patients, a subgroup experiences metastatic recurrence of the disease. The aim of this study was to examine the performance of gene sets, developed mainly from high-risk tumors, in a group of low-malignant tumors. EXPERIMENTAL DESIGN: Twenty...... sets, mainly developed in high-risk cancers, predict metastasis from low-malignant cancer.......-six tumors from low-risk patients and 34 low-malignant T2 tumors from patients with slightly higher risk have been examined by genome-wide gene expression analysis. Nine prognostic gene sets were tested in this data set. RESULTS: A 32-gene profile (HUMAC32) that accurately predicts metastasis has previously...

  1. Development of the Cancer Survivor Profile

    Science.gov (United States)

    2014-05-09

    neurological, cancer, rheumatoid arthritis ) and symptoms (e.g., depression, tiredness/weakness) with general self-rated health in a sample of adult men and...Rehabilitation Journey: Barriers to and Facilitators of Exercise Among Patients With Cancer-Related Fatigue. Physical Therapy 90:1135-47 35. Blinder VS... therapy . Neuropsychology Review 18:121-31 384. Wessel TR, Arant CB, Olson MB, Johnson BD, Reis SE, et al. 2004. Relationship of physical fitness vs

  2. The epigenetic landscape of Alu repeats delineates the structural and functional genomic architecture of colon cancer cells.

    Science.gov (United States)

    Jordà, Mireia; Díez-Villanueva, Anna; Mallona, Izaskun; Martín, Berta; Lois, Sergi; Barrera, Víctor; Esteller, Manel; Vavouri, Tanya; Peinado, Miguel A

    2017-01-01

    Cancer cells exhibit multiple epigenetic changes with prominent local DNA hypermethylation and widespread hypomethylation affecting large chromosomal domains. Epigenome studies often disregard the study of repeat elements owing to technical complexity and their undefined role in genome regulation. We have developed NSUMA (Next-generation Sequencing of UnMethylated Alu), a cost-effective approach allowing the unambiguous interrogation of DNA methylation in more than 130,000 individual Alu elements, the most abundant retrotransposon in the human genome. DNA methylation profiles of Alu repeats have been analyzed in colon cancers and normal tissues using NSUMA and whole-genome bisulfite sequencing. Normal cells show a low proportion of unmethylated Alu (1%-4%) that may increase up to 10-fold in cancer cells. In normal cells, unmethylated Alu elements tend to locate in the vicinity of functionally rich regions and display epigenetic features consistent with a direct impact on genome regulation. In cancer cells, Alu repeats are more resistant to hypomethylation than other retroelements. Genome segmentation based on high/low rates of Alu hypomethylation allows the identification of genomic compartments with differential genetic, epigenetic, and transcriptomic features. Alu hypomethylated regions show low transcriptional activity, late DNA replication, and its extent is associated with higher chromosomal instability. Our analysis demonstrates that Alu retroelements contribute to define the epigenetic landscape of normal and cancer cells and provides a unique resource on the epigenetic dynamics of a principal, but largely unexplored, component of the primate genome. © 2017 Jordà et al.; Published by Cold Spring Harbor Laboratory Press.

  3. Classification of breast cancer patients using somatic mutation profiles and machine learning approaches.

    Science.gov (United States)

    Vural, Suleyman; Wang, Xiaosheng; Guda, Chittibabu

    2016-08-26

    The high degree of heterogeneity observed in breast cancers makes it very difficult to classify the cancer patients into distinct clinical subgroups and consequently limits the ability to devise effective therapeutic strategies. Several classification strategies based on ER/PR/HER2 expression or the expression profiles of a panel of genes have helped, but such methods often produce misleading results due to their dynamic nature. In contrast, somatic DNA mutations are relatively stable and lead to initiation and progression of many sporadic cancers. Hence in this study, we explore the use of gene mutation profiles to classify, characterize and predict the subgroups of breast cancers. We analyzed the whole exome sequencing data from 358 ethnically similar breast cancer patients in The Cancer Genome Atlas (TCGA) project. Somatic and non-synonymous single nucleotide variants identified from each patient were assigned a quantitative score (C-score) that represents the extent of negative impact on the gene function. Using these scores with non-negative matrix factorization method, we clustered the patients into three subgroups. By comparing the clinical stage of patients, we identified an early-stage-enriched and a late-stage-enriched subgroup. Comparison of the mutation scores of early and late-stage-enriched subgroups identified 358 genes that carry significantly higher mutations rates in the late stage subgroup. Functional characterization of these genes revealed important functional gene families that carry a heavy mutational load in the late state rich subgroup of patients. Finally, using the identified subgroups, we also developed a supervised classification model to predict the stage of the patients. This study demonstrates that gene mutation profiles can be effectively used with unsupervised machine-learning methods to identify clinically distinguishable breast cancer subgroups. The classification model developed in this method could provide a reasonable

  4. Contributing to Tumor Molecular Characterization Projects with a Global Impact | Office of Cancer Genomics

    Science.gov (United States)

    My name is Nicholas Griner and I am the Scientific Program Manager for the Cancer Genome Characterization Initiative (CGCI) in the Office of Cancer Genomics (OCG). Until recently, I spent most of my scientific career working in a cancer research laboratory. In my postdoctoral training, my research focused on identifying novel pathways that contribute to both prostate and breast cancers and studying proteins within these pathways that may be targeted with cancer drugs.

  5. Potential Impact on Clinical Decision Making via a Genome-Wide Expression Profiling: A Case Report

    Directory of Open Access Journals (Sweden)

    Hyun Kim

    2016-11-01

    Full Text Available Management of men with prostate cancer is fraught with uncertainty as physicians and patients balance efficacy with potential toxicity and diminished quality of life. Utilization of genomics as a prognostic biomarker has improved the informed decision-making process by enabling more rationale treatment choices. Recently investigations have begun to determine whether genomic information from tumor transcriptome data can be used to impact clinical decision-making beyond prognosis. Here we discuss the potential of genomics to alter management of a patient who presented with high-risk prostate adenocarcinoma. We suggest that this information help selecting patients for advanced imaging, chemotherapies, or clinical trial.

  6. Integrated genomic and gene expression profiling identifies two major genomic circuits in urothelial carcinoma.

    OpenAIRE

    Lindgren, David; Sjödahl, Gottfrid; Lauss, Martin; Staaf, Johan; Chebil, Gunilla; Lövgren, Kristina; Gudjonsson, Sigurdur; Liedberg, Fredrik; Patschan, Oliver; Månsson, Wiking; Fernö, Mårten; Höglund, Mattias

    2012-01-01

    Similar to other malignancies, urothelial carcinoma (UC) is characterized by specific recurrent chromosomal aberrations and gene mutations. However, the interconnection between specific genomic alterations, and how patterns of chromosomal alterations adhere to different molecular subgroups of UC, is less clear. We applied tiling resolution array CGH to 146 cases of UC and identified a number of regions harboring recurrent focal genomic amplifications and deletions. Several potential oncogenes...

  7. Genome-wide identification of key modulators of gene-gene interaction networks in breast cancer.

    Science.gov (United States)

    Chiu, Yu-Chiao; Wang, Li-Ju; Hsiao, Tzu-Hung; Chuang, Eric Y; Chen, Yidong

    2017-10-03

    With the advances in high-throughput gene profiling technologies, a large volume of gene interaction maps has been constructed. A higher-level layer of gene-gene interaction, namely modulate gene interaction, is composed of gene pairs of which interaction strengths are modulated by (i.e., dependent on) the expression level of a key modulator gene. Systematic investigations into the modulation by estrogen receptor (ER), the best-known modulator gene, have revealed the functional and prognostic significance in breast cancer. However, a genome-wide identification of key modulator genes that may further unveil the landscape of modulated gene interaction is still lacking. We proposed a systematic workflow to screen for key modulators based on genome-wide gene expression profiles. We designed four modularity parameters to measure the ability of a putative modulator to perturb gene interaction networks. Applying the method to a dataset of 286 breast tumors, we comprehensively characterized the modularity parameters and identified a total of 973 key modulator genes. The modularity of these modulators was verified in three independent breast cancer datasets. ESR1, the encoding gene of ER, appeared in the list, and abundant novel modulators were illuminated. For instance, a prognostic predictor of breast cancer, SFRP1, was found the second modulator. Functional annotation analysis of the 973 modulators revealed involvements in ER-related cellular processes as well as immune- and tumor-associated functions. Here we present, as far as we know, the first comprehensive analysis of key modulator genes on a genome-wide scale. The validity of filtering parameters as well as the conservativity of modulators among cohorts were corroborated. Our data bring new insights into the modulated layer of gene-gene interaction and provide candidates for further biological investigations.

  8. Whole-genome and Transcriptome Sequencing of Prostate Cancer Identify New Genetic Alterations Driving Disease Progression

    DEFF Research Database (Denmark)

    Ren, Shancheng; Wei, Gong-Hong; Liu, Dongbing

    2018-01-01

    BACKGROUND: Global disparities in prostate cancer (PCa) incidence highlight the urgent need to identify genomic abnormalities in prostate tumors in different ethnic populations including Asian men. OBJECTIVE: To systematically explore the genomic complexity and define disease-driven genetic alter...

  9. Microarray based comparative genome-wide expression profiling of ...

    African Journals Online (AJOL)

    The uncontrolled proliferation of hematopoietic cells with no capacity to differentiate into mature blood cells leads to leukemia. Though considerable amount of work has been done in understanding the molecular basis and gene expression profiles of hematologic malignancies viz., chronic lymphocytic leukemia (CLL), ...

  10. Surface activity, lipid profiles and their implications in cervical cancer.

    Directory of Open Access Journals (Sweden)

    Preetha A

    2005-01-01

    Full Text Available Background: The profiles of lipids in normal and cancerous tissues may differ revealing information about cancer development and progression. Lipids being surface active, changes in lipid profiles can manifest as altered surface activity profiles. Langmuir monolayers offer a convenient model for evaluating surface activity of biological membranes. Aims: The aims of this study were to quantify phospholipids and their effects on surface activity of normal and cancerous human cervical tissues as well as to evaluate the role of phosphatidylcholine (PC and sphingomyelin (SM in cervical cancer using Langmuir monolayers. Methods and Materials: Lipid quantification was done using thin layer chromatography and phosphorus assay. Surface activity was evaluated using Langmuir monolayers. Monolayers were formed on the surface of deionized water by spreading tissue organic phase corresponding to 1 mg of tissue and studying their surface pressure-area isotherms at body temperature. The PC and SM contents of cancerous human cervical tissues were higher than those of the normal human cervical tissues. Role of PC and SM were evaluated by adding varying amounts of these lipids to normal cervical pooled organic phase. Statistical analysis: Student′s t-test (p < 0.05 and one-way analysis of variance (ANOVA was used. Results: Our results reveals that the phosphatidylglycerol level in cancerous cervical tissue was nearly five folds higher than that in normal cervical tissue. Also PC and sphingomyelin SM were found to be the major phospholipid components in cancerous and normal cervical tissues respectively. The addition of either 1.5 µg DPPC or 0.5 µg SM /mg of tissue to the normal organic phase changed its surface activity profile to that of the cancerous tissues. Statistically significant surface activity parameters showed that PC and SM have remarkable roles in shifting the normal cervical lipophilic surface activity towards that of cancerous lipophilic

  11. Telomere Length Dynamics and the Evolution of Cancer Genome Architecture

    Directory of Open Access Journals (Sweden)

    Kez Cleal

    2018-02-01

    Full Text Available Telomeres are progressively eroded during repeated rounds of cell division due to the end replication problem but also undergo additional more substantial stochastic shortening events. In most cases, shortened telomeres induce a cell-cycle arrest or trigger apoptosis, although for those cells that bypass such signals during tumour progression, a critical length threshold is reached at which telomere dysfunction may ensue. Dysfunction of the telomere nucleoprotein complex can expose free chromosome ends to the DNA double-strand break (DSB repair machinery, leading to telomere fusion with both telomeric and non-telomeric loci. The consequences of telomere fusions in promoting genome instability have long been appreciated through the breakage–fusion–bridge (BFB cycle mechanism, although recent studies using high-throughput sequencing technologies have uncovered evidence of involvement in a wider spectrum of genomic rearrangements including chromothripsis. A critical step in cancer progression is the transition of a clone to immortality, through the stabilisation of the telomere repeat array. This can be achieved via the reactivation of telomerase, or the induction of the alternative lengthening of telomeres (ALT pathway. Whilst telomere dysfunction may promote genome instability and tumour progression, by limiting the replicative potential of a cell and enforcing senescence, telomere shortening can act as a tumour suppressor mechanism. However, the burden of senescent cells has also been implicated as a driver of ageing and age-related pathology, and in the promotion of cancer through inflammatory signalling. Considering the critical role of telomere length in governing cancer biology, we review questions related to the prognostic value of studying the dynamics of telomere shortening and fusion, and discuss mechanisms and consequences of telomere-induced genome rearrangements.

  12. Intra-tumor heterogeneity in breast cancer has limited impact on transcriptomic-based molecular profiling.

    Science.gov (United States)

    Karthik, Govindasamy-Muralidharan; Rantalainen, Mattias; Stålhammar, Gustav; Lövrot, John; Ullah, Ikram; Alkodsi, Amjad; Ma, Ran; Wedlund, Lena; Lindberg, Johan; Frisell, Jan; Bergh, Jonas; Hartman, Johan

    2017-11-29

    Transcriptomic profiling of breast tumors provides opportunity for subtyping and molecular-based patient stratification. In diagnostic applications the specimen profiled should be representative of the expression profile of the whole tumor and ideally capture properties of the most aggressive part of the tumor. However, breast cancers commonly exhibit intra-tumor heterogeneity at molecular, genomic and in phenotypic level, which can arise during tumor evolution. Currently it is not established to what extent a random sampling approach may influence molecular breast cancer diagnostics. In this study we applied RNA-sequencing to quantify gene expression in 43 pieces (2-5 pieces per tumor) from 12 breast tumors (Cohort 1). We determined molecular subtype and transcriptomic grade for all tumor pieces and analysed to what extent pieces originating from the same tumors are concordant or discordant with each other. Additionally, we validated our finding in an independent cohort consisting of 19 pieces (2-6 pieces per tumor) from 6 breast tumors (Cohort 2) profiled using microarray technique. Exome sequencing was also performed on this cohort, to investigate the extent of intra-tumor genomic heterogeneity versus the intra-tumor molecular subtype classifications. Molecular subtyping was consistent in 11 out of 12 tumors and transcriptomic grade assignments were consistent in 11 out of 12 tumors as well. Molecular subtype predictions revealed consistent subtypes in four out of six patients in this cohort 2. Interestingly, we observed extensive intra-tumor genomic heterogeneity in these tumor pieces but not in their molecular subtype classifications. Our results suggest that macroscopic intra-tumoral transcriptomic heterogeneity is limited and unlikely to have an impact on molecular diagnostics for most patients.

  13. UFO: a web server for ultra-fast functional profiling of whole genome protein sequences

    Directory of Open Access Journals (Sweden)

    Meinicke Peter

    2009-09-01

    Full Text Available Abstract Background Functional profiling is a key technique to characterize and compare the functional potential of entire genomes. The estimation of profiles according to an assignment of sequences to functional categories is a computationally expensive task because it requires the comparison of all protein sequences from a genome with a usually large database of annotated sequences or sequence families. Description Based on machine learning techniques for Pfam domain detection, the UFO web server for ultra-fast functional profiling allows researchers to process large protein sequence collections instantaneously. Besides the frequencies of Pfam and GO categories, the user also obtains the sequence specific assignments to Pfam domain families. In addition, a comparison with existing genomes provides dissimilarity scores with respect to 821 reference proteomes. Considering the underlying UFO domain detection, the results on 206 test genomes indicate a high sensitivity of the approach. In comparison with current state-of-the-art HMMs, the runtime measurements show a considerable speed up in the range of four orders of magnitude. For an average size prokaryotic genome, the computation of a functional profile together with its comparison typically requires about 10 seconds of processing time. Conclusion For the first time the UFO web server makes it possible to get a quick overview on the functional inventory of newly sequenced organisms. The genome scale comparison with a large number of precomputed profiles allows a first guess about functionally related organisms. The service is freely available and does not require user registration or specification of a valid email address.

  14. Differential pathway dependency discovery associated with drug response across cancer cell lines* | Office of Cancer Genomics

    Science.gov (United States)

    The effort to personalize treatment plans for cancer patients involves the identification of drug treatments that can effectively target the disease while minimizing the likelihood of adverse reactions. In this study, the gene-expression profile of 810 cancer cell lines and their response data to 368 small molecules from the Cancer Therapeutics Research Portal (CTRP) are analyzed to identify pathways with significant rewiring between genes, or differential gene dependency, between sensitive and non-sensitive cell lines.

  15. Clinical impact of extensive molecular profiling in advanced cancer patients

    Directory of Open Access Journals (Sweden)

    Sophie Cousin

    2017-02-01

    Full Text Available Abstract Previous precision medicine studies have investigated conventional molecular techniques and/or limited sets of gene alterations. The aim of this study was to describe the impact of the next-generation sequencing of the largest panel of genes used to date in tumour tissue and blood in the context of institutional molecular screening programmes. DNA analysis was performed by next-generation sequencing using a panel of 426 cancer-related genes and by comparative genomic hybridization from formalin-fixed and paraffin-embedded archived tumour samples when available or from fresh tumour samples. Five hundred sixty-eight patients were enrolled. The median number of prior lines of treatment was 2 (range 0–9. The most common primary tumour types were lung (16.9%, colorectal (14.4%, breast (10.6%, ovarian (10.2% and sarcoma (10.2%. The median patient age was 63 years (range 19–88. A total of 292 patients (51.4% presented with at least one actionable genetic alteration. The 20 genes most frequently altered were TP53, CDKN2A, KRAS, PTEN, PI3KCA, RB1, APC, ERBB2, MYC, EGFR, CDKN2B, ARID1A, SMAD4, FGFR1, MDM2, BRAF, ATM, CCNE1, FGFR3 and FRS2. One hundred fifty-nine patients (28% were included in early phase trials. The treatment was matched with a tumour profile in 86 cases (15%. The two main reasons for non-inclusion were non-progressive disease (31.5% and general status deterioration (25%. Twenty-eight percent of patients presented with a growth modulation index (time to progression under the early phase trial treatment/time to progression of the previous line of treatment >1.3. Extensive molecular profiling using high-throughput techniques allows for the identification of actionable mutations in the majority of cases and is associated with substantial clinical benefit in up to one in four patients.

  16. CGCI Investigators Reveal Comprehensive Landscape of Diffuse Large B-Cell Lymphoma (DLBCL) Genomes | Office of Cancer Genomics

    Science.gov (United States)

    Researchers from British Columbia Cancer Agency used whole genome sequencing to analyze 40 DLBCL cases and 13 cell lines in order to fill in the gaps of the complex landscape of DLBCL genomes. Their analysis, “Mutational and structural analysis of diffuse large B-cell lymphoma using whole genome sequencing,” was published online in Blood on May 22. The authors are Ryan Morin, Marco Marra, and colleagues.  

  17. Correlation of isozyme profiles with genomic sequences of Phytophthora ramorum and its P. sojae orthologues

    NARCIS (Netherlands)

    Man in 't Veld, W.A.; Govers, F.; Meijer, H.J.G.

    2007-01-01

    A correct interpretation of isozyme patterns can be seriously hampered by the lack of supporting genetic data. The availability of the complete genome sequence of Phytophthora ramorum, enabled us to correlate isozyme profiles with the gene models predicted for these enzymes. Thirty-nine P. ramorum

  18. Cancer and aging: The importance of telomeres in genome maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Rodier, Francis; Kim, Sahn-ho; Nijjar, Tarlochan; Yaswen, Paul; Campisi, Judith

    2004-10-01

    Telomeres are the specialized DNA-protein structures that cap the ends of linear chromosomes, thereby protecting them from degradation and fusion by cellular DNA repair processes. In vertebrate cells, telomeres consist of several kilobase pairs of DNA having the sequence TTAGGG, a few hundred base pairs of single-stranded DNA at the 3' end of the telomeric DNA tract, and a host of proteins that organize the telomeric double and single stranded DNA into a protective structure. Functional telomeres are essential for maintaining the integrity and stability of genomes. When combined with loss of cell cycle checkpoint controls, telomere dysfunction can lead to genomic instability, a common cause and hallmark of cancer. Consequently, normal mammalian cells respond to dysfunctional telomeres by undergoing apoptosis (programmed cell death) or cellular senescence (permanent cell cycle arrest), two cellular tumor suppressor mechanisms. These tumor suppressor mechanisms are potent suppressors of cancer, but recent evidence suggests that they can antagonistically also contribute to aging phenotypes. Here, we review what is known about the structure and function of telomeres in mammalian cells, particularly human cells, and how telomere dysfunction may arise and contribute to cancer and aging phenotypes.

  19. Integrative Genomic Analysis of Cholangiocarcinoma Identifies Distinct IDH-Mutant Molecular Profiles

    DEFF Research Database (Denmark)

    Farshidfar, Farshad; Zheng, Siyuan; Gingras, Marie-Claude

    2017-01-01

    Cholangiocarcinoma (CCA) is an aggressive malignancy of the bile ducts, with poor prognosis and limited treatment options. Here, we describe the integrated analysis of somatic mutations, RNA expression, copy number, and DNA methylation by The Cancer Genome Atlas of a set of predominantly intrahep...

  20. Whole genome methylation profiles as independent markers of survival in stage IIIC melanoma patients

    Directory of Open Access Journals (Sweden)

    Sigalotti Luca

    2012-09-01

    Full Text Available Abstract Background The clinical course of cutaneous melanoma (CM can differ significantly for patients with identical stages of disease, defined clinico-pathologically, and no molecular markers differentiate patients with such a diverse prognosis. This study aimed to define the prognostic value of whole genome DNA methylation profiles in stage III CM. Methods Genome-wide methylation profiles were evaluated by the Illumina Human Methylation 27 BeadChip assay in short-term neoplastic cell cultures from 45 stage IIIC CM patients. Unsupervised K-means partitioning clustering was exploited to sort patients into 2 groups based on their methylation profiles. Methylation patterns related to the discovered groups were determined using the nearest shrunken centroid classification algorithm. The impact of genome-wide methylation patterns on overall survival (OS was assessed using Cox regression and Kaplan-Meier analyses. Results Unsupervised K-means partitioning by whole genome methylation profiles identified classes with significantly different OS in stage IIIC CM patients. Patients with a “favorable” methylation profile had increased OS (P = 0.001, log-rank = 10.2 by Kaplan-Meier analysis. Median OS of stage IIIC patients with a “favorable” vs. “unfavorable” methylation profile were 31.5 and 10.4 months, respectively. The 5 year OS for stage IIIC patients with a “favorable” methylation profile was 41.2% as compared to 0% for patients with an “unfavorable” methylation profile. Among the variables examined by multivariate Cox regression analysis, classification defined by methylation profile was the only predictor of OS (Hazard Ratio = 2.41, for “unfavorable” methylation profile; 95% Confidence Interval: 1.02-5.70; P = 0.045. A 17 gene methylation signature able to correctly assign prognosis (overall error rate = 0 in stage IIIC patients on the basis of distinct methylation-defined groups was also identified

  1. Comprehensive genomic profiling of 295 cases of clinically advanced urothelial carcinoma of the urinary bladder reveals a high frequency of clinically relevant genomic alterations.

    Science.gov (United States)

    Ross, Jeffrey S; Wang, Kai; Khaira, Depinder; Ali, Siraj M; Fisher, Huge A G; Mian, Badar; Nazeer, Tipu; Elvin, Julia A; Palma, Norma; Yelensky, Roman; Lipson, Doron; Miller, Vincent A; Stephens, Philip J; Subbiah, Vivek; Pal, Sumanta K

    2016-03-01

    In the current study, the authors present a comprehensive genomic profile (CGP)-based study of advanced urothelial carcinoma (UC) designed to detect clinically relevant genomic alterations (CRGAs). DNA was extracted from 40 µm of formalin-fixed, paraffin-embedded sections from 295 consecutive cases of recurrent/metastatic UC. CGP was performed on hybridization-captured, adaptor ligation-based libraries to a mean coverage depth of 688X for all coding exons of 236 cancer-related genes plus 47 introns from 19 genes frequently rearranged in cancer, using process-matched normal control samples as a reference. CRGAs were defined as GAs linked to drugs on the market or currently under evaluation in mechanism-driven clinical trials. All 295 patients assessed were classified with high-grade (International Society of Urological Pathology classification) and advanced stage (stage III/IV American Joint Committee on Cancer) disease, and 294 of 295 patients (99.7%) had at least 1 GA on CGP with a mean of 6.4 GAs per UC (61% substitutions/insertions/deletions, 37% copy number alterations, and 2% fusions). Furthermore, 275 patients (93%) had at least 1 CRGA involving 75 individual genes with a mean of 2.6 CRGAs per UC. The most common CRGAs involved cyclin-dependent kinase inhibitor 2A (CDKN2A) (34%), fibroblast growth factor receptor 3 (FGFR3) (21%), phosphatidylinositol 3-kinase catalytic subunit alpha (PIK3CA) (20%), and ERBB2 (17%). FGFR3 GAs were diverse types and included 10% fusions. ERBB2 GAs were equally divided between amplifications and substitutions. ERBB2 substitutions were predominantly within the extracellular domain and were highly enriched in patients with micropapillary UC (38% of 32 cases vs 5% of 263 nonmicropapillary UC cases; P<.0001). Using a CGP assay capable of detecting all classes of GA simultaneously, an extraordinarily high frequency of CRGA was identified in a large series of patients with advanced UC. Cancer 2016;122:702-711. © 2015 American

  2. Comprehensive genomic profiling reveals inactivating SMARCA4 mutations and low tumor mutational burden in small cell carcinoma of the ovary, hypercalcemic-type.

    Science.gov (United States)

    Lin, Douglas I; Chudnovsky, Yakov; Duggan, Bridget; Zajchowski, Deborah; Greenbowe, Joel; Ross, Jeffrey S; Gay, Laurie M; Ali, Siraj M; Elvin, Julia A

    2017-12-01

    Small cell carcinoma of the ovary, hypercalcemic-type (SCCOHT) is a rare, extremely aggressive neoplasm that usually occurs in young women and is characterized by deleterious germline or somatic SMARCA4 mutations. We performed comprehensive genomic profiling (CGP) to potentially identify additional clinically and pathophysiologically relevant genomic alterations in SCCOHT. CGP assessment of all classes of coding alterations in up to 406 genes commonly altered in cancer and intronic regions for up to 31 genes commonly rearranged in cancer was performed on 18 SCCOHT cases (16 exhibiting classic morphology and 2 cases exhibiting exclusive a large cell variant morphology). In addition, a retrospective database search for clinically advanced ovarian tumors with genomic profiles similar to SCCOHT yielded 3 additional cases originally diagnosed as non-SCCOHT. CGP revealed inactivating SMARCA4 alterations and low tumor mutational burden (TMB) (<6mutations/Mb) in 94% (15/16) of SCCOHT with classic morphology. In contrast, both (2/2) cases exhibiting only large cell variant morphology were hypermutated (TMB scores of 90 and 360mut/Mb) and were wildtype for SMARCA4. In our retrospective search, an index ovarian cancer patient harboring inactivating SMARCA4 alterations, initially diagnosed as endometrioid carcinoma, was re-classified as SCCOHT and responded to an SCCOHT chemotherapy regimen. The vast majority of SCCOHT demonstrate genomic SMARCA4 loss with only rare co-occurring alterations. Our data support a role for CGP in the diagnosis and management of SCCOHT and of other lesions with overlapping histological and clinical features, since identifying the former by genomic profile suggests benefit from an appropriate regimen and treatment decisions, as illustrated by an index patient. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. A genomic and transcriptomic approach for a differential diagnosis between primary and secondary ovarian carcinomas in patients with a previous history of breast cancer

    International Nuclear Information System (INIS)

    Meyniel, Jean-Philippe; Alran, Séverine; Rapinat, Audrey; Gentien, David; Roman-Roman, Sergio; Mignot, Laurent; Sastre-Garau, Xavier; Cottu, Paul H; Decraene, Charles; Stern, Marc-Henri; Couturier, Jérôme; Lebigot, Ingrid; Nicolas, André; Weber, Nina; Fourchotte, Virginie

    2010-01-01

    The distinction between primary and secondary ovarian tumors may be challenging for pathologists. The purpose of the present work was to develop genomic and transcriptomic tools to further refine the pathological diagnosis of ovarian tumors after a previous history of breast cancer. Sixteen paired breast-ovary tumors from patients with a former diagnosis of breast cancer were collected. The genomic profiles of paired tumors were analyzed using the Affymetrix GeneChip ® Mapping 50 K Xba Array or Genome-Wide Human SNP Array 6.0 (for one pair), and the data were normalized with ITALICS (ITerative and Alternative normaLIzation and Copy number calling for affymetrix Snp arrays) algorithm or Partek Genomic Suite, respectively. The transcriptome of paired samples was analyzed using Affymetrix GeneChip ® Human Genome U133 Plus 2.0 Arrays, and the data were normalized with gc-Robust Multi-array Average (gcRMA) algorithm. A hierarchical clustering of these samples was performed, combined with a dataset of well-identified primary and secondary ovarian tumors. In 12 of the 16 paired tumors analyzed, the comparison of genomic profiles confirmed the pathological diagnosis of primary ovarian tumor (n = 5) or metastasis of breast cancer (n = 7). Among four cases with uncertain pathological diagnosis, genomic profiles were clearly distinct between the ovarian and breast tumors in two pairs, thus indicating primary ovarian carcinomas, and showed common patterns in the two others, indicating metastases from breast cancer. In all pairs, the result of the transcriptomic analysis was concordant with that of the genomic analysis. In patients with ovarian carcinoma and a previous history of breast cancer, SNP array analysis can be used to distinguish primary and secondary ovarian tumors. Transcriptomic analysis may be used when primary breast tissue specimen is not available

  4. Functional Genomics for Epithelial-Mesenchymal Transition in Breast Cancer

    Science.gov (United States)

    2011-10-01

    systems and by molecular genetic perturbation techniques (e.g. [97]), and the complexity of molecular controls is being revealed in vivo (see [98, 99...and treatment is a new appreciation of the chameleonic nature of cancer cells that will drive the derivation of new ways to target this plasticity...Brezler MR, Abreu AJ (1983) Identical genetic profiles in primary and metastatic bladder tumors. J Urol. 129: 827–828. 61. Chaffer CL, Dopheide B

  5. Break Breast Cancer Addiction by CRISPR/Cas9 Genome Editing

    Science.gov (United States)

    Yang, Haitao; Jaeger, MariaLynn; Walker, Averi; Wei, Daniel; Leiker, Katie; Weitao, Tao

    2018-01-01

    Breast cancer is the leading diagnosed cancer for women globally. Evolution of breast cancer in tumorigenesis, metastasis and treatment resistance appears to be driven by the aberrant gene expression and protein degradation encoded by the cancer genomes. The uncontrolled cancer growth relies on these cellular events, thus constituting the cancerous programs and rendering the addiction towards them. These programs are likely the potential anticancer biomarkers for Personalized Medicine of breast cancer. This review intends to delineate the impact of the CRSPR/Cas-mediated genome editing in identification and validation of these anticancer biomarkers. It reviews the progress in three aspects of CRISPR/Cas9-mediated editing of the breast cancer genomes: Somatic genome editing, transcription and protein degradation addictions. PMID:29344267

  6. Authentication of Zanthoxylum Species Based on Integrated Analysis of Complete Chloroplast Genome Sequences and Metabolite Profiles.

    Science.gov (United States)

    Lee, Hyeon Ju; Koo, Hyun Jo; Lee, Jonghoon; Lee, Sang-Choon; Lee, Dong Young; Giang, Vo Ngoc Linh; Kim, Minjung; Shim, Hyeonah; Park, Jee Young; Yoo, Ki-Oug; Sung, Sang Hyun; Yang, Tae-Jin

    2017-11-29

    We performed chloroplast genome sequencing and comparative analysis of two Rutaceae species, Zanthoxylum schinifolium (Korean pepper tree) and Z. piperitum (Japanese pepper tree), which are medicinal and culinary crops in Asia. We identified more than 837 single nucleotide polymorphisms and 103 insertions/deletions (InDels) based on a comparison of the two chloroplast genomes and developed seven DNA markers derived from five tandem repeats and two InDel variations that discriminated between Korean Zanthoxylum species. Metabolite profile analysis pointed to three metabolic groups, one with Korean Z. piperitum samples, one with Korean Z. schinifolium samples, and the last containing all the tested Chinese Zanthoxylum species samples, which are considered to be Z. bungeanum based on our results. Two markers were capable of distinguishing among these three groups. The chloroplast genome sequences identified in this study represent a valuable genomics resource for exploring diversity in Rutaceae, and the molecular markers will be useful for authenticating dried Zanthoxylum berries in the marketplace.

  7. Sun Protection Motivational Stages and Behavior: Skin Cancer Risk Profiles

    Science.gov (United States)

    Pagoto, Sherry L.; McChargue, Dennis E.; Schneider, Kristin; Cook, Jessica Werth

    2004-01-01

    Objective: To create skin cancer risk profiles that could be used to predict sun protection among Midwest beachgoers. Method: Cluster analysis was used with study participants (N=239), who provided information about sun protection motivation and behavior, perceived risk, burn potential, and tan importance. Participants were clustered according to…

  8. From drug response profiling to target addiction scoring in cancer cell models

    Directory of Open Access Journals (Sweden)

    Bhagwan Yadav

    2015-10-01

    Full Text Available Deconvoluting the molecular target signals behind observed drug response phenotypes is an important part of phenotype-based drug discovery and repurposing efforts. We demonstrate here how our network-based deconvolution approach, named target addiction score (TAS, provides insights into the functional importance of druggable protein targets in cell-based drug sensitivity testing experiments. Using cancer cell line profiling data sets, we constructed a functional classification across 107 cancer cell models, based on their common and unique target addiction signatures. The pan-cancer addiction correlations could not be explained by the tissue of origin, and only correlated in part with molecular and genomic signatures of the heterogeneous cancer cells. The TAS-based cancer cell classification was also shown to be robust to drug response data resampling, as well as predictive of the transcriptomic patterns in an independent set of cancer cells that shared similar addiction signatures with the 107 cancers. The critical protein targets identified by the integrated approach were also shown to have clinically relevant mutation frequencies in patients with various cancer subtypes, including not only well-established pan-cancer genes, such as PTEN tumor suppressor, but also a number of targets that are less frequently mutated in specific cancer types, including ABL1 oncoprotein in acute myeloid leukemia. An application to leukemia patient primary cell models demonstrated how the target deconvolution approach offers functional insights into patient-specific addiction patterns, such as those indicative of their receptor-type tyrosine-protein kinase FLT3 internal tandem duplication (FLT3-ITD status and co-addiction partners, which may lead to clinically actionable, personalized drug treatment developments. To promote its application to the future drug testing studies, we have made available an open-source implementation of the TAS calculation in the form

  9. Brain perihematoma genomic profile following spontaneous human intracerebral hemorrhage.

    Directory of Open Access Journals (Sweden)

    Anna Rosell

    Full Text Available BACKGROUND: Spontaneous intracerebral hemorrhage (ICH represents about 15% of all strokes and is associated with high mortality rates. Our aim was to identify the gene expression changes and biological pathways altered in the brain following ICH. METHODOLOGY/PRINCIPAL FINDINGS: Twelve brain samples were obtained from four deceased patients who suffered an ICH including perihematomal tissue (PH and the corresponding contralateral white (CW and grey (CG matter. Affymetrix GeneChip platform for analysis of over 47,000 transcripts was conducted. Microarray Analysis Suite 5.0 was used to process array images and the Ingenuity Pathway Analysis System was used to analyze biological mechanisms and functions of the genes. We identified 468 genes in the PH areas displaying a different expression pattern with a fold change between -3.74 and +5.16 when compared to the contralateral areas (291 overexpressed and 177 underexpressed. The top genes which appeared most significantly overexpressed in the PH areas codify for cytokines, chemokines, coagulation factors, cell growth and proliferation factors while the underexpressed codify for proteins involved in cell cycle or neurotrophins. Validation and replication studies at gene and protein level in brain samples confirmed microarray results. CONCLUSIONS: The genomic responses identified in this study provide valuable information about potential biomarkers and target molecules altered in the perihematomal regions.

  10. Comparing Genomic Profiles of Women With and Without Fibromyalgia

    Science.gov (United States)

    Lukkahatai, Nada; Walitt, Brian; Espina, Alexandra; Wang, Dan; Saligan, Leorey N.

    2016-01-01

    Background Fibromyalgia syndrome (FMS), a chronic musculoskeletal condition characterized by diffuse pain, fatigue, sleep impairment, and cognitive dysfunction, is associated with significant functional disability. Its underlying biological mechanisms are unknown. This study investigated differentially expressed genes between women with FMS and healthy volunteers. Methods Women who met the 1990 or 2010 American College of Rheumatology fibromyalgia criteria were compared to age- and race-matched pain-free healthy women. Peripheral blood samples were collected, and a full genome microarray gene expression analysis was performed. One-way analysis of variance was used to identify differentially expressed genes using the filtering criterion of 1% false discovery rate. Analysis of canonical pathways associated with these genes was performed. Confirmatory quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay verified microarray results. Independent t-tests compared gene and protein expression between groups. Result Participants were 54 women with FMS and 25 controls. Expression arrays from a subset of women with FMS (n = 29) and controls (n = 20) showed upregulation of 12 genes (>1.8-fold change, p immune response, and homeostasis appears to be relevant to the experience of FMS. Replication and exploration of the relationship between gene expression and symptom severity will help determine clinical relevance of these findings. PMID:26015072

  11. Psoriasis prediction from genome-wide SNP profiles

    Directory of Open Access Journals (Sweden)

    Fang Xiangzhong

    2011-01-01

    Full Text Available Abstract Background With the availability of large-scale genome-wide association study (GWAS data, choosing an optimal set of SNPs for disease susceptibility prediction is a challenging task. This study aimed to use single nucleotide polymorphisms (SNPs to predict psoriasis from searching GWAS data. Methods Totally we had 2,798 samples and 451,724 SNPs. Process for searching a set of SNPs to predict susceptibility for psoriasis consisted of two steps. The first one was to search top 1,000 SNPs with high accuracy for prediction of psoriasis from GWAS dataset. The second one was to search for an optimal SNP subset for predicting psoriasis. The sequential information bottleneck (sIB method was compared with classical linear discriminant analysis(LDA for classification performance. Results The best test harmonic mean of sensitivity and specificity for predicting psoriasis by sIB was 0.674(95% CI: 0.650-0.698, while only 0.520(95% CI: 0.472-0.524 was reported for predicting disease by LDA. Our results indicate that the new classifier sIB performs better than LDA in the study. Conclusions The fact that a small set of SNPs can predict disease status with average accuracy of 68% makes it possible to use SNP data for psoriasis prediction.

  12. Whole-genome profiling of mutagenesis in Caenorhabditis elegans.

    Science.gov (United States)

    Flibotte, Stephane; Edgley, Mark L; Chaudhry, Iasha; Taylor, Jon; Neil, Sarah E; Rogula, Aleksandra; Zapf, Rick; Hirst, Martin; Butterfield, Yaron; Jones, Steven J; Marra, Marco A; Barstead, Robert J; Moerman, Donald G

    2010-06-01

    Deep sequencing offers an unprecedented view of an organism's genome. We describe the spectrum of mutations induced by three commonly used mutagens: ethyl methanesulfonate (EMS), N-ethyl-N-nitrosourea (ENU), and ultraviolet trimethylpsoralen (UV/TMP) in the nematode Caenorhabditis elegans. Our analysis confirms the strong GC to AT transition bias of EMS. We found that ENU mainly produces A to T and T to A transversions, but also all possible transitions. We found no bias for any specific transition or transversion in the spectrum of UV/TMP-induced mutations. In 10 mutagenized strains we identified 2723 variants, of which 508 are expected to alter or disrupt gene function, including 21 nonsense mutations and 10 mutations predicted to affect mRNA splicing. This translates to an average of 50 informative mutations per strain. We also present evidence of genetic drift among laboratory wild-type strains derived from the Bristol N2 strain. We make several suggestions for best practice using massively parallel short read sequencing to ensure mutation detection.

  13. Whole-Genome Profiling of Mutagenesis in Caenorhabditis elegans

    Science.gov (United States)

    Flibotte, Stephane; Edgley, Mark L.; Chaudhry, Iasha; Taylor, Jon; Neil, Sarah E.; Rogula, Aleksandra; Zapf, Rick; Hirst, Martin; Butterfield, Yaron; Jones, Steven J.; Marra, Marco A.; Barstead, Robert J.; Moerman, Donald G.

    2010-01-01

    Deep sequencing offers an unprecedented view of an organism's genome. We describe the spectrum of mutations induced by three commonly used mutagens: ethyl methanesulfonate (EMS), N-ethyl-N-nitrosourea (ENU), and ultraviolet trimethylpsoralen (UV/TMP) in the nematode Caenorhabditis elegans. Our analysis confirms the strong GC to AT transition bias of EMS. We found that ENU mainly produces A to T and T to A transversions, but also all possible transitions. We found no bias for any specific transition or transversion in the spectrum of UV/TMP-induced mutations. In 10 mutagenized strains we identified 2723 variants, of which 508 are expected to alter or disrupt gene function, including 21 nonsense mutations and 10 mutations predicted to affect mRNA splicing. This translates to an average of 50 informative mutations per strain. We also present evidence of genetic drift among laboratory wild-type strains derived from the Bristol N2 strain. We make several suggestions for best practice using massively parallel short read sequencing to ensure mutation detection. PMID:20439774

  14. TMEPAI genome editing in triple negative breast cancer cells

    Directory of Open Access Journals (Sweden)

    Bantari W.K. Wardhani

    2017-05-01

    Full Text Available Background: Clustered regularly interspaced short palindromic repeats/CRISPR-associated 9 (CRISPR/Cas9 is a powerful genome editing technique. It consists of RNA-guided DNA endonuclease Cas9 and single guide RNA (gRNA. By combining their expressions, high efficiency cleavage of the target gene can be achieved, leading to the formation of DNA double-strand break (DSB at the genomic locus of interest which will be repaired via NHEJ (non-homologous end joining or HDR (homology-directed repair and mediate DNA alteration. We aimed to apply the CRISPR/Cas9 technique to knock-out the transmembrane prostate androgen-induced protein (TMEPAI gene in the triple negative breast cancer cell line.Methods: Designed gRNA which targets the TMEPAI gene was synthesized, annealed, and cloned into gRNA expression vector. It was co-transfected into the TNBC cell line using polyethylenimine (PEI together with Cas9-GFP and puromycin resistant gene vector. At 24-hours post-transfection, cells were selected by puromycin for 3 days before they were cloned. Selected knock-out clones were subsequently checked on their protein levels by western blotting.Results: CRISPR/Cas9, a genome engineering technique successfully knocked-out TMEPAI in the Hs578T TNBC cell line. Sequencing shows a frameshift mutation in TMEPAI. Western blot shows the absence of TMEPAI band on Hs578T KO cells.Conclusion: TMEPAI gene was deleted in the TNBC cell line using the genomic editing technique CRISPR/Cas9. The deletion was confirmed by genome and protein analysis.

  15. Identifying candidate driver genes by integrative ovarian cancer genomics data

    Science.gov (United States)

    Lu, Xinguo; Lu, Jibo

    2017-08-01

    Integrative analysis of molecular mechanics underlying cancer can distinguish interactions that cannot be revealed based on one kind of data for the appropriate diagnosis and treatment of cancer patients. Tumor samples exhibit heterogeneity in omics data, such as somatic mutations, Copy Number Variations CNVs), gene expression profiles and so on. In this paper we combined gene co-expression modules and mutation modulators separately in tumor patients to obtain the candidate driver genes for resistant and sensitive tumor from the heterogeneous data. The final list of modulators identified are well known in biological processes associated with ovarian cancer, such as CCL17, CACTIN, CCL16, CCL22, APOB, KDF1, CCL11, HNF1B, LRG1, MED1 and so on, which can help to facilitate the discovery of biomarkers, molecular diagnostics, and drug discovery.

  16. The haplotype-resolved genome and epigenome of the aneuploid HeLa cancer cell line.

    Science.gov (United States)

    Adey, Andrew; Burton, Joshua N; Kitzman, Jacob O; Hiatt, Joseph B; Lewis, Alexandra P; Martin, Beth K; Qiu, Ruolan; Lee, Choli; Shendure, Jay

    2013-08-08

    The HeLa cell line was established in 1951 from cervical cancer cells taken from a patient, Henrietta Lacks. This was the first successful attempt to immortalize human-derived cells in vitro. The robust growth and unrestricted distribution of HeLa cells resulted in its broad adoption--both intentionally and through widespread cross-contamination--and for the past 60 years it has served a role analogous to that of a model organism. The cumulative impact of the HeLa cell line on research is demonstrated by its occurrence in more than 74,000 PubMed abstracts (approximately 0.3%). The genomic architecture of HeLa remains largely unexplored beyond its karyotype, partly because like many cancers, its extensive aneuploidy renders such analyses challenging. We carried out haplotype-resolved whole-genome sequencing of the HeLa CCL-2 strain, examined point- and indel-mutation variations, mapped copy-number variations and loss of heterozygosity regions, and phased variants across full chromosome arms. We also investigated variation and copy-number profiles for HeLa S3 and eight additional strains. We find that HeLa is relatively stable in terms of point variation, with few new mutations accumulating after early passaging. Haplotype resolution facilitated reconstruction of an amplified, highly rearranged region of chromosome 8q24.21 at which integration of the human papilloma virus type 18 (HPV-18) genome occurred and that is likely to be the event that initiated tumorigenesis. We combined these maps with RNA-seq and ENCODE Project data sets to phase the HeLa epigenome. This revealed strong, haplotype-specific activation of the proto-oncogene MYC by the integrated HPV-18 genome approximately 500 kilobases upstream, and enabled global analyses of the relationship between gene dosage and expression. These data provide an extensively phased, high-quality reference genome for past and future experiments relying on HeLa, and demonstrate the value of haplotype resolution for

  17. Racial differences in genome-wide methylation profiling and gene expression in breast tissues from healthy women.

    Science.gov (United States)

    Song, Min-Ae; Brasky, Theodore M; Marian, Catalin; Weng, Daniel Y; Taslim, Cenny; Dumitrescu, Ramona G; Llanos, Adana A; Freudenheim, Jo L; Shields, Peter G

    2015-01-01

    Breast cancer is more common in European Americans (EAs) than in African Americans (AAs) but mortality from breast cancer is higher among AAs. While there are racial differences in DNA methylation and gene expression in breast tumors, little is known whether such racial differences exist in breast tissues of healthy women. Genome-wide DNA methylation and gene expression profiling was performed in histologically normal breast tissues of healthy women. Linear regression models were used to identify differentially-methylated CpG sites (CpGs) between EAs (n = 61) and AAs (n = 22). Correlations for methylation and expression were assessed. Biological functions of the differentially-methylated genes were assigned using the Ingenuity Pathway Analysis. Among 485 differentially-methylated CpGs by race, 203 were hypermethylated in EAs, and 282 were hypermethylated in AAs. Promoter-related differentially-methylated CpGs were more frequently hypermethylated in EAs (52%) than AAs (27%) while gene body and intergenic CpGs were more frequently hypermethylated in AAs. The differentially-methylated CpGs were enriched for cancer-associated genes with roles in cell death and survival, cellular development, and cell-to-cell signaling. In a separate analysis for correlation in EAs and AAs, different patterns of correlation were found between EAs and AAs. The correlated genes showed different biological networks between EAs and AAs; networks were connected by Ubiquitin C. To our knowledge, this is the first comprehensive genome-wide study to identify differences in methylation and gene expression between EAs and AAs in breast tissues from healthy women. These findings may provide further insights regarding the contribution of epigenetic differences to racial disparities in breast cancer.

  18. Genomic hotspots but few recurrent fusion genes in breast cancer.

    Science.gov (United States)

    Fimereli, Danai; Fumagalli, Debora; Brown, David; Gacquer, David; Rothé, Françoise; Salgado, Roberto; Larsimont, Denis; Sotiriou, Christos; Detours, Vincent

    2018-02-13

    The advent of next generation sequencing technologies has boosted the interest in exploring the role of fusion genes in the development and progression of solid tumors. In breast cancer, most of the detected gene fusions seem to be "passenger" events while the presence of recurrent and driver fusions is still under study. We performed RNA sequencing in 55 well-characterized breast cancer samples and 10 adjacent normal breast tissues, complemented by an analysis of SNP array data. We explored the presence of fusion genes and defined their association with breast cancer subtypes, clinical-pathologic characteristics and copy number aberrations. Overall, 370 fusions were detected across the majority of the samples. HER2+ samples had significantly more fusions than triple negative and luminal subtypes. The number of fusions was correlated with histological grade, Ki67 and tumor size. Clusters of fusion genes were observed across the genome and a significant correlation of fusions with copy number aberrations and more specifically amplifications was also revealed. Despite the large number of fusion events, only a few were recurrent, while recurrent individual genes forming fusions with different partners were also detected including the estrogen receptor 1 gene in the previously detected ESR1-CCDC170 fusion. Overall we detected novel gene fusion events while we confirmed previously reported fusions. Genomic hotspots of fusion genes, differences between subtypes and small number of recurrent fusions are the most relevant characteristics of these events in breast cancer. Further investigation is necessary to comprehend the biological significance of these fusions. © 2018 Wiley Periodicals, Inc.

  19. Exploring Genome-Wide Expression Profiles Using Machine Learning Techniques.

    Science.gov (United States)

    Kebschull, Moritz; Papapanou, Panos N

    2017-01-01

    Although contemporary high-throughput -omics methods produce high-dimensional data, the resulting wealth of information is difficult to assess using traditional statistical procedures. Machine learning methods facilitate the detection of additional patterns, beyond the mere identification of lists of features that differ between groups.Here, we demonstrate the utility of (1) supervised classification algorithms in class validation, and (2) unsupervised clustering in class discovery. We use data from our previous work that described the transcriptional profiles of gingival tissue samples obtained from subjects suffering from chronic or aggressive periodontitis (1) to test whether the two diagnostic entities were also characterized by differences on the molecular level, and (2) to search for a novel, alternative classification of periodontitis based on the tissue transcriptomes.Using machine learning technology, we provide evidence for diagnostic imprecision in the currently accepted classification of periodontitis, and demonstrate that a novel, alternative classification based on differences in gingival tissue transcriptomes is feasible. The outlined procedures allow for the unbiased interrogation of high-dimensional datasets for characteristic underlying classes, and are applicable to a broad range of -omics data.

  20. Genomic profiles of damage and protection in human intracerebral hemorrhage.

    Science.gov (United States)

    Carmichael, S Thomas; Vespa, Paul M; Saver, Jeffery L; Coppola, Giovanni; Geschwind, Daniel H; Starkman, Sidney; Miller, Chad M; Kidwell, Chelsea S; Liebeskind, David S; Martin, Neil A

    2008-11-01

    Intracerebral hemorrhage (ICH) produces a high rate of death and disability. The molecular mechanisms of damage in perihematomal tissue in humans have not been systematically characterized. This study determines the gene expression profile and molecular networks that are induced in human perihematomal tissue through molecular analysis of tissue obtained from endoscopic clot evacuation. Differentially expressed genes and their cellular origin were confirmed in a mouse model of ICH. A total of 624 genes showed altered regulation in human ICH. Bioinformatic analysis shows that these genes form interconnected networks of proinflammatory, anti-inflammatory, and neuronal signaling cascades. Intracerebral hemorrhage evokes coordinated upregulation of proinflammatory signaling through specific cytokines and chemokines and their downstream molecular pathways. Anti-inflammatory networks are also induced by ICH, including annexins A1 and A2 and transforming growth factor beta (TGFbeta) and their intracellular cascades. Intracerebral hemorrhage downregulates many neuronal signaling systems, including the N-methyl-D-aspartic acid (NMDA) receptor complex and membrane ion channels. Select portions of these molecular networks were confirmed in the mouse, and the proteins in a subset of these networks localized to subsets of neurons, oligodendrocytes, or leukocytes. These inflammatory and anti-inflammatory networks interact at several key points in neutrophil signaling, apoptotic cell death, and protease responses, and indicate that secondary damage in ICH activates opposing molecular systems.

  1. Comparative Genomics of Environmental and Clinical Stenotrophomonas maltophilia Strains with Different Antibiotic Resistance Profiles.

    Science.gov (United States)

    Youenou, Benjamin; Favre-Bonté, Sabine; Bodilis, Josselin; Brothier, Elisabeth; Dubost, Audrey; Muller, Daniel; Nazaret, Sylvie

    2015-08-14

    Stenotrophomonas maltophilia, a ubiquitous Gram-negative γ-proteobacterium, has emerged as an important opportunistic pathogen responsible for nosocomial infections. A major characteristic of clinical isolates is their high intrinsic or acquired antibiotic resistance level. The aim of this study was to decipher the genetic determinism of antibiotic resistance among strains from different origins (i.e., natural environment and clinical origin) showing various antibiotic resistance profiles. To this purpose, we selected three strains isolated from soil collected in France or Burkina Faso that showed contrasting antibiotic resistance profiles. After whole-genome sequencing, the phylogenetic relationships of these 3 strains and 11 strains with available genome sequences were determined. Results showed that a strain's phylogeny did not match their origin or antibiotic resistance profiles. Numerous antibiotic resistance coding genes and efflux pump operons were revealed by the genome analysis, with 57% of the identified genes not previously described. No major variation in the antibiotic resistance gene content was observed between strains irrespective of their origin and antibiotic resistance profiles. Although environmental strains generally carry as many multidrug resistant (MDR) efflux pumps as clinical strains, the absence of resistance-nodulation-division (RND) pumps (i.e., SmeABC) previously described to be specific to S. maltophilia was revealed in two environmental strains (BurA1 and PierC1). Furthermore the genome analysis of the environmental MDR strain BurA1 showed the absence of SmeABC but the presence of another putative MDR RND efflux pump, named EbyCAB on a genomic island probably acquired through horizontal gene transfer. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  2. Functional and cancer genomics of ASXL family members

    Science.gov (United States)

    Katoh, M

    2013-01-01

    Additional sex combs-like (ASXL)1, ASXL2 and ASXL3 are human homologues of the Drosophila Asx gene that are involved in the regulation or recruitment of the Polycomb-group repressor complex (PRC) and trithorax-group (trxG) activator complex. ASXL proteins consist of ASXN, ASXH, ASXM1, ASXM2 and PHD domains. ASXL1 directly interacts with BAP1, KDM1A (LSD1), NCOA1 and nuclear hormone receptors (NHRs), such as retinoic acid receptors, oestrogen receptor and androgen receptor. ASXL family members are epigenetic scaffolding proteins that assemble epigenetic regulators and transcription factors to specific genomic loci with histone modifications. ASXL1 is involved in transcriptional repression through an interaction with PRC2 and also contributes to transcriptional regulation through interactions with BAP1 and/or NHR complexes. Germ-line mutations of human ASXL1 and ASXL3 occur in Bohring-Opitz and related syndromes. Amplification and overexpression of ASXL1 occur in cervical cancer. Truncation mutations of ASXL1 occur in colorectal cancers with microsatellite instability (MSI), malignant myeloid diseases, chronic lymphocytic leukaemia, head and neck squamous cell carcinoma, and liver, prostate and breast cancers; those of ASXL2 occur in prostate cancer, pancreatic cancer and breast cancer and those of ASXL3 are observed in melanoma. EPC1-ASXL2 gene fusion occurs in adult T-cell leukaemia/lymphoma. The prognosis of myeloid malignancies with misregulating truncation mutations of ASXL1 is poor. ASXL family members are assumed to be tumour suppressive or oncogenic in a context-dependent manner. PMID:23736028

  3. Comprehensive Genomic Profiling of 282 Pediatric Low- and High-Grade Gliomas Reveals Genomic Drivers, Tumor Mutational Burden, and Hypermutation Signatures.

    Science.gov (United States)

    Johnson, Adrienne; Severson, Eric; Gay, Laurie; Vergilio, Jo-Anne; Elvin, Julia; Suh, James; Daniel, Sugganth; Covert, Mandy; Frampton, Garrett M; Hsu, Sigmund; Lesser, Glenn J; Stogner-Underwood, Kimberly; Mott, Ryan T; Rush, Sarah Z; Stanke, Jennifer J; Dahiya, Sonika; Sun, James; Reddy, Prasanth; Chalmers, Zachary R; Erlich, Rachel; Chudnovsky, Yakov; Fabrizio, David; Schrock, Alexa B; Ali, Siraj; Miller, Vincent; Stephens, Philip J; Ross, Jeffrey; Crawford, John R; Ramkissoon, Shakti H

    2017-12-01

    Pediatric brain tumors are the leading cause of death for children with cancer in the U.S. Incorporating next-generation sequencing data for both pediatric low-grade (pLGGs) and high-grade gliomas (pHGGs) can inform diagnostic, prognostic, and therapeutic decision-making. We performed comprehensive genomic profiling on 282 pediatric gliomas (157 pHGGs, 125 pLGGs), sequencing 315 cancer-related genes and calculating the tumor mutational burden (TMB; mutations per megabase [Mb]). In pLGGs, we detected genomic alterations (GA) in 95.2% (119/125) of tumors. BRAF was most frequently altered (48%; 60/125), and FGFR1 missense (17.6%; 22/125), NF1 loss of function (8.8%; 11/125), and TP53 (5.6%; 7/125) mutations were also detected. Rearrangements were identified in 35% of pLGGs, including KIAA1549-BRAF , QKI-RAF1 , FGFR3-TACC3 , CEP85L-ROS1 , and GOPC-ROS1 fusions. Among pHGGs, GA were identified in 96.8% (152/157). The genes most frequently mutated were TP53 (49%; 77/157), H3F3A (37.6%; 59/157), ATRX (24.2%; 38/157), NF1 (22.2%; 35/157), and PDGFRA (21.7%; 34/157). Interestingly, most H3F3A mutations (81.4%; 35/43) were the variant K28M. Midline tumor analysis revealed H3F3A mutations (40%; 40/100) consisted solely of the K28M variant. Pediatric high-grade gliomas harbored oncogenic EML4-ALK , DGKB-ETV1 , ATG7-RAF1 , and EWSR1-PATZ1 fusions. Six percent (9/157) of pHGGs were hypermutated (TMB >20 mutations per Mb; range 43-581 mutations per Mb), harboring mutations deleterious for DNA repair in MSH6, MSH2, MLH1, PMS2, POLE , and POLD1 genes (78% of cases). Comprehensive genomic profiling of pediatric gliomas provides objective data that promote diagnostic accuracy and enhance clinical decision-making. Additionally, TMB could be a biomarker to identify pediatric glioblastoma (GBM) patients who may benefit from immunotherapy. By providing objective data to support diagnostic, prognostic, and therapeutic decision-making, comprehensive genomic profiling is necessary for

  4. In vivo genome-wide profiling reveals a tissue-specific role for 5-formylcytosine.

    Science.gov (United States)

    Iurlaro, Mario; McInroy, Gordon R; Burgess, Heather E; Dean, Wendy; Raiber, Eun-Ang; Bachman, Martin; Beraldi, Dario; Balasubramanian, Shankar; Reik, Wolf

    2016-06-29

    Genome-wide methylation of cytosine can be modulated in the presence of TET and thymine DNA glycosylase (TDG) enzymes. TET is able to oxidise 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). TDG can excise the oxidative products 5fC and 5caC, initiating base excision repair. These modified bases are stable and detectable in the genome, suggesting that they could have epigenetic functions in their own right. However, functional investigation of the genome-wide distribution of 5fC has been restricted to cell culture-based systems, while its in vivo profile remains unknown. Here, we describe the first analysis of the in vivo genome-wide profile of 5fC across a range of tissues from both wild-type and Tdg-deficient E11.5 mouse embryos. Changes in the formylation profile of cytosine upon depletion of TDG suggest TET/TDG-mediated active demethylation occurs preferentially at intron-exon boundaries and reveals a major role for TDG in shaping 5fC distribution at CpG islands. Moreover, we find that active enhancer regions specifically exhibit high levels of 5fC, resulting in characteristic tissue-diagnostic patterns, which suggest a role in embryonic development. The tissue-specific distribution of 5fC can be regulated by the collective contribution of TET-mediated oxidation and excision by TDG. The in vivo profile of 5fC during embryonic development resembles that of embryonic stem cells, sharing key features including enrichment of 5fC in enhancer and intragenic regions. Additionally, by investigating mouse embryo 5fC profiles in a tissue-specific manner, we identify targeted enrichment at active enhancers involved in tissue development.

  5. [The application of CRISPR/Cas9 genome editing technology in cancer research].

    Science.gov (United States)

    Wang, Da-yong; Ma, Ning; Hui, Yang; Gao, Xu

    2016-01-01

    The CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein-9 nuclease) genome editing technology has become more and more popular in gene editing because of its simple design and easy operation. Using the CRISPR/Cas9 system, researchers can perform site-directed genome modification at the base level. Moreover, it has been widely used in genome editing in multiple species and related cancer research. In this review, we summarize the application of the CRISPR/Cas9 system in cancer research based on the latest research progresses as well as our understanding of cancer research and genome editing techniques.

  6. Using large-scale genome variation cohorts to decipher the molecular mechanism of cancer.

    Science.gov (United States)

    Habermann, Nina; Mardin, Balca R; Yakneen, Sergei; Korbel, Jan O

    2016-01-01

    Characterizing genomic structural variations (SVs) in the human genome remains challenging, and there is a growing interest to understand somatic SVs occurring in cancer, a disease of the genome. A havoc-causing SV process known as chromothripsis scars the genome when localized chromosome shattering and repair occur in a one-off catastrophe. Recent efforts led to the development of a set of conceptual criteria for the inference of chromothripsis events in cancer genomes and to the development of experimental model systems for studying this striking DNA alteration process in vitro. We discuss these approaches, and additionally touch upon current "Big Data" efforts that employ hybrid cloud computing to enable studies of numerous cancer genomes in an effort to search for commonalities and differences in molecular DNA alteration processes in cancer. Copyright © 2016. Published by Elsevier SAS.

  7. Comparative mRNA and microRNA expression profiling of three genitourinary cancers reveals common hallmarks and cancer-specific molecular events.

    Directory of Open Access Journals (Sweden)

    Xianxin Li

    Full Text Available Genome-wide gene expression profile using deep sequencing technologies can drive the discovery of cancer biomarkers and therapeutic targets. Such efforts are often limited to profiling the expression signature of either mRNA or microRNA (miRNA in a single type of cancer.Here we provided an integrated analysis of the genome-wide mRNA and miRNA expression profiles of three different genitourinary cancers: carcinomas of the bladder, kidney and testis.Our results highlight the general or cancer-specific roles of several genes and miRNAs that may serve as candidate oncogenes or suppressors of tumor development. Further comparative analyses at the systems level revealed that significant aberrations of the cell adhesion process, p53 signaling, calcium signaling, the ECM-receptor and cell cycle pathways, the DNA repair and replication processes and the immune and inflammatory response processes were the common hallmarks of human cancers. Gene sets showing testicular cancer-specific deregulation patterns were mainly implicated in processes related to male reproductive function, and general disruptions of multiple metabolic pathways and processes related to cell migration were the characteristic molecular events for renal and bladder cancer, respectively. Furthermore, we also demonstrated that tumors with the same histological origins and genes with similar functions tended to group together in a clustering analysis. By assessing the correlation between the expression of each miRNA and its targets, we determined that deregulation of 'key' miRNAs may result in the global aberration of one or more pathways or processes as a whole.This systematic analysis deciphered the molecular phenotypes of three genitourinary cancers and investigated their variations at the miRNA level simultaneously. Our results provided a valuable source for future studies and highlighted some promising genes, miRNAs, pathways and processes that may be useful for diagnostic or

  8. Using the Seven Bridges Cancer Genomics Cloud to Access and Analyze Petabytes of Cancer Data.

    Science.gov (United States)

    Malhotra, Raunaq; Seth, Isheeta; Lehnert, Erik; Zhao, Jing; Kaushik, Gaurav; Williams, Elizabeth H; Sethi, Anurag; Davis-Dusenbery, Brandi N

    2017-12-08

    Next-generation sequencing has produced petabytes of data, but accessing and analyzing these data remain challenging. Traditionally, researchers investigating public datasets like The Cancer Genome Atlas (TCGA) would download the data to a high-performance cluster, which could take several weeks even with a highly optimized network connection. The National Cancer Institute (NCI) initiated the Cancer Genomics Cloud Pilots program to provide researchers with the resources to process data with cloud computational resources. We present protocols using one of these Cloud Pilots, the Seven Bridges Cancer Genomics Cloud (CGC), to find and query public datasets, bring your own data to the CGC, analyze data using standard or custom workflows, and benchmark tools for accuracy with interactive analysis features. These protocols demonstrate that the CGC is a data-analysis ecosystem that fully empowers researchers with a variety of areas of expertise and interests to collaborate in the analysis of petabytes of data. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  9. Genomic and proteomic approaches for studying human cancer: Prospects for true patient-tailored therapy

    Directory of Open Access Journals (Sweden)

    Carr Kristen M

    2004-01-01

    Full Text Available Abstract Global gene expression analysis is beginning to move from the laboratories of basic investigators to large-scale clinical trials. The potential of this technology to improve diagnosis and tailored treatment of human disease may soon be realised, now that several comprehensive studies have demonstrated the utility of gene expression profiles for the classification of tumours into distinct, clinically relevant subtypes and the prediction of clinical outcomes. In addition, new data from the emerging proteomics platforms add another layer of molecular information to the study of human disease, as scientists attempt to catalogue a complete inventory of the proteins encoded by the genome and to establish a 'biosignature' profile of human health and disease. As a result, it is anticipated that, together, these technologies will facilitate the comprehensive study of genes, gene products and signalling pathways so that the objective of personalised molecular medicine can be achieved. This paper will review the studies that best demonstrate how genomics and proteomics technologies can be used to improve cancer diagnosis and treatment it will specifically highlight the important work being incorporated into clinical trials.

  10. Copy Number Profiling of MammaPrint™ Genes Reveals Association with the Prognosis of Breast Cancer Patients.

    Science.gov (United States)

    Fatima, Areej; Tariq, Fomaz; Malik, Muhammad Faraz Arshad; Qasim, Muhammad; Haq, Farhan

    2017-09-01

    The MammaPrint™ gene signature, currently used in clinical practice, provides prognostic information regarding the recurrence and potential metastasis in breast cancer patients. However, the prognostic information of the 70 genes included can only be estimated at the RNA expression level. In this study, we investigated whether copy number information of MammaPrint™ genes at the DNA level can be used as a prognostic tool for breast cancer, as copy number variations (CNVs) are major contributors to cancer progression. We performed CNV profiling of MammaPrint™ genes in 59 breast cancer cell lines and 650 breast cancer patients, using publicly available data in The Cancer Genome Atlas (TCGA) database. Statistical analyses including Fisher exact test, chi-square test, and Kaplan-Meier survival analyses were performed. All MammaPrint™ genes showed recurrent CNVs, particularly in TCGA cohort. CNVs of 32 and 36 genes showed significant associations with progesterone receptor and estrogen rector, respectively. No genes showed a significant association with human epidermal growth factor receptor 2 status and lymph node status. In addition, only six genes were associated with tumor stages. RFC4 , HRASLS , NMU , GPR126 , SCUBE2 , C20orf46 , and EBF4 were associated with reduced survival and RASSF7 and ESM1 were associated with reduced disease-free survival. Based on these findings, a concordance of CNV-based genomic rearrangement with expression profiling of these genes and their putative roles in disease tumorigenesis was established. The results suggested that the CNV profiles of the MammaPrint™ genes can be used to predict the prognosis of breast cancer patients. In addition, this approach may lead to the development of new cancer biomarkers at the DNA level.

  11. Genomic Characterization of Primary Invasive Lobular Breast Cancer.

    Science.gov (United States)

    Desmedt, Christine; Zoppoli, Gabriele; Gundem, Gunes; Pruneri, Giancarlo; Larsimont, Denis; Fornili, Marco; Fumagalli, Debora; Brown, David; Rothé, Françoise; Vincent, Delphine; Kheddoumi, Naima; Rouas, Ghizlane; Majjaj, Samira; Brohée, Sylvain; Van Loo, Peter; Maisonneuve, Patrick; Salgado, Roberto; Van Brussel, Thomas; Lambrechts, Diether; Bose, Ron; Metzger, Otto; Galant, Christine; Bertucci, François; Piccart-Gebhart, Martine; Viale, Giuseppe; Biganzoli, Elia; Campbell, Peter J; Sotiriou, Christos

    2016-06-01

    Invasive lobular breast cancer (ILBC) is the second most common histologic subtype after invasive ductal breast cancer (IDBC). Despite clinical and pathologic differences, ILBC is still treated as IDBC. We aimed to identify genomic alterations in ILBC with potential clinical implications. From an initial 630 ILBC primary tumors, we interrogated oncogenic substitutions and insertions and deletions of 360 cancer genes and genome-wide copy number aberrations in 413 and 170 ILBC samples, respectively, and correlated those findings with clinicopathologic and outcome features. Besides the high mutation frequency of CDH1 in 65% of tumors, alterations in one of the three key genes of the phosphatidylinositol 3-kinase pathway, PIK3CA, PTEN, and AKT1, were present in more than one-half of the cases. HER2 and HER3 were mutated in 5.1% and 3.6% of the tumors, with most of these mutations having a proven role in activating the human epidermal growth factor receptor/ERBB pathway. Mutations in FOXA1 and ESR1 copy number gains were detected in 9% and 25% of the samples. All these alterations were more frequent in ILBC than in IDBC. The histologic diversity of ILBC was associated with specific alterations, such as enrichment for HER2 mutations in the mixed, nonclassic, and ESR1 gains in the solid subtype. Survival analyses revealed that chromosome 1q and 11p gains showed independent prognostic value in ILBC and that HER2 and AKT1 mutations were associated with increased risk of early relapse. This study demonstrates that we can now begin to individualize the treatment of ILBC, with HER2, HER3, and AKT1 mutations representing high-prevalence therapeutic targets and FOXA1 mutations and ESR1 gains deserving urgent dedicated clinical investigation, especially in the context of endocrine treatment. © 2016 by American Society of Clinical Oncology.

  12. [Anatomopathological profile of breast cancer in cape bon, Tunisia].

    Science.gov (United States)

    Sahraoui, Ghada; Khanchel, Fatma; Chelbi, Emna

    2017-01-01

    Breast cancer is the most common cancer among tunisian women and worldwide. In Cape Bon, Tunisia, the anatomopathological features of this cancer have not been established in previously published studies. Knowledge about these features is needed for the cultural adaptation of prevention and health care systems in the region. The aim of our study was to determine the pathological profile of breast cancers in the only public health anatomic pathology regional laboratory. We conducted a retrospective descriptive study of 116 patients who were diagnosed with breast cancers in our laboratory over a 5-year period, from July 2010 to July 2015. Our study included 116 patients. The average age was 51 years. The mean histologic tumor size was 31 mm. The initial diagnosis was based on lumpectomy in 83% of the cases. Nonspecific invasive cancer was the most frequent histological type. SBR grade III was most prevalent. Lymphovascular invasion was detected in 33% of cases. Axillary lymph node dissection was performed in 72% of cases. Hormone receptors were positive in 73% of cases. Her2-Neu receptors were overexpressed in 19% of cases. The ki67 was ≥ 14% in 38% of cases. Luminal A was the most common molecular subtype. In Cap Bon region brest cancer is characterized by an early onset, a large tumor size and pejorative histoprognostic factors.

  13. Proteome profiling analysis of human ovarian cancer serum samples

    International Nuclear Information System (INIS)

    Cognetti, F.; Citro, G.

    2009-01-01

    Mass Spectrometry represents a powerful tool in cancer research to discovery of potential bio markers through peak identification from serum profiling. By using high resolution MALDITOF and bioinformatic analysis almost 400 serum sample homogeneously distributed between biopsy confirmed ovarian cancer and high risk serum samples were analyzed. Each serum sample run in duplicate and whole serum sample preparation procedure has been performed by Hamilton Star Robot in order to reduce bias and the replicates with a low Pearson coefficient are removed. After automated reverse phase magnetic beads separation the samples were tested in MALDI-TOF

  14. Genomic distance entrained clustering and regression modelling highlights interacting genomic regions contributing to proliferation in breast cancer.

    Science.gov (United States)

    Dexter, Tim J; Sims, David; Mitsopoulos, Costas; Mackay, Alan; Grigoriadis, Anita; Ahmad, Amar S; Zvelebil, Marketa

    2010-09-08

    Genomic copy number changes and regional alterations in epigenetic states have been linked to grade in breast cancer. However, the relative contribution of specific alterations to the pathology of different breast cancer subtypes remains unclear. The heterogeneity and interplay of genomic and epigenetic variations means that large datasets and statistical data mining methods are required to uncover recurrent patterns that are likely to be important in cancer progression. We employed ridge regression to model the relationship between regional changes in gene expression and proliferation. Regional features were extracted from tumour gene expression data using a novel clustering method, called genomic distance entrained agglomerative (GDEC) clustering. Using gene expression data in this way provides a simple means of integrating the phenotypic effects of both copy number aberrations and alterations in chromatin state. We show that regional metagenes derived from GDEC clustering are representative of recurrent regions of epigenetic regulation or copy number aberrations in breast cancer. Furthermore, detected patterns of genomic alterations are conserved across independent oestrogen receptor positive breast cancer datasets. Sequential competitive metagene selection was used to reveal the relative importance of genomic regions in predicting proliferation rate. The predictive model suggested additive interactions between the most informative regions such as 8p22-12 and 8q13-22. Data-mining of large-scale microarray gene expression datasets can reveal regional clusters of co-ordinate gene expression, independent of cause. By correlating these clusters with tumour proliferation we have identified a number of genomic regions that act together to promote proliferation in ER+ breast cancer. Identification of such regions should enable prioritisation of genomic regions for combinatorial functional studies to pinpoint the key genes and interactions contributing to

  15. Genomic distance entrained clustering and regression modelling highlights interacting genomic regions contributing to proliferation in breast cancer

    Directory of Open Access Journals (Sweden)

    Dexter Tim J

    2010-09-01

    Full Text Available Abstract Background Genomic copy number changes and regional alterations in epigenetic states have been linked to grade in breast cancer. However, the relative contribution of specific alterations to the pathology of different breast cancer subtypes remains unclear. The heterogeneity and interplay of genomic and epigenetic variations means that large datasets and statistical data mining methods are required to uncover recurrent patterns that are likely to be important in cancer progression. Results We employed ridge regression to model the relationship between regional changes in gene expression and proliferation. Regional features were extracted from tumour gene expression data using a novel clustering method, called genomic distance entrained agglomerative (GDEC clustering. Using gene expression data in this way provides a simple means of integrating the phenotypic effects of both copy number aberrations and alterations in chromatin state. We show that regional metagenes derived from GDEC clustering are representative of recurrent regions of epigenetic regulation or copy number aberrations in breast cancer. Furthermore, detected patterns of genomic alterations are conserved across independent oestrogen receptor positive breast cancer datasets. Sequential competitive metagene selection was used to reveal the relative importance of genomic regions in predicting proliferation rate. The predictive model suggested additive interactions between the most informative regions such as 8p22-12 and 8q13-22. Conclusions Data-mining of large-scale microarray gene expression datasets can reveal regional clusters of co-ordinate gene expression, independent of cause. By correlating these clusters with tumour proliferation we have identified a number of genomic regions that act together to promote proliferation in ER+ breast cancer. Identification of such regions should enable prioritisation of genomic regions for combinatorial functional studies to pinpoint

  16. Biosemiotic Entropy of the Genome: Mutations and Epigenetic Imbalances Resulting in Cancer

    Directory of Open Access Journals (Sweden)

    Samuel S. Shepard

    2013-01-01

    Full Text Available Biosemiotic entropy involves the deterioration of biological sign systems. The genome is a coded sign system that is connected to phenotypic outputs through the interpretive functions of the tRNA/ribosome machinery. This symbolic sign system (semiosis at the core of all biology has been termed “biosemiosis”. Layers of biosemiosis and cellular information management are analogous in varying degrees to the semiotics of computer programming, spoken, and written human languages. Biosemiotic entropy — an error or deviation from a healthy state — results from errors in copying functional information (mutations and errors in the appropriate context or quantity of gene expression (epigenetic imbalance. The concept of biosemiotic entropy is a deeply imbedded assumption in the study of cancer biology. Cells have a homeostatic, preprogrammed, ideal or healthy state that is rooted in genomics, strictly orchestrated by epigenetic regulation, and maintained by DNA repair mechanisms. Cancer is an eminent illustration of biosemiotic entropy, in which the corrosion of genetic information via substitutions, deletions, insertions, fusions, and aberrant regulation results in malignant phenotypes. However, little attention has been given to explicitly outlining the paradigm of biosemiotic entropy in the context of cancer. Herein we distill semiotic theory (from the familiar and well understood spheres of human language and computer code to draw analogies useful for understanding the operation of biological semiosis at the genetic level. We propose that the myriad checkpoints, error correcting mechanisms, and immunities are all systems whose primary role is to defend against the constant pressure of biosemiotic entropy, which malignancy must shut down in order to achieve advanced stages. In lieu of the narrower tumor suppressor/oncogene model, characterization of oncogenesis into the biosemiotic framework of sign, index, or object entropy may allow for more

  17. Emerging applications of read profiles towards the functional annotation of the genome

    Directory of Open Access Journals (Sweden)

    Sachin ePundhir

    2015-05-01

    Full Text Available Functional annotation of the genome in various species is important to understand their phenotypic complexity. The road towards functional annotation involves several challenges ranging from experiments on individual molecules to large-scale analysis of high-throughput sequencing (HTS data. HTS data is typically a result of the protocol designed to address specific research questions. The sequencing results in reads, which when mapped to a reference genome often leads to the formation of distinct patterns (read profiles. Interpretation of these read profiles are essential for the analysis in relation to the research question addressed. Several strategies have been employed at varying levels of abstraction ranging from a somewhat ad hoc to a more systematic analysis of read profiles. These include methods which can compare read profiles, e.g. from direct (non-sequence based alignments to classification of patterns into functional groups. In this review, we highlight the emerging applications of read profiles for the annotation of non-coding RNA and cis-regulatory regions such as enhancers and promoters. We also discuss the biological rationale behind their formation.

  18. Non-Gaussian Distributions Affect Identification of Expression Patterns, Functional Annotation, and Prospective Classification in Human Cancer Genomes

    Science.gov (United States)

    Marko, Nicholas F.; Weil, Robert J.

    2012-01-01

    Introduction Gene expression data is often assumed to be normally-distributed, but this assumption has not been tested rigorously. We investigate the distribution of expression data in human cancer genomes and study the implications of deviations from the normal distribution for translational molecular oncology research. Methods We conducted a central moments analysis of five cancer genomes and performed empiric distribution fitting to examine the true distribution of expression data both on the complete-experiment and on the individual-gene levels. We used a variety of parametric and nonparametric methods to test the effects of deviations from normality on gene calling, functional annotation, and prospective molecular classification using a sixth cancer genome. Results Central moments analyses reveal statistically-significant deviations from normality in all of the analyzed cancer genomes. We observe as much as 37% variability in gene calling, 39% variability in functional annotation, and 30% variability in prospective, molecular tumor subclassification associated with this effect. Conclusions Cancer gene expression profiles are not normally-distributed, either on the complete-experiment or on the individual-gene level. Instead, they exhibit complex, heavy-tailed distributions characterized by statistically-significant skewness and kurtosis. The non-Gaussian distribution of this data affects identification of differentially-expressed genes, functional annotation, and prospective molecular classification. These effects may be reduced in some circumstances, although not completely eliminated, by using nonparametric analytics. This analysis highlights two unreliable assumptions of translational cancer gene expression analysis: that “small” departures from normality in the expression data distributions are analytically-insignificant and that “robust” gene-calling algorithms can fully compensate for these effects. PMID:23118863

  19. Transcriptomic and genomic features of invasive lobular breast cancer.

    Science.gov (United States)

    Desmedt, Christine; Zoppoli, Gabriele; Sotiriou, Christos; Salgado, Roberto

    2017-06-01

    Accounting for 10-15% of all breast neoplasms, invasive lobular breast cancer (ILC) is the second most common histological subtype of breast cancer after invasive ductal breast cancer (IDC). Understanding ILC biology, which differs from IDC in terms of clinical presentation, treatment response, relapse timing and patterns, is essential in order to adopt novel, disease-specific management strategies. While the contribution of the histological subtypes to tumour biology has been poorly investigated and acknowledged in the past, recently several major, independent efforts have led to the assembly and molecular characterization of well-annotated ILC case sets. In this review, we provide a critical overview of the literature exploring ILC, through comprehensive and multiomic methods. The first part specifically focuses on ILC transcriptomic features by reviewing the intrinsic molecular subtypes, the application of gene expression scores for the prediction of recurrence, and the identification of gene expression subtypes. The second part describes the main research efforts that lead to the identification of the genomic landscape of ILC, with a special focus to findings that differentiate ILC from IDC and carry potential clinical relevance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Whole Genome Expression Profiling and Signal Pathway Screening of MSCs in Ankylosing Spondylitis

    OpenAIRE

    Li, Yuxi; Wang, Peng; Xie, Zhongyu; Huang, Lin; Yang, Rui; Gao, Liangbin; Tang, Yong; Zhang, Xin; Ye, Jichao; Chen, Keng; Cai, Zhaopeng; Wu, Yanfeng; Shen, Huiyong

    2014-01-01

    The pathogenesis of dysfunctional immunoregulation of mesenchymal stem cells (MSCs) in ankylosing spondylitis (AS) is thought to be a complex process that involves multiple genetic alterations. In this study, MSCs derived from both healthy donors and AS patients were cultured in normal media or media mimicking an inflammatory environment. Whole genome expression profiling analysis of 33,351 genes was performed and differentially expressed genes related to AS were analyzed by GO term analysis ...

  1. Transcript Profiling Distinguishes Complete Treatment Responders With Locally Advanced Cervical Cancer1234

    Science.gov (United States)

    Fernandez-Retana, Jorge; Lasa-Gonsebatt, Federico; Lopez-Urrutia, Eduardo; Coronel-Martínez, Jaime; Cantu De Leon, David; Jacobo-Herrera, Nadia; Peralta-Zaragoza, Oscar; Perez-Montiel, Delia; Reynoso-Noveron, Nancy; Vazquez-Romo, Rafael; Perez-Plasencia, Carlos

    2015-01-01

    Cervical cancer (CC) mortality is a major public health concern since it is the second cause of cancer-related deaths among women. Patients diagnosed with locally advanced CC (LACC) have an important rate of recurrence and treatment failure. Conventional treatment for LACC is based on chemotherapy and radiotherapy; however, up to 40% of patients will not respond to conventional treatment; hence, we searched for a prognostic gene signature able to discriminate patients who do not respond to the conventional treatment employed to treat LACC. Tumor biopsies were profiled with genome-wide high-density expression microarrays. Class prediction was performed in tumor tissues and the resultant gene signature was validated by quantitative reverse transcription–polymerase chain reaction. A 27-predictive gene profile was identified through its association with pathologic response. The 27-gene profile was validated in an independent set of patients and was able to distinguish between patients diagnosed as no response versus complete response. Gene expression analysis revealed two distinct groups of tumors diagnosed as LACC. Our findings could provide a strategy to select patients who would benefit from neoadjuvant radiochemotherapy-based treatment. PMID:25926073

  2. Transcript Profiling Distinguishes Complete Treatment Responders With Locally Advanced Cervical Cancer

    Directory of Open Access Journals (Sweden)

    Jorge Fernandez-Retana

    2015-04-01

    Full Text Available Cervical cancer (CC mortality is a major public health concern since it is the second cause of cancer-related deaths among women. Patients diagnosed with locally advanced CC (LACC have an important rate of recurrence and treatment failure. Conventional treatment for LACC is based on chemotherapy and radiotherapy; however, up to 40% of patients will not respond to conventional treatment; hence, we searched for a prognostic gene signature able to discriminate patients who do not respond to the conventional treatment employed to treat LACC. Tumor biopsies were profiled with genome-wide high-density expression microarrays. Class prediction was performed in tumor tissues and the resultant gene signature was validated by quantitative reverse transcription–polymerase chain reaction. A 27-predictive gene profile was identified through its association with pathologic response. The 27-gene profile was validated in an independent set of patients and was able to distinguish between patients diagnosed as no response versus complete response. Gene expression analysis revealed two distinct groups of tumors diagnosed as LACC. Our findings could provide a strategy to select patients who would benefit from neoadjuvant radiochemotherapy-based treatment.

  3. Meta-analysis of Cancer Gene Profiling Data.

    Science.gov (United States)

    Roy, Janine; Winter, Christof; Schroeder, Michael

    2016-01-01

    The simultaneous measurement of thousands of genes gives the opportunity to personalize and improve cancer therapy. In addition, the integration of meta-data such as protein-protein interaction (PPI) information into the analyses helps in the identification and prioritization of genes from these screens. Here, we describe a computational approach that identifies genes prognostic for outcome by combining gene profiling data from any source with a network of known relationships between genes.

  4. Rapid Identification of Potential Drugs for Diabetic Nephropathy Using Whole-Genome Expression Profiles of Glomeruli

    Directory of Open Access Journals (Sweden)

    Jingsong Shi

    2016-01-01

    Full Text Available Objective. To investigate potential drugs for diabetic nephropathy (DN using whole-genome expression profiles and the Connectivity Map (CMAP. Methodology. Eighteen Chinese Han DN patients and six normal controls were included in this study. Whole-genome expression profiles of microdissected glomeruli were measured using the Affymetrix human U133 plus 2.0 chip. Differentially expressed genes (DEGs between late stage and early stage DN samples and the CMAP database were used to identify potential drugs for DN using bioinformatics methods. Results. (1 A total of 1065 DEGs (FDR 1.5 were found in late stage DN patients compared with early stage DN patients. (2 Piperlongumine, 15d-PGJ2 (15-delta prostaglandin J2, vorinostat, and trichostatin A were predicted to be the most promising potential drugs for DN, acting as NF-κB inhibitors, histone deacetylase inhibitors (HDACIs, PI3K pathway inhibitors, or PPARγ agonists, respectively. Conclusion. Using whole-genome expression profiles and the CMAP database, we rapidly predicted potential DN drugs, and therapeutic potential was confirmed by previously published studies. Animal experiments and clinical trials are needed to confirm both the safety and efficacy of these drugs in the treatment of DN.

  5. Machine Learning Detects Pan-cancer Ras Pathway Activation in The Cancer Genome Atlas

    Directory of Open Access Journals (Sweden)

    Gregory P. Way

    2018-04-01

    Full Text Available Summary: Precision oncology uses genomic evidence to match patients with treatment but often fails to identify all patients who may respond. The transcriptome of these “hidden responders” may reveal responsive molecular states. We describe and evaluate a machine-learning approach to classify aberrant pathway activity in tumors, which may aid in hidden responder identification. The algorithm integrates RNA-seq, copy number, and mutations from 33 different cancer types across The Cancer Genome Atlas (TCGA PanCanAtlas project to predict aberrant molecular states in tumors. Applied to the Ras pathway, the method detects Ras activation across cancer types and identifies phenocopying variants. The model, trained on human tumors, can predict response to MEK inhibitors in wild-type Ras cell lines. We also present data that suggest that multiple hits in the Ras pathway confer increased Ras activity. The transcriptome is underused in precision oncology and, combined with machine learning, can aid in the identification of hidden responders. : Way et al. develop a machine-learning approach using PanCanAtlas data to detect Ras activation in cancer. Integrating mutation, copy number, and expression data, the authors show that their method detects Ras-activating variants in tumors and sensitivity to MEK inhibitors in cell lines. Keywords: Gene expression, machine learning, Ras, NF1, KRAS, NRAS, HRAS, pan-cancer, TCGA, drug sensitivity

  6. MicroRNA Expression Profile in Penile Cancer Revealed by Next-Generation Small RNA Sequencing.

    Directory of Open Access Journals (Sweden)

    Li Zhang

    Full Text Available Penile cancer (PeCa is a relatively rare tumor entity but possesses higher morbidity and mortality rates especially in developing countries. To date, the concrete pathogenic signaling pathways and core machineries involved in tumorigenesis and progression of PeCa remain to be elucidated. Several studies suggested miRNAs, which modulate gene expression at posttranscriptional level, were frequently mis-regulated and aberrantly expressed in human cancers. However, the miRNA profile in human PeCa has not been reported before. In this present study, the miRNA profile was obtained from 10 fresh penile cancerous tissues and matched adjacent non-cancerous tissues via next-generation sequencing. As a result, a total of 751 and 806 annotated miRNAs were identified in normal and cancerous penile tissues, respectively. Among which, 56 miRNAs with significantly different expression levels between paired tissues were identified. Subsequently, several annotated miRNAs were selected randomly and validated using quantitative real-time PCR. Compared with the previous publications regarding to the altered miRNAs expression in various cancers and especially genitourinary (prostate, bladder, kidney, testis cancers, the most majority of deregulated miRNAs showed the similar expression pattern in penile cancer. Moreover, the bioinformatics analyses suggested that the putative target genes of differentially expressed miRNAs between cancerous and matched normal penile tissues were tightly associated with cell junction, proliferation, growth as well as genomic instability and so on, by modulating Wnt, MAPK, p53, PI3K-Akt, Notch and TGF-β signaling pathways, which were all well-established to participate in cancer initiation and progression. Our work presents a global view of the differentially expressed miRNAs and potentially regulatory networks of their target genes for clarifying the pathogenic transformation of normal penis to PeCa, which research resource also

  7. Concurrent Whole-Genome Haplotyping and Copy-Number Profiling of Single Cells

    Science.gov (United States)

    Zamani Esteki, Masoud; Dimitriadou, Eftychia; Mateiu, Ligia; Melotte, Cindy; Van der Aa, Niels; Kumar, Parveen; Das, Rakhi; Theunis, Koen; Cheng, Jiqiu; Legius, Eric; Moreau, Yves; Debrock, Sophie; D’Hooghe, Thomas; Verdyck, Pieter; De Rycke, Martine; Sermon, Karen; Vermeesch, Joris R.; Voet, Thierry

    2015-01-01

    Methods for haplotyping and DNA copy-number typing of single cells are paramount for studying genomic heterogeneity and enabling genetic diagnosis. Before analyzing the DNA of a single cell by microarray or next-generation sequencing, a whole-genome amplification (WGA) process is required, but it substantially distorts the frequency and composition of the cell’s alleles. As a consequence, haplotyping methods suffer from error-prone discrete SNP genotypes (AA, AB, BB) and DNA copy-number profiling remains difficult because true DNA copy-number aberrations have to be discriminated from WGA artifacts. Here, we developed a single-cell genome analysis method that reconstructs genome-wide haplotype architectures as well as the copy-number and segregational origin of those haplotypes by employing phased parental genotypes and deciphering WGA-distorted SNP B-allele fractions via a process we coin haplarithmisis. We demonstrate that the method can be applied as a generic method for preimplantation genetic diagnosis on single cells biopsied from human embryos, enabling diagnosis of disease alleles genome wide as well as numerical and structural chromosomal anomalies. Moreover, meiotic segregation errors can be distinguished from mitotic ones. PMID:25983246

  8. Evaluative Profiling of Arsenic Sensing and Regulatory Systems in the Human Microbiome Project Genomes

    Directory of Open Access Journals (Sweden)

    Raphael D. Isokpehi

    2014-01-01

    Full Text Available The influence of environmental chemicals including arsenic, a type 1 carcinogen, on the composition and function of the human-associated microbiota is of significance in human health and disease. We have developed a suite of bioinformatics and visual analytics methods to evaluate the availability (presence or absence and abundance of functional annotations in a microbial genome for seven Pfam protein families: As(III-responsive transcriptional repressor (ArsR, anion-transporting ATPase (ArsA, arsenical pump membrane protein (ArsB, arsenate reductase (ArsC, arsenical resistance operon transacting repressor (ArsD, water/glycerol transport protein (aquaporins, and universal stress protein (USP. These genes encode function for sensing and/or regulating arsenic content in the bacterial cell. The evaluative profiling strategy was applied to 3,274 genomes from which 62 genomes from 18 genera were identified to contain genes for the seven protein families. Our list included 12 genomes in the Human Microbiome Project (HMP from the following genera: Citrobacter, Escherichia, Lactobacillus, Providencia, Rhodococcus , and Staphylococcus. Gene neighborhood analysis of the arsenic resistance operon in the genome of Bacteroides thetaiotaomicron VPI-5482, a human gut symbiont, revealed the adjacent arrangement of genes for arsenite binding/transfer (ArsD and cytochrome c biosynthesis (DsbD_2. Visual analytics facilitated evaluation of protein annotations in 367 genomes in the phylum Bacteroidetes identified multiple genomes in which genes for ArsD and DsbD_2 were adjacently arranged. Cytochrome c , produced by a posttranslational process, consists of heme-containing proteins important for cellular energy production and signaling. Further research is desired to elucidate arsenic resistance and arsenic-mediated cellular energy production in the Bacteroidetes.

  9. Mutation of mitochondria genome: trigger of somatic cell transforming to cancer cell

    Directory of Open Access Journals (Sweden)

    Jianping Du

    2010-02-01

    Full Text Available Abstract Nearly 80 years ago, scientist Otto Warburg originated a hypothesis that the cause of cancer is primarily a defect in energy metabolism. Following studies showed that mitochondria impact carcinogenesis to remodel somatic cells to cancer cells through modifying the genome, through maintenance the tumorigenic phenotype, and through apoptosis. And the Endosymbiotic Theory explains the origin of mitochondria and eukaryotes, on the other hands, the mitochondria also can fall back. Compared to chromosome genomes, the mitochondria genomes were not restricted by introns so they were mutated(fall back easy. The result is that mitochondria lose function and internal environment of somatic cell become acid and evoked chromosome genomes to mutate, in the end somatic cells become cancer cells. It is the trigger of somatic cell transforming to cancer cell that mitochondria genome happen mutation and lose function.

  10. Whole Genome Profiling provides a robust framework for physical mapping and sequencing in the highly complex and repetitive wheat genome

    Directory of Open Access Journals (Sweden)

    Philippe Romain

    2012-01-01

    Full Text Available Abstract Background Sequencing projects using a clone-by-clone approach require the availability of a robust physical map. The SNaPshot technology, based on pair-wise comparisons of restriction fragments sizes, has been used recently to build the first physical map of a wheat chromosome and to complete the maize physical map. However, restriction fragments sizes shared randomly between two non-overlapping BACs often lead to chimerical contigs and mis-assembled BACs in such large and repetitive genomes. Whole Genome Profiling (WGP™ was developed recently as a new sequence-based physical mapping technology and has the potential to limit this problem. Results A subset of the wheat 3B chromosome BAC library covering 230 Mb was used to establish a WGP physical map and to compare it to a map obtained with the SNaPshot technology. We first adapted the WGP-based assembly methodology to cope with the complexity of the wheat genome. Then, the results showed that the WGP map covers the same length than the SNaPshot map but with 30% less contigs and, more importantly with 3.5 times less mis-assembled BACs. Finally, we evaluated the benefit of integrating WGP tags in different sequence assemblies obtained after Roche/454 sequencing of BAC pools. We showed that while WGP tag integration improves assemblies performed with unpaired reads and with paired-end reads at low coverage, it does not significantly improve sequence assemblies performed at high coverage (25x with paired-end reads. Conclusions Our results demonstrate that, with a suitable assembly methodology, WGP builds more robust physical maps than the SNaPshot technology in wheat and that WGP can be adapted to any genome. Moreover, WGP tag integration in sequence assemblies improves low quality assembly. However, to achieve a high quality draft sequence assembly, a sequencing depth of 25x paired-end reads is required, at which point WGP tag integration does not provide additional scaffolding value

  11. Colorectal cancers with microsatellite instability display unique miRNA profiles

    Science.gov (United States)

    Balaguer, Francesc; Moreira, Leticia; Lozano, Jose Juan; Link, Alexander; Ramirez, Georgina; Shen, Yan; Cuatrecasas, Miriam; Arnold, Mildred; Meltzer, Stephen J.; Syngal, Sapna; Stoffel, Elena; Jover, Rodrigo; Llor, Xavier; Castells, Antoni; Boland, C. Richard; Gironella, Meritxell; Goel, Ajay

    2011-01-01

    Purpose microRNAs (miRNAs) are small non-coding transcripts that play an important role in carcinogenesis. miRNA expression profiles have been shown to discriminate between different types of cancers. The aim of this study was to analyze the global miRNA signatures in various groups of colorectal cancers (CRCs) based on the presence of microsatellite instability (MSI). Experimental Design We analyzed genome-wide miRNA expression profiles in 54 CRCs (22 with Lynch syndrome, 13 sporadic MSI due to MLH1 methylation, 19 without MSI [MSS]) and 20 normal colonic tissues by miRNA microarrays. Using an independent set of MSI samples (13 with Lynch syndrome and 20 with sporadic MSI) we developed a miRNA-based predictor to differentiate both types of MSI by quantitative reverse transcriptase PCR. Results We found that the expression of a subset of 9 miRNAs significantly discriminates between tumor and normal colonic mucosa (overall error rate (OER) =0.04). More importantly, Lynch syndrome tumors displayed a unique miRNA profile compared with sporadic MSI tumors; miR-622, miR-1238 and miR-192* were the most differentially expressed miRNAs between these two groups. We developed a miRNA-based predictor able to differentiate the type of MSI in an independent set of samples. Conclusions CRC tissues show distinct miRNA expression profiles compared to normal colonic mucosa. The discovery of unique miRNA expression profiles that can successfully discriminate between Lynch syndrome, sporadic MSI and sporadic MSS CRCs provides novel insights into the role of miRNAs in colorectal carcinogenesis which may contribute to the diagnosis, prognosis and treatment of this disease. PMID:21844009

  12. Whole-genome sequencing identifies genomic heterogeneity at a nucleotide and chromosomal level in bladder cancer

    Science.gov (United States)

    Morrison, Carl D.; Liu, Pengyuan; Woloszynska-Read, Anna; Zhang, Jianmin; Luo, Wei; Qin, Maochun; Bshara, Wiam; Conroy, Jeffrey M.; Sabatini, Linda; Vedell, Peter; Xiong, Donghai; Liu, Song; Wang, Jianmin; Shen, He; Li, Yinwei; Omilian, Angela R.; Hill, Annette; Head, Karen; Guru, Khurshid; Kunnev, Dimiter; Leach, Robert; Eng, Kevin H.; Darlak, Christopher; Hoeflich, Christopher; Veeranki, Srividya; Glenn, Sean; You, Ming; Pruitt, Steven C.; Johnson, Candace S.; Trump, Donald L.

    2014-01-01

    Using complete genome analysis, we sequenced five bladder tumors accrued from patients with muscle-invasive transitional cell carcinoma of the urinary bladder (TCC-UB) and identified a spectrum of genomic aberrations. In three tumors, complex genotype changes were noted. All three had tumor protein p53 mutations and a relatively large number of single-nucleotide variants (SNVs; average of 11.2 per megabase), structural variants (SVs; average of 46), or both. This group was best characterized by chromothripsis and the presence of subclonal populations of neoplastic cells or intratumoral mutational heterogeneity. Here, we provide evidence that the process of chromothripsis in TCC-UB is mediated by nonhomologous end-joining using kilobase, rather than megabase, fragments of DNA, which we refer to as “stitchers,” to repair this process. We postulate that a potential unifying theme among tumors with the more complex genotype group is a defective replication–licensing complex. A second group (two bladder tumors) had no chromothripsis, and a simpler genotype, WT tumor protein p53, had relatively few SNVs (average of 5.9 per megabase) and only a single SV. There was no evidence of a subclonal population of neoplastic cells. In this group, we used a preclinical model of bladder carcinoma cell lines to study a unique SV (translocation and amplification) of the gene glutamate receptor ionotropic N-methyl D-aspertate as a potential new therapeutic target in bladder cancer. PMID:24469795

  13. Genomic Copy Number Dictates a Gene-Independent Cell Response to CRISPR/Cas9 Targeting | Office of Cancer Genomics

    Science.gov (United States)

    The CRISPR/Cas9 system enables genome editing and somatic cell genetic screens in mammalian cells. We performed genome-scale loss-of-function screens in 33 cancer cell lines to identify genes essential for proliferation/survival and found a strong correlation between increased gene copy number and decreased cell viability after genome editing. Within regions of copy-number gain, CRISPR/Cas9 targeting of both expressed and unexpressed genes, as well as intergenic loci, led to significantly decreased cell proliferation through induction of a G2 cell-cycle arrest.

  14. Genome-wide prediction of cancer driver genes based on SNP and cancer SNV data.

    Science.gov (United States)

    He, Quanze; He, Quanyuan; Liu, Xiaohui; Wei, Youheng; Shen, Suqin; Hu, Xiaohui; Li, Qiao; Peng, Xiangwen; Wang, Lin; Yu, Long

    2014-01-01

    Identifying cancer driver genes and exploring their functions are essential and the most urgent need in basic cancer research. Developing efficient methods to differentiate between driver and passenger somatic mutations revealed from large-scale cancer genome sequencing data is critical to cancer driver gene discovery. Here, we compared distinct features of SNP with SNV data in detail and found that the weighted ratio of SNV to SNP (termed as WVPR) is an excellent indicator for cancer driver genes. The power of WVPR was validated by accurate predictions of known drivers. We ranked most of human genes by WVPR and did functional analyses on the list. The results demonstrate that driver genes are usually highly enriched in chromatin organization related genes/pathways. And some protein complexes, such as histone acetyltransferase, histone methyltransferase, telomerase, centrosome, sin3 and U12-type spliceosomal complexes, are hot spots of driver mutations. Furthermore, this study identified many new potential driver genes (e.g. NTRK3 and ZIC4) and pathways including oxidative phosphorylation pathway, which were not deemed by previous methods. Taken together, our study not only developed a method to identify cancer driver genes/pathways but also provided new insights into molecular mechanisms of cancer development.

  15. Genome-wide association study identifies new prostate cancer susceptibility loci

    DEFF Research Database (Denmark)

    Schumacher, Fredrick R.; Berndt, Sonja I.; Siddiq, Afshan

    2011-01-01

    Prostate cancer (PrCa) is the most common non-skin cancer diagnosed among males in developed countries and the second leading cause of cancer mortality, yet little is known regarding its etiology and factors that influence clinical outcome. Genome-wide association studies (GWAS) of PrCa have iden...

  16. Genome-wide association analysis identifies three new breast cancer susceptibility loci

    DEFF Research Database (Denmark)

    Ghoussaini, Maya; Fletcher, Olivia; Michailidou, Kyriaki

    2012-01-01

    Breast cancer is the most common cancer among women. To date, 22 common breast cancer susceptibility loci have been identified accounting for ∼8% of the heritability of the disease. We attempted to replicate 72 promising associations from two independent genome-wide association studies (GWAS) in ...

  17. Genetic risk profiles for cancer susceptibility and therapy response.

    Science.gov (United States)

    Bartsch, Helmut; Dally, Heike; Popanda, Odilia; Risch, Angela; Schmezer, Peter

    2007-01-01

    Cells in the body are permanently attacked by DNA-reactive species, both from intracellular and environmental sources. Inherited and acquired deficiencies in host defense mechanisms against DNA damage (metabolic and DNA repair enzymes) can modify cancer susceptibility as well as therapy response. Genetic profiles should help to identify high-risk individuals who subsequently can be enrolled in preventive measures or treated by tailored therapy regimens. Some of our attempts to define such risk profiles are presented. Cancer susceptibility: Single nucleotide polymorphisms (SNPs) in metabolic and repair genes were investigated in a hospital-based lung cancer case-control study. When evaluating the risk associated with different genotypes for N-acetyltransferases (Wikman et al. 2001) and glutathione-S-transferases (Risch et al. 2001), it is mandatory to distinguish between the three major histological subtypes of lung tumors. A promoter polymorphism of the myeloperoxidase gene MPO was shown to decrease lung cancer susceptibility mainly in small cell lung cancer (SCLC) (Dally et al. 2002). The CYP3A4*1B allele was also linked to an increased SCLC risk and in smoking women increased the risk of lung cancer eightfold (Dally et al. 2003b). Polymorphisms in DNA repair genes were shown to modulate lung cancer risk in smokers, and reduced DNA repair capacity elevated the disease risk (Rajaee-Behbahani et al. 2001). Investigations of several DNA repair gene variants revealed that lung cancer risk was only moderately affected by a single variant but was enhanced up to approximately threefold by specific risk allele combinations (Popanda et al. 2004). Therapy response: Inter-individual differences in therapy response are consistently observed with cancer chemotherapeutic agents. Initial results from ongoing studies showed that certain polymorphisms in drug transporter genes (ABCB1) differentially affect response outcome in histological subgroups of lung cancer. Stronger

  18. Molecular Profiling of Patients With Advanced Colorectal Cancer: Princess Margaret Cancer Centre Experience.

    Science.gov (United States)

    Chiu, Joanne W; Krzyzanowska, Monika K; Serra, Stefano; Knox, Jennifer J; Dhani, Neesha C; Mackay, Helen; Hedley, David; Moore, Malcolm; Liu, Geoffrey; Burkes, Ronald L; Brezden-Masley, Christine; Roehrl, Michael H; Craddock, Kenneth J; Tsao, Ming-Sound; Zhang, Tong; Yu, Celeste; Kamel-Reid, Suzanne; Siu, Lillian L; Bedard, Philippe L; Chen, Eric X

    2018-03-01

    Molecular aberrations in KRAS, NRAS, BRAF, and PIK3CA have been well-described in advanced colorectal cancer. The incidences of other mutations are less known. We report results of molecular profiling of advanced colorectal cancer in an academic cancer center. Patients with advanced colorectal were enrolled in an institution-wide molecular profiling program. Profiling was performed on formalin-fixed paraffin embedded archival tissues using a customized MassArray panel (23 genes, 279 mutations) or the Illumina MiSeq TruSeq Cancer Panel (48 genes, 212 amplicons, ≥ 500× coverage) in a Clinical Laboratory Improvement Amendments-certified laboratory. PTEN was determined by immunohistochemistry. From March 2012 to April 2014, 245 patients were enrolled. At least one mutation was found in 54% (97/178) and 91% (61/67) of patients using MassArray or MiSeq platforms, respectively (P < .01). Of all patients, KRAS G12/13 mutation was identified in 39%, and non-G12/13 KRAS, BRAF, or NRAS mutations were present in 9%, 6%, and 4%, respectively. Other common mutations included TP53 (68.7%), APC (41.8%), and PIK3CA (13.5%). Co-mutation with KRAS, NRAS, or BRAF was found in 75% of patients with PIK3CA mutation. Of 106 patients with known PTEN immunohistochemistry status, 16% were negative. A higher average number of mutations were observed in right versus left colorectal cancer (P < .01), with 13 of 14 BRAF mutations located in right colon cancer. Mutations are common in advanced colorectal cancer. Right colon cancers harbor more genetic aberrations than left colon or rectal cancers. These aberrations may contribute to differential outcomes to anti-epidermal growth factor receptor therapy among patients with right colon, left colon, or rectal cancers. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Ribosome profiling: a Hi-Def monitor for protein synthesis at the genome-wide scale

    Science.gov (United States)

    Michel, Audrey M; Baranov, Pavel V

    2013-01-01

    Ribosome profiling or ribo-seq is a new technique that provides genome-wide information on protein synthesis (GWIPS) in vivo. It is based on the deep sequencing of ribosome protected mRNA fragments allowing the measurement of ribosome density along all RNA molecules present in the cell. At the same time, the high resolution of this technique allows detailed analysis of ribosome density on individual RNAs. Since its invention, the ribosome profiling technique has been utilized in a range of studies in both prokaryotic and eukaryotic organisms. Several studies have adapted and refined the original ribosome profiling protocol for studying specific aspects of translation. Ribosome profiling of initiating ribosomes has been used to map sites of translation initiation. These studies revealed the surprisingly complex organization of translation initiation sites in eukaryotes. Multiple initiation sites are responsible for the generation of N-terminally extended and truncated isoforms of known proteins as well as for the translation of numerous open reading frames (ORFs), upstream of protein coding ORFs. Ribosome profiling of elongating ribosomes has been used for measuring differential gene expression at the level of translation, the identification of novel protein coding genes and ribosome pausing. It has also provided data for developing quantitative models of translation. Although only a dozen or so ribosome profiling datasets have been published so far, they have already dramatically changed our understanding of translational control and have led to new hypotheses regarding the origin of protein coding genes. © 2013 John Wiley & Sons, Ltd. PMID:23696005

  20. Genome instability in blood cells of a BRCA1+ breast cancer family

    International Nuclear Information System (INIS)

    Xiao, Fengxia; Lynch, Henry; Wang, San Ming; Kim, Yeong C; Snyder, Carrie; Wen, Hongxiu; Chen, Pei Xian; Luo, Jiangtao; Becirovic, Dina; Downs, Bradley; Cowan, Kenneth H

    2014-01-01

    BRCA1 plays an essential role in maintaining genome stability. Inherited BRCA1 germline mutation (BRCA1+) is a determined genetic predisposition leading to high risk of breast cancer. While BRCA1+ induces breast cancer by causing genome instability, most of the knowledge is known about somatic genome instability in breast cancer cells but not germline genome instability. Using the exome-sequencing method, we analyzed the genomes of blood cells in a typical BRCA1+ breast cancer family with an exon 13-duplicated founder mutation, including six breast cancer-affected and two breast cancer unaffected members. We identified 23 deleterious mutations in the breast cancer-affected family members, which are absent in the unaffected members. Multiple mutations damaged functionally important and breast cancer-related genes, including transcriptional factor BPTF and FOXP1, ubiquitin ligase CUL4B, phosphorylase kinase PHKG2, and nuclear receptor activator SRA1. Analysis of the mutations between the mothers and daughters shows that most mutations were germline mutation inherited from the ancestor(s) while only a few were somatic mutation generated de novo. Our study indicates that BRCA1+ can cause genome instability with both germline and somatic mutations in non-breast cells

  1. The national cancer institute (NCI) and cancer biology in a 'post genome world'

    International Nuclear Information System (INIS)

    Klausner, Richard D.

    1996-01-01

    The National Cancer Institute (NCI) exists to reduce the burden of all cancers through research and discovery. Extensive restructuring of the NCI over the past year has been aimed at assuring that the institution functions in all ways to promote opportunities for discovery in the laboratory, in the clinic, and in the community. To do this well requires the difficult and almost paradoxical problem of planning for scientific discovery which, in turn is based on the freedom to pursue the unanticipated. The intellectual and structural landscape of science is changing and it places new challenges, new demands and new opportunities for facilitating discovery. The nature of cancer as a disease of genomic instability and of accumulated genetic change, coupled with a possibility of the development of new technologies for reading, utilizing, interpreting and manipulating the genome of single cells, provides unprecedented opportunities for a new type of high through-put biology that will change the nature of discovery, cancer detection, diagnosis, prognosis, therapeutic decision-making and therapeutic discovery. To capture these new opportunities will require attention to be paid to integrate the development of technology and new scientific discoveries with the ability to apply advances rapidly and efficiently through clinical trials

  2. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes.

    Science.gov (United States)

    Biankin, Andrew V; Waddell, Nicola; Kassahn, Karin S; Gingras, Marie-Claude; Muthuswamy, Lakshmi B; Johns, Amber L; Miller, David K; Wilson, Peter J; Patch, Ann-Marie; Wu, Jianmin; Chang, David K; Cowley, Mark J; Gardiner, Brooke B; Song, Sarah; Harliwong, Ivon; Idrisoglu, Senel; Nourse, Craig; Nourbakhsh, Ehsan; Manning, Suzanne; Wani, Shivangi; Gongora, Milena; Pajic, Marina; Scarlett, Christopher J; Gill, Anthony J; Pinho, Andreia V; Rooman, Ilse; Anderson, Matthew; Holmes, Oliver; Leonard, Conrad; Taylor, Darrin; Wood, Scott; Xu, Qinying; Nones, Katia; Fink, J Lynn; Christ, Angelika; Bruxner, Tim; Cloonan, Nicole; Kolle, Gabriel; Newell, Felicity; Pinese, Mark; Mead, R Scott; Humphris, Jeremy L; Kaplan, Warren; Jones, Marc D; Colvin, Emily K; Nagrial, Adnan M; Humphrey, Emily S; Chou, Angela; Chin, Venessa T; Chantrill, Lorraine A; Mawson, Amanda; Samra, Jaswinder S; Kench, James G; Lovell, Jessica A; Daly, Roger J; Merrett, Neil D; Toon, Christopher; Epari, Krishna; Nguyen, Nam Q; Barbour, Andrew; Zeps, Nikolajs; Kakkar, Nipun; Zhao, Fengmei; Wu, Yuan Qing; Wang, Min; Muzny, Donna M; Fisher, William E; Brunicardi, F Charles; Hodges, Sally E; Reid, Jeffrey G; Drummond, Jennifer; Chang, Kyle; Han, Yi; Lewis, Lora R; Dinh, Huyen; Buhay, Christian J; Beck, Timothy; Timms, Lee; Sam, Michelle; Begley, Kimberly; Brown, Andrew; Pai, Deepa; Panchal, Ami; Buchner, Nicholas; De Borja, Richard; Denroche, Robert E; Yung, Christina K; Serra, Stefano; Onetto, Nicole; Mukhopadhyay, Debabrata; Tsao, Ming-Sound; Shaw, Patricia A; Petersen, Gloria M; Gallinger, Steven; Hruban, Ralph H; Maitra, Anirban; Iacobuzio-Donahue, Christine A; Schulick, Richard D; Wolfgang, Christopher L; Morgan, Richard A; Lawlor, Rita T; Capelli, Paola; Corbo, Vincenzo; Scardoni, Maria; Tortora, Giampaolo; Tempero, Margaret A; Mann, Karen M; Jenkins, Nancy A; Perez-Mancera, Pedro A; Adams, David J; Largaespada, David A; Wessels, Lodewyk F A; Rust, Alistair G; Stein, Lincoln D; Tuveson, David A; Copeland, Neal G; Musgrove, Elizabeth A; Scarpa, Aldo; Eshleman, James R; Hudson, Thomas J; Sutherland, Robert L; Wheeler, David A; Pearson, John V; McPherson, John D; Gibbs, Richard A; Grimmond, Sean M

    2012-11-15

    Pancreatic cancer is a highly lethal malignancy with few effective therapies. We performed exome sequencing and copy number analysis to define genomic aberrations in a prospectively accrued clinical cohort (n = 142) of early (stage I and II) sporadic pancreatic ductal adenocarcinoma. Detailed analysis of 99 informative tumours identified substantial heterogeneity with 2,016 non-silent mutations and 1,628 copy-number variations. We define 16 significantly mutated genes, reaffirming known mutations (KRAS, TP53, CDKN2A, SMAD4, MLL3, TGFBR2, ARID1A and SF3B1), and uncover novel mutated genes including additional genes involved in chromatin modification (EPC1 and ARID2), DNA damage repair (ATM) and other mechanisms (ZIM2, MAP2K4, NALCN, SLC16A4 and MAGEA6). Integrative analysis with in vitro functional data and animal models provided supportive evidence for potential roles for these genetic aberrations in carcinogenesis. Pathway-based analysis of recurrently mutated genes recapitulated clustering in core signalling pathways in pancreatic ductal adenocarcinoma, and identified new mutated genes in each pathway. We also identified frequent and diverse somatic aberrations in genes described traditionally as embryonic regulators of axon guidance, particularly SLIT/ROBO signalling, which was also evident in murine Sleeping Beauty transposon-mediated somatic mutagenesis models of pancreatic cancer, providing further supportive evidence for the potential involvement of axon guidance genes in pancreatic carcinogenesis.

  3. Serum Metabolomic Profiles for Human Pancreatic Cancer Discrimination

    Directory of Open Access Journals (Sweden)

    Takao Itoi

    2017-04-01

    Full Text Available This study evaluated the clinical use of serum metabolomics to discriminate malignant cancers including pancreatic cancer (PC from malignant diseases, such as biliary tract cancer (BTC, intraductal papillary mucinous carcinoma (IPMC, and various benign pancreaticobiliary diseases. Capillary electrophoresismass spectrometry was used to analyze charged metabolites. We repeatedly analyzed serum samples (n = 41 of different storage durations to identify metabolites showing high quantitative reproducibility, and subsequently analyzed all samples (n = 140. Overall, 189 metabolites were quantified and 66 metabolites had a 20% coefficient of variation and, of these, 24 metabolites showed significant differences among control, benign, and malignant groups (p < 0.05; Steel–Dwass test. Four multiple logistic regression models (MLR were developed and one MLR model clearly discriminated all disease patients from healthy controls with an area under receiver operating characteristic curve (AUC of 0.970 (95% confidential interval (CI, 0.946–0.994, p < 0.0001. Another model to discriminate PC from BTC and IPMC yielded AUC = 0.831 (95% CI, 0.650–1.01, p = 0.0020 with higher accuracy compared with tumor markers including carcinoembryonic antigen (CEA, carbohydrate antigen 19-9 (CA19-9, pancreatic cancer-associated antigen (DUPAN2 and s-pancreas-1 antigen (SPAN1. Changes in metabolomic profiles might be used to screen for malignant cancers as well as to differentiate between PC and other malignant diseases.

  4. Detection of bladder cancer using proteomic profiling of urine sediments.

    Directory of Open Access Journals (Sweden)

    Tadeusz Majewski

    Full Text Available We used protein expression profiles to develop a classification rule for the detection and prognostic assessment of bladder cancer in voided urine samples. Using the Ciphergen PBS II ProteinChip Reader, we analyzed the protein profiles of 18 pairs of samples of bladder tumor and adjacent urothelium tissue, a training set of 85 voided urine samples (32 controls and 53 bladder cancer, and a blinded testing set of 68 voided urine samples (33 controls and 35 bladder cancer. Using t-tests, we identified 473 peaks showing significant differential expression across different categories of paired bladder tumor and adjacent urothelial samples compared to normal urothelium. Then the intensities of those 473 peaks were examined in a training set of voided urine samples. Using this approach, we identified 41 protein peaks that were differentially expressed in both sets of samples. The expression pattern of the 41 protein peaks was used to classify the voided urine samples as malignant or benign. This approach yielded a sensitivity and specificity of 59% and 90%, respectively, on the training set and 80% and 100%, respectively, on the testing set. The proteomic classification rule performed with similar accuracy in low- and high-grade bladder carcinomas. In addition, we used hierarchical clustering with all 473 protein peaks on 65 benign voided urine samples, 88 samples from patients with clinically evident bladder cancer, and 127 samples from patients with a history of bladder cancer to classify the samples into Cluster A or B. The tumors in Cluster B were characterized by clinically aggressive behavior with significantly shorter metastasis-free and disease-specific survival.

  5. Differential gene expression profiling in blood from patients with digestive system cancers.

    Science.gov (United States)

    Honda, Masao; Sakai, Yoshio; Yamashita, Taro; Yamashita, Tatsuya; Sakai, Akito; Mizukoshi, Eishiro; Nakamoto, Yasunari; Tatsumi, Isamu; Miyazaki, Yoshitaka; Tanno, Hiroshi; Kaneko, Shuichi

    2010-09-10

    To develop a non-invasive and sensitive diagnostic test for cancer using peripheral blood, we evaluated gene expression profiling of blood obtained from patients with cancer of the digestive system and normal subjects. The expression profiles of blood-derived total RNA obtained from 39 cancer patients (11 colon cancer, 14 gastric cancer, and 14 pancreatic cancer) was clearly different from those obtained from 15 normal subjects. By comparing the gene expression profiles of cancer patients and normal subjects, 25 cancer-differentiating genes (p3) were identified and an "expression index" deduced from the expression values of these genes differentiated the validation cohort (11 colon cancer, 8 gastric cancer, 18 pancreatic cancer, and 15 normal subjects) into cancer patients and normal subjects with 100% (37/37) and 87% (13/15) accuracy, respectively. Although, the expression profiles were not clearly different between the cancer patients, some characteristic genes were identified according to the stage and species of the cancer. Interestingly, many immune-related genes such as antigen presenting, cell cycle accelerating, and apoptosis- and stress-inducing genes were up-regulated in cancer patients, reflecting the active turnover of immune regulatory cells in cancer patients. These results showed the potential relevance of peripheral blood gene expression profiling for the development of new diagnostic examination tools for cancer patients. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. A profile of skin cancer prevention media coverage in 2009.

    Science.gov (United States)

    Cokkinides, Vilma; Kirkland, Deborah; Andrews, Kimberly; Sullivan, Kristen; Lichtenfeld, J Leonard

    2012-10-01

    Little is known about the coverage of skin cancer prevention messages in news print media. To perform a content analysis of mass-media articles from newspaper and magazines pertaining to skin cancer prevention in 4 specific months (January, May, July, and October) in 2009 and assess the extent of coverage of skin cancer prevention messages. We conducted a content analysis of 144 articles related to skin cancer prevention extracted from strategic media scans of selected months in 2009. We sought to provide the frequency of mass-media content categorized by theme and focus related to ultraviolet radiation (UVR) protection and risk-reducing behaviors. The audience for the vast majority (78%) of the articles was the general public. Among the assessed articles, more were published in May (49%) and July (35%) than in the remaining other months. The two most frequent themes focused on 'protection of the skin' (32%) and on 'skin cancer prevention' (23%) via risk reduction behavioral practices. Analysis of message content regarding UVR reduction practices showed that many mentioned 'use of sunscreen' (65% of messages) with the least-often mentioned behaviors being 'seek shade' (6.3%) and 'do not burn' (1.4%). In addition, a quarter of the articles lacked any content mentioning recommended UVR reduction behaviors. This study was limited to the narrow scope of articles published in 2009 and for selected months. This profile of mass-media content regarding skin cancer prevention revealed gaps in coverage of UVR reduction behaviors with possible room for improvement. Strategies for improving and comprehensiveness of coverage of recommended skin cancer prevention behaviors in the media are discussed. Copyright © 2011 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.

  7. Genomic DNA Methylation Analyses Reveal the Distinct Profiles in Castor Bean Seeds with Persistent Endosperms1

    Science.gov (United States)

    Yang, Tianquan; Dong, Xue; Li, De-Zhu

    2016-01-01

    Investigations of genomic DNA methylation in seeds have been restricted to a few model plants. The endosperm genomic DNA hypomethylation has been identified in angiosperm, but it is difficult to dissect the mechanism of how this hypomethylation is established and maintained because endosperm is ephemeral and disappears with seed development in most dicots. Castor bean (Ricinus communis), unlike Arabidopsis (Arabidopsis thaliana), endosperm is persistent throughout seed development, providing an excellent model in which to dissect the mechanism of endosperm genomic hypomethylation in dicots. We characterized the DNA methylation-related genes encoding DNA methyltransferases and demethylases and analyzed their expression profiles in different tissues. We examined genomic methylation including CG, CHG, and CHH contexts in endosperm and embryo tissues using bisulfite sequencing and revealed that the CHH methylation extent in endosperm and embryo was, unexpectedly, substantially higher than in previously studied plants, irrespective of the CHH percentage in their genomes. In particular, we found that the endosperm exhibited a global reduction in CG and CHG methylation extents relative to the embryo, markedly switching global gene expression. However, CHH methylation occurring in endosperm did not exhibit a significant reduction. Combining with the expression of 24-nucleotide small interfering RNAs (siRNAs) mapped within transposable element (TE) regions and genes involved in the RNA-directed DNA methylation pathway, we demonstrate that the 24-nucleotide siRNAs played a critical role in maintaining CHH methylation and repressing the activation of TEs in persistent endosperm development. This study discovered a novel genomic DNA methylation pattern and proposes the potential mechanism occurring in dicot seeds with persistent endosperm. PMID:27208275

  8. Whole-genome phylogeny of Escherichia coli/Shigella group by feature frequency profiles (FFPs)

    Science.gov (United States)

    Sims, Gregory E.; Kim, Sung-Hou

    2011-01-01

    A whole-genome phylogeny of the Escherichia coli/Shigella group was constructed by using the feature frequency profile (FFP) method. This alignment-free approach uses the frequencies of l-mer features of whole genomes to infer phylogenic distances. We present two phylogenies that accentuate different aspects of E. coli/Shigella genomic evolution: (i) one based on the compositions of all possible features of length l = 24 (∼8.4 million features), which are likely to reveal the phenetic grouping and relationship among the organisms and (ii) the other based on the compositions of core features with low frequency and low variability (∼0.56 million features), which account for ∼69% of all commonly shared features among 38 taxa examined and are likely to have genome-wide lineal evolutionary signal. Shigella appears as a single clade when all possible features are used without filtering of noncore features. However, results using core features show that Shigella consists of at least two distantly related subclades, implying that the subclades evolved into a single clade because of a high degree of convergence influenced by mobile genetic elements and niche adaptation. In both FFP trees, the basal group of the E. coli/Shigella phylogeny is the B2 phylogroup, which contains primarily uropathogenic strains, suggesting that the E. coli/Shigella ancestor was likely a facultative or opportunistic pathogen. The extant commensal strains diverged relatively late and appear to be the result of reductive evolution of genomes. We also identify clade distinguishing features and their associated genomic regions within each phylogroup. Such features may provide useful information for understanding evolution of the groups and for quick diagnostic identification of each phylogroup. PMID:21536867

  9. Diagnosis of Pancreatic Cancer Using Serum Proteomic Profiling

    Directory of Open Access Journals (Sweden)

    Sudeepa Bhattacharyya

    2004-09-01

    Full Text Available In the United States, mortality rates from pancreatic cancer (PCa have not changed significantly over the past 50 years. This is due, in part, to the lack of early detection methods for this particularly aggressive form of cancer. The objective of this study was to use highthroughput protein profiling technology to identify biomarkers in the serum proteome for the early detection of resectable PCa. Using surface-enhanced laser desorption/ionization mass spectrometry, protein profiles were generated from sera of 49 PCa patients and 54 unaffected individuals after fractionation on an anion exchange resin. The samples were randomly divided into a training set (69 samples and test set (34 samples, and two multivariate analysis procedures, classification and regression tree and logistic regression, were used to develop classification models from these spectral data that could distinguish PCa from control serum samples. In the test set, both models correctly classified all of the PCa patient serum samples (100% sensitivity. Using the decision tree algorithm, a specificity of 93.5% was obtained, whereas the logistic regression model produced a specificity of 100%. These results suggest that high-throughput proteomics profiling has the capacity to provide new biomarkers for the early detection and diagnosis of PCa.

  10. Ectopic Expression of Testis Germ Cell Proteins in Cancer and Its Potential Role in Genomic Instability

    Directory of Open Access Journals (Sweden)

    Aaraby Yoheswaran Nielsen

    2016-06-01

    Full Text Available Genomic instability is a hallmark of human cancer and an enabling factor for the genetic alterations that drive cancer development. The processes involved in genomic instability resemble those of meiosis, where genetic material is interchanged between homologous chromosomes. In most types of human cancer, epigenetic changes, including hypomethylation of gene promoters, lead to the ectopic expression of a large number of proteins normally restricted to the germ cells of the testis. Due to the similarities between meiosis and genomic instability, it has been proposed that activation of meiotic programs may drive genomic instability in cancer cells. Some germ cell proteins with ectopic expression in cancer cells indeed seem to promote genomic instability, while others reduce polyploidy and maintain mitotic fidelity. Furthermore, oncogenic germ cell proteins may indirectly contribute to genomic instability through induction of replication stress, similar to classic oncogenes. Thus, current evidence suggests that testis germ cell proteins are implicated in cancer development by regulating genomic instability during tumorigenesis, and these proteins therefore represent promising targets for novel therapeutic strategies.

  11. Genetic basis of kidney cancer: Role of genomics for the development of disease-based therapeutics

    Science.gov (United States)

    Linehan, W. Marston

    2012-01-01

    Kidney cancer is not a single disease; it is made up of a number of different types of cancer, including clear cell, type 1 papillary, type 2 papillary, chromophobe, TFE3, TFEB, and oncocytoma. Sporadic, nonfamilial kidney cancer includes clear cell kidney cancer (75%), type 1 papillary kidney cancer (10%), papillary type 2 kidney cancer (including collecting duct and medullary RCC) (5%), the microphalmia-associated transcription (MiT) family translocation kidney cancers (TFE3, TFEB, and MITF), chromophobe kidney cancer (5%), and oncocytoma (5%). Each has a distinct histology, a different clinical course, responds differently to therapy, and is caused by mutation in a different gene. Genomic studies identifying the genes for kidney cancer, including the VHL, MET, FLCN, fumarate hydratase, succinate dehydrogenase, TSC1, TSC2, and TFE3 genes, have significantly altered the ways in which patients with kidney cancer are managed. While seven FDA-approved agents that target the VHL pathway have been approved for the treatment of patients with advanced kidney cancer, further genomic studies, such as whole genome sequencing, gene expression patterns, and gene copy number, will be required to gain a complete understanding of the genetic basis of kidney cancer and of the kidney cancer gene pathways and, most importantly, to provide the foundation for the development of effective forms of therapy for patients with this disease. PMID:23038766

  12. MiRNA Profiles in Lymphoblastoid Cell Lines of Finnish Prostate Cancer Families.

    Directory of Open Access Journals (Sweden)

    Daniel Fischer

    Full Text Available Heritable factors are evidently involved in prostate cancer (PrCa carcinogenesis, but currently, genetic markers are not routinely used in screening or diagnostics of the disease. More precise information is needed for making treatment decisions to distinguish aggressive cases from indolent disease, for which heritable factors could be a useful tool. The genetic makeup of PrCa has only recently begun to be unravelled through large-scale genome-wide association studies (GWAS. The thus far identified Single Nucleotide Polymorphisms (SNPs explain, however, only a fraction of familial clustering. Moreover, the known risk SNPs are not associated with the clinical outcome of the disease, such as aggressive or metastasised disease, and therefore cannot be used to predict the prognosis. Annotating the SNPs with deep clinical data together with miRNA expression profiles can improve the understanding of the underlying mechanisms of different phenotypes of prostate cancer.In this study microRNA (miRNA profiles were studied as potential biomarkers to predict the disease outcome. The study subjects were from Finnish high risk prostate cancer families. To identify potential biomarkers we combined a novel non-parametrical test with an importance measure provided from a Random Forest classifier. This combination delivered a set of nine miRNAs that was able to separate cases from controls. The detected miRNA expression profiles could predict the development of the disease years before the actual PrCa diagnosis or detect the existence of other cancers in the studied individuals. Furthermore, using an expression Quantitative Trait Loci (eQTL analysis, regulatory SNPs for miRNA miR-483-3p that were also directly associated with PrCa were found.Based on our findings, we suggest that blood-based miRNA expression profiling can be used in the diagnosis and maybe even prognosis of the disease. In the future, miRNA profiling could possibly be used in targeted screening

  13. Gene Expression Profiling of Peripheral Blood From Kidney Transplant Recipients for the Early Detection of Digestive System Cancer.

    Science.gov (United States)

    Kusaka, M; Okamoto, M; Takenaka, M; Sasaki, H; Fukami, N; Kataoka, K; Ito, T; Kenmochi, T; Hoshinaga, K; Shiroki, R

    2017-06-01

    Kidney transplant recipients are at increased risk of developing cancer in comparison with the general population. To effectively manage post-transplantation malignancies, it is essential to proactively monitor patients. A long-term intensive screening program was associated with a reduced incidence of cancer after transplantation. This study evaluated the usefulness of the gene expression profiling of peripheral blood samples obtained from kidney transplant patients and adopted a screening test for detecting cancer of the digestive system (gastric, colon, pancreas, and biliary tract). Nineteen patients were included in this study and a total of 53 gene expression screening tests were performed. The gene expression profiles of blood-delivered total RNA and whole genome human gene expression profiles were obtained. We investigated the expression levels of 2665 genes associated with digestive cancers and counted the number of genes in which expression was altered. A hierarchical clustering analysis was also performed. The final prediction of the cancer possibility was determined according to an algorithm. The number of genes in which expression was altered was significantly increased in the kidney transplant recipients in comparison with the general population (1091 ± 63 vs 823 ± 94; P = .0024). The number of genes with altered expression decreased after the induction of mechanistic target of rapamycin (mTOR) inhibitor (1484 ± 227 vs 883 ± 154; P = .0439). No cases of possible digestive cancer were detected in this study period. The gene expression profiling of peripheral blood samples may be a useful and noninvasive diagnostic tool that allows for the early detection of cancer of the digestive system. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Systematic Identification and Assessment of Therapeutic Targets for Breast Cancer Based on Genome-Wide RNA Interference Transcriptomes

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2017-02-01

    Full Text Available With accumulating public omics data, great efforts have been made to characterize the genetic heterogeneity of breast cancer. However, identifying novel targets and selecting the best from the sizeable lists of candidate targets is still a key challenge for targeted therapy, largely owing to the lack of economical, efficient and systematic discovery and assessment to prioritize potential therapeutic targets. Here, we describe an approach that combines the computational evaluation and objective, multifaceted assessment to systematically identify and prioritize targets for biological validation and therapeutic exploration. We first establish the reference gene expression profiles from breast cancer cell line MCF7 upon genome-wide RNA interference (RNAi of a total of 3689 genes, and the breast cancer query signatures using RNA-seq data generated from tissue samples of clinical breast cancer patients in the Cancer Genome Atlas (TCGA. Based on gene set enrichment analysis, we identified a set of 510 genes that when knocked down could significantly reverse the transcriptome of breast cancer state. We then perform multifaceted assessment to analyze the gene set to prioritize potential targets for gene therapy. We also propose drug repurposing opportunities and identify potentially druggable proteins that have been poorly explored with regard to the discovery of small-molecule modulators. Finally, we obtained a small list of candidate therapeutic targets for four major breast cancer subtypes, i.e., luminal A, luminal B, HER2+ and triple negative breast cancer. This RNAi transcriptome-based approach can be a helpful paradigm for relevant researches to identify and prioritize candidate targets for experimental validation.

  15. Non-small cell lung cancer is characterized by dramatic changes in phospholipid profiles.

    Science.gov (United States)

    Marien, Eyra; Meister, Michael; Muley, Thomas; Fieuws, Steffen; Bordel, Sergio; Derua, Rita; Spraggins, Jeffrey; Van de Plas, Raf; Dehairs, Jonas; Wouters, Jens; Bagadi, Muralidhararao; Dienemann, Hendrik; Thomas, Michael; Schnabel, Philipp A; Caprioli, Richard M; Waelkens, Etienne; Swinnen, Johannes V

    2015-10-01

    Non-small cell lung cancer (NSCLC) is the leading cause of cancer death globally. To develop better diagnostics and more effective treatments, research in the past decades has focused on identification of molecular changes in the genome, transcriptome, proteome, and more recently also the metabolome. Phospholipids, which nevertheless play a central role in cell functioning, remain poorly explored. Here, using a mass spectrometry (MS)-based phospholipidomics approach, we profiled 179 phospholipid species in malignant and matched non-malignant lung tissue of 162 NSCLC patients (73 in a discovery cohort and 89 in a validation cohort). We identified 91 phospholipid species that were differentially expressed in cancer versus non-malignant tissues. Most prominent changes included a decrease in sphingomyelins (SMs) and an increase in specific phosphatidylinositols (PIs). Also a decrease in multiple phosphatidylserines (PSs) was observed, along with an increase in several phosphatidylethanolamine (PE) and phosphatidylcholine (PC) species, particularly those with 40 or 42 carbon atoms in both fatty acyl chains together. 2D-imaging MS of the most differentially expressed phospholipids confirmed their differential abundance in cancer cells. We identified lipid markers that can discriminate tumor versus normal tissue and different NSCLC subtypes with an AUC (area under the ROC curve) of 0.999 and 0.885, respectively. In conclusion, using both shotgun and 2D-imaging lipidomics analysis, we uncovered a hitherto unrecognized alteration in phospholipid profiles in NSCLC. These changes may have important biological implications and may have significant potential for biomarker development. © 2015 The Authors. Published by Wiley Periodicals, Inc. on behalf of UICC.

  16. Genome-wide DNA methylation profiling by modified reduced representation bisulfite sequencing in Brassica rapa suggests that epigenetic modifications play a key role in polyploid genome evolution

    OpenAIRE

    Chen, Xun; Ge, Xianhong; Wang, Jing; Tan, Chen; King, Graham J.; Liu, Kede

    2015-01-01

    Brassica rapa includes some of the most important vegetables worldwide as well as oilseed crops. The complete annotated genome sequence confirmed its paleohexaploid origins and provides opportunities for exploring the detailed process of polyploid genome evolution. We generated a genome-wide DNA methylation profile for B. rapa using a modified reduced representation bisulfite sequencing (RRBS) method. This sampling represented 2.24% of all CG loci (2.5 × 105), 2.16% CHG (2.7 × 105), and 1.68%...

  17. Genomic profiling in Down syndrome acute lymphoblastic leukemia identifies histone gene deletions associated with altered methylation profiles

    Science.gov (United States)

    Loudin, Michael G.; Wang, Jinhua; Leung, Hon-Chiu Eastwood; Gurusiddappa, Sivashankarappa; Meyer, Julia; Condos, Gregory; Morrison, Debra; Tsimelzon, Anna; Devidas, Meenakshi; Heerema, Nyla A.; Carroll, Andrew J.; Plon, Sharon E.; Hunger, Stephen P.; Basso, Giuseppe; Pession, Andrea; Bhojwani, Deepa; Carroll, William L.; Rabin, Karen R.

    2014-01-01

    Patients with Down syndrome (DS) and acute lymphoblastic leukemia (ALL) have distinct clinical and biological features. Whereas most DS-ALL cases lack the sentinel cytogenetic lesions that guide risk assignment in childhood ALL, JAK2 mutations and CRLF2 overexpression are highly enriched. To further characterize the unique biology of DS-ALL, we performed genome-wide profiling of 58 DS-ALL and 68 non-Down syndrome (NDS) ALL cases by DNA copy number, loss of heterozygosity, gene expression, and methylation analyses. We report a novel deletion within the 6p22 histone gene cluster as significantly more frequent in DS-ALL, occurring in 11 DS (22%) and only two NDS cases (3.1%) (Fisher’s exact p = 0.002). Homozygous deletions yielded significantly lower histone expression levels, and were associated with higher methylation levels, distinct spatial localization of methylated promoters, and enrichment of highly methylated genes for specific pathways and transcription factor binding motifs. Gene expression profiling demonstrated heterogeneity of DS-ALL cases overall, with supervised analysis defining a 45-transcript signature associated with CRLF2 overexpression. Further characterization of pathways associated with histone deletions may identify opportunities for novel targeted interventions. PMID:21647151

  18. Genomic and non-genomic effects of glucocorticoids: implications for breast cancer.

    Science.gov (United States)

    Mitre-Aguilar, Irma B; Cabrera-Quintero, Alberto J; Zentella-Dehesa, Alejandro

    2015-01-01

    Glucocorticoids (GC) are essential steroid hormones for human life. They regulate a series of important processes by binding with three glucocorticoid receptors (GR) and activating genomic and non-genomic pathways. Activated cytoplasmic GR can directly bind DNA and transactivate or transrepress specific genes. Additionally, it can interact with other transcription factors to affect gene expression indirectly. The two membrane GR can interact with mitogen-activated protein (MAP) kinases or activate cAMP and Ca(2+)-dependent pathways, respectively. Glucocorticoids have been widely used as co-treatment of patients with breast cancer (BC) due to reduction of chemotherapy-induced side effects such as nausea, lack of appetite, and inflammation. However, GC may exert a direct effect on tumor response to chemotherapy. In vitro, GC inhibits chemotherapy, radiation and cytokine-induced apoptosis by upregulating antiapoptotic genes and detoxifying proteins. They also upregulate the proto-oncogene c-fms, tumor suppressor gene Nm23, several members of the epidermal growth factor (EGF) signaling pathway and the estrogen sulfotransferase signaling pathway, thus indirectly inhibiting estrogen receptor activation. They inhibit the proangiogenic gene (vascular endothelial growth factor (VEGF); Therefore, they could play a role in reducing angiogenesis. Interestingly, the phosphorylation status of ser-211 in the GR is dependent on the expression of the BRCA1 gene, a tumor suppressor gene that is mutated in the majority of patients with triple negative BC. Some clinical randomized trials have also attempted to address the effect of GC on patients with BC. Thus, in this review we summarize GC mechanisms of action and their participation in several facets of BC.

  19. Genomic and non-genomic effects of glucocorticoids: implications for breast cancer

    Science.gov (United States)

    Mitre-Aguilar, Irma B; Cabrera-Quintero, Alberto J; Zentella-Dehesa, Alejandro

    2015-01-01

    Glucocorticoids (GC) are essential steroid hormones for human life. They regulate a series of important processes by binding with three glucocorticoid receptors (GR) and activating genomic and non-genomic pathways. Activated cytoplasmic GR can directly bind DNA and transactivate or transrepress specific genes. Additionally, it can interact with other transcription factors to affect gene expression indirectly. The two membrane GR can interact with mitogen-activated protein (MAP) kinases or activate cAMP and Ca2+-dependent pathways, respectively. Glucocorticoids have been widely used as co-treatment of patients with breast cancer (BC) due to reduction of chemotherapy-induced side effects such as nausea, lack of appetite, and inflammation. However, GC may exert a direct effect on tumor response to chemotherapy. In vitro, GC inhibits chemotherapy, radiation and cytokine-induced apoptosis by upregulating antiapoptotic genes and detoxifying proteins. They also upregulate the proto-oncogene c-fms, tumor suppressor gene Nm23, several members of the epidermal growth factor (EGF) signaling pathway and the estrogen sulfotransferase signaling pathway, thus indirectly inhibiting estrogen receptor activation. They inhibit the proangiogenic gene (vascular endothelial growth factor (VEGF); Therefore, they could play a role in reducing angiogenesis. Interestingly, the phosphorylation status of ser-211 in the GR is dependent on the expression of the BRCA1 gene, a tumor suppressor gene that is mutated in the majority of patients with triple negative BC. Some clinical randomized trials have also attempted to address the effect of GC on patients with BC. Thus, in this review we summarize GC mechanisms of action and their participation in several facets of BC. PMID:25755688

  20. Molecular Basis of Genomic Instability in Breast Cancer: Regulation of the Centrosome Duplication Cycle

    National Research Council Canada - National Science Library

    Du, Jian

    2003-01-01

    Alteration in the expression and activity of the centrosomal kinase in breast cancers, Aurora-A/STK15, affect genomic stability, disrupt the fidelity of centrsome duplication, and induce cellular transformation...

  1. Genome sequencing of Ewing sarcoma patients reveals genetic predisposition | Center for Cancer Research

    Science.gov (United States)

    The largest and most comprehensive genomic analysis of individuals with Ewing sarcoma performed to date reveals that some patients are genetically predisposed to developing the cancer.  Learn more...

  2. Machine Learning Detects Pan-cancer Ras Pathway Activation in The Cancer Genome Atlas.

    Science.gov (United States)

    Way, Gregory P; Sanchez-Vega, Francisco; La, Konnor; Armenia, Joshua; Chatila, Walid K; Luna, Augustin; Sander, Chris; Cherniack, Andrew D; Mina, Marco; Ciriello, Giovanni; Schultz, Nikolaus; Sanchez, Yolanda; Greene, Casey S

    2018-04-03

    Precision oncology uses genomic evidence to match patients with treatment but often fails to identify all patients who may respond. The transcriptome of these "hidden responders" may reveal responsive molecular states. We describe and evaluate a machine-learning approach to classify aberrant pathway activity in tumors, which may aid in hidden responder identification. The algorithm integrates RNA-seq, copy number, and mutations from 33 different cancer types across The Cancer Genome Atlas (TCGA) PanCanAtlas project to predict aberrant molecular states in tumors. Applied to the Ras pathway, the method detects Ras activation across cancer types and identifies phenocopying variants. The model, trained on human tumors, can predict response to MEK inhibitors in wild-type Ras cell lines. We also present data that suggest that multiple hits in the Ras pathway confer increased Ras activity. The transcriptome is underused in precision oncology and, combined with machine learning, can aid in the identification of hidden responders. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  3. Multi-OMICs and Genome Editing Perspectives on Liver Cancer Signaling Networks

    Directory of Open Access Journals (Sweden)

    Shengda Lin

    2016-01-01

    Full Text Available The advent of the human genome sequence and the resulting ~20,000 genes provide a crucial framework for a transition from traditional biology to an integrative “OMICs” arena (Lander et al., 2001; Venter et al., 2001; Kitano, 2002. This brings in a revolution for cancer research, which now enters a big data era. In the past decade, with the facilitation by next-generation sequencing, there have been a huge number of large-scale sequencing efforts, such as The Cancer Genome Atlas (TCGA, the HapMap, and the 1000 genomes project. As a result, a deluge of genomic information becomes available from patients stricken by a variety of cancer types. The list of cancer-associated genes is ever expanding. New discoveries are made on how frequent and highly penetrant mutations, such as those in the telomerase reverse transcriptase (TERT and TP53, function in cancer initiation, progression, and metastasis. Most genes with relatively frequent but weakly penetrant cancer mutations still remain to be characterized. In addition, genes that harbor rare but highly penetrant cancer-associated mutations continue to emerge. Here, we review recent advances related to cancer genomics, proteomics, and systems biology and suggest new perspectives in targeted therapy and precision medicine.

  4. BRCAness profile of sporadic ovarian cancer predicts disease recurrence.

    Directory of Open Access Journals (Sweden)

    Weiya Z Wysham

    Full Text Available The consequences of defective homologous recombination (HR are not understood in sporadic ovarian cancer, nor have the potential role of HR proteins other than BRCA1 and BRCA2 been clearly defined. However, it is clear that defects in HR and other DNA repair pathways are important to the effectiveness of current therapies. We hypothesize that a subset of sporadic ovarian carcinomas may harbor anomalies in HR pathways, and that a BRCAness profile (defects in HR or other DNA repair pathways could influence response rate and survival after treatment with platinum drugs. Clinical availability of a BRCAness profile in patients and/or tumors should improve treatment outcomes.To define the BRCAness profile of sporadic ovarian carcinoma and determine whether BRCA1, PARP, FANCD2, PTEN, H2AX, ATM, and P53 protein expression correlates with response to treatment, disease recurrence, and recurrence-free survival.Protein microarray analysis of ovarian cancer tissue was used to determine protein expression levels for defined DNA repair proteins. Correlation with clinical and pathologic parameters in 186 patients with advanced stage III-IV and grade 3 ovarian cancer was analyzed using Chi square, Kaplan-Meier method, Cox proportional hazard model, and cumulative incidence function.High PARP, FANCD2 and BRCA1 expressions were significantly correlated with each other; however, elevated p53 expression was associated only with high PARP and FANCD2. Of all patients, 9% recurred within the first year. Among early recurring patients, 41% had high levels of PARP, FANCD2 and P53, compared to 19.5% of patients without early recurrence (p = 0.04. Women with high levels of PARP, FANCD2 and/or P53 had first year cumulative cancer incidence of 17% compared with 7% for the other groups (P = 0.03.Patients with concomitantly high levels of PARP, FANCD2 and P53 protein expression are at increased risk of early ovarian cancer recurrence and platinum resistance.

  5. Emerging applications of read profiles towards the functional annotation of the genome

    DEFF Research Database (Denmark)

    Pundhir, Sachin; Poirazi, Panayiota; Gorodkin, Jan

    2015-01-01

    Functional annotation of the genome is important to understand the phenotypic complexity of various species. The road toward functional annotation involves several challenges ranging from experiments on individual molecules to large-scale analysis of high-throughput sequencing (HTS) data. HTS dat...... of patterns into functional groups. In this review, we highlight the emerging applications of read profiles for the annotation of non-coding RNA and cis-regulatory elements (CREs) such as enhancers and promoters. We also discuss the biological rationale behind their formation....

  6. The Genomic Landscape and Pharmacogenomic Interactions of Clock Genes in Cancer Chronotherapy.

    Science.gov (United States)

    Ye, Youqiong; Xiang, Yu; Ozguc, Fatma Muge; Kim, Yoonjin; Liu, Chun-Jie; Park, Peter K; Hu, Qingsong; Diao, Lixia; Lou, Yanyan; Lin, Chunru; Guo, An-Yuan; Zhou, Bingying; Wang, Li; Chen, Zheng; Takahashi, Joseph S; Mills, Gordon B; Yoo, Seung-Hee; Han, Leng

    2018-03-28

    Cancer chronotherapy, treatment at specific times during circadian rhythms, endeavors to optimize anti-tumor effects and to lower toxicity. However, comprehensive characterization of clock genes and their clinical relevance in cancer is lacking. We systematically characterized the alterations of clock genes across 32 cancer types by analyzing data from The Cancer Genome Atlas, Cancer Therapeutics Response Portal, and The Genomics of Drug Sensitivity in Cancer databases. Expression alterations of clock genes are associated with key oncogenic pathways, patient survival, tumor stage, and subtype in multiple cancer types. Correlations between expression of clock genes and of other genes in the genome were altered in cancerous versus normal tissues. We identified interactions between clock genes and clinically actionable genes by analyzing co-expression, protein-protein interaction, and chromatin immunoprecipitation sequencing data and also found that clock gene expression is correlated to anti-cancer drug sensitivity in cancer cell lines. Our study provides a comprehensive analysis of the circadian clock across different cancer types and highlights potential clinical utility of cancer chronotherapy. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Array-based comparative genomic hybridization for the differential diagnosis of renal cell cancer.

    NARCIS (Netherlands)

    Wilhelm, M.; Veltman, J.A.; Olshen, A.B.; Jain, A.N.; Moore, D.H.; Presti Jr, J.C.; Kovacs, G.; Waldman, F.M.

    2002-01-01

    Array-based comparative genomic hybridization (CGH) uses multiple genomic clones arrayed on a slide to detect relative copy number of tumor DNA sequences. Application of array CGH to tumor specimens makes genetic diagnosis of cancers possible and may help to differentiate relevant subsets of tumors,

  8. Cross-cancer genome-wide analysis of lung, ovary, breast, prostate, and colorectal cancer reveals novel pleiotropic associations

    NARCIS (Netherlands)

    Fehringer, G. (Gordon); P. Kraft (Peter); P.D.P. Pharoah (Paul); R. Eeles (Rosalind); Chatterjee, N. (Nilanjan); F.R. Schumacher (Fredrick R); J.M. Schildkraut (Joellen); S. Lindstrom (Stephen); P. Brennan (Paul); H. Bickeböller (Heike); R. Houlston (Richard); M.T. Landi (Maria Teresa); N.E. Caporaso (Neil); Risch, A. (Angela); A.A. Al Olama (Ali Amin); S.I. Berndt (Sonja); Giovannucci, E.L. (Edward L.); H. Grönberg (Henrik); Z. Kote-Jarai; Ma, J. (Jing); K.R. Muir (K.); M.J. Stampfer (Meir J.); Stevens, V.L. (Victoria L.); F. Wiklund (Fredrik); W.C. Willett (Walter C.); E.L. Goode (Ellen); Permuth, J.B. (Jennifer B.); H. Risch (Harvey); Reid, B.M. (Brett M.); Bezieau, S. (Stephane); H. Brenner (Hermann); Chan, A.T. (Andrew T.); J. Chang-Claude (Jenny); T.J. Hudson (Thomas); Kocarnik, J.K. (Jonathan K.); P. Newcomb (Polly); Schoen, R.E. (Robert E.); Slattery, M.L. (Martha L.); White, E. (Emily); M.A. Adank (Muriel); H. Ahsan (Habibul); K. Aittomäki (Kristiina); Baglietto, L. (Laura); Blomquist, C. (Carl); F. Canzian (Federico); K. Czene (Kamila); I. dos Santos Silva (Isabel); Eliassen, A.H. (A. Heather); J.D. Figueroa (Jonine); D. Flesch-Janys (Dieter); O. Fletcher (Olivia); M. García-Closas (Montserrat); M.M. Gaudet (Mia); Johnson, N. (Nichola); P. Hall (Per); A. Hazra (Aditi); R. Hein (Rebecca); Hofman, A. (Albert); J.L. Hopper (John); A. Irwanto (Astrid); M. Johansson (Mattias); R. Kaaks (Rudolf); M.G. Kibriya (Muhammad); P. Lichtner (Peter); J. Liu (Jianjun); E. Lund (Eiliv); Makalic, E. (Enes); A. Meindl (Alfons); B. Müller-Myhsok (B.); Muranen, T.A. (Taru A.); H. Nevanlinna (Heli); P.H.M. Peeters; J. Peto (Julian); R. Prentice (Ross); N. Rahman (Nazneen); M.-J. Sanchez (Maria-Jose); D.F. Schmidt (Daniel); R.K. Schmutzler (Rita); M.C. Southey (Melissa); Tamimi, R. (Rulla); S.P.L. Travis (Simon); C. Turnbull (Clare); Uitterlinden, A.G. (Andre G.); Z. Wang (Zhaoming); A.S. Whittemore (Alice); X.R. Yang (Xiaohong); W. Zheng (Wei); D. Buchanan (Daniel); G. Casey (Graham); G. Conti (Giario); C.K. Edlund (Christopher); S. Gallinger (Steve); R. Haile (Robert); M. Jenkins (Mark); Marchand, L. (Loïcle); Li, L. (Li); N.M. Lindor (Noralane); Schmit, S.L. (Stephanie L.); S.N. Thibodeau (Stephen); M.O. Woods (Michael); T. Rafnar (Thorunn); J. Gudmundsson (Julius); S.N. Stacey (Simon); Stefansson, K. (Kari); P. Sulem (Patrick); Chen, Y.A. (Y. Ann); J.P. Tyrer (Jonathan); Christiani, D.C. (David C.); Wei, Y. (Yongyue); H. Shen (Hongbing); Z. Hu (Zhibin); X.-O. Shu (Xiao-Ou); Shiraishi, K. (Kouya); A. Takahashi (Atsushi); Y. Bossé (Yohan); M. Obeidat; D.C. Nickle (David C.); W. Timens (Wim); M. Freedman (Matthew); Li, Q. (Qiyuan); D. Seminara (Daniela); S.J. Chanock (Stephen); Gong, J. (Jian); U. Peters (Ulrike); S.B. Gruber (Stephen); Amos, C.I. (Christopher I.); T.A. Sellers (Thomas A.); D.F. Easton (Douglas F.); D. Hunter (David); C.A. Haiman (Christopher A.); B.E. Henderson (Brian); R.J. Hung (Rayjean)

    2016-01-01

    textabstractIdentifying genetic variants with pleiotropic associations can uncover common pathways influencing multiple cancers. We took a two-stage approach to conduct genome-wide association studies for lung, ovary, breast, prostate, and colorectal cancer from the GAME-ON/GECCO Network (61,851

  9. Cross-cancer genome-wide analysis of lung, ovary, breast, prostate, and colorectal cancer reveals novel pleiotropic associations

    NARCIS (Netherlands)

    Fehringer, Gordon; Kraft, Peter; Pharoah, Paul D.; Eeles, Rosalind A.; Chatterjee, Nilanjan; Schumacher, Fredrick R.; Schildkraut, Joellen M.; Lindström, Sara; Brennan, Paul; Bickeböller, Heike; Houlston, Richard S.; Landi, Maria Teresa; Caporaso, Neil; Risch, Angela; Al Olama, Ali Amin; Berndt, Sonja I.; Giovannucci, Edward L.; Grönberg, Henrik; Kote-Jarai, Zsofia; Ma, Jing; Muir, Kenneth; Stampfer, Meir J.; Stevens, Victoria L.; Wiklund, Fredrik; Willett, Walter C.; Goode, Ellen L.; Permuth, Jennifer B.; Risch, Harvey A.; Reid, Brett M.; Bezieau, Stephane; Brenner, Hermann; Chan, Andrew T.; Chang-Claude, Jenny; Hudson, Thomas J.; Kocarnik, Jonathan K.; Newcomb, Polly A.; Schoen, Robert E.; Slattery, Martha L.; White, Emily; Adank, Muriel A.; Ahsan, Habibul; Aittomäki, Kristiina; Baglietto, Laura; Blomquist, Carl; Canzian, Federico; Czene, Kamila; Dos-Santos-silva, Isabel; Eliassen, A. Heather; Figueroa, Jonine D.; Flesch-Janys, Dieter; Fletcher, Olivia; Garcia-Closas, Montserrat; Gaudet, Mia M.; Johnson, Nichola; Hall, Per; Hazra, Aditi; Hein, Rebecca; Hofman, Albert; Hopper, John L.; Irwanto, Astrid; Johansson, Mattias; Kaaks, Rudolf; Kibriya, Muhammad G.; Lichtner, Peter; Liu, Jianjun; Lund, Eiliv; Makalic, Enes; Meindl, Alfons; Müller-Myhsok, Bertram; Muranen, Taru A.; Nevanlinna, Heli; Peeters, Petra H.; Peto, Julian; Prentice, Ross L.; Rahman, Nazneen; Sanchez, Maria Jose; Schmidt, Daniel F.; Schmutzler, Rita K.; Southey, Melissa C.; Tamimi, Rulla; Travis, Ruth C.; Turnbull, Clare; Uitterlinden, Andre G.; Wang, Zhaoming; Whittemore, Alice S.; Yang, Xiaohong R.; Zheng, Wei; Buchanan, Daniel D.; Casey, Graham; Conti, David V.; Edlund, Christopher K.; Gallinger, Steven; Haile, Robert W.; Jenkins, Mark; Marchand, Loïcle; Li, Li; Lindor, Noralene M.; Schmit, Stephanie L.; Thibodeau, Stephen N.; Woods, Michael O.; Rafnar, Thorunn; Gudmundsson, Julius; Stacey, Simon N.; Stefansson, Kari; Sulem, Patrick; Chen, Y. Ann; Tyrer, Jonathan P.; Christiani, David C.; Wei, Yongyue; Shen, Hongbing; Hu, Zhibin; Shu, Xiao Ou; Shiraishi, Kouya; Takahashi, Atsushi; Bossé, Yohan; Obeidat, Ma'en; Nickle, David; Timens, Wim; Freedman, Matthew L.; Li, Qiyuan; Seminara, Daniela; Chanock, Stephen J.; Gong, Jian; Peters, Ulrike; Gruber, Stephen B.; Amos, Christopher I.; Sellers, Thomas A.; Easton, Douglas F.; Hunter, David J.; Haiman, Christopher A.; Henderson, Brian E.; Hung, Rayjean J.

    2016-01-01

    Identifying genetic variants with pleiotropic associations can uncover common pathways influencing multiple cancers. We took a two-stage approach to conduct genome-wide association studies for lung, ovary, breast, prostate, and colorectal cancer from the GAME-ON/GECCO Network (61,851 cases, 61,820

  10. Cross-Cancer Genome-Wide Analysis of Lung, Ovary, Breast, Prostate, and Colorectal Cancer Reveals Novel Pleiotropic Associations

    NARCIS (Netherlands)

    Fehringer, Gordon; Kraft, Peter; Pharoah, Paul D.; Eeles, Rosalind A.; Chatterjee, Nilanjan; Schumacher, Fredrick R.; Schildkraut, Joellen M.; Lindstrom, Sara; Brennan, Paul; Bickeboller, Heike; Houlston, Richard S.; Landi, Maria Teresa; Caporaso, Neil; Risch, Angela; Al Olama, Ali Amin; Berndt, Sonja I.; Giovannucci, Edward L.; Gronberg, Henrik; Kote-Jarai, Zsofia; Ma, Jing; Muir, Kenneth; Stampfer, Meir J.; Stevens, Victoria L.; Wiklund, Fredrik; Willett, Walter C.; Goode, Ellen L.; Permuth, Jennifer B.; Risch, Harvey A.; Reid, Brett M.; Bezieau, Stephane; Brenner, Hermann; Chan, Andrew T.; Chang-Claude, Jenny; Hudson, Thomas J.; Kocarnik, Jonathan K.; Newcomb, Polly A.; Schoen, Robert E.; Slattery, Martha L.; White, Emily; Adank, Muriel A.; Ahsan, Habibul; Aittomaki, Kristiina; Baglietto, Laura; Blomquist, Carl; Canzian, Federico; Czene, Kamila; dos-Santos-Silva, Isabel; Eliassen, A. Heather; Figueroa, Jonine D.; Flesch-Janys, Dieter; Fletcher, Olivia; Garcia-Closas, Montserrat; Gaudet, Mia M.; Johnson, Nichola; Hall, Per; Hazra, Aditi; Hein, Rebecca; Hofman, Albert; Hopper, John L.; Irwanto, Astrid; Johansson, Mattias; Kaaks, Rudolf; Kibriya, Muhammad G.; Lichtner, Peter; Liu, Jianjun; Lund, Eiliv; Makalic, Enes; Meindl, Alfons; Muller-Myhsok, Bertram; Muranen, Taru A.; Nevanlinna, Heli; Peeters, Petra H.; Peto, Julian; Prentice, Ross L.; Rahman, Nazneen; Sanchez, Maria Jose; Schmidt, Daniel F.; Schmutzler, Rita K.; Southey, Melissa C.; Tamimi, Rulla; Travis, Ruth C.; Turnbull, Clare; Uitterlinden, Andre G.; Wang, Zhaoming; Whittemore, Alice S.; Yang, Xiaohong R.; Zheng, Wei; Buchanan, Daniel D.; Casey, Graham; Conti, David V.; Edlund, Christopher K.; Gallinger, Steven; Haile, Robert W.; Jenkins, Mark; Le Marchand, Loic; Li, Li; Lindor, Noralene M.; Schmit, Stephanie L.; Thibodeau, Stephen N.; Woods, Michael O.; Rafnar, Thorunn; Gudmundsson, Julius; Stacey, Simon N.; Stefansson, Kari; Sulem, Patrick; Chen, Y. Ann; Tyrer, Jonathan P.; Christiani, David C.; Wei, Yongyue; Shen, Hongbing; Hu, Zhibin; Shu, Xiao-Ou; Shiraishi, Kouya; Takahashi, Atsushi; Bosse, Yohan; Obeidat, Ma'en; Nickle, David; Timens, Wim; Freedman, Matthew L.; Li, Qiyuan; Seminara, Daniela; Chanock, Stephen J.; Gong, Jian; Peters, Ulrike; Gruber, Stephen B.; Amos, Christopher I.; Sellers, Thomas A.; Easton, Douglas F.; Hunter, David J.; Haiman, Christopher A.; Henderson, Brian E.; Hung, Rayjean J.

    2016-01-01

    Identifying genetic variants with pleiotropic associations can uncover common pathways influencing multiple cancers. We took a two-stage approach to conduct genome-wide association studies for lung, ovary, breast, prostate, and colorectal cancer from the GAME-ON/GECCO Network (61,851 cases, 61,820

  11. Linked read sequencing resolves complex genomic rearrangements in gastric cancer metastases.

    Science.gov (United States)

    Greer, Stephanie U; Nadauld, Lincoln D; Lau, Billy T; Chen, Jiamin; Wood-Bouwens, Christina; Ford, James M; Kuo, Calvin J; Ji, Hanlee P

    2017-06-19

    Genome rearrangements are critical oncogenic driver events in many malignancies. However, the identification and resolution of the structure of cancer genomic rearrangements remain challenging even with whole genome sequencing. To identify oncogenic genomic rearrangements and resolve their structure, we analyzed linked read sequencing. This approach relies on a microfluidic droplet technology to produce libraries derived from single, high molecular weight DNA molecules, 50 kb in size or greater. After sequencing, the barcoded sequence reads provide long range genomic information, identify individual high molecular weight DNA molecules, determine the haplotype context of genetic variants that occur across contiguous megabase-length segments of the genome and delineate the structure of complex rearrangements. We applied linked read sequencing of whole genomes to the analysis of a set of synchronous metastatic diffuse gastric cancers that occurred in the same individual. When comparing metastatic sites, our analysis implicated a complex somatic rearrangement that was present in the metastatic tumor. The oncogenic event associated with the identified complex rearrangement resulted in an amplification of the known cancer driver gene FGFR2. With further investigation using these linked read data, the FGFR2 copy number alteration was determined to be a deletion-inversion motif that underwent tandem duplication, with unique breakpoints in each metastasis. Using a three-dimensional organoid tissue model, we functionally validated the metastatic potential of an FGFR2 amplification in gastric cancer. Our study demonstrates that linked read sequencing is useful in characterizing oncogenic rearrangements in cancer metastasis.

  12. Advances in targeted and immunobased therapies for colorectal cancer in the genomic era

    Directory of Open Access Journals (Sweden)

    Seow HF

    2016-03-01

    Full Text Available Heng Fong Seow,1 Wai Kien Yip,1 Theodora Fifis2 1Immunology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia; 2Department of Surgery, University of Melbourne, Melbourne, Australia Abstract: Targeted therapies require information on specific defective signaling pathways or mutations. Advances in genomic technologies and cell biology have led to identification of new therapeutic targets associated with signal-transduction pathways. Survival times of patients with colorectal cancer (CRC can be extended with combinations of conventional cytotoxic agents and targeted therapies. Targeting EGFR- and VEGFR-signaling systems has been the major focus for treatment of metastatic CRC. However, there are still limitations in their clinical application, and new and better drug combinations are needed. This review provides information on EGFR and VEGF inhibitors, new therapeutic agents in the pipeline targeting EGFR and VEGFR pathways, and those targeting other signal-transduction pathways, such as MET, IGF1R, MEK, PI3K, Wnt, Notch, Hedgehog, and death-receptor signaling pathways for treatment of metastatic CRC. Additionally, multitargeted approaches in combination therapies targeting negative-feedback loops, compensatory networks, and cross talk between pathways are highlighted. Then, immunobased strategies to enhance antitumor immunity using specific monoclonal antibodies, such as the immune-checkpoint inhibitors anti-CTLA4 and anti-PD1, as well as the challenges that need to be overcome for increased efficacy of targeted therapies, including drug resistance, predictive markers of response, tumor subtypes, and cancer stem cells, are covered. The review concludes with a brief insight into the applications of next-generation sequencing, expression profiling for tumor subtyping, and the exciting progress made in in silico predictive analysis in the development of a prescription strategy for

  13. PROSPECT (Profiling of Resistance Patterns & Oncogenic Signaling Pathways in Evaluation of Cancers of the Thorax and Therapeutic Target Identification)

    National Research Council Canada - National Science Library

    Hong, Waun K; Stewart, David J

    2008-01-01

    We will develop a high throughput therapeutic-target focused (TTF) profiling platform and will combine this with tumor genome wide mRNA profiling and with serum or plasma profiling of phosphopeptides and DNA...

  14. Genome-wide miRNA response to anacardic acid in breast cancer cells.

    Directory of Open Access Journals (Sweden)

    David J Schultz

    Full Text Available MicroRNAs are biomarkers and potential therapeutic targets for breast cancer. Anacardic acid (AnAc is a dietary phenolic lipid that inhibits both MCF-7 estrogen receptor α (ERα positive and MDA-MB-231 triple negative breast cancer (TNBC cell proliferation with IC50s of 13.5 and 35 μM, respectively. To identify potential mediators of AnAc action in breast cancer, we profiled the genome-wide microRNA transcriptome (microRNAome in these two cell lines altered by the AnAc 24:1n5 congener. Whole genome expression profiling (RNA-seq and subsequent network analysis in MetaCore Gene Ontology (GO algorithm was used to characterize the biological pathways altered by AnAc. In MCF-7 cells, 69 AnAc-responsive miRNAs were identified, e.g., increased let-7a and reduced miR-584. Fewer, i.e., 37 AnAc-responsive miRNAs were identified in MDA-MB-231 cells, e.g., decreased miR-23b and increased miR-1257. Only two miRNAs were increased by AnAc in both cell lines: miR-612 and miR-20b; however, opposite miRNA arm preference was noted: miR-20b-3p and miR-20b-5p were upregulated in MCF-7 and MDA-MB-231, respectively. miR-20b-5p target EFNB2 transcript levels were reduced by AnAc in MDA-MB-231 cells. AnAc reduced miR-378g that targets VIM (vimentin and VIM mRNA transcript expression was increased in AnAc-treated MCF-7 cells, suggesting a reciprocal relationship. The top three enriched GO terms for AnAc-treated MCF-7 cells were B cell receptor signaling pathway and ribosomal large subunit biogenesis and S-adenosylmethionine metabolic process for AnAc-treated MDA-MB-231 cells. The pathways modulated by these AnAc-regulated miRNAs suggest that key nodal molecules, e.g., Cyclin D1, MYC, c-FOS, PPARγ, and SIN3, are targets of AnAc activity.

  15. CGDM: collaborative genomic data model for molecular profiling data using NoSQL.

    Science.gov (United States)

    Wang, Shicai; Mares, Mihaela A; Guo, Yi-Ke

    2016-12-01

    High-throughput molecular profiling has greatly improved patient stratification and mechanistic understanding of diseases. With the increasing amount of data used in translational medicine studies in recent years, there is a need to improve the performance of data warehouses in terms of data retrieval and statistical processing. Both relational and Key Value models have been used for managing molecular profiling data. Key Value models such as SeqWare have been shown to be particularly advantageous in terms of query processing speed for large datasets. However, more improvement can be achieved, particularly through better indexing techniques of the Key Value models, taking advantage of the types of queries which are specific for the high-throughput molecular profiling data. In this article, we introduce a Collaborative Genomic Data Model (CGDM), aimed at significantly increasing the query processing speed for the main classes of queries on genomic databases. CGDM creates three Collaborative Global Clustering Index Tables (CGCITs) to solve the velocity and variety issues at the cost of limited extra volume. Several benchmarking experiments were carried out, comparing CGDM implemented on HBase to the traditional SQL data model (TDM) implemented on both HBase and MySQL Cluster, using large publicly available molecular profiling datasets taken from NCBI and HapMap. In the microarray case, CGDM on HBase performed up to 246 times faster than TDM on HBase and 7 times faster than TDM on MySQL Cluster. In single nucleotide polymorphism case, CGDM on HBase outperformed TDM on HBase by up to 351 times and TDM on MySQL Cluster by up to 9 times. The CGDM source code is available at https://github.com/evanswang/CGDM. y.guo@imperial.ac.uk. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Reduced local mutation density in regulatory DNA of cancer genomes is linked to DNA repair.

    Science.gov (United States)

    Polak, Paz; Lawrence, Michael S; Haugen, Eric; Stoletzki, Nina; Stojanov, Petar; Thurman, Robert E; Garraway, Levi A; Mirkin, Sergei; Getz, Gad; Stamatoyannopoulos, John A; Sunyaev, Shamil R

    2014-01-01

    Carcinogenesis and neoplastic progression are mediated by the accumulation of somatic mutations. Here we report that the local density of somatic mutations in cancer genomes is highly reduced specifically in accessible regulatory DNA defined by DNase I hypersensitive sites. This reduction is independent of any known factors influencing somatic mutation density and is observed in diverse cancer types, suggesting a general mechanism. By analyzing individual cancer genomes, we show that the reduced local mutation density within regulatory DNA is linked to intact global genome repair machinery, with nearly complete abrogation of the hypomutation phenomenon in individual cancers that possess mutations in components of the nucleotide excision repair system. Together, our results connect chromatin structure, gene regulation and cancer-associated somatic mutation.

  17. Genome-wide transcriptional effects of the anti-cancer agent camptothecin.

    Directory of Open Access Journals (Sweden)

    Artur Veloso

    Full Text Available The anti-cancer drug camptothecin inhibits replication and transcription by trapping DNA topoisomerase I (Top1 covalently to DNA in a "cleavable complex". To examine the effects of camptothecin on RNA synthesis genome-wide we used Bru-Seq and show that camptothecin treatment primarily affected transcription elongation. We also observed that camptothecin increased RNA reads past transcription termination sites as well as at enhancer elements. Following removal of camptothecin, transcription spread as a wave from the 5'-end of genes with no recovery of transcription apparent from RNA polymerases stalled in the body of genes. As a result, camptothecin preferentially inhibited the expression of large genes such as proto-oncogenes, and anti-apoptotic genes while smaller ribosomal protein genes, pro-apoptotic genes and p53 target genes showed relative higher expression. Cockayne syndrome group B fibroblasts (CS-B, which are defective in transcription-coupled repair (TCR, showed an RNA synthesis recovery profile similar to normal fibroblasts suggesting that TCR is not involved in the repair of or RNA synthesis recovery from transcription-blocking Top1 lesions. These findings of the effects of camptothecin on transcription have important implications for its anti-cancer activities and may aid in the design of improved combinatorial treatments involving Top1 poisons.

  18. Using the canine genome to cure cancer and other diseases.

    Science.gov (United States)

    Olson, P N

    2007-08-01

    A high-quality draft genome sequence of the domestic dog (Canis familiaris), together with a dense map of single nucleotide polymorphisms, has been reported. Such new tools offer scientists amazing opportunities to define genetic, nutritional, environmental, and other risk factors for various canine diseases. Because many of the diseases that affect man's best friend also affect us, understanding a dog's disease may lead to new preventions and therapies for diseases that affect both dogs and people. Since a dog's life span is shorter than that for a human, monitoring potential risk factors in a well-controlled population of dogs is possible. Such a population should be one where dogs live in close relationship with their owners. Although longitudinal studies have been previously conducted on animals housed in laboratory environments, the natural environment offers a chance to study dogs in environments shared by their owners. If dogs are carefully monitored, and select exposures defined, considerable information could be collected in a dog's lifetime--the next 10-20 years. Such information could hold the clues for important discoveries, including causes and cures for cancer.

  19. VEGF and Pleiotrophin Modulate the Immune Profile of Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lynn, Kristi D.; Roland, Christina L. [Division of Surgical Oncology, Department of Surgery, Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8593 (United States); Brekken, Rolf A., E-mail: rolf.brekken@utsouthwestern.edu [Division of Surgical Oncology, Department of Surgery, Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8593 (United States); Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8593 (United States)

    2010-05-26

    Angiogenesis, the sprouting of the existing vascular network to form new vessels, is required for the growth of solid tumors. For this reason, the primary stimulant of angiogenesis, vascular endothelial growth factor-A (VEGF), is an attractive target for tumor therapy. In fact, there are currently numerous anti-VEGF therapies in clinical development for the treatment of various cancers, including breast cancer. VEGF signals through two primary VEGF receptors, VEGFR1 and VEGFR2. VEGFR2 is the primary angiogenic receptor, and VEGFR1 has been implicated in macrophage chemotaxis and tumor cell survival and invasion. It has only been appreciated recently that the VEGFRs are expressed not only on endothelial cells and tumor cells but also on many host immune cells. Therefore, to better understand the effects of anti-VEGF therapy it is important to consider the effects of VEGF on all cells in the tumor microenvironment, including immune cells. Bevacizumab (Avastin{sup ®}, Genetech), which binds VEGF and inhibits interaction with VEGFR1 and VEGFR2, was approved for the treatment of metastatic HER2/NEU-negative breast cancer in 2008, however, the majority of human mammary tumors are either innately resistant or will acquire resistance to anti-VEGF therapy. This suggests that these tumors activate alternate angiogenesis pathways. Pleiotrophin (PTN) is an important angiogenic cytokine in breast cancer and is expressed at high levels in approximately 60% of human breast tumors. PTN functions as an angiogenic factor and promotes remodeling of the tumor microenvironment as well as epithelial-mesenchymal transition (EMT). In addition, PTN can have profound effects on macrophage phenotype. The present review focuses on the functions of VEGF and PTN on immune cell infiltration and function in breast cancer. Furthermore, we will discuss how anti-VEGF therapy modulates the immune cell profile.

  20. Building an International Initiative to Infuse Novel Cancer Models into the Research Community | Office of Cancer Genomics

    Science.gov (United States)

    My name is Caitlyn Barrett and I am the Scientific Program Manager for the Human Cancer Model Initiative (HCMI) in the Office of Cancer Genomics (OCG). In my role within the HCMI, I am helping to establish communication pathways and build the foundation for collaboration that will enable the completion of the Initiative’s aim to develop as many as 1000 next-generation cancer models, established from patient tumors and accompanied by clinical and molecular data.

  1. Breast Cancer in Africa: Limitations and Opportunities for Application of Genomic Medicine

    Directory of Open Access Journals (Sweden)

    Allison Silverstein

    2016-01-01

    Full Text Available As genomic medicine gains clinical applicability across a spectrum of diseases, insufficient application in low-income settings stands to increase health disparity. Breast cancer screening, diagnosis, and treatment have benefited greatly from genomic medicine in high-income settings. As breast cancer is a leading cause of both cancer incidence and mortality in Africa, attention and resources must be applied to research and clinical initiatives to integrate genomic medicine into breast cancer care. In terms of research, there is a paucity of investigations into genetic determinants of breast cancer specific to African populations, despite consensus in the literature that predisposition and susceptibility genes vary between populations. Therefore, we need targeted strengthening of existing research efforts and support of new initiatives. Results will improve clinical care through screening and diagnosis with genetic testing specific to breast cancer in African populations. Clinically, genomic medicine can provide information capable of improving resource allocation to the population which most stands to benefit from increased screening or tailored treatment modalities. In situations where mammography or chemotherapy options are limited, this information will allow for the greatest impact. Implementation of genomic medicine will face numerous systemic barriers but is essential to improve breast cancer outcomes and survival.

  2. Integrative Genomics Viewer (IGV) | Informatics Technology for Cancer Research (ITCR)

    Science.gov (United States)

    The Integrative Genomics Viewer (IGV) is a high-performance visualization tool for interactive exploration of large, integrated genomic datasets. It supports a wide variety of data types, including array-based and next-generation sequence data, and genomic annotations.

  3. Functional profiling of microtumors to identify cancer associated fibroblast-derived drug targets.

    Science.gov (United States)

    Horman, Shane R; To, Jeremy; Lamb, John; Zoll, Jocelyn H; Leonetti, Nicole; Tu, Buu; Moran, Rita; Newlin, Robbin; Walker, John R; Orth, Anthony P

    2017-11-21

    Recent advances in chemotherapeutics highlight the importance of molecularly-targeted perturbagens. Although these therapies typically address dysregulated cancer cell proteins, there are increasing therapeutic modalities that take into consideration cancer cell-extrinsic factors. Targeting components of tumor stroma such as vascular or immune cells has been shown to represent an efficacious approach in cancer treatment. Cancer-associated fibroblasts (CAFs) exemplify an important stromal component that can be exploited in targeted therapeutics, though their employment in drug discovery campaigns has been relatively minimal due to technical logistics in assaying for CAF-tumor interactions. Here we report a 3-dimensional multi-culture tumor:CAF spheroid phenotypic screening platform that can be applied to high-content drug discovery initiatives. Using a functional genomics approach we systematically profiled 1,024 candidate genes for CAF-intrinsic anti-spheroid activity; identifying several CAF genes important for development and maintenance of tumor:CAF co-culture spheroids. Along with previously reported genes such as WNT, we identify CAF-derived targets such as ARAF and COL3A1 upon which the tumor compartment depends for spheroid development. Specifically, we highlight the G-protein-coupled receptor OGR1 as a unique CAF-specific protein that may represent an attractive drug target for treating colorectal cancer. In vivo , murine colon tumor implants in OGR1 knockout mice displayed delayed tumor growth compared to tumors implanted in wild type littermate controls. These findings demonstrate a robust microphysiological screening approach for identifying new CAF targets that may be applied to drug discovery efforts.

  4. In silico phylogenetic and virulence gene profile analyses of avian pathogenic Escherichia coli genome sequences

    Directory of Open Access Journals (Sweden)

    Thaís C.G. Rojas

    2014-02-01

    Full Text Available Avian pathogenic Escherichia coli (APEC infections are responsible for significant losses in the poultry industry worldwide. A zoonotic risk has been attributed to APEC strains because they present similarities to extraintestinal pathogenic E. coli (ExPEC associated with illness in humans, mainly urinary tract infections and neonatal meningitis. Here, we present in silico analyses with pathogenic E. coli genome sequences, including recently available APEC genomes. The phylogenetic tree, based on multi-locus sequence typing (MLST of seven housekeeping genes, revealed high diversity in the allelic composition. Nevertheless, despite this diversity, the phylogenetic tree was able to cluster the different pathotypes together. An in silico virulence gene profile was also determined for each of these strains, through the presence or absence of 83 well-known virulence genes/traits described in pathogenic E. coli strains. The MLST phylogeny and the virulence gene profiles demonstrated a certain genetic similarity between Brazilian APEC strains, APEC isolated in the United States, UPEC (uropathogenic E. coli and diarrheagenic strains isolated from humans. This correlation corroborates and reinforces the zoonotic potential hypothesis proposed to APEC.

  5. Blood Gene Expression Profiling of Breast Cancer Survivors Experiencing Fibrosis

    International Nuclear Information System (INIS)

    Landmark-Hoyvik, Hege; Dumeaux, Vanessa; Reinertsen, Kristin V.; Edvardsen, Hege; Fossa, Sophie D.; Borresen-Dale, Anne-Lise

    2011-01-01

    Purpose: To extend knowledge on the mechanisms and pathways involved in maintenance of radiation-induced fibrosis (RIF) by performing gene expression profiling of whole blood from breast cancer (BC) survivors with and without fibrosis 3-7 years after end of radiotherapy treatment. Methods and Materials: Gene expression profiles from blood were obtained for 254 BC survivors derived from a cohort of survivors, treated with adjuvant radiotherapy for breast cancer 3-7 years earlier. Analyses of transcriptional differences in blood gene expression between BC survivors with fibrosis (n = 31) and BC survivors without fibrosis (n = 223) were performed using R version 2.8.0 and tools from the Bioconductor project. Gene sets extracted through a literature search on fibrosis and breast cancer were subsequently used in gene set enrichment analysis. Results: Substantial differences in blood gene expression between BC survivors with and without fibrosis were observed, and 87 differentially expressed genes were identified through linear analysis. Transforming growth factor-β1 signaling was identified as the most significant gene set, showing a down-regulation of most of the core genes, together with up-regulation of a transcriptional activator of the inhibitor of fibrinolysis, Plasminogen activator inhibitor 1 in the BC survivors with fibrosis. Conclusion: Transforming growth factor-β1 signaling was found down-regulated during the maintenance phase of fibrosis as opposed to the up-regulation reported during the early, initiating phase of fibrosis. Hence, once the fibrotic tissue has developed, the maintenance phase might rather involve a deregulation of fibrinolysis and altered degradation of extracellular matrix components.

  6. Cancer Genome Interpreter annotates the biological and clinical relevance of tumor alterations.

    Science.gov (United States)

    Tamborero, David; Rubio-Perez, Carlota; Deu-Pons, Jordi; Schroeder, Michael P; Vivancos, Ana; Rovira, Ana; Tusquets, Ignasi; Albanell, Joan; Rodon, Jordi; Tabernero, Josep; de Torres, Carmen; Dienstmann, Rodrigo; Gonzalez-Perez, Abel; Lopez-Bigas, Nuria

    2018-03-28

    While tumor genome sequencing has become widely available in clinical and research settings, the interpretation of tumor somatic variants remains an important bottleneck. Here we present the Cancer Genome Interpreter, a versatile platform that automates the interpretation of newly sequenced cancer genomes, annotating the potential of alterations detected in tumors to act as drivers and their possible effect on treatment response. The results are organized in different levels of evidence according to current knowledge, which we envision can support a broad range of oncology use cases. The resource is publicly available at http://www.cancergenomeinterpreter.org .

  7. CTD² Dashboard: a searchable web interface to connect validated results from the Cancer Target Discovery and Development Network* | Office of Cancer Genomics

    Science.gov (United States)

    The Cancer Target Discovery and Development (CTD2) Network aims to use functional genomics to accelerate the translation of high-throughput and high-content genomic and small-molecule data towards use in precision oncology.

  8. Distinct p53 genomic binding patterns in normal and cancer-derived human cells

    Energy Technology Data Exchange (ETDEWEB)

    Botcheva K.; McCorkle S. R.; McCombie W. R.; Dunn J. J.; Anderson C. W.

    2011-12-15

    We report here genome-wide analysis of the tumor suppressor p53 binding sites in normal human cells. 743 high-confidence ChIP-seq peaks representing putative genomic binding sites were identified in normal IMR90 fibroblasts using a reference chromatin sample. More than 40% were located within 2 kb of a transcription start site (TSS), a distribution similar to that documented for individually studied, functional p53 binding sites and, to date, not observed by previous p53 genome-wide studies. Nearly half of the high-confidence binding sites in the IMR90 cells reside in CpG islands, in marked contrast to sites reported in cancer-derived cells. The distinct genomic features of the IMR90 binding sites do not reflect a distinct preference for specific sequences, since the de novo developed p53 motif based on our study is similar to those reported by genome-wide studies of cancer cells. More likely, the different chromatin landscape in normal, compared with cancer-derived cells, influences p53 binding via modulating availability of the sites. We compared the IMR90 ChIPseq peaks to the recently published IMR90 methylome1 and demonstrated that they are enriched at hypomethylated DNA. Our study represents the first genome-wide, de novo mapping of p53 binding sites in normal human cells and reveals that p53 binding sites reside in distinct genomic landscapes in normal and cancer-derived human cells.

  9. Genomic signatures for paclitaxel and gemcitabine resistance in breast cancer derived by machine learning.

    Science.gov (United States)

    Dorman, Stephanie N; Baranova, Katherina; Knoll, Joan H M; Urquhart, Brad L; Mariani, Gabriella; Carcangiu, Maria Luisa; Rogan, Peter K

    2016-01-01

    Increasingly, the effectiveness of adjuvant chemotherapy agents for breast cancer has been related to changes in the genomic profile of tumors. We investigated correspondence between growth inhibitory concentrations of paclitaxel and gemcitabine (GI50) and gene copy number, mutation, and expression first in breast cancer cell lines and then in patients. Genes encoding direct targets of these drugs, metabolizing enzymes, transporters, and those previously associated with chemoresistance to paclitaxel (n = 31 genes) or gemcitabine (n = 18) were analyzed. A multi-factorial, principal component analysis (MFA) indicated expression was the strongest indicator of sensitivity for paclitaxel, and copy number and expression were informative for gemcitabine. The factors were combined using support vector machines (SVM). Expression of 15 genes (ABCC10, BCL2, BCL2L1, BIRC5, BMF, FGF2, FN1, MAP4, MAPT, NFKB2, SLCO1B3, TLR6, TMEM243, TWIST1, and CSAG2) predicted cell line sensitivity to paclitaxel with 82% accuracy. Copy number profiles of 3 genes (ABCC10, NT5C, TYMS) together with expression of 7 genes (ABCB1, ABCC10, CMPK1, DCTD, NME1, RRM1, RRM2B), predicted gemcitabine response with 85% accuracy. Expression and copy number studies of two independent sets of patients with known responses were then analyzed with these models. These included tumor blocks from 21 patients that were treated with both paclitaxel and gemcitabine, and 319 patients on paclitaxel and anthracycline therapy. A new paclitaxel SVM was derived from an 11-gene subset since data for 4 of the original genes was unavailable. The accuracy of this SVM was similar in cell lines and tumor blocks (70-71%). The gemcitabine SVM exhibited 62% prediction accuracy for the tumor blocks due to the presence of samples with poor nucleic acid integrity. Nevertheless, the paclitaxel SVM predicted sensitivity in 84% of patients with no or minimal residual disease. Copyright © 2015 Federation of European Biochemical Societies

  10. Comprehensive evaluation of genome-wide 5-hydroxymethylcytosine profiling approaches in human DNA.

    Science.gov (United States)

    Skvortsova, Ksenia; Zotenko, Elena; Luu, Phuc-Loi; Gould, Cathryn M; Nair, Shalima S; Clark, Susan J; Stirzaker, Clare

    2017-01-01

    The discovery that 5-methylcytosine (5mC) can be oxidized to 5-hydroxymethylcytosine (5hmC) by the ten-eleven translocation (TET) proteins has prompted wide interest in the potential role of 5hmC in reshaping the mammalian DNA methylation landscape. The gold-standard bisulphite conversion technologies to study DNA methylation do not distinguish between 5mC and 5hmC. However, new approaches to mapping 5hmC genome-wide have advanced rapidly, although it is unclear how the different methods compare in accurately calling 5hmC. In this study, we provide a comparative analysis on brain DNA using three 5hmC genome-wide approaches, namely whole-genome bisulphite/oxidative bisulphite sequencing (WG Bis/OxBis-seq), Infinium HumanMethylation450 BeadChip arrays coupled with oxidative bisulphite (HM450K Bis/OxBis) and antibody-based immunoprecipitation and sequencing of hydroxymethylated DNA (hMeDIP-seq). We also perform loci-specific TET-assisted bisulphite sequencing (TAB-seq) for validation of candidate regions. We show that whole-genome single-base resolution approaches are advantaged in providing precise 5hmC values but require high sequencing depth to accurately measure 5hmC, as this modification is commonly in low abundance in mammalian cells. HM450K arrays coupled with oxidative bisulphite provide a cost-effective representation of 5hmC distribution, at CpG sites with 5hmC levels >~10%. However, 5hmC analysis is restricted to the genomic location of the probes, which is an important consideration as 5hmC modification is commonly enriched at enhancer elements. Finally, we show that the widely used hMeDIP-seq method provides an efficient genome-wide profile of 5hmC and shows high correlation with WG Bis/OxBis-seq 5hmC distribution in brain DNA. However, in cell line DNA with low levels of 5hmC, hMeDIP-seq-enriched regions are not detected by WG Bis/OxBis or HM450K, either suggesting misinterpretation of 5hmC calls by hMeDIP or lack of sensitivity of the latter methods. We

  11. Different Array CGH profiles within hereditary breast cancer tumors associated to BRCA1 expression and overall survival

    International Nuclear Information System (INIS)

    Alvarez, Carolina; Aravena, Andrés; Tapia, Teresa; Rozenblum, Ester; Solís, Luisa; Corvalán, Alejandro; Camus, Mauricio; Alvarez, Manuel; Munroe, David; Maass, Alejandro; Carvallo, Pilar

    2016-01-01

    Array CGH analysis of breast tumors has contributed to the identification of different genomic profiles in these tumors. Loss of DNA repair by BRCA1 functional deficiency in breast cancer has been proposed as a relevant contribution to breast cancer progression for tumors with no germline mutation. Identifying the genomic alterations taking place in BRCA1 not expressing tumors will lead us to a better understanding of the cellular functions affected in this heterogeneous disease. Moreover, specific genomic alterations may contribute to the identification of potential therapeutic targets and offer a more personalized treatment to breast cancer patients. Forty seven tumors from hereditary breast cancer cases, previously analyzed for BRCA1 expression, and screened for germline BRCA1 and 2 mutations, were analyzed by Array based Comparative Genomic Hybridization (aCGH) using Agilent 4x44K arrays. Overall survival was established for tumors in different clusters using Log-rank (Mantel-Cox) Test. Gene lists obtained from aCGH analysis were analyzed for Gene Ontology enrichment using GOrilla and DAVID tools. Genomic profiling of the tumors showed specific alterations associated to BRCA1 or 2 mutation status, and BRCA1 expression in the tumors, affecting relevant cellular processes. Similar cellular functions were found affected in BRCA1 not expressing and BRCA1 or 2 mutated tumors. Hierarchical clustering classified hereditary breast tumors in four major, groups according to the type and amount of genomic alterations, showing one group with a significantly poor overall survival (p = 0.0221). Within this cluster, deletion of PLEKHO1, GDF11, DARC, DAG1 and CD63 may be associated to the worse outcome of the patients. These results support the fact that BRCA1 lack of expression in tumors should be used as a marker for BRCAness and to select these patients for synthetic lethality approaches such as treatment with PARP inhibitors. In addition, the identification of specific

  12. Clinical utility of multigene profiling assays in early-stage breast cancer.

    Science.gov (United States)

    Chang, M C; Souter, L H; Kamel-Reid, S; Rutherford, M; Bedard, P; Trudeau, M; Hart, J; Eisen, A

    2017-10-01

    This clinical practice guideline was developed to determine the level of evidence supporting the clinical utility of commercially available multigene profiling assays and to provide guidance about whether certain breast cancer patient populations in Ontario would benefit from alternative tests in addition to Oncotype dx (Genomic Health, Redwood City, CA, U.S.A.). A systematic electronic Ovid search of the medline and embase databases sought out systematic reviews and primary literature. A systematic review and practice guideline was written by a working group and was then reviewed and approved by Cancer Care Ontario's Molecular Oncology Advisory Committee. Twenty-four studies assessing the clinical utility of Oncotype dx, Prosigna (NanoString Technologies, Seattle, WA, U.S.A.), EndoPredict (Myriad Genetics, Salt Lake City, U.S.A.), and MammaPrint (Agendia, Irvine, CA, U.S.A.) were included in the evidence base. The clinical utility of multigene profiling assays is currently established for an appropriate subset of patients with estrogen receptor-positive, her2-negative, node-negative breast cancer for whom a decision to give chemotherapy is difficult to make. For patients with estrogen receptor-positive tumours who receive tamoxifen alone, Oncotype dx, Prosigna, and EndoPredict validly identify a low-risk population with favourable outcomes, indicating that a low-risk assay result is actionable and the decision to withhold chemotherapy is supported. Clinical evidence indicates that a high Oncotype dx recurrence score can predict for chemotherapy benefit, but a high Prosigna or EndoPredict score, although prognostic, is not, based on clinical trial evidence, directly actionable. Prosigna and EndoPredict are statistically more likely to identify a population at risk for recurrence beyond 5 years, but that information is currently not actionable because of a lack of interventional studies.

  13. DNA copy number aberrations in breast cancer by array comparative genomic hybridization

    DEFF Research Database (Denmark)

    Li, J.; Wang, K.; Li, S.

    2009-01-01

    Array comparative genomic hybridization (CGH) has been popularly used for analyzing DNA copy number variations in diseases like cancer. In this study, we investigated 82 sporadic samples from 49 breast cancer patients using 1-Mb resolution bacterial artificial chromosome CGH arrays. A number...

  14. Seven prostate cancer susceptibility loci identified by a multi-stage genome-wide association study

    DEFF Research Database (Denmark)

    Kote-Jarai, Zsofia; Olama, Ali Amin Al; Giles, Graham G

    2011-01-01

    Prostate cancer (PrCa) is the most frequently diagnosed male cancer in developed countries. We conducted a multi-stage genome-wide association study for PrCa and previously reported the results of the first two stages, which identified 16 PrCa susceptibility loci. We report here the results of st...

  15. Common genomic signaling among initial DNA damage and radiation-induced apoptosis in peripheral blood lymphocytes from locally advanced breast cancer patients

    DEFF Research Database (Denmark)

    Henríquez-Hernández, Luis Alberto; Pinar, Beatriz; Carmona-Vigo, Ruth

    2013-01-01

    PURPOSE: To investigate the genomic signaling that defines sensitive lymphocytes to radiation and if such molecular profiles are consistent with clinical toxicity; trying to disclose the radiobiology mechanisms behind these cellular processes. PATIENTS AND METHODS: Twelve consecutive patients...... suffering from locally advanced breast cancer and treated with high-dose hyperfractionated radiotherapy were recruited. Initial DNA damage was measured by pulsed-field gel electrophoresis and radiation-induced apoptosis was measured by flow cytometry. Gene expression was assessed by DNA microarray. RESULTS...

  16. The molecular landscape of pediatric acute myeloid leukemia reveals recurrent structural alterations and age-specific mutational interactions | Office of Cancer Genomics

    Science.gov (United States)

    We present the molecular landscape of pediatric acute myeloid leukemia (AML) and characterize nearly 1,000 participants in Children’s Oncology Group (COG) AML trials. The COG–National Cancer Institute (NCI) TARGET AML initiative assessed cases by whole-genome, targeted DNA, mRNA and microRNA sequencing and CpG methylation profiling. Validated DNA variants corresponded to diverse, infrequent mutations, with fewer than 40 genes mutated in >2% of cases.

  17. Genomic profiling of plastid DNA variation in the Mediterranean olive tree.

    Science.gov (United States)

    Besnard, Guillaume; Hernández, Pilar; Khadari, Bouchaib; Dorado, Gabriel; Savolainen, Vincent

    2011-05-10

    Characterisation of plastid genome (or cpDNA) polymorphisms is commonly used for phylogeographic, population genetic and forensic analyses in plants, but detecting cpDNA variation is sometimes challenging, limiting the applications of such an approach. In the present study, we screened cpDNA polymorphism in the olive tree (Olea europaea L.) by sequencing the complete plastid genome of trees with a distinct cpDNA lineage. Our objective was to develop new markers for a rapid genomic profiling (by Multiplex PCRs) of cpDNA haplotypes in the Mediterranean olive tree. Eight complete cpDNA genomes of Olea were sequenced de novo. The nucleotide divergence between olive cpDNA lineages was low and not exceeding 0.07%. Based on these sequences, markers were developed for studying two single nucleotide substitutions and length polymorphism of 62 regions (with variable microsatellite motifs or other indels). They were then used to genotype the cpDNA variation in cultivated and wild Mediterranean olive trees (315 individuals). Forty polymorphic loci were detected on this sample, allowing the distinction of 22 haplotypes belonging to the three Mediterranean cpDNA lineages known as E1, E2 and E3. The discriminating power of cpDNA variation was particularly low for the cultivated olive tree with one predominating haplotype, but more diversity was detected in wild populations. We propose a method for a rapid characterisation of the Mediterranean olive germplasm. The low variation in the cultivated olive tree indicated that the utility of cpDNA variation for forensic analyses is limited to rare haplotypes. In contrast, the high cpDNA variation in wild populations demonstrated that our markers may be useful for phylogeographic and populations genetic studies in O. europaea.

  18. Genomic profiling of plastid DNA variation in the Mediterranean olive tree

    Science.gov (United States)

    2011-01-01

    Background Characterisation of plastid genome (or cpDNA) polymorphisms is commonly used for phylogeographic, population genetic and forensic analyses in plants, but detecting cpDNA variation is sometimes challenging, limiting the applications of such an approach. In the present study, we screened cpDNA polymorphism in the olive tree (Olea europaea L.) by sequencing the complete plastid genome of trees with a distinct cpDNA lineage. Our objective was to develop new markers for a rapid genomic profiling (by Multiplex PCRs) of cpDNA haplotypes in the Mediterranean olive tree. Results Eight complete cpDNA genomes of Olea were sequenced de novo. The nucleotide divergence between olive cpDNA lineages was low and not exceeding 0.07%. Based on these sequences, markers were developed for studying two single nucleotide substitutions and length polymorphism of 62 regions (with variable microsatellite motifs or other indels). They were then used to genotype the cpDNA variation in cultivated and wild Mediterranean olive trees (315 individuals). Forty polymorphic loci were detected on this sample, allowing the distinction of 22 haplotypes belonging to the three Mediterranean cpDNA lineages known as E1, E2 and E3. The discriminating power of cpDNA variation was particularly low for the cultivated olive tree with one predominating haplotype, but more diversity was detected in wild populations. Conclusions We propose a method for a rapid characterisation of the Mediterranean olive germplasm. The low variation in the cultivated olive tree indicated that the utility of cpDNA variation for forensic analyses is limited to rare haplotypes. In contrast, the high cpDNA variation in wild populations demonstrated that our markers may be useful for phylogeographic and populations genetic studies in O. europaea. PMID:21569271

  19. Genome and transcriptome sequencing of lung cancers reveal diverse mutational and splicing events.

    Science.gov (United States)

    Liu, Jinfeng; Lee, William; Jiang, Zhaoshi; Chen, Zhongqiang; Jhunjhunwala, Suchit; Haverty, Peter M; Gnad, Florian; Guan, Yinghui; Gilbert, Houston N; Stinson, Jeremy; Klijn, Christiaan; Guillory, Joseph; Bhatt, Deepali; Vartanian, Steffan; Walter, Kimberly; Chan, Jocelyn; Holcomb, Thomas; Dijkgraaf, Peter; Johnson, Stephanie; Koeman, Julie; Minna, John D; Gazdar, Adi F; Stern, Howard M; Hoeflich, Klaus P; Wu, Thomas D; Settleman, Jeff; de Sauvage, Frederic J; Gentleman, Robert C; Neve, Richard M; Stokoe, David; Modrusan, Zora; Seshagiri, Somasekar; Shames, David S; Zhang, Zemin

    2012-12-01

    Lung cancer is a highly heterogeneous disease in terms of both underlying genetic lesions and response to therapeutic treatments. We performed deep whole-genome sequencing and transcriptome sequencing on 19 lung cancer cell lines and three lung tumor/normal pairs. Overall, our data show that cell line models exhibit similar mutation spectra to human tumor samples. Smoker and never-smoker cancer samples exhibit distinguishable patterns of mutations. A number of epigenetic regulators, including KDM6A, ASH1L, SMARCA4, and ATAD2, are frequently altered by mutations or copy number changes. A systematic survey of splice-site mutations identified 106 splice site mutations associated with cancer specific aberrant splicing, including mutations in several known cancer-related genes. RAC1b, an isoform of the RAC1 GTPase that includes one additional exon, was found to be preferentially up-regulated in lung cancer. We further show that its expression is significantly associated with sensitivity to a MAP2K (MEK) inhibitor PD-0325901. Taken together, these data present a comprehensive genomic landscape of a large number of lung cancer samples and further demonstrate that cancer-specific alternative splicing is a widespread phenomenon that has potential utility as therapeutic biomarkers. The detailed characterizations of the lung cancer cell lines also provide genomic context to the vast amount of experimental data gathered for these lines over the decades, and represent highly valuable resources for cancer biology.

  20. Association between invasive ovarian cancer susceptibility and 11 best candidate SNPs from breast cancer genome-wide association study

    DEFF Research Database (Denmark)

    Song, Honglin; Ramus, Susan J; Kjaer, Susanne Krüger

    2009-01-01

    Because both ovarian and breast cancer are hormone-related and are known to have some predisposition genes in common, we evaluated 11 of the most significant hits (six with confirmed associations with breast cancer) from the breast cancer genome-wide association study for association with invasive...... cases and 6308 controls from eight independent studies. Only rs4954956 was significantly associated with ovarian cancer risk both in the replication study and in combined analyses. This association was stronger for the serous histological subtype [per minor allele odds ratio (OR) 1.07 95% CI 1.......01-1.13, P-trend = 0.02 for all types of ovarian cancer and OR 1.14 95% CI 1.07-1.22, P-trend = 0.00017 for serous ovarian cancer]. In conclusion, we found that rs4954956 was associated with increased ovarian cancer risk, particularly for serous ovarian cancer. However, none of the six confirmed breast...

  1. High-density marker profiling confirms ancestral genomes of Avena species and identifies D-genome chromosomes of hexaploid oat.

    Science.gov (United States)

    Yan, Honghai; Bekele, Wubishet A; Wight, Charlene P; Peng, Yuanying; Langdon, Tim; Latta, Robert G; Fu, Yong-Bi; Diederichsen, Axel; Howarth, Catherine J; Jellen, Eric N; Boyle, Brian; Wei, Yuming; Tinker, Nicholas A

    2016-11-01

    Genome analysis of 27 oat species identifies ancestral groups, delineates the D genome, and identifies ancestral origin of 21 mapped chromosomes in hexaploid oat. We investigated genomic relationships among 27 species of the genus Avena using high-density genetic markers revealed by genotyping-by-sequencing (GBS). Two methods of GBS analysis were used: one based on tag-level haplotypes that were previously mapped in cultivated hexaploid oat (A. sativa), and one intended to sample and enumerate tag-level haplotypes originating from all species under investigation. Qualitatively, both methods gave similar predictions regarding the clustering of species and shared ancestral genomes. Furthermore, results were consistent with previous phylogenies of the genus obtained with conventional approaches, supporting the robustness of whole genome GBS analysis. Evidence is presented to justify the final and definitive classification of the tetraploids A. insularis, A. maroccana (=A. magna), and A. murphyi as containing D-plus-C genomes, and not A-plus-C genomes, as is most often specified in past literature. Through electronic painting of the 21 chromosome representations in the hexaploid oat consensus map, we show how the relative frequency of matches between mapped hexaploid-derived haplotypes and AC (DC)-genome tetraploids vs. A- and C-genome diploids can accurately reveal the genome origin of all hexaploid chromosomes, including the approximate positions of inter-genome translocations. Evidence is provided that supports the continued classification of a diverged B genome in AB tetraploids, and it is confirmed that no extant A-genome diploids, including A. canariensis, are similar enough to the D genome of tetraploid and hexaploid oat to warrant consideration as a D-genome diploid.

  2. Cancer systems biology in the genome sequencing era: part 2, evolutionary dynamics of tumor clonal networks and drug resistance.

    Science.gov (United States)

    Wang, Edwin; Zou, Jinfeng; Zaman, Naif; Beitel, Lenore K; Trifiro, Mark; Paliouras, Miltiadis

    2013-08-01

    A tumor often consists of multiple cell subpopulations (clones). Current chemo-treatments often target one clone of a tumor. Although the drug kills that clone, other clones overtake it and the tumor recurs. Genome sequencing and computational analysis allows to computational dissection of clones from tumors, while singe-cell genome sequencing including RNA-Seq allows profiling of these clones. This opens a new window for treating a tumor as a system in which clones are evolving. Future cancer systems biology studies should consider a tumor as an evolving system with multiple clones. Therefore, topics discussed in Part 2 of this review include evolutionary dynamics of clonal networks, early-warning signals (e.g., genome duplication events) for formation of fast-growing clones, dissecting tumor heterogeneity, and modeling of clone-clone-stroma interactions for drug resistance. The ultimate goal of the future systems biology analysis is to obtain a 'whole-system' understanding of a tumor and therefore provides a more efficient and personalized management strategies for cancer patients. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  3. TIMP-1 expression in human colorectal cancer is associated with TGF-B1, LOXL2, INHBA1, TNF-AIP6 and TIMP-2 transcript profiles

    DEFF Research Database (Denmark)

    Offenberg, Hanne Kjær; Brunner, Nils; Mansilla, Francisco

    2008-01-01

    -regulated in CRC samples compared with normal tissue, while TIMP-2 was down-regulated. Eight MMPs were up-regulated in CRC compared with normal tissue. Correlating up-regulated genes with the TIMP-1 transcript, we identified 13 that were also up-regulated in cancerous tissue. Among these were genes associated...... it is regulated. To further elucidate potential mechanisms of regulation of this protein, we did a number of experiments to look at associations between the transcript profile of TIMP-1 with known matrix metalloproteinases (MMPs) as well as with expression profiles of other genes differentially regulated in human...... colorectal cancer (CRC) and the other TIMPs 2-4, which have also been associated with the progression of colorectal cancer. Genome-wide expression profiling of 172 CRC and normal mucosa samples was used to identify transcript changes for the genes under investigation. We found that TIMP-1 was up...

  4. [Gastric cancer: epidemiologic profile 2001-2007 in Lima, Peru].

    Science.gov (United States)

    Chirinos, Jesús L; Carbajal, Luz A; Segura, María D; Combe, J; Akiba, S

    2012-01-01

    To describe and compare the demographic and social characteristics as well as lifestyles of patients with gastric cancer against patients with other important gastric disorders, who attended at main reference health services in Lima, Peru. Case control study, matched by sex and age + 2 years, applying a questionnaire to 96 cases with gastric cancer, and to 96 controls from September 2001 to November 2007. There were no significant differences about ethnicity; marital status; exposure to minerals, wood, and metal dusts; tobacco and alcohol; red meat consumption; salt addition; food temperature. 87, 5% of the control group had lesions in the gastric antrum, and 73% of cases group had a tubular adenocarcinoma (56%) in the gastric antrum. There was no family history of cancer in 85% patients of cases group and 59% of controls, (with significant difference). There were significant differences in low scholarship level of cases, as well as for their mothers and fathers (OR 3.75, 3.9, and 3.49 respectively), fruit or vegetables intake, milk or cheese consumption (minus of once a day) (OR 2, 3, 2, 57 and 2, 9 respectively), type of fuel for cooking (firewood, charcoal, and kerosene OR 5, 25), lack of use of refrigerator (OR 8, 4). The profile of a gastric cancer patient was to proceed from the Andean zone (high altitude +3000 meters over sea level) and jungle, low education level (low socioeconomic level), low consumption of fruits, vegetables and milk, use of firewood, charcoal, or kerosene to cook, and no use of refrigerator. The most frequent histological diagnosis in the case group was tubular adenocarcinoma.

  5. A Quantitative Profiling Tool for Diverse Genomic Data Types Reveals Potential Associations between Chromatin and Pre-mRNA Processing.

    Science.gov (United States)

    Kremsky, Isaac; Bellora, Nicolás; Eyras, Eduardo

    2015-01-01

    High-throughput sequencing, and genome-based datasets in general, are often represented as profiles centered at reference points to study the association of protein binding and other signals to particular regulatory mechanisms. Although these profiles often provide compelling evidence of these associations, they do not provide a quantitative assessment of the enrichment, which makes the comparison between signals and conditions difficult. In addition, a number of biases can confound profiles, but are rarely accounted for in the tools currently available. We present a novel computational method, ProfileSeq, for the quantitative assessment of biological profiles to provide an exact, nonparametric test that specific regions of the test profile have higher or lower signal densities than a control set. The method is applicable to high-throughput sequencing data (ChIP-Seq, GRO-Seq, CLIP-Seq, etc.) and to genome-based datasets (motifs, etc.). We validate ProfileSeq by recovering and providing a quantitative assessment of several results reported before in the literature using independent datasets. We show that input signal and mappability have confounding effects on the profile results, but that normalizing the signal by input reads can eliminate these biases while preserving the biological signal. Moreover, we apply ProfileSeq to ChIP-Seq data for transcription factors, as well as for motif and CLIP-Seq data for splicing factors. In all examples considered, the profiles were robust to biases in mappability of sequencing reads. Furthermore, analyses performed with ProfileSeq reveal a number of putative relationships between transcription factor binding to DNA and splicing factor binding to pre-mRNA, adding to the growing body of evidence relating chromatin and pre-mRNA processing. ProfileSeq provides a robust way to quantify genome-wide coordinate-based signal. Software and documentation are freely available for academic use at https://bitbucket.org/regulatorygenomicsupf/profileseq/.

  6. A Quantitative Profiling Tool for Diverse Genomic Data Types Reveals Potential Associations between Chromatin and Pre-mRNA Processing.

    Directory of Open Access Journals (Sweden)

    Isaac Kremsky

    Full Text Available High-throughput sequencing, and genome-based datasets in general, are often represented as profiles centered at reference points to study the association of protein binding and other signals to particular regulatory mechanisms. Although these profiles often provide compelling evidence of these associations, they do not provide a quantitative assessment of the enrichment, which makes the comparison between signals and conditions difficult. In addition, a number of biases can confound profiles, but are rarely accounted for in the tools currently available. We present a novel computational method, ProfileSeq, for the quantitative assessment of biological profiles to provide an exact, nonparametric test that specific regions of the test profile have higher or lower signal densities than a control set. The method is applicable to high-throughput sequencing data (ChIP-Seq, GRO-Seq, CLIP-Seq, etc. and to genome-based datasets (motifs, etc.. We validate ProfileSeq by recovering and providing a quantitative assessment of several results reported before in the literature using independent datasets. We show that input signal and mappability have confounding effects on the profile results, but that normalizing the signal by input reads can eliminate these biases while preserving the biological signal. Moreover, we apply ProfileSeq to ChIP-Seq data for transcription factors, as well as for motif and CLIP-Seq data for splicing factors. In all examples considered, the profiles were robust to biases in mappability of sequencing reads. Furthermore, analyses performed with ProfileSeq reveal a number of putative relationships between transcription factor binding to DNA and splicing factor binding to pre-mRNA, adding to the growing body of evidence relating chromatin and pre-mRNA processing. ProfileSeq provides a robust way to quantify genome-wide coordinate-based signal. Software and documentation are freely available for academic use at https://bitbucket.org/regulatorygenomicsupf/profileseq/.

  7. Prediction of Phenotypic Antimicrobial Resistance Profiles From Whole Genome Sequences of Non-typhoidal Salmonella enterica.

    Science.gov (United States)

    Neuert, Saskia; Nair, Satheesh; Day, Martin R; Doumith, Michel; Ashton, Philip M; Mellor, Kate C; Jenkins, Claire; Hopkins, Katie L; Woodford, Neil; de Pinna, Elizabeth; Godbole, Gauri; Dallman, Timothy J

    2018-01-01

    Surveillance of antimicrobial resistance (AMR) in non-typhoidal Salmonella enterica (NTS), is essential for monitoring transmission of resistance from the food chain to humans, and for establishing effective treatment protocols. We evaluated the prediction of phenotypic resistance in NTS from genotypic profiles derived from whole genome sequencing (WGS). Genes and chromosomal mutations responsible for phenotypic resistance were sought in WGS data from 3,491 NTS isolates received by Public Health England's Gastrointestinal Bacteria Reference Unit between April 2014 and March 2015. Inferred genotypic AMR profiles were compared with phenotypic susceptibilities determined for fifteen antimicrobials using EUCAST guidelines. Discrepancies between phenotypic and genotypic profiles for one or more antimicrobials were detected for 76 isolates (2.18%) although only 88/52,365 (0.17%) isolate/antimicrobial combinations were discordant. Of the discrepant results, the largest number were associated with streptomycin (67.05%, n = 59). Pan-susceptibility was observed in 2,190 isolates (62.73%). Overall, resistance to tetracyclines was most common (26.27% of isolates, n = 917) followed by sulphonamides (23.72%, n = 828) and ampicillin (21.43%, n = 748). Multidrug resistance (MDR), i.e., resistance to three or more antimicrobial classes, was detected in 848 isolates (24.29%) with resistance to ampicillin, streptomycin, sulphonamides and tetracyclines being the most common MDR profile ( n = 231; 27.24%). For isolates with this profile, all but one were S . Typhimurium and 94.81% ( n = 219) had the resistance determinants bla TEM-1, strA-strB, sul2 and tet (A). Extended-spectrum β-lactamase genes were identified in 41 isolates (1.17%) and multiple mutations in chromosomal genes associated with ciprofloxacin resistance in 82 isolates (2.35%). This study showed that WGS is suitable as a rapid means of determining AMR patterns of NTS for public health surveillance.

  8. GENIPAC: A Genomic Information Portal for Head and Neck Cancer Cell Systems.

    Science.gov (United States)

    Lee, B K B; Gan, C P; Chang, J K; Tan, J L; Fadlullah, M Z; Abdul Rahman, Z A; Prime, S S; Gutkind, J S; Liew, C S; Khang, T F; Tan, A C; Cheong, S C

    2018-03-01

    Head and neck cancer (HNC)-derived cell lines represent fundamental models for studying the biological mechanisms underlying cancer development and precision therapies. However, mining the genomic information of HNC cells from available databases requires knowledge on bioinformatics and computational skill sets. Here, we developed a user-friendly web resource for exploring, visualizing, and analyzing genomics information of commonly used HNC cell lines. We populated the current version of GENIPAC with 44 HNC cell lines from 3 studies: ORL Series, OPC-22, and H Series. Specifically, the mRNA expressions for all the 3 studies were derived with RNA-seq. The copy number alterations analysis of ORL Series was performed on the Genome Wide Human Cytoscan HD array, while copy number alterations for OPC-22 were derived from whole exome sequencing. Mutations from ORL Series and H Series were derived from RNA-seq information, while OPC-22 was based on whole exome sequencing. All genomic information was preprocessed with customized scripts and underwent data validation and correction through data set validator tools provided by cBioPortal. The clinical and genomic information of 44 HNC cell lines are easily assessable in GENIPAC. The functional utility of GENIPAC was demonstrated with some of the genomic alterations that are commonly reported in HNC, such as TP53, EGFR, CCND1, and PIK3CA. We showed that these genomic alterations as reported in The Cancer Genome Atlas database were recapitulated in the HNC cell lines in GENIPAC. Importantly, genomic alterations within pathways could be simultaneously visualized. We developed GENIPAC to create access to genomic information on HNC cell lines. This cancer omics initiative will help the research community to accelerate better understanding of HNC and the development of new precision therapeutic options for HNC treatment. GENIPAC is freely available at http://genipac.cancerresearch.my/ .

  9. Influencing Genomic Change and Cancer Disparities through Neighborhood Chronic Toxic Stress Exposure: A Research Framework.

    Science.gov (United States)

    DeGuzman, Pamela B; Schminkey, Donna L

    2016-11-01

    Black Americans have disproportionately higher incidence and mortality rates for many cancers. These disparities may be related to genomic changes that occur from exposure to chronic toxic stress and may result from conditions associated with living in racially segregated neighborhoods with high rates of concentrated poverty. The purpose of this article is to present a nursing research framework for developing and testing neighborhood-level interventions that have the potential to mitigate exposure to neighborhood-associated chronic toxic stress, improve individual-level genomic sequelae and cancer outcomes, and reduce cancer health disparities of Black Americans. Public health nursing researchers should collaborate with local officials to determine ways to reduce neighborhood-level stress. Intermediate outcomes can be measured using genomic or other stress biomarkers, and long-term outcomes can be measured by evaluating population-level cancer incidence and mortality. © 2016 Wiley Periodicals, Inc.

  10. The Cancer Genomics Cloud: Collaborative, Reproducible, and Democratized-A New Paradigm in Large-Scale Computational Research.

    Science.gov (United States)

    Lau, Jessica W; Lehnert, Erik; Sethi, Anurag; Malhotra, Raunaq; Kaushik, Gaurav; Onder, Zeynep; Groves-Kirkby, Nick; Mihajlovic, Aleksandar; DiGiovanna, Jack; Srdic, Mladen; Bajcic, Dragan; Radenkovic, Jelena; Mladenovic, Vladimir; Krstanovic, Damir; Arsenijevic, Vladan; Klisic, Djordje; Mitrovic, Milan; Bogicevic, Igor; Kural, Deniz; Davis-Dusenbery, Brandi

    2017-11-01

    The Seven Bridges Cancer Genomics Cloud (CGC; www.cancergenomicscloud.org) enables researchers to rapidly access and collaborate on massive public cancer genomic datasets, including The Cancer Genome Atlas. It provides secure on-demand access to data, analysis tools, and computing resources. Researchers from diverse backgrounds can easily visualize, query, and explore cancer genomic datasets visually or programmatically. Data of interest can be immediately analyzed in the cloud using more than 200 preinstalled, curated bioinformatics tools and workflows. Researchers can also extend the functionality of the platform by adding their own data and tools via an intuitive software development kit. By colocalizing these resources in the cloud, the CGC enables scalable, reproducible analyses. Researchers worldwide can use the CGC to investigate key questions in cancer genomics. Cancer Res; 77(21); e3-6. ©2017 AACR . ©2017 American Association for Cancer Research.

  11. Genome-wide association study identifies novel breast cancer susceptibility loci

    OpenAIRE

    Easton, Douglas F.; Pooley, Karen A.; Dunning, Alison M.; Pharoah, Paul D. P.; Thompson, Deborah; Ballinger, Dennis G.; Struewing, Jeffery P.; Morrison, Jonathan; Field, Helen; Luben, Robert; Wareham, Nicholas; Ahmed, Shahana; Healey, Catherine S.; Bowman, Richard; Meyer, Kerstin B.

    2007-01-01

    Breast cancer exhibits familial aggregation, consistent with variation in genetic susceptibility to the disease. Known susceptibility genes account for less than 25% of the familial risk of breast cancer, and the residual genetic variance is likely to be due to variants conferring more moderate risks. To identify further susceptibility alleles, we conducted a two-stage genome-wide association study in 4,398 breast cancer cases and 4,316 controls, followed by a third stage in which 30 single n...

  12. Genome-Wide Expression Profiling of Five Mouse Models Identifies Similarities and Differences with Human Psoriasis

    Science.gov (United States)

    Swindell, William R.; Johnston, Andrew; Carbajal, Steve; Han, Gangwen; Wohn, Christian; Lu, Jun; Xing, Xianying; Nair, Rajan P.; Voorhees, John J.; Elder, James T.; Wang, Xiao-Jing; Sano, Shigetoshi; Prens, Errol P.; DiGiovanni, John; Pittelkow, Mark R.; Ward, Nicole L.; Gudjonsson, Johann E.

    2011-01-01

    Development of a suitable mouse model would facilitate the investigation of pathomechanisms underlying human psoriasis and would also assist in development of therapeutic treatments. However, while many psoriasis mouse models have been proposed, no single model recapitulates all features of the human disease, and standardized validation criteria for psoriasis mouse models have not been widely applied. In this study, whole-genome transcriptional profiling is used to compare gene expression patterns manifested by human psoriatic skin lesions with those that occur in five psoriasis mouse models (K5-Tie2, imiquimod, K14-AREG, K5-Stat3C and K5-TGFbeta1). While the cutaneous gene expression profiles associated with each mouse phenotype exhibited statistically significant similarity to the expression profile of psoriasis in humans, each model displayed distinctive sets of similarities and differences in comparison to human psoriasis. For all five models, correspondence to the human disease was strong with respect to genes involved in epidermal development and keratinization. Immune and inflammation-associated gene expression, in contrast, was more variable between models as compared to the human disease. These findings support the value of all five models as research tools, each with identifiable areas of convergence to and divergence from the human disease. Additionally, the approach used in this paper provides an objective and quantitative method for evaluation of proposed mouse models of psoriasis, which can be strategically applied in future studies to score strengths of mouse phenotypes relative to specific aspects of human psoriasis. PMID:21483750

  13. The landscape of genomic alterations across childhood cancers

    NARCIS (Netherlands)

    Gröbner, Susanne N.; Worst, Barbara C.; Weischenfeldt, Joachim; Buchhalter, Ivo; Kleinheinz, Kortine; Rudneva, Vasilisa A.; Johann, Pascal D.; Balasubramanian, Gnana Prakash; Segura-Wang, Maia; Brabetz, Sebastian; Bender, Sebastian; Hutter, Barbara; Sturm, Dominik; Pfaff, Elke; Hübschmann, Daniel; Zipprich, Gideon; Heinold, Michael; Eils, Jürgen; Lawerenz, Christian; Erkek, Serap; Lambo, Sander; Waszak, Sebastian; Blattmann, Claudia; Borkhardt, Arndt; Kuhlen, Michaela; Eggert, Angelika; Fulda, Simone; Gessler, Manfred; Wegert, Jenny; Kappler, Roland; Baumhoer, Daniel; Burdach, Stefan; Kirschner-Schwabe, Renate; Kontny, Udo; Kulozik, Andreas E.; Lohmann, Dietmar; Hettmer, Simone; Eckert, Cornelia; Bielack, Stefan; Nathrath, Michaela; Niemeyer, Charlotte; Richter, Günther H.; Schulte, Johannes; Siebert, Reiner; Westermann, Frank; Molenaar, Jan J.; Vassal, Gilles; Witt, Hendrik; Burkhardt, Birgit; Kratz, Christian P.; Witt, Olaf; van Tilburg, Cornelis M.; Kramm, Christof M.; Fleischhack, Gudrun; Dirksen, Uta; Rutkowski, Stefan; Frühwald, Michael; von Hoff, Katja; Wolf, Stephan; Klingebiel, Thomas; Koscielniak, Ewa; Landgraf, Pablo; Koster, Jan; Resnick, Adam C.; Zhang, Jinghui; Liu, Yanling; Zhou, Xin; Waanders, Angela J.; Zwijnenburg, Danny A.; Raman, Pichai; Brors, Benedikt; Weber, Ursula D.; Northcott, Paul A.; Pajtler, Kristian W.; Kool, Marcel; Piro, Rosario M.; Korbel, Jan O.; Schlesner, Matthias; Eils, Roland; Jones, David T. W.; Lichter, Peter; Chavez, Lukas; Zapatka, Marc; Pfister, Stefan M.; Weber, Ursula; Korshunov, Andrey; Pfister, Stefan; Reifenberger, Guido; Felsberg, Jörg; von Kalle, Christof; Schmidt, Manfred; Bartholomä, Cynthia; Taylor, Michael; Jones, David; Jäger, Natalie; Korbel, Jan; Stütz, Adrian; Rausch, Tobias; Radlwimmer, Bernhard; Yaspo, Marie-Laure; Lehrach, Hans; Warnatz, Hans-Jörg; Wagner, Susanne; Haake, Andrea; Richter, Julia; Richter, Gesine; Lawerenz, Chris; Kerssemakers, Jules; Jaeger-Schmidt, Christina; Scholz, Ingrid; Bergmann, Anke K.; Borst, Christoph; Claviez, Alexander; Dreyling, Martin; Eberth, Sonja; Einsele, Hermann; Frickhofen, Norbert; Haas, Siegfried; Hansmann, Martin-Leo; Karsch, Dennis; Kneba, Michael; Lisfeld, Jasmin; Mantovani-Löffler, Luisa; Rohde, Marius; Ott, German; Stadler, Christina; Staib, Peter; Stilgenbauer, Stephan; Trümper, Lorenz; Zenz, Thorsten; Kube, Dieter; Küppers, Ralf; Weniger, Marc; Hummel, Michael; Klapper, Wolfram; Kostezka, Ulrike; Lenze, Dido; Möller, Peter; Rosenwald, Andreas; Szczepanowski, Monika; Ammerpohl, Ole; Aukema, Sietse M.; Binder, Vera; Hoell, Jessica I.; Leich, Ellen; López, Cristina; Nagel, Inga; Pischimariov, Jordan; Rosenstiel, Philip; Schilhabel, Markus; Schreiber, Stefan; Vater, Inga; Wagener, Rabea; Bernhart, Stephan H.; Binder, Hans; Doose, Gero; Hoffmann, Steve; Hopp, Lydia; Kretzmer, Helene; Kreuz, Markus; Langenberger, David; Loeffler, Markus; Rosolowski, Maciej; Stadler, Peter F.; Sungalee, Stephanie

    2018-01-01

    Pan-cancer analyses that examine commonalities and differences among various cancer types have emerged as a powerful way to obtain novel insights into cancer biology. Here we present a comprehensive analysis of genetic alterations in a pan-cancer cohort including 961 tumours from children,

  14. Significant overlap between human genome-wide association-study nominated breast cancer risk alleles and rat mammary cancer susceptibility loci.

    Science.gov (United States)

    Sanders, Jennifer; Samuelson, David J

    2014-01-27

    Human population-based genome-wide association (GWA) studies identify low penetrance breast cancer risk alleles; however, GWA studies alone do not definitively determine causative genes or mechanisms. Stringent genome- wide statistical significance level requirements, set to avoid false-positive associations, yield many false-negative associations. Laboratory rats (Rattus norvegicus) are useful to study many aspects of breast cancer, including genetic susceptibility. Several rat mammary cancer associated loci have been identified using genetic linkage and congenic strain based-approaches. Here, we sought to determine the amount of overlap between GWA study nominated human breast and rat mammary cancer susceptibility loci. We queried published GWA studies to identify two groups of SNPs, one that reached genome-wide significance and one comprised of SNPs failing a validation step and not reaching genome- wide significance. Human genome locations of these SNPs were compared to known rat mammary carcinoma susceptibility loci to determine if risk alleles existed in both species. Rat genome regions not known to associate with mammary cancer risk were randomly selected as control regions. Significantly more human breast cancer risk GWA study nominated SNPs mapped at orthologs of rat mammary cancer loci than to regions not known to contain rat mammary cancer loci. The rat genome was useful to predict associations that had met human genome-wide significance criteria and weaker associations that had not. Integration of human and rat comparative genomics may be useful to parse out false-negative associations in GWA studies of breast cancer risk.

  15. Whole-genome gene expression profiling of formalin-fixed, paraffin-embedded tissue samples.

    Directory of Open Access Journals (Sweden)

    Craig April

    2009-12-01

    Full Text Available We have developed a gene expression assay (Whole-Genome DASL, capable of generating whole-genome gene expression profiles from degraded samples such as formalin-fixed, paraffin-embedded (FFPE specimens.We demonstrated a similar level of sensitivity in gene detection between matched fresh-frozen (FF and FFPE samples, with the number and overlap of probes detected in the FFPE samples being approximately 88% and 95% of that in the corresponding FF samples, respectively; 74% of the differentially expressed probes overlapped between the FF and FFPE pairs. The WG-DASL assay is also able to detect 1.3-1.5 and 1.5-2 -fold changes in intact and FFPE samples, respectively. The dynamic range for the assay is approximately 3 logs. Comparing the WG-DASL assay with an in vitro transcription-based labeling method yielded fold-change correlations of R(2 approximately 0.83, while fold-change comparisons with quantitative RT-PCR assays yielded R(2 approximately 0.86 and R(2 approximately 0.55 for intact and FFPE samples, respectively. Additionally, the WG-DASL assay yielded high self-correlations (R(2>0.98 with low intact RNA inputs ranging from 1 ng to 100 ng; reproducible expression profiles were also obtained with 250 pg total RNA (R(2 approximately 0.92, with approximately 71% of the probes detected in 100 ng total RNA also detected at the 250 pg level. When FFPE samples were assayed, 1 ng total RNA yielded self-correlations of R(2 approximately 0.80, while still maintaining a correlation of R(2 approximately 0.75 with standard FFPE inputs (200 ng.Taken together, these results show that WG-DASL assay provides a reliable platform for genome-wide expression profiling in archived materials. It also possesses utility within clinical settings where only limited quantities of samples may be available (e.g. microdissected material or when minimally invasive procedures are performed (e.g. biopsied specimens.

  16. Investigating a multigene prognostic assay based on significant pathways for Luminal A breast cancer through gene expression profile analysis.

    Science.gov (United States)

    Gao, Haiyan; Yang, Mei; Zhang, Xiaolan

    2018-04-01

    The present study aimed to investigate potential recurrence-risk biomarkers based on significant pathways for Luminal A breast cancer through gene expression profile analysis. Initially, the gene expression profiles of Luminal A breast cancer patients were downloaded from The Cancer Genome Atlas database. The differentially expressed genes (DEGs) were identified using a Limma package and the hierarchical clustering analysis was conducted for the DEGs. In addition, the functional pathways were screened using Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses and rank ratio calculation. The multigene prognostic assay was exploited based on the statistically significant pathways and its prognostic function was tested using train set and verified using the gene expression data and survival data of Luminal A breast cancer patients downloaded from the Gene Expression Omnibus. A total of 300 DEGs were identified between good and poor outcome groups, including 176 upregulated genes and 124 downregulated genes. The DEGs may be used to effectively distinguish Luminal A samples with different prognoses verified by hierarchical clustering analysis. There were 9 pathways screened as significant pathways and a total of 18 DEGs involved in these 9 pathways were identified as prognostic biomarkers. According to the survival analysis and receiver operating characteristic curve, the obtained 18-gene prognostic assay exhibited good prognostic function with high sensitivity and specificity to both the train and test samples. In conclusion the 18-gene prognostic assay including the key genes, transcription factor 7-like 2, anterior parietal cortex and lymphocyte enhancer factor-1 may provide a new method for predicting outcomes and may be conducive to the promotion of precision medicine for Luminal A breast cancer.

  17. The Dual Roles of MYC in Genomic Instability and Cancer Chemoresistance

    Science.gov (United States)

    Kumari, Alpana; Folk, Watson P.; Sakamuro, Daitoku

    2017-01-01

    Cancer is associated with genomic instability and aging. Genomic instability stimulates tumorigenesis, whereas deregulation of oncogenes accelerates DNA replication and increases genomic instability. It is therefore reasonable to assume a positive feedback loop between genomic instability and oncogenic stress. Consistent with this premise, overexpression of the MYC transcription factor increases the phosphorylation of serine 139 in histone H2AX (member X of the core histone H2A family), which forms so-called γH2AX, the most widely recognized surrogate biomarker of double-stranded DNA breaks (DSBs). Paradoxically, oncogenic MYC can also promote the resistance of cancer cells to chemotherapeutic DNA-damaging agents such as cisplatin, clearly implying an antagonistic role of MYC in genomic instability. In this review, we summarize the underlying mechanisms of the conflicting functions of MYC in genomic instability and discuss when and how the oncoprotein exerts the contradictory roles in induction of DSBs and protection of cancer-cell genomes. PMID:28590415

  18. Comparative Genomics of Methanopyrus sp. SNP6 and KOL6 Revealing Genomic Regions of Plasticity Implicated in Extremely Thermophilic Profiles

    Directory of Open Access Journals (Sweden)

    Zhiliang Yu

    2017-07-01

    Full Text Available Methanopyrus spp. are usually isolated from harsh niches, such as high osmotic pressure and extreme temperature. However, the molecular mechanisms for their environmental adaption are poorly understood. Archaeal species is commonly considered as primitive organism. The evolutional placement of archaea is a fundamental and intriguing scientific question. We sequenced the genomes of Methanopyrus strains SNP6 and KOL6 isolated from the Atlantic and Iceland, respectively. Comparative genomic analysis revealed genetic diversity and instability implicated in niche adaption, including a number of transporter- and integrase/transposase-related genes. Pan-genome analysis also defined the gene pool of Methanopyrus spp., in addition of ~120-Kb genomic region of plasticity impacting cognate genomic architecture. We believe that Methanopyrus genomics could facilitate efficient investigation/recognition of archaeal phylogenetic diverse patterns, as well as improve understanding of biological roles and significance of these versatile microbes.

  19. Novel clinico-genome network modeling for revolutionizing genotype-phenotype-based personalized cancer care.

    Science.gov (United States)

    Roukos, Dimitrios H

    2010-01-01

    Although cancer heterogeneity, even within individual tumors with different treatment responses of subcloncal cells populations, suggests the need for personalized medicine, most funding and efforts go to conventional single gene-based research and comparative-effectiveness research. Cancer arises from changes in the DNA sequence in the genomes of cancer cells. These accelerating somatic mutations dysregulate signaling pathways, including EGFR, Wnt/Notch, Hedgehog and others, with a central role in cell growth, proliferation, survival, angiogenesis and metastasis. All of these genetic alterations can now be discovered using next-generation DNA sequencing technology. This high-throughput technology can achieve two major goals: first, to complete the catalogue of driver mutations, including point mutations, rearrangements and copy-number changes, by full and targeted sequencing; and second, to explore the functional role of cancer genes and their interactions by genome-wide RNA, serial analysis of gene expression, microRNAs, protein-DNA interactions, and comprehensive analyses of transcriptomes and interactomes. This review article discusses the challenges, including costs, in completing the catalogue of driver mutations for each cancer type and understanding how cancer genomes operate as whole biological systems. Now high-quality clinical treatment and outcomes (death or survival) data from biobanks, and extensive genetics and genomics data for some common tumors, including breast, colorectal and pancreatic cancer, are available. In this article, we will describe how all these clinical and genetics data could be integrated into reverse engineering-based network modeling to approach the extremely complex genotype-phenotype map. This clinico-genome systems model, published for the first time, opens the way for the discovery of new molecular innovations, both predictive markers and therapies, towards personalized treatment of cancer. Instead of the comparative

  20. Genome-wide association study of susceptibility loci for breast cancer in Sardinian population

    International Nuclear Information System (INIS)

    Palomba, Grazia; Loi, Angela; Porcu, Eleonora; Cossu, Antonio; Zara, Ilenia

    2015-01-01

    Despite progress in identifying genes associated with breast cancer, many more risk loci exist. Genome-wide association analyses in genetically-homogeneous populations, such as that of Sardinia (Italy), could represent an additional approach to detect low penetrance alleles. We performed a genome-wide association study comparing 1431 Sardinian patients with non-familial, BRCA1/2-mutation-negative breast cancer to 2171 healthy Sardinian blood donors. DNA was genotyped using GeneChip Human Mapping 500 K Arrays or Genome-Wide Human SNP Arrays 6.0. To increase genomic coverage, genotypes of additional SNPs were imputed using data from HapMap Phase II. After quality control filtering of genotype data, 1367 cases (9 men) and 1658 controls (1156 men) were analyzed on a total of 2,067,645 SNPs. Overall, 33 genomic regions (67 candidate SNPs) were associated with breast cancer risk at the p < 10 −6 level. Twenty of these regions contained defined genes, including one already associated with breast cancer risk: TOX3. With a lower threshold for preliminary significance to p < 10 −5 , we identified 11 additional SNPs in FGFR2, a well-established breast cancer-associated gene. Ten candidate SNPs were selected, excluding those already associated with breast cancer, for technical validation as well as replication in 1668 samples from the same population. Only SNP rs345299, located in intron 1 of VAV3, remained suggestively associated (p-value, 1.16x10 −5 ), but it did not associate with breast cancer risk in pooled data from two large, mixed-population cohorts. This study indicated the role of TOX3 and FGFR2 as breast cancer susceptibility genes in BRCA1/2-wild-type breast cancer patients from Sardinian population. The online version of this article (doi:10.1186/s12885-015-1392-9) contains supplementary material, which is available to authorized users

  1. Genome-wide association study of susceptibility loci for breast cancer in Sardinian population.

    Science.gov (United States)

    Palomba, Grazia; Loi, Angela; Porcu, Eleonora; Cossu, Antonio; Zara, Ilenia; Budroni, Mario; Dei, Mariano; Lai, Sandra; Mulas, Antonella; Olmeo, Nina; Ionta, Maria Teresa; Atzori, Francesco; Cuccuru, Gianmauro; Pitzalis, Maristella; Zoledziewska, Magdalena; Olla, Nazario; Lovicu, Mario; Pisano, Marina; Abecasis, Gonçalo R; Uda, Manuela; Tanda, Francesco; Michailidou, Kyriaki; Easton, Douglas F; Chanock, Stephen J; Hoover, Robert N; Hunter, David J; Schlessinger, David; Sanna, Serena; Crisponi, Laura; Palmieri, Giuseppe

    2015-05-10

    Despite progress in identifying genes associated with breast cancer, many more risk loci exist. Genome-wide association analyses in genetically-homogeneous populations, such as that of Sardinia (Italy), could represent an additional approach to detect low penetrance alleles. We performed a genome-wide association study comparing 1431 Sardinian patients with non-familial, BRCA1/2-mutation-negative breast cancer to 2171 healthy Sardinian blood donors. DNA was genotyped using GeneChip Human Mapping 500 K Arrays or Genome-Wide Human SNP Arrays 6.0. To increase genomic coverage, genotypes of additional SNPs were imputed using data from HapMap Phase II. After quality control filtering of genotype data, 1367 cases (9 men) and 1658 controls (1156 men) were analyzed on a total of 2,067,645 SNPs. Overall, 33 genomic regions (67 candidate SNPs) were associated with breast cancer risk at the p <  0(-6) level. Twenty of these regions contained defined genes, including one already associated with breast cancer risk: TOX3. With a lower threshold for preliminary significance to p < 10(-5), we identified 11 additional SNPs in FGFR2, a well-established breast cancer-associated gene. Ten candidate SNPs were selected, excluding those already associated with breast cancer, for technical validation as well as replication in 1668 samples from the same population. Only SNP rs345299, located in intron 1 of VAV3, remained suggestively associated (p-value, 1.16 x 10(-5)), but it did not associate with breast cancer risk in pooled data from two large, mixed-population cohorts. This study indicated the role of TOX3 and FGFR2 as breast cancer susceptibility genes in BRCA1/2-wild-type breast cancer patients from Sardinian population.

  2. Methylation Profiling Defines an Extensive Field Defect in Histologically Normal Prostate Tissues Associated with Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Bing Yang

    2013-04-01

    Full Text Available Prostate cancer (PCa is typically found as a multifocal disease suggesting the potential for molecular defects within the morphologically normal tissue. The frequency and spatial extent of DNA methylation changes encompassing a potential field defect are unknown. A comparison of non-tumor-associated (NTA prostate to histologically indistinguishable tumor-associated (TA prostate tissues detected a distinct profile of DNA methylation alterations (0.2% using genome-wide DNA arrays based on the Encyclopedia of DNA Elements 18 sequence that tile both gene-rich and poor regions. Hypomethylation (87% occurred more frequently than hypermethylation (13%. Several of the most significantly altered loci (CAV1, EVX1, MCF2L, and FGF1 were then used as probes to map the extent of these DNA methylation changes in normal tissues from prostates containing cancer. In TA tissues, the extent of methylation was similar both adjacent (2 mm and at a distance (>1 cm from tumor foci. These loci were also able to distinguish NTA from TA tissues in a validation set of patient samples. These mapping studies indicate that a spatially widespread epigenetic defect occurs in the peripheral prostate tissues of men who have PCa that may be useful in the detection of this disease.

  3. The NCI Genomic Data Commons as an engine for precision medicine.

    Science.gov (United States)

    Jensen, Mark A; Ferretti, Vincent; Grossman, Robert L; Staudt, Louis M

    2017-07-27

    The National Cancer Institute Genomic Data Commons (GDC) is an information system for storing, analyzing, and sharing genomic and clinical data from patients with cancer. The recent high-throughput sequencing of cancer genomes and transcriptomes has produced a big data problem that precludes many cancer biologists and oncologists from gleaning knowledge from these data regarding the nature of malignant processes and the relationship between tumor genomic profiles and treatment response. The GDC aims to democratize access to cancer genomic data and to foster the sharing of these data to promote precision medicine approaches to the diagnosis and treatment of cancer.

  4. Integrative Genomic Analysis of Cholangiocarcinoma Identifies Distinct IDH-Mutant Molecular Profiles.

    Science.gov (United States)

    Farshidfar, Farshad; Zheng, Siyuan; Gingras, Marie-Claude; Newton, Yulia; Shih, Juliann; Robertson, A Gordon; Hinoue, Toshinori; Hoadley, Katherine A; Gibb, Ewan A; Roszik, Jason; Covington, Kyle R; Wu, Chia-Chin; Shinbrot, Eve; Stransky, Nicolas; Hegde, Apurva; Yang, Ju Dong; Reznik, Ed; Sadeghi, Sara; Pedamallu, Chandra Sekhar; Ojesina, Akinyemi I; Hess, Julian M; Auman, J Todd; Rhie, Suhn K; Bowlby, Reanne; Borad, Mitesh J; Zhu, Andrew X; Stuart, Josh M; Sander, Chris; Akbani, Rehan; Cherniack, Andrew D; Deshpande, Vikram; Mounajjed, Taofic; Foo, Wai Chin; Torbenson, Michael S; Kleiner, David E; Laird, Peter W; Wheeler, David A; McRee, Autumn J; Bathe, Oliver F; Andersen, Jesper B; Bardeesy, Nabeel; Roberts, Lewis R; Kwong, Lawrence N

    2017-03-14

    Cholangiocarcinoma (CCA) is an aggressive malignancy of the bile ducts, with poor prognosis and limited treatment options. Here, we describe the integrated analysis of somatic mutations, RNA expression, copy number, and DNA methylation by The Cancer Genome Atlas of a set of predominantly intrahepatic CCA cases and propose a molecular classification scheme. We identified an IDH mutant-enriched subtype with distinct molecular features including low expression of chromatin modifiers, elevated expression of mitochondrial genes, and increased mitochondrial DNA copy number. Leveraging the multi-platform data, we observed that ARID1A exhibited DNA hypermethylation and decreased expression in the IDH mutant subtype. More broadly, we found that IDH mutations are associated with an expanded histological spectrum of liver tumors with molecular features that stratify with CCA. Our studies reveal insights into the molecular pathogenesis and heterogeneity of cholangiocarcinoma and provide classification information of potential therapeutic significance. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Integrative Genomic Analysis of Cholangiocarcinoma Identifies Distinct IDH-Mutant Molecular Profiles

    Directory of Open Access Journals (Sweden)

    Farshad Farshidfar

    2017-03-01

    Full Text Available Cholangiocarcinoma (CCA is an aggressive malignancy of the bile ducts, with poor prognosis and limited treatment options. Here, we describe the integrated analysis of somatic mutations, RNA expression, copy number, and DNA methylation by The Cancer Genome Atlas of a set of predominantly intrahepatic CCA cases and propose a molecular classification scheme. We identified an IDH mutant-enriched subtype with distinct molecular features including low expression of chromatin modifiers, elevated expression of mitochondrial genes, and increased mitochondrial DNA copy number. Leveraging the multi-platform data, we observed that ARID1A exhibited DNA hypermethylation and decreased expression in the IDH mutant subtype. More broadly, we found that IDH mutations are associated with an expanded histological spectrum of liver tumors with molecular features that stratify with CCA. Our studies reveal insights into the molecular pathogenesis and heterogeneity of cholangiocarcinoma and provide classification information of potential therapeutic significance.

  6. Genome-wide DNA methylation profiling in cultured eutopic and ectopic endometrial stromal cells.

    Directory of Open Access Journals (Sweden)

    Yoshiaki Yamagata

    Full Text Available The objective of this study was to characterize the genome-wide DNA methylation profiles of isolated endometrial stromal cells obtained from eutopic endometria with (euESCa and without endometriosis (euESCb and ovarian endometrial cysts (choESC. Three samples were analyzed in each group. The infinium methylation array identified more hypermethylated and hypomethylated CpGs in choESC than in euESCa, and only a few genes were methylated differently in euESCa and euESCb. A functional analysis revealed that signal transduction, developmental processes, immunity, etc. were different in choESC and euESCa. A clustering analysis and a principal component analysis performed based on the methylation levels segregated choESC from euESC, while euESCa and euESCb were identical. A transcriptome analysis was then conducted and the results were compared with those of the DNA methylation analysis. Interestingly, the hierarchical clustering and principal component analyses showed that choESC were segregated from euESCa and euESCb in the DNA methylation analysis, while no segregation was recognized in the transcriptome analysis. The mRNA expression levels of the epigenetic modification enzymes, including DNA methyltransferases, obtained from the specimens were not significantly different between the groups. Some of the differentially methylated and/or expressed genes (NR5A1, STAR, STRA6 and HSD17B2, which are related with steroidogenesis, were validated by independent methods in a larger number of samples. Our findings indicate that different DNA methylation profiles exist in ectopic ESC, highlighting the benefits of genome wide DNA methylation analyses over transcriptome analyses in clarifying the development and characterization of endometriosis.

  7. Genome-wide DNA Methylation Profiling of CpG Islands in Hypospadias

    Science.gov (United States)

    Choudhry, Shweta; Deshpande, Archana; Qiao, Liang; Beckman, Kenneth; Sen, Saunak; Baskin, Laurence S.

    2013-01-01

    Purpose Hypospadias is one of the most frequent genital malformations in the male newborn, and results from abnormal penile and urethral development. The etiology of hypospadias remains largely unknown despite intensive investigations. Fetal androgens have a crucial role in genital differentiation. Recent studies have suggested that molecular mechanisms that underlie the effects of androgens on the fetus may involve disruption of epigenetic programming of gene expression during development. We assessed whether epigenetic modification of DNA methylation is associated with hypospadias in a case-control study of 12 hypospadias and 8 control subjects. Materials and Methods Genome-wide DNA methylation profiling was performed on the study subjects using the Illumina Infinium® HumanMethylation450 Bead-Chip, which enables the direct investigation of methylation status of more than 485,000 individual CpG sites throughout the genome. The methylation level at each CpG site was compared between cases and controls using the t test and logistic regression. Results We identified 14 CpG sites that were associated with hypospadias with p hypospadias using a unique and novel epigenetic approach. Our findings suggest DNA methylation patterns are useful in identifying new genes such as SCARB1 and MYBPH that may be involved in the etiology of hypospadias. PMID:22906644

  8. Chromosome scale genome assembly and transcriptome profiling of Nannochloropsis gaditana in nitrogen depletion.

    Science.gov (United States)

    Corteggiani Carpinelli, Elisa; Telatin, Andrea; Vitulo, Nicola; Forcato, Claudio; D'Angelo, Michela; Schiavon, Riccardo; Vezzi, Alessandro; Giacometti, Giorgio Mario; Morosinotto, Tomas; Valle, Giorgio

    2014-02-01

    Nannochloropsis is rapidly emerging as a model organism for the study of biofuel production in microalgae. Here, we report a high-quality genomic assembly of Nannochloropsis gaditana, consisting of large contigs, up to 500 kbp long, and scaffolds that in most cases span the entire length of the chromosomes. We identified 10646 complete genes and characterized possible alternative transcripts. The annotation of the predicted genes and the analysis of cellular processes revealed traits relevant for the genetic improvement of this organism such as genes involved in DNA recombination, RNA silencing, and cell wall synthesis. We also analyzed the modification of the transcriptional profile in nitrogen deficiency-a condition known to stimulate lipid accumulation. While the content of lipids increased, we did not detect major changes in expression of the genes involved in their biosynthesis. At the same time, we observed a very significant down-regulation of mitochondrial gene expression, suggesting that part of the Acetyl-CoA and NAD(P)H, normally oxidized through the mitochondrial respiration, would be made available for fatty acids synthesis, increasing the flux through the lipid biosynthetic pathway. Finally, we released an information resource of the genomic data of N. gaditana, available online at www.nannochloropsis.org.

  9. Genome wide profiling of Azospirillum lipoferum 4B gene expression during interaction with rice roots.

    Science.gov (United States)

    Drogue, Benoît; Sanguin, Hervé; Borland, Stéphanie; Prigent-Combaret, Claire; Wisniewski-Dyé, Florence

    2014-02-01

    Azospirillum-plant cooperation has been mainly studied from an agronomic point of view leading to a wide description of mechanisms implicated in plant growth-promoting effects. However, little is known about genetic determinants implicated in bacterial adaptation to the host plant during the transition from free-living to root-associated lifestyles. This study aims at characterizing global gene expression of Azospirillum lipoferum 4B following a 7-day-old interaction with two cultivars of Oryza sativa L. japonica (cv. Cigalon from which it was originally isolated, and cv. Nipponbare). The analysis was done on a whole genome expression array with RNA samples obtained from planktonic cells, sessile cells, and root-adhering cells. Root-associated Azospirillum cells grow in an active sessile-like state and gene expression is tightly adjusted to the host plant. Adaptation to rice seems to involve genes related to reactive oxygen species (ROS) detoxification and multidrug efflux, as well as complex regulatory networks. As revealed by the induction of genes encoding transposases, interaction with root may drive bacterial genome rearrangements. Several genes related to ABC transporters and ROS detoxification display cultivar-specific expression profiles, suggesting host specific adaptation and raising the question of A. lipoferum 4B/rice cv. Cigalon co-adaptation. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  10. Streptococcus iniae SF1: complete genome sequence, proteomic profile, and immunoprotective antigens.

    Directory of Open Access Journals (Sweden)

    Bao-cun Zhang

    Full Text Available Streptococcus iniae is a Gram-positive bacterium that is reckoned one of the most severe aquaculture pathogens. It has a broad host range among farmed marine and freshwater fish and can also cause zoonotic infection in humans. Here we report for the first time the complete genome sequence as well as the host factor-induced proteomic profile of a pathogenic S. iniae strain, SF1, a serotype I isolate from diseased fish. SF1 possesses a single chromosome of 2,149,844 base pairs, which contains 2,125 predicted protein coding sequences (CDS, 12 rRNA genes, and 45 tRNA genes. Among the protein-encoding CDS are genes involved in resource acquisition and utilization, signal sensing and transduction, carbohydrate metabolism, and defense against host immune response. Potential virulence genes include those encoding adhesins, autolysins, toxins, exoenzymes, and proteases. In addition, two putative prophages and a CRISPR-Cas system were found in the genome, the latter containing a CRISPR locus and four cas genes. Proteomic analysis detected 21 secreted proteins whose expressions were induced by host serum. Five of the serum-responsive proteins were subjected to immunoprotective analysis, which revealed that two of the proteins were highly protective against lethal S. iniae challenge when used as purified recombinant subunit vaccines. Taken together, these results provide an important molecular basis for future study of S. iniae in various aspects, in particular those related to pathogenesis and disease control.

  11. Transcription profile of Escherichia coli: genomic SELEX search for regulatory targets of transcription factors

    Science.gov (United States)

    Ishihama, Akira; Shimada, Tomohiro; Yamazaki, Yukiko

    2016-01-01

    Bacterial genomes are transcribed by DNA-dependent RNA polymerase (RNAP), which achieves gene selectivity through interaction with sigma factors that recognize promoters, and transcription factors (TFs) that control the activity and specificity of RNAP holoenzyme. To understand the molecular mechanisms of transcriptional regulation, the identification of regulatory targets is needed for all these factors. We then performed genomic SELEX screenings of targets under the control of each sigma factor and each TF. Here we describe the assembly of 156 SELEX patterns of a total of 116 TFs performed in the presence and absence of effector ligands. The results reveal several novel concepts: (i) each TF regulates more targets than hitherto recognized; (ii) each promoter is regulated by more TFs than hitherto recognized; and (iii) the binding sites of some TFs are located within operons and even inside open reading frames. The binding sites of a set of global regulators, including cAMP receptor protein, LeuO and Lrp, overlap with those of the silencer H-NS, suggesting that certain global regulators play an anti-silencing role. To facilitate sharing of these accumulated SELEX datasets with the research community, we compiled a database, ‘Transcription Profile of Escherichia coli’ (www.shigen.nig.ac.jp/ecoli/tec/). PMID:26843427

  12. Systematic evaluation of bias in microbial community profiles induced by whole genome amplification.

    Science.gov (United States)

    Direito, Susana O L; Zaura, Egija; Little, Miranda; Ehrenfreund, Pascale; Röling, Wilfred F M

    2014-03-01

    Whole genome amplification methods facilitate the detection and characterization of microbial communities in low biomass environments. We examined the extent to which the actual community structure is reliably revealed and factors contributing to bias. One widely used [multiple displacement amplification (MDA)] and one new primer-free method [primase-based whole genome amplification (pWGA)] were compared using a polymerase chain reaction (PCR)-based method as control. Pyrosequencing of an environmental sample and principal component analysis revealed that MDA impacted community profiles more strongly than pWGA and indicated that this related to species GC content, although an influence of DNA integrity could not be excluded. Subsequently, biases by species GC content, DNA integrity and fragment size were separately analysed using defined mixtures of DNA from various species. We found significantly less amplification of species with the highest GC content for MDA-based templates and, to a lesser extent, for pWGA. DNA fragmentation also interfered severely: species with more fragmented DNA were less amplified with MDA and pWGA. pWGA was unable to amplify low molecular weight DNA (< 1.5 kb), whereas MDA was inefficient. We conclude that pWGA is the most promising method for characterization of microbial communities in low-biomass environments and for currently planned astrobiological missions to Mars. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  13. Metabolic Engineering for Probiotics and their Genome-Wide Expression Profiling.

    Science.gov (United States)

    Yadav, Ruby; Singh, Puneet K; Shukla, Pratyoosh

    2018-01-01

    Probiotic supplements in food industry have attracted a lot of attention and shown a remarkable growth in this field. Metabolic engineering (ME) approaches enable understanding their mechanism of action and increases possibility of designing probiotic strains with desired functions. Probiotic microorganisms generally referred as industrially important lactic acid bacteria (LAB) which are involved in fermenting dairy products, food, beverages and produces lactic acid as final product. A number of illustrations of metabolic engineering approaches in industrial probiotic bacteria have been described in this review including transcriptomic studies of Lactobacillus reuteri and improvement in exopolysaccharide (EPS) biosynthesis yield in Lactobacillus casei LC2W. This review summaries various metabolic engineering approaches for exploring metabolic pathways. These approaches enable evaluation of cellular metabolic state and effective editing of microbial genome or introduction of novel enzymes to redirect the carbon fluxes. In addition, various system biology tools such as in silico design commonly used for improving strain performance is also discussed. Finally, we discuss the integration of metabolic engineering and genome profiling which offers a new way to explore metabolic interactions, fluxomics and probiogenomics using probiotic bacteria like Bifidobacterium spp and Lactobacillus spp. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Transcription profile of Escherichia coli: genomic SELEX search for regulatory targets of transcription factors.

    Science.gov (United States)

    Ishihama, Akira; Shimada, Tomohiro; Yamazaki, Yukiko

    2016-03-18

    Bacterial genomes are transcribed by DNA-dependent RNA polymerase (RNAP), which achieves gene selectivity through interaction with sigma factors that recognize promoters, and transcription factors (TFs) that control the activity and specificity of RNAP holoenzyme. To understand the molecular mechanisms of transcriptional regulation, the identification of regulatory targets is needed for all these factors. We then performed genomic SELEX screenings of targets under the control of each sigma factor and each TF. Here we describe the assembly of 156 SELEX patterns of a total of 116 TFs performed in the presence and absence of effector ligands. The results reveal several novel concepts: (i) each TF regulates more targets than hitherto recognized; (ii) each promoter is regulated by more TFs than hitherto recognized; and (iii) the binding sites of some TFs are located within operons and even inside open reading frames. The binding sites of a set of global regulators, including cAMP receptor protein, LeuO and Lrp, overlap with those of the silencer H-NS, suggesting that certain global regulators play an anti-silencing role. To facilitate sharing of these accumulated SELEX datasets with the research community, we compiled a database, 'Transcription Profile of Escherichia coli' (www.shigen.nig.ac.jp/ecoli/tec/). © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. Streptococcus iniae SF1: Complete Genome Sequence, Proteomic Profile, and Immunoprotective Antigens

    Science.gov (United States)

    Zhang, Bao-cun; Zhang, Jian; Sun, Li

    2014-01-01

    Streptococcus iniae is a Gram-positive bacterium that is reckoned one of the most severe aquaculture pathogens. It has a broad host range among farmed marine and freshwater fish and can also cause zoonotic infection in humans. Here we report for the first time the complete genome sequence as well as the host factor-induced proteomic profile of a pathogenic S. iniae strain, SF1, a serotype I isolate from diseased fish. SF1 possesses a single chromosome of 2,149,844 base pairs, which contains 2,125 predicted protein coding sequences (CDS), 12 rRNA genes, and 45 tRNA genes. Among the protein-encoding CDS are genes involved in resource acquisition and utilization, signal sensing and transduction, carbohydrate metabolism, and defense against host immune response. Potential virulence genes include those encoding adhesins, autolysins, toxins, exoenzymes, and proteases. In addition, two putative prophages and a CRISPR-Cas system were found in the genome, the latter containing a CRISPR locus and four cas genes. Proteomic analysis detected 21 secreted proteins whose expressions were induced by host serum. Five of the serum-responsive proteins were subjected to immunoprotective analysis, which revealed that two of the proteins were highly protective against lethal S. iniae challenge when used as purified recombinant subunit vaccines. Taken together, these results provide an important molecular basis for future study of S. iniae in various aspects, in particular those related to pathogenesis and disease control. PMID:24621602

  16. Expression profiling of long non-coding RNA identifies linc-RoR as a prognostic biomarker in oral cancer.

    Science.gov (United States)

    Arunkumar, Ganesan; Deva Magendhra Rao, Arunagiri Kuha; Manikandan, Mayakannan; Arun, Kanagaraj; Vinothkumar, Vilvanathan; Revathidevi, Sundaramoorthy; Rajkumar, Kottayasamy Seenivasagam; Rajaraman, Ramamurthy; Munirajan, Arasambattu Kannan

    2017-04-01

    Oral squamous cell carcinoma is the most aggressive cancer that is associated with high recurrence, metastasis, and poor treatment outcome. Dysregulation of long non-coding RNAs has been shown to promote tumor growth and metastasis in several cancers. In this study, we investigated the expression of 11 selected long non-coding RNAs that are associated with cell proliferation, metastasis, and tumor suppression in oral squamous cell carcinomas and normal tissues by quantitative real-time polymerase chain reaction. Out of the 11 long non-coding RNAs profiled, 9 were significantly overexpressed in tumors with tobacco chewing history. Moreover, the long non-coding RNA profile was similar to the head and neck cancer datasets of The Cancer Genome Atlas database. Linc-RoR, a regulator of reprogramming, implicated in tumorigenesis was found to be overexpressed in undifferentiated tumors and showed strong association with tumor recurrence and poor therapeutic response. In oral squamous cell carcinomas, for the first time, we observed linc-RoR overexpression, downregulation of miR-145-5p, and overexpression of c-Myc, Klf4, Oct4, and Sox2, suggesting the existence of linc-RoR-mediated competing endogenous RNA network in undifferentiated tumors. Taken together, this study demonstrated the association of linc-RoR overexpression in undifferentiated oral tumors and its prognostic value to predict the therapeutic response.

  17. Genome Study Yields Clues to Head and Neck Cancers

    Science.gov (United States)

    Researchers have surveyed the genetic changes in nearly 300 head and neck cancers, revealing some previously unknown alterations that may play a role in the disease, including in patients whose cancer is associated with the human papillomavirus (HPV).

  18. Hypermethylation of genomic 3.3-kb repeats is frequent event in HPV-positive cervical cancer

    Directory of Open Access Journals (Sweden)

    Kisseljova Natalia P

    2009-05-01

    Full Text Available Abstract Background Large-scale screening methods are widely used to reveal cancer-specific DNA methylation markers. We previously identified non-satellite 3.3-kb repeats associated with facioscapulohumeral muscular dystrophy (FSHD as hypermethylated in cervical cancer in genome-wide screening. To determine whether hypermethylation of 3.3-kb repeats is a tumor-specific event and to evaluate frequency of this event in tumors, we investigated the 3.3-kb repeat methylation status in human papilloma virus (HPV-positive cervical tumors, cancer cell lines, and normal cervical tissues. Open reading frames encoding DUX family proteins are contained within some 3.3-kb repeat units. The DUX mRNA expression profile was also studied in these tissues. Methods The methylation status of 3.3-kb repeats was evaluated by Southern blot hybridization and bisulfite genomic sequencing. The expression of DUX mRNA was analyzed by RT-PCR and specificity of PCR products was confirmed by sequencing analysis. Results Hypermethylation of 3.3-kb repeats relative to normal tissues was revealed for the first time in more than 50% (18/34 of cervical tumors and in 4 HPV-positive cervical cancer cell lines. Hypermethylation of 3.3-kb repeats was observed in tumors concurrently with or independently of hypomethylation of classical satellite 2 sequences (Sat2 that were hypomethylated in 75% (15/20 of cervical tumors. We have revealed the presence of transcripts highly homologous to DUX4 and DUX10 genes in normal tissues and down-regulation of transcripts in 68% of tumors with and without 3.3-kb repeats hypermethylation. Conclusion Our results demonstrate that hypermethylation rather than hypomethylation of 3.3-kb repeats is the predominant event in HPV-associated cervical cancer and provide new insight into the epigenetic changes of repetitive DNA elements in carcinogenesis.

  19. Functional Genomics Uncover the Biology behind the Responsiveness of Head and Neck Squamous Cell Cancer Patients to Cetuximab.

    Science.gov (United States)

    Bossi, Paolo; Bergamini, Cristiana; Siano, Marco; Cossu Rocca, Maria; Sponghini, Andrea P; Favales, Federica; Giannoccaro, Marco; Marchesi, Edoardo; Cortelazzi, Barbara; Perrone, Federica; Pilotti, Silvana; Locati, Laura D; Licitra, Lisa; Canevari, Silvana; De Cecco, Loris

    2016-08-01

    To identify the tumor portrait of the minority of head and neck squamous cell carcinoma (HNSCC) patients with recurrent-metastatic (RM) disease who upon treatment with platinum-based chemotherapy plus cetuximab present a long-lasting response. The gene expression of pretreatment samples from 40 HNSCC-RM patients, divided in two groups [14 long-progression-free survival (PFS) and 26 short-PFS (median = 19 and 3 months, respectively)], was associated with PFS and was challenged against a dataset from metastatic colon cancer patients treated with cetuximab. For biologic analysis, we performed functional and subtype association using gene set enrichment analysis, associated biology across all currently available HNSCC signatures, and inferred drug sensitivity using data from the Cancer Genomic Project. The identified genomic profile exhibited a significant predictive value that was essentially confirmed in the single publicly available dataset of cetuximab-treated patients. The main divergence between long- and short-PFS groups was based on developmental/differentiation status. The long-PFS patients are characterized by basal subtype traits such as strong EGFR signaling phenotype and hypoxic differentiation, further validated by the significantly higher association with the hypoxia metagene. The short-PFS patients presented a strong activation of RAS signaling confirmed in an in vitro model of two isogenic HNSCC cell lines sensitive or resistant to cetuximab. The predicted drug sensitivity for all four EGFR inhibitors was higher in long- versus short-PFS patients (P range: biology behind response to platinum-based chemotherapy plus cetuximab in RM-HNSCC cancer and may have translational implications improving treatment selection. Clin Cancer Res; 22(15); 3961-70. ©2016 AACRSee related commentary by Chau and Hammerman, p. 3710. ©2016 American Association for Cancer Research.

  20. Differential Expression Profiles of the Transcriptome in Breast Cancer Cell Lines Revealed by Next Generation Sequencing

    Directory of Open Access Journals (Sweden)

    Yu Shi

    2017-11-01

    Full Text Available Background/Aims: As MCF-7 and MDA-MB-231 cells are the typical cell lines of two clinical breast tumour subtypes, the aim of the present study was to elucidate the transcriptome differences between MCF-7 and MDA-MB-231 breast cancer cell lines. Methods: The mRNA, miRNA (MicroRNA and lncRNA (Long non-coding RNA expression profiles were examined using NGS (next generation sequencing instrument Illumina HiSeq-2500. GO (Gene Ontology and KEGG (Kyoto Encyclopedia of Genes and Genomes pathway analyses were performed to identify the biological functions of differentially expressed coding RNAs. Subsequently, we constructed an mRNA-ncRNA (non-coding RNA targeting regulatory network. Finally, we performed RT-qPCR (real-time quantitative PCR to confirm the NGS results. Results: There are sharp distinctions of the coding and non-coding RNA profiles between MCF-7 and MDA-MB-231 cell lines. Among the mRNAs and ncRNAs with the most differential expression, SLPI, SOD2, miR-7, miR-143 and miR-145 were highly expressed in MCF-7 cells, while CD55, KRT17, miR-21, miR-10b, miR-9, NEAT1 and PICSAR were over-expressed in MDA-MB-231 cells. Differentially expressed mRNAs are primarily involved in biological processes of locomotion, biological adhesion, ECM-receptor interaction pathway and focal adhesion. In the targeting regulatory network of differentially expressed RNAs, mRNAs and miRNAs are primarily associated with tumour metastasis, but the functions of lncRNAs remain uncharacterized. Conclusion: These results provide a basis for future studies of breast cancer metastasis and drug resistance.

  1. NCG 4.0: the network of cancer genes in the era of massive mutational screenings of cancer genomes

    Science.gov (United States)

    An, Omer; Pendino, Vera; D’Antonio, Matteo; Ratti, Emanuele; Gentilini, Marco; Ciccarelli, Francesca D.

    2014-01-01

    NCG 4.0 is the latest update of the Network of Cancer Genes, a web-based repository of systems-level properties of cancer genes. In its current version, the database collects information on 537 known (i.e. experimentally supported) and 1463 candidate (i.e. inferred using statistical methods) cancer genes. Candidate cancer genes derive from the manual revision of 67 original publications describing the mutational screening of 3460 human exomes and genomes in 23 different cancer types. For all 2000 cancer genes, duplicability, evolutionary origin, expression, functional annotation, interaction network with other human proteins and with microRNAs are reported. In addition to providing a substantial update of cancer-related information, NCG 4.0 also introduces two new features. The first is the annotation of possible false-positive cancer drivers, defined as candidate cancer genes inferred from large-scale screenings whose association with cancer is likely to be spurious. The second is the description of the systems-level properties of 64 human microRNAs that are causally involved in cancer progression (oncomiRs). Owing to the manual revision of all information, NCG 4.0 constitutes a complete and reliable resource on human coding and non-coding genes whose deregulation drives cancer onset and/or progression. NCG 4.0 can also be downloaded as a free application for Android smart phones. Database URL: http://bio.ieo.eu/ncg/ PMID:24608173

  2. The Naked Mole Rat Genome Resource : facilitating analyses of cancer and longevity-related adaptations

    OpenAIRE

    Keane, Michael; Craig, Thomas; Alfoldi, Jessica; Berlin, Aaron M; Johnson, Jeremy; Seluanov, Andrei; Gorbunova, Vera; Di Palma, Federica; Lindblad-Toh, Kerstin; Church, George M; de Magalhaes, Joao Pedro

    2014-01-01

    MOTIVATION: The naked mole rat (Heterocephalus glaber) is an exceptionally long-lived and cancer-resistant rodent native to East Africa. Although its genome was previously sequenced, here we report a new assembly sequenced by us with substantially higher N50 values for scaffolds and contigs. RESULTS: We analyzed the annotation of this new improved assembly and identified candidate genomic adaptations which may have contributed to the evolution of the naked mole rat's extraordinary traits, inc...

  3. Luminal B tumors are the most frequent molecular subtype in breast cancer of North African women: an immunohistochemical profile study from Morocco

    Directory of Open Access Journals (Sweden)

    El Fatemi Hinde

    2012-12-01

    Full Text Available Abstract Background Breast cancer may be classified into luminal A, luminal B, HER2+/ER-, basal-like and normal-like subtypes based on gene expression profiling or immunohistochemical (IHC characteristics. The aim of our study is to show the molecular profile characteristic of breast cancer in the North African population of Morocco. This work showed preliminary results and correlations with clinicopathological and histological parameters. Three hundred and ninety primary breast carcinomas tumor tissues were immunostained for ER, PR, HER2, CK5/6, CK8/18 and Ki67 using paraffin tissue. Methods We reviewed 390 cases of breast cancer diagnosed on January 2008 to December 2011 at the Department of pathology, Hassan II teaching hospital, Fez, Morocco. Age, size tumor, metastatic profile, node involvement profile, histological type and immunohistochemical profile were studied. Results The average age was 46 years; our patients were diagnosed late with a high average tumor size. Luminal B subtype was more prevalent (41.8%, followed by luminal A (30.5%, basal-like (13, 6%, Her2-overexpressing (9, 2%, and unclassified subtype (4.9%. Conclusion This study showed that molecular classification and biological profile may be different according to geographical distribution, to encourage further studies to know the genomic profile of tumors and the environment. Virtual slide http://www.diagnosticpathology.diagnomx.eu/vs/1675272504826544

  4. Embryonic stem cell-like features of testicular carcinoma in situ revealed by genome-wide gene expression profiling

    DEFF Research Database (Denmark)

    Almstrup, Kristian; Hoei-Hansen, Christina E; Wirkner, Ute

    2004-01-01

    Carcinoma in situ (CIS) is the common precursor of histologically heterogeneous testicular germ cell tumors (TGCTs), which in recent decades have markedly increased and now are the most common malignancy of young men. Using genome-wide gene expression profiling, we identified >200 genes highly ex...

  5. Crossing the LINE toward genomic instability: LINE-1 retrotransposition in cancer

    Directory of Open Access Journals (Sweden)

    Jacqueline R. Kemp

    2015-12-01

    Full Text Available Retrotransposons are repetitive DNA sequences that are positioned throughout the human genome. Retrotransposons are capable of copying themselves and mobilizing new copies to novel genomic locations in a process called retrotransposition. While most retrotransposon sequences in the human genome are incomplete and incapable of mobilization, the LINE-1 retrotransposon, which comprises approximately 17% of the human genome, remains active. The disruption of cellular mechanisms that suppress retrotransposon activity is linked to the generation of aneuploidy, a potential driver of tumor development. When retrotransposons insert into a novel genomic region, they have the potential to disrupt the coding sequence of endogenous genes and alter gene expression, which can lead to deleterious consequences for the organism. Additionally, increased LINE-1 copy numbers provide more chances for recombination events to occur between retrotransposons, which can lead to chromosomal breaks and rearrangements. LINE-1 activity is increased in various cancer cell lines and in patient tissues resected from primary tumors. LINE-1 activity also correlates with increased cancer metastasis. This review aims to give a brief overview of the connections between LINE-1 retrotransposition and the loss of genome stability. We will also discuss the mechanisms that repress retrotransposition in human cells and their links to cancer.

  6. Integrated proteomic and genomic analysis of colorectal cancer

    Science.gov (United States)

    Investigators who analyzed 95 human colorectal tumor samples have determined how gene alterations identified in previous analyses of the same samples are expressed at the protein level. The integration of proteomic and genomic data, or proteogenomics, pro

  7. A combined analysis of genome-wide expression profiling of bipolar disorder in human prefrontal cortex.

    Science.gov (United States)

    Wang, Jinglu; Qu, Susu; Wang, Weixiao; Guo, Liyuan; Zhang, Kunlin; Chang, Suhua; Wang, Jing

    2016-11-01

    Numbers of gene expression profiling studies of bipolar disorder have been published. Besides different array chips and tissues, variety of the data processes in different cohorts aggravated the inconsistency of results of these genome-wide gene expression profiling studies. By searching the gene expression databases, we obtained six data sets for prefrontal cortex (PFC) of bipolar disorder with raw data and combinable platforms. We used standardized pre-processing and quality control procedures to analyze each data set separately and then combined them into a large gene expression matrix with 101 bipolar disorder subjects and 106 controls. A standard linear mixed-effects model was used to calculate the differentially expressed genes (DEGs). Multiple levels of sensitivity analyses and cross validation with genetic data were conducted. Functional and network analyses were carried out on basis of the DEGs. In the result, we identified 198 unique differentially expressed genes in the PFC of bipolar disorder and control. Among them, 115 DEGs were robust to at least three leave-one-out tests or different pre-processing methods; 51 DEGs were validated with genetic association signals. Pathway enrichment analysis showed these DEGs were related with regulation of neurological system, cell death and apoptosis, and several basic binding processes. Protein-protein interaction network further identified one key hub gene. We have contributed the most comprehensive integrated analysis of bipolar disorder expression profiling studies in PFC to date. The DEGs, especially those with multiple validations, may denote a common signature of bipolar disorder and contribute to the pathogenesis of disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Development and psychometric testing of a breast cancer patient-profiling questionnaire

    Directory of Open Access Journals (Sweden)

    Gorini A

    2015-06-01

    Full Text Available Alessandra Gorini,1,2 Ketti Mazzocco,1,2 Sara Gandini,2 Elisabetta Munzone,2 Gordon McVie,2 Gabriella Pravettoni1,2 1Department of Health Science, University of Milan, Milan, Italy; 2European Institute of Oncology, Milan, Italy Introduction: The advent of “personalized medicine” has been driven by technological advances in genomics. Concentration at the subcellular level of a patient's cancer cells has meant inevitably that the “person” has been overlooked. For this reason, we think there is an urgent need to develop a truly personalized approach focusing on each patient as an individual, assessing his/her unique mental dimensions and tailoring interventions to his/her individual needs and preferences. The aim of this study was to develop and test the psychometric properties of the ALGA-Breast Cancer (ALGA-BC, a new multidimensional questionnaire that assesses the breast cancer patient's physical and mental characteristics in order to provide physicians, prior to the consultation, with a patient's profile that is supposed to facilitate subsequent communication, interaction, and information delivery between the doctor and the patient. Methods: The specific validation processes used were: content and face validity, construct validity using factor analysis, reliability and internal consistency using test–retest reliability, and Cronbach's alpha correlation coefficient. The exploratory analysis included 100 primary breast cancer patients and 730 healthy subjects. Results: The exploratory factor analysis revealed eight key factors: global self-rated health, perceived physical health, anxiety, self-efficacy, cognitive closure, memory, body image, and sexual life. Test–retest reliability and internal consistency were good. Comparing patients with a sample of healthy subjects, we also observed a general ability of the ALGA-BC questionnaire to discriminate between the two. Conclusion: The ALGA-BC questionnaire with 29 items is a valid

  9. Genome-Wide analysis of the role of copy-number variation in pancreatic cancer risk

    Directory of Open Access Journals (Sweden)

    Jason eWillis

    2014-02-01

    Full Text Available Although family history is a risk factor for pancreatic adenocarcinoma, much of the genetic etiology of this disease remains unknown. While genome-wide association studies have identified some common single nucleotide polymorphisms (SNPs associated with pancreatic cancer risk, these SNPs do not explain all the heritability of this disease. We hypothesized that copy number variation (CNVs in the genome may play a role in genetic predisposition to pancreatic adenocarcinoma. Here, we report a genome-wide analysis of CNVs in a small hospital-based, European ancestry cohort of pancreatic cancer cases and controls. Germline CNV discovery was performed using the Illumina Human CNV370 platform in 223 pancreatic cancer cases (both sporadic and familial and 169 controls. Following stringent quality control, we asked if global CNV burden was a risk factor for pancreatic cancer. Finally, we performed in silico CNV genotyping and association testing to discover novel CNV risk loci. When we examined the global CNV burden, we found no strong evidence that CNV burden plays a role in pancreatic cancer risk either overall or specifically in individuals with a family history of the disease. Similarly, we saw no significant evidence that any particular CNV is associated with pancreatic cancer risk. Taken together, these data suggest that CNVs do not contribute substantially to the genetic etiology of pancreatic cancer, though the results are tempered by small sample size and large experimental variability inherent in array-based CNV studies

  10. Altered mitochondrial genome content signals worse pathology and prognosis in prostate cancer.

    Science.gov (United States)

    Kalsbeek, Anton M F; Chan, Eva K F; Grogan, Judith; Petersen, Desiree C; Jaratlerdsiri, Weerachai; Gupta, Ruta; Lyons, Ruth J; Haynes, Anne-Maree; Horvath, Lisa G; Kench, James G; Stricker, Phillip D; Hayes, Vanessa M

    2018-01-01

    Mitochondrial genome (mtDNA) content is depleted in many cancers. In prostate cancer, there is intra-glandular as well as inter-patient mtDNA copy number variation. In this study, we determine if mtDNA content can be used as a predictor for prostate cancer staging and outcomes. Fresh prostate cancer biopsies from 115 patients were obtained at time of surgery. All cores underwent pathological review, followed by isolation of cancer and normal tissue. DNA was extracted and qPCR performed to quantify the total amount of mtDNA as a ratio to genomic DNA. Differences in mtDNA content were compared for prostate cancer pathology features and disease outcomes. We showed a significantly reduced mtDNA content in prostate cancer compared with normal adjacent prostate tissue (mean difference 1.73-fold, P-value Prostate cancer with increased mtDNA content showed unfavorable pathologic characteristics including, higher disease stage (PT2 vs PT3 P-value = 0.018), extracapsular extension (P-value = 0.02) and a trend toward an increased Gleason score (P-value = 0.064). No significant association was observed between changes in mtDNA content and biochemical recurrence (median follow up of 107 months). Contrary to other cancer types, prostate cancer tissue shows no universally depleted mtDNA content. Rather, the change in mtDNA content is highly variable, mirroring known prostate cancer genome heterogeneity. Patients with high mtDNA content have an unfavorable pathology, while a high mtDNA content in normal adjacent prostate tissue is associated with worse prognosis. © 2017 Wiley Periodicals, Inc.

  11. Kinome expression profiling and prognosis of basal breast cancers

    Directory of Open Access Journals (Sweden)

    Jacquemier Jocelyne

    2011-07-01

    Full Text Available Abstract Background Basal breast cancers (BCs represent ~15% of BCs. Although overall poor, prognosis is heterogeneous. Identification of good- versus poor-prognosis patients is difficult or impossible using the standard histoclinical features and the recently defined prognostic gene expression signatures (GES. Kinases are often activated or overexpressed in cancers, and constitute targets for successful therapies. We sought to define a prognostic model of basal BCs based on kinome expression profiling. Methods DNA microarray-based gene expression and histoclinical data of 2515 early BCs from thirteen datasets were collected. We searched for a kinome-based GES associated with disease-free survival (DFS in basal BCs of the learning set using a metagene-based approach. The signature was then tested in basal tumors of the independent validation set. Results A total of 591 samples were basal. We identified a 28-kinase metagene associated with DFS in the learning set (N = 73. This metagene was associated with immune response and particularly cytotoxic T-cell response. On multivariate analysis, a metagene-based predictor outperformed the classical prognostic factors, both in the learning and the validation (N = 518 sets, independently of the lymphocyte infiltrate. In the validation set, patients whose tumors overexpressed the metagene had a 78% 5-year DFS versus 54% for other patients (p = 1.62E-4, log-rank test. Conclusions Based on kinome expression, we identified a predictor that separated basal BCs into two subgroups of different prognosis. Tumors associated with higher activation of cytotoxic tumor-infiltrative lymphocytes harbored a better prognosis. Such classification should help tailor the treatment and develop new therapies based on immune response manipulation.

  12. Integrative genomic testing of cancer survival using semiparametric linear transformation models.

    Science.gov (United States)

    Huang, Yen-Tsung; Cai, Tianxi; Kim, Eunhee

    2016-07-20

    The wide availability of multi-dimensional genomic data has spurred increasing interests in integrating multi-platform genomic data. Integrative analysis of cancer genome landscape can potentially lead to deeper understanding of the biological process of cancer. We integrate epigenetics (DNA methylation and microRNA expression) and gene expression data in tumor genome to delineate the association between different aspects of the biological processes and brain tumor survival. To model the association, we employ a flexible semiparametric linear transformation model that incorporates both the main effects of these genomic measures as well as the possible interactions among them. We develop variance component tests to examine different coordinated effects by testing various subsets of model coefficients for the genomic markers. A Monte Carlo perturbation procedure is constructed to approximate the null distribution of the proposed test statistics. We further propose omnibus testing procedures to synthesize information from fitting various parsimonious sub-models to improve power. Simulation results suggest that our proposed testing procedures maintain proper size under the null and outperform standard score tests. We further illustrate the utility of our procedure in two genomic analyses for survival of glioblastoma multiforme patients. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  13. Genomic Profiling on an Unselected Solid Tumor Population Reveals a Highly Mutated Wnt/β-Catenin Pathway Associated with Oncogenic EGFR Mutations

    Directory of Open Access Journals (Sweden)

    Jingrui Jiang

    2018-04-01

    Full Text Available Oncogenic epidermal growth factor receptors (EGFRs can recruit key effectors in diverse cellular processes to propagate oncogenic signals. Targeted and combinational therapeutic strategies have been successfully applied for treating EGFR-driven cancers. However, a main challenge in EGFR therapies is drug resistance due to mutations, oncogenic shift, alternative signaling, and other potential mechanisms. To further understand the genetic alterations associated with oncogenic EGFRs and to provide further insight into optimal and personalized therapeutic strategies, we applied a proprietary comprehensive next-generation sequencing (NGS-based assay of 435 genes to systematically study the genomic profiles of 1565 unselected solid cancer patient samples. We found that activating EGFR mutations were predominantly detected in lung cancer, particularly in non-small cell lung cancer (NSCLC. The mutational landscape of EGFR-driven tumors covered most key signaling pathways and biological processes. Strikingly, the Wnt/β-catenin pathway was highly mutated (48 variants detected in 46% of the EGFR-driven tumors, and its variant number topped that in the TP53/apoptosis and PI3K-AKT-mTOR pathways. Furthermore, an analysis of mutation distribution revealed a differential association pattern of gene mutations between EGFR exon 19del and EGFR L858R. Our results confirm the aggressive nature of the oncogenic EGFR-driven tumors and reassure that a combinational strategy should have advantages over an EGFR-targeted monotherapy and holds great promise for overcoming drug resistance.

  14. OncoScape : Exploring the cancer aberration landscape by genomic data fusion

    NARCIS (Netherlands)

    Schlicker, A; Michaut, Magali; Rahman, Rubayte; Wessels, L.F.A.

    2016-01-01

    Although large-scale efforts for molecular profiling of cancer samples provide multiple data types for many samples, most approaches for finding candidate cancer genes rely on somatic mutations and DNA copy number only. We present a new method, OncoScape, which exploits five complementary data types

  15. Detecting the somatic mutations spectrum of Chinese lung cancer by analyzing the whole mitochondrial DNA genomes.

    Science.gov (United States)

    Fang, Yu; Huang, Jie; Zhang, Jing; Wang, Jun; Qiao, Fei; Chen, Hua-Mei; Hong, Zhi-Peng

    2015-02-01

    To detect the somatic mutations and character its spectrum in Chinese lung cancer patients. In this study, we sequenced the whole mitochondrial DNA (mtDNA) genomes for 10 lung cancer patients including the primary cancerous, matched paracancerous normal and distant normal tissues. By analyzing the 30 whole mtDNA genomes, eight somatic mutations were identified from five patients investigated, which were confirmed with the cloning and sequencing of the somatic mutations. Five of the somatic mutations were detected among control region and the rests were found at the coding region. Heterogeneity was the main character of the somatic mutations in Chinese lung cancer patients. Further potential disease-related screening showed that, except the C deletion at position 309 showed AD-weakly associated, most of them were not disease-related. Although the role of aforementioned somatic mutations was unknown, however, considering the relative higher frequency of somatic mutations among the whole mtDNA genomes, it hints that detecting the somatic mutation(s) from the whole mtDNA genomes can serve as a useful tool for the Chinese lung cancer diagnostic to some extent.

  16. Merging transcriptomics and metabolomics - advances in breast cancer profiling

    International Nuclear Information System (INIS)

    Borgan, Eldrid; Sitter, Beathe; Lingjærde, Ole Christian; Johnsen, Hilde; Lundgren, Steinar; Bathen, Tone F; Sørlie, Therese; Børresen-Dale, Anne-Lise; Gribbestad, Ingrid S

    2010-01-01

    Combining gene expression microarrays and high resolution magic angle spinning magnetic resonance spectroscopy (HR MAS MRS) of the same tissue samples enables comparison of the transcriptional and metabolic profiles of breast cancer. The aim of this study was to explore the potential of combining these two different types of information. Breast cancer tissue from 46 patients was analyzed by HR MAS MRS followed by gene expression microarrays. Two strategies were used to combine the gene expression and metabolic data; first using multivariate analyses to identify different groups based on gene expression and metabolic data; second correlating levels of specific metabolites to transcripts to suggest new hypotheses of connections between metabolite levels and the underlying biological processes. A parallel study was designed to address experimental issues of combining microarrays and HR MAS MRS. In the first strategy, using the microarray data and previously reported molecular classification methods, the majority of samples were classified as luminal A. Three subgroups of luminal A tumors were identified based on hierarchical clustering of the HR MAS MR spectra. The samples in one of the subgroups, designated A2, showed significantly lower glucose and higher alanine levels than the other luminal A samples, suggesting a higher glycolytic activity in these tumors. This group was also enriched for genes annotated with Gene Ontology (GO) terms related to cell cycle and DNA repair. In the second strategy, the correlations between concentrations of myo-inositol, glycine, taurine, glycerophosphocholine, phosphocholine, choline and creatine and all transcripts in the filtered microarray data were investigated. GO-terms related to the extracellular matrix were enriched among the genes that correlated the most to myo-inositol and taurine, while cell cycle related GO-terms were enriched for the genes that correlated the most to choline. Additionally, a subset of transcripts was

  17. Merging transcriptomics and metabolomics - advances in breast cancer profiling

    Directory of Open Access Journals (Sweden)

    Bathen Tone F

    2010-11-01

    Full Text Available Abstract Background Combining gene expression microarrays and high resolution magic angle spinning magnetic resonance spectroscopy (HR MAS MRS of the same tissue samples enables comparison of the transcriptional and metabolic profiles of breast cancer. The aim of this study was to explore the potential of combining these two different types of information. Methods Breast cancer tissue from 46 patients was analyzed by HR MAS MRS followed by gene expression microarrays. Two strategies were used to combine the gene expression and metabolic data; first using multivariate analyses to identify different groups based on gene expression and metabolic data; second correlating levels of specific metabolites to transcripts to suggest new hypotheses of connections between metabolite levels and the underlying biological processes. A parallel study was designed to address experimental issues of combining microarrays and HR MAS MRS. Results In the first strategy, using the microarray data and previously reported molecular classification methods, the majority of samples were classified as luminal A. Three subgroups of luminal A tumors were identified based on hierarchical clustering of the HR MAS MR spectra. The samples in one of the subgroups, designated A2, showed significantly lower glucose and higher alanine levels than the other luminal A samples, suggesting a higher glycolytic activity in these tumors. This group was also enriched for genes annotated with Gene Ontology (GO terms related to cell cycle and DNA repair. In the second strategy, the correlations between concentrations of myo-inositol, glycine, taurine, glycerophosphocholine, phosphocholine, choline and creatine and all transcripts in the filtered microarray data were investigated. GO-terms related to the extracellular matrix were enriched among the genes that correlated the most to myo-inositol and taurine, while cell cycle related GO-terms were enriched for the genes that correlated the most

  18. Harnessing Connectivity in a Large-Scale Small-Molecule Sensitivity Dataset | Office of Cancer Genomics

    Science.gov (United States)

    Identifying genetic alterations that prime a cancer cell to respond to a particular therapeutic agent can facilitate the development of precision cancer medicines. Cancer cell-line (CCL) profiling of small-molecule sensitivity has emerged as an unbiased method to assess the relationships between genetic or cellular features of CCLs and small-molecule response. Here, we developed annotated cluster multidimensional enrichment analysis to explore the associations between groups of small molecules and groups of CCLs in a new, quantitative sensitivity dataset.

  19. Genome-wide copy number profiling of single cells in S-phase reveals DNA-replication domains

    Science.gov (United States)

    Van der Aa, Niels; Cheng, Jiqiu; Mateiu, Ligia; Esteki, Masoud Zamani; Kumar, Parveen; Dimitriadou, Eftychia; Vanneste, Evelyne; Moreau, Yves; Vermeesch, Joris Robert; Voet, Thierry

    2013-01-01

    Single-cell genomics is revolutionizing basic genome research and clinical genetic diagnosis. However, none of the current research or clinical methods for single-cell analysis distinguishes between the analysis of a cell in G1-, S- or G2/M-phase of the cell cycle. Here, we demonstrate by means of array comparative genomic hybridization that charting the DNA copy number landscape of a cell in S-phase requires conceptually different approaches to that of a cell in G1- or G2/M-phase. Remarkably, despite single-cell whole-genome amplification artifacts, the log2 intensity ratios of single S-phase cells oscillate according to early and late replication domains, which in turn leads to the detection of significantly more DNA imbalances when compared with a cell in G1- or G2/M-phase. Although these DNA imbalances may, on the one hand, be falsely interpreted as genuine structural aberrations in the S-phase cell’s copy number profile and hence lead to misdiagnosis, on the other hand, the ability to detect replication domains genome wide in one cell has important applications in DNA-replication research. Genome-wide cell-type-specific early and late replicating domains have been identified by analyses of DNA from populations of cells, but cell-to-cell differences in DNA replication may be important in genome stability, disease aetiology and various other cellular processes. PMID:23295674

  20. cisMEP: an integrated repository of genomic epigenetic profiles and cis-regulatory modules in Drosophila.

    Science.gov (United States)

    Yang, Tzu-Hsien; Wang, Chung-Ching; Hung, Po-Cheng; Wu, Wei-Sheng

    2014-01-01

    Cis-regulatory modules (CRMs), or the DNA sequences required for regulating gene expression, play the central role in biological researches on transcriptional regulation in metazoan species. Nowadays, the systematic understanding of CRMs still mainly resorts to computational methods due to the time-consuming and small-scale nature of experimental methods. But the accuracy and reliability of different CRM prediction tools are still unclear. Without comparative cross-analysis of the results and combinatorial consideration with extra experimental information, there is no easy way to assess the confidence of the predicted CRMs. This limits the genome-wide understanding of CRMs. It is known that transcription factor binding and epigenetic profiles tend to determine functions of CRMs in gene transcriptional regulation. Thus integration of the genome-wide epigenetic profiles with systematically predicted CRMs can greatly help researchers evaluate and decipher the prediction confidence and possible transcriptional regulatory functions of these potential CRMs. However, these data are still fragmentary in the literatures. Here we performed the computational genome-wide screening for potential CRMs using different prediction tools and constructed the pioneer database, cisMEP (cis-regulatory module epigenetic profile database), to integrate these computationally identified CRMs with genomic epigenetic profile data. cisMEP collects the literature-curated TFBS location data and nine genres of epigenetic data for assessing the confidence of these potential CRMs and deciphering the possible CRM functionality. cisMEP aims to provide a user-friendly interface for researchers to assess the confidence of different potential CRMs and to understand the functions of CRMs through experimentally-identified epigenetic profiles. The deposited potential CRMs and experimental epigenetic profiles for confidence assessment provide experimentally testable hypotheses for the molecular mechanisms

  1. The landscape of genomic alterations across childhood cancers

    DEFF Research Database (Denmark)

    Gröbner, Susanne N; Worst, Barbara C; Weischenfeldt, Joachim

    2018-01-01

    Pan-cancer analyses that examine commonalities and differences among various cancer types have emerged as a powerful way to obtain novel insights into cancer biology. Here we present a comprehensive analysis of genetic alterations in a pan-cancer cohort including 961 tumours from children...... genes separate the tumours into two classes: small mutation and structural/copy-number variant (correlating with germline variants). Structural variants, hyperdiploidy, and chromothripsis are linked to TP53 mutation status and mutational signatures. Our data suggest that 7-8% of the children...

  2. DNA copy number profiles of gastric cancer precursor lesions

    Directory of Open Access Journals (Sweden)

    van de Velde Cornelis JH

    2007-10-01

    Full Text Available Abstract Background Chromosomal instability (CIN is the most prevalent type of genomic instability in gastric tumours, but its role in malignant transformation of the gastric mucosa is still obscure. In the present study, we set out to study whether two morphologically distinct categories of gastric cancer precursor lesions, i.e. intestinal-type and pyloric gland adenomas, would carry different patterns of DNA copy number changes, possibly reflecting distinct genetic pathways of gastric carcinogenesis in these two adenoma types. Results Using a 5K BAC array CGH platform, we showed that the most common aberrations shared by the 11 intestinal-type and 10 pyloric gland adenomas were gains of chromosomes 9 (29%, 11q (29% and 20 (33%, and losses of chromosomes 13q (48%, 6(48%, 5(43% and 10 (33%. The most frequent aberrations in intestinal-type gastric adenoma were gains on 11q, 9q and 8, and losses on chromosomes 5q, 6, 10 and 13, whereas in pyloric gland gastric adenomas these were gains on chromosome 20 and losses on 5q and 6. However, no significant differences were observed between the two adenoma types. Conclusion The results suggest that gains on chromosomes 8, 9q, 11q and 20, and losses on chromosomes 5q, 6, 10 and 13, likely represent early events in gastric carcinogenesis. The phenotypical entities, intestinal-type and pyloric gland adenomas, however, do not differ significantly (P = 0.8 at the level of DNA copy number changes.

  3. Health psychology and translational genomic research: bringing innovation to cancer-related behavioral interventions.

    Science.gov (United States)

    McBride, Colleen M; Birmingham, Wendy C; Kinney, Anita Y

    2015-01-01

    The past decade has witnessed rapid advances in human genome sequencing technology and in the understanding of the role of genetic and epigenetic alterations in cancer development. These advances have raised hopes that such knowledge could lead to improvements in behavioral risk reduction interventions, tailored screening recommendations, and treatment matching that together could accelerate the war on cancer. Despite this optimism, translation of genomic discovery for clinical and public health applications has moved relatively slowly. To date, health psychologists and the behavioral sciences generally have played a very limited role in translation research. In this report we discuss what we mean by genomic translational research and consider the social forces that have slowed translational research, including normative assumptions that translation research must occur downstream of basic science, thus relegating health psychology and other behavioral sciences to a distal role. We then outline two broad priority areas in cancer prevention, detection, and treatment where evidence will be needed to guide evaluation and implementation of personalized genomics: (a) effective communication, to broaden dissemination of genomic discovery, including patient-provider communication and familial communication, and (b) the need to improve the motivational impact of behavior change interventions, including those aimed at altering lifestyle choices and those focusing on decision making regarding targeted cancer treatments and chemopreventive adherence. We further discuss the role that health psychologists can play in interdisciplinary teams to shape translational research priorities and to evaluate the utility of emerging genomic discoveries for cancer prevention and control. PsycINFO Database Record (c) 2015 APA, all rights reserved.

  4. Reduced fatalism and increased prevention behavior after two high-profile lung cancer events.

    Science.gov (United States)

    Portnoy, David B; Leach, Corinne R; Kaufman, Annette R; Moser, Richard P; Alfano, Catherine M

    2014-01-01

    The positive impact of media coverage of high-profile cancer events on cancer prevention behaviors is well-established. However, less work has focused on potential adverse psychological reactions to such events, such as fatalism. Conducting 3 studies, the authors explored how the lung cancer death of Peter Jennings and diagnosis of Dana Reeve in 2005 related to fatalism. Analysis of a national media sample in Study 1 found that media coverage of these events often focused on reiterating the typical profile of those diagnosed with lung cancer; 38% of the media mentioned at least 1 known risk factor for lung cancer, most often smoking. Data from a nationally representative survey in Study 2 found that respondents reported lower lung cancer fatalism, after, compared with before, the events (OR = 0.16, 95% CI [0.03, 0.93]). A sustained increase in call volume to the national tobacco Quit